Comparison of two SVD-based color image compression schemes.
Li, Ying; Wei, Musheng; Zhang, Fengxia; Zhao, Jianli
2017-01-01
Color image compression is a commonly used process to represent image data as few bits as possible, which removes redundancy in the data while maintaining an appropriate level of quality for the user. Color image compression algorithms based on quaternion are very common in recent years. In this paper, we propose a color image compression scheme, based on the real SVD, named real compression scheme. First, we form a new real rectangular matrix C according to the red, green and blue components of the original color image and perform the real SVD for C. Then we select several largest singular values and the corresponding vectors in the left and right unitary matrices to compress the color image. We compare the real compression scheme with quaternion compression scheme by performing quaternion SVD using the real structure-preserving algorithm. We compare the two schemes in terms of operation amount, assignment number, operation speed, PSNR and CR. The experimental results show that with the same numbers of selected singular values, the real compression scheme offers higher CR, much less operation time, but a little bit smaller PSNR than the quaternion compression scheme. When these two schemes have the same CR, the real compression scheme shows more prominent advantages both on the operation time and PSNR.
Comparison of two SVD-based color image compression schemes
Li, Ying; Wei, Musheng; Zhang, Fengxia; Zhao, Jianli
2017-01-01
Color image compression is a commonly used process to represent image data as few bits as possible, which removes redundancy in the data while maintaining an appropriate level of quality for the user. Color image compression algorithms based on quaternion are very common in recent years. In this paper, we propose a color image compression scheme, based on the real SVD, named real compression scheme. First, we form a new real rectangular matrix C according to the red, green and blue components of the original color image and perform the real SVD for C. Then we select several largest singular values and the corresponding vectors in the left and right unitary matrices to compress the color image. We compare the real compression scheme with quaternion compression scheme by performing quaternion SVD using the real structure-preserving algorithm. We compare the two schemes in terms of operation amount, assignment number, operation speed, PSNR and CR. The experimental results show that with the same numbers of selected singular values, the real compression scheme offers higher CR, much less operation time, but a little bit smaller PSNR than the quaternion compression scheme. When these two schemes have the same CR, the real compression scheme shows more prominent advantages both on the operation time and PSNR. PMID:28257451
Combining image-processing and image compression schemes
NASA Technical Reports Server (NTRS)
Greenspan, H.; Lee, M.-C.
1995-01-01
An investigation into the combining of image-processing schemes, specifically an image enhancement scheme, with existing compression schemes is discussed. Results are presented on the pyramid coding scheme, the subband coding scheme, and progressive transmission. Encouraging results are demonstrated for the combination of image enhancement and pyramid image coding schemes, especially at low bit rates. Adding the enhancement scheme to progressive image transmission allows enhanced visual perception at low resolutions. In addition, further progressing of the transmitted images, such as edge detection schemes, can gain from the added image resolution via the enhancement.
New image compression scheme for digital angiocardiography application
NASA Astrophysics Data System (ADS)
Anastassopoulos, George C.; Lymberopoulos, Dimitris C.; Kotsopoulos, Stavros A.; Kokkinakis, George C.
1993-06-01
The present paper deals with the development and evaluation of a new compression scheme, for angiocardiography images. This scheme provides considerable compression of the medical data file, through two different stages. The first stage obliterates the redundancy inside a single frame domain since the second stage obliterates the redundancy among the sequential frames. Within these stages the employed data compression ratio can be easily adjusted according to the needs of the angiocardiography applications, where still or moving (in slow or full motion) images are hauled. The developed scheme has been tailored on the real needs of the diagnosis oriented conferencing-teleworking processes, where Unified Image Viewing facilities are required.
COxSwAIN: Compressive Sensing for Advanced Imaging and Navigation
NASA Technical Reports Server (NTRS)
Kurwitz, Richard; Pulley, Marina; LaFerney, Nathan; Munoz, Carlos
2015-01-01
The COxSwAIN project focuses on building an image and video compression scheme that can be implemented in a small or low-power satellite. To do this, we used Compressive Sensing, where the compression is performed by matrix multiplications on the satellite and reconstructed on the ground. Our paper explains our methodology and demonstrates the results of the scheme, being able to achieve high quality image compression that is robust to noise and corruption.
Avrin, D E; Andriole, K P; Yin, L; Gould, R G; Arenson, R L
2001-03-01
A hierarchical storage management (HSM) scheme for cost-effective on-line archival of image data using lossy compression is described. This HSM scheme also provides an off-site tape backup mechanism and disaster recovery. The full-resolution image data are viewed originally for primary diagnosis, then losslessly compressed and sent off site to a tape backup archive. In addition, the original data are wavelet lossy compressed (at approximately 25:1 for computed radiography, 10:1 for computed tomography, and 5:1 for magnetic resonance) and stored on a large RAID device for maximum cost-effective, on-line storage and immediate retrieval of images for review and comparison. This HSM scheme provides a solution to 4 problems in image archiving, namely cost-effective on-line storage, disaster recovery of data, off-site tape backup for the legal record, and maximum intermediate storage and retrieval through the use of on-site lossy compression.
NASA Astrophysics Data System (ADS)
Li, Xianye; Meng, Xiangfeng; Yang, Xiulun; Wang, Yurong; Yin, Yongkai; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi
2018-03-01
A multiple-image encryption method via lifting wavelet transform (LWT) and XOR operation is proposed, which is based on a row scanning compressive ghost imaging scheme. In the encryption process, the scrambling operation is implemented for the sparse images transformed by LWT, then the XOR operation is performed on the scrambled images, and the resulting XOR images are compressed in the row scanning compressive ghost imaging, through which the ciphertext images can be detected by bucket detector arrays. During decryption, the participant who possesses his/her correct key-group, can successfully reconstruct the corresponding plaintext image by measurement key regeneration, compression algorithm reconstruction, XOR operation, sparse images recovery, and inverse LWT (iLWT). Theoretical analysis and numerical simulations validate the feasibility of the proposed method.
An Energy-Efficient Compressive Image Coding for Green Internet of Things (IoT).
Li, Ran; Duan, Xiaomeng; Li, Xu; He, Wei; Li, Yanling
2018-04-17
Aimed at a low-energy consumption of Green Internet of Things (IoT), this paper presents an energy-efficient compressive image coding scheme, which provides compressive encoder and real-time decoder according to Compressive Sensing (CS) theory. The compressive encoder adaptively measures each image block based on the block-based gradient field, which models the distribution of block sparse degree, and the real-time decoder linearly reconstructs each image block through a projection matrix, which is learned by Minimum Mean Square Error (MMSE) criterion. Both the encoder and decoder have a low computational complexity, so that they only consume a small amount of energy. Experimental results show that the proposed scheme not only has a low encoding and decoding complexity when compared with traditional methods, but it also provides good objective and subjective reconstruction qualities. In particular, it presents better time-distortion performance than JPEG. Therefore, the proposed compressive image coding is a potential energy-efficient scheme for Green IoT.
Fast computational scheme of image compression for 32-bit microprocessors
NASA Technical Reports Server (NTRS)
Kasperovich, Leonid
1994-01-01
This paper presents a new computational scheme of image compression based on the discrete cosine transform (DCT), underlying JPEG and MPEG International Standards. The algorithm for the 2-d DCT computation uses integer operations (register shifts and additions / subtractions only); its computational complexity is about 8 additions per image pixel. As a meaningful example of an on-board image compression application we consider the software implementation of the algorithm for the Mars Rover (Marsokhod, in Russian) imaging system being developed as a part of Mars-96 International Space Project. It's shown that fast software solution for 32-bit microprocessors may compete with the DCT-based image compression hardware.
A Lossless hybrid wavelet-fractal compression for welding radiographic images.
Mekhalfa, Faiza; Avanaki, Mohammad R N; Berkani, Daoud
2016-01-01
In this work a lossless wavelet-fractal image coder is proposed. The process starts by compressing and decompressing the original image using wavelet transformation and fractal coding algorithm. The decompressed image is removed from the original one to obtain a residual image which is coded by using Huffman algorithm. Simulation results show that with the proposed scheme, we achieve an infinite peak signal to noise ratio (PSNR) with higher compression ratio compared to typical lossless method. Moreover, the use of wavelet transform speeds up the fractal compression algorithm by reducing the size of the domain pool. The compression results of several welding radiographic images using the proposed scheme are evaluated quantitatively and compared with the results of Huffman coding algorithm.
Compression of CCD raw images for digital still cameras
NASA Astrophysics Data System (ADS)
Sriram, Parthasarathy; Sudharsanan, Subramania
2005-03-01
Lossless compression of raw CCD images captured using color filter arrays has several benefits. The benefits include improved storage capacity, reduced memory bandwidth, and lower power consumption for digital still camera processors. The paper discusses the benefits in detail and proposes the use of a computationally efficient block adaptive scheme for lossless compression. Experimental results are provided that indicate that the scheme performs well for CCD raw images attaining compression factors of more than two. The block adaptive method also compares favorably with JPEG-LS. A discussion is provided indicating how the proposed lossless coding scheme can be incorporated into digital still camera processors enabling lower memory bandwidth and storage requirements.
Optimal color coding for compression of true color images
NASA Astrophysics Data System (ADS)
Musatenko, Yurij S.; Kurashov, Vitalij N.
1998-11-01
In the paper we present the method that improves lossy compression of the true color or other multispectral images. The essence of the method is to project initial color planes into Karhunen-Loeve (KL) basis that gives completely decorrelated representation for the image and to compress basis functions instead of the planes. To do that the new fast algorithm of true KL basis construction with low memory consumption is suggested and our recently proposed scheme for finding optimal losses of Kl functions while compression is used. Compare to standard JPEG compression of the CMYK images the method provides the PSNR gain from 0.2 to 2 dB for the convenient compression ratios. Experimental results are obtained for high resolution CMYK images. It is demonstrated that presented scheme could work on common hardware.
NASA Astrophysics Data System (ADS)
Yuan, Sheng; Yang, Yangrui; Liu, Xuemei; Zhou, Xin; Wei, Zhenzhuo
2018-01-01
An optical image transformation and encryption scheme is proposed based on double random-phase encoding (DRPE) and compressive ghost imaging (CGI) techniques. In this scheme, a secret image is first transformed into a binary image with the phase-retrieval-based DRPE technique, and then encoded by a series of random amplitude patterns according to the ghost imaging (GI) principle. Compressive sensing, corrosion and expansion operations are implemented to retrieve the secret image in the decryption process. This encryption scheme takes the advantage of complementary capabilities offered by the phase-retrieval-based DRPE and GI-based encryption techniques. That is the phase-retrieval-based DRPE is used to overcome the blurring defect of the decrypted image in the GI-based encryption, and the CGI not only reduces the data amount of the ciphertext, but also enhances the security of DRPE. Computer simulation results are presented to verify the performance of the proposed encryption scheme.
NASA Astrophysics Data System (ADS)
Chang, Ching-Chun; Liu, Yanjun; Nguyen, Son T.
2015-03-01
Data hiding is a technique that embeds information into digital cover data. This technique has been concentrated on the spatial uncompressed domain, and it is considered more challenging to perform in the compressed domain, i.e., vector quantization, JPEG, and block truncation coding (BTC). In this paper, we propose a new data hiding scheme for BTC-compressed images. In the proposed scheme, a dynamic programming strategy was used to search for the optimal solution of the bijective mapping function for LSB substitution. Then, according to the optimal solution, each mean value embeds three secret bits to obtain high hiding capacity with low distortion. The experimental results indicated that the proposed scheme obtained both higher hiding capacity and hiding efficiency than the other four existing schemes, while ensuring good visual quality of the stego-image. In addition, the proposed scheme achieved a low bit rate as original BTC algorithm.
2D-pattern matching image and video compression: theory, algorithms, and experiments.
Alzina, Marc; Szpankowski, Wojciech; Grama, Ananth
2002-01-01
In this paper, we propose a lossy data compression framework based on an approximate two-dimensional (2D) pattern matching (2D-PMC) extension of the Lempel-Ziv (1977, 1978) lossless scheme. This framework forms the basis upon which higher level schemes relying on differential coding, frequency domain techniques, prediction, and other methods can be built. We apply our pattern matching framework to image and video compression and report on theoretical and experimental results. Theoretically, we show that the fixed database model used for video compression leads to suboptimal but computationally efficient performance. The compression ratio of this model is shown to tend to the generalized entropy. For image compression, we use a growing database model for which we provide an approximate analysis. The implementation of 2D-PMC is a challenging problem from the algorithmic point of view. We use a range of techniques and data structures such as k-d trees, generalized run length coding, adaptive arithmetic coding, and variable and adaptive maximum distortion level to achieve good compression ratios at high compression speeds. We demonstrate bit rates in the range of 0.25-0.5 bpp for high-quality images and data rates in the range of 0.15-0.5 Mbps for a baseline video compression scheme that does not use any prediction or interpolation. We also demonstrate that this asymmetric compression scheme is capable of extremely fast decompression making it particularly suitable for networked multimedia applications.
Secure biometric image sensor and authentication scheme based on compressed sensing.
Suzuki, Hiroyuki; Suzuki, Masamichi; Urabe, Takuya; Obi, Takashi; Yamaguchi, Masahiro; Ohyama, Nagaaki
2013-11-20
It is important to ensure the security of biometric authentication information, because its leakage causes serious risks, such as replay attacks using the stolen biometric data, and also because it is almost impossible to replace raw biometric information. In this paper, we propose a secure biometric authentication scheme that protects such information by employing an optical data ciphering technique based on compressed sensing. The proposed scheme is based on two-factor authentication, the biometric information being supplemented by secret information that is used as a random seed for a cipher key. In this scheme, a biometric image is optically encrypted at the time of image capture, and a pair of restored biometric images for enrollment and verification are verified in the authentication server. If any of the biometric information is exposed to risk, it can be reenrolled by changing the secret information. Through numerical experiments, we confirm that finger vein images can be restored from the compressed sensing measurement data. We also present results that verify the accuracy of the scheme.
Joint image encryption and compression scheme based on IWT and SPIHT
NASA Astrophysics Data System (ADS)
Zhang, Miao; Tong, Xiaojun
2017-03-01
A joint lossless image encryption and compression scheme based on integer wavelet transform (IWT) and set partitioning in hierarchical trees (SPIHT) is proposed to achieve lossless image encryption and compression simultaneously. Making use of the properties of IWT and SPIHT, encryption and compression are combined. Moreover, the proposed secure set partitioning in hierarchical trees (SSPIHT) via the addition of encryption in the SPIHT coding process has no effect on compression performance. A hyper-chaotic system, nonlinear inverse operation, Secure Hash Algorithm-256(SHA-256), and plaintext-based keystream are all used to enhance the security. The test results indicate that the proposed methods have high security and good lossless compression performance.
Study and simulation of low rate video coding schemes
NASA Technical Reports Server (NTRS)
Sayood, Khalid; Chen, Yun-Chung; Kipp, G.
1992-01-01
The semiannual report is included. Topics covered include communication, information science, data compression, remote sensing, color mapped images, robust coding scheme for packet video, recursively indexed differential pulse code modulation, image compression technique for use on token ring networks, and joint source/channel coder design.
NASA Technical Reports Server (NTRS)
Poulakidas, A.; Srinivasan, A.; Egecioglu, O.; Ibarra, O.; Yang, T.
1996-01-01
Wavelet transforms, when combined with quantization and a suitable encoding, can be used to compress images effectively. In order to use them for image library systems, a compact storage scheme for quantized coefficient wavelet data must be developed with a support for fast subregion retrieval. We have designed such a scheme and in this paper we provide experimental studies to demonstrate that it achieves good image compression ratios, while providing a natural indexing mechanism that facilitates fast retrieval of portions of the image at various resolutions.
Magnetic resonance image compression using scalar-vector quantization
NASA Astrophysics Data System (ADS)
Mohsenian, Nader; Shahri, Homayoun
1995-12-01
A new coding scheme based on the scalar-vector quantizer (SVQ) is developed for compression of medical images. SVQ is a fixed-rate encoder and its rate-distortion performance is close to that of optimal entropy-constrained scalar quantizers (ECSQs) for memoryless sources. The use of a fixed-rate quantizer is expected to eliminate some of the complexity issues of using variable-length scalar quantizers. When transmission of images over noisy channels is considered, our coding scheme does not suffer from error propagation which is typical of coding schemes which use variable-length codes. For a set of magnetic resonance (MR) images, coding results obtained from SVQ and ECSQ at low bit-rates are indistinguishable. Furthermore, our encoded images are perceptually indistinguishable from the original, when displayed on a monitor. This makes our SVQ based coder an attractive compression scheme for picture archiving and communication systems (PACS), currently under consideration for an all digital radiology environment in hospitals, where reliable transmission, storage, and high fidelity reconstruction of images are desired.
View compensated compression of volume rendered images for remote visualization.
Lalgudi, Hariharan G; Marcellin, Michael W; Bilgin, Ali; Oh, Han; Nadar, Mariappan S
2009-07-01
Remote visualization of volumetric images has gained importance over the past few years in medical and industrial applications. Volume visualization is a computationally intensive process, often requiring hardware acceleration to achieve a real time viewing experience. One remote visualization model that can accomplish this would transmit rendered images from a server, based on viewpoint requests from a client. For constrained server-client bandwidth, an efficient compression scheme is vital for transmitting high quality rendered images. In this paper, we present a new view compensation scheme that utilizes the geometric relationship between viewpoints to exploit the correlation between successive rendered images. The proposed method obviates motion estimation between rendered images, enabling significant reduction to the complexity of a compressor. Additionally, the view compensation scheme, in conjunction with JPEG2000 performs better than AVC, the state of the art video compression standard.
Image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing
NASA Astrophysics Data System (ADS)
Zhou, Nanrun; Pan, Shumin; Cheng, Shan; Zhou, Zhihong
2016-08-01
Most image encryption algorithms based on low-dimensional chaos systems bear security risks and suffer encryption data expansion when adopting nonlinear transformation directly. To overcome these weaknesses and reduce the possible transmission burden, an efficient image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing is proposed. The original image is measured by the measurement matrices in two directions to achieve compression and encryption simultaneously, and then the resulting image is re-encrypted by the cycle shift operation controlled by a hyper-chaotic system. Cycle shift operation can change the values of the pixels efficiently. The proposed cryptosystem decreases the volume of data to be transmitted and simplifies the keys distribution simultaneously as a nonlinear encryption system. Simulation results verify the validity and the reliability of the proposed algorithm with acceptable compression and security performance.
Oblivious image watermarking combined with JPEG compression
NASA Astrophysics Data System (ADS)
Chen, Qing; Maitre, Henri; Pesquet-Popescu, Beatrice
2003-06-01
For most data hiding applications, the main source of concern is the effect of lossy compression on hidden information. The objective of watermarking is fundamentally in conflict with lossy compression. The latter attempts to remove all irrelevant and redundant information from a signal, while the former uses the irrelevant information to mask the presence of hidden data. Compression on a watermarked image can significantly affect the retrieval of the watermark. Past investigations of this problem have heavily relied on simulation. It is desirable not only to measure the effect of compression on embedded watermark, but also to control the embedding process to survive lossy compression. In this paper, we focus on oblivious watermarking by assuming that the watermarked image inevitably undergoes JPEG compression prior to watermark extraction. We propose an image-adaptive watermarking scheme where the watermarking algorithm and the JPEG compression standard are jointly considered. Watermark embedding takes into consideration the JPEG compression quality factor and exploits an HVS model to adaptively attain a proper trade-off among transparency, hiding data rate, and robustness to JPEG compression. The scheme estimates the image-dependent payload under JPEG compression to achieve the watermarking bit allocation in a determinate way, while maintaining consistent watermark retrieval performance.
NASA Astrophysics Data System (ADS)
Zhang, Miao; Tong, Xiaojun
2017-07-01
This paper proposes a joint image encryption and compression scheme based on a new hyperchaotic system and curvelet transform. A new five-dimensional hyperchaotic system based on the Rabinovich system is presented. By means of the proposed hyperchaotic system, a new pseudorandom key stream generator is constructed. The algorithm adopts diffusion and confusion structure to perform encryption, which is based on the key stream generator and the proposed hyperchaotic system. The key sequence used for image encryption is relation to plain text. By means of the second generation curvelet transform, run-length coding, and Huffman coding, the image data are compressed. The joint operation of compression and encryption in a single process is performed. The security test results indicate the proposed methods have high security and good compression effect.
Proposed data compression schemes for the Galileo S-band contingency mission
NASA Technical Reports Server (NTRS)
Cheung, Kar-Ming; Tong, Kevin
1993-01-01
The Galileo spacecraft is currently on its way to Jupiter and its moons. In April 1991, the high gain antenna (HGA) failed to deploy as commanded. In case the current efforts to deploy the HGA fails, communications during the Jupiter encounters will be through one of two low gain antenna (LGA) on an S-band (2.3 GHz) carrier. A lot of effort has been and will be conducted to attempt to open the HGA. Also various options for improving Galileo's telemetry downlink performance are being evaluated in the event that the HGA will not open at Jupiter arrival. Among all viable options the most promising and powerful one is to perform image and non-image data compression in software onboard the spacecraft. This involves in-flight re-programming of the existing flight software of Galileo's Command and Data Subsystem processors and Attitude and Articulation Control System (AACS) processor, which have very limited computational and memory resources. In this article we describe the proposed data compression algorithms and give their respective compression performance. The planned image compression algorithm is a 4 x 4 or an 8 x 8 multiplication-free integer cosine transform (ICT) scheme, which can be viewed as an integer approximation of the popular discrete cosine transform (DCT) scheme. The implementation complexity of the ICT schemes is much lower than the DCT-based schemes, yet the performances of the two algorithms are indistinguishable. The proposed non-image compression algorith is a Lempel-Ziv-Welch (LZW) variant, which is a lossless universal compression algorithm based on a dynamic dictionary lookup table. We developed a simple and efficient hashing function to perform the string search.
Watermarking of ultrasound medical images in teleradiology using compressed watermark
Badshah, Gran; Liew, Siau-Chuin; Zain, Jasni Mohamad; Ali, Mushtaq
2016-01-01
Abstract. The open accessibility of Internet-based medical images in teleradialogy face security threats due to the nonsecured communication media. This paper discusses the spatial domain watermarking of ultrasound medical images for content authentication, tamper detection, and lossless recovery. For this purpose, the image is divided into two main parts, the region of interest (ROI) and region of noninterest (RONI). The defined ROI and its hash value are combined as watermark, lossless compressed, and embedded into the RONI part of images at pixel’s least significant bits (LSBs). The watermark lossless compression and embedding at pixel’s LSBs preserve image diagnostic and perceptual qualities. Different lossless compression techniques including Lempel-Ziv-Welch (LZW) were tested for watermark compression. The performances of these techniques were compared based on more bit reduction and compression ratio. LZW was found better than others and used in tamper detection and recovery watermarking of medical images (TDARWMI) scheme development to be used for ROI authentication, tamper detection, localization, and lossless recovery. TDARWMI performance was compared and found to be better than other watermarking schemes. PMID:26839914
Progressive compressive imager
NASA Astrophysics Data System (ADS)
Evladov, Sergei; Levi, Ofer; Stern, Adrian
2012-06-01
We have designed and built a working automatic progressive sampling imaging system based on the vector sensor concept, which utilizes a unique sampling scheme of Radon projections. This sampling scheme makes it possible to progressively add information resulting in tradeoff between compression and the quality of reconstruction. The uniqueness of our sampling is that in any moment of the acquisition process the reconstruction can produce a reasonable version of the image. The advantage of the gradual addition of the samples is seen when the sparsity rate of the object is unknown, and thus the number of needed measurements. We have developed the iterative algorithm OSO (Ordered Sets Optimization) which employs our sampling scheme for creation of nearly uniform distributed sets of samples, which allows the reconstruction of Mega-Pixel images. We present the good quality reconstruction from compressed data ratios of 1:20.
NASA Astrophysics Data System (ADS)
Yao, Juncai; Liu, Guizhong
2017-03-01
In order to achieve higher image compression ratio and improve visual perception of the decompressed image, a novel color image compression scheme based on the contrast sensitivity characteristics of the human visual system (HVS) is proposed. In the proposed scheme, firstly the image is converted into the YCrCb color space and divided into sub-blocks. Afterwards, the discrete cosine transform is carried out for each sub-block, and three quantization matrices are built to quantize the frequency spectrum coefficients of the images by combining the contrast sensitivity characteristics of HVS. The Huffman algorithm is used to encode the quantized data. The inverse process involves decompression and matching to reconstruct the decompressed color image. And simulations are carried out for two color images. The results show that the average structural similarity index measurement (SSIM) and peak signal to noise ratio (PSNR) under the approximate compression ratio could be increased by 2.78% and 5.48%, respectively, compared with the joint photographic experts group (JPEG) compression. The results indicate that the proposed compression algorithm in the text is feasible and effective to achieve higher compression ratio under ensuring the encoding and image quality, which can fully meet the needs of storage and transmission of color images in daily life.
The Pixon Method for Data Compression Image Classification, and Image Reconstruction
NASA Technical Reports Server (NTRS)
Puetter, Richard; Yahil, Amos
2002-01-01
As initially proposed, this program had three goals: (1) continue to develop the highly successful Pixon method for image reconstruction and support other scientist in implementing this technique for their applications; (2) develop image compression techniques based on the Pixon method; and (3) develop artificial intelligence algorithms for image classification based on the Pixon approach for simplifying neural networks. Subsequent to proposal review the scope of the program was greatly reduced and it was decided to investigate the ability of the Pixon method to provide superior restorations of images compressed with standard image compression schemes, specifically JPEG-compressed images.
A Distributed Compressive Sensing Scheme for Event Capture in Wireless Visual Sensor Networks
NASA Astrophysics Data System (ADS)
Hou, Meng; Xu, Sen; Wu, Weiling; Lin, Fei
2018-01-01
Image signals which acquired by wireless visual sensor network can be used for specific event capture. This event capture is realized by image processing at the sink node. A distributed compressive sensing scheme is used for the transmission of these image signals from the camera nodes to the sink node. A measurement and joint reconstruction algorithm for these image signals are proposed in this paper. Make advantage of spatial correlation between images within a sensing area, the cluster head node which as the image decoder can accurately co-reconstruct these image signals. The subjective visual quality and the reconstruction error rate are used for the evaluation of reconstructed image quality. Simulation results show that the joint reconstruction algorithm achieves higher image quality at the same image compressive rate than the independent reconstruction algorithm.
Quantization Distortion in Block Transform-Compressed Data
NASA Technical Reports Server (NTRS)
Boden, A. F.
1995-01-01
The popular JPEG image compression standard is an example of a block transform-based compression scheme; the image is systematically subdivided into block that are individually transformed, quantized, and encoded. The compression is achieved by quantizing the transformed data, reducing the data entropy and thus facilitating efficient encoding. A generic block transform model is introduced.
NASA Astrophysics Data System (ADS)
Liansheng, Sui; Bei, Zhou; Zhanmin, Wang; Ailing, Tian
2017-05-01
A novel optical color image watermarking scheme considering human visual characteristics is presented in gyrator transform domain. Initially, an appropriate reference image is constructed of significant blocks chosen from the grayscale host image by evaluating visual characteristics such as visual entropy and edge entropy. Three components of the color watermark image are compressed based on compressive sensing, and the corresponding results are combined to form the grayscale watermark. Then, the frequency coefficients of the watermark image are fused into the frequency data of the gyrator-transformed reference image. The fused result is inversely transformed and partitioned, and eventually the watermarked image is obtained by mapping the resultant blocks into their original positions. The scheme can reconstruct the watermark with high perceptual quality and has the enhanced security due to high sensitivity of the secret keys. Importantly, the scheme can be implemented easily under the framework of double random phase encoding with the 4f optical system. To the best of our knowledge, it is the first report on embedding the color watermark into the grayscale host image which will be out of attacker's expectation. Simulation results are given to verify the feasibility and its superior performance in terms of noise and occlusion robustness.
NASA Astrophysics Data System (ADS)
Clunie, David A.
2000-05-01
Proprietary compression schemes have a cost and risk associated with their support, end of life and interoperability. Standards reduce this cost and risk. The new JPEG-LS process (ISO/IEC 14495-1), and the lossless mode of the proposed JPEG 2000 scheme (ISO/IEC CD15444-1), new standard schemes that may be incorporated into DICOM, are evaluated here. Three thousand, six hundred and seventy-nine (3,679) single frame grayscale images from multiple anatomical regions, modalities and vendors, were tested. For all images combined JPEG-LS and JPEG 2000 performed equally well (3.81), almost as well as CALIC (3.91), a complex predictive scheme used only as a benchmark. Both out-performed existing JPEG (3.04 with optimum predictor choice per image, 2.79 for previous pixel prediction as most commonly used in DICOM). Text dictionary schemes performed poorly (gzip 2.38), as did image dictionary schemes without statistical modeling (PNG 2.76). Proprietary transform based schemes did not perform as well as JPEG-LS or JPEG 2000 (S+P Arithmetic 3.4, CREW 3.56). Stratified by modality, JPEG-LS compressed CT images (4.00), MR (3.59), NM (5.98), US (3.4), IO (2.66), CR (3.64), DX (2.43), and MG (2.62). CALIC always achieved the highest compression except for one modality for which JPEG-LS did better (MG digital vendor A JPEG-LS 4.02, CALIC 4.01). JPEG-LS outperformed existing JPEG for all modalities. The use of standard schemes can achieve state of the art performance, regardless of modality, JPEG-LS is simple, easy to implement, consumes less memory, and is faster than JPEG 2000, though JPEG 2000 will offer lossy and progressive transmission. It is recommended that DICOM add transfer syntaxes for both JPEG-LS and JPEG 2000.
Dual domain watermarking for authentication and compression of cultural heritage images.
Zhao, Yang; Campisi, Patrizio; Kundur, Deepa
2004-03-01
This paper proposes an approach for the combined image authentication and compression of color images by making use of a digital watermarking and data hiding framework. The digital watermark is comprised of two components: a soft-authenticator watermark for authentication and tamper assessment of the given image, and a chrominance watermark employed to improve the efficiency of compression. The multipurpose watermark is designed by exploiting the orthogonality of various domains used for authentication, color decomposition and watermark insertion. The approach is implemented as a DCT-DWT dual domain algorithm and is applied for the protection and compression of cultural heritage imagery. Analysis is provided to characterize the behavior of the scheme under ideal conditions. Simulations and comparisons of the proposed approach with state-of-the-art existing work demonstrate the potential of the overall scheme.
NASA Astrophysics Data System (ADS)
Zhu, Zhenyu; Wang, Jianyu
1996-11-01
In this paper, two compression schemes are presented to meet the urgent needs of compressing the huge volume and high data rate of imaging spectrometer images. According to the multidimensional feature of the images and the high fidelity requirement of the reconstruction, both schemes were devised to exploit the high redundancy in both spatial and spectral dimension based on the mature wavelet transform technology. Wavelet transform was applied here in two ways: First, with the spatial wavelet transform and the spectral DPCM decorrelation, a ratio up to 84.3 with PSNR > 48db's near-lossless result was attained. This is based ont he fact that the edge structure among all the spectral bands are similar while WT has higher resolution in high frequency components. Secondly, with the wavelet's high efficiency in processing the 'wideband transient' signals, it was used to transform the raw nonstationary signals in the spectral dimension. A good result was also attained.
ICER-3D Hyperspectral Image Compression Software
NASA Technical Reports Server (NTRS)
Xie, Hua; Kiely, Aaron; Klimesh, matthew; Aranki, Nazeeh
2010-01-01
Software has been developed to implement the ICER-3D algorithm. ICER-3D effects progressive, three-dimensional (3D), wavelet-based compression of hyperspectral images. If a compressed data stream is truncated, the progressive nature of the algorithm enables reconstruction of hyperspectral data at fidelity commensurate with the given data volume. The ICER-3D software is capable of providing either lossless or lossy compression, and incorporates an error-containment scheme to limit the effects of data loss during transmission. The compression algorithm, which was derived from the ICER image compression algorithm, includes wavelet-transform, context-modeling, and entropy coding subalgorithms. The 3D wavelet decomposition structure used by ICER-3D exploits correlations in all three dimensions of sets of hyperspectral image data, while facilitating elimination of spectral ringing artifacts, using a technique summarized in "Improving 3D Wavelet-Based Compression of Spectral Images" (NPO-41381), NASA Tech Briefs, Vol. 33, No. 3 (March 2009), page 7a. Correlation is further exploited by a context-modeling subalgorithm, which exploits spectral dependencies in the wavelet-transformed hyperspectral data, using an algorithm that is summarized in "Context Modeler for Wavelet Compression of Hyperspectral Images" (NPO-43239), which follows this article. An important feature of ICER-3D is a scheme for limiting the adverse effects of loss of data during transmission. In this scheme, as in the similar scheme used by ICER, the spatial-frequency domain is partitioned into rectangular error-containment regions. In ICER-3D, the partitions extend through all the wavelength bands. The data in each partition are compressed independently of those in the other partitions, so that loss or corruption of data from any partition does not affect the other partitions. Furthermore, because compression is progressive within each partition, when data are lost, any data from that partition received prior to the loss can be used to reconstruct that partition at lower fidelity. By virtue of the compression improvement it achieves relative to previous means of onboard data compression, this software enables (1) increased return of hyperspectral scientific data in the presence of limits on the rates of transmission of data from spacecraft to Earth via radio communication links and/or (2) reduction in spacecraft radio-communication power and/or cost through reduction in the amounts of data required to be downlinked and stored onboard prior to downlink. The software is also suitable for compressing hyperspectral images for ground storage or archival purposes.
Compress compound images in H.264/MPGE-4 AVC by exploiting spatial correlation.
Lan, Cuiling; Shi, Guangming; Wu, Feng
2010-04-01
Compound images are a combination of text, graphics and natural image. They present strong anisotropic features, especially on the text and graphics parts. These anisotropic features often render conventional compression inefficient. Thus, this paper proposes a novel coding scheme from the H.264 intraframe coding. In the scheme, two new intramodes are developed to better exploit spatial correlation in compound images. The first is the residual scalar quantization (RSQ) mode, where intrapredicted residues are directly quantized and coded without transform. The second is the base colors and index map (BCIM) mode that can be viewed as an adaptive color quantization. In this mode, an image block is represented by several representative colors, referred to as base colors, and an index map to compress. Every block selects its coding mode from two new modes and the previous intramodes in H.264 by rate-distortion optimization (RDO). Experimental results show that the proposed scheme improves the coding efficiency even more than 10 dB at most bit rates for compound images and keeps a comparable efficient performance to H.264 for natural images.
Colour image compression by grey to colour conversion
NASA Astrophysics Data System (ADS)
Drew, Mark S.; Finlayson, Graham D.; Jindal, Abhilash
2011-03-01
Instead of de-correlating image luminance from chrominance, some use has been made of using the correlation between the luminance component of an image and its chromatic components, or the correlation between colour components, for colour image compression. In one approach, the Green colour channel was taken as a base, and the other colour channels or their DCT subbands were approximated as polynomial functions of the base inside image windows. This paper points out that we can do better if we introduce an addressing scheme into the image description such that similar colours are grouped together spatially. With a Luminance component base, we test several colour spaces and rearrangement schemes, including segmentation. and settle on a log-geometric-mean colour space. Along with PSNR versus bits-per-pixel, we found that spatially-keyed s-CIELAB colour error better identifies problem regions. Instead of segmentation, we found that rearranging on sorted chromatic components has almost equal performance and better compression. Here, we sort on each of the chromatic components and separately encode windows of each. The result consists of the original greyscale plane plus the polynomial coefficients of windows of rearranged chromatic values, which are then quantized. The simplicity of the method produces a fast and simple scheme for colour image and video compression, with excellent results.
Studies on image compression and image reconstruction
NASA Technical Reports Server (NTRS)
Sayood, Khalid; Nori, Sekhar; Araj, A.
1994-01-01
During this six month period our works concentrated on three, somewhat different areas. We looked at and developed a number of error concealment schemes for use in a variety of video coding environments. This work is described in an accompanying (draft) Masters thesis. In the thesis we describe application of this techniques to the MPEG video coding scheme. We felt that the unique frame ordering approach used in the MPEG scheme would be a challenge to any error concealment/error recovery technique. We continued with our work in the vector quantization area. We have also developed a new type of vector quantizer, which we call a scan predictive vector quantization. The scan predictive VQ was tested on data processed at Goddard to approximate Landsat 7 HRMSI resolution and compared favorably with existing VQ techniques. A paper describing this work is included. The third area is concerned more with reconstruction than compression. While there is a variety of efficient lossless image compression schemes, they all have a common property that they use past data to encode future data. This is done either via taking differences, context modeling, or by building dictionaries. When encoding large images, this common property becomes a common flaw. When the user wishes to decode just a portion of the image, the requirement that the past history be available forces the decoding of a significantly larger portion of the image than desired by the user. Even with intelligent partitioning of the image dataset, the number of pixels decoded may be four times the number of pixels requested. We have developed an adaptive scanning strategy which can be used with any lossless compression scheme and which lowers the additional number of pixels to be decoded to about 7 percent of the number of pixels requested! A paper describing these results is included.
Joint reconstruction of multiview compressed images.
Thirumalai, Vijayaraghavan; Frossard, Pascal
2013-05-01
Distributed representation of correlated multiview images is an important problem that arises in vision sensor networks. This paper concentrates on the joint reconstruction problem where the distributively compressed images are decoded together in order to take benefit from the image correlation. We consider a scenario where the images captured at different viewpoints are encoded independently using common coding solutions (e.g., JPEG) with a balanced rate distribution among different cameras. A central decoder first estimates the inter-view image correlation from the independently compressed data. The joint reconstruction is then cast as a constrained convex optimization problem that reconstructs total-variation (TV) smooth images, which comply with the estimated correlation model. At the same time, we add constraints that force the reconstructed images to be as close as possible to their compressed versions. We show through experiments that the proposed joint reconstruction scheme outperforms independent reconstruction in terms of image quality, for a given target bit rate. In addition, the decoding performance of our algorithm compares advantageously to state-of-the-art distributed coding schemes based on motion learning and on the DISCOVER algorithm.
Watermarking scheme for authentication of compressed image
NASA Astrophysics Data System (ADS)
Hsieh, Tsung-Han; Li, Chang-Tsun; Wang, Shuo
2003-11-01
As images are commonly transmitted or stored in compressed form such as JPEG, to extend the applicability of our previous work, a new scheme for embedding watermark in compressed domain without resorting to cryptography is proposed. In this work, a target image is first DCT transformed and quantised. Then, all the coefficients are implicitly watermarked in order to minimize the risk of being attacked on the unwatermarked coefficients. The watermarking is done through registering/blending the zero-valued coefficients with a binary sequence to create the watermark and involving the unembedded coefficients during the process of embedding the selected coefficients. The second-order neighbors and the block itself are considered in the process of the watermark embedding in order to thwart different attacks such as cover-up, vector quantisation, and transplantation. The experiments demonstrate the capability of the proposed scheme in thwarting local tampering, geometric transformation such as cropping, and common signal operations such as lowpass filtering.
Protection of Health Imagery by Region Based Lossless Reversible Watermarking Scheme
Priya, R. Lakshmi; Sadasivam, V.
2015-01-01
Providing authentication and integrity in medical images is a problem and this work proposes a new blind fragile region based lossless reversible watermarking technique to improve trustworthiness of medical images. The proposed technique embeds the watermark using a reversible least significant bit embedding scheme. The scheme combines hashing, compression, and digital signature techniques to create a content dependent watermark making use of compressed region of interest (ROI) for recovery of ROI as reported in literature. The experiments were carried out to prove the performance of the scheme and its assessment reveals that ROI is extracted in an intact manner and PSNR values obtained lead to realization that the presented scheme offers greater protection for health imageries. PMID:26649328
NASA Technical Reports Server (NTRS)
Sayood, K.; Chen, Y. C.; Wang, X.
1992-01-01
During this reporting period we have worked on three somewhat different problems. These are modeling of video traffic in packet networks, low rate video compression, and the development of a lossy + lossless image compression algorithm, which might have some application in browsing algorithms. The lossy + lossless scheme is an extension of work previously done under this grant. It provides a simple technique for incorporating browsing capability. The low rate coding scheme is also a simple variation on the standard discrete cosine transform (DCT) coding approach. In spite of its simplicity, the approach provides surprisingly high quality reconstructions. The modeling approach is borrowed from the speech recognition literature, and seems to be promising in that it provides a simple way of obtaining an idea about the second order behavior of a particular coding scheme. Details about these are presented.
Use of zerotree coding in a high-speed pyramid image multiresolution decomposition
NASA Astrophysics Data System (ADS)
Vega-Pineda, Javier; Cabrera, Sergio D.; Lucero, Aldo
1995-03-01
A Zerotree (ZT) coding scheme is applied as a post-processing stage to avoid transmitting zero data in the High-Speed Pyramid (HSP) image compression algorithm. This algorithm has features that increase the capability of the ZT coding to give very high compression rates. In this paper the impact of the ZT coding scheme is analyzed and quantified. The HSP algorithm creates a discrete-time multiresolution analysis based on a hierarchical decomposition technique that is a subsampling pyramid. The filters used to create the image residues and expansions can be related to wavelet representations. According to the pixel coordinates and the level in the pyramid, N2 different wavelet basis functions of various sizes and rotations are linearly combined. The HSP algorithm is computationally efficient because of the simplicity of the required operations, and as a consequence, it can be very easily implemented with VLSI hardware. This is the HSP's principal advantage over other compression schemes. The ZT coding technique transforms the different quantized image residual levels created by the HSP algorithm into a bit stream. The use of ZT's compresses even further the already compressed image taking advantage of parent-child relationships (trees) between the pixels of the residue images at different levels of the pyramid. Zerotree coding uses the links between zeros along the hierarchical structure of the pyramid, to avoid transmission of those that form branches of all zeros. Compression performance and algorithm complexity of the combined HSP-ZT method are compared with those of the JPEG standard technique.
Improved compression technique for multipass color printers
NASA Astrophysics Data System (ADS)
Honsinger, Chris
1998-01-01
A multipass color printer prints a color image by printing one color place at a time in a prescribed order, e.g., in a four-color systems, the cyan plane may be printed first, the magenta next, and so on. It is desirable to discard the data related to each color plane once it has been printed, so that data from the next print may be downloaded. In this paper, we present a compression scheme that allows the release of a color plane memory, but still takes advantage of the correlation between the color planes. The compression scheme is based on a block adaptive technique for decorrelating the color planes followed by a spatial lossy compression of the decorrelated data. A preferred method of lossy compression is the DCT-based JPEG compression standard, as it is shown that the block adaptive decorrelation operations can be efficiently performed in the DCT domain. The result of the compression technique are compared to that of using JPEG on RGB data without any decorrelating transform. In general, the technique is shown to improve the compression performance over a practical range of compression ratios by at least 30 percent in all images, and up to 45 percent in some images.
Layered compression for high-precision depth data.
Miao, Dan; Fu, Jingjing; Lu, Yan; Li, Shipeng; Chen, Chang Wen
2015-12-01
With the development of depth data acquisition technologies, access to high-precision depth with more than 8-b depths has become much easier and determining how to efficiently represent and compress high-precision depth is essential for practical depth storage and transmission systems. In this paper, we propose a layered high-precision depth compression framework based on an 8-b image/video encoder to achieve efficient compression with low complexity. Within this framework, considering the characteristics of the high-precision depth, a depth map is partitioned into two layers: 1) the most significant bits (MSBs) layer and 2) the least significant bits (LSBs) layer. The MSBs layer provides rough depth value distribution, while the LSBs layer records the details of the depth value variation. For the MSBs layer, an error-controllable pixel domain encoding scheme is proposed to exploit the data correlation of the general depth information with sharp edges and to guarantee the data format of LSBs layer is 8 b after taking the quantization error from MSBs layer. For the LSBs layer, standard 8-b image/video codec is leveraged to perform the compression. The experimental results demonstrate that the proposed coding scheme can achieve real-time depth compression with satisfactory reconstruction quality. Moreover, the compressed depth data generated from this scheme can achieve better performance in view synthesis and gesture recognition applications compared with the conventional coding schemes because of the error control algorithm.
Reversible Watermarking Surviving JPEG Compression.
Zain, J; Clarke, M
2005-01-01
This paper will discuss the properties of watermarking medical images. We will also discuss the possibility of such images being compressed by JPEG and give an overview of JPEG compression. We will then propose a watermarking scheme that is reversible and robust to JPEG compression. The purpose is to verify the integrity and authenticity of medical images. We used 800x600x8 bits ultrasound (US) images in our experiment. SHA-256 of the image is then embedded in the Least significant bits (LSB) of an 8x8 block in the Region of Non Interest (RONI). The image is then compressed using JPEG and decompressed using Photoshop 6.0. If the image has not been altered, the watermark extracted will match the hash (SHA256) of the original image. The result shown that the embedded watermark is robust to JPEG compression up to image quality 60 (~91% compressed).
High-quality compressive ghost imaging
NASA Astrophysics Data System (ADS)
Huang, Heyan; Zhou, Cheng; Tian, Tian; Liu, Dongqi; Song, Lijun
2018-04-01
We propose a high-quality compressive ghost imaging method based on projected Landweber regularization and guided filter, which effectively reduce the undersampling noise and improve the resolution. In our scheme, the original object is reconstructed by decomposing of regularization and denoising steps instead of solving a minimization problem in compressive reconstruction process. The simulation and experimental results show that our method can obtain high ghost imaging quality in terms of PSNR and visual observation.
Mochizuki, Futa; Kagawa, Keiichiro; Okihara, Shin-ichiro; Seo, Min-Woong; Zhang, Bo; Takasawa, Taishi; Yasutomi, Keita; Kawahito, Shoji
2016-02-22
In the work described in this paper, an image reproduction scheme with an ultra-high-speed temporally compressive multi-aperture CMOS image sensor was demonstrated. The sensor captures an object by compressing a sequence of images with focal-plane temporally random-coded shutters, followed by reconstruction of time-resolved images. Because signals are modulated pixel-by-pixel during capturing, the maximum frame rate is defined only by the charge transfer speed and can thus be higher than those of conventional ultra-high-speed cameras. The frame rate and optical efficiency of the multi-aperture scheme are discussed. To demonstrate the proposed imaging method, a 5×3 multi-aperture image sensor was fabricated. The average rising and falling times of the shutters were 1.53 ns and 1.69 ns, respectively. The maximum skew among the shutters was 3 ns. The sensor observed plasma emission by compressing it to 15 frames, and a series of 32 images at 200 Mfps was reconstructed. In the experiment, by correcting disparities and considering temporal pixel responses, artifacts in the reconstructed images were reduced. An improvement in PSNR from 25.8 dB to 30.8 dB was confirmed in simulations.
NASA Technical Reports Server (NTRS)
Novik, Dmitry A.; Tilton, James C.
1993-01-01
The compression, or efficient coding, of single band or multispectral still images is becoming an increasingly important topic. While lossy compression approaches can produce reconstructions that are visually close to the original, many scientific and engineering applications require exact (lossless) reconstructions. However, the most popular and efficient lossless compression techniques do not fully exploit the two-dimensional structural links existing in the image data. We describe here a general approach to lossless data compression that effectively exploits two-dimensional structural links of any length. After describing in detail two main variants on this scheme, we discuss experimental results.
Unequal power allocation for JPEG transmission over MIMO systems.
Sabir, Muhammad Farooq; Bovik, Alan Conrad; Heath, Robert W
2010-02-01
With the introduction of multiple transmit and receive antennas in next generation wireless systems, real-time image and video communication are expected to become quite common, since very high data rates will become available along with improved data reliability. New joint transmission and coding schemes that explore advantages of multiple antenna systems matched with source statistics are expected to be developed. Based on this idea, we present an unequal power allocation scheme for transmission of JPEG compressed images over multiple-input multiple-output systems employing spatial multiplexing. The JPEG-compressed image is divided into different quality layers, and different layers are transmitted simultaneously from different transmit antennas using unequal transmit power, with a constraint on the total transmit power during any symbol period. Results show that our unequal power allocation scheme provides significant image quality improvement as compared to different equal power allocations schemes, with the peak-signal-to-noise-ratio gain as high as 14 dB at low signal-to-noise-ratios.
Embedded wavelet packet transform technique for texture compression
NASA Astrophysics Data System (ADS)
Li, Jin; Cheng, Po-Yuen; Kuo, C.-C. Jay
1995-09-01
A highly efficient texture compression scheme is proposed in this research. With this scheme, energy compaction of texture images is first achieved by the wavelet packet transform, and an embedding approach is then adopted for the coding of the wavelet packet transform coefficients. By comparing the proposed algorithm with the JPEG standard, FBI wavelet/scalar quantization standard and the EZW scheme with extensive experimental results, we observe a significant improvement in the rate-distortion performance and visual quality.
Compressive Sampling based Image Coding for Resource-deficient Visual Communication.
Liu, Xianming; Zhai, Deming; Zhou, Jiantao; Zhang, Xinfeng; Zhao, Debin; Gao, Wen
2016-04-14
In this paper, a new compressive sampling based image coding scheme is developed to achieve competitive coding efficiency at lower encoder computational complexity, while supporting error resilience. This technique is particularly suitable for visual communication with resource-deficient devices. At the encoder, compact image representation is produced, which is a polyphase down-sampled version of the input image; but the conventional low-pass filter prior to down-sampling is replaced by a local random binary convolution kernel. The pixels of the resulting down-sampled pre-filtered image are local random measurements and placed in the original spatial configuration. The advantages of local random measurements are two folds: 1) preserve high-frequency image features that are otherwise discarded by low-pass filtering; 2) remain a conventional image and can therefore be coded by any standardized codec to remove statistical redundancy of larger scales. Moreover, measurements generated by different kernels can be considered as multiple descriptions of the original image and therefore the proposed scheme has the advantage of multiple description coding. At the decoder, a unified sparsity-based soft-decoding technique is developed to recover the original image from received measurements in a framework of compressive sensing. Experimental results demonstrate that the proposed scheme is competitive compared with existing methods, with a unique strength of recovering fine details and sharp edges at low bit-rates.
Science-based Region-of-Interest Image Compression
NASA Technical Reports Server (NTRS)
Wagstaff, K. L.; Castano, R.; Dolinar, S.; Klimesh, M.; Mukai, R.
2004-01-01
As the number of currently active space missions increases, so does competition for Deep Space Network (DSN) resources. Even given unbounded DSN time, power and weight constraints onboard the spacecraft limit the maximum possible data transmission rate. These factors highlight a critical need for very effective data compression schemes. Images tend to be the most bandwidth-intensive data, so image compression methods are particularly valuable. In this paper, we describe a method for prioritizing regions in an image based on their scientific value. Using a wavelet compression method that can incorporate priority information, we ensure that the highest priority regions are transmitted with the highest fidelity.
Information content exploitation of imaging spectrometer's images for lossless compression
NASA Astrophysics Data System (ADS)
Wang, Jianyu; Zhu, Zhenyu; Lin, Kan
1996-11-01
Imaging spectrometer, such as MAIS produces a tremendous volume of image data with up to 5.12 Mbps raw data rate, which needs urgently a real-time, efficient and reversible compression implementation. Between the lossy scheme with high compression ratio and the lossless scheme with high fidelity, we must make our choice based on the particular information content analysis of each imaging spectrometer's image data. In this paper, we present a careful analysis of information-preserving compression of imaging spectrometer MAIS with an entropy and autocorrelation study on the hyperspectral images. First, the statistical information in an actual MAIS image, captured in Marble Bar Australia, is measured with its entropy, conditional entropy, mutual information and autocorrelation coefficients on both spatial dimensions and spectral dimension. With these careful analyses, it is shown that there is high redundancy existing in the spatial dimensions, but the correlation in spectral dimension of the raw images is smaller than expected. The main reason of the nonstationarity on spectral dimension is attributed to the instruments's discrepancy on detector's response and channel's amplification in different spectral bands. To restore its natural correlation, we preprocess the signal in advance. There are two methods to accomplish this requirement: onboard radiation calibration and normalization. A better result can be achieved by the former one. After preprocessing, the spectral correlation increases so high that it contributes much redundancy in addition to spatial correlation. At last, an on-board hardware implementation for the lossless compression is presented with an ideal result.
Lossless medical image compression with a hybrid coder
NASA Astrophysics Data System (ADS)
Way, Jing-Dar; Cheng, Po-Yuen
1998-10-01
The volume of medical image data is expected to increase dramatically in the next decade due to the large use of radiological image for medical diagnosis. The economics of distributing the medical image dictate that data compression is essential. While there is lossy image compression, the medical image must be recorded and transmitted lossless before it reaches the users to avoid wrong diagnosis due to the image data lost. Therefore, a low complexity, high performance lossless compression schematic that can approach the theoretic bound and operate in near real-time is needed. In this paper, we propose a hybrid image coder to compress the digitized medical image without any data loss. The hybrid coder is constituted of two key components: an embedded wavelet coder and a lossless run-length coder. In this system, the medical image is compressed with the lossy wavelet coder first, and the residual image between the original and the compressed ones is further compressed with the run-length coder. Several optimization schemes have been used in these coders to increase the coding performance. It is shown that the proposed algorithm is with higher compression ratio than run-length entropy coders such as arithmetic, Huffman and Lempel-Ziv coders.
Clunie, David A; Gebow, Dan
2015-01-01
Deidentification of medical images requires attention to both header information as well as the pixel data itself, in which burned-in text may be present. If the pixel data to be deidentified is stored in a compressed form, traditionally it is decompressed, identifying text is redacted, and if necessary, pixel data are recompressed. Decompression without recompression may result in images of excessive or intractable size. Recompression with an irreversible scheme is undesirable because it may cause additional loss in the diagnostically relevant regions of the images. The irreversible (lossy) JPEG compression scheme works on small blocks of the image independently, hence, redaction can selectively be confined only to those blocks containing identifying text, leaving all other blocks unchanged. An open source implementation of selective redaction and a demonstration of its applicability to multiframe color ultrasound images is described. The process can be applied either to standalone JPEG images or JPEG bit streams encapsulated in other formats, which in the case of medical images, is usually DICOM.
Digital mammography, cancer screening: Factors important for image compression
NASA Technical Reports Server (NTRS)
Clarke, Laurence P.; Blaine, G. James; Doi, Kunio; Yaffe, Martin J.; Shtern, Faina; Brown, G. Stephen; Winfield, Daniel L.; Kallergi, Maria
1993-01-01
The use of digital mammography for breast cancer screening poses several novel problems such as development of digital sensors, computer assisted diagnosis (CAD) methods for image noise suppression, enhancement, and pattern recognition, compression algorithms for image storage, transmission, and remote diagnosis. X-ray digital mammography using novel direct digital detection schemes or film digitizers results in large data sets and, therefore, image compression methods will play a significant role in the image processing and analysis by CAD techniques. In view of the extensive compression required, the relative merit of 'virtually lossless' versus lossy methods should be determined. A brief overview is presented here of the developments of digital sensors, CAD, and compression methods currently proposed and tested for mammography. The objective of the NCI/NASA Working Group on Digital Mammography is to stimulate the interest of the image processing and compression scientific community for this medical application and identify possible dual use technologies within the NASA centers.
Wang, Jianji; Zheng, Nanning
2013-09-01
Fractal image compression (FIC) is an image coding technology based on the local similarity of image structure. It is widely used in many fields such as image retrieval, image denoising, image authentication, and encryption. FIC, however, suffers from the high computational complexity in encoding. Although many schemes are published to speed up encoding, they do not easily satisfy the encoding time or the reconstructed image quality requirements. In this paper, a new FIC scheme is proposed based on the fact that the affine similarity between two blocks in FIC is equivalent to the absolute value of Pearson's correlation coefficient (APCC) between them. First, all blocks in the range and domain pools are chosen and classified using an APCC-based block classification method to increase the matching probability. Second, by sorting the domain blocks with respect to APCCs between these domain blocks and a preset block in each class, the matching domain block for a range block can be searched in the selected domain set in which these APCCs are closer to APCC between the range block and the preset block. Experimental results show that the proposed scheme can significantly speed up the encoding process in FIC while preserving the reconstructed image quality well.
A High Performance Image Data Compression Technique for Space Applications
NASA Technical Reports Server (NTRS)
Yeh, Pen-Shu; Venbrux, Jack
2003-01-01
A highly performing image data compression technique is currently being developed for space science applications under the requirement of high-speed and pushbroom scanning. The technique is also applicable to frame based imaging data. The algorithm combines a two-dimensional transform with a bitplane encoding; this results in an embedded bit string with exact desirable compression rate specified by the user. The compression scheme performs well on a suite of test images acquired from spacecraft instruments. It can also be applied to three-dimensional data cube resulting from hyper-spectral imaging instrument. Flight qualifiable hardware implementations are in development. The implementation is being designed to compress data in excess of 20 Msampledsec and support quantization from 2 to 16 bits. This paper presents the algorithm, its applications and status of development.
Novel approach to multispectral image compression on the Internet
NASA Astrophysics Data System (ADS)
Zhu, Yanqiu; Jin, Jesse S.
2000-10-01
Still image coding techniques such as JPEG have been always applied onto intra-plane images. Coding fidelity is always utilized in measuring the performance of intra-plane coding methods. In many imaging applications, it is more and more necessary to deal with multi-spectral images, such as the color images. In this paper, a novel approach to multi-spectral image compression is proposed by using transformations among planes for further compression of spectral planes. Moreover, a mechanism of introducing human visual system to the transformation is provided for exploiting the psycho visual redundancy. The new technique for multi-spectral image compression, which is designed to be compatible with the JPEG standard, is demonstrated on extracting correlation among planes based on human visual system. A high measure of compactness in the data representation and compression can be seen with the power of the scheme taken into account.
SEMG signal compression based on two-dimensional techniques.
de Melo, Wheidima Carneiro; de Lima Filho, Eddie Batista; da Silva Júnior, Waldir Sabino
2016-04-18
Recently, two-dimensional techniques have been successfully employed for compressing surface electromyographic (SEMG) records as images, through the use of image and video encoders. Such schemes usually provide specific compressors, which are tuned for SEMG data, or employ preprocessing techniques, before the two-dimensional encoding procedure, in order to provide a suitable data organization, whose correlations can be better exploited by off-the-shelf encoders. Besides preprocessing input matrices, one may also depart from those approaches and employ an adaptive framework, which is able to directly tackle SEMG signals reassembled as images. This paper proposes a new two-dimensional approach for SEMG signal compression, which is based on a recurrent pattern matching algorithm called multidimensional multiscale parser (MMP). The mentioned encoder was modified, in order to efficiently work with SEMG signals and exploit their inherent redundancies. Moreover, a new preprocessing technique, named as segmentation by similarity (SbS), which has the potential to enhance the exploitation of intra- and intersegment correlations, is introduced, the percentage difference sorting (PDS) algorithm is employed, with different image compressors, and results with the high efficiency video coding (HEVC), H.264/AVC, and JPEG2000 encoders are presented. Experiments were carried out with real isometric and dynamic records, acquired in laboratory. Dynamic signals compressed with H.264/AVC and HEVC, when combined with preprocessing techniques, resulted in good percent root-mean-square difference [Formula: see text] compression factor figures, for low and high compression factors, respectively. Besides, regarding isometric signals, the modified two-dimensional MMP algorithm outperformed state-of-the-art schemes, for low compression factors, the combination between SbS and HEVC proved to be competitive, for high compression factors, and JPEG2000, combined with PDS, provided good performance allied to low computational complexity, all in terms of percent root-mean-square difference [Formula: see text] compression factor. The proposed schemes are effective and, specifically, the modified MMP algorithm can be considered as an interesting alternative for isometric signals, regarding traditional SEMG encoders. Besides, the approach based on off-the-shelf image encoders has the potential of fast implementation and dissemination, given that many embedded systems may already have such encoders available, in the underlying hardware/software architecture.
Recognizable or Not: Towards Image Semantic Quality Assessment for Compression
NASA Astrophysics Data System (ADS)
Liu, Dong; Wang, Dandan; Li, Houqiang
2017-12-01
Traditionally, image compression was optimized for the pixel-wise fidelity or the perceptual quality of the compressed images given a bit-rate budget. But recently, compressed images are more and more utilized for automatic semantic analysis tasks such as recognition and retrieval. For these tasks, we argue that the optimization target of compression is no longer perceptual quality, but the utility of the compressed images in the given automatic semantic analysis task. Accordingly, we propose to evaluate the quality of the compressed images neither at pixel level nor at perceptual level, but at semantic level. In this paper, we make preliminary efforts towards image semantic quality assessment (ISQA), focusing on the task of optical character recognition (OCR) from compressed images. We propose a full-reference ISQA measure by comparing the features extracted from text regions of original and compressed images. We then propose to integrate the ISQA measure into an image compression scheme. Experimental results show that our proposed ISQA measure is much better than PSNR and SSIM in evaluating the semantic quality of compressed images; accordingly, adopting our ISQA measure to optimize compression for OCR leads to significant bit-rate saving compared to using PSNR or SSIM. Moreover, we perform subjective test about text recognition from compressed images, and observe that our ISQA measure has high consistency with subjective recognizability. Our work explores new dimensions in image quality assessment, and demonstrates promising direction to achieve higher compression ratio for specific semantic analysis tasks.
Subband directional vector quantization in radiological image compression
NASA Astrophysics Data System (ADS)
Akrout, Nabil M.; Diab, Chaouki; Prost, Remy; Goutte, Robert; Amiel, Michel
1992-05-01
The aim of this paper is to propose a new scheme for image compression. The method is very efficient for images which have directional edges such as the tree-like structure of the coronary vessels in digital angiograms. This method involves two steps. First, the original image is decomposed at different resolution levels using a pyramidal subband decomposition scheme. For decomposition/reconstruction of the image, free of aliasing and boundary errors, we use an ideal band-pass filter bank implemented in the Discrete Cosine Transform domain (DCT). Second, the high-frequency subbands are vector quantized using a multiresolution codebook with vertical and horizontal codewords which take into account the edge orientation of each subband. The proposed method reduces the blocking effect encountered at low bit rates in conventional vector quantization.
JP3D compressed-domain watermarking of volumetric medical data sets
NASA Astrophysics Data System (ADS)
Ouled Zaid, Azza; Makhloufi, Achraf; Olivier, Christian
2010-01-01
Increasing transmission of medical data across multiple user systems raises concerns for medical image watermarking. Additionaly, the use of volumetric images triggers the need for efficient compression techniques in picture archiving and communication systems (PACS), or telemedicine applications. This paper describes an hybrid data hiding/compression system, adapted to volumetric medical imaging. The central contribution is to integrate blind watermarking, based on turbo trellis-coded quantization (TCQ), to JP3D encoder. Results of our method applied to Magnetic Resonance (MR) and Computed Tomography (CT) medical images have shown that our watermarking scheme is robust to JP3D compression attacks and can provide relative high data embedding rate whereas keep a relative lower distortion.
Improved integral images compression based on multi-view extraction
NASA Astrophysics Data System (ADS)
Dricot, Antoine; Jung, Joel; Cagnazzo, Marco; Pesquet, Béatrice; Dufaux, Frédéric
2016-09-01
Integral imaging is a technology based on plenoptic photography that captures and samples the light-field of a scene through a micro-lens array. It provides views of the scene from several angles and therefore is foreseen as a key technology for future immersive video applications. However, integral images have a large resolution and a structure based on micro-images which is challenging to encode. A compression scheme for integral images based on view extraction has previously been proposed, with average BD-rate gains of 15.7% (up to 31.3%) reported over HEVC when using one single extracted view. As the efficiency of the scheme depends on a tradeoff between the bitrate required to encode the view and the quality of the image reconstructed from the view, it is proposed to increase the number of extracted views. Several configurations are tested with different positions and different number of extracted views. Compression efficiency is increased with average BD-rate gains of 22.2% (up to 31.1%) reported over the HEVC anchor, with a realistic runtime increase.
NASA Astrophysics Data System (ADS)
Yu, Shanshan; Murakami, Yuri; Obi, Takashi; Yamaguchi, Masahiro; Ohyama, Nagaaki
2006-09-01
The article proposes a multispectral image compression scheme using nonlinear spectral transform for better colorimetric and spectral reproducibility. In the method, we show the reduction of colorimetric error under a defined viewing illuminant and also that spectral accuracy can be improved simultaneously using a nonlinear spectral transform called Labplus, which takes into account the nonlinearity of human color vision. Moreover, we show that the addition of diagonal matrices to Labplus can further preserve the spectral accuracy and has a generalized effect of improving the colorimetric accuracy under other viewing illuminants than the defined one. Finally, we discuss the usage of the first-order Markov model to form the analysis vectors for the higher order channels in Labplus to reduce the computational complexity. We implement a multispectral image compression system that integrates Labplus with JPEG2000 for high colorimetric and spectral reproducibility. Experimental results for a 16-band multispectral image show the effectiveness of the proposed scheme.
NASA Astrophysics Data System (ADS)
Leihong, Zhang; Zilan, Pan; Luying, Wu; Xiuhua, Ma
2016-11-01
To solve the problem that large images can hardly be retrieved for stringent hardware restrictions and the security level is low, a method based on compressive ghost imaging (CGI) with Fast Fourier Transform (FFT) is proposed, named FFT-CGI. Initially, the information is encrypted by the sender with FFT, and the FFT-coded image is encrypted by the system of CGI with a secret key. Then the receiver decrypts the image with the aid of compressive sensing (CS) and FFT. Simulation results are given to verify the feasibility, security, and compression of the proposed encryption scheme. The experiment suggests the method can improve the quality of large images compared with conventional ghost imaging and achieve the imaging for large-sized images, further the amount of data transmitted largely reduced because of the combination of compressive sensing and FFT, and improve the security level of ghost images through ciphertext-only attack (COA), chosen-plaintext attack (CPA), and noise attack. This technique can be immediately applied to encryption and data storage with the advantages of high security, fast transmission, and high quality of reconstructed information.
V S, Unni; Mishra, Deepak; Subrahmanyam, G R K S
2016-12-01
The need for image fusion in current image processing systems is increasing mainly due to the increased number and variety of image acquisition techniques. Image fusion is the process of combining substantial information from several sensors using mathematical techniques in order to create a single composite image that will be more comprehensive and thus more useful for a human operator or other computer vision tasks. This paper presents a new approach to multifocus image fusion based on sparse signal representation. Block-based compressive sensing integrated with a projection-driven compressive sensing (CS) recovery that encourages sparsity in the wavelet domain is used as a method to get the focused image from a set of out-of-focus images. Compression is achieved during the image acquisition process using a block compressive sensing method. An adaptive thresholding technique within the smoothed projected Landweber recovery process reconstructs high-resolution focused images from low-dimensional CS measurements of out-of-focus images. Discrete wavelet transform and dual-tree complex wavelet transform are used as the sparsifying basis for the proposed fusion. The main finding lies in the fact that sparsification enables a better selection of the fusion coefficients and hence better fusion. A Laplacian mixture model fit is done in the wavelet domain and estimation of the probability density function (pdf) parameters by expectation maximization leads us to the proper selection of the coefficients of the fused image. Using the proposed method compared with the fusion scheme without employing the projected Landweber (PL) scheme and the other existing CS-based fusion approaches, it is observed that with fewer samples itself, the proposed method outperforms other approaches.
Scalable Coding of Plenoptic Images by Using a Sparse Set and Disparities.
Li, Yun; Sjostrom, Marten; Olsson, Roger; Jennehag, Ulf
2016-01-01
One of the light field capturing techniques is the focused plenoptic capturing. By placing a microlens array in front of the photosensor, the focused plenoptic cameras capture both spatial and angular information of a scene in each microlens image and across microlens images. The capturing results in a significant amount of redundant information, and the captured image is usually of a large resolution. A coding scheme that removes the redundancy before coding can be of advantage for efficient compression, transmission, and rendering. In this paper, we propose a lossy coding scheme to efficiently represent plenoptic images. The format contains a sparse image set and its associated disparities. The reconstruction is performed by disparity-based interpolation and inpainting, and the reconstructed image is later employed as a prediction reference for the coding of the full plenoptic image. As an outcome of the representation, the proposed scheme inherits a scalable structure with three layers. The results show that plenoptic images are compressed efficiently with over 60 percent bit rate reduction compared with High Efficiency Video Coding intra coding, and with over 20 percent compared with an High Efficiency Video Coding block copying mode.
A new security solution to JPEG using hyper-chaotic system and modified zigzag scan coding
NASA Astrophysics Data System (ADS)
Ji, Xiao-yong; Bai, Sen; Guo, Yu; Guo, Hui
2015-05-01
Though JPEG is an excellent compression standard of images, it does not provide any security performance. Thus, a security solution to JPEG was proposed in Zhang et al. (2014). But there are some flaws in Zhang's scheme and in this paper we propose a new scheme based on discrete hyper-chaotic system and modified zigzag scan coding. By shuffling the identifiers of zigzag scan encoded sequence with hyper-chaotic sequence and accurately encrypting the certain coefficients which have little relationship with the correlation of the plain image in zigzag scan encoded domain, we achieve high compression performance and robust security simultaneously. Meanwhile we present and analyze the flaws in Zhang's scheme through theoretical analysis and experimental verification, and give the comparisons between our scheme and Zhang's. Simulation results verify that our method has better performance in security and efficiency.
Compressed sensing for ultrasound computed tomography.
van Sloun, Ruud; Pandharipande, Ashish; Mischi, Massimo; Demi, Libertario
2015-06-01
Ultrasound computed tomography (UCT) allows the reconstruction of quantitative tissue characteristics, such as speed of sound, mass density, and attenuation. Lowering its acquisition time would be beneficial; however, this is fundamentally limited by the physical time of flight and the number of transmission events. In this letter, we propose a compressed sensing solution for UCT. The adopted measurement scheme is based on compressed acquisitions, with concurrent randomised transmissions in a circular array configuration. Reconstruction of the image is then obtained by combining the born iterative method and total variation minimization, thereby exploiting variation sparsity in the image domain. Evaluation using simulated UCT scattering measurements shows that the proposed transmission scheme performs better than uniform undersampling, and is able to reduce acquisition time by almost one order of magnitude, while maintaining high spatial resolution.
Li, Shuo; Zhu, Yanchun; Xie, Yaoqin; Gao, Song
2018-01-01
Dynamic magnetic resonance imaging (DMRI) is used to noninvasively trace the movements of organs and the process of drug delivery. The results can provide quantitative or semiquantitative pathology-related parameters, thus giving DMRI great potential for clinical applications. However, conventional DMRI techniques suffer from low temporal resolution and long scan time owing to the limitations of the k-space sampling scheme and image reconstruction algorithm. In this paper, we propose a novel DMRI sampling scheme based on a golden-ratio Cartesian trajectory in combination with a compressed sensing reconstruction algorithm. The results of two simulation experiments, designed according to the two major DMRI techniques, showed that the proposed method can improve the temporal resolution and shorten the scan time and provide high-quality reconstructed images.
Real-time 3D video compression for tele-immersive environments
NASA Astrophysics Data System (ADS)
Yang, Zhenyu; Cui, Yi; Anwar, Zahid; Bocchino, Robert; Kiyanclar, Nadir; Nahrstedt, Klara; Campbell, Roy H.; Yurcik, William
2006-01-01
Tele-immersive systems can improve productivity and aid communication by allowing distributed parties to exchange information via a shared immersive experience. The TEEVE research project at the University of Illinois at Urbana-Champaign and the University of California at Berkeley seeks to foster the development and use of tele-immersive environments by a holistic integration of existing components that capture, transmit, and render three-dimensional (3D) scenes in real time to convey a sense of immersive space. However, the transmission of 3D video poses significant challenges. First, it is bandwidth-intensive, as it requires the transmission of multiple large-volume 3D video streams. Second, existing schemes for 2D color video compression such as MPEG, JPEG, and H.263 cannot be applied directly because the 3D video data contains depth as well as color information. Our goal is to explore from a different angle of the 3D compression space with factors including complexity, compression ratio, quality, and real-time performance. To investigate these trade-offs, we present and evaluate two simple 3D compression schemes. For the first scheme, we use color reduction to compress the color information, which we then compress along with the depth information using zlib. For the second scheme, we use motion JPEG to compress the color information and run-length encoding followed by Huffman coding to compress the depth information. We apply both schemes to 3D videos captured from a real tele-immersive environment. Our experimental results show that: (1) the compressed data preserves enough information to communicate the 3D images effectively (min. PSNR > 40) and (2) even without inter-frame motion estimation, very high compression ratios (avg. > 15) are achievable at speeds sufficient to allow real-time communication (avg. ~ 13 ms per 3D video frame).
The compression and storage method of the same kind of medical images: DPCM
NASA Astrophysics Data System (ADS)
Zhao, Xiuying; Wei, Jingyuan; Zhai, Linpei; Liu, Hong
2006-09-01
Medical imaging has started to take advantage of digital technology, opening the way for advanced medical imaging and teleradiology. Medical images, however, require large amounts of memory. At over 1 million bytes per image, a typical hospital needs a staggering amount of memory storage (over one trillion bytes per year), and transmitting an image over a network (even the promised superhighway) could take minutes--too slow for interactive teleradiology. This calls for image compression to reduce significantly the amount of data needed to represent an image. Several compression techniques with different compression ratio have been developed. However, the lossless techniques, which allow for perfect reconstruction of the original images, yield modest compression ratio, while the techniques that yield higher compression ratio are lossy, that is, the original image is reconstructed only approximately. Medical imaging poses the great challenge of having compression algorithms that are lossless (for diagnostic and legal reasons) and yet have high compression ratio for reduced storage and transmission time. To meet this challenge, we are developing and studying some compression schemes, which are either strictly lossless or diagnostically lossless, taking advantage of the peculiarities of medical images and of the medical practice. In order to increase the Signal to Noise Ratio (SNR) by exploitation of correlations within the source signal, a method of combining differential pulse code modulation (DPCM) is presented.
Synthetic aperture radar signal data compression using block adaptive quantization
NASA Technical Reports Server (NTRS)
Kuduvalli, Gopinath; Dutkiewicz, Melanie; Cumming, Ian
1994-01-01
This paper describes the design and testing of an on-board SAR signal data compression algorithm for ESA's ENVISAT satellite. The Block Adaptive Quantization (BAQ) algorithm was selected, and optimized for the various operational modes of the ASAR instrument. A flexible BAQ scheme was developed which allows a selection of compression ratio/image quality trade-offs. Test results show the high quality of the SAR images processed from the reconstructed signal data, and the feasibility of on-board implementation using a single ASIC.
NASA Astrophysics Data System (ADS)
Wang, Jun; Min, Kyeong-Yuk; Chong, Jong-Wha
2010-11-01
Overdrive is commonly used to reduce the liquid-crystal response time and motion blur in liquid-crystal displays (LCDs). However, overdrive requires a large frame memory in order to store the previous frame for reference. In this paper, a high-compression-ratio codec is presented to compress the image data stored in the on-chip frame memory so that only 1 Mbit of on-chip memory is required in the LCD overdrives of mobile devices. The proposed algorithm further compresses the color bitmaps and representative values (RVs) resulting from the block truncation coding (BTC). The color bitmaps are represented by a luminance bitmap, which is further reduced and reconstructed using median filter interpolation in the decoder, while the RVs are compressed using adaptive quantization coding (AQC). Interpolation and AQC can provide three-level compression, which leads to 16 combinations. Using a rate-distortion analysis, we select the three optimal schemes to compress the image data for video graphics array (VGA), wide-VGA LCD, and standard-definitionTV applications. Our simulation results demonstrate that the proposed schemes outperform interpolation BTC both in PSNR (by 1.479 to 2.205 dB) and in subjective visual quality.
Integer cosine transform for image compression
NASA Technical Reports Server (NTRS)
Cheung, K.-M.; Pollara, F.; Shahshahani, M.
1991-01-01
This article describes a recently introduced transform algorithm called the integer cosine transform (ICT), which is used in transform-based data compression schemes. The ICT algorithm requires only integer operations on small integers and at the same time gives a rate-distortion performance comparable to that offered by the floating-point discrete cosine transform (DCT). The article addresses the issue of implementation complexity, which is of prime concern for source coding applications of interest in deep-space communications. Complexity reduction in the transform stage of the compression scheme is particularly relevant, since this stage accounts for most (typically over 80 percent) of the computational load.
Rate-distortion analysis of directional wavelets.
Maleki, Arian; Rajaei, Boshra; Pourreza, Hamid Reza
2012-02-01
The inefficiency of separable wavelets in representing smooth edges has led to a great interest in the study of new 2-D transformations. The most popular criterion for analyzing these transformations is the approximation power. Transformations with near-optimal approximation power are useful in many applications such as denoising and enhancement. However, they are not necessarily good for compression. Therefore, most of the nearly optimal transformations such as curvelets and contourlets have not found any application in image compression yet. One of the most promising schemes for image compression is the elegant idea of directional wavelets (DIWs). While these algorithms outperform the state-of-the-art image coders in practice, our theoretical understanding of them is very limited. In this paper, we adopt the notion of rate-distortion and calculate the performance of the DIW on a class of edge-like images. Our theoretical analysis shows that if the edges are not "sharp," the DIW will compress them more efficiently than the separable wavelets. It also demonstrates the inefficiency of the quadtree partitioning that is often used with the DIW. To solve this issue, we propose a new partitioning scheme called megaquad partitioning. Our simulation results on real-world images confirm the benefits of the proposed partitioning algorithm, promised by our theoretical analysis. © 2011 IEEE
Survey Of Lossless Image Coding Techniques
NASA Astrophysics Data System (ADS)
Melnychuck, Paul W.; Rabbani, Majid
1989-04-01
Many image transmission/storage applications requiring some form of data compression additionally require that the decoded image be an exact replica of the original. Lossless image coding algorithms meet this requirement by generating a decoded image that is numerically identical to the original. Several lossless coding techniques are modifications of well-known lossy schemes, whereas others are new. Traditional Markov-based models and newer arithmetic coding techniques are applied to predictive coding, bit plane processing, and lossy plus residual coding. Generally speaking, the compression ratio offered by these techniques are in the area of 1.6:1 to 3:1 for 8-bit pictorial images. Compression ratios for 12-bit radiological images approach 3:1, as these images have less detailed structure, and hence, their higher pel correlation leads to a greater removal of image redundancy.
Fast and efficient compression of floating-point data.
Lindstrom, Peter; Isenburg, Martin
2006-01-01
Large scale scientific simulation codes typically run on a cluster of CPUs that write/read time steps to/from a single file system. As data sets are constantly growing in size, this increasingly leads to I/O bottlenecks. When the rate at which data is produced exceeds the available I/O bandwidth, the simulation stalls and the CPUs are idle. Data compression can alleviate this problem by using some CPU cycles to reduce the amount of data needed to be transfered. Most compression schemes, however, are designed to operate offline and seek to maximize compression, not throughput. Furthermore, they often require quantizing floating-point values onto a uniform integer grid, which disqualifies their use in applications where exact values must be retained. We propose a simple scheme for lossless, online compression of floating-point data that transparently integrates into the I/O of many applications. A plug-in scheme for data-dependent prediction makes our scheme applicable to a wide variety of data used in visualization, such as unstructured meshes, point sets, images, and voxel grids. We achieve state-of-the-art compression rates and speeds, the latter in part due to an improved entropy coder. We demonstrate that this significantly accelerates I/O throughput in real simulation runs. Unlike previous schemes, our method also adapts well to variable-precision floating-point and integer data.
Wavelet compression of noisy tomographic images
NASA Astrophysics Data System (ADS)
Kappeler, Christian; Mueller, Stefan P.
1995-09-01
3D data acquisition is increasingly used in positron emission tomography (PET) to collect a larger fraction of the emitted radiation. A major practical difficulty with data storage and transmission in 3D-PET is the large size of the data sets. A typical dynamic study contains about 200 Mbyte of data. PET images inherently have a high level of photon noise and therefore usually are evaluated after being processed by a smoothing filter. In this work we examined lossy compression schemes under the postulate not induce image modifications exceeding those resulting from low pass filtering. The standard we will refer to is the Hanning filter. Resolution and inhomogeneity serve as figures of merit for quantification of image quality. The images to be compressed are transformed to a wavelet representation using Daubechies12 wavelets and compressed after filtering by thresholding. We do not include further compression by quantization and coding here. Achievable compression factors at this level of processing are thirty to fifty.
Learning random networks for compression of still and moving images
NASA Technical Reports Server (NTRS)
Gelenbe, Erol; Sungur, Mert; Cramer, Christopher
1994-01-01
Image compression for both still and moving images is an extremely important area of investigation, with numerous applications to videoconferencing, interactive education, home entertainment, and potential applications to earth observations, medical imaging, digital libraries, and many other areas. We describe work on a neural network methodology to compress/decompress still and moving images. We use the 'point-process' type neural network model which is closer to biophysical reality than standard models, and yet is mathematically much more tractable. We currently achieve compression ratios of the order of 120:1 for moving grey-level images, based on a combination of motion detection and compression. The observed signal-to-noise ratio varies from values above 25 to more than 35. The method is computationally fast so that compression and decompression can be carried out in real-time. It uses the adaptive capabilities of a set of neural networks so as to select varying compression ratios in real-time as a function of quality achieved. It also uses a motion detector which will avoid retransmitting portions of the image which have varied little from the previous frame. Further improvements can be achieved by using on-line learning during compression, and by appropriate compensation of nonlinearities in the compression/decompression scheme. We expect to go well beyond the 250:1 compression level for color images with good quality levels.
Ho, B T; Tsai, M J; Wei, J; Ma, M; Saipetch, P
1996-01-01
A new method of video compression for angiographic images has been developed to achieve high compression ratio (~20:1) while eliminating block artifacts which leads to loss of diagnostic accuracy. This method adopts motion picture experts group's (MPEGs) motion compensated prediction to takes advantage of frame to frame correlation. However, in contrast to MPEG, the error images arising from mismatches in the motion estimation are encoded by discrete wavelet transform (DWT) rather than block discrete cosine transform (DCT). Furthermore, the authors developed a classification scheme which label each block in an image as intra, error, or background type and encode it accordingly. This hybrid coding can significantly improve the compression efficiency in certain eases. This method can be generalized for any dynamic image sequences applications sensitive to block artifacts.
A Secure and Efficient Scalable Secret Image Sharing Scheme with Flexible Shadow Sizes.
Xie, Dong; Li, Lixiang; Peng, Haipeng; Yang, Yixian
2017-01-01
In a general (k, n) scalable secret image sharing (SSIS) scheme, the secret image is shared by n participants and any k or more than k participants have the ability to reconstruct it. The scalability means that the amount of information in the reconstructed image scales in proportion to the number of the participants. In most existing SSIS schemes, the size of each image shadow is relatively large and the dealer does not has a flexible control strategy to adjust it to meet the demand of differen applications. Besides, almost all existing SSIS schemes are not applicable under noise circumstances. To address these deficiencies, in this paper we present a novel SSIS scheme based on a brand-new technique, called compressed sensing, which has been widely used in many fields such as image processing, wireless communication and medical imaging. Our scheme has the property of flexibility, which means that the dealer can achieve a compromise between the size of each shadow and the quality of the reconstructed image. In addition, our scheme has many other advantages, including smooth scalability, noise-resilient capability, and high security. The experimental results and the comparison with similar works demonstrate the feasibility and superiority of our scheme.
Recent advances in coding theory for near error-free communications
NASA Technical Reports Server (NTRS)
Cheung, K.-M.; Deutsch, L. J.; Dolinar, S. J.; Mceliece, R. J.; Pollara, F.; Shahshahani, M.; Swanson, L.
1991-01-01
Channel and source coding theories are discussed. The following subject areas are covered: large constraint length convolutional codes (the Galileo code); decoder design (the big Viterbi decoder); Voyager's and Galileo's data compression scheme; current research in data compression for images; neural networks for soft decoding; neural networks for source decoding; finite-state codes; and fractals for data compression.
A modified JPEG-LS lossless compression method for remote sensing images
NASA Astrophysics Data System (ADS)
Deng, Lihua; Huang, Zhenghua
2015-12-01
As many variable length source coders, JPEG-LS is highly vulnerable to channel errors which occur in the transmission of remote sensing images. The error diffusion is one of the important factors which infect its robustness. The common method of improving the error resilience of JPEG-LS is dividing the image into many strips or blocks, and then coding each of them independently, but this method reduces the coding efficiency. In this paper, a block based JPEP-LS lossless compression method with an adaptive parameter is proposed. In the modified scheme, the threshold parameter RESET is adapted to an image and the compression efficiency is close to that of the conventional JPEG-LS.
Multidimensional incremental parsing for universal source coding.
Bae, Soo Hyun; Juang, Biing-Hwang
2008-10-01
A multidimensional incremental parsing algorithm (MDIP) for multidimensional discrete sources, as a generalization of the Lempel-Ziv coding algorithm, is investigated. It consists of three essential component schemes, maximum decimation matching, hierarchical structure of multidimensional source coding, and dictionary augmentation. As a counterpart of the longest match search in the Lempel-Ziv algorithm, two classes of maximum decimation matching are studied. Also, an underlying behavior of the dictionary augmentation scheme for estimating the source statistics is examined. For an m-dimensional source, m augmentative patches are appended into the dictionary at each coding epoch, thus requiring the transmission of a substantial amount of information to the decoder. The property of the hierarchical structure of the source coding algorithm resolves this issue by successively incorporating lower dimensional coding procedures in the scheme. In regard to universal lossy source coders, we propose two distortion functions, the local average distortion and the local minimax distortion with a set of threshold levels for each source symbol. For performance evaluation, we implemented three image compression algorithms based upon the MDIP; one is lossless and the others are lossy. The lossless image compression algorithm does not perform better than the Lempel-Ziv-Welch coding, but experimentally shows efficiency in capturing the source structure. The two lossy image compression algorithms are implemented using the two distortion functions, respectively. The algorithm based on the local average distortion is efficient at minimizing the signal distortion, but the images by the one with the local minimax distortion have a good perceptual fidelity among other compression algorithms. Our insights inspire future research on feature extraction of multidimensional discrete sources.
Compression of color-mapped images
NASA Technical Reports Server (NTRS)
Hadenfeldt, A. C.; Sayood, Khalid
1992-01-01
In a standard image coding scenario, pixel-to-pixel correlation nearly always exists in the data, especially if the image is a natural scene. This correlation is what allows predictive coding schemes (e.g., DPCM) to perform efficient compression. In a color-mapped image, the values stored in the pixel array are no longer directly related to the pixel intensity. Two color indices which are numerically adjacent (close) may point to two very different colors. The correlation still exists, but only via the colormap. This fact can be exploited by sorting the color map to reintroduce the structure. The sorting of colormaps is studied and it is shown how the resulting structure can be used in both lossless and lossy compression of images.
NASA Astrophysics Data System (ADS)
Zhao, Shengmei; Wang, Le; Liang, Wenqiang; Cheng, Weiwen; Gong, Longyan
2015-10-01
In this paper, we propose a high performance optical encryption (OE) scheme based on computational ghost imaging (GI) with QR code and compressive sensing (CS) technique, named QR-CGI-OE scheme. N random phase screens, generated by Alice, is a secret key and be shared with its authorized user, Bob. The information is first encoded by Alice with QR code, and the QR-coded image is then encrypted with the aid of computational ghost imaging optical system. Here, measurement results from the GI optical system's bucket detector are the encrypted information and be transmitted to Bob. With the key, Bob decrypts the encrypted information to obtain the QR-coded image with GI and CS techniques, and further recovers the information by QR decoding. The experimental and numerical simulated results show that the authorized users can recover completely the original image, whereas the eavesdroppers can not acquire any information about the image even the eavesdropping ratio (ER) is up to 60% at the given measurement times. For the proposed scheme, the number of bits sent from Alice to Bob are reduced considerably and the robustness is enhanced significantly. Meantime, the measurement times in GI system is reduced and the quality of the reconstructed QR-coded image is improved.
High-quality lossy compression: current and future trends
NASA Astrophysics Data System (ADS)
McLaughlin, Steven W.
1995-01-01
This paper is concerned with current and future trends in the lossy compression of real sources such as imagery, video, speech and music. We put all lossy compression schemes into common framework where each can be characterized in terms of three well-defined advantages: cell shape, region shape and memory advantages. We concentrate on image compression and discuss how new entropy constrained trellis-based compressors achieve cell- shape, region-shape and memory gain resulting in high fidelity and high compression.
Comparison of lossless compression techniques for prepress color images
NASA Astrophysics Data System (ADS)
Van Assche, Steven; Denecker, Koen N.; Philips, Wilfried R.; Lemahieu, Ignace L.
1998-12-01
In the pre-press industry color images have both a high spatial and a high color resolution. Such images require a considerable amount of storage space and impose long transmission times. Data compression is desired to reduce these storage and transmission problems. Because of the high quality requirements in the pre-press industry only lossless compression is acceptable. Most existing lossless compression schemes operate on gray-scale images. In this case the color components of color images must be compressed independently. However, higher compression ratios can be achieved by exploiting inter-color redundancies. In this paper we present a comparison of three state-of-the-art lossless compression techniques which exploit such color redundancies: IEP (Inter- color Error Prediction) and a KLT-based technique, which are both linear color decorrelation techniques, and Interframe CALIC, which uses a non-linear approach to color decorrelation. It is shown that these techniques are able to exploit color redundancies and that color decorrelation can be done effectively and efficiently. The linear color decorrelators provide a considerable coding gain (about 2 bpp) on some typical prepress images. The non-linear interframe CALIC predictor does not yield better results, but the full interframe CALIC technique does.
A Real-Time High Performance Data Compression Technique For Space Applications
NASA Technical Reports Server (NTRS)
Yeh, Pen-Shu; Venbrux, Jack; Bhatia, Prakash; Miller, Warner H.
2000-01-01
A high performance lossy data compression technique is currently being developed for space science applications under the requirement of high-speed push-broom scanning. The technique is also error-resilient in that error propagation is contained within a few scan lines. The algorithm is based on block-transform combined with bit-plane encoding; this combination results in an embedded bit string with exactly the desirable compression rate. The lossy coder is described. The compression scheme performs well on a suite of test images typical of images from spacecraft instruments. Hardware implementations are in development; a functional chip set is expected by the end of 2001.
Multi-focus image fusion and robust encryption algorithm based on compressive sensing
NASA Astrophysics Data System (ADS)
Xiao, Di; Wang, Lan; Xiang, Tao; Wang, Yong
2017-06-01
Multi-focus image fusion schemes have been studied in recent years. However, little work has been done in multi-focus image transmission security. This paper proposes a scheme that can reduce data transmission volume and resist various attacks. First, multi-focus image fusion based on wavelet decomposition can generate complete scene images and optimize the perception of the human eye. The fused images are sparsely represented with DCT and sampled with structurally random matrix (SRM), which reduces the data volume and realizes the initial encryption. Then the obtained measurements are further encrypted to resist noise and crop attack through combining permutation and diffusion stages. At the receiver, the cipher images can be jointly decrypted and reconstructed. Simulation results demonstrate the security and robustness of the proposed scheme.
A Secure and Efficient Scalable Secret Image Sharing Scheme with Flexible Shadow Sizes
Xie, Dong; Li, Lixiang; Peng, Haipeng; Yang, Yixian
2017-01-01
In a general (k, n) scalable secret image sharing (SSIS) scheme, the secret image is shared by n participants and any k or more than k participants have the ability to reconstruct it. The scalability means that the amount of information in the reconstructed image scales in proportion to the number of the participants. In most existing SSIS schemes, the size of each image shadow is relatively large and the dealer does not has a flexible control strategy to adjust it to meet the demand of differen applications. Besides, almost all existing SSIS schemes are not applicable under noise circumstances. To address these deficiencies, in this paper we present a novel SSIS scheme based on a brand-new technique, called compressed sensing, which has been widely used in many fields such as image processing, wireless communication and medical imaging. Our scheme has the property of flexibility, which means that the dealer can achieve a compromise between the size of each shadow and the quality of the reconstructed image. In addition, our scheme has many other advantages, including smooth scalability, noise-resilient capability, and high security. The experimental results and the comparison with similar works demonstrate the feasibility and superiority of our scheme. PMID:28072851
NASA Astrophysics Data System (ADS)
O'Connor, Sean M.; Lynch, Jerome P.; Gilbert, Anna C.
2013-04-01
Wireless sensors have emerged to offer low-cost sensors with impressive functionality (e.g., data acquisition, computing, and communication) and modular installations. Such advantages enable higher nodal densities than tethered systems resulting in increased spatial resolution of the monitoring system. However, high nodal density comes at a cost as huge amounts of data are generated, weighing heavy on power sources, transmission bandwidth, and data management requirements, often making data compression necessary. The traditional compression paradigm consists of high rate (>Nyquist) uniform sampling and storage of the entire target signal followed by some desired compression scheme prior to transmission. The recently proposed compressed sensing (CS) framework combines the acquisition and compression stage together, thus removing the need for storage and operation of the full target signal prior to transmission. The effectiveness of the CS approach hinges on the presence of a sparse representation of the target signal in a known basis, similarly exploited by several traditional compressive sensing applications today (e.g., imaging, MRI). Field implementations of CS schemes in wireless SHM systems have been challenging due to the lack of commercially available sensing units capable of sampling methods (e.g., random) consistent with the compressed sensing framework, often moving evaluation of CS techniques to simulation and post-processing. The research presented here describes implementation of a CS sampling scheme to the Narada wireless sensing node and the energy efficiencies observed in the deployed sensors. Of interest in this study is the compressibility of acceleration response signals collected from a multi-girder steel-concrete composite bridge. The study shows the benefit of CS in reducing data requirements while ensuring data analysis on compressed data remain accurate.
High-speed reconstruction of compressed images
NASA Astrophysics Data System (ADS)
Cox, Jerome R., Jr.; Moore, Stephen M.
1990-07-01
A compression scheme is described that allows high-definition radiological images with greater than 8-bit intensity resolution to be represented by 8-bit pixels. Reconstruction of the images with their original intensity resolution can be carried out by means of a pipeline architecture suitable for compact, high-speed implementation. A reconstruction system is described that can be fabricated according to this approach and placed between an 8-bit display buffer and the display's video system thereby allowing contrast control of images at video rates. Results for 50 CR chest images are described showing that error-free reconstruction of the original 10-bit CR images can be achieved.
Faster tissue interface analysis from Raman microscopy images using compressed factorisation
NASA Astrophysics Data System (ADS)
Palmer, Andrew D.; Bannerman, Alistair; Grover, Liam; Styles, Iain B.
2013-06-01
The structure of an artificial ligament was examined using Raman microscopy in combination with novel data analysis. Basis approximation and compressed principal component analysis are shown to provide efficient compression of confocal Raman microscopy images, alongside powerful methods for unsupervised analysis. This scheme allows the acceleration of data mining, such as principal component analysis, as they can be performed on the compressed data representation, providing a decrease in the factorisation time of a single image from five minutes to under a second. Using this workflow the interface region between a chemically engineered ligament construct and a bone-mimic anchor was examined. Natural ligament contains a striated interface between the bone and tissue that provides improved mechanical load tolerance, a similar interface was found in the ligament construct.
Compressive hyperspectral and multispectral imaging fusion
NASA Astrophysics Data System (ADS)
Espitia, Óscar; Castillo, Sergio; Arguello, Henry
2016-05-01
Image fusion is a valuable framework which combines two or more images of the same scene from one or multiple sensors, allowing to improve the resolution of the images and increase the interpretable content. In remote sensing a common fusion problem consists of merging hyperspectral (HS) and multispectral (MS) images that involve large amount of redundant data, which ignores the highly correlated structure of the datacube along the spatial and spectral dimensions. Compressive HS and MS systems compress the spectral data in the acquisition step allowing to reduce the data redundancy by using different sampling patterns. This work presents a compressed HS and MS image fusion approach, which uses a high dimensional joint sparse model. The joint sparse model is formulated by combining HS and MS compressive acquisition models. The high spectral and spatial resolution image is reconstructed by using sparse optimization algorithms. Different fusion spectral image scenarios are used to explore the performance of the proposed scheme. Several simulations with synthetic and real datacubes show promising results as the reliable reconstruction of a high spectral and spatial resolution image can be achieved by using as few as just the 50% of the datacube.
Research on lossless compression of true color RGB image with low time and space complexity
NASA Astrophysics Data System (ADS)
Pan, ShuLin; Xie, ChengJun; Xu, Lin
2008-12-01
Eliminating correlated redundancy of space and energy by using a DWT lifting scheme and reducing the complexity of the image by using an algebraic transform among the RGB components. An improved Rice Coding algorithm, in which presents an enumerating DWT lifting scheme that fits any size images by image renormalization has been proposed in this paper. This algorithm has a coding and decoding process without backtracking for dealing with the pixels of an image. It support LOCO-I and it can also be applied to Coder / Decoder. Simulation analysis indicates that the proposed method can achieve a high image compression. Compare with Lossless-JPG, PNG(Microsoft), PNG(Rene), PNG(Photoshop), PNG(Anix PicViewer), PNG(ACDSee), PNG(Ulead photo Explorer), JPEG2000, PNG(KoDa Inc), SPIHT and JPEG-LS, the lossless image compression ratio improved 45%, 29%, 25%, 21%, 19%, 17%, 16%, 15%, 11%, 10.5%, 10% separately with 24 pieces of RGB image provided by KoDa Inc. Accessing the main memory in Pentium IV,CPU2.20GHZ and 256MRAM, the coding speed of the proposed coder can be increased about 21 times than the SPIHT and the efficiency of the performance can be increased 166% or so, the decoder's coding speed can be increased about 17 times than the SPIHT and the efficiency of the performance can be increased 128% or so.
Mpeg2 codec HD improvements with medical and robotic imaging benefits
NASA Astrophysics Data System (ADS)
Picard, Wayne F. J.
2010-02-01
In this report, we propose an efficient scheme to use High Definition Television (HDTV) in a console or notebook format as a computer terminal in addition to their role as TV display unit. In the proposed scheme, we assume that the main computer is situated at a remote location. The computer raster in the remote server is compressed using an HD E- >Mpeg2 encoder and transmitted to the terminal at home. The built-in E->Mpeg2 decoder in the terminal decompresses the compressed bit stream, and displays the raster. The terminal will be fitted with a mouse and keyboard, through which the interaction with the remote computer server can be performed via a communications back channel. The terminal in a notebook format can thus be used as a high resolution computer and multimedia device. We will consider developments such as the required HD enhanced Mpeg2 resolution (E->Mpeg2) and its medical ramifications due to improvements on compressed image quality with 2D to 3D conversion (Mpeg3) and using the compressed Discrete Cosine Transform coefficients in the reality compression of vision and control of medical robotic surgeons.
Observer performance assessment of JPEG-compressed high-resolution chest images
NASA Astrophysics Data System (ADS)
Good, Walter F.; Maitz, Glenn S.; King, Jill L.; Gennari, Rose C.; Gur, David
1999-05-01
The JPEG compression algorithm was tested on a set of 529 chest radiographs that had been digitized at a spatial resolution of 100 micrometer and contrast sensitivity of 12 bits. Images were compressed using five fixed 'psychovisual' quantization tables which produced average compression ratios in the range 15:1 to 61:1, and were then printed onto film. Six experienced radiologists read all cases from the laser printed film, in each of the five compressed modes as well as in the non-compressed mode. For comparison purposes, observers also read the same cases with reduced pixel resolutions of 200 micrometer and 400 micrometer. The specific task involved detecting masses, pneumothoraces, interstitial disease, alveolar infiltrates and rib fractures. Over the range of compression ratios tested, for images digitized at 100 micrometer, we were unable to demonstrate any statistically significant decrease (p greater than 0.05) in observer performance as measured by ROC techniques. However, the observers' subjective assessments of image quality did decrease significantly as image resolution was reduced and suggested a decreasing, but nonsignificant, trend as the compression ratio was increased. The seeming discrepancy between our failure to detect a reduction in observer performance, and other published studies, is likely due to: (1) the higher resolution at which we digitized our images; (2) the higher signal-to-noise ratio of our digitized films versus typical CR images; and (3) our particular choice of an optimized quantization scheme.
A New Approach for Fingerprint Image Compression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazieres, Bertrand
1997-12-01
The FBI has been collecting fingerprint cards since 1924 and now has over 200 million of them. Digitized with 8 bits of grayscale resolution at 500 dots per inch, it means 2000 terabytes of information. Also, without any compression, transmitting a 10 Mb card over a 9600 baud connection will need 3 hours. Hence we need a compression and a compression as close to lossless as possible: all fingerprint details must be kept. A lossless compression usually do not give a better compression ratio than 2:1, which is not sufficient. Compressing these images with the JPEG standard leads to artefactsmore » which appear even at low compression rates. Therefore the FBI has chosen in 1993 a scheme of compression based on a wavelet transform, followed by a scalar quantization and an entropy coding : the so-called WSQ. This scheme allows to achieve compression ratios of 20:1 without any perceptible loss of quality. The publication of the FBI specifies a decoder, which means that many parameters can be changed in the encoding process: the type of analysis/reconstruction filters, the way the bit allocation is made, the number of Huffman tables used for the entropy coding. The first encoder used 9/7 filters for the wavelet transform and did the bit allocation using a high-rate bit assumption. Since the transform is made into 64 subbands, quite a lot of bands receive only a few bits even at an archival quality compression rate of 0.75 bit/pixel. Thus, after a brief overview of the standard, we will discuss a new approach for the bit-allocation that seems to make more sense where theory is concerned. Then we will talk about some implementation aspects, particularly for the new entropy coder and the features that allow other applications than fingerprint image compression. Finally, we will compare the performances of the new encoder to those of the first encoder.« less
Visually Lossless Data Compression for Real-Time Frame/Pushbroom Space Science Imagers
NASA Technical Reports Server (NTRS)
Yeh, Pen-Shu; Venbrux, Jack; Bhatia, Prakash; Miller, Warner H.
2000-01-01
A visually lossless data compression technique is currently being developed for space science applications under the requirement of high-speed push-broom scanning. The technique is also applicable to frame based imaging and is error-resilient in that error propagation is contained within a few scan lines. The algorithm is based on a block transform of a hybrid of modulated lapped transform (MLT) and discrete cosine transform (DCT), or a 2-dimensional lapped transform, followed by bit-plane encoding; this combination results in an embedded bit string with exactly the desirable compression rate as desired by the user. The approach requires no unique table to maximize its performance. The compression scheme performs well on a suite of test images typical of images from spacecraft instruments. Flight qualified hardware implementations are in development; a functional chip set is expected by the end of 2001. The chip set is being designed to compress data in excess of 20 Msamples/sec and support quantizations from 2 to 16 bits.
Compression of Encrypted Images Using Set Partitioning In Hierarchical Trees Algorithm
NASA Astrophysics Data System (ADS)
Sarika, G.; Unnithan, Harikuttan; Peter, Smitha
2011-10-01
When it is desired to transmit redundant data over an insecure channel, it is customary to encrypt the data. For encrypted real world sources such as images, the use of Markova properties in the slepian-wolf decoder does not work well for gray scale images. Here in this paper we propose a method of compression of an encrypted image. In the encoder section, the image is first encrypted and then it undergoes compression in resolution. The cipher function scrambles only the pixel values, but does not shuffle the pixel locations. After down sampling, each sub-image is encoded independently and the resulting syndrome bits are transmitted. The received image undergoes a joint decryption and decompression in the decoder section. By using the local statistics based on the image, it is recovered back. Here the decoder gets only lower resolution version of the image. In addition, this method provides only partial access to the current source at the decoder side, which improves the decoder's learning of the source statistics. The source dependency is exploited to improve the compression efficiency. This scheme provides better coding efficiency and less computational complexity.
Joint Denoising/Compression of Image Contours via Shape Prior and Context Tree
NASA Astrophysics Data System (ADS)
Zheng, Amin; Cheung, Gene; Florencio, Dinei
2018-07-01
With the advent of depth sensing technologies, the extraction of object contours in images---a common and important pre-processing step for later higher-level computer vision tasks like object detection and human action recognition---has become easier. However, acquisition noise in captured depth images means that detected contours suffer from unavoidable errors. In this paper, we propose to jointly denoise and compress detected contours in an image for bandwidth-constrained transmission to a client, who can then carry out aforementioned application-specific tasks using the decoded contours as input. We first prove theoretically that in general a joint denoising / compression approach can outperform a separate two-stage approach that first denoises then encodes contours lossily. Adopting a joint approach, we first propose a burst error model that models typical errors encountered in an observed string y of directional edges. We then formulate a rate-constrained maximum a posteriori (MAP) problem that trades off the posterior probability p(x'|y) of an estimated string x' given y with its code rate R(x'). We design a dynamic programming (DP) algorithm that solves the posed problem optimally, and propose a compact context representation called total suffix tree (TST) that can reduce complexity of the algorithm dramatically. Experimental results show that our joint denoising / compression scheme outperformed a competing separate scheme in rate-distortion performance noticeably.
A joint source-channel distortion model for JPEG compressed images.
Sabir, Muhammad F; Sheikh, Hamid Rahim; Heath, Robert W; Bovik, Alan C
2006-06-01
The need for efficient joint source-channel coding (JSCC) is growing as new multimedia services are introduced in commercial wireless communication systems. An important component of practical JSCC schemes is a distortion model that can predict the quality of compressed digital multimedia such as images and videos. The usual approach in the JSCC literature for quantifying the distortion due to quantization and channel errors is to estimate it for each image using the statistics of the image for a given signal-to-noise ratio (SNR). This is not an efficient approach in the design of real-time systems because of the computational complexity. A more useful and practical approach would be to design JSCC techniques that minimize average distortion for a large set of images based on some distortion model rather than carrying out per-image optimizations. However, models for estimating average distortion due to quantization and channel bit errors in a combined fashion for a large set of images are not available for practical image or video coding standards employing entropy coding and differential coding. This paper presents a statistical model for estimating the distortion introduced in progressive JPEG compressed images due to quantization and channel bit errors in a joint manner. Statistical modeling of important compression techniques such as Huffman coding, differential pulse-coding modulation, and run-length coding are included in the model. Examples show that the distortion in terms of peak signal-to-noise ratio (PSNR) can be predicted within a 2-dB maximum error over a variety of compression ratios and bit-error rates. To illustrate the utility of the proposed model, we present an unequal power allocation scheme as a simple application of our model. Results show that it gives a PSNR gain of around 6.5 dB at low SNRs, as compared to equal power allocation.
Comparative performance between compressed and uncompressed airborne imagery
NASA Astrophysics Data System (ADS)
Phan, Chung; Rupp, Ronald; Agarwal, Sanjeev; Trang, Anh; Nair, Sumesh
2008-04-01
The US Army's RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD), Countermine Division is evaluating the compressibility of airborne multi-spectral imagery for mine and minefield detection application. Of particular interest is to assess the highest image data compression rate that can be afforded without the loss of image quality for war fighters in the loop and performance of near real time mine detection algorithm. The JPEG-2000 compression standard is used to perform data compression. Both lossless and lossy compressions are considered. A multi-spectral anomaly detector such as RX (Reed & Xiaoli), which is widely used as a core algorithm baseline in airborne mine and minefield detection on different mine types, minefields, and terrains to identify potential individual targets, is used to compare the mine detection performance. This paper presents the compression scheme and compares detection performance results between compressed and uncompressed imagery for various level of compressions. The compression efficiency is evaluated and its dependence upon different backgrounds and other factors are documented and presented using multi-spectral data.
NASA Technical Reports Server (NTRS)
Rost, Martin C.; Sayood, Khalid
1991-01-01
A method for efficiently coding natural images using a vector-quantized variable-blocksized transform source coder is presented. The method, mixture block coding (MBC), incorporates variable-rate coding by using a mixture of discrete cosine transform (DCT) source coders. Which coders are selected to code any given image region is made through a threshold driven distortion criterion. In this paper, MBC is used in two different applications. The base method is concerned with single-pass low-rate image data compression. The second is a natural extension of the base method which allows for low-rate progressive transmission (PT). Since the base method adapts easily to progressive coding, it offers the aesthetic advantage of progressive coding without incorporating extensive channel overhead. Image compression rates of approximately 0.5 bit/pel are demonstrated for both monochrome and color images.
Semi-regular remeshing based trust region spherical geometry image for 3D deformed mesh used MLWNN
NASA Astrophysics Data System (ADS)
Dhibi, Naziha; Elkefi, Akram; Bellil, Wajdi; Ben Amar, Chokri
2017-03-01
Triangular surface are now widely used for modeling three-dimensional object, since these models are very high resolution and the geometry of the mesh is often very dense, it is then necessary to remesh this object to reduce their complexity, the mesh quality (connectivity regularity) must be ameliorated. In this paper, we review the main methods of semi-regular remeshing of the state of the art, given the semi-regular remeshing is mainly relevant for wavelet-based compression, then we present our method for re-meshing based trust region spherical geometry image to have good scheme of 3d mesh compression used to deform 3D meh based on Multi library Wavelet Neural Network structure (MLWNN). Experimental results show that the progressive re-meshing algorithm capable of obtaining more compact representations and semi-regular objects and yield an efficient compression capabilities with minimal set of features used to have good 3D deformation scheme.
NASA Astrophysics Data System (ADS)
Hu, Guiqiang; Xiao, Di; Wang, Yong; Xiang, Tao; Zhou, Qing
2017-11-01
Recently, a new kind of image encryption approach using compressive sensing (CS) and double random phase encoding has received much attention due to the advantages such as compressibility and robustness. However, this approach is found to be vulnerable to chosen plaintext attack (CPA) if the CS measurement matrix is re-used. Therefore, designing an efficient measurement matrix updating mechanism that ensures resistance to CPA is of practical significance. In this paper, we provide a novel solution to update the CS measurement matrix by altering the secret sparse basis with the help of counter mode operation. Particularly, the secret sparse basis is implemented by a reality-preserving fractional cosine transform matrix. Compared with the conventional CS-based cryptosystem that totally generates all the random entries of measurement matrix, our scheme owns efficiency superiority while guaranteeing resistance to CPA. Experimental and analysis results show that the proposed scheme has a good security performance and has robustness against noise and occlusion.
Cubic-panorama image dataset analysis for storage and transmission
NASA Astrophysics Data System (ADS)
Salehi, Saeed; Dubois, Eric
2013-02-01
In this paper we address the problem of disparity estimation required for free navigation in acquired cubicpanorama image datasets. A client server based scheme is assumed and a remote user is assumed to seek information at each navigation step. The initial compression of such image datasets for storage as well as the transmission of the required data is addressed in this work. Regarding the compression of such data for storage, a fast method that uses properties of the epipolar geometry together with the cubic format of panoramas is used to estimate disparity vectors efficiently. Assuming the use of B pictures, the concept of forward and backward prediction is addressed. Regarding the transmission stage, a new disparity vector transcoding-like scheme is introduced and a frame conversion scenario is addressed. Details on how to pick the best vector among candidate disparity vectors is explained. In all the above mentioned cases, results are compared both visually through error images as well as using the objective measure of Peak Signal to Noise Ratio (PSNR) versus time.
Performance of customized DCT quantization tables on scientific data
NASA Technical Reports Server (NTRS)
Ratnakar, Viresh; Livny, Miron
1994-01-01
We show that it is desirable to use data-specific or customized quantization tables for scaling the spatial frequency coefficients obtained using the Discrete Cosine Transform (DCT). DCT is widely used for image and video compression (MP89, PM93) but applications typically use default quantization matrices. Using actual scientific data gathered from divers sources such as spacecrafts and electron-microscopes, we show that the default compression/quality tradeoffs can be significantly improved upon by using customized tables. We also show that significant improvements are possible for the standard test images Lena and Baboon. This work is part of an effort to develop a practical scheme for optimizing quantization matrices for any given image or video stream, under any given quality or compression constraints.
NASA Astrophysics Data System (ADS)
Li, Xianye; Meng, Xiangfeng; Wang, Yurong; Yang, Xiulun; Yin, Yongkai; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi
2017-09-01
A multiple-image encryption method is proposed that is based on row scanning compressive ghost imaging, (t, n) threshold secret sharing, and phase retrieval in the Fresnel domain. In the encryption process, after wavelet transform and Arnold transform of the target image, the ciphertext matrix can be first detected using a bucket detector. Based on a (t, n) threshold secret sharing algorithm, the measurement key used in the row scanning compressive ghost imaging can be decomposed and shared into two pairs of sub-keys, which are then reconstructed using two phase-only mask (POM) keys with fixed pixel values, placed in the input plane and transform plane 2 of the phase retrieval scheme, respectively; and the other POM key in the transform plane 1 can be generated and updated by the iterative encoding of each plaintext image. In each iteration, the target image acts as the input amplitude constraint in the input plane. During decryption, each plaintext image possessing all the correct keys can be successfully decrypted by measurement key regeneration, compression algorithm reconstruction, inverse wavelet transformation, and Fresnel transformation. Theoretical analysis and numerical simulations both verify the feasibility of the proposed method.
Mutual information-based analysis of JPEG2000 contexts.
Liu, Zhen; Karam, Lina J
2005-04-01
Context-based arithmetic coding has been widely adopted in image and video compression and is a key component of the new JPEG2000 image compression standard. In this paper, the contexts used in JPEG2000 are analyzed using the mutual information, which is closely related to the compression performance. We first show that, when combining the contexts, the mutual information between the contexts and the encoded data will decrease unless the conditional probability distributions of the combined contexts are the same. Given I, the initial number of contexts, and F, the final desired number of contexts, there are S(I, F) possible context classification schemes where S(I, F) is called the Stirling number of the second kind. The optimal classification scheme is the one that gives the maximum mutual information. Instead of using an exhaustive search, the optimal classification scheme can be obtained through a modified generalized Lloyd algorithm with the relative entropy as the distortion metric. For binary arithmetic coding, the search complexity can be reduced by using dynamic programming. Our experimental results show that the JPEG2000 contexts capture the correlations among the wavelet coefficients very well. At the same time, the number of contexts used as part of the standard can be reduced without loss in the coding performance.
Optical image hiding based on computational ghost imaging
NASA Astrophysics Data System (ADS)
Wang, Le; Zhao, Shengmei; Cheng, Weiwen; Gong, Longyan; Chen, Hanwu
2016-05-01
Imaging hiding schemes play important roles in now big data times. They provide copyright protections of digital images. In the paper, we propose a novel image hiding scheme based on computational ghost imaging to have strong robustness and high security. The watermark is encrypted with the configuration of a computational ghost imaging system, and the random speckle patterns compose a secret key. Least significant bit algorithm is adopted to embed the watermark and both the second-order correlation algorithm and the compressed sensing (CS) algorithm are used to extract the watermark. The experimental and simulation results show that the authorized users can get the watermark with the secret key. The watermark image could not be retrieved when the eavesdropping ratio is less than 45% with the second-order correlation algorithm, whereas it is less than 20% with the TVAL3 CS reconstructed algorithm. In addition, the proposed scheme is robust against the 'salt and pepper' noise and image cropping degradations.
NASA Astrophysics Data System (ADS)
Qin, Yi; Wang, Zhipeng; Wang, Hongjuan; Gong, Qiong
2018-07-01
We propose a binary image encryption method in joint transform correlator (JTC) by aid of the run-length encoding (RLE) and Quick Response (QR) code, which enables lossless retrieval of the primary image. The binary image is encoded with RLE to obtain the highly compressed data, and then the compressed binary image is further scrambled using a chaos-based method. The compressed and scrambled binary image is then transformed into one QR code that will be finally encrypted in JTC. The proposed method successfully, for the first time to our best knowledge, encodes a binary image into a QR code with the identical size of it, and therefore may probe a new way for extending the application of QR code in optical security. Moreover, the preprocessing operations, including RLE, chaos scrambling and the QR code translation, append an additional security level on JTC. We present digital results that confirm our approach.
Estimating JPEG2000 compression for image forensics using Benford's Law
NASA Astrophysics Data System (ADS)
Qadir, Ghulam; Zhao, Xi; Ho, Anthony T. S.
2010-05-01
With the tremendous growth and usage of digital images nowadays, the integrity and authenticity of digital content is becoming increasingly important, and a growing concern to many government and commercial sectors. Image Forensics, based on a passive statistical analysis of the image data only, is an alternative approach to the active embedding of data associated with Digital Watermarking. Benford's Law was first introduced to analyse the probability distribution of the 1st digit (1-9) numbers of natural data, and has since been applied to Accounting Forensics for detecting fraudulent income tax returns [9]. More recently, Benford's Law has been further applied to image processing and image forensics. For example, Fu et al. [5] proposed a Generalised Benford's Law technique for estimating the Quality Factor (QF) of JPEG compressed images. In our previous work, we proposed a framework incorporating the Generalised Benford's Law to accurately detect unknown JPEG compression rates of watermarked images in semi-fragile watermarking schemes. JPEG2000 (a relatively new image compression standard) offers higher compression rates and better image quality as compared to JPEG compression. In this paper, we propose the novel use of Benford's Law for estimating JPEG2000 compression for image forensics applications. By analysing the DWT coefficients and JPEG2000 compression on 1338 test images, the initial results indicate that the 1st digit probability of DWT coefficients follow the Benford's Law. The unknown JPEG2000 compression rates of the image can also be derived, and proved with the help of a divergence factor, which shows the deviation between the probabilities and Benford's Law. Based on 1338 test images, the mean divergence for DWT coefficients is approximately 0.0016, which is lower than DCT coefficients at 0.0034. However, the mean divergence for JPEG2000 images compression rate at 0.1 is 0.0108, which is much higher than uncompressed DWT coefficients. This result clearly indicates a presence of compression in the image. Moreover, we compare the results of 1st digit probability and divergence among JPEG2000 compression rates at 0.1, 0.3, 0.5 and 0.9. The initial results show that the expected difference among them could be used for further analysis to estimate the unknown JPEG2000 compression rates.
Experimental scheme and restoration algorithm of block compression sensing
NASA Astrophysics Data System (ADS)
Zhang, Linxia; Zhou, Qun; Ke, Jun
2018-01-01
Compressed Sensing (CS) can use the sparseness of a target to obtain its image with much less data than that defined by the Nyquist sampling theorem. In this paper, we study the hardware implementation of a block compression sensing system and its reconstruction algorithms. Different block sizes are used. Two algorithms, the orthogonal matching algorithm (OMP) and the full variation minimum algorithm (TV) are used to obtain good reconstructions. The influence of block size on reconstruction is also discussed.
Improved Secret Image Sharing Scheme in Embedding Capacity without Underflow and Overflow.
Pang, Liaojun; Miao, Deyu; Li, Huixian; Wang, Qiong
2015-01-01
Computational secret image sharing (CSIS) is an effective way to protect a secret image during its transmission and storage, and thus it has attracted lots of attentions since its appearance. Nowadays, it has become a hot topic for researchers to improve the embedding capacity and eliminate the underflow and overflow situations, which is embarrassing and difficult to deal with. The scheme, which has the highest embedding capacity among the existing schemes, has the underflow and overflow problems. Although the underflow and overflow situations have been well dealt with by different methods, the embedding capacities of these methods are reduced more or less. Motivated by these concerns, we propose a novel scheme, in which we take the differential coding, Huffman coding, and data converting to compress the secret image before embedding it to further improve the embedding capacity, and the pixel mapping matrix embedding method with a newly designed matrix is used to embed secret image data into the cover image to avoid the underflow and overflow situations. Experiment results show that our scheme can improve the embedding capacity further and eliminate the underflow and overflow situations at the same time.
Improved Secret Image Sharing Scheme in Embedding Capacity without Underflow and Overflow
Pang, Liaojun; Miao, Deyu; Li, Huixian; Wang, Qiong
2015-01-01
Computational secret image sharing (CSIS) is an effective way to protect a secret image during its transmission and storage, and thus it has attracted lots of attentions since its appearance. Nowadays, it has become a hot topic for researchers to improve the embedding capacity and eliminate the underflow and overflow situations, which is embarrassing and difficult to deal with. The scheme, which has the highest embedding capacity among the existing schemes, has the underflow and overflow problems. Although the underflow and overflow situations have been well dealt with by different methods, the embedding capacities of these methods are reduced more or less. Motivated by these concerns, we propose a novel scheme, in which we take the differential coding, Huffman coding, and data converting to compress the secret image before embedding it to further improve the embedding capacity, and the pixel mapping matrix embedding method with a newly designed matrix is used to embed secret image data into the cover image to avoid the underflow and overflow situations. Experiment results show that our scheme can improve the embedding capacity further and eliminate the underflow and overflow situations at the same time. PMID:26351657
Analysis of hyperspectral fluorescence images for poultry skin tumor inspection
NASA Astrophysics Data System (ADS)
Kong, Seong G.; Chen, Yud-Ren; Kim, Intaek; Kim, Moon S.
2004-02-01
We present a hyperspectral fluorescence imaging system with a fuzzy inference scheme for detecting skin tumors on poultry carcasses. Hyperspectral images reveal spatial and spectral information useful for finding pathological lesions or contaminants on agricultural products. Skin tumors are not obvious because the visual signature appears as a shape distortion rather than a discoloration. Fluorescence imaging allows the visualization of poultry skin tumors more easily than reflectance. The hyperspectral image samples obtained for this poultry tumor inspection contain 65 spectral bands of fluorescence in the visible region of the spectrum at wavelengths ranging from 425 to 711 nm. The large amount of hyperspectral image data is compressed by use of a discrete wavelet transform in the spatial domain. Principal-component analysis provides an effective compressed representation of the spectral signal of each pixel in the spectral domain. A small number of significant features are extracted from two major spectral peaks of relative fluorescence intensity that have been identified as meaningful spectral bands for detecting tumors. A fuzzy inference scheme that uses a small number of fuzzy rules and Gaussian membership functions successfully detects skin tumors on poultry carcasses. Spatial-filtering techniques are used to significantly reduce false positives.
Cell edge detection in JPEG2000 wavelet domain - analysis on sigmoid function edge model.
Punys, Vytenis; Maknickas, Ramunas
2011-01-01
Big virtual microscopy images (80K x 60K pixels and larger) are usually stored using the JPEG2000 image compression scheme. Diagnostic quantification, based on image analysis, might be faster if performed on compressed data (approx. 20 times less the original amount), representing the coefficients of the wavelet transform. The analysis of possible edge detection without reverse wavelet transform is presented in the paper. Two edge detection methods, suitable for JPEG2000 bi-orthogonal wavelets, are proposed. The methods are adjusted according calculated parameters of sigmoid edge model. The results of model analysis indicate more suitable method for given bi-orthogonal wavelet.
A threshold-based fixed predictor for JPEG-LS image compression
NASA Astrophysics Data System (ADS)
Deng, Lihua; Huang, Zhenghua; Yao, Shoukui
2018-03-01
In JPEG-LS, fixed predictor based on median edge detector (MED) only detect horizontal and vertical edges, and thus produces large prediction errors in the locality of diagonal edges. In this paper, we propose a threshold-based edge detection scheme for the fixed predictor. The proposed scheme can detect not only the horizontal and vertical edges, but also diagonal edges. For some certain thresholds, the proposed scheme can be simplified to other existing schemes. So, it can also be regarded as the integration of these existing schemes. For a suitable threshold, the accuracy of horizontal and vertical edges detection is higher than the existing median edge detection in JPEG-LS. Thus, the proposed fixed predictor outperforms the existing JPEG-LS predictors for all images tested, while the complexity of the overall algorithm is maintained at a similar level.
Neural network for image compression
NASA Astrophysics Data System (ADS)
Panchanathan, Sethuraman; Yeap, Tet H.; Pilache, B.
1992-09-01
In this paper, we propose a new scheme for image compression using neural networks. Image data compression deals with minimization of the amount of data required to represent an image while maintaining an acceptable quality. Several image compression techniques have been developed in recent years. We note that the coding performance of these techniques may be improved by employing adaptivity. Over the last few years neural network has emerged as an effective tool for solving a wide range of problems involving adaptivity and learning. A multilayer feed-forward neural network trained using the backward error propagation algorithm is used in many applications. However, this model is not suitable for image compression because of its poor coding performance. Recently, a self-organizing feature map (SOFM) algorithm has been proposed which yields a good coding performance. However, this algorithm requires a long training time because the network starts with random initial weights. In this paper we have used the backward error propagation algorithm (BEP) to quickly obtain the initial weights which are then used to speedup the training time required by the SOFM algorithm. The proposed approach (BEP-SOFM) combines the advantages of the two techniques and, hence, achieves a good coding performance in a shorter training time. Our simulation results demonstrate the potential gains using the proposed technique.
NASA Astrophysics Data System (ADS)
Jridi, Maher; Alfalou, Ayman
2018-03-01
In this paper, enhancement of an existing optical simultaneous fusion, compression and encryption (SFCE) scheme in terms of real-time requirements, bandwidth occupation and encryption robustness is proposed. We have used and approximate form of the DCT to decrease the computational resources. Then, a novel chaos-based encryption algorithm is introduced in order to achieve the confusion and diffusion effects. In the confusion phase, Henon map is used for row and column permutations, where the initial condition is related to the original image. Furthermore, the Skew Tent map is employed to generate another random matrix in order to carry out pixel scrambling. Finally, an adaptation of a classical diffusion process scheme is employed to strengthen security of the cryptosystem against statistical, differential, and chosen plaintext attacks. Analyses of key space, histogram, adjacent pixel correlation, sensitivity, and encryption speed of the encryption scheme are provided, and favorably compared to those of the existing crypto-compression system. The proposed method has been found to be digital/optical implementation-friendly which facilitates the integration of the crypto-compression system on a very broad range of scenarios.
Reliability analysis of the epidural spinal cord compression scale.
Bilsky, Mark H; Laufer, Ilya; Fourney, Daryl R; Groff, Michael; Schmidt, Meic H; Varga, Peter Paul; Vrionis, Frank D; Yamada, Yoshiya; Gerszten, Peter C; Kuklo, Timothy R
2010-09-01
The evolution of imaging techniques, along with highly effective radiation options has changed the way metastatic epidural tumors are treated. While high-grade epidural spinal cord compression (ESCC) frequently serves as an indication for surgical decompression, no consensus exists in the literature about the precise definition of this term. The advancement of the treatment paradigms in patients with metastatic tumors for the spine requires a clear grading scheme of ESCC. The degree of ESCC often serves as a major determinant in the decision to operate or irradiate. The purpose of this study was to determine the reliability and validity of a 6-point, MR imaging-based grading system for ESCC. To determine the reliability of the grading scale, a survey was distributed to 7 spine surgeons who participate in the Spine Oncology Study Group. The MR images of 25 cervical or thoracic spinal tumors were distributed consisting of 1 sagittal image and 3 axial images at the identical level including T1-weighted, T2-weighted, and Gd-enhanced T1-weighted images. The survey was administered 3 times at 2-week intervals. The inter- and intrarater reliability was assessed. The inter- and intrarater reliability ranged from good to excellent when surgeons were asked to rate the degree of spinal cord compression using T2-weighted axial images. The T2-weighted images were superior indicators of ESCC compared with T1-weighted images with and without Gd. The ESCC scale provides a valid and reliable instrument that may be used to describe the degree of ESCC based on T2-weighted MR images. This scale accounts for recent advances in the treatment of spinal metastases and may be used to provide an ESCC classification scheme for multicenter clinical trial and outcome studies.
Region-Based Prediction for Image Compression in the Cloud.
Begaint, Jean; Thoreau, Dominique; Guillotel, Philippe; Guillemot, Christine
2018-04-01
Thanks to the increasing number of images stored in the cloud, external image similarities can be leveraged to efficiently compress images by exploiting inter-images correlations. In this paper, we propose a novel image prediction scheme for cloud storage. Unlike current state-of-the-art methods, we use a semi-local approach to exploit inter-image correlation. The reference image is first segmented into multiple planar regions determined from matched local features and super-pixels. The geometric and photometric disparities between the matched regions of the reference image and the current image are then compensated. Finally, multiple references are generated from the estimated compensation models and organized in a pseudo-sequence to differentially encode the input image using classical video coding tools. Experimental results demonstrate that the proposed approach yields significant rate-distortion performance improvements compared with the current image inter-coding solutions such as high efficiency video coding.
NASA Astrophysics Data System (ADS)
Mansoor, Awais; Robinson, J. Paul; Rajwa, Bartek
2009-02-01
Modern automated microscopic imaging techniques such as high-content screening (HCS), high-throughput screening, 4D imaging, and multispectral imaging are capable of producing hundreds to thousands of images per experiment. For quick retrieval, fast transmission, and storage economy, these images should be saved in a compressed format. A considerable number of techniques based on interband and intraband redundancies of multispectral images have been proposed in the literature for the compression of multispectral and 3D temporal data. However, these works have been carried out mostly in the elds of remote sensing and video processing. Compression for multispectral optical microscopy imaging, with its own set of specialized requirements, has remained under-investigated. Digital photography{oriented 2D compression techniques like JPEG (ISO/IEC IS 10918-1) and JPEG2000 (ISO/IEC 15444-1) are generally adopted for multispectral images which optimize visual quality but do not necessarily preserve the integrity of scientic data, not to mention the suboptimal performance of 2D compression techniques in compressing 3D images. Herein we report our work on a new low bit-rate wavelet-based compression scheme for multispectral fluorescence biological imaging. The sparsity of signicant coefficients in high-frequency subbands of multispectral microscopic images is found to be much greater than in natural images; therefore a quad-tree concept such as Said et al.'s SPIHT1 along with correlation of insignicant wavelet coefficients has been proposed to further exploit redundancy at high-frequency subbands. Our work propose a 3D extension to SPIHT, incorporating a new hierarchal inter- and intra-spectral relationship amongst the coefficients of 3D wavelet-decomposed image. The new relationship, apart from adopting the parent-child relationship of classical SPIHT, also brought forth the conditional "sibling" relationship by relating only the insignicant wavelet coefficients of subbands at the same level of decomposition. The insignicant quadtrees in dierent subbands in the high-frequency subband class are coded by a combined function to reduce redundancy. A number of experiments conducted on microscopic multispectral images have shown promising results for the proposed method over current state-of-the-art image-compression techniques.
The impact of skull bone intensity on the quality of compressed CT neuro images
NASA Astrophysics Data System (ADS)
Kowalik-Urbaniak, Ilona; Vrscay, Edward R.; Wang, Zhou; Cavaro-Menard, Christine; Koff, David; Wallace, Bill; Obara, Boguslaw
2012-02-01
The increasing use of technologies such as CT and MRI, along with a continuing improvement in their resolution, has contributed to the explosive growth of digital image data being generated. Medical communities around the world have recognized the need for efficient storage, transmission and display of medical images. For example, the Canadian Association of Radiologists (CAR) has recommended compression ratios for various modalities and anatomical regions to be employed by lossy JPEG and JPEG2000 compression in order to preserve diagnostic quality. Here we investigate the effects of the sharp skull edges present in CT neuro images on JPEG and JPEG2000 lossy compression. We conjecture that this atypical effect is caused by the sharp edges between the skull bone and the background regions as well as between the skull bone and the interior regions. These strong edges create large wavelet coefficients that consume an unnecessarily large number of bits in JPEG2000 compression because of its bitplane coding scheme, and thus result in reduced quality at the interior region, which contains most diagnostic information in the image. To validate the conjecture, we investigate a segmentation based compression algorithm based on simple thresholding and morphological operators. As expected, quality is improved in terms of PSNR as well as the structural similarity (SSIM) image quality measure, and its multiscale (MS-SSIM) and informationweighted (IW-SSIM) versions. This study not only supports our conjecture, but also provides a solution to improve the performance of JPEG and JPEG2000 compression for specific types of CT images.
Rate and power efficient image compressed sensing and transmission
NASA Astrophysics Data System (ADS)
Olanigan, Saheed; Cao, Lei; Viswanathan, Ramanarayanan
2016-01-01
This paper presents a suboptimal quantization and transmission scheme for multiscale block-based compressed sensing images over wireless channels. The proposed method includes two stages: dealing with quantization distortion and transmission errors. First, given the total transmission bit rate, the optimal number of quantization bits is assigned to the sensed measurements in different wavelet sub-bands so that the total quantization distortion is minimized. Second, given the total transmission power, the energy is allocated to different quantization bit layers based on their different error sensitivities. The method of Lagrange multipliers with Karush-Kuhn-Tucker conditions is used to solve both optimization problems, for which the first problem can be solved with relaxation and the second problem can be solved completely. The effectiveness of the scheme is illustrated through simulation results, which have shown up to 10 dB improvement over the method without the rate and power optimization in medium and low signal-to-noise ratio cases.
Complementary compressive imaging for the telescopic system
Yu, Wen-Kai; Liu, Xue-Feng; Yao, Xu-Ri; Wang, Chao; Zhai, Yun; Zhai, Guang-Jie
2014-01-01
Conventional single-pixel cameras recover images only from the data recorded in one arm of the digital micromirror device, with the light reflected to the other direction not to be collected. Actually, the sampling in these two reflection orientations is correlated with each other, in view of which we propose a sampling concept of complementary compressive imaging, for the first time to our knowledge. We use this method in a telescopic system and acquire images of a target at about 2.0 km range with 20 cm resolution, with the variance of the noise decreasing by half. The influence of the sampling rate and the integration time of photomultiplier tubes on the image quality is also investigated experimentally. It is evident that this technique has advantages of large field of view over a long distance, high-resolution, high imaging speed, high-quality imaging capabilities, and needs fewer measurements in total than any single-arm sampling, thus can be used to improve the performance of all compressive imaging schemes and opens up possibilities for new applications in the remote-sensing area. PMID:25060569
Accelerating cine-MR Imaging in Mouse Hearts Using Compressed Sensing
Wech, Tobias; Lemke, Angela; Medway, Debra; Stork, Lee-Anne; Lygate, Craig A; Neubauer, Stefan; Köstler, Herbert; Schneider, Jürgen E
2011-01-01
Purpose To combine global cardiac function imaging with compressed sensing (CS) in order to reduce scan time and to validate this technique in normal mouse hearts and in a murine model of chronic myocardial infarction. Materials and Methods To determine the maximally achievable acceleration factor, fully acquired cine data, obtained in sham and chronically infarcted (MI) mouse hearts were 2–4-fold undersampled retrospectively, followed by CS reconstruction and blinded image segmentation. Subsequently, dedicated CS sampling schemes were implemented at a preclinical 9.4 T magnetic resonance imaging (MRI) system, and 2- and 3-fold undersampled cine data were acquired in normal mouse hearts with high temporal and spatial resolution. Results The retrospective analysis demonstrated that an undersampling factor of three is feasible without impairing accuracy of cardiac functional parameters. Dedicated CS sampling schemes applied prospectively to normal mouse hearts yielded comparable left-ventricular functional parameters, and intra- and interobserver variability between fully and 3-fold undersampled data. Conclusion This study introduces and validates an alternative means to speed up experimental cine-MRI without the need for expensive hardware. J. Magn. Reson. Imaging 2011. © 2011 Wiley Periodicals, Inc. PMID:21932360
Data compression for satellite images
NASA Technical Reports Server (NTRS)
Chen, P. H.; Wintz, P. A.
1976-01-01
An efficient data compression system is presented for satellite pictures and two grey level pictures derived from satellite pictures. The compression techniques take advantages of the correlation between adjacent picture elements. Several source coding methods are investigated. Double delta coding is presented and shown to be the most efficient. Both predictive differential quantizing technique and double delta coding can be significantly improved by applying a background skipping technique. An extension code is constructed. This code requires very little storage space and operates efficiently. Simulation results are presented for various coding schemes and source codes.
Restoration of Wavelet-Compressed Images and Motion Imagery
2004-01-01
SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED 18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED 19. SECURITY CLASSIFICATION...images is that they are global translates of each other, where 29 the global motion parameters are known. In a very simple sense , these five images form...Image Proc., vol. 1, Oct. 2001, pp. 185–188. [2] J. W. Woods and T. Naveen, “A filter based bit allocation scheme for subband compresion of HDTV,” IEEE
Faster and less phototoxic 3D fluorescence microscopy using a versatile compressed sensing scheme
Woringer, Maxime; Darzacq, Xavier; Zimmer, Christophe
2017-01-01
Three-dimensional fluorescence microscopy based on Nyquist sampling of focal planes faces harsh trade-offs between acquisition time, light exposure, and signal-to-noise. We propose a 3D compressed sensing approach that uses temporal modulation of the excitation intensity during axial stage sweeping and can be adapted to fluorescence microscopes without hardware modification. We describe implementations on a lattice light sheet microscope and an epifluorescence microscope, and show that images of beads and biological samples can be reconstructed with a 5-10 fold reduction of light exposure and acquisition time. Our scheme opens a new door towards faster and less damaging 3D fluorescence microscopy. PMID:28788909
A novel secret sharing with two users based on joint transform correlator and compressive sensing
NASA Astrophysics Data System (ADS)
Zhao, Tieyu; Chi, Yingying
2018-05-01
Recently, joint transform correlator (JTC) has been widely applied to image encryption and authentication. This paper presents a novel secret sharing scheme with two users based on JTC. Two users must be present during the decryption that the system has high security and reliability. In the scheme, two users use their fingerprints to encrypt plaintext, and they can decrypt only if both of them provide the fingerprints which are successfully authenticated. The linear relationship between the plaintext and ciphertext is broken using the compressive sensing, which can resist existing attacks on JTC. The results of the theoretical analysis and numerical simulation confirm the validity of the system.
Gehrig, Nicolas; Dragotti, Pier Luigi
2009-03-01
In this paper, we study the sampling and the distributed compression of the data acquired by a camera sensor network. The effective design of these sampling and compression schemes requires, however, the understanding of the structure of the acquired data. To this end, we show that the a priori knowledge of the configuration of the camera sensor network can lead to an effective estimation of such structure and to the design of effective distributed compression algorithms. For idealized scenarios, we derive the fundamental performance bounds of a camera sensor network and clarify the connection between sampling and distributed compression. We then present a distributed compression algorithm that takes advantage of the structure of the data and that outperforms independent compression algorithms on real multiview images.
A source-specific model for lossless compression of global Earth data
NASA Astrophysics Data System (ADS)
Kess, Barbara Lynne
A Source Specific Model for Global Earth Data (SSM-GED) is a lossless compression method for large images that captures global redundancy in the data and achieves a significant improvement over CALIC and DCXT-BT/CARP, two leading lossless compression schemes. The Global Land 1-Km Advanced Very High Resolution Radiometer (AVHRR) data, which contains 662 Megabytes (MB) per band, is an example of a large data set that requires decompression of regions of the data. For this reason, SSM-GED compresses the AVHRR data as a collection of subwindows. This approach defines the statistical parameters for the model prior to compression. Unlike universal models that assume no a priori knowledge of the data, SSM-GED captures global redundancy that exists among all of the subwindows of data. The overlap in parameters among subwindows of data enables SSM-GED to improve the compression rate by increasing the number of parameters and maintaining a small model cost for each subwindow of data. This lossless compression method is applicable to other large volumes of image data such as video.
Spatial-frequency composite watermarking for digital image copyright protection
NASA Astrophysics Data System (ADS)
Su, Po-Chyi; Kuo, C.-C. Jay
2000-05-01
Digital watermarks can be classified into two categories according to the embedding and retrieval domain, i.e. spatial- and frequency-domain watermarks. Because the two watermarks have different characteristics and limitations, combination of them can have various interesting properties when applied to different applications. In this research, we examine two spatial-frequency composite watermarking schemes. In both cases, a frequency-domain watermarking technique is applied as a baseline structure in the system. The embedded frequency- domain watermark is robust against filtering and compression. A spatial-domain watermarking scheme is then built to compensate some deficiency of the frequency-domain scheme. The first composite scheme is to embed a robust watermark in images to convey copyright or author information. The frequency-domain watermark contains owner's identification number while the spatial-domain watermark is embedded for image registration to resist cropping attack. The second composite scheme is to embed fragile watermark for image authentication. The spatial-domain watermark helps in locating the tampered part of the image while the frequency-domain watermark indicates the source of the image and prevents double watermarking attack. Experimental results show that the two watermarks do not interfere with each other and different functionalities can be achieved. Watermarks in both domains are detected without resorting to the original image. Furthermore, the resulting watermarked image can still preserve high fidelity without serious visual degradation.
NASA Astrophysics Data System (ADS)
Chuang, Cheng-Hung; Chen, Yen-Lin
2013-02-01
This study presents a steganographic optical image encryption system based on reversible data hiding and double random phase encoding (DRPE) techniques. Conventional optical image encryption systems can securely transmit valuable images using an encryption method for possible application in optical transmission systems. The steganographic optical image encryption system based on the DRPE technique has been investigated to hide secret data in encrypted images. However, the DRPE techniques vulnerable to attacks and many of the data hiding methods in the DRPE system can distort the decrypted images. The proposed system, based on reversible data hiding, uses a JBIG2 compression scheme to achieve lossless decrypted image quality and perform a prior encryption process. Thus, the DRPE technique enables a more secured optical encryption process. The proposed method extracts and compresses the bit planes of the original image using the lossless JBIG2 technique. The secret data are embedded in the remaining storage space. The RSA algorithm can cipher the compressed binary bits and secret data for advanced security. Experimental results show that the proposed system achieves a high data embedding capacity and lossless reconstruction of the original images.
Under-sampling trajectory design for compressed sensing based DCE-MRI.
Liu, Duan-duan; Liang, Dong; Zhang, Na; Liu, Xin; Zhang, Yuan-ting
2013-01-01
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) needs high temporal and spatial resolution to accurately estimate quantitative parameters and characterize tumor vasculature. Compressed Sensing (CS) has the potential to accomplish this mutual importance. However, the randomness in CS under-sampling trajectory designed using the traditional variable density (VD) scheme may translate to uncertainty in kinetic parameter estimation when high reduction factors are used. Therefore, accurate parameter estimation using VD scheme usually needs multiple adjustments on parameters of Probability Density Function (PDF), and multiple reconstructions even with fixed PDF, which is inapplicable for DCE-MRI. In this paper, an under-sampling trajectory design which is robust to the change on PDF parameters and randomness with fixed PDF is studied. The strategy is to adaptively segment k-space into low-and high frequency domain, and only apply VD scheme in high-frequency domain. Simulation results demonstrate high accuracy and robustness comparing to VD design.
NASA Astrophysics Data System (ADS)
Hollingsworth, Kieren Grant
2015-11-01
MRI is often the most sensitive or appropriate technique for important measurements in clinical diagnosis and research, but lengthy acquisition times limit its use due to cost and considerations of patient comfort and compliance. Once an image field of view and resolution is chosen, the minimum scan acquisition time is normally fixed by the amount of raw data that must be acquired to meet the Nyquist criteria. Recently, there has been research interest in using the theory of compressed sensing (CS) in MR imaging to reduce scan acquisition times. The theory argues that if our target MR image is sparse, having signal information in only a small proportion of pixels (like an angiogram), or if the image can be mathematically transformed to be sparse then it is possible to use that sparsity to recover a high definition image from substantially less acquired data. This review starts by considering methods of k-space undersampling which have already been incorporated into routine clinical imaging (partial Fourier imaging and parallel imaging), and then explains the basis of using compressed sensing in MRI. The practical considerations of applying CS to MRI acquisitions are discussed, such as designing k-space undersampling schemes, optimizing adjustable parameters in reconstructions and exploiting the power of combined compressed sensing and parallel imaging (CS-PI). A selection of clinical applications that have used CS and CS-PI prospectively are considered. The review concludes by signposting other imaging acceleration techniques under present development before concluding with a consideration of the potential impact and obstacles to bringing compressed sensing into routine use in clinical MRI.
Wang, Xiaogang; Chen, Wen; Chen, Xudong
2015-03-09
In this paper, we develop a new optical information authentication system based on compressed double-random-phase-encoded images and quick-response (QR) codes, where the parameters of optical lightwave are used as keys for optical decryption and the QR code is a key for verification. An input image attached with QR code is first optically encoded in a simplified double random phase encoding (DRPE) scheme without using interferometric setup. From the single encoded intensity pattern recorded by a CCD camera, a compressed double-random-phase-encoded image, i.e., the sparse phase distribution used for optical decryption, is generated by using an iterative phase retrieval technique with QR code. We compare this technique to the other two methods proposed in literature, i.e., Fresnel domain information authentication based on the classical DRPE with holographic technique and information authentication based on DRPE and phase retrieval algorithm. Simulation results show that QR codes are effective on improving the security and data sparsity of optical information encryption and authentication system.
Digital audio watermarking using moment-preserving thresholding
NASA Astrophysics Data System (ADS)
Choi, DooSeop; Jung, Hae Kyung; Choi, Hyuk; Kim, Taejeong
2007-09-01
The Moment-Preserving Thresholding technique for digital images has been used in digital image processing for decades, especially in image binarization and image compression. Its main strength lies in that the binary values that the MPT produces as a result, called representative values, are usually unaffected when the signal being thresholded goes through a signal processing operation. The two representative values in MPT together with the threshold value are obtained by solving the system of the preservation equations for the first, second, and third moment. Relying on this robustness of the representative values to various signal processing attacks considered in the watermarking context, this paper proposes a new watermarking scheme for audio signals. The watermark is embedded in the root-sum-square (RSS) of the two representative values of each signal block using the quantization technique. As a result, the RSS values are modified by scaling the signal according to the watermark bit sequence under the constraint of inaudibility relative to the human psycho-acoustic model. We also address and suggest solutions to the problem of synchronization and power scaling attacks. Experimental results show that the proposed scheme maintains high audio quality and robustness to various attacks including MP3 compression, re-sampling, jittering, and, DA/AD conversion.
NASA Astrophysics Data System (ADS)
Darazi, R.; Gouze, A.; Macq, B.
2009-01-01
Reproducing a natural and real scene as we see in the real world everyday is becoming more and more popular. Stereoscopic and multi-view techniques are used for this end. However due to the fact that more information are displayed requires supporting technologies such as digital compression to ensure the storage and transmission of the sequences. In this paper, a new scheme for stereo image coding is proposed. The original left and right images are jointly coded. The main idea is to optimally exploit the existing correlation between the two images. This is done by the design of an efficient transform that reduces the existing redundancy in the stereo image pair. This approach was inspired by Lifting Scheme (LS). The novelty in our work is that the prediction step is been replaced by an hybrid step that consists in disparity compensation followed by luminance correction and an optimized prediction step. The proposed scheme can be used for lossless and for lossy coding. Experimental results show improvement in terms of performance and complexity compared to recently proposed methods.
NASA Astrophysics Data System (ADS)
Markman, A.; Javidi, B.
2016-06-01
Quick-response (QR) codes are barcodes that can store information such as numeric data and hyperlinks. The QR code can be scanned using a QR code reader, such as those built into smartphone devices, revealing the information stored in the code. Moreover, the QR code is robust to noise, rotation, and illumination when scanning due to error correction built in the QR code design. Integral imaging is an imaging technique used to generate a three-dimensional (3D) scene by combining the information from two-dimensional (2D) elemental images (EIs) each with a different perspective of a scene. Transferring these 2D images in a secure manner can be difficult. In this work, we overview two methods to store and encrypt EIs in multiple QR codes. The first method uses run-length encoding with Huffman coding and the double-random-phase encryption (DRPE) to compress and encrypt an EI. This information is then stored in a QR code. An alternative compression scheme is to perform photon-counting on the EI prior to compression. Photon-counting is a non-linear transformation of data that creates redundant information thus improving image compression. The compressed data is encrypted using the DRPE. Once information is stored in the QR codes, it is scanned using a smartphone device. The information scanned is decompressed and decrypted and an EI is recovered. Once all EIs have been recovered, a 3D optical reconstruction is generated.
NASA Astrophysics Data System (ADS)
Khan, Muazzam A.; Ahmad, Jawad; Javaid, Qaisar; Saqib, Nazar A.
2017-03-01
Wireless Sensor Networks (WSN) is widely deployed in monitoring of some physical activity and/or environmental conditions. Data gathered from WSN is transmitted via network to a central location for further processing. Numerous applications of WSN can be found in smart homes, intelligent buildings, health care, energy efficient smart grids and industrial control systems. In recent years, computer scientists has focused towards findings more applications of WSN in multimedia technologies, i.e. audio, video and digital images. Due to bulky nature of multimedia data, WSN process a large volume of multimedia data which significantly increases computational complexity and hence reduces battery time. With respect to battery life constraints, image compression in addition with secure transmission over a wide ranged sensor network is an emerging and challenging task in Wireless Multimedia Sensor Networks. Due to the open nature of the Internet, transmission of data must be secure through a process known as encryption. As a result, there is an intensive demand for such schemes that is energy efficient as well as highly secure since decades. In this paper, discrete wavelet-based partial image encryption scheme using hashing algorithm, chaotic maps and Hussain's S-Box is reported. The plaintext image is compressed via discrete wavelet transform and then the image is shuffled column-wise and row wise-wise via Piece-wise Linear Chaotic Map (PWLCM) and Nonlinear Chaotic Algorithm, respectively. To get higher security, initial conditions for PWLCM are made dependent on hash function. The permuted image is bitwise XORed with random matrix generated from Intertwining Logistic map. To enhance the security further, final ciphertext is obtained after substituting all elements with Hussain's substitution box. Experimental and statistical results confirm the strength of the anticipated scheme.
Implementation of a Cross-Layer Sensing Medium-Access Control Scheme.
Su, Yishan; Fu, Xiaomei; Han, Guangyao; Xu, Naishen; Jin, Zhigang
2017-04-10
In this paper, compressed sensing (CS) theory is utilized in a medium-access control (MAC) scheme for wireless sensor networks (WSNs). We propose a new, cross-layer compressed sensing medium-access control (CL CS-MAC) scheme, combining the physical layer and data link layer, where the wireless transmission in physical layer is considered as a compress process of requested packets in a data link layer according to compressed sensing (CS) theory. We first introduced using compressive complex requests to identify the exact active sensor nodes, which makes the scheme more efficient. Moreover, because the reconstruction process is executed in a complex field of a physical layer, where no bit and frame synchronizations are needed, the asynchronous and random requests scheme can be implemented without synchronization payload. We set up a testbed based on software-defined radio (SDR) to implement the proposed CL CS-MAC scheme practically and to demonstrate the validation. For large-scale WSNs, the simulation results show that the proposed CL CS-MAC scheme provides higher throughput and robustness than the carrier sense multiple access (CSMA) and compressed sensing medium-access control (CS-MAC) schemes.
Survey of Header Compression Techniques
NASA Technical Reports Server (NTRS)
Ishac, Joseph
2001-01-01
This report provides a summary of several different header compression techniques. The different techniques included are: (1) Van Jacobson's header compression (RFC 1144); (2) SCPS (Space Communications Protocol Standards) header compression (SCPS-TP, SCPS-NP); (3) Robust header compression (ROHC); and (4) The header compression techniques in RFC2507 and RFC2508. The methodology for compression and error correction for these schemes are described in the remainder of this document. All of the header compression schemes support compression over simplex links, provided that the end receiver has some means of sending data back to the sender. However, if that return path does not exist, then neither Van Jacobson's nor SCPS can be used, since both rely on TCP (Transmission Control Protocol). In addition, under link conditions of low delay and low error, all of the schemes perform as expected. However, based on the methodology of the schemes, each scheme is likely to behave differently as conditions degrade. Van Jacobson's header compression relies heavily on the TCP retransmission timer and would suffer an increase in loss propagation should the link possess a high delay and/or bit error rate (BER). The SCPS header compression scheme protects against high delay environments by avoiding delta encoding between packets. Thus, loss propagation is avoided. However, SCPS is still affected by an increased BER (bit-error-rate) since the lack of delta encoding results in larger header sizes. Next, the schemes found in RFC2507 and RFC2508 perform well for non-TCP connections in poor conditions. RFC2507 performance with TCP connections is improved by various techniques over Van Jacobson's, but still suffers a performance hit with poor link properties. Also, RFC2507 offers the ability to send TCP data without delta encoding, similar to what SCPS offers. ROHC is similar to the previous two schemes, but adds additional CRCs (cyclic redundancy check) into headers and improves compression schemes which provide better tolerances in conditions with a high BER.
Low-rate image coding using vector quantization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makur, A.
1990-01-01
This thesis deals with the development and analysis of a computationally simple vector quantization image compression system for coding monochrome images at low bit rate. Vector quantization has been known to be an effective compression scheme when a low bit rate is desirable, but the intensive computation required in a vector quantization encoder has been a handicap in using it for low rate image coding. The present work shows that, without substantially increasing the coder complexity, it is indeed possible to achieve acceptable picture quality while attaining a high compression ratio. Several modifications to the conventional vector quantization coder aremore » proposed in the thesis. These modifications are shown to offer better subjective quality when compared to the basic coder. Distributed blocks are used instead of spatial blocks to construct the input vectors. A class of input-dependent weighted distortion functions is used to incorporate psychovisual characteristics in the distortion measure. Computationally simple filtering techniques are applied to further improve the decoded image quality. Finally, unique designs of the vector quantization coder using electronic neural networks are described, so that the coding delay is reduced considerably.« less
A symmetrical image encryption scheme in wavelet and time domain
NASA Astrophysics Data System (ADS)
Luo, Yuling; Du, Minghui; Liu, Junxiu
2015-02-01
There has been an increasing concern for effective storages and secure transactions of multimedia information over the Internet. Then a great variety of encryption schemes have been proposed to ensure the information security while transmitting, but most of current approaches are designed to diffuse the data only in spatial domain which result in reducing storage efficiency. A lightweight image encryption strategy based on chaos is proposed in this paper. The encryption process is designed in transform domain. The original image is decomposed into approximation and detail components using integer wavelet transform (IWT); then as the more important component of the image, the approximation coefficients are diffused by secret keys generated from a spatiotemporal chaotic system followed by inverse IWT to construct the diffused image; finally a plain permutation is performed for diffusion image by the Logistic mapping in order to reduce the correlation between adjacent pixels further. Experimental results and performance analysis demonstrate the proposed scheme is an efficient, secure and robust encryption mechanism and it realizes effective coding compression to satisfy desirable storage.
Rate-distortion optimized tree-structured compression algorithms for piecewise polynomial images.
Shukla, Rahul; Dragotti, Pier Luigi; Do, Minh N; Vetterli, Martin
2005-03-01
This paper presents novel coding algorithms based on tree-structured segmentation, which achieve the correct asymptotic rate-distortion (R-D) behavior for a simple class of signals, known as piecewise polynomials, by using an R-D based prune and join scheme. For the one-dimensional case, our scheme is based on binary-tree segmentation of the signal. This scheme approximates the signal segments using polynomial models and utilizes an R-D optimal bit allocation strategy among the different signal segments. The scheme further encodes similar neighbors jointly to achieve the correct exponentially decaying R-D behavior (D(R) - c(o)2(-c1R)), thus improving over classic wavelet schemes. We also prove that the computational complexity of the scheme is of O(N log N). We then show the extension of this scheme to the two-dimensional case using a quadtree. This quadtree-coding scheme also achieves an exponentially decaying R-D behavior, for the polygonal image model composed of a white polygon-shaped object against a uniform black background, with low computational cost of O(N log N). Again, the key is an R-D optimized prune and join strategy. Finally, we conclude with numerical results, which show that the proposed quadtree-coding scheme outperforms JPEG2000 by about 1 dB for real images, like cameraman, at low rates of around 0.15 bpp.
Low-rank and Adaptive Sparse Signal (LASSI) Models for Highly Accelerated Dynamic Imaging
Ravishankar, Saiprasad; Moore, Brian E.; Nadakuditi, Raj Rao; Fessler, Jeffrey A.
2017-01-01
Sparsity-based approaches have been popular in many applications in image processing and imaging. Compressed sensing exploits the sparsity of images in a transform domain or dictionary to improve image recovery from undersampled measurements. In the context of inverse problems in dynamic imaging, recent research has demonstrated the promise of sparsity and low-rank techniques. For example, the patches of the underlying data are modeled as sparse in an adaptive dictionary domain, and the resulting image and dictionary estimation from undersampled measurements is called dictionary-blind compressed sensing, or the dynamic image sequence is modeled as a sum of low-rank and sparse (in some transform domain) components (L+S model) that are estimated from limited measurements. In this work, we investigate a data-adaptive extension of the L+S model, dubbed LASSI, where the temporal image sequence is decomposed into a low-rank component and a component whose spatiotemporal (3D) patches are sparse in some adaptive dictionary domain. We investigate various formulations and efficient methods for jointly estimating the underlying dynamic signal components and the spatiotemporal dictionary from limited measurements. We also obtain efficient sparsity penalized dictionary-blind compressed sensing methods as special cases of our LASSI approaches. Our numerical experiments demonstrate the promising performance of LASSI schemes for dynamic magnetic resonance image reconstruction from limited k-t space data compared to recent methods such as k-t SLR and L+S, and compared to the proposed dictionary-blind compressed sensing method. PMID:28092528
Low-Rank and Adaptive Sparse Signal (LASSI) Models for Highly Accelerated Dynamic Imaging.
Ravishankar, Saiprasad; Moore, Brian E; Nadakuditi, Raj Rao; Fessler, Jeffrey A
2017-05-01
Sparsity-based approaches have been popular in many applications in image processing and imaging. Compressed sensing exploits the sparsity of images in a transform domain or dictionary to improve image recovery fromundersampledmeasurements. In the context of inverse problems in dynamic imaging, recent research has demonstrated the promise of sparsity and low-rank techniques. For example, the patches of the underlying data are modeled as sparse in an adaptive dictionary domain, and the resulting image and dictionary estimation from undersampled measurements is called dictionary-blind compressed sensing, or the dynamic image sequence is modeled as a sum of low-rank and sparse (in some transform domain) components (L+S model) that are estimated from limited measurements. In this work, we investigate a data-adaptive extension of the L+S model, dubbed LASSI, where the temporal image sequence is decomposed into a low-rank component and a component whose spatiotemporal (3D) patches are sparse in some adaptive dictionary domain. We investigate various formulations and efficient methods for jointly estimating the underlying dynamic signal components and the spatiotemporal dictionary from limited measurements. We also obtain efficient sparsity penalized dictionary-blind compressed sensing methods as special cases of our LASSI approaches. Our numerical experiments demonstrate the promising performance of LASSI schemes for dynamicmagnetic resonance image reconstruction from limited k-t space data compared to recent methods such as k-t SLR and L+S, and compared to the proposed dictionary-blind compressed sensing method.
Optical image encryption scheme with multiple light paths based on compressive ghost imaging
NASA Astrophysics Data System (ADS)
Zhu, Jinan; Yang, Xiulun; Meng, Xiangfeng; Wang, Yurong; Yin, Yongkai; Sun, Xiaowen; Dong, Guoyan
2018-02-01
An optical image encryption method with multiple light paths is proposed based on compressive ghost imaging. In the encryption process, M random phase-only masks (POMs) are generated by means of logistic map algorithm, and these masks are then uploaded to the spatial light modulator (SLM). The collimated laser light is divided into several beams by beam splitters as it passes through the SLM, and the light beams illuminate the secret images, which are converted into sparse images by discrete wavelet transform beforehand. Thus, the secret images are simultaneously encrypted into intensity vectors by ghost imaging. The distances between the SLM and secret images vary and can be used as the main keys with original POM and the logistic map algorithm coefficient in the decryption process. In the proposed method, the storage space can be significantly decreased and the security of the system can be improved. The feasibility, security and robustness of the method are further analysed through computer simulations.
Comparative performance evaluation of transform coding in image pre-processing
NASA Astrophysics Data System (ADS)
Menon, Vignesh V.; NB, Harikrishnan; Narayanan, Gayathri; CK, Niveditha
2017-07-01
We are in the midst of a communication transmute which drives the development as largely as dissemination of pioneering communication systems with ever-increasing fidelity and resolution. Distinguishable researches have been appreciative in image processing techniques crazed by a growing thirst for faster and easier encoding, storage and transmission of visual information. In this paper, the researchers intend to throw light on many techniques which could be worn at the transmitter-end in order to ease the transmission and reconstruction of the images. The researchers investigate the performance of different image transform coding schemes used in pre-processing, their comparison, and effectiveness, the necessary and sufficient conditions, properties and complexity in implementation. Whimsical by prior advancements in image processing techniques, the researchers compare various contemporary image pre-processing frameworks- Compressed Sensing, Singular Value Decomposition, Integer Wavelet Transform on performance. The paper exposes the potential of Integer Wavelet transform to be an efficient pre-processing scheme.
A complete passive blind image copy-move forensics scheme based on compound statistics features.
Peng, Fei; Nie, Yun-ying; Long, Min
2011-10-10
Since most sensor pattern noise based image copy-move forensics methods require a known reference sensor pattern noise, it generally results in non-blinded passive forensics, which significantly confines the application circumstances. In view of this, a novel passive-blind image copy-move forensics scheme is proposed in this paper. Firstly, a color image is transformed into a grayscale one, and wavelet transform based de-noising filter is used to extract the sensor pattern noise, then the variance of the pattern noise, the signal noise ratio between the de-noised image and the pattern noise, the information entropy and the average energy gradient of the original grayscale image are chosen as features, non-overlapping sliding window operations are done to the images to divide them into different sub-blocks. Finally, the tampered areas are detected by analyzing the correlation of the features between the sub-blocks and the whole image. Experimental results and analysis show that the proposed scheme is completely passive-blind, has a good detection rate, and is robust against JPEG compression, noise, rotation, scaling and blurring. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Bhave, Sampada; Lingala, Sajan Goud; Newell, John D; Nagle, Scott K; Jacob, Mathews
2016-06-01
The objective of this study was to increase the spatial and temporal resolution of dynamic 3-dimensional (3D) magnetic resonance imaging (MRI) of lung volumes and diaphragm motion. To achieve this goal, we evaluate the utility of the proposed blind compressed sensing (BCS) algorithm to recover data from highly undersampled measurements. We evaluated the performance of the BCS scheme to recover dynamic data sets from retrospectively and prospectively undersampled measurements. We also compared its performance against that of view-sharing, the nuclear norm minimization scheme, and the l1 Fourier sparsity regularization scheme. Quantitative experiments were performed on a healthy subject using a fully sampled 2D data set with uniform radial sampling, which was retrospectively undersampled with 16 radial spokes per frame to correspond to an undersampling factor of 8. The images obtained from the 4 reconstruction schemes were compared with the fully sampled data using mean square error and normalized high-frequency error metrics. The schemes were also compared using prospective 3D data acquired on a Siemens 3 T TIM TRIO MRI scanner on 8 healthy subjects during free breathing. Two expert cardiothoracic radiologists (R1 and R2) qualitatively evaluated the reconstructed 3D data sets using a 5-point scale (0-4) on the basis of spatial resolution, temporal resolution, and presence of aliasing artifacts. The BCS scheme gives better reconstructions (mean square error = 0.0232 and normalized high frequency = 0.133) than the other schemes in the 2D retrospective undersampling experiments, producing minimally distorted reconstructions up to an acceleration factor of 8 (16 radial spokes per frame). The prospective 3D experiments show that the BCS scheme provides visually improved reconstructions than the other schemes do. The BCS scheme provides improved qualitative scores over nuclear norm and l1 Fourier sparsity regularization schemes in the temporal blurring and spatial blurring categories. The qualitative scores for aliasing artifacts in the images reconstructed by nuclear norm scheme and BCS scheme are comparable.The comparisons of the tidal volume changes also show that the BCS scheme has less temporal blurring as compared with the nuclear norm minimization scheme and the l1 Fourier sparsity regularization scheme. The minute ventilation estimated by BCS for tidal breathing in supine position (4 L/min) and the measured supine inspiratory capacity (1.5 L) is in good correlation with the literature. The improved performance of BCS can be explained by its ability to efficiently adapt to the data, thus providing a richer representation of the signal. The feasibility of the BCS scheme was demonstrated for dynamic 3D free breathing MRI of lung volumes and diaphragm motion. A temporal resolution of ∼500 milliseconds, spatial resolution of 2.7 × 2.7 × 10 mm, with whole lung coverage (16 slices) was achieved using the BCS scheme.
Estimation of color filter array data from JPEG images for improved demosaicking
NASA Astrophysics Data System (ADS)
Feng, Wei; Reeves, Stanley J.
2006-02-01
On-camera demosaicking algorithms are necessarily simple and therefore do not yield the best possible images. However, off-camera demosaicking algorithms face the additional challenge that the data has been compressed and therefore corrupted by quantization noise. We propose a method to estimate the original color filter array (CFA) data from JPEG-compressed images so that more sophisticated (and better) demosaicking schemes can be applied to get higher-quality images. The JPEG image formation process, including simple demosaicking, color space transformation, chrominance channel decimation and DCT, is modeled as a series of matrix operations followed by quantization on the CFA data, which is estimated by least squares. An iterative method is used to conserve memory and speed computation. Our experiments show that the mean square error (MSE) with respect to the original CFA data is reduced significantly using our algorithm, compared to that of unprocessed JPEG and deblocked JPEG data.
Compressed sensing with cyclic-S Hadamard matrix for terahertz imaging applications
NASA Astrophysics Data System (ADS)
Ermeydan, Esra Şengün; ćankaya, Ilyas
2018-01-01
Compressed Sensing (CS) with Cyclic-S Hadamard matrix is proposed for single pixel imaging applications in this study. In single pixel imaging scheme, N = r . c samples should be taken for r×c pixel image where . denotes multiplication. CS is a popular technique claiming that the sparse signals can be reconstructed with samples under Nyquist rate. Therefore to solve the slow data acquisition problem in Terahertz (THz) single pixel imaging, CS is a good candidate. However, changing mask for each measurement is a challenging problem since there is no commercial Spatial Light Modulators (SLM) for THz band yet, therefore circular masks are suggested so that for each measurement one or two column shifting will be enough to change the mask. The CS masks are designed using cyclic-S matrices based on Hadamard transform for 9 × 7 and 15 × 17 pixel images within the framework of this study. The %50 compressed images are reconstructed using total variation based TVAL3 algorithm. Matlab simulations demonstrates that cyclic-S matrices can be used for single pixel imaging based on CS. The circular masks have the advantage to reduce the mechanical SLMs to a single sliding strip, whereas the CS helps to reduce acquisition time and energy since it allows to reconstruct the image from fewer samples.
Blind compressive sensing dynamic MRI
Lingala, Sajan Goud; Jacob, Mathews
2013-01-01
We propose a novel blind compressive sensing (BCS) frame work to recover dynamic magnetic resonance images from undersampled measurements. This scheme models the dynamic signal as a sparse linear combination of temporal basis functions, chosen from a large dictionary. In contrast to classical compressed sensing, the BCS scheme simultaneously estimates the dictionary and the sparse coefficients from the undersampled measurements. Apart from the sparsity of the coefficients, the key difference of the BCS scheme with current low rank methods is the non-orthogonal nature of the dictionary basis functions. Since the number of degrees of freedom of the BCS model is smaller than that of the low-rank methods, it provides improved reconstructions at high acceleration rates. We formulate the reconstruction as a constrained optimization problem; the objective function is the linear combination of a data consistency term and sparsity promoting ℓ1 prior of the coefficients. The Frobenius norm dictionary constraint is used to avoid scale ambiguity. We introduce a simple and efficient majorize-minimize algorithm, which decouples the original criterion into three simpler sub problems. An alternating minimization strategy is used, where we cycle through the minimization of three simpler problems. This algorithm is seen to be considerably faster than approaches that alternates between sparse coding and dictionary estimation, as well as the extension of K-SVD dictionary learning scheme. The use of the ℓ1 penalty and Frobenius norm dictionary constraint enables the attenuation of insignificant basis functions compared to the ℓ0 norm and column norm constraint assumed in most dictionary learning algorithms; this is especially important since the number of basis functions that can be reliably estimated is restricted by the available measurements. We also observe that the proposed scheme is more robust to local minima compared to K-SVD method, which relies on greedy sparse coding. Our phase transition experiments demonstrate that the BCS scheme provides much better recovery rates than classical Fourier-based CS schemes, while being only marginally worse than the dictionary aware setting. Since the overhead in additionally estimating the dictionary is low, this method can be very useful in dynamic MRI applications, where the signal is not sparse in known dictionaries. We demonstrate the utility of the BCS scheme in accelerating contrast enhanced dynamic data. We observe superior reconstruction performance with the BCS scheme in comparison to existing low rank and compressed sensing schemes. PMID:23542951
Human Motion Capture Data Tailored Transform Coding.
Junhui Hou; Lap-Pui Chau; Magnenat-Thalmann, Nadia; Ying He
2015-07-01
Human motion capture (mocap) is a widely used technique for digitalizing human movements. With growing usage, compressing mocap data has received increasing attention, since compact data size enables efficient storage and transmission. Our analysis shows that mocap data have some unique characteristics that distinguish themselves from images and videos. Therefore, directly borrowing image or video compression techniques, such as discrete cosine transform, does not work well. In this paper, we propose a novel mocap-tailored transform coding algorithm that takes advantage of these features. Our algorithm segments the input mocap sequences into clips, which are represented in 2D matrices. Then it computes a set of data-dependent orthogonal bases to transform the matrices to frequency domain, in which the transform coefficients have significantly less dependency. Finally, the compression is obtained by entropy coding of the quantized coefficients and the bases. Our method has low computational cost and can be easily extended to compress mocap databases. It also requires neither training nor complicated parameter setting. Experimental results demonstrate that the proposed scheme significantly outperforms state-of-the-art algorithms in terms of compression performance and speed.
NASA Astrophysics Data System (ADS)
Chen, Zhe; Parker, B. J.; Feng, D. D.; Fulton, R.
2004-10-01
In this paper, we compare various temporal analysis schemes applied to dynamic PET for improved quantification, image quality and temporal compression purposes. We compare an optimal sampling schedule (OSS) design, principal component analysis (PCA) applied in the image domain, and principal component analysis applied in the sinogram domain; for region-of-interest quantification, sinogram-domain PCA is combined with the Huesman algorithm to quantify from the sinograms directly without requiring reconstruction of all PCA channels. Using a simulated phantom FDG brain study and three clinical studies, we evaluate the fidelity of the compressed data for estimation of local cerebral metabolic rate of glucose by a four-compartment model. Our results show that using a noise-normalized PCA in the sinogram domain gives similar compression ratio and quantitative accuracy to OSS, but with substantially better precision. These results indicate that sinogram-domain PCA for dynamic PET can be a useful preprocessing stage for PET compression and quantification applications.
Limitations and requirements of content-based multimedia authentication systems
NASA Astrophysics Data System (ADS)
Wu, Chai W.
2001-08-01
Recently, a number of authentication schemes have been proposed for multimedia data such as images and sound data. They include both label based systems and semifragile watermarks. The main requirement for such authentication systems is that minor modifications such as lossy compression which do not alter the content of the data preserve the authenticity of the data, whereas modifications which do modify the content render the data not authentic. These schemes can be classified into two main classes depending on the model of image authentication they are based on. One of the purposes of this paper is to look at some of the advantages and disadvantages of these image authentication schemes and their relationship with fundamental limitations of the underlying model of image authentication. In particular, we study feature-based algorithms which generate an authentication tag based on some inherent features in the image such as the location of edges. The main disadvantage of most proposed feature-based algorithms is that similar images generate similar features, and therefore it is possible for a forger to generate dissimilar images that have the same features. On the other hand, the class of hash-based algorithms utilizes a cryptographic hash function or a digital signature scheme to reduce the data and generate an authentication tag. It inherits the security of digital signatures to thwart forgery attacks. The main disadvantage of hash-based algorithms is that the image needs to be modified in order to be made authenticatable. The amount of modification is on the order of the noise the image can tolerate before it is rendered inauthentic. The other purpose of this paper is to propose a multimedia authentication scheme which combines some of the best features of both classes of algorithms. The proposed scheme utilizes cryptographic hash functions and digital signature schemes and the data does not need to be modified in order to be made authenticatable. Several applications including the authentication of images on CD-ROM and handwritten documents will be discussed.
Feasibility Studies of Optical Processing of Image Bandwidth Compression Schemes.
1983-05-15
R.N. STRICKIAND AFOSR-81-O170 R.A. SCHOWENGERDT S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK Ur,;t. o4 o . AREA & WORK...is the intent of research sponsored under this Grant to direct investi- gation into the following issues: () formulation of alternative architechtural
An infrared-visible image fusion scheme based on NSCT and compressed sensing
NASA Astrophysics Data System (ADS)
Zhang, Qiong; Maldague, Xavier
2015-05-01
Image fusion, as a research hot point nowadays in the field of infrared computer vision, has been developed utilizing different varieties of methods. Traditional image fusion algorithms are inclined to bring problems, such as data storage shortage and computational complexity increase, etc. Compressed sensing (CS) uses sparse sampling without knowing the priori knowledge and greatly reconstructs the image, which reduces the cost and complexity of image processing. In this paper, an advanced compressed sensing image fusion algorithm based on non-subsampled contourlet transform (NSCT) is proposed. NSCT provides better sparsity than the wavelet transform in image representation. Throughout the NSCT decomposition, the low-frequency and high-frequency coefficients can be obtained respectively. For the fusion processing of low-frequency coefficients of infrared and visible images , the adaptive regional energy weighting rule is utilized. Thus only the high-frequency coefficients are specially measured. Here we use sparse representation and random projection to obtain the required values of high-frequency coefficients, afterwards, the coefficients of each image block can be fused via the absolute maximum selection rule and/or the regional standard deviation rule. In the reconstruction of the compressive sampling results, a gradient-based iterative algorithm and the total variation (TV) method are employed to recover the high-frequency coefficients. Eventually, the fused image is recovered by inverse NSCT. Both the visual effects and the numerical computation results after experiments indicate that the presented approach achieves much higher quality of image fusion, accelerates the calculations, enhances various targets and extracts more useful information.
Yi, Faliu; Jeoung, Yousun; Moon, Inkyu
2017-05-20
In recent years, many studies have focused on authentication of two-dimensional (2D) images using double random phase encryption techniques. However, there has been little research on three-dimensional (3D) imaging systems, such as integral imaging, for 3D image authentication. We propose a 3D image authentication scheme based on a double random phase integral imaging method. All of the 2D elemental images captured through integral imaging are encrypted with a double random phase encoding algorithm and only partial phase information is reserved. All the amplitude and other miscellaneous phase information in the encrypted elemental images is discarded. Nevertheless, we demonstrate that 3D images from integral imaging can be authenticated at different depths using a nonlinear correlation method. The proposed 3D image authentication algorithm can provide enhanced information security because the decrypted 2D elemental images from the sparse phase cannot be easily observed by the naked eye. Additionally, using sparse phase images without any amplitude information can greatly reduce data storage costs and aid in image compression and data transmission.
Adaptive image coding based on cubic-spline interpolation
NASA Astrophysics Data System (ADS)
Jiang, Jian-Xing; Hong, Shao-Hua; Lin, Tsung-Ching; Wang, Lin; Truong, Trieu-Kien
2014-09-01
It has been investigated that at low bit rates, downsampling prior to coding and upsampling after decoding can achieve better compression performance than standard coding algorithms, e.g., JPEG and H. 264/AVC. However, at high bit rates, the sampling-based schemes generate more distortion. Additionally, the maximum bit rate for the sampling-based scheme to outperform the standard algorithm is image-dependent. In this paper, a practical adaptive image coding algorithm based on the cubic-spline interpolation (CSI) is proposed. This proposed algorithm adaptively selects the image coding method from CSI-based modified JPEG and standard JPEG under a given target bit rate utilizing the so called ρ-domain analysis. The experimental results indicate that compared with the standard JPEG, the proposed algorithm can show better performance at low bit rates and maintain the same performance at high bit rates.
Perceptual Optimization of DCT Color Quantization Matrices
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Statler, Irving C. (Technical Monitor)
1994-01-01
Many image compression schemes employ a block Discrete Cosine Transform (DCT) and uniform quantization. Acceptable rate/distortion performance depends upon proper design of the quantization matrix. In previous work, we showed how to use a model of the visibility of DCT basis functions to design quantization matrices for arbitrary display resolutions and color spaces. Subsequently, we showed how to optimize greyscale quantization matrices for individual images, for optimal rate/perceptual distortion performance. Here we describe extensions of this optimization algorithm to color images.
Local intensity adaptive image coding
NASA Technical Reports Server (NTRS)
Huck, Friedrich O.
1989-01-01
The objective of preprocessing for machine vision is to extract intrinsic target properties. The most important properties ordinarily are structure and reflectance. Illumination in space, however, is a significant problem as the extreme range of light intensity, stretching from deep shadow to highly reflective surfaces in direct sunlight, impairs the effectiveness of standard approaches to machine vision. To overcome this critical constraint, an image coding scheme is being investigated which combines local intensity adaptivity, image enhancement, and data compression. It is very effective under the highly variant illumination that can exist within a single frame or field of view, and it is very robust to noise at low illuminations. Some of the theory and salient features of the coding scheme are reviewed. Its performance is characterized in a simulated space application, the research and development activities are described.
Perceptual compression of magnitude-detected synthetic aperture radar imagery
NASA Technical Reports Server (NTRS)
Gorman, John D.; Werness, Susan A.
1994-01-01
A perceptually-based approach for compressing synthetic aperture radar (SAR) imagery is presented. Key components of the approach are a multiresolution wavelet transform, a bit allocation mask based on an empirical human visual system (HVS) model, and hybrid scalar/vector quantization. Specifically, wavelet shrinkage techniques are used to segregate wavelet transform coefficients into three components: local means, edges, and texture. Each of these three components is then quantized separately according to a perceptually-based bit allocation scheme. Wavelet coefficients associated with local means and edges are quantized using high-rate scalar quantization while texture information is quantized using low-rate vector quantization. The impact of the perceptually-based multiresolution compression algorithm on visual image quality, impulse response, and texture properties is assessed for fine-resolution magnitude-detected SAR imagery; excellent image quality is found at bit rates at or above 1 bpp along with graceful performance degradation at rates below 1 bpp.
Embedded importance watermarking for image verification in radiology
NASA Astrophysics Data System (ADS)
Osborne, Domininc; Rogers, D.; Sorell, M.; Abbott, Derek
2004-03-01
Digital medical images used in radiology are quite different to everyday continuous tone images. Radiology images require that all detailed diagnostic information can be extracted, which traditionally constrains digital medical images to be of large size and stored without loss of information. In order to transmit diagnostic images over a narrowband wireless communication link for remote diagnosis, lossy compression schemes must be used. This involves discarding detailed information and compressing the data, making it more susceptible to error. The loss of image detail and incidental degradation occurring during transmission have potential legal accountability issues, especially in the case of the null diagnosis of a tumor. The work proposed here investigates techniques for verifying the voracity of medical images - in particular, detailing the use of embedded watermarking as an objective means to ensure that important parts of the medical image can be verified. We propose a result to show how embedded watermarking can be used to differentiate contextual from detailed information. The type of images that will be used include spiral hairline fractures and small tumors, which contain the essential diagnostic high spatial frequency information.
2015-04-23
12 Figure 4. Pulse- compressed baseband signals for sequence 40 from TREX13 …… 13 Figure 5. SAS image for sequence 40 from TREX13...12 meshes with data …………… 28 Figure 14. FE simulations for aluminum and steel replicas of an 100-mm UXO …… 28 Figure 15. FE meshes for two targets...PCB Pulse- compressed and baseband PC SWAT Personal Computer Shallow Water Acoustic Toolset PondEx09 Pond Experiment 2009 PondEx10 Pond Experiment
Lossless compression algorithm for multispectral imagers
NASA Astrophysics Data System (ADS)
Gladkova, Irina; Grossberg, Michael; Gottipati, Srikanth
2008-08-01
Multispectral imaging is becoming an increasingly important tool for monitoring the earth and its environment from space borne and airborne platforms. Multispectral imaging data consists of visible and IR measurements from a scene across space and spectrum. Growing data rates resulting from faster scanning and finer spatial and spectral resolution makes compression an increasingly critical tool to reduce data volume for transmission and archiving. Research for NOAA NESDIS has been directed to finding for the characteristics of satellite atmospheric Earth science Imager sensor data what level of Lossless compression ratio can be obtained as well as appropriate types of mathematics and approaches that can lead to approaching this data's entropy level. Conventional lossless do not achieve the theoretical limits for lossless compression on imager data as estimated from the Shannon entropy. In a previous paper, the authors introduce a lossless compression algorithm developed for MODIS as a proxy for future NOAA-NESDIS satellite based Earth science multispectral imagers such as GOES-R. The algorithm is based on capturing spectral correlations using spectral prediction, and spatial correlations with a linear transform encoder. In decompression, the algorithm uses a statistically computed look up table to iteratively predict each channel from a channel decompressed in the previous iteration. In this paper we present a new approach which fundamentally differs from our prior work. In this new approach, instead of having a single predictor for each pair of bands we introduce a piecewise spatially varying predictor which significantly improves the compression results. Our new algorithm also now optimizes the sequence of channels we use for prediction. Our results are evaluated by comparison with a state of the art wavelet based image compression scheme, Jpeg2000. We present results on the 14 channel subset of the MODIS imager, which serves as a proxy for the GOES-R imager. We will also show results of the algorithm for on NOAA AVHRR data and data from SEVIRI. The algorithm is designed to be adapted to the wide range of multispectral imagers and should facilitate distribution of data throughout globally. This compression research is managed by Roger Heymann, PE of OSD NOAA NESDIS Engineering, in collaboration with the NOAA NESDIS STAR Research Office through Mitch Goldberg, Tim Schmit, Walter Wolf.
Compressibility-aware media retargeting with structure preserving.
Wang, Shu-Fan; Lai, Shang-Hong
2011-03-01
A number of algorithms have been proposed for intelligent image/video retargeting with image content retained as much as possible. However, they usually suffer from some artifacts in the results, such as ridge or structure twist. In this paper, we present a structure-preserving media retargeting technique that preserves the content and image structure as best as possible. Different from the previous pixel or grid based methods, we estimate the image content saliency from the structure of the content. A block structure energy is introduced with a top-down strategy to constrain the image structure inside to deform uniformly in either x or y direction. However, the flexibilities for retargeting are quite different for different images. To cope with this problem, we propose a compressibility assessment scheme for media retargeting by combining the entropies of image gradient magnitude and orientation distributions. Thus, the resized media is produced to preserve the image content and structure as best as possible. Our experiments demonstrate that the proposed method provides resized images/videos with better preservation of content and structure than those by the previous methods.
Optical identity authentication technique based on compressive ghost imaging with QR code
NASA Astrophysics Data System (ADS)
Wenjie, Zhan; Leihong, Zhang; Xi, Zeng; Yi, Kang
2018-04-01
With the rapid development of computer technology, information security has attracted more and more attention. It is not only related to the information and property security of individuals and enterprises, but also to the security and social stability of a country. Identity authentication is the first line of defense in information security. In authentication systems, response time and security are the most important factors. An optical authentication technology based on compressive ghost imaging with QR codes is proposed in this paper. The scheme can be authenticated with a small number of samples. Therefore, the response time of the algorithm is short. At the same time, the algorithm can resist certain noise attacks, so it offers good security.
Yin, X X; Ng, B W-H; Ramamohanarao, K; Baghai-Wadji, A; Abbott, D
2012-09-01
It has been shown that, magnetic resonance images (MRIs) with sparsity representation in a transformed domain, e.g. spatial finite-differences (FD), or discrete cosine transform (DCT), can be restored from undersampled k-space via applying current compressive sampling theory. The paper presents a model-based method for the restoration of MRIs. The reduced-order model, in which a full-system-response is projected onto a subspace of lower dimensionality, has been used to accelerate image reconstruction by reducing the size of the involved linear system. In this paper, the singular value threshold (SVT) technique is applied as a denoising scheme to reduce and select the model order of the inverse Fourier transform image, and to restore multi-slice breast MRIs that have been compressively sampled in k-space. The restored MRIs with SVT for denoising show reduced sampling errors compared to the direct MRI restoration methods via spatial FD, or DCT. Compressive sampling is a technique for finding sparse solutions to underdetermined linear systems. The sparsity that is implicit in MRIs is to explore the solution to MRI reconstruction after transformation from significantly undersampled k-space. The challenge, however, is that, since some incoherent artifacts result from the random undersampling, noise-like interference is added to the image with sparse representation. These recovery algorithms in the literature are not capable of fully removing the artifacts. It is necessary to introduce a denoising procedure to improve the quality of image recovery. This paper applies a singular value threshold algorithm to reduce the model order of image basis functions, which allows further improvement of the quality of image reconstruction with removal of noise artifacts. The principle of the denoising scheme is to reconstruct the sparse MRI matrices optimally with a lower rank via selecting smaller number of dominant singular values. The singular value threshold algorithm is performed by minimizing the nuclear norm of difference between the sampled image and the recovered image. It has been illustrated that this algorithm improves the ability of previous image reconstruction algorithms to remove noise artifacts while significantly improving the quality of MRI recovery.
Fast and memory efficient text image compression with JBIG2.
Ye, Yan; Cosman, Pamela
2003-01-01
In this paper, we investigate ways to reduce encoding time, memory consumption and substitution errors for text image compression with JBIG2. We first look at page striping where the encoder splits the input image into horizontal stripes and processes one stripe at a time. We propose dynamic dictionary updating procedures for page striping to reduce the bit rate penalty it incurs. Experiments show that splitting the image into two stripes can save 30% of encoding time and 40% of physical memory with a small coding loss of about 1.5%. Using more stripes brings further savings in time and memory but the return diminishes. We also propose an adaptive way to update the dictionary only when it has become out-of-date. The adaptive updating scheme can resolve the time versus bit rate tradeoff and the memory versus bit rate tradeoff well simultaneously. We then propose three speedup techniques for pattern matching, the most time-consuming encoding activity in JBIG2. When combined together, these speedup techniques can save up to 75% of the total encoding time with at most 1.7% of bit rate penalty. Finally, we look at improving reconstructed image quality for lossy compression. We propose enhanced prescreening and feature monitored shape unifying to significantly reduce substitution errors in the reconstructed images.
An Efficient Image Compressor for Charge Coupled Devices Camera
Li, Jin; Xing, Fei; You, Zheng
2014-01-01
Recently, the discrete wavelet transforms- (DWT-) based compressor, such as JPEG2000 and CCSDS-IDC, is widely seen as the state of the art compression scheme for charge coupled devices (CCD) camera. However, CCD images project on the DWT basis to produce a large number of large amplitude high-frequency coefficients because these images have a large number of complex texture and contour information, which are disadvantage for the later coding. In this paper, we proposed a low-complexity posttransform coupled with compressing sensing (PT-CS) compression approach for remote sensing image. First, the DWT is applied to the remote sensing image. Then, a pair base posttransform is applied to the DWT coefficients. The pair base are DCT base and Hadamard base, which can be used on the high and low bit-rate, respectively. The best posttransform is selected by the l p-norm-based approach. The posttransform is considered as the sparse representation stage of CS. The posttransform coefficients are resampled by sensing measurement matrix. Experimental results on on-board CCD camera images show that the proposed approach significantly outperforms the CCSDS-IDC-based coder, and its performance is comparable to that of the JPEG2000 at low bit rate and it does not have the high excessive implementation complexity of JPEG2000. PMID:25114977
Bai, Zhiliang; Chen, Shili; Jia, Lecheng; Zeng, Zhoumo
2018-01-01
Embracing the fact that one can recover certain signals and images from far fewer measurements than traditional methods use, compressive sensing (CS) provides solutions to huge amounts of data collection in phased array-based material characterization. This article describes how a CS framework can be utilized to effectively compress ultrasonic phased array images in time and frequency domains. By projecting the image onto its Discrete Cosine transform domain, a novel scheme was implemented to verify the potentiality of CS for data reduction, as well as to explore its reconstruction accuracy. The results from CIVA simulations indicate that both time and frequency domain CS can accurately reconstruct array images using samples less than the minimum requirements of the Nyquist theorem. For experimental verification of three types of artificial flaws, although a considerable data reduction can be achieved with defects clearly preserved, it is currently impossible to break Nyquist limitation in the time domain. Fortunately, qualified recovery in the frequency domain makes it happen, meaning a real breakthrough for phased array image reconstruction. As a case study, the proposed CS procedure is applied to the inspection of an engine cylinder cavity containing different pit defects and the results show that orthogonal matching pursuit (OMP)-based CS guarantees the performance for real application. PMID:29738452
Human visual system-based color image steganography using the contourlet transform
NASA Astrophysics Data System (ADS)
Abdul, W.; Carré, P.; Gaborit, P.
2010-01-01
We present a steganographic scheme based on the contourlet transform which uses the contrast sensitivity function (CSF) to control the force of insertion of the hidden information in a perceptually uniform color space. The CIELAB color space is used as it is well suited for steganographic applications because any change in the CIELAB color space has a corresponding effect on the human visual system as is very important for steganographic schemes to be undetectable by the human visual system (HVS). The perceptual decomposition of the contourlet transform gives it a natural advantage over other decompositions as it can be molded with respect to the human perception of different frequencies in an image. The evaluation of the imperceptibility of the steganographic scheme with respect to the color perception of the HVS is done using standard methods such as the structural similarity (SSIM) and CIEDE2000. The robustness of the inserted watermark is tested against JPEG compression.
Exploiting the wavelet structure in compressed sensing MRI.
Chen, Chen; Huang, Junzhou
2014-12-01
Sparsity has been widely utilized in magnetic resonance imaging (MRI) to reduce k-space sampling. According to structured sparsity theories, fewer measurements are required for tree sparse data than the data only with standard sparsity. Intuitively, more accurate image reconstruction can be achieved with the same number of measurements by exploiting the wavelet tree structure in MRI. A novel algorithm is proposed in this article to reconstruct MR images from undersampled k-space data. In contrast to conventional compressed sensing MRI (CS-MRI) that only relies on the sparsity of MR images in wavelet or gradient domain, we exploit the wavelet tree structure to improve CS-MRI. This tree-based CS-MRI problem is decomposed into three simpler subproblems then each of the subproblems can be efficiently solved by an iterative scheme. Simulations and in vivo experiments demonstrate the significant improvement of the proposed method compared to conventional CS-MRI algorithms, and the feasibleness on MR data compared to existing tree-based imaging algorithms. Copyright © 2014 Elsevier Inc. All rights reserved.
Content-based multiple bitstream image transmission over noisy channels.
Cao, Lei; Chen, Chang Wen
2002-01-01
In this paper, we propose a novel combined source and channel coding scheme for image transmission over noisy channels. The main feature of the proposed scheme is a systematic decomposition of image sources so that unequal error protection can be applied according to not only bit error sensitivity but also visual content importance. The wavelet transform is adopted to hierarchically decompose the image. The association between the wavelet coefficients and what they represent spatially in the original image is fully exploited so that wavelet blocks are classified based on their corresponding image content. The classification produces wavelet blocks in each class with similar content and statistics, therefore enables high performance source compression using the set partitioning in hierarchical trees (SPIHT) algorithm. To combat the channel noise, an unequal error protection strategy with rate-compatible punctured convolutional/cyclic redundancy check (RCPC/CRC) codes is implemented based on the bit contribution to both peak signal-to-noise ratio (PSNR) and visual quality. At the receiving end, a postprocessing method making use of the SPIHT decoding structure and the classification map is developed to restore the degradation due to the residual error after channel decoding. Experimental results show that the proposed scheme is indeed able to provide protection both for the bits that are more sensitive to errors and for the more important visual content under a noisy transmission environment. In particular, the reconstructed images illustrate consistently better visual quality than using the single-bitstream-based schemes.
Image processing using Gallium Arsenide (GaAs) technology
NASA Technical Reports Server (NTRS)
Miller, Warner H.
1989-01-01
The need to increase the information return from space-borne imaging systems has increased in the past decade. The use of multi-spectral data has resulted in the need for finer spatial resolution and greater spectral coverage. Onboard signal processing will be necessary in order to utilize the available Tracking and Data Relay Satellite System (TDRSS) communication channel at high efficiency. A generally recognized approach to the increased efficiency of channel usage is through data compression techniques. The compression technique implemented is a differential pulse code modulation (DPCM) scheme with a non-uniform quantizer. The need to advance the state-of-the-art of onboard processing was recognized and a GaAs integrated circuit technology was chosen. An Adaptive Programmable Processor (APP) chip set was developed which is based on an 8-bit slice general processor. The reason for choosing the compression technique for the Multi-spectral Linear Array (MLA) instrument is described. Also a description is given of the GaAs integrated circuit chip set which will demonstrate that data compression can be performed onboard in real time at data rate in the order of 500 Mb/s.
Detection of Copy-Rotate-Move Forgery Using Zernike Moments
NASA Astrophysics Data System (ADS)
Ryu, Seung-Jin; Lee, Min-Jeong; Lee, Heung-Kyu
As forgeries have become popular, the importance of forgery detection is much increased. Copy-move forgery, one of the most commonly used methods, copies a part of the image and pastes it into another part of the the image. In this paper, we propose a detection method of copy-move forgery that localizes duplicated regions using Zernike moments. Since the magnitude of Zernike moments is algebraically invariant against rotation, the proposed method can detect a forged region even though it is rotated. Our scheme is also resilient to the intentional distortions such as additive white Gaussian noise, JPEG compression, and blurring. Experimental results demonstrate that the proposed scheme is appropriate to identify the forged region by copy-rotate-move forgery.
NASA Astrophysics Data System (ADS)
Choi, Sunghoon; Lee, Haenghwa; Lee, Donghoon; Choi, Seungyeon; Shin, Jungwook; Jang, Woojin; Seo, Chang-Woo; Kim, Hee-Joung
2017-03-01
A compressed-sensing (CS) technique has been rapidly applied in medical imaging field for retrieving volumetric data from highly under-sampled projections. Among many variant forms, CS technique based on a total-variation (TV) regularization strategy shows fairly reasonable results in cone-beam geometry. In this study, we implemented the TV-based CS image reconstruction strategy in our prototype chest digital tomosynthesis (CDT) R/F system. Due to the iterative nature of time consuming processes in solving a cost function, we took advantage of parallel computing using graphics processing units (GPU) by the compute unified device architecture (CUDA) programming to accelerate our algorithm. In order to compare the algorithmic performance of our proposed CS algorithm, conventional filtered back-projection (FBP) and simultaneous algebraic reconstruction technique (SART) reconstruction schemes were also studied. The results indicated that the CS produced better contrast-to-noise ratios (CNRs) in the physical phantom images (Teflon region-of-interest) by factors of 3.91 and 1.93 than FBP and SART images, respectively. The resulted human chest phantom images including lung nodules with different diameters also showed better visual appearance in the CS images. Our proposed GPU-accelerated CS reconstruction scheme could produce volumetric data up to 80 times than CPU programming. Total elapsed time for producing 50 coronal planes with 1024×1024 image matrix using 41 projection views were 216.74 seconds for proposed CS algorithms on our GPU programming, which could match the clinically feasible time ( 3 min). Consequently, our results demonstrated that the proposed CS method showed a potential of additional dose reduction in digital tomosynthesis with reasonable image quality in a fast time.
Efficient single-pixel multispectral imaging via non-mechanical spatio-spectral modulation.
Li, Ziwei; Suo, Jinli; Hu, Xuemei; Deng, Chao; Fan, Jingtao; Dai, Qionghai
2017-01-27
Combining spectral imaging with compressive sensing (CS) enables efficient data acquisition by fully utilizing the intrinsic redundancies in natural images. Current compressive multispectral imagers, which are mostly based on array sensors (e.g, CCD or CMOS), suffer from limited spectral range and relatively low photon efficiency. To address these issues, this paper reports a multispectral imaging scheme with a single-pixel detector. Inspired by the spatial resolution redundancy of current spatial light modulators (SLMs) relative to the target reconstruction, we design an all-optical spectral splitting device to spatially split the light emitted from the object into several counterparts with different spectrums. Separated spectral channels are spatially modulated simultaneously with individual codes by an SLM. This no-moving-part modulation ensures a stable and fast system, and the spatial multiplexing ensures an efficient acquisition. A proof-of-concept setup is built and validated for 8-channel multispectral imaging within 420~720 nm wavelength range on both macro and micro objects, showing a potential for efficient multispectral imager in macroscopic and biomedical applications.
Image-Based Environmental Monitoring Sensor Application Using an Embedded Wireless Sensor Network
Paek, Jeongyeup; Hicks, John; Coe, Sharon; Govindan, Ramesh
2014-01-01
This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet's built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Jacinto Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions. PMID:25171121
Image-based environmental monitoring sensor application using an embedded wireless sensor network.
Paek, Jeongyeup; Hicks, John; Coe, Sharon; Govindan, Ramesh
2014-08-28
This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet's built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Cannot Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions.
Spatial-Temporal Data Collection with Compressive Sensing in Mobile Sensor Networks
Li, Jiayin; Guo, Wenzhong; Chen, Zhonghui; Xiong, Neal
2017-01-01
Compressive sensing (CS) provides an energy-efficient paradigm for data gathering in wireless sensor networks (WSNs). However, the existing work on spatial-temporal data gathering using compressive sensing only considers either multi-hop relaying based or multiple random walks based approaches. In this paper, we exploit the mobility pattern for spatial-temporal data collection and propose a novel mobile data gathering scheme by employing the Metropolis-Hastings algorithm with delayed acceptance, an improved random walk algorithm for a mobile collector to collect data from a sensing field. The proposed scheme exploits Kronecker compressive sensing (KCS) for spatial-temporal correlation of sensory data by allowing the mobile collector to gather temporal compressive measurements from a small subset of randomly selected nodes along a random routing path. More importantly, from the theoretical perspective we prove that the equivalent sensing matrix constructed from the proposed scheme for spatial-temporal compressible signal can satisfy the property of KCS models. The simulation results demonstrate that the proposed scheme can not only significantly reduce communication cost but also improve recovery accuracy for mobile data gathering compared to the other existing schemes. In particular, we also show that the proposed scheme is robust in unreliable wireless environment under various packet losses. All this indicates that the proposed scheme can be an efficient alternative for data gathering application in WSNs. PMID:29117152
Spatial-Temporal Data Collection with Compressive Sensing in Mobile Sensor Networks.
Zheng, Haifeng; Li, Jiayin; Feng, Xinxin; Guo, Wenzhong; Chen, Zhonghui; Xiong, Neal
2017-11-08
Compressive sensing (CS) provides an energy-efficient paradigm for data gathering in wireless sensor networks (WSNs). However, the existing work on spatial-temporal data gathering using compressive sensing only considers either multi-hop relaying based or multiple random walks based approaches. In this paper, we exploit the mobility pattern for spatial-temporal data collection and propose a novel mobile data gathering scheme by employing the Metropolis-Hastings algorithm with delayed acceptance, an improved random walk algorithm for a mobile collector to collect data from a sensing field. The proposed scheme exploits Kronecker compressive sensing (KCS) for spatial-temporal correlation of sensory data by allowing the mobile collector to gather temporal compressive measurements from a small subset of randomly selected nodes along a random routing path. More importantly, from the theoretical perspective we prove that the equivalent sensing matrix constructed from the proposed scheme for spatial-temporal compressible signal can satisfy the property of KCS models. The simulation results demonstrate that the proposed scheme can not only significantly reduce communication cost but also improve recovery accuracy for mobile data gathering compared to the other existing schemes. In particular, we also show that the proposed scheme is robust in unreliable wireless environment under various packet losses. All this indicates that the proposed scheme can be an efficient alternative for data gathering application in WSNs .
Sub-component modeling for face image reconstruction in video communications
NASA Astrophysics Data System (ADS)
Shiell, Derek J.; Xiao, Jing; Katsaggelos, Aggelos K.
2008-08-01
Emerging communications trends point to streaming video as a new form of content delivery. These systems are implemented over wired systems, such as cable or ethernet, and wireless networks, cell phones, and portable game systems. These communications systems require sophisticated methods of compression and error-resilience encoding to enable communications across band-limited and noisy delivery channels. Additionally, the transmitted video data must be of high enough quality to ensure a satisfactory end-user experience. Traditionally, video compression makes use of temporal and spatial coherence to reduce the information required to represent an image. In many communications systems, the communications channel is characterized by a probabilistic model which describes the capacity or fidelity of the channel. The implication is that information is lost or distorted in the channel, and requires concealment on the receiving end. We demonstrate a generative model based transmission scheme to compress human face images in video, which has the advantages of a potentially higher compression ratio, while maintaining robustness to errors and data corruption. This is accomplished by training an offline face model and using the model to reconstruct face images on the receiving end. We propose a sub-component AAM modeling the appearance of sub-facial components individually, and show face reconstruction results under different types of video degradation using a weighted and non-weighted version of the sub-component AAM.
NASA Astrophysics Data System (ADS)
Kusyk, Janusz; Eskicioglu, Ahmet M.
2005-10-01
Digital watermarking is considered to be a major technology for the protection of multimedia data. Some of the important applications are broadcast monitoring, copyright protection, and access control. In this paper, we present a semi-blind watermarking scheme for embedding a logo in color images using the DFT domain. After computing the DFT of the luminance layer of the cover image, the magnitudes of DFT coefficients are compared, and modified. A given watermark is embedded in three frequency bands: Low, middle, and high. Our experiments show that the watermarks extracted from the lower frequencies have the best visual quality for low pass filtering, adding Gaussian noise, JPEG compression, resizing, rotation, and scaling, and the watermarks extracted from the higher frequencies have the best visual quality for cropping, intensity adjustment, histogram equalization, and gamma correction. Extractions from the fragmented and translated image are identical to extractions from the unattacked watermarked image. The collusion and rewatermarking attacks do not provide the hacker with useful tools.
Novel transform for image description and compression with implementation by neural architectures
NASA Astrophysics Data System (ADS)
Ben-Arie, Jezekiel; Rao, Raghunath K.
1991-10-01
A general method for signal representation using nonorthogonal basis functions that are composed of Gaussians are described. The Gaussians can be combined into groups with predetermined configuration that can approximate any desired basis function. The same configuration at different scales forms a set of self-similar wavelets. The general scheme is demonstrated by representing a natural signal employing an arbitrary basis function. The basic methodology is demonstrated by two novel schemes for efficient representation of 1-D and 2- D signals using Gaussian basis functions (BFs). Special methods are required here since the Gaussian functions are nonorthogonal. The first method employs a paradigm of maximum energy reduction interlaced with the A* heuristic search. The second method uses an adaptive lattice system to find the minimum-squared error of the BFs onto the signal, and a lateral-vertical suppression network to select the most efficient representation in terms of data compression.
NASA Astrophysics Data System (ADS)
Yang, Shuyu; Mitra, Sunanda
2002-05-01
Due to the huge volumes of radiographic images to be managed in hospitals, efficient compression techniques yielding no perceptual loss in the reconstructed images are becoming a requirement in the storage and management of such datasets. A wavelet-based multi-scale vector quantization scheme that generates a global codebook for efficient storage and transmission of medical images is presented in this paper. The results obtained show that even at low bit rates one is able to obtain reconstructed images with perceptual quality higher than that of the state-of-the-art scalar quantization method, the set partitioning in hierarchical trees.
Al-Busaidi, Asiya M; Khriji, Lazhar; Touati, Farid; Rasid, Mohd Fadlee; Mnaouer, Adel Ben
2017-09-12
One of the major issues in time-critical medical applications using wireless technology is the size of the payload packet, which is generally designed to be very small to improve the transmission process. Using small packets to transmit continuous ECG data is still costly. Thus, data compression is commonly used to reduce the huge amount of ECG data transmitted through telecardiology devices. In this paper, a new ECG compression scheme is introduced to ensure that the compressed ECG segments fit into the available limited payload packets, while maintaining a fixed CR to preserve the diagnostic information. The scheme automatically divides the ECG block into segments, while maintaining other compression parameters fixed. This scheme adopts discrete wavelet transform (DWT) method to decompose the ECG data, bit-field preserving (BFP) method to preserve the quality of the DWT coefficients, and a modified running-length encoding (RLE) scheme to encode the coefficients. The proposed dynamic compression scheme showed promising results with a percentage packet reduction (PR) of about 85.39% at low percentage root-mean square difference (PRD) values, less than 1%. ECG records from MIT-BIH Arrhythmia Database were used to test the proposed method. The simulation results showed promising performance that satisfies the needs of portable telecardiology systems, like the limited payload size and low power consumption.
Image-adaptive and robust digital wavelet-domain watermarking for images
NASA Astrophysics Data System (ADS)
Zhao, Yi; Zhang, Liping
2018-03-01
We propose a new frequency domain wavelet based watermarking technique. The key idea of our scheme is twofold: multi-tier solution representation of image and odd-even quantization embedding/extracting watermark. Because many complementary watermarks need to be hidden, the watermark image designed is image-adaptive. The meaningful and complementary watermark images was embedded into the original image (host image) by odd-even quantization modifying coefficients, which was selected from the detail wavelet coefficients of the original image, if their magnitudes are larger than their corresponding Just Noticeable Difference thresholds. The tests show good robustness against best-known attacks such as noise addition, image compression, median filtering, clipping as well as geometric transforms. Further research may improve the performance by refining JND thresholds.
An efficient system for reliably transmitting image and video data over low bit rate noisy channels
NASA Technical Reports Server (NTRS)
Costello, Daniel J., Jr.; Huang, Y. F.; Stevenson, Robert L.
1994-01-01
This research project is intended to develop an efficient system for reliably transmitting image and video data over low bit rate noisy channels. The basic ideas behind the proposed approach are the following: employ statistical-based image modeling to facilitate pre- and post-processing and error detection, use spare redundancy that the source compression did not remove to add robustness, and implement coded modulation to improve bandwidth efficiency and noise rejection. Over the last six months, progress has been made on various aspects of the project. Through our studies of the integrated system, a list-based iterative Trellis decoder has been developed. The decoder accepts feedback from a post-processor which can detect channel errors in the reconstructed image. The error detection is based on the Huber Markov random field image model for the compressed image. The compression scheme used here is that of JPEG (Joint Photographic Experts Group). Experiments were performed and the results are quite encouraging. The principal ideas here are extendable to other compression techniques. In addition, research was also performed on unequal error protection channel coding, subband vector quantization as a means of source coding, and post processing for reducing coding artifacts. Our studies on unequal error protection (UEP) coding for image transmission focused on examining the properties of the UEP capabilities of convolutional codes. The investigation of subband vector quantization employed a wavelet transform with special emphasis on exploiting interband redundancy. The outcome of this investigation included the development of three algorithms for subband vector quantization. The reduction of transform coding artifacts was studied with the aid of a non-Gaussian Markov random field model. This results in improved image decompression. These studies are summarized and the technical papers included in the appendices.
Visual content highlighting via automatic extraction of embedded captions on MPEG compressed video
NASA Astrophysics Data System (ADS)
Yeo, Boon-Lock; Liu, Bede
1996-03-01
Embedded captions in TV programs such as news broadcasts, documentaries and coverage of sports events provide important information on the underlying events. In digital video libraries, such captions represent a highly condensed form of key information on the contents of the video. In this paper we propose a scheme to automatically detect the presence of captions embedded in video frames. The proposed method operates on reduced image sequences which are efficiently reconstructed from compressed MPEG video and thus does not require full frame decompression. The detection, extraction and analysis of embedded captions help to capture the highlights of visual contents in video documents for better organization of video, to present succinctly the important messages embedded in the images, and to facilitate browsing, searching and retrieval of relevant clips.
A Hybrid Data Compression Scheme for Power Reduction in Wireless Sensors for IoT.
Deepu, Chacko John; Heng, Chun-Huat; Lian, Yong
2017-04-01
This paper presents a novel data compression and transmission scheme for power reduction in Internet-of-Things (IoT) enabled wireless sensors. In the proposed scheme, data is compressed with both lossy and lossless techniques, so as to enable hybrid transmission mode, support adaptive data rate selection and save power in wireless transmission. Applying the method to electrocardiogram (ECG), the data is first compressed using a lossy compression technique with a high compression ratio (CR). The residual error between the original data and the decompressed lossy data is preserved using entropy coding, enabling a lossless restoration of the original data when required. Average CR of 2.1 × and 7.8 × were achieved for lossless and lossy compression respectively with MIT/BIH database. The power reduction is demonstrated using a Bluetooth transceiver and is found to be reduced to 18% for lossy and 53% for lossless transmission respectively. Options for hybrid transmission mode, adaptive rate selection and system level power reduction make the proposed scheme attractive for IoT wireless sensors in healthcare applications.
Realisation and robustness evaluation of a blind spatial domain watermarking technique
NASA Astrophysics Data System (ADS)
Parah, Shabir A.; Sheikh, Javaid A.; Assad, Umer I.; Bhat, Ghulam M.
2017-04-01
A blind digital image watermarking scheme based on spatial domain is presented and investigated in this paper. The watermark has been embedded in intermediate significant bit planes besides the least significant bit plane at the address locations determined by pseudorandom address vector (PAV). The watermark embedding using PAV makes it difficult for an adversary to locate the watermark and hence adds to security of the system. The scheme has been evaluated to ascertain the spatial locations that are robust to various image processing and geometric attacks JPEG compression, additive white Gaussian noise, salt and pepper noise, filtering and rotation. The experimental results obtained, reveal an interesting fact, that, for all the above mentioned attacks, other than rotation, higher the bit plane in which watermark is embedded more robust the system. Further, the perceptual quality of the watermarked images obtained in the proposed system has been compared with some state-of-art watermarking techniques. The proposed technique outperforms the techniques under comparison, even if compared with the worst case peak signal-to-noise ratio obtained in our scheme.
A novel multiple description scalable coding scheme for mobile wireless video transmission
NASA Astrophysics Data System (ADS)
Zheng, Haifeng; Yu, Lun; Chen, Chang Wen
2005-03-01
We proposed in this paper a novel multiple description scalable coding (MDSC) scheme based on in-band motion compensation temporal filtering (IBMCTF) technique in order to achieve high video coding performance and robust video transmission. The input video sequence is first split into equal-sized groups of frames (GOFs). Within a GOF, each frame is hierarchically decomposed by discrete wavelet transform. Since there is a direct relationship between wavelet coefficients and what they represent in the image content after wavelet decomposition, we are able to reorganize the spatial orientation trees to generate multiple bit-streams and employed SPIHT algorithm to achieve high coding efficiency. We have shown that multiple bit-stream transmission is very effective in combating error propagation in both Internet video streaming and mobile wireless video. Furthermore, we adopt the IBMCTF scheme to remove the redundancy for inter-frames along the temporal direction using motion compensated temporal filtering, thus high coding performance and flexible scalability can be provided in this scheme. In order to make compressed video resilient to channel error and to guarantee robust video transmission over mobile wireless channels, we add redundancy to each bit-stream and apply error concealment strategy for lost motion vectors. Unlike traditional multiple description schemes, the integration of these techniques enable us to generate more than two bit-streams that may be more appropriate for multiple antenna transmission of compressed video. Simulate results on standard video sequences have shown that the proposed scheme provides flexible tradeoff between coding efficiency and error resilience.
Multiresolution With Super-Compact Wavelets
NASA Technical Reports Server (NTRS)
Lee, Dohyung
2000-01-01
The solution data computed from large scale simulations are sometimes too big for main memory, for local disks, and possibly even for a remote storage disk, creating tremendous processing time as well as technical difficulties in analyzing the data. The excessive storage demands a corresponding huge penalty in I/O time, rendering time and transmission time between different computer systems. In this paper, a multiresolution scheme is proposed to compress field simulation or experimental data without much loss of important information in the representation. Originally, the wavelet based multiresolution scheme was introduced in image processing, for the purposes of data compression and feature extraction. Unlike photographic image data which has rather simple settings, computational field simulation data needs more careful treatment in applying the multiresolution technique. While the image data sits on a regular spaced grid, the simulation data usually resides on a structured curvilinear grid or unstructured grid. In addition to the irregularity in grid spacing, the other difficulty is that the solutions consist of vectors instead of scalar values. The data characteristics demand more restrictive conditions. In general, the photographic images have very little inherent smoothness with discontinuities almost everywhere. On the other hand, the numerical solutions have smoothness almost everywhere and discontinuities in local areas (shock, vortices, and shear layers). The wavelet bases should be amenable to the solution of the problem at hand and applicable to constraints such as numerical accuracy and boundary conditions. In choosing a suitable wavelet basis for simulation data among a variety of wavelet families, the supercompact wavelets designed by Beam and Warming provide one of the most effective multiresolution schemes. Supercompact multi-wavelets retain the compactness of Haar wavelets, are piecewise polynomial and orthogonal, and can have arbitrary order of approximation. The advantages of the multiresolution algorithm are that no special treatment is required at the boundaries of the interval, and that the application to functions which are only piecewise continuous (internal boundaries) can be efficiently implemented. In this presentation, Beam's supercompact wavelets are generalized to higher dimensions using multidimensional scaling and wavelet functions rather than alternating the directions as in the 1D version. As a demonstration of actual 3D data compression, supercompact wavelet transforms are applied to a 3D data set for wing tip vortex flow solutions (2.5 million grid points). It is shown that high data compression ratio can be achieved (around 50:1 ratio) in both vector and scalar data set.
ECG compression using non-recursive wavelet transform with quality control
NASA Astrophysics Data System (ADS)
Liu, Je-Hung; Hung, King-Chu; Wu, Tsung-Ching
2016-09-01
While wavelet-based electrocardiogram (ECG) data compression using scalar quantisation (SQ) yields excellent compression performance, a wavelet's SQ scheme, however, must select a set of multilevel quantisers for each quantisation process. As a result of the properties of multiple-to-one mapping, however, this scheme is not conducive for reconstruction error control. In order to address this problem, this paper presents a single-variable control SQ scheme able to guarantee the reconstruction quality of wavelet-based ECG data compression. Based on the reversible round-off non-recursive discrete periodised wavelet transform (RRO-NRDPWT), the SQ scheme is derived with a three-stage design process that first uses genetic algorithm (GA) for high compression ratio (CR), followed by a quadratic curve fitting for linear distortion control, and the third uses a fuzzy decision-making for minimising data dependency effect and selecting the optimal SQ. The two databases, Physikalisch-Technische Bundesanstalt (PTB) and Massachusetts Institute of Technology (MIT) arrhythmia, are used to evaluate quality control performance. Experimental results show that the design method guarantees a high compression performance SQ scheme with statistically linear distortion. This property can be independent of training data and can facilitate rapid error control.
Yu, Zhicong; Leng, Shuai; Li, Zhoubo; McCollough, Cynthia H.
2016-01-01
Photon-counting computed tomography (PCCT) is an emerging imaging technique that enables multi-energy imaging with only a single scan acquisition. To enable multi-energy imaging, the detected photons corresponding to the full x-ray spectrum are divided into several subgroups of bin data that correspond to narrower energy windows. Consequently, noise in each energy bin increases compared to the full-spectrum data. This work proposes an iterative reconstruction algorithm for noise suppression in the narrower energy bins used in PCCT imaging. The algorithm is based on the framework of prior image constrained compressed sensing (PICCS) and is called spectral PICCS; it uses the full-spectrum image reconstructed using conventional filtered back-projection as the prior image. The spectral PICCS algorithm is implemented using a constrained optimization scheme with adaptive iterative step sizes such that only two tuning parameters are required in most cases. The algorithm was first evaluated using computer simulations, and then validated by both physical phantoms and in-vivo swine studies using a research PCCT system. Results from both computer-simulation and experimental studies showed substantial image noise reduction in narrow energy bins (43~73%) without sacrificing CT number accuracy or spatial resolution. PMID:27551878
NASA Astrophysics Data System (ADS)
Yu, Zhicong; Leng, Shuai; Li, Zhoubo; McCollough, Cynthia H.
2016-09-01
Photon-counting computed tomography (PCCT) is an emerging imaging technique that enables multi-energy imaging with only a single scan acquisition. To enable multi-energy imaging, the detected photons corresponding to the full x-ray spectrum are divided into several subgroups of bin data that correspond to narrower energy windows. Consequently, noise in each energy bin increases compared to the full-spectrum data. This work proposes an iterative reconstruction algorithm for noise suppression in the narrower energy bins used in PCCT imaging. The algorithm is based on the framework of prior image constrained compressed sensing (PICCS) and is called spectral PICCS; it uses the full-spectrum image reconstructed using conventional filtered back-projection as the prior image. The spectral PICCS algorithm is implemented using a constrained optimization scheme with adaptive iterative step sizes such that only two tuning parameters are required in most cases. The algorithm was first evaluated using computer simulations, and then validated by both physical phantoms and in vivo swine studies using a research PCCT system. Results from both computer-simulation and experimental studies showed substantial image noise reduction in narrow energy bins (43-73%) without sacrificing CT number accuracy or spatial resolution.
Feng, Li; Axel, Leon; Chandarana, Hersh; Block, Kai Tobias; Sodickson, Daniel K; Otazo, Ricardo
2016-02-01
To develop a novel framework for free-breathing MRI called XD-GRASP, which sorts dynamic data into extra motion-state dimensions using the self-navigation properties of radial imaging and reconstructs the multidimensional dataset using compressed sensing. Radial k-space data are continuously acquired using the golden-angle sampling scheme and sorted into multiple motion-states based on respiratory and/or cardiac motion signals derived directly from the data. The resulting undersampled multidimensional dataset is reconstructed using a compressed sensing approach that exploits sparsity along the new dynamic dimensions. The performance of XD-GRASP is demonstrated for free-breathing three-dimensional (3D) abdominal imaging, two-dimensional (2D) cardiac cine imaging and 3D dynamic contrast-enhanced (DCE) MRI of the liver, comparing against reconstructions without motion sorting in both healthy volunteers and patients. XD-GRASP separates respiratory motion from cardiac motion in cardiac imaging, and respiratory motion from contrast enhancement in liver DCE-MRI, which improves image quality and reduces motion-blurring artifacts. XD-GRASP represents a new use of sparsity for motion compensation and a novel way to handle motions in the context of a continuous acquisition paradigm. Instead of removing or correcting motion, extra motion-state dimensions are reconstructed, which improves image quality and also offers new physiological information of potential clinical value. © 2015 Wiley Periodicals, Inc.
Feng, Li; Axel, Leon; Chandarana, Hersh; Block, Kai Tobias; Sodickson, Daniel K.; Otazo, Ricardo
2015-01-01
Purpose To develop a novel framework for free-breathing MRI called XD-GRASP, which sorts dynamic data into extra motion-state dimensions using the self-navigation properties of radial imaging and reconstructs the multidimensional dataset using compressed sensing. Methods Radial k-space data are continuously acquired using the golden-angle sampling scheme and sorted into multiple motion-states based on respiratory and/or cardiac motion signals derived directly from the data. The resulting under-sampled multidimensional dataset is reconstructed using a compressed sensing approach that exploits sparsity along the new dynamic dimensions. The performance of XD-GRASP is demonstrated for free-breathing three-dimensional (3D) abdominal imaging, two-dimensional (2D) cardiac cine imaging and 3D dynamic contrast-enhanced (DCE) MRI of the liver, comparing against reconstructions without motion sorting in both healthy volunteers and patients. Results XD-GRASP separates respiratory motion from cardiac motion in cardiac imaging, and respiratory motion from contrast enhancement in liver DCE-MRI, which improves image quality and reduces motion-blurring artifacts. Conclusion XD-GRASP represents a new use of sparsity for motion compensation and a novel way to handle motions in the context of a continuous acquisition paradigm. Instead of removing or correcting motion, extra motion-state dimensions are reconstructed, which improves image quality and also offers new physiological information of potential clinical value. PMID:25809847
A test data compression scheme based on irrational numbers stored coding.
Wu, Hai-feng; Cheng, Yu-sheng; Zhan, Wen-fa; Cheng, Yi-fei; Wu, Qiong; Zhu, Shi-juan
2014-01-01
Test question has already become an important factor to restrict the development of integrated circuit industry. A new test data compression scheme, namely irrational numbers stored (INS), is presented. To achieve the goal of compress test data efficiently, test data is converted into floating-point numbers, stored in the form of irrational numbers. The algorithm of converting floating-point number to irrational number precisely is given. Experimental results for some ISCAS 89 benchmarks show that the compression effect of proposed scheme is better than the coding methods such as FDR, AARLC, INDC, FAVLC, and VRL.
A video coding scheme based on joint spatiotemporal and adaptive prediction.
Jiang, Wenfei; Latecki, Longin Jan; Liu, Wenyu; Liang, Hui; Gorman, Ken
2009-05-01
We propose a video coding scheme that departs from traditional Motion Estimation/DCT frameworks and instead uses Karhunen-Loeve Transform (KLT)/Joint Spatiotemporal Prediction framework. In particular, a novel approach that performs joint spatial and temporal prediction simultaneously is introduced. It bypasses the complex H.26x interframe techniques and it is less computationally intensive. Because of the advantage of the effective joint prediction and the image-dependent color space transformation (KLT), the proposed approach is demonstrated experimentally to consistently lead to improved video quality, and in many cases to better compression rates and improved computational speed.
Reconstruction of magnetic resonance imaging by three-dimensional dual-dictionary learning.
Song, Ying; Zhu, Zhen; Lu, Yang; Liu, Qiegen; Zhao, Jun
2014-03-01
To improve the magnetic resonance imaging (MRI) data acquisition speed while maintaining the reconstruction quality, a novel method is proposed for multislice MRI reconstruction from undersampled k-space data based on compressed-sensing theory using dictionary learning. There are two aspects to improve the reconstruction quality. One is that spatial correlation among slices is used by extending the atoms in dictionary learning from patches to blocks. The other is that the dictionary-learning scheme is used at two resolution levels; i.e., a low-resolution dictionary is used for sparse coding and a high-resolution dictionary is used for image updating. Numerical experiments are carried out on in vivo 3D MR images of brains and abdomens with a variety of undersampling schemes and ratios. The proposed method (dual-DLMRI) achieves better reconstruction quality than conventional reconstruction methods, with the peak signal-to-noise ratio being 7 dB higher. The advantages of the dual dictionaries are obvious compared with the single dictionary. Parameter variations ranging from 50% to 200% only bias the image quality within 15% in terms of the peak signal-to-noise ratio. Dual-DLMRI effectively uses the a priori information in the dual-dictionary scheme and provides dramatically improved reconstruction quality. Copyright © 2013 Wiley Periodicals, Inc.
Low-Speed Fingerprint Image Capture System User`s Guide, June 1, 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitus, B.R.; Goddard, J.S.; Jatko, W.B.
1993-06-01
The Low-Speed Fingerprint Image Capture System (LS-FICS) uses a Sun workstation controlling a Lenzar ElectroOptics Opacity 1000 imaging system to digitize fingerprint card images to support the Federal Bureau of Investigation`s (FBI`s) Automated Fingerprint Identification System (AFIS) program. The system also supports the operations performed by the Oak Ridge National Laboratory- (ORNL-) developed Image Transmission Network (ITN) prototype card scanning system. The input to the system is a single FBI fingerprint card of the agreed-upon standard format and a user-specified identification number. The output is a file formatted to be compatible with the National Institute of Standards and Technology (NIST)more » draft standard for fingerprint data exchange dated June 10, 1992. These NIST compatible files contain the required print and text images. The LS-FICS is designed to provide the FBI with the capability of scanning fingerprint cards into a digital format. The FBI will replicate the system to generate a data base of test images. The Host Workstation contains the image data paths and the compression algorithm. A local area network interface, disk storage, and tape drive are used for the image storage and retrieval, and the Lenzar Opacity 1000 scanner is used to acquire the image. The scanner is capable of resolving 500 pixels/in. in both x and y directions. The print images are maintained in full 8-bit gray scale and compressed with an FBI-approved wavelet-based compression algorithm. The text fields are downsampled to 250 pixels/in. and 2-bit gray scale. The text images are then compressed using a lossless Huffman coding scheme. The text fields retrieved from the output files are easily interpreted when displayed on the screen. Detailed procedures are provided for system calibration and operation. Software tools are provided to verify proper system operation.« less
Improved Compressive Sensing of Natural Scenes Using Localized Random Sampling
Barranca, Victor J.; Kovačič, Gregor; Zhou, Douglas; Cai, David
2016-01-01
Compressive sensing (CS) theory demonstrates that by using uniformly-random sampling, rather than uniformly-spaced sampling, higher quality image reconstructions are often achievable. Considering that the structure of sampling protocols has such a profound impact on the quality of image reconstructions, we formulate a new sampling scheme motivated by physiological receptive field structure, localized random sampling, which yields significantly improved CS image reconstructions. For each set of localized image measurements, our sampling method first randomly selects an image pixel and then measures its nearby pixels with probability depending on their distance from the initially selected pixel. We compare the uniformly-random and localized random sampling methods over a large space of sampling parameters, and show that, for the optimal parameter choices, higher quality image reconstructions can be consistently obtained by using localized random sampling. In addition, we argue that the localized random CS optimal parameter choice is stable with respect to diverse natural images, and scales with the number of samples used for reconstruction. We expect that the localized random sampling protocol helps to explain the evolutionarily advantageous nature of receptive field structure in visual systems and suggests several future research areas in CS theory and its application to brain imaging. PMID:27555464
NASA Astrophysics Data System (ADS)
Wason, H.; Herrmann, F. J.; Kumar, R.
2016-12-01
Current efforts towards dense shot (or receiver) sampling and full azimuthal coverage to produce high resolution images have led to the deployment of multiple source vessels (or streamers) across marine survey areas. Densely sampled marine seismic data acquisition, however, is expensive, and hence necessitates the adoption of sampling schemes that save acquisition costs and time. Compressed sensing is a sampling paradigm that aims to reconstruct a signal--that is sparse or compressible in some transform domain--from relatively fewer measurements than required by the Nyquist sampling criteria. Leveraging ideas from the field of compressed sensing, we show how marine seismic acquisition can be setup as a compressed sensing problem. A step ahead from multi-source seismic acquisition is simultaneous source acquisition--an emerging technology that is stimulating both geophysical research and commercial efforts--where multiple source arrays/vessels fire shots simultaneously resulting in better coverage in marine surveys. Following the design principles of compressed sensing, we propose a pragmatic simultaneous time-jittered time-compressed marine acquisition scheme where single or multiple source vessels sail across an ocean-bottom array firing airguns at jittered times and source locations, resulting in better spatial sampling and speedup acquisition. Our acquisition is low cost since our measurements are subsampled. Simultaneous source acquisition generates data with overlapping shot records, which need to be separated for further processing. We can significantly impact the reconstruction quality of conventional seismic data from jittered data and demonstrate successful recovery by sparsity promotion. In contrast to random (sub)sampling, acquisition via jittered (sub)sampling helps in controlling the maximum gap size, which is a practical requirement of wavefield reconstruction with localized sparsifying transforms. We illustrate our results with simulations of simultaneous time-jittered marine acquisition for 2D and 3D ocean-bottom cable survey.
NASA Astrophysics Data System (ADS)
Nguyen, Thu-Mai; Song, Shaozhen; Arnal, Bastien; Wong, Emily Y.; Huang, Zhihong; Wang, Ruikang K.; O'Donnell, Matthew
2014-01-01
Assessing the biomechanical properties of soft tissue provides clinically valuable information to supplement conventional structural imaging. In the previous studies, we introduced a dynamic elastography technique based on phase-sensitive optical coherence tomography (PhS-OCT) to characterize submillimetric structures such as skin layers or ocular tissues. Here, we propose to implement a pulse compression technique for shear wave elastography. We performed shear wave pulse compression in tissue-mimicking phantoms. Using a mechanical actuator to generate broadband frequency-modulated vibrations (1 to 5 kHz), induced displacements were detected at an equivalent frame rate of 47 kHz using a PhS-OCT. The recorded signal was digitally compressed to a broadband pulse. Stiffness maps were then reconstructed from spatially localized estimates of the local shear wave speed. We demonstrate that a simple pulse compression scheme can increase shear wave detection signal-to-noise ratio (>12 dB gain) and reduce artifacts in reconstructing stiffness maps of heterogeneous media.
NASA Astrophysics Data System (ADS)
Park, S. Y.; Kim, G. A.; Cho, H. S.; Park, C. K.; Lee, D. Y.; Lim, H. W.; Lee, H. W.; Kim, K. S.; Kang, S. Y.; Park, J. E.; Kim, W. S.; Jeon, D. H.; Je, U. K.; Woo, T. H.; Oh, J. E.
2018-02-01
In recent digital tomosynthesis (DTS), iterative reconstruction methods are often used owing to the potential to provide multiplanar images of superior image quality to conventional filtered-backprojection (FBP)-based methods. However, they require enormous computational cost in the iterative process, which has still been an obstacle to put them to practical use. In this work, we propose a new DTS reconstruction method incorporated with a dual-resolution voxelization scheme in attempt to overcome these difficulties, in which the voxels outside a small region-of-interest (ROI) containing target diagnosis are binned by 2 × 2 × 2 while the voxels inside the ROI remain unbinned. We considered a compressed-sensing (CS)-based iterative algorithm with a dual-constraint strategy for more accurate DTS reconstruction. We implemented the proposed algorithm and performed a systematic simulation and experiment to demonstrate its viability. Our results indicate that the proposed method seems to be effective for reducing computational cost considerably in iterative DTS reconstruction, keeping the image quality inside the ROI not much degraded. A binning size of 2 × 2 × 2 required only about 31.9% computational memory and about 2.6% reconstruction time, compared to those for no binning case. The reconstruction quality was evaluated in terms of the root-mean-square error (RMSE), the contrast-to-noise ratio (CNR), and the universal-quality index (UQI).
NASA Astrophysics Data System (ADS)
Ma, Lihong; Jin, Weimin
2018-01-01
A novel symmetric and asymmetric hybrid optical cryptosystem is proposed based on compressive sensing combined with computer generated holography. In this method there are six encryption keys, among which two decryption phase masks are different from the two random phase masks used in the encryption process. Therefore, the encryption system has the feature of both symmetric and asymmetric cryptography. On the other hand, because computer generated holography can flexibly digitalize the encrypted information and compressive sensing can significantly reduce data volume, what is more, the final encryption image is real function by phase truncation, the method favors the storage and transmission of the encryption data. The experimental results demonstrate that the proposed encryption scheme boosts the security and has high robustness against noise and occlusion attacks.
Compressed-Sensing Multi-Spectral Imaging of the Post-Operative Spine
Worters, Pauline W.; Sung, Kyunghyun; Stevens, Kathryn J.; Koch, Kevin M.; Hargreaves, Brian A.
2012-01-01
Purpose To apply compressed sensing (CS) to in vivo multi-spectral imaging (MSI), which uses additional encoding to avoid MRI artifacts near metal, and demonstrate the feasibility of CS-MSI in post-operative spinal imaging. Materials and Methods Thirteen subjects referred for spinal MRI were examined using T2-weighted MSI. A CS undersampling factor was first determined using a structural similarity index as a metric for image quality. Next, these fully sampled datasets were retrospectively undersampled using a variable-density random sampling scheme and reconstructed using an iterative soft-thresholding method. The fully- and under-sampled images were compared by using a 5-point scale. Prospectively undersampled CS-MSI data were also acquired from two subjects to ensure that the prospective random sampling did not affect the image quality. Results A two-fold outer reduction factor was deemed feasible for the spinal datasets. CS-MSI images were shown to be equivalent or better than the original MSI images in all categories: nerve visualization: p = 0.00018; image artifact: p = 0.00031; image quality: p = 0.0030. No alteration of image quality and T2 contrast was observed from prospectively undersampled CS-MSI. Conclusion This study shows that the inherently sparse nature of MSI data allows modest undersampling followed by CS reconstruction with no loss of diagnostic quality. PMID:22791572
Multiple-image hiding using super resolution reconstruction in high-frequency domains
NASA Astrophysics Data System (ADS)
Li, Xiao-Wei; Zhao, Wu-Xiang; Wang, Jun; Wang, Qiong-Hua
2017-12-01
In this paper, a robust multiple-image hiding method using the computer-generated integral imaging and the modified super-resolution reconstruction algorithm is proposed. In our work, the host image is first transformed into frequency domains by cellular automata (CA), to assure the quality of the stego-image, the secret images are embedded into the CA high-frequency domains. The proposed method has the following advantages: (1) robustness to geometric attacks because of the memory-distributed property of elemental images, (2) increasing quality of the reconstructed secret images as the scheme utilizes the modified super-resolution reconstruction algorithm. The simulation results show that the proposed multiple-image hiding method outperforms other similar hiding methods and is robust to some geometric attacks, e.g., Gaussian noise and JPEG compression attacks.
Accelerated high-resolution photoacoustic tomography via compressed sensing
NASA Astrophysics Data System (ADS)
Arridge, Simon; Beard, Paul; Betcke, Marta; Cox, Ben; Huynh, Nam; Lucka, Felix; Ogunlade, Olumide; Zhang, Edward
2016-12-01
Current 3D photoacoustic tomography (PAT) systems offer either high image quality or high frame rates but are not able to deliver high spatial and temporal resolution simultaneously, which limits their ability to image dynamic processes in living tissue (4D PAT). A particular example is the planar Fabry-Pérot (FP) photoacoustic scanner, which yields high-resolution 3D images but takes several minutes to sequentially map the incident photoacoustic field on the 2D sensor plane, point-by-point. However, as the spatio-temporal complexity of many absorbing tissue structures is rather low, the data recorded in such a conventional, regularly sampled fashion is often highly redundant. We demonstrate that combining model-based, variational image reconstruction methods using spatial sparsity constraints with the development of novel PAT acquisition systems capable of sub-sampling the acoustic wave field can dramatically increase the acquisition speed while maintaining a good spatial resolution: first, we describe and model two general spatial sub-sampling schemes. Then, we discuss how to implement them using the FP interferometer and demonstrate the potential of these novel compressed sensing PAT devices through simulated data from a realistic numerical phantom and through measured data from a dynamic experimental phantom as well as from in vivo experiments. Our results show that images with good spatial resolution and contrast can be obtained from highly sub-sampled PAT data if variational image reconstruction techniques that describe the tissues structures with suitable sparsity-constraints are used. In particular, we examine the use of total variation (TV) regularization enhanced by Bregman iterations. These novel reconstruction strategies offer new opportunities to dramatically increase the acquisition speed of photoacoustic scanners that employ point-by-point sequential scanning as well as reducing the channel count of parallelized schemes that use detector arrays.
Development of a compressive sampling hyperspectral imager prototype
NASA Astrophysics Data System (ADS)
Barducci, Alessandro; Guzzi, Donatella; Lastri, Cinzia; Nardino, Vanni; Marcoionni, Paolo; Pippi, Ivan
2013-10-01
Compressive sensing (CS) is a new technology that investigates the chance to sample signals at a lower rate than the traditional sampling theory. The main advantage of CS is that compression takes place during the sampling phase, making possible significant savings in terms of the ADC, data storage memory, down-link bandwidth, and electrical power absorption. The CS technology could have primary importance for spaceborne missions and technology, paving the way to noteworthy reductions of payload mass, volume, and cost. On the contrary, the main CS disadvantage is made by the intensive off-line data processing necessary to obtain the desired source estimation. In this paper we summarize the CS architecture and its possible implementations for Earth observation, giving evidence of possible bottlenecks hindering this technology. CS necessarily employs a multiplexing scheme, which should produce some SNR disadvantage. Moreover, this approach would necessitate optical light modulators and 2-dim detector arrays of high frame rate. This paper describes the development of a sensor prototype at laboratory level that will be utilized for the experimental assessment of CS performance and the related reconstruction errors. The experimental test-bed adopts a push-broom imaging spectrometer, a liquid crystal plate, a standard CCD camera and a Silicon PhotoMultiplier (SiPM) matrix. The prototype is being developed within the framework of the ESA ITI-B Project titled "Hyperspectral Passive Satellite Imaging via Compressive Sensing".
JPEG 2000 Encoding with Perceptual Distortion Control
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Liu, Zhen; Karam, Lina J.
2008-01-01
An alternative approach has been devised for encoding image data in compliance with JPEG 2000, the most recent still-image data-compression standard of the Joint Photographic Experts Group. Heretofore, JPEG 2000 encoding has been implemented by several related schemes classified as rate-based distortion-minimization encoding. In each of these schemes, the end user specifies a desired bit rate and the encoding algorithm strives to attain that rate while minimizing a mean squared error (MSE). While rate-based distortion minimization is appropriate for transmitting data over a limited-bandwidth channel, it is not the best approach for applications in which the perceptual quality of reconstructed images is a major consideration. A better approach for such applications is the present alternative one, denoted perceptual distortion control, in which the encoding algorithm strives to compress data to the lowest bit rate that yields at least a specified level of perceptual image quality. Some additional background information on JPEG 2000 is prerequisite to a meaningful summary of JPEG encoding with perceptual distortion control. The JPEG 2000 encoding process includes two subprocesses known as tier-1 and tier-2 coding. In order to minimize the MSE for the desired bit rate, a rate-distortion- optimization subprocess is introduced between the tier-1 and tier-2 subprocesses. In tier-1 coding, each coding block is independently bit-plane coded from the most-significant-bit (MSB) plane to the least-significant-bit (LSB) plane, using three coding passes (except for the MSB plane, which is coded using only one "clean up" coding pass). For M bit planes, this subprocess involves a total number of (3M - 2) coding passes. An embedded bit stream is then generated for each coding block. Information on the reduction in distortion and the increase in the bit rate associated with each coding pass is collected. This information is then used in a rate-control procedure to determine the contribution of each coding block to the output compressed bit stream.
Bit-Wise Arithmetic Coding For Compression Of Data
NASA Technical Reports Server (NTRS)
Kiely, Aaron
1996-01-01
Bit-wise arithmetic coding is data-compression scheme intended especially for use with uniformly quantized data from source with Gaussian, Laplacian, or similar probability distribution function. Code words of fixed length, and bits treated as being independent. Scheme serves as means of progressive transmission or of overcoming buffer-overflow or rate constraint limitations sometimes arising when data compression used.
Efficient compression of molecular dynamics trajectory files.
Marais, Patrick; Kenwood, Julian; Smith, Keegan Carruthers; Kuttel, Michelle M; Gain, James
2012-10-15
We investigate whether specific properties of molecular dynamics trajectory files can be exploited to achieve effective file compression. We explore two classes of lossy, quantized compression scheme: "interframe" predictors, which exploit temporal coherence between successive frames in a simulation, and more complex "intraframe" schemes, which compress each frame independently. Our interframe predictors are fast, memory-efficient and well suited to on-the-fly compression of massive simulation data sets, and significantly outperform the benchmark BZip2 application. Our schemes are configurable: atomic positional accuracy can be sacrificed to achieve greater compression. For high fidelity compression, our linear interframe predictor gives the best results at very little computational cost: at moderate levels of approximation (12-bit quantization, maximum error ≈ 10(-2) Å), we can compress a 1-2 fs trajectory file to 5-8% of its original size. For 200 fs time steps-typically used in fine grained water diffusion experiments-we can compress files to ~25% of their input size, still substantially better than BZip2. While compression performance degrades with high levels of quantization, the simulation error is typically much greater than the associated approximation error in such cases. Copyright © 2012 Wiley Periodicals, Inc.
Kim, Dong-Sun; Kwon, Jin-San
2014-01-01
Research on real-time health systems have received great attention during recent years and the needs of high-quality personal multichannel medical signal compression for personal medical product applications are increasing. The international MPEG-4 audio lossless coding (ALS) standard supports a joint channel-coding scheme for improving compression performance of multichannel signals and it is very efficient compression method for multi-channel biosignals. However, the computational complexity of such a multichannel coding scheme is significantly greater than that of other lossless audio encoders. In this paper, we present a multichannel hardware encoder based on a low-complexity joint-coding technique and shared multiplier scheme for portable devices. A joint-coding decision method and a reference channel selection scheme are modified for a low-complexity joint coder. The proposed joint coding decision method determines the optimized joint-coding operation based on the relationship between the cross correlation of residual signals and the compression ratio. The reference channel selection is designed to select a channel for the entropy coding of the joint coding. The hardware encoder operates at a 40 MHz clock frequency and supports two-channel parallel encoding for the multichannel monitoring system. Experimental results show that the compression ratio increases by 0.06%, whereas the computational complexity decreases by 20.72% compared to the MPEG-4 ALS reference software encoder. In addition, the compression ratio increases by about 11.92%, compared to the single channel based bio-signal lossless data compressor. PMID:25237900
A real-time chirp-coded imaging system with tissue attenuation compensation.
Ramalli, A; Guidi, F; Boni, E; Tortoli, P
2015-07-01
In ultrasound imaging, pulse compression methods based on the transmission (TX) of long coded pulses and matched receive filtering can be used to improve the penetration depth while preserving the axial resolution (coded-imaging). The performance of most of these methods is affected by the frequency dependent attenuation of tissue, which causes mismatch of the receiver filter. This, together with the involved additional computational load, has probably so far limited the implementation of pulse compression methods in real-time imaging systems. In this paper, a real-time low-computational-cost coded-imaging system operating on the beamformed and demodulated data received by a linear array probe is presented. The system has been implemented by extending the firmware and the software of the ULA-OP research platform. In particular, pulse compression is performed by exploiting the computational resources of a single digital signal processor. Each image line is produced in less than 20 μs, so that, e.g., 192-line frames can be generated at up to 200 fps. Although the system may work with a large class of codes, this paper has been focused on the test of linear frequency modulated chirps. The new system has been used to experimentally investigate the effects of tissue attenuation so that the design of the receive compression filter can be accordingly guided. Tests made with different chirp signals confirm that, although the attainable compression gain in attenuating media is lower than the theoretical value expected for a given TX Time-Bandwidth product (BT), good SNR gains can be obtained. For example, by using a chirp signal having BT=19, a 13 dB compression gain has been measured. By adapting the frequency band of the receiver to the band of the received echo, the signal-to-noise ratio and the penetration depth have been further increased, as shown by real-time tests conducted on phantoms and in vivo. In particular, a 2.7 dB SNR increase has been measured through a novel attenuation compensation scheme, which only requires to shift the demodulation frequency by 1 MHz. The proposed method characterizes for its simplicity and easy implementation. Copyright © 2015 Elsevier B.V. All rights reserved.
Constrained H1-regularization schemes for diffeomorphic image registration
Mang, Andreas; Biros, George
2017-01-01
We propose regularization schemes for deformable registration and efficient algorithms for their numerical approximation. We treat image registration as a variational optimal control problem. The deformation map is parametrized by its velocity. Tikhonov regularization ensures well-posedness. Our scheme augments standard smoothness regularization operators based on H1- and H2-seminorms with a constraint on the divergence of the velocity field, which resembles variational formulations for Stokes incompressible flows. In our formulation, we invert for a stationary velocity field and a mass source map. This allows us to explicitly control the compressibility of the deformation map and by that the determinant of the deformation gradient. We also introduce a new regularization scheme that allows us to control shear. We use a globalized, preconditioned, matrix-free, reduced space (Gauss–)Newton–Krylov scheme for numerical optimization. We exploit variable elimination techniques to reduce the number of unknowns of our system; we only iterate on the reduced space of the velocity field. Our current implementation is limited to the two-dimensional case. The numerical experiments demonstrate that we can control the determinant of the deformation gradient without compromising registration quality. This additional control allows us to avoid oversmoothing of the deformation map. We also demonstrate that we can promote or penalize shear whilst controlling the determinant of the deformation gradient. PMID:29075361
ICER-3D: A Progressive Wavelet-Based Compressor for Hyperspectral Images
NASA Technical Reports Server (NTRS)
Kiely, A.; Klimesh, M.; Xie, H.; Aranki, N.
2005-01-01
ICER-3D is a progressive, wavelet-based compressor for hyperspectral images. ICER-3D is derived from the ICER image compressor. ICER-3D can provide lossless and lossy compression, and incorporates an error-containment scheme to limit the effects of data loss during transmission. The three-dimensional wavelet decomposition structure used by ICER-3D exploits correlations in all three dimensions of hyperspectral data sets, while facilitating elimination of spectral ringing artifacts. Correlation is further exploited by a context modeler that effectively exploits spectral dependencies in the wavelet-transformed hyperspectral data. Performance results illustrating the benefits of these features are presented.
Compression of digital images over local area networks. Appendix 1: Item 3. M.S. Thesis
NASA Technical Reports Server (NTRS)
Gorjala, Bhargavi
1991-01-01
Differential Pulse Code Modulation (DPCM) has been used with speech for many years. It has not been as successful for images because of poor edge performance. The only corruption in DPC is quantizer error but this corruption becomes quite large in the region of an edge because of the abrupt changes in the statistics of the signal. We introduce two improved DPCM schemes; Edge correcting DPCM and Edge Preservation Differential Coding. These two coding schemes will detect the edges and take action to correct them. In an Edge Correcting scheme, the quantizer error for an edge is encoded using a recursive quantizer with entropy coding and sent to the receiver as side information. In an Edge Preserving scheme, when the quantizer input falls in the overload region, the quantizer error is encoded and sent to the receiver repeatedly until the quantizer input falls in the inner levels. Therefore these coding schemes increase the bit rate in the region of an edge and require variable rate channels. We implement these two variable rate coding schemes on a token wing network. Timed token protocol supports two classes of messages; asynchronous and synchronous. The synchronous class provides a pre-allocated bandwidth and guaranteed response time. The remaining bandwidth is dynamically allocated to the asynchronous class. The Edge Correcting DPCM is simulated by considering the edge information under the asynchronous class. For the simulation of the Edge Preserving scheme, the amount of information sent each time is fixed, but the length of the packet or the bit rate for that packet is chosen depending on the availability capacity. The performance of the network, and the performance of the image coding algorithms, is studied.
Colour analysis and verification of CCTV images under different lighting conditions
NASA Astrophysics Data System (ADS)
Smith, R. A.; MacLennan-Brown, K.; Tighe, J. F.; Cohen, N.; Triantaphillidou, S.; MacDonald, L. W.
2008-01-01
Colour information is not faithfully maintained by a CCTV imaging chain. Since colour can play an important role in identifying objects it is beneficial to be able to account accurately for changes to colour introduced by components in the chain. With this information it will be possible for law enforcement agencies and others to work back along the imaging chain to extract accurate colour information from CCTV recordings. A typical CCTV system has an imaging chain that may consist of scene, camera, compression, recording media and display. The response of each of these stages to colour scene information was characterised by measuring its response to a known input. The main variables that affect colour within a scene are illumination and the colour, orientation and texture of objects. The effects of illumination on the appearance of colour of a variety of test targets were tested using laboratory-based lighting, street lighting, car headlights and artificial daylight. A range of typical cameras used in CCTV applications, common compression schemes and representative displays were also characterised.
Entropy Analysis of Kinetic Flux Vector Splitting Schemes for the Compressible Euler Equations
NASA Technical Reports Server (NTRS)
Shiuhong, Lui; Xu, Jun
1999-01-01
Flux Vector Splitting (FVS) scheme is one group of approximate Riemann solvers for the compressible Euler equations. In this paper, the discretized entropy condition of the Kinetic Flux Vector Splitting (KFVS) scheme based on the gas-kinetic theory is proved. The proof of the entropy condition involves the entropy definition difference between the distinguishable and indistinguishable particles.
Organizing Compression of Hyperspectral Imagery to Allow Efficient Parallel Decompression
NASA Technical Reports Server (NTRS)
Klimesh, Matthew A.; Kiely, Aaron B.
2014-01-01
family of schemes has been devised for organizing the output of an algorithm for predictive data compression of hyperspectral imagery so as to allow efficient parallelization in both the compressor and decompressor. In these schemes, the compressor performs a number of iterations, during each of which a portion of the data is compressed via parallel threads operating on independent portions of the data. The general idea is that for each iteration it is predetermined how much compressed data will be produced from each thread.
Wavelet domain textual coding of Ottoman script images
NASA Astrophysics Data System (ADS)
Gerek, Oemer N.; Cetin, Enis A.; Tewfik, Ahmed H.
1996-02-01
Image coding using wavelet transform, DCT, and similar transform techniques is well established. On the other hand, these coding methods neither take into account the special characteristics of the images in a database nor are they suitable for fast database search. In this paper, the digital archiving of Ottoman printings is considered. Ottoman documents are printed in Arabic letters. Witten et al. describes a scheme based on finding the characters in binary document images and encoding the positions of the repeated characters This method efficiently compresses document images and is suitable for database research, but it cannot be applied to Ottoman or Arabic documents as the concept of character is different in Ottoman or Arabic. Typically, one has to deal with compound structures consisting of a group of letters. Therefore, the matching criterion will be according to those compound structures. Furthermore, the text images are gray tone or color images for Ottoman scripts for the reasons that are described in the paper. In our method the compound structure matching is carried out in wavelet domain which reduces the search space and increases the compression ratio. In addition to the wavelet transformation which corresponds to the linear subband decomposition, we also used nonlinear subband decomposition. The filters in the nonlinear subband decomposition have the property of preserving edges in the low resolution subband image.
NASA Astrophysics Data System (ADS)
Chen, Yong-fei; Gao, Hong-xia; Wu, Zi-ling; Kang, Hui
2018-01-01
Compressed sensing (CS) has achieved great success in single noise removal. However, it cannot restore the images contaminated with mixed noise efficiently. This paper introduces nonlocal similarity and cosparsity inspired by compressed sensing to overcome the difficulties in mixed noise removal, in which nonlocal similarity explores the signal sparsity from similar patches, and cosparsity assumes that the signal is sparse after a possibly redundant transform. Meanwhile, an adaptive scheme is designed to keep the balance between mixed noise removal and detail preservation based on local variance. Finally, IRLSM and RACoSaMP are adopted to solve the objective function. Experimental results demonstrate that the proposed method is superior to conventional CS methods, like K-SVD and state-of-art method nonlocally centralized sparse representation (NCSR), in terms of both visual results and quantitative measures.
Effects of Instantaneous Multiband Dynamic Compression on Speech Intelligibility
NASA Astrophysics Data System (ADS)
Herzke, Tobias; Hohmann, Volker
2005-12-01
The recruitment phenomenon, that is, the reduced dynamic range between threshold and uncomfortable level, is attributed to the loss of instantaneous dynamic compression on the basilar membrane. Despite this, hearing aids commonly use slow-acting dynamic compression for its compensation, because this was found to be the most successful strategy in terms of speech quality and intelligibility rehabilitation. Former attempts to use fast-acting compression gave ambiguous results, raising the question as to whether auditory-based recruitment compensation by instantaneous compression is in principle applicable in hearing aids. This study thus investigates instantaneous multiband dynamic compression based on an auditory filterbank. Instantaneous envelope compression is performed in each frequency band of a gammatone filterbank, which provides a combination of time and frequency resolution comparable to the normal healthy cochlea. The gain characteristics used for dynamic compression are deduced from categorical loudness scaling. In speech intelligibility tests, the instantaneous dynamic compression scheme was compared against a linear amplification scheme, which used the same filterbank for frequency analysis, but employed constant gain factors that restored the sound level for medium perceived loudness in each frequency band. In subjective comparisons, five of nine subjects preferred the linear amplification scheme and would not accept the instantaneous dynamic compression in hearing aids. Four of nine subjects did not perceive any quality differences. A sentence intelligibility test in noise (Oldenburg sentence test) showed little to no negative effects of the instantaneous dynamic compression, compared to linear amplification. A word intelligibility test in quiet (one-syllable rhyme test) showed that the subjects benefit from the larger amplification at low levels provided by instantaneous dynamic compression. Further analysis showed that the increase in intelligibility resulting from a gain provided by instantaneous compression is as high as from a gain provided by linear amplification. No negative effects of the distortions introduced by the instantaneous compression scheme in terms of speech recognition are observed.
Fixed-Rate Compressed Floating-Point Arrays.
Lindstrom, Peter
2014-12-01
Current compression schemes for floating-point data commonly take fixed-precision values and compress them to a variable-length bit stream, complicating memory management and random access. We present a fixed-rate, near-lossless compression scheme that maps small blocks of 4(d) values in d dimensions to a fixed, user-specified number of bits per block, thereby allowing read and write random access to compressed floating-point data at block granularity. Our approach is inspired by fixed-rate texture compression methods widely adopted in graphics hardware, but has been tailored to the high dynamic range and precision demands of scientific applications. Our compressor is based on a new, lifted, orthogonal block transform and embedded coding, allowing each per-block bit stream to be truncated at any point if desired, thus facilitating bit rate selection using a single compression scheme. To avoid compression or decompression upon every data access, we employ a software write-back cache of uncompressed blocks. Our compressor has been designed with computational simplicity and speed in mind to allow for the possibility of a hardware implementation, and uses only a small number of fixed-point arithmetic operations per compressed value. We demonstrate the viability and benefits of lossy compression in several applications, including visualization, quantitative data analysis, and numerical simulation.
Design of UAV high resolution image transmission system
NASA Astrophysics Data System (ADS)
Gao, Qiang; Ji, Ming; Pang, Lan; Jiang, Wen-tao; Fan, Pengcheng; Zhang, Xingcheng
2017-02-01
In order to solve the problem of the bandwidth limitation of the image transmission system on UAV, a scheme with image compression technology for mini UAV is proposed, based on the requirements of High-definition image transmission system of UAV. The video codec standard H.264 coding module and key technology was analyzed and studied for UAV area video communication. Based on the research of high-resolution image encoding and decoding technique and wireless transmit method, The high-resolution image transmission system was designed on architecture of Android and video codec chip; the constructed system was confirmed by experimentation in laboratory, the bit-rate could be controlled easily, QoS is stable, the low latency could meets most applied requirement not only for military use but also for industrial applications.
A New Color Image Encryption Scheme Using CML and a Fractional-Order Chaotic System
Wu, Xiangjun; Li, Yang; Kurths, Jürgen
2015-01-01
The chaos-based image cryptosystems have been widely investigated in recent years to provide real-time encryption and transmission. In this paper, a novel color image encryption algorithm by using coupled-map lattices (CML) and a fractional-order chaotic system is proposed to enhance the security and robustness of the encryption algorithms with a permutation-diffusion structure. To make the encryption procedure more confusing and complex, an image division-shuffling process is put forward, where the plain-image is first divided into four sub-images, and then the position of the pixels in the whole image is shuffled. In order to generate initial conditions and parameters of two chaotic systems, a 280-bit long external secret key is employed. The key space analysis, various statistical analysis, information entropy analysis, differential analysis and key sensitivity analysis are introduced to test the security of the new image encryption algorithm. The cryptosystem speed is analyzed and tested as well. Experimental results confirm that, in comparison to other image encryption schemes, the new algorithm has higher security and is fast for practical image encryption. Moreover, an extensive tolerance analysis of some common image processing operations such as noise adding, cropping, JPEG compression, rotation, brightening and darkening, has been performed on the proposed image encryption technique. Corresponding results reveal that the proposed image encryption method has good robustness against some image processing operations and geometric attacks. PMID:25826602
Practical low-cost visual communication using binary images for deaf sign language.
Manoranjan, M D; Robinson, J A
2000-03-01
Deaf sign language transmitted by video requires a temporal resolution of 8 to 10 frames/s for effective communication. Conventional videoconferencing applications, when operated over low bandwidth telephone lines, provide very low temporal resolution of pictures, of the order of less than a frame per second, resulting in jerky movement of objects. This paper presents a practical solution for sign language communication, offering adequate temporal resolution of images using moving binary sketches or cartoons, implemented on standard personal computer hardware with low-cost cameras and communicating over telephone lines. To extract cartoon points an efficient feature extraction algorithm adaptive to the global statistics of the image is proposed. To improve the subjective quality of the binary images, irreversible preprocessing techniques, such as isolated point removal and predictive filtering, are used. A simple, efficient and fast recursive temporal prefiltering scheme, using histograms of successive frames, reduces the additive and multiplicative noise from low-cost cameras. An efficient three-dimensional (3-D) compression scheme codes the binary sketches. Subjective tests performed on the system confirm that it can be used for sign language communication over telephone lines.
A comparative study of SAR data compression schemes
NASA Technical Reports Server (NTRS)
Lambert-Nebout, C.; Besson, O.; Massonnet, D.; Rogron, B.
1994-01-01
The amount of data collected from spaceborne remote sensing has substantially increased in the last years. During same time period, the ability to store or transmit data has not increased as quickly. At this time, there is a growing interest in developing compression schemes that could provide both higher compression ratios and lower encoding/decoding errors. In the case of the spaceborne Synthetic Aperture Radar (SAR) earth observation system developed by the French Space Agency (CNES), the volume of data to be processed will exceed both the on-board storage capacities and the telecommunication link. The objective of this paper is twofold: to present various compression schemes adapted to SAR data; and to define a set of evaluation criteria and compare the algorithms on SAR data. In this paper, we review two classical methods of SAR data compression and propose novel approaches based on Fourier Transforms and spectrum coding.
Comparison of Several Numerical Methods for Simulation of Compressible Shear Layers
NASA Technical Reports Server (NTRS)
Kennedy, Christopher A.; Carpenter, Mark H.
1997-01-01
An investigation is conducted on several numerical schemes for use in the computation of two-dimensional, spatially evolving, laminar variable-density compressible shear layers. Schemes with various temporal accuracies and arbitrary spatial accuracy for both inviscid and viscous terms are presented and analyzed. All integration schemes use explicit or compact finite-difference derivative operators. Three classes of schemes are considered: an extension of MacCormack's original second-order temporally accurate method, a new third-order variant of the schemes proposed by Rusanov and by Kutier, Lomax, and Warming (RKLW), and third- and fourth-order Runge-Kutta schemes. In each scheme, stability and formal accuracy are considered for the interior operators on the convection-diffusion equation U(sub t) + aU(sub x) = alpha U(sub xx). Accuracy is also verified on the nonlinear problem, U(sub t) + F(sub x) = 0. Numerical treatments of various orders of accuracy are chosen and evaluated for asymptotic stability. Formally accurate boundary conditions are derived for several sixth- and eighth-order central-difference schemes. Damping of high wave-number data is accomplished with explicit filters of arbitrary order. Several schemes are used to compute variable-density compressible shear layers, where regions of large gradients exist.
Low Complexity Compression and Speed Enhancement for Optical Scanning Holography
Tsang, P. W. M.; Poon, T.-C.; Liu, J.-P.; Kim, T.; Kim, Y. S.
2016-01-01
In this paper we report a low complexity compression method that is suitable for compact optical scanning holography (OSH) systems with different optical settings. Our proposed method can be divided into 2 major parts. First, an automatic decision maker is applied to select the rows of holographic pixels to be scanned. This process enhances the speed of acquiring a hologram, and also lowers the data rate. Second, each row of down-sampled pixels is converted into a one-bit representation with delta modulation (DM). Existing DM-based hologram compression techniques suffers from the disadvantage that a core parameter, commonly known as the step size, has to be determined in advance. However, the correct value of the step size for compressing each row of hologram is dependent on the dynamic range of the pixels, which could deviate significantly with the object scene, as well as OSH systems with different opical settings. We have overcome this problem by incorporating a dynamic step-size adjustment scheme. The proposed method is applied in the compression of holograms that are acquired with 2 different OSH systems, demonstrating a compression ratio of over two orders of magnitude, while preserving favorable fidelity on the reconstructed images. PMID:27708410
Quantitative DLA-based compressed sensing for T1-weighted acquisitions
NASA Astrophysics Data System (ADS)
Svehla, Pavel; Nguyen, Khieu-Van; Li, Jing-Rebecca; Ciobanu, Luisa
2017-08-01
High resolution Manganese Enhanced Magnetic Resonance Imaging (MEMRI), which uses manganese as a T1 contrast agent, has great potential for functional imaging of live neuronal tissue at single neuron scale. However, reaching high resolutions often requires long acquisition times which can lead to reduced image quality due to sample deterioration and hardware instability. Compressed Sensing (CS) techniques offer the opportunity to significantly reduce the imaging time. The purpose of this work is to test the feasibility of CS acquisitions based on Diffusion Limited Aggregation (DLA) sampling patterns for high resolution quantitative T1-weighted imaging. Fully encoded and DLA-CS T1-weighted images of Aplysia californica neural tissue were acquired on a 17.2T MRI system. The MR signal corresponding to single, identified neurons was quantified for both versions of the T1 weighted images. For a 50% undersampling, DLA-CS can accurately quantify signal intensities in T1-weighted acquisitions leading to only 1.37% differences when compared to the fully encoded data, with minimal impact on image spatial resolution. In addition, we compared the conventional polynomial undersampling scheme with the DLA and showed that, for the data at hand, the latter performs better. Depending on the image signal to noise ratio, higher undersampling ratios can be used to further reduce the acquisition time in MEMRI based functional studies of living tissues.
Fast and low-dose computed laminography using compressive sensing based technique
NASA Astrophysics Data System (ADS)
Abbas, Sajid; Park, Miran; Cho, Seungryong
2015-03-01
Computed laminography (CL) is well known for inspecting microstructures in the materials, weldments and soldering defects in high density packed components or multilayer printed circuit boards. The overload problem on x-ray tube and gross failure of the radio-sensitive electronics devices during a scan are among important issues in CL which needs to be addressed. The sparse-view CL can be one of the viable option to overcome such issues. In this work a numerical aluminum welding phantom was simulated to collect sparsely sampled projection data at only 40 views using a conventional CL scanning scheme i.e. oblique scan. A compressive-sensing inspired total-variation (TV) minimization algorithm was utilized to reconstruct the images. It is found that the images reconstructed using sparse view data are visually comparable with the images reconstructed using full scan data set i.e. at 360 views on regular interval. We have quantitatively confirmed that tiny structures such as copper and tungsten slags, and copper flakes in the reconstructed images from sparsely sampled data are comparable with the corresponding structure present in the fully sampled data case. A blurring effect can be seen near the edges of few pores at the bottom of the reconstructed images from sparsely sampled data, despite the overall image quality is reasonable for fast and low-dose NDT.
Sajjad, Muhammad; Mehmood, Irfan; Baik, Sung Wook
2014-01-01
Visual sensor networks (VSNs) usually generate a low-resolution (LR) frame-sequence due to energy and processing constraints. These LR-frames are not very appropriate for use in certain surveillance applications. It is very important to enhance the resolution of the captured LR-frames using resolution enhancement schemes. In this paper, an effective framework for a super-resolution (SR) scheme is proposed that enhances the resolution of LR key-frames extracted from frame-sequences captured by visual-sensors. In a VSN, a visual processing hub (VPH) collects a huge amount of visual data from camera sensors. In the proposed framework, at the VPH, key-frames are extracted using our recent key-frame extraction technique and are streamed to the base station (BS) after compression. A novel effective SR scheme is applied at BS to produce a high-resolution (HR) output from the received key-frames. The proposed SR scheme uses optimized orthogonal matching pursuit (OOMP) for sparse-representation recovery in SR. OOMP does better in terms of detecting true sparsity than orthogonal matching pursuit (OMP). This property of the OOMP helps produce a HR image which is closer to the original image. The K-SVD dictionary learning procedure is incorporated for dictionary learning. Batch-OMP improves the dictionary learning process by removing the limitation in handling a large set of observed signals. Experimental results validate the effectiveness of the proposed scheme and show its superiority over other state-of-the-art schemes. PMID:24566632
Sajjad, Muhammad; Mehmood, Irfan; Baik, Sung Wook
2014-02-21
Visual sensor networks (VSNs) usually generate a low-resolution (LR) frame-sequence due to energy and processing constraints. These LR-frames are not very appropriate for use in certain surveillance applications. It is very important to enhance the resolution of the captured LR-frames using resolution enhancement schemes. In this paper, an effective framework for a super-resolution (SR) scheme is proposed that enhances the resolution of LR key-frames extracted from frame-sequences captured by visual-sensors. In a VSN, a visual processing hub (VPH) collects a huge amount of visual data from camera sensors. In the proposed framework, at the VPH, key-frames are extracted using our recent key-frame extraction technique and are streamed to the base station (BS) after compression. A novel effective SR scheme is applied at BS to produce a high-resolution (HR) output from the received key-frames. The proposed SR scheme uses optimized orthogonal matching pursuit (OOMP) for sparse-representation recovery in SR. OOMP does better in terms of detecting true sparsity than orthogonal matching pursuit (OMP). This property of the OOMP helps produce a HR image which is closer to the original image. The K-SVD dictionary learning procedure is incorporated for dictionary learning. Batch-OMP improves the dictionary learning process by removing the limitation in handling a large set of observed signals. Experimental results validate the effectiveness of the proposed scheme and show its superiority over other state-of-the-art schemes.
Chung, Kuo-Liang; Huang, Chi-Chao; Hsu, Tsu-Chun
2017-09-04
In this paper, we propose a novel adaptive chroma subsampling-binding and luma-guided (ASBLG) chroma reconstruction method for screen content images (SCIs). After receiving the decoded luma and subsampled chroma image from the decoder, a fast winner-first voting strategy is proposed to identify the used chroma subsampling scheme prior to compression. Then, the decoded luma image is subsampled as the identified subsampling scheme was performed on the chroma image such that we are able to conclude an accurate correlation between the subsampled decoded luma image and the decoded subsampled chroma image. Accordingly, an adaptive sliding window-based and luma-guided chroma reconstruction method is proposed. The related computational complexity analysis is also provided. We take two quality metrics, the color peak signal-to-noise ratio (CPSNR) of the reconstructed chroma images and SCIs and the gradient-based structure similarity index (CGSS) of the reconstructed SCIs to evaluate the quality performance. Let the proposed chroma reconstruction method be denoted as 'ASBLG'. Based on 26 typical test SCIs and 6 JCT-VC test screen content video sequences (SCVs), several experiments show that on average, the CPSNR gains of all the reconstructed UV images by 4:2:0(A)-ASBLG, SCIs by 4:2:0(MPEG-B)-ASBLG, and SCVs by 4:2:0(A)-ASBLG are 2.1 dB, 1.87 dB, and 1.87 dB, respectively, when compared with that of the other combinations. Specifically, in terms of CPSNR and CGSS, CSBILINEAR-ASBLG for the test SCIs and CSBICUBIC-ASBLG for the test SCVs outperform the existing state-of-the-art comparative combinations, where CSBILINEAR and CSBICUBIC denote the luma-aware based chroma subsampling schemes by Wang et al.
Data-dependent bucketing improves reference-free compression of sequencing reads.
Patro, Rob; Kingsford, Carl
2015-09-01
The storage and transmission of high-throughput sequencing data consumes significant resources. As our capacity to produce such data continues to increase, this burden will only grow. One approach to reduce storage and transmission requirements is to compress this sequencing data. We present a novel technique to boost the compression of sequencing that is based on the concept of bucketing similar reads so that they appear nearby in the file. We demonstrate that, by adopting a data-dependent bucketing scheme and employing a number of encoding ideas, we can achieve substantially better compression ratios than existing de novo sequence compression tools, including other bucketing and reordering schemes. Our method, Mince, achieves up to a 45% reduction in file sizes (28% on average) compared with existing state-of-the-art de novo compression schemes. Mince is written in C++11, is open source and has been made available under the GPLv3 license. It is available at http://www.cs.cmu.edu/∼ckingsf/software/mince. carlk@cs.cmu.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
Aizenberg, Evgeni; Bigio, Irving J.; Rodriguez-Diaz, Eladio
2012-03-01
The Fourier descriptors paradigm is a well-established approach for affine-invariant characterization of shape contours. In the work presented here, we extend this method to images, and obtain a 2D Fourier representation that is invariant to image rotation. The proposed technique retains phase uniqueness, and therefore structural image information is not lost. Rotation-invariant phase coefficients were used to train a single multi-valued neuron (MVN) to recognize satellite and human face images rotated by a wide range of angles. Experiments yielded 100% and 96.43% classification rate for each data set, respectively. Recognition performance was additionally evaluated under effects of lossy JPEG compression and additive Gaussian noise. Preliminary results show that the derived rotation-invariant features combined with the MVN provide a promising scheme for efficient recognition of rotated images.
Fang, Qianqian; Carp, Stefan A.; Selb, Juliette; Boverman, Greg; Zhang, Quan; Kopans, Daniel B.; Moore, Richard H.; Miller, Eric L.; Brooks, Dana H.; Boas, David A.
2009-01-01
In this paper, we report new progress in developing the instrument and software platform of a combined X-ray mammography/diffuse optical breast imaging system. Particularly, we focus on system validation using a series of balloon phantom experiments and the optical image analysis of 49 healthy patients. Using the finite-element method for forward modeling and a regularized Gauss-Newton method for parameter reconstruction, we recovered the inclusions inside the phantom and the hemoglobin images of the human breasts. An enhanced coupling coefficient estimation scheme was also incorporated to improve the accuracy and robustness of the reconstructions. The recovered average total hemoglobin concentration (HbT) and oxygen saturation (SO2) from 68 breast measurements are 16.2 μm and 71%, respectively, where the HbT presents a linear trend with breast density. The low HbT value compared to literature is likely due to the associated mammographic compression. From the spatially co-registered optical/X-ray images, we can identify the chest-wall muscle, fatty tissue, and fibroglandular regions with an average HbT of 20.1±6.1 μm for fibroglandular tissue, 15.4±5.0 μm for adipose, and 22.2±7.3 μm for muscle tissue. The differences between fibroglandular tissue and the corresponding adipose tissue are significant (p < 0.0001). At the same time, we recognize that the optical images are influenced, to a certain extent, by mammographical compression. The optical images from a subset of patients show composite features from both tissue structure and pressure distribution. We present mechanical simulations which further confirm this hypothesis. PMID:19116186
LES of Temporally Evolving Mixing Layers by an Eighth-Order Filter Scheme
NASA Technical Reports Server (NTRS)
Hadjadj, A; Yee, H. C.; Sjogreen, B.
2011-01-01
An eighth-order filter method for a wide range of compressible flow speeds (H.C. Yee and B. Sjogreen, Proceedings of ICOSAHOM09, June 22-26, 2009, Trondheim, Norway) are employed for large eddy simulations (LES) of temporally evolving mixing layers (TML) for different convective Mach numbers (Mc) and Reynolds numbers. The high order filter method is designed for accurate and efficient simulations of shock-free compressible turbulence, turbulence with shocklets and turbulence with strong shocks with minimum tuning of scheme parameters. The value of Mc considered is for the TML range from the quasi-incompressible regime to the highly compressible supersonic regime. The three main characteristics of compressible TML (the self similarity property, compressibility effects and the presence of large-scale structure with shocklets for high Mc) are considered for the LES study. The LES results using the same scheme parameters for all studied cases agree well with experimental results of Barone et al. (2006), and published direct numerical simulations (DNS) work of Rogers & Moser (1994) and Pantano & Sarkar (2002).
2016-02-01
algorithm is used to process CS data. The insufficient nature of the sparcity of the signal adversely affects the signal detection probability for...with equal probability. The scheme was proposed [2] for image processing using single pixel camera, where the field of view was masked by a grid...modulation. The orthogonal matching pursuit (OMP) algorithm is used to process CS data. The insufficient nature of the sparcity of the signal
NASA Astrophysics Data System (ADS)
Cvetkovic, Sascha D.; Schirris, Johan; de With, Peter H. N.
2009-01-01
For real-time imaging in surveillance applications, visibility of details is of primary importance to ensure customer confidence. If we display High Dynamic-Range (HDR) scenes whose contrast spans four or more orders of magnitude on a conventional monitor without additional processing, results are unacceptable. Compression of the dynamic range is therefore a compulsory part of any high-end video processing chain because standard monitors are inherently Low- Dynamic Range (LDR) devices with maximally two orders of display dynamic range. In real-time camera processing, many complex scenes are improved with local contrast enhancements, bringing details to the best possible visibility. In this paper, we show how a multi-scale high-frequency enhancement scheme, in which gain is a non-linear function of the detail energy, can be used for the dynamic range compression of HDR real-time video camera signals. We also show the connection of our enhancement scheme to the processing way of the Human Visual System (HVS). Our algorithm simultaneously controls perceived sharpness, ringing ("halo") artifacts (contrast) and noise, resulting in a good balance between visibility of details and non-disturbance of artifacts. The overall quality enhancement, suitable for both HDR and LDR scenes, is based on a careful selection of the filter types for the multi-band decomposition and a detailed analysis of the signal per frequency band.
An efficient compression scheme for bitmap indices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Kesheng; Otoo, Ekow J.; Shoshani, Arie
2004-04-13
When using an out-of-core indexing method to answer a query, it is generally assumed that the I/O cost dominates the overall query response time. Because of this, most research on indexing methods concentrate on reducing the sizes of indices. For bitmap indices, compression has been used for this purpose. However, in most cases, operations on these compressed bitmaps, mostly bitwise logical operations such as AND, OR, and NOT, spend more time in CPU than in I/O. To speedup these operations, a number of specialized bitmap compression schemes have been developed; the best known of which is the byte-aligned bitmap codemore » (BBC). They are usually faster in performing logical operations than the general purpose compression schemes, but, the time spent in CPU still dominates the total query response time. To reduce the query response time, we designed a CPU-friendly scheme named the word-aligned hybrid (WAH) code. In this paper, we prove that the sizes of WAH compressed bitmap indices are about two words per row for large range of attributes. This size is smaller than typical sizes of commonly used indices, such as a B-tree. Therefore, WAH compressed indices are not only appropriate for low cardinality attributes but also for high cardinality attributes.In the worst case, the time to operate on compressed bitmaps is proportional to the total size of the bitmaps involved. The total size of the bitmaps required to answer a query on one attribute is proportional to the number of hits. These indicate that WAH compressed bitmap indices are optimal. To verify their effectiveness, we generated bitmap indices for four different datasets and measured the response time of many range queries. Tests confirm that sizes of compressed bitmap indices are indeed smaller than B-tree indices, and query processing with WAH compressed indices is much faster than with BBC compressed indices, projection indices and B-tree indices. In addition, we also verified that the average query response time is proportional to the index size. This indicates that the compressed bitmap indices are efficient for very large datasets.« less
Improving multispectral satellite image compression using onboard subpixel registration
NASA Astrophysics Data System (ADS)
Albinet, Mathieu; Camarero, Roberto; Isnard, Maxime; Poulet, Christophe; Perret, Jokin
2013-09-01
Future CNES earth observation missions will have to deal with an ever increasing telemetry data rate due to improvements in resolution and addition of spectral bands. Current CNES image compressors implement a discrete wavelet transform (DWT) followed by a bit plane encoding (BPE) but only on a mono spectral basis and do not profit from the multispectral redundancy of the observed scenes. Recent CNES studies have proven a substantial gain on the achievable compression ratio, +20% to +40% on selected scenarios, by implementing a multispectral compression scheme based on a Karhunen Loeve transform (KLT) followed by the classical DWT+BPE. But such results can be achieved only on perfectly registered bands; a default of registration as low as 0.5 pixel ruins all the benefits of multispectral compression. In this work, we first study the possibility to implement a multi-bands subpixel onboard registration based on registration grids generated on-the-fly by the satellite attitude control system and simplified resampling and interpolation techniques. Indeed bands registration is usually performed on ground using sophisticated techniques too computationally intensive for onboard use. This fully quantized algorithm is tuned to meet acceptable registration performances within stringent image quality criteria, with the objective of onboard real-time processing. In a second part, we describe a FPGA implementation developed to evaluate the design complexity and, by extrapolation, the data rate achievable on a spacequalified ASIC. Finally, we present the impact of this approach on the processing chain not only onboard but also on ground and the impacts on the design of the instrument.
Helping the police with their inquiries
NASA Astrophysics Data System (ADS)
Kitson, Anthony J.
1995-09-01
The UK Home Office has held a long term interest in facial recognition. Work has concentrated upon providing the UK police with facilities to improve the use that can be made of the memory of victims and witnesses rather than automatically matching images. During the 1970s a psychological coding scheme and a search method were developed by Aberdeen University and Home Office. This has been incorporated into systems for searching prisoner photographs both experimentally and operationally. The coding scheme has also been incorporated in a facial likeness composition system. The Home Office is currenly implementing a national criminal record system (Phoenix) and work has been conducted to define and demonstrate standards for image enabled terminals for this application. Users have been consulted to establish suitable picture quality for the purpose, and a study of compression methods is in hand. Recently there has been increased use made by UK courts of expert testimony based upon the measurement of facial images. We are currently working with a group of practitioners to examine and improve the quality of such evidence and to develop a national standard.
Accelerated self-gated UTE MRI of the murine heart
NASA Astrophysics Data System (ADS)
Motaal, Abdallah G.; Noorman, Nils; De Graaf, Wolter L.; Florack, Luc J.; Nicolay, Klaas; Strijkers, Gustav J.
2014-03-01
We introduce a new protocol to obtain radial Ultra-Short TE (UTE) MRI Cine of the beating mouse heart within reasonable measurement time. The method is based on a self-gated UTE with golden angle radial acquisition and compressed sensing reconstruction. The stochastic nature of the retrospective triggering acquisition scheme produces an under-sampled and random kt-space filling that allows for compressed sensing reconstruction, hence reducing scan time. As a standard, an intragate multislice FLASH sequence with an acquisition time of 4.5 min per slice was used to produce standard Cine movies of 4 mice hearts with 15 frames per cardiac cycle. The proposed self-gated sequence is used to produce Cine movies with short echo time. The total scan time was 11 min per slice. 6 slices were planned to cover the heart from the base to the apex. 2X, 4X and 6X under-sampled k-spaces cine movies were produced from 2, 1 and 0.7 min data acquisitions for each slice. The accelerated cine movies of the mouse hearts were successfully reconstructed with a compressed sensing algorithm. Compared to the FLASH cine images, the UTE images showed much less flow artifacts due to the short echo time. Besides, the accelerated movies had high image quality and the undersampling artifacts were effectively removed. Left ventricular functional parameters derived from the standard and the accelerated cine movies were nearly identical.
Turuk, Mousami; Dhande, Ashwin
2018-04-01
The recent innovations in information and communication technologies have appreciably changed the panorama of health information system (HIS). These advances provide new means to process, handle, and share medical images and also augment the medical image security issues in terms of confidentiality, reliability, and integrity. Digital watermarking has emerged as new era that offers acceptable solutions to the security issues in HIS. Texture is a significant feature to detect the embedding sites in an image, which further leads to substantial improvement in the robustness. However, considering the perspective of digital watermarking, this feature has received meager attention in the reported literature. This paper exploits the texture property of an image and presents a novel hybrid texture-quantization-based approach for reversible multiple watermarking. The watermarked image quality has been accessed by peak signal to noise ratio (PSNR), structural similarity measure (SSIM), and universal image quality index (UIQI), and the obtained results are superior to the state-of-the-art methods. The algorithm has been evaluated on a variety of medical imaging modalities (CT, MRA, MRI, US) and robustness has been verified, considering various image processing attacks including JPEG compression. The proposed scheme offers additional security using repetitive embedding of BCH encoded watermarks and ADM encrypted ECG signal. Experimental results achieved a maximum of 22,616 bits hiding capacity with PSNR of 53.64 dB.
Directional filtering for block recovery using wavelet features
NASA Astrophysics Data System (ADS)
Hyun, Seung H.; Eom, Il K.; Kim, Yoo S.
2005-07-01
When images compressed with block-based compression techniques are transmitted over a noisy channel, unexpected block losses occur. Conventional methods that do not consider edge directions can cause blocked blurring artifacts. In this paper, we present a post-processing-based block recovery scheme using Haar wavelet features. The adaptive selection of neighboring blocks is performed based on the energy of wavelet subbands (EWS) and difference between DC values (DDC). The lost blocks are recovered by linear interpolation in the spatial domain using selected blocks. The method using only EWS performs well for horizontal and vertical edges, but not as well for diagonal edges. Conversely, only using DDC performs well for diagonal edges with the exception of line- or roof-type edge profiles. Therefore, we combine EWS and DDC for better results. The proposed directional recovery method is effective for the strong edge because exploit the varying neighboring blocks adaptively according to the edges and the directional information in the image. The proposed method outperforms the previous methods that used only fixed blocks.
Terahertz imaging with compressive sensing
NASA Astrophysics Data System (ADS)
Chan, Wai Lam
Most existing terahertz imaging systems are generally limited by slow image acquisition due to mechanical raster scanning. Other systems using focal plane detector arrays can acquire images in real time, but are either too costly or limited by low sensitivity in the terahertz frequency range. To design faster and more cost-effective terahertz imaging systems, the first part of this thesis proposes two new terahertz imaging schemes based on compressive sensing (CS). Both schemes can acquire amplitude and phase-contrast images efficiently with a single-pixel detector, thanks to the powerful CS algorithms which enable the reconstruction of N-by- N pixel images with much fewer than N2 measurements. The first CS Fourier imaging approach successfully reconstructs a 64x64 image of an object with pixel size 1.4 mm using a randomly chosen subset of the 4096 pixels which defines the image in the Fourier plane. Only about 12% of the pixels are required for reassembling the image of a selected object, equivalent to a 2/3 reduction in acquisition time. The second approach is single-pixel CS imaging, which uses a series of random masks for acquisition. Besides speeding up acquisition with a reduced number of measurements, the single-pixel system can further cut down acquisition time by electrical or optical spatial modulation of random patterns. In order to switch between random patterns at high speed in the single-pixel imaging system, the second part of this thesis implements a multi-pixel electrical spatial modulator for terahertz beams using active terahertz metamaterials. The first generation of this device consists of a 4x4 pixel array, where each pixel is an array of sub-wavelength-sized split-ring resonator elements fabricated on a semiconductor substrate, and is independently controlled by applying an external voltage. The spatial modulator has a uniform modulation depth of around 40 percent across all pixels, and negligible crosstalk, at the resonant frequency. The second-generation spatial terahertz modulator, also based on metamaterials with a higher resolution (32x32), is under development. A FPGA-based circuit is designed to control the large number of modulator pixels. Once fully implemented, this second-generation device will enable fast terahertz imaging with both pulsed and continuous-wave terahertz sources.
Real-time computational photon-counting LiDAR
NASA Astrophysics Data System (ADS)
Edgar, Matthew; Johnson, Steven; Phillips, David; Padgett, Miles
2018-03-01
The availability of compact, low-cost, and high-speed MEMS-based spatial light modulators has generated widespread interest in alternative sampling strategies for imaging systems utilizing single-pixel detectors. The development of compressed sensing schemes for real-time computational imaging may have promising commercial applications for high-performance detectors, where the availability of focal plane arrays is expensive or otherwise limited. We discuss the research and development of a prototype light detection and ranging (LiDAR) system via direct time of flight, which utilizes a single high-sensitivity photon-counting detector and fast-timing electronics to recover millimeter accuracy three-dimensional images in real time. The development of low-cost real time computational LiDAR systems could have importance for applications in security, defense, and autonomous vehicles.
Compressed Sensing for Resolution Enhancement of Hyperpolarized 13C Flyback 3D-MRSI
Hu, Simon; Lustig, Michael; Chen, Albert P.; Crane, Jason; Kerr, Adam; Kelley, Douglas A.C.; Hurd, Ralph; Kurhanewicz, John; Nelson, Sarah J.; Pauly, John M.; Vigneron, Daniel B.
2008-01-01
High polarization of nuclear spins in liquid state through dynamic nuclear polarization has enabled the direct monitoring of 13C metabolites in vivo at very high signal to noise, allowing for rapid assessment of tissue metabolism. The abundant SNR afforded by this hyperpolarization technique makes high resolution 13C 3D-MRSI feasible. However, the number of phase encodes that can be fit into the short acquisition time for hyperpolarized imaging limits spatial coverage and resolution. To take advantage of the high SNR available from hyperpolarization, we have applied compressed sensing to achieve a factor of 2 enhancement in spatial resolution without increasing acquisition time or decreasing coverage. In this paper, the design and testing of compressed sensing suited for a flyback 13C 3D-MRSI sequence are presented. The key to this design was the undersampling of spectral k-space using a novel blipped scheme, thus taking advantage of the considerable sparsity in typical hyperpolarized 13C spectra. Phantom tests validated the accuracy of the compressed sensing approach and initial mouse experiments demonstrated in vivo feasibility. PMID:18367420
Feasibility Studies of Optical Processing of Image Bandwidth Compression Schemes.
1984-07-15
c A T I O N s O w N G R A O ’N G SCMEULE distribution unlimited. aP $NEORMN ORGANIZATION REPORT NUMERI(S) S. MONITORING ORGANIZATION REPORT NUMBER(S...AFOSR.Tit. 8 5- 0 17 • OF PERFORMING ORGANIZATION b, OFFICE SYMB’OL 7 NAME OF MONITORING ORGANIZATION The University of Arizona AFOSR/N 4k, ADDRESS...20332-6448 ga. NAME OF PUNDING/SPONSORING Ob. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION if appiUcabfle AFOSR NE AFOSR-81
Some results on numerical methods for hyperbolic conservation laws
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang Huanan.
1989-01-01
This dissertation contains some results on the numerical solutions of hyperbolic conservation laws. (1) The author introduced an artificial compression method as a correction to the basic ENO schemes. The method successfully prevents contact discontinuities from being smeared. This is achieved by increasing the slopes of the ENO reconstructions in such a way that the essentially non-oscillatory property of the schemes is kept. He analyzes the non-oscillatory property of the new artificial compression method by applying it to the UNO scheme which is a second order accurate ENO scheme, and proves that the resulting scheme is indeed non-oscillatory. Extensive 1-Dmore » numerical results and some preliminary 2-D ones are provided to show the strong performance of the method. (2) He combines the ENO schemes and the centered difference schemes into self-adjusting hybrid schemes which will be called the localized ENO schemes. At or near the jumps, he uses the ENO schemes with the field by field decompositions, otherwise he simply uses the centered difference schemes without the field by field decompositions. The method involves a new interpolation analysis. In the numerical experiments on several standard test problems, the quality of the numerical results of this method is close to that of the pure ENO results. The localized ENO schemes can be equipped with the above artificial compression method. In this way, he dramatically improves the resolutions of the contact discontinuities at very little additional costs. (3) He introduces a space-time mesh refinement method for time dependent problems.« less
Fast and low-dose computed laminography using compressive sensing based technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, Sajid, E-mail: scho@kaist.ac.kr; Park, Miran, E-mail: scho@kaist.ac.kr; Cho, Seungryong, E-mail: scho@kaist.ac.kr
2015-03-31
Computed laminography (CL) is well known for inspecting microstructures in the materials, weldments and soldering defects in high density packed components or multilayer printed circuit boards. The overload problem on x-ray tube and gross failure of the radio-sensitive electronics devices during a scan are among important issues in CL which needs to be addressed. The sparse-view CL can be one of the viable option to overcome such issues. In this work a numerical aluminum welding phantom was simulated to collect sparsely sampled projection data at only 40 views using a conventional CL scanning scheme i.e. oblique scan. A compressive-sensing inspiredmore » total-variation (TV) minimization algorithm was utilized to reconstruct the images. It is found that the images reconstructed using sparse view data are visually comparable with the images reconstructed using full scan data set i.e. at 360 views on regular interval. We have quantitatively confirmed that tiny structures such as copper and tungsten slags, and copper flakes in the reconstructed images from sparsely sampled data are comparable with the corresponding structure present in the fully sampled data case. A blurring effect can be seen near the edges of few pores at the bottom of the reconstructed images from sparsely sampled data, despite the overall image quality is reasonable for fast and low-dose NDT.« less
A channel differential EZW coding scheme for EEG data compression.
Dehkordi, Vahid R; Daou, Hoda; Labeau, Fabrice
2011-11-01
In this paper, a method is proposed to compress multichannel electroencephalographic (EEG) signals in a scalable fashion. Correlation between EEG channels is exploited through clustering using a k-means method. Representative channels for each of the clusters are encoded individually while other channels are encoded differentially, i.e., with respect to their respective cluster representatives. The compression is performed using the embedded zero-tree wavelet encoding adapted to 1-D signals. Simulations show that the scalable features of the scheme lead to a flexible quality/rate tradeoff, without requiring detailed EEG signal modeling.
Unified approach for incompressible flows
NASA Astrophysics Data System (ADS)
Chang, Tyne-Hsien
1995-07-01
A unified approach for solving incompressible flows has been investigated in this study. The numerical CTVD (Centered Total Variation Diminishing) scheme used in this study was successfully developed by Sanders and Li for compressible flows, especially for the high speed. The CTVD scheme possesses better mathematical properties to damp out the spurious oscillations while providing high-order accuracy for high speed flows. It leads us to believe that the CTVD scheme can equally well apply to solve incompressible flows. Because of the mathematical difference between the governing equations for incompressible and compressible flows, the scheme can not directly apply to the incompressible flows. However, if one can modify the continuity equation for incompressible flows by introducing pseudo-compressibility, the governing equations for incompressible flows would have the same mathematical characters as compressible flows. The application of the algorithm to incompressible flows thus becomes feasible. In this study, the governing equations for incompressible flows comprise continuity equation and momentum equations. The continuity equation is modified by adding a time-derivative of the pressure term containing the artificial compressibility. The modified continuity equation together with the unsteady momentum equations forms a hyperbolic-parabolic type of time-dependent system of equations. Thus, the CTVD schemes can be implemented. In addition, the physical and numerical boundary conditions are properly implemented by the characteristic boundary conditions. Accordingly, a CFD code has been developed for this research and is currently under testing. Flow past a circular cylinder was chosen for numerical experiments to determine the accuracy and efficiency of the code. The code has shown some promising results.
Unified approach for incompressible flows
NASA Technical Reports Server (NTRS)
Chang, Tyne-Hsien
1995-01-01
A unified approach for solving incompressible flows has been investigated in this study. The numerical CTVD (Centered Total Variation Diminishing) scheme used in this study was successfully developed by Sanders and Li for compressible flows, especially for the high speed. The CTVD scheme possesses better mathematical properties to damp out the spurious oscillations while providing high-order accuracy for high speed flows. It leads us to believe that the CTVD scheme can equally well apply to solve incompressible flows. Because of the mathematical difference between the governing equations for incompressible and compressible flows, the scheme can not directly apply to the incompressible flows. However, if one can modify the continuity equation for incompressible flows by introducing pseudo-compressibility, the governing equations for incompressible flows would have the same mathematical characters as compressible flows. The application of the algorithm to incompressible flows thus becomes feasible. In this study, the governing equations for incompressible flows comprise continuity equation and momentum equations. The continuity equation is modified by adding a time-derivative of the pressure term containing the artificial compressibility. The modified continuity equation together with the unsteady momentum equations forms a hyperbolic-parabolic type of time-dependent system of equations. Thus, the CTVD schemes can be implemented. In addition, the physical and numerical boundary conditions are properly implemented by the characteristic boundary conditions. Accordingly, a CFD code has been developed for this research and is currently under testing. Flow past a circular cylinder was chosen for numerical experiments to determine the accuracy and efficiency of the code. The code has shown some promising results.
Improving transmission efficiency of large sequence alignment/map (SAM) files.
Sakib, Muhammad Nazmus; Tang, Jijun; Zheng, W Jim; Huang, Chin-Tser
2011-01-01
Research in bioinformatics primarily involves collection and analysis of a large volume of genomic data. Naturally, it demands efficient storage and transfer of this huge amount of data. In recent years, some research has been done to find efficient compression algorithms to reduce the size of various sequencing data. One way to improve the transmission time of large files is to apply a maximum lossless compression on them. In this paper, we present SAMZIP, a specialized encoding scheme, for sequence alignment data in SAM (Sequence Alignment/Map) format, which improves the compression ratio of existing compression tools available. In order to achieve this, we exploit the prior knowledge of the file format and specifications. Our experimental results show that our encoding scheme improves compression ratio, thereby reducing overall transmission time significantly.
JPEG and wavelet compression of ophthalmic images
NASA Astrophysics Data System (ADS)
Eikelboom, Robert H.; Yogesan, Kanagasingam; Constable, Ian J.; Barry, Christopher J.
1999-05-01
This study was designed to determine the degree and methods of digital image compression to produce ophthalmic imags of sufficient quality for transmission and diagnosis. The photographs of 15 subjects, which inclined eyes with normal, subtle and distinct pathologies, were digitized to produce 1.54MB images and compressed to five different methods: (i) objectively by calculating the RMS error between the uncompressed and compressed images, (ii) semi-subjectively by assessing the visibility of blood vessels, and (iii) subjectively by asking a number of experienced observers to assess the images for quality and clinical interpretation. Results showed that as a function of compressed image size, wavelet compressed images produced less RMS error than JPEG compressed images. Blood vessel branching could be observed to a greater extent after Wavelet compression compared to JPEG compression produced better images then a JPEG compression for a given image size. Overall, it was shown that images had to be compressed to below 2.5 percent for JPEG and 1.7 percent for Wavelet compression before fine detail was lost, or when image quality was too poor to make a reliable diagnosis.
SVD compression for magnetic resonance fingerprinting in the time domain.
McGivney, Debra F; Pierre, Eric; Ma, Dan; Jiang, Yun; Saybasili, Haris; Gulani, Vikas; Griswold, Mark A
2014-12-01
Magnetic resonance (MR) fingerprinting is a technique for acquiring and processing MR data that simultaneously provides quantitative maps of different tissue parameters through a pattern recognition algorithm. A predefined dictionary models the possible signal evolutions simulated using the Bloch equations with different combinations of various MR parameters and pattern recognition is completed by computing the inner product between the observed signal and each of the predicted signals within the dictionary. Though this matching algorithm has been shown to accurately predict the MR parameters of interest, one desires a more efficient method to obtain the quantitative images. We propose to compress the dictionary using the singular value decomposition, which will provide a low-rank approximation. By compressing the size of the dictionary in the time domain, we are able to speed up the pattern recognition algorithm, by a factor of between 3.4-4.8, without sacrificing the high signal-to-noise ratio of the original scheme presented previously.
SVD Compression for Magnetic Resonance Fingerprinting in the Time Domain
McGivney, Debra F.; Pierre, Eric; Ma, Dan; Jiang, Yun; Saybasili, Haris; Gulani, Vikas; Griswold, Mark A.
2016-01-01
Magnetic resonance fingerprinting is a technique for acquiring and processing MR data that simultaneously provides quantitative maps of different tissue parameters through a pattern recognition algorithm. A predefined dictionary models the possible signal evolutions simulated using the Bloch equations with different combinations of various MR parameters and pattern recognition is completed by computing the inner product between the observed signal and each of the predicted signals within the dictionary. Though this matching algorithm has been shown to accurately predict the MR parameters of interest, one desires a more efficient method to obtain the quantitative images. We propose to compress the dictionary using the singular value decomposition (SVD), which will provide a low-rank approximation. By compressing the size of the dictionary in the time domain, we are able to speed up the pattern recognition algorithm, by a factor of between 3.4-4.8, without sacrificing the high signal-to-noise ratio of the original scheme presented previously. PMID:25029380
Lossless Astronomical Image Compression and the Effects of Random Noise
NASA Technical Reports Server (NTRS)
Pence, William
2009-01-01
In this paper we compare a variety of modern image compression methods on a large sample of astronomical images. We begin by demonstrating from first principles how the amount of noise in the image pixel values sets a theoretical upper limit on the lossless compression ratio of the image. We derive simple procedures for measuring the amount of noise in an image and for quantitatively predicting how much compression will be possible. We then compare the traditional technique of using the GZIP utility to externally compress the image, with a newer technique of dividing the image into tiles, and then compressing and storing each tile in a FITS binary table structure. This tiled-image compression technique offers a choice of other compression algorithms besides GZIP, some of which are much better suited to compressing astronomical images. Our tests on a large sample of images show that the Rice algorithm provides the best combination of speed and compression efficiency. In particular, Rice typically produces 1.5 times greater compression and provides much faster compression speed than GZIP. Floating point images generally contain too much noise to be effectively compressed with any lossless algorithm. We have developed a compression technique which discards some of the useless noise bits by quantizing the pixel values as scaled integers. The integer images can then be compressed by a factor of 4 or more. Our image compression and uncompression utilities (called fpack and funpack) that were used in this study are publicly available from the HEASARC web site.Users may run these stand-alone programs to compress and uncompress their own images.
NASA Astrophysics Data System (ADS)
Del Pino, S.; Labourasse, E.; Morel, G.
2018-06-01
We present a multidimensional asymptotic preserving scheme for the approximation of a mixture of compressible flows. Fluids are modelled by two Euler systems of equations coupled with a friction term. The asymptotic preserving property is mandatory for this kind of model, to derive a scheme that behaves well in all regimes (i.e. whatever the friction parameter value is). The method we propose is defined in ALE coordinates, using a Lagrange plus remap approach. This imposes a multidimensional definition and analysis of the scheme.
High-order ENO schemes applied to two- and three-dimensional compressible flow
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang; Erlebacher, Gordon; Zang, Thomas A.; Whitaker, David; Osher, Stanley
1991-01-01
High order essentially non-oscillatory (ENO) finite difference schemes are applied to the 2-D and 3-D compressible Euler and Navier-Stokes equations. Practical issues, such as vectorization, efficiency of coding, cost comparison with other numerical methods, and accuracy degeneracy effects, are discussed. Numerical examples are provided which are representative of computational problems of current interest in transition and turbulence physics. These require both nonoscillatory shock capturing and high resolution for detailed structures in the smooth regions and demonstrate the advantage of ENO schemes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Kesheng
2007-08-02
An index in a database system is a data structure that utilizes redundant information about the base data to speed up common searching and retrieval operations. Most commonly used indexes are variants of B-trees, such as B+-tree and B*-tree. FastBit implements a set of alternative indexes call compressed bitmap indexes. Compared with B-tree variants, these indexes provide very efficient searching and retrieval operations by sacrificing the efficiency of updating the indexes after the modification of an individual record. In addition to the well-known strengths of bitmap indexes, FastBit has a special strength stemming from the bitmap compression scheme used. Themore » compression method is called the Word-Aligned Hybrid (WAH) code. It reduces the bitmap indexes to reasonable sizes and at the same time allows very efficient bitwise logical operations directly on the compressed bitmaps. Compared with the well-known compression methods such as LZ77 and Byte-aligned Bitmap code (BBC), WAH sacrifices some space efficiency for a significant improvement in operational efficiency. Since the bitwise logical operations are the most important operations needed to answer queries, using WAH compression has been shown to answer queries significantly faster than using other compression schemes. Theoretical analyses showed that WAH compressed bitmap indexes are optimal for one-dimensional range queries. Only the most efficient indexing schemes such as B+-tree and B*-tree have this optimality property. However, bitmap indexes are superior because they can efficiently answer multi-dimensional range queries by combining the answers to one-dimensional queries.« less
Optimal wavelets for biomedical signal compression.
Nielsen, Mogens; Kamavuako, Ernest Nlandu; Andersen, Michael Midtgaard; Lucas, Marie-Françoise; Farina, Dario
2006-07-01
Signal compression is gaining importance in biomedical engineering due to the potential applications in telemedicine. In this work, we propose a novel scheme of signal compression based on signal-dependent wavelets. To adapt the mother wavelet to the signal for the purpose of compression, it is necessary to define (1) a family of wavelets that depend on a set of parameters and (2) a quality criterion for wavelet selection (i.e., wavelet parameter optimization). We propose the use of an unconstrained parameterization of the wavelet for wavelet optimization. A natural performance criterion for compression is the minimization of the signal distortion rate given the desired compression rate. For coding the wavelet coefficients, we adopted the embedded zerotree wavelet coding algorithm, although any coding scheme may be used with the proposed wavelet optimization. As a representative example of application, the coding/encoding scheme was applied to surface electromyographic signals recorded from ten subjects. The distortion rate strongly depended on the mother wavelet (for example, for 50% compression rate, optimal wavelet, mean+/-SD, 5.46+/-1.01%; worst wavelet 12.76+/-2.73%). Thus, optimization significantly improved performance with respect to previous approaches based on classic wavelets. The algorithm can be applied to any signal type since the optimal wavelet is selected on a signal-by-signal basis. Examples of application to ECG and EEG signals are also reported.
Displaying radiologic images on personal computers: image storage and compression--Part 2.
Gillespy, T; Rowberg, A H
1994-02-01
This is part 2 of our article on image storage and compression, the third article of our series for radiologists and imaging scientists on displaying, manipulating, and analyzing radiologic images on personal computers. Image compression is classified as lossless (nondestructive) or lossy (destructive). Common lossless compression algorithms include variable-length bit codes (Huffman codes and variants), dictionary-based compression (Lempel-Ziv variants), and arithmetic coding. Huffman codes and the Lempel-Ziv-Welch (LZW) algorithm are commonly used for image compression. All of these compression methods are enhanced if the image has been transformed into a differential image based on a differential pulse-code modulation (DPCM) algorithm. The LZW compression after the DPCM image transformation performed the best on our example images, and performed almost as well as the best of the three commercial compression programs tested. Lossy compression techniques are capable of much higher data compression, but reduced image quality and compression artifacts may be noticeable. Lossy compression is comprised of three steps: transformation, quantization, and coding. Two commonly used transformation methods are the discrete cosine transformation and discrete wavelet transformation. In both methods, most of the image information is contained in a relatively few of the transformation coefficients. The quantization step reduces many of the lower order coefficients to 0, which greatly improves the efficiency of the coding (compression) step. In fractal-based image compression, image patterns are stored as equations that can be reconstructed at different levels of resolution.
Compact and portable X-ray imager system using Medipix3RX
NASA Astrophysics Data System (ADS)
Garcia-Nathan, T. B.; Kachatkou, A.; Jiang, C.; Omar, D.; Marchal, J.; Changani, H.; Tartoni, N.; van Silfhout, R. G.
2017-10-01
In this paper the design and implementation of a novel portable X-ray imager system is presented. The design features a direct X-ray detection scheme by making use of a hybrid detector (Medipix3RX). Taking advantages of the capabilities of the Medipix3RX, like a high resolution, zero dead-time, single photon detection and charge-sharing mode, the imager has a better resolution and higher sensitivity compared to using traditional indirect detection schemes. A detailed description of the system is presented, which consists of a vacuum chamber containing the sensor, an electronic board for temperature management, conditioning and readout of the sensor and a data processing unit which also handles network connection and allow communication with clients by acting as a server. A field programmable gate array (FPGA) device is used to implement the readout protocol for the Medipix3RX, apart from the readout the FPGA can perform complex image processing functions such as feature extraction, histogram, profiling and image compression at high speeds. The temperature of the sensor is monitored and controlled through a PID algorithm making use of a Peltier cooler, improving the energy resolution and response stability of the sensor. Without implementing data compression techniques, the system is capable of transferring 680 profiles/s or 240 images/s in a continuous mode. Implementation of equalization procedures and tests on colour mode are presented in this paper. For the experimental measurements the Medipix3RX sensor was used with a Silicon layer. One of the tested applications of the system is as an X-ray beam position monitor (XBPM) device for synchrotron applications. The XBPM allows a non-destructive real time measurement of the beam position, size and intensity. A Kapton foil is placed in the beam path scattering radiation towards a pinhole camera setup that allows the sensor to obtain an image of the beam. By using profiles of the synchrotron X-ray beam, high frequency movement of the beam position can be studied, up to 340 Hz. The system is capable of realizing an independent energy measure of the beam by using the Medipix3RX variable energy threshold feature.
Ravishankar, Saiprasad; Nadakuditi, Raj Rao; Fessler, Jeffrey A
2017-12-01
The sparsity of signals in a transform domain or dictionary has been exploited in applications such as compression, denoising and inverse problems. More recently, data-driven adaptation of synthesis dictionaries has shown promise compared to analytical dictionary models. However, dictionary learning problems are typically non-convex and NP-hard, and the usual alternating minimization approaches for these problems are often computationally expensive, with the computations dominated by the NP-hard synthesis sparse coding step. This paper exploits the ideas that drive algorithms such as K-SVD, and investigates in detail efficient methods for aggregate sparsity penalized dictionary learning by first approximating the data with a sum of sparse rank-one matrices (outer products) and then using a block coordinate descent approach to estimate the unknowns. The resulting block coordinate descent algorithms involve efficient closed-form solutions. Furthermore, we consider the problem of dictionary-blind image reconstruction, and propose novel and efficient algorithms for adaptive image reconstruction using block coordinate descent and sum of outer products methodologies. We provide a convergence study of the algorithms for dictionary learning and dictionary-blind image reconstruction. Our numerical experiments show the promising performance and speedups provided by the proposed methods over previous schemes in sparse data representation and compressed sensing-based image reconstruction.
Ravishankar, Saiprasad; Nadakuditi, Raj Rao; Fessler, Jeffrey A.
2017-01-01
The sparsity of signals in a transform domain or dictionary has been exploited in applications such as compression, denoising and inverse problems. More recently, data-driven adaptation of synthesis dictionaries has shown promise compared to analytical dictionary models. However, dictionary learning problems are typically non-convex and NP-hard, and the usual alternating minimization approaches for these problems are often computationally expensive, with the computations dominated by the NP-hard synthesis sparse coding step. This paper exploits the ideas that drive algorithms such as K-SVD, and investigates in detail efficient methods for aggregate sparsity penalized dictionary learning by first approximating the data with a sum of sparse rank-one matrices (outer products) and then using a block coordinate descent approach to estimate the unknowns. The resulting block coordinate descent algorithms involve efficient closed-form solutions. Furthermore, we consider the problem of dictionary-blind image reconstruction, and propose novel and efficient algorithms for adaptive image reconstruction using block coordinate descent and sum of outer products methodologies. We provide a convergence study of the algorithms for dictionary learning and dictionary-blind image reconstruction. Our numerical experiments show the promising performance and speedups provided by the proposed methods over previous schemes in sparse data representation and compressed sensing-based image reconstruction. PMID:29376111
Realizing Ultrafast Electron Pulse Self-Compression by Femtosecond Pulse Shaping Technique.
Qi, Yingpeng; Pei, Minjie; Qi, Dalong; Yang, Yan; Jia, Tianqing; Zhang, Shian; Sun, Zhenrong
2015-10-01
Uncorrelated position and velocity distribution of the electron bunch at the photocathode from the residual energy greatly limit the transverse coherent length and the recompression ability. Here we first propose a femtosecond pulse-shaping method to realize the electron pulse self-compression in ultrafast electron diffraction system based on a point-to-point space-charge model. The positively chirped femtosecond laser pulse can correspondingly create the positively chirped electron bunch at the photocathode (such as metal-insulator heterojunction), and such a shaped electron pulse can realize the self-compression in the subsequent propagation process. The greatest advantage for our proposed scheme is that no additional components are introduced into the ultrafast electron diffraction system, which therefore does not affect the electron bunch shape. More importantly, this scheme can break the limitation that the electron pulse via postphotocathode static compression schemes is not shorter than the excitation laser pulse due to the uncorrelated position and velocity distribution of the initial electron bunch.
Image Coding Based on Address Vector Quantization.
NASA Astrophysics Data System (ADS)
Feng, Yushu
Image coding is finding increased application in teleconferencing, archiving, and remote sensing. This thesis investigates the potential of Vector Quantization (VQ), a relatively new source coding technique, for compression of monochromatic and color images. Extensions of the Vector Quantization technique to the Address Vector Quantization method have been investigated. In Vector Quantization, the image data to be encoded are first processed to yield a set of vectors. A codeword from the codebook which best matches the input image vector is then selected. Compression is achieved by replacing the image vector with the index of the code-word which produced the best match, the index is sent to the channel. Reconstruction of the image is done by using a table lookup technique, where the label is simply used as an address for a table containing the representative vectors. A code-book of representative vectors (codewords) is generated using an iterative clustering algorithm such as K-means, or the generalized Lloyd algorithm. A review of different Vector Quantization techniques are given in chapter 1. Chapter 2 gives an overview of codebook design methods including the Kohonen neural network to design codebook. During the encoding process, the correlation of the address is considered and Address Vector Quantization is developed for color image and monochrome image coding. Address VQ which includes static and dynamic processes is introduced in chapter 3. In order to overcome the problems in Hierarchical VQ, Multi-layer Address Vector Quantization is proposed in chapter 4. This approach gives the same performance as that of the normal VQ scheme but the bit rate is about 1/2 to 1/3 as that of the normal VQ method. In chapter 5, a Dynamic Finite State VQ based on a probability transition matrix to select the best subcodebook to encode the image is developed. In chapter 6, a new adaptive vector quantization scheme, suitable for color video coding, called "A Self -Organizing Adaptive VQ Technique" is presented. In addition to chapters 2 through 6 which report on new work, this dissertation includes one chapter (chapter 1) and part of chapter 2 which review previous work on VQ and image coding, respectively. Finally, a short discussion of directions for further research is presented in conclusion.
Coupling reconstruction and motion estimation for dynamic MRI through optical flow constraint
NASA Astrophysics Data System (ADS)
Zhao, Ningning; O'Connor, Daniel; Gu, Wenbo; Ruan, Dan; Basarab, Adrian; Sheng, Ke
2018-03-01
This paper addresses the problem of dynamic magnetic resonance image (DMRI) reconstruction and motion estimation jointly. Because of the inherent anatomical movements in DMRI acquisition, reconstruction of DMRI using motion estimation/compensation (ME/MC) has been explored under the compressed sensing (CS) scheme. In this paper, by embedding the intensity based optical flow (OF) constraint into the traditional CS scheme, we are able to couple the DMRI reconstruction and motion vector estimation. Moreover, the OF constraint is employed in a specific coarse resolution scale in order to reduce the computational complexity. The resulting optimization problem is then solved using a primal-dual algorithm due to its efficiency when dealing with nondifferentiable problems. Experiments on highly accelerated dynamic cardiac MRI with multiple receiver coils validate the performance of the proposed algorithm.
Radiological Image Compression
NASA Astrophysics Data System (ADS)
Lo, Shih-Chung Benedict
The movement toward digital images in radiology presents the problem of how to conveniently and economically store, retrieve, and transmit the volume of digital images. Basic research into image data compression is necessary in order to move from a film-based department to an efficient digital -based department. Digital data compression technology consists of two types of compression technique: error-free and irreversible. Error -free image compression is desired; however, present techniques can only achieve compression ratio of from 1.5:1 to 3:1, depending upon the image characteristics. Irreversible image compression can achieve a much higher compression ratio; however, the image reconstructed from the compressed data shows some difference from the original image. This dissertation studies both error-free and irreversible image compression techniques. In particular, some modified error-free techniques have been tested and the recommended strategies for various radiological images are discussed. A full-frame bit-allocation irreversible compression technique has been derived. A total of 76 images which include CT head and body, and radiographs digitized to 2048 x 2048, 1024 x 1024, and 512 x 512 have been used to test this algorithm. The normalized mean -square-error (NMSE) on the difference image, defined as the difference between the original and the reconstructed image from a given compression ratio, is used as a global measurement on the quality of the reconstructed image. The NMSE's of total of 380 reconstructed and 380 difference images are measured and the results tabulated. Three complex compression methods are also suggested to compress images with special characteristics. Finally, various parameters which would effect the quality of the reconstructed images are discussed. A proposed hardware compression module is given in the last chapter.
SparseCT: interrupted-beam acquisition and sparse reconstruction for radiation dose reduction
NASA Astrophysics Data System (ADS)
Koesters, Thomas; Knoll, Florian; Sodickson, Aaron; Sodickson, Daniel K.; Otazo, Ricardo
2017-03-01
State-of-the-art low-dose CT methods reduce the x-ray tube current and use iterative reconstruction methods to denoise the resulting images. However, due to compromises between denoising and image quality, only moderate dose reductions up to 30-40% are accepted in clinical practice. An alternative approach is to reduce the number of x-ray projections and use compressed sensing to reconstruct the full-tube-current undersampled data. This idea was recognized in the early days of compressed sensing and proposals for CT dose reduction appeared soon afterwards. However, no practical means of undersampling has yet been demonstrated in the challenging environment of a rapidly rotating CT gantry. In this work, we propose a moving multislit collimator as a practical incoherent undersampling scheme for compressed sensing CT and evaluate its application for radiation dose reduction. The proposed collimator is composed of narrow slits and moves linearly along the slice dimension (z), to interrupt the incident beam in different slices for each x-ray tube angle (θ). The reduced projection dataset is then reconstructed using a sparse approach, where 3D image gradients are employed to enforce sparsity. The effects of the collimator slits on the beam profile were measured and represented as a continuous slice profile. SparseCT was tested using retrospective undersampling and compared against commercial current-reduction techniques on phantoms and in vivo studies. Initial results suggest that SparseCT may enable higher performance than current-reduction, particularly for high dose reduction factors.
Compression and accelerated rendering of volume data using DWT
NASA Astrophysics Data System (ADS)
Kamath, Preyas; Akleman, Ergun; Chan, Andrew K.
1998-09-01
2D images cannot convey information on object depth and location relative to the surfaces. The medical community is increasingly using 3D visualization techniques to view data from CT scans, MRI etc. 3D images provide more information on depth and location in the spatial domain to help surgeons making better diagnoses of the problem. 3D images can be constructed from 2D images using 3D scalar algorithms. With recent advances in communication techniques, it is possible for doctors to diagnose and plan treatment of a patient who lives at a remote location. It is made possible by transmitting relevant data of the patient via telephone lines. If this information is to be reconstructed in 3D, then 2D images must be transmitted. However 2D dataset storage occupies a lot of memory. In addition, visualization algorithms are slow. We describe in this paper a scheme which reduces the data transfer time by only transmitting information that the doctor wants. Compression is achieved by reducing the amount of data transfer. This is possible by using the 3D wavelet transform applied to 3D datasets. Since the wavelet transform is localized in frequency and spatial domain, we transmit detail only in the region where the doctor needs it. Since only ROM (Region of Interest) is reconstructed in detail, we need to render only ROI in detail, thus we can reduce the rendering time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaodong; Xia, Yidong; Luo, Hong
A comparative study of two classes of third-order implicit time integration schemes is presented for a third-order hierarchical WENO reconstructed discontinuous Galerkin (rDG) method to solve the 3D unsteady compressible Navier-Stokes equations: — 1) the explicit first stage, single diagonally implicit Runge-Kutta (ESDIRK3) scheme, and 2) the Rosenbrock-Wanner (ROW) schemes based on the differential algebraic equations (DAEs) of Index-2. Compared with the ESDIRK3 scheme, a remarkable feature of the ROW schemes is that, they only require one approximate Jacobian matrix calculation every time step, thus considerably reducing the overall computational cost. A variety of test cases, ranging from inviscid flowsmore » to DNS of turbulent flows, are presented to assess the performance of these schemes. Here, numerical experiments demonstrate that the third-order ROW scheme for the DAEs of index-2 can not only achieve the designed formal order of temporal convergence accuracy in a benchmark test, but also require significantly less computing time than its ESDIRK3 counterpart to converge to the same level of discretization errors in all of the flow simulations in this study, indicating that the ROW methods provide an attractive alternative for the higher-order time-accurate integration of the unsteady compressible Navier-Stokes equations.« less
Liu, Xiaodong; Xia, Yidong; Luo, Hong; ...
2016-10-05
A comparative study of two classes of third-order implicit time integration schemes is presented for a third-order hierarchical WENO reconstructed discontinuous Galerkin (rDG) method to solve the 3D unsteady compressible Navier-Stokes equations: — 1) the explicit first stage, single diagonally implicit Runge-Kutta (ESDIRK3) scheme, and 2) the Rosenbrock-Wanner (ROW) schemes based on the differential algebraic equations (DAEs) of Index-2. Compared with the ESDIRK3 scheme, a remarkable feature of the ROW schemes is that, they only require one approximate Jacobian matrix calculation every time step, thus considerably reducing the overall computational cost. A variety of test cases, ranging from inviscid flowsmore » to DNS of turbulent flows, are presented to assess the performance of these schemes. Here, numerical experiments demonstrate that the third-order ROW scheme for the DAEs of index-2 can not only achieve the designed formal order of temporal convergence accuracy in a benchmark test, but also require significantly less computing time than its ESDIRK3 counterpart to converge to the same level of discretization errors in all of the flow simulations in this study, indicating that the ROW methods provide an attractive alternative for the higher-order time-accurate integration of the unsteady compressible Navier-Stokes equations.« less
JPEG XS call for proposals subjective evaluations
NASA Astrophysics Data System (ADS)
McNally, David; Bruylants, Tim; Willème, Alexandre; Ebrahimi, Touradj; Schelkens, Peter; Macq, Benoit
2017-09-01
In March 2016 the Joint Photographic Experts Group (JPEG), formally known as ISO/IEC SC29 WG1, issued a call for proposals soliciting compression technologies for a low-latency, lightweight and visually transparent video compression scheme. Within the JPEG family of standards, this scheme was denominated JPEG XS. The subjective evaluation of visually lossless compressed video sequences at high resolutions and bit depths poses particular challenges. This paper describes the adopted procedures, the subjective evaluation setup, the evaluation process and summarizes the obtained results which were achieved in the context of the JPEG XS standardization process.
Coding visual features extracted from video sequences.
Baroffio, Luca; Cesana, Matteo; Redondi, Alessandro; Tagliasacchi, Marco; Tubaro, Stefano
2014-05-01
Visual features are successfully exploited in several applications (e.g., visual search, object recognition and tracking, etc.) due to their ability to efficiently represent image content. Several visual analysis tasks require features to be transmitted over a bandwidth-limited network, thus calling for coding techniques to reduce the required bit budget, while attaining a target level of efficiency. In this paper, we propose, for the first time, a coding architecture designed for local features (e.g., SIFT, SURF) extracted from video sequences. To achieve high coding efficiency, we exploit both spatial and temporal redundancy by means of intraframe and interframe coding modes. In addition, we propose a coding mode decision based on rate-distortion optimization. The proposed coding scheme can be conveniently adopted to implement the analyze-then-compress (ATC) paradigm in the context of visual sensor networks. That is, sets of visual features are extracted from video frames, encoded at remote nodes, and finally transmitted to a central controller that performs visual analysis. This is in contrast to the traditional compress-then-analyze (CTA) paradigm, in which video sequences acquired at a node are compressed and then sent to a central unit for further processing. In this paper, we compare these coding paradigms using metrics that are routinely adopted to evaluate the suitability of visual features in the context of content-based retrieval, object recognition, and tracking. Experimental results demonstrate that, thanks to the significant coding gains achieved by the proposed coding scheme, ATC outperforms CTA with respect to all evaluation metrics.
NASA Astrophysics Data System (ADS)
Al-Mansoori, Saeed; Kunhu, Alavi
2013-10-01
This paper proposes a blind multi-watermarking scheme based on designing two back-to-back encoders. The first encoder is implemented to embed a robust watermark into remote sensing imagery by applying a Discrete Cosine Transform (DCT) approach. Such watermark is used in many applications to protect the copyright of the image. However, the second encoder embeds a fragile watermark using `SHA-1' hash function. The purpose behind embedding a fragile watermark is to prove the authenticity of the image (i.e. tamper-proof). Thus, the proposed technique was developed as a result of new challenges with piracy of remote sensing imagery ownership. This led researchers to look for different means to secure the ownership of satellite imagery and prevent the illegal use of these resources. Therefore, Emirates Institution for Advanced Science and Technology (EIAST) proposed utilizing existing data security concept by embedding a digital signature, "watermark", into DubaiSat-1 satellite imagery. In this study, DubaiSat-1 images with 2.5 meter resolution are used as a cover and a colored EIAST logo is used as a watermark. In order to evaluate the robustness of the proposed technique, a couple of attacks are applied such as JPEG compression, rotation and synchronization attacks. Furthermore, tampering attacks are applied to prove image authenticity.
Image quality (IQ) guided multispectral image compression
NASA Astrophysics Data System (ADS)
Zheng, Yufeng; Chen, Genshe; Wang, Zhonghai; Blasch, Erik
2016-05-01
Image compression is necessary for data transportation, which saves both transferring time and storage space. In this paper, we focus on our discussion on lossy compression. There are many standard image formats and corresponding compression algorithms, for examples, JPEG (DCT -- discrete cosine transform), JPEG 2000 (DWT -- discrete wavelet transform), BPG (better portable graphics) and TIFF (LZW -- Lempel-Ziv-Welch). The image quality (IQ) of decompressed image will be measured by numerical metrics such as root mean square error (RMSE), peak signal-to-noise ratio (PSNR), and structural Similarity (SSIM) Index. Given an image and a specified IQ, we will investigate how to select a compression method and its parameters to achieve an expected compression. Our scenario consists of 3 steps. The first step is to compress a set of interested images by varying parameters and compute their IQs for each compression method. The second step is to create several regression models per compression method after analyzing the IQ-measurement versus compression-parameter from a number of compressed images. The third step is to compress the given image with the specified IQ using the selected compression method (JPEG, JPEG2000, BPG, or TIFF) according to the regressed models. The IQ may be specified by a compression ratio (e.g., 100), then we will select the compression method of the highest IQ (SSIM, or PSNR). Or the IQ may be specified by a IQ metric (e.g., SSIM = 0.8, or PSNR = 50), then we will select the compression method of the highest compression ratio. Our experiments tested on thermal (long-wave infrared) images (in gray scales) showed very promising results.
Image compression system and method having optimized quantization tables
NASA Technical Reports Server (NTRS)
Ratnakar, Viresh (Inventor); Livny, Miron (Inventor)
1998-01-01
A digital image compression preprocessor for use in a discrete cosine transform-based digital image compression device is provided. The preprocessor includes a gathering mechanism for determining discrete cosine transform statistics from input digital image data. A computing mechanism is operatively coupled to the gathering mechanism to calculate a image distortion array and a rate of image compression array based upon the discrete cosine transform statistics for each possible quantization value. A dynamic programming mechanism is operatively coupled to the computing mechanism to optimize the rate of image compression array against the image distortion array such that a rate-distortion-optimal quantization table is derived. In addition, a discrete cosine transform-based digital image compression device and a discrete cosine transform-based digital image compression and decompression system are provided. Also, a method for generating a rate-distortion-optimal quantization table, using discrete cosine transform-based digital image compression, and operating a discrete cosine transform-based digital image compression and decompression system are provided.
High-quality JPEG compression history detection for fake uncompressed images
NASA Astrophysics Data System (ADS)
Zhang, Rong; Wang, Rang-Ding; Guo, Li-Jun; Jiang, Bao-Chuan
2017-05-01
Authenticity is one of the most important evaluation factors of images for photography competitions or journalism. Unusual compression history of an image often implies the illicit intent of its author. Our work aims at distinguishing real uncompressed images from fake uncompressed images that are saved in uncompressed formats but have been previously compressed. To detect the potential image JPEG compression, we analyze the JPEG compression artifacts based on the tetrolet covering, which corresponds to the local image geometrical structure. Since the compression can alter the structure information, the tetrolet covering indexes may be changed if a compression is performed on the test image. Such changes can provide valuable clues about the image compression history. To be specific, the test image is first compressed with different quality factors to generate a set of temporary images. Then, the test image is compared with each temporary image block-by-block to investigate whether the tetrolet covering index of each 4×4 block is different between them. The percentages of the changed tetrolet covering indexes corresponding to the quality factors (from low to high) are computed and used to form the p-curve, the local minimum of which may indicate the potential compression. Our experimental results demonstrate the advantage of our method to detect JPEG compressions of high quality, even the highest quality factors such as 98, 99, or 100 of the standard JPEG compression, from uncompressed-format images. At the same time, our detection algorithm can accurately identify the corresponding compression quality factor.
Development of iterative techniques for the solution of unsteady compressible viscous flows
NASA Technical Reports Server (NTRS)
Hixon, Duane; Sankar, L. N.
1993-01-01
During the past two decades, there has been significant progress in the field of numerical simulation of unsteady compressible viscous flows. At present, a variety of solution techniques exist such as the transonic small disturbance analyses (TSD), transonic full potential equation-based methods, unsteady Euler solvers, and unsteady Navier-Stokes solvers. These advances have been made possible by developments in three areas: (1) improved numerical algorithms; (2) automation of body-fitted grid generation schemes; and (3) advanced computer architectures with vector processing and massively parallel processing features. In this work, the GMRES scheme has been considered as a candidate for acceleration of a Newton iteration time marching scheme for unsteady 2-D and 3-D compressible viscous flow calculation; from preliminary calculations, this will provide up to a 65 percent reduction in the computer time requirements over the existing class of explicit and implicit time marching schemes. The proposed method has ben tested on structured grids, but is flexible enough for extension to unstructured grids. The described scheme has been tested only on the current generation of vector processor architecture of the Cray Y/MP class, but should be suitable for adaptation to massively parallel machines.
NASA Astrophysics Data System (ADS)
Scolini, Camilla; Messerotti, Mauro; Poedts, Stefaan; Rodriguez, Luciano
2018-02-01
In this study we present a statistical analysis of 53 fast Earth-directed halo CMEs observed by the SOHO/LASCO instrument during the period Jan. 2009-Sep. 2015, and we use this CME sample to test the capabilities of a Sun-to-Earth prediction scheme for CME geoeffectiveness. First, we investigate the CME association with other solar activity features by means of multi-instrument observations of the solar magnetic and plasma properties. Second, using coronagraphic images to derive the CME kinematical properties at 0.1 AU, we propagate the events to 1 AU by means of the WSA-ENLIL+Cone model. Simulation results at Earth are compared with in-situ observations at L1. By applying the pressure balance condition at the magnetopause and a solar wind-Kp index coupling function, we estimate the expected magnetospheric compression and geomagnetic activity level, and compare them with global data records. The analysis indicates that 82% of the CMEs arrived at Earth in the next 4 days. Almost the totality of them compressed the magnetopause below geosynchronous orbits and triggered a geomagnetic storm. Complex sunspot-rich active regions associated with energetic flares result the most favourable configurations from which geoeffective CMEs originate. The analysis of related SEP events shows that 74% of the CMEs associated with major SEPs were geoeffective. Moreover, the SEP production is enhanced in the case of fast and interacting CMEs. In this work we present a first attempt at applying a Sun-to-Earth geoeffectiveness prediction scheme - based on 3D simulations and solar wind-geomagnetic activity coupling functions - to a statistical set of potentially geoeffective halo CMEs. The results of the prediction scheme are in good agreement with geomagnetic activity data records, although further studies performing a fine-tuning of such scheme are needed.
Compressive sampling by artificial neural networks for video
NASA Astrophysics Data System (ADS)
Szu, Harold; Hsu, Charles; Jenkins, Jeffrey; Reinhardt, Kitt
2011-06-01
We describe a smart surveillance strategy for handling novelty changes. Current sensors seem to keep all, redundant or not. The Human Visual System's Hubel-Wiesel (wavelet) edge detection mechanism pays attention to changes in movement, which naturally produce organized sparseness because a stagnant edge is not reported to the brain's visual cortex by retinal neurons. Sparseness is defined as an ordered set of ones (movement or not) relative to zeros that could be pseudo-orthogonal among themselves; then suited for fault tolerant storage and retrieval by means of Associative Memory (AM). The firing is sparse at the change locations. Unlike purely random sparse masks adopted in medical Compressive Sensing, these organized ones have an additional benefit of using the image changes to make retrievable graphical indexes. We coined this organized sparseness as Compressive Sampling; sensing but skipping over redundancy without altering the original image. Thus, we turn illustrate with video the survival tactics which animals that roam the Earth use daily. They acquire nothing but the space-time changes that are important to satisfy specific prey-predator relationships. We have noticed a similarity between the mathematical Compressive Sensing and this biological mechanism used for survival. We have designed a hardware implementation of the Human Visual System's Compressive Sampling scheme. To speed up further, our mixedsignal circuit design of frame differencing is built in on-chip processing hardware. A CMOS trans-conductance amplifier is designed here to generate a linear current output using a pair of differential input voltages from 2 photon detectors for change detection---one for the previous value and the other the subsequent value, ("write" synaptic weight by Hebbian outer products; "read" by inner product & pt. NL threshold) to localize and track the threat targets.
A Novel Method for Block Size Forensics Based on Morphological Operations
NASA Astrophysics Data System (ADS)
Luo, Weiqi; Huang, Jiwu; Qiu, Guoping
Passive forensics analysis aims to find out how multimedia data is acquired and processed without relying on pre-embedded or pre-registered information. Since most existing compression schemes for digital images are based on block processing, one of the fundamental steps for subsequent forensics analysis is to detect the presence of block artifacts and estimate the block size for a given image. In this paper, we propose a novel method for blind block size estimation. A 2×2 cross-differential filter is first applied to detect all possible block artifact boundaries, morphological operations are then used to remove the boundary effects caused by the edges of the actual image contents, and finally maximum-likelihood estimation (MLE) is employed to estimate the block size. The experimental results evaluated on over 1300 nature images show the effectiveness of our proposed method. Compared with existing gradient-based detection method, our method achieves over 39% accuracy improvement on average.
Application of content-based image compression to telepathology
NASA Astrophysics Data System (ADS)
Varga, Margaret J.; Ducksbury, Paul G.; Callagy, Grace
2002-05-01
Telepathology is a means of practicing pathology at a distance, viewing images on a computer display rather than directly through a microscope. Without compression, images take too long to transmit to a remote location and are very expensive to store for future examination. However, to date the use of compressed images in pathology remains controversial. This is because commercial image compression algorithms such as JPEG achieve data compression without knowledge of the diagnostic content. Often images are lossily compressed at the expense of corrupting informative content. None of the currently available lossy compression techniques are concerned with what information has been preserved and what data has been discarded. Their sole objective is to compress and transmit the images as fast as possible. By contrast, this paper presents a novel image compression technique, which exploits knowledge of the slide diagnostic content. This 'content based' approach combines visually lossless and lossy compression techniques, judiciously applying each in the appropriate context across an image so as to maintain 'diagnostic' information while still maximising the possible compression. Standard compression algorithms, e.g. wavelets, can still be used, but their use in a context sensitive manner can offer high compression ratios and preservation of diagnostically important information. When compared with lossless compression the novel content-based approach can potentially provide the same degree of information with a smaller amount of data. When compared with lossy compression it can provide more information for a given amount of compression. The precise gain in the compression performance depends on the application (e.g. database archive or second opinion consultation) and the diagnostic content of the images.
Fpack and Funpack Utilities for FITS Image Compression and Uncompression
NASA Technical Reports Server (NTRS)
Pence, W.
2008-01-01
Fpack is a utility program for optimally compressing images in the FITS (Flexible Image Transport System) data format (see http://fits.gsfc.nasa.gov). The associated funpack program restores the compressed image file back to its original state (as long as a lossless compression algorithm is used). These programs may be run from the host operating system command line and are analogous to the gzip and gunzip utility programs except that they are optimized for FITS format images and offer a wider choice of compression algorithms. Fpack stores the compressed image using the FITS tiled image compression convention (see http://fits.gsfc.nasa.gov/fits_registry.html). Under this convention, the image is first divided into a user-configurable grid of rectangular tiles, and then each tile is individually compressed and stored in a variable-length array column in a FITS binary table. By default, fpack usually adopts a row-by-row tiling pattern. The FITS image header keywords remain uncompressed for fast access by FITS reading and writing software. The tiled image compression convention can in principle support any number of different compression algorithms. The fpack and funpack utilities call on routines in the CFITSIO library (http://hesarc.gsfc.nasa.gov/fitsio) to perform the actual compression and uncompression of the FITS images, which currently supports the GZIP, Rice, H-compress, and PLIO IRAF pixel list compression algorithms.
Lightweight SIP/SDP compression scheme (LSSCS)
NASA Astrophysics Data System (ADS)
Wu, Jian J.; Demetrescu, Cristian
2001-10-01
In UMTS new IP based services with tight delay constraints will be deployed over the W-CDMA air interface such as IP multimedia and interactive services. To integrate the wireline and wireless IP services, 3GPP standard forum adopted the Session Initiation Protocol (SIP) as the call control protocol for the UMTS Release 5, which will implement next generation, all IP networks for real-time QoS services. In the current form the SIP protocol is not suitable for wireless transmission due to its large message size which will need either a big radio pipe for transmission or it will take far much longer to transmit than the current GSM Call Control (CC) message sequence. In this paper we present a novel compression algorithm called Lightweight SIP/SDP Compression Scheme (LSSCS), which acts at the SIP application layer and therefore removes the information redundancy before it is sent to the network and transport layer. A binary octet-aligned header is added to the compressed SIP/SDP message before sending it to the network layer. The receiver uses this binary header as well as the pre-cached information to regenerate the original SIP/SDP message. The key features of the LSSCS compression scheme are presented in this paper along with implementation examples. It is shown that this compression algorithm makes SIP transmission efficient over the radio interface without losing the SIP generality and flexibility.
Data Compression Using the Dictionary Approach Algorithm
1990-12-01
Compression Technique The LZ77 is an OPM/L data compression scheme suggested by Ziv and Lempel . A slightly modified...June 1984. 12. Witten H. I., Neal M. R. and Cleary G. J., Arithmetic Coding For Data Compression , Communication ACM June 1987. 13. Ziv I. and Lempel A...AD-A242 539 NAVAL POSTGRADUATE SCHOOL Monterey, California DTIC NOV 181991 0 THESIS DATA COMPRESSION USING THE DICTIONARY APPROACH ALGORITHM
Task-oriented lossy compression of magnetic resonance images
NASA Astrophysics Data System (ADS)
Anderson, Mark C.; Atkins, M. Stella; Vaisey, Jacques
1996-04-01
A new task-oriented image quality metric is used to quantify the effects of distortion introduced into magnetic resonance images by lossy compression. This metric measures the similarity between a radiologist's manual segmentation of pathological features in the original images and the automated segmentations performed on the original and compressed images. The images are compressed using a general wavelet-based lossy image compression technique, embedded zerotree coding, and segmented using a three-dimensional stochastic model-based tissue segmentation algorithm. The performance of the compression system is then enhanced by compressing different regions of the image volume at different bit rates, guided by prior knowledge about the location of important anatomical regions in the image. Application of the new system to magnetic resonance images is shown to produce compression results superior to the conventional methods, both subjectively and with respect to the segmentation similarity metric.
Probability density function approach for compressible turbulent reacting flows
NASA Technical Reports Server (NTRS)
Hsu, A. T.; Tsai, Y.-L. P.; Raju, M. S.
1994-01-01
The objective of the present work is to extend the probability density function (PDF) tubulence model to compressible reacting flows. The proability density function of the species mass fractions and enthalpy are obtained by solving a PDF evolution equation using a Monte Carlo scheme. The PDF solution procedure is coupled with a compression finite-volume flow solver which provides the velocity and pressure fields. A modeled PDF equation for compressible flows, capable of treating flows with shock waves and suitable to the present coupling scheme, is proposed and tested. Convergence of the combined finite-volume Monte Carlo solution procedure is discussed. Two super sonic diffusion flames are studied using the proposed PDF model and the results are compared with experimental data; marked improvements over solutions without PDF are observed.
Wavelet-based scalable L-infinity-oriented compression.
Alecu, Alin; Munteanu, Adrian; Cornelis, Jan P H; Schelkens, Peter
2006-09-01
Among the different classes of coding techniques proposed in literature, predictive schemes have proven their outstanding performance in near-lossless compression. However, these schemes are incapable of providing embedded L(infinity)-oriented compression, or, at most, provide a very limited number of potential L(infinity) bit-stream truncation points. We propose a new multidimensional wavelet-based L(infinity)-constrained scalable coding framework that generates a fully embedded L(infinity)-oriented bit stream and that retains the coding performance and all the scalability options of state-of-the-art L2-oriented wavelet codecs. Moreover, our codec instantiation of the proposed framework clearly outperforms JPEG2000 in L(infinity) coding sense.
Vector quantizer based on brightness maps for image compression with the polynomial transform
NASA Astrophysics Data System (ADS)
Escalante-Ramirez, Boris; Moreno-Gutierrez, Mauricio; Silvan-Cardenas, Jose L.
2002-11-01
We present a vector quantization scheme acting on brightness fields based on distance/distortion criteria correspondent with psycho-visual aspects. These criteria quantify sensorial distortion between vectors that represent either portions of a digital image or alternatively, coefficients of a transform-based coding system. In the latter case, we use an image representation model, namely the Hermite transform, that is based on some of the main perceptual characteristics of the human vision system (HVS) and in their response to light stimulus. Energy coding in the brightness domain, determination of local structure, code-book training and local orientation analysis are all obtained by means of the Hermite transform. This paper, for thematic reasons, is divided in four sections. The first one will shortly highlight the importance of having newer and better compression algorithms. This section will also serve to explain briefly the most relevant characteristics of the HVS, advantages and disadvantages related with the behavior of our vision in front of ocular stimulus. The second section shall go through a quick review of vector quantization techniques, focusing their performance on image treatment, as a preview for the image vector quantizer compressor actually constructed in section 5. Third chapter was chosen to concentrate the most important data gathered on brightness models. The building of this so-called brightness maps (quantification of the human perception on the visible objects reflectance), in a bi-dimensional model, will be addressed here. The Hermite transform, a special case of polynomial transforms, and its usefulness, will be treated, in an applicable discrete form, in the fourth chapter. As we have learned from previous works 1, Hermite transform has showed to be a useful and practical solution to efficiently code the energy within an image block, deciding which kind of quantization is to be used upon them (whether scalar or vector). It will also be a unique tool to structurally classify the image block within a given lattice. This particular operation intends to be one of the main contributions of this work. The fifth section will fuse the proposals derived from the study of the three main topics- addressed in the last sections- in order to propose an image compression model that takes advantage of vector quantizers inside the brightness transformed domain to determine the most important structures, finding the energy distribution inside the Hermite domain. Sixth and last section will show some results obtained while testing the coding-decoding model. The guidelines to evaluate the image compressing performance were the compression ratio, SNR and psycho-visual quality. Some conclusions derived from the research and possible unexplored paths will be shown on this section as well.
Fu, Chi-Yung; Petrich, Loren I.
1997-01-01
An image represented in a first image array of pixels is first decimated in two dimensions before being compressed by a predefined compression algorithm such as JPEG. Another possible predefined compression algorithm can involve a wavelet technique. The compressed, reduced image is then transmitted over the limited bandwidth transmission medium, and the transmitted image is decompressed using an algorithm which is an inverse of the predefined compression algorithm (such as reverse JPEG). The decompressed, reduced image is then interpolated back to its original array size. Edges (contours) in the image are then sharpened to enhance the perceptual quality of the reconstructed image. Specific sharpening techniques are described.
Spatial compression algorithm for the analysis of very large multivariate images
Keenan, Michael R [Albuquerque, NM
2008-07-15
A method for spatially compressing data sets enables the efficient analysis of very large multivariate images. The spatial compression algorithms use a wavelet transformation to map an image into a compressed image containing a smaller number of pixels that retain the original image's information content. Image analysis can then be performed on a compressed data matrix consisting of a reduced number of significant wavelet coefficients. Furthermore, a block algorithm can be used for performing common operations more efficiently. The spatial compression algorithms can be combined with spectral compression algorithms to provide further computational efficiencies.
A high-throughput two channel discrete wavelet transform architecture for the JPEG2000 standard
NASA Astrophysics Data System (ADS)
Badakhshannoory, Hossein; Hashemi, Mahmoud R.; Aminlou, Alireza; Fatemi, Omid
2005-07-01
The Discrete Wavelet Transform (DWT) is increasingly recognized in image and video compression standards, as indicated by its use in JPEG2000. The lifting scheme algorithm is an alternative DWT implementation that has a lower computational complexity and reduced resource requirement. In the JPEG2000 standard two lifting scheme based filter banks are introduced: the 5/3 and 9/7. In this paper a high throughput, two channel DWT architecture for both of the JPEG2000 DWT filters is presented. The proposed pipelined architecture has two separate input channels that process the incoming samples simultaneously with minimum memory requirement for each channel. The architecture had been implemented in VHDL and synthesized on a Xilinx Virtex2 XCV1000. The proposed architecture applies DWT on a 2K by 1K image at 33 fps with a 75 MHZ clock frequency. This performance is achieved with 70% less resources than two independent single channel modules. The high throughput and reduced resource requirement has made this architecture the proper choice for real time applications such as Digital Cinema.
Yin, Jun; Yang, Yuwang; Wang, Lei
2016-04-01
Joint design of compressed sensing (CS) and network coding (NC) has been demonstrated to provide a new data gathering paradigm for multi-hop wireless sensor networks (WSNs). By exploiting the correlation of the network sensed data, a variety of data gathering schemes based on NC and CS (Compressed Data Gathering--CDG) have been proposed. However, these schemes assume that the sparsity of the network sensed data is constant and the value of the sparsity is known before starting each data gathering epoch, thus they ignore the variation of the data observed by the WSNs which are deployed in practical circumstances. In this paper, we present a complete design of the feedback CDG scheme where the sink node adaptively queries those interested nodes to acquire an appropriate number of measurements. The adaptive measurement-formation procedure and its termination rules are proposed and analyzed in detail. Moreover, in order to minimize the number of overall transmissions in the formation procedure of each measurement, we have developed a NP-complete model (Maximum Leaf Nodes Minimum Steiner Nodes--MLMS) and realized a scalable greedy algorithm to solve the problem. Experimental results show that the proposed measurement-formation method outperforms previous schemes, and experiments on both datasets from ocean temperature and practical network deployment also prove the effectiveness of our proposed feedback CDG scheme.
Transform coding for hardware-accelerated volume rendering.
Fout, Nathaniel; Ma, Kwan-Liu
2007-01-01
Hardware-accelerated volume rendering using the GPU is now the standard approach for real-time volume rendering, although limited graphics memory can present a problem when rendering large volume data sets. Volumetric compression in which the decompression is coupled to rendering has been shown to be an effective solution to this problem; however, most existing techniques were developed in the context of software volume rendering, and all but the simplest approaches are prohibitive in a real-time hardware-accelerated volume rendering context. In this paper we present a novel block-based transform coding scheme designed specifically with real-time volume rendering in mind, such that the decompression is fast without sacrificing compression quality. This is made possible by consolidating the inverse transform with dequantization in such a way as to allow most of the reprojection to be precomputed. Furthermore, we take advantage of the freedom afforded by off-line compression in order to optimize the encoding as much as possible while hiding this complexity from the decoder. In this context we develop a new block classification scheme which allows us to preserve perceptually important features in the compression. The result of this work is an asymmetric transform coding scheme that allows very large volumes to be compressed and then decompressed in real-time while rendering on the GPU.
CFD and Aeroelastic Analysis of the MEXICO Wind Turbine
NASA Astrophysics Data System (ADS)
Carrión, M.; Woodgate, M.; Steijl, R.; Barakos, G.; Gómez-Iradi, S.; Munduate, X.
2014-12-01
This paper presents an aerodynamic and aeroelastic analysis of the MEXICO wind turbine, using the compressible HMB solver of Liverpool. The aeroelasticity of the blade, as well as the effect of a low-Mach scheme were studied for the zero-yaw 15m/s wind case and steady- state computations. The wake developed behind the rotor was also extracted and compared with the experimental data, using the compressible solver and a low-Mach scheme. It was found that the loads were not sensitive to the Mach number effects, although the low-Mach scheme improved the wake predictions. The sensitivity of the results to the blade structural properties was also highlighted.
NASA Astrophysics Data System (ADS)
Pont, Grégoire; Brenner, Pierre; Cinnella, Paola; Maugars, Bruno; Robinet, Jean-Christophe
2017-12-01
A Godunov's type unstructured finite volume method suitable for highly compressible turbulent scale-resolving simulations around complex geometries is constructed by using a successive correction technique. First, a family of k-exact Godunov schemes is developed by recursively correcting the truncation error of the piecewise polynomial representation of the primitive variables. The keystone of the proposed approach is a quasi-Green gradient operator which ensures consistency on general meshes. In addition, a high-order single-point quadrature formula, based on high-order approximations of the successive derivatives of the solution, is developed for flux integration along cell faces. The proposed family of schemes is compact in the algorithmic sense, since it only involves communications between direct neighbors of the mesh cells. The numerical properties of the schemes up to fifth-order are investigated, with focus on their resolvability in terms of number of mesh points required to resolve a given wavelength accurately. Afterwards, in the aim of achieving the best possible trade-off between accuracy, computational cost and robustness in view of industrial flow computations, we focus more specifically on the third-order accurate scheme of the family, and modify locally its numerical flux in order to reduce the amount of numerical dissipation in vortex-dominated regions. This is achieved by switching from the upwind scheme, mostly applied in highly compressible regions, to a fourth-order centered one in vortex-dominated regions. An analytical switch function based on the local grid Reynolds number is adopted in order to warrant numerical stability of the recentering process. Numerical applications demonstrate the accuracy and robustness of the proposed methodology for compressible scale-resolving computations. In particular, supersonic RANS/LES computations of the flow over a cavity are presented to show the capability of the scheme to predict flows with shocks, vortical structures and complex geometries.
QualComp: a new lossy compressor for quality scores based on rate distortion theory
2013-01-01
Background Next Generation Sequencing technologies have revolutionized many fields in biology by reducing the time and cost required for sequencing. As a result, large amounts of sequencing data are being generated. A typical sequencing data file may occupy tens or even hundreds of gigabytes of disk space, prohibitively large for many users. This data consists of both the nucleotide sequences and per-base quality scores that indicate the level of confidence in the readout of these sequences. Quality scores account for about half of the required disk space in the commonly used FASTQ format (before compression), and therefore the compression of the quality scores can significantly reduce storage requirements and speed up analysis and transmission of sequencing data. Results In this paper, we present a new scheme for the lossy compression of the quality scores, to address the problem of storage. Our framework allows the user to specify the rate (bits per quality score) prior to compression, independent of the data to be compressed. Our algorithm can work at any rate, unlike other lossy compression algorithms. We envisage our algorithm as being part of a more general compression scheme that works with the entire FASTQ file. Numerical experiments show that we can achieve a better mean squared error (MSE) for small rates (bits per quality score) than other lossy compression schemes. For the organism PhiX, whose assembled genome is known and assumed to be correct, we show that it is possible to achieve a significant reduction in size with little compromise in performance on downstream applications (e.g., alignment). Conclusions QualComp is an open source software package, written in C and freely available for download at https://sourceforge.net/projects/qualcomp. PMID:23758828
Piippo-Huotari, Oili; Norrman, Eva; Anderzén-Carlsson, Agneta; Geijer, Håkan
2018-05-01
The radiation dose for patients can be reduced with many methods and one way is to use abdominal compression. In this study, the radiation dose and image quality for a new patient-controlled compression device were compared with conventional compression and compression in the prone position . To compare radiation dose and image quality of patient-controlled compression compared with conventional and prone compression in general radiography. An experimental design with quantitative approach. After obtaining the approval of the ethics committee, a consecutive sample of 48 patients was examined with the standard clinical urography protocol. The radiation doses were measured as dose-area product and analyzed with a paired t-test. The image quality was evaluated by visual grading analysis. Four radiologists evaluated each image individually by scoring nine criteria modified from the European quality criteria for diagnostic radiographic images. There was no significant difference in radiation dose or image quality between conventional and patient-controlled compression. Prone position resulted in both higher dose and inferior image quality. Patient-controlled compression gave similar dose levels as conventional compression and lower than prone compression. Image quality was similar with both patient-controlled and conventional compression and was judged to be better than in the prone position.
Central Upwind Scheme for a Compressible Two-Phase Flow Model
Ahmed, Munshoor; Saleem, M. Rehan; Zia, Saqib; Qamar, Shamsul
2015-01-01
In this article, a compressible two-phase reduced five-equation flow model is numerically investigated. The model is non-conservative and the governing equations consist of two equations describing the conservation of mass, one for overall momentum and one for total energy. The fifth equation is the energy equation for one of the two phases and it includes source term on the right-hand side which represents the energy exchange between two fluids in the form of mechanical and thermodynamical work. For the numerical approximation of the model a high resolution central upwind scheme is implemented. This is a non-oscillatory upwind biased finite volume scheme which does not require a Riemann solver at each time step. Few numerical case studies of two-phase flows are presented. For validation and comparison, the same model is also solved by using kinetic flux-vector splitting (KFVS) and staggered central schemes. It was found that central upwind scheme produces comparable results to the KFVS scheme. PMID:26039242
Central upwind scheme for a compressible two-phase flow model.
Ahmed, Munshoor; Saleem, M Rehan; Zia, Saqib; Qamar, Shamsul
2015-01-01
In this article, a compressible two-phase reduced five-equation flow model is numerically investigated. The model is non-conservative and the governing equations consist of two equations describing the conservation of mass, one for overall momentum and one for total energy. The fifth equation is the energy equation for one of the two phases and it includes source term on the right-hand side which represents the energy exchange between two fluids in the form of mechanical and thermodynamical work. For the numerical approximation of the model a high resolution central upwind scheme is implemented. This is a non-oscillatory upwind biased finite volume scheme which does not require a Riemann solver at each time step. Few numerical case studies of two-phase flows are presented. For validation and comparison, the same model is also solved by using kinetic flux-vector splitting (KFVS) and staggered central schemes. It was found that central upwind scheme produces comparable results to the KFVS scheme.
LES of Temporally Evolving Mixing Layers by Three High Order Schemes
NASA Astrophysics Data System (ADS)
Yee, H.; Sjögreen, B.; Hadjadj, A.
2011-10-01
The performance of three high order shock-capturing schemes is compared for large eddy simulations (LES) of temporally evolving mixing layers for different convective Mach number (Mc) ranging from the quasi-incompressible regime to highly compressible supersonic regime. The considered high order schemes are fifth-order WENO (WENO5), seventh-order WENO (WENO7), and the associated eighth-order central spatial base scheme with the dissipative portion of WENO7 as a nonlinear post-processing filter step (WENO7fi). This high order nonlinear filter method (Yee & Sjögreen 2009) is designed for accurate and efficient simulations of shock-free compressible turbulence, turbulence with shocklets and turbulence with strong shocks with minimum tuning of scheme parameters. The LES results by WENO7fi using the same scheme parameter agree well with experimental results of Barone et al. (2006), and published direct numerical simulations (DNS) by Rogers & Moser (1994) and Pantano & Sarkar (2002), whereas results by WENO5 and WENO7 compare poorly with experimental data and DNS computations.
New adaptive color quantization method based on self-organizing maps.
Chang, Chip-Hong; Xu, Pengfei; Xiao, Rui; Srikanthan, Thambipillai
2005-01-01
Color quantization (CQ) is an image processing task popularly used to convert true color images to palletized images for limited color display devices. To minimize the contouring artifacts introduced by the reduction of colors, a new competitive learning (CL) based scheme called the frequency sensitive self-organizing maps (FS-SOMs) is proposed to optimize the color palette design for CQ. FS-SOM harmonically blends the neighborhood adaptation of the well-known self-organizing maps (SOMs) with the neuron dependent frequency sensitive learning model, the global butterfly permutation sequence for input randomization, and the reinitialization of dead neurons to harness effective utilization of neurons. The net effect is an improvement in adaptation, a well-ordered color palette, and the alleviation of underutilization problem, which is the main cause of visually perceivable artifacts of CQ. Extensive simulations have been performed to analyze and compare the learning behavior and performance of FS-SOM against other vector quantization (VQ) algorithms. The results show that the proposed FS-SOM outperforms classical CL, Linde, Buzo, and Gray (LBG), and SOM algorithms. More importantly, FS-SOM achieves its superiority in reconstruction quality and topological ordering with a much greater robustness against variations in network parameters than the current art SOM algorithm for CQ. A most significant bit (MSB) biased encoding scheme is also introduced to reduce the number of parallel processing units. By mapping the pixel values as sign-magnitude numbers and biasing the magnitudes according to their sign bits, eight lattice points in the color space are condensed into one common point density function. Consequently, the same processing element can be used to map several color clusters and the entire FS-SOM network can be substantially scaled down without severely scarifying the quality of the displayed image. The drawback of this encoding scheme is the additional storage overhead, which can be cut down by leveraging on existing encoder in an overall lossy compression scheme.
Fukatsu, Hiroshi; Naganawa, Shinji; Yumura, Shinnichiro
2008-04-01
This study was aimed to validate the performance of a novel image compression method using a neural network to achieve a lossless compression. The encoding consists of the following blocks: a prediction block; a residual data calculation block; a transformation and quantization block; an organization and modification block; and an entropy encoding block. The predicted image is divided into four macro-blocks using the original image for teaching; and then redivided into sixteen sub-blocks. The predicted image is compared to the original image to create the residual image. The spatial and frequency data of the residual image are compared and transformed. Chest radiography, computed tomography (CT), magnetic resonance imaging, positron emission tomography, radioisotope mammography, ultrasonography, and digital subtraction angiography images were compressed using the AIC lossless compression method; and the compression rates were calculated. The compression rates were around 15:1 for chest radiography and mammography, 12:1 for CT, and around 6:1 for other images. This method thus enables greater lossless compression than the conventional methods. This novel method should improve the efficiency of handling of the increasing volume of medical imaging data.
Image splitting and remapping method for radiological image compression
NASA Astrophysics Data System (ADS)
Lo, Shih-Chung B.; Shen, Ellen L.; Mun, Seong K.
1990-07-01
A new decomposition method using image splitting and gray-level remapping has been proposed for image compression, particularly for images with high contrast resolution. The effects of this method are especially evident in our radiological image compression study. In our experiments, we tested the impact of this decomposition method on image compression by employing it with two coding techniques on a set of clinically used CT images and several laser film digitized chest radiographs. One of the compression techniques used was full-frame bit-allocation in the discrete cosine transform domain, which has been proven to be an effective technique for radiological image compression. The other compression technique used was vector quantization with pruned tree-structured encoding, which through recent research has also been found to produce a low mean-square-error and a high compression ratio. The parameters we used in this study were mean-square-error and the bit rate required for the compressed file. In addition to these parameters, the difference between the original and reconstructed images will be presented so that the specific artifacts generated by both techniques can be discerned by visual perception.
Development of iterative techniques for the solution of unsteady compressible viscous flows
NASA Technical Reports Server (NTRS)
Sankar, Lakshmi N.; Hixon, Duane
1992-01-01
The development of efficient iterative solution methods for the numerical solution of two- and three-dimensional compressible Navier-Stokes equations is discussed. Iterative time marching methods have several advantages over classical multi-step explicit time marching schemes, and non-iterative implicit time marching schemes. Iterative schemes have better stability characteristics than non-iterative explicit and implicit schemes. In this work, another approach based on the classical conjugate gradient method, known as the Generalized Minimum Residual (GMRES) algorithm is investigated. The GMRES algorithm has been used in the past by a number of researchers for solving steady viscous and inviscid flow problems. Here, we investigate the suitability of this algorithm for solving the system of non-linear equations that arise in unsteady Navier-Stokes solvers at each time step.
Fu, C.Y.; Petrich, L.I.
1997-12-30
An image represented in a first image array of pixels is first decimated in two dimensions before being compressed by a predefined compression algorithm such as JPEG. Another possible predefined compression algorithm can involve a wavelet technique. The compressed, reduced image is then transmitted over the limited bandwidth transmission medium, and the transmitted image is decompressed using an algorithm which is an inverse of the predefined compression algorithm (such as reverse JPEG). The decompressed, reduced image is then interpolated back to its original array size. Edges (contours) in the image are then sharpened to enhance the perceptual quality of the reconstructed image. Specific sharpening techniques are described. 22 figs.
Prediction of compression-induced image interpretability degradation
NASA Astrophysics Data System (ADS)
Blasch, Erik; Chen, Hua-Mei; Irvine, John M.; Wang, Zhonghai; Chen, Genshe; Nagy, James; Scott, Stephen
2018-04-01
Image compression is an important component in modern imaging systems as the volume of the raw data collected is increasing. To reduce the volume of data while collecting imagery useful for analysis, choosing the appropriate image compression method is desired. Lossless compression is able to preserve all the information, but it has limited reduction power. On the other hand, lossy compression, which may result in very high compression ratios, suffers from information loss. We model the compression-induced information loss in terms of the National Imagery Interpretability Rating Scale or NIIRS. NIIRS is a user-based quantification of image interpretability widely adopted by the Geographic Information System community. Specifically, we present the Compression Degradation Image Function Index (CoDIFI) framework that predicts the NIIRS degradation (i.e., a decrease of NIIRS level) for a given compression setting. The CoDIFI-NIIRS framework enables a user to broker the maximum compression setting while maintaining a specified NIIRS rating.
NASA Astrophysics Data System (ADS)
Wang, Dan; Yan, Lixin; Du, YingChao; Huang, Wenhui; Gai, Wei; Tang, Chuanxiang
2018-02-01
Premodulated comblike electron bunch trains are used in a wide range of research fields, such as for wakefield-based particle acceleration and tunable radiation sources. We propose an optimized compression scheme for bunch trains in which a traveling wave accelerator tube and a downstream drift segment are together used as a compressor. When the phase injected into the accelerator tube for the bunch train is set to ≪-10 0 ° , velocity bunching occurs in a deep overcompression mode, which reverses the phase space and maintains a velocity difference within the injected beam, thereby giving rise to a compressed comblike electron bunch train after a few-meter-long drift segment; we call this the deep overcompression scheme. The main benefits of this scheme are the relatively large phase acceptance and the uniformity of compression for the bunch train. The comblike bunch train generated via this scheme is widely tunable: For the two-bunch case, the energy and time spacings can be continuously adjusted from +1 to -1 MeV and from 13 to 3 ps, respectively, by varying the injected phase of the bunch train from -22 0 ° to -14 0 ° . Both theoretical analysis and beam dynamics simulations are presented to study the properties of the deep overcompression scheme.
Compressed domain indexing of losslessly compressed images
NASA Astrophysics Data System (ADS)
Schaefer, Gerald
2001-12-01
Image retrieval and image compression have been pursued separately in the past. Only little research has been done on a synthesis of the two by allowing image retrieval to be performed directly in the compressed domain of images without the need to uncompress them first. In this paper methods for image retrieval in the compressed domain of losslessly compressed images are introduced. While most image compression techniques are lossy, i.e. discard visually less significant information, lossless techniques are still required in fields like medical imaging or in situations where images must not be changed due to legal reasons. The algorithms in this paper are based on predictive coding methods where a pixel is encoded based on the pixel values of its (already encoded) neighborhood. The first method is based on an understanding that predictively coded data is itself indexable and represents a textural description of the image. The second method operates directly on the entropy encoded data by comparing codebooks of images. Experiments show good image retrieval results for both approaches.
NASA Astrophysics Data System (ADS)
Ohwada, Taku; Shibata, Yuki; Kato, Takuma; Nakamura, Taichi
2018-06-01
Developed is a high-order accurate shock-capturing scheme for the compressible Euler/Navier-Stokes equations; the formal accuracy is 5th order in space and 4th order in time. The performance and efficiency of the scheme are validated in various numerical tests. The main ingredients of the scheme are nothing special; they are variants of the standard numerical flux, MUSCL, the usual Lagrange's polynomial and the conventional Runge-Kutta method. The scheme can compute a boundary layer accurately with a rational resolution and capture a stationary contact discontinuity sharply without inner points. And yet it is endowed with high resistance against shock anomalies (carbuncle phenomenon, post-shock oscillations, etc.). A good balance between high robustness and low dissipation is achieved by blending three types of numerical fluxes according to physical situation in an intuitively easy-to-understand way. The performance of the scheme is largely comparable to that of WENO5-Rusanov, while its computational cost is 30-40% less than of that of the advanced scheme.
A comparison of select image-compression algorithms for an electronic still camera
NASA Technical Reports Server (NTRS)
Nerheim, Rosalee
1989-01-01
This effort is a study of image-compression algorithms for an electronic still camera. An electronic still camera can record and transmit high-quality images without the use of film, because images are stored digitally in computer memory. However, high-resolution images contain an enormous amount of information, and will strain the camera's data-storage system. Image compression will allow more images to be stored in the camera's memory. For the electronic still camera, a compression algorithm that produces a reconstructed image of high fidelity is most important. Efficiency of the algorithm is the second priority. High fidelity and efficiency are more important than a high compression ratio. Several algorithms were chosen for this study and judged on fidelity, efficiency and compression ratio. The transform method appears to be the best choice. At present, the method is compressing images to a ratio of 5.3:1 and producing high-fidelity reconstructed images.
Galiana, Gigi; Constable, R. Todd
2014-01-01
Purpose Previous nonlinear gradient research has focused on trajectories that reconstruct images with a minimum number of echoes. Here we describe sequences where the nonlinear gradients vary in time to acquire the image in a single readout. The readout is designed to be very smooth so that it can be compressed to minimal time without violating peripheral nerve stimulation limits, yielding an image from a single 4 ms echo. Theory and Methods This sequence was inspired by considering the code of each voxel, i.e. the phase accumulation that a voxel follows through the readout, an approach connected to traditional encoding theory. We present simulations for the initial sequence, a low slew rate analog, and higher resolution reconstructions. Results Extremely fast acquisitions are achievable, though as one would expect, SNR is reduced relative to the slower Cartesian sampling schemes because of the high gradient strengths. Conclusions The prospect that nonlinear gradients can acquire images in a single <10 ms echo makes this a novel and interesting approach to image encoding. PMID:24465837
Fast and accurate face recognition based on image compression
NASA Astrophysics Data System (ADS)
Zheng, Yufeng; Blasch, Erik
2017-05-01
Image compression is desired for many image-related applications especially for network-based applications with bandwidth and storage constraints. The face recognition community typical reports concentrate on the maximal compression rate that would not decrease the recognition accuracy. In general, the wavelet-based face recognition methods such as EBGM (elastic bunch graph matching) and FPB (face pattern byte) are of high performance but run slowly due to their high computation demands. The PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis) algorithms run fast but perform poorly in face recognition. In this paper, we propose a novel face recognition method based on standard image compression algorithm, which is termed as compression-based (CPB) face recognition. First, all gallery images are compressed by the selected compression algorithm. Second, a mixed image is formed with the probe and gallery images and then compressed. Third, a composite compression ratio (CCR) is computed with three compression ratios calculated from: probe, gallery and mixed images. Finally, the CCR values are compared and the largest CCR corresponds to the matched face. The time cost of each face matching is about the time of compressing the mixed face image. We tested the proposed CPB method on the "ASUMSS face database" (visible and thermal images) from 105 subjects. The face recognition accuracy with visible images is 94.76% when using JPEG compression. On the same face dataset, the accuracy of FPB algorithm was reported as 91.43%. The JPEG-compressionbased (JPEG-CPB) face recognition is standard and fast, which may be integrated into a real-time imaging device.
A database for assessment of effect of lossy compression on digital mammograms
NASA Astrophysics Data System (ADS)
Wang, Jiheng; Sahiner, Berkman; Petrick, Nicholas; Pezeshk, Aria
2018-03-01
With widespread use of screening digital mammography, efficient storage of the vast amounts of data has become a challenge. While lossless image compression causes no risk to the interpretation of the data, it does not allow for high compression rates. Lossy compression and the associated higher compression ratios are therefore more desirable. The U.S. Food and Drug Administration (FDA) currently interprets the Mammography Quality Standards Act as prohibiting lossy compression of digital mammograms for primary image interpretation, image retention, or transfer to the patient or her designated recipient. Previous work has used reader studies to determine proper usage criteria for evaluating lossy image compression in mammography, and utilized different measures and metrics to characterize medical image quality. The drawback of such studies is that they rely on a threshold on compression ratio as the fundamental criterion for preserving the quality of images. However, compression ratio is not a useful indicator of image quality. On the other hand, many objective image quality metrics (IQMs) have shown excellent performance for natural image content for consumer electronic applications. In this paper, we create a new synthetic mammogram database with several unique features. We compare and characterize the impact of image compression on several clinically relevant image attributes such as perceived contrast and mass appearance for different kinds of masses. We plan to use this database to develop a new objective IQM for measuring the quality of compressed mammographic images to help determine the allowed maximum compression for different kinds of breasts and masses in terms of visual and diagnostic quality.
Mache: No-Loss Trace Compaction
1988-09-15
Data Compression . IEEE Computer 176 (June 1984), 8-19. 10. ZIV , J. AND LEMPEL , A. A Universal Algorithm for Sequential Data Com- pression. IEEE... compression scheme which takes ad- vantage of repeating patterns in the sequence of bytes. I have used the Lempel - Ziv compression algorithm [9,10,11...Transactions on Information Theory 23 (1976), 75-81. 11. ZIV , J. AND LEMPEL , A. Compression of Individual Sequences via Variable-
Digital data registration and differencing compression system
NASA Technical Reports Server (NTRS)
Ransford, Gary A. (Inventor); Cambridge, Vivien J. (Inventor)
1990-01-01
A process is disclosed for x ray registration and differencing which results in more efficient compression. Differencing of registered modeled subject image with a modeled reference image forms a differenced image for compression with conventional compression algorithms. Obtention of a modeled reference image includes modeling a relatively unrelated standard reference image upon a three-dimensional model, which three-dimensional model is also used to model the subject image for obtaining the modeled subject image. The registration process of the modeled subject image and modeled reference image translationally correlates such modeled images for resulting correlation thereof in spatial and spectral dimensions. Prior to compression, a portion of the image falling outside a designated area of interest may be eliminated, for subsequent replenishment with a standard reference image. The compressed differenced image may be subsequently transmitted and/or stored, for subsequent decompression and addition to a standard reference image so as to form a reconstituted or approximated subject image at either a remote location and/or at a later moment in time. Overall effective compression ratios of 100:1 are possible for thoracic x ray digital images.
Digital Data Registration and Differencing Compression System
NASA Technical Reports Server (NTRS)
Ransford, Gary A. (Inventor); Cambridge, Vivien J. (Inventor)
1996-01-01
A process for X-ray registration and differencing results in more efficient compression. Differencing of registered modeled subject image with a modeled reference image forms a differenced image for compression with conventional compression algorithms. Obtention of a modeled reference image includes modeling a relatively unrelated standard reference image upon a three-dimensional model, which three-dimensional model is also used to model the subject image for obtaining the modeled subject image. The registration process of the modeled subject image and modeled reference image translationally correlates such modeled images for resulting correlation thereof in spatial and spectral dimensions. Prior to compression, a portion of the image falling outside a designated area of interest may be eliminated, for subsequent replenishment with a standard reference image. The compressed differenced image may be subsequently transmitted and/or stored, for subsequent decompression and addition to a standard reference image so as to form a reconstituted or approximated subject image at either a remote location and/or at a later moment in time. Overall effective compression ratios of 100:1 are possible for thoracic X-ray digital images.
Digital data registration and differencing compression system
NASA Technical Reports Server (NTRS)
Ransford, Gary A. (Inventor); Cambridge, Vivien J. (Inventor)
1992-01-01
A process for x ray registration and differencing results in more efficient compression is discussed. Differencing of registered modeled subject image with a modeled reference image forms a differential image for compression with conventional compression algorithms. Obtention of a modeled reference image includes modeling a relatively unrelated standard reference image upon a three dimensional model, which three dimensional model is also used to model the subject image for obtaining the modeled subject image. The registration process of the modeled subject image and modeled reference image translationally correlates such modeled images for resulting correlation thereof in spatial and spectral dimensions. Prior to compression, a portion of the image falling outside a designated area of interest may be eliminated, for subsequent replenishment with a standard reference image. The compressed differenced image may be subsequently transmitted and/or stored, for subsequent decompression and addition to a standard reference image so as to form a reconstituted or approximated subject image at either remote location and/or at a later moment in time. Overall effective compression ratios of 100:1 are possible for thoracic x ray digital images.
An Adaptive Prediction-Based Approach to Lossless Compression of Floating-Point Volume Data.
Fout, N; Ma, Kwan-Liu
2012-12-01
In this work, we address the problem of lossless compression of scientific and medical floating-point volume data. We propose two prediction-based compression methods that share a common framework, which consists of a switched prediction scheme wherein the best predictor out of a preset group of linear predictors is selected. Such a scheme is able to adapt to different datasets as well as to varying statistics within the data. The first method, called APE (Adaptive Polynomial Encoder), uses a family of structured interpolating polynomials for prediction, while the second method, which we refer to as ACE (Adaptive Combined Encoder), combines predictors from previous work with the polynomial predictors to yield a more flexible, powerful encoder that is able to effectively decorrelate a wide range of data. In addition, in order to facilitate efficient visualization of compressed data, our scheme provides an option to partition floating-point values in such a way as to provide a progressive representation. We compare our two compressors to existing state-of-the-art lossless floating-point compressors for scientific data, with our data suite including both computer simulations and observational measurements. The results demonstrate that our polynomial predictor, APE, is comparable to previous approaches in terms of speed but achieves better compression rates on average. ACE, our combined predictor, while somewhat slower, is able to achieve the best compression rate on all datasets, with significantly better rates on most of the datasets.
NASA Astrophysics Data System (ADS)
Gong, Lihua; Deng, Chengzhi; Pan, Shumin; Zhou, Nanrun
2018-07-01
Based on hyper-chaotic system and discrete fractional random transform, an image compression-encryption algorithm is designed. The original image is first transformed into a spectrum by the discrete cosine transform and the resulting spectrum is compressed according to the method of spectrum cutting. The random matrix of the discrete fractional random transform is controlled by a chaotic sequence originated from the high dimensional hyper-chaotic system. Then the compressed spectrum is encrypted by the discrete fractional random transform. The order of DFrRT and the parameters of the hyper-chaotic system are the main keys of this image compression and encryption algorithm. The proposed algorithm can compress and encrypt image signal, especially can encrypt multiple images once. To achieve the compression of multiple images, the images are transformed into spectra by the discrete cosine transform, and then the spectra are incised and spliced into a composite spectrum by Zigzag scanning. Simulation results demonstrate that the proposed image compression and encryption algorithm is of high security and good compression performance.
Hage, Ilige S; Hamade, Ramsey F
2017-09-01
Microscale lacunar-canalicular (L-C) porosity is a major contributor to intracortical bone stiffness variability. In this work, such variability is investigated experimentally using micro hardness indentation tests and numerically using a homogenization scheme. Cross sectional rings of cortical bones are cut from the middle tubular part of bovine femur long bone at mid-diaphysis. A series of light microscopy images are taken along a line emanating from the cross-section center starting from the ring's interior (endosteum) ring surface toward the ring's exterior (periosteum) ring surface. For each image in the line, computer vision analysis of porosity is conducted employing an image segmentation methodology based on pulse coupled neural networks (PCNN) recently developed by the authors. Determined are size and shape of each of the lacunar-canalicular (L-C) cortical micro constituents: lacunae, canaliculi, and Haversian canals. Consequently, it was possible to segment and quantify the geometrical attributes of all individual segmented pores leading to accurate determination of derived geometrical measures such as L-C cortical pores' total porosity (pore volume fraction), (elliptical) aspect ratio, orientation, location, and number of pores in secondary and primary osteons. Porosity was found to be unevenly (but linearly) distributed along the interior and exterior regions of the intracortical bone. The segmented L-C porosity data is passed to a numerical microscale-based homogenization scheme, also recently developed by the authors, that analyses a composite made up of lamella matrix punctuated by multi-inclusions and returns corresponding values for longitudinal and transverse Young's modulus (matrix stiffness) for these micro-sized spatial locations. Hence, intracortical stiffness variability is numerically quantified using a combination of computer vision program and numerical homogenization code. These numerically found stiffness values of the homogenization solution are corroborated experimentally using microhardness indentation measurements taken at the same points that the digital images were taken along a radial distance emanating from the interior (endosteum) surface toward the bone's exterior (periosteum) surface. Good agreement was found between numerically calculated and indentation measured stiffness of Intracortical lamellae. Both indentation measurements and numerical solutions of matrix stiffness showed increasing linear trend of compressive longitudinal modulus (E11) values vs. radial position for both interior and exterior regions. In the interior (exterior) region of cortical bone, stiffness modulus values were found to range from 18.5 to 23.4 GPa (23 to 26.0 GPa) with the aggregate stiffness of the cortical lamella in the exterior region being 12% stiffer than that in the interior region. In order to further validate these findings, experimental and FEM simulation of a mid-diaphysis bone ring under compression is employed. The FEM numerical deflections employed nine concentric regions across the thickness with graded stiffness values based on the digital segmentation and homogenization scheme. Bone ring deflections are found to agree well with measured deformations of the compression bone ring.
Optimal Compression of Floating-Point Astronomical Images Without Significant Loss of Information
NASA Technical Reports Server (NTRS)
Pence, William D.; White, R. L.; Seaman, R.
2010-01-01
We describe a compression method for floating-point astronomical images that gives compression ratios of 6 - 10 while still preserving the scientifically important information in the image. The pixel values are first preprocessed by quantizing them into scaled integer intensity levels, which removes some of the uncompressible noise in the image. The integers are then losslessly compressed using the fast and efficient Rice algorithm and stored in a portable FITS format file. Quantizing an image more coarsely gives greater image compression, but it also increases the noise and degrades the precision of the photometric and astrometric measurements in the quantized image. Dithering the pixel values during the quantization process greatly improves the precision of measurements in the more coarsely quantized images. We perform a series of experiments on both synthetic and real astronomical CCD images to quantitatively demonstrate that the magnitudes and positions of stars in the quantized images can be measured with the predicted amount of precision. In order to encourage wider use of these image compression methods, we have made available a pair of general-purpose image compression programs, called fpack and funpack, which can be used to compress any FITS format image.
Widefield compressive multiphoton microscopy.
Alemohammad, Milad; Shin, Jaewook; Tran, Dung N; Stroud, Jasper R; Chin, Sang Peter; Tran, Trac D; Foster, Mark A
2018-06-15
A single-pixel compressively sensed architecture is exploited to simultaneously achieve a 10× reduction in acquired data compared with the Nyquist rate, while alleviating limitations faced by conventional widefield temporal focusing microscopes due to scattering of the fluorescence signal. Additionally, we demonstrate an adaptive sampling scheme that further improves the compression and speed of our approach.
Compression for radiological images
NASA Astrophysics Data System (ADS)
Wilson, Dennis L.
1992-07-01
The viewing of radiological images has peculiarities that must be taken into account in the design of a compression technique. The images may be manipulated on a workstation to change the contrast, to change the center of the brightness levels that are viewed, and even to invert the images. Because of the possible consequences of losing information in a medical application, bit preserving compression is used for the images used for diagnosis. However, for archiving the images may be compressed to 10 of their original size. A compression technique based on the Discrete Cosine Transform (DCT) takes the viewing factors into account by compressing the changes in the local brightness levels. The compression technique is a variation of the CCITT JPEG compression that suppresses the blocking of the DCT except in areas of very high contrast.
Comparisons of linear and nonlinear pyramid schemes for signal and image processing
NASA Astrophysics Data System (ADS)
Morales, Aldo W.; Ko, Sung-Jea
1997-04-01
Linear filters banks are being used extensively in image and video applications. New research results in wavelet applications for compression and de-noising are constantly appearing in the technical literature. On the other hand, non-linear filter banks are also being used regularly in image pyramid algorithms. There are some inherent advantages in using non-linear filters instead of linear filters when non-Gaussian processes are present in images. However, a consistent way of comparing performance criteria between these two schemes has not been fully developed yet. In this paper a recently discovered tool, sample selection probabilities, is used to compare the behavior of linear and non-linear filters. In the conversion from weights of order statistics (OS) filters to coefficients of the impulse response is obtained through these probabilities. However, the reverse problem: the conversion from coefficients of the impulse response to the weights of OS filters is not yet fully understood. One of the reasons for this difficulty is the highly non-linear nature of the partitions and generating function used. In the present paper the problem is posed as an optimization of integer linear programming subject to constraints directly obtained from the coefficients of the impulse response. Although the technique to be presented in not completely refined, it certainly appears to be promising. Some results will be shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Debojyoti; Baeder, James D.
2014-01-21
A new class of compact-reconstruction weighted essentially non-oscillatory (CRWENO) schemes were introduced (Ghosh and Baeder in SIAM J Sci Comput 34(3): A1678–A1706, 2012) with high spectral resolution and essentially non-oscillatory behavior across discontinuities. The CRWENO schemes use solution-dependent weights to combine lower-order compact interpolation schemes and yield a high-order compact scheme for smooth solutions and a non-oscillatory compact scheme near discontinuities. The new schemes result in lower absolute errors, and improved resolution of discontinuities and smaller length scales, compared to the weighted essentially non-oscillatory (WENO) scheme of the same order of convergence. Several improvements to the smoothness-dependent weights, proposed inmore » the literature in the context of the WENO schemes, address the drawbacks of the original formulation. This paper explores these improvements in the context of the CRWENO schemes and compares the different formulations of the non-linear weights for flow problems with small length scales as well as discontinuities. Simplified one- and two-dimensional inviscid flow problems are solved to demonstrate the numerical properties of the CRWENO schemes and its different formulations. Canonical turbulent flow problems—the decay of isotropic turbulence and the shock-turbulence interaction—are solved to assess the performance of the schemes for the direct numerical simulation of compressible, turbulent flows« less
Mixed raster content (MRC) model for compound image compression
NASA Astrophysics Data System (ADS)
de Queiroz, Ricardo L.; Buckley, Robert R.; Xu, Ming
1998-12-01
This paper will describe the Mixed Raster Content (MRC) method for compressing compound images, containing both binary test and continuous-tone images. A single compression algorithm that simultaneously meets the requirements for both text and image compression has been elusive. MRC takes a different approach. Rather than using a single algorithm, MRC uses a multi-layered imaging model for representing the results of multiple compression algorithms, including ones developed specifically for text and for images. As a result, MRC can combine the best of existing or new compression algorithms and offer different quality-compression ratio tradeoffs. The algorithms used by MRC set the lower bound on its compression performance. Compared to existing algorithms, MRC has some image-processing overhead to manage multiple algorithms and the imaging model. This paper will develop the rationale for the MRC approach by describing the multi-layered imaging model in light of a rate-distortion trade-off. Results will be presented comparing images compressed using MRC, JPEG and state-of-the-art wavelet algorithms such as SPIHT. MRC has been approved or proposed as an architectural model for several standards, including ITU Color Fax, IETF Internet Fax, and JPEG 2000.
An Unequal Secure Encryption Scheme for H.264/AVC Video Compression Standard
NASA Astrophysics Data System (ADS)
Fan, Yibo; Wang, Jidong; Ikenaga, Takeshi; Tsunoo, Yukiyasu; Goto, Satoshi
H.264/AVC is the newest video coding standard. There are many new features in it which can be easily used for video encryption. In this paper, we propose a new scheme to do video encryption for H.264/AVC video compression standard. We define Unequal Secure Encryption (USE) as an approach that applies different encryption schemes (with different security strength) to different parts of compressed video data. This USE scheme includes two parts: video data classification and unequal secure video data encryption. Firstly, we classify the video data into two partitions: Important data partition and unimportant data partition. Important data partition has small size with high secure protection, while unimportant data partition has large size with low secure protection. Secondly, we use AES as a block cipher to encrypt the important data partition and use LEX as a stream cipher to encrypt the unimportant data partition. AES is the most widely used symmetric cryptography which can ensure high security. LEX is a new stream cipher which is based on AES and its computational cost is much lower than AES. In this way, our scheme can achieve both high security and low computational cost. Besides the USE scheme, we propose a low cost design of hybrid AES/LEX encryption module. Our experimental results show that the computational cost of the USE scheme is low (about 25% of naive encryption at Level 0 with VEA used). The hardware cost for hybrid AES/LEX module is 4678 Gates and the AES encryption throughput is about 50Mbps.
A Bunch Compression Method for Free Electron Lasers that Avoids Parasitic Compressions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benson, Stephen V.; Douglas, David R.; Tennant, Christopher D.
2015-09-01
Virtually all existing high energy (>few MeV) linac-driven FELs compress the electron bunch length though the use of off-crest acceleration on the rising side of the RF waveform followed by transport through a magnetic chicane. This approach has at least three flaws: 1) it is difficult to correct aberrations--particularly RF curvature, 2) rising side acceleration exacerbates space charge-induced distortion of the longitudinal phase space, and 3) all achromatic "negative compaction" compressors create parasitic compression during the final compression process, increasing the CSR-induced emittance growth. One can avoid these deficiencies by using acceleration on the falling side of the RF waveformmore » and a compressor with M 56>0. This approach offers multiple advantages: 1) It is readily achieved in beam lines supporting simple schemes for aberration compensation, 2) Longitudinal space charge (LSC)-induced phase space distortion tends, on the falling side of the RF waveform, to enhance the chirp, and 3) Compressors with M 56>0 can be configured to avoid spurious over-compression. We will discuss this bunch compression scheme in detail and give results of a successful beam test in April 2012 using the JLab UV Demo FEL« less
Energy and Quality Evaluation for Compressive Sensing of Fetal Electrocardiogram Signals
Da Poian, Giulia; Brandalise, Denis; Bernardini, Riccardo; Rinaldo, Roberto
2016-01-01
This manuscript addresses the problem of non-invasive fetal Electrocardiogram (ECG) signal acquisition with low power/low complexity sensors. A sensor architecture using the Compressive Sensing (CS) paradigm is compared to a standard compression scheme using wavelets in terms of energy consumption vs. reconstruction quality, and, more importantly, vs. performance of fetal heart beat detection in the reconstructed signals. We show in this paper that a CS scheme based on reconstruction with an over-complete dictionary has similar reconstruction quality to one based on wavelet compression. We also consider, as a more important figure of merit, the accuracy of fetal beat detection after reconstruction as a function of the sensor power consumption. Experimental results with an actual implementation in a commercial device show that CS allows significant reduction of energy consumption in the sensor node, and that the detection performance is comparable to that obtained from original signals for compression ratios up to about 75%. PMID:28025510
High bit depth infrared image compression via low bit depth codecs
NASA Astrophysics Data System (ADS)
Belyaev, Evgeny; Mantel, Claire; Forchhammer, Søren
2017-08-01
Future infrared remote sensing systems, such as monitoring of the Earth's environment by satellites, infrastructure inspection by unmanned airborne vehicles etc., will require 16 bit depth infrared images to be compressed and stored or transmitted for further analysis. Such systems are equipped with low power embedded platforms where image or video data is compressed by a hardware block called the video processing unit (VPU). However, in many cases using two 8-bit VPUs can provide advantages compared with using higher bit depth image compression directly. We propose to compress 16 bit depth images via 8 bit depth codecs in the following way. First, an input 16 bit depth image is mapped into 8 bit depth images, e.g., the first image contains only the most significant bytes (MSB image) and the second one contains only the least significant bytes (LSB image). Then each image is compressed by an image or video codec with 8 bits per pixel input format. We analyze how the compression parameters for both MSB and LSB images should be chosen to provide the maximum objective quality for a given compression ratio. Finally, we apply the proposed infrared image compression method utilizing JPEG and H.264/AVC codecs, which are usually available in efficient implementations, and compare their rate-distortion performance with JPEG2000, JPEG-XT and H.265/HEVC codecs supporting direct compression of infrared images in 16 bit depth format. A preliminary result shows that two 8 bit H.264/AVC codecs can achieve similar result as 16 bit HEVC codec.
A new hyperspectral image compression paradigm based on fusion
NASA Astrophysics Data System (ADS)
Guerra, Raúl; Melián, José; López, Sebastián.; Sarmiento, Roberto
2016-10-01
The on-board compression of remote sensed hyperspectral images is an important task nowadays. One of the main difficulties is that the compression of these images must be performed in the satellite which carries the hyperspectral sensor. Hence, this process must be performed by space qualified hardware, having area, power and speed limitations. Moreover, it is important to achieve high compression ratios without compromising the quality of the decompress image. In this manuscript we proposed a new methodology for compressing hyperspectral images based on hyperspectral image fusion concepts. The proposed compression process has two independent steps. The first one is to spatially degrade the remote sensed hyperspectral image to obtain a low resolution hyperspectral image. The second step is to spectrally degrade the remote sensed hyperspectral image to obtain a high resolution multispectral image. These two degraded images are then send to the earth surface, where they must be fused using a fusion algorithm for hyperspectral and multispectral image, in order to recover the remote sensed hyperspectral image. The main advantage of the proposed methodology for compressing remote sensed hyperspectral images is that the compression process, which must be performed on-board, becomes very simple, being the fusion process used to reconstruct image the more complex one. An extra advantage is that the compression ratio can be fixed in advanced. Many simulations have been performed using different fusion algorithms and different methodologies for degrading the hyperspectral image. The results obtained in the simulations performed corroborate the benefits of the proposed methodology.
Data Compression Techniques for Maps
1989-01-01
Lempel - Ziv compression is applied to the classified and unclassified images as also to the output of the compression algorithms . The algorithms ...resulted in a compression of 7:1. The output of the quadtree coding algorithm was then compressed using Lempel - Ziv coding. The compression ratio achieved...using Lempel - Ziv coding. The unclassified image gave a compression ratio of only 1.4:1. The K means classified image
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sjogreen, B.; Sandham, N. D.; Hadjadj, A.; Kwak, Dochan (Technical Monitor)
2000-01-01
In a series of papers, Olsson (1994, 1995), Olsson & Oliger (1994), Strand (1994), Gerritsen Olsson (1996), Yee et al. (1999a,b, 2000) and Sandham & Yee (2000), the issue of nonlinear stability of the compressible Euler and Navier-Stokes Equations, including physical boundaries, and the corresponding development of the discrete analogue of nonlinear stable high order schemes, including boundary schemes, were developed, extended and evaluated for various fluid flows. High order here refers to spatial schemes that are essentially fourth-order or higher away from shock and shear regions. The objective of this paper is to give an overview of the progress of the low dissipative high order shock-capturing schemes proposed by Yee et al. (1999a,b, 2000). This class of schemes consists of simple non-dissipative high order compact or non-compact central spatial differencings and adaptive nonlinear numerical dissipation operators to minimize the use of numerical dissipation. The amount of numerical dissipation is further minimized by applying the scheme to the entropy splitting form of the inviscid flux derivatives, and by rewriting the viscous terms to minimize odd-even decoupling before the application of the central scheme (Sandham & Yee). The efficiency and accuracy of these scheme are compared with spectral, TVD and fifth- order WENO schemes. A new approach of Sjogreen & Yee (2000) utilizing non-orthogonal multi-resolution wavelet basis functions as sensors to dynamically determine the appropriate amount of numerical dissipation to be added to the non-dissipative high order spatial scheme at each grid point will be discussed. Numerical experiments of long time integration of smooth flows, shock-turbulence interactions, direct numerical simulations of a 3-D compressible turbulent plane channel flow, and various mixing layer problems indicate that these schemes are especially suitable for practical complex problems in nonlinear aeroacoustics, rotorcraft dynamics, direct numerical simulation or large eddy simulation of compressible turbulent flows at various speeds including high-speed shock-turbulence interactions, and general long time wave propagation problems. These schemes, including entropy splitting, have also been extended to freestream preserving schemes on curvilinear moving grids for a thermally perfect gas (Vinokur & Yee 2000).
Fast Lossless Compression of Multispectral-Image Data
NASA Technical Reports Server (NTRS)
Klimesh, Matthew
2006-01-01
An algorithm that effects fast lossless compression of multispectral-image data is based on low-complexity, proven adaptive-filtering algorithms. This algorithm is intended for use in compressing multispectral-image data aboard spacecraft for transmission to Earth stations. Variants of this algorithm could be useful for lossless compression of three-dimensional medical imagery and, perhaps, for compressing image data in general.
A Robust Zero-Watermarking Algorithm for Audio
NASA Astrophysics Data System (ADS)
Chen, Ning; Zhu, Jie
2007-12-01
In traditional watermarking algorithms, the insertion of watermark into the host signal inevitably introduces some perceptible quality degradation. Another problem is the inherent conflict between imperceptibility and robustness. Zero-watermarking technique can solve these problems successfully. Instead of embedding watermark, the zero-watermarking technique extracts some essential characteristics from the host signal and uses them for watermark detection. However, most of the available zero-watermarking schemes are designed for still image and their robustness is not satisfactory. In this paper, an efficient and robust zero-watermarking technique for audio signal is presented. The multiresolution characteristic of discrete wavelet transform (DWT), the energy compression characteristic of discrete cosine transform (DCT), and the Gaussian noise suppression property of higher-order cumulant are combined to extract essential features from the host audio signal and they are then used for watermark recovery. Simulation results demonstrate the effectiveness of our scheme in terms of inaudibility, detection reliability, and robustness.
Optimal Compression Methods for Floating-point Format Images
NASA Technical Reports Server (NTRS)
Pence, W. D.; White, R. L.; Seaman, R.
2009-01-01
We report on the results of a comparison study of different techniques for compressing FITS images that have floating-point (real*4) pixel values. Standard file compression methods like GZIP are generally ineffective in this case (with compression ratios only in the range 1.2 - 1.6), so instead we use a technique of converting the floating-point values into quantized scaled integers which are compressed using the Rice algorithm. The compressed data stream is stored in FITS format using the tiled-image compression convention. This is technically a lossy compression method, since the pixel values are not exactly reproduced, however all the significant photometric and astrometric information content of the image can be preserved while still achieving file compression ratios in the range of 4 to 8. We also show that introducing dithering, or randomization, when assigning the quantized pixel-values can significantly improve the photometric and astrometric precision in the stellar images in the compressed file without adding additional noise. We quantify our results by comparing the stellar magnitudes and positions as measured in the original uncompressed image to those derived from the same image after applying successively greater amounts of compression.
An Optimal Seed Based Compression Algorithm for DNA Sequences
Gopalakrishnan, Gopakumar; Karunakaran, Muralikrishnan
2016-01-01
This paper proposes a seed based lossless compression algorithm to compress a DNA sequence which uses a substitution method that is similar to the LempelZiv compression scheme. The proposed method exploits the repetition structures that are inherent in DNA sequences by creating an offline dictionary which contains all such repeats along with the details of mismatches. By ensuring that only promising mismatches are allowed, the method achieves a compression ratio that is at par or better than the existing lossless DNA sequence compression algorithms. PMID:27555868
Outer planet Pioneer imaging communications system study. [data compression
NASA Technical Reports Server (NTRS)
1974-01-01
The effects of different types of imaging data compression on the elements of the Pioneer end-to-end data system were studied for three imaging transmission methods. These were: no data compression, moderate data compression, and the advanced imaging communications system. It is concluded that: (1) the value of data compression is inversely related to the downlink telemetry bit rate; (2) the rolling characteristics of the spacecraft limit the selection of data compression ratios; and (3) data compression might be used to perform acceptable outer planet mission at reduced downlink telemetry bit rates.
Compressive sensing in medical imaging
Graff, Christian G.; Sidky, Emil Y.
2015-01-01
The promise of compressive sensing, exploitation of compressibility to achieve high quality image reconstructions with less data, has attracted a great deal of attention in the medical imaging community. At the Compressed Sensing Incubator meeting held in April 2014 at OSA Headquarters in Washington, DC, presentations were given summarizing some of the research efforts ongoing in compressive sensing for x-ray computed tomography and magnetic resonance imaging systems. This article provides an expanded version of these presentations. Sparsity-exploiting reconstruction algorithms that have gained popularity in the medical imaging community are studied, and examples of clinical applications that could benefit from compressive sensing ideas are provided. The current and potential future impact of compressive sensing on the medical imaging field is discussed. PMID:25968400
Grid Convergence of High Order Methods for Multiscale Complex Unsteady Viscous Compressible Flows
NASA Technical Reports Server (NTRS)
Sjoegreen, B.; Yee, H. C.
2001-01-01
Grid convergence of several high order methods for the computation of rapidly developing complex unsteady viscous compressible flows with a wide range of physical scales is studied. The recently developed adaptive numerical dissipation control high order methods referred to as the ACM and wavelet filter schemes are compared with a fifth-order weighted ENO (WENO) scheme. The two 2-D compressible full Navier-Stokes models considered do not possess known analytical and experimental data. Fine grid solutions from a standard second-order TVD scheme and a MUSCL scheme with limiters are used as reference solutions. The first model is a 2-D viscous analogue of a shock tube problem which involves complex shock/shear/boundary-layer interactions. The second model is a supersonic reactive flow concerning fuel breakup. The fuel mixing involves circular hydrogen bubbles in air interacting with a planar moving shock wave. Both models contain fine scale structures and are stiff in the sense that even though the unsteadiness of the flows are rapidly developing, extreme grid refinement and time step restrictions are needed to resolve all the flow scales as well as the chemical reaction scales.
Fingerprint recognition of wavelet-based compressed images by neuro-fuzzy clustering
NASA Astrophysics Data System (ADS)
Liu, Ti C.; Mitra, Sunanda
1996-06-01
Image compression plays a crucial role in many important and diverse applications requiring efficient storage and transmission. This work mainly focuses on a wavelet transform (WT) based compression of fingerprint images and the subsequent classification of the reconstructed images. The algorithm developed involves multiresolution wavelet decomposition, uniform scalar quantization, entropy and run- length encoder/decoder and K-means clustering of the invariant moments as fingerprint features. The performance of the WT-based compression algorithm has been compared with JPEG current image compression standard. Simulation results show that WT outperforms JPEG in high compression ratio region and the reconstructed fingerprint image yields proper classification.
Data Compression With Application to Geo-Location
2010-08-01
wireless sensor network requires the estimation of time-difference-of-arrival (TDOA) parameters using data collected by a set of spatially separated sensors. Compressing the data that is shared among the sensors can provide tremendous savings in terms of the energy and transmission latency. Traditional MSE and perceptual based data compression schemes fail to accurately capture the effects of compression on the TDOA estimation task; therefore, it is necessary to investigate compression algorithms suitable for TDOA parameter estimation. This thesis explores the
Kim, Bohyoung; Lee, Kyoung Ho; Kim, Kil Joong; Mantiuk, Rafal; Kim, Hye-ri; Kim, Young Hoon
2008-06-01
The objective of our study was to assess the effects of compressing source thin-section abdominal CT images on final transverse average-intensity-projection (AIP) images. At reversible, 4:1, 6:1, 8:1, 10:1, and 15:1 Joint Photographic Experts Group (JPEG) 2000 compressions, we compared the artifacts in 20 matching compressed thin sections (0.67 mm), compressed thick sections (5 mm), and AIP images (5 mm) reformatted from the compressed thin sections. The artifacts were quantitatively measured with peak signal-to-noise ratio (PSNR) and a perceptual quality metric (High Dynamic Range Visual Difference Predictor [HDR-VDP]). By comparing the compressed and original images, three radiologists independently graded the artifacts as 0 (none, indistinguishable), 1 (barely perceptible), 2 (subtle), or 3 (significant). Friedman tests and exact tests for paired proportions were used. At irreversible compressions, the artifacts tended to increase in the order of AIP, thick-section, and thin-section images in terms of PSNR (p < 0.0001), HDR-VDP (p < 0.0001), and the readers' grading (p < 0.01 at 6:1 or higher compressions). At 6:1 and 8:1, distinguishable pairs (grades 1-3) tended to increase in the order of AIP, thick-section, and thin-section images. Visually lossless threshold for the compression varied between images but decreased in the order of AIP, thick-section, and thin-section images (p < 0.0001). Compression artifacts in thin sections are significantly attenuated in AIP images. On the premise that thin sections are typically reviewed using an AIP technique, it is justifiable to compress them to a compression level currently accepted for thick sections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langet, Hélène; Laboratoire des Signaux et Systèmes, CentraleSupélec, Gif-sur-Yvette F-91192; Center for Visual Computing, CentraleSupélec, Châtenay-Malabry F-92295
2015-09-15
Purpose: This paper addresses the reconstruction of x-ray cone-beam computed tomography (CBCT) for interventional C-arm systems. Subsampling of CBCT is a significant issue with C-arms due to their slow rotation and to the low frame rate of their flat panel x-ray detectors. The aim of this work is to propose a novel method able to handle the subsampling artifacts generally observed with analytical reconstruction, through a content-driven hierarchical reconstruction based on compressed sensing. Methods: The central idea is to proceed with a hierarchical method where the most salient features (high intensities or gradients) are reconstructed first to reduce the artifactsmore » these features induce. These artifacts are addressed first because their presence contaminates less salient features. Several hierarchical schemes aiming at streak artifacts reduction are introduced for C-arm CBCT: the empirical orthogonal matching pursuit approach with the ℓ{sub 0} pseudonorm for reconstructing sparse vessels; a convex variant using homotopy with the ℓ{sub 1}-norm constraint of compressed sensing, for reconstructing sparse vessels over a nonsparse background; homotopy with total variation (TV); and a novel empirical extension to nonlinear diffusion (NLD). Such principles are implemented with penalized iterative filtered backprojection algorithms. For soft-tissue imaging, the authors compare the use of TV and NLD filters as sparsity constraints, both optimized with the alternating direction method of multipliers, using a threshold for TV and a nonlinear weighting for NLD. Results: The authors show on simulated data that their approach provides fast convergence to good approximations of the solution of the TV-constrained minimization problem introduced by the compressed sensing theory. Using C-arm CBCT clinical data, the authors show that both TV and NLD can deliver improved image quality by reducing streaks. Conclusions: A flexible compressed-sensing-based algorithmic approach is proposed that is able to accommodate for a wide range of constraints. It is successfully applied to C-arm CBCT images that may not be so well approximated by piecewise constant functions.« less
Unified approach for incompressible flows
NASA Astrophysics Data System (ADS)
Chang, Tyne-Hsien
1993-12-01
An unified approach for solving both compressible and incompressible flows was investigated in this study. The difference in CFD code development between incompressible and compressible flows is due to the mathematical characteristics. However, if one can modify the continuity equation for incompressible flows by introducing pseudocompressibility, the governing equations for incompressible flows would have the same mathematical characters as compressible flows. The application of a compressible flow code to solve incompressible flows becomes feasible. Among numerical algorithms developed for compressible flows, the Centered Total Variation Diminishing (CTVD) schemes possess better mathematical properties to damp out the spurious oscillations while providing high-order accuracy for high speed flows. It leads us to believe that CTVD schemes can equally well solve incompressible flows. In this study, the governing equations for incompressible flows include the continuity equation and momentum equations. The continuity equation is modified by adding a time-derivative of the pressure term containing the artificial compressibility. The modified continuity equation together with the unsteady momentum equations forms a hyperbolic-parabolic type of time-dependent system of equations. The continuity equation is modified by adding a time-derivative of the pressure term containing the artificial compressibility. The modified continuity equation together with the unsteady momentum equations forms a hyperbolic-parabolic type of time-dependent system of equations. Thus, the CTVD schemes can be implemented. In addition, the boundary conditions including physical and numerical boundary conditions must be properly specified to obtain accurate solution. The CFD code for this research is currently in progress. Flow past a circular cylinder will be used for numerical experiments to determine the accuracy and efficiency of the code before applying this code to more specific applications.
JPEG2000 still image coding quality.
Chen, Tzong-Jer; Lin, Sheng-Chieh; Lin, You-Chen; Cheng, Ren-Gui; Lin, Li-Hui; Wu, Wei
2013-10-01
This work demonstrates the image qualities between two popular JPEG2000 programs. Two medical image compression algorithms are both coded using JPEG2000, but they are different regarding the interface, convenience, speed of computation, and their characteristic options influenced by the encoder, quantization, tiling, etc. The differences in image quality and compression ratio are also affected by the modality and compression algorithm implementation. Do they provide the same quality? The qualities of compressed medical images from two image compression programs named Apollo and JJ2000 were evaluated extensively using objective metrics. These algorithms were applied to three medical image modalities at various compression ratios ranging from 10:1 to 100:1. Following that, the quality of the reconstructed images was evaluated using five objective metrics. The Spearman rank correlation coefficients were measured under every metric in the two programs. We found that JJ2000 and Apollo exhibited indistinguishable image quality for all images evaluated using the above five metrics (r > 0.98, p < 0.001). It can be concluded that the image quality of the JJ2000 and Apollo algorithms is statistically equivalent for medical image compression.
Multigrid Acceleration of Time-Accurate DNS of Compressible Turbulent Flow
NASA Technical Reports Server (NTRS)
Broeze, Jan; Geurts, Bernard; Kuerten, Hans; Streng, Martin
1996-01-01
An efficient scheme for the direct numerical simulation of 3D transitional and developed turbulent flow is presented. Explicit and implicit time integration schemes for the compressible Navier-Stokes equations are compared. The nonlinear system resulting from the implicit time discretization is solved with an iterative method and accelerated by the application of a multigrid technique. Since we use central spatial discretizations and no artificial dissipation is added to the equations, the smoothing method is less effective than in the more traditional use of multigrid in steady-state calculations. Therefore, a special prolongation method is needed in order to obtain an effective multigrid method. This simulation scheme was studied in detail for compressible flow over a flat plate. In the laminar regime and in the first stages of turbulent flow the implicit method provides a speed-up of a factor 2 relative to the explicit method on a relatively coarse grid. At increased resolution this speed-up is enhanced correspondingly.
Subjective evaluation of compressed image quality
NASA Astrophysics Data System (ADS)
Lee, Heesub; Rowberg, Alan H.; Frank, Mark S.; Choi, Hyung-Sik; Kim, Yongmin
1992-05-01
Lossy data compression generates distortion or error on the reconstructed image and the distortion becomes visible as the compression ratio increases. Even at the same compression ratio, the distortion appears differently depending on the compression method used. Because of the nonlinearity of the human visual system and lossy data compression methods, we have evaluated subjectively the quality of medical images compressed with two different methods, an intraframe and interframe coding algorithms. The evaluated raw data were analyzed statistically to measure interrater reliability and reliability of an individual reader. Also, the analysis of variance was used to identify which compression method is better statistically, and from what compression ratio the quality of a compressed image is evaluated as poorer than that of the original. Nine x-ray CT head images from three patients were used as test cases. Six radiologists participated in reading the 99 images (some were duplicates) compressed at four different compression ratios, original, 5:1, 10:1, and 15:1. The six readers agree more than by chance alone and their agreement was statistically significant, but there were large variations among readers as well as within a reader. The displacement estimated interframe coding algorithm is significantly better in quality than that of the 2-D block DCT at significance level 0.05. Also, 10:1 compressed images with the interframe coding algorithm do not show any significant differences from the original at level 0.05.
A demanding web-based PACS supported by web services technology
NASA Astrophysics Data System (ADS)
Costa, Carlos M. A.; Silva, Augusto; Oliveira, José L.; Ribeiro, Vasco G.; Ribeiro, José
2006-03-01
During the last years, the ubiquity of web interfaces have pushed practically all PACS suppliers to develop client applications in which clinical practitioners can receive and analyze medical images, using conventional personal computers and Web browsers. However, due to security and performance issues, the utilization of these software packages has been restricted to Intranets. Paradigmatically, one of the most important advantages of digital image systems is to simplify the widespread sharing and remote access of medical data between healthcare institutions. This paper analyses the traditional PACS drawbacks that contribute to their reduced usage in the Internet and describes a PACS based on Web Services technology that supports a customized DICOM encoding syntax and a specific compression scheme providing all historical patient data in a unique Web interface.
PDF approach for compressible turbulent reacting flows
NASA Technical Reports Server (NTRS)
Hsu, A. T.; Tsai, Y.-L. P.; Raju, M. S.
1993-01-01
The objective of the present work is to develop a probability density function (pdf) turbulence model for compressible reacting flows for use with a CFD flow solver. The probability density function of the species mass fraction and enthalpy are obtained by solving a pdf evolution equation using a Monte Carlo scheme. The pdf solution procedure is coupled with a compressible CFD flow solver which provides the velocity and pressure fields. A modeled pdf equation for compressible flows, capable of capturing shock waves and suitable to the present coupling scheme, is proposed and tested. Convergence of the combined finite-volume Monte Carlo solution procedure is discussed, and an averaging procedure is developed to provide smooth Monte-Carlo solutions to ensure convergence. Two supersonic diffusion flames are studied using the proposed pdf model and the results are compared with experimental data; marked improvements over CFD solutions without pdf are observed. Preliminary applications of pdf to 3D flows are also reported.
NASA Technical Reports Server (NTRS)
Yeh, Pen-Shu; Miller, Warner H.; Venbrux, Jack; Liu, Norley; Rice, Robert F.
1993-01-01
Data compression has been proposed for several flight missions as a means of either reducing on board mass data storage, increasing science data return through a bandwidth constrained channel, reducing TDRSS access time, or easing ground archival mass storage requirement. Several issues arise with the implementation of this technology. These include the requirement of a clean channel, onboard smoothing buffer, onboard processing hardware and on the algorithm itself, the adaptability to scene changes and maybe even versatility to the various mission types. This paper gives an overview of an ongoing effort being performed at Goddard Space Flight Center for implementing a lossless data compression scheme for space flight. We will provide analysis results on several data systems issues, the performance of the selected lossless compression scheme, the status of the hardware processor and current development plan.
Image-adapted visually weighted quantization matrices for digital image compression
NASA Technical Reports Server (NTRS)
Watson, Andrew B. (Inventor)
1994-01-01
A method for performing image compression that eliminates redundant and invisible image components is presented. The image compression uses a Discrete Cosine Transform (DCT) and each DCT coefficient yielded by the transform is quantized by an entry in a quantization matrix which determines the perceived image quality and the bit rate of the image being compressed. The present invention adapts or customizes the quantization matrix to the image being compressed. The quantization matrix comprises visual masking by luminance and contrast techniques and by an error pooling technique all resulting in a minimum perceptual error for any given bit rate, or minimum bit rate for a given perceptual error.
Toward an image compression algorithm for the high-resolution electronic still camera
NASA Technical Reports Server (NTRS)
Nerheim, Rosalee
1989-01-01
Taking pictures with a camera that uses a digital recording medium instead of film has the advantage of recording and transmitting images without the use of a darkroom or a courier. However, high-resolution images contain an enormous amount of information and strain data-storage systems. Image compression will allow multiple images to be stored in the High-Resolution Electronic Still Camera. The camera is under development at Johnson Space Center. Fidelity of the reproduced image and compression speed are of tantamount importance. Lossless compression algorithms are fast and faithfully reproduce the image, but their compression ratios will be unacceptably low due to noise in the front end of the camera. Future efforts will include exploring methods that will reduce the noise in the image and increase the compression ratio.
Visibility of wavelet quantization noise
NASA Technical Reports Server (NTRS)
Watson, A. B.; Yang, G. Y.; Solomon, J. A.; Villasenor, J.
1997-01-01
The discrete wavelet transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that we call DWT uniform quantization noise; it is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2-lambda, where r is display visual resolution in pixels/degree, and lambda is the wavelet level. Thresholds increase rapidly with wavelet spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from lowpass to horizontal/vertical to diagonal. We construct a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.
Lossless compression of VLSI layout image data.
Dai, Vito; Zakhor, Avideh
2006-09-01
We present a novel lossless compression algorithm called Context Copy Combinatorial Code (C4), which integrates the advantages of two very disparate compression techniques: context-based modeling and Lempel-Ziv (LZ) style copying. While the algorithm can be applied to many lossless compression applications, such as document image compression, our primary target application has been lossless compression of integrated circuit layout image data. These images contain a heterogeneous mix of data: dense repetitive data better suited to LZ-style coding, and less dense structured data, better suited to context-based encoding. As part of C4, we have developed a novel binary entropy coding technique called combinatorial coding which is simultaneously as efficient as arithmetic coding, and as fast as Huffman coding. Compression results show C4 outperforms JBIG, ZIP, BZIP2, and two-dimensional LZ, and achieves lossless compression ratios greater than 22 for binary layout image data, and greater than 14 for gray-pixel image data.
Comparative Study of Three High Order Schemes for LES of Temporally Evolving Mixing Layers
NASA Technical Reports Server (NTRS)
Yee, Helen M. C.; Sjogreen, Biorn Axel; Hadjadj, C.
2012-01-01
Three high order shock-capturing schemes are compared for large eddy simulations (LES) of temporally evolving mixing layers (TML) for different convective Mach numbers (Mc) ranging from the quasi-incompressible regime to highly compressible supersonic regime. The considered high order schemes are fifth-order WENO (WENO5), seventh-order WENO (WENO7) and the associated eighth-order central spatial base scheme with the dissipative portion of WENO7 as a nonlinear post-processing filter step (WENO7fi). This high order nonlinear filter method (H.C. Yee and B. Sjogreen, Proceedings of ICOSAHOM09, June 22-26, 2009, Trondheim, Norway) is designed for accurate and efficient simulations of shock-free compressible turbulence, turbulence with shocklets and turbulence with strong shocks with minimum tuning of scheme parameters. The LES results by WENO7fi using the same scheme parameter agree well with experimental results of Barone et al. (2006), and published direct numerical simulations (DNS) work of Rogers & Moser (1994) and Pantano & Sarkar (2002), whereas results by WENO5 and WENO7 compare poorly with experimental data and DNS computations.
Cloud solution for histopathological image analysis using region of interest based compression.
Kanakatte, Aparna; Subramanya, Rakshith; Delampady, Ashik; Nayak, Rajarama; Purushothaman, Balamuralidhar; Gubbi, Jayavardhana
2017-07-01
Recent technological gains have led to the adoption of innovative cloud based solutions in medical imaging field. Once the medical image is acquired, it can be viewed, modified, annotated and shared on many devices. This advancement is mainly due to the introduction of Cloud computing in medical domain. Tissue pathology images are complex and are normally collected at different focal lengths using a microscope. The single whole slide image contains many multi resolution images stored in a pyramidal structure with the highest resolution image at the base and the smallest thumbnail image at the top of the pyramid. Highest resolution image will be used for tissue pathology diagnosis and analysis. Transferring and storing such huge images is a big challenge. Compression is a very useful and effective technique to reduce the size of these images. As pathology images are used for diagnosis, no information can be lost during compression (lossless compression). A novel method of extracting the tissue region and applying lossless compression on this region and lossy compression on the empty regions has been proposed in this paper. The resulting compression ratio along with lossless compression on tissue region is in acceptable range allowing efficient storage and transmission to and from the Cloud.
Compression of regions in the global advanced very high resolution radiometer 1-km data set
NASA Technical Reports Server (NTRS)
Kess, Barbara L.; Steinwand, Daniel R.; Reichenbach, Stephen E.
1994-01-01
The global advanced very high resolution radiometer (AVHRR) 1-km data set is a 10-band image produced at USGS' EROS Data Center for the study of the world's land surfaces. The image contains masked regions for non-land areas which are identical in each band but vary between data sets. They comprise over 75 percent of this 9.7 gigabyte image. The mask is compressed once and stored separately from the land data which is compressed for each of the 10 bands. The mask is stored in a hierarchical format for multi-resolution decompression of geographic subwindows of the image. The land for each band is compressed by modifying a method that ignores fill values. This multi-spectral region compression efficiently compresses the region data and precludes fill values from interfering with land compression statistics. Results show that the masked regions in a one-byte test image (6.5 Gigabytes) compress to 0.2 percent of the 557,756,146 bytes they occupy in the original image, resulting in a compression ratio of 89.9 percent for the entire image.
A new efficient method for color image compression based on visual attention mechanism
NASA Astrophysics Data System (ADS)
Shao, Xiaoguang; Gao, Kun; Lv, Lily; Ni, Guoqiang
2010-11-01
One of the key procedures in color image compression is to extract its region of interests (ROIs) and evaluate different compression ratios. A new non-uniform color image compression algorithm with high efficiency is proposed in this paper by using a biology-motivated selective attention model for the effective extraction of ROIs in natural images. When the ROIs have been extracted and labeled in the image, the subsequent work is to encode the ROIs and other regions with different compression ratios via popular JPEG algorithm. Furthermore, experiment results and quantitative and qualitative analysis in the paper show perfect performance when comparing with other traditional color image compression approaches.
Thermodynamical effects and high resolution methods for compressible fluid flows
NASA Astrophysics Data System (ADS)
Li, Jiequan; Wang, Yue
2017-08-01
One of the fundamental differences of compressible fluid flows from incompressible fluid flows is the involvement of thermodynamics. This difference should be manifested in the design of numerical schemes. Unfortunately, the role of entropy, expressing irreversibility, is often neglected even though the entropy inequality, as a conceptual derivative, is verified for some first order schemes. In this paper, we refine the GRP solver to illustrate how the thermodynamical variation is integrated into the design of high resolution methods for compressible fluid flows and demonstrate numerically the importance of thermodynamic effects in the resolution of strong waves. As a by-product, we show that the GRP solver works for generic equations of state, and is independent of technical arguments.
Energy compression of nanosecond high-voltage pulses based on two-stage hybrid scheme
NASA Astrophysics Data System (ADS)
Ulmaskulov, M. R.; Mesyats, G. A.; Sadykova, A. G.; Sharypov, K. A.; Shpak, V. G.; Shunailov, S. A.; Yalandin, M. I.
2017-04-01
Test results of high-voltage subnanosecond pulse generator with a hybrid, two-stage energy compression scheme are presented. After the first compression section with a gas discharger, a ferrite-filled gyromagnetic nonlinear transmitting line is used. The offered technical solution makes it possible to increase the voltage pulse amplitude from -185 kV to -325 kV, with a 2-ns pulse rise time minimized down to ˜180 ps. For the small output voltage amplitude of -240 kV, the shortest pulse front of ˜85 ps was obtained. The generator with maximum amplitude was utilized to form an ultra-short flow of runaway electrons in air-filled discharge gap with particles' energy approaching to 700 keV.
McCord, Layne K; Scarfe, William C; Naylor, Rachel H; Scheetz, James P; Silveira, Anibal; Gillespie, Kevin R
2007-05-01
The objectives of this study were to compare the effect of JPEG 2000 compression of hand-wrist radiographs on observer image quality qualitative assessment and to compare with a software-derived quantitative image quality index. Fifteen hand-wrist radiographs were digitized and saved as TIFF and JPEG 2000 images at 4 levels of compression (20:1, 40:1, 60:1, and 80:1). The images, including rereads, were viewed by 13 orthodontic residents who determined the image quality rating on a scale of 1 to 5. A quantitative analysis was also performed by using a readily available software based on the human visual system (Image Quality Measure Computer Program, version 6.2, Mitre, Bedford, Mass). ANOVA was used to determine the optimal compression level (P < or =.05). When we compared subjective indexes, JPEG compression greater than 60:1 significantly reduced image quality. When we used quantitative indexes, the JPEG 2000 images had lower quality at all compression ratios compared with the original TIFF images. There was excellent correlation (R2 >0.92) between qualitative and quantitative indexes. Image Quality Measure indexes are more sensitive than subjective image quality assessments in quantifying image degradation with compression. There is potential for this software-based quantitative method in determining the optimal compression ratio for any image without the use of subjective raters.
Meng, Bowen; Lee, Ho; Xing, Lei; Fahimian, Benjamin P.
2013-01-01
Purpose: X-ray scatter results in a significant degradation of image quality in computed tomography (CT), representing a major limitation in cone-beam CT (CBCT) and large field-of-view diagnostic scanners. In this work, a novel scatter estimation and correction technique is proposed that utilizes peripheral detection of scatter during the patient scan to simultaneously acquire image and patient-specific scatter information in a single scan, and in conjunction with a proposed compressed sensing scatter recovery technique to reconstruct and correct for the patient-specific scatter in the projection space. Methods: The method consists of the detection of patient scatter at the edges of the field of view (FOV) followed by measurement based compressed sensing recovery of the scatter through-out the projection space. In the prototype implementation, the kV x-ray source of the Varian TrueBeam OBI system was blocked at the edges of the projection FOV, and the image detector in the corresponding blocked region was used for scatter detection. The design enables image data acquisition of the projection data on the unblocked central region of and scatter data at the blocked boundary regions. For the initial scatter estimation on the central FOV, a prior consisting of a hybrid scatter model that combines the scatter interpolation method and scatter convolution model is estimated using the acquired scatter distribution on boundary region. With the hybrid scatter estimation model, compressed sensing optimization is performed to generate the scatter map by penalizing the L1 norm of the discrete cosine transform of scatter signal. The estimated scatter is subtracted from the projection data by soft-tuning, and the scatter-corrected CBCT volume is obtained by the conventional Feldkamp-Davis-Kress algorithm. Experimental studies using image quality and anthropomorphic phantoms on a Varian TrueBeam system were carried out to evaluate the performance of the proposed scheme. Results: The scatter shading artifacts were markedly suppressed in the reconstructed images using the proposed method. On the Catphan©504 phantom, the proposed method reduced the error of CT number to 13 Hounsfield units, 10% of that without scatter correction, and increased the image contrast by a factor of 2 in high-contrast regions. On the anthropomorphic phantom, the spatial nonuniformity decreased from 10.8% to 6.8% after correction. Conclusions: A novel scatter correction method, enabling unobstructed acquisition of the high frequency image data and concurrent detection of the patient-specific low frequency scatter data at the edges of the FOV, is proposed and validated in this work. Relative to blocker based techniques, rather than obstructing the central portion of the FOV which degrades and limits the image reconstruction, compressed sensing is used to solve for the scatter from detection of scatter at the periphery of the FOV, enabling for the highest quality reconstruction in the central region and robust patient-specific scatter correction. PMID:23298098
Filetype Identification Using Long, Summarized N-Grams
2011-03-01
compressed or encrypted data . If the algorithm used to compress or encrypt the data can be determined, then it is frequently possible to uncom- press...fragments. His implementation utilized the bzip2 library to compress the file fragments. The bzip2 library is based off the Lempel - Ziv -Markov chain... algorithm that uses a dictionary compression scheme to remove repeating data patterns within a set of data . The removed patterns are listed within the
NASA Technical Reports Server (NTRS)
Tilton, James C.; Ramapriyan, H. K.
1989-01-01
A case study is presented where an image segmentation based compression technique is applied to LANDSAT Thematic Mapper (TM) and Nimbus-7 Coastal Zone Color Scanner (CZCS) data. The compression technique, called Spatially Constrained Clustering (SCC), can be regarded as an adaptive vector quantization approach. The SCC can be applied to either single or multiple spectral bands of image data. The segmented image resulting from SCC is encoded in small rectangular blocks, with the codebook varying from block to block. Lossless compression potential (LDP) of sample TM and CZCS images are evaluated. For the TM test image, the LCP is 2.79. For the CZCS test image the LCP is 1.89, even though when only a cloud-free section of the image is considered the LCP increases to 3.48. Examples of compressed images are shown at several compression ratios ranging from 4 to 15. In the case of TM data, the compressed data are classified using the Bayes' classifier. The results show an improvement in the similarity between the classification results and ground truth when compressed data are used, thus showing that compression is, in fact, a useful first step in the analysis.
Compression of the Global Land 1-km AVHRR dataset
Kess, B. L.; Steinwand, D.R.; Reichenbach, S.E.
1996-01-01
Large datasets, such as the Global Land 1-km Advanced Very High Resolution Radiometer (AVHRR) Data Set (Eidenshink and Faundeen 1994), require compression methods that provide efficient storage and quick access to portions of the data. A method of lossless compression is described that provides multiresolution decompression within geographic subwindows of multi-spectral, global, 1-km, AVHRR images. The compression algorithm segments each image into blocks and compresses each block in a hierarchical format. Users can access the data by specifying either a geographic subwindow or the whole image and a resolution (1,2,4, 8, or 16 km). The Global Land 1-km AVHRR data are presented in the Interrupted Goode's Homolosine map projection. These images contain masked regions for non-land areas which comprise 80 per cent of the image. A quadtree algorithm is used to compress the masked regions. The compressed region data are stored separately from the compressed land data. Results show that the masked regions compress to 0·143 per cent of the bytes they occupy in the test image and the land areas are compressed to 33·2 per cent of their original size. The entire image is compressed hierarchically to 6·72 per cent of the original image size, reducing the data from 9·05 gigabytes to 623 megabytes. These results are compared to the first order entropy of the residual image produced with lossless Joint Photographic Experts Group predictors. Compression results are also given for Lempel-Ziv-Welch (LZW) and LZ77, the algorithms used by UNIX compress and GZIP respectively. In addition to providing multiresolution decompression of geographic subwindows of the data, the hierarchical approach and the use of quadtrees for storing the masked regions gives a marked improvement over these popular methods.
NASA Astrophysics Data System (ADS)
Wan, Tat C.; Kabuka, Mansur R.
1994-05-01
With the tremendous growth in imaging applications and the development of filmless radiology, the need for compression techniques that can achieve high compression ratios with user specified distortion rates becomes necessary. Boundaries and edges in the tissue structures are vital for detection of lesions and tumors, which in turn requires the preservation of edges in the image. The proposed edge preserving image compressor (EPIC) combines lossless compression of edges with neural network compression techniques based on dynamic associative neural networks (DANN), to provide high compression ratios with user specified distortion rates in an adaptive compression system well-suited to parallel implementations. Improvements to DANN-based training through the use of a variance classifier for controlling a bank of neural networks speed convergence and allow the use of higher compression ratios for `simple' patterns. The adaptation and generalization capabilities inherent in EPIC also facilitate progressive transmission of images through varying the number of quantization levels used to represent compressed patterns. Average compression ratios of 7.51:1 with an averaged average mean squared error of 0.0147 were achieved.
A study of data coding technology developments in the 1980-1985 time frame, volume 2
NASA Technical Reports Server (NTRS)
Ingels, F. M.; Shahsavari, M. M.
1978-01-01
The source parameters of digitized analog data are discussed. Different data compression schemes are outlined and analysis of their implementation are presented. Finally, bandwidth compression techniques are given for video signals.
Searching for patterns in remote sensing image databases using neural networks
NASA Technical Reports Server (NTRS)
Paola, Justin D.; Schowengerdt, Robert A.
1995-01-01
We have investigated a method, based on a successful neural network multispectral image classification system, of searching for single patterns in remote sensing databases. While defining the pattern to search for and the feature to be used for that search (spectral, spatial, temporal, etc.) is challenging, a more difficult task is selecting competing patterns to train against the desired pattern. Schemes for competing pattern selection, including random selection and human interpreted selection, are discussed in the context of an example detection of dense urban areas in Landsat Thematic Mapper imagery. When applying the search to multiple images, a simple normalization method can alleviate the problem of inconsistent image calibration. Another potential problem, that of highly compressed data, was found to have a minimal effect on the ability to detect the desired pattern. The neural network algorithm has been implemented using the PVM (Parallel Virtual Machine) library and nearly-optimal speedups have been obtained that help alleviate the long process of searching through imagery.
Secure and Efficient Transmission of Hyperspectral Images for Geosciences Applications
NASA Astrophysics Data System (ADS)
Carpentieri, Bruno; Pizzolante, Raffaele
2017-12-01
Hyperspectral images are acquired through air-borne or space-borne special cameras (sensors) that collect information coming from the electromagnetic spectrum of the observed terrains. Hyperspectral remote sensing and hyperspectral images are used for a wide range of purposes: originally, they were developed for mining applications and for geology because of the capability of this kind of images to correctly identify various types of underground minerals by analysing the reflected spectrums, but their usage has spread in other application fields, such as ecology, military and surveillance, historical research and even archaeology. The large amount of data obtained by the hyperspectral sensors, the fact that these images are acquired at a high cost by air-borne sensors and that they are generally transmitted to a base, makes it necessary to provide an efficient and secure transmission protocol. In this paper, we propose a novel framework that allows secure and efficient transmission of hyperspectral images, by combining a reversible invisible watermarking scheme, used in conjunction with digital signature techniques, and a state-of-art predictive-based lossless compression algorithm.
Image data compression having minimum perceptual error
NASA Technical Reports Server (NTRS)
Watson, Andrew B. (Inventor)
1995-01-01
A method for performing image compression that eliminates redundant and invisible image components is described. The image compression uses a Discrete Cosine Transform (DCT) and each DCT coefficient yielded by the transform is quantized by an entry in a quantization matrix which determines the perceived image quality and the bit rate of the image being compressed. The present invention adapts or customizes the quantization matrix to the image being compressed. The quantization matrix comprises visual masking by luminance and contrast techniques and by an error pooling technique all resulting in a minimum perceptual error for any given bit rate, or minimum bit rate for a given perceptual error.
High efficient optical remote sensing images acquisition for nano-satellite-framework
NASA Astrophysics Data System (ADS)
Li, Feng; Xin, Lei; Liu, Yang; Fu, Jie; Liu, Yuhong; Guo, Yi
2017-09-01
It is more difficult and challenging to implement Nano-satellite (NanoSat) based optical Earth observation missions than conventional satellites because of the limitation of volume, weight and power consumption. In general, an image compression unit is a necessary onboard module to save data transmission bandwidth and disk space. The image compression unit can get rid of redundant information of those captured images. In this paper, a new image acquisition framework is proposed for NanoSat based optical Earth observation applications. The entire process of image acquisition and compression unit can be integrated in the photo detector array chip, that is, the output data of the chip is already compressed. That is to say, extra image compression unit is no longer needed; therefore, the power, volume, and weight of the common onboard image compression units consumed can be largely saved. The advantages of the proposed framework are: the image acquisition and image compression are combined into a single step; it can be easily built in CMOS architecture; quick view can be provided without reconstruction in the framework; Given a certain compression ratio, the reconstructed image quality is much better than those CS based methods. The framework holds promise to be widely used in the future.
Entropy Splitting for High Order Numerical Simulation of Compressible Turbulence
NASA Technical Reports Server (NTRS)
Sandham, N. D.; Yee, H. C.; Kwak, Dochan (Technical Monitor)
2000-01-01
A stable high order numerical scheme for direct numerical simulation (DNS) of shock-free compressible turbulence is presented. The method is applicable to general geometries. It contains no upwinding, artificial dissipation, or filtering. Instead the method relies on the stabilizing mechanisms of an appropriate conditioning of the governing equations and the use of compatible spatial difference operators for the interior points (interior scheme) as well as the boundary points (boundary scheme). An entropy splitting approach splits the inviscid flux derivatives into conservative and non-conservative portions. The spatial difference operators satisfy a summation by parts condition leading to a stable scheme (combined interior and boundary schemes) for the initial boundary value problem using a generalized energy estimate. A Laplacian formulation of the viscous and heat conduction terms on the right hand side of the Navier-Stokes equations is used to ensure that any tendency to odd-even decoupling associated with central schemes can be countered by the fluid viscosity. A special formulation of the continuity equation is used, based on similar arguments. The resulting methods are able to minimize spurious high frequency oscillation producing nonlinear instability associated with pure central schemes, especially for long time integration simulation such as DNS. For validation purposes, the methods are tested in a DNS of compressible turbulent plane channel flow at a friction Mach number of 0.1 where a very accurate turbulence data base exists. It is demonstrated that the methods are robust in terms of grid resolution, and in good agreement with incompressible channel data, as expected at this Mach number. Accurate turbulence statistics can be obtained with moderate grid sizes. Stability limits on the range of the splitting parameter are determined from numerical tests.
Design of a Variational Multiscale Method for Turbulent Compressible Flows
NASA Technical Reports Server (NTRS)
Diosady, Laslo Tibor; Murman, Scott M.
2013-01-01
A spectral-element framework is presented for the simulation of subsonic compressible high-Reynolds-number flows. The focus of the work is maximizing the efficiency of the computational schemes to enable unsteady simulations with a large number of spatial and temporal degrees of freedom. A collocation scheme is combined with optimized computational kernels to provide a residual evaluation with computational cost independent of order of accuracy up to 16th order. The optimized residual routines are used to develop a low-memory implicit scheme based on a matrix-free Newton-Krylov method. A preconditioner based on the finite-difference diagonalized ADI scheme is developed which maintains the low memory of the matrix-free implicit solver, while providing improved convergence properties. Emphasis on low memory usage throughout the solver development is leveraged to implement a coupled space-time DG solver which may offer further efficiency gains through adaptivity in both space and time.
A Cartesian grid approach with hierarchical refinement for compressible flows
NASA Technical Reports Server (NTRS)
Quirk, James J.
1994-01-01
Many numerical studies of flows that involve complex geometries are limited by the difficulties in generating suitable grids. We present a Cartesian boundary scheme for two-dimensional, compressible flows that is unfettered by the need to generate a computational grid and so it may be used, routinely, even for the most awkward of geometries. In essence, an arbitrary-shaped body is allowed to blank out some region of a background Cartesian mesh and the resultant cut-cells are singled out for special treatment. This is done within a finite-volume framework and so, in principle, any explicit flux-based integration scheme can take advantage of this method for enforcing solid boundary conditions. For best effect, the present Cartesian boundary scheme has been combined with a sophisticated, local mesh refinement scheme, and a number of examples are shown in order to demonstrate the efficacy of the combined algorithm for simulations of shock interaction phenomena.
NASA Astrophysics Data System (ADS)
Pantano, Carlos
2005-11-01
We describe a hybrid finite difference method for large-eddy simulation (LES) of compressible flows with a low-numerical dissipation scheme and structured adaptive mesh refinement (SAMR). Numerical experiments and validation calculations are presented including a turbulent jet and the strongly shock-driven mixing of a Richtmyer-Meshkov instability. The approach is a conservative flux-based SAMR formulation and as such, it utilizes refinement to computational advantage. The numerical method for the resolved scale terms encompasses the cases of scheme alternation and internal mesh interfaces resulting from SAMR. An explicit centered scheme that is consistent with a skew-symmetric finite difference formulation is used in turbulent flow regions while a weighted essentially non-oscillatory (WENO) scheme is employed to capture shocks. The subgrid stresses and transports are calculated by means of the streched-vortex model, Misra & Pullin (1997)
Compressed Semi-Discrete Central-Upwind Schemes for Hamilton-Jacobi Equations
NASA Technical Reports Server (NTRS)
Bryson, Steve; Kurganov, Alexander; Levy, Doron; Petrova, Guergana
2003-01-01
We introduce a new family of Godunov-type semi-discrete central schemes for multidimensional Hamilton-Jacobi equations. These schemes are a less dissipative generalization of the central-upwind schemes that have been recently proposed in series of works. We provide the details of the new family of methods in one, two, and three space dimensions, and then verify their expected low-dissipative property in a variety of examples.
Channel coding/decoding alternatives for compressed TV data on advanced planetary missions.
NASA Technical Reports Server (NTRS)
Rice, R. F.
1972-01-01
The compatibility of channel coding/decoding schemes with a specific TV compressor developed for advanced planetary missions is considered. Under certain conditions, it is shown that compressed data can be transmitted at approximately the same rate as uncompressed data without any loss in quality. Thus, the full gains of data compression can be achieved in real-time transmission.
Sriraam, N.
2012-01-01
Developments of new classes of efficient compression algorithms, software systems, and hardware for data intensive applications in today's digital health care systems provide timely and meaningful solutions in response to exponentially growing patient information data complexity and associated analysis requirements. Of the different 1D medical signals, electroencephalography (EEG) data is of great importance to the neurologist for detecting brain-related disorders. The volume of digitized EEG data generated and preserved for future reference exceeds the capacity of recent developments in digital storage and communication media and hence there is a need for an efficient compression system. This paper presents a new and efficient high performance lossless EEG compression using wavelet transform and neural network predictors. The coefficients generated from the EEG signal by integer wavelet transform are used to train the neural network predictors. The error residues are further encoded using a combinational entropy encoder, Lempel-Ziv-arithmetic encoder. Also a new context-based error modeling is also investigated to improve the compression efficiency. A compression ratio of 2.99 (with compression efficiency of 67%) is achieved with the proposed scheme with less encoding time thereby providing diagnostic reliability for lossless transmission as well as recovery of EEG signals for telemedicine applications. PMID:22489238
Sriraam, N
2012-01-01
Developments of new classes of efficient compression algorithms, software systems, and hardware for data intensive applications in today's digital health care systems provide timely and meaningful solutions in response to exponentially growing patient information data complexity and associated analysis requirements. Of the different 1D medical signals, electroencephalography (EEG) data is of great importance to the neurologist for detecting brain-related disorders. The volume of digitized EEG data generated and preserved for future reference exceeds the capacity of recent developments in digital storage and communication media and hence there is a need for an efficient compression system. This paper presents a new and efficient high performance lossless EEG compression using wavelet transform and neural network predictors. The coefficients generated from the EEG signal by integer wavelet transform are used to train the neural network predictors. The error residues are further encoded using a combinational entropy encoder, Lempel-Ziv-arithmetic encoder. Also a new context-based error modeling is also investigated to improve the compression efficiency. A compression ratio of 2.99 (with compression efficiency of 67%) is achieved with the proposed scheme with less encoding time thereby providing diagnostic reliability for lossless transmission as well as recovery of EEG signals for telemedicine applications.
Applications of wavelet-based compression to multidimensional Earth science data
NASA Technical Reports Server (NTRS)
Bradley, Jonathan N.; Brislawn, Christopher M.
1993-01-01
A data compression algorithm involving vector quantization (VQ) and the discrete wavelet transform (DWT) is applied to two different types of multidimensional digital earth-science data. The algorithms (WVQ) is optimized for each particular application through an optimization procedure that assigns VQ parameters to the wavelet transform subbands subject to constraints on compression ratio and encoding complexity. Preliminary results of compressing global ocean model data generated on a Thinking Machines CM-200 supercomputer are presented. The WVQ scheme is used in both a predictive and nonpredictive mode. Parameters generated by the optimization algorithm are reported, as are signal-to-noise (SNR) measurements of actual quantized data. The problem of extrapolating hydrodynamic variables across the continental landmasses in order to compute the DWT on a rectangular grid is discussed. Results are also presented for compressing Landsat TM 7-band data using the WVQ scheme. The formulation of the optimization problem is presented along with SNR measurements of actual quantized data. Postprocessing applications are considered in which the seven spectral bands are clustered into 256 clusters using a k-means algorithm and analyzed using the Los Alamos multispectral data analysis program, SPECTRUM, both before and after being compressed using the WVQ program.
Evaluation of image compression for computer-aided diagnosis of breast tumors in 3D sonography
NASA Astrophysics Data System (ADS)
Chen, We-Min; Huang, Yu-Len; Tao, Chi-Chuan; Chen, Dar-Ren; Moon, Woo-Kyung
2006-03-01
Medical imaging examinations form the basis for physicians diagnosing diseases, as evidenced by the increasing use of digital medical images for picture archiving and communications systems (PACS). However, with enlarged medical image databases and rapid growth of patients' case reports, PACS requires image compression to accelerate the image transmission rate and conserve disk space for diminishing implementation costs. For this purpose, JPEG and JPEG2000 have been accepted as legal formats for the digital imaging and communications in medicine (DICOM). The high compression ratio is felt to be useful for medical imagery. Therefore, this study evaluates the compression ratios of JPEG and JPEG2000 standards for computer-aided diagnosis (CAD) of breast tumors in 3-D medical ultrasound (US) images. The 3-D US data sets with various compression ratios are compressed using the two efficacious image compression standards. The reconstructed data sets are then diagnosed by a previous proposed CAD system. The diagnostic accuracy is measured based on receiver operating characteristic (ROC) analysis. Namely, the ROC curves are used to compare the diagnostic performance of two or more reconstructed images. Analysis results ensure a comparison of the compression ratios by using JPEG and JPEG2000 for 3-D US images. Results of this study provide the possible bit rates using JPEG and JPEG2000 for 3-D breast US images.
Sparse reconstruction of breast MRI using homotopic L0 minimization in a regional sparsified domain.
Wong, Alexander; Mishra, Akshaya; Fieguth, Paul; Clausi, David A
2013-03-01
The use of MRI for early breast examination and screening of asymptomatic women has become increasing popular, given its ability to provide detailed tissue characteristics that cannot be obtained using other imaging modalities such as mammography and ultrasound. Recent application-oriented developments in compressed sensing theory have shown that certain types of magnetic resonance images are inherently sparse in particular transform domains, and as such can be reconstructed with a high level of accuracy from highly undersampled k-space data below Nyquist sampling rates using homotopic L0 minimization schemes, which holds great potential for significantly reducing acquisition time. An important consideration in the use of such homotopic L0 minimization schemes is the choice of sparsifying transform. In this paper, a regional differential sparsifying transform is investigated for use within a homotopic L0 minimization framework for reconstructing breast MRI. By taking local regional characteristics into account, the regional differential sparsifying transform can better account for signal variations and fine details that are characteristic of breast MRI than the popular finite differential transform, while still maintaining strong structure fidelity. Experimental results show that good breast MRI reconstruction accuracy can be achieved compared to existing methods.
Low Dissipative High Order Shock-Capturing Methods Using Characteristic-Based Filters
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sandham, N. D.; Djomehri, M. J.
1998-01-01
An approach which closely maintains the non-dissipative nature of classical fourth or higher- order spatial differencing away from shock waves and steep gradient regions while being capable of accurately capturing discontinuities, steep gradient and fine scale turbulent structures in a stable and efficient manner is described. The approach is a generalization of the method of Gustafsson and Oisson and the artificial compression method (ACM) of Harten. Spatially non-dissipative fourth or higher-order compact and non-compact spatial differencings are used as the base schemes. Instead of applying a scalar filter as in Gustafsson and Olsson, an ACM like term is used to signal the appropriate amount of second or third-order TVD or ENO types of characteristic based numerical dissipation. This term acts as a characteristic filter to minimize numerical dissipation for the overall scheme. For time-accurate computations, time discretizations with low dissipation are used. Numerical experiments on 2-D vortical flows, vortex-shock interactions and compressible spatially and temporally evolving mixing layers showed that the proposed schemes have the desired property with only a 10% increase in operations count over standard second-order TVD schemes. Aside from the ability to accurately capture shock-turbulence interaction flows, this approach is also capable of accurately preserving vortex convection. Higher accuracy is achieved with fewer grid points when compared to that of standard second-order TVD or ENO schemes. To demonstrate the applicability of these schemes in sustaining turbulence where shock waves are absent, a simulation of 3-D compressible turbulent channel flow in a small domain is conducted.
Low Dissipative High Order Shock-Capturing Methods using Characteristic-Based Filters
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sandham, N. D.; Djomehri, M. J.
1998-01-01
An approach which closely maintains the non-dissipative nature of classical fourth or higher- order spatial differencing away from shock waves and steep gradient regions while being capable of accurately capturing discontinuities, steep gradient and fine scale turbulent structures in a stable and efficient manner is described. The approach is a generalization of the method of Gustafsson and Olsson and the artificial compression method (ACM) of Harten. Spatially non-dissipative fourth or higher-order compact and non-compact spatial differencings are used as the base schemes. Instead of applying a scalar filter as in Gustafsson and Olsson, an ACM like term is used to signal the appropriate amount of second or third-order TVD or ENO types of characteristic based numerical dissipation. This term acts as a characteristic filter to minimize numerical dissipation for the overall scheme. For time-accurate computations, time discretizations with low dissipation are used. Numerical experiments on 2-D vortical flows, vortex-shock interactions and compressible spatially and temporally evolving mixing layers showed that the proposed schemes have the desired property with only a 10% increase in operations count over standard second-order TVD schemes. Aside from the ability to accurately capture shock-turbulence interaction flows, this approach is also capable of accurately preserving vortex convection. Higher accuracy is achieved with fewer grid points when compared to that of standard second-order TVD or ENO schemes. To demonstrate the applicability of these schemes in sustaining turbulence where shock waves are absent, a simulation of 3-D compressible turbulent channel flow in a small domain is conducted.
Wavelet-based compression of pathological images for telemedicine applications
NASA Astrophysics Data System (ADS)
Chen, Chang W.; Jiang, Jianfei; Zheng, Zhiyong; Wu, Xue G.; Yu, Lun
2000-05-01
In this paper, we present the performance evaluation of wavelet-based coding techniques as applied to the compression of pathological images for application in an Internet-based telemedicine system. We first study how well suited the wavelet-based coding is as it applies to the compression of pathological images, since these images often contain fine textures that are often critical to the diagnosis of potential diseases. We compare the wavelet-based compression with the DCT-based JPEG compression in the DICOM standard for medical imaging applications. Both objective and subjective measures have been studied in the evaluation of compression performance. These studies are performed in close collaboration with expert pathologists who have conducted the evaluation of the compressed pathological images and communication engineers and information scientists who designed the proposed telemedicine system. These performance evaluations have shown that the wavelet-based coding is suitable for the compression of various pathological images and can be integrated well with the Internet-based telemedicine systems. A prototype of the proposed telemedicine system has been developed in which the wavelet-based coding is adopted for the compression to achieve bandwidth efficient transmission and therefore speed up the communications between the remote terminal and the central server of the telemedicine system.
An image assessment study of image acceptability of the Galileo low gain antenna mission
NASA Technical Reports Server (NTRS)
Chuang, S. L.; Haines, R. F.; Grant, T.; Gold, Yaron; Cheung, Kar-Ming
1994-01-01
This paper describes a study conducted by NASA Ames Research Center (ARC) in collaboration with the Jet Propulsion Laboratory (JPL), Pasadena, California on the image acceptability of the Galileo Low Gain Antenna mission. The primary objective of the study is to determine the impact of the Integer Cosine Transform (ICT) compression algorithm on Galilean images of atmospheric bodies, moons, asteroids and Jupiter's rings. The approach involved fifteen volunteer subjects representing twelve institutions involved with the Galileo Solid State Imaging (SSI) experiment. Four different experiment specific quantization tables (q-table) and various compression stepsizes (q-factor) to achieve different compression ratios were used. It then determined the acceptability of the compressed monochromatic astronomical images as evaluated by Galileo SSI mission scientists. Fourteen different images were evaluated. Each observer viewed two versions of the same image side by side on a high resolution monitor, each was compressed using a different quantization stepsize. They were requested to select which image had the highest overall quality to support them in carrying out their visual evaluations of image content. Then they rated both images using a scale from one to five on its judged degree of usefulness. Up to four pre-selected types of images were presented with and without noise to each subject based upon results of a previously administered survey of their image preferences. Fourteen different images in seven image groups were studied. The results showed that: (1) acceptable compression ratios vary widely with the type of images; (2) noisy images detract greatly from image acceptability and acceptable compression ratios; and (3) atmospheric images of Jupiter seem to have higher compression ratios of 4 to 5 times that of some clear surface satellite images.
A robust coding scheme for packet video
NASA Technical Reports Server (NTRS)
Chen, Y. C.; Sayood, Khalid; Nelson, D. J.
1991-01-01
We present a layered packet video coding algorithm based on a progressive transmission scheme. The algorithm provides good compression and can handle significant packet loss with graceful degradation in the reconstruction sequence. Simulation results for various conditions are presented.
A robust coding scheme for packet video
NASA Technical Reports Server (NTRS)
Chen, Yun-Chung; Sayood, Khalid; Nelson, Don J.
1992-01-01
A layered packet video coding algorithm based on a progressive transmission scheme is presented. The algorithm provides good compression and can handle significant packet loss with graceful degradation in the reconstruction sequence. Simulation results for various conditions are presented.
Compressed/reconstructed test images for CRAF/Cassini
NASA Technical Reports Server (NTRS)
Dolinar, S.; Cheung, K.-M.; Onyszchuk, I.; Pollara, F.; Arnold, S.
1991-01-01
A set of compressed, then reconstructed, test images submitted to the Comet Rendezvous Asteroid Flyby (CRAF)/Cassini project is presented as part of its evaluation of near lossless high compression algorithms for representing image data. A total of seven test image files were provided by the project. The seven test images were compressed, then reconstructed with high quality (root mean square error of approximately one or two gray levels on an 8 bit gray scale), using discrete cosine transforms or Hadamard transforms and efficient entropy coders. The resulting compression ratios varied from about 2:1 to about 10:1, depending on the activity or randomness in the source image. This was accomplished without any special effort to optimize the quantizer or to introduce special postprocessing to filter the reconstruction errors. A more complete set of measurements, showing the relative performance of the compression algorithms over a wide range of compression ratios and reconstruction errors, shows that additional compression is possible at a small sacrifice in fidelity.
Method for compression of data using single pass LZSS and run-length encoding
Berlin, G.J.
1994-01-01
A method used preferably with LZSS-based compression methods for compressing a stream of digital data. The method uses a run-length encoding scheme especially suited for data strings of identical data bytes having large run-lengths, such as data representing scanned images. The method reads an input data stream to determine the length of the data strings. Longer data strings are then encoded in one of two ways depending on the length of the string. For data strings having run-lengths less than 18 bytes, a cleared offset and the actual run-length are written to an output buffer and then a run byte is written to the output buffer. For data strings of 18 bytes or longer, a set offset and an encoded run-length are written to the output buffer and then a run byte is written to the output buffer. The encoded run-length is written in two parts obtained by dividing the run length by a factor of 255. The first of two parts of the encoded run-length is the quotient; the second part is the remainder. Data bytes that are not part of data strings of sufficient length are written directly to the output buffer.
NASA Astrophysics Data System (ADS)
Atemkeng, M.; Smirnov, O.; Tasse, C.; Foster, G.; Keimpema, A.; Paragi, Z.; Jonas, J.
2018-07-01
Traditional radio interferometric correlators produce regular-gridded samples of the true uv-distribution by averaging the signal over constant, discrete time-frequency intervals. This regular sampling and averaging then translate to be irregular-gridded samples in the uv-space, and results in a baseline-length-dependent loss of amplitude and phase coherence, which is dependent on the distance from the image phase centre. The effect is often referred to as `decorrelation' in the uv-space, which is equivalent in the source domain to `smearing'. This work discusses and implements a regular-gridded sampling scheme in the uv-space (baseline-dependent sampling) and windowing that allow for data compression, field-of-interest shaping, and source suppression. The baseline-dependent sampling requires irregular-gridded sampling in the time-frequency space, i.e. the time-frequency interval becomes baseline dependent. Analytic models and simulations are used to show that decorrelation remains constant across all the baselines when applying baseline-dependent sampling and windowing. Simulations using MeerKAT telescope and the European Very Long Baseline Interferometry Network show that both data compression, field-of-interest shaping, and outer field-of-interest suppression are achieved.
Method for compression of data using single pass LZSS and run-length encoding
Berlin, Gary J.
1997-01-01
A method used preferably with LZSS-based compression methods for compressing a stream of digital data. The method uses a run-length encoding scheme especially suited for data strings of identical data bytes having large run-lengths, such as data representing scanned images. The method reads an input data stream to determine the length of the data strings. Longer data strings are then encoded in one of two ways depending on the length of the string. For data strings having run-lengths less than 18 bytes, a cleared offset and the actual run-length are written to an output buffer and then a run byte is written to the output buffer. For data strings of 18 bytes or longer, a set offset and an encoded run-length are written to the output buffer and then a run byte is written to the output buffer. The encoded run-length is written in two parts obtained by dividing the run length by a factor of 255. The first of two parts of the encoded run-length is the quotient; the second part is the remainder. Data bytes that are not part of data strings of sufficient length are written directly to the output buffer.
High-performance compression of astronomical images
NASA Technical Reports Server (NTRS)
White, Richard L.
1993-01-01
Astronomical images have some rather unusual characteristics that make many existing image compression techniques either ineffective or inapplicable. A typical image consists of a nearly flat background sprinkled with point sources and occasional extended sources. The images are often noisy, so that lossless compression does not work very well; furthermore, the images are usually subjected to stringent quantitative analysis, so any lossy compression method must be proven not to discard useful information, but must instead discard only the noise. Finally, the images can be extremely large. For example, the Space Telescope Science Institute has digitized photographic plates covering the entire sky, generating 1500 images each having 14000 x 14000 16-bit pixels. Several astronomical groups are now constructing cameras with mosaics of large CCD's (each 2048 x 2048 or larger); these instruments will be used in projects that generate data at a rate exceeding 100 MBytes every 5 minutes for many years. An effective technique for image compression may be based on the H-transform (Fritze et al. 1977). The method that we have developed can be used for either lossless or lossy compression. The digitized sky survey images can be compressed by at least a factor of 10 with no noticeable losses in the astrometric and photometric properties of the compressed images. The method has been designed to be computationally efficient: compression or decompression of a 512 x 512 image requires only 4 seconds on a Sun SPARCstation 1. The algorithm uses only integer arithmetic, so it is completely reversible in its lossless mode, and it could easily be implemented in hardware for space applications.
Halftoning processing on a JPEG-compressed image
NASA Astrophysics Data System (ADS)
Sibade, Cedric; Barizien, Stephane; Akil, Mohamed; Perroton, Laurent
2003-12-01
Digital image processing algorithms are usually designed for the raw format, that is on an uncompressed representation of the image. Therefore prior to transforming or processing a compressed format, decompression is applied; then, the result of the processing application is finally re-compressed for further transfer or storage. The change of data representation is resource-consuming in terms of computation, time and memory usage. In the wide format printing industry, this problem becomes an important issue: e.g. a 1 m2 input color image, scanned at 600 dpi exceeds 1.6 GB in its raw representation. However, some image processing algorithms can be performed in the compressed-domain, by applying an equivalent operation on the compressed format. This paper is presenting an innovative application of the halftoning processing operation by screening, to be applied on JPEG-compressed image. This compressed-domain transform is performed by computing the threshold operation of the screening algorithm in the DCT domain. This algorithm is illustrated by examples for different halftone masks. A pre-sharpening operation, applied on a JPEG-compressed low quality image is also described; it allows to de-noise and to enhance the contours of this image.
NASA Astrophysics Data System (ADS)
Osada, Masakazu; Tsukui, Hideki
2002-09-01
ABSTRACT Picture Archiving and Communication System (PACS) is a system which connects imaging modalities, image archives, and image workstations to reduce film handling cost and improve hospital workflow. Handling diagnostic ultrasound and endoscopy images is challenging, because it produces large amount of data such as motion (cine) images of 30 frames per second, 640 x 480 in resolution, with 24-bit color. Also, it requires enough image quality for clinical review. We have developed PACS which is able to manage ultrasound and endoscopy cine images with above resolution and frame rate, and investigate suitable compression method and compression rate for clinical image review. Results show that clinicians require capability for frame-by-frame forward and backward review of cine images because they carefully look through motion images to find certain color patterns which may appear in one frame. In order to satisfy this quality, we have chosen motion JPEG, installed and confirmed that we could capture this specific pattern. As for acceptable image compression rate, we have performed subjective evaluation. No subjects could tell the difference between original non-compressed images and 1:10 lossy compressed JPEG images. One subject could tell the difference between original and 1:20 lossy compressed JPEG images although it is acceptable. Thus, ratios of 1:10 to 1:20 are acceptable to reduce data amount and cost while maintaining quality for clinical review.
The effect of lossy image compression on image classification
NASA Technical Reports Server (NTRS)
Paola, Justin D.; Schowengerdt, Robert A.
1995-01-01
We have classified four different images, under various levels of JPEG compression, using the following classification algorithms: minimum-distance, maximum-likelihood, and neural network. The training site accuracy and percent difference from the original classification were tabulated for each image compression level, with maximum-likelihood showing the poorest results. In general, as compression ratio increased, the classification retained its overall appearance, but much of the pixel-to-pixel detail was eliminated. We also examined the effect of compression on spatial pattern detection using a neural network.
Task-based data-acquisition optimization for sparse image reconstruction systems
NASA Astrophysics Data System (ADS)
Chen, Yujia; Lou, Yang; Kupinski, Matthew A.; Anastasio, Mark A.
2017-03-01
Conventional wisdom dictates that imaging hardware should be optimized by use of an ideal observer (IO) that exploits full statistical knowledge of the class of objects to be imaged, without consideration of the reconstruction method to be employed. However, accurate and tractable models of the complete object statistics are often difficult to determine in practice. Moreover, in imaging systems that employ compressive sensing concepts, imaging hardware and (sparse) image reconstruction are innately coupled technologies. We have previously proposed a sparsity-driven ideal observer (SDIO) that can be employed to optimize hardware by use of a stochastic object model that describes object sparsity. The SDIO and sparse reconstruction method can therefore be "matched" in the sense that they both utilize the same statistical information regarding the class of objects to be imaged. To efficiently compute SDIO performance, the posterior distribution is estimated by use of computational tools developed recently for variational Bayesian inference. Subsequently, the SDIO test statistic can be computed semi-analytically. The advantages of employing the SDIO instead of a Hotelling observer are systematically demonstrated in case studies in which magnetic resonance imaging (MRI) data acquisition schemes are optimized for signal detection tasks.
NASA Astrophysics Data System (ADS)
Kim, Christopher Y.
1999-05-01
Endoscopic images p lay an important role in describing many gastrointestinal (GI) disorders. The field of radiology has been on the leading edge of creating, archiving and transmitting digital images. With the advent of digital videoendoscopy, endoscopists now have the ability to generate images for storage and transmission. X-rays can be compressed 30-40X without appreciable decline in quality. We reported results of a pilot study using JPEG compression of 24-bit color endoscopic images. For that study, the result indicated that adequate compression ratios vary according to the lesion and that images could be compressed to between 31- and 99-fold smaller than the original size without an appreciable decline in quality. The purpose of this study was to expand upon the methodology of the previous sty with an eye towards application for the WWW, a medium which would expand both clinical and educational purposes of color medical imags. The results indicate that endoscopists are able to tolerate very significant compression of endoscopic images without loss of clinical image quality. This finding suggests that even 1 MB color images can be compressed to well under 30KB, which is considered a maximal tolerable image size for downloading on the WWW.
Mashiko, Hiroki; Yamaguchi, Tomohiko; Oguri, Katsuya; Suda, Akira; Gotoh, Hideki
2014-01-01
In many atomic, molecular and solid systems, Lorentzian and Fano profiles are commonly observed in a broad research fields throughout a variety of spectroscopies. As the profile structure is related to the phase of the time-dependent dipole moment, it plays an important role in the study of quantum properties. Here we determine the dipole phase in the inner-shell transition using spectral phase interferometry for direct electric-field reconstruction (SPIDER) with isolated attosecond pulses (IAPs). In addition, we propose a scheme for pulse generation and compression by manipulating the inner-shell transition. The electromagnetic radiation generated by the transition is temporally compressed to a few femtoseconds in the extreme ultraviolet (XUV) region. The proposed pulse-compression scheme may provide an alternative route to producing attosecond pulses of light. PMID:25510971
Compression of surface myoelectric signals using MP3 encoding.
Chan, Adrian D C
2011-01-01
The potential of MP3 compression of surface myoelectric signals is explored in this paper. MP3 compression is a perceptual-based encoder scheme, used traditionally to compress audio signals. The ubiquity of MP3 compression (e.g., portable consumer electronics and internet applications) makes it an attractive option for remote monitoring and telemedicine applications. The effects of muscle site and contraction type are examined at different MP3 encoding bitrates. Results demonstrate that MP3 compression is sensitive to the myoelectric signal bandwidth, with larger signal distortion associated with myoelectric signals that have higher bandwidths. Compared to other myoelectric signal compression techniques reported previously (embedded zero-tree wavelet compression and adaptive differential pulse code modulation), MP3 compression demonstrates superior performance (i.e., lower percent residual differences for the same compression ratios).
Yang, L M; Shu, C; Wang, Y
2016-03-01
In this work, a discrete gas-kinetic scheme (DGKS) is presented for simulation of two-dimensional viscous incompressible and compressible flows. This scheme is developed from the circular function-based GKS, which was recently proposed by Shu and his co-workers [L. M. Yang, C. Shu, and J. Wu, J. Comput. Phys. 274, 611 (2014)]. For the circular function-based GKS, the integrals for conservation forms of moments in the infinity domain for the Maxwellian function-based GKS are simplified to those integrals along the circle. As a result, the explicit formulations of conservative variables and fluxes are derived. However, these explicit formulations of circular function-based GKS for viscous flows are still complicated, which may not be easy for the application by new users. By using certain discrete points to represent the circle in the phase velocity space, the complicated formulations can be replaced by a simple solution process. The basic requirement is that the conservation forms of moments for the circular function-based GKS can be accurately satisfied by weighted summation of distribution functions at discrete points. In this work, it is shown that integral quadrature by four discrete points on the circle, which forms the D2Q4 discrete velocity model, can exactly match the integrals. Numerical results showed that the present scheme can provide accurate numerical results for incompressible and compressible viscous flows with roughly the same computational cost as that needed by the Roe scheme.
NASA Astrophysics Data System (ADS)
He, Xingyu; Tong, Ningning; Hu, Xiaowei
2018-01-01
Compressive sensing has been successfully applied to inverse synthetic aperture radar (ISAR) imaging of moving targets. By exploiting the block sparse structure of the target image, sparse solution for multiple measurement vectors (MMV) can be applied in ISAR imaging and a substantial performance improvement can be achieved. As an effective sparse recovery method, sparse Bayesian learning (SBL) for MMV involves a matrix inverse at each iteration. Its associated computational complexity grows significantly with the problem size. To address this problem, we develop a fast inverse-free (IF) SBL method for MMV. A relaxed evidence lower bound (ELBO), which is computationally more amiable than the traditional ELBO used by SBL, is obtained by invoking fundamental property for smooth functions. A variational expectation-maximization scheme is then employed to maximize the relaxed ELBO, and a computationally efficient IF-MSBL algorithm is proposed. Numerical results based on simulated and real data show that the proposed method can reconstruct row sparse signal accurately and obtain clear superresolution ISAR images. Moreover, the running time and computational complexity are reduced to a great extent compared with traditional SBL methods.
NASA Astrophysics Data System (ADS)
Schmalz, Mark S.; Ritter, Gerhard X.; Caimi, Frank M.
2001-12-01
A wide variety of digital image compression transforms developed for still imaging and broadcast video transmission are unsuitable for Internet video applications due to insufficient compression ratio, poor reconstruction fidelity, or excessive computational requirements. Examples include hierarchical transforms that require all, or large portion of, a source image to reside in memory at one time, transforms that induce significant locking effect at operationally salient compression ratios, and algorithms that require large amounts of floating-point computation. The latter constraint holds especially for video compression by small mobile imaging devices for transmission to, and compression on, platforms such as palmtop computers or personal digital assistants (PDAs). As Internet video requirements for frame rate and resolution increase to produce more detailed, less discontinuous motion sequences, a new class of compression transforms will be needed, especially for small memory models and displays such as those found on PDAs. In this, the third series of papers, we discuss the EBLAST compression transform and its application to Internet communication. Leading transforms for compression of Internet video and still imagery are reviewed and analyzed, including GIF, JPEG, AWIC (wavelet-based), wavelet packets, and SPIHT, whose performance is compared with EBLAST. Performance analysis criteria include time and space complexity and quality of the decompressed image. The latter is determined by rate-distortion data obtained from a database of realistic test images. Discussion also includes issues such as robustness of the compressed format to channel noise. EBLAST has been shown to perform superiorly to JPEG and, unlike current wavelet compression transforms, supports fast implementation on embedded processors with small memory models.
Song, Xiaoying; Huang, Qijun; Chang, Sheng; He, Jin; Wang, Hao
2016-12-01
To address the low compression efficiency of lossless compression and the low image quality of general near-lossless compression, a novel near-lossless compression algorithm based on adaptive spatial prediction is proposed for medical sequence images for possible diagnostic use in this paper. The proposed method employs adaptive block size-based spatial prediction to predict blocks directly in the spatial domain and Lossless Hadamard Transform before quantization to improve the quality of reconstructed images. The block-based prediction breaks the pixel neighborhood constraint and takes full advantage of the local spatial correlations found in medical images. The adaptive block size guarantees a more rational division of images and the improved use of the local structure. The results indicate that the proposed algorithm can efficiently compress medical images and produces a better peak signal-to-noise ratio (PSNR) under the same pre-defined distortion than other near-lossless methods.
Energy spread minimization in a cascaded laser wakefield accelerator via velocity bunching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zhijun; Li, Wentao; Wang, Wentao
2016-05-15
We propose a scheme to minimize the energy spread of an electron beam (e-beam) in a cascaded laser wakefield accelerator to the one-thousandth-level by inserting a stage to compress its longitudinal spatial distribution. In this scheme, three-segment plasma stages are designed for electron injection, e-beam length compression, and e-beam acceleration, respectively. The trapped e-beam in the injection stage is transferred to the zero-phase region at the center of one wakefield period in the compression stage where the length of the e-beam can be greatly shortened owing to the velocity bunching. After being seeded into the third stage for acceleration, themore » e-beam can be accelerated to a much higher energy before its energy chirp is compensated owing to the shortened e-beam length. A one-dimensional theory and two-dimensional particle-in-cell simulations have demonstrated this scheme and an e-beam with 0.2% rms energy spread and low transverse emittance could be generated without loss of charge.« less
NASA Astrophysics Data System (ADS)
Seeram, Euclid
2006-03-01
The large volumes of digital images produced by digital imaging modalities in Radiology have provided the motivation for the development of picture archiving and communication systems (PACS) in an effort to provide an organized mechanism for digital image management. The development of more sophisticated methods of digital image acquisition (Multislice CT and Digital Mammography, for example), as well as the implementation and performance of PACS and Teleradiology systems in a health care environment, have created challenges in the area of image compression with respect to storing and transmitting digital images. Image compression can be reversible (lossless) or irreversible (lossy). While in the former, there is no loss of information, the latter presents concerns since there is a loss of information. This loss of information from diagnostic medical images is of primary concern not only to radiologists, but also to patients and their physicians. In 1997, Goldberg pointed out that "there is growing evidence that lossy compression can be applied without significantly affecting the diagnostic content of images... there is growing consensus in the radiologic community that some forms of lossy compression are acceptable". The purpose of this study was to explore the opinions of expert radiologists, and related professional organizations on the use of irreversible compression in routine practice The opinions of notable radiologists in the US and Canada are varied indicating no consensus of opinion on the use of irreversible compression in primary diagnosis, however, they are generally positive on the notion of the image storage and transmission advantages. Almost all radiologists are concerned with the litigation potential of an incorrect diagnosis based on irreversible compressed images. The survey of several radiology professional and related organizations reveals that no professional practice standards exist for the use of irreversible compression. Currently, the only standard for image compression is stated in the ACR's Technical Standards for Teleradiology and Digital Image Management.
Clinical utility of wavelet compression for resolution-enhanced chest radiography
NASA Astrophysics Data System (ADS)
Andriole, Katherine P.; Hovanes, Michael E.; Rowberg, Alan H.
2000-05-01
This study evaluates the usefulness of wavelet compression for resolution-enhanced storage phosphor chest radiographs in the detection of subtle interstitial disease, pneumothorax and other abnormalities. A wavelet compression technique, MrSIDTM (LizardTech, Inc., Seattle, WA), is implemented which compresses the images from their original 2,000 by 2,000 (2K) matrix size, and then decompresses the image data for display at optimal resolution by matching the spatial frequency characteristics of image objects using a 4,000- square matrix. The 2K-matrix computed radiography (CR) chest images are magnified to a 4K-matrix using wavelet series expansion. The magnified images are compared with the original uncompressed 2K radiographs and with two-times magnification of the original images. Preliminary results show radiologist preference for MrSIDTM wavelet-based magnification over magnification of original data, and suggest that the compressed/decompressed images may provide an enhancement to the original. Data collection for clinical trials of 100 chest radiographs including subtle interstitial abnormalities and/or subtle pneumothoraces and normal cases, are in progress. Three experienced thoracic radiologists will view images side-by- side on calibrated softcopy workstations under controlled viewing conditions, and rank order preference tests will be performed. This technique combines image compression with image enhancement, and suggests that compressed/decompressed images can actually improve the originals.
A gas-kinetic BGK scheme for the compressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Xu, Kun
2000-01-01
This paper presents an improved gas-kinetic scheme based on the Bhatnagar-Gross-Krook (BGK) model for the compressible Navier-Stokes equations. The current method extends the previous gas-kinetic Navier-Stokes solver developed by Xu and Prendergast by implementing a general nonequilibrium state to represent the gas distribution function at the beginning of each time step. As a result, the requirement in the previous scheme, such as the particle collision time being less than the time step for the validity of the BGK Navier-Stokes solution, is removed. Therefore, the applicable regime of the current method is much enlarged and the Navier-Stokes solution can be obtained accurately regardless of the ratio between the collision time and the time step. The gas-kinetic Navier-Stokes solver developed by Chou and Baganoff is the limiting case of the current method, and it is valid only under such a limiting condition. Also, in this paper, the appropriate implementation of boundary condition for the kinetic scheme, different kinetic limiting cases, and the Prandtl number fix are presented. The connection among artificial dissipative central schemes, Godunov-type schemes, and the gas-kinetic BGK method is discussed. Many numerical tests are included to validate the current method.
NASA Astrophysics Data System (ADS)
Käppeli, R.; Mishra, S.
2016-03-01
Context. Many problems in astrophysics feature flows which are close to hydrostatic equilibrium. However, standard numerical schemes for compressible hydrodynamics may be deficient in approximating this stationary state, where the pressure gradient is nearly balanced by gravitational forces. Aims: We aim to develop a second-order well-balanced scheme for the Euler equations. The scheme is designed to mimic a discrete version of the hydrostatic balance. It therefore can resolve a discrete hydrostatic equilibrium exactly (up to machine precision) and propagate perturbations, on top of this equilibrium, very accurately. Methods: A local second-order hydrostatic equilibrium preserving pressure reconstruction is developed. Combined with a standard central gravitational source term discretization and numerical fluxes that resolve stationary contact discontinuities exactly, the well-balanced property is achieved. Results: The resulting well-balanced scheme is robust and simple enough to be very easily implemented within any existing computer code that solves time explicitly or implicitly the compressible hydrodynamics equations. We demonstrate the performance of the well-balanced scheme for several astrophysically relevant applications: wave propagation in stellar atmospheres, a toy model for core-collapse supernovae, convection in carbon shell burning, and a realistic proto-neutron star.
Pornographic image recognition and filtering using incremental learning in compressed domain
NASA Astrophysics Data System (ADS)
Zhang, Jing; Wang, Chao; Zhuo, Li; Geng, Wenhao
2015-11-01
With the rapid development and popularity of the network, the openness, anonymity, and interactivity of networks have led to the spread and proliferation of pornographic images on the Internet, which have done great harm to adolescents' physical and mental health. With the establishment of image compression standards, pornographic images are mainly stored with compressed formats. Therefore, how to efficiently filter pornographic images is one of the challenging issues for information security. A pornographic image recognition and filtering method in the compressed domain is proposed by using incremental learning, which includes the following steps: (1) low-resolution (LR) images are first reconstructed from the compressed stream of pornographic images, (2) visual words are created from the LR image to represent the pornographic image, and (3) incremental learning is adopted to continuously adjust the classification rules to recognize the new pornographic image samples after the covering algorithm is utilized to train and recognize the visual words in order to build the initial classification model of pornographic images. The experimental results show that the proposed pornographic image recognition method using incremental learning has a higher recognition rate as well as costing less recognition time in the compressed domain.
A new approach of objective quality evaluation on JPEG2000 lossy-compressed lung cancer CT images
NASA Astrophysics Data System (ADS)
Cai, Weihua; Tan, Yongqiang; Zhang, Jianguo
2007-03-01
Image compression has been used to increase the communication efficiency and storage capacity. JPEG 2000 compression, based on the wavelet transformation, has its advantages comparing to other compression methods, such as ROI coding, error resilience, adaptive binary arithmetic coding and embedded bit-stream. However it is still difficult to find an objective method to evaluate the image quality of lossy-compressed medical images so far. In this paper, we present an approach to evaluate the image quality by using a computer aided diagnosis (CAD) system. We selected 77 cases of CT images, bearing benign and malignant lung nodules with confirmed pathology, from our clinical Picture Archiving and Communication System (PACS). We have developed a prototype of CAD system to classify these images into benign ones and malignant ones, the performance of which was evaluated by the receiver operator characteristics (ROC) curves. We first used JPEG 2000 to compress these cases of images with different compression ratio from lossless to lossy, and used the CAD system to classify the cases with different compressed ratio, then compared the ROC curves from the CAD classification results. Support vector machine (SVM) and neural networks (NN) were used to classify the malignancy of input nodules. In each approach, we found that the area under ROC (AUC) decreases with the increment of compression ratio with small fluctuations.
A Framework of Hyperspectral Image Compression using Neural Networks
Masalmah, Yahya M.; Martínez Nieves, Christian; Rivera Soto, Rafael; ...
2015-01-01
Hyperspectral image analysis has gained great attention due to its wide range of applications. Hyperspectral images provide a vast amount of information about underlying objects in an image by using a large range of the electromagnetic spectrum for each pixel. However, since the same image is taken multiple times using distinct electromagnetic bands, the size of such images tend to be significant, which leads to greater processing requirements. The aim of this paper is to present a proposed framework for image compression and to study the possible effects of spatial compression on quality of unmixing results. Image compression allows usmore » to reduce the dimensionality of an image while still preserving most of the original information, which could lead to faster image processing. Lastly, this paper presents preliminary results of different training techniques used in Artificial Neural Network (ANN) based compression algorithm.« less
Overview of the JPEG XS objective evaluation procedures
NASA Astrophysics Data System (ADS)
Willème, Alexandre; Richter, Thomas; Rosewarne, Chris; Macq, Benoit
2017-09-01
JPEG XS is a standardization activity conducted by the Joint Photographic Experts Group (JPEG), formally known as ISO/IEC SC29 WG1 group that aims at standardizing a low-latency, lightweight and visually lossless video compression scheme. This codec is intended to be used in applications where image sequences would otherwise be transmitted or stored in uncompressed form, such as in live production (through SDI or IP transport), display links, or frame buffers. Support for compression ratios ranging from 2:1 to 6:1 allows significant bandwidth and power reduction for signal propagation. This paper describes the objective quality assessment procedures conducted as part of the JPEG XS standardization activity. Firstly, this paper discusses the objective part of the experiments that led to the technology selection during the 73th WG1 meeting in late 2016. This assessment consists of PSNR measurements after a single and multiple compression decompression cycles at various compression ratios. After this assessment phase, two proposals among the six responses to the CfP were selected and merged to form the first JPEG XS test model (XSM). Later, this paper describes the core experiments (CEs) conducted so far on the XSM. These experiments are intended to evaluate its performance in more challenging scenarios, such as insertion of picture overlays, robustness to frame editing, assess the impact of the different algorithmic choices, and also to measure the XSM performance using the HDR VDP metric.
Costa, Marcus V C; Carvalho, Joao L A; Berger, Pedro A; Zaghetto, Alexandre; da Rocha, Adson F; Nascimento, Francisco A O
2009-01-01
We present a new preprocessing technique for two-dimensional compression of surface electromyographic (S-EMG) signals, based on correlation sorting. We show that the JPEG2000 coding system (originally designed for compression of still images) and the H.264/AVC encoder (video compression algorithm operating in intraframe mode) can be used for compression of S-EMG signals. We compare the performance of these two off-the-shelf image compression algorithms for S-EMG compression, with and without the proposed preprocessing step. Compression of both isotonic and isometric contraction S-EMG signals is evaluated. The proposed methods were compared with other S-EMG compression algorithms from the literature.
NASA Astrophysics Data System (ADS)
Zhang, Xuyan; Zhang, Zhiyao; Wang, Shubing; Liang, Dong; Li, Heping; Liu, Yong
2018-03-01
We propose and demonstrate an approach that can achieve high-resolution quantization by employing soliton self-frequency shift and spectral compression. Our approach is based on a bi-directional comb-fiber architecture which is composed of a Sagnac-loop-based mirror and a comb-like combination of N sections of interleaved single-mode fibers and high nonlinear fibers. The Sagnac-loop-based mirror placed at the terminal of a bus line reflects the optical pulses back to the bus line to achieve additional N-stage spectral compression, thus single-stage soliton self-frequency shift (SSFS) and (2 N - 1)-stage spectral compression are realized in the bi-directional scheme. The fiber length in the architecture is numerically optimized, and the proposed quantization scheme is evaluated by both simulation and experiment in the case of N = 2. In the experiment, a quantization resolution of 6.2 bits is obtained, which is 1.2-bit higher than that of its uni-directional counterpart.
A block-based JPEG-LS compression technique with lossless region of interest
NASA Astrophysics Data System (ADS)
Deng, Lihua; Huang, Zhenghua; Yao, Shoukui
2018-03-01
JPEG-LS lossless compression algorithm is used in many specialized applications that emphasize on the attainment of high fidelity for its lower complexity and better compression ratios than the lossless JPEG standard. But it cannot prevent error diffusion because of the context dependence of the algorithm, and have low compression rate when compared to lossy compression. In this paper, we firstly divide the image into two parts: ROI regions and non-ROI regions. Then we adopt a block-based image compression technique to decrease the range of error diffusion. We provide JPEG-LS lossless compression for the image blocks which include the whole or part region of interest (ROI) and JPEG-LS near lossless compression for the image blocks which are included in the non-ROI (unimportant) regions. Finally, a set of experiments are designed to assess the effectiveness of the proposed compression method.
CWICOM: A Highly Integrated & Innovative CCSDS Image Compression ASIC
NASA Astrophysics Data System (ADS)
Poupat, Jean-Luc; Vitulli, Raffaele
2013-08-01
The space market is more and more demanding in terms of on image compression performances. The earth observation satellites instrument resolution, the agility and the swath are continuously increasing. It multiplies by 10 the volume of picture acquired on one orbit. In parallel, the satellites size and mass are decreasing, requiring innovative electronic technologies reducing size, mass and power consumption. Astrium, leader on the market of the combined solutions for compression and memory for space application, has developed a new image compression ASIC which is presented in this paper. CWICOM is a high performance and innovative image compression ASIC developed by Astrium in the frame of the ESA contract n°22011/08/NLL/LvH. The objective of this ESA contract is to develop a radiation hardened ASIC that implements the CCSDS 122.0-B-1 Standard for Image Data Compression, that has a SpaceWire interface for configuring and controlling the device, and that is compatible with Sentinel-2 interface and with similar Earth Observation missions. CWICOM stands for CCSDS Wavelet Image COMpression ASIC. It is a large dynamic, large image and very high speed image compression ASIC potentially relevant for compression of any 2D image with bi-dimensional data correlation such as Earth observation, scientific data compression… The paper presents some of the main aspects of the CWICOM development, such as the algorithm and specification, the innovative memory organization, the validation approach and the status of the project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Juan, E-mail: cheng_juan@iapcm.ac.cn; Shu, Chi-Wang, E-mail: shu@dam.brown.edu
In applications such as astrophysics and inertial confinement fusion, there are many three-dimensional cylindrical-symmetric multi-material problems which are usually simulated by Lagrangian schemes in the two-dimensional cylindrical coordinates. For this type of simulation, a critical issue for the schemes is to keep spherical symmetry in the cylindrical coordinate system if the original physical problem has this symmetry. In the past decades, several Lagrangian schemes with such symmetry property have been developed, but all of them are only first order accurate. In this paper, we develop a second order cell-centered Lagrangian scheme for solving compressible Euler equations in cylindrical coordinates, basedmore » on the control volume discretizations, which is designed to have uniformly second order accuracy and capability to preserve one-dimensional spherical symmetry in a two-dimensional cylindrical geometry when computed on an equal-angle-zoned initial grid. The scheme maintains several good properties such as conservation for mass, momentum and total energy, and the geometric conservation law. Several two-dimensional numerical examples in cylindrical coordinates are presented to demonstrate the good performance of the scheme in terms of accuracy, symmetry, non-oscillation and robustness. The advantage of higher order accuracy is demonstrated in these examples.« less
NASA Astrophysics Data System (ADS)
Rahman, Syazila; Yusoff, Mohd. Zamri; Hasini, Hasril
2012-06-01
This paper describes the comparison between the cell centered scheme and cell vertex scheme in the calculation of high speed compressible flow properties. The calculation is carried out using Computational Fluid Dynamic (CFD) in which the mass, momentum and energy equations are solved simultaneously over the flow domain. The geometry under investigation consists of a Binnie and Green convergent-divergent nozzle and structured mesh scheme is implemented throughout the flow domain. The finite volume CFD solver employs second-order accurate central differencing scheme for spatial discretization. In addition, the second-order accurate cell-vertex finite volume spatial discretization is also introduced in this case for comparison. The multi-stage Runge-Kutta time integration is implemented for solving a set of non-linear governing equations with variables stored at the vertices. Artificial dissipations used second and fourth order terms with pressure switch to detect changes in pressure gradient. This is important to control the solution stability and capture shock discontinuity. The result is compared with experimental measurement and good agreement is obtained for both cases.
NASA Astrophysics Data System (ADS)
Liu, Yong; Shu, Chi-Wang; Zhang, Mengping
2018-02-01
We present a discontinuous Galerkin (DG) scheme with suitable quadrature rules [15] for ideal compressible magnetohydrodynamic (MHD) equations on structural meshes. The semi-discrete scheme is analyzed to be entropy stable by using the symmetrizable version of the equations as introduced by Godunov [32], the entropy stable DG framework with suitable quadrature rules [15], the entropy conservative flux in [14] inside each cell and the entropy dissipative approximate Godunov type numerical flux at cell interfaces to make the scheme entropy stable. The main difficulty in the generalization of the results in [15] is the appearance of the non-conservative "source terms" added in the modified MHD model introduced by Godunov [32], which do not exist in the general hyperbolic system studied in [15]. Special care must be taken to discretize these "source terms" adequately so that the resulting DG scheme satisfies entropy stability. Total variation diminishing / bounded (TVD/TVB) limiters and bound-preserving limiters are applied to control spurious oscillations. We demonstrate the accuracy and robustness of this new scheme on standard MHD examples.
Image Data Compression Having Minimum Perceptual Error
NASA Technical Reports Server (NTRS)
Watson, Andrew B. (Inventor)
1997-01-01
A method is presented for performing color or grayscale image compression that eliminates redundant and invisible image components. The image compression uses a Discrete Cosine Transform (DCT) and each DCT coefficient yielded by the transform is quantized by an entry in a quantization matrix which determines the perceived image quality and the bit rate of the image being compressed. The quantization matrix comprises visual masking by luminance and contrast technique all resulting in a minimum perceptual error for any given bit rate, or minimum bit rate for a given perceptual error.
Blind compressed sensing image reconstruction based on alternating direction method
NASA Astrophysics Data System (ADS)
Liu, Qinan; Guo, Shuxu
2018-04-01
In order to solve the problem of how to reconstruct the original image under the condition of unknown sparse basis, this paper proposes an image reconstruction method based on blind compressed sensing model. In this model, the image signal is regarded as the product of a sparse coefficient matrix and a dictionary matrix. Based on the existing blind compressed sensing theory, the optimal solution is solved by the alternative minimization method. The proposed method solves the problem that the sparse basis in compressed sensing is difficult to represent, which restrains the noise and improves the quality of reconstructed image. This method ensures that the blind compressed sensing theory has a unique solution and can recover the reconstructed original image signal from a complex environment with a stronger self-adaptability. The experimental results show that the image reconstruction algorithm based on blind compressed sensing proposed in this paper can recover high quality image signals under the condition of under-sampling.
López, Carlos; Lejeune, Marylène; Escrivà, Patricia; Bosch, Ramón; Salvadó, Maria Teresa; Pons, Lluis E.; Baucells, Jordi; Cugat, Xavier; Álvaro, Tomás; Jaén, Joaquín
2008-01-01
This study investigates the effects of digital image compression on automatic quantification of immunohistochemical nuclear markers. We examined 188 images with a previously validated computer-assisted analysis system. A first group was composed of 47 images captured in TIFF format, and other three contained the same images converted from TIFF to JPEG format with 3×, 23× and 46× compression. Counts of TIFF format images were compared with the other three groups. Overall, differences in the count of the images increased with the percentage of compression. Low-complexity images (≤100 cells/field, without clusters or with small-area clusters) had small differences (<5 cells/field in 95–100% of cases) and high-complexity images showed substantial differences (<35–50 cells/field in 95–100% of cases). Compression does not compromise the accuracy of immunohistochemical nuclear marker counts obtained by computer-assisted analysis systems for digital images with low complexity and could be an efficient method for storing these images. PMID:18755997
A very efficient RCS data compression and reconstruction technique, volume 4
NASA Technical Reports Server (NTRS)
Tseng, N. Y.; Burnside, W. D.
1992-01-01
A very efficient compression and reconstruction scheme for RCS measurement data was developed. The compression is done by isolating the scattering mechanisms on the target and recording their individual responses in the frequency and azimuth scans, respectively. The reconstruction, which is an inverse process of the compression, is granted by the sampling theorem. Two sets of data, the corner reflectors and the F-117 fighter model, were processed and the results were shown to be convincing. The compression ratio can be as large as several hundred, depending on the target's geometry and scattering characteristics.
Applications of Taylor-Galerkin finite element method to compressible internal flow problems
NASA Technical Reports Server (NTRS)
Sohn, Jeong L.; Kim, Yongmo; Chung, T. J.
1989-01-01
A two-step Taylor-Galerkin finite element method with Lapidus' artificial viscosity scheme is applied to several test cases for internal compressible inviscid flow problems. Investigations for the effect of supersonic/subsonic inlet and outlet boundary conditions on computational results are particularly emphasized.
A 3-dimensional mass conserving element for compressible flows
NASA Technical Reports Server (NTRS)
Fix, G.; Suri, M.
1985-01-01
A variety of finite element schemes has been used in the numerical approximation of compressible flows particularly in underwater acoustics. In many instances instabilities have been generated due to the lack of mass conservation. Two- and three-dimensional elements are developed which avoid these problems.
Radio astronomy Explorer B antenna aspect processor
NASA Technical Reports Server (NTRS)
Miller, W. H.; Novello, J.; Reeves, C. C.
1972-01-01
The antenna aspect system used on the Radio Astronomy Explorer B spacecraft is described. This system consists of two facsimile cameras, a data encoder, and a data processor. Emphasis is placed on the discussion of the data processor, which contains a data compressor and a source encoder. With this compression scheme a compression ratio of 8 is achieved on a typical line of camera data. These compressed data are then convolutionally encoded.
Multivariable control of vapor compression systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, X.D.; Liu, S.; Asada, H.H.
1999-07-01
This paper presents the results of a study of multi-input multi-output (MIMO) control of vapor compression cycles that have multiple actuators and sensors for regulating multiple outputs, e.g., superheat and evaporating temperature. The conventional single-input single-output (SISO) control was shown to have very limited performance. A low order lumped-parameter model was developed to describe the significant dynamics of vapor compression cycles. Dynamic modes were analyzed based on the low order model to provide physical insight of system dynamic behavior. To synthesize a MIMO control system, the Linear-Quadratic Gaussian (LQG) technique was applied to coordinate compressor speed and expansion valve openingmore » with guaranteed stability robustness in the design. Furthermore, to control a vapor compression cycle over a wide range of operating conditions where system nonlinearities become evident, a gain scheduling scheme was used so that the MIMO controller could adapt to changing operating conditions. Both analytical studies and experimental tests showed that the MIMO control could significantly improve the transient behavior of vapor compression cycles compared to the conventional SISO control scheme. The MIMO control proposed in this paper could be extended to the control of vapor compression cycles in a variety of HVAC and refrigeration applications to improve system performance and energy efficiency.« less
Aldossari, M; Alfalou, A; Brosseau, C
2014-09-22
This study presents and validates an optimized method of simultaneous compression and encryption designed to process images with close spectra. This approach is well adapted to the compression and encryption of images of a time-varying scene but also to static polarimetric images. We use the recently developed spectral fusion method [Opt. Lett.35, 1914-1916 (2010)] to deal with the close resemblance of the images. The spectral plane (containing the information to send and/or to store) is decomposed in several independent areas which are assigned according a specific way. In addition, each spectrum is shifted in order to minimize their overlap. The dual purpose of these operations is to optimize the spectral plane allowing us to keep the low- and high-frequency information (compression) and to introduce an additional noise for reconstructing the images (encryption). Our results show that not only can the control of the spectral plane enhance the number of spectra to be merged, but also that a compromise between the compression rate and the quality of the reconstructed images can be tuned. We use a root-mean-square (RMS) optimization criterion to treat compression. Image encryption is realized at different security levels. Firstly, we add a specific encryption level which is related to the different areas of the spectral plane, and then, we make use of several random phase keys. An in-depth analysis at the spectral fusion methodology is done in order to find a good trade-off between the compression rate and the quality of the reconstructed images. Our new proposal spectral shift allows us to minimize the image overlap. We further analyze the influence of the spectral shift on the reconstructed image quality and compression rate. The performance of the multiple-image optical compression and encryption method is verified by analyzing several video sequences and polarimetric images.
Wavelet/scalar quantization compression standard for fingerprint images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brislawn, C.M.
1996-06-12
US Federal Bureau of Investigation (FBI) has recently formulated a national standard for digitization and compression of gray-scale fingerprint images. Fingerprints are scanned at a spatial resolution of 500 dots per inch, with 8 bits of gray-scale resolution. The compression algorithm for the resulting digital images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition (wavelet/scalar quantization method). The FBI standard produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. The compression standard specifies a class ofmore » potential encoders and a universal decoder with sufficient generality to reconstruct compressed images produced by any compliant encoder, allowing flexibility for future improvements in encoder technology. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations.« less
A low diffusive Lagrange-remap scheme for the simulation of violent air-water free-surface flows
NASA Astrophysics Data System (ADS)
Bernard-Champmartin, Aude; De Vuyst, Florian
2014-10-01
In 2002, Després and Lagoutière [17] proposed a low-diffusive advection scheme for pure transport equation problems, which is particularly accurate for step-shaped solutions, and thus suited for interface tracking procedure by a color function. This has been extended by Kokh and Lagoutière [28] in the context of compressible multifluid flows using a five-equation model. In this paper, we explore a simplified variant approach for gas-liquid three-equation models. The Eulerian numerical scheme has two ingredients: a robust remapped Lagrange solver for the solution of the volume-averaged equations, and a low diffusive compressive scheme for the advection of the gas mass fraction. Numerical experiments show the performance of the computational approach on various flow reference problems: dam break, sloshing of a tank filled with water, water-water impact and finally a case of Rayleigh-Taylor instability. One of the advantages of the present interface capturing solver is its natural implementation on parallel processors or computers.
Fu, Chi-Yung; Petrich, Loren I.
1997-01-01
An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace's equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image.
Fu, C.Y.; Petrich, L.I.
1997-03-25
An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace`s equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image. 16 figs.
NASA Astrophysics Data System (ADS)
Fujiwara, Takahiro; Uchiito, Haruki; Tokairin, Tomoya; Kawai, Hiroyuki
2017-04-01
Regarding Structural Health Monitoring (SHM) for seismic acceleration, Wireless Sensor Networks (WSN) is a promising tool for low-cost monitoring. Compressed sensing and transmission schemes have been drawing attention to achieve effective data collection in WSN. Especially, SHM systems installing massive nodes of WSN require efficient data transmission due to restricted communications capability. The dominant frequency band of seismic acceleration is occupied within 100 Hz or less. In addition, the response motions on upper floors of a structure are activated at a natural frequency, resulting in induced shaking at the specified narrow band. Focusing on the vibration characteristics of structures, we introduce data compression techniques for seismic acceleration monitoring in order to reduce the amount of transmission data. We carry out a compressed sensing and transmission scheme by band pass filtering for seismic acceleration data. The algorithm executes the discrete Fourier transform for the frequency domain and band path filtering for the compressed transmission. Assuming that the compressed data is transmitted through computer networks, restoration of the data is performed by the inverse Fourier transform in the receiving node. This paper discusses the evaluation of the compressed sensing for seismic acceleration by way of an average error. The results present the average error was 0.06 or less for the horizontal acceleration, in conditions where the acceleration was compressed into 1/32. Especially, the average error on the 4th floor achieved a small error of 0.02. Those results indicate that compressed sensing and transmission technique is effective to reduce the amount of data with maintaining the small average error.
Hyperspectral data compression using a Wiener filter predictor
NASA Astrophysics Data System (ADS)
Villeneuve, Pierre V.; Beaven, Scott G.; Stocker, Alan D.
2013-09-01
The application of compression to hyperspectral image data is a significant technical challenge. A primary bottleneck in disseminating data products to the tactical user community is the limited communication bandwidth between the airborne sensor and the ground station receiver. This report summarizes the newly-developed "Z-Chrome" algorithm for lossless compression of hyperspectral image data. A Wiener filter prediction framework is used as a basis for modeling new image bands from already-encoded bands. The resulting residual errors are then compressed using available state-of-the-art lossless image compression functions. Compression performance is demonstrated using a large number of test data collected over a wide variety of scene content from six different airborne and spaceborne sensors .
Impact of lossy compression on diagnostic accuracy of radiographs for periapical lesions
NASA Technical Reports Server (NTRS)
Eraso, Francisco E.; Analoui, Mostafa; Watson, Andrew B.; Rebeschini, Regina
2002-01-01
OBJECTIVES: The purpose of this study was to evaluate the lossy Joint Photographic Experts Group compression for endodontic pretreatment digital radiographs. STUDY DESIGN: Fifty clinical charge-coupled device-based, digital radiographs depicting periapical areas were selected. Each image was compressed at 2, 4, 8, 16, 32, 48, and 64 compression ratios. One root per image was marked for examination. Images were randomized and viewed by four clinical observers under standardized viewing conditions. Each observer read the image set three times, with at least two weeks between each reading. Three pre-selected sites per image (mesial, distal, apical) were scored on a five-scale score confidence scale. A panel of three examiners scored the uncompressed images, with a consensus score for each site. The consensus score was used as the baseline for assessing the impact of lossy compression on the diagnostic values of images. The mean absolute error between consensus and observer scores was computed for each observer, site, and reading session. RESULTS: Balanced one-way analysis of variance for all observers indicated that for compression ratios 48 and 64, there was significant difference between mean absolute error of uncompressed and compressed images (P <.05). After converting the five-scale score to two-level diagnostic values, the diagnostic accuracy was strongly correlated (R (2) = 0.91) with the compression ratio. CONCLUSION: The results of this study suggest that high compression ratios can have a severe impact on the diagnostic quality of the digital radiographs for detection of periapical lesions.
NASA Astrophysics Data System (ADS)
Kerner, H. R.; Bell, J. F., III; Ben Amor, H.
2017-12-01
The Mastcam color imaging system on the Mars Science Laboratory Curiosity rover acquires images within Gale crater for a variety of geologic and atmospheric studies. Images are often JPEG compressed before being downlinked to Earth. While critical for transmitting images on a low-bandwidth connection, this compression can result in image artifacts most noticeable as anomalous brightness or color changes within or near JPEG compression block boundaries. In images with significant high-frequency detail (e.g., in regions showing fine layering or lamination in sedimentary rocks), the image might need to be re-transmitted losslessly to enable accurate scientific interpretation of the data. The process of identifying which images have been adversely affected by compression artifacts is performed manually by the Mastcam science team, costing significant expert human time. To streamline the tedious process of identifying which images might need to be re-transmitted, we present an input-efficient neural network solution for predicting the perceived quality of a compressed Mastcam image. Most neural network solutions require large amounts of hand-labeled training data for the model to learn the target mapping between input (e.g. distorted images) and output (e.g. quality assessment). We propose an automatic labeling method using joint entropy between a compressed and uncompressed image to avoid the need for domain experts to label thousands of training examples by hand. We use automatically labeled data to train a convolutional neural network to estimate the probability that a Mastcam user would find the quality of a given compressed image acceptable for science analysis. We tested our model on a variety of Mastcam images and found that the proposed method correlates well with image quality perception by science team members. When assisted by our proposed method, we estimate that a Mastcam investigator could reduce the time spent reviewing images by a minimum of 70%.
An adaptive technique to maximize lossless image data compression of satellite images
NASA Technical Reports Server (NTRS)
Stewart, Robert J.; Lure, Y. M. Fleming; Liou, C. S. Joe
1994-01-01
Data compression will pay an increasingly important role in the storage and transmission of image data within NASA science programs as the Earth Observing System comes into operation. It is important that the science data be preserved at the fidelity the instrument and the satellite communication systems were designed to produce. Lossless compression must therefore be applied, at least, to archive the processed instrument data. In this paper, we present an analysis of the performance of lossless compression techniques and develop an adaptive approach which applied image remapping, feature-based image segmentation to determine regions of similar entropy and high-order arithmetic coding to obtain significant improvements over the use of conventional compression techniques alone. Image remapping is used to transform the original image into a lower entropy state. Several techniques were tested on satellite images including differential pulse code modulation, bi-linear interpolation, and block-based linear predictive coding. The results of these experiments are discussed and trade-offs between computation requirements and entropy reductions are used to identify the optimum approach for a variety of satellite images. Further entropy reduction can be achieved by segmenting the image based on local entropy properties then applying a coding technique which maximizes compression for the region. Experimental results are presented showing the effect of different coding techniques for regions of different entropy. A rule-base is developed through which the technique giving the best compression is selected. The paper concludes that maximum compression can be achieved cost effectively and at acceptable performance rates with a combination of techniques which are selected based on image contextual information.
Fast Detection of Material Deformation through Structural Dissimilarity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ushizima, Daniela; Perciano, Talita; Parkinson, Dilworth
2015-10-29
Designing materials that are resistant to extreme temperatures and brittleness relies on assessing structural dynamics of samples. Algorithms are critically important to characterize material deformation under stress conditions. Here, we report on our design of coarse-grain parallel algorithms for image quality assessment based on structural information and on crack detection of gigabyte-scale experimental datasets. We show how key steps can be decomposed into distinct processing flows, one based on structural similarity (SSIM) quality measure, and another on spectral content. These algorithms act upon image blocks that fit into memory, and can execute independently. We discuss the scientific relevance of themore » problem, key developments, and decomposition of complementary tasks into separate executions. We show how to apply SSIM to detect material degradation, and illustrate how this metric can be allied to spectral analysis for structure probing, while using tiled multi-resolution pyramids stored in HDF5 chunked multi-dimensional arrays. Results show that the proposed experimental data representation supports an average compression rate of 10X, and data compression scales linearly with the data size. We also illustrate how to correlate SSIM to crack formation, and how to use our numerical schemes to enable fast detection of deformation from 3D datasets evolving in time.« less
The effect of JPEG compression on automated detection of microaneurysms in retinal images
NASA Astrophysics Data System (ADS)
Cree, M. J.; Jelinek, H. F.
2008-02-01
As JPEG compression at source is ubiquitous in retinal imaging, and the block artefacts introduced are known to be of similar size to microaneurysms (an important indicator of diabetic retinopathy) it is prudent to evaluate the effect of JPEG compression on automated detection of retinal pathology. Retinal images were acquired at high quality and then compressed to various lower qualities. An automated microaneurysm detector was run on the retinal images of various qualities of JPEG compression and the ability to predict the presence of diabetic retinopathy based on the detected presence of microaneurysms was evaluated with receiver operating characteristic (ROC) methodology. The negative effect of JPEG compression on automated detection was observed even at levels of compression sometimes used in retinal eye-screening programmes and these may have important clinical implications for deciding on acceptable levels of compression for a fully automated eye-screening programme.
NASA Astrophysics Data System (ADS)
Zhou, Nanrun; Zhang, Aidi; Zheng, Fen; Gong, Lihua
2014-10-01
The existing ways to encrypt images based on compressive sensing usually treat the whole measurement matrix as the key, which renders the key too large to distribute and memorize or store. To solve this problem, a new image compression-encryption hybrid algorithm is proposed to realize compression and encryption simultaneously, where the key is easily distributed, stored or memorized. The input image is divided into 4 blocks to compress and encrypt, then the pixels of the two adjacent blocks are exchanged randomly by random matrices. The measurement matrices in compressive sensing are constructed by utilizing the circulant matrices and controlling the original row vectors of the circulant matrices with logistic map. And the random matrices used in random pixel exchanging are bound with the measurement matrices. Simulation results verify the effectiveness, security of the proposed algorithm and the acceptable compression performance.
Shift-invariant discrete wavelet transform analysis for retinal image classification.
Khademi, April; Krishnan, Sridhar
2007-12-01
This work involves retinal image classification and a novel analysis system was developed. From the compressed domain, the proposed scheme extracts textural features from wavelet coefficients, which describe the relative homogeneity of localized areas of the retinal images. Since the discrete wavelet transform (DWT) is shift-variant, a shift-invariant DWT was explored to ensure that a robust feature set was extracted. To combat the small database size, linear discriminant analysis classification was used with the leave one out method. 38 normal and 48 abnormal (exudates, large drusens, fine drusens, choroidal neovascularization, central vein and artery occlusion, histoplasmosis, arteriosclerotic retinopathy, hemi-central retinal vein occlusion and more) were used and a specificity of 79% and sensitivity of 85.4% were achieved (the average classification rate is 82.2%). The success of the system can be accounted to the highly robust feature set which included translation, scale and semi-rotational, features. Additionally, this technique is database independent since the features were specifically tuned to the pathologies of the human eye.
Fusion of Deep Learning and Compressed Domain features for Content Based Image Retrieval.
Liu, Peizhong; Guo, Jing-Ming; Wu, Chi-Yi; Cai, Danlin
2017-08-29
This paper presents an effective image retrieval method by combining high-level features from Convolutional Neural Network (CNN) model and low-level features from Dot-Diffused Block Truncation Coding (DDBTC). The low-level features, e.g., texture and color, are constructed by VQ-indexed histogram from DDBTC bitmap, maximum, and minimum quantizers. Conversely, high-level features from CNN can effectively capture human perception. With the fusion of the DDBTC and CNN features, the extended deep learning two-layer codebook features (DL-TLCF) is generated using the proposed two-layer codebook, dimension reduction, and similarity reweighting to improve the overall retrieval rate. Two metrics, average precision rate (APR) and average recall rate (ARR), are employed to examine various datasets. As documented in the experimental results, the proposed schemes can achieve superior performance compared to the state-of-the-art methods with either low- or high-level features in terms of the retrieval rate. Thus, it can be a strong candidate for various image retrieval related applications.
Feasibility study on low-dosage digital tomosynthesis (DTS) using a multislit collimation technique
NASA Astrophysics Data System (ADS)
Park, S. Y.; Kim, G. A.; Park, C. K.; Cho, H. S.; Seo, C. W.; Lee, D. Y.; Kang, S. Y.; Kim, K. S.; Lim, H. W.; Lee, H. W.; Park, J. E.; Kim, W. S.; Jeon, D. H.; Woo, T. H.
2018-04-01
In this study, we investigated an effective low-dose digital tomosynthesis (DTS) where a multislit collimator placed between the X-ray tube and the patient oscillates during projection data acquisition, partially blocking the X-ray beam to the patient thereby reducing the radiation dosage. We performed a simulation using the proposed DTS with two sets of multislit collimators both having a 50% duty cycle and investigated the image characteristics to demonstrate the feasibility of this proposed approach. In the simulation, all projections were taken at a tomographic angle of θ = ± 50° and an angle step of Δθ =2°. We utilized an iterative algorithm based on a compressed-sensing (CS) scheme for more accurate DTS reconstruction. Using the proposed DTS, we successfully obtained CS-reconstructed DTS images with no bright-band artifacts around the multislit edges of the collimator, thus maintaining the image quality. Therefore, the use of multislit collimation in current real-world DTS systems can reduce the radiation dosage to patients.
NASA Astrophysics Data System (ADS)
Li, Gongxin; Li, Peng; Wang, Yuechao; Wang, Wenxue; Xi, Ning; Liu, Lianqing
2014-07-01
Scanning Ion Conductance Microscopy (SICM) is one kind of Scanning Probe Microscopies (SPMs), and it is widely used in imaging soft samples for many distinctive advantages. However, the scanning speed of SICM is much slower than other SPMs. Compressive sensing (CS) could improve scanning speed tremendously by breaking through the Shannon sampling theorem, but it still requires too much time in image reconstruction. Block compressive sensing can be applied to SICM imaging to further reduce the reconstruction time of sparse signals, and it has another unique application that it can achieve the function of image real-time display in SICM imaging. In this article, a new method of dividing blocks and a new matrix arithmetic operation were proposed to build the block compressive sensing model, and several experiments were carried out to verify the superiority of block compressive sensing in reducing imaging time and real-time display in SICM imaging.
Deep learning with domain adaptation for accelerated projection-reconstruction MR.
Han, Yoseob; Yoo, Jaejun; Kim, Hak Hee; Shin, Hee Jung; Sung, Kyunghyun; Ye, Jong Chul
2018-09-01
The radial k-space trajectory is a well-established sampling trajectory used in conjunction with magnetic resonance imaging. However, the radial k-space trajectory requires a large number of radial lines for high-resolution reconstruction. Increasing the number of radial lines causes longer acquisition time, making it more difficult for routine clinical use. On the other hand, if we reduce the number of radial lines, streaking artifact patterns are unavoidable. To solve this problem, we propose a novel deep learning approach with domain adaptation to restore high-resolution MR images from under-sampled k-space data. The proposed deep network removes the streaking artifacts from the artifact corrupted images. To address the situation given the limited available data, we propose a domain adaptation scheme that employs a pre-trained network using a large number of X-ray computed tomography (CT) or synthesized radial MR datasets, which is then fine-tuned with only a few radial MR datasets. The proposed method outperforms existing compressed sensing algorithms, such as the total variation and PR-FOCUSS methods. In addition, the calculation time is several orders of magnitude faster than the total variation and PR-FOCUSS methods. Moreover, we found that pre-training using CT or MR data from similar organ data is more important than pre-training using data from the same modality for different organ. We demonstrate the possibility of a domain-adaptation when only a limited amount of MR data is available. The proposed method surpasses the existing compressed sensing algorithms in terms of the image quality and computation time. © 2018 International Society for Magnetic Resonance in Medicine.
Compressed Sensing for Body MRI
Feng, Li; Benkert, Thomas; Block, Kai Tobias; Sodickson, Daniel K; Otazo, Ricardo; Chandarana, Hersh
2016-01-01
The introduction of compressed sensing for increasing imaging speed in MRI has raised significant interest among researchers and clinicians, and has initiated a large body of research across multiple clinical applications over the last decade. Compressed sensing aims to reconstruct unaliased images from fewer measurements than that are traditionally required in MRI by exploiting image compressibility or sparsity. Moreover, appropriate combinations of compressed sensing with previously introduced fast imaging approaches, such as parallel imaging, have demonstrated further improved performance. The advent of compressed sensing marks the prelude to a new era of rapid MRI, where the focus of data acquisition has changed from sampling based on the nominal number of voxels and/or frames to sampling based on the desired information content. This paper presents a brief overview of the application of compressed sensing techniques in body MRI, where imaging speed is crucial due to the presence of respiratory motion along with stringent constraints on spatial and temporal resolution. The first section provides an overview of the basic compressed sensing methodology, including the notion of sparsity, incoherence, and non-linear reconstruction. The second section reviews state-of-the-art compressed sensing techniques that have been demonstrated for various clinical body MRI applications. In the final section, the paper discusses current challenges and future opportunities. PMID:27981664
Digital Image Compression Using Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Serra-Ricart, M.; Garrido, L.; Gaitan, V.; Aloy, A.
1993-01-01
The problem of storing, transmitting, and manipulating digital images is considered. Because of the file sizes involved, large amounts of digitized image information are becoming common in modern projects. Our goal is to described an image compression transform coder based on artificial neural networks techniques (NNCTC). A comparison of the compression results obtained from digital astronomical images by the NNCTC and the method used in the compression of the digitized sky survey from the Space Telescope Science Institute based on the H-transform is performed in order to assess the reliability of the NNCTC.
Resource efficient data compression algorithms for demanding, WSN based biomedical applications.
Antonopoulos, Christos P; Voros, Nikolaos S
2016-02-01
During the last few years, medical research areas of critical importance such as Epilepsy monitoring and study, increasingly utilize wireless sensor network technologies in order to achieve better understanding and significant breakthroughs. However, the limited memory and communication bandwidth offered by WSN platforms comprise a significant shortcoming to such demanding application scenarios. Although, data compression can mitigate such deficiencies there is a lack of objective and comprehensive evaluation of relative approaches and even more on specialized approaches targeting specific demanding applications. The research work presented in this paper focuses on implementing and offering an in-depth experimental study regarding prominent, already existing as well as novel proposed compression algorithms. All algorithms have been implemented in a common Matlab framework. A major contribution of this paper, that differentiates it from similar research efforts, is the employment of real world Electroencephalography (EEG) and Electrocardiography (ECG) datasets comprising the two most demanding Epilepsy modalities. Emphasis is put on WSN applications, thus the respective metrics focus on compression rate and execution latency for the selected datasets. The evaluation results reveal significant performance and behavioral characteristics of the algorithms related to their complexity and the relative negative effect on compression latency as opposed to the increased compression rate. It is noted that the proposed schemes managed to offer considerable advantage especially aiming to achieve the optimum tradeoff between compression rate-latency. Specifically, proposed algorithm managed to combine highly completive level of compression while ensuring minimum latency thus exhibiting real-time capabilities. Additionally, one of the proposed schemes is compared against state-of-the-art general-purpose compression algorithms also exhibiting considerable advantages as far as the compression rate is concerned. Copyright © 2015 Elsevier Inc. All rights reserved.
Iris Recognition: The Consequences of Image Compression
NASA Astrophysics Data System (ADS)
Ives, Robert W.; Bishop, Daniel A.; Du, Yingzi; Belcher, Craig
2010-12-01
Iris recognition for human identification is one of the most accurate biometrics, and its employment is expanding globally. The use of portable iris systems, particularly in law enforcement applications, is growing. In many of these applications, the portable device may be required to transmit an iris image or template over a narrow-bandwidth communication channel. Typically, a full resolution image (e.g., VGA) is desired to ensure sufficient pixels across the iris to be confident of accurate recognition results. To minimize the time to transmit a large amount of data over a narrow-bandwidth communication channel, image compression can be used to reduce the file size of the iris image. In other applications, such as the Registered Traveler program, an entire iris image is stored on a smart card, but only 4 kB is allowed for the iris image. For this type of application, image compression is also the solution. This paper investigates the effects of image compression on recognition system performance using a commercial version of the Daugman iris2pi algorithm along with JPEG-2000 compression, and links these to image quality. Using the ICE 2005 iris database, we find that even in the face of significant compression, recognition performance is minimally affected.
2013-05-01
Measurement of Full Field Strains in Filament Wound Composite Tubes Under Axial Compressive Loading by the Digital Image Correlation (DIC...of Full Field Strains in Filament Wound Composite Tubes Under Axial Compressive Loading by the Digital Image Correlation (DIC) Technique Todd C...Wound Composite Tubes Under Axial Compressive Loading by the Digital Image Correlation (DIC) Technique 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c
Multichannel Compressive Sensing MRI Using Noiselet Encoding
Pawar, Kamlesh; Egan, Gary; Zhang, Jingxin
2015-01-01
The incoherence between measurement and sparsifying transform matrices and the restricted isometry property (RIP) of measurement matrix are two of the key factors in determining the performance of compressive sensing (CS). In CS-MRI, the randomly under-sampled Fourier matrix is used as the measurement matrix and the wavelet transform is usually used as sparsifying transform matrix. However, the incoherence between the randomly under-sampled Fourier matrix and the wavelet matrix is not optimal, which can deteriorate the performance of CS-MRI. Using the mathematical result that noiselets are maximally incoherent with wavelets, this paper introduces the noiselet unitary bases as the measurement matrix to improve the incoherence and RIP in CS-MRI. Based on an empirical RIP analysis that compares the multichannel noiselet and multichannel Fourier measurement matrices in CS-MRI, we propose a multichannel compressive sensing (MCS) framework to take the advantage of multichannel data acquisition used in MRI scanners. Simulations are presented in the MCS framework to compare the performance of noiselet encoding reconstructions and Fourier encoding reconstructions at different acceleration factors. The comparisons indicate that multichannel noiselet measurement matrix has better RIP than that of its Fourier counterpart, and that noiselet encoded MCS-MRI outperforms Fourier encoded MCS-MRI in preserving image resolution and can achieve higher acceleration factors. To demonstrate the feasibility of the proposed noiselet encoding scheme, a pulse sequences with tailored spatially selective RF excitation pulses was designed and implemented on a 3T scanner to acquire the data in the noiselet domain from a phantom and a human brain. The results indicate that noislet encoding preserves image resolution better than Fouirer encoding. PMID:25965548
The effects of video compression on acceptability of images for monitoring life sciences experiments
NASA Astrophysics Data System (ADS)
Haines, Richard F.; Chuang, Sherry L.
1992-07-01
Future manned space operations for Space Station Freedom will call for a variety of carefully planned multimedia digital communications, including full-frame-rate color video, to support remote operations of scientific experiments. This paper presents the results of an investigation to determine if video compression is a viable solution to transmission bandwidth constraints. It reports on the impact of different levels of compression and associated calculational parameters on image acceptability to investigators in life-sciences research at ARC. Three nonhuman life-sciences disciplines (plant, rodent, and primate biology) were selected for this study. A total of 33 subjects viewed experimental scenes in their own scientific disciplines. Ten plant scientists viewed still images of wheat stalks at various stages of growth. Each image was compressed to four different compression levels using the Joint Photographic Expert Group (JPEG) standard algorithm, and the images were presented in random order. Twelve and eleven staffmembers viewed 30-sec videotaped segments showing small rodents and a small primate, respectively. Each segment was repeated at four different compression levels in random order using an inverse cosine transform (ICT) algorithm. Each viewer made a series of subjective image-quality ratings. There was a significant difference in image ratings according to the type of scene viewed within disciplines; thus, ratings were scene dependent. Image (still and motion) acceptability does, in fact, vary according to compression level. The JPEG still-image-compression levels, even with the large range of 5:1 to 120:1 in this study, yielded equally high levels of acceptability. In contrast, the ICT algorithm for motion compression yielded a sharp decline in acceptability below 768 kb/sec. Therefore, if video compression is to be used as a solution for overcoming transmission bandwidth constraints, the effective management of the ratio and compression parameters according to scientific discipline and experiment type is critical to the success of remote experiments.
The effects of video compression on acceptability of images for monitoring life sciences experiments
NASA Technical Reports Server (NTRS)
Haines, Richard F.; Chuang, Sherry L.
1992-01-01
Future manned space operations for Space Station Freedom will call for a variety of carefully planned multimedia digital communications, including full-frame-rate color video, to support remote operations of scientific experiments. This paper presents the results of an investigation to determine if video compression is a viable solution to transmission bandwidth constraints. It reports on the impact of different levels of compression and associated calculational parameters on image acceptability to investigators in life-sciences research at ARC. Three nonhuman life-sciences disciplines (plant, rodent, and primate biology) were selected for this study. A total of 33 subjects viewed experimental scenes in their own scientific disciplines. Ten plant scientists viewed still images of wheat stalks at various stages of growth. Each image was compressed to four different compression levels using the Joint Photographic Expert Group (JPEG) standard algorithm, and the images were presented in random order. Twelve and eleven staffmembers viewed 30-sec videotaped segments showing small rodents and a small primate, respectively. Each segment was repeated at four different compression levels in random order using an inverse cosine transform (ICT) algorithm. Each viewer made a series of subjective image-quality ratings. There was a significant difference in image ratings according to the type of scene viewed within disciplines; thus, ratings were scene dependent. Image (still and motion) acceptability does, in fact, vary according to compression level. The JPEG still-image-compression levels, even with the large range of 5:1 to 120:1 in this study, yielded equally high levels of acceptability. In contrast, the ICT algorithm for motion compression yielded a sharp decline in acceptability below 768 kb/sec. Therefore, if video compression is to be used as a solution for overcoming transmission bandwidth constraints, the effective management of the ratio and compression parameters according to scientific discipline and experiment type is critical to the success of remote experiments.
Digital compression algorithms for HDTV transmission
NASA Technical Reports Server (NTRS)
Adkins, Kenneth C.; Shalkhauser, Mary JO; Bibyk, Steven B.
1990-01-01
Digital compression of video images is a possible avenue for high definition television (HDTV) transmission. Compression needs to be optimized while picture quality remains high. Two techniques for compression the digital images are explained and comparisons are drawn between the human vision system and artificial compression techniques. Suggestions for improving compression algorithms through the use of neural and analog circuitry are given.
NASA Astrophysics Data System (ADS)
Fambri, Francesco; Dumbser, Michael; Zanotti, Olindo
2017-11-01
This paper presents an arbitrary high-order accurate ADER Discontinuous Galerkin (DG) method on space-time adaptive meshes (AMR) for the solution of two important families of non-linear time dependent partial differential equations for compressible dissipative flows : the compressible Navier-Stokes equations and the equations of viscous and resistive magnetohydrodynamics in two and three space-dimensions. The work continues a recent series of papers concerning the development and application of a proper a posteriori subcell finite volume limiting procedure suitable for discontinuous Galerkin methods (Dumbser et al., 2014, Zanotti et al., 2015 [40,41]). It is a well known fact that a major weakness of high order DG methods lies in the difficulty of limiting discontinuous solutions, which generate spurious oscillations, namely the so-called 'Gibbs phenomenon'. In the present work, a nonlinear stabilization of the scheme is sequentially and locally introduced only for troubled cells on the basis of a novel a posteriori detection criterion, i.e. the MOOD approach. The main benefits of the MOOD paradigm, i.e. the computational robustness even in the presence of strong shocks, are preserved and the numerical diffusion is considerably reduced also for the limited cells by resorting to a proper sub-grid. In practice the method first produces a so-called candidate solution by using a high order accurate unlimited DG scheme. Then, a set of numerical and physical detection criteria is applied to the candidate solution, namely: positivity of pressure and density, absence of floating point errors and satisfaction of a discrete maximum principle in the sense of polynomials. Furthermore, in those cells where at least one of these criteria is violated the computed candidate solution is detected as troubled and is locally rejected. Subsequently, a more reliable numerical solution is recomputed a posteriori by employing a more robust but still very accurate ADER-WENO finite volume scheme on the subgrid averages within that troubled cell. Finally, a high order DG polynomial is reconstructed back from the evolved subcell averages. We apply the whole approach for the first time to the equations of compressible gas dynamics and magnetohydrodynamics in the presence of viscosity, thermal conductivity and magnetic resistivity, therefore extending our family of adaptive ADER-DG schemes to cases for which the numerical fluxes also depend on the gradient of the state vector. The distinguished high-resolution properties of the presented numerical scheme standout against a wide number of non-trivial test cases both for the compressible Navier-Stokes and the viscous and resistive magnetohydrodynamics equations. The present results show clearly that the shock-capturing capability of the news schemes is significantly enhanced within a cell-by-cell Adaptive Mesh Refinement (AMR) implementation together with time accurate local time stepping (LTS).
Compression performance comparison in low delay real-time video for mobile applications
NASA Astrophysics Data System (ADS)
Bivolarski, Lazar
2012-10-01
This article compares the performance of several current video coding standards in the conditions of low-delay real-time in a resource constrained environment. The comparison is performed using the same content and the metrics and mix of objective and perceptual quality metrics. The metrics results in different coding schemes are analyzed from a point of view of user perception and quality of service. Multiple standards are compared MPEG-2, MPEG4 and MPEG-AVC and well and H.263. The metrics used in the comparison include SSIM, VQM and DVQ. Subjective evaluation and quality of service are discussed from a point of view of perceptual metrics and their incorporation in the coding scheme development process. The performance and the correlation of results are presented as a predictor of the performance of video compression schemes.
Real-Time Aggressive Image Data Compression
1990-03-31
implemented with higher degrees of modularity, concurrency, and higher levels of machine intelligence , thereby providing higher data -throughput rates...Project Summary Project Title: Real-Time Aggressive Image Data Compression Principal Investigators: Dr. Yih-Fang Huang and Dr. Ruey-wen Liu Institution...Summary The objective of the proposed research is to develop reliable algorithms !.hat can achieve aggressive image data compression (with a compression
Context Modeler for Wavelet Compression of Spectral Hyperspectral Images
NASA Technical Reports Server (NTRS)
Kiely, Aaron; Xie, Hua; Klimesh, matthew; Aranki, Nazeeh
2010-01-01
A context-modeling sub-algorithm has been developed as part of an algorithm that effects three-dimensional (3D) wavelet-based compression of hyperspectral image data. The context-modeling subalgorithm, hereafter denoted the context modeler, provides estimates of probability distributions of wavelet-transformed data being encoded. These estimates are utilized by an entropy coding subalgorithm that is another major component of the compression algorithm. The estimates make it possible to compress the image data more effectively than would otherwise be possible. The following background discussion is prerequisite to a meaningful summary of the context modeler. This discussion is presented relative to ICER-3D, which is the name attached to a particular compression algorithm and the software that implements it. The ICER-3D software is summarized briefly in the preceding article, ICER-3D Hyperspectral Image Compression Software (NPO-43238). Some aspects of this algorithm were previously described, in a slightly more general context than the ICER-3D software, in "Improving 3D Wavelet-Based Compression of Hyperspectral Images" (NPO-41381), NASA Tech Briefs, Vol. 33, No. 3 (March 2009), page 7a. In turn, ICER-3D is a product of generalization of ICER, another previously reported algorithm and computer program that can perform both lossless and lossy wavelet-based compression and decompression of gray-scale-image data. In ICER-3D, hyperspectral image data are decomposed using a 3D discrete wavelet transform (DWT). Following wavelet decomposition, mean values are subtracted from spatial planes of spatially low-pass subbands prior to encoding. The resulting data are converted to sign-magnitude form and compressed. In ICER-3D, compression is progressive, in that compressed information is ordered so that as more of the compressed data stream is received, successive reconstructions of the hyperspectral image data are of successively higher overall fidelity.
Image-Data Compression Using Edge-Optimizing Algorithm for WFA Inference.
ERIC Educational Resources Information Center
Culik, Karel II; Kari, Jarkko
1994-01-01
Presents an inference algorithm that produces a weighted finite automata (WFA), in particular, the grayness functions of graytone images. Image-data compression results based on the new inference algorithm produces a WFA with a relatively small number of edges. Image-data compression results alone and in combination with wavelets are discussed.…
NASA Astrophysics Data System (ADS)
Aldossari, M.; Alfalou, A.; Brosseau, C.
2017-08-01
In an earlier study [Opt. Express 22, 22349-22368 (2014)], a compression and encryption method that simultaneous compress and encrypt closely resembling images was proposed and validated. This multiple-image optical compression and encryption (MIOCE) method is based on a special fusion of the different target images spectra in the spectral domain. Now for the purpose of assessing the capacity of the MIOCE method, we would like to evaluate and determine the influence of the number of target images. This analysis allows us to evaluate the performance limitation of this method. To achieve this goal, we use a criterion based on the root-mean-square (RMS) [Opt. Lett. 35, 1914-1916 (2010)] and compression ratio to determine the spectral plane area. Then, the different spectral areas are merged in a single spectrum plane. By choosing specific areas, we can compress together 38 images instead of 26 using the classical MIOCE method. The quality of the reconstructed image is evaluated by making use of the mean-square-error criterion (MSE).
A hybrid-drive nonisobaric-ignition scheme for inertial confinement fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, X. T., E-mail: xthe@iapcm.ac.cn; Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871; IFSA Collaborative Innovation Center of MoE, Shanghai Jiao-Tong University, Shanghai 200240
A new hybrid-drive (HD) nonisobaric ignition scheme of inertial confinement fusion (ICF) is proposed, in which a HD pressure to drive implosion dynamics increases via increasing density rather than temperature in the conventional indirect drive (ID) and direct drive (DD) approaches. In this HD (combination of ID and DD) scheme, an assembled target of a spherical hohlraum and a layered deuterium-tritium capsule inside is used. The ID lasers first drive the shock to perform a spherical symmetry implosion and produce a large-scale corona plasma. Then, the DD lasers, whose critical surface in ID corona plasma is far from the radiationmore » ablation front, drive a supersonic electron thermal wave, which slows down to a high-pressure electron compression wave, like a snowplow, piling up the corona plasma into high density and forming a HD pressurized plateau with a large width. The HD pressure is several times the conventional ID and DD ablation pressure and launches an enhanced precursor shock and a continuous compression wave, which give rise to the HD capsule implosion dynamics in a large implosion velocity. The hydrodynamic instabilities at imploding capsule interfaces are suppressed, and the continuous HD compression wave provides main pdV work large enough to hotspot, resulting in the HD nonisobaric ignition. The ignition condition and target design based on this scheme are given theoretically and by numerical simulations. It shows that the novel scheme can significantly suppress implosion asymmetry and hydrodynamic instabilities of current isobaric hotspot ignition design, and a high-gain ICF is promising.« less
Adaptive ISAR Imaging of Maneuvering Targets Based on a Modified Fourier Transform.
Wang, Binbin; Xu, Shiyou; Wu, Wenzhen; Hu, Pengjiang; Chen, Zengping
2018-04-27
Focusing on the inverse synthetic aperture radar (ISAR) imaging of maneuvering targets, this paper presents a new imaging method which works well when the target's maneuvering is not too severe. After translational motion compensation, we describe the equivalent rotation of maneuvering targets by two variables-the relative chirp rate of the linear frequency modulated (LFM) signal and the Doppler focus shift. The first variable indicates the target's motion status, and the second one represents the possible residual error of the translational motion compensation. With them, a modified Fourier transform matrix is constructed and then used for cross-range compression. Consequently, the imaging of maneuvering is converted into a two-dimensional parameter optimization problem in which a stable and clear ISAR image is guaranteed. A gradient descent optimization scheme is employed to obtain the accurate relative chirp rate and Doppler focus shift. Moreover, we designed an efficient and robust initialization process for the gradient descent method, thus, the well-focused ISAR images of maneuvering targets can be achieved adaptively. Human intervention is not needed, and it is quite convenient for practical ISAR imaging systems. Compared to precedent imaging methods, the new method achieves better imaging quality under reasonable computational cost. Simulation results are provided to validate the effectiveness and advantages of the proposed method.
Multispectral Image Compression Based on DSC Combined with CCSDS-IDC
Li, Jin; Xing, Fei; Sun, Ting; You, Zheng
2014-01-01
Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT) are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC) combined with image data compression (IDC) approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE). Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW) based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS)-based algorithm has better compression performance than the traditional compression approaches. PMID:25110741
Two-level image authentication by two-step phase-shifting interferometry and compressive sensing
NASA Astrophysics Data System (ADS)
Zhang, Xue; Meng, Xiangfeng; Yin, Yongkai; Yang, Xiulun; Wang, Yurong; Li, Xianye; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi
2018-01-01
A two-level image authentication method is proposed; the method is based on two-step phase-shifting interferometry, double random phase encoding, and compressive sensing (CS) theory, by which the certification image can be encoded into two interferograms. Through discrete wavelet transform (DWT), sparseness processing, Arnold transform, and data compression, two compressed signals can be generated and delivered to two different participants of the authentication system. Only the participant who possesses the first compressed signal attempts to pass the low-level authentication. The application of Orthogonal Match Pursuit CS algorithm reconstruction, inverse Arnold transform, inverse DWT, two-step phase-shifting wavefront reconstruction, and inverse Fresnel transform can result in the output of a remarkable peak in the central location of the nonlinear correlation coefficient distributions of the recovered image and the standard certification image. Then, the other participant, who possesses the second compressed signal, is authorized to carry out the high-level authentication. Therefore, both compressed signals are collected to reconstruct the original meaningful certification image with a high correlation coefficient. Theoretical analysis and numerical simulations verify the feasibility of the proposed method.
Multispectral image compression based on DSC combined with CCSDS-IDC.
Li, Jin; Xing, Fei; Sun, Ting; You, Zheng
2014-01-01
Remote sensing multispectral image compression encoder requires low complexity, high robust, and high performance because it usually works on the satellite where the resources, such as power, memory, and processing capacity, are limited. For multispectral images, the compression algorithms based on 3D transform (like 3D DWT, 3D DCT) are too complex to be implemented in space mission. In this paper, we proposed a compression algorithm based on distributed source coding (DSC) combined with image data compression (IDC) approach recommended by CCSDS for multispectral images, which has low complexity, high robust, and high performance. First, each band is sparsely represented by DWT to obtain wavelet coefficients. Then, the wavelet coefficients are encoded by bit plane encoder (BPE). Finally, the BPE is merged to the DSC strategy of Slepian-Wolf (SW) based on QC-LDPC by deep coupling way to remove the residual redundancy between the adjacent bands. A series of multispectral images is used to test our algorithm. Experimental results show that the proposed DSC combined with the CCSDS-IDC (DSC-CCSDS)-based algorithm has better compression performance than the traditional compression approaches.
1989-11-01
considerable promise is a variation of the familiar Lempel - Ziv adaptive data compression scheme that permits a straightforward mapping to hardware...types of data . The UNIX " compress " implementation is based upon Terry Welch’s 1984 variation of the Lempel - Ziv method (LZW). One flaw lies in the fact...or more; it must effec- tively compress all types of data (i.e. the algorithm must be universal); the implementation must be contained within a small
Planning/scheduling techniques for VQ-based image compression
NASA Technical Reports Server (NTRS)
Short, Nicholas M., Jr.; Manohar, Mareboyana; Tilton, James C.
1994-01-01
The enormous size of the data holding and the complexity of the information system resulting from the EOS system pose several challenges to computer scientists, one of which is data archival and dissemination. More than ninety percent of the data holdings of NASA is in the form of images which will be accessed by users across the computer networks. Accessing the image data in its full resolution creates data traffic problems. Image browsing using a lossy compression reduces this data traffic, as well as storage by factor of 30-40. Of the several image compression techniques, VQ is most appropriate for this application since the decompression of the VQ compressed images is a table lookup process which makes minimal additional demands on the user's computational resources. Lossy compression of image data needs expert level knowledge in general and is not straightforward to use. This is especially true in the case of VQ. It involves the selection of appropriate codebooks for a given data set and vector dimensions for each compression ratio, etc. A planning and scheduling system is described for using the VQ compression technique in the data access and ingest of raw satellite data.
Effect of data compression on diagnostic accuracy in digital hand and chest radiography
NASA Astrophysics Data System (ADS)
Sayre, James W.; Aberle, Denise R.; Boechat, Maria I.; Hall, Theodore R.; Huang, H. K.; Ho, Bruce K. T.; Kashfian, Payam; Rahbar, Guita
1992-05-01
Image compression is essential to handle a large volume of digital images including CT, MR, CR, and digitized films in a digital radiology operation. The full-frame bit allocation using the cosine transform technique developed during the last few years has been proven to be an excellent irreversible image compression method. This paper describes the effect of using the hardware compression module on diagnostic accuracy in hand radiographs with subperiosteal resorption and chest radiographs with interstitial disease. Receiver operating characteristic analysis using 71 hand radiographs and 52 chest radiographs with five observers each demonstrates that there is no statistical significant difference in diagnostic accuracy between the original films and the compressed images with a compression ratio as high as 20:1.
Architecture for one-shot compressive imaging using computer-generated holograms.
Macfaden, Alexander J; Kindness, Stephen J; Wilkinson, Timothy D
2016-09-10
We propose a synchronous implementation of compressive imaging. This method is mathematically equivalent to prevailing sequential methods, but uses a static holographic optical element to create a spatially distributed spot array from which the image can be reconstructed with an instantaneous measurement. We present the holographic design requirements and demonstrate experimentally that the linear algebra of compressed imaging can be implemented with this technique. We believe this technique can be integrated with optical metasurfaces, which will allow the development of new compressive sensing methods.
Cryptanalysis and Improvement of an Image Encryption Scheme Using Fourier Series
NASA Astrophysics Data System (ADS)
Ahmad, Musheer; Doja, M. N.; Beg, M. M. Sufyan
2017-12-01
This paper proposes cryptanalysis of an image encryption scheme reported in (Khan, J Vib Control 21(16):3450-3455, 2015). The encryption scheme synthesized nonlinear substitution-box using Fourier series to accomplish encryption of color images. Security investigation unveils that the scheme has inherent flaws which can be exploited by an attacker to reveal the plain-image information. We show that the encryption scheme is breakable under chosen-plaintext attack without owning secret key. The simulation analyses bring to notice that Khan's scheme is insecure for encryption of images during secure communication. Besides, an improved image encryption scheme is proposed which is backed up by better statistical results and performance.
Intelligent bandwith compression
NASA Astrophysics Data System (ADS)
Tseng, D. Y.; Bullock, B. L.; Olin, K. E.; Kandt, R. K.; Olsen, J. D.
1980-02-01
The feasibility of a 1000:1 bandwidth compression ratio for image transmission has been demonstrated using image-analysis algorithms and a rule-based controller. Such a high compression ratio was achieved by first analyzing scene content using auto-cueing and feature-extraction algorithms, and then transmitting only the pertinent information consistent with mission requirements. A rule-based controller directs the flow of analysis and performs priority allocations on the extracted scene content. The reconstructed bandwidth-compressed image consists of an edge map of the scene background, with primary and secondary target windows embedded in the edge map. The bandwidth-compressed images are updated at a basic rate of 1 frame per second, with the high-priority target window updated at 7.5 frames per second. The scene-analysis algorithms used in this system together with the adaptive priority controller are described. Results of simulated 1000:1 band width-compressed images are presented. A video tape simulation of the Intelligent Bandwidth Compression system has been produced using a sequence of video input from the data base.
Onboard Image Processing System for Hyperspectral Sensor
Hihara, Hiroki; Moritani, Kotaro; Inoue, Masao; Hoshi, Yoshihiro; Iwasaki, Akira; Takada, Jun; Inada, Hitomi; Suzuki, Makoto; Seki, Taeko; Ichikawa, Satoshi; Tanii, Jun
2015-01-01
Onboard image processing systems for a hyperspectral sensor have been developed in order to maximize image data transmission efficiency for large volume and high speed data downlink capacity. Since more than 100 channels are required for hyperspectral sensors on Earth observation satellites, fast and small-footprint lossless image compression capability is essential for reducing the size and weight of a sensor system. A fast lossless image compression algorithm has been developed, and is implemented in the onboard correction circuitry of sensitivity and linearity of Complementary Metal Oxide Semiconductor (CMOS) sensors in order to maximize the compression ratio. The employed image compression method is based on Fast, Efficient, Lossless Image compression System (FELICS), which is a hierarchical predictive coding method with resolution scaling. To improve FELICS’s performance of image decorrelation and entropy coding, we apply a two-dimensional interpolation prediction and adaptive Golomb-Rice coding. It supports progressive decompression using resolution scaling while still maintaining superior performance measured as speed and complexity. Coding efficiency and compression speed enlarge the effective capacity of signal transmission channels, which lead to reducing onboard hardware by multiplexing sensor signals into a reduced number of compression circuits. The circuitry is embedded into the data formatter of the sensor system without adding size, weight, power consumption, and fabrication cost. PMID:26404281
JPEG vs. JPEG 2000: an objective comparison of image encoding quality
NASA Astrophysics Data System (ADS)
Ebrahimi, Farzad; Chamik, Matthieu; Winkler, Stefan
2004-11-01
This paper describes an objective comparison of the image quality of different encoders. Our approach is based on estimating the visual impact of compression artifacts on perceived quality. We present a tool that measures these artifacts in an image and uses them to compute a prediction of the Mean Opinion Score (MOS) obtained in subjective experiments. We show that the MOS predictions by our proposed tool are a better indicator of perceived image quality than PSNR, especially for highly compressed images. For the encoder comparison, we compress a set of 29 test images with two JPEG encoders (Adobe Photoshop and IrfanView) and three JPEG2000 encoders (JasPer, Kakadu, and IrfanView) at various compression ratios. We compute blockiness, blur, and MOS predictions as well as PSNR of the compressed images. Our results show that the IrfanView JPEG encoder produces consistently better images than the Adobe Photoshop JPEG encoder at the same data rate. The differences between the JPEG2000 encoders in our test are less pronounced; JasPer comes out as the best codec, closely followed by IrfanView and Kakadu. Comparing the JPEG- and JPEG2000-encoding quality of IrfanView, we find that JPEG has a slight edge at low compression ratios, while JPEG2000 is the clear winner at medium and high compression ratios.
NASA Astrophysics Data System (ADS)
Ouyang, Bing; Hou, Weilin; Caimi, Frank M.; Dalgleish, Fraser R.; Vuorenkoski, Anni K.; Gong, Cuiling
2017-07-01
The compressive line sensing imaging system adopts distributed compressive sensing (CS) to acquire data and reconstruct images. Dynamic CS uses Bayesian inference to capture the correlated nature of the adjacent lines. An image reconstruction technique that incorporates dynamic CS in the distributed CS framework was developed to improve the quality of reconstructed images. The effectiveness of the technique was validated using experimental data acquired in an underwater imaging test facility. Results that demonstrate contrast and resolution improvements will be presented. The improved efficiency is desirable for unmanned aerial vehicles conducting long-duration missions.
Psychophysical Comparisons in Image Compression Algorithms.
1999-03-01
Leister, M., "Lossy Lempel - Ziv Algorithm for Large Alphabet Sources and Applications to Image Compression ," IEEE Proceedings, v.I, pp. 225-228, September...1623-1642, September 1990. Sanford, M.A., An Analysis of Data Compression Algorithms used in the Transmission of Imagery, Master’s Thesis, Naval...NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS PSYCHOPHYSICAL COMPARISONS IN IMAGE COMPRESSION ALGORITHMS by % Christopher J. Bodine • March
López, Carlos; Jaén Martinez, Joaquín; Lejeune, Marylène; Escrivà, Patricia; Salvadó, Maria T; Pons, Lluis E; Alvaro, Tomás; Baucells, Jordi; García-Rojo, Marcial; Cugat, Xavier; Bosch, Ramón
2009-10-01
The volume of digital image (DI) storage continues to be an important problem in computer-assisted pathology. DI compression enables the size of files to be reduced but with the disadvantage of loss of quality. Previous results indicated that the efficiency of computer-assisted quantification of immunohistochemically stained cell nuclei may be significantly reduced when compressed DIs are used. This study attempts to show, with respect to immunohistochemically stained nuclei, which morphometric parameters may be altered by the different levels of JPEG compression, and the implications of these alterations for automated nuclear counts, and further, develops a method for correcting this discrepancy in the nuclear count. For this purpose, 47 DIs from different tissues were captured in uncompressed TIFF format and converted to 1:3, 1:23 and 1:46 compression JPEG images. Sixty-five positive objects were selected from these images, and six morphological parameters were measured and compared for each object in TIFF images and those of the different compression levels using a set of previously developed and tested macros. Roundness proved to be the only morphological parameter that was significantly affected by image compression. Factors to correct the discrepancy in the roundness estimate were derived from linear regression models for each compression level, thereby eliminating the statistically significant differences between measurements in the equivalent images. These correction factors were incorporated in the automated macros, where they reduced the nuclear quantification differences arising from image compression. Our results demonstrate that it is possible to carry out unbiased automated immunohistochemical nuclear quantification in compressed DIs with a methodology that could be easily incorporated in different systems of digital image analysis.
Adaptive compressive ghost imaging based on wavelet trees and sparse representation.
Yu, Wen-Kai; Li, Ming-Fei; Yao, Xu-Ri; Liu, Xue-Feng; Wu, Ling-An; Zhai, Guang-Jie
2014-03-24
Compressed sensing is a theory which can reconstruct an image almost perfectly with only a few measurements by finding its sparsest representation. However, the computation time consumed for large images may be a few hours or more. In this work, we both theoretically and experimentally demonstrate a method that combines the advantages of both adaptive computational ghost imaging and compressed sensing, which we call adaptive compressive ghost imaging, whereby both the reconstruction time and measurements required for any image size can be significantly reduced. The technique can be used to improve the performance of all computational ghost imaging protocols, especially when measuring ultra-weak or noisy signals, and can be extended to imaging applications at any wavelength.
WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions
NASA Astrophysics Data System (ADS)
Tsoutsanis, P.; Titarev, V. A.; Drikakis, D.
2011-02-01
The paper extends weighted essentially non-oscillatory (WENO) methods to three dimensional mixed-element unstructured meshes, comprising tetrahedral, hexahedral, prismatic and pyramidal elements. Numerical results illustrate the convergence rates and non-oscillatory properties of the schemes for various smooth and discontinuous solutions test cases and the compressible Euler equations on various types of grids. Schemes of up to fifth order of spatial accuracy are considered.