Science.gov

Sample records for image derived input

  1. Combining MRI with PET for partial volume correction improves image-derived input functions in mice

    PubMed Central

    Evans, Eleanor; Buonincontri, Guido; Izquierdo, David; Methner, Carmen; Hawkes, Rob C.; Ansorge, Richard E.; Krieg, Thomas; Carpenter, T. Adrian; Sawiak, Stephen J.

    2015-01-01

    Accurate kinetic modelling using dynamic PET requires knowledge of the tracer concentration in plasma, known as the arterial input function (AIF). AIFs are usually determined by invasive blood sampling, but this is prohibitive in murine studies due to low total blood volumes. As a result of the low spatial resolution of PET, image-derived input functions (IDIFs) must be extracted from left ventricular blood pool (LVBP) ROIs of the mouse heart. This is challenging because of partial volume and spillover effects between the LVBP and myocardium, contaminating IDIFs with tissue signal. We have applied the geometric transfer matrix (GTM) method of partial volume correction (PVC) to 12 mice injected with 18F-FDG affected by a Myocardial Infarction (MI), of which 6 were treated with a drug which reduced infarction size [1]. We utilised high resolution MRI to assist in segmenting mouse hearts into 5 classes: LVBP, infarcted myocardium, healthy myocardium, lungs/body and background. The signal contribution from these 5 classes was convolved with the point spread function (PSF) of the Cambridge split magnet PET scanner and a non-linear fit was performed on the 5 measured signal components. The corrected IDIF was taken as the fitted LVBP component. It was found that the GTM PVC method could recover an IDIF with less contamination from spillover than an IDIF extracted from PET data alone. More realistic values of Ki were achieved using GTM IDIFs, which were shown to be significantly different (p<0.05) between the treated and untreated groups. PMID:26213413

  2. Noninvasive image derived heart input function for CMRglc measurements in small animal slow infusion FDG PET studies

    NASA Astrophysics Data System (ADS)

    Xiong, Guoming; Cumming, Paul; Todica, Andrei; Hacker, Marcus; Bartenstein, Peter; Böning, Guido

    2012-12-01

    Absolute quantitation of the cerebral metabolic rate for glucose (CMRglc) can be obtained in positron emission tomography (PET) studies when serial measurements of the arterial [18F]-fluoro-deoxyglucose (FDG) input are available. Since this is not always practical in PET studies of rodents, there has been considerable interest in defining an image-derived input function (IDIF) by placing a volume of interest (VOI) within the left ventricle of the heart. However, spill-in arising from trapping of FDG in the myocardium often leads to progressive contamination of the IDIF, which propagates to underestimation of the magnitude of CMRglc. We therefore developed a novel, non-invasive method for correcting the IDIF without scaling to a blood sample. To this end, we first obtained serial arterial samples and dynamic FDG-PET data of the head and heart in a group of eight anaesthetized rats. We fitted a bi-exponential function to the serial measurements of the IDIF, and then used the linear graphical Gjedde-Patlak method to describe the accumulation in myocardium. We next estimated the magnitude of myocardial spill-in reaching the left ventricle VOI by assuming a Gaussian point-spread function, and corrected the measured IDIF for this estimated spill-in. Finally, we calculated parametric maps of CMRglc using the corrected IDIF, and for the sake of comparison, relative to serial blood sampling from the femoral artery. The uncorrected IDIF resulted in 20% underestimation of the magnitude of CMRglc relative to the gold standard arterial input method. However, there was no bias with the corrected IDIF, which was robust to the variable extent of myocardial tracer uptake, such that there was a very high correlation between individual CMRglc measurements using the corrected IDIF with gold-standard arterial input results. Based on simulation, we furthermore find that electrocardiogram-gating, i.e. ECG-gating is not necessary for IDIF quantitation using our approach.

  3. Noninvasive image derived heart input function for CMRglc measurements in small animal slow infusion FDG PET studies.

    PubMed

    Xiong, Guoming; Paul, Cumming; Todica, Andrei; Hacker, Marcus; Bartenstein, Peter; Böning, Guido

    2012-12-01

    Absolute quantitation of the cerebral metabolic rate for glucose (CMRglc) can be obtained in positron emission tomography (PET) studies when serial measurements of the arterial [(18)F]-fluoro-deoxyglucose (FDG) input are available. Since this is not always practical in PET studies of rodents, there has been considerable interest in defining an image-derived input function (IDIF) by placing a volume of interest (VOI) within the left ventricle of the heart. However, spill-in arising from trapping of FDG in the myocardium often leads to progressive contamination of the IDIF, which propagates to underestimation of the magnitude of CMRglc. We therefore developed a novel, non-invasive method for correcting the IDIF without scaling to a blood sample. To this end, we first obtained serial arterial samples and dynamic FDG-PET data of the head and heart in a group of eight anaesthetized rats. We fitted a bi-exponential function to the serial measurements of the IDIF, and then used the linear graphical Gjedde-Patlak method to describe the accumulation in myocardium. We next estimated the magnitude of myocardial spill-in reaching the left ventricle VOI by assuming a Gaussian point-spread function, and corrected the measured IDIF for this estimated spill-in. Finally, we calculated parametric maps of CMRglc using the corrected IDIF, and for the sake of comparison, relative to serial blood sampling from the femoral artery. The uncorrected IDIF resulted in 20% underestimation of the magnitude of CMRglc relative to the gold standard arterial input method. However, there was no bias with the corrected IDIF, which was robust to the variable extent of myocardial tracer uptake, such that there was a very high correlation between individual CMRglc measurements using the corrected IDIF with gold-standard arterial input results. Based on simulation, we furthermore find that electrocardiogram-gating, i.e. ECG-gating is not necessary for IDIF quantitation using our approach. PMID:23160517

  4. Image-derived and arterial blood sampled input functions for quantitative PET imaging of the angiotensin II subtype 1 receptor in the kidney

    SciTech Connect

    Feng, Tao; Tsui, Benjamin M. W.; Li, Xin; Vranesic, Melin; Lodge, Martin A.; Gulaldi, Nedim C. M.; Szabo, Zsolt

    2015-11-15

    Purpose: The radioligand {sup 11}C-KR31173 has been introduced for positron emission tomography (PET) imaging of the angiotensin II subtype 1 receptor in the kidney in vivo. To study the biokinetics of {sup 11}C-KR31173 with a compartmental model, the input function is needed. Collection and analysis of arterial blood samples are the established approach to obtain the input function but they are not feasible in patients with renal diseases. The goal of this study was to develop a quantitative technique that can provide an accurate image-derived input function (ID-IF) to replace the conventional invasive arterial sampling and test the method in pigs with the goal of translation into human studies. Methods: The experimental animals were injected with [{sup 11}C]KR31173 and scanned up to 90 min with dynamic PET. Arterial blood samples were collected for the artery derived input function (AD-IF) and used as a gold standard for ID-IF. Before PET, magnetic resonance angiography of the kidneys was obtained to provide the anatomical information required for derivation of the recovery coefficients in the abdominal aorta, a requirement for partial volume correction of the ID-IF. Different image reconstruction methods, filtered back projection (FBP) and ordered subset expectation maximization (OS-EM), were investigated for the best trade-off between bias and variance of the ID-IF. The effects of kidney uptakes on the quantitative accuracy of ID-IF were also studied. Biological variables such as red blood cell binding and radioligand metabolism were also taken into consideration. A single blood sample was used for calibration in the later phase of the input function. Results: In the first 2 min after injection, the OS-EM based ID-IF was found to be biased, and the bias was found to be induced by the kidney uptake. No such bias was found with the FBP based image reconstruction method. However, the OS-EM based image reconstruction was found to reduce variance in the subsequent

  5. Cerebral blood flow with [15O]water PET studies using an image-derived input function and MR-defined carotid centerlines

    NASA Astrophysics Data System (ADS)

    Fung, Edward K.; Carson, Richard E.

    2013-03-01

    Full quantitative analysis of brain PET data requires knowledge of the arterial input function into the brain. Such data are normally acquired by arterial sampling with corrections for delay and dispersion to account for the distant sampling site. Several attempts have been made to extract an image-derived input function (IDIF) directly from the internal carotid arteries that supply the brain and are often visible in brain PET images. We have devised a method of delineating the internal carotids in co-registered magnetic resonance (MR) images using the level-set method and applying the segmentations to PET images using a novel centerline approach. Centerlines of the segmented carotids were modeled as cubic splines and re-registered in PET images summed over the early portion of the scan. Using information from the anatomical center of the vessel should minimize partial volume and spillover effects. Centerline time-activity curves were taken as the mean of the values for points along the centerline interpolated from neighboring voxels. A scale factor correction was derived from calculation of cerebral blood flow (CBF) using gold standard arterial blood measurements. We have applied the method to human subject data from multiple injections of [15O]water on the HRRT. The method was assessed by calculating the area under the curve (AUC) of the IDIF and the CBF, and comparing these to values computed using the gold standard arterial input curve. The average ratio of IDIF to arterial AUC (apparent recovery coefficient: aRC) across 9 subjects with multiple (n = 69) injections was 0.49 ± 0.09 at 0-30 s post tracer arrival, 0.45 ± 0.09 at 30-60 s, and 0.46 ± 0.09 at 60-90 s. Gray and white matter CBF values were 61.4 ± 11.0 and 15.6 ± 3.0 mL/min/100 g tissue using sampled blood data. Using IDIF centerlines scaled by the average aRC over each subjects’ injections, gray and white matter CBF values were 61.3 ± 13.5 and 15.5 ± 3.4 mL/min/100 g tissue. Using global

  6. Input design for identification of aircraft stability and control derivatives

    NASA Technical Reports Server (NTRS)

    Gupta, N. K.; Hall, W. E., Jr.

    1975-01-01

    An approach for designing inputs to identify stability and control derivatives from flight test data is presented. This approach is based on finding inputs which provide the maximum possible accuracy of derivative estimates. Two techniques of input specification are implemented for this objective - a time domain technique and a frequency domain technique. The time domain technique gives the control input time history and can be used for any allowable duration of test maneuver, including those where data lengths can only be of short duration. The frequency domain technique specifies the input frequency spectrum, and is best applied for tests where extended data lengths, much longer than the time constants of the modes of interest, are possible. These technqiues are used to design inputs to identify parameters in longitudinal and lateral linear models of conventional aircraft. The constraints of aircraft response limits, such as on structural loads, are realized indirectly through a total energy constraint on the input. Tests with simulated data and theoretical predictions show that the new approaches give input signals which can provide more accurate parameter estimates than can conventional inputs of the same total energy. Results obtained indicate that the approach has been brought to the point where it should be used on flight tests for further evaluation.

  7. Image inputs in Structure-from-Motion Photogrammetry: optimising image greyscaling

    NASA Astrophysics Data System (ADS)

    O'Connor, James; Smith, Mike J.; James, Mike R.

    2016-04-01

    Structure-from-motion (SfM) photogrammetry is an emerging technology receiving much attention within the geoscience community due to its ease of use and the lack of prior information required to build topographic models from images. However, little consideration is given to image inputs considering image sharpness and contrast both have an effect on the quality of photogrammetric outputs. This task is made more challenging across natural image sequences due to the presence of low-contrast surfaces which are often at oblique angles to input images. As most feature detectors operate on a single image channel, monochrome inputs can be pre-processed for input into SfM workflows and relative accuracy measured. In this contribution we process two sets of imagery from both a real world, close range scenario (Constitution Hill, Aberystwyth) and a controlled dataset in laboratory conditions simulating a UAV flight with convergent viewing geometry. With each, we generate greyscale subsets comprised of weighted combinations of the spectral bands of the input images prior to executing SfM workflows. Output point clouds are measured against high-accuracy terrestrial laser scans in order to assess residual error and compare output solutions. When compared with untreated image inputs into a commonly used commercial package (Agisoft Photoscan Pro) we show minor improvements in the accuracy of photogrammetrically derived products.

  8. Position Estimation Using Image Derivative

    NASA Technical Reports Server (NTRS)

    Mortari, Daniele; deDilectis, Francesco; Zanetti, Renato

    2015-01-01

    This paper describes an image processing algorithm to process Moon and/or Earth images. The theory presented is based on the fact that Moon hard edge points are characterized by the highest values of the image derivative. Outliers are eliminated by two sequential filters. Moon center and radius are then estimated by nonlinear least-squares using circular sigmoid functions. The proposed image processing has been applied and validated using real and synthetic Moon images.

  9. Reconstruction of an input function from a dynamic PET water image using multiple tissue curves

    NASA Astrophysics Data System (ADS)

    Kudomi, Nobuyuki; Maeda, Yukito; Yamamoto, Yuka; Nishiyama, Yoshihiro

    2016-08-01

    Quantification of cerebral blood flow (CBF) is important for the understanding of normal and pathologic brain physiology. When CBF is assessed using PET with {{\\text{H}}2} 15O or C15O2, its calculation requires an arterial input function, which generally requires invasive arterial blood sampling. The aim of the present study was to develop a new technique to reconstruct an image derived input function (IDIF) from a dynamic {{\\text{H}}2} 15O PET image as a completely non-invasive approach. Our technique consisted of using a formula to express the input using tissue curve with rate constant parameter. For multiple tissue curves extracted from the dynamic image, the rate constants were estimated so as to minimize the sum of the differences of the reproduced inputs expressed by the extracted tissue curves. The estimated rates were used to express the inputs and the mean of the estimated inputs was used as an IDIF. The method was tested in human subjects (n  =  29) and was compared to the blood sampling method. Simulation studies were performed to examine the magnitude of potential biases in CBF and to optimize the number of multiple tissue curves used for the input reconstruction. In the PET study, the estimated IDIFs were well reproduced against the measured ones. The difference between the calculated CBF values obtained using the two methods was small as around  <8% and the calculated CBF values showed a tight correlation (r  =  0.97). The simulation showed that errors associated with the assumed parameters were  <10%, and that the optimal number of tissue curves to be used was around 500. Our results demonstrate that IDIF can be reconstructed directly from tissue curves obtained through {{\\text{H}}2} 15O PET imaging. This suggests the possibility of using a completely non-invasive technique to assess CBF in patho-physiological studies.

  10. Approach for Input Uncertainty Propagation and Robust Design in CFD Using Sensitivity Derivatives

    NASA Technical Reports Server (NTRS)

    Putko, Michele M.; Taylor, Arthur C., III; Newman, Perry A.; Green, Lawrence L.

    2002-01-01

    An implementation of the approximate statistical moment method for uncertainty propagation and robust optimization for quasi 3-D Euler CFD code is presented. Given uncertainties in statistically independent, random, normally distributed input variables, first- and second-order statistical moment procedures are performed to approximate the uncertainty in the CFD output. Efficient calculation of both first- and second-order sensitivity derivatives is required. In order to assess the validity of the approximations, these moments are compared with statistical moments generated through Monte Carlo simulations. The uncertainties in the CFD input variables are also incorporated into a robust optimization procedure. For this optimization, statistical moments involving first-order sensitivity derivatives appear in the objective function and system constraints. Second-order sensitivity derivatives are used in a gradient-based search to successfully execute a robust optimization. The approximate methods used throughout the analyses are found to be valid when considering robustness about input parameter mean values.

  11. Input/output characteristics of a matrix ion-chamber electronic portal imaging device.

    PubMed

    Yin, F F; Schell, M C; Rubin, P

    1994-09-01

    The input/output characteristics of a matrix liquid ion-chamber electronic portal imaging device (EPID) are investigated to elucidate the imaging properties of EPIDs. The radiation input to the detector, represented by dose rate, and the pixel value output from the device are related by a characteristic curve. Various incident radiation intensities are obtained by changing the source-to-detector distance (SDD). For each incident radiation intensity, an electronic portal image is obtained using a field size of 5 x 5 cm2. The output pixel value of the EPID is represented by the average pixel value of a region of interest of 9 x 9 pixels centered at a selected point. The effects of various accelerator settings, such as the repetition-rate setting and photon energy, gantry angle, field size, SDD, and acquisition mode of the EPID on characteristic curves are investigated at the central axis. The off-axis response of the detector is also examined. The derivative of the pixel value with respect to the input dose rate is used to analyze the detector contrast. Results indicate that the output pixel value is not a linear function of the incident radiation intensity. The detector contrast is comparable between photon energies of 10 and 6 MV and increases at low dose rates. The response of the imaging device varies substantially with acquisition mode, but is less sensitive to the SDD used for calibration. Characteristic curves are consistent for different gantry angles at the central axis and with the off-axis locations when the gantry angle is used for imaging and calibration, but vary with off-axis locations when the gantry angle is not at the calibration direction. Characteristic curves are also found to vary with different field sizes, but are similar in shape.

  12. Effects of Ground Motion Input on the Derived Fragility Functions: Case study of 2010 Haiti Earthquake

    NASA Astrophysics Data System (ADS)

    Hancilar, Ufuk; Harmandar, Ebru; Çakti, Eser

    2014-05-01

    Empirical fragility functions are derived by statistical processing of the data on: i) Damaged and undamaged buildings, and ii) Ground motion intensity values at the buildings' locations. This study investigates effects of different ground motion inputs on the derived fragility functions. The previously constructed fragility curves (Hancilar et al. 2013), which rely on specific shaking intensity maps published by the USGS after the 2010 Haiti Earthquake, are compared with the fragility functions computed in the present study. Building data come from field surveys of 6,347 buildings that are grouped with respect to structural material type and number of stories. For damage assessment, the European Macroseismic Scale (EMS-98) damage grades are adopted. The simplest way to account for the variability in ground motion input could have been achieved by employing different ground motion prediction equations (GMPEs) and their standard variations. However, in this work, we prefer to rely on stochastically simulated ground motions of the Haiti earthquake. We employ five different source models available in the literature and calculate the resulting strong ground motion in time domain. In our simulations we also consider the local site effects by published studies on NEHRP site classes and micro-zoning maps of the city of Port-au-Prince. We estimate the regional distributions from the waveforms simulated at the same coordinates that we have damage information from. The estimated spatial distributions of peak ground accelerations and velocities, PGA and PGV respectively, are then used as input to fragility computations. The results show that changing the ground motion input causes significant variability in the resulting fragility functions.

  13. Image tube. [deriving electron beam replica of image

    NASA Technical Reports Server (NTRS)

    Hallam, K. L.; Johnson, C. B. (Inventor)

    1974-01-01

    An optical image is projected onto a planar surface of a photocathode that derives an electron beam replica of the image. A target electrode displaced relative to the photocathode so that it does not obstruct the optical image includes a planar surface for receiving and deriving an accurate replica of the electron beam image. The two planar surfaces are parallel. The electron beam image is focused on the target electrode by providing throughout a region that extends between the planar surfaces of the photocathode and receiving electrode, constant homogeneous dc electric and magnetic fields. The electric field extends in a direction perpendicular to the planar surfaces while the magnetic field extends along a straight line that intersects the photocathode and target electrode at an acute angle.

  14. Integration of Image-Derived and Pos-Derived Features for Image Blur Detection

    NASA Astrophysics Data System (ADS)

    Teo, Tee-Ann; Zhan, Kai-Zhi

    2016-06-01

    The image quality plays an important role for Unmanned Aerial Vehicle (UAV)'s applications. The small fixed wings UAV is suffering from the image blur due to the crosswind and the turbulence. Position and Orientation System (POS), which provides the position and orientation information, is installed onto an UAV to enable acquisition of UAV trajectory. It can be used to calculate the positional and angular velocities when the camera shutter is open. This study proposes a POS-assisted method to detect the blur image. The major steps include feature extraction, blur image detection and verification. In feature extraction, this study extracts different features from images and POS. The image-derived features include mean and standard deviation of image gradient. For POS-derived features, we modify the traditional degree-of-linear-blur (blinear) method to degree-of-motion-blur (bmotion) based on the collinear condition equations and POS parameters. Besides, POS parameters such as positional and angular velocities are also adopted as POS-derived features. In blur detection, this study uses Support Vector Machines (SVM) classifier and extracted features (i.e. image information, POS data, blinear and bmotion) to separate blur and sharp UAV images. The experiment utilizes SenseFly eBee UAV system. The number of image is 129. In blur image detection, we use the proposed degree-of-motion-blur and other image features to classify the blur image and sharp images. The classification result shows that the overall accuracy using image features is only 56%. The integration of image-derived and POS-derived features have improved the overall accuracy from 56% to 76% in blur detection. Besides, this study indicates that the performance of the proposed degree-of-motion-blur is better than the traditional degree-of-linear-blur.

  15. Improving land cover classification using input variables derived from a geographically weighted principal components analysis

    NASA Astrophysics Data System (ADS)

    Comber, Alexis J.; Harris, Paul; Tsutsumida, Narumasa

    2016-09-01

    This study demonstrates the use of a geographically weighted principal components analysis (GWPCA) of remote sensing imagery to improve land cover classification accuracy. A principal components analysis (PCA) is commonly applied in remote sensing but generates global, spatially-invariant results. GWPCA is a local adaptation of PCA that locally transforms the image data, and in doing so, can describe spatial change in the structure of the multi-band imagery, thus directly reflecting that many landscape processes are spatially heterogenic. In this research the GWPCA localised loadings of MODIS data are used as textural inputs, along with GWPCA localised ranked scores and the image bands themselves to three supervised classification algorithms. Using a reference data set for land cover to the west of Jakarta, Indonesia the classification procedure was assessed via training and validation data splits of 80/20, repeated 100 times. For each classification algorithm, the inclusion of the GWPCA loadings data was found to significantly improve classification accuracy. Further, but more moderate improvements in accuracy were found by additionally including GWPCA ranked scores as textural inputs, data that provide information on spatial anomalies in the imagery. The critical importance of considering both spatial structure and spatial anomalies of the imagery in the classification is discussed, together with the transferability of the new method to other studies. Research topics for method refinement are also suggested.

  16. Mapping synaptic input fields of neurons with super-resolution imaging

    PubMed Central

    Sigal, Yaron M.; Speer, Colenso M.; Babcock, Hazen P.; Zhuang, Xiaowei

    2016-01-01

    Summary As a basic functional unit in neural circuits, each neuron integrates input signals from hundreds to thousands of synapses. Knowledge of the synaptic input fields of individual neurons, including the identity, strength and location of each synapse, is essential for understanding how neurons compute. Here we developed a volumetric super-resolution reconstruction platform for large-volume imaging and automated segmentation of neurons and synapses with molecular identity information. We used this platform to map inhibitory synaptic input fields of On-Off direction-selective ganglion cells (On-Off DSGCs), which are important for computing visual motion direction in the mouse retina. The reconstructions of On-Off DSGCs showed a GABAergic, receptor subtype-specific input field for generating direction selective responses without significant glycinergic inputs for mediating monosynaptic crossover inhibition. These results demonstrate unique capabilities of this super-resolution platform for interrogating neural circuitry. PMID:26435106

  17. Mapping Synaptic Input Fields of Neurons with Super-Resolution Imaging.

    PubMed

    Sigal, Yaron M; Speer, Colenso M; Babcock, Hazen P; Zhuang, Xiaowei

    2015-10-01

    As a basic functional unit in neural circuits, each neuron integrates input signals from hundreds to thousands of synapses. Knowledge of the synaptic input fields of individual neurons, including the identity, strength, and location of each synapse, is essential for understanding how neurons compute. Here, we developed a volumetric super-resolution reconstruction platform for large-volume imaging and automated segmentation of neurons and synapses with molecular identity information. We used this platform to map inhibitory synaptic input fields of On-Off direction-selective ganglion cells (On-Off DSGCs), which are important for computing visual motion direction in the mouse retina. The reconstructions of On-Off DSGCs showed a GABAergic, receptor subtype-specific input field for generating direction selective responses without significant glycinergic inputs for mediating monosynaptic crossover inhibition. These results demonstrate unique capabilities of this super-resolution platform for interrogating neural circuitry. PMID:26435106

  18. Use of Ra isotopes to deduce rapid transfer of sediment-derived inputs off Kerguelen

    NASA Astrophysics Data System (ADS)

    Sanial, V.; van Beek, P.; Lansard, B.; Souhaut, M.; Kestenare, E.; d'Ovidio, F.; Zhou, M.; Blain, S.

    2015-03-01

    The Southern Ocean is known to be the largest high-nutrient, low-chlorophyll (HNLC) region of the global ocean due to iron limitation. However, a large phytoplankton bloom develops annually downstream of the Kerguelen Islands, a bloom which is sustained partly by iron released from the sediments deposited onto the shelves. In the framework of the KEOPS-2 project, we used radium isotopes (224Ra, T1/2 = 3.66 d; 223Ra, T1/2 = 11.4 d; 228Ra, T1/2 = 5.75 yr) to provide information on the origin of iron fertilization and on the timescales of the transfer of sediment-derived inputs (including iron and other micronutrients) towards offshore waters. Significant 224Ra and 223Ra activities were found in the near vicinity of the Kerguelen Islands, in agreement with the short half-lives of these isotopes. Significant 224Ra and 223Ra activities were also detected up to 200 km downstream of the islands and more unexpectedly in offshore waters south of the polar front. These observations thus clearly indicate (i) that the sediment-derived inputs are rapidly transferred towards offshore waters (on timescales on the order of several days up to several weeks) and (ii) that the polar front is not a physical barrier for the chemical elements released from the sediments of the Kerguelen Plateau. The Ra data set suggests that iron and other micronutrients released by the shelves of the Kerguelen Islands may contribute to fueling the phytoplankton bloom downstream of the islands, despite the presence of the polar front. However, the heterogeneous distribution of the 224Ra and 223Ra activities in surface waters suggests that this supply across the front is not a continuous process but rather a process that is highly variable in space and time.

  19. Use of Ra isotopes to deduce rapid transfer of sediment-derived inputs off Kerguelen

    NASA Astrophysics Data System (ADS)

    Sanial, V.; van Beek, P.; Lansard, B.; Souhaut, M.; Kestenare, E.; d'Ovidio, F.; Zhou, M.; Blain, S.

    2014-09-01

    The Southern Ocean is known as the largest High-Nutrient, Low-Chlorophyll (HNLC) region of the global ocean due to iron limitation. However, a large phytoplankton bloom develops annually downstream of the Kerguelen Islands, which is sustained partly by iron released from the sediments deposited onto the margins. In the framework of the KEOPS-2 project, we used radium isotopes (224Ra, T1/2 = 3.66 d; 223Ra, T1/2 = 11.4 d; 228Ra, T1/2 = 5.75 yr) to provide information on the origin of iron fertilization and on the timescales of the transfer of sediment-derived inputs (including iron and other micronutrients) towards offshore waters. Significant 223Ra and 223Ra activities were found in the near vicinity of the Kerguelen Islands, in agreement with the short half-lives of these isotopes. Significant 224Ra and 223Ra activities were also detected up to 200 km downstream of the islands and more unexpectedly in offshore waters south of the Polar Front. These observations thus clearly indicate (i) that the sediment-derived inputs are rapidly transferred towards offshore waters (on timescales in the order of several days up to several weeks) and (ii) that the Polar Front is not a physical barrier for the chemical elements released from the sediments of Kerguelen Plateau. The Ra dataset suggests that iron and other micronutrients released by the shallow sediments of the Kerguelen margins may contribute to fuel the phytoplankton bloom downstream of the islands, despite the presence of the Polar Front. However, the heterogeneous distribution of the 224Ra and 223Ra activities in surface waters suggests that this supply across the front is not a continuous process, but rather a process that is highly variable in space and time.

  20. Maximum likelihood identification and optimal input design for identifying aircraft stability and control derivatives

    NASA Technical Reports Server (NTRS)

    Stepner, D. E.; Mehra, R. K.

    1973-01-01

    A new method of extracting aircraft stability and control derivatives from flight test data is developed based on the maximum likelihood cirterion. It is shown that this new method is capable of processing data from both linear and nonlinear models, both with and without process noise and includes output error and equation error methods as special cases. The first application of this method to flight test data is reported for lateral maneuvers of the HL-10 and M2/F3 lifting bodies, including the extraction of stability and control derivatives in the presence of wind gusts. All the problems encountered in this identification study are discussed. Several different methods (including a priori weighting, parameter fixing and constrained parameter values) for dealing with identifiability and uniqueness problems are introduced and the results given. The method for the design of optimal inputs for identifying the parameters of linear dynamic systems is also given. The criterion used for the optimization is the sensitivity of the system output to the unknown parameters. Several simple examples are first given and then the results of an extensive stability and control dervative identification simulation for a C-8 aircraft are detailed.

  1. Using Whole-House Field Tests to Empirically Derive Moisture Buffering Model Inputs

    SciTech Connect

    Woods, J.; Winkler, J.; Christensen, D.; Hancock, E.

    2014-08-01

    Building energy simulations can be used to predict a building's interior conditions, along with the energy use associated with keeping these conditions comfortable. These models simulate the loads on the building (e.g., internal gains, envelope heat transfer), determine the operation of the space conditioning equipment, and then calculate the building's temperature and humidity throughout the year. The indoor temperature and humidity are affected not only by the loads and the space conditioning equipment, but also by the capacitance of the building materials, which buffer changes in temperature and humidity. This research developed an empirical method to extract whole-house model inputs for use with a more accurate moisture capacitance model (the effective moisture penetration depth model). The experimental approach was to subject the materials in the house to a square-wave relative humidity profile, measure all of the moisture transfer terms (e.g., infiltration, air conditioner condensate) and calculate the only unmeasured term: the moisture absorption into the materials. After validating the method with laboratory measurements, we performed the tests in a field house. A least-squares fit of an analytical solution to the measured moisture absorption curves was used to determine the three independent model parameters representing the moisture buffering potential of this house and its furnishings. Follow on tests with realistic latent and sensible loads showed good agreement with the derived parameters, especially compared to the commonly-used effective capacitance approach. These results show that the EMPD model, once the inputs are known, is an accurate moisture buffering model.

  2. Image processing software for providing radiometric inputs to land surface climatology models

    NASA Technical Reports Server (NTRS)

    Newcomer, Jeffrey A.; Goetz, Scott J.; Strebel, Donald E.; Hall, Forrest G.

    1989-01-01

    During the First International Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), 80 gigabytes of image data were generated from a variety of satellite and airborne sensors in a multidisciplinary attempt to study energy and mass exchange between the land surface and the atmosphere. To make these data readily available to researchers with a range of image data handling experience and capabilities, unique image-processing software was designed to perform a variety of nonstandard image-processing manipulations and to derive a set of standard-format image products. The nonconventional features of the software include: (1) adding new layers of geographic coordinates, and solar and viewing conditions to existing data; (2) providing image polygon extraction and calibration of data to at-sensor radiances; and, (3) generating standard-format derived image products that can be easily incorporated into radiometric or climatology models. The derived image products consist of easily handled ASCII descriptor files, byte image data files, and additional per-pixel integer data files (e.g., geographic coordinates, and sun and viewing conditions). Details of the solutions to the image-processing problems, the conventions adopted for handling a variety of satellite and aircraft image data, and the applicability of the output products to quantitative modeling are presented. They should be of general interest to future experiment and data-handling design considerations.

  3. Java Library for Input and Output of Image Data and Metadata

    NASA Technical Reports Server (NTRS)

    Deen, Robert; Levoe, Steven

    2003-01-01

    A Java-language library supports input and output (I/O) of image data and metadata (label data) in the format of the Video Image Communication and Retrieval (VICAR) image-processing software and in several similar formats, including a subset of the Planetary Data System (PDS) image file format. The library does the following: It provides low-level, direct access layer, enabling an application subprogram to read and write specific image files, lines, or pixels, and manipulate metadata directly. Two coding/decoding subprograms ("codecs" for short) based on the Java Advanced Imaging (JAI) software provide access to VICAR and PDS images in a file-format-independent manner. The VICAR and PDS codecs enable any program that conforms to the specification of the JAI codec to use VICAR or PDS images automatically, without specific knowledge of the VICAR or PDS format. The library also includes Image I/O plugin subprograms for VICAR and PDS formats. Application programs that conform to the Image I/O specification of Java version 1.4 can utilize any image format for which such a plug-in subprogram exists, without specific knowledge of the format itself. Like the aforementioned codecs, the VICAR and PDS Image I/O plug-in subprograms support reading and writing of metadata.

  4. Global Auroral Energy Deposition Derived from Polar UVI Images

    NASA Technical Reports Server (NTRS)

    Fillingim, M. O.; Brittnacher, M. J.; Elsen, R.; Parks, G. K.; Spann, J. F., Jr.; Germany, G. A.

    1997-01-01

    Quantitative measurement of the transfer of energy and momentum to the ionosphere from the solar wind is one of the main objectives of the ISTP program. Global measurement of auroral energy deposition derived from observations of the longer wavelength LBH band emissions made by the Ultraviolet Imager on the Polar spacecraft is one of the key elements in this satellite and ground-based instrument campaign. These "measurements" are inferred by combining information from consecutive images using different filters and have a time resolution on the average of three minutes and are made continuously over a 5 to 8 hour period during each 18 hour orbit of the Polar spacecraft. The energy deposition in the ionosphere from auroral electron precipitation augments are due to Joule heating associated with field aligned currents. Assuming conjugacy of energy deposition between the two hemispheres the total energy input to the ionosphere through electron precipitation can be determined at high time resolution. Previously, precipitating particle measurements along the tracks of low altitude satellites provided only local measurements and the global energy precipitation could be inferred through models but not directly measured. We use the UVI images for the entire month of January 1997 to estimate the global energy deposition at high time resolution. We also sort the energy deposition into sectors to find possible trends, for example, on the dayside and nightside, or the dawn and dusk sides.

  5. Regional biomass and leaf-area estimates derived from satellite imagery as inputs to spatial trace-gas flux models for arctic tundra

    SciTech Connect

    Shippert, M.M.; Walker, D.A.; Auerbach, N.A.; Lewis, B.E. )

    1994-06-01

    Reflectance spectra, leaf area index (LAI), and live biomass measurements were collected for 60 plots near Toolik Lake and Imnavait Creek, Alaska during July and August, 1993. Normalized difference vegetation indices (NDVI) were calculated from the reflectance spectra. NDVI was found to be highly correlated to both LAI and biomass. These relationships have been seen in temperate ecosystems, but have never been tested in Arctic tundra previous to this study. In addition, a clear relationship is seen between NDVI values and pH and moisture. Acidic plots have much higher NDVI values than non-acidic plots, while moist plots have high NDVI values relative to dry and wet plots. The average field NDVI measurements for major physiognomic categories were compared to average NDVI values for the same categories derived from a SPOT multispectral satellite image of the area. These values were also found to be highly correlated. However, field NDVI values were consistently about 40% higher than SPOT NDVI values. Possible explanations for this consistent trend include effects of low sun angle in the Arctic in combination with relatively high view angle of the SPOT sensor. Using the regression equations for the above relationships, biomass and LAI images were calculated from the SPOT image. The resulting images show expected trends in the LAI and biomass across the landscape. The image of biomass will be used as an input to a spatial model of methane emissions for the Alaskan Arctic. Another key input variable to the methane model will be soil moisture. Alternative image processing methods and/or radar images will be used to derive this important variable.

  6. Combustion-derived substances in deep basins of Puget Sound: historical inputs from fossil fuel and biomass combustion.

    PubMed

    Kuo, Li-Jung; Louchouarn, Patrick; Herbert, Bruce E; Brandenberger, Jill M; Wade, Terry L; Crecelius, Eric

    2011-04-01

    Reconstructions of 250 years historical inputs of two distinct types of black carbon (soot/graphitic black carbon (GBC) and char-BC) were conducted on sediment cores from two basins of the Puget Sound, WA. Signatures of polycyclic aromatic hydrocarbons (PAHs) were also used to support the historical reconstructions of BC to this system. Down-core maxima in GBC and combustion-derived PAHs occurred in the 1940s in the cores from the Puget Sound Main Basin, whereas in Hood Canal such peak was observed in the 1970s, showing basin-specific differences in inputs of combustion byproducts. This system showed relatively higher inputs from softwood combustion than the northeastern U.S. The historical variations in char-BC concentrations were consistent with shifts in climate indices, suggesting an influence of climate oscillations on wildfire events. Environmental loading of combustion byproducts thus appears as a complex function of urbanization, fuel usage, combustion technology, environmental policies, and climate conditions.

  7. Reducing input data via image categorization to improve the speed of copyright content management systems

    NASA Astrophysics Data System (ADS)

    Ikeda, Kanami; Watanabe, Eriko

    2015-02-01

    An optical correlator has the advantage of high data transfer speed and parallel operation. However, in copyright content management systems (CCMSs), the numerous video files that need to be downloaded from the Internet and input to the optical correlator constitute a bottleneck. This paper proposes an image categorization method for CCMSs that uses the difference in the color features between animation and live-action images to remove this bottleneck and increase the speed of CCMSs. The results of experiments conducted indicate that the proposed method achieves a live-action video true rejection rate of 86.7 % and an animation video false rejection rate of 13.3 %. This indicates that the proposed method can improve the overall speed of a CCMS more than twice the original speed.

  8. Glutamate Synaptic Inputs to Ventral Tegmental Area Neurons in the Rat Derive Primarily from Subcortical Sources

    PubMed Central

    Omelchenko, Natalia; Sesack, Susan R.

    2007-01-01

    Dopamine and GABA neurons in the ventral tegmental area project to the nucleus accumbens and prefrontal cortex and modulate locomotor and reward behaviors as well as cognitive and affective processes. Both midbrain cell types receive synapses from glutamate afferents that provide an essential control of behaviorally-linked activity patterns, although the sources of glutamate inputs have not yet been completely characterized. We used antibodies against the vesicular glutamate transporters VGlut1 and VGlut2 to investigate the morphology and synaptic organization of axons containing these proteins as putative markers of glutamate afferents from cortical versus subcortical sites, respectively. We also characterized the ventral tegmental area cell populations receiving VGlut1+ or VGlut2+ synapses according to their transmitter phenotype (dopamine or GABA) and major projection target (nucleus accumbens or prefrontal cortex). By light and electron microscopic examination, VGlut2+ as opposed to VGlut1+ axon terminals were more numerous, had a larger average size, synapsed more proximally, and were more likely to form convergent synapses onto the same target. Both axon types formed predominantly asymmetric synapses, although VGlut2+ terminals more often formed synapses with symmetric morphology. No absolute selectivity was observed for VGlut1+ or VGlut2+ axons to target any particular cell population. However, the synapses onto mesoaccumbens neurons more often involved VGlut2+ terminals, whereas mesoprefrontal neurons received relatively equal synaptic inputs from VGlut1+ and VGlut2+ profiles. The distinct morphological features of VGlut1 and VGlut2 positive axons suggest that glutamate inputs from presumed cortical and subcortical sources, respectively, differ in the nature and intensity of their physiological actions on midbrain neurons. More specifically, our findings imply that subcortical glutamate inputs to the ventral tegmental area expressing VGlut2 predominate over

  9. IMPROVED DERIVATION OF INPUT FUNCTION IN DYNAMIC MOUSE [18F]FDG PET USING BLADDER RADIOACTIVITY KINETICS

    PubMed Central

    Wong, Koon-Pong; Zhang, Xiaoli; Huang, Sung-Cheng

    2013-01-01

    Purpose Accurate determination of the plasma input function (IF) is essential for absolute quantification of physiological parameters in positron emission tomography (PET). However, it requires an invasive and tedious procedure of arterial blood sampling that is challenging in mice because of the limited blood volume. In this study, a hybrid modeling approach is proposed to estimate the plasma IF of 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) in mice using accumulated radioactivity in urinary bladder together with a single late-time blood sample measurement. Methods Dynamic PET scans were performed on nine isoflurane-anesthetized male C57BL/6 mice after a bolus injection of [18F]FDG at the lateral caudal vein. During a 60- or 90-min scan, serial blood samples were taken from the femoral artery. Image data were reconstructed using filtered backprojection with CT-based attenuation correction. Total accumulated radioactivity in the urinary bladder was fitted to a renal compartmental model with the last blood sample and a 1-exponential function that described the [18F]FDG clearance in blood. Multiple late-time blood sample estimates were calculated by the blood [18F]FDG clearance equation. A sum of 4-exponentials was assumed for the plasma IF that served as a forcing function to all tissues. The estimated plasma IF was obtained by simultaneously fitting the [18F]FDG model to the time-activity curves (TACs) of liver and muscle and the forcing function to early (0–1 min) left-ventricle data (corrected for delay, dispersion, partial-volume effects and erythrocytes uptake) and the late-time blood estimates. Using only the blood sample acquired at the end of the study to estimate the IF and the use of liver TAC as an alternative IF were also investigated. Results The area under the plasma TACs calculated for all studies using the hybrid approach was not significantly different from that using all blood samples. [18F]FDG uptake constants in brain, myocardium, skeletal

  10. Multi-modal pharmacokinetic modelling for DCE-MRI: using diffusion weighted imaging to constrain the local arterial input function

    NASA Astrophysics Data System (ADS)

    Hamy, Valentin; Modat, Marc; Shipley, Rebecca; Dikaios, Nikos; Cleary, Jon; Punwani, Shonit; Ourselin, Sebastien; Atkinson, David; Melbourne, Andrew

    2014-03-01

    The routine acquisition of multi-modal magnetic resonance imaging data in oncology yields the possibility of combined model fitting of traditionally separate models of tissue structure and function. In this work we hypothesise that diffusion weighted imaging data may help constrain the fitting of pharmacokinetic models to dynamic contrast enhanced (DCE) MRI data. Parameters related to tissue perfusion in the intra-voxel incoherent motion (IVIM) modelling of diffusion weighted MRI provide local information on how tissue is likely to perfuse that can be utilised to guide DCE modelling via local modification of the arterial input function (AIF). In this study we investigate, based on multi-parametric head and neck MRI of 8 subjects (4 with head and neck tumours), the benefit of incorporating parameters derived from the IVIM model within the DCE modelling procedure. Although we find the benefit of this procedure to be marginal on the data used in this work, it is conceivable that a technique of this type will be of greater use in a different application.

  11. Cattle-derived microbial input to source water catchments: An experimental assessment of stream crossing modification.

    PubMed

    Smolders, Andrew; Rolls, Robert J; Ryder, Darren; Watkinson, Andrew; Mackenzie, Mark

    2015-06-01

    The provision of safe drinking water is a global issue, and animal production is recognized as a significant potential origin of human infectious pathogenic microorganisms within source water catchments. On-farm management can be used to mitigate livestock-derived microbial pollution in source water catchments to reduce the risk of contamination to potable water supplies. We applied a modified Before-After Control Impact (BACI) design to test if restricting the access of livestock to direct contact with streams prevented longitudinal increases in the concentrations of faecal indicator bacteria and suspended solids. Significant longitudinal increases in pollutant concentrations were detected between upstream and downstream reaches of the control crossing, whereas such increases were not detected at the treatment crossing. Therefore, while the crossing upgrade was effective in preventing cattle-derived point source pollution by between 112 and 158%, diffuse source pollution to water supplies from livestock is not ameliorated by this intervention alone. Our findings indicate that stream crossings that prevent direct contact between livestock and waterways provide a simple method for reducing pollutant loads in source water catchments, which ultimately minimises the likelihood of pathogenic microorganisms passing through source water catchments and the drinking water supply system. The efficacy of the catchment as a primary barrier to pathogenic risks to drinking water supplies would be improved with the integration of management interventions that minimise direct contact between livestock and waterways, combined with the mitigation of diffuse sources of livestock-derived faecal matter from farmland runoff to the aquatic environment.

  12. Cattle-derived microbial input to source water catchments: An experimental assessment of stream crossing modification.

    PubMed

    Smolders, Andrew; Rolls, Robert J; Ryder, Darren; Watkinson, Andrew; Mackenzie, Mark

    2015-06-01

    The provision of safe drinking water is a global issue, and animal production is recognized as a significant potential origin of human infectious pathogenic microorganisms within source water catchments. On-farm management can be used to mitigate livestock-derived microbial pollution in source water catchments to reduce the risk of contamination to potable water supplies. We applied a modified Before-After Control Impact (BACI) design to test if restricting the access of livestock to direct contact with streams prevented longitudinal increases in the concentrations of faecal indicator bacteria and suspended solids. Significant longitudinal increases in pollutant concentrations were detected between upstream and downstream reaches of the control crossing, whereas such increases were not detected at the treatment crossing. Therefore, while the crossing upgrade was effective in preventing cattle-derived point source pollution by between 112 and 158%, diffuse source pollution to water supplies from livestock is not ameliorated by this intervention alone. Our findings indicate that stream crossings that prevent direct contact between livestock and waterways provide a simple method for reducing pollutant loads in source water catchments, which ultimately minimises the likelihood of pathogenic microorganisms passing through source water catchments and the drinking water supply system. The efficacy of the catchment as a primary barrier to pathogenic risks to drinking water supplies would be improved with the integration of management interventions that minimise direct contact between livestock and waterways, combined with the mitigation of diffuse sources of livestock-derived faecal matter from farmland runoff to the aquatic environment. PMID:25841195

  13. Scheme of Optical Image Encryption with Digital Information Input and Dynamic Encryption Key based on Two LC SLMs

    NASA Astrophysics Data System (ADS)

    Bondareva, A. P.; Cheremkhin, P. A.; Evtikhiev, N. N.; Krasnov, V. V.; Starikov, S. N.

    Scheme of optical image encryption with digital information input and dynamic encryption key based on two liquid crystal spatial light modulators and operating with spatially-incoherent monochromatic illumination is experimentally implemented. Results of experiments on images optical encryption and numerical decryption are presented. Satisfactory decryption error of 0.20÷0.27 is achieved.

  14. Groundwater-derived nutrient inputs to the Upper Gulf of Thailand

    NASA Astrophysics Data System (ADS)

    Burnett, William C.; Wattayakorn, Gullaya; Taniguchi, Makoto; Dulaiova, Henrieta; Sojisuporn, Pramot; Rungsupa, Sompop; Ishitobi, Tomotoshi

    2007-01-01

    We report here the first direct measurements of nutrient fluxes via groundwater discharge into the Upper Gulf of Thailand. Nutrient and standard oceanographic surveys were conducted during the wet and dry seasons along the Chao Phraya River, Estuary and out into the Upper Gulf of Thailand. Additional measurements in selected near-shore regions of the Gulf included manual and automatic seepage meter deployments, as well as nutrient evaluations of seepage and coastal waters. The river transects characterized the distribution of biogeochemical parameters in this highly contaminated urban environment. Seepage flux measurements together with nutrient analyses of seepage fluids were used to estimate nutrient fluxes via groundwater pathways for comparison to riverine fluxes. Our findings show that disseminated seepage of nutrient-rich mostly saline groundwater into the Upper Gulf of Thailand is significant. Estimated fluxes of dissolved inorganic nitrogen (DIN) supplied via groundwater discharge were 40-50% of that delivered by the Chao Phraya River, inorganic phosphate was 60-70%, and silica was 15-40%. Dissolved organic nitrogen (DON) and phosphorus (DOP) groundwater fluxes were also high at 30-40% and 30-130% of the river inputs, respectively. These observations are especially impressive since the comparison is being made to the river that is the largest source of fresh water into the Gulf of Thailand and flows directly through the megacity of Bangkok with high nutrient loadings from industrial and domestic sources.

  15. Derivation of input function from FDG-PET studies in small hearts

    SciTech Connect

    Wu, Hsiao-Ming; Huang, Sung-Cheng; Allada, V.

    1996-10-01

    The extraction of pure arterial time-activity curves (TACs) from dynamic PET images of a small animal heart using factor analysis of dynamic structures (FADS) was found to be unsuccessful due to the small size of the cardiac chamber that causes extensive mixture of TACs of different structures. In this study, we used digital phantoms of the left ventricle (LV cavity size: 1-2 cm) and small monkey (LV cavity size: {approx} 2 cm) dynamic FDG PET studies to evaluate FADS for extracting the pure blood-pool TACs by adding a single blood sample (taken at a late scan time) constraint. In the digital phantom studies, spillover fractions in the extracted blood-pool TACs using FADS without a blood sample constraint (FADS(-)) and with a blood sample constraint (FADS(+)) were 3%-91% and < 3%, respectively. In the monkey studies (n = 4), FADS(+) extracted blood-pool TACs matched well with the arterialized well counter measurements (% differences of curve integration: FADS(-) < 82%; FADS(+) < 9%). The microparameters (K*{sub 1}, k*{sub 2}, k*{sub 3}, k*{sub 4}) and macroparameters (K{sub nlr}), obtained from the FADS(+) blood-pool TACs, were similar to those obtained from plasma samples in a three-compartment model fitting (% differences of K{sub nlr}: phantom studies < 5%; monkey studies < 9%). The FADS technique with a single-blood sample has the potential to extract the pure blood-pool TACs directly from dynamic PET images of a small animal without multiple blood sampling, region of interest definition or spillover correction. 14 refs., 5 figs., 3 tabs.

  16. An improved temperature index model for alpine glaciers using derived degree-day factors from climatic inputs

    NASA Astrophysics Data System (ADS)

    Keeler, D. G.; Havens, A. P.; Rupper, S.; Christensen, W. F.

    2013-12-01

    Glacier melt rates are strongly affected by minor perturbations in climatic systems. Quantifying changes in glacier melt rates is therefore important, particularly in areas where melt-water contributes to hydroelectric power generation, irrigation, or flood risks. Several methods currently exist for modeling glacier melt rates, but one widely used method is temperature index modeling, also called positive degree-day modeling. This model is often applied due to its simplicity and small number of input variables, but it still depends on an empirically-measured scaling constant (the degree-day factor). These degree-day factors can vary by a factor of five from one glacier to the next, complicating the applicability of the approach to new regions, or to different time periods. Previous work suggests the degree-day factor may be a function of the surface albedo, solar radiation, and near-surface air temperature. Thus, it is possible the degree-day factor itself is predictable. In this study we present a method to derive these melt factors directly from easily obtained climatic variables, thus allowing for the ready application of temperature index modeling to a much wider suite of glaciers with greater accuracy. We used a full energy-balance model to calculate possible degree-day factors over the full range of climate conditions commonly encountered with alpine glaciers. We then constructed a statistical emulator (a linear model which considers numerous interactions and polynomial effects) using select climate variables (insolation, positive degree-days, and albedo) as inputs. The statistical model is tuned using the energy-balance output as training data. The model skill will be tested against a suite of empirically-derived degree-day factors. These results would allow for the application of more accurate glacier melt models with quantified uncertainties to under-sampled glacial regions and paleoclimate reconstructions.

  17. Inner Magnetospheric Electric Fields Derived from IMAGE EUV

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Adrian, M. L.

    2007-01-01

    The local and global patterns of plasmaspheric plasma transport reflect the influence of electric fields imposed by all sources in the inner magnetosphere. Image sequences of thermal plasma G:istribution obtained from the IMAGE Mission Extreme Ultraviolet Imager can be used to derive plasma motions and, using a magnetic field model, the corresponding electric fields. These motions and fields directly reflect the dynamic coupling of injected plasmasheet plasma and the ionosphere, in addition to solar wind and atmospheric drivers. What is being learned about the morphology of inner magnetospheric electric fields during storm and quite conditions from this new empirical tool will be presented and discussed.

  18. A Hybrid Clustering Method for ROI Delineation in Small Animal Dynamic PET Images: Application to the Automatic Estimation of FDG Input Functions

    PubMed Central

    Zheng, Xiujuan; Tian, Guangjian; Huang, Sung-Cheng; Feng, Dagan

    2011-01-01

    Tracer kinetic modeling with dynamic Positron Emission Tomography (PET) requires a plasma time-activity curve (PTAC) as an input function. Several image-derived input function (IDIF) methods that rely on drawing the region-of-interest (ROI) in large vascular structures have been proposed to overcome the problems caused by the invasive approach to obtaining the PTAC, especially for small animal studies. However, the manual placement of ROIs for estimating IDIF is subjective and labor-intensive, making it an undesirable and unreliable process. In this paper, we propose a novel hybrid clustering method (HCM) that objectively delineates ROIs in dynamic PET images for the estimation of IDIFs, and demonstrate its application to the mouse PET studies acquired with [18F]Fluoro-2-deoxy-2-D-glucose (FDG). We begin our HCM using K-means clustering for background removal. We then model the time-activity curves using polynomial regression mixture models in curve clustering for heart structure detection. The hierarchical clustering is finally applied for ROI refinements. The HCM achieved accurate ROI delineation in both computer simulations and experimental mouse studies. In the mouse studies the predicted IDIF had a high correlation with the gold standard, the PTAC derived from the invasive blood samples. The results indicate that the proposed HCM has a great potential in ROI delineation for automatic estimation of IDIF in dynamic FDG-PET studies. PMID:20952342

  19. SPM analysis of parametric (R)-[11C]PK11195 binding images: plasma input versus reference tissue parametric methods.

    PubMed

    Schuitemaker, Alie; van Berckel, Bart N M; Kropholler, Marc A; Veltman, Dick J; Scheltens, Philip; Jonker, Cees; Lammertsma, Adriaan A; Boellaard, Ronald

    2007-05-01

    (R)-[11C]PK11195 has been used for quantifying cerebral microglial activation in vivo. In previous studies, both plasma input and reference tissue methods have been used, usually in combination with a region of interest (ROI) approach. Definition of ROIs, however, can be labourious and prone to interobserver variation. In addition, results are only obtained for predefined areas and (unexpected) signals in undefined areas may be missed. On the other hand, standard pharmacokinetic models are too sensitive to noise to calculate (R)-[11C]PK11195 binding on a voxel-by-voxel basis. Linearised versions of both plasma input and reference tissue models have been described, and these are more suitable for parametric imaging. The purpose of this study was to compare the performance of these plasma input and reference tissue parametric methods on the outcome of statistical parametric mapping (SPM) analysis of (R)-[11C]PK11195 binding. Dynamic (R)-[11C]PK11195 PET scans with arterial blood sampling were performed in 7 younger and 11 elderly healthy subjects. Parametric images of volume of distribution (Vd) and binding potential (BP) were generated using linearised versions of plasma input (Logan) and reference tissue (Reference Parametric Mapping) models. Images were compared at the group level using SPM with a two-sample t-test per voxel, both with and without proportional scaling. Parametric BP images without scaling provided the most sensitive framework for determining differences in (R)-[11C]PK11195 binding between younger and elderly subjects. Vd images could only demonstrate differences in (R)-[11C]PK11195 binding when analysed with proportional scaling due to intersubject variation in K1/k2 (blood-brain barrier transport and non-specific binding).

  20. Direct Characterization of Arterial Input Functions by Fluorescence Imaging of Exposed Carotid Artery to Facilitate Kinetic Analysis

    PubMed Central

    Elliott, Jonathan T.; Tichauer, Kenneth M.; Samkoe, Kimberley S.; Gunn, Jason R.; Sexton, Kristian J.; Pogue, Brian W.

    2014-01-01

    Purpose With the goal of facilitating tracer kinetic analysis in small-animal planar fluorescence imaging, an experimental method for characterizing tracer arterial input functions is presented. The proposed method involves exposing the common carotid arteries by surgical dissection, which can then be imaged directly during tracer injection and clearance. Procedures Arterial concentration curves of IRDye-700DX-carboxylate, IRDye-800CW-EGF, and IRDye-800CW conjugated to anti-EGFR Affibody are recovered from athymic female mice (n=12) by directly imaging exposed vessels. Images were acquired with two imaging protocols: a slow-kinetics approach (temporal resolution=45 s) to recover the arterial curves from two tracers simultaneously, and a fast-kinetics approach (temporal resolution=500 ms) to characterize the first-pass peak of a single tracer. Arterial input functions obtained by the carotid imaging technique, as well as plasma curves measured by blood sampling were fit with a biexponential pharmacokinetic model. Results Pharmacological fast- and slow-phase rate constants recovered with the proposed method were 0.37±0.26 and 0.007±0.001 min−1, respectively, for the IRDye700DX-C. For the IRDye800CW-EGF, the rate constants were 0.11±0.13 and 0.003±0.002 min−1. These rate constants did not differ significantly from those calculated previously by blood sampling, as determined by an F test; however, the between-subject variability was four times lower for arterial curves recovered using the proposed technique, compared with blood sampling. Conclusions The proposed technique enables the direct characterization of arterial input functions for kinetic analysis. As this method requires no additional instrumentation, it is immediately deployable in commercially available planar fluorescence imaging systems. PMID:24420443

  1. Subthreshold membrane currents confer distinct tuning properties that enable neurons to encode the integral or derivative of their input

    PubMed Central

    Ratté, Stéphanie; Lankarany, Milad; Rho, Young-Ah; Patterson, Adam; Prescott, Steven A.

    2015-01-01

    Neurons rely on action potentials, or spikes, to encode information. But spikes can encode different stimulus features in different neurons. We show here through simulations and experiments how neurons encode the integral or derivative of their input based on the distinct tuning properties conferred upon them by subthreshold currents. Slow-activating subthreshold inward (depolarizing) current mediates positive feedback control of subthreshold voltage, sustaining depolarization and allowing the neuron to spike on the basis of its integrated stimulus waveform. Slow-activating subthreshold outward (hyperpolarizing) current mediates negative feedback control of subthreshold voltage, truncating depolarization and forcing the neuron to spike on the basis of its differentiated stimulus waveform. Depending on its direction, slow-activating subthreshold current cooperates or competes with fast-activating inward current during spike initiation. This explanation predicts that sensitivity to the rate of change of stimulus intensity differs qualitatively between integrators and differentiators. This was confirmed experimentally in spinal sensory neurons that naturally behave as specialized integrators or differentiators. Predicted sensitivity to different stimulus features was confirmed by covariance analysis. Integration and differentiation, which are themselves inverse operations, are thus shown to be implemented by the slow feedback mediated by oppositely directed subthreshold currents expressed in different neurons. PMID:25620913

  2. Priming in permafrost soils: High vulnerability of arctic soil organic carbon to increased input of plant-derived compounds

    NASA Astrophysics Data System (ADS)

    Wild, Birgit; Gentsch, Norman; Capek, Petr; Diakova, Katerina; Alves, Ricardo; Barta, Jiri; Gittel, Antje; Guggenberger, Georg; Lashchinskiy, Nikolay; Knoltsch, Anna; Mikutta, Robert; Santruckova, Hana; Schnecker, Jörg; Shibistova, Olga; Takriti, Mounir; Urich, Tim; Watzka, Margarete; Richter, Andreas

    2015-04-01

    Arctic ecosystems are warming rapidly, resulting in a stimulation of both plant primary production and soil organic matter (SOM) decomposition. In addition to this direct stimulation, SOM decomposition might also be indirectly affected by rising temperatures mediated by the increase in plant productivity. Higher root litter production for instance might decrease SOM decomposition by providing soil microorganisms with alternative C and N sources ("negative priming"), or might increase SOM decomposition by facilitating microbial growth and enzyme production ("positive priming"). With about 1,700 Pg of organic C stored in arctic soils, and 88% of that in horizons deeper than 30 cm, it is crucial to understand the controls on SOM decomposition in different horizons of arctic permafrost soils, and thus the vulnerability of SOM to changes in C and N availability in a future climate. We here report on the vulnerability of SOM in arctic permafrost soils to an increased input of plant-derived organic compounds, and on its variability across soil horizons and sites. We simulated an increased input of plant-derived compounds by amending soil samples with 13C-labelled cellulose or protein, and compared the mineralization of native, unlabelled soil organic C (SOC) to unamended control samples. Our experiment included 119 individual samples of arctic permafrost soils, covering four sites across the Siberian Arctic, and five soil horizons, i.e., organic topsoil, mineral topsoil, mineral subsoil and cryoturbated material (topsoil material buried in the subsoil by freeze-thaw processes) from the active layer, as well as thawed material from the upper permafrost. Our findings suggest that changes in C and N availability in Arctic soils, such as mediated by plants, have a high potential to alter the decomposition of SOM, but also point at fundamental differences between soil horizons. In the organic topsoil, SOC mineralization increased by 51% after addition of protein, but was not

  3. Automatic detection of local arterial input functions through Independent Component Analysis on Dynamic Contrast enhanced Magnetic Resonance Imaging.

    PubMed

    Narvaez, Mario; Ruiz-Espana, Silvia; Arana, Estanislao; Moratal, David

    2015-08-01

    Arterial Input Function (AIF) is obtained from perfusion studies as a basic parameter for the calculus of hemodynamic variables used as surrogate markers of the vascular status of tissues. However, at present, its identification is made manually leading to high subjectivity, low repeatability and considerable time consumption. We propose an alternative method to automatically identify local AIF in perfusion images using Independent Component Analysis. PMID:26737244

  4. Optical encryption in spatially-incoherent light using two LC SLMs for both information input and encryption element imaging

    NASA Astrophysics Data System (ADS)

    Bondareva, Alyona P.; Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Sergey N.

    2014-10-01

    At present time methods of optical encryption are actively developed. The majority of existing methods of optical encryption use not only light intensity distribution, easily registered with photosensors, but also its phase distribution which require application of complex holographic schemes in conjunction with spatially coherent monochromatic illumination. This leads to complex optical schemes and low decryption quality. To eliminate these disadvantages it is possible to implement optical encryption using spatially incoherent monochromatic illumination which requires registration of light intensity distribution only. Encryption is accomplished by means of optical convolution of image of scene to be encrypted and encryption diffractive optical element (DOE) point spread function (PSF) which serves as encryption key. Encryption process is described as follows. Scene is illuminated with spatially-incoherent monochromatic light. In the absence of encryption DOE lens forms image of scene in photosensor plane. DOE serves as encryption element, its PSF - encryption key. Light passing through DOE forms convolution of object image and DOE PSF. Registered by photosensor convolution is encrypted image. Decryption was conducted numerically on computer by means of inverse filtration with regularization. Kinoforms were used as encryption DOE because they have single diffraction order. Two liquid crystal (LC) spatial light modulators (SLM) were used to implement dynamic digital information input and dynamic encryption key change. As input scene amplitude LC SLM HoloEye LC2002 with 800×600 pixels 32×32 μm2 and 256 gray levels was used. To image synthesized encryption kinoforms phase LC SLM HoloEye PLUTO VIS with 1920×1080 pixels 8×8 μm2 and 256 phase levels was used. Set of test images was successfully optically encrypted and then numerically decrypted. Encrypted images contents are hidden. Decrypted images despite quite high noise levels are positively recognizable

  5. Application of input amplitude masks in image encryption with spatially incoherent illumination for increase of decrypted images signal-to-noise ratio

    NASA Astrophysics Data System (ADS)

    Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Molodtsov, Dmitriy Y.; Rodin, Vladislav G.; Shifrina, Anna V.

    2016-04-01

    The majority of existing methods of optical encryption use not only light intensity distribution, easily registered with photosensors, but also its phase distribution. This provides best encryption strength for fixed quantities of elements and phase levels in a mask. Downsides are holographic registration scheme used in order to register not only light intensity distribution but also its phase distribution and speckle noise occurring due to coherent illumination. That factors lead to very poor decryption quality when it comes from computer simulations to optical implementations. Method of optical encryption with spatially incoherent illumination does not have drawbacks inherent to coherent systems, however, as only light intensity distribution is considered, mean value of image to be encrypted is always above zero which leads to intensive zero spatial frequency peak in image spectrum. Therefore, in case of spatially incoherent illumination, image spectrum, as well as encryption key spectrum, cannot be white. If encryption is based on convolution operation, no matter coherent light used or not, Fourier spectrum amplitude distribution of encryption key should overlap Fourier spectrum amplitude distribution of image to be encrypted otherwise loss of information is unavoidable. Another factor affecting decrypted image quality is original image spectrum. Usually, most part of image energy is concentrated in area of low frequencies. Consequently, only this area in encrypted image contains information about original image, while other areas contain only noise. We propose to use additional encoding of input scene to increase size of the area containing useful information. This provides increase of signal-to-noise ratio in encrypted image and consequentially increases quality of decrypted images. Results of computer simulations of test images optical encryption with spatially incoherent illumination and additional input amplitude masks are presented.

  6. Physical properties of P/Halley derived from VEGA images

    NASA Astrophysics Data System (ADS)

    Moehlmann, D.; Mangoldt, T.; Boerner, H.; Rubbert, B.; Danz, M.; Weidlich, U.; Elter, G.

    1986-12-01

    The surface structure of P/Halley was analyzed using Vega images. Using a three-axial ellipsoid to approximate P/Halley, the derived dimensions are 16km x 8km x 6km. Along the longest axis the perpendicular dimensions decrease from 8km x 6km to 5km x 4km. The uncertainties in every dimension are 1km. Brightness distribution is shown.

  7. Historical changes in terrestrially derived organic carbon inputs to Louisiana continental margin sediments over the past 150 years

    NASA Astrophysics Data System (ADS)

    Sampere, Troy P.; Bianchi, Thomas S.; Allison, Mead A.

    2011-03-01

    Major rivers (and associated deltaic environments) provide the dominant pathway for the input of terrestrial-derived organic carbon in sediments (TOCT) to the ocean. Natural watershed processes and land-use changes are important in dictating the amount and character of carbon being buried on continental margins. Seven core sites were occupied on the Louisiana continental margin aboard the R/V Pelican in July 2003 along two major sediment transport pathways south and west of the Mississippi River mouth. Lignin profiles in these age-dated cores (210Pb geochronology) indicate artificial reservoir retention as a primary control on organic carbon quantity and quality reaching the margin post-1950, whereas pre-1950 sediments may reflect soil erosion due to land clearing and farming practices. Lignin (Λ8) concentrations (range 0.2 to 1.7) also indicate that TOCT delivery rates/decay processes have probably remained relatively consistent from proximal to distal stations along transects. The down-core profile at the Canyon station seems to be temporally linked and connected to inner shelf deposition, suggestive of rapid cross-shelf transport. Sources of terrestrially derived organic carbon were reflective of mixed angiosperms over the last 150 years in cores west and south of the Mississippi River delta. The lignin-phenol vegetation index (LPVI) (range 130.0 to 510) proved to be a sensitive indicator of source changes in these sediments and eliminated some of the variability compared to C/V (range 0.01 to 0.4) and S/V (range 0.9 to 2.1) ratios. Stochastic events such as hurricanes and large river floods have a measurable, albeit ephemeral, effect on the shelf TOCT record. Burial of TOCT on the river-dominated Louisiana continental margin is largely driven by anthropogenic land-use alterations in the last 150 years. Land-use changes in the Mississippi River basin and river damming have likely affected carbon cycling and TOCT burial on the Louisiana continental margin over a

  8. Multi-eye input experiments for UAV image navigation and control

    NASA Astrophysics Data System (ADS)

    Baer, Wolfgang

    2010-04-01

    Real time Unmanned Arial Vehicle (UAV) image registration is achieved by stimulating one eye with a live video image from a flying UAV while stimulating the other eye with calculated images. The calculated image is initialized by telemetry signals from the UAV and corrected using the Perspective View Nascent Technology (PVNT) software package model-image feedback algorithm. Live and registered calculated images are superimposed allowing command functions including target geo-location, UAV sensor slewing, tracking, and way point flight control. When the same equipment is used with the naked eye the forward observer function can be implemented to produce accurate target coordinates. The paper will then discuss UAV mission control and forward observer target tracking experiments conducted at Camp Roberts, California.

  9. Evaluation of Various Spectral Inputs for Estimation of Forest Biochemical and Structural Properties from Airborne Imaging Spectroscopy Data

    NASA Astrophysics Data System (ADS)

    Homolová, L.; Janoutová, R.; Malenovský, Z.

    2016-06-01

    In this study we evaluated various spectral inputs for retrieval of forest chlorophyll content (Cab) and leaf area index (LAI) from high spectral and spatial resolution airborne imaging spectroscopy data collected for two forest study sites in the Czech Republic (beech forest at Štítná nad Vláří and spruce forest at Bílý Kříž). The retrieval algorithm was based on a machine learning method - support vector regression (SVR). Performance of the four spectral inputs used to train SVR was evaluated: a) all available hyperspectral bands, b) continuum removal (CR) 645 - 710 nm, c) CR 705 - 780 nm, and d) CR 680 - 800 nm. Spectral inputs and corresponding SVR models were first assessed at the level of spectral databases simulated by combined leaf-canopy radiative transfer models PROSPECT and DART. At this stage, SVR models using all spectral inputs provided good performance (RMSE for Cab < 10 μg cm-2 and for LAI < 1.5), with consistently better performance for beech over spruce site. Since application of trained SVRs on airborne hyperspectral images of the spruce site produced unacceptably overestimated values, only the beech site results were analysed. The best performance for the Cab estimation was found for CR bands in range of 645 - 710 nm, whereas CR bands in range of 680 - 800 nm were the most suitable for LAI retrieval. The CR transformation reduced the across-track bidirectional reflectance effect present in airborne images due to large sensor field of view.

  10. Wh-Questions in Child L2 French: Derivational Complexity and Its Interactions with L1 Properties, Length of Exposure, Age of Exposure, and the Input

    ERIC Educational Resources Information Center

    Prévost, Philippe; Strik, Nelleke; Tuller, Laurie

    2014-01-01

    This study investigates how derivational complexity interacts with first language (L1) properties, second language (L2) input, age of first exposure to the target language, and length of exposure in child L2 acquisition. We compared elicited production of "wh"-questions in French in two groups of 15 participants each, one with L1 English…

  11. Robust image region descriptor using local derivative ordinal binary pattern

    NASA Astrophysics Data System (ADS)

    Shang, Jun; Chen, Chuanbo; Pei, Xiaobing; Liang, Hu; Tang, He; Sarem, Mudar

    2015-05-01

    Binary image descriptors have received a lot of attention in recent years, since they provide numerous advantages, such as low memory footprint and efficient matching strategy. However, they utilize intermediate representations and are generally less discriminative than floating-point descriptors. We propose an image region descriptor, namely local derivative ordinal binary pattern, for object recognition and image categorization. In order to preserve more local contrast and edge information, we quantize the intensity differences between the central pixels and their neighbors of the detected local affine covariant regions in an adaptive way. These differences are then sorted and mapped into binary codes and histogrammed with a weight of the sum of the absolute value of the differences. Furthermore, the gray level of the central pixel is quantized to further improve the discriminative ability. Finally, we combine them to form a joint histogram to represent the features of the image. We observe that our descriptor preserves more local brightness and edge information than traditional binary descriptors. Also, our descriptor is robust to rotation, illumination variations, and other geometric transformations. We conduct extensive experiments on the standard ETHZ and Kentucky datasets for object recognition and PASCAL for image classification. The experimental results show that our descriptor outperforms existing state-of-the-art methods.

  12. Intensity Inhomogeneity Correction of Structural MR Images: A Data-Driven Approach to Define Input Algorithm Parameters

    PubMed Central

    Ganzetti, Marco; Wenderoth, Nicole; Mantini, Dante

    2016-01-01

    Intensity non-uniformity (INU) in magnetic resonance (MR) imaging is a major issue when conducting analyses of brain structural properties. An inaccurate INU correction may result in qualitative and quantitative misinterpretations. Several INU correction methods exist, whose performance largely depend on the specific parameter settings that need to be chosen by the user. Here we addressed the question of how to select the best input parameters for a specific INU correction algorithm. Our investigation was based on the INU correction algorithm implemented in SPM, but this can be in principle extended to any other algorithm requiring the selection of input parameters. We conducted a comprehensive comparison of indirect metrics for the assessment of INU correction performance, namely the coefficient of variation of white matter (CVWM), the coefficient of variation of gray matter (CVGM), and the coefficient of joint variation between white matter and gray matter (CJV). Using simulated MR data, we observed the CJV to be more accurate than CVWM and CVGM, provided that the noise level in the INU-corrected image was controlled by means of spatial smoothing. Based on the CJV, we developed a data-driven approach for selecting INU correction parameters, which could effectively work on actual MR images. To this end, we implemented an enhanced procedure for the definition of white and gray matter masks, based on which the CJV was calculated. Our approach was validated using actual T1-weighted images collected with 1.5 T, 3 T, and 7 T MR scanners. We found that our procedure can reliably assist the selection of valid INU correction algorithm parameters, thereby contributing to an enhanced inhomogeneity correction in MR images. PMID:27014050

  13. Single input state, single-mode fiber-based polarization-sensitive optical frequency domain imaging by eigenpolarization referencing.

    PubMed

    Lippok, Norman; Villiger, Martin; Jun, Changsu; Bouma, Brett E

    2015-05-01

    Fiber-based polarization-sensitive optical frequency domain imaging is more challenging than free-space implementations. Using multiple input states, fiber-based systems provide sample birefringence information with the benefit of a flexible sample arm but come at the cost of increased system and acquisition complexity, and either reduce acquisition speed or require increased acquisition bandwidth. Here we show that with the calibration of a single polarization state, fiber-based configurations can approach the conceptual simplicity of traditional free-space configurations. We remotely control the polarization state of the light incident at the sample using the eigenpolarization states of a wave plate as a reference, and determine the Jones matrix of the output fiber. We demonstrate this method for polarization-sensitive imaging of biological samples. PMID:25927775

  14. Single input state, single-mode fiber-based polarization-sensitive optical frequency domain imaging by eigenpolarization referencing.

    PubMed

    Lippok, Norman; Villiger, Martin; Jun, Changsu; Bouma, Brett E

    2015-05-01

    Fiber-based polarization-sensitive optical frequency domain imaging is more challenging than free-space implementations. Using multiple input states, fiber-based systems provide sample birefringence information with the benefit of a flexible sample arm but come at the cost of increased system and acquisition complexity, and either reduce acquisition speed or require increased acquisition bandwidth. Here we show that with the calibration of a single polarization state, fiber-based configurations can approach the conceptual simplicity of traditional free-space configurations. We remotely control the polarization state of the light incident at the sample using the eigenpolarization states of a wave plate as a reference, and determine the Jones matrix of the output fiber. We demonstrate this method for polarization-sensitive imaging of biological samples.

  15. The Atlases of Vesta derived from Dawn Framing Camera images

    NASA Astrophysics Data System (ADS)

    Roatsch, T.; Kersten, E.; Matz, K.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2013-12-01

    The Dawn Framing Camera acquired during its two HAMO (High Altitude Mapping Orbit) phases in 2011 and 2012 about 6,000 clear filter images with a resolution of about 60 m/pixel. We combined these images in a global ortho-rectified mosaic of Vesta (60 m/pixel resolution). Only very small areas near the northern pole were still in darkness and are missing in the mosaic. The Dawn Framing Camera also acquired about 10,000 high-resolution clear filter images (about 20 m/pixel) of Vesta during its Low Altitude Mapping Orbit (LAMO). Unfortunately, the northern part of Vesta was still in darkness during this phase, good illumination (incidence angle < 70°) was only available for 66.8 % of the surface [1]. We used the LAMO images to calculate another global mosaic of Vesta, this time with 20 m/pixel resolution. Both global mosaics were used to produce atlases of Vesta: a HAMO atlas with 15 tiles at a scale of 1:500,000 and a LAMO atlas with 30 tiles at a scale between 1:200,000 and 1:225,180. The nomenclature used in these atlases is based on names and places historically associated with the Roman goddess Vesta, and is compliant with the rules of the IAU. 65 names for geological features were already approved by the IAU, 39 additional names are currently under review. Selected examples of both atlases will be shown in this presentation. Reference: [1]Roatsch, Th., etal., High-resolution Vesta Low Altitude Mapping Orbit Atlas derived from Dawn Framing Camera images. Planetary and Space Science (2013), http://dx.doi.org/10.1016/j.pss.2013.06.024i

  16. Importance of budgets for estimating the input of groundwater-derived nutrients to an eutrophic tidal river and estuary

    NASA Astrophysics Data System (ADS)

    Makings, Uriah; Santos, Isaac R.; Maher, Damien T.; Golsby-Smith, Lindsay; Eyre, Bradley D.

    2014-04-01

    Groundwater is often overlooked as a source of nutrients to estuaries and most previous groundwater-surface water exchange studies did not consider the input of dissolved organic nutrients. Here, we hypothesize that groundwater is contributing to high dissolved inorganic and organic nutrient concentrations in an eutrophic subtropical tidal river and estuary (Caboolture River, Queensland, Australia). Several spatial radon (222Rn, a natural groundwater tracer) surveys indicated that the majority of groundwater discharge occurred in the tidal river just upstream of the estuary, and that the radon hotspot did not necessarily coincide with the nutrient hotspot. A radon mass balance revealed that groundwater discharge into the tidal river was equivalent to about 50% of the gauged river flow in February 2012. Groundwater discharge apparently contributed 85% of ammonium and 35% of phosphate entering the estuary. In spite of significant correlations between radon and nitrate and dissolved organic nitrogen (DON) during spatial surveys, groundwater could account for only 7% of nitrate and 9% of DON inputs due to low groundwater concentrations and other sources (i.e., apparently a sewage treatment plant for nitrate and floodplain tributaries for DON). Because total dissolved nitrogen (TDN) was dominated by DON (69%) and nitrate (23%), the groundwater ammonium inputs were a minor source to the TDN pool within the tidal river and estuary. This study demonstrated that correlations between a groundwater tracer and nutrient concentrations do not necessarily illustrate causation. To assess how groundwater drives nutrient dynamics in estuaries, it may be important to include the tidal river (not only the estuarine salinity gradient) in field investigations, consider DON (not only ammonium and nitrate), and perform detailed budgets that include minor tributaries.

  17. Single input state, single–mode fiber–based polarization sensitive optical frequency domain imaging by eigenpolarization referencing

    PubMed Central

    Lippok, Norman; Villiger, Martin; Jun, Chang–Su; Bouma, Brett E.

    2015-01-01

    Fiber–based polarization sensitive OFDI is more challenging than free–space implementations. Using multiple input states, fiber–based systems provide sample birefringence information with the benefit of a flexible sample arm but come at the cost of increased system and acquisition complexity, and either reduce acquisition speed or require increased acquisition bandwidth. Here we show that with the calibration of a single polarization state, fiber–based configurations can approach the conceptual simplicity of traditional free–space configurations. We remotely control the polarization state of the light incident at the sample using the eigenpolarization states of a wave plate as a reference, and determine the Jones matrix of the output fiber. We demonstrate this method for polarization sensitive imaging of biological samples. PMID:25927775

  18. Cortical long-range interactions embed statistical knowledge of natural sensory input: a voltage-sensitive dye imaging study.

    PubMed

    Onat, Selim; Jancke, Dirk; König, Peter

    2013-01-01

    How is contextual processing as demonstrated with simplified stimuli, cortically enacted in response to ecologically relevant complex and dynamic stimuli? Using voltage-sensitive dye imaging, we captured mesoscopic population dynamics across several square millimeters of cat primary visual cortex. By presenting natural movies locally through either one or two adjacent apertures, we show that simultaneous presentation leads to mutual facilitation of activity. These synergistic effects were most effective when both movie patches originated from the same natural movie, thus forming a coherent stimulus in which the inherent spatio-temporal structure of natural movies were preserved in accord with Gestalt principles of perceptual organization. These results suggest that natural sensory input triggers cooperative mechanisms that are imprinted into the cortical functional architecture as early as in primary visual cortex.

  19. High resolution fire danger modeling : integration of quantitative precipitation amount estimates derived from weather radars as an input of FWI

    NASA Astrophysics Data System (ADS)

    Cloppet, E.; Regimbeau, M.

    2009-09-01

    Fire meteo indices provide efficient guidance tools for the prevention, early warning and surveillance of forest fires. The indices are based on meteorological input data. The underlying approach is to exploit meteorological information as fully as possible to model the soil water content, biomass condition and fire danger. Fire meteorological danger is estimated by Météo-France at national level through the use of Fire Weather Index. The fire index services developed within the PREVIEW project (2005-2008) offer for the first time very high resolution mapping of forest fire risk. The high resolution FWI has been implemented in France complementary to the existing EFFIS operated by the Joint Research Center. A new method (ANTILOPE method) of combining precipitation data originating from different sources like rain gauges and weather radar measurements has been applied in the new service. Some of the advantages of this new service are: · Improved detection of local features of fire risk · More accurate analysis of meteorological input data used in forest fire index models providing added value for forest fire risk forecasts · Use of radar precipitation data "as is” utilizing the higher resolution, i.e. avoiding averaging operations The improved accuracy and spatial resolution of the indices provide a powerful early warning tool for national and regional civil protection and fire fighting authorities to alert and initiate forest fire fighting actions and measures.

  20. Extraction of a series of novel damage sensitive features derived from the continuous wavelet transform of input and output acceleration measurements

    NASA Astrophysics Data System (ADS)

    Balafas, Konstantinos; Kiremidjian, Anne S.

    2014-03-01

    This paper proposes a series of novel Damage Sensitive Features for earthquake damage estimation. The features take into account input (ground motion) and output acceleration (structure response) measurements. The Continuous Wavelet Transform is applied to both acceleration signals in order to obtain both time domain and frequency domain resolution. An algorithm that has been proposed for Maximum Entropy Deconvolution is applied to the Continuous Wavelet Transforms in order to obtain a matrix that relates the output wavelet coefficients to the input ones. The Damage Sensitive Features are then derived through statistical processing of the resulting matrix. This algorithm has been applied on data acquired from shake table tests where the structures were subjected to progressive damage. The proposed features are compared to response quantities that are indicative of damage (such as the hysteretic energy dissipated) and show high correlation with the extent of damage. The data utilized has not been pre-processed, illustrating the robustness of the algorithm against sensor noise. The proposed algorithm has several advantages: Minimal input and knowledge of the structure is required. More information on the structure's state is extracted through use of both the input and output signals than when only output signal is considered. Only two acceleration measurements are required to obtain a damage forecast utilizing primarily the strong motion recordings, resulting in easier sensor deployment. The use of strong motion recordings allows for information delivery immediately after an earthquake without additional data collection.

  1. Uncertainties on Evapotranspiration Derived from Landsat Depending on Realibility of Albedo Input Data over a Mediterranean Agricultural Regiion

    NASA Astrophysics Data System (ADS)

    Mira, M.; Courault, D.; Hagolle, O.; Marloie, O.; Castillo-Ryes, S.; Gallego-Elvira, B.; Lecerf, R.; Weiss, M.; Olioso, A.

    2012-04-01

    Evapotranspiration (ET) accounts for a dominant part of the hydrological cycle. Globally, nearly two-thirds of precipitations over land are returned back to the atmosphere by ET. This proportion may be higher in dry areas, such as the Mediterranean basin. ET is difficult to assess in space and time because it depends on the water status and the energy processes at the Earth surface, which are highly variable. The work presented here aimed to quantify uncertainties in ET estimations from multispectral data from Landsat-7/ETM+ over a Mediterranean agricultural region depending on input data accuracy. Particular emphasis is given to albedo estimation, 12 different models being tested. Continuous ground measurements of albedo and net radiation were available for the period 2007 to 2010 for different surfaces. According to the reliability of albedo estimation from Landsat-7 data, it is possible to retrieve latent heat flux estimates with an uncertainty around 10 W·m-2.

  2. Grafting polyethylenimine with quinoline derivatives for targeted imaging of intracellular Zn(2+) and logic gate operations.

    PubMed

    Pan, Yi; Shi, Yupeng; Chen, Junying; Wong, Chap-Mo; Zhang, Heng; Li, Mei-Jin; Li, Cheuk-Wing; Yi, Changqing

    2016-12-01

    In this study, a highly sensitive and selective fluorescent Zn(2+) probe which exhibited excellent biocompatibility, water solubility, and cell-membrane permeability, was facilely synthesized in a single step by grafting polyethyleneimine (PEI) with quinoline derivatives. The primary amino groups in the branched PEI can increase water solubility and cell permeability of the probe PEIQ, while quinoline derivatives can specifically recognize Zn(2+) and reduce the potential cytotoxicity of PEI. Basing on fluorescence off-on mechanism, PEIQ demonstrated excellent sensing capability towards Zn(2+) in absolute aqueous solution, where a high sensitivity with a detection limit as low as 38.1nM, and a high selectivity over competing metal ions and potential interfering amino acids, were achieved. Inspired by these results, elementary logic operations (YES, NOT and INHIBIT) have been constructed by employing PEIQ as the gate while Zn(2+) and EDTA as chemical inputs. Together with the low cytotoxicity and good cell-permeability, the practical application of PEIQ in living cell imaging was satisfactorily demonstrated, emphasizing its wide application in fundamental biology research. PMID:27612748

  3. Classification and Visualization Based on Derived Image Features: Application to Genetic Syndromes

    PubMed Central

    Balliu, Brunilda; Würtz, Rolf P.; Horsthemke, Bernhard; Wieczorek, Dagmar; Böhringer, Stefan

    2014-01-01

    Data transformations prior to analysis may be beneficial in classification tasks. In this article we investigate a set of such transformations on 2D graph-data derived from facial images and their effect on classification accuracy in a high-dimensional setting. These transformations are low-variance in the sense that each involves only a fixed small number of input features. We show that classification accuracy can be improved when penalized regression techniques are employed, as compared to a principal component analysis (PCA) pre-processing step. In our data example classification accuracy improves from 47% to 62% when switching from PCA to penalized regression. A second goal is to visualize the resulting classifiers. We develop importance plots highlighting the influence of coordinates in the original 2D space. Features used for classification are mapped to coordinates in the original images and combined into an importance measure for each pixel. These plots assist in assessing plausibility of classifiers, interpretation of classifiers, and determination of the relative importance of different features. PMID:25405460

  4. Estimating the input of submarine groundwater discharge (SGD) and SGD-derived nutrients in Geoje Bay, Korea using (222)Rn-Si mass balance model.

    PubMed

    Hwang, Dong-Woon; Lee, In-Seok; Choi, Minkyu; Kim, Tae-Hoon

    2016-09-15

    In order to evaluate the main source of nutrients for maintaining the high production in shellfish farming bay, we have measured (222)Rn activities and the concentrations of nutrients in stream water, seawater, and coastal groundwater around Geoje Bay, one of the largest cultivation areas of oyster in the southern sea of Korea in April 2013. Using the (222)Rn and Si mass balance model, the residence time of bay seawater was about 5days and the submarine groundwater discharge (SGD) into the bay was estimated to be approximately 1.8×10(6)m(3) d(-1). The SGD-derived nutrient fluxes contributed approximately 54% for DIN, 5% for DIP, and 50% for DSi of total nutrient input entering into the bay. Thus, our results suggest that SGD is the major source of nutrients in Geoje Bay, and SGD-derived nutrients are very important to support the biological production of this shellfish farming bay. PMID:27377001

  5. Instrument requirements for imaging the magnetosphere in extreme-ultraviolet and energetic neutral atoms derived from computer-simulated images

    NASA Technical Reports Server (NTRS)

    Roelof, Edmond C.; Mauk, Barry H.; Meier, Robert R.

    1992-01-01

    Scientific requirements for He(+)(304 A) and energetic neutral atom (ENA) magnetospheric imaging, as well as the derived instrumental requirements are presented. Both ENA imaging of the hot plasma and EUV imaging of the cold plasma are highlighted. The question of the accuracy with which physically significant parameters can be extracted from actual images using computerized algorithms is addressed. An example of an ENA image analyzed by means of the Powell minimization algorithm is given. Automated unfolding of global magnetospheric images is also discussed. A Mercator projection of a model INA image is shown.

  6. Optimization of a Model Corrected Blood Input Function from Dynamic FDG-PET Images of Small Animal Heart In Vivo

    PubMed Central

    Zhong, Min; Kundu, Bijoy K.

    2013-01-01

    Quantitative evaluation of dynamic Positron Emission Tomography (PET) of mouse heart in vivo is challenging due to the small size of the heart and limited intrinsic spatial resolution of the PET scanner. Here, we optimized a compartment model which can simultaneously correct for spill over and partial volume effects for both blood pool and the myocardium, compute kinetic rate parameters and generate model corrected blood input function (MCBIF) from ordered subset expectation maximization – maximum a posteriori (OSEM-MAP) cardiac and respiratory gated 18F-FDG PET images of mouse heart with attenuation correction in vivo, without any invasive blood sampling. Arterial blood samples were collected from a single mouse to indicate the feasibility of the proposed method. In order to establish statistical significance, venous blood samples from n=6 mice were obtained at 2 late time points, when SP contamination from the tissue to the blood is maximum. We observed that correct bounds and initial guesses for the PV and SP coefficients accurately model the wash-in and wash-out dynamics of the tracer from mouse blood. The residual plot indicated an average difference of about 1.7% between the blood samples and MCBIF. The downstream rate of myocardial FDG influx constant, Ki (0.15±0.03 min−1), compared well with Ki obtained from arterial blood samples (P=0.716). In conclusion, the proposed methodology is not only quantitative but also reproducible. PMID:24741130

  7. Linear alkylbenzenes as tracers of sewage-sludge-derived inputs of organic matter, PCBs, and PAHs to sediments at the 106-mile deep water disposal site

    USGS Publications Warehouse

    Lamoureux, E.M.; Brownawell, Bruce J.; Bothner, Michael H.

    1996-01-01

    Linear alkylbenzenes (LABs) are sensitive source-specific tracers of sewage inputs to the marine environment. Because they are highly particle reactive and nonspecifically sorbed to organic matter, LABs are potential tracers of the transport of both sludge-derived organic matter and other low solubility hydrophobic contaminants (e.g., PCBs and PAHs); sediment trap studies at the 106-Mile Site have shown LABs to be valuable in testing models of sludge deposition to the sea floor. In this study we report on the distributions of LABs, PCBs, PAHs, and Ag in surface sediments collected within a month of the complete cessation of dumping (July, 1992) in the vicinity of the dump site. Total LAB concentrations were lower than those measured by Takada and coworkers in samples from nearby sites collected in 1989. LABs from both studies appear to be significantly depleted (6 to 25-fold) in surface sediments relative to excess Ag (another sludge tracer) when compared to sewage sludge and sediment trap compositions. Comparison of LAB sediment inventories to model predictions of sludge particle fluxes supports the contention that LABs have been lost from the bed. The use of LABs to examine the short-or long-term fate of sludge derived materials in deep-sea sediments should be questioned. The causes of this LAB depletion are unclear at this point, and we discuss several hypotheses. The concentrations of total PCBs and PAHs are both correlated with sludge tracers, suggesting that there may be a measurable contribution of sludge-derived inputs on top of other nonpoint sources of these contaminant classes. This possibility is consistent with the composition of these contaminants determined in recent and historical analyses of sewage sludge.

  8. The least-squares mixing models to generate fraction images derived from remote sensing multispectral data

    NASA Technical Reports Server (NTRS)

    Shimabukuro, Yosio Edemir; Smith, James A.

    1991-01-01

    Constrained-least-squares and weighted-least-squares mixing models for generating fraction images derived from remote sensing multispectral data are presented. An experiment considering three components within the pixels-eucalyptus, soil (understory), and shade-was performed. The generated fraction images for shade (shade image) derived from these two methods were compared by considering the performance and computer time. The derived shade images are related to the observed variation in forest structure, i.e., the fraction of inferred shade in the pixel is related to different eucalyptus ages.

  9. Detection and characterization of local to regional groundwater inputs to rivers, lakes and oceans with electrical imaging (Invited)

    NASA Astrophysics Data System (ADS)

    Cardenas, M. B.; Befus, K. M.; Markowski, M.; Ong, J.; Zamora, P. B.; Siringan, F. P.; Zlotnik, V. A.

    2010-12-01

    Surface water (SW) and groundwater (GW) interact at multiple levels in myriad settings and their interaction is an important hydrogeologic process that impacts ecological and biogeochemical functions. GW discharge and associated mixing with SW in these settings have been challenging to map with sufficient detail and coverage. Three examples are presented on the application of electrical resistivity imaging (ERI) for mapping GW discharge and for understanding SW-GW interactions: (1) a large regulated river, (2) several neighboring lakes, and (3) a fringing coral reef. (1) Time-lapse ERI was conducted at the Colorado River, Texas where the river stage varied by 0.7 m due to dam operations. Submerged and towed electrode cables were used to capture the subsurface mixing dynamics of SW and GW. Using temporal variability in electrical resistivity (ER) signatures, we identified a shallow well-flushed hyporheic zone, a transition zone where SW and GW mix, and a stable deep zone hosting only GW. (2) Towed ER surveys in alkaline lakes in the Nebraska Sand Hills helped distinguishing flow-through lakes, which have decreasing subsurface ER from GW inflow to outflow area, from pure GW discharge lakes, which have uniformly stratified increasing-with-depth ER profiles. (3) More than 30 km of ER profiles collected via towed surveys over a fringing coral reef in the Philippines identified areas of high ER within the reef that coincide with resistive zones in the seawater. Analysis of 222Rn of bottom waters and vertical conductivity-temperature-depth measurements show the persistence of fresh GW input into the ocean where low salinity and high 222Rn areas coincided with high ER areas. A 3D map showing sources and pathways for GW across the reef is developed. ERI is a powerful and convenient tool for mapping GW discharge and SW-GW interactions in rivers, lakes, and oceans.

  10. Sensitivity of tissue properties derived from MRgFUS temperature data to input errors and data inclusion criteria: ex vivo study in porcine muscle

    NASA Astrophysics Data System (ADS)

    Shi, Y. C.; Parker, D. L.; Dillon, C. R.

    2016-08-01

    This study evaluates the sensitivity of two magnetic resonance-guided focused ultrasound (MRgFUS) thermal property estimation methods to errors in required inputs and different data inclusion criteria. Using ex vivo pork muscle MRgFUS data, sensitivities to required inputs are determined by introducing errors to ultrasound beam locations (r error  =  -2 to 2 mm) and time vectors (t error  =  -2.2 to 2.2 s). In addition, the sensitivity to user-defined data inclusion criteria is evaluated by choosing different spatial (r fit  =  1-10 mm) and temporal (t fit  =  8.8-61.6 s) regions for fitting. Beam location errors resulted in up to 50% change in property estimates with local minima occurring at r error  =  0 and estimate errors less than 10% when r error  <  0.5 mm. Errors in the time vector led to property estimate errors up to 40% and without local minimum, indicating the need to trigger ultrasound sonications with the MR image acquisition. Regarding the selection of data inclusion criteria, property estimates reached stable values (less than 5% change) when r fit  >  2.5  ×  FWHM, and were most accurate with the least variability for longer t fit. Guidelines provided by this study highlight the importance of identifying required inputs and choosing appropriate data inclusion criteria for robust and accurate thermal property estimation. Applying these guidelines will prevent the introduction of biases and avoidable errors when utilizing these property estimation techniques for MRgFUS thermal modeling applications.

  11. Sensitivity of tissue properties derived from MRgFUS temperature data to input errors and data inclusion criteria: ex vivo study in porcine muscle

    NASA Astrophysics Data System (ADS)

    Shi, Y. C.; Parker, D. L.; Dillon, C. R.

    2016-08-01

    This study evaluates the sensitivity of two magnetic resonance-guided focused ultrasound (MRgFUS) thermal property estimation methods to errors in required inputs and different data inclusion criteria. Using ex vivo pork muscle MRgFUS data, sensitivities to required inputs are determined by introducing errors to ultrasound beam locations (r error  =  ‑2 to 2 mm) and time vectors (t error  =  ‑2.2 to 2.2 s). In addition, the sensitivity to user-defined data inclusion criteria is evaluated by choosing different spatial (r fit  =  1–10 mm) and temporal (t fit  =  8.8–61.6 s) regions for fitting. Beam location errors resulted in up to 50% change in property estimates with local minima occurring at r error  =  0 and estimate errors less than 10% when r error  <  0.5 mm. Errors in the time vector led to property estimate errors up to 40% and without local minimum, indicating the need to trigger ultrasound sonications with the MR image acquisition. Regarding the selection of data inclusion criteria, property estimates reached stable values (less than 5% change) when r fit  >  2.5  ×  FWHM, and were most accurate with the least variability for longer t fit. Guidelines provided by this study highlight the importance of identifying required inputs and choosing appropriate data inclusion criteria for robust and accurate thermal property estimation. Applying these guidelines will prevent the introduction of biases and avoidable errors when utilizing these property estimation techniques for MRgFUS thermal modeling applications.

  12. Sensitivity of tissue properties derived from MRgFUS temperature data to input errors and data inclusion criteria: ex vivo study in porcine muscle.

    PubMed

    Shi, Y C; Parker, D L; Dillon, C R

    2016-08-01

    This study evaluates the sensitivity of two magnetic resonance-guided focused ultrasound (MRgFUS) thermal property estimation methods to errors in required inputs and different data inclusion criteria. Using ex vivo pork muscle MRgFUS data, sensitivities to required inputs are determined by introducing errors to ultrasound beam locations (r error  =  -2 to 2 mm) and time vectors (t error  =  -2.2 to 2.2 s). In addition, the sensitivity to user-defined data inclusion criteria is evaluated by choosing different spatial (r fit  =  1-10 mm) and temporal (t fit  =  8.8-61.6 s) regions for fitting. Beam location errors resulted in up to 50% change in property estimates with local minima occurring at r error  =  0 and estimate errors less than 10% when r error  <  0.5 mm. Errors in the time vector led to property estimate errors up to 40% and without local minimum, indicating the need to trigger ultrasound sonications with the MR image acquisition. Regarding the selection of data inclusion criteria, property estimates reached stable values (less than 5% change) when r fit  >  2.5  ×  FWHM, and were most accurate with the least variability for longer t fit. Guidelines provided by this study highlight the importance of identifying required inputs and choosing appropriate data inclusion criteria for robust and accurate thermal property estimation. Applying these guidelines will prevent the introduction of biases and avoidable errors when utilizing these property estimation techniques for MRgFUS thermal modeling applications. PMID:27385508

  13. Using Sediment Records to Reconstruct Historical Inputs Combustion-Derived Contaminants to Urban Airsheds/Watersheds: A Case Study From the Puget Sound

    NASA Astrophysics Data System (ADS)

    Louchouarn, P. P.; Kuo, L.; Brandenberger, J.; Marcantonio, F.; Wade, T. L.; Crecelius, E.; Gobeil, C.

    2008-12-01

    Urban centers are major sources of combustion-derived particulate matter (e.g. black carbon (BC), polycyclic aromatic hydrocarbons (PAH), anhydrosugars) and volatile organic compounds to the atmosphere. Evidence is mounting that atmospheric emissions from combustion sources remain major contributors to air pollution of urban systems. For example, recent historical reconstructions of depositional fluxes for pyrogenic PAHs close to urban systems have shown an unanticipated reversal in the trends of decreasing emissions initiated during the mid-20th Century. Here we compare a series of historical reconstructions of combustion emission in urban and rural airsheds over the last century using sedimentary records. A complex suite of combustion proxies (BC, PAHs, anhydrosugars, stable lead concentrations and isotope signatures) assisted in elucidating major changes in the type of atmospheric aerosols originating from specific processes (i.e. biomass burning vs. fossil fuel combustion) or fuel sources (wood vs. coal vs. oil). In all studied locations, coal continues to be a major source of combustion-derived aerosols since the early 20th Century. Recently, however, oil and biomass combustion have become substantial additional sources of atmospheric contamination. In the Puget Sound basin, along the Pacific Northwest region of the U.S., rural locations not impacted by direct point sources of contamination have helped assess the influence of catalytic converters on concentrations of oil-derived PAH and lead inputs since the early 1970s. Although atmospheric deposition of lead has continued to drop since the introduction of catalytic converters and ban on leaded gasoline, PAH inputs have "rebounded" in the last decade. A similar steady and recent rise in PAH accumulations in urban systems has been ascribed to continued urban sprawl and increasing vehicular traffic. In the U.S., automotive emissions, whether from gasoline or diesel combustion, are becoming a major source of

  14. Techniques to derive geometries for image-based Eulerian computations

    PubMed Central

    Dillard, Seth; Buchholz, James; Vigmostad, Sarah; Kim, Hyunggun; Udaykumar, H.S.

    2014-01-01

    Purpose The performance of three frequently used level set-based segmentation methods is examined for the purpose of defining features and boundary conditions for image-based Eulerian fluid and solid mechanics models. The focus of the evaluation is to identify an approach that produces the best geometric representation from a computational fluid/solid modeling point of view. In particular, extraction of geometries from a wide variety of imaging modalities and noise intensities, to supply to an immersed boundary approach, is targeted. Design/methodology/approach Two- and three-dimensional images, acquired from optical, X-ray CT, and ultrasound imaging modalities, are segmented with active contours, k-means, and adaptive clustering methods. Segmentation contours are converted to level sets and smoothed as necessary for use in fluid/solid simulations. Results produced by the three approaches are compared visually and with contrast ratio, signal-to-noise ratio, and contrast-to-noise ratio measures. Findings While the active contours method possesses built-in smoothing and regularization and produces continuous contours, the clustering methods (k-means and adaptive clustering) produce discrete (pixelated) contours that require smoothing using speckle-reducing anisotropic diffusion (SRAD). Thus, for images with high contrast and low to moderate noise, active contours are generally preferable. However, adaptive clustering is found to be far superior to the other two methods for images possessing high levels of noise and global intensity variations, due to its more sophisticated use of local pixel/voxel intensity statistics. Originality/value It is often difficult to know a priori which segmentation will perform best for a given image type, particularly when geometric modeling is the ultimate goal. This work offers insight to the algorithm selection process, as well as outlining a practical framework for generating useful geometric surfaces in an Eulerian setting. PMID

  15. BIODISTRIBUTION AND PET IMAGING OF [18F]-FLUOROADENOSINE DERIVATIVES

    PubMed Central

    Alauddin, Mian M.; Shahinian, Antranik; Park, Ryan; Tohme, Michael; Fissekis, John D.; Conti, Peter S.

    2007-01-01

    Introduction: Many fluorinated analogues of adenosine nucleoside have been synthesized and studied as potential antitumor and antiviral agents. Earlier we reported radiosynthesis of 2′-deoxy-2′-[18F]fluoro-1-β-D-arabinofuranosyl-adenine ([18F]-FAA) and 3′-deoxy-3′-[18F]fluoro-1-β-D-xylofuranosyl-adenine ([18F]FXA). Now we report their in vivo studies including blood clearance, biodistribution and micro-PET imaging in tumor-bearing nude mice. Methods: Tumors were grown in six weeks old athymic nude mice (Harlan, Indianapolis, IN) by inoculation of HT-29 cells, wild type cells in the left flank and transduced cells with HSV-tk on the right flank. When the tumor was about 1 cm in size, animals were injected with these radiotracers for in vivo studies, including blood clearance, micro-PET imaging and biodistribution. Results: Uptake of [18F]FAA in tumor was 3.3-fold higher than blood, with highest uptake in the spleen. Maximum uptake of [18F]FXA was observed in the heart compared to other organs. There was no tumor uptake of [18F]FXA. Biodistribution results were supported by micro-PET images, which also showed very high uptake of [18F]FAA in spleen and visualization of tumors, and high uptake of [18F]FXA in the heart. Conclusion: These results suggest that [18F]FAA may be useful for tumor imaging, while [18F]FXA may have potential as a heart imaging agent with PET. PMID:17383576

  16. Ceres Survey Atlas derived from Dawn Framing Camera images

    NASA Astrophysics Data System (ADS)

    Roatsch, Th.; Kersten, E.; Matz, K.-D.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2016-02-01

    The Dawn Framing Camera (FC) acquired almost 900 clear filter images of Ceres with a resolution of about 400 m/pixels during the seven cycles in the Survey orbit in June 2015. We ortho-rectified 42 images from the third cycle and produced a global, high-resolution, controlled mosaic of Ceres. This global mosaic is the basis for a high-resolution Ceres atlas that consists of 3 tiles mapped at a scale of 1:2,000,000. The nomenclature used in this atlas was proposed by the Dawn team and was approved by the International Astronomical Union (IAU). The whole atlas is available to the public through the Dawn GIS web page.

  17. High resolution Ceres HAMO atlas derived from Dawn FC images

    NASA Astrophysics Data System (ADS)

    Roatsch, Thomas; Kersten, Elke; Matz, Klaus-Dieter; Preusker, Frank; Scholten, Frank; Jaumann, Ralf; Raymond, Carol A.; Russell, Chris T.

    2016-04-01

    Introduction: NASA's Dawn spacecraft entered the orbit of dwarf planet Ceres in March 2015, and will characterize the geology, elemental and mineralogical composition, topography, shape, and internal structure of Ceres. One of the major goals of the mission is a global mapping of Ceres. Data: The Dawn mission was mapping Ceres in HAMO (High Altitude Mapping Orbit, 1475 km altitude) between August and October 2015. The framing camera took about 2,600 clear filter images with a resolution of about 140 m/pixel during these cycles. The images were taken with different viewing angles and different illumination conditions. We selected images from one cycle (cycle #1) for the mosaicking process to have similar viewing and illumination conditions. Very minor gaps in the coverage were filled with a few images from cycle #2. Data Processing: The first step of the processing chain towards the cartographic products is to ortho-rectify the images to the proper scale and map projec-tion type. This process requires detailed information of the Dawn orbit and attitude data and of the topography of the targets. Both, improved orientation and a high-resolution shape model, are provided by stereo processing (bundle block adjustment) of the HAMO stereo image dataset [3]. Ceres's HAMO shape model was used for the calculation of the ray intersection points while the map projection itself was done onto the reference sphere of Ceres with a radius of 470 km. The final step is the controlled mosaicking) of all images to a global mosaic of Ceres, the so-called basemap. Ceres map tiles: The Ceres atlas was produced in a scale of 1:750,000 and consists of 15 tiles that conform to the quadrangle scheme proposed by Greeley and Batson [4]. A map scale of 1:750,000 guarantees a mapping at the highest available Dawn resolution in HAMO. The individual tiles were extracted from the global mosaic and reprojected. Nomenclature: The Dawn team proposed 81 names for geological features. By international

  18. MEMS-based handheld scanning probe with pre-shaped input signals for distortion-free images in Gabor-domain optical coherence microscopy.

    PubMed

    Cogliati, Andrea; Canavesi, Cristina; Hayes, Adam; Tankam, Patrice; Duma, Virgil-Florin; Santhanam, Anand; Thompson, Kevin P; Rolland, Jannick P

    2016-06-13

    High-speed scanning in optical coherence tomography (OCT) often comes with either compromises in image quality, the requirement for post-processing of the acquired images, or both. We report on distortion-free OCT volumetric imaging with a dual-axis micro-electro-mechanical system (MEMS)-based handheld imaging probe. In the context of an imaging probe with optics located between the 2D MEMS and the sample, we report in this paper on how pre-shaped open-loop input signals with tailored non-linear parts were implemented in a custom control board and, unlike the sinusoidal signals typically used for MEMS, achieved real-time distortion-free imaging without post-processing. The MEMS mirror was integrated into a compact, lightweight handheld probe. The MEMS scanner achieved a 12-fold reduction in volume and 17-fold reduction in weight over a previous dual-mirror galvanometer-based scanner. Distortion-free imaging with no post-processing with a Gabor-domain optical coherence microscope (GD-OCM) with 2 μm axial and lateral resolutions over a field of view of 1 × 1 mm2 is demonstrated experimentally through volumetric images of a regular microscopic structure, an excised human cornea, and in vivo human skin.

  19. MEMS-based handheld scanning probe with pre-shaped input signals for distortion-free images in Gabor-domain optical coherence microscopy.

    PubMed

    Cogliati, Andrea; Canavesi, Cristina; Hayes, Adam; Tankam, Patrice; Duma, Virgil-Florin; Santhanam, Anand; Thompson, Kevin P; Rolland, Jannick P

    2016-06-13

    High-speed scanning in optical coherence tomography (OCT) often comes with either compromises in image quality, the requirement for post-processing of the acquired images, or both. We report on distortion-free OCT volumetric imaging with a dual-axis micro-electro-mechanical system (MEMS)-based handheld imaging probe. In the context of an imaging probe with optics located between the 2D MEMS and the sample, we report in this paper on how pre-shaped open-loop input signals with tailored non-linear parts were implemented in a custom control board and, unlike the sinusoidal signals typically used for MEMS, achieved real-time distortion-free imaging without post-processing. The MEMS mirror was integrated into a compact, lightweight handheld probe. The MEMS scanner achieved a 12-fold reduction in volume and 17-fold reduction in weight over a previous dual-mirror galvanometer-based scanner. Distortion-free imaging with no post-processing with a Gabor-domain optical coherence microscope (GD-OCM) with 2 μm axial and lateral resolutions over a field of view of 1 × 1 mm2 is demonstrated experimentally through volumetric images of a regular microscopic structure, an excised human cornea, and in vivo human skin. PMID:27410354

  20. High resolution VESTA LAMO atlas derived from Dawn FC images.

    NASA Astrophysics Data System (ADS)

    Roatsch, Thomas; Kersten, Elke; Matz, Klaus-Dieter; Preusker, Frank; Scholten, Frank; Jaumann, Ralf; Raymond, Carol A.; Russell, Cris T.

    2013-04-01

    Introduction: NASA's Dawn spacecraft entered orbit of the inner main belt asteroid 4 Vesta on July 16, 2011, and spent about one year in orbit to characterize the geology, elemental and mineralogical composition, topography, shape, and internal structure of Vesta before it departed to asteroid 1 Ceres in late 2012. One of the major goals of the mission was a global mapping of Vesta. Data: The DAWN mission was mapping Vesta from three different orbit heights during Survey orbit (3100 km altitude), HAMO (High Altitude Mapping Orbit, 700 km altitude), and LAMO (Low Altitude Mapping Orbit, 210 km altitude) [1]. The Dawn mission is equipped with a framing camera (FC) [2] which was the prime instrument during the LAMO phase. DAWN orbited Vesta during LAMO in 21 cycles between December 2011 and end of April 2012. The framing camera took about 10,000 clear filter images with a resolution of about 20 m/pixel during these cycles. The images were taken with different viewing angles and different illumination conditions. We selected about 8,000 images for the global coverage of Vesta. Data Processing: The first step of the processing chain is to ortho rectify the images to the proper scale and map projection type. This process requires detailed high-resolution information of the local topography of Vesta. The global topgraphy was calculated during the stereo processing of the HAMO images [3] and was used here. The shape model was used for the calculation of the ray intersection points while the map projection itself was done onto a sphere with a mean radius of 255 km. The next step was the mosaicking of all images to one global mosaic of Vesta, the so called basemap. Vesta map tiles: The Vesta atlas was produced in a scale of 1:200,000 and consists of 30 tiles that conform to the quadrangle scheme proposed by Greeley and Batson [4] and is used for example for mapping Mars in a scale of 1:5,000,000. A map scale of 1:200,000 guarantees a mapping at the highest available DAWN

  1. Accuracy Assessment of Coastal Topography Derived from Uav Images

    NASA Astrophysics Data System (ADS)

    Long, N.; Millescamps, B.; Pouget, F.; Dumon, A.; Lachaussée, N.; Bertin, X.

    2016-06-01

    To monitor coastal environments, Unmanned Aerial Vehicle (UAV) is a low-cost and easy to use solution to enable data acquisition with high temporal frequency and spatial resolution. Compared to Light Detection And Ranging (LiDAR) or Terrestrial Laser Scanning (TLS), this solution produces Digital Surface Model (DSM) with a similar accuracy. To evaluate the DSM accuracy on a coastal environment, a campaign was carried out with a flying wing (eBee) combined with a digital camera. Using the Photoscan software and the photogrammetry process (Structure From Motion algorithm), a DSM and an orthomosaic were produced. Compared to GNSS surveys, the DSM accuracy is estimated. Two parameters are tested: the influence of the methodology (number and distribution of Ground Control Points, GCPs) and the influence of spatial image resolution (4.6 cm vs 2 cm). The results show that this solution is able to reproduce the topography of a coastal area with a high vertical accuracy (< 10 cm). The georeferencing of the DSM require a homogeneous distribution and a large number of GCPs. The accuracy is correlated with the number of GCPs (use 19 GCPs instead of 10 allows to reduce the difference of 4 cm); the required accuracy should be dependant of the research problematic. Last, in this particular environment, the presence of very small water surfaces on the sand bank does not allow to improve the accuracy when the spatial resolution of images is decreased.

  2. Detecting curvatures in digital images using filters derived from differential geometry

    NASA Astrophysics Data System (ADS)

    Toro Giraldo, Juanita

    2015-09-01

    Detection of curvature in digital images is an important theoretical and practical problem in image processing. Many important features in an image are associated with curvature and the detection of such features is reduced to detection and characterization of curvatures. Differential geometry studies many kinds of curvature operators and from these curvature operators is possible to derive powerful filters for image processing which are able to detect curvature in digital images and videos. The curvature operators are formulated in terms of partial differential operators which can be applied to images via convolution with generalized kernels derived from the the Korteweg- de Vries soliton . We present an algorithm for detection of curvature in digital images which is implemented using the Maple package ImageTools. Some experiments were performed and the results were very good. In a future research will be interesting to compare the results using the Korteweg-de Vries soliton with the results obtained using Airy derivatives. It is claimed that the resulting curvature detectors could be incorporated in standard programs for image processing.

  3. Martian spectral units derived from ISM imaging spectrometer data

    NASA Technical Reports Server (NTRS)

    Murchie, S.; Mustard, J.; Saylor, R.

    1993-01-01

    Based on results of the Viking mission, the soil layer of Mars has been thought to be fairly homogeneous and to consist of a mixture of as few as two components, a 'dark gray' basaltic material and a 'bright red' altered material. However, near-infrared reflectance spectra measured recently both telescopically and from spacecraft indicate compositional heterogeneity beyond what can be explained by just two components. In particular, data from the ISM imaging spectrometer, which observed much of the equatorial region at a spatial resolution of approximately 22 km, indicate spatial differences in the presence and abundance of Fe-containing phases, hydroxylated silicates, and H2O. The ISM data was used to define, characterize, and map soil 'units' based on their spectral properties. The spatial distribution of these 'units' were compared to morphologic, visible color, and thermal inertia features recognized in Viking data.

  4. Imaging and Tracking of Bone Marrow-Derived Immune and Stem Cells

    PubMed Central

    Zhao, Youbo; Bower, Andrew J.; Graf, Benedikt W.; Boppart, Marni D.; Boppart, Stephen A.

    2014-01-01

    Bone marrow (BM)-derived stem and immune cells play critical roles in maintaining the health, regeneration, and repair of many tissues. Given their important functions in tissue regeneration and therapy, tracking the dynamic behaviors of BM-derived cells has been a long-standing research goal of both biologists and engineers. Because of the complex cellular-level processes involved, real-time imaging technologies that have sufficient spatial and temporal resolution to visualize them are needed. In addition, in order to track cellular dynamics, special attention is needed to account for changes in the microenvironment where the cells reside, for example, tissue contraction, stretching, development, etc. In this chapter, we introduce methods for real-time imaging and longitudinal tracking of BM-derived immune and stem cells in in vivo three-dimensional (3-D) tissue environments with an integrated optical microscope. The integrated microscope combines multiple imaging functions derived from optical coherence tomography (OCT) and multiphoton microscopy (MPM), including optical coherence microscopy (OCM), micro-vasculature imaging, two-photon excited fluorescence (TPEF), and second harmonic generation (SHG) microscopy. Short- and long-term tracking of the dynamic behavior of BM-derived cells involved in cutaneous wound healing and skin grafting in green fluorescent protein (GFP) BM-transplanted mice is demonstrated. Methods and algorithms for nonrigid registration of time-lapse images are introduced, which allows for long-term tracking of cell dynamics over several months. PMID:23737096

  5. Correcting Satellite Image Derived Surface Model for Atmospheric Effects

    NASA Technical Reports Server (NTRS)

    Emery, William; Baldwin, Daniel

    1998-01-01

    This project was a continuation of the project entitled "Resolution Earth Surface Features from Repeat Moderate Resolution Satellite Imagery". In the previous study, a Bayesian Maximum Posterior Estimate (BMPE) algorithm was used to obtain a composite series of repeat imagery from the Advanced Very High Resolution Radiometer (AVHRR). The spatial resolution of the resulting composite was significantly greater than the 1 km resolution of the individual AVHRR images. The BMPE algorithm utilized a simple, no-atmosphere geometrical model for the short-wave radiation budget at the Earth's surface. A necessary assumption of the algorithm is that all non geometrical parameters remain static over the compositing period. This assumption is of course violated by temporal variations in both the surface albedo and the atmospheric medium. The effect of the albedo variations is expected to be minimal since the variations are on a fairly long time scale compared to the compositing period, however, the atmospheric variability occurs on a relatively short time scale and can be expected to cause significant errors in the surface reconstruction. The current project proposed to incorporate an atmospheric correction into the BMPE algorithm for the purpose of investigating the effects of a variable atmosphere on the surface reconstructions. Once the atmospheric effects were determined, the investigation could be extended to include corrections various cloud effects, including short wave radiation through thin cirrus clouds. The original proposal was written for a three year project, funded one year at a time. The first year of the project focused on developing an understanding of atmospheric corrections and choosing an appropriate correction model. Several models were considered and the list was narrowed to the two best suited. These were the 5S and 6S shortwave radiation models developed at NASA/GODDARD and tested extensively with data from the AVHRR instrument. Although the 6S model

  6. MR image super-resolution reconstruction using sparse representation, nonlocal similarity and sparse derivative prior.

    PubMed

    Zhang, Di; He, Jiazhong; Zhao, Yun; Du, Minghui

    2015-03-01

    In magnetic resonance (MR) imaging, image spatial resolution is determined by various instrumental limitations and physical considerations. This paper presents a new algorithm for producing a high-resolution version of a low-resolution MR image. The proposed method consists of two consecutive steps: (1) reconstructs a high-resolution MR image from a given low-resolution observation via solving a joint sparse representation and nonlocal similarity L1-norm minimization problem; and (2) applies a sparse derivative prior based post-processing to suppress blurring effects. Extensive experiments on simulated brain MR images and two real clinical MR image datasets validate that the proposed method achieves much better results than many state-of-the-art algorithms in terms of both quantitative measures and visual perception.

  7. Highly sensitive image-derived indices of water-stressed plants using hyperspectral imaging in SWIR and histogram analysis

    PubMed Central

    Kim, David M.; Zhang, Hairong; Zhou, Haiying; Du, Tommy; Wu, Qian; Mockler, Todd C.; Berezin, Mikhail Y.

    2015-01-01

    The optical signature of leaves is an important monitoring and predictive parameter for a variety of biotic and abiotic stresses, including drought. Such signatures derived from spectroscopic measurements provide vegetation indices – a quantitative method for assessing plant health. However, the commonly used metrics suffer from low sensitivity. Relatively small changes in water content in moderately stressed plants demand high-contrast imaging to distinguish affected plants. We present a new approach in deriving sensitive indices using hyperspectral imaging in a short-wave infrared range from 800 nm to 1600 nm. Our method, based on high spectral resolution (1.56 nm) instrumentation and image processing algorithms (quantitative histogram analysis), enables us to distinguish a moderate water stress equivalent of 20% relative water content (RWC). The identified image-derived indices 15XX nm/14XX nm (i.e. 1529 nm/1416 nm) were superior to common vegetation indices, such as WBI, MSI, and NDWI, with significantly better sensitivity, enabling early diagnostics of plant health. PMID:26531782

  8. Comprehensive Population-Averaged Arterial Input Function for Dynamic Contrast–Enhanced vMagnetic Resonance Imaging of Head and Neck Cancer

    SciTech Connect

    Onxley, Jennifer D.; Yoo, David S.; Muradyan, Naira; MacFall, James R.; Brizel, David M.; Craciunescu, Oana I.

    2014-07-01

    Purpose: To generate a population-averaged arterial input function (PA-AIF) for quantitative analysis of dynamic contrast-enhanced MRI data in head and neck cancer patients. Methods and Materials: Twenty patients underwent dynamic contrast-enhanced MRI during concurrent chemoradiation therapy. Imaging consisted of 2 baseline scans 1 week apart (B1/B2) and 1 scan after 1 week of chemoradiation therapy (Wk1). Regions of interest (ROIs) in the right and left carotid arteries were drawn on coronal images. Plasma concentration curves of all ROIs were averaged and fit to a biexponential decay function to obtain the final PA-AIF (AvgAll). Right-sided and left-sided ROI plasma concentration curves were averaged separately to obtain side-specific AIFs (AvgRight/AvgLeft). Regions of interest were divided by time point to obtain time-point-specific AIFs (AvgB1/AvgB2/AvgWk1). The vascular transfer constant (K{sub trans}) and the fractional extravascular, extracellular space volume (V{sub e}) for primaries and nodes were calculated using the AvgAll AIF, the appropriate side-specific AIF, and the appropriate time-point-specific AIF. Median K{sub trans} and V{sub e} values derived from AvgAll were compared with those obtained from the side-specific and time-point-specific AIFs. The effect of using individual AIFs was also investigated. Results: The plasma parameters for AvgAll were a{sub 1,2} = 27.11/17.65 kg/L, m{sub 1,2} = 11.75/0.21 min{sup −1}. The coefficients of repeatability (CRs) for AvgAll versus AvgLeft were 0.04 min{sup −1} for K{sub trans} and 0.02 for V{sub e}. For AvgAll versus AvgRight, the CRs were 0.08 min{sup −1} for K{sub trans} and 0.02 for V{sub e}. When AvgAll was compared with AvgB1/AvgB2/AvgWk1, the CRs were slightly higher: 0.32/0.19/0.78 min{sup −1}, respectively, for K{sub trans}; and 0.07/0.08/0.09 for V{sub e}. Use of a PA-AIF was not significantly different from use of individual AIFs. Conclusion: A PA-AIF for head and neck cancer

  9. Patch-based image reconstruction for PET using prior-image derived dictionaries

    NASA Astrophysics Data System (ADS)

    Tahaei, Marzieh S.; Reader, Andrew J.

    2016-09-01

    In PET image reconstruction, regularization is often needed to reduce the noise in the resulting images. Patch-based image processing techniques have recently been successfully used for regularization in medical image reconstruction through a penalized likelihood framework. Re-parameterization within reconstruction is another powerful regularization technique in which the object in the scanner is re-parameterized using coefficients for spatially-extensive basis vectors. In this work, a method for extracting patch-based basis vectors from the subject’s MR image is proposed. The coefficients for these basis vectors are then estimated using the conventional MLEM algorithm. Furthermore, using the alternating direction method of multipliers, an algorithm for optimizing the Poisson log-likelihood while imposing sparsity on the parameters is also proposed. This novel method is then utilized to find sparse coefficients for the patch-based basis vectors extracted from the MR image. The results indicate the superiority of the proposed methods to patch-based regularization using the penalized likelihood framework.

  10. Derivation of planetary topography using multi-image shape-from-shading

    USGS Publications Warehouse

    Lohse, V.; Heipke, C.; Kirk, R.L.

    2006-01-01

    In many cases, the derivation of high-resolution digital terrain models (DTMs) from planetary surfaces using conventional digital image matching is a problem. The matching methods need at least one stereo pair of images with sufficient texture. However, many space missions provide only a few stereo images and planetary surfaces often possess insufficient texture. This paper describes a method for the generation of high-resolution DTMs from planetary surfaces, which has the potential to overcome the described problem. The suggested method, developed by our group, is based on shape-from-shading using an arbitrary number of digital optical images, and is termed "multi-image shape-from-shading" (MI-SFS). The paper contains an explanation of the theory of MI-SFS, followed by a presentation of current results, which were obtained using images from NASA's lunar mission Clementine, and constitute the first practical application with our method using extraterrestrial imagery. The lunar surface is reconstructed under the assumption of different kinds of reflectance models (e.g. Lommel-Seeliger and Lambert). The represented results show that the derivation of a high-resolution DTM of real digital planetary images by means of MI-SFS is feasible. ?? 2006 Elsevier Ltd. All rights reserved.

  11. The benefits of using short interval satellite images to derive winds for tropical cyclones

    NASA Technical Reports Server (NTRS)

    Rodgers, E.; Gentry, R. C.; Shenk, W. E.; Oliver, V.

    1978-01-01

    During the 1975, 1976, and 1977, NOAA's National Environmental Satellite Service and NASA's Goddard Space Flight Center conducted a cooperative program to determine the optimum resolution and frequency of satellite images for deriving winds to study and forecast tropical cyclones. Rapid scan images were obtained at 7.5 minute interval from SMS-2 for hurricane Eloise and cyclone Caroline, and at 3 minute intervals from GOES-1 for tropical storms Belle, Holly, and Anita. Cloud motions were derived from these images using the Atmospheric and Oceanographic Information Processing System. Winds that were derived from the movement of upper and lower tropospheric level clouds using rapid scan data were compared with the 15 and 30 minute interval data. Greater than 10 (5) times as many clouds could be tracked to obtain winds using 3 and 7.5 minute rapid scan images as when using 15 or 30 minute interval images. A few bright areas within the central dense overcast which appeared to be moving with the winds at low levels were tracked.

  12. Simultaneous Two-photon in Vivo Imaging of Synaptic Inputs and Postsynaptic Targets in the Mouse Retrosplenial Cortex.

    PubMed

    Łukasiewicz, Kacper; Robacha, Magdalena; Bożycki, Łukasz; Radwanska, Kasia; Czajkowski, Rafał

    2016-01-01

    This video shows the craniotomy procedure that allows chronic imaging of neurons in the mouse retrosplenial cortex (RSC) using in vivo two-photon microscopy in Thy1-GFP transgenic mouse line. This approach creates a possibility to investigate the correlation of behavioural manipulations with changes in neuronal morphology in vivo. The cranial window implantation procedure was considered to be limited only to the easily accessible cortex regions such as the barrel field. Our approach allows visualization of neurons in the highly vascularized RSC. RSC is an important element of the brain circuit responsible for spatial memory, previously deemed to be problematic for in vivo two-photon imaging. The cranial window implantation over the RSC is combined with an injection of mCherry-expressing recombinant adeno-associated virus (rAAV(mCherry)) into the dorsal hippocampus. The expressed mCherry spreads out to axonal projections from the hippocampus to RSC, enabling the visualization of changes in both presynaptic axonal boutons and postsynaptic dendritic spines in the cortex. This technique allows long-term monitoring of experience-dependent structural plasticity in RSC.

  13. Simultaneous Two-photon in Vivo Imaging of Synaptic Inputs and Postsynaptic Targets in the Mouse Retrosplenial Cortex.

    PubMed

    Łukasiewicz, Kacper; Robacha, Magdalena; Bożycki, Łukasz; Radwanska, Kasia; Czajkowski, Rafał

    2016-01-01

    This video shows the craniotomy procedure that allows chronic imaging of neurons in the mouse retrosplenial cortex (RSC) using in vivo two-photon microscopy in Thy1-GFP transgenic mouse line. This approach creates a possibility to investigate the correlation of behavioural manipulations with changes in neuronal morphology in vivo. The cranial window implantation procedure was considered to be limited only to the easily accessible cortex regions such as the barrel field. Our approach allows visualization of neurons in the highly vascularized RSC. RSC is an important element of the brain circuit responsible for spatial memory, previously deemed to be problematic for in vivo two-photon imaging. The cranial window implantation over the RSC is combined with an injection of mCherry-expressing recombinant adeno-associated virus (rAAV(mCherry)) into the dorsal hippocampus. The expressed mCherry spreads out to axonal projections from the hippocampus to RSC, enabling the visualization of changes in both presynaptic axonal boutons and postsynaptic dendritic spines in the cortex. This technique allows long-term monitoring of experience-dependent structural plasticity in RSC. PMID:27022883

  14. Synthesis and evaluation of novel tropane derivatives as potential PET imaging agents for the dopamine transporter

    PubMed Central

    Qiao, Hongwen; Zhu, Lin; Lieberman, Brian P.; Zha, Zhihao; Plössl, Karl; Kung, Hank F.

    2012-01-01

    A novel series of tropane derivatives containing a fluorinated tertiary amino or amide at the 2β position was synthesized, labeled with the positron-emitter fluorine-18 (T1/2 = 109.8 min), and tested as potential in vivo dopamine transporter (DAT) imaging agents. The corresponding chlorinated analogs were prepared and employed as precursors for radiolabeling leading to the fluorine-18-labeled derivatives via a one-step nucleophilic aliphatic substitution reaction. In vitro binding results showed that the 2β-amino compounds 6b, 6d and 7b displayed moderately high affinities to DAT (Ki < 10 nM). Biodistribution studies of [18F]6b and [18F]6d showed that the brain uptakes in rats were low. This is likely due to their low lipophilicities. Further structural modifications of these tropane derivatives will be needed to improve their in vivo properties as DAT imaging agents. PMID:22658558

  15. Integration of Color and Local Derivative Pattern Features for Content-Based Image Indexing and Retrieval

    NASA Astrophysics Data System (ADS)

    Vipparthi, Santosh Kumar; Nagar, Shyam Krishna

    2015-09-01

    This paper presents two new feature descriptors for content based image retrieval (CBIR) application. The proposed two descriptors are named as color local derivative patterns (CLDP) and inter color local derivative pattern (ICLDP). In order to reduce the computational complexity the uniform patterns are applied to both CLDP and ICLDP. Further, uniform CLDP (CLDPu2) and uniform ICLDP (ICLDPu2) are generated respectively. The proposed descriptors are able to exploit individual (R, G and B) spectral channel information and co-relating pair (RG, GB, BR, etc.) of spectral channel information. The retrieval performances of the proposed descriptors (CLDP and ICLDP) are tested by conducting two experiments on Corel-5000 and Corel-10000 benchmark databases. The results after investigation show a significant improvement in terms of precision, average retrieval precision (ARP), recall and average retrieval rate (ARR) as compared to local binary patterns (LBP), local derivative patterns (LDP) and other state-of-the-art techniques for image retrieval.

  16. Rational Design of Fluorescent Phthalazinone Derivatives for One- and Two-Photon Imaging.

    PubMed

    Yang, Lingfei; Zhu, Yuanjun; Shui, Mengyang; Zhou, Tongliang; Cai, Yuanbo; Wang, Wei; Xu, Fengrong; Niu, Yan; Wang, Chao; Zhang, Jun-Long; Xu, Ping; Yuan, Lan; Liang, Lei

    2016-08-22

    Phthalazinone derivatives were designed as optical probes for one- and two-photon fluorescence microscopy imaging. The design strategy involves stepwise extension and modification of pyridazinone by 1) expansion of pyridazinone to phthalazinone, a larger conjugated system, as the electron acceptor, 2) coupling of electron-donating aromatic groups such as N,N-diethylaminophenyl, thienyl, naphthyl, and quinolyl to the phthalazinone, and 3) anchoring of an alkyl chain to the phthalazinone with various terminal substituents such as triphenylphosphonio, morpholino, triethylammonio, N-methylimidazolio, pyrrolidino, and piperidino. Theoretical calculations were utilized to verify the initial design. The desired fluorescent probes were synthesized by two different routes in considerable yields. Twenty-two phthalazinone derivatives were synthesized and their photophysical properties were measured. Selected compounds were applied in cell imaging, and valuable information was obtained. Furthermore, the designed compounds showed excellent performance in two-photon microscopic imaging of mouse brain slices.

  17. Image-derived biomarkers and multimodal imaging strategies for lung cancer management.

    PubMed

    Sauter, Alexander W; Schwenzer, Nina; Divine, Mathew R; Pichler, Bernd J; Pfannenberg, Christina

    2015-04-01

    Non-small-cell lung cancer is the most common type of lung cancer and one of the leading causes of cancer-related death worldwide. For this reason, advances in diagnosis and treatment are urgently needed. With the introduction of new, highly innovative hybrid imaging technologies such as PET/CT, staging and therapy response monitoring in lung cancer patients have substantially evolved. In this review, we discuss the role of FDG PET/CT in the management of lung cancer patients and the importance of new emerging imaging technologies and radiotracer developments on the path to personalized medicine.

  18. Multi-scale image enhancement using a second derivative-like measure of contrast

    NASA Astrophysics Data System (ADS)

    Nercessian, Shahan; Agaian, Sos S.; Panetta, Karen A.

    2012-03-01

    Image enhancement algorithms attempt to improve the visual quality of images for human or machine perception. Most direct multi-scale image enhancement methods are based on enhancing either absolute intensity changes or the Weber contrast at each scale, and have the advantage that the visual contrast is enhanced in a controlled manner. However, the human visual system is not adapted to absolute intensity changes, while the Weber contrast is unstable for small values of background luminance and potentially unsuitable for complex image patterns. The Michelson contrast measure is a bounded measure of contrast, but its expression does not allow a straightforward direct image enhancement formulation. Recently, a second derivative-like measure of contrast has been used to assess the performance of image enhancement algorithms. This measure is a Michelson-like contrast measure for which a direct image enhancement algorithm can be formulated. Accordingly, we propose a new direct multi-scale image enhancement algorithm based on the SDME in this paper. Experimental results illustrate the potential benefits of the proposed algorithm.

  19. Tri-stereo Pleiades images-derived digital surface models for tectonic geomorphology studies

    NASA Astrophysics Data System (ADS)

    Ferry, Matthieu; Le Roux-Mallouf, Romain; Ritz, Jean-François; Berthet, Théo; Peyret, Michel; Vernant, Philippe; Maréchal, Anaïs; Cattin, Rodolphe; Mazzotti, Stéphane; Poujol, Antoine

    2014-05-01

    Very high resolution digital elevation models are a key component of modern quantitative geomorphology. In parallel to high-precision but time-consuming kinematic GPS and/or total station surveys and dense coverage but expensive LiDAR campaigns, we explore the usability of affordable, flexible, wide coverage digital surface models (DSMs) derived from Pleiades tri-stereo optical images. We present two different approaches to extract DSM from a triplet of images. The first relies on the photogrammetric extraction of 3 DSMs from the 3 possible stereo couples and subsequent merge based on the best correlation score. The second takes advantage of simultaneous correlation over the 3 images to derive a point cloud. We further extract DSM from panchromatic 0.5 m resolution images and multispectral 2 m resolution images to test for correlation and noise and determine optimal correlation window size and achievable resolution. Georeferencing is also assessed by comparing raw coordinates derived from Pleiades Rational Polynomial Coefficients to ground control points. Primary images appear to be referenced within ~15 m over flat areas where parallax is minimal while derived DSMs and associated orthorectified images show a much improved referencing within ~5 m of GCPs. In order to assess the adequacy of Pleiades DSMs for tectonic geomorphology, we present examples from case studies along the Trougout normal fault (Morocco), the Hovd strike-slip fault (Mongolia), the Denali strike-slip fault (USA and Canada) and the Main Frontal Thrust (Bhutan). In addition to proposing a variety of tectonic contexts, these examples cover a wide range of climatic conditions (semi-arid, arctic and tropical), vegetation covers (bare earth, sparse Mediterranean, homogeneous arctic pine, varied tropical forest), lithological natures and related erosion rates. The capacity of derived DSMs is demonstrated to characterize geomorphic markers of active deformation such as marine and alluvial terraces

  20. Multispectral image classification of MRI data using an empirically-derived clustering algorithm

    SciTech Connect

    Horn, K.M.; Osbourn, G.C.; Bouchard, A.M.; Sanders, J.A. |

    1998-08-01

    Multispectral image analysis of magnetic resonance imaging (MRI) data has been performed using an empirically-derived clustering algorithm. This algorithm groups image pixels into distinct classes which exhibit similar response in the T{sub 2} 1st and 2nd-echo, and T{sub 1} (with ad without gadolinium) MRI images. The grouping is performed in an n-dimensional mathematical space; the n-dimensional volumes bounding each class define each specific tissue type. The classification results are rendered again in real-space by colored-coding each grouped class of pixels (associated with differing tissue types). This classification method is especially well suited for class volumes with complex boundary shapes, and is also expected to robustly detect abnormal tissue classes. The classification process is demonstrated using a three dimensional data set of MRI scans of a human brain tumor.

  1. A spatial downscaling procedure of MODIS derived actual evapotranspiration using Landsat images at central Greece

    NASA Astrophysics Data System (ADS)

    Spiliotopoulos, M.; Adaktylou, N.; Loukas, A.; Michalopoulou, H.; Mylopoulos, N.; Toulios, L.

    2013-08-01

    In this study, the Surface Energy Balance Algorithm for Land (SEBAL) was used to derive daily actual evapotranspiration (ETa) distributions from Landsat and MODIS images separately. The study area is the Lake Karla basin in Thessaly, Central Greece. Meteorological data from the archive of Center for Research and Technology, Thessaly (CERETETH) have also been used. The methodology was developed using satellite and ground data for the period of summer 2007. Landsat and MODIS imagery were combined in order to have data with high temporal and spatial resolution (downscaling). The downscaling technique applied is the output downscaling with regression between images. This technique disaggregates imagery by applying linear regression between two MODIS products to the previous or subsequent Landsat product. After the calculation of a first order linear regression between two MODIS-derived ETa maps the next step is the regression to the ETa map derived from the prior Landsat image to predict the disaggregated subsequent Landsat ETa map. The results are satisfactory, giving the general trend of ETa derived from the original SEBAL procedure.

  2. Video image-based analysis of single human induced pluripotent stem cell derived cardiomyocyte beating dynamics using digital image correlation

    PubMed Central

    2014-01-01

    Background The functionality of a cardiomyocyte is primarily measured by analyzing the electrophysiological properties of the cell. The analysis of the beating behavior of single cardiomyocytes, especially ones derived from stem cells, is challenging but well warranted. In this study, a video-based method that is non-invasive and label-free is introduced and applied for the study of single human cardiomyocytes derived from induced pluripotent stem cells. Methods The beating of dissociated stem cell-derived cardiomyocytes was visualized with a microscope and the motion was video-recorded. Minimum quadratic difference, a digital image correlation method, was used for beating analysis with geometrical sectorial cell division and radial/tangential directions. The time series of the temporal displacement vector fields of a single cardiomyocyte was computed from video data. The vector field data was processed to obtain cell-specific, contraction-relaxation dynamics signals. Simulated cardiomyocyte beating was used as a reference and the current clamp of real cardiomyocytes was used to analyze the electrical functionality of the beating cardiomyocytes. Results Our results demonstrate that our sectorized image correlation method is capable of extracting single cell beating characteristics from the video data of induced pluripotent stem cell-derived cardiomyocytes that have no clear movement axis, and that the method can accurately identify beating phases and time parameters. Conclusion Our video analysis of the beating motion of single human cardiomyocytes provides a robust, non-invasive and label-free method to analyze the mechanobiological functionality of cardiomyocytes derived from induced pluripotent stem cells. Thus, our method has potential for the high-throughput analysis of cardiomyocyte functions. PMID:24708714

  3. A complementary dual-slope ADC with high frame rate and wide input range for fast X-ray imaging

    NASA Astrophysics Data System (ADS)

    Lee, Daehee; Cho, Minsik; Kang, Dong-Uk; Kim, Myung Soo; Kim, Hyunduk; Cho, Gyuseong

    2014-02-01

    The single-slope analog-to-digital converter (SS-ADC) is the most commonly used column-level ADC for high-speed industrial, complementary metal-oxide semiconductor (CMOS)-based X-ray image sensors because of its small chip area (the width of a pixel), its simple circuit structure, and its low power consumption. However, it generally has a long conversion time, so we propose an innovative design: a complimentary dual-slope ADC (CDS-ADC) that uses two opposite ramp signals instead of a single ramp to double the conversion speed. This CDS-ADC occupies only 15% more area than the original SS-ADC. A prototype 12-bit CDS-ADC and a 12-bit SS-ADC were fabricated using a 0.35-µm 1P 4M CMOS process. During comparison of the two, the measured maximum differential non-linearity (DNL) of the CDS-ADC was a 0.49 least significant bit (LSB), the maximum integral non-linearity (INL) was a 0.43 LSB, the effective number of bits (ENOB) was 9.18 bits, and the figure of merit (FOM) was 0.03 pJ/conversion. The total power consumption was 0.031 uW. The conversion time of the new CDS-ADC was half that of the SS-ADC. The proposed dual-slope concept can be extended to further multiply the conversion speed by using multiple pairs of dual-slope ramps.

  4. Influence of Autofluorescence Derived From Living Body on In Vivo Fluorescence Imaging Using Quantum Dots.

    PubMed

    Yukawa, Hiroshi; Watanabe, Masaki; Kaji, Noritada; Baba, Yoshinobu

    2015-02-01

    Quantum dots (QDs) are thought to be a novel inorganic probe for in vivo fluorescence imaging because of their excellent fluorescence properties. Autofluorescence is generally known to be produced from various living bodies including humans, rats, and mice. However, the influence of the autofluorescence on in vivo fluorescence imaging using QDs remains poorly understood. In this article, we assessed the autofluorescence derived from a mouse body and the influence of the autofluorescence on in vivo fluorescence imaging using QDs. The dorsal and ventral autofluorescence derived from a mouse from which the hair was removed were detected under all kinds of excitation/fluorescence filter settings (blue, green, yellow, red, deep red, and NIR) using the Maestro™ in vivo imaging system. The degree of autofluorescence was found to be extremely high in the red filter condition, but transplanted ASCs labeled with QDs on the back of a mouse could be detected in the red filter condition. Moreover, the ASCs labeled with QDs could be traced for at least 5 days. We suggest that fluorescence imaging using QDs can be useful for the detection of transplanted cells. PMID:26858896

  5. In vivo imaging of human adipose-derived stem cells in Alzheimer's disease animal model

    NASA Astrophysics Data System (ADS)

    Ha, Sungji; Ahn, Sangzin; Kim, Saeromi; Joo, Yuyoung; Chong, Young Hae; Suh, Yoo-Hun; Chang, Keun-A.

    2014-05-01

    Stem cell therapy is a promising tool for the treatment of diverse conditions, including neurodegenerative diseases such as Alzheimer's disease (AD). To understand transplanted stem cell biology, in vivo imaging is necessary. Nanomaterial has great potential for in vivo imaging and several noninvasive methods are used, such as magnetic resonance imaging, positron emission tomography, fluorescence imaging (FI) and near-infrared FI. However, each method has limitations for in vivo imaging. To overcome these limitations, multimodal nanoprobes have been developed. In the present study, we intravenously injected human adipose-derived stem cells (hASCs) that were labeled with a multimodal nanoparticle, LEO-LIVE™-Magnoxide 675 or 797 (BITERIALS, Seoul, Korea), into Tg2576 mice, an AD mouse model. After sequential in vivo tracking using Maestro Imaging System, we found fluorescence signals up to 10 days after injection. We also found strong signals in the brains extracted from hASC-transplanted Tg2576 mice up to 12 days after injection. With these results, we suggest that in vivo imaging with this multimodal nanoparticle may provide a useful tool for stem cell tracking and understanding stem cell biology in other neurodegenerative diseases.

  6. In vivo imaging of human adipose-derived stem cells in Alzheimer's disease animal model.

    PubMed

    Ha, Sungji; Ahn, Sangzin; Kim, Saeromi; Joo, Yuyoung; Chong, Young Hae; Suh, Yoo-Hun; Chang, Keun-A

    2014-05-01

    Stem cell therapy is a promising tool for the treatment of diverse conditions, including neurodegenerative diseases such as Alzheimer's disease (AD). To understand transplanted stem cell biology, in vivo imaging is necessary. Nanomaterial has great potential for in vivo imaging and several noninvasive methods are used, such as magnetic resonance imaging, positron emission tomography, fluorescence imaging (FI) and near-infrared FI. However, each method has limitations for in vivo imaging. To overcome these limitations, multimodal nanoprobes have been developed. In the present study, we intravenously injected human adipose-derived stem cells (hASCs) that were labeled with a multimodal nanoparticle, LEO-LIVE™-Magnoxide 675 or 797 (BITERIALS, Seoul, Korea), into Tg2576 mice, an AD mouse model. After sequential in vivo tracking using Maestro Imaging System, we found fluorescence signals up to 10 days after injection. We also found strong signals in the brains extracted from hASC-transplanted Tg2576 mice up to 12 days after injection. With these results, we suggest that in vivo imaging with this multimodal nanoparticle may provide a useful tool for stem cell tracking and understanding stem cell biology in other neurodegenerative diseases.

  7. Bimodal X-ray and Infrared Imaging of an Organometallic Derivative of Praziquantel in Schistosoma mansoni.

    PubMed

    Clède, Sylvain; Cowan, Noemi; Lambert, François; Bertrand, Hélène C; Rubbiani, Riccardo; Patra, Malay; Hess, Jeannine; Sandt, Christophe; Trcera, Nicolas; Gasser, Gilles; Keiser, Jennifer; Policar, Clotilde

    2016-06-01

    An organometallic derivative of praziquantel was studied directly in worms by using inductively coupled plasma-mass spectrometry (ICP-MS) for quantification and synchrotron-based imaging. X-ray fluorescence (XRF) and IR absorption spectromicroscopy were used for the first time in combination to directly locate this organometallic drug candidate in schistosomes. The detection of both CO (IR) and Cr (XRF) signatures proved that the Cr(CO)3 core remained intact in the worms. Images showed a preferential accumulation at the worm's tegument, consistent with a possible targeting of the calcium channel but not excluding other biological targets inside the worm. PMID:26991635

  8. In vivo Photoacoustic Spectroscopic Imaging of Hemoglobin Derivatives in Thermally Damaged Tissue

    NASA Astrophysics Data System (ADS)

    Aizawa, Kazuya; Sato, Shunichi; Saitoh, Daizoh; Ashida, Hiroshi; Obara, Minoru

    2009-06-01

    Photoacoustic (PA) spectroscopic measurement was performed for thermally damaged skin in a rat in vivo to analyze hemoglobin derivatives in the tissue. We observed PA signals at around 500 and 633 nm, which are center wavelengths of methemoglobin (MetHb) absorption peaks, at depths corresponding the uppermost dermis (˜0.16 mm) and hair follicles (˜0.62 mm), indicating formation of MetHb in these tissue regions. By scanning a PA detector on the tissue, two-dimensional PA images (tomograms) were produced. Subtraction imaging technique was used for multispectral PA tomograms to analyze specific components of hemoglobin derivatives in the tissue, by which the contrast of oxyhemogobin (HbO2)-associated PA signal has been improved and the distribution of PA signal that seems to reflect the concentration of MetHb has been visualized.

  9. Geo-accurate model extraction from three-dimensional image-derived point clouds

    NASA Astrophysics Data System (ADS)

    Nilosek, David; Sun, Shaohui; Salvaggio, Carl

    2012-06-01

    A methodology is proposed for automatically extracting primitive models of buildings in a scene from a three-dimensional point cloud derived from multi-view depth extraction techniques. By exploring the information provided by the two-dimensional images and the three-dimensional point cloud and the relationship between the two, automated methods for extraction are presented. Using the inertial measurement unit (IMU) and global positioning system (GPS) data that accompanies the aerial imagery, the geometry is derived in a world-coordinate system so the model can be used with GIS software. This work uses imagery collected by the Rochester Institute of Technology's Digital Imaging and Remote Sensing Laboratory's WASP sensor platform. The data used was collected over downtown Rochester, New York. Multiple target buildings have their primitive three-dimensional model geometry extracted using modern point-cloud processing techniques.

  10. New Data on Lunar Topography Derived from Galileo and Clementine Stereo Images

    NASA Astrophysics Data System (ADS)

    Oberst, J.; Wahlisch, M.; Zhang, W.; Roatsch, T.; Cook, A. C.; Jaumann, R.

    1996-03-01

    We analyzed images, obtained by the Galileo and Clementine spacecraft in 1992 and 1994 using state-of-the-art photogrammetric techniques to derive Digital Terrain Models (DTMs) for selected lunar regions. These regions include: the near-side northern hemisphere, parts of Mare Orientale, and the Alpine Valley. The new topographic data allow us to study the morphology of the Moon, in particular large craters and the multi-ring impact basins in unprecedented detail.

  11. Derivation of the scan time requirement for maintaining a consistent PET image quality

    NASA Astrophysics Data System (ADS)

    Kim, Jin Su; Lee, Jae Sung; Kim, Seok-Ki

    2015-05-01

    Objectives: the image quality of PET for larger patients is relatively poor, even though the injection dose is optimized considering the NECR characteristics of the PET scanner. This poor image quality is due to the lower level of maximum NECR that can be achieved in these large patients. The aim of this study was to optimize the PET scan time to obtain a consistent PET image quality regardless of the body size, based on the relationship between the patient specific NECR (pNECR) and body weight. Methods: eighty patients (M/F=53/27, body weight: 059 ± 1 kg) underwent whole-body FDG PET scans using a Philips GEMINI GS PET/CT scanner after an injection of 0.14 mCi/kg FDG. The relationship between the scatter fraction (SF) and body weight was determined by repeated Monte Carlo simulations using a NEMA scatter phantom, the size of which varied according to the relationship between the abdominal circumference and body weight. Using this information, the pNECR was calculated from the prompt and delayed PET sinograms to obtain the prediction equation of NECR vs. body weight. The time scaling factor (FTS) for the scan duration was finally derived to make PET images with equivalent SNR levels. Results: the SF and NECR had the following nonlinear relationships with the body weight: SF=0.15 ṡ body weight0.3 and NECR = 421.36 (body weight)-0.84. The equation derived for FTS was 0.01ṡ body weight + 0.2, which means that, for example, a 120-kg person should be scanned 1.8 times longer than a 70 kg person, or the scan time for a 40-kg person can be reduced by 30%. Conclusion: the equation of the relative time demand derived in this study will be useful for maintaining consistent PET image quality in clinics.

  12. Resolution and shutter speed measurements of an MCPII with a 270-ps whole image shutter for a point-source input

    SciTech Connect

    Thomas, M.C.; Yates, G.J.; Zagarino, P.

    1995-07-01

    The modulation transfer function (MF) of a shuttered, 18-mm-diameter, proximity-focused microchemical-plate image intensifier (MCPII) was measured as a function of time in the shutter sequence. Electrical gate pulses were delivered to the MCPII with microstrip impedance transformers for reduced pulse dispersion and reflections. Using 30 ps FWHM, 600 nm pulses from a sync-pumped dye, argon-ion laser as a probe, the MCPII`s shutter speed for point-source (6-{mu}m-diameter) illumination and 230 ps FWHM, {minus}590 V gate pulses was measured to be between 200 and 250 ps FWHM. The MF of the MCPII was measured by analyzing the point spread function (PSF) for inputs at several different locations on the MCPII and at different times in the shuttering sequence. The best 50% MF resolution of 16.2 lp/mm was found with illumination near the edge where the gate pulse enters the MCPII and at 120 ps into the shutter sequence. The whole image (18-mm-diameter) shutter speed (off-to-off) of the MCPII was measured to be 270 ps.

  13. Development of a pulse programmer for magnetic resonance imaging using a personal computer and a high-speed digital input-output board.

    PubMed

    Hashimoto, Seitaro; Kose, Katsumi; Haishi, Tomoyuki

    2012-05-01

    We have developed a pulse programmer for magnetic resonance imaging (MRI) using a personal computer and a commercially available high-speed digital input-output board. The software for the pulse programmer was developed using C∕C++ and .NET Framework 2.0 running under the Windows 7 operating system. The pulse programmer was connected to a digital MRI transceiver using a 32-bit parallel interface, and 128-bit data (16 bits × 8 words) for the pulse sequence and the digitally detected MRI signal were transferred bi-directionally every 1 μs. The performance of the pulse programmer was evaluated using a 1.0 T permanent magnet MRI system. The acquired MR images demonstrated the usefulness of the pulse programmer. Although our pulse programmer was developed for a specially designed digital MRI transceiver, our approach can be used for any MRI system if the interface for the transceiver is properly designed. Therefore, we have concluded that our approach is promising for MRI pulse programmers. PMID:22667620

  14. Image segmentation using fuzzy rules derived from K-means clusters

    NASA Astrophysics Data System (ADS)

    Chi, Zheru; Yan, Hong

    1995-04-01

    Image segmentation is one of the most important steps in computerized systems for analyzing geographic map images. We present a segmentation technique, based on fuzzy rules derived from the K-means clusters, that is aimed at achieving humanlike performance. In this technique, the K-means clustering algorithm is first used to obtain mixed-class clusters of training examples, whose centers and variances are then used to determine membership functions. Based on the derived membership functions, fuzzy rules are learned from the K- means cluster centers. In the map image segmentation, we make use of three features-- difference intensity, standard deviation, and a measure of the local contrast, to classify each pixel to the foreground, which consists of character and line patterns, and to the background. A centroid defuzzification algorithm is adopted in the classification step. Experimental results on a database of 22 grayscale map images show that the technique achieves good and reliable results, and is compared favorably with an adaptive thresholding method. By using K-means clustering, we can build a segmentation system of fewer rules that achieves a segmentation quality similar to that of using the uniformly distributed triangular membership functions with the fuzzy rules learned from all the training examples.

  15. A fractal derivative model for the characterization of anomalous diffusion in magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Liang, Yingjie; Ye, Allen Q.; Chen, Wen; Gatto, Rodolfo G.; Colon-Perez, Luis; Mareci, Thomas H.; Magin, Richard L.

    2016-10-01

    Non-Gaussian (anomalous) diffusion is wide spread in biological tissues where its effects modulate chemical reactions and membrane transport. When viewed using magnetic resonance imaging (MRI), anomalous diffusion is characterized by a persistent or 'long tail' behavior in the decay of the diffusion signal. Recent MRI studies have used the fractional derivative to describe diffusion dynamics in normal and post-mortem tissue by connecting the order of the derivative with changes in tissue composition, structure and complexity. In this study we consider an alternative approach by introducing fractal time and space derivatives into Fick's second law of diffusion. This provides a more natural way to link sub-voxel tissue composition with the observed MRI diffusion signal decay following the application of a diffusion-sensitive pulse sequence. Unlike previous studies using fractional order derivatives, here the fractal derivative order is directly connected to the Hausdorff fractal dimension of the diffusion trajectory. The result is a simpler, computationally faster, and more direct way to incorporate tissue complexity and microstructure into the diffusional dynamics. Furthermore, the results are readily expressed in terms of spectral entropy, which provides a quantitative measure of the overall complexity of the heterogeneous and multi-scale structure of biological tissues. As an example, we apply this new model for the characterization of diffusion in fixed samples of the mouse brain. These results are compared with those obtained using the mono-exponential, the stretched exponential, the fractional derivative, and the diffusion kurtosis models. Overall, we find that the order of the fractal time derivative, the diffusion coefficient, and the spectral entropy are potential biomarkers to differentiate between the microstructure of white and gray matter. In addition, we note that the fractal derivative model has practical advantages over the existing models from the

  16. Characterisation of radioiodinated flavonoid derivatives for SPECT imaging of cerebral prion deposits.

    PubMed

    Fuchigami, Takeshi; Yamashita, Yuki; Kawasaki, Masao; Ogawa, Ayaka; Haratake, Mamoru; Atarashi, Ryuichiro; Sano, Kazunori; Nakagaki, Takehiro; Ubagai, Kaori; Ono, Masahiro; Yoshida, Sakura; Nishida, Noriyuki; Nakayama, Morio

    2015-01-01

    Prion diseases are fatal neurodegenerative diseases characterised by deposition of amyloid plaques containing abnormal prion protein aggregates (PrP(Sc)). This study aimed to evaluate the potential of radioiodinated flavonoid derivatives for single photon emission computed tomography (SPECT) imaging of PrP(Sc). In vitro binding assays using recombinant mouse PrP (rMoPrP) aggregates revealed that the 4-dimethylamino-substituted styrylchromone derivative (SC-NMe2) had higher in vitro binding affinity (Kd = 24.5 nM) and capacity (Bmax = 36.3 pmol/nmol protein) than three other flavonoid derivatives (flavone, chalcone, and aurone). Fluorescent imaging using brain sections from mouse-adapted bovine spongiform encephalopathy (mBSE)-infected mice demonstrated that SC-NMe2 clearly labelled PrP(Sc)-positive prion deposits in the mice brain. Two methoxy SC derivatives, SC-OMe and SC-(OMe)2, also showed high binding affinity for rMoPrP aggregates with Ki values of 20.8 and 26.6 nM, respectively. In vitro fluorescence and autoradiography experiments demonstrated high accumulation of [(125)I]SC-OMe and [(125)I]SC-(OMe)2 in prion deposit-rich regions of the mBSE-infected mouse brain. SPECT/computed tomography (CT) imaging and ex vivo autoradiography demonstrated that [(123)I]SC-OMe showed consistent brain distribution with the presence of PrP(Sc) deposits in the mBSE-infected mice brain. In conclusion, [(123)I]SC-OMe appears a promising SPECT radioligand for monitoring prion deposit levels in the living brain. PMID:26669576

  17. Characterisation of radioiodinated flavonoid derivatives for SPECT imaging of cerebral prion deposits

    PubMed Central

    Fuchigami, Takeshi; Yamashita, Yuki; Kawasaki, Masao; Ogawa, Ayaka; Haratake, Mamoru; Atarashi, Ryuichiro; Sano, Kazunori; Nakagaki, Takehiro; Ubagai, Kaori; Ono, Masahiro; Yoshida, Sakura; Nishida, Noriyuki; Nakayama, Morio

    2015-01-01

    Prion diseases are fatal neurodegenerative diseases characterised by deposition of amyloid plaques containing abnormal prion protein aggregates (PrPSc). This study aimed to evaluate the potential of radioiodinated flavonoid derivatives for single photon emission computed tomography (SPECT) imaging of PrPSc. In vitro binding assays using recombinant mouse PrP (rMoPrP) aggregates revealed that the 4-dimethylamino-substituted styrylchromone derivative (SC-NMe2) had higher in vitro binding affinity (Kd = 24.5 nM) and capacity (Bmax = 36.3 pmol/nmol protein) than three other flavonoid derivatives (flavone, chalcone, and aurone). Fluorescent imaging using brain sections from mouse-adapted bovine spongiform encephalopathy (mBSE)-infected mice demonstrated that SC-NMe2 clearly labelled PrPSc-positive prion deposits in the mice brain. Two methoxy SC derivatives, SC-OMe and SC-(OMe)2, also showed high binding affinity for rMoPrP aggregates with Ki values of 20.8 and 26.6 nM, respectively. In vitro fluorescence and autoradiography experiments demonstrated high accumulation of [125I]SC-OMe and [125I]SC-(OMe)2 in prion deposit-rich regions of the mBSE-infected mouse brain. SPECT/computed tomography (CT) imaging and ex vivo autoradiography demonstrated that [123I]SC-OMe showed consistent brain distribution with the presence of PrPSc deposits in the mBSE-infected mice brain. In conclusion, [123I]SC-OMe appears a promising SPECT radioligand for monitoring prion deposit levels in the living brain. PMID:26669576

  18. Characterising the composition of waste-derived fuels using a novel image analysis tool.

    PubMed

    Peddireddy, S; Longhurst, P J; Wagland, S T

    2015-06-01

    An experimental study was completed using a previously developed and innovative image analysis approach, which has been applied here to shredded waste materials representative of waste-derived fuels. Waste components were collected from source-segregated recycling containers and shredded to <150 mm. These materials were then used to produce 3× samples of different composition. The samples were spread to represent materials on a conveyor belt, and multiple images of each sample were captured using 10×10 cm and 20×20 cm quadrats. The images were processed using ERDAS Imagine software to determine the area covered by each waste component. This coverage was converted into a mass using density data determined as part of this study, yielding a determined composition which was then compared with the known composition of the samples. The image analysis results indicated a strong correlation with the actual values (mean r=0.89). The area coverage of the sample (10×10 cm or 20×20 cm) contributes to the accuracy as the dot-grid approach used with the particle size within the samples may result in components not being sufficiently monitored. This manuscript presents initial results of the application of an adapted innovative image-based method, and critically assesses how the technique could be improved and developed in the future. PMID:25827256

  19. Surface mineral maps of Afghanistan derived from HyMap imaging spectrometer data, version 2

    USGS Publications Warehouse

    Kokaly, Raymond F.; King, Trude V.V.; Hoefen, Todd M.

    2013-01-01

    This report presents a new version of surface mineral maps derived from HyMap imaging spectrometer data collected over Afghanistan in the fall of 2007. This report also describes the processing steps applied to the imaging spectrometer data. The 218 individual flight lines composing the Afghanistan dataset, covering more than 438,000 square kilometers, were georeferenced to a mosaic of orthorectified Landsat images. The HyMap data were converted from radiance to reflectance using a radiative transfer program in combination with ground-calibration sites and a network of cross-cutting calibration flight lines. The U.S. Geological Survey Material Identification and Characterization Algorithm (MICA) was used to generate two thematic maps of surface minerals: a map of iron-bearing minerals and other materials, which have their primary absorption features at the shorter wavelengths of the reflected solar wavelength range, and a map of carbonates, phyllosilicates, sulfates, altered minerals, and other materials, which have their primary absorption features at the longer wavelengths of the reflected solar wavelength range. In contrast to the original version, version 2 of these maps is provided at full resolution of 23-meter pixel size. The thematic maps, MICA summary images, and the material fit and depth images are distributed in digital files linked to this report, in a format readable by remote sensing software and Geographic Information Systems (GIS). The digital files can be downloaded from http://pubs.usgs.gov/ds/787/downloads/.

  20. Study of an image-derived SUV and a modified SUV using mouse FDG-PET

    PubMed Central

    Zheng, Xiujuan; Yu, Chin-Lung; Sha, Wei; Radu, Caius; Huang, Sung-Cheng; Feng, Dagan

    2010-01-01

    Introduction Standard uptake value (SUV) is calculated without consideration of the differences in plasma FDG clearance. Its variability can be affected by changes of the amount of excreted FDG by renal function. Moreover, the estimation of SUV is quite sensitive to errors in the measurements of body weight and injected dose. This study aims to develop an image-based method to obtain an image-derived SUV (iSUV) and a modified SUV (mSUV) to overcome these problems. Methods 31 tumor-planted SCID mice were scanned in microPET at ~60min post FDG injection, and then scanned in microCT. Using image-based method, the body weight and injected dose were derived from the microPET/CT images to calculate iSUV. The volumes and the total activities of FDG within the bladder and the whole-body were also obtained to calculate mSUV. For the selected targets, the iSUVs and mSUVs were compared against their corresponding SUVs. Results Compared with SUV factor (injected dose/body weight), iSUV factor had an average percentage error of −0.7%. The linear regressions between SUV and iSUV had a slope of 0.99 with correlation coefficient of 0.95. Compared with SUV and iSUV, CV% of mSUV decreased while the tumor-to-background separation of mSUV increased. Conclusions Using this image-based method, the iSUV can replace SUV when the actual measurements were missing or unreliable. The mSUV can reduce the inter-subject variability and enhance the tumor-to-background separation in mouse FDG-PET studies. PMID:21492784

  1. Erythrocyte-derived nano-probes functionalized with antibodies for targeted near infrared fluorescence imaging of cancer cells

    PubMed Central

    Mac, Jenny T.; Nuñez, Vicente; Burns, Joshua M.; Guerrero, Yadir A.; Vullev, Valentine I.; Anvari, Bahman

    2016-01-01

    Constructs derived from mammalian cells are emerging as a new generation of nano-scale platforms for clinical imaging applications. Herein, we report successful engineering of hybrid nano-structures composed of erythrocyte-derived membranes doped with FDA-approved near infrared (NIR) chromophore, indocyanine green (ICG), and surface-functionalized with antibodies to achieve molecular targeting. We demonstrate that these constructs can be used for targeted imaging of cancer cells in vitro. These erythrocyte-derived optical nano-probes may provide a potential platform for clinical translation, and enable molecular imaging of cancer biomarkers. PMID:27446657

  2. Comparison of Three Non-Imaging Angle-Diversity Receivers as Input Sensors of Nodes for Indoor Infrared Wireless Sensor Networks: Theory and Simulation

    PubMed Central

    Mendoza, Beatriz R.; Rodríguez, Silvestre; Pérez-Jiménez, Rafael; Ayala, Alejandro; González, Oswaldo

    2016-01-01

    In general, the use of angle-diversity receivers makes it possible to reduce the impact of ambient light noise, path loss and multipath distortion, in part by exploiting the fact that they often receive the desired signal from different directions. Angle-diversity detection can be performed using a composite receiver with multiple detector elements looking in different directions. These are called non-imaging angle-diversity receivers. In this paper, a comparison of three non-imaging angle-diversity receivers as input sensors of nodes for an indoor infrared (IR) wireless sensor network is presented. The receivers considered are the conventional angle-diversity receiver (CDR), the sectored angle-diversity receiver (SDR), and the self-orienting receiver (SOR), which have been proposed or studied by research groups in Spain. To this end, the effective signal-collection area of the three receivers is modelled and a Monte-Carlo-based ray-tracing algorithm is implemented which allows us to investigate the effect on the signal to noise ratio and main IR channel parameters, such as path loss and rms delay spread, of using the three receivers in conjunction with different combination techniques in IR links operating at low bit rates. Based on the results of the simulations, we show that the use of a conventional angle-diversity receiver in conjunction with the equal-gain combining technique provides the solution with the best signal to noise ratio, the lowest computational capacity and the lowest transmitted power requirements, which comprise the main limitations for sensor nodes in an indoor infrared wireless sensor network. PMID:27428966

  3. Comparison of Three Non-Imaging Angle-Diversity Receivers as Input Sensors of Nodes for Indoor Infrared Wireless Sensor Networks: Theory and Simulation.

    PubMed

    Mendoza, Beatriz R; Rodríguez, Silvestre; Pérez-Jiménez, Rafael; Ayala, Alejandro; González, Oswaldo

    2016-01-01

    In general, the use of angle-diversity receivers makes it possible to reduce the impact of ambient light noise, path loss and multipath distortion, in part by exploiting the fact that they often receive the desired signal from different directions. Angle-diversity detection can be performed using a composite receiver with multiple detector elements looking in different directions. These are called non-imaging angle-diversity receivers. In this paper, a comparison of three non-imaging angle-diversity receivers as input sensors of nodes for an indoor infrared (IR) wireless sensor network is presented. The receivers considered are the conventional angle-diversity receiver (CDR), the sectored angle-diversity receiver (SDR), and the self-orienting receiver (SOR), which have been proposed or studied by research groups in Spain. To this end, the effective signal-collection area of the three receivers is modelled and a Monte-Carlo-based ray-tracing algorithm is implemented which allows us to investigate the effect on the signal to noise ratio and main IR channel parameters, such as path loss and rms delay spread, of using the three receivers in conjunction with different combination techniques in IR links operating at low bit rates. Based on the results of the simulations, we show that the use of a conventional angle-diversity receiver in conjunction with the equal-gain combining technique provides the solution with the best signal to noise ratio, the lowest computational capacity and the lowest transmitted power requirements, which comprise the main limitations for sensor nodes in an indoor infrared wireless sensor network. PMID:27428966

  4. (abstract) Monitoring Seasonal State and Mapping Species in Alaskan Taiga Using Imaging Radar as Input to CO(sub 2) Flux Models

    NASA Technical Reports Server (NTRS)

    Way, J. B.; Rignot, E.; McDonald, K.; Adams, P.; Viereck, L.

    1993-01-01

    Changes in the seasonal CO(sub 2) flux of the boreal forests may result from increased atmospheric CO(sub 2) concentrations and associated atmospheric warming. To monitor this potential change, a combination of remote sensing information and ecophysiological models are required. In this paper we address the use of synthetic aperture radar (SAR) data to provide some of the input to the ecophysiological models: forest type, freeze/thaw state which limits the growing season for conifers, and leaf on/off state which limits the growing season for deciduous species. AIRSAR data collected in March 1988 during an early thaw event and May 1991 during spring breakup are used to generate species maps and to determine the sensitivity of SAR to canopy freeze/thaw transitions. These data are also used to validate a microwave scattering model which is then used to determine the sensitivity of SAR to leaf on/off and soil freeze/thaw transitions. Finally, a CO(sub 2) flux algorithm which utilizes SAR data and an ecophysiological model to estimate CO(sub 2) flux is presented. CO(sub 2) flux maps are generated from which areal estimates of CO(sub 2) flux are derived.

  5. Monitoring seasonal state and mapping species in Alaskan taiga using imaging radar as input to CO[sub 2] flux models

    SciTech Connect

    Way, J.B.; Rignot, E.; McDonald, K.; Adams, P.; Viereck, L. Institute of Northern Forestry, Fairbanks, AK )

    1993-06-01

    Changes in the seasonal CO[sub 2] flux of the boreal forests may result from increased atmospheric CO[sub 2] concentrations and associated atmospheric warming. To monitor this potential change, a combination of remote sensing information and ecophysiological models are required. In this paper we address the use of synthetic aperture radar (SAR) data to provide some of the input to the ecophysiological models: forest type, freeze/thaw state which limits the growing season for conifers, and leaf on/off state which limits the growing season for deciduous species. AIRSAR data collected in March 1988 during an early thaw event and May 1991 during spring breakup are used to generate species maps and to determine the sensitivity of SAR to canopy freeze/thaw transitions. These data are also used to validate a microwave scattering model which is then used to determine the sensitivity of SAR to leaf on/off and soil freeze/thaw transitions. Finally, a CO[sub 2] flux algorithm which utilizes SAR data and an ecophysiological model to estimate CO[sub 2] flux is presented. CO[sub 2] flux maps are generated from which areal estimates of CO[sub 2] flux are derived. This work was carried out at the Jet Propulsion Laboratory under contract to the NASA.

  6. Arterial input function of an optical tracer for dynamic contrast enhanced imaging can be determined from pulse oximetry oxygen saturation measurements

    NASA Astrophysics Data System (ADS)

    Elliott, Jonathan T.; Wright, Eric A.; Tichauer, Kenneth M.; Diop, Mamadou; Morrison, Laura B.; Pogue, Brian W.; Lee, Ting-Yim; St. Lawrence, Keith

    2012-12-01

    In many cases, kinetic modeling requires that the arterial input function (AIF)—the time-dependent arterial concentration of a tracer—be characterized. A straightforward method to measure the AIF of red and near-infrared optical dyes (e.g., indocyanine green) using a pulse oximeter is presented. The method is motivated by the ubiquity of pulse oximeters used in both preclinical and clinical applications, as well as the gap in currently available technologies to measure AIFs in small animals. The method is based on quantifying the interference that is observed in the derived arterial oxygen saturation (SaO2) following a bolus injection of a light-absorbing dye. In other words, the change in SaO2 can be converted into dye concentration knowing the chromophore-specific extinction coefficients, the true arterial oxygen saturation, and total hemoglobin concentration. A simple error analysis was performed to highlight potential limitations of the approach, and a validation of the method was conducted in rabbits by comparing the pulse oximetry method with the AIF acquired using a pulse dye densitometer. Considering that determining the AIF is required for performing quantitative tracer kinetics, this method provides a flexible tool for measuring the arterial dye concentration that could be used in a variety of applications.

  7. Navigation systems based on registration of endoscopic and CT-derived virtual images for bronchofiberoscopic procedures.

    PubMed

    Turcza, Paweł; Duplaga, Mariusz

    2004-01-01

    Bronchofiberoscopy is an essential diagnostic procedure in patients with lung cancer. Sampling methods employed during endoscopy of the respiratory tract are performed with the aim of diagnosis confirmation and staging. Transbronchial needle aspiration may be used for evaluation of lymph nodes neighbouring with trachea and bronchi. Many efforts have been undertaken to increase the sensitivity of this procedure including the application of endobronchial ultrasonography. In recent years several research groups have proposed models of navigating systems to provide computer assistance during bronchoscopic interventions. Although they have used different techniques, their objective was the same - enabling tracking location and movement of bronchofiberoscope tip with reference to previously-acquired computed tomography (CT) images. Since a fiber-optic bronchoscope is a rather long and flexible device, determination of its tip location is not an easy task. The adoption of optical tracking methods used in neurosurgery or laparoscopic surgery to endoscopy of the tracheobronchial tree is usually not possible. Another obstacle is related to the fact that bronchofiberoscopes usually have only one operational channel. This feature considerably limits the feasibility of navigation systems based on the use of small electromagnetic sensing devices or USG probes. The sources of positioning errors in such systems are respiratory movements and the lack of external referential coordinate system associated with the tracheobronchial tree.A promising option for development of a bronchoscopic guidance system is the application of image registration algorithms. Such an approach encompasses registration of endoscopic images to views derived from advanced imaging methods, e.g. CT. In the first step, reconstruction of a three-dimensional, endoluminal views is performed. Next, the position of the virtual camera in a CT-derived virtual model is determined using a complex multi-level image

  8. MRI-Derived 3-D-Printed Breast Phantom for Microwave Breast Imaging Validation.

    PubMed

    Burfeindt, Matthew J; Colgan, Timothy J; Mays, R Owen; Shea, Jacob D; Behdad, Nader; Van Veen, Barry D; Hagness, Susan C

    2012-01-01

    We propose a 3-D-printed breast phantom for use in preclinical experimental microwave imaging studies. The phantom is derived from an MRI of a human subject; thus, it is anthropomorphic, and its interior is very similar to an actual distribution of fibroglandular tissues. Adipose tissue in the breast is represented by the solid plastic (printed) regions of the phantom, while fibroglandular tissue is represented by liquid-filled voids in the plastic. The liquid is chosen to provide a biologically relevant dielectric contrast with the printed plastic. Such a phantom enables validation of microwave imaging techniques. We describe the procedure for generating the 3-D-printed breast phantom and present the measured dielectric properties of the 3-D-printed plastic over the frequency range 0.5-3.5 GHz. We also provide an example of a suitable liquid for filling the fibroglandular voids in the plastic.

  9. Near-infrared-fluorescence imaging of lymph nodes by using liposomally formulated indocyanine green derivatives.

    PubMed

    Toyota, Taro; Fujito, Hiromichi; Suganami, Akiko; Ouchi, Tomoki; Ooishi, Aki; Aoki, Akira; Onoue, Kazutaka; Muraki, Yutaka; Madono, Tomoyuki; Fujinami, Masanori; Tamura, Yutaka; Hayashi, Hideki

    2014-01-15

    Liposomally formulated indocyanine green (LP-ICG) has drawn much attention as a highly sensitive near-infrared (NIR)-fluorescence probe for tumors or lymph nodes in vivo. We synthesized ICG derivatives tagged with alkyl chains (ICG-Cn), and we examined NIR-fluorescence imaging for lymph nodes in the lower extremities of mice by using liposomally formulated ICG-Cn (LP-ICG-Cn) as well as conventional liposomally formulated ICG (LP-ICG) and ICG. Analysis with a noninvasive preclinical NIR-fluorescence imaging system revealed that LP-ICG-Cn accumulates in only the popliteal lymph node 1h after injection into the footpad, whereas LP-ICG and ICG accumulate in the popliteal lymph node and other organs like the liver. This result indicates that LP-ICG-Cn is a useful NIR-fluorescence probe for noninvasive in vivo bioimaging, especially for the sentinel lymph node.

  10. The evaluation of NIR-absorbing porphyrin derivatives as contrast agents in photoacoustic imaging

    PubMed Central

    Abuteen, Akram; Zanganeh, Saeid; Akhigbe, Joshua; Samankumara, Lalith P.; Aguirre, Andres; Biswal, Nrusingh; Braune, Marcel; Vollertsen, Anke; Röder, Beate; Brückner, Christian; Zhu, Quing

    2016-01-01

    Six free base tetrapyrrolic chromophores, three quinoline-annulated porphyrins and three morpholinobacteriochlorins, that absorb light in the near-IR range and possess, in comparison to regular porphyrins, unusually low fluorescence emission and 1O2 quantum yields were tested with respect to their efficacy as novel molecular photo-acoustic imaging contrast agents in a tissue phantom, providing an up to ~2.5-fold contrast enhancement over that of the benchmark contrast agent ICG. The testing protocol compares the photoacoustic signal output strength upon absorption of approximately the same light energy. Some relationships between photophysical parameters of the dyes and the resulting photoacoustic signal strength could be derived. PMID:24071709

  11. Synthesis and evaluation of 18F labeled alanine derivatives as potential tumor imaging agents

    PubMed Central

    Wang, Limin; Zha, Zhihao; Qu, Wenchao; Qiao, Hongwen; Lieberman, Brian P.; Plössl, Karl; Kung, Hank F.

    2012-01-01

    Introduction This paper reports the synthesis and labeling of 18F alanine derivatives. We also investigate their biological characteristics as potential tumor imaging agents mediated by alanine-serine-cysteine preferring (ASC) transporter system. Methods Three new 18F alanine derivatives were prepared from corresponding tosylate-precursors through a two-step labelling reaction. In vitro uptake studies to evaluate and to compare these three analogs were carried out in 9L glioma and PC-3 prostate cancer cell lines. Potential transport mechanisms, protein incorporation and stability of 3-(1-[18F]fluoromethyl)-L-alanine (L[18F]FMA) were investigated in 9L glioma cells. Its biodistribution was determined in a rat-bearing 9L tumor model. PET imaging studies were performed on rat bearing 9L glioma tumors and transgenic mouse carrying spontaneous generated M/tomND tumor (mammary gland adenocarcinoma). Results New 18F alanine derivatives were prepared with 7–34% uncorrected radiochemical yields, excellent enantiomeric purity (>99%) and good radiochemical purity (>99%). In vitro uptake of the L-[18F]FMA in 9L glioma and PC-3 prostate cancer cells was higher than those observed for other two alanine derivatives and [18F]FDG in first 1 h. Inhibition of cell uptake studies suggested that L-[18F]FMA uptake in 9L glioma was predominantly via transport system ASC. After entering into cells, L-[18F]FMA remained stable and was not incorporated into protein within 2 h. In vivo biodistribution studies demonstrated that L-[18F]FMA had relatively high uptake in liver and kidney. Tumor uptake was fast, reaching a maximum within 30 min. The tumor-to-muscle, tumor-to-blood and tumor-to-brain ratios at 60 min post injection were 2.2, 1.9 and 3.0, respectively. In PET imaging studies, tumors were visualized with L-[18F]FMA in both 9L rat and transgenic mouse. Conclusion L-[18F]FMA showed promising properties as a PET imaging agent for up-regulated ASC transporter associated with tumor

  12. Targeted thiazole orange derivative with folate: synthesis, fluorescence and in vivo fluorescence imaging.

    PubMed

    Fei, Xuening; Gu, Yingchun; Wang, Yiqi; Meng, Qingyang; Zhang, Baolian

    2010-10-11

    A Thiazole Orange conjugated with folate derivative was synthesized in two steps. Firstly, folate was coupled with 1-(3-aminopropyl)-4-methylquinolinium bromide to afford folate-methylquinolinium bromide, which then reacted with benzothiazolium to obtain the title folate-conjugated compound. The compound was evaluated by ¹H-NMR MS, TG/DTA and fluorescence spectroscopic methods. The title compound could selectively target folate receptor expressing tumors according to the in vivo fluorescence imaging preliminarily performed on nude mice with breast tumors.

  13. Determining floodplain sedimentation rates using 137Cs in a low fallout environment dominated by channel- and cultivation-derived sediment inputs, central Queensland, Australia.

    PubMed

    Hughes, Andrew O; Olley, Jon M; Croke, Jacky C; Webster, Ian T

    2009-10-01

    Fallout (137)Cs has been widely used to determine floodplain sedimentation rates in temperate environments, particularly in the northern hemisphere. Its application in low fallout, tropical environments in the southern hemisphere has been limited. In this study we assess the utility of (137)Cs for determining rates of floodplain sedimentation in a dry-tropical catchment in central Queensland, Australia. Floodplain and reference site cores were analysed in two centimetre increments, depth profiles were produced and total (137)Cs inventories calculated from the detailed profile data. Information on the rates of (137)Cs migration through local soils was obtained from the reference site soil cores. This data was used in an advection-diffusion model to account of (137)Cs mobility in floodplain sediment cores. This allowed sedimentation rates to be determined without the first year of detection for (137)Cs being known and without having to assume that (137)Cs remains immobile following deposition. Caesium-137 depth profiles in this environment are demonstrated to be an effective way of determining floodplain sedimentation rates. The total (137)Cs inventory approach was found to be less successful, with only one of the three sites analysed being in unequivocal agreement with the depth profile results. The input of sediment from catchment sources that have little, or no, (137)Cs attached results in true depositional sites having total inventories that are not significantly different from those of undisturbed reference sites.

  14. Tryptophan PET Imaging of the Kynurenine Pathway in Patient-Derived Xenograft Models of Glioblastoma

    PubMed Central

    Guastella, Anthony R.; Michelhaugh, Sharon K.; Klinger, Neil V.; Kupsky, William J.; Polin, Lisa A.; Muzik, Otto; Juhász, Csaba; Mittal, Sandeep

    2016-01-01

    Increasing evidence demonstrates the immunosuppressive kynurenine pathway’s (KP) role in the pathophysiology of human gliomas. To study the KP in vivo, we used the noninvasive molecular imaging tracer α-[11C]-methyl-l-tryptophan (AMT). The AMT-positron emission tomography (PET) has shown high uptake in high-grade gliomas and predicted survival in patients with recurrent glioblastoma (GBM). We generated patient-derived xenograft (PDX) models from dissociated cells, or tumor fragments, from 5 patients with GBM. Mice bearing subcutaneous tumors were imaged with AMT-PET, and tumors were analyzed to detect the KP enzymes indoleamine 2,3-dioxygenase (IDO) 1, IDO2, tryptophan 2,3-dioxygenase, kynureninase, and kynurenine 3-monooxygenase. Overall, PET imaging showed robust tumoral AMT uptake in PDX mice with prolonged tracer accumulation over 60 minutes, consistent with AMT trapping seen in humans. Immunostained tumor tissues demonstrated positive detection of multiple KP enzymes. Furthermore, intracranial implantation of GBM cells was performed with imaging at both 9 and 14 days postimplant, with a marked increase in AMT uptake at 14 days and a corresponding high level of tissue immunostaining for KP enzymes. These results indicate that our PDX mouse models recapitulate human GBM, including aberrant tryptophan metabolism, and offer an in vivo system for development of targeted therapeutics for patients with GBM. PMID:27151136

  15. Tryptophan PET Imaging of the Kynurenine Pathway in Patient-Derived Xenograft Models of Glioblastoma.

    PubMed

    Guastella, Anthony R; Michelhaugh, Sharon K; Klinger, Neil V; Kupsky, William J; Polin, Lisa A; Muzik, Otto; Juhász, Csaba; Mittal, Sandeep

    2016-01-01

    Increasing evidence demonstrates the immunosuppressive kynurenine pathway's (KP) role in the pathophysiology of human gliomas. To study the KP in vivo, we used the noninvasive molecular imaging tracer α-[(11)C]-methyl-l-tryptophan (AMT). The AMT-positron emission tomography (PET) has shown high uptake in high-grade gliomas and predicted survival in patients with recurrent glioblastoma (GBM). We generated patient-derived xenograft (PDX) models from dissociated cells, or tumor fragments, from 5 patients with GBM. Mice bearing subcutaneous tumors were imaged with AMT-PET, and tumors were analyzed to detect the KP enzymes indoleamine 2,3-dioxygenase (IDO) 1, IDO2, tryptophan 2,3-dioxygenase, kynureninase, and kynurenine 3-monooxygenase. Overall, PET imaging showed robust tumoral AMT uptake in PDX mice with prolonged tracer accumulation over 60 minutes, consistent with AMT trapping seen in humans. Immunostained tumor tissues demonstrated positive detection of multiple KP enzymes. Furthermore, intracranial implantation of GBM cells was performed with imaging at both 9 and 14 days postimplant, with a marked increase in AMT uptake at 14 days and a corresponding high level of tissue immunostaining for KP enzymes. These results indicate that our PDX mouse models recapitulate human GBM, including aberrant tryptophan metabolism, and offer an in vivo system for development of targeted therapeutics for patients with GBM.

  16. Partial correlation analyses of global diffusion tensor imaging-derived metrics in glioblastoma multiforme: Pilot study

    PubMed Central

    Cortez-Conradis, David; Rios, Camilo; Moreno-Jimenez, Sergio; Roldan-Valadez, Ernesto

    2015-01-01

    AIM: To determine existing correlates among diffusion tensor imaging (DTI)-derived metrics in healthy brains and brains with glioblastoma multiforme (GBM). METHODS: Case-control study using DTI data from brain magnetic resonance imaging of 34 controls (mean, 41.47; SD, ± 21.94 years; range, 21-80 years) and 27 patients with GBM (mean, SD; 48.41 ± 15.18 years; range, 18-78 years). Image postprocessing using FSL software calculated eleven tensor metrics: fractional (FA) and relative anisotropy; pure isotropic (p) and anisotropic diffusions (q), total magnitude of diffusion (L); linear (Cl), planar (Cp) and spherical tensors (Cs); mean (MD), axial (AD) and radial diffusivities (RD). Partial correlation analyses (controlling the effect of age and gender) and multivariate Mancova were performed. RESULTS: There was a normal distribution for all metrics. Comparing healthy brains vs brains with GBM, there were significant very strong bivariate correlations only depicted in GBM: [FA↔Cl (+)], [FA↔q (+)], [p↔AD (+)], [AD↔MD (+)], and [MD↔RD (+)]. Among 56 pairs of bivariate correlations, only seven were significantly different. The diagnosis variable depicted a main effect [F-value (11, 23) = 11.842, P ≤ 0.001], with partial eta squared = 0.850, meaning a large effect size; age showed a similar result. The age also had a significant influence as a covariate [F (11, 23) = 10.523, P < 0.001], with a large effect size (partial eta squared = 0.834). CONCLUSION: DTI-derived metrics depict significant differences between healthy brains and brains with GBM, with specific magnitudes and correlations. This study provides reference data and makes a contribution to decrease the underlying empiricism in the use of DTI parameters in brain imaging. PMID:26644826

  17. Fluorescent carbon nanoparticles derived from natural materials of mango fruit for bio-imaging probes

    NASA Astrophysics Data System (ADS)

    Jeong, Chan Jin; Roy, Arup Kumer; Kim, Sung Han; Lee, Jung-Eun; Jeong, Ji Hoon; Insik; Park, Sung Young

    2014-11-01

    Water soluble fluorescent carbon nanoparticles (FCP) obtained from a single natural source, mango fruit, were developed as unique materials for non-toxic bio-imaging with different colors and particle sizes. The prepared FCPs showed blue (FCP-B), green (FCP-G) and yellow (FCP-Y) fluorescence, derived by the controlled carbonization method. The FCPs demonstrated hydrodynamic diameters of 5-15 nm, holding great promise for clinical applications. The biocompatible FCPs demonstrated great potential in biological fields through the results of in vitro imaging and in vivo biodistribution. Using intravenously administered FCPs with different colored particles, we precisely defined the clearance and biodistribution, showing rapid and efficient urinary excretion for safe elimination from the body. These findings therefore suggest the promising possibility of using natural sources for producing fluorescent materials.Water soluble fluorescent carbon nanoparticles (FCP) obtained from a single natural source, mango fruit, were developed as unique materials for non-toxic bio-imaging with different colors and particle sizes. The prepared FCPs showed blue (FCP-B), green (FCP-G) and yellow (FCP-Y) fluorescence, derived by the controlled carbonization method. The FCPs demonstrated hydrodynamic diameters of 5-15 nm, holding great promise for clinical applications. The biocompatible FCPs demonstrated great potential in biological fields through the results of in vitro imaging and in vivo biodistribution. Using intravenously administered FCPs with different colored particles, we precisely defined the clearance and biodistribution, showing rapid and efficient urinary excretion for safe elimination from the body. These findings therefore suggest the promising possibility of using natural sources for producing fluorescent materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04805a

  18. COLLINARUS: collection of image-derived non-linear attributes for registration using splines

    NASA Astrophysics Data System (ADS)

    Chappelow, Jonathan; Bloch, B. Nicolas; Rofsky, Neil; Genega, Elizabeth; Lenkinski, Robert; DeWolf, William; Viswanath, Satish; Madabhushi, Anant

    2009-02-01

    We present a new method for fully automatic non-rigid registration of multimodal imagery, including structural and functional data, that utilizes multiple texutral feature images to drive an automated spline based non-linear image registration procedure. Multimodal image registration is significantly more complicated than registration of images from the same modality or protocol on account of difficulty in quantifying similarity between different structural and functional information, and also due to possible physical deformations resulting from the data acquisition process. The COFEMI technique for feature ensemble selection and combination has been previously demonstrated to improve rigid registration performance over intensity-based MI for images of dissimilar modalities with visible intensity artifacts. Hence, we present here the natural extension of feature ensembles for driving automated non-rigid image registration in our new technique termed Collection of Image-derived Non-linear Attributes for Registration Using Splines (COLLINARUS). Qualitative and quantitative evaluation of the COLLINARUS scheme is performed on several sets of real multimodal prostate images and synthetic multiprotocol brain images. Multimodal (histology and MRI) prostate image registration is performed for 6 clinical data sets comprising a total of 21 groups of in vivo structural (T2-w) MRI, functional dynamic contrast enhanced (DCE) MRI, and ex vivo WMH images with cancer present. Our method determines a non-linear transformation to align WMH with the high resolution in vivo T2-w MRI, followed by mapping of the histopathologic cancer extent onto the T2-w MRI. The cancer extent is then mapped from T2-w MRI onto DCE-MRI using the combined non-rigid and affine transformations determined by the registration. Evaluation of prostate registration is performed by comparison with the 3 time point (3TP) representation of functional DCE data, which provides an independent estimate of cancer

  19. A 1000-year sediment record of recurring hypoxia off the Mississippi River: The potential role of terrestrially-derived organic matter inputs

    USGS Publications Warehouse

    Swarzenski, P.W.; Campbell, P.L.; Osterman, L.E.; Poore, R.Z.

    2008-01-01

    A suite of inorganic and organic geochemical tracers and a low-oxygen tolerant benthic faunal index ('PEB') were measured in a 14C-dated 2+??m long gravity core collected on the Louisiana shelf adjacent to the Mississippi River delta to study potential millennium-scale low-oxygen events. Periodic down-core excursions in the PEB index throughout the core suggest recurring, natural bottom water low-oxygen events that extend back ??? 1000??14C years. Select trace element and biomarker distributions in these same sediments were examined as potential tracers of past hypoxic events and to help distinguish between marine versus terrestrial processes involved in organic carbon production. In discrete sediment horizons where the PEB index was elevated, redox-sensitive vanadium concentrations were consistently depleted, excursions in sedimentary ??13C suggest periodic, preferential terrestrial inputs, and the concentrations of two sterol biomarkers (sitosterol and ??-stigmasterol) also showed concurrent enrichments. If the PEB index successfully records ??? 1000??14C year-scale low-oxygen events, then the distribution of these geochemical tracers can be interpreted to corroborate the view that naturally occurring low-oxygen bottom water conditions have existed on the inner Louisiana continental shelf, not only in recent times, but also over at least the last 1000??14C years. These data support the general hypothesis that historic, low-oxygen bottom water conditions on the Louisiana shelf are likely tied to periods of increased fluvial discharge and associated wetland export in the absence of modern river levees. Enhanced river discharge and associated material export would both stimulate enhanced in situ organic carbon production and foster water column stratification. Such periodic elevated river flows during the last millennium can be linked to climate fluctuations and tropical storm activity. ?? 2008 Elsevier B.V. All rights reserved.

  20. Input impedance of microstrip antennas

    NASA Technical Reports Server (NTRS)

    Deshpande, M. D.; Bailey, M. C.

    1982-01-01

    Using Richmond's reaction integral equation, an expression is derived for the input impedance of microstrip patch antennas excited by either a microstrip line or a coaxial probe. The effects of the finite substrate thickness, a dielectric protective cover, and associated surface waves are properly included by the use of the exact dyadic Green's function. Using the present formulation the input impedance of a rectangular microstrip antenna is determined and compared with experimental and earlier calculated results.

  1. QuickFF: A program for a quick and easy derivation of force fields for metal-organic frameworks from ab initio input.

    PubMed

    Vanduyfhuys, Louis; Vandenbrande, Steven; Verstraelen, Toon; Schmid, Rochus; Waroquier, Michel; Van Speybroeck, Veronique

    2015-05-15

    QuickFF is a software package to derive accurate force fields for isolated and complex molecular systems in a quick and easy manner. Apart from its general applicability, the program has been designed to generate force fields for metal-organic frameworks in an automated fashion. The force field parameters for the covalent interaction are derived from ab initio data. The mathematical expression of the covalent energy is kept simple to ensure robustness and to avoid fitting deficiencies as much as possible. The user needs to produce an equilibrium structure and a Hessian matrix for one or more building units. Afterward, a force field is generated for the system using a three-step method implemented in QuickFF. The first two steps of the methodology are designed to minimize correlations among the force field parameters. In the last step, the parameters are refined by imposing the force field parameters to reproduce the ab initio Hessian matrix in Cartesian coordinate space as accurate as possible. The method is applied on a set of 1000 organic molecules to show the easiness of the software protocol. To illustrate its application to metal-organic frameworks (MOFs), QuickFF is used to determine force fields for MIL-53(Al) and MOF-5. For both materials, accurate force fields were already generated in literature but they requested a lot of manual interventions. QuickFF is a tool that can easily be used by anyone with a basic knowledge of performing ab initio calculations. As a result, accurate force fields are generated with minimal effort. © 2015 Wiley Periodicals, Inc.

  2. Novel positively charged nanoparticle labeling for in vivo imaging of adipose tissue-derived stem cells.

    PubMed

    Yukawa, Hiroshi; Nakagawa, Shingo; Yoshizumi, Yasuma; Watanabe, Masaki; Saito, Hiroaki; Miyamoto, Yoshitaka; Noguchi, Hirofumi; Oishi, Koichi; Ono, Kenji; Sawada, Makoto; Kato, Ichiro; Onoshima, Daisuke; Obayashi, Momoko; Hayashi, Yumi; Kaji, Noritada; Ishikawa, Tetsuya; Hayashi, Shuji; Baba, Yoshinobu

    2014-01-01

    Stem cell transplantation has been expected to have various applications for regenerative medicine. However, in order to detect and trace the transplanted stem cells in the body, non-invasive and widely clinically available cell imaging technologies are required. In this paper, we focused on magnetic resonance (MR) imaging technology, and investigated whether the trimethylamino dextran-coated magnetic iron oxide nanoparticle -03 (TMADM-03), which was newly developed by our group, could be used for labeling adipose tissue-derived stem cells (ASCs) as a contrast agent. No cytotoxicity was observed in ASCs transduced with less than 100 µg-Fe/mL of TMADM-03 after a one hour transduction time. The transduction efficiency of TMADM-03 into ASCs was about four-fold more efficient than that of the alkali-treated dextran-coated magnetic iron oxide nanoparticle (ATDM), which is a major component of commercially available contrast agents such as ferucarbotran (Resovist), and the level of labeling was maintained for at least two weeks. In addition, the differentiation ability of ASCs labeled with TMADM-03 and their ability to produce cytokines such as hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF) and prostaglandin E2 (PGE2), were confirmed to be maintained. The ASCs labeled with TMADM-03 were transplanted into the left kidney capsule of a mouse. The labeled ASCs could be imaged with good contrast using a 1T MR imaging system. These data suggest that TMADM-03 can therefore be utilized as a contrast agent for the MR imaging of stem cells. PMID:25365191

  3. Remote Sensing of Vegetation Senescence and Stress using Derivative Spectroscopy Applied to Hyperspectral Images

    NASA Astrophysics Data System (ADS)

    Cipar, J. J.

    2012-12-01

    It is well established that senescence and stress affect the shape of the optical reflectance spectrum of vegetation. A prime example is the shift of the red edge inflection point (REIP) to lower wavelength as senescence or stress increases. The red edge refers to the sharp rise in vegetation reflectance between the chlorophyll well in the red (670-680 nm) and the near infrared plateau (~790-1350 nm). The REIP wavelength shift, however, can be subtle and not easily detected with hyperspectral imagers. I explore the use of derivative spectroscopy to enhance the features in the reflectance spectrum. Conventional analysis focuses on the wavelength position of the REIP as a measure of stress. In this paper, I examine the shape of the entire derivative spectrum to characterize the transition from healthy to senescent deciduous vegetation over the summer to autumn transition. While this transition occurs naturally, it causes changes in the reflectance spectrum similar to those changes due to stress such as drought or soil contamination. The experiment (carried out in southern New England) consisted of clipping leaves from maple and oak trees every two to three days from early September through late November and measuring the optical reflectance in the laboratory using an Analytical Spectral Devices (ASD) Field Spectrometer. Reflectance spectra were measured for stacks of leaves using different numbers of leaves in the stack and different backgrounds. The primary data set was measured using four-leaf stacks on a flat black background. The time series of derivative spectra clearly show the shift in the red edge inflection point as a function of date, as expected. In addition, the overall shape of the derivative spectra changes significantly as leaf senescence proceeds. The utility of derivative spectroscopy lay in whether it can be used with remote sensing data recorded by hyperspectral sensors such the NASA-JPL AVIRIS instrument. The lower spectral sampling of current

  4. Global Landsat Surface Reflectance Products Derived Using GLS 2000 and 2005 Images

    NASA Astrophysics Data System (ADS)

    Narasimhan, R.; Feng, M.; Sexton, J. O.; Huang, C.; Channan, S.; Vermote, E. F.; Masek, J. G.; Townshend, J. R.

    2010-12-01

    Calculated by accounting for radiometric calibration errors and atmospheric effects, Surface Reflectance (SR) is considered a more accurate representation of the spectral property of the land surface than raw satellite radiometry. While atmospheric correction algorithms have been applied to MODIS data to produce SR as a standard MODIS product, such algorithms have not been applied to Landsat images on a routine basis. As part of the Global Forest Cover Change (GFCC) project, we applied a MODIS-based atmospheric algorithm to the GLS 2000 and 2005 images, and for the first time, produced global surface reflectance products at Landsat resolution. Since MODIS SR products have been validated comprehensively through previous studies, we used them to evaluate the Landsat SR products. All GLS 2000 images are Landsat7 ETM+ (L7) images, while the GLS2005 data set consist of 7381 gap-filled L7 images and 2175 Landsat5 TM (L5) images. L7 derived SR images are validated against the MODIS Daily SR product and the L5 derived SR images are validated against the MODIS NBAR composited products covering the same period as the L5 images. On a global scale, average R2 for the GLS2000 L7 and MODIS Daily SR range from 0.77 to 0.89 with greater correlation observed in the longer wavelengths. A similar R2 range (0.76-0.88) was observed in the GLS2005 L7 and MODIS Daily SR comparison. In both cases, standard deviations of R2 for each band are less than 0.26. The averaged slope values for the L7 bands range from 0.907 to 1.007 and intercept values range from -0.087 to 0.17 percent of reflectance. When divided by the mean to reduce statistical artifacts at high reflectance, Co-efficient of deviation (CD) shows that the GLS2000 and GLS2005 L7 vs. MODIS Daily SR estimates agree best for the near-infrared band (0.07 and 0.08) and are the worst for the blue band (0.34 & 0.35) in both cases. These global trends in CD are a reflection of regional differences where for most bands, the L7 - MODIS

  5. Monitoring tropical cyclone intensity using wind fields derived from short-interval satellite images

    NASA Technical Reports Server (NTRS)

    Rodgers, E. B.; Gentry, R. C.

    1981-01-01

    Rapid scan visible images from the Visible Infrared Spin Scan Radiometer sensor on board SMS-2 and GOES-1 were used to derive high resolution upper and lower tropospheric environmental wind fields around three western Atlantic tropical cyclones (1975-78). These wind fields were used to derive upper and lower tropospheric areal mean relative vorticity and their differences, the net relative angular momentum balance and upper tropospheric mass outflow. These kinematic parameters were shown by studies using composite rawinsonde data to be strongly related to tropical cyclone formation and intensity changes. Also, the role of forced synoptic scale subsidence in tropical cyclone formation was examined. The studies showed that satellite-derived lower and upper tropospheric wind fields can be used to monitor and possibly predict tropical cyclone formation and intensity changes. These kinematic analyses showed that future changes in tropical cyclone intensity are mainly related to the "spin-up" of the storms by the net horizontal transport of relative angular momentum caused by convergence of cyclonic vorticity in the lower troposphere and to a lesser extent the divergence of anticyclone vorticity in the upper troposphere.

  6. Labeling pluripotent stem cell-derived neural progenitors with iron oxide particles for magnetic resonance imaging.

    PubMed

    Sart, Sébastien; Bejarano, Fabian Calixto; Yan, Yuanwei; Grant, Samuel C; Li, Yan

    2015-01-01

    Due to the unlimited proliferation capacity and the unique differentiation ability of pluripotent stem cells (PSCs), including both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), large numbers of PSC-derived cell products are in demand for applications in drug screening, disease modeling, and especially cell therapy. In stem cell-based therapy, tracking transplanted cells with magnetic resonance imaging (MRI) has emerged as a powerful technique to reveal cell survival and distribution. This chapter illustrated the basic steps of labeling PSC-derived neural progenitors (NPs) with micron-sized particles of iron oxide (MPIO, 0.86 μm) for MRI analysis. The protocol described PSC expansion and differentiation into NPs, and the labeling of the derived cells either after replating on adherent surface or in suspension. The labeled cells can be analyzed using in vitro MRI analysis. The methods presented here can be easily adapted for cell labeling in cell processing facilities under current Good Manufacturing Practices (cGMP). The iron oxide-labeled NPs can be used for cellular monitoring of in vitro cultures and in vivo transplantation. PMID:25304204

  7. Thermally activated delayed fluorescence of fluorescein derivative for time-resolved and confocal fluorescence imaging.

    PubMed

    Xiong, Xiaoqing; Song, Fengling; Wang, Jingyun; Zhang, Yukang; Xue, Yingying; Sun, Liangliang; Jiang, Na; Gao, Pan; Tian, Lu; Peng, Xiaojun

    2014-07-01

    Compared with fluorescence imaging utilizing fluorophores whose lifetimes are in the order of nanoseconds, time-resolved fluorescence microscopy has more advantages in monitoring target fluorescence. In this work, compound DCF-MPYM, which is based on a fluorescein derivative, showed long-lived luminescence (22.11 μs in deaerated ethanol) and was used in time-resolved fluorescence imaging in living cells. Both nanosecond time-resolved transient difference absorption spectra and time-correlated single-photon counting (TCSPC) were employed to explain the long lifetime of the compound, which is rare in pure organic fluorophores without rare earth metals and heavy atoms. A mechanism of thermally activated delayed fluorescence (TADF) that considers the long wavelength fluorescence, large Stokes shift, and long-lived triplet state of DCF-MPYM was proposed. The energy gap (ΔEST) of DCF-MPYM between the singlet and triplet state was determined to be 28.36 meV by the decay rate of DF as a function of temperature. The ΔE(ST) was small enough to allow efficient intersystem crossing (ISC) and reverse ISC, leading to efficient TADF at room temperature. The straightforward synthesis of DCF-MPYM and wide availability of its starting materials contribute to the excellent potential of the compound to replace luminescent lanthanide complexes in future time-resolved imaging technologies.

  8. Fusion of Laser Altimetry Data with Dems Derived from Stereo Imaging Systems

    NASA Astrophysics Data System (ADS)

    Schenk, T.; Csatho, B. M.; Duncan, K.

    2016-06-01

    During the last two decades surface elevation data have been gathered over the Greenland Ice Sheet (GrIS) from a variety of different sensors including spaceborne and airborne laser altimetry, such as NASA's Ice Cloud and land Elevation Satellite (ICESat), Airborne Topographic Mapper (ATM) and Laser Vegetation Imaging Sensor (LVIS), as well as from stereo satellite imaging systems, most notably from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Worldview. The spatio-temporal resolution, the accuracy, and the spatial coverage of all these data differ widely. For example, laser altimetry systems are much more accurate than DEMs derived by correlation from imaging systems. On the other hand, DEMs usually have a superior spatial resolution and extended spatial coverage. We present in this paper an overview of the SERAC (Surface Elevation Reconstruction And Change detection) system, designed to cope with the data complexity and the computation of elevation change histories. SERAC simultaneously determines the ice sheet surface shape and the time-series of elevation changes for surface patches whose size depends on the ruggedness of the surface and the point distribution of the sensors involved. By incorporating different sensors, SERAC is a true fusion system that generates the best plausible result (time series of elevation changes) a result that is better than the sum of its individual parts. We follow this up with an example of the Helmheim gacier, involving ICESat, ATM and LVIS laser altimetry data, together with ASTER DEMs.

  9. Noninvasive Detection and Imaging of Molecular Markers in Live Cardiomyocytes Derived from Human Embryonic Stem Cells

    PubMed Central

    Pascut, Flavius C.; Goh, Huey T.; Welch, Nathan; Buttery, Lee D.; Denning, Chris; Notingher, Ioan

    2011-01-01

    Raman microspectroscopy (RMS) was used to detect and image molecular markers specific to cardiomyocytes (CMs) derived from human embryonic stem cells (hESCs). This technique is noninvasive and thus can be used to discriminate individual live CMs within highly heterogeneous cell populations. Principal component analysis (PCA) of the Raman spectra was used to build a classification model for identification of individual CMs. Retrospective immunostaining imaging was used as the gold standard for phenotypic identification of each cell. We were able to discriminate CMs from other phenotypes with >97% specificity and >96% sensitivity, as calculated with the use of cross-validation algorithms (target 100% specificity). A comparison between Raman spectral images corresponding to selected Raman bands identified by the PCA model and immunostaining of the same cells allowed assignment of the Raman spectral markers. We conclude that glycogen is responsible for the discrimination of CMs, whereas myofibril proteins have a lesser contribution. This study demonstrates the potential of RMS for allowing the noninvasive phenotypic identification of hESC progeny. With further development, such label-free optical techniques may enable the separation of high-purity cell populations with mature phenotypes, and provide repeated measurements to monitor time-dependent molecular changes in live hESCs during differentiation in vitro. PMID:21190678

  10. RV functional imaging: 3-D echo-derived dynamic geometry and flow field simulations.

    PubMed

    Pasipoularides, Ares D; Shu, Ming; Womack, Michael S; Shah, Ashish; Von Ramm, Olaf; Glower, Donald D

    2003-01-01

    We describe a novel functional imaging approach for quantitative analysis of right ventricular (RV) blood flow patterns in specific experimental animals (or humans) using real-time, three-dimensional (3-D) echocardiography (RT3D). The method is independent of the digital imaging modality used. It comprises three parts. First, a semiautomated segmentation aided by intraluminal contrast medium locates the RV endocardial surface. Second, a geometric scheme for dynamic RV chamber reconstruction applies a time interpolation procedure to the RT3D data to quantify wall geometry and motion at 400 Hz. A volumetric prism method validated the dynamic geometric reconstruction against simultaneous sonomicrometric canine measurements. Finally, the RV endocardial border motion information is used for mesh generation on a computational fluid dynamics solver to simulate development of the early RV diastolic inflow field. Boundary conditions (tessellated endocardial surface nodal velocities) for the solver are directly derived from the endocardial geometry and motion information. The new functional imaging approach may yield important kinematic information on the distribution of instantaneous velocities in the RV diastolic flow field of specific normal or diseased hearts. PMID:12388220

  11. Assessment of the potential for soil acidification in North India using the critical load approach and locally derived data for acidic and basic inputs.

    PubMed

    Satsangi, Gur Sumiran; Lawrence, A J; Lakhani, A; Taneja, Ajay

    2003-12-01

    Major ions (Cl-, NO3(-), SO4(2-), Ca2+, Mg2+, Na+, K+ and NH4(+)) were analysed in wet and dry deposition samples collected for 2 years using a polyethylene bottle and funnel collector at Agra in India. The deposition of ionic components (Ca2+ and Mg2+) derived from natural sources i.e. soil were higher than those of anthropogenic origin. In rainwater samples, non-sea-salt fraction was found to be 60-90%. In both wet and dry deposition Ca2+ was found to be the dominant ion which may be due to its large particle diameter. Results suggest that most of the acidity, which occurs due to NO3(-), SO4(2-) and Cl- is neutralized by alkaline constituents, which originate from airborne local soil and dust transported from the Thar desert. Acid neutralizing capacity of soil has also been quantified and found to be 33 x 10(3) neqg(-1). Using deposition data, the critical load for acidity of soil with respect to Ashoka and Eucalyptus was evaluated. The present level of deposition of S and N was found to be much lower than critical loads calculated for S and N. Critical load of exceedance in terms of deposition acidity was also calculated and found to be negative. This indicates that with respect to these species, the ecosystem is protected at the current level of deposition.

  12. Corrections of arterial input function for dynamic H215O PET to assess perfusion of pelvic tumours: arterial blood sampling versus image extraction

    NASA Astrophysics Data System (ADS)

    Lüdemann, L.; Sreenivasa, G.; Michel, R.; Rosner, C.; Plotkin, M.; Felix, R.; Wust, P.; Amthauer, H.

    2006-06-01

    Assessment of perfusion with 15O-labelled water (H215O) requires measurement of the arterial input function (AIF). The arterial time activity curve (TAC) measured using the peripheral sampling scheme requires corrections for delay and dispersion. In this study, parametrizations with and without arterial spillover correction for fitting of the tissue curve are evaluated. Additionally, a completely noninvasive method for generation of the AIF from a dynamic positron emission tomography (PET) acquisition is applied to assess perfusion of pelvic tumours. This method uses a volume of interest (VOI) to extract the TAC from the femoral artery. The VOI TAC is corrected for spillover using a separate tissue TAC and for recovery by determining the recovery coefficient on a coregistered CT data set. The techniques were applied in five patients with pelvic tumours who underwent a total of 11 examinations. Delay and dispersion correction of the blood TAC without arterial spillover correction yielded in seven examinations solutions inconsistent with physiology. Correction of arterial spillover increased the fitting accuracy and yielded consistent results in all patients. Generation of an AIF from PET image data was investigated as an alternative to arterial blood sampling and was shown to have an intrinsic potential to determine the AIF noninvasively and reproducibly. The AIF extracted from a VOI in a dynamic PET scan was similar in shape to the blood AIF but yielded significantly higher tissue perfusion values (mean of 104.0 ± 52.0%) and lower partition coefficients (-31.6 ± 24.2%). The perfusion values and partition coefficients determined with the VOI technique have to be corrected in order to compare the results with those of studies using a blood AIF.

  13. Label-free imaging of metabolism and oxidative stress in human induced pluripotent stem cell-derived cardiomyocytes

    PubMed Central

    Datta, Rupsa; Heylman, Christopher; George, Steven C.; Gratton, Enrico

    2016-01-01

    In this work we demonstrate a label-free optical imaging technique to assess metabolic status and oxidative stress in human induced pluripotent stem cell-derived cardiomyocytes by two-photon fluorescence lifetime imaging of endogenous fluorophores. Our results show the sensitivity of this method to detect shifts in metabolism and oxidative stress in the cardiomyocytes upon pathological stimuli of hypoxia and cardiotoxic drugs. This non-invasive imaging technique could prove beneficial for drug development and screening, especially for in vitro cardiac models created from stem cell-derived cardiomyocytes and to study the pathogenesis of cardiac diseases and therapy. PMID:27231614

  14. Synthesis and evaluation of two novel 2-nitroimidazole derivatives as potential PET radioligands for tumor imaging

    PubMed Central

    Zha, Zhihao; Zhu, Lin; Liu, Yajing; Du, Fenghua; Gan, Hongmei; Qiao, Jinpin; Kung, Hank F.

    2011-01-01

    Introduction Nitroimidazole (azomycin) derivatives labeled with radioisotopes have been developed as cancer imaging and radiotherapeutic agents based on the oncological hypoxic mechanism. By attaching nitroimidazole core with different functional groups, we synthesized new nitroimidazole derivatives, and evaluated their potentiality as tumor imaging agents. Methods Starting with commercially available 2-nitroimdazole, 2-fluoro-N-(2-(2-nitro-1H-imidazol-1-yl)ethyl)acetamide (NEFA, [19F]7) and 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl 2-fluoroacetate (NEFT, [19F]8), as well as radiolabeling precursors - the bromo substituted analogs were quickly synthesized through a three-step synthetic pathway. The precursors were radiolabeled with [18F]F-/18-crown-6/KHCO3 in DMSO at 90 °C for 10 min followed by purification with an Oasis HLB cartridge. Biodistribution studies were carried out in EMT-6 tumor-bearing mice. The uptake (%ID/g) in tumors and normal tissues were measured at 30 min post injection. Liquid chromatography-electrospray ionization mass spectrometry (LC/MS) was used to distinguish metabolites from parent drugs in urine and plasma of rat injected with “cold” NEFA ([19F]7) and NEFT ([19F]8). Results Two radiotracers, [18F]NEFA ([18F]7) and [18F]NEFT ([18F]8), were prepared with average yields of 6-7% and 9-10% (no decay corrected). Radiochemical purity for both tracers was >95% as determined by HPLC. Biodistribution studies in EMT-6 tumor-bearing mice indicated that the tumor to blood and tumor to liver ratios of both [18F]7 (0.96, 0.98) and [18F]8 (0.61,1.10) at 30 min were higher than those observed for [18F]FMISO (1) (0.91, 0.59), a well-investigated azomycin type hypoxia radiotacer. LC/MS analysis demonstrated that fluoroacetate was the main in vivo metabolite for both NEFA ([19F]7) and NEFT ([19F]8). Conclusions In this research, two new fluorine-18 labeled 2-nitroimdazole derivatives, [18F]7 and [18F]8, both of which containing in vivo hydrolyzable

  15. Effective and robust infrared small target detection with the fusion of polydirectional first order derivative images under facet model

    NASA Astrophysics Data System (ADS)

    Zhu, Bing; Xin, Yunhong

    2015-03-01

    The robust detection of IR small target acts as one of the key techniques in the infrared search and tracking system (IRSTS). This paper presents a new method of small-target detection which formulates the problem as the detection of Gaussian-like spot. Initially, the amendatory first-order directional derivative (AFODD) based on facet model is applied to get the polydirectional derivative IR images, and the direction information of targets is reserved in these images. Then, the AFODD images are fused together to ensure the robustness and effectiveness of target detection. At last, the Principal Component Analysis (PCA) method is carried out to make targets in the fusion image more prominent, so that they can be extracted out by a simple threshold segmentation. Experiment results show that the presented method performs well even in the IR images with complex backgrounds.

  16. Synthesis, and Fluorescence Properties of Coumarin and Benzocoumarin Derivatives Conjugated Pyrimidine Scaffolds for Biological Imaging Applications.

    PubMed

    Al-Masoudi, Najim A; Al-Salihi, Niran J; Marich, Yossra A; Markus, Timo

    2015-11-01

    Series of coumarin and 5,6-benzomcomarin substituted pyrimidine derivatives 11-15 and 22-25 were synthesized, aiming to develop new imaging fluorescent agents. Analogously, treatment of 4-chloropyrimidine analog 16 with coumarin 3-carbohyrazide 5 under MWI condition followed by boiling with NH4OAc in HOAc furnished coumarin-1,2,4-triazolo-pyrimidine analog 18. The fluorescence property was investigated spectrophotometrically in MeOH with Rhodamine 6G as standard dye. All the compounds showed emission in the region between 331 and 495 nm. The quantum yield of all the compounds were found to be weak, except methyl benzocoumarin 3-carboxylate 22 which showed (ΦF = 0.98) in comparison to Rhodamine 6G as standard (ΦF = 0.95).

  17. A seed expanding cluster algorithm for deriving upwelling areas on sea surface temperature images

    NASA Astrophysics Data System (ADS)

    Nascimento, Susana; Casca, Sérgio; Mirkin, Boris

    2015-12-01

    In this paper a novel clustering algorithm is proposed as a version of the seeded region growing (SRG) approach for the automatic recognition of coastal upwelling from sea surface temperature (SST) images. The new algorithm, one seed expanding cluster (SEC), takes advantage of the concept of approximate clustering due to Mirkin (1996, 2013) to derive a homogeneity criterion in the format of a product rather than the conventional difference between a pixel value and the mean of values over the region of interest. It involves a boundary-oriented pixel labeling so that the cluster growing is performed by expanding its boundary iteratively. The starting point is a cluster consisting of just one seed, the pixel with the coldest temperature. The baseline version of the SEC algorithm uses Otsu's thresholding method to fine-tune the homogeneity threshold. Unfortunately, this method does not always lead to a satisfactory solution. Therefore, we introduce a self-tuning version of the algorithm in which the homogeneity threshold is locally derived from the approximation criterion over a window around the pixel under consideration. The window serves as a boundary regularizer. These two unsupervised versions of the algorithm have been applied to a set of 28 SST images of the western coast of mainland Portugal, and compared against a supervised version fine-tuned by maximizing the F-measure with respect to manually labeled ground-truth maps. The areas built by the unsupervised versions of the SEC algorithm are significantly coincident over the ground-truth regions in the cases at which the upwelling areas consist of a single continuous fragment of the SST map.

  18. Magnetic resonance velocity imaging derived pressure differential using control volume analysis

    PubMed Central

    2011-01-01

    Background Diagnosis and treatment of hydrocephalus is hindered by a lack of systemic understanding of the interrelationships between pressures and flow of cerebrospinal fluid in the brain. Control volume analysis provides a fluid physics approach to quantify and relate pressure and flow information. The objective of this study was to use control volume analysis and magnetic resonance velocity imaging to non-invasively estimate pressure differentials in vitro. Method A flow phantom was constructed and water was the experimental fluid. The phantom was connected to a high-resolution differential pressure sensor and a computer controlled pump producing sinusoidal flow. Magnetic resonance velocity measurements were taken and subsequently analyzed to derive pressure differential waveforms using momentum conservation principles. Independent sensor measurements were obtained for comparison. Results Using magnetic resonance data the momentum balance in the phantom was computed. The measured differential pressure force had amplitude of 14.4 dynes (pressure gradient amplitude 0.30 Pa/cm). A 12.5% normalized root mean square deviation between derived and directly measured pressure differential was obtained. These experiments demonstrate one example of the potential utility of control volume analysis and the concepts involved in its application. Conclusions This study validates a non-invasive measurement technique for relating velocity measurements to pressure differential. These methods may be applied to clinical measurements to estimate pressure differentials in vivo which could not be obtained with current clinical sensors. PMID:21414222

  19. Plasma distribution in Mercury's magnetosphere derived from MESSENGER Magnetometer and Fast Imaging Plasma Spectrometer observations

    NASA Astrophysics Data System (ADS)

    Korth, Haje; Anderson, Brian J.; Gershman, Daniel J.; Raines, Jim M.; Slavin, James A.; Zurbuchen, Thomas H.; Solomon, Sean C.; McNutt, Ralph L.

    2014-04-01

    We assess the statistical spatial distribution of plasma in Mercury's magnetosphere from observations of magnetic pressure deficits and plasma characteristics by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. The statistical distributions of proton flux and pressure were derived from 10 months of Fast Imaging Plasma Spectrometer (FIPS) observations obtained during the orbital phase of the MESSENGER mission. The Magnetometer-derived pressure distributions compare favorably with those deduced from the FIPS observations at locations where depressions in the magnetic field associated with the presence of enhanced plasma pressures are discernible in the Magnetometer data. The magnitudes of the magnetic pressure deficit and the plasma pressure agree on average, although the two measures of plasma pressure may deviate for individual events by as much as a factor of ~3. The FIPS distributions provide better statistics in regions where the plasma is more tenuous and reveal an enhanced plasma population near the magnetopause flanks resulting from direct entry of magnetosheath plasma into the low-latitude boundary layer of the magnetosphere. The plasma observations also exhibit a pronounced north-south asymmetry on the nightside, with markedly lower fluxes at low altitudes in the northern hemisphere than at higher altitudes in the south on the same field line. This asymmetry is consistent with particle loss to the southern hemisphere surface during bounce motion in Mercury's offset dipole magnetic field.

  20. Plasma Distribution in Mercury's Magnetosphere Derived from MESSENGER Magnetometer and Fast Imaging Plasma Spectrometer Observations

    NASA Technical Reports Server (NTRS)

    Korth, Haje; Anderson, Brian J.; Gershman, Daniel J.; Raines, Jim M.; Slavin, James A.; Zurbuchen, Thomas H.; Solomon, Sean C.; McNutt, Ralph L.

    2014-01-01

    We assess the statistical spatial distribution of plasma in Mercury's magnetosphere from observations of magnetic pressure deficits and plasma characteristics by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. The statistical distributions of proton flux and pressure were derived from 10months of Fast Imaging Plasma Spectrometer (FIPS) observations obtained during the orbital phase of the MESSENGER mission. The Magnetometer-derived pressure distributions compare favorably with those deduced from the FIPS observations at locations where depressions in the magnetic field associated with the presence of enhanced plasma pressures are discernible in the Magnetometer data. The magnitudes of the magnetic pressure deficit and the plasma pressure agree on average, although the two measures of plasma pressure may deviate for individual events by as much as a factor of approximately 3. The FIPS distributions provide better statistics in regions where the plasma is more tenuous and reveal an enhanced plasma population near the magnetopause flanks resulting from direct entry of magnetosheath plasma into the low-latitude boundary layer of the magnetosphere. The plasma observations also exhibit a pronounced north-south asymmetry on the nightside, with markedly lower fluxes at low altitudes in the northern hemisphere than at higher altitudes in the south on the same field line. This asymmetry is consistent with particle loss to the southern hemisphere surface during bounce motion in Mercury's offset dipole magnetic field.

  1. Tectonic features on Saturns satellites Dione and Rhea: Morphology and stratigraphy derived from Cassini ISS images

    NASA Astrophysics Data System (ADS)

    Wagner, R. J.; Neukum, G.; Stephan, K.; Giese, B.; Roatsch, T.; Wolf, U.; Porco, C. C.

    2009-04-01

    derived by mutual crosscutting and truncation. Three age groups can be observed: (1) Clusium and Carthage Fossae are the oldest, truncated by (2) Eurotas and Palatine Chasmata which in turn were truncated by (3) Padua Chasmata representing the youngest set of troughs. Time and duration of tectonic activity on the two satellites is difficult to determine because of uncertainties in cratering chronology models. In the Eurotas Chasmata region, for example, cratering models suggest either older tectonism of about ~ 3 Gyr, or even younger events of about ~ 1 Gyr. No age determinations of tectonic events on Rhea have been made so far due to lack of sufficient image coverage.

  2. Synthesis and Characterization of Water-Soluble Polythiophene Derivatives for Cell Imaging

    NASA Astrophysics Data System (ADS)

    Wang, Fengyan; Li, Meng; Wang, Bing; Zhang, Jiangyan; Cheng, Yongqiang; Liu, Libing; Lv, Fengting; Wang, Shu

    2015-01-01

    In this work, four water-soluble polythiophene derivatives (PT, PT-DDA, PT-ADA, and PT-ADA-PPR) with different pendant moieties were synthesized via oxidative copolymerization by FeCl3. By increasing the hydrophobic ability of side chain moieties, there is a gradually blue shift for the maximum absorption wavelength and red shift for the maximum emission wavelength, a reducing trend for fluorescence quantum yields, a growing trend for Stokes shift, and an increasing trend for the mean sizes in the order of PT, PT-ADA, and PT-DDA. All the synthesized polymers show low toxicity and good photostability and accumulate in the lysosomes of A549 cells. Furthermore, the introduction of porphyrin group to PT-ADA side chain (PT-ADA-PPR) broadens the absorption and emission ranges of PT-ADA. PT-ADA-PPR could be excited at two different excitation wavelengths (488 nm and 559 nm) and exhibits two emission pathways, and dual-color fluorescence images (orange and red) of PT-ADA-PPR accumulated in A549 cells are observed. Thus, PT-ADA-PPR could be used as an excellent dual-color fluorescent and lysosome-specific imaging material.

  3. Synthesis and evaluation of (18)F-trifluoroborate derivatives of triphenylphosphonium for myocardial perfusion imaging.

    PubMed

    Zhang, Zhengxing; Jenni, Silvia; Zhang, Chengcheng; Merkens, Helen; Lau, Joseph; Liu, Zhibo; Perrin, David M; Bénard, François; Lin, Kuo-Shyan

    2016-04-01

    Four trifluoroborate derivatives of phosphonium cations 2a-d were radiolabeled with fluorine-18 ((18)F) and evaluated for imaging myocardial perfusion with positron emission tomography (PET). Tracers were radiolabeled simply via (18)F-(19)F isotope exchange reaction in acidic (pH 2) aqueous solution. On average, [(18)F]2a-d were obtained in 10-17% non-decay-corrected radiochemical yield with 25.9-48.1GBq/μmol specific activity, and >96% radiochemical purity. In vitro stability study showed no decomposition of [(18)F]2a-d after being incubated in mouse plasma for up to 2h. Myocardial uptake in mice was visualized in PET images by using [(18)F]2b-d but not [(18)F]2a. [(18)F]2a-d were stable against in vivo defluorination as no significant bone uptake was observed. Despite sub-optimal heart uptake of [(18)F]2b-d, we successfully demonstrated that (18)F-(19)F isotope exchange reaction on trifluoroborates could be a promising strategy for the design of potential (18)F-labeled tracers even for intracellular targets.

  4. Changes in Thermospheric O/N2 Derived from UVI Auroral Images

    NASA Technical Reports Server (NTRS)

    Germany, G. A.; Swift, W.; Richard, P. G.; Parks, G.; Brittnacher, M.; Spann, J. F., Jr.

    1997-01-01

    A rigorous test of our understanding of the coupled ionosphere-thermosphere and its response to geomagnetic storms is the ability to reproduce observed storm effects as seen in the ionosphere and neutral atmosphere. The concept of compositional change is central to studies of thermosphere response to storm conditions. In particular, information about compositional change within the highly dynamic auroral region is limited. The Ultraviolet Imager (UVI) is designed to view the full auroral region using five filters to isolate emissions from atomic oxygen (1304 and 1356) and N2 LBH. This spectral resolution allows auroral energy characteristics to be derived by two separate methods from examining ratios of observed intensities (OI 1356/LBHL or LBHS/LBHL). The LBHS:LBHL ratio is typically used as the mean energy diagnostic since the OI 1356 emission is dependent on changes in the atomic oxygen density, and these changes relative to N2 can be large. However, once the mean energy has been specified by the LBH ratio, this variability in OI 1356 emission can be exploited as a direct diagnostic of total atomic oxygen column density. This opens the potential of using UVI images to monitor the temporal and spatial response of thermospheric O to high latitude forcing within the auroral regions. Initial results of this type of analysis will be presented along with discussion of its limitations and capabilities.

  5. Imer-product array processor for retrieval of stored images represented by bipolar binary (+1,-1) pixels using partial input trinary pixels represented by (+1,-1)

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Inventor); Awwal, Abdul A. S. (Inventor); Karim, Mohammad A. (Inventor)

    1993-01-01

    An inner-product array processor is provided with thresholding of the inner product during each iteration to make more significant the inner product employed in estimating a vector to be used as the input vector for the next iteration. While stored vectors and estimated vectors are represented in bipolar binary (1,-1), only those elements of an initial partial input vector that are believed to be common with those of a stored vector are represented in bipolar binary; the remaining elements of a partial input vector are set to 0. This mode of representation, in which the known elements of a partial input vector are in bipolar binary form and the remaining elements are set equal to 0, is referred to as trinary representation. The initial inner products corresponding to the partial input vector will then be equal to the number of known elements. Inner-product thresholding is applied to accelerate convergence and to avoid convergence to a negative input product.

  6. Isomerism in benzyl-DOTA derived bifunctional chelators: implications for molecular imaging.

    PubMed

    Payne, Katherine M; Woods, Mark

    2015-02-18

    The bifunctional chelator IB-DOTA has found use in a range of biomedical applications given its ability to chelate many metal ions, but in particular the lanthanide(III) ions. Gd(3+) in particular is of interest in the development of new molecular imaging agents for MRI and is highly suitable for chelation by IB-DOTA. Given the long-term instability of the aryl isothiocyanate functional group we have used the more stable nitro derivative (NB-DOTA) to conduct a follow-up study of some of our previous work on the coordination chemistry of chelates of these BFCs. Using a combination of NMR and HPLC to study the Eu(3+) and Yb(3+) chelates of NB-DOTA, we have demonstrated that this ligand will produce two discrete regioisomeric chelates at the point at which the metal ion is introduced into the BFC. These regioisomers are defined by the position of the benzylic substituent on the macrocyclic ring: adopting an equatorial position either at the corner or the side of the [3333] ring conformation. These regioisomers are incapable of interconversion and are distinct, separate structures with different SAP/TSAP ratios. The side isomer exhibits an increased population of the TSAP isomer, pointing to more rapid water exchange kinetics in this regioisomer. This has potential ramifications for the use of these two regioisomers of Gd(3+)-BFC chelates in MRI applications. We have also found that, remarkably, there is little or no freedom of rotation about the first single bond extending from the macrocyclic ring to the benzylic substituent. Since this is the linkage through which the chelate is conjugated to the remainder of the molecular imaging probe, this result implies that there may be reduced local rotation of the Gd(3+) chelate within a molecular imaging probe. This implies that this type of BFC could exhibit higher relaxivities than other types of BFC.

  7. Multifractal and Singularity Maps of soil surface moisture distribution derived from 2D image analysis.

    NASA Astrophysics Data System (ADS)

    Cumbrera, Ramiro; Millán, Humberto; Martín-Sotoca, Juan Jose; Pérez Soto, Luis; Sanchez, Maria Elena; Tarquis, Ana Maria

    2016-04-01

    methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55-70. Cumbrera, R., Ana M. Tarquis, Gabriel Gascó, Humberto Millán (2012) Fractal scaling of apparent soil moisture estimated from vertical planes of Vertisol pit images. Journal of Hydrology (452-453), 205-212. Martin Sotoca; J.J. Antonio Saa-Requejo, Juan Grau and Ana M. Tarquis (2016). Segmentation of singularity maps in the context of soil porosity. Geophysical Research Abstracts, 18, EGU2016-11402. Millán, H., Cumbrera, R. and Ana M. Tarquis (2016) Multifractal and Levy-stable statistics of soil surface moisture distribution derived from 2D image analysis. Applied Mathematical Modelling, 40(3), 2384-2395.

  8. Optical Imaging of Tumors with Copper-Labeled Rhodamine Derivatives by Targeting Mitochondria

    PubMed Central

    Yan, Xin; Zhou, Yang; Liu, Shuang

    2012-01-01

    In this study, we evaluated Cu(L1) in two xenografted tumor-bearing (U87MG and MDA-MB-435) animal models to prove the concept that Cu(II)-labeled rhodamine derivatives, Cu(L) (L = L1 - L4) are useful as selective fluorescent probes for tumor imaging. We found that both multidrug resistance (MDR) negative U87MG gliomas and MDR-positive MDA-MB-435 breast tumors could be visualized. Because of tissue attenuation, accurate quantification of tumor uptake was difficult by optical methods. Therefore, 64Cu(L) (L = L1 - L4) were evaluated to compare their biodistribution properties. It was found that all four 64Cu radiotracers had a high glioma uptake (64Cu(L1): 5.71± 1.43 %ID/g; 64Cu(L2): 5.98 ± 2.75 %ID/g; 64Cu(L3): 4.28 ± 1.45 %ID/g; and 64Cu(L4): 6.25 ± 3.42 %ID/g) with 64Cu(L1) showing the highest tumor/background ratios. In athymic nude mice bearing MDA-MB-435 breast cancer xenografts, 64Cu(L4) showed almost identical normal organ uptake to that in the glioma-bearing animals, but its breast tumor uptake (1.26 ± 0.10% ID/g) was significantly lower (p < 0.001) than that in the glioma (6.25 ± 3.42% ID/g) because of MDR Pgps (P-glycoproteins) and MRPs (multidrug resistance-associated proteins) overexpressed in the xenografted MDA-MB-435 breast tumors. Results from cellular staining assays showed that both Cu(L2) and Cu(L4) were able to localize in mitochondria of U87MG cells, and their tumor selectivity was caused by the elevated negative mitochondrial potential in U87MG glioma cells as compared to that in human fibroblast cells. On the basis of these results, it was concluded that Cu(L) (L = L1 - L4) are useful as selective fluorescent probes for cellular staining assays and optical tumor imaging while 64Cu(L) (L = L1 - L4) have the potential as PET radiotracers for tumor imaging. This study represents a good example of dual modality imaging (PET and optical) using two agents, 64Cu(L) and Cu(L), with identical chemical composition. Future research will focus on

  9. Uncertainties and biases of source masses derived from fits of integrated fluxes or image intensities

    NASA Astrophysics Data System (ADS)

    Men'shchikov, A.

    2016-09-01

    Fitting spectral distributions of total fluxes or image intensities are two standard methods for estimating the masses of starless cores and protostellar envelopes. These mass estimates, which are the main source and basis of our knowledge of the origin and evolution of self-gravitating cores and protostars, are uncertain. It is important to clearly understand sources of statistical and systematic errors stemming from the methods and minimize the errors. In this model-based study, a grid of radiative transfer models of starless cores and protostellar envelopes was computed and their total fluxes and image intensities were fitted to derive the model masses. To investigate intrinsic effects related to the physical objects, all observational complications were explicitly ignored. Known true values of the numerical models allow assessment of the qualities of the methods and fitting models, as well as the effects of nonuniform temperatures, far-infrared opacity slope, selected subsets of wavelengths, background subtraction, and angular resolutions. The method of fitting intensities gives more accurate masses for more resolved objects than the method of fitting fluxes. With the latter, a fitting model that assumes optically thin emission gives much better results than the one allowing substantial optical depths. Temperature excesses within the objects above the mass-averaged values skew their spectral shapes towards shorter wavelengths, leading to masses underestimated typically by factors 2-5. With a fixed opacity slope deviating from the true value by a factor of 1.2, masses are inaccurate within a factor of 2. The most accurate masses are estimated by fitting just two or three of the longest wavelength measurements. Conventional algorithm of background subtraction is a likely source of large systematic errors. The absolute values of masses of the unresolved or poorly resolved objects in star-forming regions are uncertain to within at least a factor of 2-3.

  10. Natural-color and color-infrared image mosaics of the Colorado River corridor in Arizona derived from the May 2009 airborne image collection

    USGS Publications Warehouse

    Davis, Philip A.

    2013-01-01

    histograms of each band’s digital-number population within each map tile throughout the corridor and the determination of the digital numbers corresponding to the lower and upper one percent of the picture-element population within each map tile. Visual examination of the image tiles that were given a 1-percent stretch (whereby the lower 1- percent 12-bit digital number is assigned an 8-bit value of zero and the upper 1-percent 12-bit digital number is assigned an 8-bit value of 255) indicated that this stretch sufficiently removed atmospheric scattering, which provided improved image clarity and true natural colors for all surface materials. The lower and upper 1-percent, 12-bit digital numbers for each wavelength-band image in the image tiles exhibit erratic variations along the river corridor; the variations exhibited similar trends in both the lower and upper 1-percent digital numbers for all four wavelength-band images (figs. 2–5). The erratic variations are attributed to (1) daily variations in atmospheric water-vapor content due to monsoonal storms, (2) variations in channel water color due to variable sediment input from tributaries, and (3) variations in the amount of topographic shadows within each image tile, in which reflectance is dominated by atmospheric scattering. To make the surface colors of the stretched, 8-bit images consistent among adjacent image tiles, it was necessary to average both the lower and upper 1-percent digital values for each wavelength-band image over 20 river miles to subdue the erratic variations. The average lower and upper 1-percent digital numbers for each image tile (figs. 2–5) were used to convert the 12-bit image values to 8-bit values and the resulting 8-bit four-band images were stored as natural-color (red, green, and blue wavelength bands) and color-infrared (near-infrared, red, and green wavelength bands) images in embedded geotiff format, which can be read and used by most geographic information system (GIS) and image

  11. Synthesis of [18F]-labelled Maltose Derivatives as PET Tracers for Imaging Bacterial Infection

    PubMed Central

    Namavari, Mohammad; Gowrishankar, Gayatri; Hoehne, Aileen; Jouannot, Erwan; Gambhir, Sanjiv S

    2015-01-01

    Purpose To develop novel positron emission tomography (PET) agents for visualization and therapy monitoring of bacterial infections. Procedures It is known that maltose and maltodextrins are energy sources for bacteria. Hence, 18F-labelled maltose derivatives could be a valuable tool for imaging bacterial infections. We have developed methods to synthesize 4-O-(α-D-glucopyranosyl)-6-deoxy-6-[18F]fluoro-D-glucopyranoside (6-[18F]fluoromaltose) and 4-O-(α-D-glucopyranosyl)-1-deoxy-1-[18F]fluoro-D-glucopyranoside (1-[18F]fluoromaltose) as bacterial infection PET imaging agents. 6-[18F]fluoromaltose was prepared from precursor 1,2,3-tri-O-acetyl-4-O-(2′,3′,-di-O-acetyl-4′,6′-benzylidene-α-D-glucopyranosyl)-6-deoxy-6-nosyl-D-glucopranoside (5). The synthesis involved the radio-fluorination of 5 followed by acidic and basic hydrolysis to give 6-[18F]fluoromaltose. In an analogous procedure, 1-[18F]fluoromaltose was synthesized from 2,3, 6-tri-O-acetyl-4-O-(2′,3′,4′,6-tetra-O-acetyl-α-D-glucopyranosyl)-1-deoxy-1-O-triflyl-D-glucopranoside (9). Stability of 6-[18F]fluoromaltose in phosphate-buffered saline (PBS) and human and mouse serum at 37 °C was determined. Escherichia coli uptake of 6-[18F]fluoromaltose was examined. Results A reliable synthesis of 1- and 6-[18F]fluoromaltose has been accomplished with 4–6 and 5–8 % radiochemical yields, respectively (decay-corrected with 95 % radiochemical purity). 6-[18F]fluoromaltose was sufficiently stable over the time span needed for PET studies (~96 % intact compound after 1-h and ~65 % after 2-h incubation in serum). Bacterial uptake experiments indicated that E. coli transports 6-[18F]fluoromaltose. Competition assays showed that the uptake of 6-[18F]fluoromaltose was completely blocked by co-incubation with 1 mM of the natural substrate maltose. Conclusion We have successfully synthesized 1- and 6-[18F]fluoromaltose via direct fluorination of appropriate protected maltose precursors. Bacterial uptake

  12. Glucose-Derived Carbonaceous Nanospheres for Photoacoustic Imaging and Photothermal Therapy.

    PubMed

    Miao, Zhao-Hua; Wang, Hui; Yang, Huanjie; Li, Zhenglin; Zhen, Liang; Xu, Cheng-Yan

    2016-06-29

    Carbon nanomaterials with small size and unique optical properties have attracted intensive interest for their promising biomedical applications. In this work, glucose-derived carbonaceous nanospheres (CNSs) with high photothermal conversion efficiency up to 35.1% are explored for the first time as a novel carbon-based theranostic agent. Different from most other carbon nanomaterials, the obtained CNSs are highly biocompatible and nontoxic because of their intrinsic hydrophilic property and the use of glucose as raw materials. Under near-infrared laser irradiation (808 nm, 6 W cm(-2)) for 10 min, less than 15% of PC-3M-IE8 cells exposed to CNSs aqueous dispersions (0.16 mg/mL) remained alive. After intravenous administration of CNSs aqueous dispersions into nude mice, the photoacoustic intensity of the tumor region is about 2.5 times higher than that of preinjection. These results indicate that CNSs are suitable for simultaneous photoacoustic imaging and photothermal ablation of cancer cells and can serve as promising biocompatible carbon-based agents for further clinical trials. PMID:27281299

  13. Deriving statistical significance maps for SVM based image classification and group comparisons.

    PubMed

    Gaonkar, Bilwaj; Davatzikos, Christos

    2012-01-01

    Population based pattern analysis and classification for quantifying structural and functional differences between diverse groups has been shown to be a powerful tool for the study of a number of diseases, and is quite commonly used especially in neuroimaging. The alternative to these pattern analysis methods, namely mass univariate methods such as voxel based analysis and all related methods, cannot detect multivariate patterns associated with group differences, and are not particularly suitable for developing individual-based diagnostic and prognostic biomarkers. A commonly used pattern analysis tool is the support vector machine (SVM). Unlike univariate statistical frameworks for morphometry, analytical tools for statistical inference are unavailable for the SVM. In this paper, we show that null distributions ordinarily obtained by permutation tests using SVMs can be analytically approximated from the data. The analytical computation takes a small fraction of the time it takes to do an actual permutation test, thereby rendering it possible to quickly create statistical significance maps derived from SVMs. Such maps are critical for understanding imaging patterns of group differences and interpreting which anatomical regions are important in determining the classifier's decision.

  14. MR Imaging-derived Oxygen-Hemoglobin Dissociation Curves and Fetal-Placental Oxygen-Hemoglobin Affinities.

    PubMed

    Avni, Reut; Golani, Ofra; Akselrod-Ballin, Ayelet; Cohen, Yonni; Biton, Inbal; Garbow, Joel R; Neeman, Michal

    2016-07-01

    Purpose To generate magnetic resonance (MR) imaging-derived, oxygen-hemoglobin dissociation curves and to map fetal-placental oxygen-hemoglobin affinity in pregnant mice noninvasively by combining blood oxygen level-dependent (BOLD) T2* and oxygen-weighted T1 contrast mechanisms under different respiration challenges. Materials and Methods All procedures were approved by the Weizmann Institutional Animal Care and Use Committee. Pregnant mice were analyzed with MR imaging at 9.4 T on embryonic days 14.5 (eight dams and 58 fetuses; imprinting control region ICR strain) and 17.5 (21 dams and 158 fetuses) under respiration challenges ranging from hyperoxia to hypoxia (10 levels of oxygenation, 100%-10%; total imaging time, 100 minutes). A shorter protocol with normoxia to hyperoxia was also performed (five levels of oxygenation, 20%-100%; total imaging time, 60 minutes). Fast spin-echo anatomic images were obtained, followed by sequential acquisition of three-dimensional gradient-echo T2*- and T1-weighted images. Automated registration was applied to align regions of interest of the entire placenta, fetal liver, and maternal liver. Results were compared by using a two-tailed unpaired Student t test. R1 and R2* values were derived for each tissue. MR imaging-based oxygen-hemoglobin dissociation curves were constructed by nonlinear least square fitting of 1 minus the change in R2*divided by R2*at baseline as a function of R1 to a sigmoid-shaped curve. The apparent P50 (oxygen tension at which hemoglobin is 50% saturated) value was derived from the curves, calculated as the R1 scaled value (x) at which the change in R2* divided by R2*at baseline scaled (y) equals 0.5. Results The apparent P50 values were significantly lower in fetal liver than in maternal liver for both gestation stages (day 14.5: 21% ± 5 [P = .04] and day 17.5: 41% ± 7 [P < .0001]). The placenta showed a reduction of 18% ± 4 in mean apparent P50 values from day 14.5 to day 17.5 (P = .003

  15. Mapping and monitoring changes in vegetation communities of Jasper Ridge, CA, using spectral fractions derived from AVIRIS images

    NASA Technical Reports Server (NTRS)

    Sabol, Donald E., Jr.; Roberts, Dar A.; Adams, John B.; Smith, Milton O.

    1993-01-01

    An important application of remote sensing is to map and monitor changes over large areas of the land surface. This is particularly significant with the current interest in monitoring vegetation communities. Most of traditional methods for mapping different types of plant communities are based upon statistical classification techniques (i.e., parallel piped, nearest-neighbor, etc.) applied to uncalibrated multispectral data. Classes from these techniques are typically difficult to interpret (particularly to a field ecologist/botanist). Also, classes derived for one image can be very different from those derived from another image of the same area, making interpretation of observed temporal changes nearly impossible. More recently, neural networks have been applied to classification. Neural network classification, based upon spectral matching, is weak in dealing with spectral mixtures (a condition prevalent in images of natural surfaces). Another approach to mapping vegetation communities is based on spectral mixture analysis, which can provide a consistent framework for image interpretation. Roberts et al. (1990) mapped vegetation using the band residuals from a simple mixing model (the same spectral endmembers applied to all image pixels). Sabol et al. (1992b) and Roberts et al. (1992) used different methods to apply the most appropriate spectral endmembers to each image pixel, thereby allowing mapping of vegetation based upon the the different endmember spectra. In this paper, we describe a new approach to classification of vegetation communities based upon the spectra fractions derived from spectral mixture analysis. This approach was applied to three 1992 AVIRIS images of Jasper Ridge, California to observe seasonal changes in surface composition.

  16. Mesospheric Zonal Mean Winds Derived from Consecutive Orbits of AIM Cips Images

    NASA Astrophysics Data System (ADS)

    Rong, P. P.; Yue, J.; Russell, J. M., III; Lumpe, J. D., Jr.; Gong, J.; Wu, D. L.; Randall, C. E.

    2014-12-01

    In order to infer mesospheric wind velocities, polar mesospheric cloud (PMC) pattern variations are investigated using images from consecutive orbits taken by the Cloud Imaging and Particle Size instrument (CIPS) aboard the AIM satellite. CIPS measurements are analyzed to detect patterns that repeat from one orbit to the next, but are displaced in location; the displacement provides a measure of the wind velocity. Pattern matching is achieved by re-sampling the CIPS data to a standard geographic grid with a horizontal resolution of 0.2° longitude × 0.05° latitude (~25 km2), and correlating patterns within geographic frames of size 24° longitude × 3.6° latitude. Such a frame size is arbitrarily chosen, but it covers a hierarchy of cloud structures including scales as large as several hundred kilometers. A relatively larger frame is required because after ~90 minutes, the time of one orbit, the smaller scale features are no longer conserved. Several thousand pairs, taken from 10-14 July 2007, are matched to derive the statistics. These pairs are mostly evenly distributed at longitudes and latitudes north of 70⁰N for each given day. The results suggest that the zonal velocity probability distribution during this 5-day period was peaked at around -40m/s with a 1-σ scatter of ~35m/s. The meridional velocity distribution peaked at 0 m/s with a 1-σ scatter of ~25m/s. These prevailing velocities can be determined with high precision because the corresponding patterns are shifted by at least half of the frame size from one orbit to the next. The CIPS cloud albedo on consecutive orbits is also examined for variations at fixed locations. The statistical results suggest that the mean cloud albedo within a given frame will most likely be weakened or strengthened by < 30% on consecutive orbits, although larger variations can occur with lower probability. Such a conclusion applies to both bright and dim clouds. This indicates that within 90 minutes the cloud brightness

  17. Synthesis, Radiolabeling and Biological Evaluation of 99mTc-labeled Deoxyglucose Derivatives for Molecular Imaging

    PubMed Central

    Sadeghzadeh, Masoud; Charkhlooiea, Ghorbanali; Johari Daha, Fariba

    2013-01-01

    Two deoxyglucose (DG) derivatives, (α,β)-2-deoxy-2-amino(ethylcarbamate)-D-glucose (ECB-DG) and (α,β)-2-deoxy-2-amino(1,2-dihydroxypropyl)-D-glucose (DHP-DG), were synthesized and radiolabeled successfully with [99mTc(H2O)3(CO)3]+ complex. [99mTc]-ECB-DG and [99mTc]-DHP-DG complexes were prepared (96% and 93% radiochemical purities respectively) by using 46 mCi of Na99mTcO4 in 1 mL saline. Radio-HPLC analysis of [99mTc]- ECB-DG at pH = 7.4, revealed that labeling with 99mTc leads to formation of one radiochemical species with tR = 381 second. Three radiochemical species, Na99mTcO4, [99mTc]-DHP-DG and [99mTc(H2O)3(CO)3]+ complexes with tR = 342 sec, tR = 567 sec and tR = 1586 sec respectively, were obtained when [99mTc]-DHP-DG complex evaluated by HPLC. Biodistribution of two complexes were studied on normal mice at 10, 30 and 60 min post-injections. Compared to the 18F-FDG, [99mTc]-ECB-DG displayed a 2.8-fold reduction in brain uptake (1.7 ± 0.2 versus 0.61% ± 0.09) ,whereas [99mTc]-DHP-DG just showed 1.9-fold reduction in heart uptake (2.2 ± 0.05 towards 1.16±0.10) at 1 h post-injection. On the basis of our results, it seems that ECB-DG and DHP-DG analogues could be used as brain and heart imaging agent respectively. PMID:24250633

  18. Reproducibility of the Structural Brain Connectome Derived from Diffusion Tensor Imaging

    PubMed Central

    Bonilha, Leonardo; Gleichgerrcht, Ezequiel; Fridriksson, Julius; Rorden, Chris; Breedlove, Jesse L.; Nesland, Travis; Paulus, Walter; Helms, Gunther; Focke, Niels K.

    2015-01-01

    Rationale Disruptions of brain anatomical connectivity are believed to play a central role in several neurological and psychiatric illnesses. The structural brain connectome is typically derived from diffusion tensor imaging (DTI), which may be influenced by methodological factors related to signal processing, MRI scanners and biophysical properties of neuroanatomical regions. In this study, we evaluated how these variables affect the reproducibility of the structural connectome. Methods Twenty healthy adults underwent 3 MRI scanning sessions (twice in the same MRI scanner and a third time in a different scanner unit) within a short period of time. The scanning sessions included similar T1 weighted and DTI sequences. Deterministic or probabilistic tractography was performed to assess link weight based on the number of fibers connecting gray matter regions of interest (ROI). Link weight and graph theory network measures were calculated and reproducibility was assessed through intra-class correlation coefficients, assuming each scanning session as a rater. Results Connectome reproducibility was higher with data from the same scanner. The probabilistic approach yielded larger reproducibility, while the individual variation in the number of tracked fibers from deterministic tractography was negatively associated with reproducibility. Links connecting larger and anatomically closer ROIs demonstrated higher reproducibility. In general, graph theory measures demonstrated high reproducibility across scanning sessions. Discussion Anatomical factors and tractography approaches can influence the reproducibility of the structural connectome and should be factored in the interpretation of future studies. Our results demonstrate that connectome mapping is a largely reproducible technique, particularly as it relates to the geometry of network architecture measured by graph theory methods. PMID:26332788

  19. Partially connected feedforward neural networks structured by input types.

    PubMed

    Kang, Sanggil; Isik, Can

    2005-01-01

    This paper proposes a new method to model partially connected feedforward neural networks (PCFNNs) from the identified input type (IT) which refers to whether each input is coupled with or uncoupled from other inputs in generating output. The identification is done by analyzing input sensitivity changes as amplifying the magnitude of inputs. The sensitivity changes of the uncoupled inputs are not correlated with the variation on any other input, while those of the coupled inputs are correlated with the variation on any one of the coupled inputs. According to the identified ITs, a PCFNN can be structured. Each uncoupled input does not share the neurons in the hidden layer with other inputs in order to contribute to output in an independent manner, while the coupled inputs share the neurons with one another. After deriving the mathematical input sensitivity analysis for each IT, several experiments, as well as a real example (blood pressure (BP) estimation), are described to demonstrate how well our method works.

  20. [F-18]-Fluoromisonidazole Quantification of Hypoxia in Human Cancer Patients using Image-derived Blood Surrogate Tissue Reference Regions

    PubMed Central

    Muzi, Mark; Peterson, Lanell M.; O’Sullivan, Janet N.; Fink, James R.; Rajendran, Joseph G.; McLaughlin, Lena J.; Muzi, John P.; Mankoff, David A.; Krohn, Kenneth A.

    2015-01-01

    18F-FMISO is the most widely used PET agent for imaging hypoxia, a condition associated with resistance to tumor therapy. 18F-FMISO equilibrates in normoxic tissues, but is retained under hypoxic conditions because of reduction and binding to macromolecules. A simple tissue-to-blood ratio (TB) is suitable for quantifying hypoxia. A threshold of TB ≥ 1.2 is useful in discriminating the hypoxic volume (HV) of tissue; TBmax is the maximum intensity of the hypoxic region and does not invoke a threshold. Because elimination of blood sampling would simplify clinical use, we tested the validity of using imaging regions as a surrogate for blood sampling. Methods Patients underwent 20 min 18F-FMISO scans during the 90–140 min interval post-injection with venous blood sampling. 223 18F-FMISO patient studies had detectable surrogate blood regions in the field-of-view. Quantitative parameters of hypoxia (TBmax, HV) derived from blood samples were compared to values using surrogate blood regions derived from heart, aorta and/or cerebellum. In a subset of brain cancer patients, parameters from blood samples and from cerebellum were compared for their ability to independently predict outcome. Results Vascular regions of heart showed the highest correlation to measured blood activity (R2 = 0.84). For brain studies, cerebellar activity was similarly correlated to blood samples. In brain cancer patients, Kaplan-Meier analysis showed that image-derived reference regions had nearly identical predictive power as parameters derived from blood, thus obviating the need for venous sampling in these patients. Conclusions Simple static analysis of 18F-FMISO PET captures both the intensity (TBmax) and spatial extent (HV) of tumor hypoxia. An image-derived region to assess blood activity can be used as a surrogate for blood sampling in quantification of hypoxia. PMID:26112020

  1. Regional rainfall climatologies derived from Special Sensor Microwave Imager (SSM/I) data

    NASA Technical Reports Server (NTRS)

    Negri, Andrew J.; Adler, Robert F.; Nelkin, Eric J.; Huffman, George J.

    1994-01-01

    Climatologies of convective precipitation were derived from passive microwave observations from the Special Sensor Microwave Imager using a scattering-based algorithm of Adler et al. Data were aggregated over periods of 3-5 months using data from 4 to 5 years. Data were also stratified by satellite overpass times (primarily 06 00 and 18 00 local time). Four regions (Mexico, Amazonia, western Africa, and the western equatorial Pacific Ocean (TOGA COARE area) were chosen for their meteorological interest and relative paucity of conventional observations. The strong diurnal variation over Mexico and the southern United States was the most striking aspect of the climatologies. Pronounced morning maxima occured offshore, often in concativities in the coastline, the result of the increased convergence caused by the coastline shape. The major feature of the evening rain field was a linear-shaped maximum along the western slope of the Sierra Madre Occidental. Topography exerted a strong control on the rainfall in other areas, particularly near the Nicaragua/Honduras border and in Guatemala, where maxima in excess of 700 mm/month were located adjacent to local maxima in terrain. The correlation between the estimates and monthly gage data over the southern United States was low (0.45), due mainly to poor temporal sampling in any month and an inadequate sampling of the diurnal cycle. Over the Amazon Basin the differences in morning versus evening rainfall were complex, with an alternating series of morning/evening maxima aligned southwest to northeast from the Andes to the northeast Brazilian coast. A real extent of rainfall in Amazonia was slightly higher in the evening, but a maximum in morning precipitation was found on the Amazon River just east of Manaus. Precipitation over the water in the intertropical convergence zone (ITCZ) north of Brazil was more pronounced in the morning, and a pronounced land-/sea-breeze circulation was found along the northeast coast of Brazil

  2. Storm diagnostic/predictive images derived from a combination of lightning and satellite imagery

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Buechler, Dennis E.; Meyer, Paul J.

    1988-01-01

    A technique is presented for generating trend or convective tendency images using a combination of GOES satellite imagery and cloud-to-ground lightning observations. The convective tendency images can be used for short term forecasting of storm development. A conceptual model of cloud electrical development and an example of the methodology used to generate lightning/satellite convective tendency imagery are given. Successive convective tendency images can be looped or animated to show the previous growth or decay of thunderstorms and their associated lighting activity. It is suggested that the convective tendency image may also be used to indicate potential microburst producing storms.

  3. Natural-color and color-infrared image mosaics of the Colorado River corridor in Arizona derived from the May 2009 airborne image collection

    USGS Publications Warehouse

    Davis, Philip A.

    2013-01-01

    histograms of each band’s digital-number population within each map tile throughout the corridor and the determination of the digital numbers corresponding to the lower and upper one percent of the picture-element population within each map tile. Visual examination of the image tiles that were given a 1-percent stretch (whereby the lower 1- percent 12-bit digital number is assigned an 8-bit value of zero and the upper 1-percent 12-bit digital number is assigned an 8-bit value of 255) indicated that this stretch sufficiently removed atmospheric scattering, which provided improved image clarity and true natural colors for all surface materials. The lower and upper 1-percent, 12-bit digital numbers for each wavelength-band image in the image tiles exhibit erratic variations along the river corridor; the variations exhibited similar trends in both the lower and upper 1-percent digital numbers for all four wavelength-band images (figs. 2–5). The erratic variations are attributed to (1) daily variations in atmospheric water-vapor content due to monsoonal storms, (2) variations in channel water color due to variable sediment input from tributaries, and (3) variations in the amount of topographic shadows within each image tile, in which reflectance is dominated by atmospheric scattering. To make the surface colors of the stretched, 8-bit images consistent among adjacent image tiles, it was necessary to average both the lower and upper 1-percent digital values for each wavelength-band image over 20 river miles to subdue the erratic variations. The average lower and upper 1-percent digital numbers for each image tile (figs. 2–5) were used to convert the 12-bit image values to 8-bit values and the resulting 8-bit four-band images were stored as natural-color (red, green, and blue wavelength bands) and color-infrared (near-infrared, red, and green wavelength bands) images in embedded geotiff format, which can be read and used by most geographic information system (GIS) and image

  4. High molecular weight chitosan derivative polymeric micelles encapsulating superparamagnetic iron oxide for tumor-targeted magnetic resonance imaging

    PubMed Central

    Xiao, Yunbin; Lin, Zuan Tao; Chen, Yanmei; Wang, He; Deng, Ya Li; Le, D Elizabeth; Bin, Jianguo; Li, Meiyu; Liao, Yulin; Liu, Yili; Jiang, Gangbiao; Bin, Jianping

    2015-01-01

    Magnetic resonance imaging (MRI) contrast agents based on chitosan derivatives have great potential for diagnosing diseases. However, stable tumor-targeted MRI contrast agents using micelles prepared from high molecular weight chitosan derivatives are seldom reported. In this study, we developed a novel tumor-targeted MRI vehicle via superparamagnetic iron oxide nanoparticles (SPIONs) encapsulated in self-aggregating polymeric folate-conjugated N-palmitoyl chitosan (FAPLCS) micelles. The tumor-targeting ability of FAPLCS/SPIONs was demonstrated in vitro and in vivo. The results of dynamic light scattering experiments showed that the micelles had a relatively narrow size distribution (136.60±3.90 nm) and excellent stability. FAPLCS/SPIONs showed low cytotoxicity and excellent biocompatibility in cellular toxicity tests. Both in vitro and in vivo studies demonstrated that FAPLCS/SPIONs bound specifically to folate receptor-positive HeLa cells, and that FAPLCS/SPIONs accumulated predominantly in established HeLa-derived tumors in mice. The signal intensities of T2-weighted images in established HeLa-derived tumors were reduced dramatically after intravenous micelle administration. Our study indicates that FAPLCS/SPION micelles can potentially serve as safe and effective MRI contrast agents for detecting tumors that overexpress folate receptors. PMID:25709439

  5. Texture Descriptors Ensembles Enable Image-Based Classification of Maturation of Human Stem Cell-Derived Retinal Pigmented Epithelium

    PubMed Central

    Caetano dos Santos, Florentino Luciano; Skottman, Heli; Juuti-Uusitalo, Kati; Hyttinen, Jari

    2016-01-01

    Aims A fast, non-invasive and observer-independent method to analyze the homogeneity and maturity of human pluripotent stem cell (hPSC) derived retinal pigment epithelial (RPE) cells is warranted to assess the suitability of hPSC-RPE cells for implantation or in vitro use. The aim of this work was to develop and validate methods to create ensembles of state-of-the-art texture descriptors and to provide a robust classification tool to separate three different maturation stages of RPE cells by using phase contrast microscopy images. The same methods were also validated on a wide variety of biological image classification problems, such as histological or virus image classification. Methods For image classification we used different texture descriptors, descriptor ensembles and preprocessing techniques. Also, three new methods were tested. The first approach was an ensemble of preprocessing methods, to create an additional set of images. The second was the region-based approach, where saliency detection and wavelet decomposition divide each image in two different regions, from which features were extracted through different descriptors. The third method was an ensemble of Binarized Statistical Image Features, based on different sizes and thresholds. A Support Vector Machine (SVM) was trained for each descriptor histogram and the set of SVMs combined by sum rule. The accuracy of the computer vision tool was verified in classifying the hPSC-RPE cell maturation level. Dataset and Results The RPE dataset contains 1862 subwindows from 195 phase contrast images. The final descriptor ensemble outperformed the most recent stand-alone texture descriptors, obtaining, for the RPE dataset, an area under ROC curve (AUC) of 86.49% with the 10-fold cross validation and 91.98% with the leave-one-image-out protocol. The generality of the three proposed approaches was ascertained with 10 more biological image datasets, obtaining an average AUC greater than 97%. Conclusions Here we

  6. Image-derived, Three-dimensional Generative Models of Cellular Organization

    PubMed Central

    Peng, Tao; Murphy, Robert F.

    2011-01-01

    Given the importance of subcellular location to protein function, computational simulations of cell behaviors will ultimately require the ability to model the distributions of proteins within organelles and other structures. Towards this end, statistical learning methods have previously been used to build models of sets of two-dimensional microscope images, where each set contains multiple images for a single subcellular location pattern. The model learned from each set of images not only represents the pattern but also captures the variation in that pattern from cell to cell. The models consist of sub-models for nuclear shape, cell shape, organelle size and shape and organelle distribution relative to nuclear and cell boundaries, and allow synthesis of images with the expectation that they are drawn from the same underlying statistical distribution as the images used to train them. Here we extend this generative models approach to three dimensions using a similar framework, permitting protein subcellular locations to be described more accurately. Models of different patterns can be combined to yield synthetic multi-channel image containing as many proteins as desired, something that is difficult to obtain by direct microscope imaging for more than a few proteins. In addition, the model parameters represent a more compact and interpretable way of communicating subcellular patterns than descriptive image features, and may be particularly effective for automated identification of changes in subcellular organization caused by perturbagens. PMID:21472848

  7. (18) F-labeled folic acid derivatives for imaging of the folate receptor via positron emission tomography.

    PubMed

    Schieferstein, Hanno; Ross, Tobias L

    2013-01-01

    The folate receptor (FR) is already known as a proven target in diagnostics and therapy of cancer. Furthermore, the FR is involved in inflammatory and autoimmune diseases. The major advantage as a valuable target is its strongly limited expression in healthy tissues. Over the past two decades, several folic acid-based radiopharmaceuticals addressing the FR have been developed, and some of them show great potential for applications in clinical routine. However, most of these radiofolates were developed for single photon emission computed tomography imaging, and only a few can be used for positron emission tomography (PET) imaging. The development of suitable (18) F-labeled derivatives for PET imaging of the FR has aroused great interest and recent studies revealed very promising candidates for further development and translation into human applications. In this review, we focus on the development of (18) F-labeled folic acid derivatives for PET imaging of the FR and discuss various radiochemical strategies and approaches towards (18) F-folates. Besides radiochemistry and (18) F-labeling, we briefly look into the crucial pharmacological parameters and the preclinical in vivo performance of those (18) F-folates.

  8. Enhanced Healing of Diabetic Wounds by Topical Administration of Adipose Tissue-Derived Stromal Cells Overexpressing Stromal-Derived Factor-1: Biodistribution and Engraftment Analysis by Bioluminescent Imaging

    PubMed Central

    Di Rocco, Giuliana; Gentile, Antonietta; Antonini, Annalisa; Ceradini, Francesca; Wu, Joseph C.; Capogrossi, Maurizio C.; Toietta, Gabriele

    2011-01-01

    Chronic ulcers represent a major health problem in diabetic patients resulting in pain and discomfort. Conventional therapy does not guarantee adequate wound repair. In diabetes, impaired healing is partly due to poor endothelial progenitor cells mobilisation and homing, with altered levels of the chemokine stromal-derived factor-1 (SDF-1) at the wound site. Adipose tissue-associated stromal cells (AT-SCs) can provide an accessible source of progenitor cells secreting proangiogenic factors and differentiating into endothelial-like cells. We demonstrated that topical administration of AT-SCs genetically modified ex vivo to overexpress SDF-1, promotes wound healing into diabetic mice. In particular, by in vivo bioluminescent imaging analysis, we monitored biodistribution and survival after transplantation of luciferase-expressing cells. In conclusion, this study indicates the therapeutic potential of AT-SCs administration in wound healing, through cell differentiation, enhanced cellular recruitment at the wound site, and paracrine effects associated with local growth-factors production. PMID:21234108

  9. Enhanced healing of diabetic wounds by topical administration of adipose tissue-derived stromal cells overexpressing stromal-derived factor-1: biodistribution and engraftment analysis by bioluminescent imaging.

    PubMed

    Di Rocco, Giuliana; Gentile, Antonietta; Antonini, Annalisa; Ceradini, Francesca; Wu, Joseph C; Capogrossi, Maurizio C; Toietta, Gabriele

    2010-01-01

    Chronic ulcers represent a major health problem in diabetic patients resulting in pain and discomfort. Conventional therapy does not guarantee adequate wound repair. In diabetes, impaired healing is partly due to poor endothelial progenitor cells mobilisation and homing, with altered levels of the chemokine stromal-derived factor-1 (SDF-1) at the wound site. Adipose tissue-associated stromal cells (AT-SCs) can provide an accessible source of progenitor cells secreting proangiogenic factors and differentiating into endothelial-like cells. We demonstrated that topical administration of AT-SCs genetically modified ex vivo to overexpress SDF-1, promotes wound healing into diabetic mice. In particular, by in vivo bioluminescent imaging analysis, we monitored biodistribution and survival after transplantation of luciferase-expressing cells. In conclusion, this study indicates the therapeutic potential of AT-SCs administration in wound healing, through cell differentiation, enhanced cellular recruitment at the wound site, and paracrine effects associated with local growth-factors production. PMID:21234108

  10. Talking Speech Input.

    ERIC Educational Resources Information Center

    Berliss-Vincent, Jane; Whitford, Gigi

    2002-01-01

    This article presents both the factors involved in successful speech input use and the potential barriers that may suggest that other access technologies could be more appropriate for a given individual. Speech input options that are available are reviewed and strategies for optimizing use of speech recognition technology are discussed. (Contains…

  11. MDS MIC Catalog Inputs

    NASA Technical Reports Server (NTRS)

    Johnson-Throop, Kathy A.; Vowell, C. W.; Smith, Byron; Darcy, Jeannette

    2006-01-01

    This viewgraph presentation reviews the inputs to the MDS Medical Information Communique (MIC) catalog. The purpose of the group is to provide input for updating the MDS MIC Catalog and to request that MMOP assign Action Item to other working groups and FSs to support the MITWG Process for developing MIC-DDs.

  12. Three-dimensional image technology in forensic anthropology: Assessing the validity of biological profiles derived from CT-3D images of the skeleton

    NASA Astrophysics Data System (ADS)

    Garcia de Leon Valenzuela, Maria Julia

    This project explores the reliability of building a biological profile for an unknown individual based on three-dimensional (3D) images of the individual's skeleton. 3D imaging technology has been widely researched for medical and engineering applications, and it is increasingly being used as a tool for anthropological inquiry. While the question of whether a biological profile can be derived from 3D images of a skeleton with the same accuracy as achieved when using dry bones has been explored, bigger sample sizes, a standardized scanning protocol and more interobserver error data are needed before 3D methods can become widely and confidently used in forensic anthropology. 3D images of Computed Tomography (CT) scans were obtained from 130 innominate bones from Boston University's skeletal collection (School of Medicine). For each bone, both 3D images and original bones were assessed using the Phenice and Suchey-Brooks methods. Statistical analysis was used to determine the agreement between 3D image assessment versus traditional assessment. A pool of six individuals with varying experience in the field of forensic anthropology scored a subsample (n = 20) to explore interobserver error. While a high agreement was found for age and sex estimation for specimens scored by the author, the interobserver study shows that observers found it difficult to apply standard methods to 3D images. Higher levels of experience did not result in higher agreement between observers, as would be expected. Thus, a need for training in 3D visualization before applying anthropological methods to 3D bones is suggested. Future research should explore interobserver error using a larger sample size in order to test the hypothesis that training in 3D visualization will result in a higher agreement between scores. The need for the development of a standard scanning protocol focusing on the optimization of 3D image resolution is highlighted. Applications for this research include the possibility

  13. Comparisons of Derived Metrics from Computed Tomography (CT) Scanned Images of Fluvial Sediment from Gravel-Bed Flume Experiments

    NASA Astrophysics Data System (ADS)

    Voepel, Hal; Ahmed, Sharif; Hodge, Rebecca; Leyland, Julian; Sear, David

    2016-04-01

    Uncertainty in bedload estimates for gravel bed rivers is largely driven by our inability to characterize arrangement, orientation and resultant forces of fluvial sediment in river beds. Water working of grains leads to structural differences between areas of the bed through particle sorting, packing, imbrication, mortaring and degree of bed armoring. In this study, non-destructive, micro-focus X-ray computed tomography (CT) imaging in 3D is used to visualize, quantify and assess the internal geometry of sections of a flume bed that have been extracted keeping their fabric intact. Flume experiments were conducted at 1:1 scaling of our prototype river. From the volume, center of mass, points of contact, and protrusion of individual grains derived from 3D scan data we estimate 3D static force properties at the grain-scale such as pivoting angles, buoyancy and gravity forces, and local grain exposure. Here metrics are derived for images from two flume experiments: one with a bed of coarse grains (>4mm) and the other where sand and clay were incorporated into the coarse flume bed. In addition to deriving force networks, comparison of metrics such as critical shear stress, pivot angles, grain distributions, principle axis orientation, and pore space over depth are made. This is the first time bed stability has been studied in 3D using CT scanned images of sediment from the bed surface to depths well into the subsurface. The derived metrics, inter-granular relationships and characterization of bed structures will lead to improved bedload estimates with reduced uncertainty, as well as improved understanding of relationships between sediment structure, grain size distribution and channel topography.

  14. Characterization of Membrane Protein Interactions in Plasma Membrane Derived Vesicles with Quantitative Imaging FRET

    PubMed Central

    Sarabipour, Sarvenaz; Del Piccolo, Nuala; Hristova, Kalina

    2016-01-01

    CONSPECTUS Here we describe an experimental tool, termed Quantitative Imaging Förster Resonance Energy Transfer (QI-FRET), which enables the quantitative characterization of membrane protein interactions. The QI-FRET methodology allows us to acquire binding curves and calculate association constants for complex membrane proteins in the native plasma membrane environment. The method utilizes FRET detection, and thus requires that the proteins of interest are labeled with florescent proteins, either FRET donors or FRET acceptors. Since plasma membranes of cells have complex topologies precluding the acquisition of two-dimensional binding curves, the FRET measurements are performed in plasma membrane derived vesicles which bud off cells as a result of chemical or osmotic stress. The results overviewed here are acquired in vesicles produced with an osmotic vesiculation buffer developed in our laboratory, which does not utilize harsh chemicals. The concentrations of the donor-labeled and the acceptor-labeled proteins are determined, along with the FRET efficiencies, in each vesicle. The experiments utilize transient transfection, such that a wide variety of concentrations is sampled. Then, data from hundreds of vesicles are combined to yield dimerization curves. Here we discuss recent findings about the dimerization of receptor tyrosine kinases (RTKs), membrane proteins that control cell growth and differentiation via lateral dimerization in the plasma membrane. We focus on the dimerization of fibroblast growth factor receptor 3 (FGFR3), an RTK that plays a critically important role in skeletal development. We study the role of different FGFR3 domains in FGFR3 dimerization in the absence of ligand, and we show that FGFR3 extracellular domains inhibit unliganded dimerization, while contacts between the juxtamembrane domains, which connect the transmembrane domains to the kinase domains, stabilize the unliganded FGFR3 dimers. Since FGFR3 has been documented to harbor

  15. A two-photon fluorescent turn-on probe for imaging of SO2 derivatives in living cells and tissues.

    PubMed

    Zhu, Xiaoyan; Zhu, Longming; Liu, Hong-Wen; Hu, Xiaoxiao; Peng, Rui-Zi; Zhang, Jing; Zhang, Xiao-Bing; Tan, Weihong

    2016-09-21

    SO2 and its derivatives (bisulfite/sulfite) play crucial roles in several physiological processes. Therefore, development of reliable analytical methods for monitoring SO2 and its derivatives in biological systems is very significant. In this paper, a FRET-based two-photon fluorescent turn-on probe, A-HCy, was proposed for specific detection of SO2 derivatives through the bisulfite/sulfite-promoted Michael addition reaction. In this FRET system, an acedan (2-acetyl-6-dialkylaminonaphthalene) moiety was selected as a two-photon donor and a hemicyanine derivative served as both the quencher and the recognition unit for bisulfite/sulfite. A-HCy exhibited excellent selectivity and rapid response to HSO3(-) with a detection limit of 0.24 μM. More importantly, probe A-HCy was first successfully applied in two-photon fluorescence imaging of biological SO2 derivatives in living cells and tissues, suggesting its great potential for practical application in biological systems.

  16. A two-photon fluorescent turn-on probe for imaging of SO2 derivatives in living cells and tissues.

    PubMed

    Zhu, Xiaoyan; Zhu, Longming; Liu, Hong-Wen; Hu, Xiaoxiao; Peng, Rui-Zi; Zhang, Jing; Zhang, Xiao-Bing; Tan, Weihong

    2016-09-21

    SO2 and its derivatives (bisulfite/sulfite) play crucial roles in several physiological processes. Therefore, development of reliable analytical methods for monitoring SO2 and its derivatives in biological systems is very significant. In this paper, a FRET-based two-photon fluorescent turn-on probe, A-HCy, was proposed for specific detection of SO2 derivatives through the bisulfite/sulfite-promoted Michael addition reaction. In this FRET system, an acedan (2-acetyl-6-dialkylaminonaphthalene) moiety was selected as a two-photon donor and a hemicyanine derivative served as both the quencher and the recognition unit for bisulfite/sulfite. A-HCy exhibited excellent selectivity and rapid response to HSO3(-) with a detection limit of 0.24 μM. More importantly, probe A-HCy was first successfully applied in two-photon fluorescence imaging of biological SO2 derivatives in living cells and tissues, suggesting its great potential for practical application in biological systems. PMID:27590555

  17. An Analysis of Whole Body Tracer Kinetics in Dynamic PET Studies With Application to Image-Based Blood Input Function Extraction

    PubMed Central

    Huang, Jian; O’Sullivan, Finbarr

    2014-01-01

    In a positron emission tomography (PET) study, the local uptake of the tracer is dependent on vascular delivery and retention. For dynamic studies the measured uptake time-course information can be best interpreted when knowledge of the time-course of tracer in the blood is available. This is certainly true for the most established tracers such as 18F-Fluorodeoxyglucose (FDG) and 15O-Water (H2O). Since direct sampling of blood as part of PET studies is increasingly impractical, there is ongoing interest in image-extraction of blood time-course information. But analysis of PET-measured blood pool signals is complicated because they will typically involve a combination of arterial, venous and tissue information. Thus, a careful appreciation of these components is needed to interpret the available data. To facilitate this process, we propose a novel Markov chain model for representation of the circulation of a tracer atom in the body. The model represents both arterial and venous time-course patterns. Under reasonable conditions equilibration of tracer activity in arterial and venous blood is achieved by the end of the PET study—consistent with empirical measurement. Statistical inference for Markov model parameters is a challenge. A penalized nonlinear least squares process, incorporating a generalized cross-validation score, is proposed. Random effects analysis is used to adaptively specify the structure of the penalty function based on historical samples of directly measured blood data. A collection of arterially sampled data from PET studies with FDG and H2O is used to illustrate the methodology. These data analyses are highly supportive of the overall modeling approach. An adaptation of the model to the problem of extraction of arterial blood signals from imaging data is also developed and promising preliminary results for cerebral and thoracic imaging studies with FDG and H2O are obtained. PMID:24770914

  18. An analysis of whole body tracer kinetics in dynamic PET studies with application to image-based blood input function extraction.

    PubMed

    Huang, Jian; O'Sullivan, Finbarr

    2014-05-01

    In a positron emission tomography (PET) study, the local uptake of the tracer is dependent on vascular delivery and retention. For dynamic studies the measured uptake time-course information can be best interpreted when knowledge of the time-course of tracer in the blood is available. This is certainly true for the most established tracers such as 18F-Fluorodeoxyglucose (FDG) and 15O-Water (H2O). Since direct sampling of blood as part of PET studies is increasingly impractical, there is ongoing interest in image-extraction of blood time-course information. But analysis of PET-measured blood pool signals is complicated because they will typically involve a combination of arterial, venous and tissue information. Thus, a careful appreciation of these components is needed to interpret the available data. To facilitate this process, we propose a novel Markov chain model for representation of the circulation of a tracer atom in the body. The model represents both arterial and venous time-course patterns. Under reasonable conditions equilibration of tracer activity in arterial and venous blood is achieved by the end of the PET study-consistent with empirical measurement. Statistical inference for Markov model parameters is a challenge. A penalized nonlinear least squares process, incorporating a generalized cross-validation score, is proposed. Random effects analysis is used to adaptively specify the structure of the penalty function based on historical samples of directly measured blood data. A collection of arterially sampled data from PET studies with FDG and H2O is used to illustrate the methodology. These data analyses are highly supportive of the overall modeling approach. An adaptation of the model to the problem of extraction of arterial blood signals from imaging data is also developed and promising preliminary results for cerebral and thoracic imaging studies with FDG and H2O are obtained.

  19. OpenTein: a database of digital whole-slide images of stem cell-derived teratomas.

    PubMed

    Park, Sung-Joon; Komiyama, Yusuke; Suemori, Hirofumi; Umezawa, Akihiro; Nakai, Kenta

    2016-01-01

    Human stem cells are promising sources for regenerative therapy. To ensure safety of future therapeutic applications, the differentiation potency of stem cells has to be tested and be widely opened to the public. The potency is generally assessed by teratoma formation comprising differentiated cells from all three germ layers, and the teratomas can be inspected through high-quality digital images. The teratoma assay, however, lacks consistency in transplantation protocols and even in interpretation, which needs community-based efforts for improving the assay quality. Here, we have developed a novel database OpenTein (Open Teratoma Investigation, http://opentein.hgc.jp/) to archive and freely distribute high-resolution whole-slide images and relevant records. OpenTein has been designed as a searchable, zoomable and annotatable web-based repository system. We have deposited 468 images of teratomas derived by our transplantation of human stem cells, and users can freely access and process such digital teratoma images. Approximately, the current version of OpenTein responds within 11.2 min for processing 2.03 gigapixel teratoma images. Our system offers valuable tools and resources in the new era of stem cell biology.

  20. OpenTein: a database of digital whole-slide images of stem cell-derived teratomas.

    PubMed

    Park, Sung-Joon; Komiyama, Yusuke; Suemori, Hirofumi; Umezawa, Akihiro; Nakai, Kenta

    2016-01-01

    Human stem cells are promising sources for regenerative therapy. To ensure safety of future therapeutic applications, the differentiation potency of stem cells has to be tested and be widely opened to the public. The potency is generally assessed by teratoma formation comprising differentiated cells from all three germ layers, and the teratomas can be inspected through high-quality digital images. The teratoma assay, however, lacks consistency in transplantation protocols and even in interpretation, which needs community-based efforts for improving the assay quality. Here, we have developed a novel database OpenTein (Open Teratoma Investigation, http://opentein.hgc.jp/) to archive and freely distribute high-resolution whole-slide images and relevant records. OpenTein has been designed as a searchable, zoomable and annotatable web-based repository system. We have deposited 468 images of teratomas derived by our transplantation of human stem cells, and users can freely access and process such digital teratoma images. Approximately, the current version of OpenTein responds within 11.2 min for processing 2.03 gigapixel teratoma images. Our system offers valuable tools and resources in the new era of stem cell biology. PMID:26496950

  1. Susceptibility of the wild-derived inbred CAST/Ei mouse to infection by orthopoxviruses analyzed by live bioluminescence imaging

    SciTech Connect

    Americo, Jeffrey L.; Sood, Cindy L.; Cotter, Catherine A.; Vogel, Jodi L.; Kristie, Thomas M.; Moss, Bernard Earl, Patricia L.

    2014-01-20

    Classical inbred mice are extensively used for virus research. However, we recently found that some wild-derived inbred mouse strains are more susceptible than classical strains to monkeypox virus. Experiments described here indicated that the 50% lethal dose of vaccinia virus (VACV) and cowpox virus (CPXV) were two logs lower in wild-derived inbred CAST/Ei mice than classical inbred BALB/c mice, whereas there was little difference in the susceptibility of the mouse strains to herpes simplex virus. Live bioluminescence imaging was used to follow spread of pathogenic and attenuated VACV strains and CPXV virus from nasal passages to organs in the chest and abdomen of CAST/Ei mice. Luminescence increased first in the head and then simultaneously in the chest and abdomen in a dose-dependent manner. The spreading kinetics was more rapid with VACV than CPXV although the peak photon flux was similar. These data suggest advantages of CAST/Ei mice for orthopoxvirus studies. - Highlights: • Wild-derived inbred CAST/Ei mice are susceptible to vaccinia virus and cowpox virus. • Morbidity and mortality from orthopoxviruses are greater in CAST/Ei than BALB/c mice. • Morbidity and mortality from herpes simplex virus type 1 are similar in both mice. • Imaging shows virus spread from nose to lungs, abdominal organs and brain. • Vaccinia virus spreads more rapidly than cowpox virus.

  2. Effect of chirality on cellular uptake, imaging and photodynamic therapy of photosensitizers derived from chlorophyll-a.

    PubMed

    Srivatsan, Avinash; Pera, Paula; Joshi, Penny; Wang, Yanfang; Missert, Joseph R; Tracy, Erin C; Tabaczynski, Walter A; Yao, Rutao; Sajjad, Munawwar; Baumann, Heinz; Pandey, Ravindra K

    2015-07-01

    We have previously shown that the (124)I-analog of methyl 3-(1'-m-iodobenzyloxy) ethyl-3-devinyl-pyropheophorbide-a derived as racemic mixture from chlorophyll-a can be used for PET (positron emission tomography)-imaging in animal tumor models. On the other hand, as a non-radioactive analog, it showed excellent fluorescence and photodynamic therapy (PDT) efficacy. Thus, a single agent in a mixture of radioactive ((124)I-) and non-radioactive ((127)I) material can be used for both dual-imaging and PDT of cancer. Before advancing to Phase I human clinical trials, we evaluated the activity of the individual isomers as well as the impact of a chiral center at position-3(1) in directing in vitro/in vivo cellular uptake, intracellular localization, epithelial tumor cell-specific retention, fluorescence/PET imaging, and photosensitizing ability. The results indicate that both isomers (racemates), either as methyl ester or carboxylic acid, were equally effective. However, the methyl ester analogs, due to subcellular deposition into vesicular structures, were preferentially retained. All derivatives containing carboxylic acid at the position-17(2) were noted to be substrate for the ABCG2 (a member of the ATP binding cassette transporters) protein explaining their low retention in lung tumor cells expressing this transporter. The compounds in which the chirality at position-3 has been substituted by a non-chiral functionality showed reduced cellular uptake, retention and lower PDT efficacy in mice bearing murine Colon26 tumors.

  3. Direct imaging of biological sulfur dioxide derivatives in vivo using a two-photon phosphorescent probe.

    PubMed

    Li, Guanying; Chen, Yu; Wang, Jinquan; Wu, Jingheng; Gasser, Gilles; Ji, Liangnian; Chao, Hui

    2015-09-01

    Sulfur dioxide (SO2) and its derivatives sulfite and bisulfite play important roles in biological systems. However, in vivo detection of sulfite/bisulfite remains challenging. In this study, we developed a dinuclear Ir(III) complex (Ir4) as a two-photon phosphorescent probe for sulfite and bisulfite. Ir4 selectively and rapidly responded, with high sensitivity, to sulfite/bisulfite over other bio-related ions and molecules. One-photon and two-photon microscopy images revealed that Ir4 preferentially targeted mitochondria and was capable of imaging biological sulfite/bisulfite levels in vitro and in vivo. In situ sulfite generation in Caenorhabditis elegans was visualized by two-photon excitation real-time imaging. Finally, Ir4 was employed to monitor sulfite distribution in rat brain and other tissues. This study is the first report of the direct visualization of SO2 derivatives in vivo. These results provide new insights into the biological importance of SO2.

  4. An ASIC design for versatile receive front-end electronics of an ultrasonic medical imaging system--16 channel analog inputs and 4 dynamically focused beam outputs.

    PubMed

    Park, Song B; Kwak, Jaeyoung; Lee, Kwyro

    2003-04-01

    An ultra large-scale ASIC is designed for the receive front-end electronics of an ultrasonic medical imaging system. The chip receives 16 channel analog rf signals and outputs 4 sets of sample-point-wise dynamically focused partial beam data. Four complete beam data sets are obtained in parallel by simply cascading as many chips as needed in an array system. High resolution of the focusing delay is obtained by nonuniformly selecting each channel data from a quadruply-interpolated rf data stream. The proposed ASIC can be applied to most practical array transducers in the frequency range of 2 to 10 MHz. The digital part of the designed ASIC can be implemented on a chip area of 17.9 microm2 with 0.18 mm CMOS technology, leaving sufficient room for 16 ADCs of 8 bits, 50 MHz on the 5.7 mm x 5.7 mm chip with a 208 pin package.

  5. Fluorescent Tobacco mosaic virus-Derived Bio-Nanoparticles for Intravital Two-Photon Imaging

    PubMed Central

    Niehl, Annette; Appaix, Florence; Boscá, Sonia; van der Sanden, Boudewijn; Nicoud, Jean-François; Bolze, Frédéric; Heinlein, Manfred

    2016-01-01

    Multi-photon intravital imaging has become a powerful tool to investigate the healthy and diseased brain vasculature in living animals. Although agents for multi-photon fluorescence microscopy of the microvasculature are available, issues related to stability, bioavailability, toxicity, cost or chemical adaptability remain to be solved. In particular, there is a need for highly fluorescent dyes linked to particles that do not cross the blood brain barrier (BBB) in brain diseases like tumor or stroke to estimate the functional blood supply. Plant virus particles possess a number of distinct advantages over other particles, the most important being the multi-valency of chemically addressable sites on the particle surface. This multi-valency, together with biological compatibility and inert nature, makes plant viruses ideal carriers for in vivo imaging agents. Here, we show that the well-known Tobacco mosaic virus is a suitable nanocarrier for two-photon dyes and for intravital imaging of the mouse brain vasculature. PMID:26793221

  6. Cirrus cloud characteristics derived from volume imaging lidar, high spectral resolution lidar, HIS radiometer, and satellite

    NASA Technical Reports Server (NTRS)

    Grund, Christian J.; Ackerman, Steven A.; Eloranta, Edwin W.; Knutsen, Robert O.; Revercomb, Henry E.; Smith, William L.; Wylie, Donald P.

    1990-01-01

    Preliminary measurement results are presented from the Cirrus Remote Sensing Pilot Experiment which used a unique suite of instruments to simultaneously retrieve cirrus cloud visible and IR optical properties, while addressing the disparities between satellite volume averages and local point measurements. The experiment employed a ground-based high resolution interferometer sounder (HIS) and a second Fourier transform spectrometer to measure the spectral radiance in the 4-20 micron band, a correlated high spectral resolution lidar, a volume imaging lidar, a CLASS radiosonde system, the Scripps Whole Sky Imager, and multispectral VAS, HIRS, and AVHRR satellite data from polar orbiting and geostationary satellites. Data acquired during the month long experiment included continuous daytime monitoring with the Whole Sky Imager.

  7. Astemizole Derivatives as Fluorescent Probes for hERG Potassium Channel Imaging.

    PubMed

    Wang, Beilei; Liu, Zhenzhen; Ma, Zhao; Li, Minyong; Du, Lupei

    2016-03-10

    The detection and imaging of hERG potassium channels in living cells can provide useful information for hERG-correlation studies. Herein, three small-molecule fluorescent probes, based on the potent hERG channel inhibitor astemizole, for the imaging of hERG channels in hERG-transfected HEK293 cells (hERG-HEK293) and human colorectal cancer cells (HT-29), are described. These probes are expected to be applied in the physiological and pathological studies of hERG channels. PMID:26985309

  8. Effect of injection technique on temporal parametric imaging derived from digital subtraction angiography in patient specific phantoms

    PubMed Central

    Ionita, Ciprian N; Garcia, Victor L.; Bednarek, Daniel R; Snyder, Kenneth V; Siddiqui, Adnan H; Levy, Elad I; Rudin, Stephen

    2014-01-01

    Parametric imaging maps (PIM’s) derived from digital subtraction angiography (DSA) for the cerebral arterial flow assessment in clinical settings have been proposed, but experiments have yet to determine the reliability of such studies. For this study, we have observed the effects of different injection techniques on PIM’s. A flow circuit set to physiologic conditions was created using an internal carotid artery phantom. PIM’s were derived for two catheter positions, two different contrast bolus injection volumes (5ml and 10 ml), and four injection rates (5, 10, 15 and 20 ml/s). Using a gamma variate fitting approach, we derived PIM’s for mean-transit-time (MTT), time-to-peak (TTP) and bolus-arrivaltime (BAT). For the same injection rates, a larger bolus resulted in an increased MTT and TTP, while a faster injection rate resulted in a shorter MTT, TTP, and BAT. In addition, the position of the catheter tip within the vasculature directly affected the PIM. The experiment showed that the PIM is strongly correlated with the injection conditions, and, therefore, they have to be interpreted with caution. PIM images must be taken from the same patient to be able to be meaningfully compared. These comparisons can include pre- and post-treatment images taken immediately before and after an interventional procedure or simultaneous arterial flow comparisons through the left and right cerebral hemispheres. Due to the strong correlation between PIM and injection conditions, this study indicates that this assessment method should be used only to compare flow changes before and after treatment within the same patient using the same injection conditions. PMID:25302010

  9. Deriving statistical significance maps for support vector regression using medical imaging data.

    PubMed

    Gaonkar, Bilwaj; Sotiras, Aristeidis; Davatzikos, Christos

    2013-01-01

    Regression analysis involves predicting a continuous variable using imaging data. The Support Vector Regression (SVR) algorithm has previously been used in addressing regression analysis in neuroimaging. However, identifying the regions of the image that the SVR uses to model the dependence of a target variable remains an open problem. It is an important issue when one wants to biologically interpret the meaning of a pattern that predicts the variable(s) of interest, and therefore to understand normal or pathological process. One possible approach to the identification of these regions is the use of permutation testing. Permutation testing involves 1) generation of a large set of 'null SVR models' using randomly permuted sets of target variables, and 2) comparison of the SVR model trained using the original labels to the set of null models. These permutation tests often require prohibitively long computational time. Recent work in support vector classification shows that it is possible to analytically approximate the results of permutation testing in medical image analysis. We propose an analogous approach to approximate permutation testing based analysis for support vector regression with medical imaging data. In this paper we present 1) the theory behind our approximation, and 2) experimental results using two real datasets.

  10. Homologous RBC-derived vesicles as ultrasmall carriers of iron oxide for magnetic resonance imaging of stem cells

    NASA Astrophysics Data System (ADS)

    Chang, Microsugar; Hsiao, Jong-Kai; Yao, Ming; Chien, Li-Ying; Hsu, Szu-Chun; Ko, Bor-Sheng; Chen, Shin-Tai; Liu, Hon-Man; Chen, Yao-Chang; Yang, Chung-Shi; Huang, Dong-Ming

    2010-06-01

    Ultrasmall superparamagnetic iron oxide (USPIO) particles are very useful for cellular magnetic resonance imaging (MRI), which plays a key role in developing successful stem cell therapies. However, their low intracellular labeling efficiency, and biosafety concerns associated with their use, have limited their potential usage. In this study we develop a novel system composed of RBC-derived vesicles (RDVs) for efficient delivery of USPIO particles into human bone marrow mesenchymal stem cells (MSCs) for cellular MRI in vitro and in vivo. RDVs are highly biosafe to their autologous MSCs as manifested by cell viability, differentiation, and gene microarray assays. The data demonstrate the potential of RDVs as intracellular delivery vehicles for biomedical applications.

  11. Calibration of Mercury Laser Altimeter Data Using Digital Elevation Models Derived from Stereo Image Pairs

    NASA Astrophysics Data System (ADS)

    Bauer, R. S.; Barker, M. K.; Mazarico, E.; Neumann, G. A.

    2015-12-01

    Knowledge of Mercury's topography is crucial to understanding Mercury's complex geology and history, as well as its current rotation state. From onboard the MESSENGER spacecraft, the Mercury Laser Altimeter (MLA) made around 26 million measurements of Mercury's topography, with radial and horizontal accuracies of ~10 m and ~100 m, respectively. Prior to orbit insertion in 2011, MESSENGER conducted three gravity-assist flybys of Mercury. During the January and October 2008 flybys, MLA made its first altimetric measurements, but the radial and horizontal accuracies were respectively limited to ~100 and ~1000 meters due to uncertainties in the spacecraft and planetary ephemerides. To reduce these geolocation uncertainties, the MLA flyby data have been compared to images taken by the Mercury Dual Imaging System (MDIS), another instrument on MESSENGER. Stereo image pairs acquired by MDIS were selected from a database of over 500,000 image pairs located within 5 degrees of the equator. The selected stereo pairs have high surface resolutions (~200 m/pixel), large overlap areas (overlap ratio > 0.3), and well-matched illumination conditions. Using the NASA Ames Stereo Pipeline, digital elevation models (DEMs) were constructed from the image pairs that contained MLA flyby data points. We then ran an alignment program on these DEMs to match included MLA altimetry bounce points as closely as possible to the DEM surfaces. The resulting estimated track displacements were aggregated, and the general trends of these displacements can be used to perform a full-flyby orbit adjustment. Such an adjustment would enable more reliable determination of Mercury's surface elevation and MESSENGER's trajectory during the 2008 flybys. Accurate elevation measurements from these flybys are especially important because they passed over the southern hemisphere, where MLA coverage from the orbital mission is sparse. Calibration of these MLA data will improve our knowledge of Mercury's orientation

  12. Application of multivariate image analysis in QSPR study of 13C chemical shifts of naphthalene derivatives: a comparative study.

    PubMed

    Garkani-Nejad, Zahra; Poshteh-Shirani, Marziyeh

    2010-11-15

    A new implemented QSPR method, whose descriptors achieved from bidimensional images, was applied for predicting (13)C NMR chemical shifts of 25 mono substituted naphthalenes. The resulted descriptors were subjected to principal component analysis (PCA) and the most significant principal components (PCs) were extracted. MIA-QSPR (multivariate image analysis applied to quantitative structure-property relationship) modeling was done by means of principal component regression (PCR) and principal component-artificial neural network (PC-ANN) methods. Eigen value ranking (EV) and correlation ranking (CR) were used here to select the most relevant set of PCs as inputs for PCR and PC-ANN modeling methods. The results supported that the correlation ranking-principal component-artificial neural network (CR-PC-ANN) model could predict the (13)C NMR chemical shifts of all 10 carbon atoms in mono substituted naphthalenes with R(2) ≥ 0.922 for training set, R(2) ≥ 0.963 for validation set and R(2) ≥ 0.936 for the test set. Comparison of the results with other existing factor selection method revealed that less accurate results were obtained by the eigen value ranking procedure. PMID:21035668

  13. Photographic stitching with optimized object and color matching based on image derivatives

    NASA Astrophysics Data System (ADS)

    Suen, Simon T.; Lam, Edmund Y.; Wong, Kenneth K.

    2007-06-01

    In this paper, a novel optimization stitching method is presented. It minimizes an energy function defined with derivatives up to the second order. We have identified some appropriate choices for its variables allowing it to reduce artifacts produced by some well-known problems i.e. ghosting, color inconsistency and misalignment. To speed up the computation, a multi-resolution technique is introduced. The significant speedup and memory saving make it possible for use in hand-held capturing devices.

  14. High-resolution Ceres High Altitude Mapping Orbit atlas derived from Dawn Framing Camera images

    NASA Astrophysics Data System (ADS)

    Roatsch, Th.; Kersten, E.; Matz, K.-D.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2016-09-01

    The Dawn spacecraft Framing Camera (FC) acquired over 2400 clear filter images of Ceres with a resolution of about 140 m/pixel during the six cycles in the High Altitude Mapping Orbit (HAMO) phase between August 18 and October 21, 2015. We ortho-rectified the images from the first cycle and produced a global, high-resolution, controlled photomosaic of Ceres. This global mosaic is the basis for a high-resolution Ceres atlas that consists of 15 tiles mapped at a scale of 1:750,000. The nomenclature used in this atlas was proposed by the Dawn team and was approved by the International Astronomical Union (IAU). The full atlas is available to the public through the Dawn Geographical Information System (GIS) web page

  15. Phenotypic Characterization of Toxic Compound Effects on Liver Spheroids Derived from iPSC Using Confocal Imaging and Three-Dimensional Image Analysis.

    PubMed

    Sirenko, Oksana; Hancock, Michael K; Hesley, Jayne; Hong, Dihui; Cohen, Avrum; Gentry, Jason; Carlson, Coby B; Mann, David A

    2016-09-01

    Cell models are becoming more complex to better mimic the in vivo environment and provide greater predictivity for compound efficacy and toxicity. There is an increasing interest in exploring the use of three-dimensional (3D) spheroids for modeling developmental and tissue biology with the goal of accelerating translational research in these areas. Accordingly, the development of high-throughput quantitative assays using 3D cultures is an active area of investigation. In this study, we have developed and optimized methods for the formation of 3D liver spheroids derived from human iPS cells and used those for toxicity assessment. We used confocal imaging and 3D image analysis to characterize cellular information from a 3D matrix to enable a multi-parametric comparison of different spheroid phenotypes. The assay enables characterization of compound toxicities by spheroid size (volume) and shape, cell number and spatial distribution, nuclear characterization, number and distribution of cells expressing viability, apoptosis, mitochondrial potential, and viability marker intensities. In addition, changes in the content of live, dead, and apoptotic cells as a consequence of compound exposure were characterized. We tested 48 compounds and compared induced pluripotent stem cell (iPSC)-derived hepatocytes and HepG2 cells in both two-dimensional (2D) and 3D cultures. We observed significant differences in the pharmacological effects of compounds across the two cell types and between the different culture conditions. Our results indicate that a phenotypic assay using 3D model systems formed with human iPSC-derived hepatocytes is suitable for high-throughput screening and can be used for hepatotoxicity assessment in vitro. PMID:27494736

  16. Phenotypic Characterization of Toxic Compound Effects on Liver Spheroids Derived from iPSC Using Confocal Imaging and Three-Dimensional Image Analysis

    PubMed Central

    Hancock, Michael K.; Hesley, Jayne; Hong, Dihui; Cohen, Avrum; Gentry, Jason; Carlson, Coby B.

    2016-01-01

    Abstract Cell models are becoming more complex to better mimic the in vivo environment and provide greater predictivity for compound efficacy and toxicity. There is an increasing interest in exploring the use of three-dimensional (3D) spheroids for modeling developmental and tissue biology with the goal of accelerating translational research in these areas. Accordingly, the development of high-throughput quantitative assays using 3D cultures is an active area of investigation. In this study, we have developed and optimized methods for the formation of 3D liver spheroids derived from human iPS cells and used those for toxicity assessment. We used confocal imaging and 3D image analysis to characterize cellular information from a 3D matrix to enable a multi-parametric comparison of different spheroid phenotypes. The assay enables characterization of compound toxicities by spheroid size (volume) and shape, cell number and spatial distribution, nuclear characterization, number and distribution of cells expressing viability, apoptosis, mitochondrial potential, and viability marker intensities. In addition, changes in the content of live, dead, and apoptotic cells as a consequence of compound exposure were characterized. We tested 48 compounds and compared induced pluripotent stem cell (iPSC)-derived hepatocytes and HepG2 cells in both two-dimensional (2D) and 3D cultures. We observed significant differences in the pharmacological effects of compounds across the two cell types and between the different culture conditions. Our results indicate that a phenotypic assay using 3D model systems formed with human iPSC-derived hepatocytes is suitable for high-throughput screening and can be used for hepatotoxicity assessment in vitro. PMID:27494736

  17. IMAGE EUV and RPI Derived Distributions of Plasmaspheric Plasma and Plasmaspheric Modeling

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Adrian, M. L.; Ober, D.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The global modeling of plasmaspheric plasma has remained fairly rudimentary over the last 30-years, owing to our limited ability to validate model results experimentally. The realization that voids and filamentary structures covering a range of scales sizes are formed in the distribution of thermal plasma has only been possible with global imaging and enables entirely new advances in modeling the near Earth space environment. Advances in modeling in the context of these new observations will be presented and discussed.

  18. Partial dependence of breast tumor malignancy on ultrasound image features derived from boosted trees

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Zhang, Su; Li, Wenying; Chen, Yaqing; Lu, Hongtao; Chen, Wufan; Chen, Yazhu

    2010-04-01

    Various computerized features extracted from breast ultrasound images are useful in assessing the malignancy of breast tumors. However, the underlying relationship between the computerized features and tumor malignancy may not be linear in nature. We use the decision tree ensemble trained by the cost-sensitive boosting algorithm to approximate the target function for malignancy assessment and to reflect this relationship qualitatively. Partial dependence plots are employed to explore and visualize the effect of features on the output of the decision tree ensemble. In the experiments, 31 image features are extracted to quantify the sonographic characteristics of breast tumors. Patient age is used as an external feature because of its high clinical importance. The area under the receiver-operating characteristic curve of the tree ensembles can reach 0.95 with sensitivity of 0.95 (61/64) at the associated specificity 0.74 (77/104). The partial dependence plots of the four most important features are demonstrated to show the influence of the features on malignancy, and they are in accord with the empirical observations. The results can provide visual and qualitative references on the computerized image features for physicians, and can be useful for enhancing the interpretability of computer-aided diagnosis systems for breast ultrasound.

  19. Field Aligned Currents Derived from Pressure Profiles Obtained from TWINS ENA Images

    NASA Astrophysics Data System (ADS)

    Wood, K.; Perez, J. D.; McComas, D. J.; Goldstein, J.; Valek, P. W.

    2015-12-01

    Field aligned currents (FACs) that flow from the Earth's magnetosphere into the ionosphere are an important coupling mechanism in the interaction of the solar wind with the Earth's magnetosphere. Assuming pressure balance along with charge conservation yields an expression for the FACs in terms of plasma pressure gradients and pressure anisotropy. The Two Wide-Angle Imaging Neutral Atom Spectrometers (TWINS) mission, the first stereoscopic ENA magnetospheric imager, provides global images of the inner magnetosphere from which ion pressure distributions and pressure anisotropies can be obtained. Following the formulations in Heineman [1990] and using results from TWINS observations, we calculate the distribution of field aligned currents for the 17-18 March 2015 geomagnetic storm in which extended ionospheric precipitation was observed. Initial results for the field aligned currents will be generated assuming an isotropic pitch angle distribution. Global maps of field aligned currents during the main and recovery phase of the storm will be presented. Heinemann, H. (1990), Representations of Currents and Magnetic Fields in Anisotropic Magnetohydrostatic Plasma, J. Geophys. Res., 95, 7789.

  20. Label-Free Imaging of Umbilical Cord Tissue Morphology and Explant-Derived Cells

    PubMed Central

    Paesen, Rik; Gyselaers, Wilfried; Stinissen, Piet

    2016-01-01

    In situ detection of MSCs remains difficult and warrants additional methods to aid with their characterization in vivo. Two-photon confocal laser scanning microscopy (TPM) and second harmonic generation (SHG) could fill this gap. Both techniques enable the detection of cells and extracellular structures, based on intrinsic properties of the specific tissue and intracellular molecules under optical irradiation. TPM imaging and SHG imaging have been used for label-free monitoring of stem cells differentiation, assessment of their behavior in biocompatible scaffolds, and even cell tracking in vivo. In this study, we show that TPM and SHG can accurately depict the umbilical cord architecture and visualize individual cells both in situ and during culture initiation, without the use of exogenously applied labels. In combination with nuclear DNA staining, we observed a variance in fluorescent intensity in the vessel walls. In addition, antibody staining showed differences in Oct4, αSMA, vimentin, and ALDH1A1 expression in situ, indicating functional differences among the umbilical cord cell populations. In future research, marker-free imaging can be of great added value to the current antigen-based staining methods for describing tissue structures and for the identification of progenitor cells in their tissue of origin. PMID:27746820

  1. Input Decimated Ensembles

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan; Oza, Nikunj C.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    Using an ensemble of classifiers instead of a single classifier has been shown to improve generalization performance in many pattern recognition problems. However, the extent of such improvement depends greatly on the amount of correlation among the errors of the base classifiers. Therefore, reducing those correlations while keeping the classifiers' performance levels high is an important area of research. In this article, we explore input decimation (ID), a method which selects feature subsets for their ability to discriminate among the classes and uses them to decouple the base classifiers. We provide a summary of the theoretical benefits of correlation reduction, along with results of our method on two underwater sonar data sets, three benchmarks from the Probenl/UCI repositories, and two synthetic data sets. The results indicate that input decimated ensembles (IDEs) outperform ensembles whose base classifiers use all the input features; randomly selected subsets of features; and features created using principal components analysis, on a wide range of domains.

  2. Quantitative Live Imaging of Human Embryonic Stem Cell Derived Neural Rosettes Reveals Structure-Function Dynamics Coupled to Cortical Development.

    PubMed

    Ziv, Omer; Zaritsky, Assaf; Yaffe, Yakey; Mutukula, Naresh; Edri, Reuven; Elkabetz, Yechiel

    2015-10-01

    Neural stem cells (NSCs) are progenitor cells for brain development, where cellular spatial composition (cytoarchitecture) and dynamics are hypothesized to be linked to critical NSC capabilities. However, understanding cytoarchitectural dynamics of this process has been limited by the difficulty to quantitatively image brain development in vivo. Here, we study NSC dynamics within Neural Rosettes--highly organized multicellular structures derived from human pluripotent stem cells. Neural rosettes contain NSCs with strong epithelial polarity and are expected to perform apical-basal interkinetic nuclear migration (INM)--a hallmark of cortical radial glial cell development. We developed a quantitative live imaging framework to characterize INM dynamics within rosettes. We first show that the tendency of cells to follow the INM orientation--a phenomenon we referred to as radial organization, is associated with rosette size, presumably via mechanical constraints of the confining structure. Second, early forming rosettes, which are abundant with founder NSCs and correspond to the early proliferative developing cortex, show fast motions and enhanced radial organization. In contrast, later derived rosettes, which are characterized by reduced NSC capacity and elevated numbers of differentiated neurons, and thus correspond to neurogenesis mode in the developing cortex, exhibit slower motions and decreased radial organization. Third, later derived rosettes are characterized by temporal instability in INM measures, in agreement with progressive loss in rosette integrity at later developmental stages. Finally, molecular perturbations of INM by inhibition of actin or non-muscle myosin-II (NMII) reduced INM measures. Our framework enables quantification of cytoarchitecture NSC dynamics and may have implications in functional molecular studies, drug screening, and iPS cell-based platforms for disease modeling.

  3. Quantitative Live Imaging of Human Embryonic Stem Cell Derived Neural Rosettes Reveals Structure-Function Dynamics Coupled to Cortical Development

    PubMed Central

    Mutukula, Naresh; Edri, Reuven; Elkabetz, Yechiel

    2015-01-01

    Neural stem cells (NSCs) are progenitor cells for brain development, where cellular spatial composition (cytoarchitecture) and dynamics are hypothesized to be linked to critical NSC capabilities. However, understanding cytoarchitectural dynamics of this process has been limited by the difficulty to quantitatively image brain development in vivo. Here, we study NSC dynamics within Neural Rosettes—highly organized multicellular structures derived from human pluripotent stem cells. Neural rosettes contain NSCs with strong epithelial polarity and are expected to perform apical-basal interkinetic nuclear migration (INM)—a hallmark of cortical radial glial cell development. We developed a quantitative live imaging framework to characterize INM dynamics within rosettes. We first show that the tendency of cells to follow the INM orientation—a phenomenon we referred to as radial organization, is associated with rosette size, presumably via mechanical constraints of the confining structure. Second, early forming rosettes, which are abundant with founder NSCs and correspond to the early proliferative developing cortex, show fast motions and enhanced radial organization. In contrast, later derived rosettes, which are characterized by reduced NSC capacity and elevated numbers of differentiated neurons, and thus correspond to neurogenesis mode in the developing cortex, exhibit slower motions and decreased radial organization. Third, later derived rosettes are characterized by temporal instability in INM measures, in agreement with progressive loss in rosette integrity at later developmental stages. Finally, molecular perturbations of INM by inhibition of ACTIN or NON-MUSCLE MYOSIN-II (NMII) reduced INM measures. Our framework enables quantification of cytoarchitecture NSC dynamics and may have implications in functional molecular studies, drug screening, and iPS cell-based platforms for disease modeling. PMID:26473351

  4. Crustal evolution derived from the Izu-Bonin-Mariana arc velocity images

    NASA Astrophysics Data System (ADS)

    Takahashi, N.; Kodaira, S.; Tatsumi, Y.; Miura, S.; Sato, T.; Yamashita, M.; No, T.; Takahashi, T.; Noguchi, N.; Takizawa, K.; Kaiho, Y.; Kaneda, Y.

    2010-12-01

    The Izu-Bonin-Mariana arc is known as one of typical oceanic island arcs, which has developed by subduction between oceanic crusts producing continental materials. Japan Agency for Marine-Earth Science and Technology has carried out seismic surveys using a multi-channel reflection survey system (MCS) and ocean bottom seismographs (OBSs) in the Izu-Bonin-Mariana (IBM) arc since 2002, and reported these crustal images. As the results, we identified the structural characteristics of whole Izu-Bonin-Mariana arc. Rough structural characteristics are, 1) middle crust with Vp of 6 km/s, 2) upper part of the lower crust with Vp of 6.5-6.8 km/s, 3) lower part of the lower crust with Vp of 6.8-7.5 km/s, and 4) lower mantle velocity beneath the arc crusts. In addition, structural variation along the volcanic front, for example, thickness variation of andesitic layers was imaged and the distributions is consistent with those of rhyolite volcanoes, that is, it suggested that the cause the structural variation is various degree of crustal growth (Kodaira et al., 2007). Moreover, crustal thinning with high velocity lower crust across arc was also imaged, and it is interpreted that such crust has been influenced backarc opening (Takahashi et al., 2009). According to Tatsumi et al. (2008), andesitic middle crust is produced by differentiation of basaltic lower crust and a part of the restites are transformed to the upper mantle. This means that region showing much crustal differentiation has large volume of transformation of dense crustal materials to the mantle. We calculated volume profiles of the lower crust along all seismic lines based on the petrologic model, and compared them with observed real volumes obtained by seismic images. If the real volume of the lower crust is large, it means that the underplating of dense materials to the crustal bottom is dominant rather than transformation of dense materials to the upper mantle. According to obtained profiles to judge if the

  5. Multimodality Molecular Imaging of [18F]-Fluorinated Carboplatin Derivative Encapsulated in [111In]-Labeled Liposomes

    NASA Astrophysics Data System (ADS)

    Lamichhane, Narottam

    Platinum based chemotherapy is amongst the mainstream DNA-damaging agents used in clinical cancer therapy today. Agents such as cisplatin, carboplatin are clinically prescribed for the treatment of solid tumors either as single agents, in combination, or as part of multi-modality treatment strategy. Despite the potent anti-tumor activity of these drugs, overall effectiveness is still hampered by inadequate delivery and retention of drug in tumor and unwanted normal tissue toxicity, induced by non-selective accumulation of drug in normal cells and tissues. Utilizing molecular imaging and nanoparticle technologies, this thesis aims to contribute to better understanding of how to improve the profile of platinum based therapy. By developing a novel fluorinated derivative of carboplatin, incorporating a Flourine-18 (18F) moiety as an inherent part of the molecule, quantitative measures of drug concentration in tumors and normal tissues can be directly determined in vivo and within the intact individual environment. A potential impact of this knowledge will be helpful in predicting the overall response of individual patients to the treatment. Specifically, the aim of this project, therefore, is the development of a fluorinated carboplatin drug derivative with an inherent positron emission tomography (PET) imaging capability, so that the accumulation of the drug in the tumor and normal organs can be studied during the course of therapy . A secondary objective of this research is to develop a proof of concept for simultaneous imaging of a PET radiolabeled drug with a SPECT radiolabeled liposomal formulation, enabling thereby bi-modal imaging of drug and delivery vehicle in vivo. The approach is challenging because it involves development in PET radiochemistry, PET and SPECT imaging, drug liposomal encapsulation, and a dual-modal imaging of radiolabeled drug and radiolabeled vehicle. The principal development is the synthesis of fluorinated carboplatin 19F-FCP using 2

  6. Novel Phenol-soluble Modulin Derivatives in Community-associated Methicillin-resistant Staphylococcus aureus Identified through Imaging Mass Spectrometry*

    PubMed Central

    Gonzalez, David J.; Okumura, Cheryl Y.; Hollands, Andrew; Kersten, Roland; Akong-Moore, Kathryn; Pence, Morgan A.; Malone, Cheryl L.; Derieux, Jaclyn; Moore, Bradley S.; Horswill, Alexander R.; Dixon, Jack E.; Dorrestein, Pieter C.; Nizet, Victor

    2012-01-01

    Staphylococcus aureus causes a wide range of human disease ranging from localized skin and soft tissue infections to potentially lethal systemic infections. S. aureus has the biosynthetic ability to generate numerous virulence factors that assist in circumventing the innate immune system during disease pathogenesis. Recent studies have uncovered a set of extracellular peptides produced by community-associated methicillin-resistant S. aureus (CA-MRSA) with homology to the phenol-soluble modulins (PSMs) from Staphylococcus epidermidis. CA-MRSA PSMs contribute to skin infection and recruit and lyse neutrophils, and truncated versions of these peptides possess antimicrobial activity. In this study, novel CA-MRSA PSM derivatives were discovered by the use of microbial imaging mass spectrometry. The novel PSM derivatives are compared with their parent full-length peptides for changes in hemolytic, cytolytic, and neutrophil-stimulating activity. A potential contribution of the major S. aureus secreted protease aureolysin in processing PSMs is demonstrated. Finally, we show that PSM processing occurs in multiple CA-MRSA strains by structural confirmation of additional novel derivatives. This work demonstrates that IMS can serve as a useful tool to go beyond genome predictions and expand our understanding of the important family of small peptide virulence factors. PMID:22371493

  7. Comparison of biokinetics and biliary imaging parameters of four /sup 99m/Tc iminodiacetic acid derivatives in normal subjects

    SciTech Connect

    Bobba, V.V.; Krishnamurthy, G.T.; Kingston, E.; Brown, P.H.; Eklem, M.; Turner, F.E.

    1983-02-01

    The biokinetics (blood clearance, urinary excretion, hepatic peak time, uptake, and excretion t-1/2) and the imaging parameters (the time of appearance of the common bile duct, gallbladder, and duodenum) were determined in 34 normal subjects using /sup 99m/Tc diethyl (EIDA), /sup 99m/Tc dimethyl (HIDA), /sup 99m/Tc paraisopropyl (PIPIDA), and /sup 99m/Tc parabutyl (PBIDA) iminodiacetic acid derivatives. The blood and hepatic clearance of the four agents were significantly different (P less than 0.05) from each other. The 24-hour urinary excretion of PBIDA was significantly lower (P less than 0.05) than the urinary excretion of the other three agents. There was no difference among the four agents in the time of appearance of the gallbladder and duodenum. The time of appearance of the common bile duct was significantly delayed with PBIDA. The maximum intensity of the common bile duct usually occurred between 20 to 40 minutes with all four agents. However, gallbladder intensity continued to increase up to 3 hours. It is concluded that in the presence of normal liver function, all four /sup 99m/Tc IDA agents show definite differences in biokinetics but these differences do not have a major effect on biliary imaging parameters. If imaging alone is the primary goal, the selection of any one of the four agents will meet the clinican's need satisfactorily.

  8. Fluorescent labelling of DNA on superparamagnetic nanoparticles by a perylene bisimide derivative for cell imaging.

    PubMed

    Maltas, Esra; Malkondu, Sait; Uyar, Pembegul; Ozmen, Mustafa

    2015-03-01

    N,N'-Bis[tris-(2-aminoethyl) amine]-3,4,9,10-perylenetetracarboxylic diimide (PBI-TRIS), nonfluorescent dye was used to fluorescent labelling of DNA. For this aim, (3-aminopropyl) triethoxysilane (APTS) modified superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized to provide a suitable surface for binding of DNA. Amine functionalized nanoparticles showed a high immobilization capacity (82.70%) at 25mg of nanoparticle concentration for Calf thymus DNA. Binding capacity of PBI-TRIS to DNA-SPION was also found as 1.93μM on 25mg of nanoparticles by using UV-vis spectroscopy. Binding of PBI-TRIS to DNA onto nanoparticles was also characterized by scanning electron microscopy and infrared spectroscopy. The confocal images of PBI-TRIS labelled DNA-SPION and breast cells were taken at 488 and 561.7nm of excitation wavelengths. Cell image was also compared with a commercial dye, DAPI at 403.7nm of excitation wavelength. Results showed that PBI-TRIS can be used for cell staining.

  9. High-resolution Ceres HAMO Atlas derived from Dawn FC Images

    NASA Astrophysics Data System (ADS)

    Roatsch, T.; Kersten, E.; Matz, K. D.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2015-12-01

    Introduction: NASA's Dawn spacecraft will orbit the dwarf planet Ceres in August and September 2015 in HAMO (High Altitude Mapping Orbit) with an altitude of about 1,500 km to characterize for instance the geology, topography, and shape of Ceres before it will be transferred to the lowest orbit. One of the major goals of this mission phase is the global mapping of Ceres. Data: The Dawn mission is equipped with a fram-ing camera (FC). The framing camera will take about 2600 clear filter images with a resolution of about 120 m/pixel and different viewing angles and different illumination conditions. Data Processing: The first step of the processing chain towards the cartographic products is to ortho-rectify the images to the proper scale and map projec-tion type. This process requires detailed information of the Dawn orbit and attitude data and of the topography of the target. Both, improved orientation and high-resolution shape models, are provided by stereo processing of the HAMO dataset. Ceres' HAMO shape model is used for the calculation of the ray intersection points while the map projection itself will be done onto a reference sphere for Ceres. The final step is the controlled mosaicking of all nadir images to a global mosaic of Ceres, the so called basemap. Ceres map tiles: The Ceres atlas will be produced in a scale of 1:750,000 and will consist of 15 tiles that conform to the quadrangle schema for small planets and medium size Icy satellites. A map scale of 1:750,000 guarantees a mapping at the highest availa-ble Dawn resolution in HAMO. Nomenclature: The Dawn team proposed to the International Astronomical Union (IAU) to use the names of gods and goddesses of agriculture and vege-tation from world mythology as names for the craters. This proposal was accepted by the IAU and the team proposed names for geological features to the IAU based on the HAMO mosaic. These feature names will be applied to the map tiles.

  10. Lysosomal ATP imaging in living cells by a water-soluble cationic polythiophene derivative.

    PubMed

    Huang, Bing-Huan; Geng, Zhi-Rong; Ma, Xiao-Yan; Zhang, Cui; Zhang, Zhi-Yang; Wang, Zhi-Lin

    2016-09-15

    Lysosomes in astrocytes and microglia can release ATP as the signaling molecule for the cells through ca(2+)-dependent exocytosis in response to various stimuli. At present, fluorescent probes that can detect ATP in lysosomes have not been reported. In this work, we have developed a new water-soluble cationic polythiophene derivative that can be specifically localized in lysosomes and can be utilized as a fluorescent probe to sense ATP in cells. PEMTEI exhibits high selectivity and sensitivity to ATP at physiological pH values and the detection limit of ATP is as low as 10(-11)M. The probe has low cytotoxicity, good permeability and high photostability in living cells and has been applied successfully to real-time monitoring of the change in concentrations of ATP in lysosomes though fluorescence microscopy. We also demonstrated that lysosomes in Hela cells can release ATP through Ca(2+)-dependent exocytosis in response to drug stimuli.

  11. Competitive Mirror Image Phage Display Derived Peptide Modulates Amyloid Beta Aggregation and Toxicity

    PubMed Central

    Rudolph, Stephan; Klein, Antonia Nicole; Tusche, Markus; Schlosser, Christine; Elfgen, Anne; Brener, Oleksandr; Teunissen, Charlotte; Gremer, Lothar; Funke, Susanne Aileen; Kutzsche, Janine; Willbold, Dieter

    2016-01-01

    Alzheimer´s disease is the most prominent type of dementia and currently no causative treatment is available. According to recent studies, oligomeric species of the amyloid beta (Aβ) peptide appear to be the most toxic Aβ assemblies. Aβ monomers, however, may be not toxic per se and may even have a neuroprotective role. Here we describe a competitive mirror image phage display procedure that allowed us to identify preferentially Aβ1–42 monomer binding and thereby stabilizing peptides, which destabilize and thereby eliminate toxic oligomer species. One of the peptides, called Mosd1 (monomer specific d-peptide 1), was characterized in more detail. Mosd1 abolished oligomers from a mixture of Aβ1–42 species, reduced Aβ1–42 toxicity in cell culture, and restored the physiological phenotype in neuronal cells stably transfected with the gene coding for human amyloid precursor protein. PMID:26840229

  12. Comparison of retinal thickness by Fourier-domain optical coherence tomography and OCT retinal image analysis software segmentation analysis derived from Stratus optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Tátrai, Erika; Ranganathan, Sudarshan; Ferencz, Mária; Debuc, Delia Cabrera; Somfai, Gábor Márk

    2011-05-01

    Purpose: To compare thickness measurements between Fourier-domain optical coherence tomography (FD-OCT) and time-domain OCT images analyzed with a custom-built OCT retinal image analysis software (OCTRIMA). Methods: Macular mapping (MM) by StratusOCT and MM5 and MM6 scanning protocols by an RTVue-100 FD-OCT device are performed on 11 subjects with no retinal pathology. Retinal thickness (RT) and the thickness of the ganglion cell complex (GCC) obtained with the MM6 protocol are compared for each early treatment diabetic retinopathy study (ETDRS)-like region with corresponding results obtained with OCTRIMA. RT results are compared by analysis of variance with Dunnett post hoc test, while GCC results are compared by paired t-test. Results: A high correlation is obtained for the RT between OCTRIMA and MM5 and MM6 protocols. In all regions, the StratusOCT provide the lowest RT values (mean difference 43 +/- 8 μm compared to OCTRIMA, and 42 +/- 14 μm compared to RTVue MM6). All RTVue GCC measurements were significantly thicker (mean difference between 6 and 12 μm) than the GCC measurements of OCTRIMA. Conclusion: High correspondence of RT measurements is obtained not only for RT but also for the segmentation of intraretinal layers between FD-OCT and StratusOCT-derived OCTRIMA analysis. However, a correction factor is required to compensate for OCT-specific differences to make measurements more comparable to any available OCT device.

  13. Scaling, propagating and mapping uncertainty in spectroscopy-derived foliar traits from the leaf to the image

    NASA Astrophysics Data System (ADS)

    Singh, A.; Serbin, S. P.; Kingdon, C.; Townsend, P. A.

    2013-12-01

    A major goal of remote sensing, and imaging spectroscopy in particular, is the development of generalizable algorithms to repeatedly and accurately map ecosystem properties such as canopy chemistry across space and time. Existing methods must therefore be tested across a range of measurement approaches to identify and overcome limits to the consistent retrieval of such properties from spectroscopic imagery. Here we illustrate a general approach for the estimation of key foliar biochemical and morphological traits from spectroscopic imagery derived from the AVIRIS instrument and the propagation of errors from the leaf to the image scale using partial least squares regression (PLSR) techniques. Our method involves the integration of three types of data representing different scales of observation: At the image scale, the images were normalized for atmospheric, illumination and BRDF effects. Spectra from field plot locations were extracted from the 51AVIRIS images and were averaged when the field plot was larger than a single pixel. At the plot level, the scaling was conducted using multiple replicates (1000) derived from the leaf-level uncertainty estimates to generate plot-level estimates with their associated uncertainties. Leaf-level estimates of foliar traits (%N, %C, %Fiber, %Cellulose, %Lignin, LMA) were scaled to the canopy based on relative species composition of each plot. Image spectra were iteratively split into 50/50 randomized calibration-validation datasets and multiple (500) trait-predictive PLSR models were generated, this time sampling from within the plot-level uncertainty distribution. This allowed the propagation of uncertainty from the leaf-level dependent variables to the plot level, and finally to models built using AVIRIS image spectra. Moreover, this method allows us to generate spatially explicit maps of uncertainty in our sampled traits. Both LMA and %N PLSR models had a R2 greater than 0.8, root mean square errors (RMSEs) for both

  14. Integration of Image Data for Refining Building Boundaries Derived from Point Clouds

    NASA Astrophysics Data System (ADS)

    Perera, S. N.; Hetti Arachchige, N.; Schneider, D.

    2014-08-01

    Geometrically and topologically correct 3D building models are required to satisfy with new demands such as 3D cadastre, map updating, and decision making. More attention on building reconstruction has been paid using Airborne Laser Scanning (ALS) point cloud data. The planimetric accuracy of roof outlines, including step-edges is questionable in building models derived from only point clouds. This paper presents a new approach for the detection of accurate building boundaries by merging point clouds acquired by ALS and aerial photographs. It comprises two major parts: reconstruction of initial roof models from point clouds only, and refinement of their boundaries. A shortest closed circle (graph) analysis method is employed to generate building models in the first step. Having the advantages of high reliability, this method provides reconstruction without prior knowledge of primitive building types even when complex height jumps and various types of building roof are available. The accurate position of boundaries of the initial models is determined by the integration of the edges extracted from aerial photographs. In this process, scene constraints defined based on the initial roof models are introduced as the initial roof models are representing explicit unambiguous geometries about the scene. Experiments were conducted using the ISPRS benchmark test data. Based on test results, we show that the proposed approach can reconstruct 3D building models with higher geometrical (planimetry and vertical) and topological accuracy.

  15. Approach to derivation of SIR-C science requirements for calibration. [Shuttle Imaging Radar

    NASA Technical Reports Server (NTRS)

    Dubois, Pascale C.; Evans, Diane; Van Zyl, Jakob

    1992-01-01

    Many of the experiments proposed for the forthcoming SIR-C mission require calibrated data, for example those which emphasize (1) deriving quantitative geophysical information (e.g., surface roughness and dielectric constant), (2) monitoring daily and seasonal changes in the Earth's surface (e.g., soil moisture), (3) extending local case studies to regional and worldwide scales, and (4) using SIR-C data with other spaceborne sensors (e.g., ERS-1, JERS-1, and Radarsat). There are three different aspects to the SIR-C calibration problem: radiometric and geometric calibration, which have been previously reported, and polarimetric calibration. The study described in this paper is an attempt at determining the science requirements for polarimetric calibration for SIR-C. A model describing the effect of miscalibration is presented first, followed by an example describing how to assess the calibration requirements specific to an experiment. The effects of miscalibration on some commonly used polarimetric parameters are also discussed. It is shown that polarimetric calibration requirements are strongly application dependent. In consequence, the SIR-C investigators are advised to assess the calibration requirements of their own experiment. A set of numbers summarizing SIR-C polarimetric calibration goals concludes this paper.

  16. The cochlear size of bats and rodents derived from MRI images and histology.

    PubMed

    Hsiao, Chun Jen; Jen, Philip Hung-Sun; Wu, Chung Hsin

    2015-05-27

    From the evolutionary perspective, the ear of each animal species is built for effective processing of the biologically relevant signals used for communication and acoustically guided orientation. Because the sound pulses used by echolocating bats for orientation and rodents for communication are quite different, the basic design of the mammalian auditory system commonly shared by echolocating bats must be specialized in some manner to effectively process their species-specific sounds. The present study examines the difference in the cochlea of these animal species using MRI images and histological techniques. We report here that, although all these animal species share a similar cochlear structure, they vary in their cochlear size and turns. Bats using constant frequency-frequency-modulated pulses (CF-FM bats) and frequency-modulated pulses (FM bats) for echolocation have a larger cochlear size and more cochlear turns than rodents (mice and rats). However, CF-FM bats have the largest cochlear size and most cochlear turns. This difference in cochlear size and turns of these animal species is discussed in relation to their biologically relevant sounds and acoustic behavior.

  17. 131I-Zn-Chlorophyll derivative photosensitizer for tumor imaging and photodynamic therapy.

    PubMed

    Ocakoglu, Kasim; Er, Ozge; Kiyak, Guven; Lambrecht, Fatma Yurt; Gunduz, Cumhur; Kayabasi, Cagla

    2015-09-30

    In recent years, the photodynamic therapy studies have gained considerable attention as an alternative method to surgery, chemotherapy and radiotherapy which is commonly used to fight cancer. In this study, biological potentials of a benzyloxy bearing zinc(II) pheophorbide-a (Zn-PH-A) were investigated via in vivo and in vitro experiments. Zn-PH-A was labeled with (131)I with high efficiency (95.3 ± 2.7%) and its biodistribution studies were investigated on female Albino Wistar rats. The radiolabeled photosensitizer had been intravenously injected into the tail vein, and then the animals were sacrificed at 30, 60 and 120 min post injection. The percent of radioactivity per gram of organs (%ID/g) was determined. The radiolabeled Zn-PH-A showed high uptake in ovary. In addition, photodynamic therapy studies of the photosensitizer were conducted in EMT6, murine mammary carcinoma and HeLa, human cervix carcinoma cell lines. For the photodynamic therapy studies, the cells with Zn-PH-A were exposed to red light (650 nm) at the doses of 10-30 J/cm(2). The results showed that Zn-PH-A has stronger PDT effect in EMT6 than HeLa cell. Our present work demonstrates (131)I-labeled photosensitizer as a bifunctional agent (PDT and nuclear imaging) which could be improved in future by using EMT6 growing tumor in nude mice.

  18. Novel insights into host-fungal pathogen interactions derived from live-cell imaging.

    PubMed

    Bain, Judith; Gow, Neil A R; Erwig, Lars-Peter

    2015-03-01

    The theoretical physicist and Nobel laureate Richard Feynman outlined in his 1959 lecture, "There's plenty of room at the bottom", the enormous possibility of producing and visualising things at smaller scales. The advent of advanced scanning and transmission electron microscopy and high-resolution microscopy has begun to open the door to visualise host-pathogen interactions at smaller scales, and spinning disc confocal and two-photon microscopy has improved our ability to study these events in real time in three dimensions. The aim of this review is to illustrate some of the advances in understanding host-fungal interactions that have been made in recent years in particular those relating to the interactions of live fungal pathogens with phagocytes. Dynamic imaging of host-pathogen interactions has recently revealed novel detail and unsuspected mechanistic insights, facilitating the dissection of the phagocytic process into its component parts. Here, we will highlight advances in our knowledge of host-fungal pathogen interactions, including the specific effects of fungal cell viability, cell wall composition and morphogenesis on the phagocytic process and try to define the relative contributions of neutrophils and macrophages to the clearance of fungal pathogens in vitro and the infected host. PMID:25398200

  19. Novel insights into host-fungal pathogen interactions derived from live-cell imaging.

    PubMed

    Bain, Judith; Gow, Neil A R; Erwig, Lars-Peter

    2015-03-01

    The theoretical physicist and Nobel laureate Richard Feynman outlined in his 1959 lecture, "There's plenty of room at the bottom", the enormous possibility of producing and visualising things at smaller scales. The advent of advanced scanning and transmission electron microscopy and high-resolution microscopy has begun to open the door to visualise host-pathogen interactions at smaller scales, and spinning disc confocal and two-photon microscopy has improved our ability to study these events in real time in three dimensions. The aim of this review is to illustrate some of the advances in understanding host-fungal interactions that have been made in recent years in particular those relating to the interactions of live fungal pathogens with phagocytes. Dynamic imaging of host-pathogen interactions has recently revealed novel detail and unsuspected mechanistic insights, facilitating the dissection of the phagocytic process into its component parts. Here, we will highlight advances in our knowledge of host-fungal pathogen interactions, including the specific effects of fungal cell viability, cell wall composition and morphogenesis on the phagocytic process and try to define the relative contributions of neutrophils and macrophages to the clearance of fungal pathogens in vitro and the infected host.

  20. Diurnal, Seasonal, and Interannual Variations of Cloud Properties Derived for CERES From Imager Data

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Young, David F.; Sun-Mack, Sunny; Trepte, Qing Z.; Chen, Yan; Brown, Richard R.; Gibson, Sharon; Heck, Patrick W.

    2004-01-01

    Simultaneous measurement of the radiation and cloud fields on a global basis is a key component in the effort to understand and model the interaction between clouds and radiation at the top of the atmosphere, at the surface, and within the atmosphere. The NASA Clouds and Earth s Radiant Energy System (CERES) Project, begun in 1998, is meeting this need. Broadband shortwave (SW) and longwave radiance measurements taken by the CERES scanners at resolutions between 10 and 20 km on the Tropical Rainfall Measuring Mission (TRMM), Terra, and Aqua satellites are matched to simultaneous retrievals of cloud height, phase, particle size, water path, and optical depth OD from the TRMM Visible Infrared Scanner (VIRS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Besides aiding the interpretation of the broadband radiances, the CERES cloud properties are valuable for understanding cloud variations at a variety of scales. In this paper, the resulting CERES cloud data taken to date are averaged at several temporal scales to examine the temporal and spatial variability of the cloud properties on a global scale at a 1 resolution.

  1. Deriving a blood-mimicking fluid for particle image velocimetry in Sylgard-184 vascular models.

    PubMed

    Yousif, Majid Y; Holdsworth, David W; Poepping, Tamie L

    2009-01-01

    A new blood-mimicking fluid (BMF) has been developed for particle image velocimetry (PIV), which enables flow studies in vascular models (phantoms). A major difficulty in PIV that affects measurement accuracy is the refraction and distortion of light passing through the interface between the model and the fluid, due to the difference in refractive index (n) between the two materials. The problem can be eliminated by using a fluid with a refractive index matching that of the model. Such fluids are not commonly available, especially for vascular research where the fluid should also have a viscosity similar to human blood. In this work, a blood-mimicking fluid, composed of water (47.38% by weight), glycerol (36.94% by weight) and sodium iodide salt (15.68% by weight), was developed for compatibility with our silicone (Sylgard 184; n = 1.414) phantoms. The fluid exhibits a dynamic viscosity of 4.31+/-0.03 cP which lies within the range of human blood viscosity (4.4+/-0.6 cP). Both refractive index and viscosity were attained at 22.2+/-0.2 degrees C, which is a feasible room temperature, thus eliminating the need for a temperature-control system. The fluid will be used to study hemodynamics in vascular flow models fabricated from Sylgard 184.

  2. 131I-Zn-Chlorophyll derivative photosensitizer for tumor imaging and photodynamic therapy.

    PubMed

    Ocakoglu, Kasim; Er, Ozge; Kiyak, Guven; Lambrecht, Fatma Yurt; Gunduz, Cumhur; Kayabasi, Cagla

    2015-09-30

    In recent years, the photodynamic therapy studies have gained considerable attention as an alternative method to surgery, chemotherapy and radiotherapy which is commonly used to fight cancer. In this study, biological potentials of a benzyloxy bearing zinc(II) pheophorbide-a (Zn-PH-A) were investigated via in vivo and in vitro experiments. Zn-PH-A was labeled with (131)I with high efficiency (95.3 ± 2.7%) and its biodistribution studies were investigated on female Albino Wistar rats. The radiolabeled photosensitizer had been intravenously injected into the tail vein, and then the animals were sacrificed at 30, 60 and 120 min post injection. The percent of radioactivity per gram of organs (%ID/g) was determined. The radiolabeled Zn-PH-A showed high uptake in ovary. In addition, photodynamic therapy studies of the photosensitizer were conducted in EMT6, murine mammary carcinoma and HeLa, human cervix carcinoma cell lines. For the photodynamic therapy studies, the cells with Zn-PH-A were exposed to red light (650 nm) at the doses of 10-30 J/cm(2). The results showed that Zn-PH-A has stronger PDT effect in EMT6 than HeLa cell. Our present work demonstrates (131)I-labeled photosensitizer as a bifunctional agent (PDT and nuclear imaging) which could be improved in future by using EMT6 growing tumor in nude mice. PMID:26226337

  3. Modeling techniques and fluorescence imaging investigation of the interactions of an anthraquinone derivative with HSA and ctDNA.

    PubMed

    Fu, Zheng; Cui, Yanrui; Cui, Fengling; Zhang, Guisheng

    2016-01-15

    A new anthraquinone derivative (AORha) was synthesized. Its interactions with human serum albumin (HSA) and calf thymus DNA (ctDNA) were investigated by fluorescence spectroscopy, UV-visible absorption spectroscopy and molecular modeling. Cell viability assay and cell imaging experiment were performed using cervical cancer cells (HepG2 cells). The fluorescence results revealed that the quenching mechanism was static quenching. At different temperatures (290, 300, 310 K), the binding constants (K) and the number of binding sites (n) were determined, respectively. The positive ΔH and ΔS values showed that the binding of AORha with HSA was hydrophobic force, which was identical with the molecular docking result. Studying the fluorescence spectra, UV spectra and molecular modeling also verified that the binding mode of AORha and ctDNA might be intercalative. When HepG2 cells were treated with AORha, the fluorescence became brighter and turned green, which could be used for bioimaging.

  4. Modeling techniques and fluorescence imaging investigation of the interactions of an anthraquinone derivative with HSA and ctDNA

    NASA Astrophysics Data System (ADS)

    Fu, Zheng; Cui, Yanrui; Cui, Fengling; Zhang, Guisheng

    2016-01-01

    A new anthraquinone derivative (AORha) was synthesized. Its interactions with human serum albumin (HSA) and calf thymus DNA (ctDNA) were investigated by fluorescence spectroscopy, UV-visible absorption spectroscopy and molecular modeling. Cell viability assay and cell imaging experiment were performed using cervical cancer cells (HepG2 cells). The fluorescence results revealed that the quenching mechanism was static quenching. At different temperatures (290, 300, 310 K), the binding constants (K) and the number of binding sites (n) were determined, respectively. The positive ΔH and ΔS values showed that the binding of AORha with HSA was hydrophobic force, which was identical with the molecular docking result. Studying the fluorescence spectra, UV spectra and molecular modeling also verified that the binding mode of AORha and ctDNA might be intercalative. When HepG2 cells were treated with AORha, the fluorescence became brighter and turned green, which could be used for bioimaging.

  5. Algal Accessory Pigment Detection Using AVIRIS Image-Derived Spectral Radiance Data

    NASA Technical Reports Server (NTRS)

    Richardson, Laurie L.; Ambrosia, Vincent G.

    1996-01-01

    Visual and derivative analyses of AVIRIS spectral data can be used to detect algal accessory pigments in aquatic communities. This capability extends the use of remote sensing for the study of aquatic ecosystems by allowing detection of taxonomically significant pigment signatures which yield information about the type of algae present. Such information allows remote sensing-based assessment of aquatic ecosystem health, as in the detection of nuisance blooms of cyanobacteria or toxic blooms of dinoflagellates. Remote sensing of aquatic systems has traditionally focused on quantification of chlorophyll a, a photoreactive (and light-harvesting) pigment which is common to all algae as well as cyanobacteria (bluegreen algae). Due to the ubiquitousness of this pigment within algae, chl a is routinely measured to estimate algal biomass both during ground-truthing and using various airborne or satellite based sensors, including AVIRIS. Within the remote sensing and aquatic sciences communities, ongoing research has been performed to detect algal accessory pigments for assessment of algal population composition. This research is based on the fact that many algal accessory pigments are taxonomically significant, and all are spectrally unique. Aquatic scientists have been refining pigment analysis techniques, primarily high performance liquid chromatography, or HPLC, to detect specific pigments as a time-saving alternative to individual algal cell identifications and counts. Remote sensing scientists are investigating the use of pigment signatures to construct pigment libraries analogous to mineral spectral libraries used in geological remote sensing applications. The accessory pigment approach has been used successfully in remote sensing using data from the Thematic Mapper, low-altitude, multiple channel scanners, field spectroradiometers and the AVIRIS hyperspectral scanner. Due to spectral and spatial resolution capabilities, AVIRIS is the sensor of choice for such

  6. Photometric parameter maps of the Moon derived from LROC WAC images

    NASA Astrophysics Data System (ADS)

    Sato, H.; Robinson, M. S.; Hapke, B. W.; Denevi, B. W.; Boyd, A. K.

    2013-12-01

    Spatially resolved photometric parameter maps were computed from 21 months of Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) images. Due to a 60° field-of-view (FOV), the WAC achieves nearly global coverage of the Moon each month with more than 50% overlap from orbit-to-orbit. From the repeat observations at various viewing and illumination geometries, we calculated Hapke bidirectional reflectance model parameters [1] for 1°x1° "tiles" from 70°N to 70°S and 0°E to 360°E. About 66,000 WAC images acquired from February 2010 to October 2011 were converted from DN to radiance factor (I/F) though radiometric calibration, partitioned into gridded tiles, and stacked in a time series (tile-by-tile method [2]). Lighting geometries (phase, incidence, emission) were computed using the WAC digital terrain model (100 m/pixel) [3]. The Hapke parameters were obtained by model fitting against I/F within each tile. Among the 9 parameters of the Hapke model, we calculated 3 free parameters (w, b, and hs) by setting constant values for 4 parameters (Bco=0, hc=1, θ, φ=0) and interpolating 2 parameters (c, Bso). In this simplification, we ignored the Coherent Backscatter Opposition Effect (CBOE) to avoid competing CBOE and Shadow Hiding Opposition Effect (SHOE). We also assumed that surface regolith porosity is uniform across the Moon. The roughness parameter (θ) was set to an averaged value from the equator (× 3°N). The Henyey-Greenstein double lobe function (H-G2) parameter (c) was given by the 'hockey stick' relation [4] (negative correlation) between b and c based on laboratory measurements. The amplitude of SHOE (Bso) was given by the correlation between w and Bso at the equator (× 3°N). Single scattering albedo (w) is strongly correlated to the photometrically normalized I/F, as expected. The c shows an inverse trend relative to b due to the 'hockey stick' relation. The parameter c is typically low for the maria (0.08×0.06) relative to the

  7. Physical Conditions in the Central Parsec Derived from Mid-Infrared Imaging Photometry

    NASA Technical Reports Server (NTRS)

    Gezari, Dan; Dwek, Eli; Varosi, Frank

    2002-01-01

    Array camera images of the central 1 parsec of the Galactic Center at eight mid-infrared wavelengths between 4.8 and 20.0 microns with approximately 1 arcsec resolution are used to model the temperature, opacity and bolometric luminosity distributions of the emitting dust in the central parsec, and the extinction in the line of sight. We use the results to discriminate between two mechanisms for heating the dust: heating by radiation from a "central engine" (possibly a massive black hole associated with Sgr A*), or internal heating by luminous stars embedded in or among the dust clouds. The temperature and opacity distributions are consistent with the presence of self-luminous objects imbedded at prominent the IRS source positions. However, temperatures on the northern ann and east-west bar are highest along the inner flank of those structures surrounding the central cavity, while the dust opacity peaks further out from the central cavity. The warm inner ridge suggests heating by centrally located concentrated luminous sources, including IRS3 and IRS7. The of the model results are compared with the distributions of the various stellar populations in the central parsec. There is evidence for physical interaction between the warm emitting dust and luminous stars, including dozens of hot He1 emission line stars and B[] stars. The combined contributions of embedded stars at the IRS source positions and the luminous stars distributed throughout Sgr A West can account for the temperature enhancements and the luminosity distribution in the central parsec computed by the model.

  8. An Improved Snake Model for Refinement of Lidar-Derived Building Roof Contours Using Aerial Images

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Wang, Shugen; Liu, Xiuguo

    2016-06-01

    Building roof contours are considered as very important geometric data, which have been widely applied in many fields, including but not limited to urban planning, land investigation, change detection and military reconnaissance. Currently, the demand on building contours at a finer scale (especially in urban areas) has been raised in a growing number of studies such as urban environment quality assessment, urban sprawl monitoring and urban air pollution modelling. LiDAR is known as an effective means of acquiring 3D roof points with high elevation accuracy. However, the precision of the building contour obtained from LiDAR data is restricted by its relatively low scanning resolution. With the use of the texture information from high-resolution imagery, the precision can be improved. In this study, an improved snake model is proposed to refine the initial building contours extracted from LiDAR. First, an improved snake model is constructed with the constraints of the deviation angle, image gradient, and area. Then, the nodes of the contour are moved in a certain range to find the best optimized result using greedy algorithm. Considering both precision and efficiency, the candidate shift positions of the contour nodes are constrained, and the searching strategy for the candidate nodes is explicitly designed. The experiments on three datasets indicate that the proposed method for building contour refinement is effective and feasible. The average quality index is improved from 91.66% to 93.34%. The statistics of the evaluation results for every single building demonstrated that 77.0% of the total number of contours is updated with higher quality index.

  9. SU-E-J-264: Using Magnetic Resonance Imaging-Derived Features to Quantify Radiotherapy-Induced Normal Tissue Morbidity

    SciTech Connect

    Thor, M; Tyagi, N; Deasy, J

    2015-06-15

    Purpose: The aim of this study was to explore the use of Magnetic Resonance Imaging (MRI)-derived features as indicators of Radiotherapy (RT)-induced normal tissue morbidity. We also investigate the relationship between these features and RT dose in four critical structures. Methods: We demonstrate our approach for four patients treated with RT for base of tongue cancer in 2005–2007. For each patient, two MRI scans (T1-weighted pre (T1pre) and post (T1post) gadolinium contrast-enhancement) were acquired within the first six months after RT. The assessed morbidity endpoint observed in 2/4 patients was Grade 2+ CTCAEv.3 trismus. Four ipsilateral masticatory-related structures (masseter, lateral and medial pterygoid, and the temporal muscles) were delineated on both T1pre and T1post and these scans were co-registered to the treatment planning CT using a deformable demons algorithm. For each structure, the maximum and mean RT dose, and six MRI-derived features (the second order texture features entropy and homogeneity, and the first order mean, median, kurtosis, and skewness) were extracted and compared structure-wise between patients with and without trismus. All MRI-derived features were calculated as the difference between T1pre and T1post, ΔS. Results: For 5/6 features and all structures, ΔS diverged between trismus and non-trismus patients particularly for the masseter, lateral pterygoid, and temporal muscles using the kurtosis feature (−0.2 vs. 6.4 for lateral pterygoid). Both the maximum and mean RT dose in all four muscles were higher amongst the trismus patients (with the maximum dose being up to 25 Gy higher). Conclusion: Using MRI-derived features to quantify RT-induced normal tissue complications is feasible. We showed that several features are different between patients with and without morbidity and that the RT dose in all investigated structures are higher amongst patients with morbidity. MRI-derived features, therefore, has the potential to

  10. Horizontal winds derived from the polar mesospheric cloud images as observed by the CIPS instrument on the AIM satellite

    NASA Astrophysics Data System (ADS)

    Rong, P. P.; Yue, J.; Russell, J. M.; Lumpe, J. D.; Gong, J.; Wu, D. L.; Randall, C. E.

    2015-06-01

    A cloud pattern matching technique is applied to polar mesospheric cloud (PMC) images taken by the Cloud Imaging and Particle Size instrument (CIPS) to infer the wind velocities in the mesopause region. CIPS measurements are analyzed to detect patterns that repeat from one orbit to the next but are displaced in location; the displacement provides a measure of the wind velocity. Pattern matching is achieved by resampling the CIPS data to longitude and latitude grids with the grid-box size forced at ~5 km in both directions. The correlated patterns are searched within a geographic region referred to as a "frame" of ~500 km in longitude × 400 km in latitude. The histograms of the derived velocities indicate that easterly winds prevail, with a mean zonal wind of -20 to -15 m/s. Mean meridional winds are overall small, but in late summer the histogram indicated a poleward wind of ~20-30 m/s. The variability of CIPS cloud albedo on consecutive orbits is also examined at fixed geolocations. The statistical results suggest that ~86% of pairs underwent mean cloud albedo variation of < 50% on consecutive orbits, suggesting a moderate change. It is also found that the correlation of the cloud structures between two consecutive orbits at a fixed location is generally poor. These findings suggest that cloud patterns are subject to wind advection, but the cloud patches are more extended in size than the movement that occurs. Cloud voids are found to be more likely to remain at the same geolocations.

  11. High-performance dendritic contrast agents for X-ray computed tomography imaging using potent tetraiodobenzene derivatives.

    PubMed

    You, Suyeon; Jung, Hye-Youn; Lee, Chaewoon; Choe, Yun Hui; Heo, Ju Young; Gang, Gil-Tae; Byun, Sang-Kyung; Kim, Won Kon; Lee, Chul-Ho; Kim, Dong-Eog; Kim, Young Il; Kim, Yoonkyung

    2016-03-28

    The use of computed tomography (CT) for vascular imaging is critical in medical emergencies requiring urgent diagnostic decisions, such as cerebral ischemia and many cardiovascular diseases. Small-molecule iodinated contrast media are often injected intravenously as radiopaque agents during CT imaging to achieve high contrast enhancement of vascular systems. The rapid excretion rate of these agents is overcome by injecting a significantly high dose of iodine, which can have serious side effects. Here we report a simple method to prepare blood-pool contrast agents for CT based on dendrimers for the first time using tetraiodobenzene derivatives as potent radiopaque moieties. Excellent in vivo safety has been demonstrated for these small (13-22nm) unimolecular water-soluble dendritic contrast agents, which exhibit high contrast enhancement in the blood-pool and effectively extend their blood half-lives. Our method is applicable to virtually any scaffold with suitable surface groups and may fulfill the current need for safer, next-generation iodinated CT contrast agents. PMID:26812006

  12. Dynamic optical imaging of metabolic and NADPH oxidase-derived superoxide in live mouse brain using fluorescence lifetime unmixing.

    PubMed

    Hall, David J; Han, Sung-Ho; Chepetan, Andre; Inui, Edny G; Rogers, Mike; Dugan, Laura L

    2012-01-01

    Superoxide is the single-electron reduction product of molecular oxygen generated by mitochondria and the innate immune enzyme complex, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox), and its isoforms. Initially identified as critical to the host defense against infection, superoxide has recently emerged as an important signaling molecule and as a proposed mediator of central nervous system injury in stroke, neurodegenerative conditions, and aging itself. Complete understanding of superoxide in central nervous system disease has been hampered by lack of noninvasive imaging techniques to evaluate this highly reactive, short-lived molecule in vivo. Here we describe a novel optical imaging technique to monitor superoxide real time in intact animals using a fluorescent probe compound and fluorescence lifetime contrast-based unmixing. Specificity for superoxide was confirmed using validated mouse models with enhanced or attenuated brain superoxide production. Application of fluorescence lifetime unmixing removed autofluorescence, further enhanced sensitivity and specificity of the technique, permitted visualization of physiologically relevant levels of superoxide, and allowed superoxide in specific brain regions (e.g., hippocampus) to be mapped. Lifetime contrast-based unmixing permitted disease model-specific and brain region-specific differences in superoxide levels to be observed, suggesting this approach may provide valuable information on the role of mitochondrial and Nox-derived superoxide in both normal function and pathologic conditions in the central nervous system.

  13. Synthesis and Preliminary Evaluation of a 2-Oxoquinoline Carboxylic Acid Derivative for PET Imaging the Cannabinoid Type 2 Receptor

    PubMed Central

    Mu, Linjing; Slavik, Roger; Müller, Adrienne; Popaj, Kasim; Čermak, Stjepko; Weber, Markus; Schibli, Roger; Krämer, Stefanie D.; Ametamey, Simon M.

    2014-01-01

    Cannabinoid receptor subtype 2 (CB2) has been shown to be up-regulated in activated microglia and therefore plays an important role in neuroinflammatory and neurodegenerative diseases such as multiple sclerosis, amyotrophic lateral sclerosis and Alzheimer’s disease. The CB2 receptor is therefore considered as a very promising target for therapeutic approaches as well as for imaging. A promising 2-oxoquinoline derivative designated KP23 was synthesized and radiolabeled and its potential as a ligand for PET imaging the CB2 receptor was evaluated. [11C]KP23 was obtained in 10%–25% radiochemical yield (decay corrected) and 99% radiochemical purity. It showed high stability in phosphate buffer, rat and mouse plasma. In vitro autoradiography of rat and mouse spleen slices, as spleen expresses a high physiological expression of CB2 receptors, demonstrated that [11C]KP23 exhibits specific binding towards CB2. High spleen uptake of [11C]KP23 was observed in dynamic in vivo PET studies with Wistar rats. In conclusion, [11C]KP23 showed promising in vitro and in vivo characteristics. Further evaluation with diseased animal model which has higher CB2 expression levels in the brain is warranted. PMID:24662272

  14. PET image reconstruction with a system matrix containing point spread function derived from single photon incidence response

    NASA Astrophysics Data System (ADS)

    Fan, Xin; Wang, Hai-Peng; Yun, Ming-Kai; Sun, Xiao-Li; Cao, Xue-Xiang; Liu, Shuang-Quan; Chai, Pei; Li, Dao-Wu; Liu, Bao-Dong; Wang, Lu; Wei, Long

    2015-01-01

    A point spread function (PSF) for the blurring component in positron emission tomography (PET) is studied. The PSF matrix is derived from the single photon incidence response function. A statistical iterative reconstruction (IR) method based on the system matrix containing the PSF is developed. More specifically, the gamma photon incidence upon a crystal array is simulated by Monte Carlo (MC) simulation, and then the single photon incidence response functions are calculated. Subsequently, the single photon incidence response functions are used to compute the coincidence blurring factor according to the physical process of PET coincidence detection. Through weighting the ordinary system matrix response by the coincidence blurring factors, the IR system matrix containing the PSF is finally established. By using this system matrix, the image is reconstructed by an ordered subset expectation maximization (OSEM) algorithm. The experimental results show that the proposed system matrix can substantially improve the image radial resolution, contrast, and noise property. Furthermore, the simulated single gamma-ray incidence response function depends only on the crystal configuration, so the method could be extended to any PET scanner with the same detector crystal configuration. Project supported by the National Natural Science Foundation of China (Grant Nos. Y4811H805C and 81101175).

  15. (18)F-AmBF3-MJ9: a novel radiofluorinated bombesin derivative for prostate cancer imaging.

    PubMed

    Pourghiasian, Maral; Liu, Zhibo; Pan, Jinhe; Zhang, Zhengxing; Colpo, Nadine; Lin, Kuo-Shyan; Perrin, David M; Bénard, François

    2015-04-01

    A novel radiofluorinated derivative of bombesin, (18)F-AmBF3-MJ9, was synthesized and evaluated for its potential to image prostate cancer by targeting the gastrin releasing peptide receptor (GRPR). AmBF3-MJ9 was prepared from an ammoniomethyl-trifluoroborate (AmBF3) conjugated alkyne 2 and azidoacetyl-MJ9 via a copper-catalyzed click reaction, and had good binding affinity for GRPR (Ki=0.5±0.1nM). The (18)F-labeling was performed via a facile one-step (18)F-(19)F isotope exchange reaction, and (18)F-AmBF3-MJ9 was obtained in 23±5% (n=3) radiochemical yield in 25min with >99% radiochemical purity and 100±32GBq/μmol specific activity. (18)F-AmBF3-MJ9 was stable in mouse plasma, and was partially (22-30%) internalized after binding to GRPR. Positron emission tomography (PET) imaging and biodistribution studies in mice showed fast renal excretion and good uptake of (18)F-AmBF3-MJ9 by GRPR-expressing pancreas and PC-3 prostate cancer xenografts. Tumor uptake was 1.37±0.25%ID/g at 1h, and 2.20±0.13%ID/g at 2h post-injection (p.i.) with low background uptake and excellent tumor visualization (tumor-to-muscle ratios of 75.4±5.5). These data suggest that (18)F-AmBF3-MJ9 is a promising PET tracer for imaging GRPR-expressing prostate cancers.

  16. Input-output transformation in the visuo-oculomotor loop: comparison of real-time optical imaging recordings in V1 to ocular following responses upon center-surround stimulation.

    PubMed

    Reynaud, A; Barthélemy, F V; Masson, G S; Chavane, F

    2007-11-01

    In psychophysics and physiology, it is well established that lateral interactions are crucial mechanisms to constrain response normalization and contextual modulations. To study the cortical mechanisms involved in the contextual modulation of the behavioral contrast response function, we compared in behaving monkeys the Ocular Following Response (OFR) to V1 population activity measured using Optical Imaging of Voltage-Sensitive Dyes (VSD). If contrast response functions (CRF) to a simple local stimulus are similar in V1 and in the OFR, lateral interaction leads however to quite different modulation at those two levels. At the behavioural level, contrast response function is strongly suppressed by lateral interactions, and this suppression is stronger for higher contrasts. In V1, we showed a slow dynamic of facilitation for low contrasts integration and a fast suppression operating on high contrasts. These modulatory interactions influence differently the contrast response functions, interrupting the dynamic increase of contrast sensitivity in OFR, but not in V1 response. The temporal properties of those effects lead us to hypothesize that horizontal and feedback connectivity have differential effect on low and high contrasts integration in V1. V1 provides then an input to MT whose contextual dependency is not totally determined and must be refined before affecting the behavioural OFR.

  17. Multiple-Input Multiple-Output (MIMO) Linear Systems Extreme Inputs/Outputs

    DOE PAGES

    Smallwood, David O.

    2007-01-01

    A linear structure is excited at multiple points with a stationary normal random process. The response of the structure is measured at multiple outputs. If the autospectral densities of the inputs are specified, the phase relationships between the inputs are derived that will minimize or maximize the trace of the autospectral density matrix of the outputs. If the autospectral densities of the outputs are specified, the phase relationships between the outputs that will minimize or maximize the trace of the input autospectral density matrix are derived. It is shown that other phase relationships and ordinary coherence less than one willmore » result in a trace intermediate between these extremes. Least favorable response and some classes of critical response are special cases of the development. It is shown that the derivation for stationary random waveforms can also be applied to nonstationary random, transients, and deterministic waveforms.« less

  18. Extreme inputs/outputs for multiple input multiple output linear systems.

    SciTech Connect

    Smallwood, David Ora

    2005-09-01

    A linear structure is excited at multiple points with a stationary normal random process. The response of the structure is measured at multiple outputs. If the auto spectral densities of the inputs are specified, the phase relationships between the inputs are derived that will minimize or maximize the trace of the auto spectral density matrix of the outputs. If the autospectral densities of the outputs are specified, the phase relationships between the outputs that will minimize or maximize the trace of the input auto spectral density matrix are derived. It is shown that other phase relationships and ordinary coherence less than one will result in a trace intermediate between these extremes. Least favorable response and some classes of critical response are special cases of the development. It is shown that the derivation for stationary random waveforms can also be applied to nonstationary random, transients, and deterministic waveforms.

  19. Superfluorinated PEI Derivative Coupled with (99m) Tc for ASGPR Targeted (19) F MRI/SPECT/PA Tri-Modality Imaging.

    PubMed

    Guo, Zhide; Gao, Mengna; Song, Manli; Li, Yesen; Zhang, Deliang; Xu, Duo; You, Linyi; Wang, Liangliang; Zhuang, Rongqiang; Su, Xinhui; Liu, Ting; Du, Jin; Zhang, Xianzhong

    2016-07-01

    Fluorinated polyethylenimine derivative labeled with radionuclide (99m) Tc is developed as a (19) F MRI/SPECT/PA multifunctional imaging agent with good asialoglycoprotein receptors (ASGPR)-targeting ability. This multifunctional agent is safe and suitable for (19) F MRI/SPECT/PA imaging and has the potential to detect hepatic diseases and to assess liver function, which provide powerful support for the development of personalized and precision medicine.

  20. Stein's neuronal model with pooled renewal input.

    PubMed

    Rajdl, Kamil; Lansky, Petr

    2015-06-01

    The input of Stein's model of a single neuron is usually described by using a Poisson process, which is assumed to represent the behaviour of spikes pooled from a large number of presynaptic spike trains. However, such a description of the input is not always appropriate as the variability cannot be separated from the intensity. Therefore, we create and study Stein's model with a more general input, a sum of equilibrium renewal processes. The mean and variance of the membrane potential are derived for this model. Using these formulas and numerical simulations, the model is analyzed to study the influence of the input variability on the properties of the membrane potential and the output spike trains. The generalized Stein's model is compared with the original Stein's model with Poissonian input using the relative difference of variances of membrane potential at steady state and the integral square error of output interspike intervals. Both of the criteria show large differences between the models for input with high variability. PMID:25910437

  1. EU-FP7-iMars: Analysis of Mars Multi-Resolution Images using Auto-Coregistration, Data Mining and Crowd Source Techniques: an overview and a request for scientific inputs.

    NASA Astrophysics Data System (ADS)

    Muller, Jan-Peter; Gwinner, Klaus; van Gasselt, Stephan; Ivanov, Anton; Morley, Jeremy; Houghton, Robert; Bamford, Steven; Yershov, Vladimir; Sidirpoulos, Panagiotis; Kim, Jungrack

    2014-05-01

    changes in time series. Within the iMars project (http://i-Mars.eu), a fully automated large-scale processing ('Big Data') solution is being developed to generate the best possible multi-resolution DTM of Mars co-registered to HRSC (50-100m grid) products generated at DLR from CTX (6-20m grid, loc.cit.) and HiRISE (1-3m grids) on a large-scale linux cluster based at MSSL with 224 cores and 0.25 Pb of storage. The HRSC products are employed to provide a geographic reference for all current, future and historical NASA products using automated co-registration based on feature points and initial results will be shown. The metadata already available for all orbital imagery acquired to date, with poor georeferencing information, has been employed to determine the 'sweet spots' which have long time series of measurements with different spatial resolution ranges over the last ≡50 years of observations and these will be shown. In 2015, as much of the entire NASA and ESA record of orbital images will be co-registered and the updated georeferencing information employed to generate a time series of terrain relief corrected orthorectified images (ORIs) back to 1977. Web-GIS using OGC protocols will be employed to allow exploration visually of changes of the surface. Data mining processing chains are being developed to search for changes in the Martian surface from 1971-2015 and the output of this data mining will be compared against the results from citizen scientists' measurements in a specialised Zooniverse implementation. Final co-registered data sets will be distributed through both European and US channels in a manner to be decided towards the end of the project. The resultant co-registered image datasets will represent the best possible capture of changes and evolutions in the Martian surface. A workshop is planned to be held during the EGU time period to try to capture scientific input on the relative priorities of different types of changes based on these 'sweet spots

  2. Spatial and temporal variability in Moderate Resolution Imaging Spectroradiometer-derived surface albedo over global arid regions

    NASA Astrophysics Data System (ADS)

    Tsvetsinskaya, Elena A.; Schaaf, Crystal B.; Gao, Feng; Strahler, Alan H.; Dickinson, Robert E.

    2006-10-01

    We derive spectral and broadband surface albedo for global arid regions from data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra spacecraft, at 1 km spatial resolution for 2001. MODIS data show considerable spatial variability both across various arid regions of the globe (from the bright deserts of northern Africa and the Arabian peninsula to substantially less reflective American and Asian deserts) and within regions (variability related to soil and rock types). For example, over arid northern Africa and the Arabian peninsula, albedo in the visible broadband varies by a factor of over 2, from the brightest sand sheets to the darkest luvisols. Few, if any, global and regional land-atmosphere models capture this observed spatial variability in surface albedo over arid regions. We suggest a scheme that relates soil groups (based on the United Nations Food and Agriculture Organization (FAO) soil classification) to MODIS-derived surface albedo statistics. This approach allows for an efficient representation in climate and weather forecasting models of the observed spatial and temporal variability in surface albedo over global deserts. Observed variability in albedo was reduced to a small (1-13, depending on the region) number of soil-related classes (end-members) that could be used in climate models. We also addressed the temporal evolution of albedo during 2001 over global deserts. Regions/soils of stable albedo with very low temporal variability were identified. For other regions/soils, temporal signals in albedo were related to ephemeral inundation with water or variations in sample size.

  3. Deriving soil function maps to assess related ecosystem services using imaging spectroscopy in the Lyss agricultural area, Switzerland

    NASA Astrophysics Data System (ADS)

    Diek, Sanne; de Jong, Rogier; Braun, Daniela; Böhler, Jonas; Schaepman, Michael

    2014-05-01

    Soils play an important role in the benefits offered by ecosystems services. In densely populated Switzerland soils are a scarce resource, with high pressure on services ranging from urban expansion to over-utilization. Key change drivers include erosion, soil degradation, land management change and (chemical) pollution, which should be taken into consideration. Therefore there is an emerging need for an integrated, sustainable and efficient system assessing the management of soil and land as a resource. The use of remote sensing can offer spatio-temporal and quantitative information of extended areas. In particular imaging spectroscopy has shown to perfectly complement existing sampling schemes as secondary information for digital soil mapping. Although only the upper-most layer of soil interacts with light when using reflectance spectroscopy, it still can offer valuable information that can be utilized by farmers and decision makers. Fully processed airborne imaging spectrometer data from APEX as well as land cover classification for the agricultural area in Lyss were available. Based on several spectral analysis methods we derived multiple soil properties, including soil organic matter, soil texture, and mineralogy; complemented by vegetation parameters, including leaf area index, chlorophyll content, pigment distribution, and water content. The surface variables were retrieved using a combination of index-based and physically-based retrievals. Soil properties in partly to fully vegetated areas were interpolated using regression kriging based methods. This allowed the continuous assessment of potential soil functions as well as non-contiguous maps of abundances of combined soil and vegetation parameters. Based on a simple regression model we could make a rough estimate of ecosystem services. This provided the opportunity to look at the differences between the interpolated soil function maps and the non-contiguous (but combined) vegetation and soil function maps

  4. A Tc-99m labeled laminin derived peptide, Tc-99m-YIGSR for thrombus specific imaging

    SciTech Connect

    Wang, G.J.; Oster, Z.H.; Som, P.

    1994-05-01

    Laminin derived adhesive peptides were studied as potential agents for thrombus specific imaging. Using a novel peptide Tc-99m labeling method studies were performed in vitro using human whole blood clots and platelets, and in vivo scintigraphy in animals with experimental thrombi. Aliquots of 0.1 ml human blood were placed in inclined Petri dishes until clot was well formed. Clots were rinsed 3x with phosphate buffer and 10 {mu}Ci Tc-99m YIGSR II was added. After incubation at room temperature for 1 hr, clots were again washed 3x. Residual activity was measured. Platelets were harvested using routine methods and incubated with Tc-99m YIGSR II, washed and assayed. Blocking experiments using cold YIGSR II showed that the Tc-99m labeled peptide preparation YIGSR II binds specifically and selectively to clot and platelets as compared to control experiments using nonspecific human Tc-99m IgG. Tissue distribution studies showed rapid blood clearance, urinary excretion and to a lesser degree GI tract excretion. Tc-99m YIGSR II was lower in all organs except kidneys compared to Tc-99m 50 H.19, Tc-99m IgG and Tc-99m YIGSR I. Tc-99m-YIGSR II consistently visualized thrombi within 30 min p.i. In vivo scintigraphic (thrombus/contralateral side) ratio was 3:1 and ex vivo direct counting (thrombosed to nonthrombosed vessel segment) was 5.4: 1. Compared to monoclonal antibodies peptide preparations are non- or minimally immunogenic, preparation is probably less expensive and there is also less danger of viral DNA contamination. These considerations and our data indicate that the Tc-99m-YIGSR II peptide has significant potential as a thrombus imaging agent.

  5. Molecular imaging to monitor repair of myocardial infarction using genetically engineered bone marrow-derived mesenchymal stem cells.

    PubMed

    Shi, Shuo; Zhang, Min; Guo, Rui; Miao, Ying; Zhang, Xiangming; Li, Biao

    2015-01-01

    Heart tissue has a diminished ability to repair after myocardial infarction (MI). Bone marrow- derived mesenchymal stem cells (BMSCs) have been used effectively to heal damaged tissue after MI. Hypoxia-inducible factor-1α (HIF-1α) can induce transcription of numerous pro-angiogenic genes and enhance stem cell survival. Here, we investigated whether HIF-1α-transduced BMSCs could enhance tissue repair after MI, and compared the value of micro-PET/CT and echocardiography for evaluation of therapeutic effects. Rat BMSCs were transduced with a lentivirus expressing HIF-1α and NIS (Lenti-HIF-1α-NIS). Sodium iodide symporter (NIS) functioned as effective reporter gene, allowing monitoring of BMSCs transplanted into the rat heart for up to 2 weeks using micro-SPECT/CT imaging. In a rat MI model, after transplantation of HIF-1α-NIS-transduced BMSCs to the MI zone, more expression of HIF-1α,VEGF and Ang-4, more improvement of metabolism, less fibrotic tissue and cardiomyocyte apoptosis were detected in the MI zone. Moreover, we found that most of the transplanted HIF-1α-NIS-transduced BMSCs differentiated into endothelial cells, and engineered new blood vessels in MI zone. Metabolic activity significantly increased at an early time point (2 weeks after transplantation) and lead to a sustained increase (4 weeks), as indicated by (18)F-FDG uptake in micro-PET/CT imaging. Echocardiography indicated no improvement in cardiac function at 2 weeks and small improvement at 4 weeks. This study indicated that (18)F-FDG micro-PET/CT was more useful for evaluating early therapeutic effects than echocardiography. PMID:25892408

  6. Mapping of Inner and Outer Celestial Bodies Using New Global and Local Topographic Data Derived from Photogrammetric Image Processing

    NASA Astrophysics Data System (ADS)

    Karachevtseva, I. P.; Kokhanov, A. A.; Rodionova, J. F.; Zharkova, A. Yu.; Lazareva, M. S.

    2016-06-01

    New estimation of fundamental geodetic parameters and global and local topography of planets and satellites provide basic coordinate systems for mapping as well as opportunities for studies of processes on their surfaces. The main targets of our study are Europa, Ganymede, Calisto and Io (satellites of Jupiter), Enceladus (a satellite of Saturn), terrestrial planetary bodies, including Mercury, the Moon and Phobos, one of the Martian satellites. In particular, based on new global shape models derived from three-dimensional control point networks and processing of high-resolution stereo images, we have carried out studies of topography and morphology. As a visual representation of the results, various planetary maps with different scale and thematic direction were created. For example, for Phobos we have produced a new atlas with 43 maps, as well as various wall maps (different from the maps in the atlas by their format and design): basemap, topography and geomorphological maps. In addition, we compiled geomorphologic maps of Ganymede on local level, and a global hypsometric Enceladus map. Mercury's topography was represented as a hypsometric globe for the first time. Mapping of the Moon was carried out using new images with super resolution (0.5-1 m/pixel) for activity regions of the first Soviet planetary rovers (Lunokhod-1 and -2). New results of planetary mapping have been demonstrated to the scientific community at planetary map exhibitions (Planetary Maps Exhibitions, 2015), organized by MExLab team in frame of the International Map Year, which is celebrated in 2015-2016. Cartographic products have multipurpose applications: for example, the Mercury globe is popular for teaching and public outreach, the maps like those for the Moon and Phobos provide cartographic support for Solar system exploration.

  7. Arctic science input wanted

    NASA Astrophysics Data System (ADS)

    The Arctic Research and Policy Act (Eos, June 26, 1984, p. 412) was signed into law by President Ronald Reagan this past July. One of its objectives is to develop a 5-year research plan for the Arctic. A request for input to this plan is being issued this week to nearly 500 people in science, engineering, and industry.To promote Arctic research and to recommend research policy in the Arctic, the new law establishes a five-member Arctic Research Commission, to be appointed by the President, and establishes an Interagency Arctic Research Policy Committee, to be composed of representatives from nearly a dozen agencies having interests in the region. The commission will make policy recommendations, and the interagency committee will implement those recommendations. The National Science Foundation (NSF) has been designated as the lead agency of the interagency committee.

  8. Teaching Image Formation by Extended Light Sources: The Use of a Model Derived from the History of Science

    NASA Astrophysics Data System (ADS)

    Dedes, Christos; Ravanis, Konstantinos

    2009-01-01

    This research, carried out in Greece on pupils aged 12-16, focuses on the transformation of their representations concerning light emission and image formation by extended light sources. The instructive process was carried out in two stages, each one having a different, distinct target set. During the first stage, the appropriate conflict conditions were created by contrasting the subjects’ predictions with the results of experimental situations inspired by the History of Science, with a view to destabilizing the pupils’ alternative representations. During the second stage, the experimental teaching intervention was carried out; it was based on the geometrical optics model and its parameters were derived from Kepler’s relevant historic experiment. For the duration of this process and within the framework of didactical interactions, an effort was made to reorganize initial limited representations and restructure them at the level of the accepted scientific model. The effectiveness of the intervention was evaluated two weeks later, using experimental tasks which had the same cognitive yet different empirical content with respect to the tasks conducted during the intervention. The results of the study showed that the majority of the subjects accepted the model of geometrical optics, that is, the pupils were able to correctly predict and adequately justify the experimental results based on the principle of punctiform light emission. Educational and research implications are discussed.

  9. Fluorescent detection and imaging of Hg(2+) using a novel phenanthroline derivative based single- and two-photon excitation.

    PubMed

    Zhang, Xian; Li, Long-long; Liu, Ying-kai

    2016-02-01

    A novel phenanthroline derivative, 4-[4-(N-methyl)styrene]-imidazo[4,5-f][1,10]phenanthroline-benzene iodated salt (MSIPBI), was synthesized, and the linear absorption and fluorescent spectra of MSIPBI in different solvents were investigated. The photophysical properties in unbound and in ligand-metal complexes were evaluated by UV absorption and one- and two-photon fluorescent spectra, and the quantum yields, two-photon active cross-sections and the binding constant of dye-metal were calculated. The results indicated that MSIPBI has a large Stokes shift (more than 167nm), and the dye was selective and sensitive for the detection of Hg(2+) with a two-photon active cross-section of 55.5GM in tris-HCl buffer solution at 800nm. Furthermore, the results of the fluorescence microscopy imaging indicated that MSIPBI is an efficient fluorescent probe for the detection of Hg(2+) in living cells by one- and two-photon excitation. Moreover, the experiments of determination Hg(2+) in river water and tap water were finished.

  10. Identification of a Novel Indoline Derivative for in Vivo Fluorescent Imaging of Blood-Brain Barrier Disruption in Animal Models

    PubMed Central

    2013-01-01

    Disruption of the blood-brain barrier (BBB) can occur in various pathophysiological conditions. Administration of extraneous tracers that can pass the disrupted, but not the intact, BBB and detection of the extravasation have been widely used to assess BBB disruption in animal models. Although several fluorescent tracers have been successfully used, the administration of these tracers basically requires intravascular injection, which can be laborious when using small animals such as zebrafish. To identify fluorescent tracers that could be easily administered into various animal models and visualize the BBB disruption in vivo, we prepared nine structurally related indoline derivatives (IDs) as a minimum set of diverse fluorescent compounds. We found that one ID, ZMB741, had the highest affinity for serum albumin and emitted the strongest fluorescence in the presence of serum albumin of the nine IDs tested. The affinity to serum albumin and the fluorescence intensity was superior to those of Evans blue and indocyanine green that have been conventionally used to assess the BBB disruption. We showed that ZMB741 could be administered into zebrafish by static immersion or mice by intraperitoneal injection and visualizes the active disruption of their BBB. These results suggest that ZMB741 can be a convenient and versatile tool for in vivo fluorescent imaging of BBB disruption in various animal models. The strategy used in this study can also be applied to diversity-oriented libraries to identify novel fluorescent tracers that may be superior to ZMB741. PMID:23668665

  11. Comparison of Magnetic Resonance Imaging and Serum Biomarkers for Detection of Human Pluripotent Stem Cell-Derived Teratomas

    PubMed Central

    Riegler, Johannes; Ebert, Antje; Qin, Xulei; Shen, Qi; Wang, Mouer; Ameen, Mohamed; Kodo, Kazuki; Ong, Sang-Ging; Lee, Won Hee; Lee, Grace; Neofytou, Evgenios; Gold, Joseph D.; Connolly, Andrew J.; Wu, Joseph C.

    2016-01-01

    Summary The use of cells derived from pluripotent stem cells (PSCs) for regenerative therapies confers a considerable risk for neoplastic growth and teratoma formation. Preclinical and clinical assessment of such therapies will require suitable monitoring strategies to understand and mitigate these risks. Here we generated human-induced pluripotent stem cells (iPSCs), selected clones that continued to express reprogramming factors after differentiation into cardiomyocytes, and transplanted these cardiomyocytes into immunocompromised rat hearts post-myocardial infarction. We compared magnetic resonance imaging (MRI), cardiac ultrasound, and serum biomarkers for their ability to delineate teratoma formation and growth. MRI enabled the detection of teratomas with a volume >8 mm3. A combination of three plasma biomarkers (CEA, AFP, and HCG) was able to detect teratomas with a volume >17 mm3 and with a sensitivity of more than 87%. Based on our findings, a combination of serum biomarkers with MRI screening may offer the highest sensitivity for teratoma detection and tracking. PMID:26777057

  12. Modeling and generating input processes

    SciTech Connect

    Johnson, M.E.

    1987-01-01

    This tutorial paper provides information relevant to the selection and generation of stochastic inputs to simulation studies. The primary area considered is multivariate but much of the philosophy at least is relevant to univariate inputs as well. 14 refs.

  13. Nanoparticles based on quantum dots and a luminol derivative: implications for in vivo imaging of hydrogen peroxide by chemiluminescence resonance energy transfer.

    PubMed

    Lee, Eun Sook; Deepagan, V G; You, Dong Gil; Jeon, Jueun; Yi, Gi-Ra; Lee, Jung Young; Lee, Doo Sung; Suh, Yung Doug; Park, Jae Hyung

    2016-03-18

    Overproduction of hydrogen peroxide is involved in the pathogenesis of inflammatory diseases such as cancer and arthritis. To image hydrogen peroxide via chemiluminescence resonance energy transfer in the near-infrared wavelength range, we prepared quantum dots functionalized with a luminol derivative. PMID:26857551

  14. Using Concept Maps to Assess the Effect of Graphing Calculators Use on Students' Concept Images of the Derivative at a Point

    ERIC Educational Resources Information Center

    Serhan, Derar

    2009-01-01

    This study used concept maps to investigate the effect of using graphing calculators on students' understanding of the derivative at a point. The study looked for differences between the concept images that are held by students' who are using graphing calculators and the students who are not using them. Seventy one students enrolled in two…

  15. Input in Second Language Acquisition.

    ERIC Educational Resources Information Center

    Gass, Susan M., Ed.; Madden, Carolyn G., Ed.

    This collection of conference papers includes: "When Does Teacher Talk Work as Input?"; "Cultural Input in Second Language Learning"; "Skilled Variation in a Kindergarten Teacher's Use of Foreigner Talk"; "Teacher-Pupil Interaction in Second Language Development"; "Foreigner Talk in the University Classroom"; "Input and Interaction in the…

  16. Intensive Input in Language Acquisition.

    ERIC Educational Resources Information Center

    Trimino, Andy; Ferguson, Nancy

    This paper discusses the role of input as one of the universals in second language acquisition theory. Considerations include how language instructors can best organize and present input and when certain kinds of input are more important. A self-administered program evaluation exercise using relevant theoretical and methodological contributions…

  17. Virtual input device with diffractive optical element

    NASA Astrophysics Data System (ADS)

    Wu, Ching Chin; Chu, Chang Sheng

    2005-02-01

    As a portable device, such as PDA and cell phone, a small size build in virtual input device is more convenient for complex input demand. A few years ago, a creative idea called 'virtual keyboard' is announced, but up to now there's still no mass production method for this idea. In this paper we'll show the whole procedure of making a virtual keyboard. First of all is the HOE (Holographic Optical Element) design of keyboard image which yields a fan angle about 30 degrees, and then use the electron forming method to copy this pattern in high precision. And finally we can product this element by inject molding. With an adaptive lens design we can get a well correct keyboard image in distortion and a wilder fan angle about 70 degrees. With a batter alignment of HOE pattern lithography, we"re sure to get higher diffraction efficiency.

  18. Temporal and Spatial Assessment of Yearly Solar Maps Derived from Satellite Images over the UAE and Qatar

    NASA Astrophysics Data System (ADS)

    Eissa, Y.; Marpu, P. R.; Ghedira, H.; Chiesa, M.

    2012-12-01

    The unique climate of countries located within the Arabian Peninsula, characterized by high dust concentrations, high humidity and modest cloud coverage, requires regional models to retrieve the solar irradiance components from satellite images. An artificial neural network (ANN) model has shown promising results in estimating the direct normal, diffuse horizontal and global horizontal irradiances using thermal satellite channels over the United Arab Emirates (UAE). This model is trained with six thermal channels of the SEVIRI instrument, onboard Meteosat Second Generation, along with the solar zenith angle, day number, solar time and eccentricity correction. The outputs of this model are the solar irradiance components at 15-min temporal and 3-km spatial resolutions, which are then utilized to derive the daily, monthly and yearly irradiation maps over the UAE and Qatar. The purpose of this research is to examine the temporal and spatial variations for annual irradiation maps over the UAE and Qatar, derived using the ANN approach. For the period ranging from 2008 to 2010, the year of 2009 shows the lowest annual direct normal and global horizontal irradiation, and the highest diffuse horizontal irradiation. That is due to frequent dust events which occurred during 2009. The annual direct normal irradiation maps for 2008 to 2010 show the same trend, with the higher irradiation values in the southern area of UAE and the values decreasing as the coast approaches in the northern region. For any given year, Qatar generally shows lower direct normal irradiation values than the UAE. This might be explained by higher humidity in Qatar due to its coastal climate. As for the annual diffuse horizontal irradiation maps, the lower irradiation values are observed in the southern area of UAE and along some coastal regions, with the higher values being in the middle. Qatar shows higher values in the western region, due to the increased airborne dust coming from Saudi Arabia, as

  19. Accounting for surface reflectance in the derivation of vertical column densities of NO2 from airborne imaging DOAS

    NASA Astrophysics Data System (ADS)

    Meier, Andreas Carlos; Schönhardt, Anja; Richter, Andreas; Bösch, Tim; Seyler, André; Constantin, Daniel Eduard; Shaiganfar, Reza; Merlaud, Alexis; Ruhtz, Thomas; Wagner, Thomas; van Roozendael, Michel; Burrows, John. P.

    2016-04-01

    Nitrogen oxides, NOx (NOx = NO + NO2) play a key role in tropospheric chemistry. In addition to their directly harmful effects on the respiratory system of living organisms, they influence the levels of tropospheric ozone and contribute to acid rain and eutrophication of ecosystems. As they are produced in combustion processes, they can serve as an indicator for anthropogenic air pollution. In the late summers of 2014 and 2015, two extensive measurement campaigns were conducted in Romania by several European research institutes, with financial support from ESA. The AROMAT / AROMAT-2 campaigns (Airborne ROmanian Measurements of Aerosols and Trace gases) were dedicated to measurements of air quality parameters utilizing newly developed instrumentation at state-of-the-art. The experiences gained will help to calibrate and validate the measurements taken by the upcoming Sentinel-S5p mission scheduled for launch in 2016. The IUP Bremen contributed to these campaigns with its airborne imaging DOAS (Differential Optical Absorption Spectroscopy) instrument AirMAP (Airborne imaging DOAS instrument for Measurements of Atmospheric Pollution). AirMAP allows retrieving spatial distributions of trace gas columns densities in a stripe below the aircraft. The measurements have a high spatial resolution of approximately 30 x 80 m2 (along x across track) at a typical flight altitude of 3000 m. Supported by the instrumental setup and the large swath, gapless maps of trace gas distributions above a large city, like Bucharest or Berlin, can be acquired within a time window of approximately two hours. These properties make AirMAP a valuable tool for the validation of trace gas measurements from space. DOAS retrievals yield the density of absorbers integrated along the light path of the measurement. The light path is altered with a changing surface reflectance, leading to enhanced / reduced slant column densities of NO2 depending on surface properties. This effect must be considered in

  20. Coordination Polymers Derived from Non-Steroidal Anti-Inflammatory Drugs for Cell Imaging and Drug Delivery.

    PubMed

    Paul, Mithun; Dastidar, Parthasarathi

    2016-01-18

    A new series of Mn(II) coordination polymers, namely, [{Mn(L)(H2 O)2 }⋅2 Nap]∞ (CP1), [{Mn(L)(Ibu)2 (H2 O)2 }]∞ (CP2), [{Mn(L)(Flr)2 (H2 O)2 }]∞ (CP3), [{Mn(L)(Ind)2 (H2 O)2 }⋅H2 O]∞ (CP4), [{Mn2 (L)2 (μ-Flu)4 (H2 O)}⋅L]∞ (CP5), [{Mn2 (L)2 (μ-Tol)4 (H2 O)2 }]∞ (CP6) and [{Mn2 (L)2 (μ-Mef)4 (H2 O)2 }]∞ (CP7) (Nap=naproxen, Ibu=ibuprofen, Flr=flurbiprofen, Ind=indometacin, Flu=flufenamic acid, Tol=tolfenamic acid and Mef=mefenamic acid) derived from various non-steroidal anti-inflammatory drugs (NSAIDs) and the organic linker 1,2-bis(4-pyridyl)ethylene (L) have been synthesized with the aim of being used for cell imaging and drug delivery. Single-crystal X-ray diffraction (SXRD) studies revealed that the NSAID molecules were part of the coordination polymeric network either through coordination to the metal center (in the majority of the cases) or through hydrogen bonding. Remarkably, all the Mn(II) coordination polymers were found to be soluble in DMSO, thereby making them particularly suitable for the desired biological applications. Two of the coordination polymers (namely, CP1 and CP3) reported herein, were found to be photoluminescent both in the solid as well as in the solution state. Subsequent experiments (namely, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), and PGE2 (prostaglandin E2 ) assays) established their biocompatibility and anti-inflammatory response. In vitro studies by using a macrophage cell line (i.e., RAW 264.7) revealed that both CP1 and CP3 were excellent cell imaging agents. Finally, biodegradability studies under simulated physiological conditions in phosphate-buffered saline (PBS) at pH 7.6 showed that slow and sustained release of the corresponding NSAID was indeed possible from both CP1 and CP3.

  1. New applications of Spectral Edge image fusion

    NASA Astrophysics Data System (ADS)

    Hayes, Alex E.; Montagna, Roberto; Finlayson, Graham D.

    2016-05-01

    In this paper, we present new applications of the Spectral Edge image fusion method. The Spectral Edge image fusion algorithm creates a result which combines details from any number of multispectral input images with natural color information from a visible spectrum image. Spectral Edge image fusion is a derivative-based technique, which creates an output fused image with gradients which are an ideal combination of those of the multispectral input images and the input visible color image. This produces both maximum detail and natural colors. We present two new applications of Spectral Edge image fusion. Firstly, we fuse RGB-NIR information from a sensor with a modified Bayer pattern, which captures visible and near-infrared image information on a single CCD. We also present an example of RGB-thermal image fusion, using a thermal camera attached to a smartphone, which captures both visible and low-resolution thermal images. These new results may be useful for computational photography and surveillance applications.

  2. Neural network segmentation of magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Frederick, Blaise

    1990-07-01

    Neural networks are well adapted to the task of grouping input patterns into subsets which share some similarity. Moreover once trained they can generalize their classification rules to classify new data sets. Sets of pixel intensities from magnetic resonance (MR) images provide a natural input to a neural network by varying imaging parameters MR images can reflect various independent physical parameters of tissues in their pixel intensities. A neural net can then be trained to classify physically similar tissue types based on sets of pixel intensities resulting from different imaging studies on the same subject. A neural network classifier for image segmentation was implemented on a Sun 4/60 and was tested on the task of classifying tissues of canine head MR images. Four images of a transaxial slice with different imaging sequences were taken as input to the network (three spin-echo images and an inversion recovery image). The training set consisted of 691 representative samples of gray matter white matter cerebrospinal fluid bone and muscle preclassified by a neuroscientist. The network was trained using a fast backpropagation algorithm to derive the decision criteria to classify any location in the image by its pixel intensities and the image was subsequently segmented by the classifier. The classifier''s performance was evaluated as a function of network size number of network layers and length of training. A single layer neural network performed quite well at

  3. Magnetic Resonance Imaging of Human-Derived Amniotic Membrane Stem Cells Using PEGylated Superparamagnetic Iron Oxide Nanoparticles

    PubMed Central

    Naseroleslami, Maryam; Parivar, Kazem; Khoei, Samideh; Aboutaleb, Nahid

    2016-01-01

    Objective The label and detection of cells injected into target tissues is an area of focus for researchers. Iron oxide nanoparticles can be used to label cells as they have special characteristics. The purpose of this study is to examine the effects of iron oxide nanoparticles on human-derived amniotic membrane stem cell (hAMCs) survival and to investigate the magnetic properties of these nanoparticles with increased contrast in magnetic resonance imaging (MRI). Materials and Methods In this experimental study, we initially isolated mesenchymal stem cells from amniotic membranes and analyzed them by flow cytometry. In addition, we synthesized superparamagnetic iron oxide nanoparticles (SPIONs) and characterized them by various methods. The SPIONs were incubated with hAMCs at concentrations of 25-800 μg/mL. The cytotoxicity of nanoparticles on hAMCs was measured by the MTT assay. Next, we evaluated the effectiveness of the magnetic nanoparticles as MRI contrast agents. Solutions of SPION were prepared in water at different iron concentrations for relaxivity measurements by a 1.5 Tesla clinical MRI instrument. Results The isolated cells showed an adherent spindle shaped morphology. Polyethylene glycol (PEG)-coated SPIONs exhibited a spherical morphology. The average particle size was 20 nm and magnetic saturation was 60 emu/g. Data analysis showed no significant reduction in the percentage of viable cells (97.86 ± 0.41%) after 72 hours at the 125 μg/ml concentration compared with the control. The relaxometry results of this SPION showed a transverse relaxivity of 6.966 (μg/ml.s)-1 Conclusion SPIONs coated with PEG used in this study at suitable concentrations had excellent labeling efficiency and biocompatibility for hAMCs. PMID:27602314

  4. Impact of time-of-day on brain morphometric measures derived from T1-weighted magnetic resonance imaging.

    PubMed

    Trefler, Aaron; Sadeghi, Neda; Thomas, Adam G; Pierpaoli, Carlo; Baker, Chris I; Thomas, Cibu

    2016-06-01

    Measures of brain morphometry derived from T1-weighted (T1W) magnetic resonance imaging (MRI) are widely used to elucidate the relation between brain structure and function. However, the computation of T1W morphometric measures can be confounded by subject-related factors such as head motion and level of hydration. A recent study reported subtle yet significant changes in brain volume from morning to evening in a large group of patient populations as well as in healthy elderly individuals. In addition, there is a growing recognition that factors such as circadian rhythm can impact MRI measures of brain function and structure. Here, we provide a comprehensive assessment of the impact of time-of-day (TOD) on widely used measures of brain morphometry in a group of 19 healthy young adults. Our results show that (a) even in a small group of healthy adult volunteers, a highly significant reduction in apparent brain volume, from morning to evening, could be detected; (b) the apparent volume of all three major tissue compartments - gray matter, white matter, and cerebrospinal fluid - were influenced by TOD, and the magnitude of the TOD effect varied across the tissue compartments; (c) measures of cortical thickness, cortical surface area, and gray matter density computed with widely used neuroimaging software suites (i.e., FreeSurfer, FSL-VBM) were all affected by TOD, while other measures, such as curvature indices and sulcal depth, were not; and (d) the effect of TOD appeared to have a greater impact on morphometric measures of the frontal and temporal lobe than on other major lobes of the brain. Our results suggest that the TOD effect is a physiological phenomenon and that controlling for the effect of TOD is crucial for proper interpretation of apparent structural differences measured with T1W morphometry. PMID:26921714

  5. Magnetic Resonance Imaging of Human-Derived Amniotic Membrane Stem Cells Using PEGylated Superparamagnetic Iron Oxide Nanoparticles

    PubMed Central

    Naseroleslami, Maryam; Parivar, Kazem; Khoei, Samideh; Aboutaleb, Nahid

    2016-01-01

    Objective The label and detection of cells injected into target tissues is an area of focus for researchers. Iron oxide nanoparticles can be used to label cells as they have special characteristics. The purpose of this study is to examine the effects of iron oxide nanoparticles on human-derived amniotic membrane stem cell (hAMCs) survival and to investigate the magnetic properties of these nanoparticles with increased contrast in magnetic resonance imaging (MRI). Materials and Methods In this experimental study, we initially isolated mesenchymal stem cells from amniotic membranes and analyzed them by flow cytometry. In addition, we synthesized superparamagnetic iron oxide nanoparticles (SPIONs) and characterized them by various methods. The SPIONs were incubated with hAMCs at concentrations of 25-800 μg/mL. The cytotoxicity of nanoparticles on hAMCs was measured by the MTT assay. Next, we evaluated the effectiveness of the magnetic nanoparticles as MRI contrast agents. Solutions of SPION were prepared in water at different iron concentrations for relaxivity measurements by a 1.5 Tesla clinical MRI instrument. Results The isolated cells showed an adherent spindle shaped morphology. Polyethylene glycol (PEG)-coated SPIONs exhibited a spherical morphology. The average particle size was 20 nm and magnetic saturation was 60 emu/g. Data analysis showed no significant reduction in the percentage of viable cells (97.86 ± 0.41%) after 72 hours at the 125 μg/ml concentration compared with the control. The relaxometry results of this SPION showed a transverse relaxivity of 6.966 (μg/ml.s)-1 Conclusion SPIONs coated with PEG used in this study at suitable concentrations had excellent labeling efficiency and biocompatibility for hAMCs.

  6. Serial Input Output

    SciTech Connect

    Waite, Anthony; /SLAC

    2011-09-07

    Serial Input/Output (SIO) is designed to be a long term storage format of a sophistication somewhere between simple ASCII files and the techniques provided by inter alia Objectivity and Root. The former tend to be low density, information lossy (floating point numbers lose precision) and inflexible. The latter require abstract descriptions of the data with all that that implies in terms of extra complexity. The basic building blocks of SIO are streams, records and blocks. Streams provide the connections between the program and files. The user can define an arbitrary list of streams as required. A given stream must be opened for either reading or writing. SIO does not support read/write streams. If a stream is closed during the execution of a program, it can be reopened in either read or write mode to the same or a different file. Records represent a coherent grouping of data. Records consist of a collection of blocks (see next paragraph). The user can define a variety of records (headers, events, error logs, etc.) and request that any of them be written to any stream. When SIO reads a file, it first decodes the record name and if that record has been defined and unpacking has been requested for it, SIO proceeds to unpack the blocks. Blocks are user provided objects which do the real work of reading/writing the data. The user is responsible for writing the code for these blocks and for identifying these blocks to SIO at run time. To write a collection of blocks, the user must first connect them to a record. The record can then be written to a stream as described above. Note that the same block can be connected to many different records. When SIO reads a record, it scans through the blocks written and calls the corresponding block object (if it has been defined) to decode it. Undefined blocks are skipped. Each of these categories (streams, records and blocks) have some characteristics in common. Every stream, record and block has a name with the condition that each

  7. Peripheral quantitative computed tomography-derived muscle density and peripheral magnetic resonance imaging-derived muscle adiposity: precision and associations with fragility fractures in women

    PubMed Central

    Wong, A.K.O.; Beattie, K.A.; Min, K.K.H.; Gordon, C.; Pickard, L.; Papaioannou, A.; Adachi, J.D.

    2016-01-01

    Purpose To determine the degree to which muscle density and fractures are explained by inter and intramuscular fat (IMF). Methods Women ≥50 years of age (Hamilton, ON, Canada) had peripheral magnetic resonance imaging and peripheral quantitative computed tomography scans at 66% of the tibial length. Muscle on computed tomography images was segmented from subcutaneous fat and bone using fixed thresholds, computing muscle density. IMF was segmented from muscle within magnetic resonance images using a region-growing algorithm, computing IMF volume. Fracture history over the last 14 years was obtained. Odds ratios for fractures were determined for muscle density, adjusting for IMF volume, total hip BMD, age and body mass index. Results Women with a history of fractures were older (N=32, age:75.6±8.3 years) than those without (N=39, age: 67.0±5.2 years) (<0.01). IMF volume explained 49.3% of variance in muscle density (p<0.001). Odds for fractures were associated with lower muscle density even after adjusting for IMF volume but were attenuated after adjusting for age. Conclusions Muscle adiposity represents only 50% of the muscle density measurement. Properties of muscle beyond its adiposity may be related to fractures, but larger and prospective studies are needed to confirm these associations. PMID:25524965

  8. SDR Input Power Estimation Algorithms

    NASA Technical Reports Server (NTRS)

    Nappier, Jennifer M.; Briones, Janette C.

    2013-01-01

    The General Dynamics (GD) S-Band software defined radio (SDR) in the Space Communications and Navigation (SCAN) Testbed on the International Space Station (ISS) provides experimenters an opportunity to develop and demonstrate experimental waveforms in space. The SDR has an analog and a digital automatic gain control (AGC) and the response of the AGCs to changes in SDR input power and temperature was characterized prior to the launch and installation of the SCAN Testbed on the ISS. The AGCs were used to estimate the SDR input power and SNR of the received signal and the characterization results showed a nonlinear response to SDR input power and temperature. In order to estimate the SDR input from the AGCs, three algorithms were developed and implemented on the ground software of the SCAN Testbed. The algorithms include a linear straight line estimator, which used the digital AGC and the temperature to estimate the SDR input power over a narrower section of the SDR input power range. There is a linear adaptive filter algorithm that uses both AGCs and the temperature to estimate the SDR input power over a wide input power range. Finally, an algorithm that uses neural networks was designed to estimate the input power over a wide range. This paper describes the algorithms in detail and their associated performance in estimating the SDR input power.

  9. SDR input power estimation algorithms

    NASA Astrophysics Data System (ADS)

    Briones, J. C.; Nappier, J. M.

    The General Dynamics (GD) S-Band software defined radio (SDR) in the Space Communications and Navigation (SCAN) Testbed on the International Space Station (ISS) provides experimenters an opportunity to develop and demonstrate experimental waveforms in space. The SDR has an analog and a digital automatic gain control (AGC) and the response of the AGCs to changes in SDR input power and temperature was characterized prior to the launch and installation of the SCAN Testbed on the ISS. The AGCs were used to estimate the SDR input power and SNR of the received signal and the characterization results showed a nonlinear response to SDR input power and temperature. In order to estimate the SDR input from the AGCs, three algorithms were developed and implemented on the ground software of the SCAN Testbed. The algorithms include a linear straight line estimator, which used the digital AGC and the temperature to estimate the SDR input power over a narrower section of the SDR input power range. There is a linear adaptive filter algorithm that uses both AGCs and the temperature to estimate the SDR input power over a wide input power range. Finally, an algorithm that uses neural networks was designed to estimate the input power over a wide range. This paper describes the algorithms in detail and their associated performance in estimating the SDR input power.

  10. Learning to represent visual input

    PubMed Central

    Hinton, Geoffrey E.

    2010-01-01

    One of the central problems in computational neuroscience is to understand how the object-recognition pathway of the cortex learns a deep hierarchy of nonlinear feature detectors. Recent progress in machine learning shows that it is possible to learn deep hierarchies without requiring any labelled data. The feature detectors are learned one layer at a time and the goal of the learning procedure is to form a good generative model of images, not to predict the class of each image. The learning procedure only requires the pairwise correlations between the activations of neuron-like processing units in adjacent layers. The original version of the learning procedure is derived from a quadratic ‘energy’ function but it can be extended to allow third-order, multiplicative interactions in which neurons gate the pairwise interactions between other neurons. A technique for factoring the third-order interactions leads to a learning module that again has a simple learning rule based on pairwise correlations. This module looks remarkably like modules that have been proposed by both biologists trying to explain the responses of neurons and engineers trying to create systems that can recognize objects. PMID:20008395

  11. Selection of weighting factors for quantification of PET radioligand binding using simplified reference tissue models with noisy input functions.

    PubMed

    Normandin, M D; Koeppe, R A; Morris, E D

    2012-02-01

    Input function noise contributes to model-predicted values and should be accounted for during parameter estimation. This problem has been examined in the context of PET data analysis using a noisy image-derived arterial input function. Huesman and Mazoyer (1987 Phys. Med. Biol 32 1569-79) incorporated the effect of error in the measured input function into the objective function and observed a subsequent improvement in the accuracy of parameters estimated from a kinetic model of cardiac blood flow. Such a treatment has not been applied to the reference region models commonly used to analyze dynamic positron emission tomography data with receptor-ligand tracers. Here, we propose a strategy for selection of weighting factors that accounts for noise in the reference region input function and test the method on two common formulations of the simplified reference tissue model (SRTM). We present a simulation study which demonstrates that the proposed weighting approach improves the accuracy of estimated binding potential at high noise levels and when the reference tissue and target regions of interest are of comparable size. In the second simulation experiment, we show that using a small, homogeneous reference tissue with our weighting technique may have advantages over input functions derived from a larger (and thus less noisy), heterogeneous region with conventional weighting. A comparative analysis of clinical [(11)C]flumazenil data found a small but significant increase in estimated binding potential when using the proposed weighting method, consistent with the finding of reduced negative bias in our simulation study. The weighting strategy described here accounts for noise in the reference region input function and may improve the performance of the SRTM in applications where data are noisy and the reference region is relatively small. This technique may offer similar benefits to other models using reference region inputs, particularly those derived from the SRTM

  12. Linear Regression in High Dimension and/or for Correlated Inputs

    NASA Astrophysics Data System (ADS)

    Jacques, J.; Fraix-Burnet, D.

    2014-12-01

    Ordinary least square is the common way to estimate linear regression models. When inputs are correlated or when they are too numerous, regression methods using derived inputs directions or shrinkage methods can be efficient alternatives. Methods using derived inputs directions build new uncorrelated variables as linear combination of the initial inputs, whereas shrinkage methods introduce regularization and variable selection by penalizing the usual least square criterion. Both kinds of methods are presented and illustrated thanks to the R software on an astronomical dataset.

  13. Erythrocyte-derived photo-theranostic agents: hybrid nano-vesicles containing indocyanine green for near infrared imaging and therapeutic applications

    NASA Astrophysics Data System (ADS)

    Bahmani, Baharak; Bacon, Danielle; Anvari, Bahman

    2013-07-01

    Development of theranostic nano-constructs may enable diagnosis and treatment of diseases at high spatial resolution. Some key requirements for clinical translation of such constructs are that they must be non-toxic, non-immunogenic, biodegradable, with extended circulating lifetime. Cell-based structures, particularly those derived from erythrocytes, are promising candidate carrier systems to satisfy these requirements. One particular type of theranostic materials utilize light-sensitive agents that once photo-activated can provide diagnostic imaging capability, and elicit therapeutic effects. Here we demonstrate the first successful engineering of hybrid nano-scale constructs derived from membranes of hemoglobin-depleted erythrocytes that encapsulate the near infrared chromophore, indocyanine green. We show the utility of the constructs as photo-theranostic agents in fluorescence imaging and photothermal destruction of human cells. These erythrocyte-mimicking nano-structures can be derived autologously, and may have broad applications in personal nanomedicine ranging from imaging and photo-destruction of cancerous tissues to vascular abnormalities, and longitudinal evaluations of therapeutic interventions.

  14. Erythrocyte-derived photo-theranostic agents: hybrid nano-vesicles containing indocyanine green for near infrared imaging and therapeutic applications.

    PubMed

    Bahmani, Baharak; Bacon, Danielle; Anvari, Bahman

    2013-01-01

    Development of theranostic nano-constructs may enable diagnosis and treatment of diseases at high spatial resolution. Some key requirements for clinical translation of such constructs are that they must be non-toxic, non-immunogenic, biodegradable, with extended circulating lifetime. Cell-based structures, particularly those derived from erythrocytes, are promising candidate carrier systems to satisfy these requirements. One particular type of theranostic materials utilize light-sensitive agents that once photo-activated can provide diagnostic imaging capability, and elicit therapeutic effects. Here we demonstrate the first successful engineering of hybrid nano-scale constructs derived from membranes of hemoglobin-depleted erythrocytes that encapsulate the near infrared chromophore, indocyanine green. We show the utility of the constructs as photo-theranostic agents in fluorescence imaging and photothermal destruction of human cells. These erythrocyte-mimicking nano-structures can be derived autologously, and may have broad applications in personal nanomedicine ranging from imaging and photo-destruction of cancerous tissues to vascular abnormalities, and longitudinal evaluations of therapeutic interventions.

  15. Erythrocyte-derived photo-theranostic agents: hybrid nano-vesicles containing indocyanine green for near infrared imaging and therapeutic applications

    PubMed Central

    Bahmani, Baharak; Bacon, Danielle; Anvari, Bahman

    2013-01-01

    Development of theranostic nano-constructs may enable diagnosis and treatment of diseases at high spatial resolution. Some key requirements for clinical translation of such constructs are that they must be non-toxic, non-immunogenic, biodegradable, with extended circulating lifetime. Cell-based structures, particularly those derived from erythrocytes, are promising candidate carrier systems to satisfy these requirements. One particular type of theranostic materials utilize light-sensitive agents that once photo-activated can provide diagnostic imaging capability, and elicit therapeutic effects. Here we demonstrate the first successful engineering of hybrid nano-scale constructs derived from membranes of hemoglobin-depleted erythrocytes that encapsulate the near infrared chromophore, indocyanine green. We show the utility of the constructs as photo-theranostic agents in fluorescence imaging and photothermal destruction of human cells. These erythrocyte-mimicking nano-structures can be derived autologously, and may have broad applications in personal nanomedicine ranging from imaging and photo-destruction of cancerous tissues to vascular abnormalities, and longitudinal evaluations of therapeutic interventions. PMID:23846447

  16. The value of satellite-derived snow cover images for calibrating a hydrological model in snow-dominated catchments in Central Asia

    NASA Astrophysics Data System (ADS)

    Duethmann, Doris; Peters, Juliane; Blume, Theresa; Vorogushyn, Sergiy; Güntner, Andreas

    2014-03-01

    Including satellite-derived snow cover data for hydrologic model calibration can be a good way to improve model internal consistency. This study applied a multiobjective genetic algorithm to characterize the trade-off curve between model performance in terms of discharge and snow cover area (SCA). Using a Monte Carlo-based approach, we further investigated the additional information content of an increasing number of SCA scenes used in the calibration period. The study was performed in six snowmelt-dominated headwater catchments of the Karadarya Basin in Kyrgyzstan, Central Asia, using the hydrological model WASA and snow cover data from four melt seasons retrieved from AVHRR (Advanced Very High Resolution Radiometer). We generally found only small trade-offs between good simulations with respect to discharge and SCA, but good model performance with respect to discharge did not exclude low performance in terms of SCA. On average, the snow cover error in the validation period could be reduced by very few images in the calibration period. Increasing the number of images resulted in only small further improvements. However, using only a small number of images involves the risk that these particular images cause the selection of parameter sets which are not representative for the catchment. It is therefore advisable to use a larger number of images. In this study, it was necessary to include at least 10-16 images.

  17. Science to Practice: Can MR Imaging-derived Oxygen-Hemoglobin Dissociation Curves Reveal Transplacental Oxygen Transport and Thus Aid in Monitoring Placental Function?

    PubMed

    Levine, Deborah

    2016-07-01

    The appropriate management of pregnancies at risk for intrauterine growth restriction relies on accurate identification and diagnosis. However, it is frequently difficult to differentiate between fetuses that are physiologically normal but small for gestational age and those with pathologic intrauterine growth restriction. The methods described by Avni et al ( 1 ) give a sound basis for magnetic resonance (MR) imaging-derived assessment of measures of fetal and placental oxygen affinities. The authors combined two techniques that have been used previously for assessment of oxygenation, namely blood oxygenation level-dependent T2* and oxygen-weighted T1 contrast MR imaging. Future studies in animals and humans are needed to determine if the technique can be performed with lower field strength and if changes in fetal or placental oxygen affinities can be detected in time to allow for earlier intervention than that with more standard imaging.

  18. Self-Assembly of Electron Donor-Acceptor-Based Carbazole Derivatives: Novel Fluorescent Organic Nanoprobes for Both One- and Two-Photon Cellular Imaging.

    PubMed

    Zhang, Jinfeng; Chen, Wencheng; Kalytchuk, Sergii; Li, King Fai; Chen, Rui; Adachi, Chihaya; Chen, Zhan; Rogach, Andrey L; Zhu, Guangyu; Yu, Peter K N; Zhang, Wenjun; Cheah, Kok Wai; Zhang, Xiaohong; Lee, Chun-Sing

    2016-05-11

    In this study, we report fluorescent organic nanoprobes with intense blue, green, and orange-red emissions prepared by self-assembling three carbazole derivatives into nanorods/nanoparticles. The three compounds consist of two or four electron-donating carbazole groups linked to a central dicyanobenzene electron acceptor. Steric hindrance from the carbazole groups leads to noncoplanar 3D molecular structures favorable to fluorescence in the solid state, while the donor-acceptor structures endow the molecules with good two-photon excited emission properties. The fluorescent organic nanoprobes exhibit good water dispersibility, low cytotoxicity, superior resistance against photodegradation and photobleaching. Both one- and two-photon fluorescent imaging were shown in the A549 cell line. Two-photon fluorescence imaging with the fluorescent probes was demonstrated to be more effective in visualizing and distinguishing cellular details compared to conventional one-photon fluorescence imaging.

  19. Segmentation and learning in the quantitative analysis of microscopy images

    NASA Astrophysics Data System (ADS)

    Ruggiero, Christy; Ross, Amy; Porter, Reid

    2015-02-01

    In material science and bio-medical domains the quantity and quality of microscopy images is rapidly increasing and there is a great need to automatically detect, delineate and quantify particles, grains, cells, neurons and other functional "objects" within these images. These are challenging problems for image processing because of the variability in object appearance that inevitably arises in real world image acquisition and analysis. One of the most promising (and practical) ways to address these challenges is interactive image segmentation. These algorithms are designed to incorporate input from a human operator to tailor the segmentation method to the image at hand. Interactive image segmentation is now a key tool in a wide range of applications in microscopy and elsewhere. Historically, interactive image segmentation algorithms have tailored segmentation on an image-by-image basis, and information derived from operator input is not transferred between images. But recently there has been increasing interest to use machine learning in segmentation to provide interactive tools that accumulate and learn from the operator input over longer periods of time. These new learning algorithms reduce the need for operator input over time, and can potentially provide a more dynamic balance between customization and automation for different applications. This paper reviews the state of the art in this area, provides a unified view of these algorithms, and compares the segmentation performance of various design choices.

  20. Image Calibration

    NASA Technical Reports Server (NTRS)

    Peay, Christopher S.; Palacios, David M.

    2011-01-01

    Calibrate_Image calibrates images obtained from focal plane arrays so that the output image more accurately represents the observed scene. The function takes as input a degraded image along with a flat field image and a dark frame image produced by the focal plane array and outputs a corrected image. The three most prominent sources of image degradation are corrected for: dark current accumulation, gain non-uniformity across the focal plane array, and hot and/or dead pixels in the array. In the corrected output image the dark current is subtracted, the gain variation is equalized, and values for hot and dead pixels are estimated, using bicubic interpolation techniques.

  1. Comparison of Parameter Estimations Using Dual-Input and Arterial-Input in Liver Kinetic Studies of FDG Metabolism.

    PubMed

    Cui, Yunfeng; Bai, Jing

    2005-01-01

    Liver kinetic study of [18F]2-fluoro-2-deoxy-D-glucose (FDG) metabolism in human body is an important tool for functional modeling and glucose metabolic rate estimation. In general, the arterial blood time-activity curve (TAC) and the tissue TAC are required as the input and output functions for the kinetic model. For liver study, however, the arterial-input may be not consistent with the actual model input because the liver has a dual blood supply from the hepatic artery (HA) and the portal vein (PV) to the liver. In this study, the result of model parameter estimation using dual-input function is compared with that using arterial-input function. First, a dynamic positron emission tomography (PET) experiment is performed after injection of FDG into the human body. The TACs of aortic blood, PV blood, and five regions of interest (ROIs) in liver are obtained from the PET image. Then, the dual-input curve is generated by calculating weighted sum of both the arterial and PV input curves. Finally, the five liver ROIs' kinetic parameters are estimated with arterial-input and dual-input functions respectively. The results indicate that the two methods provide different parameter estimations and the dual-input function may lead to more accurate parameter estimation.

  2. Development of Novel 123I-Labeled Pyridyl Benzofuran Derivatives for SPECT Imaging of β-Amyloid Plaques in Alzheimer’s Disease

    PubMed Central

    Kimura, Hiroyuki; Watanabe, Hiroyuki; Matsumura, Kenji; Yoshimura, Masashi; Iikuni, Shimpei; Okamoto, Yoko; Ihara, Masafumi; Takahashi, Ryosuke; Saji, Hideo

    2013-01-01

    Imaging of β-amyloid (Aβ) plaques in the brain may facilitate the diagnosis of cerebral β-amyloidosis, risk prediction of Alzheimer’s disease (AD), and effectiveness of anti-amyloid therapies. The purpose of this study was to evaluate novel 123I-labeled pyridyl benzofuran derivatives as SPECT probes for Aβ imaging. The formation of a pyridyl benzofuran backbone was accomplished by Suzuki coupling. [123I/125I]-labeled pyridyl benzofuran derivatives were readily prepared by an iododestannylation reaction. In vitro Aβ binding assays were carried out using Aβ(1–42) aggregates and postmortem human brain sections. Biodistribution experiments were conducted in normal mice at 2, 10, 30, and 60 min postinjection. Aβ labeling in vivo was evaluated by small-animal SPECT/CT in Tg2576 transgenic mice injected with [123I]8. Ex vivo autoradiography of the brain sections was performed after SPECT/CT. Iodinated pyridyl benzofuran derivatives showed excellent affinity for Aβ(1–42) aggregates (2.4 to 10.3 nM) and intensely labeled Aβ plaques in autoradiographs of postmortem AD brain sections. In biodistribution experiments using normal mice, all these derivatives displayed high initial uptake (4.03–5.49% ID/g at 10 min). [125I]8 displayed the quickest clearance from the brain (1.30% ID/g at 60 min). SPECT/CT with [123I]8 revealed higher uptake of radioactivity in the Tg2576 mouse brain than the wild-type mouse brain. Ex vivo autoradiography showed in vivo binding of [123I]8 to Aβ plaques in the Tg2576 mouse brain. These combined results warrant further investigation of [123I]8 as a SPECT imaging agent for visualizing Aβ plaques in the AD brain. PMID:24058519

  3. Characterization of membrane protein interactions in plasma membrane derived vesicles with quantitative imaging Förster resonance energy transfer.

    PubMed

    Sarabipour, Sarvenaz; Del Piccolo, Nuala; Hristova, Kalina

    2015-08-18

    Here we describe an experimental tool, termed quantitative imaging Förster resonance energy transfer (QI-FRET), that enables the quantitative characterization of membrane protein interactions. The QI-FRET methodology allows us to acquire binding curves and calculate association constants for complex membrane proteins in the native plasma membrane environment. The method utilizes FRET detection, and thus requires that the proteins of interest are labeled with florescent proteins, either FRET donors or FRET acceptors. Since plasma membranes of cells have complex topologies precluding the acquisition of two-dimensional binding curves, the FRET measurements are performed in plasma membrane derived vesicles that bud off cells as a result of chemical or osmotic stress. The results overviewed here are acquired in vesicles produced with an osmotic vesiculation buffer developed in our laboratory, which does not utilize harsh chemicals. The concentrations of the donor-labeled and the acceptor-labeled proteins are determined, along with the FRET efficiencies, in each vesicle. The experiments utilize transient transfection, such that a wide variety of concentrations is sampled. Then, data from hundreds of vesicles are combined to yield dimerization curves. Here we discuss recent findings about the dimerization of receptor tyrosine kinases (RTKs), membrane proteins that control cell growth and differentiation via lateral dimerization in the plasma membrane. We focus on the dimerization of fibroblast growth factor receptor 3 (FGFR3), a RTK that plays a critically important role in skeletal development. We study the role of different FGFR3 domains in FGFR3 dimerization in the absence of ligand, and we show that FGFR3 extracellular domains inhibit unliganded dimerization, while contacts between the juxtamembrane domains, which connect the transmembrane domains to the kinase domains, stabilize the unliganded FGFR3 dimers. Since FGFR3 has been documented to harbor many pathogenic

  4. Derivation of various transfer functions of ideal or aberrated imaging systems from the three-dimensional transfer function.

    PubMed

    Braat, Joseph J M; Janssen, Augustus J E M

    2015-06-01

    The three-dimensional frequency transfer function for optical imaging systems was introduced by Frieden in the 1960s. The analysis of this function and its partly back-transformed functions (two-dimensional and one-dimensional optical transfer functions) in the case of an ideal or aberrated imaging system has received relatively little attention in the literature. Regarding ideal imaging systems with an incoherently illuminated object volume, we present analytic expressions for the classical two-dimensional x-y-transfer function in a defocused plane, for the axial z-transfer function in the presence of defocusing and for the x-z-transfer function in the presence of a lateral shift δy with respect to the imaged pattern in the x-z-plane. For an aberrated imaging system we use the common expansion of the aberrated pupil function with the aid of Zernike polynomials. It is shown that the line integral appearing in Frieden's three-dimensional transfer function can be evaluated for aberrated systems using a relationship established first by Cormack between the line integral of a Zernike polynomial over a full chord of the unit disk and a Chebyshev polynomial of the second kind. Some new developments in the theory of Zernike polynomials from the last decade allow us to present explicit expressions for the line integral in the case of a weakly aberrated imaging system. We outline a similar, but more complicated, analytic scheme for the case of severely aberrated systems.

  5. Long-term live-cell imaging of mammalian preimplantation development and derivation process of pluripotent stem cells from the embryos.

    PubMed

    Yamagata, Kazuo; Ueda, Jun

    2013-05-01

    Mammalian fertilization is a process in which two highly specialized haploid gametes unite and endow totipotency to the resulting diploid zygote. This is followed by cell proliferation and the onset of differentiation during the brief period leading up to implantation. In these processes, a number of cellular components and structures are regulated spatially and temporally, as seen in repeated cell division, cell cycle progression, and epigenetic reprogramming. In mammals, the numbers of oocytes and embryos that can be collected are very limited. Therefore, analyses of molecular mechanisms are hampered because of difficulties in conducting biochemical analyses on such limited material. Furthermore, immunostaining methods require cell fixation and are insufficient for understanding ontogeny, because the processes observed in fertilization and early embryonic development progress in time-dependent manners and each phenomenon is connected with others by cause-and-effect relationships. Consequently, it is important to develop an experimental system that enables molecular imaging without affecting embryonic development. To achieve the above advantages, especially retrospective and prospective analyses, we have established a live-cell imaging system that enables observations under minimally invasive conditions. Using this approach, we have succeeded in visualizing and predicting the developmental potential of embryos after various perturbations. We also succeeded in imaging embryonic stem (ES) cell derivation in natural conditions. In this review, we describe a brief history of embryonic imaging and detailed protocols. We also discuss promising aspects of imaging in the fields of developmental and stem cell biology.

  6. Contrast-specific ultrasonic flow measurements based on both input and output time intensities.

    PubMed

    Yeh, Chih-Kuang; Yang, Mei-Ju; Li, Pai-Chi

    2003-05-01

    Ultrasonic contrast agents are used to assess perfusion conditions based on evaluation of the time-intensity curve. Such a curve reflects the concentration of microbubbles in the perfused area and the indicator-dilution theory is used to derive the volumetric flow rate from the measured concentration. Previous results have shown that the technique is not reliable in some conditions due to the shadowing effect. To overcome this problem, a contrast-specific technique using both the input and output time-intensity relationships is proposed; this contrasts with conventional techniques that utilize only the relationship directly from the perfused area. The proposed technique is referred to as the input-output time-intensity curve (IOTIC) method. In this work, the shadowing effect was studied experimentally and the efficacy of the IOTIC technique was assessed and compared with conventional techniques. The results indicate that the IOTIC technique eliminates the shadowing effect and provides a good correlation between the actual flow rate and measured flow-related parameters; thus, making quantitative estimation of perfusion feasible. Note that the IOTIC is applicable, based on the assumption that both the input and the output can be positioned within the same image plane; its clinical applications include situations where the perfused area cannot be effectively imaged by ultrasound (US). One example is the assessment of brain perfusion, and it will be used as a target clinical application of the IOTIC technique.

  7. Nonlinear input-output systems

    NASA Technical Reports Server (NTRS)

    Hunt, L. R.; Luksic, Mladen; Su, Renjeng

    1987-01-01

    Necessary and sufficient conditions that the nonlinear system dot-x = f(x) + ug(x) and y = h(x) be locally feedback equivalent to the controllable linear system dot-xi = A xi + bv and y = C xi having linear output are found. Only the single input and single output case is considered, however, the results generalize to multi-input and multi-output systems.

  8. Wind Profiles Derived from Volume Imaging Lidar Data: Enhancements to the Algorithm and Comparisons with Insitu Observations

    NASA Technical Reports Server (NTRS)

    Piironen, A. K.; Eloranta, E. W.

    1992-01-01

    This paper presents wind measurements made with the University of Wisconsin Volume Imaging Lidar (VIL) during Aug. 1989 as part of the First ISLSCP (International Satellite Land Surface Climatology Project) Field Experiment (FIFE). Enhancements to the algorithm are described. Comparisons of these results to aircraft, balloon, and surface based wind measurements are presented. Observations of the spatial variance of aerosol backscatter are also compared to measurements of the convective boundary layer depth. Measurements are based on two-dimensional cross correlations between horizontal image planes showing the spatial distribution of aerosol scattering observed by the lidar at intervals of approximately 3 minutes. Each image plane covers an area of 500-1000 sq km and the winds calculated represent area averages.

  9. Power regulation of kinematic control inputs for forward flying Drosophila

    NASA Astrophysics Data System (ADS)

    MacFarlane, Kenneth; Faruque, Imraan; Sean Humbert, J.

    2014-12-01

    The choices of insect wing kinematic programs is not well understood, particularly the mechanism by which an insect selects a distortion to achieve flight control. A methodology to evaluate prospective kinematic control inputs is presented based on the reachable states when control actuation was constrained to a unit of power. The method implements a computationally-derived reduced order model of the insect's flight dynamics combined with calculation of power requirement. Four kinematic inputs are evaluated based on this criterion for a Drosophila size insect in forward flight. Stroke bias is shown to be the dominant control input using this power normalized evaluation measure.

  10. Multiple input/output random vibration control system

    NASA Technical Reports Server (NTRS)

    Unruh, James F.

    1988-01-01

    A multi-input/output random vibration control algorithm was developed based on system identification concepts derived from random vibration spectral analysis theory. The unique features of the algorithm are: (1) the number of input excitors and the number of output control responses need not be identical; (2) the system inverse response matrix is obtained directly from the input/output spectral matrix; and (3) the system inverse response matrix is updated every control loop cycle to accommodate system amplitude nonlinearities. A laboratory demonstration case of two imputs with three outputs is presented to demonstrate the system capabilities.

  11. Teaching Image Formation by Extended Light Sources: The Use of a Model Derived from the History of Science

    ERIC Educational Resources Information Center

    Dedes, Christos; Ravanis, Konstantinos

    2009-01-01

    This research, carried out in Greece on pupils aged 12-16, focuses on the transformation of their representations concerning light emission and image formation by extended light sources. The instructive process was carried out in two stages, each one having a different, distinct target set. During the first stage, the appropriate conflict…

  12. Characterization of conductive nanobiomaterials derived from viral assemblies by low-voltage STEM imaging and Raman scattering

    NASA Astrophysics Data System (ADS)

    Plascencia-Villa, Germán; Carreño-Fuentes, Liliana; Bahena, Daniel; José-Yacamán, Miguel; Palomares, Laura A.; Ramírez, Octavio T.

    2014-09-01

    New technologies require the development of novel nanomaterials that need to be fully characterized to achieve their potential. High-resolution low-voltage scanning transmission electron microscopy (STEM) has proven to be a very powerful technique in nanotechnology, but its use for the characterization of nanobiomaterials has been limited. Rotavirus VP6 self-assembles into nanotubular assemblies that possess an intrinsic affinity for Au ions. This property was exploited to produce hybrid nanobiomaterials by the in situ functionalization of recombinant VP6 nanotubes with gold nanoparticles. In this work, Raman spectroscopy and advanced analytical electron microscopy imaging with spherical aberration-corrected (Cs) STEM and nanodiffraction at low-voltage doses were employed to characterize nanobiomaterials. STEM imaging revealed the precise structure and arrangement of the protein templates, as well as the nanostructure and atomic arrangement of gold nanoparticles with high spatial sub-Angstrom resolution and avoided radiation damage. The imaging was coupled with backscattered electron imaging, ultra-high resolution scanning electron microscopy and x-ray spectroscopy. The hybrid nanobiomaterials that were obtained showed unique properties as bioelectronic conductive devices and showed enhanced Raman scattering by their precise arrangement into superlattices, displaying the utility of viral assemblies as functional integrative self-assembled nanomaterials for novel applications.

  13. Medical image fusion by wavelet transform modulus maxima

    NASA Astrophysics Data System (ADS)

    Guihong, Qu; Dali, Zhang; Pingfan, Yan

    2001-08-01

    Medical image fusion has been used to derive useful information from multimodality medical image data. In this research, we propose a novel method for multimodality medical image fusion. Using wavelet transform, we achieved a fusion scheme. Afusion rule is proposed and used for calculating the wavelet transformation modulus maxima of input images at different bandwidths and levels. To evaluate the fusion result, a metric based on mutual information (MI) is presented for measuring fusion effect. The performances of other two methods of image fusion based on wavelet transform are briefly described for comparison. The experiment results demonstrate the effectiveness of the fusion scheme.

  14. Image

    SciTech Connect

    Marsh, Amber; Harsch, Tim; Pitt, Julie; Firpo, Mike; Lekin, April; Pardes, Elizabeth

    2007-08-31

    The computer side of the IMAGE project consists of a collection of Perl scripts that perform a variety of tasks; scripts are available to insert, update and delete data from the underlying Oracle database, download data from NCBI's Genbank and other sources, and generate data files for download by interested parties. Web scripts make up the tracking interface, and various tools available on the project web-site (image.llnl.gov) that provide a search interface to the database.

  15. Stochastic weather inputs for improved urban water demand forecasting: application of nonlinear input variable selection and machine learning methods

    NASA Astrophysics Data System (ADS)

    Quilty, J.; Adamowski, J. F.

    2015-12-01

    Urban water supply systems are often stressed during seasonal outdoor water use as water demands related to the climate are variable in nature making it difficult to optimize the operation of the water supply system. Urban water demand forecasts (UWD) failing to include meteorological conditions as inputs to the forecast model may produce poor forecasts as they cannot account for the increase/decrease in demand related to meteorological conditions. Meteorological records stochastically simulated into the future can be used as inputs to data-driven UWD forecasts generally resulting in improved forecast accuracy. This study aims to produce data-driven UWD forecasts for two different Canadian water utilities (Montreal and Victoria) using machine learning methods by first selecting historical UWD and meteorological records derived from a stochastic weather generator using nonlinear input variable selection. The nonlinear input variable selection methods considered in this work are derived from the concept of conditional mutual information, a nonlinear dependency measure based on (multivariate) probability density functions and accounts for relevancy, conditional relevancy, and redundancy from a potential set of input variables. The results of our study indicate that stochastic weather inputs can improve UWD forecast accuracy for the two sites considered in this work. Nonlinear input variable selection is suggested as a means to identify which meteorological conditions should be utilized in the forecast.

  16. Images of gravitational and magnetic phenomena derived from two-dimensional back-projection Doppler tomography of interacting binary stars

    SciTech Connect

    Richards, Mercedes T.; Cocking, Alexander S.; Fisher, John G.; Conover, Marshall J. E-mail: asc5097@psu.edu

    2014-11-10

    We have used two-dimensional back-projection Doppler tomography as a tool to examine the influence of gravitational and magnetic phenomena in interacting binaries that undergo mass transfer from a magnetically active star onto a non-magnetic main-sequence star. This multitiered study of over 1300 time-resolved spectra of 13 Algol binaries involved calculations of the predicted dynamical behavior of the gravitational flow and the dynamics at the impact site, analysis of the velocity images constructed from tomography, and the influence on the tomograms of orbital inclination, systemic velocity, orbital coverage, and shadowing. The Hα tomograms revealed eight sources: chromospheric emission, a gas stream along the gravitational trajectory, a star-stream impact region, a bulge of absorption or emission around the mass-gaining star, a Keplerian accretion disk, an absorption zone associated with hotter gas, a disk-stream impact region, and a hot spot where the stream strikes the edge of a disk. We described several methods used to extract the physical properties of the emission sources directly from the velocity images, including S-wave analysis, the creation of simulated velocity tomograms from hydrodynamic simulations, and the use of synthetic spectra with tomography to sequentially extract the separate sources of emission from the velocity image. In summary, the tomography images have revealed results that cannot be explained solely by gravitational effects: chromospheric emission moving with the mass-losing star, a gas stream deflected from the gravitational trajectory, and alternating behavior between stream state and disk state. Our results demonstrate that magnetic effects cannot be ignored in these interacting binaries.

  17. Micro-CT image-derived metrics quantify arterial wall distensibility reduction in a rat model of pulmonary hypertension

    NASA Astrophysics Data System (ADS)

    Johnson, Roger H.; Karau, Kelly L.; Molthen, Robert C.; Haworth, Steven T.; Dawson, Christopher A.

    2000-04-01

    We developed methods to quantify arterial structural and mechanical properties in excised rat lungs and applied them to investigate the distensibility decrease accompanying chronic hypoxia-induced pulmonary hypertension. Lungs of control and hypertensive (three weeks 11% O2) animals were excised and a contrast agent introduced before micro-CT imaging with a special purpose scanner. For each lung, four 3D image data sets were obtained, each at a different intra-arterial contrast agent pressure. Vessel segment diameters and lengths were measured at all levels in the arterial tree hierarchy, and these data used to generate features sensitive to distensibility changes. Results indicate that measurements obtained from 3D micro-CT images can be used to quantify vessel biomechanical properties in this rat model of pulmonary hypertension and that distensibility is reduced by exposure to chronic hypoxia. Mechanical properties can be assessed in a localized fashion and quantified in a spatially-resolved way or as a single parameter describing the tree as a whole. Micro-CT is a nondestructive way to rapidly assess structural and mechanical properties of arteries in small animal organs maintained in a physiological state. Quantitative features measured by this method may provide valuable insights into the mechanisms causing the elevated pressures in pulmonary hypertension of differing etiologies and should become increasingly valuable tools in the study of complex phenotypes in small-animal models of important diseases such as hypertension.

  18. Entropy-based measures of in vivo cilia-driven microfluidic mixing derived from quantitative optical imaging

    NASA Astrophysics Data System (ADS)

    Chandrasekera, Kenny; Jonas, Stephan; Bhattacharya, Dipankan; Khokha, Mustafa; Choma, Michael A.

    2012-02-01

    Motile cilia are cellular organelles that project from different epithelial surfaces including respiratory epithelium. They generate directional fluid flow that removes harmful pathogens and particulate matter from the respiratory system. While it has been known that primary ciliary dyskinesia increases the risk of recurrent pulmonary infections, there is now heightened interest in understanding the role that cilia play in a wide-variety of respiratory diseases. Different optical imaging technologies are being investigated to visualize cilia-driven fluid flow, and quantitative image analysis is used to generate measures of ciliary performance. Here, we demonstrate the quantification of in vivo cilia-driven microfluidic mixing using spatial and temporal measures of Shannon information entropy. Using videomicroscopy, we imaged in vivo cilia-driven fluid flow generated by the epidermis of the Xenopus tropicalis embryo. Flow was seeded with either dyes or microparticles. Both spatial and temporal measures of entropy show significant levels of mixing, with maximum entropy measures of ~6.5 (out of a possible range of 0 to 8). Spatial entropy measures showed localization of mixing "hot-spots" and "cold-spots" and temporal measures showed mixing throughout.In sum, entropy-based measures of microfluidic mixing can characterize in vivo cilia-driven fluid flow and hold the potential for better characterization of ciliary dysfunction.

  19. World Input-Output Network

    PubMed Central

    Cerina, Federica; Zhu, Zhen; Chessa, Alessandro; Riccaboni, Massimo

    2015-01-01

    Production systems, traditionally analyzed as almost independent national systems, are increasingly connected on a global scale. Only recently becoming available, the World Input-Output Database (WIOD) is one of the first efforts to construct the global multi-regional input-output (GMRIO) tables. By viewing the world input-output system as an interdependent network where the nodes are the individual industries in different economies and the edges are the monetary goods flows between industries, we analyze respectively the global, regional, and local network properties of the so-called world input-output network (WION) and document its evolution over time. At global level, we find that the industries are highly but asymmetrically connected, which implies that micro shocks can lead to macro fluctuations. At regional level, we find that the world production is still operated nationally or at most regionally as the communities detected are either individual economies or geographically well defined regions. Finally, at local level, for each industry we compare the network-based measures with the traditional methods of backward linkages. We find that the network-based measures such as PageRank centrality and community coreness measure can give valuable insights into identifying the key industries. PMID:26222389

  20. Analog Input Data Acquisition Software

    NASA Technical Reports Server (NTRS)

    Arens, Ellen

    2009-01-01

    DAQ Master Software allows users to easily set up a system to monitor up to five analog input channels and save the data after acquisition. This program was written in LabVIEW 8.0, and requires the LabVIEW runtime engine 8.0 to run the executable.

  1. The advanced LIGO input optics.

    PubMed

    Mueller, Chris L; Arain, Muzammil A; Ciani, Giacomo; DeRosa, Ryan T; Effler, Anamaria; Feldbaum, David; Frolov, Valery V; Fulda, Paul; Gleason, Joseph; Heintze, Matthew; Kawabe, Keita; King, Eleanor J; Kokeyama, Keiko; Korth, William Z; Martin, Rodica M; Mullavey, Adam; Peold, Jan; Quetschke, Volker; Reitze, David H; Tanner, David B; Vorvick, Cheryl; Williams, Luke F; Mueller, Guido

    2016-01-01

    The advanced LIGO gravitational wave detectors are nearing their design sensitivity and should begin taking meaningful astrophysical data in the fall of 2015. These resonant optical interferometers will have unprecedented sensitivity to the strains caused by passing gravitational waves. The input optics play a significant part in allowing these devices to reach such sensitivities. Residing between the pre-stabilized laser and the main interferometer, the input optics subsystem is tasked with preparing the laser beam for interferometry at the sub-attometer level while operating at continuous wave input power levels ranging from 100 mW to 150 W. These extreme operating conditions required every major component to be custom designed. These designs draw heavily on the experience and understanding gained during the operation of Initial LIGO and Enhanced LIGO. In this article, we report on how the components of the input optics were designed to meet their stringent requirements and present measurements showing how well they have lived up to their design. PMID:26827334

  2. Input in an Institutional Setting.

    ERIC Educational Resources Information Center

    Bardovi-Harlig, Kathleen; Hartford, Beverly S.

    1996-01-01

    Investigates the nature of input available to learners in the institutional setting of the academic advising session. Results indicate that evidence for the realization of speech acts, positive evidence from peers and status unequals, the effect of stereotypes, and limitations of a learner's pragmatic and grammatical competence are influential…

  3. Signal Prediction With Input Identification

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Chen, Ya-Chin

    1999-01-01

    A novel coding technique is presented for signal prediction with applications including speech coding, system identification, and estimation of input excitation. The approach is based on the blind equalization method for speech signal processing in conjunction with the geometric subspace projection theory to formulate the basic prediction equation. The speech-coding problem is often divided into two parts, a linear prediction model and excitation input. The parameter coefficients of the linear predictor and the input excitation are solved simultaneously and recursively by a conventional recursive least-squares algorithm. The excitation input is computed by coding all possible outcomes into a binary codebook. The coefficients of the linear predictor and excitation, and the index of the codebook can then be used to represent the signal. In addition, a variable-frame concept is proposed to block the same excitation signal in sequence in order to reduce the storage size and increase the transmission rate. The results of this work can be easily extended to the problem of disturbance identification. The basic principles are outlined in this report and differences from other existing methods are discussed. Simulations are included to demonstrate the proposed method.

  4. World Input-Output Network.

    PubMed

    Cerina, Federica; Zhu, Zhen; Chessa, Alessandro; Riccaboni, Massimo

    2015-01-01

    Production systems, traditionally analyzed as almost independent national systems, are increasingly connected on a global scale. Only recently becoming available, the World Input-Output Database (WIOD) is one of the first efforts to construct the global multi-regional input-output (GMRIO) tables. By viewing the world input-output system as an interdependent network where the nodes are the individual industries in different economies and the edges are the monetary goods flows between industries, we analyze respectively the global, regional, and local network properties of the so-called world input-output network (WION) and document its evolution over time. At global level, we find that the industries are highly but asymmetrically connected, which implies that micro shocks can lead to macro fluctuations. At regional level, we find that the world production is still operated nationally or at most regionally as the communities detected are either individual economies or geographically well defined regions. Finally, at local level, for each industry we compare the network-based measures with the traditional methods of backward linkages. We find that the network-based measures such as PageRank centrality and community coreness measure can give valuable insights into identifying the key industries. PMID:26222389

  5. The advanced LIGO input optics.

    PubMed

    Mueller, Chris L; Arain, Muzammil A; Ciani, Giacomo; DeRosa, Ryan T; Effler, Anamaria; Feldbaum, David; Frolov, Valery V; Fulda, Paul; Gleason, Joseph; Heintze, Matthew; Kawabe, Keita; King, Eleanor J; Kokeyama, Keiko; Korth, William Z; Martin, Rodica M; Mullavey, Adam; Peold, Jan; Quetschke, Volker; Reitze, David H; Tanner, David B; Vorvick, Cheryl; Williams, Luke F; Mueller, Guido

    2016-01-01

    The advanced LIGO gravitational wave detectors are nearing their design sensitivity and should begin taking meaningful astrophysical data in the fall of 2015. These resonant optical interferometers will have unprecedented sensitivity to the strains caused by passing gravitational waves. The input optics play a significant part in allowing these devices to reach such sensitivities. Residing between the pre-stabilized laser and the main interferometer, the input optics subsystem is tasked with preparing the laser beam for interferometry at the sub-attometer level while operating at continuous wave input power levels ranging from 100 mW to 150 W. These extreme operating conditions required every major component to be custom designed. These designs draw heavily on the experience and understanding gained during the operation of Initial LIGO and Enhanced LIGO. In this article, we report on how the components of the input optics were designed to meet their stringent requirements and present measurements showing how well they have lived up to their design.

  6. Input/output interface module

    NASA Technical Reports Server (NTRS)

    Ozyazici, E. M.

    1980-01-01

    Module detects level changes in any of its 16 inputs, transfers changes to its outputs, and generates interrupts when changes are detected. Up to four changes-in-state per line are stored for later retrieval by controlling computer. Using standard TTL logic, module fits 19-inch rack-mounted console.

  7. World Input-Output Network.

    PubMed

    Cerina, Federica; Zhu, Zhen; Chessa, Alessandro; Riccaboni, Massimo

    2015-01-01

    Production systems, traditionally analyzed as almost independent national systems, are increasingly connected on a global scale. Only recently becoming available, the World Input-Output Database (WIOD) is one of the first efforts to construct the global multi-regional input-output (GMRIO) tables. By viewing the world input-output system as an interdependent network where the nodes are the individual industries in different economies and the edges are the monetary goods flows between industries, we analyze respectively the global, regional, and local network properties of the so-called world input-output network (WION) and document its evolution over time. At global level, we find that the industries are highly but asymmetrically connected, which implies that micro shocks can lead to macro fluctuations. At regional level, we find that the world production is still operated nationally or at most regionally as the communities detected are either individual economies or geographically well defined regions. Finally, at local level, for each industry we compare the network-based measures with the traditional methods of backward linkages. We find that the network-based measures such as PageRank centrality and community coreness measure can give valuable insights into identifying the key industries.

  8. An NBD Derivative of the Selective Rat Toxicant Norbormide as a New Probe for Living Cell Imaging

    PubMed Central

    D'Amore, Claudio; Orso, Genny; Fusi, Fabio; Pagano, Mario A.; Miotto, Giovanni; Forgiarini, Alessia; De Martin, Sara; Castellani, Giulia; Ribaudo, Giovanni; Rennison, David; Brimble, Margaret A.; Hopkins, Brian; Ferrarese, Alessandro; Bova, Sergio

    2016-01-01

    Norbormide (NRB) is a unique compound that acts directly on rat vascular myocytes to trigger a contractile process, through an as yet unknown mechanism, which results in the selective contraction of rat peripheral arteries. To gain insight into the mechanisms involved in NRB rat-selective activity, we investigated the subcellular distribution of NRB-AF12, a nitrobenzoxadiazole (NBD)-derivative of NRB, in living NRB-sensitive and NRB-insensitive cells. In both cell types, NRB-AF12 localized to the endoplasmic reticulum (ER), Golgi apparatus, mitochondria, lysosomes, and endosomes; however, in NRB-sensitive cells, the fluorescence also extended to the plasma membrane. NRB-AF12 was rapidly internalized into the cells, could easily be washed out and then reloaded back into the same cells, all with a high degree of reproducibility. Cells exposed for 24 h to NRB-AF12 did not show apparent signs of toxicity, even at concentrations of the dye (10 μM) much higher than those required for fluorescence labeling (500 ηM). The distribution pattern of NRB-AF12 fluorescence was near identical to that of ER-Tracker® (Er-Tr), a fluorescent derivative of glibenclamide, a known KATP channel blocker. Displacement tests did not demonstrate, but at the same time did not rule out the possibility of a common target for ER-Tr, NRB-AF12, NRB, and glibenclamide. On the basis of these results we hypothesize a common target site for NRB-AF12 and ER-Tr, and a similar target profile for NRB and glibenclamide, and propose NRB-AF12 as an alternative fluorescence probe to ER-Tracker. Furthermore, NRB-based fluorescence derivatives could be designed to selectively label single cellular structures. PMID:27721792

  9. LAT1 targeted delivery of methionine based imaging probe derived from M(III) metal ions for early diagnosis of proliferating tumours using molecular imaging modalities.

    PubMed

    Hazari, Puja Panwar; Prakash, Surbhi; Meena, Virendra K; Jaswal, Ambika; Khurana, Harleen; Mishra, Surabhi Kirti; Bhonsle, Hemanth Kumar; Singh, Lokendra; Mishra, Anil K

    2015-01-01

    We investigated the potential of DTPA-bis(Methionine), a target specific amino acid based probe for detection of L-type amino acid transporters (LAT1) known to over express in proliferating tumours using multimodality imaging. The ligand, DTPA-bis(Met) was readily converted to lanthanide complexes and was found capable of targeting cancer cells using multimodality imaging. DTPA-bis(Met) complexes were synthesized and characterized by mass spectroscopy. MR longitudinal relaxivity, r₁ = 4.067 ± 0.31 mM⁻¹s⁻¹ and transverse relaxivity, r₂ = 8.61 ± 0.07 mM⁻¹s⁻¹ of Gd(III)-DTPA-bis(Met) were observed at pH 7.4 at 7 T. Bright, localized fluorescence of Eu(III)-DTPA-bis(Met) was observed with standard microscopy and displacement studies indicated ligand functionality. K(D) value determined for Eu(III)-DTPA-bis(Met) on U-87 MG cells was found to be 17.3 pM and showed appreciable fluorescence within the cells. Radio HPLC showed a radiochemical purity more than 95% (specific activity = 400-500 MBq/μmol, labelling efficiency 78 %) for ⁶⁸Ga(III)-DTPA-bis(Met). Pre-treatment of xenografted U-87 MG athymic mice with ⁶⁸Ga(III)-DTPA-bis(Met) following unlabelled L-methionine administration reduced tumour uptake by 10-folds in Micro PET. These data support the specific binding of ⁶⁸Ga(III)-DTPA-bis(Met) to the LAT1 transporter. To summarize, this agent possesses high stability in biological environment and exhibits effective interaction with its LAT1 transporters giving high accumulation in tumour area, excellent tumour/non-tumour ratio and low non-specific retention in vivo. PMID:25329672

  10. LAT1 targeted delivery of methionine based imaging probe derived from M(III) metal ions for early diagnosis of proliferating tumours using molecular imaging modalities.

    PubMed

    Hazari, Puja Panwar; Prakash, Surbhi; Meena, Virendra K; Jaswal, Ambika; Khurana, Harleen; Mishra, Surabhi Kirti; Bhonsle, Hemanth Kumar; Singh, Lokendra; Mishra, Anil K

    2015-01-01

    We investigated the potential of DTPA-bis(Methionine), a target specific amino acid based probe for detection of L-type amino acid transporters (LAT1) known to over express in proliferating tumours using multimodality imaging. The ligand, DTPA-bis(Met) was readily converted to lanthanide complexes and was found capable of targeting cancer cells using multimodality imaging. DTPA-bis(Met) complexes were synthesized and characterized by mass spectroscopy. MR longitudinal relaxivity, r₁ = 4.067 ± 0.31 mM⁻¹s⁻¹ and transverse relaxivity, r₂ = 8.61 ± 0.07 mM⁻¹s⁻¹ of Gd(III)-DTPA-bis(Met) were observed at pH 7.4 at 7 T. Bright, localized fluorescence of Eu(III)-DTPA-bis(Met) was observed with standard microscopy and displacement studies indicated ligand functionality. K(D) value determined for Eu(III)-DTPA-bis(Met) on U-87 MG cells was found to be 17.3 pM and showed appreciable fluorescence within the cells. Radio HPLC showed a radiochemical purity more than 95% (specific activity = 400-500 MBq/μmol, labelling efficiency 78 %) for ⁶⁸Ga(III)-DTPA-bis(Met). Pre-treatment of xenografted U-87 MG athymic mice with ⁶⁸Ga(III)-DTPA-bis(Met) following unlabelled L-methionine administration reduced tumour uptake by 10-folds in Micro PET. These data support the specific binding of ⁶⁸Ga(III)-DTPA-bis(Met) to the LAT1 transporter. To summarize, this agent possesses high stability in biological environment and exhibits effective interaction with its LAT1 transporters giving high accumulation in tumour area, excellent tumour/non-tumour ratio and low non-specific retention in vivo.

  11. Cryopreservation of embryonic stem cell-derived multicellular neural aggregates labeled with micron-sized particles of iron oxide for magnetic resonance imaging.

    PubMed

    Yan, Yuanwei; Sart, Sébastien; Calixto Bejarano, Fabian; Muroski, Megan E; Strouse, Geoffrey F; Grant, Samuel C; Li, Yan

    2015-01-01

    Magnetic resonance imaging (MRI) provides an effective approach to track labeled pluripotent stem cell (PSC)-derived neural progenitor cells (NPCs) for neurological disorder treatments after cell labeling with a contrast agent, such as an iron oxide derivative. Cryopreservation of pre-labeled neural cells, especially in three-dimensional (3D) structure, can provide a uniform cell population and preserve the stem cell niche for the subsequent applications. In this study, the effects of cryopreservation on PSC-derived multicellular NPC aggregates labeled with micron-sized particles of iron oxide (MPIO) were investigated. These NPC aggregates were labeled prior to cryopreservation because labeling thawed cells can be limited by inefficient intracellular uptake, variations in labeling efficiency, and increased culture time before use, minimizing their translation to clinical settings. The results indicated that intracellular MPIO incorporation was retained after cryopreservation (70-80% labeling efficiency), and MPIO labeling had little adverse effects on cell recovery, proliferation, cytotoxicity and neural lineage commitment post-cryopreservation. MRI analysis showed comparable detectability for the MPIO-labeled cells before and after cryopreservation indicated by T2 and T2* relaxation rates. Cryopreserving MPIO-labeled 3D multicellular NPC aggregates can be applied in in vivo cell tracking studies and lead to more rapid translation from preservation to clinical implementation. PMID:25905549

  12. Synthesis of a potent and selective (18)F-labeled delta-opioid receptor antagonist derived from the Dmt-Tic pharmacophore for positron emission tomography imaging.

    PubMed

    Ryu, Eun Kyoung; Wu, Zhanhong; Chen, Kai; Lazarus, Lawrence H; Marczak, Ewa D; Sasaki, Yusuke; Ambo, Akihiro; Salvadori, Severo; Ren, Chuancheng; Zhao, Heng; Balboni, Gianfranco; Chen, Xiaoyuan

    2008-03-27

    Identification and pharmacological characterization of two new selective delta-opioid receptor antagonists, derived from the Dmt-Tic pharmacophore, of potential utility in positron emission tomography (PET) imaging are described. On the basis of its high delta selectivity, H-Dmt-Tic--Lys(Z)-OH (reference compound 1) is a useful starting point for the synthesis of (18)F-labeled compounds prepared by the coupling of N-succinimidyl 4-[ (18)F]fluorobenzoate ([(18)F]SFB) with Boc-Dmt-Tic--Lys(Z)-OH under slightly basic conditions at 37 degrees C for 15 min, deprotection with TFA, and HPLC purification. The total synthesis time was 120 min, and the decay-corrected radiochemical yield of [(18)F]- 1 was about 25-30% ( n = 5) starting from [(18)F]SFB ( n = 5) with an effective specific activity about 46 GBq/micromol. In vitro autoradiography studies showed prominent uptake of [ (18)F]- 1 in the striatum and cortex with significant blocking by 1 and UFP-501 (selective delta-opioid receptor antagonist), suggesting high specific binding of [(18)F]- 1 to delta-opioid receptors. Noninvasive microPET imaging studies revealed the absence of [(18)F]- 1 in rat brain, since it fails to cross the blood-brain barrier. This study demonstrates the suitability of [ (18)F]- 1 for imaging peripheral delta-opioid receptors.

  13. Systems and methods for reconfiguring input devices

    NASA Technical Reports Server (NTRS)

    Lancaster, Jeff (Inventor); De Mers, Robert E. (Inventor)

    2012-01-01

    A system includes an input device having first and second input members configured to be activated by a user. The input device is configured to generate activation signals associated with activation of the first and second input members, and each of the first and second input members are associated with an input function. A processor is coupled to the input device and configured to receive the activation signals. A memory coupled to the processor, and includes a reconfiguration module configured to store the input functions assigned to the first and second input members and, upon execution of the processor, to reconfigure the input functions assigned to the input members when the first input member is inoperable.

  14. Mitochondria-targeted Triphenylamine Derivatives Activatable by Two-Photon Excitation for Triggering and Imaging Cell Apoptosis

    PubMed Central

    Chennoufi, Rahima; Bougherara, Houcine; Gagey-Eilstein, Nathalie; Dumat, Blaise; Henry, Etienne; Subra, Frédéric; Bury-Moné, Stéphanie; Mahuteau-Betzer, Florence; Tauc, Patrick; Teulade-Fichou, Marie-Paule; Deprez, Eric

    2016-01-01

    Photodynamic therapy (PDT) leads to cell death by using a combination of a photosensitizer and an external light source for the production of lethal doses of reactive oxygen species (ROS). Since a major limitation of PDT is the poor penetration of UV-visible light in tissues, there is a strong need for organic compounds whose activation is compatible with near-infrared excitation. Triphenylamines (TPAs) are fluorescent compounds, recently shown to efficiently trigger cell death upon visible light irradiation (458 nm), however outside the so-called optical/therapeutic window. Here, we report that TPAs target cytosolic organelles of living cells, mainly mitochondria, triggering a fast apoptosis upon two-photon excitation, thanks to their large two-photon absorption cross-sections in the 760–860 nm range. Direct ROS imaging in the cell context upon multiphoton excitation of TPA and three-color flow cytometric analysis showing phosphatidylserine externalization indicate that TPA photoactivation is primarily related to the mitochondrial apoptotic pathway via ROS production, although significant differences in the time courses of cell death-related events were observed, depending on the compound. TPAs represent a new class of water-soluble organic photosensitizers compatible with direct two-photon excitation, enabling simultaneous multiphoton fluorescence imaging of cell death since a concomitant subcellular TPA re-distribution occurs in apoptotic cells. PMID:26947258

  15. Bis(methylpyridine)-EDTA derivative as a potential ligand for PET imaging: synthesis, complexation, and biological evaluation.

    PubMed

    Singh, Pooja; Aggarwal, Swati; Tiwari, Anjani K; Kumar, Vikas; Pratap, Ramendra; Chuttani, Krishna; Mishra, Anil K

    2014-12-01

    A novel transitional metal ligand derivatized from EDTA-conjugated 2-amino-4-methyl pyridine, an acyclic vehicle (EDTA-Mepy2 ) was designed, synthesized, and characterized for PET imaging with ⁶⁸Ga. The drug likeliness and appropriate lipophilicity were first analyzed by molecular docking studies which shows interactive property of ligand with serum albumin protein (HSA: PDB 1E78), at Lys199, Arg257, and His242 residues, which make it more appropriate in transportation as a specific ligand for PET imaging. As a confirmation, binding constant of the ligand with human serum albumin was calculated at λex = 350 nm which was found to be 4.9 × 10³ m⁻¹. The pharmacokinetics of (68) Ga-EDTA-Mepy2 was analyzed by blood kinetics (t(1/2) slow: 3 h 56 min and t(1/2) fast: 32 min) and biodistribution (maximum % ID/g was found in kidney at 1 h). Further the capability of this ligand was analyzed as optical marker also, by recording λex = 380 nm, RFU = 8000; 710 nm, RFU = 1000 units at fixed λem = 280 nm. Additionally, in physiological conditions where its stability was calculated, suggests 15-20 times selectivity over the endogenously present metal ions (KG aL /KZ nL = 14.3, KG aL /KC uL = 18.1).

  16. Comparison of temporal and spectral scattering methods using acoustically large breast models derived from magnetic resonance images

    PubMed Central

    Hesford, Andrew J.; Tillett, Jason C.; Astheimer, Jeffrey P.; Waag, Robert C.

    2014-01-01

    Accurate and efficient modeling of ultrasound propagation through realistic tissue models is important to many aspects of clinical ultrasound imaging. Simplified problems with known solutions are often used to study and validate numerical methods. Greater confidence in a time-domain k-space method and a frequency-domain fast multipole method is established in this paper by analyzing results for realistic models of the human breast. Models of breast tissue were produced by segmenting magnetic resonance images of ex vivo specimens into seven distinct tissue types. After confirming with histologic analysis by pathologists that the model structures mimicked in vivo breast, the tissue types were mapped to variations in sound speed and acoustic absorption. Calculations of acoustic scattering by the resulting model were performed on massively parallel supercomputer clusters using parallel implementations of the k-space method and the fast multipole method. The efficient use of these resources was confirmed by parallel efficiency and scalability studies using large-scale, realistic tissue models. Comparisons between the temporal and spectral results were performed in representative planes by Fourier transforming the temporal results. An RMS field error less than 3% throughout the model volume confirms the accuracy of the methods for modeling ultrasound propagation through human breast. PMID:25096103

  17. Motion-compensated mega-voltage cone beam CT using the deformation derived directly from 2D projection images.

    PubMed

    Chen, Mingqing; Cao, Kunlin; Zheng, Yefeng; Siochi, R Alfredo C

    2013-08-01

    This paper presents a novel method for respiratory motion compensated reconstruction for cone beam computed tomography (CBCT). The reconstruction is based on a time sequence of motion vector fields, which is generated by a dynamic geometrical object shape model. The dynamic model is extracted from the 2D projection images of the CBCT. The process of the motion extraction is converted into an optimal 3D multiple interrelated surface detection problem, which can be solved by computing a maximum flow in a 4D directed graph. The method was tested on 12 mega-voltage (MV) CBCT scans from three patients. Two sets of motion-artifact-free 3D volumes, full exhale (FE) and full inhale (FI) phases, were reconstructed for each daily scan. The reconstruction was compared with three other motion-compensated approaches based on quantification accuracy of motion and size. Contrast-to-noise ratio (CNR) was also quantified for image quality. The proposed approach has the best overall performance, with a relative tumor volume quantification error of 3.39 ± 3.64% and 8.57 ± 8.31% for FE and FI phases, respectively. The CNR near the tumor area is 3.85 ± 0.42 (FE) and 3.58 ± 3.33 (FI). These results show the clinical feasibility to use the proposed method to reconstruct motion-artifact-free MVCBCT volumes. PMID:23247845

  18. Identifying local and descending inputs for primary sensory neurons

    PubMed Central

    Zhang, Yi; Zhao, Shengli; Rodriguez, Erica; Takatoh, Jun; Han, Bao-Xia; Zhou, Xiang; Wang, Fan

    2015-01-01

    Primary pain and touch sensory neurons not only detect internal and external sensory stimuli, but also receive inputs from other neurons. However, the neuronal derived inputs for primary neurons have not been systematically identified. Using a monosynaptic rabies viruses–based transneuronal tracing method combined with sensory-specific Cre-drivers, we found that sensory neurons receive intraganglion, intraspinal, and supraspinal inputs, the latter of which are mainly derived from the rostroventral medulla (RVM). The viral-traced central neurons were largely inhibitory but also consisted of some glutamatergic neurons in the spinal cord and serotonergic neurons in the RVM. The majority of RVM-derived descending inputs were dual GABAergic and enkephalinergic (opioidergic). These inputs projected through the dorsolateral funiculus and primarily innervated layers I, II, and V of the dorsal horn, where pain-sensory afferents terminate. Silencing or activation of the dual GABA/enkephalinergic RVM neurons in adult animals substantially increased or decreased behavioral sensitivity, respectively, to heat and mechanical stimuli. These results are consistent with the fact that both GABA and enkephalin can exert presynaptic inhibition of the sensory afferents. Taken together, this work provides a systematic view of and a set of tools for examining peri- and extrasynaptic regulations of pain-afferent transmission. PMID:26426077

  19. Image and in situ data integration to derive sawgrass density for surface flow modelling in the Everglades, Florida, USA

    USGS Publications Warehouse

    Jones, J.W.

    2001-01-01

    The US Geological Survey is building models of the Florida Everglades to be used in managing south Florida surface water flows for habitat restoration and maintenance. Because of the low gradients in the Everglades, vegetation structural characteristics are very important and greatly influence surface water flow and distribution. Vegetation density is being evaluated as an index of surface resistance to flow. Digital multispectral videography (DMSV) has been captured over several sites just before field collection of vegetation data. Linear regression has been used to establish a relationship between normalized difference vegetation index (NDVI) values computed from the DMSV and field-collected biomass and density estimates. Spatial analysis applied to the DMSV data indicates that thematic mapper (TM) resolution is at the limit required to capture land surface heterogeneity. The TM data collected close to the time of the DMSV will be used to derive a regional sawgrass density map.

  20. Image and in situ data integration to derive sawgrass density for surface flow modelling in the Everglades, Florida, USA

    USGS Publications Warehouse

    Jones, J.W.

    2000-01-01

    The US Geological Survey is building models of the Florida Everglades to be used in managing south Florida surface water flows for habitat restoration and maintenance. Because of the low gradients in the Everglades, vegetation structural characteristics are very important and greatly influence surface water flow and distribution. Vegetation density is being evaluated as an index of surface resistance to flow. Digital multispectral videography (DMSV) has been captured over several sites just before field collection of vegetation data. Linear regression has been used to establish a relationship between normalized difference vegetation index (NDVI) values computed from the DMSV and field-collected biomass and density estimates. Spatial analysis applied to the DMSV data indicates that thematic mapper (TM) resolution is at the limit required to capture land surface heterogeneity. The TM data collected close to the time of the DMSV will be used to derive a regional sawgrass density map.

  1. Fusion of 3D models derived from TLS and image-based techniques for CH enhanced documentation

    NASA Astrophysics Data System (ADS)

    Bastonero, P.; Donadio, E.; Chiabrando, F.; Spanò, A.

    2014-05-01

    Recognizing the various advantages offered by 3D new metric survey technologies in the Cultural Heritage documentation phase, this paper presents some tests of 3D model generation, using different methods, and their possible fusion. With the aim to define potentialities and problems deriving from integration or fusion of metric data acquired with different survey techniques, the elected test case is an outstanding Cultural Heritage item, presenting both widespread and specific complexities connected to the conservation of historical buildings. The site is the Staffarda Abbey, the most relevant evidence of medieval architecture in Piedmont. This application faced one of the most topical architectural issues consisting in the opportunity to study and analyze an object as a whole, from twice location of acquisition sensors, both the terrestrial and the aerial one. In particular, the work consists in the evaluation of chances deriving from a simple union or from the fusion of different 3D cloudmodels of the abbey, achieved by multi-sensor techniques. The aerial survey is based on a photogrammetric RPAS (Remotely piloted aircraft system) flight while the terrestrial acquisition have been fulfilled by laser scanning survey. Both techniques allowed to extract and process different point clouds and to generate consequent 3D continuous models which are characterized by different scale, that is to say different resolutions and diverse contents of details and precisions. Starting from these models, the proposed process, applied to a sample area of the building, aimed to test the generation of a unique 3Dmodel thorough a fusion of different sensor point clouds. Surely, the describing potential and the metric and thematic gains feasible by the final model exceeded those offered by the two detached models.

  2. Synthesis of 1-(p-isothiocyanatobenzyl) derivatives of DTPA and EDTA. Antibody labeling and tumor-imaging studies

    SciTech Connect

    Brechbiel, M.W.; Gansow, O.A.; Atcher, R.W.; Schlom, J.; Esteban, J.; Simpson, D.E.; Colcher, D.

    1986-07-30

    To investigate the /sup 111/In labeling of tumor-localizing monoclonal antibodies (MoAb), the chelate 1-(p-isothiocyanatobenzyl)diethylenetriaminepentaacetic acid (p-SCN-Bz-DPTA) (1) and its EDTA analogue (2) have been synthesized. By the use of a MoAb (B72.3) specific for a high molecular weight antigen (TAG-72) on cells of a colorectal carcinoma grown in nude mice, optimal chemical conditions for MoAb conjugation of those ligands and of the dicyclic and isobutylcarboxy carbonic anhydrides of DTPA and subsequent /sup 111/In labeling were determined. All conjugates were shown by a competitive binding assay to retain their specificity and activity in vitro when less than one ligand is protein coupled both prior to and after /sup 111/In labeling. Chemical methods for purification of the MoAb were systematically investigated by injection of purified immunoprotein into athymic mice bearing LS-174T tumors that express the TAG-72 antigen. Tissue distribution studies revealed that simple addition of EDTA to labeled immunoglobulins was ineffective at complexing indium not linked to protein by chelates. Similarly, gel chromatography (Sephadex G-50) was not sufficient; rather, size exclusion HPLC had to be employed to remove unreacted /sup 111/In and aggregated antibody. To compare the relative utility of the four chelates for /sup 111/In diagnostic radioimmunoimaging, scintigraphic images of tumor-bearing mice were obtained and evaluated along with tissue distributions. Results showed that clear images of these solid tissue tumors free of extraneous radiation could be obtained only by using p-SCN-Bz-DTPA purified by HPLC. Methods developed are now being employed in clinical trials for diagnosis of human colorectal cancer. 71 references, 5 figures, 1 table.

  3. Synthesis and evaluation of a radioiodinated 4,6-diaryl-3-cyano-2-pyridinone derivative as a survivin targeting SPECT probe for tumor imaging.

    PubMed

    Fuchigami, Takeshi; Mizoguchi, Tatsuya; Ishikawa, Natsumi; Haratake, Mamoru; Yoshida, Sakura; Magata, Yasuhiro; Nakayama, Morio

    2016-02-01

    Survivin is overexpressed in most of the cancerous tissues but not in terminally differentiated normal tissues, making it an attractive target for diagnosis and therapy of various types of cancers. In this study, we aimed to develop 4,6-diaryl-3-cyano-2-pyridinone (DCP) derivatives, as novel cancer imaging probes that target survivin. Chloro and iodo analogs of DCP (CDCP and IDCP, respectively) were successfully synthesized by using a previously unreported carbon monoxide-free procedure. IDCP exhibited a slightly higher binding affinity for recombinant human survivin (Kd=34 nM) than that of CDCP (Kd=44 nM). Fluorescence staining indicated that both CDCP and IDCP showed high signals in MDA-MB-231 cells with high levels of survivin expression. Significantly low fluorescent signals were observed in MCF-10A cells, which showed low levels of survivin expression. [(125)I]IDCP was synthesized for the application of IDCP to single photon emission computed tomography (SPECT) imaging. Quantitative in vitro binding of [(125)I]IDCP in cell cultures showed results consistent to those observed after fluorescent staining. In vivo biodistribution studies in tumor-bearing mice demonstrated that the tumor uptake of [(125)I]IDCP increased gradually with time and was 0.65% injected dose per gram (% ID/g) at 180 min. The maximum tumor/blood and tumor/muscle ratio at 60 min were 0.87 and 2.27, respectively, indicating inadequate [(125)I]IDCP accumulation in tumors necessary for in vivo imaging. Although further structural modifications are necessary to improve pharmacokinetic properties of IDCP, this study demonstrates the feasibility of using the DCP backbone as a scaffold for the development of survivin-targeting tumor imaging probes. PMID:26733475

  4. Input states for quantum gates

    SciTech Connect

    Gilchrist, A.; White, A.G.; Munro, W.J.

    2003-04-01

    We examine three possible implementations of nondeterministic linear optical controlled NOT gates with a view to an in-principle demonstration in the near future. To this end we consider demonstrating the gates using currently available sources, such as spontaneous parametric down conversion and coherent states, and current detectors only able to distinguish between zero and many photons. The demonstration is possible in the coincidence basis and the errors introduced by the nonoptimal input states and detectors are analyzed.

  5. Structural response and input identification

    NASA Technical Reports Server (NTRS)

    Shepard, G. D.; Callahan, J. C.; Mcelman, J. A.

    1981-01-01

    Three major goals were delineated: (1) to develop a general method for determining the response of a structure to combined base and acoustic random excitation: (2) to develop parametric relationships to aid in the design of plates which are subjected to random force or random base excitation: (3) to develop a method to identify the individual acoustic and base input to a structure with only a limited number of measurement channels, when both types of excitation act simultaneously.

  6. Naval threat countermeasure simulator and the IR_CRUISE_missiles models for the generation of infrared (IR) videos of maritime targets and background for input into advanced imaging IR seekers

    NASA Astrophysics Data System (ADS)

    Taczak, Thomas M.; Dries, John W.; Gover, Robert E.; Snapp, Mary Ann; Williams, Elmer F.; Cahill, Colin P.

    2002-07-01

    A new hardware-in-the-loop modeling technique was developed at the US Naval Research Laboratory (NRL) for the evaluation of IR countermeasures against advanced IR imaging anti-ship cruise missiles. The research efforts involved the creation of tools to generate accurate IR imagery and synthesize video to inject in to real-world threat simulators. A validation study was conducted to verify the accuracy and limitations of the techniques that were developed.

  7. Impact of remote sensing upon the planning, management and development of water resources. Summary of computers and computer growth trends for hydrologic modeling and the input of ERTS image data processing load

    NASA Technical Reports Server (NTRS)

    Castruccio, P. A.; Loats, H. L., Jr.

    1975-01-01

    An analysis of current computer usage by major water resources users was made to determine the trends of usage and costs for the principal hydrologic users/models. The laws and empirical relationships governing the growth of the data processing loads were described and applied to project the future data loads. Data loads for ERTS CCT image processing were computed and projected through the 1985 era. The analysis showns significant impact due to the utilization and processing of ERTS CCT's data.

  8. National hospital input price index.

    PubMed

    Freeland, M S; Anderson, G; Schendler, C E

    1979-01-01

    The national community hospital input price index presented here isolates the effects of prices of goods and services required to produce hospital care and measures the average percent change in prices for a fixed market basket of hospital inputs. Using the methodology described in this article, weights for various expenditure categories were estimated and proxy price variables associated with each were selected. The index is calculated for the historical period 1970 through 1978 and forecast for 1979 through 1981. During the historical period, the input price index increased an average of 8.0 percent a year, compared with an average rate of increase of 6.6 percent for overall consumer prices. For the period 1979 through 1981, the average annual increase is forecast at between 8.5 and 9.0 per cent. Using the index to deflate growth in expenses, the level of real growth in expenditures per inpatient day (net service intensity growth) averaged 4.5 percent per year with considerable annual variation related to government and hospital industry policies. PMID:10309052

  9. National hospital input price index.

    PubMed

    Freeland, M S; Anderson, G; Schendler, C E

    1979-01-01

    The national community hospital input price index presented here isolates the effects of prices of goods and services required to produce hospital care and measures the average percent change in prices for a fixed market basket of hospital inputs. Using the methodology described in this article, weights for various expenditure categories were estimated and proxy price variables associated with each were selected. The index is calculated for the historical period 1970 through 1978 and forecast for 1979 through 1981. During the historical period, the input price index increased an average of 8.0 percent a year, compared with an average rate of increase of 6.6 percent for overall consumer prices. For the period 1979 through 1981, the average annual increase is forecast at between 8.5 and 9.0 per cent. Using the index to deflate growth in expenses, the level of real growth in expenditures per inpatient day (net service intensity growth) averaged 4.5 percent per year with considerable annual variation related to government and hospital industry policies.

  10. Human Factors Inputs to the Training Device Design Process.

    ERIC Educational Resources Information Center

    Smode, Alfred F.

    Guidelines are presented for achieving human factors inputs to the design of synthetic training systems. A method is developed for design and organization of training concepts and data supportive to the human factors specialist in deriving the functional specifications for the design of any complex training device. Three major sections are…

  11. Validation of a paleo river system derived by ground based electromagnetic induction measurements with satellite based RapidEye images

    NASA Astrophysics Data System (ADS)

    Rudolph, Sebastian; von Hebel, Christian; Ali, Mohammed; Stadler, Anja; Herbst, Michael; Montzka, Carsten; Pätzold, Stefan; Weihermüller, Lutz; van der Kruk, Jan; Vereecken, Harry

    2013-04-01

    Morphological remnants of an inactive river system that has been filled by younger sediments can provide datable proxies about past climatic conditions. However, sediment composition of their infillings is a challenge for agriculture, in particular for precision agriculture. Differential crop development and yield reduction are often a consequence of lateral and vertical textural inhomogeneities. Several studies have shown that buried river systems can be traced by the use of remote sensing. However, the appearance of crop marks strongly depends on environmental conditions, and therefore, the reliance of remotely acquired data can become time and cost expensive. Soil physical properties which are related to textural differences can be mapped fast and cost-effective by the use of near surface geophysics. Especially electromagnetic induction (EMI), which measures soil apparent conductivity (ECa), has become a tool of choice to characterize large areas in high resolution. The introduction of multiple coil EMI systems as well as the quantification of respective measurements enables a reliable multilayer inversion. The aim of this study was to map a postglacial river system on agricultural fields and to mark out buried remains such as trenches and bomb craters of World War II. In summer 2012 ten fields (17 ha) were mapped with the CMD MiniExplorer, a multiple coil EMI system especially appropriate for near surface applications, after the harvest of winter wheat and sugar beet. At elevated sandy sites meander like patterns with higher conductivity were mapped. ECa measurements were verified by textural data taken from directed soil samples and vertical ECa logs. Sediment thickness was evaluated on soil cores and electrical resistivity tomography (ERT) transects. Furthermore, ERT quantified ECa measurements were correlated with satellite as well as destructive derived leaf area index (LAI) measurements. In 3 of 71 LAI maps derived by multispectral RapidEye imagery crop

  12. Evaluation of SIR-A (Shuttle Imaging Radar) images from the Tres Marias region (Minas Gerais State, Brazil) using derived spatial features and registration with MSS-LANDSAT images

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Kux, H. J. H.; Dutra, L. V.

    1984-01-01

    Two image processing experiments are described using a MSS-LANDSAT scene from the Tres Marias region and a shuttle Imaging Radar SIR-A image digitized by a vidicon scanner. In the first experiment the study area is analyzed using the original and preprocessed SIR-A image data. The following thematic classes are obtained: (1) water, (2) dense savanna vegetation, (3) sparse savanna vegetation, (4) reforestation areas and (5) bare soil areas. In the second experiment, the SIR-A image was registered together with MSS-LANDSAT bands five, six, and seven. The same five classes mentioned above are obtained. These results are compared with those obtained using solely MSS-LANDSAT data. The spatial information as well as coregistered SIR-A and MSS-LANDSAT data can increase the separability between classes, as compared to the use of raw SIR-A data solely.

  13. The IVS data input to ITRF2014

    NASA Astrophysics Data System (ADS)

    Nothnagel, Axel; Alef, Walter; Amagai, Jun; Andersen, Per Helge; Andreeva, Tatiana; Artz, Thomas; Bachmann, Sabine; Barache, Christophe; Baudry, Alain; Bauernfeind, Erhard; Baver, Karen; Beaudoin, Christopher; Behrend, Dirk; Bellanger, Antoine; Berdnikov, Anton; Bergman, Per; Bernhart, Simone; Bertarini, Alessandra; Bianco, Giuseppe; Bielmaier, Ewald; Boboltz, David; Böhm, Johannes; Böhm, Sigrid; Boer, Armin; Bolotin, Sergei; Bougeard, Mireille; Bourda, Geraldine; Buttaccio, Salvo; Cannizzaro, Letizia; Cappallo, Roger; Carlson, Brent; Carter, Merri Sue; Charlot, Patrick; Chen, Chenyu; Chen, Maozheng; Cho, Jungho; Clark, Thomas; Collioud, Arnaud; Colomer, Francisco; Colucci, Giuseppe; Combrinck, Ludwig; Conway, John; Corey, Brian; Curtis, Ronald; Dassing, Reiner; Davis, Maria; de-Vicente, Pablo; De Witt, Aletha; Diakov, Alexey; Dickey, John; Diegel, Irv; Doi, Koichiro; Drewes, Hermann; Dube, Maurice; Elgered, Gunnar; Engelhardt, Gerald; Evangelista, Mark; Fan, Qingyuan; Fedotov, Leonid; Fey, Alan; Figueroa, Ricardo; Fukuzaki, Yoshihiro; Gambis, Daniel; Garcia-Espada, Susana; Gaume, Ralph; Gaylard, Michael; Geiger, Nicole; Gipson, John; Gomez, Frank; Gomez-Gonzalez, Jesus; Gordon, David; Govind, Ramesh; Gubanov, Vadim; Gulyaev, Sergei; Haas, Ruediger; Hall, David; Halsig, Sebastian; Hammargren, Roger; Hase, Hayo; Heinkelmann, Robert; Helldner, Leif; Herrera, Cristian; Himwich, Ed; Hobiger, Thomas; Holst, Christoph; Hong, Xiaoyu; Honma, Mareki; Huang, Xinyong; Hugentobler, Urs; Ichikawa, Ryuichi; Iddink, Andreas; Ihde, Johannes; Ilijin, Gennadiy; Ipatov, Alexander; Ipatova, Irina; Ishihara, Misao; Ivanov, D. V.; Jacobs, Chris; Jike, Takaaki; Johansson, Karl-Ake; Johnson, Heidi; Johnston, Kenneth; Ju, Hyunhee; Karasawa, Masao; Kaufmann, Pierre; Kawabata, Ryoji; Kawaguchi, Noriyuki; Kawai, Eiji; Kaydanovsky, Michael; Kharinov, Mikhail; Kobayashi, Hideyuki; Kokado, Kensuke; Kondo, Tetsuro; Korkin, Edward; Koyama, Yasuhiro; Krasna, Hana; Kronschnabl, Gerhard; Kurdubov, Sergey; Kurihara, Shinobu; Kuroda, Jiro; Kwak, Younghee; La Porta, Laura; Labelle, Ruth; Lamb, Doug; Lambert, Sébastien; Langkaas, Line; Lanotte, Roberto; Lavrov, Alexey; Le Bail, Karine; Leek, Judith; Li, Bing; Li, Huihua; Li, Jinling; Liang, Shiguang; Lindqvist, Michael; Liu, Xiang; Loesler, Michael; Long, Jim; Lonsdale, Colin; Lovell, Jim; Lowe, Stephen; Lucena, Antonio; Luzum, Brian; Ma, Chopo; Ma, Jun; Maccaferri, Giuseppe; Machida, Morito; MacMillan, Dan; Madzak, Matthias; Malkin, Zinovy; Manabe, Seiji; Mantovani, Franco; Mardyshkin, Vyacheslav; Marshalov, Dmitry; Mathiassen, Geir; Matsuzaka, Shigeru; McCarthy, Dennis; Melnikov, Alexey; Michailov, Andrey; Miller, Natalia; Mitchell, Donald; Mora-Diaz, Julian Andres; Mueskens, Arno; Mukai, Yasuko; Nanni, Mauro; Natusch, Tim; Negusini, Monia; Neidhardt, Alexander; Nickola, Marisa; Nicolson, George; Niell, Arthur; Nikitin, Pavel; Nilsson, Tobias; Ning, Tong; Nishikawa, Takashi; Noll, Carey; Nozawa, Kentarou; Ogaja, Clement; Oh, Hongjong; Olofsson, Hans; Opseth, Per Erik; Orfei, Sandro; Pacione, Rosa; Pazamickas, Katherine; Petrachenko, William; Pettersson, Lars; Pino, Pedro; Plank, Lucia; Ploetz, Christian; Poirier, Michael; Poutanen, Markku; Qian, Zhihan; Quick, Jonathan; Rahimov, Ismail; Redmond, Jay; Reid, Brett; Reynolds, John; Richter, Bernd; Rioja, Maria; Romero-Wolf, Andres; Ruszczyk, Chester; Salnikov, Alexander; Sarti, Pierguido; Schatz, Raimund; Scherneck, Hans-Georg; Schiavone, Francesco; Schreiber, Ulrich; Schuh, Harald; Schwarz, Walter; Sciarretta, Cecilia; Searle, Anthony; Sekido, Mamoru; Seitz, Manuela; Shao, Minghui; Shibuya, Kazuo; Shu, Fengchun; Sieber, Moritz; Skjaeveland, Asmund; Skurikhina, Elena; Smolentsev, Sergey; Smythe, Dan; Sousa, Don; Sovers, Ojars; Stanford, Laura; Stanghellini, Carlo; Steppe, Alan; Strand, Rich; Sun, Jing; Surkis, Igor; Takashima, Kazuhiro; Takefuji, Kazuhiro; Takiguchi, Hiroshi; Tamura, Yoshiaki; Tanabe, Tadashi; Tanir, Emine; Tao, An; Tateyama, Claudio; Teke, Kamil; Thomas, Cynthia; Thorandt, Volkmar; Thornton, Bruce; Tierno Ros, Claudia; Titov, Oleg; Titus, Mike; Tomasi, Paolo; Tornatore, Vincenza; Trigilio, Corrado; Trofimov, Dmitriy; Tsutsumi, Masanori; Tuccari, Gino; Tzioumis, Tasso; Ujihara, Hideki; Ullrich, Dieter; Uunila, Minttu; Venturi, Tiziana; Vespe, Francesco; Vityazev, Veniamin; Volvach, Alexandr; Vytnov, Alexander; Wang, Guangli; Wang, Jinqing; Wang, Lingling; Wang, Na; Wang, Shiqiang; Wei, Wenren; Weston, Stuart; Whitney, Alan; Wojdziak, Reiner; Yatskiv, Yaroslav; Yang, Wenjun; Ye, Shuhua; Yi, Sangoh; Yusup, Aili; Zapata, Octavio; Zeitlhoefler, Reinhard; Zhang, Hua; Zhang, Ming; Zhang, Xiuzhong; Zhao, Rongbing; Zheng, Weimin; Zhou, Ruixian; Zubko, Nataliya

    2015-01-01

    Very Long Baseline Interferometry (VLBI) is a primary space-geodetic technique for determining precise coordinates on the Earth, for monitoring the variable Earth rotation and orientation with highest precision, and for deriving many other parameters of the Earth system. The International VLBI Service for Geodesy and Astrometry (IVS, http://ivscc.gsfc.nasa.gov/) is a service of the International Association of Geodesy (IAG) and the International Astronomical Union (IAU). The datasets published here are the results of individual Very Long Baseline Interferometry (VLBI) sessions in the form of normal equations in SINEX 2.0 format (http://www.iers.org/IERS/EN/Organization/AnalysisCoordinator/SinexFormat/sinex.html, the SINEX 2.0 description is attached as pdf) provided by IVS as the input for the next release of the International Terrestrial Reference System (ITRF): ITRF2014. This is a new version of the ITRF2008 release (Bockmann et al., 2009). For each session/ file, the normal equation systems contain elements for the coordinate components of all stations having participated in the respective session as well as for the Earth orientation parameters (x-pole, y-pole, UT1 and its time derivatives plus offset to the IAU2006 precession-nutation components dX, dY (https://www.iau.org/static/resolutions/IAU2006_Resol1.pdf). The terrestrial part is free of datum. The data sets are the result of a weighted combination of the input of several IVS Analysis Centers. The IVS contribution for ITRF2014 is described in Bachmann et al (2015), Schuh and Behrend (2012) provide a general overview on the VLBI method, details on the internal data handling can be found at Behrend (2013).

  14. Single Particle Dynamic Imaging and Fe3+ Sensing with Bright Carbon Dots Derived from Bovine Serum Albumin Proteins

    NASA Astrophysics Data System (ADS)

    Yang, Qingxiu; Wei, Lin; Zheng, Xuanfang; Xiao, Lehui

    2015-12-01

    In this work, we demonstrated a convenient and green strategy for the synthesis of highly luminescent and water-soluble carbon dots (Cdots) by carbonizing carbon precursors, i.e., Bovine serum albumin (BSA) nanoparticles, in water solution. Without post surface modification, the as-synthesized Cdots exhibit fluorescence quantum yield (Q.Y.) as high as 34.8% and display superior colloidal stability not only in concentrated salt solutions (e.g. 2 M KCl) but also in a wide range of pH solutions. According to the FT-IR measurements, the Cdots contain many carboxyl groups, providing a versatile route for further chemical and biological functionalization. Through conjugation of Cdots with the transacting activator of transcription (TAT) peptide (a kind of cell penetration peptide (CPP)) derived from human immunodeficiency virus (HIV), it is possible to directly monitor the dynamic interactions of CPP with living cell membrane at single particle level. Furthermore, these Cdots also exhibit a dosage-dependent selectivity toward Fe3+ among other metal ions, including K+, Na+, Mg2+, Hg2+, Co2+, Cu2+, Pb2+ and Al3+. We believed that the Cdots prepared by this strategy would display promising applications in various areas, including analytical chemistry, nanomedicine, biochemistry and so on.

  15. Single Particle Dynamic Imaging and Fe3+ Sensing with Bright Carbon Dots Derived from Bovine Serum Albumin Proteins

    PubMed Central

    Yang, Qingxiu; Wei, Lin; Zheng, Xuanfang; Xiao, Lehui

    2015-01-01

    In this work, we demonstrated a convenient and green strategy for the synthesis of highly luminescent and water-soluble carbon dots (Cdots) by carbonizing carbon precursors, i.e., Bovine serum albumin (BSA) nanoparticles, in water solution. Without post surface modification, the as-synthesized Cdots exhibit fluorescence quantum yield (Q.Y.) as high as 34.8% and display superior colloidal stability not only in concentrated salt solutions (e.g. 2 M KCl) but also in a wide range of pH solutions. According to the FT-IR measurements, the Cdots contain many carboxyl groups, providing a versatile route for further chemical and biological functionalization. Through conjugation of Cdots with the transacting activator of transcription (TAT) peptide (a kind of cell penetration peptide (CPP)) derived from human immunodeficiency virus (HIV), it is possible to directly monitor the dynamic interactions of CPP with living cell membrane at single particle level. Furthermore, these Cdots also exhibit a dosage-dependent selectivity toward Fe3+ among other metal ions, including K+, Na+, Mg2+, Hg2+, Co2+, Cu2+, Pb2+ and Al3+. We believed that the Cdots prepared by this strategy would display promising applications in various areas, including analytical chemistry, nanomedicine, biochemistry and so on. PMID:26634992

  16. Use of paramagnetic chelated metal derivatives of polysaccharides and spin-labeled polysaccharides as contrast agents in magnetic resonance imaging

    SciTech Connect

    Bligh, S.W.; Harding, C.T.; Sadler, P.J.; Bulman, R.A.; Bydder, G.M.; Pennock, J.M.; Kelly, J.D.; Latham, I.A.; Marriott, J.A. )

    1991-02-01

    Soluble and insoluble polysaccharides were derivatized with diethylenetriaminepentaacetic acid (DTPA) and/or spin-labeled with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO). Polysaccharides derivatized with DTPA were prepared via cyanogen bromide activation, coupling to a diamine linker, and to DTPA anhydride. Spin-labeled polysaccharides were also prepared via cyanogen bromide activation. The extent of derivatization for dextran (18 kDa) was about 120 glucose units per DTPA, and for cellulose and starch about 15-30 units per DTPA. For spin-labeled polysaccharides, the average loading ranged from 1 nitroxide per 16 glucose units for starch to 181 for dextran (82 kDa). These derivatized paramagnetic polysaccharides were shown to be more effective relaxants than the small paramagnetic molecules alone. Both soluble and insoluble polysaccharide-linker-DTPA-Gd(3) complexes were effectively cleared from the body (rats) after oral administration. After intravenous administration, the biodistribution of dextran-linker-DTPA-Gd(3) complexes differed significantly from that of GdDTPA. Reduction of the nitroxide by ascorbic acid was retarded in the polysaccharide derivatives, particularly in starch derivatized with both nitroxide and linker-DTPA-Cu(2). These agents showed contrast enhancement in the gastrointestinal tract of rabbits.

  17. Multiscale climatological albedo look-up maps derived from moderate resolution imaging spectroradiometer BRDF/albedo products

    NASA Astrophysics Data System (ADS)

    Gao, Feng; He, Tao; Wang, Zhuosen; Ghimire, Bardan; Shuai, Yanmin; Masek, Jeffrey; Schaaf, Crystal; Williams, Christopher

    2014-01-01

    Surface albedo determines radiative forcing and is a key parameter for driving Earth's climate. Better characterization of surface albedo for individual land cover types can reduce the uncertainty in estimating changes to Earth's radiation balance due to land cover change. This paper presents albedo look-up maps (LUMs) using a multiscale hierarchical approach based on moderate resolution imaging spectroradiometer (MODIS) bidirectional reflectance distribution function (BRDF)/albedo products and Landsat imagery. Ten years (2001 to 2011) of MODIS BRDF/albedo products were used to generate global albedo climatology. Albedo LUMs of land cover classes defined by the International Geosphere-Biosphere Programme (IGBP) at multiple spatial resolutions were generated. The albedo LUMs included monthly statistics of white-sky (diffuse) and black-sky (direct) albedo for each IGBP class for visible, near-infrared, and shortwave broadband under both snow-free and snow-covered conditions. The albedo LUMs were assessed by using the annual MODIS IGBP land cover map and the projected land use scenarios from the Intergovernmental Panel on Climate Change land-use harmonization project. The comparisons between the reconstructed albedo and the MODIS albedo data product show good agreement. The LUMs provide high temporal and spatial resolution global albedo statistics without gaps for investigating albedo variations under different land cover scenarios and could be used for land surface modeling.

  18. In Vivo therapeutic potential of mesenchymal stem cell-derived extracellular vesicles with optical imaging reporter in tumor mice model.

    PubMed

    Kalimuthu, Senthilkumar; Gangadaran, Prakash; Li, Xiu Juan; Oh, Ji Min; Lee, Ho Won; Jeong, Shin Young; Lee, Sang-Woo; Lee, Jaetae; Ahn, Byeong-Cheol

    2016-01-01

    Mesenchymal stem cells (MSCs) can be used as a therapeutic armor for cancer. Extracellular vesicles (EVs) from MSCs have been evaluated for anticancer effects. In vivo targeting of EVs to the tumor is an essential requirement for successful therapy. Therefore, non-invasive methods of monitoring EVs in animal models are crucial for developing EV-based cancer therapies. The present study to develop bioluminescent EVs using Renilla luciferase (Rluc)-expressing MSCs. The EVs from MSC/Rluc cells (EV-MSC/Rluc) were visualized in a murine lung cancer model. The anticancer effects of EVs on Lewis lung carcinoma (LLC) and other cancer cells were assessed. EV-MSC/Rluc were visualized in vivo in the LLC-efffuc tumor model using optical imaging. The induction of apoptosis was confirmed with Annexin-V and propidium iodide staining. EV-MSC/Rluc and EV-MSCs showed a significant cytotoxic effect against LLC-effluc cells and 4T1; however, no significant effect on CT26, B16F10, TC1 cells. Moreover, EV-MSC/Rluc inhibited LLC tumor growth in vivo. EV-MSC/Rluc-mediated LLC tumor inhibitory mechanism revealed the decreased pERK and increased cleaved caspase 3 and cleaved PARP. We successfully developed luminescent EV-MSC/Rluc that have a therapeutic effect on LLC cells in both in vitro and in vivo. This bioluminescent EV system can be used to optimize EV-based therapy. PMID:27452924

  19. Representations of modality-specific affective processing for visual and auditory stimuli derived from functional magnetic resonance imaging data.

    PubMed

    Shinkareva, Svetlana V; Wang, Jing; Kim, Jongwan; Facciani, Matthew J; Baucom, Laura B; Wedell, Douglas H

    2014-07-01

    There is converging evidence that people rapidly and automatically encode affective dimensions of objects, events, and environments that they encounter in the normal course of their daily routines. An important research question is whether affective representations differ with sensory modality. This research examined the nature of the dependency of affect and sensory modality at a whole-brain level of analysis in an incidental affective processing paradigm. Participants were presented with picture and sound stimuli that differed in positive or negative valence in an event-related functional magnetic resonance imaging experiment. Global statistical tests, applied at a level of the individual, demonstrated significant sensitivity to valence within modality, but not valence across modalities. Modality-general and modality-specific valence hypotheses predict distinctly different multidimensional patterns of the stimulus conditions. Examination of lower dimensional representation of the data demonstrated separable dimensions for valence processing within each modality. These results provide support for modality-specific valence processing in an incidental affective processing paradigm at a whole-brain level of analysis. Future research should further investigate how stimulus-specific emotional decoding may be mediated by the physical properties of the stimuli.

  20. Activatable fluorescent cys-diabody conjugated with indocyanine green derivative: consideration of fluorescent catabolite kinetics on molecular imaging.

    PubMed

    Sano, Kohei; Nakajima, Takahito; Ali, Towhid; Bartlett, Derek W; Wu, Anna M; Kim, Insook; Paik, Chang H; Choyke, Peter L; Kobayashi, Hisataka

    2013-10-01

    Antibody fragments including diabodies have more desirable pharmacokinetic characteristics than whole antibodies. An activatable optical imaging probe based on a cys-diabody targeting prostate-specific membrane antigen conjugated with the near-infrared fluorophore, indocyanine green (ICG), was designed such that it can only be activated when bound to the tumor, leading to high signal-to-background ratios. We employed short polyethylene glycol (PEG) linkers between the ICG and the reactive functional group (Sulfo-OSu group), resulting in covalent conjugation of ICG to the cys-diabody, which led to lower dissociation of ICG from cys-diabody early after injection, reducing hepatic uptake. However, unexpectedly, high and long-term fluorescence was observed in the kidneys, liver, and blood pool more than 1 h after injection of the cys-diabody PEG-ICG conjugate. A biodistribution study using I125-labeled cys-diabody-ICG showed immediate uptake in the kidneys followed by a rapid decrease, while gastric activity increased due to released radioiodine during rapid cys-diabody-ICG catabolism in the kidneys. To avoid this catabolic pathway, it would be preferable to use antibody fragments large enough not to be filtered through glomerulus or to conjugate the fragments with fluorescent dyes that are readily excreted into urine when cleaved from the cys-diabody to achieve high tumor-specific detection.

  1. Live Cell Imaging During Germination Reveals Dynamic Tubular Structures Derived from Protein Storage Vacuoles of Barley Aleurone Cells.

    PubMed

    Ibl, Verena; Stoger, Eva

    2014-01-01

    The germination of cereal seeds is a rapid developmental process in which the endomembrane system undergoes a series of dynamic morphological changes to mobilize storage compounds. The changing ultrastructure of protein storage vacuoles (PSVs) in the cells of the aleurone layer has been investigated in the past, but generally this involved inferences drawn from static pictures representing different developmental stages. We used live cell imaging in transgenic barley plants expressing a TIP3-GFP fusion protein as a fluorescent PSV marker to follow in real time the spatially and temporally regulated remodeling and reshaping of PSVs during germination. During late-stage germination, we observed thin, tubular structures extending from PSVs in an actin-dependent manner. No extensions were detected following the disruption of actin microfilaments, while microtubules did not appear to be involved in the process. The previously-undetected tubular PSV structures were characterized by complex movements, fusion events and a dynamic morphology. Their function during germination remains unknown, but might be related to the transport of solutes and metabolites.

  2. Comparison of special sensor microwave imager vector wind stress with model-derived and subjective products for the tropical Pacific

    SciTech Connect

    Busalacchi, A.J.; Atlas, R.M. ); Hackert, E.C. )

    1993-04-15

    The authors address the role of wind data in the development of general ocean circulation model studies. Satellite scatterometry has been proposed, but only minimally implemented, as a means of providing global information on ocean surface wind speed and direction. However, a number of microwave systems have monitored wind speed information on a global scale, some over extended periods of time, which provide day-to-day coverage, compared to the sparse information available from ship or buoy data collections. Recently data from the Defense Meteorological Satellite Program special sensor microwave imager, for the period July 1987 to June 1988 was utilized, in conjunction with conventional data collections to build a model system which included wind directions. The authors here take this data set and use it as a forcing function in a general ocean circulation model study. Their interest is in knowing if this gives results comparable with such data sets built from much more limited observational and subjective analysis. The results are encouraging, and they suggest reexamination of earlier information collections with the idea of reconstructing ocean surface wind speed and direction data sets to be used in further modeling studies.

  3. In Vivo therapeutic potential of mesenchymal stem cell-derived extracellular vesicles with optical imaging reporter in tumor mice model

    PubMed Central

    Kalimuthu, Senthilkumar; Gangadaran, Prakash; Li, Xiu Juan; Oh, Ji Min; Lee, Ho Won; Jeong, Shin Young; Lee, Sang-Woo; Lee, Jaetae; Ahn, Byeong-Cheol

    2016-01-01

    Mesenchymal stem cells (MSCs) can be used as a therapeutic armor for cancer. Extracellular vesicles (EVs) from MSCs have been evaluated for anticancer effects. In vivo targeting of EVs to the tumor is an essential requirement for successful therapy. Therefore, non-invasive methods of monitoring EVs in animal models are crucial for developing EV-based cancer therapies. The present study to develop bioluminescent EVs using Renilla luciferase (Rluc)-expressing MSCs. The EVs from MSC/Rluc cells (EV-MSC/Rluc) were visualized in a murine lung cancer model. The anticancer effects of EVs on Lewis lung carcinoma (LLC) and other cancer cells were assessed. EV-MSC/Rluc were visualized in vivo in the LLC-efffuc tumor model using optical imaging. The induction of apoptosis was confirmed with Annexin-V and propidium iodide staining. EV-MSC/Rluc and EV-MSCs showed a significant cytotoxic effect against LLC-effluc cells and 4T1; however, no significant effect on CT26, B16F10, TC1 cells. Moreover, EV-MSC/Rluc inhibited LLC tumor growth in vivo. EV-MSC/Rluc-mediated LLC tumor inhibitory mechanism revealed the decreased pERK and increased cleaved caspase 3 and cleaved PARP. We successfully developed luminescent EV-MSC/Rluc that have a therapeutic effect on LLC cells in both in vitro and in vivo. This bioluminescent EV system can be used to optimize EV-based therapy. PMID:27452924

  4. Hemodynamic assessment of partial mechanical circulatory support: data derived from computed tomography angiographic images and computational fluid dynamics

    PubMed Central

    Karmonik, Christof; Rengier, Fabian; Meredig, Hagen; Farag, Mina Berty; Müller-Eschner, Matthias; Arif, Rawa; Popov, Aron-Frederik; Kauczor, Hans-Ulrich; Karck, Matthias; Ruhparwar, Arjang

    2015-01-01

    Partial mechanical circulatory support represents a new concept for the treatment of advanced heart failure. The Circulite Synergy Micro Pump®, where the inflow cannula is connected to the left atrium and the outflow cannula to the right subclavian artery, was one of the first devices to introduce this concept to the clinic. Using computational fluid dynamics (CFD) simulations, hemodynamics in the aortic tree was visualized and quantified from computed tomography angiographic (CTA) images in two patients. A realistic computational model was created by integrating flow information from the native heart and from the Circulite device. Diastolic flow augmentation in the descending aorta but competing/antagonizing flow patterns in the proximal innominate artery was observed. Velocity time curves in the ascending aorta correlated well with those in the left common carotid, the left subclavian and the descending aorta but poorly with the one in the innominate. Our results demonstrate that CFD may be useful in providing a better understanding of the main flow patterns in mechanical circulatory support devices. PMID:25984458

  5. Activatable fluorescent cys-diabody conjugated with indocyanine green derivative: consideration of fluorescent catabolite kinetics on molecular imaging

    PubMed Central

    Sano, Kohei; Nakajima, Takahito; Ali, Towhid; Bartlett, Derek W.; Wu, Anna M.; Kim, Insook; Paik, Chang H.; Choyke, Peter L.

    2013-01-01

    Abstract. Antibody fragments including diabodies have more desirable pharmacokinetic characteristics than whole antibodies. An activatable optical imaging probe based on a cys-diabody targeting prostate-specific membrane antigen conjugated with the near-infrared fluorophore, indocyanine green (ICG), was designed such that it can only be activated when bound to the tumor, leading to high signal-to-background ratios. We employed short polyethylene glycol (PEG) linkers between the ICG and the reactive functional group (Sulfo-OSu group), resulting in covalent conjugation of ICG to the cys-diabody, which led to lower dissociation of ICG from cys-diabody early after injection, reducing hepatic uptake. However, unexpectedly, high and long-term fluorescence was observed in the kidneys, liver, and blood pool more than 1 h after injection of the cys-diabody PEG-ICG conjugate. A biodistribution study using I125-labeled cys-diabody-ICG showed immediate uptake in the kidneys followed by a rapid decrease, while gastric activity increased due to released radioiodine during rapid cys-diabody-ICG catabolism in the kidneys. To avoid this catabolic pathway, it would be preferable to use antibody fragments large enough not to be filtered through glomerulus or to conjugate the fragments with fluorescent dyes that are readily excreted into urine when cleaved from the cys-diabody to achieve high tumor-specific detection. PMID:23752742

  6. Spatial Habitat Features Derived from Multiparametric Magnetic Resonance Imaging Data Are Associated with Molecular Subtype and 12-Month Survival Status in Glioblastoma Multiforme

    PubMed Central

    Lee, Joonsang; Narang, Shivali; Martinez, Juan; Rao, Ganesh; Rao, Arvind

    2015-01-01

    One of the most common and aggressive malignant brain tumors is Glioblastoma multiforme. Despite the multimodality treatment such as radiation therapy and chemotherapy (temozolomide: TMZ), the median survival rate of glioblastoma patient is less than 15 months. In this study, we investigated the association between measures of spatial diversity derived from spatial point pattern analysis of multiparametric magnetic resonance imaging (MRI) data with molecular status as well as 12-month survival in glioblastoma. We obtained 27 measures of spatial proximity (diversity) via spatial point pattern analysis of multiparametric T1 post-contrast and T2 fluid-attenuated inversion recovery MRI data. These measures were used to predict 12-month survival status (≤12 or >12 months) in 74 glioblastoma patients. Kaplan-Meier with receiver operating characteristic analyses was used to assess the relationship between derived spatial features and 12-month survival status as well as molecular subtype status in patients with glioblastoma. Kaplan-Meier survival analysis revealed that 14 spatial features were capable of stratifying overall survival in a statistically significant manner. For prediction of 12-month survival status based on these diversity indices, sensitivity and specificity were 0.86 and 0.64, respectively. The area under the receiver operating characteristic curve and the accuracy were 0.76 and 0.75, respectively. For prediction of molecular subtype status, proneural subtype shows highest accuracy of 0.93 among all molecular subtypes based on receiver operating characteristic analysis. We find that measures of spatial diversity from point pattern analysis of intensity habitats from T1 post-contrast and T2 fluid-attenuated inversion recovery images are associated with both tumor subtype status and 12-month survival status and may therefore be useful indicators of patient prognosis, in addition to providing potential guidance for molecularly-targeted therapies in

  7. Digital image processing of vascular angiograms

    NASA Technical Reports Server (NTRS)

    Selzer, R. H.; Blankenhorn, D. H.; Beckenbach, E. S.; Crawford, D. W.; Brooks, S. H.

    1975-01-01

    A computer image processing technique was developed to estimate the degree of atherosclerosis in the human femoral artery. With an angiographic film of the vessel as input, the computer was programmed to estimate vessel abnormality through a series of measurements, some derived primarily from the vessel edge information and others from optical density variations within the lumen shadow. These measurements were combined into an atherosclerosis index, which was found to correlate well with both visual and chemical estimates of atherosclerotic disease.

  8. Novel fluorine-18 labeled 5-(1-pyrrolidinylsulfonyl)-7-azaisatin derivatives as potential PET tracers for in vivo imaging of activated caspases in apoptosis.

    PubMed

    Waldmann, Christopher M; Hermann, Sven; Faust, Andreas; Riemann, Burkhard; Schober, Otmar; Schäfers, Michael; Haufe, Günter; Kopka, Klaus

    2015-09-01

    The programmed type I cell death, defined as apoptosis, is induced by complex regulated signaling pathways that trigger the intracellular activation of executioner caspases-3, -6 and -7. Once activated, these enzymes initiate cellular death through cleavage of proteins which are responsible for DNA repair, signaling and cell maintenance. Several radiofluorinated inhibitors of caspases-3 and -7, comprising a moderate lipophilic 5-(1-pyrrolidinylsulfonyl)isatin lead structure, are currently being investigated for imaging apoptosis in vivo by us and others. The purpose of this study was to increase the intrinsic hydrophilicity of the aforementioned lead structure to alter the pharmacokinetic behavior of the resulting caspase-3 and -7 targeted radiotracer. Therefore, fluorinated and non-fluorinated derivatives of 5-(1-pyrrolidinylsulfonyl)-7-azaisatin were synthesized and tested for their inhibitory properties against recombinant caspases-3 and -7. Fluorine-18 has been introduced by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) of an alkyne precursor with 2-[(18)F]fluoroethylazide. Using dynamic micro-PET biodistribution studies in vivo the kinetic behavior of one promising PET-compatible 5-pyrrolidinylsulfonyl 7-azaisatin derivative has been compared to a previously described isatin based radiotracer.

  9. Discovery of a fluorinated 4-oxo-quinoline derivative as a potential positron emission tomography radiotracer for imaging cannabinoid receptor type 2.

    PubMed

    Slavik, Roger; Müller Herde, Adrienne; Haider, Ahmed; Krämer, Stefanie D; Weber, Markus; Schibli, Roger; Ametamey, Simon M; Mu, Linjing

    2016-09-01

    The cannabinoid receptor type 2 (CB2) is part of the endocannabinoid system and has gained growing attention in recent years because of its important role in neuroinflammatory/neurodegenerative diseases. Recently, we reported on a carbon-11 labeled 4-oxo-quinoline derivative, designated RS-016, as a promising radiotracer for imaging CB2 using PET. In this study, three novel fluorinated analogs of RS-016 were designed, synthesized, and pharmacologically evaluated. The results of our efforts led to the identification of N-(1-adamantyl)-1-(2-(2-fluoroethoxy)ethyl)-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxamide (RS-126) as the most potent candidate for evaluation as a CB2 PET ligand. [(18) F]RS-126 was obtained in ≥ 99% radiochemical purity with an average specific radioactivity of 98 GBq/μmol at the end of the radiosynthesis. [(18) F]RS-126 showed a logD7.4 value of 1.99 and is stable in vitro in rat and human plasma over 120 min, whereas 55% intact parent compound was found in vivo in rat blood plasma at 10 min post injection. In vitro autoradiographic studies with CB2-positive rat spleen tissue revealed high and blockable binding which was confirmed in in vivo displacement experiments with rats by dynamic PET imaging. Ex vivo biodistribution studies confirmed accumulation of [(18) F]RS-126 in rat spleen with a specificity of 79% under blocking conditions. The moderate elevated CB2 levels in LPS-treated mice brain did not permit the detection of CB2 by [(18) F]RS-126 using PET imaging. In summary, [(18) F]RS-126 demonstrated high specificity toward CB2 receptor in vitro and in vivo and is a promising radioligand for imaging CB2 receptor expression. Cannabinoid receptor type 2 (CB2) is an interesting target for PET imaging. Specific binding of [(18) F]RS-126 in CB2-positive spleen tissue (white arrow head) was confirmed in in vivo displacement experiments with rats. Time activity curve of [(18) F]RS-126 in the spleen after the addition of GW405833 (CB2

  10. Intravital and whole-organ imaging reveals capture of melanoma-derived antigen by lymph node subcapsular macrophages leading to widespread deposition on follicular dendritic cells.

    PubMed

    Moalli, Federica; Proulx, Steven T; Schwendener, Reto; Detmar, Michael; Schlapbach, Christoph; Stein, Jens V

    2015-01-01

    Aberrant antigens expressed by tumor cells, such as in melanoma, are often associated with humoral immune responses, which may in turn influence tumor progression. Despite recent data showing the central role of adaptive immune responses on cancer spread or control, it remains poorly understood where and how tumor-derived antigen (TDA) induces a humoral immune response in tumor-bearing hosts. Based on our observation of TDA accumulation in B cell areas of lymph nodes (LNs) from melanoma patients, we developed a pre-metastatic B16.F10 melanoma model expressing a fluorescent fusion protein, tandem dimer tomato, as a surrogate TDA. Using intravital two-photon microscopy (2PM) and whole-mount 3D LN imaging of tumor-draining LNs in immunocompetent mice, we report an unexpectedly widespread accumulation of TDA on follicular dendritic cells (FDCs), which were dynamically scanned by circulating B cells. Furthermore, 2PM imaging identified macrophages located in the subcapsular sinus of tumor-draining LNs to capture subcellular TDA-containing particles arriving in afferent lymph. As a consequence, depletion of macrophages or genetic ablation of B cells and FDCs resulted in dramatically reduced TDA capture in tumor-draining LNs. In sum, we identified a major pathway for the induction of humoral responses in a melanoma model, which may be exploitable to manipulate anti-TDA antibody production during cancer immunotherapy. PMID:25821451

  11. Imaging the time-integrated cerebral metabolic activity with subcellular resolution through nanometer-scale detection of biosynthetic products deriving from (13)C-glucose.

    PubMed

    Takado, Yuhei; Knott, Graham; Humbel, Bruno M; Masoodi, Mojgan; Escrig, Stéphane; Meibom, Anders; Comment, Arnaud

    2015-11-01

    Glucose is the primary source of energy for the brain but also an important source of building blocks for proteins, lipids, and nucleic acids. Little is known about the use of glucose for biosynthesis in tissues at the cellular level. We demonstrate that local cerebral metabolic activity can be mapped in mouse brain tissue by quantitatively imaging the biosynthetic products deriving from [U-(13)C]glucose metabolism using a combination of in situ electron microscopy and secondary ion mass-spectroscopy (NanoSIMS). Images of the (13)C-label incorporated into cerebral ultrastructure with ca. 100 nm resolution allowed us to determine the timescale on which the metabolic products of glucose are incorporated into different cells, their sub-compartments and organelles. These were mapped in astrocytes and neurons in the different layers of the motor cortex. We see evidence for high metabolic activity in neurons via the nucleus (13)C enrichment. We observe that in all the major cell compartments, such as e.g. nucleus and Golgi apparatus, neurons incorporate substantially higher concentrations of (13)C-label than astrocytes. PMID:26409162

  12. Molecular Imaging for Comparison of Different Growth Factors on Bone Marrow-Derived Mesenchymal Stromal Cells' Survival and Proliferation In Vivo.

    PubMed

    Qiao, Hongyu; Zhang, Ran; Gao, Lina; Guo, Yanjie; Wang, Jinda; Zhang, Rongqing; Li, Xiujuan; Li, Congye; Chen, Yundai; Cao, Feng

    2016-01-01

    Introduction. Bone marrow-derived mesenchymal stromal cells (BMSCs) have emerged as promising cell candidates but with poor survival after transplantation. This study was designed to investigate the efficacy of VEGF, bFGF, and IGF-1 on BMSCs' viability and proliferation both in vivo and in vitro using bioluminescence imaging (BLI). Methods. BMSCs were isolated from β-actin-Fluc(+) transgenic FVB mice, which constitutively express firefly luciferase. Apoptosis was induced by hypoxia preconditioning for up to 24 h followed by flow cytometry and TUNEL assay. 10(6) BMSCs with/without growth factors were injected subcutaneously into wild type FVB mice's backs. Survival of BMSCs was longitudinally monitored using bioluminescence imaging (BLI) for 5 weeks. Protein expression of Akt, p-Akt, PARP, and caspase-3 was detected by Western blot. Results. Hypoxia-induced apoptosis was significantly attenuated by bFGF and IGF-1 compared with VEGF and control group in vitro (P < 0.05). When combined with matrigel, IGF-1 showed the most beneficial effects in protecting BMSCs from apoptosis in vivo. The phosphorylation of Akt had a higher ratio in the cells from IGF-1 group. Conclusion. IGF-1 could protect BMSCs from hypoxia-induced apoptosis through activation of p-Akt/Akt pathway. PMID:27419126

  13. A ¹¹C-labeled 1,4-dihydroquinoline derivative as a potential PET tracer for imaging of redox status in mouse brain.

    PubMed

    Okamura, Toshimitsu; Okada, Maki; Kikuchi, Tatsuya; Wakizaka, Hidekatsu; Zhang, Ming-Rong

    2015-12-01

    A disturbance in redox balance has been implicated in the pathogenesis of a number of diseases. This study sought to examine the feasibility of imaging brain redox status using a (11)C-labeled dihydroquinoline derivative ([(11)C]DHQ1) for positron emission tomography (PET). The lipophilic PET tracer [(11)C]DHQ1 was rapidly oxidized to its hydrophilic form in mouse brain homogenate. The redox modulators diphenyleneiodonium and apocynin significantly reduced the initial velocity of [(11)C]DHQ1 oxidation, and apocynin also caused concentration-dependent inhibition of the initial velocity. Moreover, [(11)C]DHQ1 readily entered the brain by diffusion after administration and underwent oxidation into the hydrophilic cationic form, which then slowly decreased. By contrast, apocynin treatment inhibited the in vivo oxidation of [(11)C]DHQ1 to the hydrophilic cationic form, leading to a rapid decrease of radioactivity in the brain. Thus, the difference in the [(11)C]DHQ1 kinetics reflects the alteration in redox status caused by apocynin. In conclusion, [(11)C]DHQ1 is a potential PET tracer for imaging of redox status in the living brain.

  14. Intravital and Whole-Organ Imaging Reveals Capture of Melanoma-Derived Antigen by Lymph Node Subcapsular Macrophages Leading to Widespread Deposition on Follicular Dendritic Cells

    PubMed Central

    Moalli, Federica; Proulx, Steven T.; Schwendener, Reto; Detmar, Michael; Schlapbach, Christoph; Stein, Jens V.

    2015-01-01

    Aberrant antigens expressed by tumor cells, such as in melanoma, are often associated with humoral immune responses, which may in turn influence tumor progression. Despite recent data showing the central role of adaptive immune responses on cancer spread or control, it remains poorly understood where and how tumor-derived antigen (TDA) induces a humoral immune response in tumor-bearing hosts. Based on our observation of TDA accumulation in B cell areas of lymph nodes (LNs) from melanoma patients, we developed a pre-metastatic B16.F10 melanoma model expressing a fluorescent fusion protein, tandem dimer tomato, as a surrogate TDA. Using intravital two-photon microscopy (2PM) and whole-mount 3D LN imaging of tumor-draining LNs in immunocompetent mice, we report an unexpectedly widespread accumulation of TDA on follicular dendritic cells (FDCs), which were dynamically scanned by circulating B cells. Furthermore, 2PM imaging identified macrophages located in the subcapsular sinus of tumor-draining LNs to capture subcellular TDA-containing particles arriving in afferent lymph. As a consequence, depletion of macrophages or genetic ablation of B cells and FDCs resulted in dramatically reduced TDA capture in tumor-draining LNs. In sum, we identified a major pathway for the induction of humoral responses in a melanoma model, which may be exploitable to manipulate anti-TDA antibody production during cancer immunotherapy. PMID:25821451

  15. Dendritic Organization of Olfactory Inputs to Medial Amygdala Neurons.

    PubMed

    Keshavarzi, Sepideh; Power, John M; Albers, Eva H H; Sullivan, Robert K S; Sah, Pankaj

    2015-09-23

    The medial amygdala (MeA) is a central hub in the olfactory neural network. It receives vomeronasal information directly from the accessory olfactory bulb (AOB) and main olfactory information largely via odor-processing regions such as the olfactory cortical amygdala (CoA). How these inputs are processed by MeA neurons is poorly understood. Using the GAD67-GFP mouse, we show that MeA principal neurons receive convergent AOB and CoA inputs. Somatically recorded AOB synaptic inputs had slower kinetics than CoA inputs, suggesting that they are electrotonically more distant. Field potential recording, pharmacological manipulation, and Ca(2+) imaging revealed that AOB synapses are confined to distal dendrites and segregated from the proximally located CoA synapses. Moreover, unsynchronized AOB inputs had significantly broader temporal summation that was dependent on the activation of NMDA receptors. These findings show that MeA principal neurons process main and accessory olfactory inputs differentially in distinct dendritic compartments. Significance statement: In most vertebrates, olfactory cues are processed by two largely segregated neural pathways, the main and accessory olfactory systems, which are specialized to detect odors and nonvolatile chemosignals, respectively. Information from these two pathways ultimately converges at higher brain regions, one of the major hubs being the medial amygdala. Little is known about how olfactory inputs are processed by medial amygdala neurons. This study shows that individual principal neurons in this region receive input from both pathways and that these synapses are spatially segregated on their dendritic tree. We provide evidence suggesting that this dendritic segregation leads to distinct input integration and impact on neuronal output; hence, dendritic mechanisms control olfactory processing in the amygdala. PMID:26400933

  16. The derivation and verification of surface reflectances using airborne MSS data and a radiative transfer model

    SciTech Connect

    Ramsey, E.W. III; Jensen, J.R.

    1988-01-01

    Surface reflectance images were derived from airborne MSS data using a radiative transfer model to eliminate atmospheric effects and to derive downwelling irradiances. Input radiative transfer model parameters and Brightness Value (BV) to radiance conversion gain and bias factors were generated for each band using an optimization procedure to minimize the difference between modelled and image BV. Subsequently, reflectance images were derived at five wavelengths from the blue to red bands using the optimized parameters as inputs into the radiative transfer model. Modelled surface reflectance images were evaluated for accuracy by statistical comparison to measured reflectances, and for improved contrast by subjective comparison to the original images. Daedalus DS-1260 MSS bands 3, 4 and 5 modelled reflectances explained 25%, 75% and 72% of the measured reflectance variances, respectively; while bands 2 and 7 correlation were not significant (p < .05). Finally, the generated reflectance images showed dramatic improvement in contrast, revealing textures that were not apparent in the original images. 20 refs., 4 figs., 3 tabs.

  17. Assessment of urban tree growth from structure, nutrients and composition data derived from airborne lidar and imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Gu, H.; Townsend, P. A.; Singh, A.

    2014-12-01

    Urban forests provide important ecosystem services related to climate, nutrients, runoff and aesthetics. Assessment of variations in urban forest growth is critical to urban management and planning, as well as to identify responses to climate and other environmental changes. We estimated annual relative basal area increment by tree rings from 37 plots in Madison, Wisconsin and neighboring municipalities. We related relative basal area growth to variables of vegetation traits derived from remote sensing, including structure (aboveground biomass, diameter, height, basal area, crown width and crown length) from discrete-return airborne lidar, and biochemical variables (foliar nitrogen, carbon, lignin, cellulose, fiber and LMA), spectral indices (NDVI, NDWI, PRI, NDII etc.) and species composition from AVIRIS hyperspectral imagery. Variations in tree growth was mainly correlated with tree species composition (R2 = 0.29, RMSE = 0.004) with coniferous stands having a faster growth rate than broadleaf plots. Inclusion of stand basal area improved model prediction from R2 = 0.29 to 0.35, with RMSE = 0.003. Then, we assessed the growth by functional type, we found that foliar lignin concentration and the proportion of live coniferous trees explained 57% variance in the growth of conifer stands. In contrast, broadleaf forest growth was more strongly correlated with species composition and foliar carbon (R2 = 0.59, RMSE = 0.003). Finally, we compared the relative basal area growth by species. In our study area, red pine and white pine exhibited higher growth rates than other species, while white oak plots grew slowest. There is a significant negative relationship between tree height and the relative growth in red pine stands (r = -0.95), as well as a strong negative relationship between crown width and the relative growth in white pine stands (r = -0.87). Growth declines as trees grow taller and wider may partly be the result of reduced photosynthesis and water availability

  18. Synthesis, 68Ga-Radiolabeling, and Preliminary In Vivo Assessment of a Depsipeptide-Derived Compound as a Potential PET/CT Infection Imaging Agent

    PubMed Central

    Mokaleng, Botshelo B.; Ebenhan, Thomas; Ramesh, Suhas; Govender, Thavendran; Kruger, Hendrik G.; Hazari, Puja P.; Mishra, Anil K.; Marjanovic-Painter, Biljana; Zeevaart, Jan R.; Sathekge, Mike M.

    2015-01-01

    Noninvasive imaging is a powerful tool for early diagnosis and monitoring of various disease processes, such as infections. An alarming shortage of infection-selective radiopharmaceuticals exists for overcoming the diagnostic limitations with unspecific tracers such as 67/68Ga-citrate or 18F-FDG. We report here TBIA101, an antimicrobial peptide derivative that was conjugated to DOTA and radiolabeled with 68Ga for a subsequent in vitro assessment and in vivo infection imaging using Escherichia coli-bearing mice by targeting bacterial lipopolysaccharides with PET/CT. Following DOTA-conjugation, the compound was verified for its cytotoxic and bacterial binding behaviour and compound stability, followed by 68Gallium-radiolabeling. µPET/CT using 68Ga-DOTA-TBIA101 was employed to detect muscular E. coli-infection in BALB/c mice, as warranted by the in vitro results. 68Ga-DOTA-TBIA101-PET detected E. coli-infected muscle tissue (SUV = 1.3–2.4) > noninfected thighs (P = 0.322) > forearm muscles (P = 0.092) > background (P = 0.021) in the same animal. Normalization of the infected thigh muscle to reference tissue showed a ratio of 3.0 ± 0.8 and a ratio of 2.3 ± 0.6 compared to the identical healthy tissue. The majority of the activity was cleared by renal excretion. The latter findings warrant further preclinical imaging studies of greater depth, as the DOTA-conjugation did not compromise the TBIA101's capacity as targeting vector. PMID:25699267

  19. Synthesis, 68Ga-radiolabeling, and preliminary in vivo assessment of a depsipeptide-derived compound as a potential PET/CT infection imaging agent.

    PubMed

    Mokaleng, Botshelo B; Ebenhan, Thomas; Ramesh, Suhas; Govender, Thavendran; Kruger, Hendrik G; Parboosing, Raveen; Hazari, Puja P; Mishra, Anil K; Marjanovic-Painter, Biljana; Zeevaart, Jan R; Sathekge, Mike M

    2015-01-01

    Noninvasive imaging is a powerful tool for early diagnosis and monitoring of various disease processes, such as infections. An alarming shortage of infection-selective radiopharmaceuticals exists for overcoming the diagnostic limitations with unspecific tracers such as (67/68)Ga-citrate or (18)F-FDG. We report here TBIA101, an antimicrobial peptide derivative that was conjugated to DOTA and radiolabeled with (68)Ga for a subsequent in vitro assessment and in vivo infection imaging using Escherichia coli-bearing mice by targeting bacterial lipopolysaccharides with PET/CT. Following DOTA-conjugation, the compound was verified for its cytotoxic and bacterial binding behaviour and compound stability, followed by (68)Gallium-radiolabeling. µPET/CT using (68)Ga-DOTA-TBIA101 was employed to detect muscular E. coli-infection in BALB/c mice, as warranted by the in vitro results. (68)Ga-DOTA-TBIA101-PET detected E. coli-infected muscle tissue (SUV = 1.3-2.4) > noninfected thighs (P = 0.322) > forearm muscles (P = 0.092) > background (P = 0.021) in the same animal. Normalization of the infected thigh muscle to reference tissue showed a ratio of 3.0 ± 0.8 and a ratio of 2.3 ± 0.6 compared to the identical healthy tissue. The majority of the activity was cleared by renal excretion. The latter findings warrant further preclinical imaging studies of greater depth, as the DOTA-conjugation did not compromise the TBIA101's capacity as targeting vector.

  20. Scene kinetics mitigation using factor analysis with derivative factors.

    SciTech Connect

    Larson, Kurt W.; Melgaard, David Kennett; Scholand, Andrew Joseph

    2010-07-01

    Line of sight jitter in staring sensor data combined with scene information can obscure critical information for change analysis or target detection. Consequently before the data analysis, the jitter effects must be significantly reduced. Conventional principal component analysis (PCA) has been used to obtain basis vectors for background estimation; however PCA requires image frames that contain the jitter variation that is to be modeled. Since jitter is usually chaotic and asymmetric, a data set containing all the variation without the changes to be detected is typically not available. An alternative approach, Scene Kinetics Mitigation, first obtains an image of the scene. Then it computes derivatives of that image in the horizontal and vertical directions. The basis set for estimation of the background and the jitter consists of the image and its derivative factors. This approach has several advantages including: (1) only a small number of images are required to develop the model, (2) the model can estimate backgrounds with jitter different from the input training images, (3) the method is particularly effective for sub-pixel jitter, and (4) the model can be developed from images before the change detection process. In addition the scores from projecting the factors on the background provide estimates of the jitter magnitude and direction for registration of the images. In this paper we will present a discussion of the theoretical basis for this technique, provide examples of its application, and discuss its limitations.

  1. Investigating the robustness of the new Landsat-8 Operational Land Imager derived texture metrics in estimating plantation forest aboveground biomass in resource constrained areas

    NASA Astrophysics Data System (ADS)

    Dube, Timothy; Mutanga, Onisimo

    2015-10-01

    The successful launch of the 30-m Landsat-8 Operational Land Imager (OLI) pushbroom sensor offers a new primary data source necessary for aboveground biomass (AGB) estimation, especially in resource-limited environments. In this work, the strength and performance of Landsat-8 OLI image derived texture metrics (i.e. texture measures and texture ratios) in estimating plantation forest species AGB was investigated. It was hypothesized that the sensor's pushbroom design, coupled with the presence of refined spectral properties, enhanced radiometric resolution (i.e. from 8 bits to 12 bits) and improved signal-to-noise ratio have the potential to provide detailed spectral information necessary for significantly strengthening AGB estimation in medium-density forest canopies. The relationship between image texture metrics and measurements of forest attributes can be used to help characterize complex forests, and enhance fine vegetation biophysical properties, a difficult challenge when using spectral vegetation indices especially in closed canopies. This study examines the prospects of using Landsat-8 OLI sensor derived texture metrics for estimating AGB for three medium-density plantation forest species in KwaZulu Natal, South Africa. In order to achieve this objective, three unique data pre-processing techniques were tested (analysis I: Landsat-8 OLI raw spectral-bands vs. raw texture bands; analysis II: Landsat-8 OLI raw spectral-band ratios vs. texture band ratios and analysis III: Landsat-8 OLI derived vegetation indices vs. texture band ratios). The landsat-8 OLI derived texture parameters were examined for robustness in estimating AGB using linear regression, stepwise-multiple linear regression and stochastic gradient boosting regression models. The results of this study demonstrated that all texture parameters particularly band texture ratios calculated using a 3 × 3 window size, could enhance AGB estimation when compared to simple spectral reflectance, simple

  2. Functional transformations of odor inputs in the mouse olfactory bulb.

    PubMed

    Adam, Yoav; Livneh, Yoav; Miyamichi, Kazunari; Groysman, Maya; Luo, Liqun; Mizrahi, Adi

    2014-01-01

    Sensory inputs from the nasal epithelium to the olfactory bulb (OB) are organized as a discrete map in the glomerular layer (GL). This map is then modulated by distinct types of local neurons and transmitted to higher brain areas via mitral and tufted cells. Little is known about the functional organization of the circuits downstream of glomeruli. We used in vivo two-photon calcium imaging for large scale functional mapping of distinct neuronal populations in the mouse OB, at single cell resolution. Specifically, we imaged odor responses of mitral cells (MCs), tufted cells (TCs) and glomerular interneurons (GL-INs). Mitral cells population activity was heterogeneous and only mildly correlated with the olfactory receptor neuron (ORN) inputs, supporting the view that discrete input maps undergo significant transformations at the output level of the OB. In contrast, population activity profiles of TCs were dense, and highly correlated with the odor inputs in both space and time. Glomerular interneurons were also highly correlated with the ORN inputs, but showed higher activation thresholds suggesting that these neurons are driven by strongly activated glomeruli. Temporally, upon persistent odor exposure, TCs quickly adapted. In contrast, both MCs and GL-INs showed diverse temporal response patterns, suggesting that GL-INs could contribute to the transformations MCs undergo at slow time scales. Our data suggest that sensory odor maps are transformed by TCs and MCs in different ways forming two distinct and parallel information streams.

  3. Effects of control inputs on the estimation of stability and control parameters of a light airplane

    NASA Technical Reports Server (NTRS)

    Cannaday, R. L.; Suit, W. T.

    1977-01-01

    The maximum likelihood parameter estimation technique was used to determine the values of stability and control derivatives from flight test data for a low-wing, single-engine, light airplane. Several input forms were used during the tests to investigate the consistency of parameter estimates as it relates to inputs. These consistencies were compared by using the ensemble variance and estimated Cramer-Rao lower bound. In addition, the relationship between inputs and parameter correlations was investigated. Results from the stabilator inputs are inconclusive but the sequence of rudder input followed by aileron input or aileron followed by rudder gave more consistent estimates than did rudder or ailerons individually. Also, square-wave inputs appeared to provide slightly improved consistency in the parameter estimates when compared to sine-wave inputs.

  4. Convergence of multisensory inputs in the Xenopus tadpole tectum

    PubMed Central

    Hiramoto, Masateru; Cline, Hollis

    2010-01-01

    The integration of multisensory information takes place in the optic tectum where visual and auditory/mechanosensory inputs converge and regulate motor outputs. The circuits which integrate multisensory information are poorly understood. In an effort to identify the basic components of a multisensory integrative circuit, we determined the projections of the mechanosensory input from the periphery to the optic tectum and compared their distribution to the retinotectal inputs in Xenopus laevis tadpoles using dye-labelling methods. The peripheral ganglia of the lateral line system project to the ipsilateral hindbrain and the axons representing mechanosensory inputs along the anterior/posterior body axis are mapped along the ventrodorsal axis in the axon tract in the dorsal column of the hindbrain. Hindbrain neurons project axons to the contralateral optic tectum. The neurons from anterior and posterior hindbrain regions project axons to the dorsal and ventral tectum, respectively. While the retinotectal axons project to a superficial lamina in the tectal neuropil, the hindbrain axons project to a deep neuropil layer. Calcium imaging showed that multimodal inputs converge on tectal neurons. The layer specific projections of the hindbrain and retinal axons suggest a functional segregation of sensory inputs to proximal and distal tectal cell dendrites, respectively. PMID:19813244

  5. Multiple input electrode gap controller

    DOEpatents

    Hysinger, C.L.; Beaman, J.J.; Melgaard, D.K.; Williamson, R.L.

    1999-07-27

    A method and apparatus for controlling vacuum arc remelting (VAR) furnaces by estimation of electrode gap based on a plurality of secondary estimates derived from furnace outputs. The estimation is preferably performed by Kalman filter. Adaptive gain techniques may be employed, as well as detection of process anomalies such as glows. 17 figs.

  6. Multiple input electrode gap controller

    DOEpatents

    Hysinger, Christopher L.; Beaman, Joseph J.; Melgaard, David K.; Williamson, Rodney L.

    1999-01-01

    A method and apparatus for controlling vacuum arc remelting (VAR) furnaces by estimation of electrode gap based on a plurality of secondary estimates derived from furnace outputs. The estimation is preferably performed by Kalman filter. Adaptive gain techniques may be employed, as well as detection of process anomalies such as glows.

  7. Global image analysis to determine suitability for text-based image personalization

    NASA Astrophysics Data System (ADS)

    Ding, Hengzhou; Bala, Raja; Fan, Zhigang; Bouman, Charles A.; Allebach, Jan P.

    2012-03-01

    Lately, image personalization is becoming an interesting topic. Images with variable elements such as text usually appear much more appealing to the recipients. In this paper, we describe a method to pre-analyze the image and automatically suggest to the user the most suitable regions within an image for text-based personalization. The method is based on input gathered from experiments conducted with professional designers. It has been observed that regions that are spatially smooth and regions with existing text (e.g. signage, banners, etc.) are the best candidates for personalization. This gives rise to two sets of corresponding algorithms: one for identifying smooth areas, and one for locating text regions. Furthermore, based on the smooth and text regions found in the image, we derive an overall metric to rate the image in terms of its suitability for personalization (SFP).

  8. Quality and compatibility analyses of global aerosol products derived from the advanced very high resolution radiometer and Moderate Resolution Imaging Spectroradiometer

    NASA Astrophysics Data System (ADS)

    Jeong, Myeong-Jae; Li, Zhanqing; Chu, D. Allen; Tsay, Si-Chee

    2005-05-01

    There exist numerous global aerosol products derived from various satellite sensors, but little insight has been gained about their compatibility and quality. This study presents a comparison of two prominent global aerosol products derived over oceans from the advanced very high resolution radiometer (AVHRR) under the Global Aerosol Climatology Project (GACP) (Mishchenko et al., 1999) and the Moderate Resolution Imaging Spectroradiometer (MODIS) (Tanré et al., 1997). The comparisons are for monthly mean aerosol optical thickness (AOT) and Ångström exponent (α) at a spatial resolution of 1 × 1 degree. The two monthly AOT products showed substantial discrepancies, with a tendency of higher values from MODIS than from GACP/AVHRR, especially near the coasts of major aerosol outbreak regions. Individual monthly AOT values have poor correlation, but their regional means are moderately correlated (correlation coefficient 0.5 < R < 1.0). While cloud screening has often been argued to be a major factor explaining large discrepancies, this study shows that differences in aerosol models in the two retrieval algorithms can lead to large discrepancies. Contributions of the size distribution are more significant than the refractive index. The noisiness of the GACP/AVHRR aerosol retrievals seem to be partially influenced by radiometric uncertainties in the AVHRR system, but it is unlikely a major factor to explain the observed systematic discrepancies between the MODIS and GACP/AVHRR AOTs. For α, correlations between MODIS and GACP/AVHRR are lower (0.2 < R < 0.7) than AOT. The MODIS α shows a well-behaved dependence on the AOT contingent upon the aerosol type, while the GACP/AVHRR α has little correlation with the AOT. The high sensitivity in the selection of aerosol models to radiometric errors may be a primary reason for the worse comparison of α. Part of the discrepancies in α is attributed to different aerosol size distributions.

  9. Improved Quantification of Cerebral Hemodynamics Using Individualized Time Thresholds for Assessment of Peak Enhancement Parameters Derived from Dynamic Susceptibility Contrast Enhanced Magnetic Resonance Imaging

    PubMed Central

    Nasel, Christian; Kalcher, Klaudius; Boubela, Roland; Moser, Ewald

    2014-01-01

    Purpose Assessment of cerebral ischemia often employs dynamic susceptibility contrast enhanced magnetic resonance imaging (DSC-MRI) with evaluation of various peak enhancement time parameters. All of these parameters use a single time threshold to judge the maximum tolerable peak enhancement delay that is supposed to reliably differentiate sufficient from critical perfusion. As the validity of this single threshold approach still remains unclear, in this study, (1) the definition of a threshold on an individual patient-basis, nevertheless (2) preserving the comparability of the data, was investigated. Methods The histogram of time-to-peak (TTP) values derived from DSC-MRI, the so-called TTP-distribution curve (TDC), was modeled using a double-Gaussian model in 61 patients without severe cerebrovascular disease. Particular model-based zf-scores were used to describe the arterial, parenchymal and venous bolus-transit phase as time intervals Ia,p,v. Their durations (delta Ia,p,v), were then considered as maximum TTP-delays of each phase. Results Mean-R2 for the model-fit was 0.967. Based on the generic zf-scores the proposed bolus transit phases could be differentiated. The Ip-interval reliably depicted the parenchymal bolus-transit phase with durations of 3.4 s–10.1 s (median = 4.3s), where an increase with age was noted (∼30 ms/year). Conclusion Individual threshold-adjustment seems rational since regular bolus-transit durations in brain parenchyma obtained from the TDC overlap considerably with recommended critical TTP-thresholds of 4 s–8 s. The parenchymal transit time derived from the proposed model may be utilized to individually correct TTP-thresholds, thereby potentially improving the detection of critical perfusion. PMID:25521121

  10. Longitudinal monitoring adipose-derived stem cell survival by PET imaging hexadecyl-4-{sup 124}I-iodobenzoate in rat myocardial infarction model

    SciTech Connect

    Kim, Min Hwan; Woo, Sang-Keun; Lee, Kyo Chul; An, Gwang Il; Pandya, Darpan; Park, Noh Won; Nahm, Sang-Soep; Eom, Ki Dong; Kim, Kwang Il; Lee, Tae Sup; Kim, Chan Wha; Kang, Joo Hyun; Yoo, Jeongsoo; Lee, Yong Jin

    2015-01-02

    Highlights: • We developed a safe, simple and appropriate stem cell labeling method with {sup 124}I-HIB. • ADSC survival can be monitored with PET in MI model via direct labeling. • Tracking of ADSC labeled with {sup 124}I-HIB was possible for 3 days in MI model using PET. • ADSC viability and differentiation were not affected by {sup 124}I-HIB labeling. • Survival of ADSC in living bodies can be longitudinally tracked with PET imaging. - Abstract: This study aims to monitor how the change of cell survival of transplanted adipose-derived stem cells (ADSCs) responds to myocardial infarction (MI) via the hexadecyl-4-{sup 124}I-iodobenzoate ({sup 124}I-HIB) mediated direct labeling method in vivo. Stem cells have shown the potential to improve cardiac function after MI. However, monitoring of the fate of transplanted stem cells at target sites is still unclear. Rat ADSCs were labeled with {sup 124}I-HIB, and radiolabeled ADSCs were transplanted into the myocardium of normal and MI model. In the group of {sup 124}I-HIB-labeled ADSC transplantation, in vivo imaging was performed using small-animal positron emission tomography (PET)/computed tomography (CT) for 9 days. Twenty-one days post-transplantation, histopathological analysis and apoptosis assay were performed. ADSC viability and differentiation were not affected by {sup 124}I-HIB labeling. In vivo tracking of the {sup 124}I-HIB-labeled ADSCs was possible for 9 and 3 days in normal and MI model, respectively. Apoptosis of transplanted cells increased in the MI model compared than that in normal model. We developed a direct labeling agent, {sup 124}I-HIB, and first tried to longitudinally monitor transplanted stem cell to MI. This approach may provide new insights on the roles of stem cell monitoring in living bodies for stem cell therapy from pre-clinical studies to clinical trials.

  11. Repositioning Recitation Input in College English Teaching

    ERIC Educational Resources Information Center

    Xu, Qing

    2009-01-01

    This paper tries to discuss how recitation input helps overcome the negative influences on the basis of second language acquisition theory and confirms the important role that recitation input plays in improving college students' oral and written English.

  12. Input/output properties of the lateral vestibular nucleus

    NASA Technical Reports Server (NTRS)

    Boyle, R.; Bush, G.; Ehsanian, R.

    2004-01-01

    This article is a review of work in three species, squirrel monkey, cat, and rat studying the inputs and outputs from the lateral vestibular nucleus (LVN). Different electrophysiological shock paradigms were used to determine the synaptic inputs derived from thick to thin diameter vestibular nerve afferents. Angular and linear mechanical stimulations were used to activate and study the combined and individual contribution of inner ear organs and neck afferents. The spatio-temporal properties of LVN neurons in the decerebrated rat were studied in response to dynamic acceleration inputs using sinusoidal linear translation in the horizontal head plane. Outputs were evaluated using antidromic identification techniques and identified LVN neurons were intracellularly injected with biocytin and their morphology studied.

  13. Linearisation via input-output injection of time delay systems

    NASA Astrophysics Data System (ADS)

    García-Ramírez, Eduardo; Moog, Claude H.; Califano, Claudia; Alejandro Márquez-Martínez, Luis

    2016-06-01

    This paper deals with the problem of linearisation of systems with constant commensurable delays by input-output injection using algebraic control tools based on the theory of non-commutative rings. Solutions for the problem of linearisation free of delays, and with delays of an observable nonlinear time-delay systems are presented based on the analysis of the input-output equation. These results are achieved by means of constructive algorithms that use the nth derivative of the output expressed in terms of the state-space variables instead of the explicit computation of the input-output representation of the system. Necessary and sufficient conditions are established in both cases by means of an invertible change of coordinates.

  14. Flight Test Validation of Optimal Input Design and Comparison to Conventional Inputs

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1997-01-01

    A technique for designing optimal inputs for aerodynamic parameter estimation was flight tested on the F-18 High Angle of Attack Research Vehicle (HARV). Model parameter accuracies calculated from flight test data were compared on an equal basis for optimal input designs and conventional inputs at the same flight condition. In spite of errors in the a priori input design models and distortions of the input form by the feedback control system, the optimal inputs increased estimated parameter accuracies compared to conventional 3-2-1-1 and doublet inputs. In addition, the tests using optimal input designs demonstrated enhanced design flexibility, allowing the optimal input design technique to use a larger input amplitude to achieve further increases in estimated parameter accuracy without departing from the desired flight test condition. This work validated the analysis used to develop the optimal input designs, and demonstrated the feasibility and practical utility of the optimal input design technique.

  15. Kinetic quantitation of cerebral PET-FDG studies without concurrent blood sampling: statistical recovery of the arterial input function.

    PubMed

    O'Sullivan, F; Kirrane, J; Muzi, M; O'Sullivan, J N; Spence, A M; Mankoff, D A; Krohn, K A

    2010-03-01

    Kinetic quantitation of dynamic positron emission tomography (PET) studies via compartmental modeling usually requires the time-course of the radio-tracer concentration in the arterial blood as an arterial input function (AIF). For human and animal imaging applications, significant practical difficulties are associated with direct arterial sampling and as a result there is substantial interest in alternative methods that require no blood sampling at the time of the study. A fixed population template input function derived from prior experience with directly sampled arterial curves is one possibility. Image-based extraction, including requisite adjustment for spillover and recovery, is another approach. The present work considers a hybrid statistical approach based on a penalty formulation in which the information derived from a priori studies is combined in a Bayesian manner with information contained in the sampled image data in order to obtain an input function estimate. The absolute scaling of the input is achieved by an empirical calibration equation involving the injected dose together with the subject's weight, height and gender. The technique is illustrated in the context of (18)F -Fluorodeoxyglucose (FDG) PET studies in humans. A collection of 79 arterially sampled FDG blood curves are used as a basis for a priori characterization of input function variability, including scaling characteristics. Data from a series of 12 dynamic cerebral FDG PET studies in normal subjects are used to evaluate the performance of the penalty-based AIF estimation technique. The focus of evaluations is on quantitation of FDG kinetics over a set of 10 regional brain structures. As well as the new method, a fixed population template AIF and a direct AIF estimate based on segmentation are also considered. Kinetics analyses resulting from these three AIFs are compared with those resulting from radially sampled AIFs. The proposed penalty-based AIF extraction method is found to

  16. Input Devices for Young Handicapped Children.

    ERIC Educational Resources Information Center

    Morris, Karen

    The versatility of the computer can be expanded considerably for young handicapped children by using input devices other than the typewriter-style keyboard. Input devices appropriate for young children can be classified into four categories: alternative keyboards, contact switches, speech input devices, and cursor control devices. Described are…

  17. Effects of Auditory Input in Individuation Tasks

    ERIC Educational Resources Information Center

    Robinson, Christopher W.; Sloutsky, Vladimir M.

    2008-01-01

    Under many conditions auditory input interferes with visual processing, especially early in development. These interference effects are often more pronounced when the auditory input is unfamiliar than when the auditory input is familiar (e.g. human speech, pre-familiarized sounds, etc.). The current study extends this research by examining how…

  18. Input filter compensation for switching regulators

    NASA Technical Reports Server (NTRS)

    Lee, F. C.

    1984-01-01

    Problems caused by input filter interaction and conventional input filter design techniques are discussed. The concept of feedforward control is modeled with an input filter and a buck regulator. Experimental measurement and comparison to the analytical predictions is carried out. Transient response and the use of a feedforward loop to stabilize the regulator system is described. Other possible applications for feedforward control are included.

  19. Textual Enhancement of Input: Issues and Possibilities

    ERIC Educational Resources Information Center

    Han, ZhaoHong; Park, Eun Sung; Combs, Charles

    2008-01-01

    The input enhancement hypothesis proposed by Sharwood Smith (1991, 1993) has stimulated considerable research over the last 15 years. This article reviews the research on textual enhancement of input (TE), an area where the majority of input enhancement studies have aggregated. Methodological idiosyncrasies are the norm of this body of research.…

  20. 7 CFR 3430.15 - Stakeholder input.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Stakeholder input. 3430.15 Section 3430.15... ADMINISTRATIVE PROVISIONS Pre-award: Solicitation and Application § 3430.15 Stakeholder input. Section 103(c)(2... programs. NIFA will provide instructions for submission of stakeholder input in the RFA. NIFA will...

  1. 7 CFR 3430.15 - Stakeholder input.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Stakeholder input. 3430.15 Section 3430.15... ADMINISTRATIVE PROVISIONS Pre-award: Solicitation and Application § 3430.15 Stakeholder input. Section 103(c)(2... programs. NIFA will provide instructions for submission of stakeholder input in the RFA. NIFA will...

  2. 7 CFR 3430.15 - Stakeholder input.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Stakeholder input. 3430.15 Section 3430.15... Stakeholder input. Section 103(c)(2) of the Agricultural Research, Extension, and Education Reform Act of 1998... RFAs for competitive programs. CSREES will provide instructions for submission of stakeholder input...

  3. 7 CFR 3430.607 - Stakeholder input.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Stakeholder input. 3430.607 Section 3430.607 Agriculture Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION... § 3430.607 Stakeholder input. CSREES shall seek and obtain stakeholder input through a variety of...

  4. SU-C-BRE-05: PTV Margin Determination Based On Tumor Radiobiological Characteristics and Geometric Uncertainties Derived From Daily Cone- Beam CT Images

    SciTech Connect

    Selvaraj, J

    2014-06-15

    Purpose: To determine required PTV margins for ≤1% loss in mean population TCP using systematic (Σ) and random (σ) errors calculated from daily cone-beam CT (CBCT) images of head and neck patients. Methods: Daily CBCT images were acquired for 50 head and neck patients. The CBCT image sets acquired at each fraction were registered with planning CT to obtain positional errors for each patient for each fraction. Systematic and random errors were calculated from data collected for 50 patients as described in IPEM On Target report. CTV delineation uncertainty of 2mm is added quadratically to systematic error. Assuming a spherical target volume, the dose in each voxel of target volume is summed for each fraction in the treatment by shifting the dose grid to calculate mean population TCP inclusive of geometric uncertainties using a Monte Carlo method. These simulations were repeated for the set of Σ and σ in each axis for different PTV margins and drop in TCP for each margin are obtained. In order to study the effect of dose-response curve on PTV margins, two different σα of 0.048 Gy-1 and 0.218 Gy-1 representing steep and shallow dose-response curves are studied. Σ were 2.5, 2.5, 2.1 mm and σ were 0.3, 0.3 0.2 mm respectively in x, y and z axis respectively. Results: PTV margins based on tumor radiobiological characteristics are 4.8, 4.8 and 4 mm in x, y and z axis assuming 25 treatment fractions for σα 0.048 Gy-1 (steep) and 4.2,4.2 and 2.2 for σα of 0.218 Gy-1 (shallow). While the TCP-based margins did not differ much in x and y axis, it is considerably smaller in z axis for shallow DRC. Conclusion: TCP based margins are substantially smaller than physical dose-based margin recipes. This study also demonstrates the importance of considering tumor radiobiological characteristics while deriving margins.

  5. Biogenic inputs to ocean mixing.

    PubMed

    Katija, Kakani

    2012-03-15

    Recent studies have evoked heated debate about whether biologically generated (or biogenic) fluid disturbances affect mixing in the ocean. Estimates of biogenic inputs have shown that their contribution to ocean mixing is of the same order as winds and tides. Although these estimates are intriguing, further study using theoretical, numerical and experimental techniques is required to obtain conclusive evidence of biogenic mixing in the ocean. Biogenic ocean mixing is a complex problem that requires detailed understanding of: (1) marine organism behavior and characteristics (i.e. swimming dynamics, abundance and migratory behavior), (2) mechanisms utilized by swimming animals that have the ability to mix stratified fluids (i.e. turbulence and fluid drift) and (3) knowledge of the physical environment to isolate contributions of marine organisms from other sources of mixing. In addition to summarizing prior work addressing the points above, observations on the effect of animal swimming mode and body morphology on biogenic fluid transport will also be presented. It is argued that to inform the debate on whether biogenic mixing can contribute to ocean mixing, our studies should focus on diel vertical migrators that traverse stratified waters of the upper pycnocline. Based on our understanding of mixing mechanisms, body morphologies, swimming modes and body orientation, combined with our knowledge of vertically migrating populations of animals, it is likely that copepods, krill and some species of gelatinous zooplankton and fish have the potential to be strong sources of biogenic mixing. PMID:22357597

  6. Input calibration for negative originals

    NASA Astrophysics Data System (ADS)

    Tuijn, Chris

    1995-04-01

    One of the major challenges in the prepress environment consists of controlling the electronic color reproduction process such that a perfect match of any original can be realized. Whether this goal can be reached depends on many factors such as the dynamic range of the input device (scanner, camera), the color gamut of the output device (dye sublimation printer, ink-jet printer, offset), the color management software etc. The characterization of the color behavior of the peripheral devices is therefore very important. Photographs and positive transparents reflect the original scene pretty well; for negative originals, however, there is no obvious link to either the original scene or a particular print of the negative under consideration. In this paper, we establish a method to scan negatives and to convert the scanned data to a calibrated RGB space, which is known colorimetrically. This method is based on the reconstruction of the original exposure conditions (i.e., original scene) which generated the negative. Since the characteristics of negative film are quite diverse, a special calibration is required for each combination of scanner and film type.

  7. Quantitative prediction of radio frequency induced local heating derived from measured magnetic field maps in magnetic resonance imaging: A phantom validation at 7 T

    SciTech Connect

    Zhang, Xiaotong; Liu, Jiaen; Van de Moortele, Pierre-Francois; Schmitter, Sebastian; He, Bin

    2014-12-15

    Electrical Properties Tomography (EPT) technique utilizes measurable radio frequency (RF) coil induced magnetic fields (B1 fields) in a Magnetic Resonance Imaging (MRI) system to quantitatively reconstruct the local electrical properties (EP) of biological tissues. Information derived from the same data set, e.g., complex numbers of B1 distribution towards electric field calculation, can be used to estimate, on a subject-specific basis, local Specific Absorption Rate (SAR). SAR plays a significant role in RF pulse design for high-field MRI applications, where maximum local tissue heating remains one of the most constraining limits. The purpose of the present work is to investigate the feasibility of such B1-based local SAR estimation, expanding on previously proposed EPT approaches. To this end, B1 calibration was obtained in a gelatin phantom at 7 T with a multi-channel transmit coil, under a particular multi-channel B1-shim setting (B1-shim I). Using this unique set of B1 calibration, local SAR distribution was subsequently predicted for B1-shim I, as well as for another B1-shim setting (B1-shim II), considering a specific set of parameter for a heating MRI protocol consisting of RF pulses plaid at 1% duty cycle. Local SAR results, which could not be directly measured with MRI, were subsequently converted into temperature change which in turn were validated against temperature changes measured by MRI Thermometry based on the proton chemical shift.

  8. Intravenous Administration of Human Umbilical Cord Blood-Derived AC133+ Endothelial Progenitor Cells in Rat Stroke Model Reduces Infarct Volume: Magnetic Resonance Imaging and Histological Findings

    PubMed Central

    Iskander, Asm; Knight, Robert A.; Zhang, Zheng Gang; Ewing, James R.; Shankar, Adarsh; Varma, Nadimpalli Ravi S.; Bagher-Ebadian, Hassan; Ali, Meser M.; Arbab, Ali S.

    2013-01-01

    Abstract Endothelial progenitor cells (EPCs) hold enormous therapeutic potential for ischemic vascular diseases. Previous studies have indicated that stem/progenitor cells derived from human umbilical cord blood (hUCB) improve functional recovery in stroke models. Here, we examined the effect of hUCB AC133+ EPCs on stroke development and resolution in a middle cerebral artery occlusion (MCAo) rat model. Since the success of cell therapies strongly depends on the ability to monitor in vivo the migration of transplanted cells, we also assessed the capacity of magnetic resonance imaging (MRI) to track in vivo the magnetically labeled cells that were administered. Animals were subjected to transient MCAo and 24 hours later injected intravenously with 107 hUCB AC133+ EPCs. MRI performed at days 1, 7, and 14 after the insult showed accumulation of transplanted cells in stroke-affected hemispheres and revealed that stroke volume decreased at a significantly higher rate in cell-treated animals. Immunohistochemistry analysis of brain tissues localized the administered cells in the stroke-affected hemispheres only and indicated that these cells may have significantly affected the magnitude of endogenous proliferation, angiogenesis, and neurogenesis. We conclude that transplanted cells selectively migrated to the ischemic brain parenchyma, where they exerted a therapeutic effect on the extent of tissue damage, regeneration, and time course of stroke resolution. PMID:23934909

  9. Novel ¹⁸F-labeled benzoxazole derivatives as potential positron emission tomography probes for imaging of cerebral β-amyloid plaques in Alzheimer's disease.

    PubMed

    Cui, Mengchao; Ono, Masahiro; Kimura, Hiroyuki; Ueda, Masashi; Nakamoto, Yuji; Togashi, Kaori; Okamoto, Yoko; Ihara, Masafumi; Takahashi, Ryosuke; Liu, Boli; Saji, Hideo

    2012-11-01

    Two radiofluoro-pegylated phenylbenzoxazole derivatives, 4-(5-(2-(2-(2-[(18)F]fluoroethoxy)ethoxy)ethoxy)benzo[d]oxazol-2-yl)-N-methylaniline ([(18)F]24) and 4-(5-(2-(2-(2-[(18)F]fluoroethoxy)ethoxy)ethoxy)benzo[d]oxazol-2-yl)-N,N-dimethylaniline ([(18)F]32), were synthesized and evaluated as probes for imaging cerebral β-amyloid (Aβ) plaques in living brain tissue by PET. [(18)F]24 and [(18)F]32 displayed high affinity for Aβ(1-42) aggregates (K(i) = 9.3 and 3.9 nM, respectively). In vitro autoradiography with sections of post-mortem AD brain and transgenic mouse brain confirmed the affinity of these tracers. Initial high uptake into and rapid washout from the brain in normal mice were observed. [(18)F]24 also displayed excellent binding to Aβ plaques in ex vivo autoradiographic experiments with Tg2576 mice. Furthermore, small-animal PET studies demonstrated significant differences in the clearance profile after the administration of [(18)F]24 between Tg2576 and wild-type mice. The results suggest [(18)F]24 to be a useful PET agent for detecting Aβ plaques in the living human brain.

  10. Quantitative prediction of radio frequency induced local heating derived from measured magnetic field maps in magnetic resonance imaging: A phantom validation at 7 T

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaotong; Van de Moortele, Pierre-Francois; Liu, Jiaen; Schmitter, Sebastian; He, Bin

    2014-12-01

    Electrical Properties Tomography (EPT) technique utilizes measurable radio frequency (RF) coil induced magnetic fields (B1 fields) in a Magnetic Resonance Imaging (MRI) system to quantitatively reconstruct the local electrical properties (EP) of biological tissues. Information derived from the same data set, e.g., complex numbers of B1 distribution towards electric field calculation, can be used to estimate, on a subject-specific basis, local Specific Absorption Rate (SAR). SAR plays a significant role in RF pulse design for high-field MRI applications, where maximum local tissue heating remains one of the most constraining limits. The purpose of the present work is to investigate the feasibility of such B1-based local SAR estimation, expanding on previously proposed EPT approaches. To this end, B1 calibration was obtained in a gelatin phantom at 7 T with a multi-channel transmit coil, under a particular multi-channel B1-shim setting (B1-shim I). Using this unique set of B1 calibration, local SAR distribution was subsequently predicted for B1-shim I, as well as for another B1-shim setting (B1-shim II), considering a specific set of parameter for a heating MRI protocol consisting of RF pulses plaid at 1% duty cycle. Local SAR results, which could not be directly measured with MRI, were subsequently converted into temperature change which in turn were validated against temperature changes measured by MRI Thermometry based on the proton chemical shift.

  11. Unknown input observer design and analysis for networked control systems

    NASA Astrophysics Data System (ADS)

    Taha, Ahmad F.; Elmahdi, Ahmed; Panchal, Jitesh H.; Sun, Dengfeng

    2015-05-01

    The insertion of communication networks in the feedback loops of control systems is a defining feature of modern control systems. These systems are often subject to unknown inputs in a form of disturbances, perturbations, or attacks. The objective of this paper is to design and analyse an observer for networked dynamical systems with unknown inputs. The network effect can be viewed as either a perturbation or time-delay to the exchanged signals. In this paper, we (1) review an unknown input observer (UIO) design for a non-networked system, (2) derive the networked unknown input observer (NetUIO) dynamics, (3) design a NetUIO such that the effect of higher delay order terms are nullified and (4) establish stability-guaranteeing bounds on the networked-induced time-delay and perturbation. The formulation and results derived in this paper can be generalised to scenarios and applications where the signals are perturbed due to a different source of perturbation or delay.

  12. A hyperspectral image analysis workbench for environmental science applications

    SciTech Connect

    Christiansen, J.H.; Zawada, D.G.; Simunich, K.L.; Slater, J.C.

    1992-10-01

    A significant challenge to the information sciences is to provide more powerful and accessible means to exploit the enormous wealth of data available from high-resolution imaging spectrometry, or ``hyperspectral`` imagery, for analysis, for mapping purposes, and for input to environmental modeling applications. As an initial response to this challenge, Argonne`s Advanced Computer Applications Center has developed a workstation-based prototype software workbench which employs Al techniques and other advanced approaches to deduce surface characteristics and extract features from the hyperspectral images. Among its current capabilities, the prototype system can classify pixels by abstract surface type. The classification process employs neural network analysis of inputs which include pixel spectra and a variety of processed image metrics, including image ``texture spectra`` derived from fractal signatures computed for subimage tiles at each wavelength.

  13. A hyperspectral image analysis workbench for environmental science applications

    SciTech Connect

    Christiansen, J.H.; Zawada, D.G.; Simunich, K.L.; Slater, J.C.

    1992-01-01

    A significant challenge to the information sciences is to provide more powerful and accessible means to exploit the enormous wealth of data available from high-resolution imaging spectrometry, or hyperspectral'' imagery, for analysis, for mapping purposes, and for input to environmental modeling applications. As an initial response to this challenge, Argonne's Advanced Computer Applications Center has developed a workstation-based prototype software workbench which employs Al techniques and other advanced approaches to deduce surface characteristics and extract features from the hyperspectral images. Among its current capabilities, the prototype system can classify pixels by abstract surface type. The classification process employs neural network analysis of inputs which include pixel spectra and a variety of processed image metrics, including image texture spectra'' derived from fractal signatures computed for subimage tiles at each wavelength.

  14. A Web Browsing System by Eye-gaze Input

    NASA Astrophysics Data System (ADS)

    Abe, Kiyohiko; Owada, Kosuke; Ohi, Shoichi; Ohyama, Minoru

    We have developed an eye-gaze input system for people with severe physical disabilities, such as amyotrophic lateral sclerosis (ALS) patients. This system utilizes a personal computer and a home video camera to detect eye-gaze under natural light. The system detects both vertical and horizontal eye-gaze by simple image analysis, and does not require special image processing units or sensors. We also developed the platform for eye-gaze input based on our system. In this paper, we propose a new web browsing system for physically disabled computer users as an application of the platform for eye-gaze input. The proposed web browsing system uses a method of direct indicator selection. The method categorizes indicators by their function. These indicators are hierarchized relations; users can select the felicitous function by switching indicators group. This system also analyzes the location of selectable object on web page, such as hyperlink, radio button, edit box, etc. This system stores the locations of these objects, in other words, the mouse cursor skips to the object of candidate input. Therefore it enables web browsing at a faster pace.

  15. COSMIC/NASTRAN Free-field Input

    NASA Technical Reports Server (NTRS)

    Chan, G. C.

    1984-01-01

    A user's guide to the COSMIC/NASTRAN free field input for the Bulk Data section of the NASTRAN program is proposed. The free field input is designed to be user friendly and the user is not forced out of the computer system due to input errors. It is easy to use, with only a few simple rules to follow. A stand alone version of the COSMIC/NASTRAN free field input is also available. The use of free field input is illustrated by a number of examples.

  16. PREVIMER : Meteorological inputs and outputs

    NASA Astrophysics Data System (ADS)

    Ravenel, H.; Lecornu, F.; Kerléguer, L.

    2009-09-01

    PREVIMER is a pre-operational system aiming to provide a wide range of users, from private individuals to professionals, with short-term forecasts about the coastal environment along the French coastlines bordering the English Channel, the Atlantic Ocean, and the Mediterranean Sea. Observation data and digital modelling tools first provide 48-hour (probably 96-hour by summer 2009) forecasts of sea states, currents, sea water levels and temperatures. The follow-up of an increasing number of biological parameters will, in time, complete this overview of coastal environment. Working in partnership with the French Naval Hydrographic and Oceanographic Service (Service Hydrographique et Océanographique de la Marine, SHOM), the French National Weather Service (Météo-France), the French public science and technology research institute (Institut de Recherche pour le Développement, IRD), the European Institute of Marine Studies (Institut Universitaire Européen de la Mer, IUEM) and many others, IFREMER (the French public institute fo marine research) is supplying the technologies needed to ensure this pertinent information, available daily on Internet at http://www.previmer.org, and stored at the Operational Coastal Oceanographic Data Centre. Since 2006, PREVIMER publishes the results of demonstrators assigned to limited geographic areas and to specific applications. This system remains experimental. The following topics are covered : Hydrodynamic circulation, sea states, follow-up of passive tracers, conservative or non-conservative (specifically of microbiological origin), biogeochemical state, primary production. Lastly, PREVIMER provides researchers and R&D departments with modelling tools and access to the database, in which the observation data and the modelling results are stored, to undertake environmental studies on new sites. The communication will focus on meteorological inputs to and outputs from PREVIMER. It will draw the lessons from almost 3 years during

  17. Turn customer input into innovation.

    PubMed

    Ulwick, Anthony W

    2002-01-01

    It's difficult to find a company these days that doesn't strive to be customer-driven. Too bad, then, that most companies go about the process of listening to customers all wrong--so wrong, in fact, that they undermine innovation and, ultimately, the bottom line. What usually happens is this: Companies ask their customers what they want. Customers offer solutions in the form of products or services. Companies then deliver these tangibles, and customers just don't buy. The reason is simple--customers aren't expert or informed enough to come up with solutions. That's what your R&D team is for. Rather, customers should be asked only for outcomes--what they want a new product or service to do for them. The form the solutions take should be up to you, and you alone. Using Cordis Corporation as an example, this article describes, in fine detail, a series of effective steps for capturing, analyzing, and utilizing customer input. First come indepth interviews, in which a moderator works with customers to deconstruct a process or activity in order to unearth "desired outcomes." Addressing participants' comments one at a time, the moderator rephrases them to be both unambiguous and measurable. Once the interviews are complete, researchers then compile a comprehensive list of outcomes that participants rank in order of importance and degree to which they are satisfied by existing products. Finally, using a simple mathematical formula called the "opportunity calculation," researchers can learn the relative attractiveness of key opportunity areas. These data can be used to uncover opportunities for product development, to properly segment markets, and to conduct competitive analysis.

  18. Single-image phase retrieval using an edge illumination X-ray phase-contrast imaging setup

    PubMed Central

    Diemoz, Paul C.; Vittoria, Fabio A.; Hagen, Charlotte K.; Endrizzi, Marco; Coan, Paola; Brun, Emmanuel; Wagner, Ulrich H.; Rau, Christoph; Robinson, Ian K.; Bravin, Alberto; Olivo, Alessandro

    2015-01-01

    A method is proposed which enables the retrieval of the thickness or of the projected electron density of a sample from a single input image acquired with an edge illumination phase-contrast imaging setup. The method assumes the case of a quasi-homogeneous sample, i.e. a sample with a constant ratio between the real and imaginary parts of its complex refractive index. Compared with current methods based on combining two edge illumination images acquired in different configurations of the setup, this new approach presents advantages in terms of simplicity of acquisition procedure and shorter data collection time, which are very important especially for applications such as computed tomography and dynamical imaging. Furthermore, the fact that phase information is directly extracted, instead of its derivative, can enable a simpler image interpretation and be beneficial for subsequent processing such as segmentation. The method is first theoretically derived and its conditions of applicability defined. Quantitative accuracy in the case of homogeneous objects as well as enhanced image quality for the imaging of complex biological samples are demonstrated through experiments at two synchrotron radiation facilities. The large range of applicability, the robustness against noise and the need for only one input image suggest a high potential for investigations in various research subjects. PMID:26134813

  19. apART: system for the acquisition, processing, archiving, and retrieval of digital images in an open, distributed imaging environment

    NASA Astrophysics Data System (ADS)

    Schneider, Uwe; Strack, Ruediger

    1992-04-01

    apART reflects the structure of an open, distributed environment. According to the general trend in the area of imaging, network-capable, general purpose workstations with capabilities of open system image communication and image input are used. Several heterogeneous components like CCD cameras, slide scanners, and image archives can be accessed. The system is driven by an object-oriented user interface where devices (image sources and destinations), operators (derived from a commercial image processing library), and images (of different data types) are managed and presented uniformly to the user. Browsing mechanisms are used to traverse devices, operators, and images. An audit trail mechanism is offered to record interactive operations on low-resolution image derivatives. These operations are processed off-line on the original image. Thus, the processing of extremely high-resolution raster images is possible, and the performance of resolution dependent operations is enhanced significantly during interaction. An object-oriented database system (APRIL), which can be browsed, is integrated into the system. Attribute retrieval is supported by the user interface. Other essential features of the system include: implementation on top of the X Window System (X11R4) and the OSF/Motif widget set; a SUN4 general purpose workstation, inclusive ethernet, magneto optical disc, etc., as the hardware platform for the user interface; complete graphical-interactive parametrization of all operators; support of different image interchange formats (GIF, TIFF, IIF, etc.); consideration of current IPI standard activities within ISO/IEC for further refinement and extensions.

  20. Feature maps driven no-reference image quality prediction of authentically distorted images

    NASA Astrophysics Data System (ADS)

    Ghadiyaram, Deepti; Bovik, Alan C.

    2015-03-01

    Current blind image quality prediction models rely on benchmark databases comprised of singly and synthetically distorted images, thereby learning image features that are only adequate to predict human perceived visual quality on such inauthentic distortions. However, real world images often contain complex mixtures of multiple distortions. Rather than a) discounting the effect of these mixtures of distortions on an image's perceptual quality and considering only the dominant distortion or b) using features that are only proven to be efficient for singly distorted images, we deeply study the natural scene statistics of authentically distorted images, in different color spaces and transform domains. We propose a feature-maps-driven statistical approach which avoids any latent assumptions about the type of distortion(s) contained in an image, and focuses instead on modeling the remarkable consistencies in the scene statistics of real world images in the absence of distortions. We design a deep belief network that takes model-based statistical image features derived from a very large database of authentically distorted images as input and discovers good feature representations by generalizing over different distortion types, mixtures, and severities, which are later used to learn a regressor for quality prediction. We demonstrate the remarkable competence of our features for improving automatic perceptual quality prediction on a benchmark database and on the newly designed LIVE Authentic Image Quality Challenge Database and show that our approach of combining robust statistical features and the deep belief network dramatically outperforms the state-of-the-art.

  1. Programmable remapper for image processing

    NASA Technical Reports Server (NTRS)

    Juday, Richard D. (Inventor); Sampsell, Jeffrey B. (Inventor)

    1991-01-01

    A video-rate coordinate remapper includes a memory for storing a plurality of transformations on look-up tables for remapping input images from one coordinate system to another. Such transformations are operator selectable. The remapper includes a collective processor by which certain input pixels of an input image are transformed to a portion of the output image in a many-to-one relationship. The remapper includes an interpolative processor by which the remaining input pixels of the input image are transformed to another portion of the output image in a one-to-many relationship. The invention includes certain specific transforms for creating output images useful for certain defects of visually impaired people. The invention also includes means for shifting input pixels and means for scrolling the output matrix.

  2. A self-organising neural network model of image velocity encoding.

    PubMed

    Gurney, K N; Wright, M J

    1992-01-01

    A self-organising neural network has been developed which maps the image velocities of rigid objects, moving in the fronto-parallel plane, topologically over a neural layer. The input is information in the Fourier domain about the spatial components of the image. The computation performed by the network may be viewed as a neural instantiation of the Intersection of Constraints solution to the aperture problem. The model has biological plausibility in that the connectivity develops simply as a result of exposure to inputs derived from rigid translation of textures and its overall organisation is consistent with psychophysical evidence.

  3. Novel pentameric thiophene derivatives for in vitro and in vivo optical imaging of a plethora of protein aggregates in cerebral amyloidoses

    PubMed Central

    Åslund, Andreas; Sigurdson, Christina J.; Klingstedt, Therése; Grathwohl, Stefan; Bolmont, Tristan; Dickstein, Dara L.; Glimsdal, Eirik; Prokop, Stefan; Lindgren, Mikael; Konradsson, Peter; Holtzman, David M.; Hof, Patrick R.; Heppner, Frank L.; Gandy, Samuel; Jucker, Mathias; Aguzzi, Adriano; Hammarström, Per; Nilsson, K. Peter R.

    2010-01-01

    Molecular probes for selective identification of protein aggregates are important to advance our understanding of the molecular pathogenesis underlying cerebral amyloidoses. Here we report the chemical design of pentameric thiophene derivatives, denoted luminescent conjugated oligothiophenes (LCOs), which could be used for real-time visualization of cerebral protein aggregates in transgenic mouse models of neurodegenerative diseases by multiphoton microscopy. One of the LCOs, p-FTAA, showed conformation-dependent optical properties and could be utilized for ex vivo spectral assignment of distinct prion deposits from two mouse-adapted prion strains. p-FTAA also revealed staining of transient soluble pre-fibrillar non-thioflavinophilic Aβ- assemblies during in vitro fibrillation of Aβ peptides. In brain tissue samples, Aβ deposits and neurofibrillary tangles (NFTs) were readily identified by a strong fluorescence from p-FTAA and the LCO staining showed complete co-localization with conventional antibodies (6E10 and AT8), indicating that p-FTAA detects all the immuno-positive aggregated proteinaceous species in Alzheimer disease, but with significantly shorter imaging time (100 fold) compared to immunofluorescence. In addition, a patchy islet-like staining of individual Aβ plaque was unveiled by the anti-oligomer A11 antibody during co-staining with p-FTAA, suggesting that pre-fibrillar species are likely an intrinsic component of Aβ plaques in human brain. The major hallmarks of Alzheimer’s disease, namely Aβ aggregates versus NFTs could also be distinguished due to distinct emission spectra from p-FTAA. Overall, we demonstrate that LCOs can be utilized as powerful practical research tools for studying protein aggregation diseases and facilitate the study of amyloid origin, evolution and maturation, Aβ−tau interactions and pathogenesis both ex vivo and in vivo. PMID:19624097

  4. Feasibility and correlation of standard 2D speckle tracking echocardiography and automated function imaging derived parameters of left ventricular function during dobutamine stress test.

    PubMed

    Wierzbowska-Drabik, Karina; Hamala, Piotr; Roszczyk, Nikolina; Lipiec, Piotr; Plewka, Michał; Kręcki, Radosław; Kasprzak, Jarosław Damian

    2014-04-01

    Speckle tracking echocardiography (STE) is a method of quantitative assessment of myocardial function complementary to ejection fraction and visual evaluation. Standard STE analysis, demands manual tracing of the myocardium whereas automated function imaging (AFI) offers more convenient (based on selection of three points) assessment of longitudinal strain. Nevertheless, feasibility and correlation between both methods were not thoroughly examined, especially during tachycardia at peak stage of dobutamine stress echocardiography (DSE). We performed DSE in 238 patients (pts) with recording of apical views during baseline (0) and peak (1) DSE and analyzed them by STE and AFI. According to angiography, 127/238 pts had significant (≥70%) lesions in coronary arteries. We assessed correlations between STE and AFI derived peak systolic longitudinal strain values for global and regional parameters, feasibility, time of analysis and interobserver agreement. Global systolic longitudinal strain measured during baseline and peak stage of DSE by AFI showed very good correlation with standard STE parameters, with correlation coefficients r = 0.90 and r = 0.86 respectively (p < 0.0001). For regional parameters correlation coefficients ranged from 0.83 to 0.85 for baseline and from 0.70 to 0.79 for peak DSE. Both methods provided good and similar feasibility with only 1% segments excluded from analysis at peak stage of DSE with shorter time and lower coefficient of variance offered by AFI. Global and regional longitudinal strain achieved by faster and less operator-dependent AFI method correlate well with standard more time-consuming STE analysis during baseline and peak stage of DSE.

  5. Case study of spatial and temporal variability of snow cover, grain size, albedo and radiative forcing in the Sierra Nevada and Rocky Mountain snowpack derived from imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Seidel, Felix C.; Rittger, Karl; McKenzie Skiles, S.; Molotch, Noah P.; Painter, Thomas H.

    2016-06-01

    Quantifying the spatial distribution and temporal change in mountain snow cover, microphysical and optical properties is important to improve our understanding of the local energy balance and the related snowmelt and hydrological processes. In this paper, we analyze changes of snow cover, optical-equivalent snow grain size (radius), snow albedo and radiative forcing by light-absorbing impurities in snow and ice (LAISI) with respect to terrain elevation and aspect at multiple dates during the snowmelt period. These snow properties are derived from the NASA/JPL Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data from 2009 in California's Sierra Nevada and from 2011 in Colorado's Rocky Mountains, USA. Our results show a linearly decreasing snow cover during the ablation period in May and June in the Rocky Mountains and a snowfall-driven change in snow cover in the Sierra Nevada between February and May. At the same time, the snow grain size is increasing primarily at higher elevations and north-facing slopes from 200 microns to 800 microns on average. We find that intense snowmelt renders the mean grain size almost invariant with respect to elevation and aspect. Our results confirm the inverse relationship between snow albedo and grain size, as well as between snow albedo and radiative forcing by LAISI. At both study sites, the mean snow albedo value decreases from approximately 0.7 to 0.5 during the ablation period. The mean snow grain size increased from approximately 150 to 650 microns. The mean radiative forcing increases from 20 W m-2 up to 200 W m-2 during the ablation period. The variability of snow albedo and grain size decreases in general with the progression of the ablation period. The spatial variability of the snow albedo and grain size decreases through the melt season while the spatial variability of radiative forcing remains constant.

  6. Rapid synthesis and in vitro and in vivo evaluation of folic acid derivatives labeled with fluorine-18 for PET imaging of folate receptor-positive tumors.

    PubMed

    Al Jammaz, I; Al-Otaibi, B; Amer, S; Okarvi, S M

    2011-10-01

    In an attempt to visualize folate receptors that overexpress on many cancers, [(18)F]-fluorobenzene and pyridinecarbohydrazide-folate/methotrexate conjugates ([(18)F]-1, [(18)F]-2-folates and [(18)F]-8, [(18)F]-9-MTXs) were synthesized by the nucleophilic displacement reactions using ethyl-trimethylammonium-benzoate and pyridinecarboxylate precursors. The intermediates ethyl [(18)F]-fluorinated benzene and pyridine esters were reacted with hydrazine to produce the [(18)F]-fluorobenzene and pyridinecarbohydrazides, followed by coupling with N-hydroxysuccinimide-folate/MTX. Radiochemical yields were greater than 80% (decay corrected), with total synthesis time of less than 45 min. Radiochemical purities were always greater than 97% without high-performance liquid chromatography purification. These synthetic approaches hold considerable promise as rapid and simple method for the radiofluorination of folate derivatives with high radiochemical yield in short synthesis time. In vitro tests on KB cell line showed that significant amount of the radioconjugates were associated with cell fractions, and in vivo characterization in normal Balb/c mice revealed rapid blood clearance of these radioconjugates with excretion predominantly by the urinary and partially by the hepatobiliary systems. Biodistribution studies in nude mice bearing human KB cell line xenografts demonstrated significant tumor uptake and favorable biodistribution profile for [(18)F]-2-folate over the other conjugates. The uptake in the tumors was blocked by excess coinjection of folic acid, suggesting a receptor-mediated process. Micro-positron emission tomography images of nude mice bearing human KB cell line xenografts confirmed these observations. These results demonstrate that [(18)F]-2-folate may be useful as molecular probe for detecting and staging of folate receptor-positive cancers, such as ovarian cancer and their metastasis as well as monitoring tumor response to treatment.

  7. Input estimation from measured structural response

    SciTech Connect

    Harvey, Dustin; Cross, Elizabeth; Silva, Ramon A; Farrar, Charles R; Bement, Matt

    2009-01-01

    This report will focus on the estimation of unmeasured dynamic inputs to a structure given a numerical model of the structure and measured response acquired at discrete locations. While the estimation of inputs has not received as much attention historically as state estimation, there are many applications where an improved understanding of the immeasurable input to a structure is vital (e.g. validating temporally varying and spatially-varying load models for large structures such as buildings and ships). In this paper, the introduction contains a brief summary of previous input estimation studies. Next, an adjoint-based optimization method is used to estimate dynamic inputs to two experimental structures. The technique is evaluated in simulation and with experimental data both on a cantilever beam and on a three-story frame structure. The performance and limitations of the adjoint-based input estimation technique are discussed.

  8. Input apparatus for dynamic signature verification systems

    DOEpatents

    EerNisse, Errol P.; Land, Cecil E.; Snelling, Jay B.

    1978-01-01

    The disclosure relates to signature verification input apparatus comprising a writing instrument and platen containing piezoelectric transducers which generate signals in response to writing pressures.

  9. Input characterization of a shock test strructure.

    SciTech Connect

    Hylok, J. E.; Groethe, M. A.; Maupin, R. D.

    2004-01-01

    Often in experimental work, measuring input forces and pressures is a difficult and sometimes impossible task. For one particular shock test article, its input sensitivity required a detailed measurement of the pressure input. This paper discusses the use of a surrogate mass mock test article to measure spatial and temporal variations of the shock input within and between experiments. Also discussed will be the challenges and solutions in making some of the high speed transient measurements. The current input characterization work appears as part of the second phase in an extensive model validation project. During the first phase, the system under analysis displayed sensitivities to the shock input's qualitative and quantitative (magnitude) characteristics. However, multiple shortcomings existed in the characterization of the input. First, the experimental measurements of the input were made on a significantly simplified structure only, and the spatial fidelity of the measurements was minimal. Second, the sensors used for the pressure measurement contained known errors that could not be fully quantified. Finally, the measurements examined only one input pressure path (from contact with the energetic material). Airblast levels from the energetic materials were unknown. The result was a large discrepancy between the energy content in the analysis and experiments.

  10. Dayside Thermospheric Upwelling Driven by Magnetospheric Energy Input

    NASA Astrophysics Data System (ADS)

    Wilson, G. R.; Ober, D. M.

    2009-12-01

    In recent years, accelerometer data from the Champ and GRACE satellites has illustrated that the thermospheric density at high latitudes can be highly structured in both space and time. The standard interpretation is that the thermosphere is responding to spatially and temporally structured energy inputs from the magnetosphere. In this presentation we report on our studies to test this hypothesis and determine whether the electromagnetic energy flux (Poynting) or precipitating particle energy flux is the main driver of thermospheric upwelling at high latitudes. To determine the magnetospheric energy input we use data from satellites of the Defense Meteorological Satellite Program (DMSP) which carry a suite of space environment sensors whose data can be used to quantify magnetospheric energy input to the upper atmosphere. These include (1) an ion/electron precipitation spectrometer (30 eV - 30 keV), (2) an ion retarding potential analyzer, (3) an ion driftmeter, and (4) a magnetometer. Data from the spectrometer can be used to quantify precipitating particle energy flux while measurements of plasma drifts and magnetic perturbations can be combined to find down-going Poynting flux. To determine the thermospheric response to this energy input we use densities derived from drag measurements made by the GRACE and Champ satellites. We use a method recently developed by Burke et al. [2009] to convert the thermospheric density increases into atmospheric energy gains in order to compare with the magnetospheric energy supplied.

  11. Input space-dependent controller for multi-hazard mitigation

    NASA Astrophysics Data System (ADS)

    Cao, Liang; Laflamme, Simon

    2016-04-01

    Semi-active and active structural control systems are advanced mechanical devices and systems capable of high damping performance, ideal for mitigation of multi-hazards. The implementation of these devices within structural systems is still in its infancy, because of the complexity in designing a robust closed-loop control system that can ensure reliable and high mitigation performance. Particular challenges in designing a controller for multi-hazard mitigation include: 1) very large uncertainties on dynamic parameters and unknown excitations; 2) limited measurements with probabilities of sensor failure; 3) immediate performance requirements; and 4) unavailable sets of input-output during design. To facilitate the implementation of structural control systems, a new type of controllers with high adaptive capabilities is proposed. It is based on real-time identification of an embedding that represents the essential dynamics found in the input space, or in the sensors measurements. This type of controller is termed input-space dependent controllers (ISDC). In this paper, the principle of ISDC is presented, their stability and performance derived analytically for the case of harmonic inputs, and their performance demonstrated in the case of different types of hazards. Results show the promise of this new type of controller at mitigating multi-hazards by 1) relying on local and limited sensors only; 2) not requiring prior evaluation or training; and 3) adapting to systems non-stationarities.

  12. The Input Hypothesis: An Inside Look.

    ERIC Educational Resources Information Center

    Higgs, Theodore V.

    1985-01-01

    Summarizes and discusses Krashen's "input hypothesis" as presented in his "Principles and Practice in Second Language Acquisition." Suggests that the input hypothesis fails to account convincingly for arrested second language acquisition in an acquisition-rich environment and that it is not directly applicable to U.S. high school and university…

  13. 7 CFR 3430.607 - Stakeholder input.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Stakeholder input. 3430.607 Section 3430.607 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND... input and/or via Web site), as well as through a notice in the Federal Register, from the...

  14. 7 CFR 3430.607 - Stakeholder input.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Stakeholder input. 3430.607 Section 3430.607 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND... input and/or via Web site), as well as through a notice in the Federal Register, from the...

  15. 7 CFR 3430.907 - Stakeholder input.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Stakeholder input. 3430.907 Section 3430.907 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND... input and/or Web site), as well as through a notice in the Federal Register, from the following...

  16. 7 CFR 3430.907 - Stakeholder input.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Stakeholder input. 3430.907 Section 3430.907 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND... input and/or Web site), as well as through a notice in the Federal Register, from the following...

  17. 7 CFR 3430.907 - Stakeholder input.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Stakeholder input. 3430.907 Section 3430.907 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND..., requests for input and/or Web site), as well as through a notice in the Federal Register, from...

  18. 7 CFR 3430.607 - Stakeholder input.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Stakeholder input. 3430.607 Section 3430.607 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND... input and/or via Web site), as well as through a notice in the Federal Register, from the...

  19. 7 CFR 3430.607 - Stakeholder input.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Stakeholder input. 3430.607 Section 3430.607 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND... input and/or via Web site), as well as through a notice in the Federal Register, from the...

  20. 7 CFR 3430.907 - Stakeholder input.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Stakeholder input. 3430.907 Section 3430.907 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND... input and/or Web site), as well as through a notice in the Federal Register, from the following...

  1. Input Effects within a Constructionist Framework

    ERIC Educational Resources Information Center

    Boyd, Jeremy K.; Goldberg, Adele E.

    2009-01-01

    Constructionist approaches to language hypothesize that grammar can be learned from the input using domain-general mechanisms. This emphasis has engendered a great deal of research--exemplified in the present issue--that seeks to illuminate the ways in which input-related factors can both drive and constrain constructional acquisition. In this…

  2. Managing Input during Assistive Technology Product Design

    ERIC Educational Resources Information Center

    Choi, Young Mi

    2011-01-01

    Many different sources of input are available to assistive technology innovators during the course of designing products. However, there is little information on which ones may be most effective or how they may be efficiently utilized within the design process. The aim of this project was to compare how three types of input--from simulation tools,…

  3. Modality of Input and Vocabulary Acquisition

    ERIC Educational Resources Information Center

    Sydorenko, Tetyana

    2010-01-01

    This study examines the effect of input modality (video, audio, and captions, i.e., on-screen text in the same language as audio) on (a) the learning of written and aural word forms, (b) overall vocabulary gains, (c) attention to input, and (d) vocabulary learning strategies of beginning L2 learners. Twenty-six second-semester learners of Russian…

  4. Statistical identification of effective input variables. [SCREEN

    SciTech Connect

    Vaurio, J.K.

    1982-09-01

    A statistical sensitivity analysis procedure has been developed for ranking the input data of large computer codes in the order of sensitivity-importance. The method is economical for large codes with many input variables, since it uses a relatively small number of computer runs. No prior judgemental elimination of input variables is needed. The sceening method is based on stagewise correlation and extensive regression analysis of output values calculated with selected input value combinations. The regression process deals with multivariate nonlinear functions, and statistical tests are also available for identifying input variables that contribute to threshold effects, i.e., discontinuities in the output variables. A computer code SCREEN has been developed for implementing the screening techniques. The efficiency has been demonstrated by several examples and applied to a fast reactor safety analysis code (Venus-II). However, the methods and the coding are general and not limited to such applications.

  5. Input, innateness, and induction in language acquisition.

    PubMed

    Morgan, J L

    1990-11-01

    Input and innateness compliment one another in language acquisition. Children exposed to different languages acquire different languages. Children's language experience, however, underdetermines the grammars that they acquire; the constraints that are not supplied by input must be available endogenously, and the ultimate origin of these endogenous contributions to acquisition may be traced to the biology of the mind. To the extent that assumptions of innateness encourage greater explicitness in the formulation of theories of acquisition, they should be welcomed. Excessively powerful assumptions of innateness may not be subject to empirical disconfirmation, however. Therefore, attention should be devoted to the development of a theory of language input, particularly with regard to identifying invariants of input. In combination with a linguistic theory providing an account of the endstate of acquisition, a theory of input would permit the deduction of properties of the mind that underlie the acquisition of language.

  6. Quantitative assessment of multiple sclerosis lesion load using CAD and expert input

    NASA Astrophysics Data System (ADS)

    Gertych, Arkadiusz; Wong, Alexis; Sangnil, Alan; Liu, Brent J.

    2008-03-01

    Multiple sclerosis (MS) is a frequently encountered neurological disease with a progressive but variable course affecting the central nervous system. Outline-based lesion quantification in the assessment of lesion load (LL) performed on magnetic resonance (MR) images is clinically useful and provides information about the development and change reflecting overall disease burden. Methods of LL assessment that rely on human input are tedious, have higher intra- and inter-observer variability and are more time-consuming than computerized automatic (CAD) techniques. At present it seems that methods based on human lesion identification preceded by non-interactive outlining by CAD are the best LL quantification strategies. We have developed a CAD that automatically quantifies MS lesions, displays 3-D lesion map and appends radiological findings to original images according to current DICOM standard. CAD is also capable to display and track changes and make comparison between patient's separate MRI studies to determine disease progression. The findings are exported to a separate imaging tool for review and final approval by expert. Capturing and standardized archiving of manual contours is also implemented. Similarity coefficients calculated from quantities of LL in collected exams show a good correlation of CAD-derived results vs. those incorporated as expert's reading. Combining the CAD approach with an expert interaction may impact to the diagnostic work-up of MS patients because of improved reproducibility in LL assessment and reduced time for single MR or comparative exams reading. Inclusion of CAD-generated outlines as DICOM-compliant overlays into the image data can serve as a better reference in MS progression tracking.

  7. Measuring Input Thresholds on an Existing Board

    NASA Technical Reports Server (NTRS)

    Kuperman, Igor; Gutrich, Daniel G.; Berkun, Andrew C.

    2011-01-01

    A critical PECL (positive emitter-coupled logic) interface to Xilinx interface needed to be changed on an existing flight board. The new Xilinx input interface used a CMOS (complementary metal-oxide semiconductor) type of input, and the driver could meet its thresholds typically, but not in worst-case, according to the data sheet. The previous interface had been based on comparison with an external reference, but the CMOS input is based on comparison with an internal divider from the power supply. A way to measure what the exact input threshold was for this device for 64 inputs on a flight board was needed. The measurement technique allowed an accurate measurement of the voltage required to switch a Xilinx input from high to low for each of the 64 lines, while only probing two of them. Directly driving an external voltage was considered too risky, and tests done on any other unit could not be used to qualify the flight board. The two lines directly probed gave an absolute voltage threshold calibration, while data collected on the remaining 62 lines without probing gave relative measurements that could be used to identify any outliers. The PECL interface was forced to a long-period square wave by driving a saturated square wave into the ADC (analog to digital converter). The active pull-down circuit was turned off, causing each line to rise rapidly and fall slowly according to the input s weak pull-down circuitry. The fall time shows up as a change in the pulse width of the signal ready by the Xilinx. This change in pulse width is a function of capacitance, pulldown current, and input threshold. Capacitance was known from the different trace lengths, plus a gate input capacitance, which is the same for all inputs. The pull-down current is the same for all inputs including the two that are probed directly. The data was combined, and the Excel solver tool was used to find input thresholds for the 62 lines. This was repeated over different supply voltages and

  8. Microchannel cross load array with dense parallel input

    DOEpatents

    Swierkowski, Stefan P.

    2004-04-06

    An architecture or layout for microchannel arrays using T or Cross (+) loading for electrophoresis or other injection and separation chemistry that are performed in microfluidic configurations. This architecture enables a very dense layout of arrays of functionally identical shaped channels and it also solves the problem of simultaneously enabling efficient parallel shapes and biasing of the input wells, waste wells, and bias wells at the input end of the separation columns. One T load architecture uses circular holes with common rows, but not columns, which allows the flow paths for each channel to be identical in shape, using multiple mirror image pieces. Another T load architecture enables the access hole array to be formed on a biaxial, collinear grid suitable for EDM micromachining (square holes), with common rows and columns.

  9. Multi-bump solutions in a neural field model with external inputs

    NASA Astrophysics Data System (ADS)

    Ferreira, Flora; Erlhagen, Wolfram; Bicho, Estela

    2016-07-01

    We study the conditions for the formation of multiple regions of high activity or "bumps" in a one-dimensional, homogeneous neural field with localized inputs. Stable multi-bump solutions of the integro-differential equation have been proposed as a model of a neural population representation of remembered external stimuli. We apply a class of oscillatory coupling functions and first derive criteria to the input width and distance, which relate to the synaptic couplings that guarantee the existence and stability of one and two regions of high activity. These input-induced patterns are attracted by the corresponding stable one-bump and two-bump solutions when the input is removed. We then extend our analytical and numerical investigation to N-bump solutions showing that the constraints on the input shape derived for the two-bump case can be exploited to generate a memory of N > 2 localized inputs. We discuss the pattern formation process when either the conditions on the input shape are violated or when the spatial ranges of the excitatory and inhibitory connections are changed. An important aspect for applications is that the theoretical findings allow us to determine for a given coupling function the maximum number of localized inputs that can be stored in a given finite interval.

  10. Wireless, relative-motion computer input device

    DOEpatents

    Holzrichter, John F.; Rosenbury, Erwin T.

    2004-05-18

    The present invention provides a system for controlling a computer display in a workspace using an input unit/output unit. A train of EM waves are sent out to flood the workspace. EM waves are reflected from the input unit/output unit. A relative distance moved information signal is created using the EM waves that are reflected from the input unit/output unit. Algorithms are used to convert the relative distance moved information signal to a display signal. The computer display is controlled in response to the display signal.

  11. Kernel principal component analysis for stochastic input model generation

    SciTech Connect

    Ma Xiang; Zabaras, Nicholas

    2011-08-10

    Highlights: {yields} KPCA is used to construct a reduced order stochastic model of permeability. {yields} A new approach is proposed to solve the pre-image problem in KPCA. {yields} Polynomial chaos is used to provide a parametric stochastic input model. {yields} Flow in porous media with channelized permeability is considered. - Abstract: Stochastic analysis of random heterogeneous media provides useful information only if realistic input models of the material property variations are used. These input models are often constructed from a set of experimental samples of the underlying random field. To this end, the Karhunen-Loeve (K-L) expansion, also known as principal component analysis (PCA), is the most popular model reduction method due to its uniform mean-square convergence. However, it only projects the samples onto an optimal linear subspace, which results in an unreasonable representation of the original data if they are non-linearly related to each other. In other words, it only preserves the first-order (mean) and second-order statistics (covariance) of a random field, which is insufficient for reproducing complex structures. This paper applies kernel principal component analysis (KPCA) to construct a reduced-order stochastic input model for the material property variation in heterogeneous media. KPCA can be considered as a nonlinear version of PCA. Through use of kernel functions, KPCA further enables the preservation of higher-order statistics of the random field, instead of just two-point statistics as in the standard Karhunen-Loeve (K-L) expansion. Thus, this method can model non-Gaussian, non-stationary random fields. In this work, we also propose a new approach to solve the pre-image problem involved in KPCA. In addition, polynomial chaos (PC) expansion is used to represent the random coefficients in KPCA which provides a parametric stochastic input model. Thus, realizations, which are statistically consistent with the experimental data, can be

  12. Micromachined dual input axis rate gyroscope

    NASA Astrophysics Data System (ADS)

    Juneau, Thor Nelson

    The need for inexpensive yet reliable angular rate sensors in fields ranging from automotive to consumer electronics has motivated prolific micromachined rate gyroscope research. The vast majority of research has focused on single input axis rate gyroscopes based upon either translational resonance, such as tuning forks, or structural mode resonance, such as vibrating rings. However, this work presents a novel, contrasting approach based on angular resonance of a rotating rigid rotor suspended by torsional springs. The inherent symmetry of the circular design allows angular rate measurement about two axes simultaneously, hence the name micromachined dual-axis rate gyroscope. The underlying theory of operation, mechanical structure design optimization, electrical interface circuitry, and signal processing are described in detail. Several operational versions were fabricated using two different fully integrated surface micromachining processes as proof of concept. The heart of the dual-axis rate gyroscope is a ˜2 mum thick polysilicon disk or rotor suspended above the substrate by a four beam suspension. When this rotor in driven into angular oscillation about the axis perpendicular to the substrate, a rotation rate about the two axes parallel to the substrate invokes an out of plane rotor tilting motion due to Coriolis acceleration. This tilting motion is capacitively measured and on board integrated signal processing provides two output voltages proportional to angular rate input about the two axes parallel to the substrate. The design process begins with the derivation of gyroscopic dynamics. The equations suggest that tuning sense mode frequencies to the drive oscillation frequency can vastly increase mechanical sensitivity. Hence the supporting four beam suspension is designed such that electrostatic tuning can match modes despite process variations. The electrostatic tuning range is limited only by rotor collapse to the substrate when tuning-voltage induced

  13. Input-increase and input-decrease types of cortical reorganization after upper extremity amputation in humans.

    PubMed

    Elbert, T; Sterr, A; Flor, H; Rockstroh, B; Knecht, S; Pantev, C; Wienbruch, C; Taub, E

    1997-10-01

    A plastic remodeling of regions in somatosensory cortex has previously been observed to occur in separate experimental paradigms in response to loss of somatosensory input and to increase in input. In this study, both types of cortical reorganization have been observed to occur concurrently in the same adult human nervous system as a result of a single intervention. Following upper extremity amputation, magnetic source imaging revealed that tactile stimulation of the lip evoked responses not only in the area of the somatosensory cortex corresponding to the face, but also within the cortical region that would normally correspond to the now absent hand. This "invasion" of the cortical amputation zone was accompanied by a significant increase in the size of the representation of the digits of the intact hand, presumably as a result of an increased importance of sensory stimulation consequent to increased dependence on that hand imposed by the loss of the contralateral extremity.

  14. Scaling of global input-output networks

    NASA Astrophysics Data System (ADS)

    Liang, Sai; Qi, Zhengling; Qu, Shen; Zhu, Ji; Chiu, Anthony S. F.; Jia, Xiaoping; Xu, Ming

    2016-06-01

    Examining scaling patterns of networks can help understand how structural features relate to the behavior of the networks. Input-output networks consist of industries as nodes and inter-industrial exchanges of products as links. Previous studies consider limited measures for node strengths and link weights, and also ignore the impact of dataset choice. We consider a comprehensive set of indicators in this study that are important in economic analysis, and also examine the impact of dataset choice, by studying input-output networks in individual countries and the entire world. Results show that Burr, Log-Logistic, Log-normal, and Weibull distributions can better describe scaling patterns of global input-output networks. We also find that dataset choice has limited impacts on the observed scaling patterns. Our findings can help examine the quality of economic statistics, estimate missing data in economic statistics, and identify key nodes and links in input-output networks to support economic policymaking.

  15. Computing functions by approximating the input

    NASA Astrophysics Data System (ADS)

    Goldberg, Mayer

    2012-12-01

    In computing real-valued functions, it is ordinarily assumed that the input to the function is known, and it is the output that we need to approximate. In this work, we take the opposite approach: we show how to compute the values of some transcendental functions by approximating the input to these functions, and obtaining exact answers for their output. Our approach assumes only the most rudimentary knowledge of algebra and trigonometry, and makes no use of calculus.

  16. Rapid Airplane Parametric Input Design (RAPID)

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.

    1995-01-01

    RAPID is a methodology and software system to define a class of airplane configurations and directly evaluate surface grids, volume grids, and grid sensitivity on and about the configurations. A distinguishing characteristic which separates RAPID from other airplane surface modellers is that the output grids and grid sensitivity are directly applicable in CFD analysis. A small set of design parameters and grid control parameters govern the process which is incorporated into interactive software for 'real time' visual analysis and into batch software for the application of optimization technology. The computed surface grids and volume grids are suitable for a wide range of Computational Fluid Dynamics (CFD) simulation. The general airplane configuration has wing, fuselage, horizontal tail, and vertical tail components. The double-delta wing and tail components are manifested by solving a fourth order partial differential equation (PDE) subject to Dirichlet and Neumann boundary conditions. The design parameters are incorporated into the boundary conditions and therefore govern the shapes of the surfaces. The PDE solution yields a smooth transition between boundaries. Surface grids suitable for CFD calculation are created by establishing an H-type topology about the configuration and incorporating grid spacing functions in the PDE equation for the lifting components and the fuselage definition equations. User specified grid parameters govern the location and degree of grid concentration. A two-block volume grid about a configuration is calculated using the Control Point Form (CPF) technique. The interactive software, which runs on Silicon Graphics IRIS workstations, allows design parameters to be continuously varied and the resulting surface grid to be observed in real time. The batch software computes both the surface and volume grids and also computes the sensitivity of the output grid with respect to the input design parameters by applying the precompiler tool

  17. Input filter compensation for switching regulators

    NASA Technical Reports Server (NTRS)

    Kelkar, S. S.; Lee, F. C.

    1983-01-01

    A novel input filter compensation scheme for a buck regulator that eliminates the interaction between the input filter output impedance and the regulator control loop is presented. The scheme is implemented using a feedforward loop that senses the input filter state variables and uses this information to modulate the duty cycle signal. The feedforward design process presented is seen to be straightforward and the feedforward easy to implement. Extensive experimental data supported by analytical results show that significant performance improvement is achieved with the use of feedforward in the following performance categories: loop stability, audiosusceptibility, output impedance and transient response. The use of feedforward results in isolating the switching regulator from its power source thus eliminating all interaction between the regulator and equipment upstream. In addition the use of feedforward removes some of the input filter design constraints and makes the input filter design process simpler thus making it possible to optimize the input filter. The concept of feedforward compensation can also be extended to other types of switching regulators.

  18. Input/output system for multiprocessors

    SciTech Connect

    Bernick, D.L.; Chan, K.K.; Chan, W.M.; Dan, Y.F.; Hoang, D.M.; Hussain, Z.; Iswandhi, G.I.; Korpi, J.E.; Sanner, M.W.; Zwangerman, J.A.

    1989-04-11

    A device controller is described, comprising: a first port-input/output controller coupled to a first input/output channel bus; and a second port-input/output controlled coupled to a second input/output channel bus; each of the first and second port-input/output controllers having: a first ownership latch means for granting shared ownership of the device controller to a first host processor to provide a first data path on a first I/O channel through the first port I/O controller between the first host processor and any peripheral, and at least a second ownership latch means operative independently of the first ownership latch means for granting shared ownership of the device controller to a second host processor independently of the first port input/output controller to provide a second data path on a second I/O channel through the second port I/O controller between the second host processor and any peripheral devices coupled to the device controller.

  19. Indexing Images: Testing an Image Description Template.

    ERIC Educational Resources Information Center

    Jorgensen, Corinne

    1996-01-01

    A template for pictorial image description to be used by novice image searchers in recording their descriptions of images was tested; image attribute classes derived in previous research were used to model the template. Results indicated that users may need training and/or more guidance to correctly assign descriptors to higher-level classes.…

  20. Cloud droplet deposition in subalpine balsam fir forests: hydrological and chemical inputs.

    PubMed

    Lovett, G M; Reiners, W A; Olson, R K

    1982-12-24

    Subalpine forests of the northern Appalachians are subject to significant deposition of water and chemicals via cloud droplet impaction. This deposition has been estimated by a method linking micrometeorological measures of turbulent transfer, a detailed representation of canopy structure, and experimentally derived capture efficiencies. Water inputs from clouds are about 46 percent, and chemical inputs range from 150 to 430 percent of the bulk precipitation.

  1. Phenological indicators derived with CO2 flux, MODIS image and ground monitor at a temperate mixed forest and an alpine shrub

    NASA Astrophysics Data System (ADS)

    Zhang, Leiming; Cao, Peiyu; Li, Shenggong; Yu, Guirui; Zhang, Junhui; Li, Yingnian

    2016-04-01

    To accurately assess the change of phenology and its relationship with ecosystem gross primary productivity (GPP) is one of the key issues in context of global change study. In this study, an alpine shrubland meadow in Haibei (HBS) of Qinghai-Tibetan plateau and a broad-leaved Korean pine forest in Changbai Mountain (CBM) of Northeastern China were selected. Based on the long-term GPP from eddy flux measurements and the Normalized Difference Vegetation Index (NDVI) from remote sensed vegetation index, phenological indicators including the start of growing season (SOS), the end of growing season (EOS), and the growing season length (GSL) since 2003 were derived via multiple methods, and then the influences of phenology variation on GPP were explored. Compared with ground phenology observations of dominant plant species, both GPP- and NDVI-derived SOS and EOS exhibited a similar interannual trend. GPP-derived SOS was quite close to NDVI-derived SOS, but GPP-derived EOS differed significantly from NDVI-derived EOS, and thus leading to a significant difference between GPP- and NDVI-derived GSL. Relative to SOS, EOS presented larger differences between the extraction methods, indicating large uncertainties to accurately define EOS. In general, among the methods used, the threshold methods produced more satisfactory assessment on phenology change. This study highlights that how to harmonize with the flux measurements, remote sensing and ground monitoring are a big challenge that needs further consideration in phenology study, especially the accurate extraction of EOS. Key words: phenological variation, carbon flux, vegetation index, vegetation grwoth, interannual varibility

  2. Adaptive sliding mode control of tethered satellite deployment with input limitation

    NASA Astrophysics Data System (ADS)

    Ma, Zhiqiang; Sun, Guanghui

    2016-10-01

    This paper proposes a novel adaptive sliding mode tension control method for the deployment of tethered satellite, where the input tension limitation is taken into account. The underactuated governing equations of the tethered satellites system are firstly derived based on Lagrangian mechanics theory. Considering the fact that the tether can only resist axial stretching, the tension input is modelled as input limitation. New adaptive sliding mode laws are addressed to guarantee the stability of the tethered satellite deployment with input disturbance, meanwhile to eliminate the effect of the limitation features of the tension input. Compared with the classic control strategy, the newly proposed adaptive sliding mode control law can deploy the satellite with smaller overshoot of the in-plane angle and implement the tension control reasonably and effectively in engineering practice. The numerical results validate the effectiveness of the proposed methods.

  3. Determination of mango fruit from binary image using randomized Hough transform

    NASA Astrophysics Data System (ADS)

    Rizon, Mohamed; Najihah Yusri, Nurul Ain; Abdul Kadir, Mohd Fadzil; bin Mamat, Abd. Rasid; Abd Aziz, Azim Zaliha; Nanaa, Kutiba

    2015-12-01

    A method of detecting mango fruit from RGB input image is proposed in this research. From the input image, the image is processed to obtain the binary image using the texture analysis and morphological operations (dilation and erosion). Later, the Randomized Hough Transform (RHT) method is used to find the best ellipse fits to each binary region. By using the texture analysis, the system can detect the mango fruit that is partially overlapped with each other and mango fruit that is partially occluded by the leaves. The combination of texture analysis and morphological operator can isolate the partially overlapped fruit and fruit that are partially occluded by leaves. The parameters derived from RHT method was used to calculate the center of the ellipse. The center of the ellipse acts as the gripping point for the fruit picking robot. As the results, the rate of detection was up to 95% for fruit that is partially overlapped and partially covered by leaves.

  4. Image enhancement by non-linear extrapolation in frequency space

    NASA Technical Reports Server (NTRS)

    Anderson, Charles H. (Inventor); Greenspan, Hayit K. (Inventor)

    1998-01-01

    An input image is enhanced to include spatial frequency components having frequencies higher than those in an input image. To this end, an edge map is generated from the input image using a high band pass filtering technique. An enhancing map is subsequently generated from the edge map, with the enhanced map having spatial frequencies exceeding an initial maximum spatial frequency of the input image. The enhanced map is generated by applying a non-linear operator to the edge map in a manner which preserves the phase transitions of the edges of the input image. The enhanced map is added to the input image to achieve a resulting image having spatial frequencies greater than those in the input image. Simplicity of computations and ease of implementation allow for image sharpening after enlargement and for real-time applications such as videophones, advanced definition television, zooming, and restoration of old motion pictures.

  5. A comparison of rat SPECT images obtained using 99mTc derived from 99Mo produced by an electron accelerator with that from a reactor

    NASA Astrophysics Data System (ADS)

    Galea, R.; Wells, R. G.; Ross, C. K.; Lockwood, J.; Moore, K.; Harvey, J. T.; Isensee, G. H.

    2013-05-01

    Recent shortages of molybdenum-99 (99Mo) have led to an examination of alternate production methods that could contribute to a more robust supply. An electron accelerator and the photoneutron reaction were used to produce 99Mo from which technetium-99m (99mTc) is extracted. SPECT images of rat anatomy obtained using the accelerator-produced 99mTc with those obtained using 99mTc from a commercial generator were compared. Disks of 100Mo were irradiated with x-rays produced by a 35 MeV electron beam to generate about 1110 MBq (30 mCi) of 99Mo per disk. After target dissolution, a NorthStar ARSII unit was used to separate the 99mTc, which was subsequently used to tag pharmaceuticals suitable for cardiac and bone imaging. SPECT images were acquired for three rats and compared to images for the same three rats obtained using 99mTc from a standard reactor 99Mo generator. The efficiency of 99Mo-99mTc separation was typically greater than 90%. This study demonstrated the delivery of 99mTc from the end of beam to the end user of approximately 30 h. Images obtained using the heart and bone scanning agents using reactor and linac-produced 99mTc were comparable. High-power electron accelerators are an attractive option for producing 99Mo on a national scale.

  6. Six axis force feedback input device

    NASA Technical Reports Server (NTRS)

    Ohm, Timothy (Inventor)

    1998-01-01

    The present invention is a low friction, low inertia, six-axis force feedback input device comprising an arm with double-jointed, tendon-driven revolute joints, a decoupled tendon-driven wrist, and a base with encoders and motors. The input device functions as a master robot manipulator of a microsurgical teleoperated robot system including a slave robot manipulator coupled to an amplifier chassis, which is coupled to a control chassis, which is coupled to a workstation with a graphical user interface. The amplifier chassis is coupled to the motors of the master robot manipulator and the control chassis is coupled to the encoders of the master robot manipulator. A force feedback can be applied to the input device and can be generated from the slave robot to enable a user to operate the slave robot via the input device without physically viewing the slave robot. Also, the force feedback can be generated from the workstation to represent fictitious forces to constrain the input device's control of the slave robot to be within imaginary predetermined boundaries.

  7. Synthesis and radiolabeling of (64)Cu-labeled 2-nitroimidazole derivative (64)Cu-BMS2P2 for hypoxia imaging.

    PubMed

    Luo, Zheng; Zhu, Hua; Lin, Xinfeng; Chu, Taiwei; Luo, Ruyi; Wang, Yunhua; Yang, Zhi

    2016-03-01

    The objective of this study was to develop a positron emission tomography (PET) probe with hypoxia targeting specificity and a relatively long half-life. The synthesis, (64)Cu-labeling in vitro and in vivo study of the novel 2-nitroimidazole complex (64)Cu-BMS2P2 is presented in this study. The hypoxia targeting capacity of (64)Cu-BMS2P2 in vitro was evaluated and compared with the (64)Cu-BMS181321, and confirmed by PET imaging in vivo and immunohistochemistry for carbonic anhydrase 9 (CA9) in a tumor mouse model. These results suggest that (64)Cu-BMS2P2 is a promising candidate for PET hypoxia imaging and worthy of further investigations in dynamic hypoxia imaging.

  8. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  9. Synchronized amplification of local information transmission by peripheral retinal input

    PubMed Central

    Jadzinsky, Pablo D; Baccus, Stephen A

    2015-01-01

    Sensory stimuli have varying statistics influenced by both the environment and by active sensing behaviors that rapidly and globally change the sensory input. Consequently, sensory systems often adjust their neural code to the expected statistics of their sensory input to transmit novel sensory information. Here, we show that sudden peripheral motion amplifies and accelerates information transmission in salamander ganglion cells in a 50 ms time window. Underlying this gating of information is a transient increase in adaptation to contrast, enhancing sensitivity to a broader range of stimuli. Using a model and natural images, we show that this effect coincides with an expected increase in information in bipolar cells after a global image shift. Our findings reveal the dynamic allocation of energy resources to increase neural activity at times of expected high information content, a principle of adaptation that balances the competing requirements of conserving spikes and transmitting information. DOI: http://dx.doi.org/10.7554/eLife.09266.001 PMID:26568312

  10. Computer Generated Inputs for NMIS Processor Verification

    SciTech Connect

    J. A. Mullens; J. E. Breeding; J. A. McEvers; R. W. Wysor; L. G. Chiang; J. R. Lenarduzzi; J. T. Mihalczo; J. K. Mattingly

    2001-06-29

    Proper operation of the Nuclear Identification Materials System (NMIS) processor can be verified using computer-generated inputs [BIST (Built-In-Self-Test)] at the digital inputs. Preselected sequences of input pulses to all channels with known correlation functions are compared to the output of the processor. These types of verifications have been utilized in NMIS type correlation processors at the Oak Ridge National Laboratory since 1984. The use of this test confirmed a malfunction in a NMIS processor at the All-Russian Scientific Research Institute of Experimental Physics (VNIIEF) in 1998. The NMIS processor boards were returned to the U.S. for repair and subsequently used in NMIS passive and active measurements with Pu at VNIIEF in 1999.

  11. Decontextualized language input and preschoolers' vocabulary development.

    PubMed

    Rowe, Meredith L

    2013-11-01

    This article discusses the importance of using decontextualized language, or language that is removed from the here and now including pretend, narrative, and explanatory talk, with preschool children. The literature on parents' use of decontextualized language is reviewed and results of a longitudinal study of parent decontextualized language input in relation to child vocabulary development are explained. The main findings are that parents who provide their preschool children with more explanations and narrative utterances about past or future events in the input have children with larger vocabularies 1 year later, even with quantity of parent input and child prior vocabulary skill controlled. Recommendations for how to engage children in decontextualized language conversations are provided.

  12. The input optics of Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Tanner, D. B.; Arain, M. A.; Ciani, G.; Feldbaum, D.; Fulda, P.; Gleason, J.; Goetz, R.; Heintze, M.; Martin, R. M.; Mueller, C. L.; Williams, L. F.; Mueller, G.; Quetschke, V.; Korth, W. Z.; Reitze, D. H.; Derosa, R. T.; Effler, A.; Kokeyama, K.; Frolov, V. V.; Mullavey, A.; Poeld, J.

    2016-03-01

    The Input Optics (IO) of advanced LIGO will be described. The IO consists of all the optics between the laser and the power recycling mirror. The scope of the IO includes the following hardware: phase modulators, power control, input mode cleaner, an in-vacuum Faraday isolator, and mode matching telescopes. The IO group has developed and characterized RTP-based phase modulators capable of operation at 180 W cw input power. In addition, the Faraday isolator is compensated for depolarization and thermal lensing effects up to the same power and is capable of achieving greater than 40 dB isolation. This research has been supported by the NSF through Grants PHY-1205512 and PHY-1505598. LIGO-G1600067.

  13. Image compression system and method having optimized quantization tables

    NASA Technical Reports Server (NTRS)

    Ratnakar, Viresh (Inventor); Livny, Miron (Inventor)

    1998-01-01

    A digital image compression preprocessor for use in a discrete cosine transform-based digital image compression device is provided. The preprocessor includes a gathering mechanism for determining discrete cosine transform statistics from input digital image data. A computing mechanism is operatively coupled to the gathering mechanism to calculate a image distortion array and a rate of image compression array based upon the discrete cosine transform statistics for each possible quantization value. A dynamic programming mechanism is operatively coupled to the computing mechanism to optimize the rate of image compression array against the image distortion array such that a rate-distortion-optimal quantization table is derived. In addition, a discrete cosine transform-based digital image compression device and a discrete cosine transform-based digital image compression and decompression system are provided. Also, a method for generating a rate-distortion-optimal quantization table, using discrete cosine transform-based digital image compression, and operating a discrete cosine transform-based digital image compression and decompression system are provided.

  14. An update of input instructions to TEMOD

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The theory and operation of a FORTRAN 4 computer code, designated as TEMOD, used to calcuate tubular thermoelectric generator performance is described in WANL-TME-1906. The original version of TEMOD was developed in 1969. A description is given of additions to the mathematical model and an update of the input instructions to the code. Although the basic mathematical model described in WANL-TME-1906 has remained unchanged, a substantial number of input/output options were added to allow completion of module performance parametrics as required in support of the compact thermoelectric converter system technology program.

  15. Input/Output Subroutine Library Program

    NASA Technical Reports Server (NTRS)

    Collier, James B.

    1988-01-01

    Efficient, easy-to-use program moved easily to different computers. Purpose of NAVIO, Input/Output Subroutine Library, provides input/output package of software for FORTRAN programs that is portable, efficient, and easy to use. Implemented as hierarchy of libraries. At bottom is very small library containing only non-portable routines called "I/O Kernel." Design makes NAVIO easy to move from one computer to another, by simply changing kernel. NAVIO appropriate for software system of almost any size wherein different programs communicate through files.

  16. Hexylether derivative of pyropheophorbide-a (HPPH) on conjugating with 3gadolinium(III) aminobenzyldiethylenetriaminepentaacetic acid shows potential for in vivo tumor imaging (MR, Fluorescence) and photodynamic therapy.

    PubMed

    Spernyak, Joseph A; White, William H; Ethirajan, Manivannan; Patel, Nayan J; Goswami, Lalit; Chen, Yihui; Turowski, Steven; Missert, Joseph R; Batt, Carrie; Mazurchuk, Richard; Pandey, Ravindra K

    2010-05-19

    Conjugates of 3-(1'-hexyloxyethyl)-3-devinyl pyropheophorbide-a (HPPH) with multiple Gd(III)aminobenzyl diethylenetriamine pentacetic acid (ADTPA) moieties were evaluated for tumor imaging and photodynamic therapy (PDT). In vivo studies performed in both mice and rat tumor models resulted in a significant MR signal enhancement of tumors relative to surrounding tissues at 24 h postinjection. The water-soluble (pH: 7.4) HPPH-3Gd(III) ADTPA conjugate demonstrated high potential for tumor imaging by MR and fluorescence. This agent also produced long-term tumor cures via PDT. An in vivo biodistribution study with the corresponding (14)C-analogue also showed significant tumor uptake 24 h postinjection. Toxicological evaluations of HPHH-3Gd(III)ADTPA administered at and above imaging/therapeutic doses did not show any evidence of organ toxicity. Our present study illustrates a novel approach for the development of water-soluble "multifunctional agents", demonstrating efficacy for tumor imaging (MR and fluorescence) and phototherapy.

  17. Shallow sea-floor reflectance and water depth derived by unmixing multispectral imagery

    SciTech Connect

    Bierwirth, P.N.; Lee, T.J.; Burne, R.V. Michigan Environmental Research Inst., Ann Arbor )

    1993-03-01

    A major problem for mapping shallow water zones by the analysis of remotely sensed data is that contrast effects due to water depth obscure and distort the special nature of the substrate. This paper outlines a new method which unmixes the exponential influence of depth in each pixel by employing a mathematical constraint. This leaves a multispectral residual which represents relative substrate reflectance. Input to the process are the raw multispectral data and water attenuation coefficients derived by the co-analysis of known bathymetry and remotely sensed data. Outputs are substrate-reflectance images corresponding to the input bands and a greyscale depth image. The method has been applied in the analysis of Landsat TM data at Hamelin Pool in Shark Bay, Western Australia. Algorithm derived substrate reflectance images for Landsat TM bands 1, 2, and 3 combined in color represent the optimum enhancement for mapping or classifying substrate types. As a result, this color image successfully delineated features, which were obscured in the raw data, such as the distributions of sea-grasses, microbial mats, and sandy area. 19 refs.

  18. Three-input majority logic gate and multiple input logic circuit based on DNA strand displacement.

    PubMed

    Li, Wei; Yang, Yang; Yan, Hao; Liu, Yan

    2013-06-12

    In biomolecular programming, the properties of biomolecules such as proteins and nucleic acids are harnessed for computational purposes. The field has gained considerable attention due to the possibility of exploiting the massive parallelism that is inherent in natural systems to solve computational problems. DNA has already been used to build complex molecular circuits, where the basic building blocks are logic gates that produce single outputs from one or more logical inputs. We designed and experimentally realized a three-input majority gate based on DNA strand displacement. One of the key features of a three-input majority gate is that the three inputs have equal priority, and the output will be true if any of the two inputs are true. Our design consists of a central, circular DNA strand with three unique domains between which are identical joint sequences. Before inputs are introduced to the system, each domain and half of each joint is protected by one complementary ssDNA that displays a toehold for subsequent displacement by the corresponding input. With this design the relationship between any two domains is analogous to the relationship between inputs in a majority gate. Displacing two or more of the protection strands will expose at least one complete joint and return a true output; displacing none or only one of the protection strands will not expose a complete joint and will return a false output. Further, we designed and realized a complex five-input logic gate based on the majority gate described here. By controlling two of the five inputs the complex gate can realize every combination of OR and AND gates of the other three inputs.

  19. Operational life prediction on gating image intensifier

    NASA Astrophysics Data System (ADS)

    Dong, Yu-hui; Shen, Zhi-guo; Li, Zhong-li

    2009-07-01

    Operational life is one of the important parameters to evaluate second and super second generation image intensifiers. It can be used not only to monitor manufacturing technique in product line, then the technology on photocathode processing, MCP degassing and MCP producing can be adjusted promptly, but also to eliminate the image intensifiers which have hidden risk on operational life as early as possible. Recently gating image intensifiers are used widely, method to estimate the operational life of gating image intensifier related to its practical operate mode and working condition need to be established urgently. The least square method to analyze the operational life test data in product line was introduced in this paper. Now the data can be analyzed with convenient statistic analyze function on Excel. Using "worksheet function" and "chart wizard" and "data analysis" on Excel to do the least square method calculation, spreadsheets are established to do complex data calculation with worksheet functions. Based on them, formulas to monitor the technology parameters were derived, and the conclusion that the operational life was only related to the decrease slope of photocathode exponential fit curve was made. The decrease slope of photocathode sensitivity exponential fit curve and the decrease percent of the exponential fit photocathode sensitivity can be used to evaluate the qualification of the operational life rapidly. The mathematic models for operational life prediction on image intensifier and gating image intensifier are established respectively based on the acceptable values of the decrease percent of the exponential fit photocathode sensitivity and the expecting signal to noise ratio. The equations predicting the operational life related to duty cycle and input light level on gating image intensifier were derived, and the relationship between them were discussed too. The theory foundation were made herein, so the user can select proper gating image

  20. Input Enhancement in Instructed SLA: Theoretical Bases.

    ERIC Educational Resources Information Center

    Smith, Michael Sharwood

    1993-01-01

    The concept of input to the language learner is examined with reference to some current theorizing about language processing and the idea of modular systems of knowledge. It is argued that exposure to a second language engages the learner in a whole battery of different processing mechanisms. (21 references) (Author/LB)

  1. Multiple Input Microcantilever Sensor with Capacitive Readout

    SciTech Connect

    Britton, C.L., Jr.; Brown, G.M.; Bryan, W.L.; Clonts, L.G.; DePriest, J.C.; Emergy, M.S.; Ericson, M.N.; Hu, Z.; Jones, R.L.; Moore, M.R.; Oden, P.I.; Rochelle, J.M.; Smith, S.F.; Threatt, T.D.; Thundat, T.; Turner, G.W.; Warmack, R.J.; Wintenberg, A.L.

    1999-03-11

    A surface-micromachined MEMS process has been used to demonstrate multiple-input chemical sensing using selectively coated cantilever arrays. Combined hydrogen and mercury-vapor detection was achieved with a palm-sized, self-powered module with spread-spectrum telemetry reporting.

  2. Instrumentation for measuring energy inputs to implements

    SciTech Connect

    Tompkins, F.D.; Wilhelm, L.R.

    1981-01-01

    A microcomputer-based instrumentation system for monitoring tractor operating parameters and energy inputs to implements was developed and mounted on a 75-power-takeoff-KW tractor. The instrumentation system, including sensors and data handling equipment, is discussed. 10 refs.

  3. Input-Based Incremental Vocabulary Instruction

    ERIC Educational Resources Information Center

    Barcroft, Joe

    2012-01-01

    This fascinating presentation of current research undoes numerous myths about how we most effectively learn new words in a second language. In clear, reader-friendly text, the author details the successful approach of IBI vocabulary instruction, which emphasizes the presentation of target vocabulary as input early on and the incremental (gradual)…

  4. Soil Organic Carbon Input from Urban Turfgrasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Turfgrass is a major vegetation type in the urban and suburban environment. Management practices such as species selection, irrigation, and mowing may affect carbon input and storage in these systems. Research was conducted to determine the rate of soil organic carbon (SOC) changes, soil carbon sequ...

  5. Input and Intake in Language Acquisition

    ERIC Educational Resources Information Center

    Gagliardi, Ann C.

    2012-01-01

    This dissertation presents an approach for a productive way forward in the study of language acquisition, sealing the rift between claims of an innate linguistic hypothesis space and powerful domain general statistical inference. This approach breaks language acquisition into its component parts, distinguishing the input in the environment from…

  6. Soil Organic Carbon Input from Urban Turfgrasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Turfgrass is a major vegetation type in the urban and suburban environment. Management practices such as species selection, irrigation, and mowing may affect carbon (C) input and storage in these systems. Research was conducted to determine the rate of soil organic carbon (SOC) changes, soil carbon ...

  7. Treatments of Precipitation Inputs to Hydrologic Models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrological models are used to assess many water resources problems from agricultural use and water quality to engineering issues. The success of these models are dependent on correct parameterization; the most sensitive being the rainfall input time series. These records can come from land-based ...

  8. Multichannel analyzers at high rates of input

    NASA Technical Reports Server (NTRS)

    Rudnick, S. J.; Strauss, M. G.

    1969-01-01

    Multichannel analyzer, used with a gating system incorporating pole-zero compensation, pile-up rejection, and baseline-restoration, achieves good resolution at high rates of input. It improves resolution, reduces tailing and rate-contributed continuum, and eliminates spectral shift.

  9. Selecting training inputs via greedy rank covering

    SciTech Connect

    Buchsbaum, A.L.; Santen, J.P.H. van

    1996-12-31

    We present a general method for selecting a small set of training inputs, the observations of which will suffice to estimate the parameters of a given linear model. We exemplify the algorithm in terms of predicting segmental duration of phonetic-segment feature vectors in a text-to-speech synthesizer, but the algorithm will work for any linear model and its associated domain.

  10. The Contrast Theory of negative input.

    PubMed

    Saxton, M

    1997-02-01

    Beliefs about whether or not children receive corrective input for grammatical errors depend crucially on how one defines the concept of correction. Arguably, previous conceptualizations do not provide a viable basis for empirical research (Gold, 1967; Brown & Hanlon, 1970; Hirsh-Pasek, Treiman & Schneiderman, 1984). Within the Contrast Theory of negative input, an alternative definition of negative evidence is offered, based on the idea that the unique discourse structure created in the juxtaposition of child error and adult correct form can reveal to the child the contrast, or conflict, between the two forms, and hence provide a basis for rejecting the erroneous form. A within-subjects experimental design was implemented for 36 children (mean age 5;0), in order to compare the immediate effects of negative evidence with those of positive input, on the acquisition of six novel irregular past tense forms. Children reproduced the correct irregular model more often, and persisted with fewer errors, following negative evidence rather than positive input.

  11. "Thumball" Auxiliary Data-Input Device

    NASA Technical Reports Server (NTRS)

    Garner, H. Douglas; Busquets, Anthony M.; Hogge, Thomas W.; Parrish, Russell V.

    1988-01-01

    Track-ball-type device mounted on joystick and operated by thumb. Thumball designed to enable precise input of data about two different axes to autopilot, avionics computer, or other electronic device without need for operator to remove hands from joystick or other vehicle control levers.

  12. Adaptive Random Testing with Combinatorial Input Domain

    PubMed Central

    Lu, Yansheng

    2014-01-01

    Random testing (RT) is a fundamental testing technique to assess software reliability, by simply selecting test cases in a random manner from the whole input domain. As an enhancement of RT, adaptive random testing (ART) has better failure-detection capability and has been widely applied in different scenarios, such as numerical programs, some object-oriented programs, and mobile applications. However, not much work has been done on the effectiveness of ART for the programs with combinatorial input domain (i.e., the set of categorical data). To extend the ideas to the testing for combinatorial input domain, we have adopted different similarity measures that are widely used for categorical data in data mining and have proposed two similarity measures based on interaction coverage. Then, we propose a new version named ART-CID as an extension of ART in combinatorial input domain, which selects an element from categorical data as the next test case such that it has the lowest similarity against already generated test cases. Experimental results show that ART-CID generally performs better than RT, with respect to different evaluation metrics. PMID:24772036

  13. Input, Interaction and Output: An Overview

    ERIC Educational Resources Information Center

    Gass, Susan; Mackey, Alison

    2006-01-01

    This paper presents an overview of what has come to be known as the "Interaction Hypothesis," the basic tenet of which is that through input and interactio