Research on interpolation methods in medical image processing.
Pan, Mei-Sen; Yang, Xiao-Li; Tang, Jing-Tian
2012-04-01
Image interpolation is widely used for the field of medical image processing. In this paper, interpolation methods are divided into three groups: filter interpolation, ordinary interpolation and general partial volume interpolation. Some commonly-used filter methods for image interpolation are pioneered, but the interpolation effects need to be further improved. When analyzing and discussing ordinary interpolation, many asymmetrical kernel interpolation methods are proposed. Compared with symmetrical kernel ones, the former are have some advantages. After analyzing the partial volume and generalized partial volume estimation interpolations, the new concept and constraint conditions of the general partial volume interpolation are defined, and several new partial volume interpolation functions are derived. By performing the experiments of image scaling, rotation and self-registration, the interpolation methods mentioned in this paper are compared in the entropy, peak signal-to-noise ratio, cross entropy, normalized cross-correlation coefficient and running time. Among the filter interpolation methods, the median and B-spline filter interpolations have a relatively better interpolating performance. Among the ordinary interpolation methods, on the whole, the symmetrical cubic kernel interpolations demonstrate a strong advantage, especially the symmetrical cubic B-spline interpolation. However, we have to mention that they are very time-consuming and have lower time efficiency. As for the general partial volume interpolation methods, from the total error of image self-registration, the symmetrical interpolations provide certain superiority; but considering the processing efficiency, the asymmetrical interpolations are better.
Application of Time-Frequency Domain Transform to Three-Dimensional Interpolation of Medical Images.
Lv, Shengqing; Chen, Yimin; Li, Zeyu; Lu, Jiahui; Gao, Mingke; Lu, Rongrong
2017-11-01
Medical image three-dimensional (3D) interpolation is an important means to improve the image effect in 3D reconstruction. In image processing, the time-frequency domain transform is an efficient method. In this article, several time-frequency domain transform methods are applied and compared in 3D interpolation. And a Sobel edge detection and 3D matching interpolation method based on wavelet transform is proposed. We combine wavelet transform, traditional matching interpolation methods, and Sobel edge detection together in our algorithm. What is more, the characteristics of wavelet transform and Sobel operator are used. They deal with the sub-images of wavelet decomposition separately. Sobel edge detection 3D matching interpolation method is used in low-frequency sub-images under the circumstances of ensuring high frequency undistorted. Through wavelet reconstruction, it can get the target interpolation image. In this article, we make 3D interpolation of the real computed tomography (CT) images. Compared with other interpolation methods, our proposed method is verified to be effective and superior.
Ehrhardt, J; Säring, D; Handels, H
2007-01-01
Modern tomographic imaging devices enable the acquisition of spatial and temporal image sequences. But, the spatial and temporal resolution of such devices is limited and therefore image interpolation techniques are needed to represent images at a desired level of discretization. This paper presents a method for structure-preserving interpolation between neighboring slices in temporal or spatial image sequences. In a first step, the spatiotemporal velocity field between image slices is determined using an optical flow-based registration method in order to establish spatial correspondence between adjacent slices. An iterative algorithm is applied using the spatial and temporal image derivatives and a spatiotemporal smoothing step. Afterwards, the calculated velocity field is used to generate an interpolated image at the desired time by averaging intensities between corresponding points. Three quantitative measures are defined to evaluate the performance of the interpolation method. The behavior and capability of the algorithm is demonstrated by synthetic images. A population of 17 temporal and spatial image sequences are utilized to compare the optical flow-based interpolation method to linear and shape-based interpolation. The quantitative results show that the optical flow-based method outperforms the linear and shape-based interpolation statistically significantly. The interpolation method presented is able to generate image sequences with appropriate spatial or temporal resolution needed for image comparison, analysis or visualization tasks. Quantitative and qualitative measures extracted from synthetic phantoms and medical image data show that the new method definitely has advantages over linear and shape-based interpolation.
[Research on fast implementation method of image Gaussian RBF interpolation based on CUDA].
Chen, Hao; Yu, Haizhong
2014-04-01
Image interpolation is often required during medical image processing and analysis. Although interpolation method based on Gaussian radial basis function (GRBF) has high precision, the long calculation time still limits its application in field of image interpolation. To overcome this problem, a method of two-dimensional and three-dimensional medical image GRBF interpolation based on computing unified device architecture (CUDA) is proposed in this paper. According to single instruction multiple threads (SIMT) executive model of CUDA, various optimizing measures such as coalesced access and shared memory are adopted in this study. To eliminate the edge distortion of image interpolation, natural suture algorithm is utilized in overlapping regions while adopting data space strategy of separating 2D images into blocks or dividing 3D images into sub-volumes. Keeping a high interpolation precision, the 2D and 3D medical image GRBF interpolation achieved great acceleration in each basic computing step. The experiments showed that the operative efficiency of image GRBF interpolation based on CUDA platform was obviously improved compared with CPU calculation. The present method is of a considerable reference value in the application field of image interpolation.
Survey: interpolation methods for whole slide image processing.
Roszkowiak, L; Korzynska, A; Zak, J; Pijanowska, D; Swiderska-Chadaj, Z; Markiewicz, T
2017-02-01
Evaluating whole slide images of histological and cytological samples is used in pathology for diagnostics, grading and prognosis . It is often necessary to rescale whole slide images of a very large size. Image resizing is one of the most common applications of interpolation. We collect the advantages and drawbacks of nine interpolation methods, and as a result of our analysis, we try to select one interpolation method as the preferred solution. To compare the performance of interpolation methods, test images were scaled and then rescaled to the original size using the same algorithm. The modified image was compared to the original image in various aspects. The time needed for calculations and results of quantification performance on modified images were also compared. For evaluation purposes, we used four general test images and 12 specialized biological immunohistochemically stained tissue sample images. The purpose of this survey is to determine which method of interpolation is the best to resize whole slide images, so they can be further processed using quantification methods. As a result, the interpolation method has to be selected depending on the task involving whole slide images. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Directional sinogram interpolation for sparse angular acquisition in cone-beam computed tomography.
Zhang, Hua; Sonke, Jan-Jakob
2013-01-01
Cone-beam (CB) computed tomography (CT) is widely used in the field of medical imaging for guidance. Inspired by Betram's directional interpolation (BDI) methods, directional sinogram interpolation (DSI) was implemented to generate more CB projections by optimized (iterative) double-orientation estimation in sinogram space and directional interpolation. A new CBCT was subsequently reconstructed with the Feldkamp algorithm using both the original and interpolated CB projections. The proposed method was evaluated on both phantom and clinical data, and image quality was assessed by correlation ratio (CR) between the interpolated image and a gold standard obtained from full measured projections. Additionally, streak artifact reduction and image blur were assessed. In a CBCT reconstructed by 40 acquired projections over an arc of 360 degree, streak artifacts dropped 20.7% and 6.7% in a thorax phantom, when our method was compared to linear interpolation (LI) and BDI methods. Meanwhile, image blur was assessed by a head-and-neck phantom, where image blur of DSI was 20.1% and 24.3% less than LI and BDI. When our method was compared to LI and DI methods, CR increased by 4.4% and 3.1%. Streak artifacts of sparsely acquired CBCT were decreased by our method and image blur induced by interpolation was constrained to below other interpolation methods.
Vedadi, Farhang; Shirani, Shahram
2014-01-01
A new method of image resolution up-conversion (image interpolation) based on maximum a posteriori sequence estimation is proposed. Instead of making a hard decision about the value of each missing pixel, we estimate the missing pixels in groups. At each missing pixel of the high resolution (HR) image, we consider an ensemble of candidate interpolation methods (interpolation functions). The interpolation functions are interpreted as states of a Markov model. In other words, the proposed method undergoes state transitions from one missing pixel position to the next. Accordingly, the interpolation problem is translated to the problem of estimating the optimal sequence of interpolation functions corresponding to the sequence of missing HR pixel positions. We derive a parameter-free probabilistic model for this to-be-estimated sequence of interpolation functions. Then, we solve the estimation problem using a trellis representation and the Viterbi algorithm. Using directional interpolation functions and sequence estimation techniques, we classify the new algorithm as an adaptive directional interpolation using soft-decision estimation techniques. Experimental results show that the proposed algorithm yields images with higher or comparable peak signal-to-noise ratios compared with some benchmark interpolation methods in the literature while being efficient in terms of implementation and complexity considerations.
Gradient-based interpolation method for division-of-focal-plane polarimeters.
Gao, Shengkui; Gruev, Viktor
2013-01-14
Recent advancements in nanotechnology and nanofabrication have allowed for the emergence of the division-of-focal-plane (DoFP) polarization imaging sensors. These sensors capture polarization properties of the optical field at every imaging frame. However, the DoFP polarization imaging sensors suffer from large registration error as well as reduced spatial-resolution output. These drawbacks can be improved by applying proper image interpolation methods for the reconstruction of the polarization results. In this paper, we present a new gradient-based interpolation method for DoFP polarimeters. The performance of the proposed interpolation method is evaluated against several previously published interpolation methods by using visual examples and root mean square error (RMSE) comparison. We found that the proposed gradient-based interpolation method can achieve better visual results while maintaining a lower RMSE than other interpolation methods under various dynamic ranges of a scene ranging from dim to bright conditions.
[An Improved Spectral Quaternion Interpolation Method of Diffusion Tensor Imaging].
Xu, Yonghong; Gao, Shangce; Hao, Xiaofei
2016-04-01
Diffusion tensor imaging(DTI)is a rapid development technology in recent years of magnetic resonance imaging.The diffusion tensor interpolation is a very important procedure in DTI image processing.The traditional spectral quaternion interpolation method revises the direction of the interpolation tensor and can preserve tensors anisotropy,but the method does not revise the size of tensors.The present study puts forward an improved spectral quaternion interpolation method on the basis of traditional spectral quaternion interpolation.Firstly,we decomposed diffusion tensors with the direction of tensors being represented by quaternion.Then we revised the size and direction of the tensor respectively according to different situations.Finally,we acquired the tensor of interpolation point by calculating the weighted average.We compared the improved method with the spectral quaternion method and the Log-Euclidean method by the simulation data and the real data.The results showed that the improved method could not only keep the monotonicity of the fractional anisotropy(FA)and the determinant of tensors,but also preserve the tensor anisotropy at the same time.In conclusion,the improved method provides a kind of important interpolation method for diffusion tensor image processing.
Markov random field model-based edge-directed image interpolation.
Li, Min; Nguyen, Truong Q
2008-07-01
This paper presents an edge-directed image interpolation algorithm. In the proposed algorithm, the edge directions are implicitly estimated with a statistical-based approach. In opposite to explicit edge directions, the local edge directions are indicated by length-16 weighting vectors. Implicitly, the weighting vectors are used to formulate geometric regularity (GR) constraint (smoothness along edges and sharpness across edges) and the GR constraint is imposed on the interpolated image through the Markov random field (MRF) model. Furthermore, under the maximum a posteriori-MRF framework, the desired interpolated image corresponds to the minimal energy state of a 2-D random field given the low-resolution image. Simulated annealing methods are used to search for the minimal energy state from the state space. To lower the computational complexity of MRF, a single-pass implementation is designed, which performs nearly as well as the iterative optimization. Simulation results show that the proposed MRF model-based edge-directed interpolation method produces edges with strong geometric regularity. Compared to traditional methods and other edge-directed interpolation methods, the proposed method improves the subjective quality of the interpolated edges while maintaining a high PSNR level.
Reducing Interpolation Artifacts for Mutual Information Based Image Registration
Soleimani, H.; Khosravifard, M.A.
2011-01-01
Medical image registration methods which use mutual information as similarity measure have been improved in recent decades. Mutual Information is a basic concept of Information theory which indicates the dependency of two random variables (or two images). In order to evaluate the mutual information of two images their joint probability distribution is required. Several interpolation methods, such as Partial Volume (PV) and bilinear, are used to estimate joint probability distribution. Both of these two methods yield some artifacts on mutual information function. Partial Volume-Hanning window (PVH) and Generalized Partial Volume (GPV) methods are introduced to remove such artifacts. In this paper we show that the acceptable performance of these methods is not due to their kernel function. It's because of the number of pixels which incorporate in interpolation. Since using more pixels requires more complex and time consuming interpolation process, we propose a new interpolation method which uses only four pixels (the same as PV and bilinear interpolations) and removes most of the artifacts. Experimental results of the registration of Computed Tomography (CT) images show superiority of the proposed scheme. PMID:22606673
Udhayakumar, Ganesan; Sujatha, Chinnaswamy Manoharan; Ramakrishnan, Swaminathan
2013-01-01
Analysis of bone strength in radiographic images is an important component of estimation of bone quality in diseases such as osteoporosis. Conventional radiographic femur bone images are used to analyze its architecture using bi-dimensional empirical mode decomposition method. Surface interpolation of local maxima and minima points of an image is a crucial part of bi-dimensional empirical mode decomposition method and the choice of appropriate interpolation depends on specific structure of the problem. In this work, two interpolation methods of bi-dimensional empirical mode decomposition are analyzed to characterize the trabecular femur bone architecture of radiographic images. The trabecular bone regions of normal and osteoporotic femur bone images (N = 40) recorded under standard condition are used for this study. The compressive and tensile strength regions of the images are delineated using pre-processing procedures. The delineated images are decomposed into their corresponding intrinsic mode functions using interpolation methods such as Radial basis function multiquadratic and hierarchical b-spline techniques. Results show that bi-dimensional empirical mode decomposition analyses using both interpolations are able to represent architectural variations of femur bone radiographic images. As the strength of the bone depends on architectural variation in addition to bone mass, this study seems to be clinically useful.
Real-time Interpolation for True 3-Dimensional Ultrasound Image Volumes
Ji, Songbai; Roberts, David W.; Hartov, Alex; Paulsen, Keith D.
2013-01-01
We compared trilinear interpolation to voxel nearest neighbor and distance-weighted algorithms for fast and accurate processing of true 3-dimensional ultrasound (3DUS) image volumes. In this study, the computational efficiency and interpolation accuracy of the 3 methods were compared on the basis of a simulated 3DUS image volume, 34 clinical 3DUS image volumes from 5 patients, and 2 experimental phantom image volumes. We show that trilinear interpolation improves interpolation accuracy over both the voxel nearest neighbor and distance-weighted algorithms yet achieves real-time computational performance that is comparable to the voxel nearest neighbor algrorithm (1–2 orders of magnitude faster than the distance-weighted algorithm) as well as the fastest pixel-based algorithms for processing tracked 2-dimensional ultrasound images (0.035 seconds per 2-dimesional cross-sectional image [76,800 pixels interpolated, or 0.46 ms/1000 pixels] and 1.05 seconds per full volume with a 1-mm3 voxel size [4.6 million voxels interpolated, or 0.23 ms/1000 voxels]). On the basis of these results, trilinear interpolation is recommended as a fast and accurate interpolation method for rectilinear sampling of 3DUS image acquisitions, which is required to facilitate subsequent processing and display during operating room procedures such as image-guided neurosurgery. PMID:21266563
Real-time interpolation for true 3-dimensional ultrasound image volumes.
Ji, Songbai; Roberts, David W; Hartov, Alex; Paulsen, Keith D
2011-02-01
We compared trilinear interpolation to voxel nearest neighbor and distance-weighted algorithms for fast and accurate processing of true 3-dimensional ultrasound (3DUS) image volumes. In this study, the computational efficiency and interpolation accuracy of the 3 methods were compared on the basis of a simulated 3DUS image volume, 34 clinical 3DUS image volumes from 5 patients, and 2 experimental phantom image volumes. We show that trilinear interpolation improves interpolation accuracy over both the voxel nearest neighbor and distance-weighted algorithms yet achieves real-time computational performance that is comparable to the voxel nearest neighbor algrorithm (1-2 orders of magnitude faster than the distance-weighted algorithm) as well as the fastest pixel-based algorithms for processing tracked 2-dimensional ultrasound images (0.035 seconds per 2-dimesional cross-sectional image [76,800 pixels interpolated, or 0.46 ms/1000 pixels] and 1.05 seconds per full volume with a 1-mm(3) voxel size [4.6 million voxels interpolated, or 0.23 ms/1000 voxels]). On the basis of these results, trilinear interpolation is recommended as a fast and accurate interpolation method for rectilinear sampling of 3DUS image acquisitions, which is required to facilitate subsequent processing and display during operating room procedures such as image-guided neurosurgery.
Fast image interpolation via random forests.
Huang, Jun-Jie; Siu, Wan-Chi; Liu, Tian-Rui
2015-10-01
This paper proposes a two-stage framework for fast image interpolation via random forests (FIRF). The proposed FIRF method gives high accuracy, as well as requires low computation. The underlying idea of this proposed work is to apply random forests to classify the natural image patch space into numerous subspaces and learn a linear regression model for each subspace to map the low-resolution image patch to high-resolution image patch. The FIRF framework consists of two stages. Stage 1 of the framework removes most of the ringing and aliasing artifacts in the initial bicubic interpolated image, while Stage 2 further refines the Stage 1 interpolated image. By varying the number of decision trees in the random forests and the number of stages applied, the proposed FIRF method can realize computationally scalable image interpolation. Extensive experimental results show that the proposed FIRF(3, 2) method achieves more than 0.3 dB improvement in peak signal-to-noise ratio over the state-of-the-art nonlocal autoregressive modeling (NARM) method. Moreover, the proposed FIRF(1, 1) obtains similar or better results as NARM while only takes its 0.3% computational time.
Classical and neural methods of image sequence interpolation
NASA Astrophysics Data System (ADS)
Skoneczny, Slawomir; Szostakowski, Jaroslaw
2001-08-01
An image interpolation problem is often encountered in many areas. Some examples are interpolation for coding/decoding process for transmission purposes, reconstruction a full frame from two interlaced sub-frames in normal TV or HDTV, or reconstruction of missing frames in old destroyed cinematic sequences. In this paper an overview of interframe interpolation methods is presented. Both direct as well as motion compensated interpolation techniques are given by examples. The used methodology can also be either classical or based on neural networks depending on demand of a specific interpolation problem solving person.
2013-01-01
Background Intravascular ultrasound (IVUS) is a standard imaging modality for identification of plaque formation in the coronary and peripheral arteries. Volumetric three-dimensional (3D) IVUS visualization provides a powerful tool to overcome the limited comprehensive information of 2D IVUS in terms of complex spatial distribution of arterial morphology and acoustic backscatter information. Conventional 3D IVUS techniques provide sub-optimal visualization of arterial morphology or lack acoustic information concerning arterial structure due in part to low quality of image data and the use of pixel-based IVUS image reconstruction algorithms. In the present study, we describe a novel volumetric 3D IVUS reconstruction algorithm to utilize IVUS signal data and a shape-based nonlinear interpolation. Methods We developed an algorithm to convert a series of IVUS signal data into a fully volumetric 3D visualization. Intermediary slices between original 2D IVUS slices were generated utilizing the natural cubic spline interpolation to consider the nonlinearity of both vascular structure geometry and acoustic backscatter in the arterial wall. We evaluated differences in image quality between the conventional pixel-based interpolation and the shape-based nonlinear interpolation methods using both virtual vascular phantom data and in vivo IVUS data of a porcine femoral artery. Volumetric 3D IVUS images of the arterial segment reconstructed using the two interpolation methods were compared. Results In vitro validation and in vivo comparative studies with the conventional pixel-based interpolation method demonstrated more robustness of the shape-based nonlinear interpolation algorithm in determining intermediary 2D IVUS slices. Our shape-based nonlinear interpolation demonstrated improved volumetric 3D visualization of the in vivo arterial structure and more realistic acoustic backscatter distribution compared to the conventional pixel-based interpolation method. Conclusions This novel 3D IVUS visualization strategy has the potential to improve ultrasound imaging of vascular structure information, particularly atheroma determination. Improved volumetric 3D visualization with accurate acoustic backscatter information can help with ultrasound molecular imaging of atheroma component distribution. PMID:23651569
Quantum realization of the nearest neighbor value interpolation method for INEQR
NASA Astrophysics Data System (ADS)
Zhou, RiGui; Hu, WenWen; Luo, GaoFeng; Liu, XingAo; Fan, Ping
2018-07-01
This paper presents the nearest neighbor value (NNV) interpolation algorithm for the improved novel enhanced quantum representation of digital images (INEQR). It is necessary to use interpolation in image scaling because there is an increase or a decrease in the number of pixels. The difference between the proposed scheme and nearest neighbor interpolation is that the concept applied, to estimate the missing pixel value, is guided by the nearest value rather than the distance. Firstly, a sequence of quantum operations is predefined, such as cyclic shift transformations and the basic arithmetic operations. Then, the feasibility of the nearest neighbor value interpolation method for quantum image of INEQR is proven using the previously designed quantum operations. Furthermore, quantum image scaling algorithm in the form of circuits of the NNV interpolation for INEQR is constructed for the first time. The merit of the proposed INEQR circuit lies in their low complexity, which is achieved by utilizing the unique properties of quantum superposition and entanglement. Finally, simulation-based experimental results involving different classical images and ratios (i.e., conventional or non-quantum) are simulated based on the classical computer's MATLAB 2014b software, which demonstrates that the proposed interpolation method has higher performances in terms of high resolution compared to the nearest neighbor and bilinear interpolation.
Yang, Qi; Zhang, Yanzhu; Zhao, Tiebiao; Chen, YangQuan
2017-04-04
Image super-resolution using self-optimizing mask via fractional-order gradient interpolation and reconstruction aims to recover detailed information from low-resolution images and reconstruct them into high-resolution images. Due to the limited amount of data and information retrieved from low-resolution images, it is difficult to restore clear, artifact-free images, while still preserving enough structure of the image such as the texture. This paper presents a new single image super-resolution method which is based on adaptive fractional-order gradient interpolation and reconstruction. The interpolated image gradient via optimal fractional-order gradient is first constructed according to the image similarity and afterwards the minimum energy function is employed to reconstruct the final high-resolution image. Fractional-order gradient based interpolation methods provide an additional degree of freedom which helps optimize the implementation quality due to the fact that an extra free parameter α-order is being used. The proposed method is able to produce a rich texture detail while still being able to maintain structural similarity even under large zoom conditions. Experimental results show that the proposed method performs better than current single image super-resolution techniques. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Zhu, Mengchen; Salcudean, Septimiu E
2011-07-01
In this paper, we propose an interpolation-based method for simulating rigid needles in B-mode ultrasound images in real time. We parameterize the needle B-mode image as a function of needle position and orientation. We collect needle images under various spatial configurations in a water-tank using a needle guidance robot. Then we use multidimensional tensor-product interpolation to simulate images of needles with arbitrary poses and positions using collected images. After further processing, the interpolated needle and seed images are superimposed on top of phantom or tissue image backgrounds. The similarity between the simulated and the real images is measured using a correlation metric. A comparison is also performed with in vivo images obtained during prostate brachytherapy. Our results, carried out for both the convex (transverse plane) and linear (sagittal/para-sagittal plane) arrays of a trans-rectal transducer indicate that our interpolation method produces good results while requiring modest computing resources. The needle simulation method we present can be extended to the simulation of ultrasound images of other wire-like objects. In particular, we have shown that the proposed approach can be used to simulate brachytherapy seeds.
Contrast-guided image interpolation.
Wei, Zhe; Ma, Kai-Kuang
2013-11-01
In this paper a contrast-guided image interpolation method is proposed that incorporates contrast information into the image interpolation process. Given the image under interpolation, four binary contrast-guided decision maps (CDMs) are generated and used to guide the interpolation filtering through two sequential stages: 1) the 45(°) and 135(°) CDMs for interpolating the diagonal pixels and 2) the 0(°) and 90(°) CDMs for interpolating the row and column pixels. After applying edge detection to the input image, the generation of a CDM lies in evaluating those nearby non-edge pixels of each detected edge for re-classifying them possibly as edge pixels. This decision is realized by solving two generalized diffusion equations over the computed directional variation (DV) fields using a derived numerical approach to diffuse or spread the contrast boundaries or edges, respectively. The amount of diffusion or spreading is proportional to the amount of local contrast measured at each detected edge. The diffused DV fields are then thresholded for yielding the binary CDMs, respectively. Therefore, the decision bands with variable widths will be created on each CDM. The two CDMs generated in each stage will be exploited as the guidance maps to conduct the interpolation process: for each declared edge pixel on the CDM, a 1-D directional filtering will be applied to estimate its associated to-be-interpolated pixel along the direction as indicated by the respective CDM; otherwise, a 2-D directionless or isotropic filtering will be used instead to estimate the associated missing pixels for each declared non-edge pixel. Extensive simulation results have clearly shown that the proposed contrast-guided image interpolation is superior to other state-of-the-art edge-guided image interpolation methods. In addition, the computational complexity is relatively low when compared with existing methods; hence, it is fairly attractive for real-time image applications.
Prakosa, A.; Malamas, P.; Zhang, S.; Pashakhanloo, F.; Arevalo, H.; Herzka, D. A.; Lardo, A.; Halperin, H.; McVeigh, E.; Trayanova, N.; Vadakkumpadan, F.
2014-01-01
Patient-specific modeling of ventricular electrophysiology requires an interpolated reconstruction of the 3-dimensional (3D) geometry of the patient ventricles from the low-resolution (Lo-res) clinical images. The goal of this study was to implement a processing pipeline for obtaining the interpolated reconstruction, and thoroughly evaluate the efficacy of this pipeline in comparison with alternative methods. The pipeline implemented here involves contouring the epi- and endocardial boundaries in Lo-res images, interpolating the contours using the variational implicit functions method, and merging the interpolation results to obtain the ventricular reconstruction. Five alternative interpolation methods, namely linear, cubic spline, spherical harmonics, cylindrical harmonics, and shape-based interpolation were implemented for comparison. In the thorough evaluation of the processing pipeline, Hi-res magnetic resonance (MR), computed tomography (CT), and diffusion tensor (DT) MR images from numerous hearts were used. Reconstructions obtained from the Hi-res images were compared with the reconstructions computed by each of the interpolation methods from a sparse sample of the Hi-res contours, which mimicked Lo-res clinical images. Qualitative and quantitative comparison of these ventricular geometry reconstructions showed that the variational implicit functions approach performed better than others. Additionally, the outcomes of electrophysiological simulations (sinus rhythm activation maps and pseudo-ECGs) conducted using models based on the various reconstructions were compared. These electrophysiological simulations demonstrated that our implementation of the variational implicit functions-based method had the best accuracy. PMID:25148771
3-D ultrasound volume reconstruction using the direct frame interpolation method.
Scheipers, Ulrich; Koptenko, Sergei; Remlinger, Rachel; Falco, Tony; Lachaine, Martin
2010-11-01
A new method for 3-D ultrasound volume reconstruction using tracked freehand 3-D ultrasound is proposed. The method is based on solving the forward volume reconstruction problem using direct interpolation of high-resolution ultrasound B-mode image frames. A series of ultrasound B-mode image frames (an image series) is acquired using the freehand scanning technique and position sensing via optical tracking equipment. The proposed algorithm creates additional intermediate image frames by directly interpolating between two or more adjacent image frames of the original image series. The target volume is filled using the original frames in combination with the additionally constructed frames. Compared with conventional volume reconstruction methods, no additional filling of empty voxels or holes within the volume is required, because the whole extent of the volume is defined by the arrangement of the original and the additionally constructed B-mode image frames. The proposed direct frame interpolation (DFI) method was tested on two different data sets acquired while scanning the head and neck region of different patients. The first data set consisted of eight B-mode 2-D frame sets acquired under optimal laboratory conditions. The second data set consisted of 73 image series acquired during a clinical study. Sample volumes were reconstructed for all 81 image series using the proposed DFI method with four different interpolation orders, as well as with the pixel nearest-neighbor method using three different interpolation neighborhoods. In addition, volumes based on a reduced number of image frames were reconstructed for comparison of the different methods' accuracy and robustness in reconstructing image data that lies between the original image frames. The DFI method is based on a forward approach making use of a priori information about the position and shape of the B-mode image frames (e.g., masking information) to optimize the reconstruction procedure and to reduce computation times and memory requirements. The method is straightforward, independent of additional input or parameters, and uses the high-resolution B-mode image frames instead of usually lower-resolution voxel information for interpolation. The DFI method can be considered as a valuable alternative to conventional 3-D ultrasound reconstruction methods based on pixel or voxel nearest-neighbor approaches, offering better quality and competitive reconstruction time.
Enhancement of panoramic image resolution based on swift interpolation of Bezier surface
NASA Astrophysics Data System (ADS)
Xiao, Xiao; Yang, Guo-guang; Bai, Jian
2007-01-01
Panoramic annular lens project the view of the entire 360 degrees around the optical axis onto an annular plane based on the way of flat cylinder perspective. Due to the infinite depth of field and the linear mapping relationship between an object and an image, the panoramic imaging system plays important roles in the applications of robot vision, surveillance and virtual reality. An annular image needs to be unwrapped to conventional rectangular image without distortion, in which interpolation algorithm is necessary. Although cubic splines interpolation can enhance the resolution of unwrapped image, it occupies too much time to be applied in practices. This paper adopts interpolation method based on Bezier surface and proposes a swift interpolation algorithm for panoramic image, considering the characteristic of panoramic image. The result indicates that the resolution of the image is well enhanced compared with the image by cubic splines and bilinear interpolation. Meanwhile the time consumed is shortened up by 78% than the time consumed cubic interpolation.
View-interpolation of sparsely sampled sinogram using convolutional neural network
NASA Astrophysics Data System (ADS)
Lee, Hoyeon; Lee, Jongha; Cho, Suengryong
2017-02-01
Spare-view sampling and its associated iterative image reconstruction in computed tomography have actively investigated. Sparse-view CT technique is a viable option to low-dose CT, particularly in cone-beam CT (CBCT) applications, with advanced iterative image reconstructions with varying degrees of image artifacts. One of the artifacts that may occur in sparse-view CT is the streak artifact in the reconstructed images. Another approach has been investigated for sparse-view CT imaging by use of the interpolation methods to fill in the missing view data and that reconstructs the image by an analytic reconstruction algorithm. In this study, we developed an interpolation method using convolutional neural network (CNN), which is one of the widely used deep-learning methods, to find missing projection data and compared its performances with the other interpolation techniques.
An edge-directed interpolation method for fetal spine MR images.
Yu, Shaode; Zhang, Rui; Wu, Shibin; Hu, Jiani; Xie, Yaoqin
2013-10-10
Fetal spinal magnetic resonance imaging (MRI) is a prenatal routine for proper assessment of fetus development, especially when suspected spinal malformations occur while ultrasound fails to provide details. Limited by hardware, fetal spine MR images suffer from its low resolution.High-resolution MR images can directly enhance readability and improve diagnosis accuracy. Image interpolation for higher resolution is required in clinical situations, while many methods fail to preserve edge structures. Edge carries heavy structural messages of objects in visual scenes for doctors to detect suspicions, classify malformations and make correct diagnosis. Effective interpolation with well-preserved edge structures is still challenging. In this paper, we propose an edge-directed interpolation (EDI) method and apply it on a group of fetal spine MR images to evaluate its feasibility and performance. This method takes edge messages from Canny edge detector to guide further pixel modification. First, low-resolution (LR) images of fetal spine are interpolated into high-resolution (HR) images with targeted factor by bi-linear method. Then edge information from LR and HR images is put into a twofold strategy to sharpen or soften edge structures. Finally a HR image with well-preserved edge structures is generated. The HR images obtained from proposed method are validated and compared with that from other four EDI methods. Performances are evaluated from six metrics, and subjective analysis of visual quality is based on regions of interest (ROI). All these five EDI methods are able to generate HR images with enriched details. From quantitative analysis of six metrics, the proposed method outperforms the other four from signal-to-noise ratio (SNR), peak signal-to-noise ratio (PSNR), structure similarity index (SSIM), feature similarity index (FSIM) and mutual information (MI) with seconds-level time consumptions (TC). Visual analysis of ROI shows that the proposed method maintains better consistency in edge structures with the original images. The proposed method classifies edge orientations into four categories and well preserves structures. It generates convincing HR images with fine details and is suitable in real-time situations. Iterative curvature-based interpolation (ICBI) method may result in crisper edges, while the other three methods are sensitive to noise and artifacts.
Single-Image Super-Resolution Based on Rational Fractal Interpolation.
Zhang, Yunfeng; Fan, Qinglan; Bao, Fangxun; Liu, Yifang; Zhang, Caiming
2018-08-01
This paper presents a novel single-image super-resolution (SR) procedure, which upscales a given low-resolution (LR) input image to a high-resolution image while preserving the textural and structural information. First, we construct a new type of bivariate rational fractal interpolation model and investigate its analytical properties. This model has different forms of expression with various values of the scaling factors and shape parameters; thus, it can be employed to better describe image features than current interpolation schemes. Furthermore, this model combines the advantages of rational interpolation and fractal interpolation, and its effectiveness is validated through theoretical analysis. Second, we develop a single-image SR algorithm based on the proposed model. The LR input image is divided into texture and non-texture regions, and then, the image is interpolated according to the characteristics of the local structure. Specifically, in the texture region, the scaling factor calculation is the critical step. We present a method to accurately calculate scaling factors based on local fractal analysis. Extensive experiments and comparisons with the other state-of-the-art methods show that our algorithm achieves competitive performance, with finer details and sharper edges.
Interpolation of diffusion weighted imaging datasets.
Dyrby, Tim B; Lundell, Henrik; Burke, Mark W; Reislev, Nina L; Paulson, Olaf B; Ptito, Maurice; Siebner, Hartwig R
2014-12-01
Diffusion weighted imaging (DWI) is used to study white-matter fibre organisation, orientation and structural connectivity by means of fibre reconstruction algorithms and tractography. For clinical settings, limited scan time compromises the possibilities to achieve high image resolution for finer anatomical details and signal-to-noise-ratio for reliable fibre reconstruction. We assessed the potential benefits of interpolating DWI datasets to a higher image resolution before fibre reconstruction using a diffusion tensor model. Simulations of straight and curved crossing tracts smaller than or equal to the voxel size showed that conventional higher-order interpolation methods improved the geometrical representation of white-matter tracts with reduced partial-volume-effect (PVE), except at tract boundaries. Simulations and interpolation of ex-vivo monkey brain DWI datasets revealed that conventional interpolation methods fail to disentangle fine anatomical details if PVE is too pronounced in the original data. As for validation we used ex-vivo DWI datasets acquired at various image resolutions as well as Nissl-stained sections. Increasing the image resolution by a factor of eight yielded finer geometrical resolution and more anatomical details in complex regions such as tract boundaries and cortical layers, which are normally only visualized at higher image resolutions. Similar results were found with typical clinical human DWI dataset. However, a possible bias in quantitative values imposed by the interpolation method used should be considered. The results indicate that conventional interpolation methods can be successfully applied to DWI datasets for mining anatomical details that are normally seen only at higher resolutions, which will aid in tractography and microstructural mapping of tissue compartments. Copyright © 2014. Published by Elsevier Inc.
Image interpolation and denoising for division of focal plane sensors using Gaussian processes.
Gilboa, Elad; Cunningham, John P; Nehorai, Arye; Gruev, Viktor
2014-06-16
Image interpolation and denoising are important techniques in image processing. These methods are inherent to digital image acquisition as most digital cameras are composed of a 2D grid of heterogeneous imaging sensors. Current polarization imaging employ four different pixelated polarization filters, commonly referred to as division of focal plane polarization sensors. The sensors capture only partial information of the true scene, leading to a loss of spatial resolution as well as inaccuracy of the captured polarization information. Interpolation is a standard technique to recover the missing information and increase the accuracy of the captured polarization information. Here we focus specifically on Gaussian process regression as a way to perform a statistical image interpolation, where estimates of sensor noise are used to improve the accuracy of the estimated pixel information. We further exploit the inherent grid structure of this data to create a fast exact algorithm that operates in ����(N(3/2)) (vs. the naive ���� (N³)), thus making the Gaussian process method computationally tractable for image data. This modeling advance and the enabling computational advance combine to produce significant improvements over previously published interpolation methods for polarimeters, which is most pronounced in cases of low signal-to-noise ratio (SNR). We provide the comprehensive mathematical model as well as experimental results of the GP interpolation performance for division of focal plane polarimeter.
Illumination estimation via thin-plate spline interpolation.
Shi, Lilong; Xiong, Weihua; Funt, Brian
2011-05-01
Thin-plate spline interpolation is used to interpolate the chromaticity of the color of the incident scene illumination across a training set of images. Given the image of a scene under unknown illumination, the chromaticity of the scene illumination can be found from the interpolated function. The resulting illumination-estimation method can be used to provide color constancy under changing illumination conditions and automatic white balancing for digital cameras. A thin-plate spline interpolates over a nonuniformly sampled input space, which in this case is a training set of image thumbnails and associated illumination chromaticities. To reduce the size of the training set, incremental k medians are applied. Tests on real images demonstrate that the thin-plate spline method can estimate the color of the incident illumination quite accurately, and the proposed training set pruning significantly decreases the computation.
NASA Astrophysics Data System (ADS)
Xu, Zhuo; Sopher, Daniel; Juhlin, Christopher; Han, Liguo; Gong, Xiangbo
2018-04-01
In towed marine seismic data acquisition, a gap between the source and the nearest recording channel is typical. Therefore, extrapolation of the missing near-offset traces is often required to avoid unwanted effects in subsequent data processing steps. However, most existing interpolation methods perform poorly when extrapolating traces. Interferometric interpolation methods are one particular method that have been developed for filling in trace gaps in shot gathers. Interferometry-type interpolation methods differ from conventional interpolation methods as they utilize information from several adjacent shot records to fill in the missing traces. In this study, we aim to improve upon the results generated by conventional time-space domain interferometric interpolation by performing interferometric interpolation in the Radon domain, in order to overcome the effects of irregular data sampling and limited source-receiver aperture. We apply both time-space and Radon-domain interferometric interpolation methods to the Sigsbee2B synthetic dataset and a real towed marine dataset from the Baltic Sea with the primary aim to improve the image of the seabed through extrapolation into the near-offset gap. Radon-domain interferometric interpolation performs better at interpolating the missing near-offset traces than conventional interferometric interpolation when applied to data with irregular geometry and limited source-receiver aperture. We also compare the interferometric interpolated results with those obtained using solely Radon transform (RT) based interpolation and show that interferometry-type interpolation performs better than solely RT-based interpolation when extrapolating the missing near-offset traces. After data processing, we show that the image of the seabed is improved by performing interferometry-type interpolation, especially when Radon-domain interferometric interpolation is applied.
NASA Astrophysics Data System (ADS)
Umehara, Kensuke; Ota, Junko; Ishimaru, Naoki; Ohno, Shunsuke; Okamoto, Kentaro; Suzuki, Takanori; Shirai, Naoki; Ishida, Takayuki
2017-02-01
Single image super-resolution (SR) method can generate a high-resolution (HR) image from a low-resolution (LR) image by enhancing image resolution. In medical imaging, HR images are expected to have a potential to provide a more accurate diagnosis with the practical application of HR displays. In recent years, the super-resolution convolutional neural network (SRCNN), which is one of the state-of-the-art deep learning based SR methods, has proposed in computer vision. In this study, we applied and evaluated the SRCNN scheme to improve the image quality of magnified images in chest radiographs. For evaluation, a total of 247 chest X-rays were sampled from the JSRT database. The 247 chest X-rays were divided into 93 training cases with non-nodules and 152 test cases with lung nodules. The SRCNN was trained using the training dataset. With the trained SRCNN, the HR image was reconstructed from the LR one. We compared the image quality of the SRCNN and conventional image interpolation methods, nearest neighbor, bilinear and bicubic interpolations. For quantitative evaluation, we measured two image quality metrics, peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). In the SRCNN scheme, PSNR and SSIM were significantly higher than those of three interpolation methods (p<0.001). Visual assessment confirmed that the SRCNN produced much sharper edge than conventional interpolation methods without any obvious artifacts. These preliminary results indicate that the SRCNN scheme significantly outperforms conventional interpolation algorithms for enhancing image resolution and that the use of the SRCNN can yield substantial improvement of the image quality of magnified images in chest radiographs.
Quantum realization of the bilinear interpolation method for NEQR.
Zhou, Ri-Gui; Hu, Wenwen; Fan, Ping; Ian, Hou
2017-05-31
In recent years, quantum image processing is one of the most active fields in quantum computation and quantum information. Image scaling as a kind of image geometric transformation has been widely studied and applied in the classical image processing, however, the quantum version of which does not exist. This paper is concerned with the feasibility of the classical bilinear interpolation based on novel enhanced quantum image representation (NEQR). Firstly, the feasibility of the bilinear interpolation for NEQR is proven. Then the concrete quantum circuits of the bilinear interpolation including scaling up and scaling down for NEQR are given by using the multiply Control-Not operation, special adding one operation, the reverse parallel adder, parallel subtractor, multiplier and division operations. Finally, the complexity analysis of the quantum network circuit based on the basic quantum gates is deduced. Simulation result shows that the scaled-up image using bilinear interpolation is clearer and less distorted than nearest interpolation.
Mahmoudzadeh, Amir Pasha; Kashou, Nasser H.
2013-01-01
Interpolation has become a default operation in image processing and medical imaging and is one of the important factors in the success of an intensity-based registration method. Interpolation is needed if the fractional unit of motion is not matched and located on the high resolution (HR) grid. The purpose of this work is to present a systematic evaluation of eight standard interpolation techniques (trilinear, nearest neighbor, cubic Lagrangian, quintic Lagrangian, hepatic Lagrangian, windowed Sinc, B-spline 3rd order, and B-spline 4th order) and to compare the effect of cost functions (least squares (LS), normalized mutual information (NMI), normalized cross correlation (NCC), and correlation ratio (CR)) for optimized automatic image registration (OAIR) on 3D spoiled gradient recalled (SPGR) magnetic resonance images (MRI) of the brain acquired using a 3T GE MR scanner. Subsampling was performed in the axial, sagittal, and coronal directions to emulate three low resolution datasets. Afterwards, the low resolution datasets were upsampled using different interpolation methods, and they were then compared to the high resolution data. The mean squared error, peak signal to noise, joint entropy, and cost functions were computed for quantitative assessment of the method. Magnetic resonance image scans and joint histogram were used for qualitative assessment of the method. PMID:24000283
Mahmoudzadeh, Amir Pasha; Kashou, Nasser H
2013-01-01
Interpolation has become a default operation in image processing and medical imaging and is one of the important factors in the success of an intensity-based registration method. Interpolation is needed if the fractional unit of motion is not matched and located on the high resolution (HR) grid. The purpose of this work is to present a systematic evaluation of eight standard interpolation techniques (trilinear, nearest neighbor, cubic Lagrangian, quintic Lagrangian, hepatic Lagrangian, windowed Sinc, B-spline 3rd order, and B-spline 4th order) and to compare the effect of cost functions (least squares (LS), normalized mutual information (NMI), normalized cross correlation (NCC), and correlation ratio (CR)) for optimized automatic image registration (OAIR) on 3D spoiled gradient recalled (SPGR) magnetic resonance images (MRI) of the brain acquired using a 3T GE MR scanner. Subsampling was performed in the axial, sagittal, and coronal directions to emulate three low resolution datasets. Afterwards, the low resolution datasets were upsampled using different interpolation methods, and they were then compared to the high resolution data. The mean squared error, peak signal to noise, joint entropy, and cost functions were computed for quantitative assessment of the method. Magnetic resonance image scans and joint histogram were used for qualitative assessment of the method.
Effects of empty bins on image upscaling in capsule endoscopy
NASA Astrophysics Data System (ADS)
Rukundo, Olivier
2017-07-01
This paper presents a preliminary study of the effect of empty bins on image upscaling in capsule endoscopy. The presented study was conducted based on results of existing contrast enhancement and interpolation methods. A low contrast enhancement method based on pixels consecutiveness and modified bilinear weighting scheme has been developed to distinguish between necessary empty bins and unnecessary empty bins in the effort to minimize the number of empty bins in the input image, before further processing. Linear interpolation methods have been used for upscaling input images with stretched histograms. Upscaling error differences and similarity indices between pairs of interpolation methods have been quantified using the mean squared error and feature similarity index techniques. Simulation results demonstrated more promising effects using the developed method than other contrast enhancement methods mentioned.
Veldkamp, Wouter J H; Joemai, Raoul M S; van der Molen, Aart J; Geleijns, Jacob
2010-02-01
Metal prostheses cause artifacts in computed tomography (CT) images. The purpose of this work was to design an efficient and accurate metal segmentation in raw data to achieve artifact suppression and to improve CT image quality for patients with metal hip or shoulder prostheses. The artifact suppression technique incorporates two steps: metal object segmentation in raw data and replacement of the segmented region by new values using an interpolation scheme, followed by addition of the scaled metal signal intensity. Segmentation of metal is performed directly in sinograms, making it efficient and different from current methods that perform segmentation in reconstructed images in combination with Radon transformations. Metal signal segmentation is achieved by using a Markov random field model (MRF). Three interpolation methods are applied and investigated. To provide a proof of concept, CT data of five patients with metal implants were included in the study, as well as CT data of a PMMA phantom with Teflon, PVC, and titanium inserts. Accuracy was determined quantitatively by comparing mean Hounsfield (HU) values and standard deviation (SD) as a measure of distortion in phantom images with titanium (original and suppressed) and without titanium insert. Qualitative improvement was assessed by comparing uncorrected clinical images with artifact suppressed images. Artifacts in CT data of a phantom and five patients were automatically suppressed. The general visibility of structures clearly improved. In phantom images, the technique showed reduced SD close to the SD for the case where titanium was not inserted, indicating improved image quality. HU values in corrected images were different from expected values for all interpolation methods. Subtle differences between interpolation methods were found. The new artifact suppression design is efficient, for instance, in terms of preserving spatial resolution, as it is applied directly to original raw data. It successfully reduced artifacts in CT images of five patients and in phantom images. Sophisticated interpolation methods are needed to obtain reliable HU values close to the prosthesis.
Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation.
Zhang, Xiangjun; Wu, Xiaolin
2008-06-01
The challenge of image interpolation is to preserve spatial details. We propose a soft-decision interpolation technique that estimates missing pixels in groups rather than one at a time. The new technique learns and adapts to varying scene structures using a 2-D piecewise autoregressive model. The model parameters are estimated in a moving window in the input low-resolution image. The pixel structure dictated by the learnt model is enforced by the soft-decision estimation process onto a block of pixels, including both observed and estimated. The result is equivalent to that of a high-order adaptive nonseparable 2-D interpolation filter. This new image interpolation approach preserves spatial coherence of interpolated images better than the existing methods, and it produces the best results so far over a wide range of scenes in both PSNR measure and subjective visual quality. Edges and textures are well preserved, and common interpolation artifacts (blurring, ringing, jaggies, zippering, etc.) are greatly reduced.
Fast digital zooming system using directionally adaptive image interpolation and restoration.
Kang, Wonseok; Jeon, Jaehwan; Yu, Soohwan; Paik, Joonki
2014-01-01
This paper presents a fast digital zooming system for mobile consumer cameras using directionally adaptive image interpolation and restoration methods. The proposed interpolation algorithm performs edge refinement along the initially estimated edge orientation using directionally steerable filters. Either the directionally weighted linear or adaptive cubic-spline interpolation filter is then selectively used according to the refined edge orientation for removing jagged artifacts in the slanted edge region. A novel image restoration algorithm is also presented for removing blurring artifacts caused by the linear or cubic-spline interpolation using the directionally adaptive truncated constrained least squares (TCLS) filter. Both proposed steerable filter-based interpolation and the TCLS-based restoration filters have a finite impulse response (FIR) structure for real time processing in an image signal processing (ISP) chain. Experimental results show that the proposed digital zooming system provides high-quality magnified images with FIR filter-based fast computational structure.
Gaussian Process Interpolation for Uncertainty Estimation in Image Registration
Wachinger, Christian; Golland, Polina; Reuter, Martin; Wells, William
2014-01-01
Intensity-based image registration requires resampling images on a common grid to evaluate the similarity function. The uncertainty of interpolation varies across the image, depending on the location of resampled points relative to the base grid. We propose to perform Bayesian inference with Gaussian processes, where the covariance matrix of the Gaussian process posterior distribution estimates the uncertainty in interpolation. The Gaussian process replaces a single image with a distribution over images that we integrate into a generative model for registration. Marginalization over resampled images leads to a new similarity measure that includes the uncertainty of the interpolation. We demonstrate that our approach increases the registration accuracy and propose an efficient approximation scheme that enables seamless integration with existing registration methods. PMID:25333127
Edge directed image interpolation with Bamberger pyramids
NASA Astrophysics Data System (ADS)
Rosiles, Jose Gerardo
2005-08-01
Image interpolation is a standard feature in digital image editing software, digital camera systems and printers. Classical methods for resizing produce blurred images with unacceptable quality. Bamberger Pyramids and filter banks have been successfully used for texture and image analysis. They provide excellent multiresolution and directional selectivity. In this paper we present an edge-directed image interpolation algorithm which takes advantage of the simultaneous spatial-directional edge localization at the subband level. The proposed algorithm outperform classical schemes like bilinear and bicubic schemes from the visual and numerical point of views.
Directional view interpolation for compensation of sparse angular sampling in cone-beam CT.
Bertram, Matthias; Wiegert, Jens; Schafer, Dirk; Aach, Til; Rose, Georg
2009-07-01
In flat detector cone-beam computed tomography and related applications, sparse angular sampling frequently leads to characteristic streak artifacts. To overcome this problem, it has been suggested to generate additional views by means of interpolation. The practicality of this approach is investigated in combination with a dedicated method for angular interpolation of 3-D sinogram data. For this purpose, a novel dedicated shape-driven directional interpolation algorithm based on a structure tensor approach is developed. Quantitative evaluation shows that this method clearly outperforms conventional scene-based interpolation schemes. Furthermore, the image quality trade-offs associated with the use of interpolated intermediate views are systematically evaluated for simulated and clinical cone-beam computed tomography data sets of the human head. It is found that utilization of directionally interpolated views significantly reduces streak artifacts and noise, at the expense of small introduced image blur.
Imaging system design and image interpolation based on CMOS image sensor
NASA Astrophysics Data System (ADS)
Li, Yu-feng; Liang, Fei; Guo, Rui
2009-11-01
An image acquisition system is introduced, which consists of a color CMOS image sensor (OV9620), SRAM (CY62148), CPLD (EPM7128AE) and DSP (TMS320VC5509A). The CPLD implements the logic and timing control to the system. SRAM stores the image data, and DSP controls the image acquisition system through the SCCB (Omni Vision Serial Camera Control Bus). The timing sequence of the CMOS image sensor OV9620 is analyzed. The imaging part and the high speed image data memory unit are designed. The hardware and software design of the image acquisition and processing system is given. CMOS digital cameras use color filter arrays to sample different spectral components, such as red, green, and blue. At the location of each pixel only one color sample is taken, and the other colors must be interpolated from neighboring samples. We use the edge-oriented adaptive interpolation algorithm for the edge pixels and bilinear interpolation algorithm for the non-edge pixels to improve the visual quality of the interpolated images. This method can get high processing speed, decrease the computational complexity, and effectively preserve the image edges.
A wavelet-based adaptive fusion algorithm of infrared polarization imaging
NASA Astrophysics Data System (ADS)
Yang, Wei; Gu, Guohua; Chen, Qian; Zeng, Haifang
2011-08-01
The purpose of infrared polarization image is to highlight man-made target from a complex natural background. For the infrared polarization images can significantly distinguish target from background with different features, this paper presents a wavelet-based infrared polarization image fusion algorithm. The method is mainly for image processing of high-frequency signal portion, as for the low frequency signal, the original weighted average method has been applied. High-frequency part is processed as follows: first, the source image of the high frequency information has been extracted by way of wavelet transform, then signal strength of 3*3 window area has been calculated, making the regional signal intensity ration of source image as a matching measurement. Extraction method and decision mode of the details are determined by the decision making module. Image fusion effect is closely related to the setting threshold of decision making module. Compared to the commonly used experiment way, quadratic interpolation optimization algorithm is proposed in this paper to obtain threshold. Set the endpoints and midpoint of the threshold searching interval as initial interpolation nodes, and compute the minimum quadratic interpolation function. The best threshold can be obtained by comparing the minimum quadratic interpolation function. A series of image quality evaluation results show this method has got improvement in fusion effect; moreover, it is not only effective for some individual image, but also for a large number of images.
Sparse representation based image interpolation with nonlocal autoregressive modeling.
Dong, Weisheng; Zhang, Lei; Lukac, Rastislav; Shi, Guangming
2013-04-01
Sparse representation is proven to be a promising approach to image super-resolution, where the low-resolution (LR) image is usually modeled as the down-sampled version of its high-resolution (HR) counterpart after blurring. When the blurring kernel is the Dirac delta function, i.e., the LR image is directly down-sampled from its HR counterpart without blurring, the super-resolution problem becomes an image interpolation problem. In such cases, however, the conventional sparse representation models (SRM) become less effective, because the data fidelity term fails to constrain the image local structures. In natural images, fortunately, many nonlocal similar patches to a given patch could provide nonlocal constraint to the local structure. In this paper, we incorporate the image nonlocal self-similarity into SRM for image interpolation. More specifically, a nonlocal autoregressive model (NARM) is proposed and taken as the data fidelity term in SRM. We show that the NARM-induced sampling matrix is less coherent with the representation dictionary, and consequently makes SRM more effective for image interpolation. Our extensive experimental results demonstrate that the proposed NARM-based image interpolation method can effectively reconstruct the edge structures and suppress the jaggy/ringing artifacts, achieving the best image interpolation results so far in terms of PSNR as well as perceptual quality metrics such as SSIM and FSIM.
Bayer Demosaicking with Polynomial Interpolation.
Wu, Jiaji; Anisetti, Marco; Wu, Wei; Damiani, Ernesto; Jeon, Gwanggil
2016-08-30
Demosaicking is a digital image process to reconstruct full color digital images from incomplete color samples from an image sensor. It is an unavoidable process for many devices incorporating camera sensor (e.g. mobile phones, tablet, etc.). In this paper, we introduce a new demosaicking algorithm based on polynomial interpolation-based demosaicking (PID). Our method makes three contributions: calculation of error predictors, edge classification based on color differences, and a refinement stage using a weighted sum strategy. Our new predictors are generated on the basis of on the polynomial interpolation, and can be used as a sound alternative to other predictors obtained by bilinear or Laplacian interpolation. In this paper we show how our predictors can be combined according to the proposed edge classifier. After populating three color channels, a refinement stage is applied to enhance the image quality and reduce demosaicking artifacts. Our experimental results show that the proposed method substantially improves over existing demosaicking methods in terms of objective performance (CPSNR, S-CIELAB E, and FSIM), and visual performance.
A panoramic imaging system based on fish-eye lens
NASA Astrophysics Data System (ADS)
Wang, Ye; Hao, Chenyang
2017-10-01
Panoramic imaging has been closely watched as one of the major technologies of AR and VR. Mainstream panoramic imaging techniques lenses include fish-eye lenses, image splicing, and catadioptric imaging system. Meanwhile, fish-eyes are widely used in the big picture video surveillance. The advantage of fish-eye lenses is that they are easy to operate and cost less, but how to solve the image distortion of fish-eye lenses has always been a very important topic. In this paper, the image calibration algorithm of fish-eye lens is studied by comparing the method of interpolation, bilinear interpolation and double three interpolation, which are used to optimize the images.
NASA Astrophysics Data System (ADS)
Ota, Junko; Umehara, Kensuke; Ishimaru, Naoki; Ohno, Shunsuke; Okamoto, Kentaro; Suzuki, Takanori; Shirai, Naoki; Ishida, Takayuki
2017-02-01
As the capability of high-resolution displays grows, high-resolution images are often required in Computed Tomography (CT). However, acquiring high-resolution images takes a higher radiation dose and a longer scanning time. In this study, we applied the Sparse-coding-based Super-Resolution (ScSR) method to generate high-resolution images without increasing the radiation dose. We prepared the over-complete dictionary learned the mapping between low- and highresolution patches and seek a sparse representation of each patch of the low-resolution input. These coefficients were used to generate the high-resolution output. For evaluation, 44 CT cases were used as the test dataset. We up-sampled images up to 2 or 4 times and compared the image quality of the ScSR scheme and bilinear and bicubic interpolations, which are the traditional interpolation schemes. We also compared the image quality of three learning datasets. A total of 45 CT images, 91 non-medical images, and 93 chest radiographs were used for dictionary preparation respectively. The image quality was evaluated by measuring peak signal-to-noise ratio (PSNR) and structure similarity (SSIM). The differences of PSNRs and SSIMs between the ScSR method and interpolation methods were statistically significant. Visual assessment confirmed that the ScSR method generated a high-resolution image with sharpness, whereas conventional interpolation methods generated over-smoothed images. To compare three different training datasets, there were no significance between the CT, the CXR and non-medical datasets. These results suggest that the ScSR provides a robust approach for application of up-sampling CT images and yields substantial high image quality of extended images in CT.
Directional sinogram interpolation for motion weighted 4D cone-beam CT reconstruction
NASA Astrophysics Data System (ADS)
Zhang, Hua; Kruis, Matthijs; Sonke, Jan-Jakob
2017-03-01
The image quality of respiratory sorted four-dimensional (4D) cone-beam (CB) computed tomography (CT) is often limited by streak artifacts due to insufficient projections. A motion weighted reconstruction (MWR) method is proposed to decrease streak artifacts and improve image quality. Firstly, respiratory correlated CBCT projections were interpolated by directional sinogram interpolation (DSI) to generate additional CB projections for each phase and subsequently reconstructed. Secondly, local motion was estimated by deformable image registration of the interpolated 4D CBCT. Thirdly, a regular 3D FDK CBCT was reconstructed from the non-interpolated projections. Finally, weights were assigned to each voxel, based on the local motion, and then were used to combine the 3D FDK CBCT and interpolated 4D CBCT to generate the final 4D image. MWR method was compared with regular 4D CBCT scans as well as McKinnon and Bates (MKB) based reconstructions. Comparisons were made in terms of (1) comparing the steepness of an extracted profile from the boundary of the region-of-interest (ROI), (2) contrast-to-noise ratio (CNR) inside certain ROIs, and (3) the root-mean-square-error (RMSE) between the planning CT and CBCT inside a homogeneous moving region. Comparisons were made for both a phantom and four patient scans. In a 4D phantom, RMSE were reduced by 24.7% and 38.7% for MKB and MWR respectively, compared to conventional 4D CBCT. Meanwhile, interpolation induced blur was minimal in static regions for MWR based reconstructions. In regions with considerable respiratory motion, image blur using MWR is less than the MKB and 3D Feldkamp (FDK) methods. In the lung cancer patients, average CNRs of MKB, DSI and MWR improved by a factor 1.7, 2.8 and 3.5 respectively relative to 4D FDK. MWR effectively reduces RMSE in 4D cone-beam CT and improves the image quality in both the static and respiratory moving regions compared to 4D FDK and MKB methods.
Directional sinogram interpolation for motion weighted 4D cone-beam CT reconstruction.
Zhang, Hua; Kruis, Matthijs; Sonke, Jan-Jakob
2017-03-21
The image quality of respiratory sorted four-dimensional (4D) cone-beam (CB) computed tomography (CT) is often limited by streak artifacts due to insufficient projections. A motion weighted reconstruction (MWR) method is proposed to decrease streak artifacts and improve image quality. Firstly, respiratory correlated CBCT projections were interpolated by directional sinogram interpolation (DSI) to generate additional CB projections for each phase and subsequently reconstructed. Secondly, local motion was estimated by deformable image registration of the interpolated 4D CBCT. Thirdly, a regular 3D FDK CBCT was reconstructed from the non-interpolated projections. Finally, weights were assigned to each voxel, based on the local motion, and then were used to combine the 3D FDK CBCT and interpolated 4D CBCT to generate the final 4D image. MWR method was compared with regular 4D CBCT scans as well as McKinnon and Bates (MKB) based reconstructions. Comparisons were made in terms of (1) comparing the steepness of an extracted profile from the boundary of the region-of-interest (ROI), (2) contrast-to-noise ratio (CNR) inside certain ROIs, and (3) the root-mean-square-error (RMSE) between the planning CT and CBCT inside a homogeneous moving region. Comparisons were made for both a phantom and four patient scans. In a 4D phantom, RMSE were reduced by 24.7% and 38.7% for MKB and MWR respectively, compared to conventional 4D CBCT. Meanwhile, interpolation induced blur was minimal in static regions for MWR based reconstructions. In regions with considerable respiratory motion, image blur using MWR is less than the MKB and 3D Feldkamp (FDK) methods. In the lung cancer patients, average CNRs of MKB, DSI and MWR improved by a factor 1.7, 2.8 and 3.5 respectively relative to 4D FDK. MWR effectively reduces RMSE in 4D cone-beam CT and improves the image quality in both the static and respiratory moving regions compared to 4D FDK and MKB methods.
Single image interpolation via adaptive nonlocal sparsity-based modeling.
Romano, Yaniv; Protter, Matan; Elad, Michael
2014-07-01
Single image interpolation is a central and extensively studied problem in image processing. A common approach toward the treatment of this problem in recent years is to divide the given image into overlapping patches and process each of them based on a model for natural image patches. Adaptive sparse representation modeling is one such promising image prior, which has been shown to be powerful in filling-in missing pixels in an image. Another force that such algorithms may use is the self-similarity that exists within natural images. Processing groups of related patches together exploits their correspondence, leading often times to improved results. In this paper, we propose a novel image interpolation method, which combines these two forces-nonlocal self-similarities and sparse representation modeling. The proposed method is contrasted with competitive and related algorithms, and demonstrated to achieve state-of-the-art results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreiner, S.; Paschal, C.B.; Galloway, R.L.
Four methods of producing maximum intensity projection (MIP) images were studied and compared. Three of the projection methods differ in the interpolation kernel used for ray tracing. The interpolation kernels include nearest neighbor interpolation, linear interpolation, and cubic convolution interpolation. The fourth projection method is a voxel projection method that is not explicitly a ray-tracing technique. The four algorithms` performance was evaluated using a computer-generated model of a vessel and using real MR angiography data. The evaluation centered around how well an algorithm transferred an object`s width to the projection plane. The voxel projection algorithm does not suffer from artifactsmore » associated with the nearest neighbor algorithm. Also, a speed-up in the calculation of the projection is seen with the voxel projection method. Linear interpolation dramatically improves the transfer of width information from the 3D MRA data set over both nearest neighbor and voxel projection methods. Even though the cubic convolution interpolation kernel is theoretically superior to the linear kernel, it did not project widths more accurately than linear interpolation. A possible advantage to the nearest neighbor interpolation is that the size of small vessels tends to be exaggerated in the projection plane, thereby increasing their visibility. The results confirm that the way in which an MIP image is constructed has a dramatic effect on information contained in the projection. The construction method must be chosen with the knowledge that the clinical information in the 2D projections in general will be different from that contained in the original 3D data volume. 27 refs., 16 figs., 2 tabs.« less
NASA Astrophysics Data System (ADS)
Haak, Alexander; van Stralen, Marijn; van Burken, Gerard; Klein, Stefan; Pluim, Josien P. W.; de Jong, Nico; van der Steen, Antonius F. W.; Bosch, Johan G.
2012-03-01
°For electrophysiology intervention monitoring, we intend to reconstruct 4D ultrasound (US) of structures in the beating heart from 2D transesophageal US by scanplane rotation. The image acquisition is continuous but unsynchronized to the heart rate, which results in a sparsely and irregularly sampled dataset and a spatiotemporal interpolation method is desired. Previously, we showed the potential of normalized convolution (NC) for interpolating such datasets. We explored 4D interpolation by 3 different methods: NC, nearest neighbor (NN), and temporal binning followed by linear interpolation (LTB). The test datasets were derived by slicing three 4D echocardiography datasets at random rotation angles (θ, range: 0-180) and random normalized cardiac phase (τ, range: 0-1). Four different distributions of rotated 2D images with 600, 900, 1350, and 1800 2D input images were created from all TEE sets. A 2D Gaussian kernel was used for NC and optimal kernel sizes (σθ and στ) were found by performing an exhaustive search. The RMS gray value error (RMSE) of the reconstructed images was computed for all interpolation methods. The estimated optimal kernels were in the range of σθ = 3.24 - 3.69°/ στ = 0.045 - 0.048, σθ = 2.79°/ στ = 0.031 - 0.038, σθ = 2.34°/ στ = 0.023 - 0.026, and σθ = 1.89°/ στ = 0.021 - 0.023 for 600, 900, 1350, and 1800 input images respectively. We showed that NC outperforms NN and LTB. For a small number of input images the advantage of NC is more pronounced.
Learning receptor positions from imperfectly known motions
NASA Technical Reports Server (NTRS)
Ahumada, Albert J., Jr.; Mulligan, Jeffrey B.
1990-01-01
An algorithm is described for learning image interpolation functions for sensor arrays whose sensor positions are somewhat disordered. The learning is based on failures of translation invariance, so it does not require knowledge of the images being presented to the visual system. Previously reported implementations of the method assumed the visual system to have precise knowledge of the translations. It is demonstrated that translation estimates computed from the imperfectly interpolated images can have enough accuracy to allow the learning process to converge to a correct interpolation.
Li, Zeyu; Chen, Yimin; Zhao, Yan; Zhu, Lifeng; Lv, Shengqing; Lu, Jiahui
2016-08-01
The interpolation technique of computed tomography angiography (CTA) image provides the ability for 3D reconstruction, as well as reduces the detect cost and the amount of radiation. However, most of the image interpolation algorithms cannot take the automation and accuracy into account. This study provides a new edge matching interpolation algorithm based on wavelet decomposition of CTA. It includes mark, scale and calculation (MSC). Combining the real clinical image data, this study mainly introduces how to search for proportional factor and use the root mean square operator to find a mean value. Furthermore, we re- synthesize the high frequency and low frequency parts of the processed image by wavelet inverse operation, and get the final interpolation image. MSC can make up for the shortage of the conventional Computed Tomography (CT) and Magnetic Resonance Imaging(MRI) examination. The radiation absorption and the time to check through the proposed synthesized image were significantly reduced. In clinical application, it can help doctor to find hidden lesions in time. Simultaneously, the patients get less economic burden as well as less radiation exposure absorbed.
Sim, K S; Yeap, Z X; Tso, C P
2016-11-01
An improvement to the existing technique of quantifying signal-to-noise ratio (SNR) of scanning electron microscope (SEM) images using piecewise cubic Hermite interpolation (PCHIP) technique is proposed. The new technique uses an adaptive tuning onto the PCHIP, and is thus named as ATPCHIP. To test its accuracy, 70 images are corrupted with noise and their autocorrelation functions are then plotted. The ATPCHIP technique is applied to estimate the uncorrupted noise-free zero offset point from a corrupted image. Three existing methods, the nearest neighborhood, first order interpolation and original PCHIP, are used to compare with the performance of the proposed ATPCHIP method, with respect to their calculated SNR values. Results show that ATPCHIP is an accurate and reliable method to estimate SNR values from SEM images. SCANNING 38:502-514, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.
Attenuation correction of emission PET images with average CT: Interpolation from breath-hold CT
NASA Astrophysics Data System (ADS)
Huang, Tzung-Chi; Zhang, Geoffrey; Chen, Chih-Hao; Yang, Bang-Hung; Wu, Nien-Yun; Wang, Shyh-Jen; Wu, Tung-Hsin
2011-05-01
Misregistration resulting from the difference of temporal resolution in PET and CT scans occur frequently in PET/CT imaging, which causes distortion in tumor quantification in PET. Respiration cine average CT (CACT) for PET attenuation correction has been reported to improve the misalignment effectively by several papers. However, the radiation dose to the patient from a four-dimensional CT scan is relatively high. In this study, we propose a method to interpolate respiratory CT images over a respiratory cycle from inhalation and exhalation breath-hold CT images, and use the average CT from the generated CT set for PET attenuation correction. The radiation dose to the patient is reduced using this method. Six cancer patients of various lesion sites underwent routine free-breath helical CT (HCT), respiration CACT, interpolated average CT (IACT), and 18F-FDG PET. Deformable image registration was used to interpolate the middle phases of a respiratory cycle based on the end-inspiration and end-expiration breath-hold CT scans. The average CT image was calculated from the eight interpolated CT image sets of middle respiratory phases and the two original inspiration and expiration CT images. Then the PET images were reconstructed by these three methods for attenuation correction using HCT, CACT, and IACT. Misalignment of PET image using either CACT or IACT for attenuation correction in PET/CT was improved. The difference in standard uptake value (SUV) from tumor in PET images was most significant between the use of HCT and CACT, while the least significant between the use of CACT and IACT. Besides the similar improvement in tumor quantification compared to the use of CACT, using IACT for PET attenuation correction reduces the radiation dose to the patient.
Mittag, U.; Kriechbaumer, A.; Rittweger, J.
2017-01-01
The authors propose a new 3D interpolation algorithm for the generation of digital geometric 3D-models of bones from existing image stacks obtained by peripheral Quantitative Computed Tomography (pQCT) or Magnetic Resonance Imaging (MRI). The technique is based on the interpolation of radial gray value profiles of the pQCT cross sections. The method has been validated by using an ex-vivo human tibia and by comparing interpolated pQCT images with images from scans taken at the same position. A diversity index of <0.4 (1 meaning maximal diversity) even for the structurally complex region of the epiphysis, along with the good agreement of mineral-density-weighted cross-sectional moment of inertia (CSMI), demonstrate the high quality of our interpolation approach. Thus the authors demonstrate that this interpolation scheme can substantially improve the generation of 3D models from sparse scan sets, not only with respect to the outer shape but also with respect to the internal gray-value derived material property distribution. PMID:28574415
Virtual Seismic Observation (VSO) with Sparsity-Promotion Inversion
NASA Astrophysics Data System (ADS)
Tiezhao, B.; Ning, J.; Jianwei, M.
2017-12-01
Large station interval leads to low resolution images, sometimes prevents people from obtaining images in concerned regions. Sparsity-promotion inversion, a useful method to recover missing data in industrial field acquisition, can be lent to interpolate seismic data on none-sampled sites, forming Virtual Seismic Observation (VSO). Traditional sparsity-promotion inversion suffers when coming up with large time difference in adjacent sites, which we concern most and use shift method to improve it. The procedure of the interpolation is that we first employ low-pass filter to get long wavelength waveform data and shift the waveforms of the same wave in different seismograms to nearly same arrival time. Then we use wavelet-transform-based sparsity-promotion inversion to interpolate waveform data on none-sampled sites and filling a phase in each missing trace. Finally, we shift back the waveforms to their original arrival times. We call our method FSIS (Filtering, Shift, Interpolation, Shift) interpolation. By this way, we can insert different virtually observed seismic phases into none-sampled sites and get dense seismic observation data. For testing our method, we randomly hide the real data in a site and use the rest to interpolate the observation on that site, using direct interpolation or FSIS method. Compared with directly interpolated data, interpolated data with FSIS can keep amplitude better. Results also show that the arrival times and waveforms of those VSOs well express the real data, which convince us that our method to form VSOs are applicable. In this way, we can provide needed data for some advanced seismic technique like RTM to illuminate shallow structures.
Quantum realization of the nearest-neighbor interpolation method for FRQI and NEQR
NASA Astrophysics Data System (ADS)
Sang, Jianzhi; Wang, Shen; Niu, Xiamu
2016-01-01
This paper is concerned with the feasibility of the classical nearest-neighbor interpolation based on flexible representation of quantum images (FRQI) and novel enhanced quantum representation (NEQR). Firstly, the feasibility of the classical image nearest-neighbor interpolation for quantum images of FRQI and NEQR is proven. Then, by defining the halving operation and by making use of quantum rotation gates, the concrete quantum circuit of the nearest-neighbor interpolation for FRQI is designed for the first time. Furthermore, quantum circuit of the nearest-neighbor interpolation for NEQR is given. The merit of the proposed NEQR circuit lies in their low complexity, which is achieved by utilizing the halving operation and the quantum oracle operator. Finally, in order to further improve the performance of the former circuits, new interpolation circuits for FRQI and NEQR are presented by using Control-NOT gates instead of a halving operation. Simulation results show the effectiveness of the proposed circuits.
NASA Astrophysics Data System (ADS)
Guan, Jinge; Ren, Wei; Cheng, Yaoyu
2018-04-01
We demonstrate an efficient polarization-difference imaging system in turbid conditions by using the Stokes vector of light. The interaction of scattered light with the polarizer is analyzed by the Stokes-Mueller formalism. An interpolation method is proposed to replace the mechanical rotation of the polarization axis of the analyzer theoretically, and its performance is verified by the experiment at different turbidity levels. We show that compared with direct imaging, the Stokes vector based imaging method can effectively reduce the effect of light scattering and enhance the image contrast.
NASA Astrophysics Data System (ADS)
Vnukov, A. A.; Shershnev, M. B.
2018-01-01
The aim of this work is the software implementation of three image scaling algorithms using parallel computations, as well as the development of an application with a graphical user interface for the Windows operating system to demonstrate the operation of algorithms and to study the relationship between system performance, algorithm execution time and the degree of parallelization of computations. Three methods of interpolation were studied, formalized and adapted to scale images. The result of the work is a program for scaling images by different methods. Comparison of the quality of scaling by different methods is given.
Color filter array pattern identification using variance of color difference image
NASA Astrophysics Data System (ADS)
Shin, Hyun Jun; Jeon, Jong Ju; Eom, Il Kyu
2017-07-01
A color filter array is placed on the image sensor of a digital camera to acquire color images. Each pixel uses only one color, since the image sensor can measure only one color per pixel. Therefore, empty pixels are filled using an interpolation process called demosaicing. The original and the interpolated pixels have different statistical characteristics. If the image is modified by manipulation or forgery, the color filter array pattern is altered. This pattern change can be a clue for image forgery detection. However, most forgery detection algorithms have the disadvantage of assuming the color filter array pattern. We present an identification method of the color filter array pattern. Initially, the local mean is eliminated to remove the background effect. Subsequently, the color difference block is constructed to emphasize the difference between the original pixel and the interpolated pixel. The variance measure of the color difference image is proposed as a means of estimating the color filter array configuration. The experimental results show that the proposed method is effective in identifying the color filter array pattern. Compared with conventional methods, our method provides superior performance.
Hole filling with oriented sticks in ultrasound volume reconstruction
Vaughan, Thomas; Lasso, Andras; Ungi, Tamas; Fichtinger, Gabor
2015-01-01
Abstract. Volumes reconstructed from tracked planar ultrasound images often contain regions where no information was recorded. Existing interpolation methods introduce image artifacts and tend to be slow in filling large missing regions. Our goal was to develop a computationally efficient method that fills missing regions while adequately preserving image features. We use directional sticks to interpolate between pairs of known opposing voxels in nearby images. We tested our method on 30 volumetric ultrasound scans acquired from human subjects, and compared its performance to that of other published hole-filling methods. Reconstruction accuracy, fidelity, and time were improved compared with other methods. PMID:26839907
Umehara, Kensuke; Ota, Junko; Ishida, Takayuki
2017-10-18
In this study, the super-resolution convolutional neural network (SRCNN) scheme, which is the emerging deep-learning-based super-resolution method for enhancing image resolution in chest CT images, was applied and evaluated using the post-processing approach. For evaluation, 89 chest CT cases were sampled from The Cancer Imaging Archive. The 89 CT cases were divided randomly into 45 training cases and 44 external test cases. The SRCNN was trained using the training dataset. With the trained SRCNN, a high-resolution image was reconstructed from a low-resolution image, which was down-sampled from an original test image. For quantitative evaluation, two image quality metrics were measured and compared to those of the conventional linear interpolation methods. The image restoration quality of the SRCNN scheme was significantly higher than that of the linear interpolation methods (p < 0.001 or p < 0.05). The high-resolution image reconstructed by the SRCNN scheme was highly restored and comparable to the original reference image, in particular, for a ×2 magnification. These results indicate that the SRCNN scheme significantly outperforms the linear interpolation methods for enhancing image resolution in chest CT images. The results also suggest that SRCNN may become a potential solution for generating high-resolution CT images from standard CT images.
Tri-linear interpolation-based cerebral white matter fiber imaging
Jiang, Shan; Zhang, Pengfei; Han, Tong; Liu, Weihua; Liu, Meixia
2013-01-01
Diffusion tensor imaging is a unique method to visualize white matter fibers three-dimensionally, non-invasively and in vivo, and therefore it is an important tool for observing and researching neural regeneration. Different diffusion tensor imaging-based fiber tracking methods have been already investigated, but making the computing faster, fiber tracking longer and smoother and the details shown clearer are needed to be improved for clinical applications. This study proposed a new fiber tracking strategy based on tri-linear interpolation. We selected a patient with acute infarction of the right basal ganglia and designed experiments based on either the tri-linear interpolation algorithm or tensorline algorithm. Fiber tracking in the same regions of interest (genu of the corpus callosum) was performed separately. The validity of the tri-linear interpolation algorithm was verified by quantitative analysis, and its feasibility in clinical diagnosis was confirmed by the contrast between tracking results and the disease condition of the patient as well as the actual brain anatomy. Statistical results showed that the maximum length and average length of the white matter fibers tracked by the tri-linear interpolation algorithm were significantly longer. The tracking images of the fibers indicated that this method can obtain smoother tracked fibers, more obvious orientation and clearer details. Tracking fiber abnormalities are in good agreement with the actual condition of patients, and tracking displayed fibers that passed though the corpus callosum, which was consistent with the anatomical structures of the brain. Therefore, the tri-linear interpolation algorithm can achieve a clear, anatomically correct and reliable tracking result. PMID:25206524
Image interpolation via regularized local linear regression.
Liu, Xianming; Zhao, Debin; Xiong, Ruiqin; Ma, Siwei; Gao, Wen; Sun, Huifang
2011-12-01
The linear regression model is a very attractive tool to design effective image interpolation schemes. Some regression-based image interpolation algorithms have been proposed in the literature, in which the objective functions are optimized by ordinary least squares (OLS). However, it is shown that interpolation with OLS may have some undesirable properties from a robustness point of view: even small amounts of outliers can dramatically affect the estimates. To address these issues, in this paper we propose a novel image interpolation algorithm based on regularized local linear regression (RLLR). Starting with the linear regression model where we replace the OLS error norm with the moving least squares (MLS) error norm leads to a robust estimator of local image structure. To keep the solution stable and avoid overfitting, we incorporate the l(2)-norm as the estimator complexity penalty. Moreover, motivated by recent progress on manifold-based semi-supervised learning, we explicitly consider the intrinsic manifold structure by making use of both measured and unmeasured data points. Specifically, our framework incorporates the geometric structure of the marginal probability distribution induced by unmeasured samples as an additional local smoothness preserving constraint. The optimal model parameters can be obtained with a closed-form solution by solving a convex optimization problem. Experimental results on benchmark test images demonstrate that the proposed method achieves very competitive performance with the state-of-the-art interpolation algorithms, especially in image edge structure preservation. © 2011 IEEE
Digital x-ray tomosynthesis with interpolated projection data for thin slab objects
NASA Astrophysics Data System (ADS)
Ha, S.; Yun, J.; Kim, H. K.
2017-11-01
In relation with a thin slab-object inspection, we propose a digital tomosynthesis reconstruction with fewer numbers of measured projections in combinations with additional virtual projections, which are produced by interpolating the measured projections. Hence we can reconstruct tomographic images with less few-view artifacts. The projection interpolation assumes that variations in cone-beam ray path-lengths through an object are negligible and the object is rigid. The interpolation is performed in the projection-space domain. Pixel values in the interpolated projection are the weighted sum of pixel values of the measured projections considering their projection angles. The experimental simulation shows that the proposed method can enhance the contrast-to-noise performance in reconstructed images while sacrificing the spatial resolving power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yu, E-mail: yuzhang@smu.edu.cn, E-mail: qianjinfeng08@gmail.com; Wu, Xiuxiu; Yang, Wei
2014-11-01
Purpose: The use of 4D computed tomography (4D-CT) of the lung is important in lung cancer radiotherapy for tumor localization and treatment planning. Sometimes, dense sampling is not acquired along the superior–inferior direction. This disadvantage results in an interslice thickness that is much greater than in-plane voxel resolutions. Isotropic resolution is necessary for multiplanar display, but the commonly used interpolation operation blurs images. This paper presents a super-resolution (SR) reconstruction method to enhance 4D-CT resolution. Methods: The authors assume that the low-resolution images of different phases at the same position can be regarded as input “frames” to reconstruct high-resolution images.more » The SR technique is used to recover high-resolution images. Specifically, the Demons deformable registration algorithm is used to estimate the motion field between different “frames.” Then, the projection onto convex sets approach is implemented to reconstruct high-resolution lung images. Results: The performance of the SR algorithm is evaluated using both simulated and real datasets. Their method can generate clearer lung images and enhance image structure compared with cubic spline interpolation and back projection (BP) method. Quantitative analysis shows that the proposed algorithm decreases the root mean square error by 40.8% relative to cubic spline interpolation and 10.2% versus BP. Conclusions: A new algorithm has been developed to improve the resolution of 4D-CT. The algorithm outperforms the cubic spline interpolation and BP approaches by producing images with markedly improved structural clarity and greatly reduced artifacts.« less
Image interpolation used in three-dimensional range data compression.
Zhang, Shaoze; Zhang, Jianqi; Huang, Xi; Liu, Delian
2016-05-20
Advances in the field of three-dimensional (3D) scanning have made the acquisition of 3D range data easier and easier. However, with the large size of 3D range data comes the challenge of storing and transmitting it. To address this challenge, this paper presents a framework to further compress 3D range data using image interpolation. We first use a virtual fringe-projection system to store 3D range data as images, and then apply the interpolation algorithm to the images to reduce their resolution to further reduce the data size. When the 3D range data are needed, the low-resolution image is scaled up to its original resolution by applying the interpolation algorithm, and then the scaled-up image is decoded and the 3D range data are recovered according to the decoded result. Experimental results show that the proposed method could further reduce the data size while maintaining a low rate of error.
Chen, Zhaoxue; Chen, Hao
2014-01-01
A deconvolution method based on the Gaussian radial basis function (GRBF) interpolation is proposed. Both the original image and Gaussian point spread function are expressed as the same continuous GRBF model, thus image degradation is simplified as convolution of two continuous Gaussian functions, and image deconvolution is converted to calculate the weighted coefficients of two-dimensional control points. Compared with Wiener filter and Lucy-Richardson algorithm, the GRBF method has an obvious advantage in the quality of restored images. In order to overcome such a defect of long-time computing, the method of graphic processing unit multithreading or increasing space interval of control points is adopted, respectively, to speed up the implementation of GRBF method. The experiments show that based on the continuous GRBF model, the image deconvolution can be efficiently implemented by the method, which also has a considerable reference value for the study of three-dimensional microscopic image deconvolution.
NASA Astrophysics Data System (ADS)
Lee, Ming-Wei; Chen, Yi-Chun
2014-02-01
In pinhole SPECT applied to small-animal studies, it is essential to have an accurate imaging system matrix, called H matrix, for high-spatial-resolution image reconstructions. Generally, an H matrix can be obtained by various methods, such as measurements, simulations or some combinations of both methods. In this study, a distance-weighted Gaussian interpolation method combined with geometric parameter estimations (DW-GIMGPE) is proposed. It utilizes a simplified grid-scan experiment on selected voxels and parameterizes the measured point response functions (PRFs) into 2D Gaussians. The PRFs of missing voxels are interpolated by the relations between the Gaussian coefficients and the geometric parameters of the imaging system with distance-weighting factors. The weighting factors are related to the projected centroids of voxels on the detector plane. A full H matrix is constructed by combining the measured and interpolated PRFs of all voxels. The PRFs estimated by DW-GIMGPE showed similar profiles as the measured PRFs. OSEM reconstructed images of a hot-rod phantom and normal rat myocardium demonstrated the effectiveness of the proposed method. The detectability of a SKE/BKE task on a synthetic spherical test object verified that the constructed H matrix provided comparable detectability to that of the H matrix acquired by a full 3D grid-scan experiment. The reduction in the acquisition time of a full 1.0-mm grid H matrix was about 15.2 and 62.2 times with the simplified grid pattern on 2.0-mm and 4.0-mm grid, respectively. A finer-grid H matrix down to 0.5-mm spacing interpolated by the proposed method would shorten the acquisition time by 8 times, additionally.
Reich, H; Moens, Y; Braun, C; Kneissl, S; Noreikat, K; Reske, A
2014-12-01
Quantitative computer tomographic analysis (qCTA) is an accurate but time intensive method used to quantify volume, mass and aeration of the lungs. The aim of this study was to validate a time efficient interpolation technique for application of qCTA in ponies. Forty-one thoracic computer tomographic (CT) scans obtained from eight anaesthetised ponies positioned in dorsal recumbency were included. Total lung volume and mass and their distribution into four compartments (non-aerated, poorly aerated, normally aerated and hyperaerated; defined based on the attenuation in Hounsfield Units) were determined for the entire lung from all 5 mm thick CT-images, 59 (55-66) per animal. An interpolation technique validated for use in humans was then applied to calculate qCTA results for lung volumes and masses from only 10, 12, and 14 selected CT-images per scan. The time required for both procedures was recorded. Results were compared statistically using the Bland-Altman approach. The bias ± 2 SD for total lung volume calculated from interpolation of 10, 12, and 14 CT-images was -1.2 ± 5.8%, 0.1 ± 3.5%, and 0.0 ± 2.5%, respectively. The corresponding results for total lung mass were -1.1 ± 5.9%, 0.0 ± 3.5%, and 0.0 ± 3.0%. The average time for analysis of one thoracic CT-scan using the interpolation method was 1.5-2 h compared to 8 h for analysis of all images of one complete thoracic CT-scan. The calculation of pulmonary qCTA data by interpolation from 12 CT-images was applicable for equine lung CT-scans and reduced the time required for analysis by 75%. Copyright © 2014 Elsevier Ltd. All rights reserved.
Comparison of interpolation functions to improve a rebinning-free CT-reconstruction algorithm.
de las Heras, Hugo; Tischenko, Oleg; Xu, Yuan; Hoeschen, Christoph
2008-01-01
The robust algorithm OPED for the reconstruction of images from Radon data has been recently developed. This reconstructs an image from parallel data within a special scanning geometry that does not need rebinning but only a simple re-ordering, so that the acquired fan data can be used directly for the reconstruction. However, if the number of rays per fan view is increased, there appear empty cells in the sinogram. These cells need to be filled by interpolation before the reconstruction can be carried out. The present paper analyzes linear interpolation, cubic splines and parametric (or "damped") splines for the interpolation task. The reconstruction accuracy in the resulting images was measured by the Normalized Mean Square Error (NMSE), the Hilbert Angle, and the Mean Relative Error. The spatial resolution was measured by the Modulation Transfer Function (MTF). Cubic splines were confirmed to be the most recommendable method. The reconstructed images resulting from cubic spline interpolation show a significantly lower NMSE than the ones from linear interpolation and have the largest MTF for all frequencies. Parametric splines proved to be advantageous only for small sinograms (below 50 fan views).
A New Pixels Flipping Method for Huge Watermarking Capacity of the Invoice Font Image
Li, Li; Hou, Qingzheng; Lu, Jianfeng; Dai, Junping; Mao, Xiaoyang; Chang, Chin-Chen
2014-01-01
Invoice printing just has two-color printing, so invoice font image can be seen as binary image. To embed watermarks into invoice image, the pixels need to be flipped. The more huge the watermark is, the more the pixels need to be flipped. We proposed a new pixels flipping method in invoice image for huge watermarking capacity. The pixels flipping method includes one novel interpolation method for binary image, one flippable pixels evaluation mechanism, and one denoising method based on gravity center and chaos degree. The proposed interpolation method ensures that the invoice image keeps features well after scaling. The flippable pixels evaluation mechanism ensures that the pixels keep better connectivity and smoothness and the pattern has highest structural similarity after flipping. The proposed denoising method makes invoice font image smoother and fiter for human vision. Experiments show that the proposed flipping method not only keeps the invoice font structure well but also improves watermarking capacity. PMID:25489606
Image re-sampling detection through a novel interpolation kernel.
Hilal, Alaa
2018-06-01
Image re-sampling involved in re-size and rotation transformations is an essential element block in a typical digital image alteration. Fortunately, traces left from such processes are detectable, proving that the image has gone a re-sampling transformation. Within this context, we present in this paper two original contributions. First, we propose a new re-sampling interpolation kernel. It depends on five independent parameters that controls its amplitude, angular frequency, standard deviation, and duration. Then, we demonstrate its capacity to imitate the same behavior of the most frequent interpolation kernels used in digital image re-sampling applications. Secondly, the proposed model is used to characterize and detect the correlation coefficients involved in re-sampling transformations. The involved process includes a minimization of an error function using the gradient method. The proposed method is assessed over a large database of 11,000 re-sampled images. Additionally, it is implemented within an algorithm in order to assess images that had undergone complex transformations. Obtained results demonstrate better performance and reduced processing time when compared to a reference method validating the suitability of the proposed approaches. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Guang; Ye, Xujiong; Slabaugh, Greg; Keegan, Jennifer; Mohiaddin, Raad; Firmin, David
2016-03-01
In this paper, we propose a novel self-learning based single-image super-resolution (SR) method, which is coupled with dual-tree complex wavelet transform (DTCWT) based denoising to better recover high-resolution (HR) medical images. Unlike previous methods, this self-learning based SR approach enables us to reconstruct HR medical images from a single low-resolution (LR) image without extra training on HR image datasets in advance. The relationships between the given image and its scaled down versions are modeled using support vector regression with sparse coding and dictionary learning, without explicitly assuming reoccurrence or self-similarity across image scales. In addition, we perform DTCWT based denoising to initialize the HR images at each scale instead of simple bicubic interpolation. We evaluate our method on a variety of medical images. Both quantitative and qualitative results show that the proposed approach outperforms bicubic interpolation and state-of-the-art single-image SR methods while effectively removing noise.
Fast Acquisition and Reconstruction of Optical Coherence Tomography Images via Sparse Representation
Li, Shutao; McNabb, Ryan P.; Nie, Qing; Kuo, Anthony N.; Toth, Cynthia A.; Izatt, Joseph A.; Farsiu, Sina
2014-01-01
In this paper, we present a novel technique, based on compressive sensing principles, for reconstruction and enhancement of multi-dimensional image data. Our method is a major improvement and generalization of the multi-scale sparsity based tomographic denoising (MSBTD) algorithm we recently introduced for reducing speckle noise. Our new technique exhibits several advantages over MSBTD, including its capability to simultaneously reduce noise and interpolate missing data. Unlike MSBTD, our new method does not require an a priori high-quality image from the target imaging subject and thus offers the potential to shorten clinical imaging sessions. This novel image restoration method, which we termed sparsity based simultaneous denoising and interpolation (SBSDI), utilizes sparse representation dictionaries constructed from previously collected datasets. We tested the SBSDI algorithm on retinal spectral domain optical coherence tomography images captured in the clinic. Experiments showed that the SBSDI algorithm qualitatively and quantitatively outperforms other state-of-the-art methods. PMID:23846467
SU-F-I-08: CT Image Ring Artifact Reduction Based On Prior Image
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, C; Qi, H; Chen, Z
Purpose: In computed tomography (CT) system, CT images with ring artifacts will be reconstructed when some adjacent bins of detector don’t work. The ring artifacts severely degrade CT image quality. We present a useful CT ring artifacts reduction based on projection data correction, aiming at estimating the missing data of projection data accurately, thus removing the ring artifacts of CT images. Methods: The method consists of ten steps: 1) Identification of abnormal pixel line in projection sinogram; 2) Linear interpolation within the pixel line of projection sinogram; 3) FBP reconstruction using interpolated projection data; 4) Filtering FBP image using meanmore » filter; 5) Forwarding projection of filtered FBP image; 6) Subtraction forwarded projection from original projection; 7) Linear interpolation of abnormal pixel line area in the subtraction projection; 8) Adding the interpolated subtraction projection on the forwarded projection; 9) FBP reconstruction using corrected projection data; 10) Return to step 4 until the pre-set iteration number is reached. The method is validated on simulated and real data to restore missing projection data and reconstruct ring artifact-free CT images. Results: We have studied impact of amount of dead bins of CT detector on the accuracy of missing data estimation in projection sinogram. For the simulated case with a resolution of 256 by 256 Shepp-Logan phantom, three iterations are sufficient to restore projection data and reconstruct ring artifact-free images when the dead bins rating is under 30%. The dead-bin-induced artifacts are substantially reduced. More iteration number is needed to reconstruct satisfactory images while the rating of dead bins increases. Similar results were found for a real head phantom case. Conclusion: A practical CT image ring artifact correction scheme based on projection data is developed. This method can produce ring artifact-free CT images feasibly and effectively.« less
Ortho Image and DTM Generation with Intelligent Methods
NASA Astrophysics Data System (ADS)
Bagheri, H.; Sadeghian, S.
2013-10-01
Nowadays the artificial intelligent algorithms has considered in GIS and remote sensing. Genetic algorithm and artificial neural network are two intelligent methods that are used for optimizing of image processing programs such as edge extraction and etc. these algorithms are very useful for solving of complex program. In this paper, the ability and application of genetic algorithm and artificial neural network in geospatial production process like geometric modelling of satellite images for ortho photo generation and height interpolation in raster Digital Terrain Model production process is discussed. In first, the geometric potential of Ikonos-2 and Worldview-2 with rational functions, 2D & 3D polynomials were tested. Also comprehensive experiments have been carried out to evaluate the viability of the genetic algorithm for optimization of rational function, 2D & 3D polynomials. Considering the quality of Ground Control Points, the accuracy (RMSE) with genetic algorithm and 3D polynomials method for Ikonos-2 Geo image was 0.508 pixel sizes and the accuracy (RMSE) with GA algorithm and rational function method for Worldview-2 image was 0.930 pixel sizes. For more another optimization artificial intelligent methods, neural networks were used. With the use of perceptron network in Worldview-2 image, a result of 0.84 pixel sizes with 4 neurons in middle layer was gained. The final conclusion was that with artificial intelligent algorithms it is possible to optimize the existing models and have better results than usual ones. Finally the artificial intelligence methods, like genetic algorithms as well as neural networks, were examined on sample data for optimizing interpolation and for generating Digital Terrain Models. The results then were compared with existing conventional methods and it appeared that these methods have a high capacity in heights interpolation and that using these networks for interpolating and optimizing the weighting methods based on inverse distance leads to a high accurate estimation of heights.
Fan beam image reconstruction with generalized Fourier slice theorem.
Zhao, Shuangren; Yang, Kang; Yang, Kevin
2014-01-01
For parallel beam geometry the Fourier reconstruction works via the Fourier slice theorem (or central slice theorem, projection slice theorem). For fan beam situation, Fourier slice can be extended to a generalized Fourier slice theorem (GFST) for fan-beam image reconstruction. We have briefly introduced this method in a conference. This paper reintroduces the GFST method for fan beam geometry in details. The GFST method can be described as following: the Fourier plane is filled by adding up the contributions from all fanbeam projections individually; thereby the values in the Fourier plane are directly calculated for Cartesian coordinates such avoiding the interpolation from polar to Cartesian coordinates in the Fourier domain; inverse fast Fourier transform is applied to the image in Fourier plane and leads to a reconstructed image in spacial domain. The reconstructed image is compared between the result of the GFST method and the result from the filtered backprojection (FBP) method. The major differences of the GFST and the FBP methods are: (1) The interpolation process are at different data sets. The interpolation of the GFST method is at projection data. The interpolation of the FBP method is at filtered projection data. (2) The filtering process are done in different places. The filtering process of the GFST is at Fourier domain. The filtering process of the FBP method is the ramp filter which is done at projections. The resolution of ramp filter is variable with different location but the filter in the Fourier domain lead to resolution invariable with location. One advantage of the GFST method over the FBP method is in short scan situation, an exact solution can be obtained with the GFST method, but it can not be obtained with the FBP method. The calculation of both the GFST and the FBP methods are at O(N
Sim, K S; Norhisham, S
2016-11-01
A new method based on nonlinear least squares regression (NLLSR) is formulated to estimate signal-to-noise ratio (SNR) of scanning electron microscope (SEM) images. The estimation of SNR value based on NLLSR method is compared with the three existing methods of nearest neighbourhood, first-order interpolation and the combination of both nearest neighbourhood and first-order interpolation. Samples of SEM images with different textures, contrasts and edges were used to test the performance of NLLSR method in estimating the SNR values of the SEM images. It is shown that the NLLSR method is able to produce better estimation accuracy as compared to the other three existing methods. According to the SNR results obtained from the experiment, the NLLSR method is able to produce approximately less than 1% of SNR error difference as compared to the other three existing methods. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Guided filter and principal component analysis hybrid method for hyperspectral pansharpening
NASA Astrophysics Data System (ADS)
Qu, Jiahui; Li, Yunsong; Dong, Wenqian
2018-01-01
Hyperspectral (HS) pansharpening aims to generate a fused HS image with high spectral and spatial resolution through integrating an HS image with a panchromatic (PAN) image. A guided filter (GF) and principal component analysis (PCA) hybrid HS pansharpening method is proposed. First, the HS image is interpolated and the PCA transformation is performed on the interpolated HS image. The first principal component (PC1) channel concentrates on the spatial information of the HS image. Different from the traditional PCA method, the proposed method sharpens the PAN image and utilizes the GF to obtain the spatial information difference between the HS image and the enhanced PAN image. Then, in order to reduce spectral and spatial distortion, an appropriate tradeoff parameter is defined and the spatial information difference is injected into the PC1 channel through multiplying by this tradeoff parameter. Once the new PC1 channel is obtained, the fused image is finally generated by the inverse PCA transformation. Experiments performed on both synthetic and real datasets show that the proposed method outperforms other several state-of-the-art HS pansharpening methods in both subjective and objective evaluations.
Gadermayr, M.; Liedlgruber, M.; Uhl, A.; Vécsei, A.
2013-01-01
Due to the optics used in endoscopes, a typical degradation observed in endoscopic images are barrel-type distortions. In this work we investigate the impact of methods used to correct such distortions in images on the classification accuracy in the context of automated celiac disease classification. For this purpose we compare various different distortion correction methods and apply them to endoscopic images, which are subsequently classified. Since the interpolation used in such methods is also assumed to have an influence on the resulting classification accuracies, we also investigate different interpolation methods and their impact on the classification performance. In order to be able to make solid statements about the benefit of distortion correction we use various different feature extraction methods used to obtain features for the classification. Our experiments show that it is not possible to make a clear statement about the usefulness of distortion correction methods in the context of an automated diagnosis of celiac disease. This is mainly due to the fact that an eventual benefit of distortion correction highly depends on the feature extraction method used for the classification. PMID:23981585
Fly-through viewpoint video system for multi-view soccer movie using viewpoint interpolation
NASA Astrophysics Data System (ADS)
Inamoto, Naho; Saito, Hideo
2003-06-01
This paper presents a novel method for virtual view generation that allows viewers to fly through in a real soccer scene. A soccer match is captured by multiple cameras at a stadium and images of arbitrary viewpoints are synthesized by view-interpolation of two real camera images near the given viewpoint. In the proposed method, cameras do not need to be strongly calibrated, but epipolar geometry between the cameras is sufficient for the view-interpolation. Therefore, it can easily be applied to a dynamic event even in a large space, because the efforts for camera calibration can be reduced. A soccer scene is classified into several regions and virtual view images are generated based on the epipolar geometry in each region. Superimposition of the images completes virtual views for the whole soccer scene. An application for fly-through observation of a soccer match is introduced as well as the algorithm of the view-synthesis and experimental results..
Gutierrez-Corea, Federico-Vladimir; Manso-Callejo, Miguel-Angel; Moreno-Regidor, María-Pilar; Velasco-Gómez, Jesús
2014-01-01
This study was motivated by the need to improve densification of Global Horizontal Irradiance (GHI) observations, increasing the number of surface weather stations that observe it, using sensors with a sub-hour periodicity and examining the methods of spatial GHI estimation (by interpolation) with that periodicity in other locations. The aim of the present research project is to analyze the goodness of 15-minute GHI spatial estimations for five methods in the territory of Spain (three geo-statistical interpolation methods, one deterministic method and the HelioSat2 method, which is based on satellite images). The research concludes that, when the work area has adequate station density, the best method for estimating GHI every 15 min is Regression Kriging interpolation using GHI estimated from satellite images as one of the input variables. On the contrary, when station density is low, the best method is estimating GHI directly from satellite images. A comparison between the GHI observed by volunteer stations and the estimation model applied concludes that 67% of the volunteer stations analyzed present values within the margin of error (average of ±2 standard deviations). PMID:24732102
Gutierrez-Corea, Federico-Vladimir; Manso-Callejo, Miguel-Angel; Moreno-Regidor, María-Pilar; Velasco-Gómez, Jesús
2014-04-11
This study was motivated by the need to improve densification of Global Horizontal Irradiance (GHI) observations, increasing the number of surface weather stations that observe it, using sensors with a sub-hour periodicity and examining the methods of spatial GHI estimation (by interpolation) with that periodicity in other locations. The aim of the present research project is to analyze the goodness of 15-minute GHI spatial estimations for five methods in the territory of Spain (three geo-statistical interpolation methods, one deterministic method and the HelioSat2 method, which is based on satellite images). The research concludes that, when the work area has adequate station density, the best method for estimating GHI every 15 min is Regression Kriging interpolation using GHI estimated from satellite images as one of the input variables. On the contrary, when station density is low, the best method is estimating GHI directly from satellite images. A comparison between the GHI observed by volunteer stations and the estimation model applied concludes that 67% of the volunteer stations analyzed present values within the margin of error (average of ±2 standard deviations).
Distributed processing method for arbitrary view generation in camera sensor network
NASA Astrophysics Data System (ADS)
Tehrani, Mehrdad P.; Fujii, Toshiaki; Tanimoto, Masayuki
2003-05-01
Camera sensor network as a new advent of technology is a network that each sensor node can capture video signals, process and communicate them with other nodes. The processing task in this network is to generate arbitrary view, which can be requested from central node or user. To avoid unnecessary communication between nodes in camera sensor network and speed up the processing time, we have distributed the processing tasks between nodes. In this method, each sensor node processes part of interpolation algorithm to generate the interpolated image with local communication between nodes. The processing task in camera sensor network is ray-space interpolation, which is an object independent method and based on MSE minimization by using adaptive filtering. Two methods were proposed for distributing processing tasks, which are Fully Image Shared Decentralized Processing (FIS-DP), and Partially Image Shared Decentralized Processing (PIS-DP), to share image data locally. Comparison of the proposed methods with Centralized Processing (CP) method shows that PIS-DP has the highest processing speed after FIS-DP, and CP has the lowest processing speed. Communication rate of CP and PIS-DP is almost same and better than FIS-DP. So, PIS-DP is recommended because of its better performance than CP and FIS-DP.
Fundamental techniques for resolution enhancement of average subsampled images
NASA Astrophysics Data System (ADS)
Shen, Day-Fann; Chiu, Chui-Wen
2012-07-01
Although single image resolution enhancement, otherwise known as super-resolution, is widely regarded as an ill-posed inverse problem, we re-examine the fundamental relationship between a high-resolution (HR) image acquisition module and its low-resolution (LR) counterpart. Analysis shows that partial HR information is attenuated but still exists, in its LR version, through the fundamental averaging-and-subsampling process. As a result, we propose a modified Laplacian filter (MLF) and an intensity correction process (ICP) as the pre and post process, respectively, with an interpolation algorithm to partially restore the attenuated information in a super-resolution (SR) enhanced image image. Experiments show that the proposed MLF and ICP provide significant and consistent quality improvements on all 10 test images with three well known interpolation methods including bilinear, bi-cubic, and the SR graphical user interface program provided by Ecole Polytechnique Federale de Lausanne. The proposed MLF and ICP are simple in implementation and generally applicable to all average-subsampled LR images. MLF and ICP, separately or together, can be integrated into most interpolation methods that attempt to restore the original HR contents. Finally, the idea of MLF and ICP can also be applied for average, subsampled one-dimensional signal.
Schulte, Friederike A; Lambers, Floor M; Mueller, Thomas L; Stauber, Martin; Müller, Ralph
2014-04-01
Time-lapsed in vivo micro-computed tomography is a powerful tool to analyse longitudinal changes in the bone micro-architecture. Registration can overcome problems associated with spatial misalignment between scans; however, it requires image interpolation which might affect the outcome of a subsequent bone morphometric analysis. The impact of the interpolation error itself, though, has not been quantified to date. Therefore, the purpose of this ex vivo study was to elaborate the effect of different interpolator schemes [nearest neighbour, tri-linear and B-spline (BSP)] on bone morphometric indices. None of the interpolator schemes led to significant differences between interpolated and non-interpolated images, with the lowest interpolation error found for BSPs (1.4%). Furthermore, depending on the interpolator, the processing order of registration, Gaussian filtration and binarisation played a role. Independent from the interpolator, the present findings suggest that the evaluation of bone morphometry should be done with images registered using greyscale information.
Scatter measurement and correction method for cone-beam CT based on single grating scan
NASA Astrophysics Data System (ADS)
Huang, Kuidong; Shi, Wenlong; Wang, Xinyu; Dong, Yin; Chang, Taoqi; Zhang, Hua; Zhang, Dinghua
2017-06-01
In cone-beam computed tomography (CBCT) systems based on flat-panel detector imaging, the presence of scatter significantly reduces the quality of slices. Based on the concept of collimation, this paper presents a scatter measurement and correction method based on single grating scan. First, according to the characteristics of CBCT imaging, the scan method using single grating and the design requirements of the grating are analyzed and figured out. Second, by analyzing the composition of object projection images and object-and-grating projection images, the processing method for the scatter image at single projection angle is proposed. In addition, to avoid additional scan, this paper proposes an angle interpolation method of scatter images to reduce scan cost. Finally, the experimental results show that the scatter images obtained by this method are accurate and reliable, and the effect of scatter correction is obvious. When the additional object-and-grating projection images are collected and interpolated at intervals of 30 deg, the scatter correction error of slices can still be controlled within 3%.
Novel view synthesis by interpolation over sparse examples
NASA Astrophysics Data System (ADS)
Liang, Bodong; Chung, Ronald C.
2006-01-01
Novel view synthesis (NVS) is an important problem in image rendering. It involves synthesizing an image of a scene at any specified (novel) viewpoint, given some images of the scene at a few sample viewpoints. The general understanding is that the solution should bypass explicit 3-D reconstruction of the scene. As it is, the problem has a natural tie to interpolation, despite that mainstream efforts on the problem have been adopting formulations otherwise. Interpolation is about finding the output of a function f(x) for any specified input x, given a few input-output pairs {(xi,fi):i=1,2,3,...,n} of the function. If the input x is the viewpoint, and f(x) is the image, the interpolation problem becomes exactly NVS. We treat the NVS problem using the interpolation formulation. In particular, we adopt the example-based everything or interpolation (EBI) mechanism-an established mechanism for interpolating or learning functions from examples. EBI has all the desirable properties of a good interpolation: all given input-output examples are satisfied exactly, and the interpolation is smooth with minimum oscillations between the examples. We point out that EBI, however, has difficulty in interpolating certain classes of functions, including the image function in the NVS problem. We propose an extension of the mechanism for overcoming the limitation. We also present how the extended interpolation mechanism could be used to synthesize images at novel viewpoints. Real image results show that the mechanism has promising performance, even with very few example images.
[Medical image elastic registration smoothed by unconstrained optimized thin-plate spline].
Zhang, Yu; Li, Shuxiang; Chen, Wufan; Liu, Zhexing
2003-12-01
Elastic registration of medical image is an important subject in medical image processing. Previous work has concentrated on selecting the corresponding landmarks manually and then using thin-plate spline interpolating to gain the elastic transformation. However, the landmarks extraction is always prone to error, which will influence the registration results. Localizing the landmarks manually is also difficult and time-consuming. We the optimization theory to improve the thin-plate spline interpolation, and based on it, used an automatic method to extract the landmarks. Combining these two steps, we have proposed an automatic, exact and robust registration method and have gained satisfactory registration results.
Estimating the Effective Permittivity for Reconstructing Accurate Microwave-Radar Images.
Lavoie, Benjamin R; Okoniewski, Michal; Fear, Elise C
2016-01-01
We present preliminary results from a method for estimating the optimal effective permittivity for reconstructing microwave-radar images. Using knowledge of how microwave-radar images are formed, we identify characteristics that are typical of good images, and define a fitness function to measure the relative image quality. We build a polynomial interpolant of the fitness function in order to identify the most likely permittivity values of the tissue. To make the estimation process more efficient, the polynomial interpolant is constructed using a locally and dimensionally adaptive sampling method that is a novel combination of stochastic collocation and polynomial chaos. Examples, using a series of simulated, experimental and patient data collected using the Tissue Sensing Adaptive Radar system, which is under development at the University of Calgary, are presented. These examples show how, using our method, accurate images can be reconstructed starting with only a broad estimate of the permittivity range.
Geodesic-loxodromes for diffusion tensor interpolation and difference measurement.
Kindlmann, Gordon; Estépar, Raúl San José; Niethammer, Marc; Haker, Steven; Westin, Carl-Fredrik
2007-01-01
In algorithms for processing diffusion tensor images, two common ingredients are interpolating tensors, and measuring the distance between them. We propose a new class of interpolation paths for tensors, termed geodesic-loxodromes, which explicitly preserve clinically important tensor attributes, such as mean diffusivity or fractional anisotropy, while using basic differential geometry to interpolate tensor orientation. This contrasts with previous Riemannian and Log-Euclidean methods that preserve the determinant. Path integrals of tangents of geodesic-loxodromes generate novel measures of over-all difference between two tensors, and of difference in shape and in orientation.
USDA-ARS?s Scientific Manuscript database
Thick cloud contaminations in Landsat images limit their regular usage for land applications. A few methods have been developed to remove thick clouds using additional cloud-free images. Unfortunately, the cloud-free composition image produced by existing methods commonly lacks from the desired spat...
Regularization techniques on least squares non-uniform fast Fourier transform.
Gibiino, Fabio; Positano, Vincenzo; Landini, Luigi; Santarelli, Maria Filomena
2013-05-01
Non-Cartesian acquisition strategies are widely used in MRI to dramatically reduce the acquisition time while at the same time preserving the image quality. Among non-Cartesian reconstruction methods, the least squares non-uniform fast Fourier transform (LS_NUFFT) is a gridding method based on a local data interpolation kernel that minimizes the worst-case approximation error. The interpolator is chosen using a pseudoinverse matrix. As the size of the interpolation kernel increases, the inversion problem may become ill-conditioned. Regularization methods can be adopted to solve this issue. In this study, we compared three regularization methods applied to LS_NUFFT. We used truncated singular value decomposition (TSVD), Tikhonov regularization and L₁-regularization. Reconstruction performance was evaluated using the direct summation method as reference on both simulated and experimental data. We also evaluated the processing time required to calculate the interpolator. First, we defined the value of the interpolator size after which regularization is needed. Above this value, TSVD obtained the best reconstruction. However, for large interpolator size, the processing time becomes an important constraint, so an appropriate compromise between processing time and reconstruction quality should be adopted. Copyright © 2013 John Wiley & Sons, Ltd.
de Bakker, Chantal M. J.; Altman, Allison R.; Li, Connie; Tribble, Mary Beth; Lott, Carina; Tseng, Wei-Ju; Liu, X. Sherry
2016-01-01
In vivo μCT imaging allows for high-resolution, longitudinal evaluation of bone properties. Based on this technology, several recent studies have developed in vivo dynamic bone histomorphometry techniques that utilize registered μCT images to identify regions of bone formation and resorption, allowing for longitudinal assessment of bone remodeling. However, this analysis requires a direct voxel-by-voxel subtraction between image pairs, necessitating rotation of the images into the same coordinate system, which introduces interpolation errors. We developed a novel image transformation scheme, matched-angle transformation (MAT), whereby the interpolation errors are minimized by equally rotating both the follow-up and baseline images instead of the standard of rotating one image while the other remains fixed. This new method greatly reduced interpolation biases caused by the standard transformation. Additionally, our study evaluated the reproducibility and precision of bone remodeling measurements made via in vivo dynamic bone histomorphometry. Although bone remodeling measurements showed moderate baseline noise, precision was adequate to measure physiologically relevant changes in bone remodeling, and measurements had relatively good reproducibility, with intra-class correlation coefficients of 0.75-0.95. This indicates that, when used in conjunction with MAT, in vivo dynamic histomorphometry provides a reliable assessment of bone remodeling. PMID:26786342
de Bakker, Chantal M J; Altman, Allison R; Li, Connie; Tribble, Mary Beth; Lott, Carina; Tseng, Wei-Ju; Liu, X Sherry
2016-08-01
In vivo µCT imaging allows for high-resolution, longitudinal evaluation of bone properties. Based on this technology, several recent studies have developed in vivo dynamic bone histomorphometry techniques that utilize registered µCT images to identify regions of bone formation and resorption, allowing for longitudinal assessment of bone remodeling. However, this analysis requires a direct voxel-by-voxel subtraction between image pairs, necessitating rotation of the images into the same coordinate system, which introduces interpolation errors. We developed a novel image transformation scheme, matched-angle transformation (MAT), whereby the interpolation errors are minimized by equally rotating both the follow-up and baseline images instead of the standard of rotating one image while the other remains fixed. This new method greatly reduced interpolation biases caused by the standard transformation. Additionally, our study evaluated the reproducibility and precision of bone remodeling measurements made via in vivo dynamic bone histomorphometry. Although bone remodeling measurements showed moderate baseline noise, precision was adequate to measure physiologically relevant changes in bone remodeling, and measurements had relatively good reproducibility, with intra-class correlation coefficients of 0.75-0.95. This indicates that, when used in conjunction with MAT, in vivo dynamic histomorphometry provides a reliable assessment of bone remodeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, Kerstin; Schwemmer, Chris; Hornegger, Joachim
2013-03-15
Purpose: For interventional cardiac procedures, anatomical and functional information about the cardiac chambers is of major interest. With the technology of angiographic C-arm systems it is possible to reconstruct intraprocedural three-dimensional (3D) images from 2D rotational angiographic projection data (C-arm CT). However, 3D reconstruction of a dynamic object is a fundamental problem in C-arm CT reconstruction. The 2D projections are acquired over a scan time of several seconds, thus the projection data show different states of the heart. A standard FDK reconstruction algorithm would use all acquired data for a filtered backprojection and result in a motion-blurred image. In thismore » approach, a motion compensated reconstruction algorithm requiring knowledge of the 3D heart motion is used. The motion is estimated from a previously presented 3D dynamic surface model. This dynamic surface model results in a sparse motion vector field (MVF) defined at control points. In order to perform a motion compensated reconstruction, a dense motion vector field is required. The dense MVF is generated by interpolation of the sparse MVF. Therefore, the influence of different motion interpolation methods on the reconstructed image quality is evaluated. Methods: Four different interpolation methods, thin-plate splines (TPS), Shepard's method, a smoothed weighting function, and a simple averaging, were evaluated. The reconstruction quality was measured on phantom data, a porcine model as well as on in vivo clinical data sets. As a quality index, the 2D overlap of the forward projected motion compensated reconstructed ventricle and the segmented 2D ventricle blood pool was quantitatively measured with the Dice similarity coefficient and the mean deviation between extracted ventricle contours. For the phantom data set, the normalized root mean square error (nRMSE) and the universal quality index (UQI) were also evaluated in 3D image space. Results: The quantitative evaluation of all experiments showed that TPS interpolation provided the best results. The quantitative results in the phantom experiments showed comparable nRMSE of Almost-Equal-To 0.047 {+-} 0.004 for the TPS and Shepard's method. Only slightly inferior results for the smoothed weighting function and the linear approach were achieved. The UQI resulted in a value of Almost-Equal-To 99% for all four interpolation methods. On clinical human data sets, the best results were clearly obtained with the TPS interpolation. The mean contour deviation between the TPS reconstruction and the standard FDK reconstruction improved in the three human cases by 1.52, 1.34, and 1.55 mm. The Dice coefficient showed less sensitivity with respect to variations in the ventricle boundary. Conclusions: In this work, the influence of different motion interpolation methods on left ventricle motion compensated tomographic reconstructions was investigated. The best quantitative reconstruction results of a phantom, a porcine, and human clinical data sets were achieved with the TPS approach. In general, the framework of motion estimation using a surface model and motion interpolation to a dense MVF provides the ability for tomographic reconstruction using a motion compensation technique.« less
[Improvement of Digital Capsule Endoscopy System and Image Interpolation].
Zhao, Shaopeng; Yan, Guozheng; Liu, Gang; Kuang, Shuai
2016-01-01
Traditional capsule image collects and transmits analog image, with weak anti-interference ability, low frame rate, low resolution. This paper presents a new digital image capsule, which collects and transmits digital image, with frame rate up to 30 frames/sec and pixels resolution of 400 x 400. The image is compressed in the capsule, and is transmitted to the outside of the capsule for decompression and interpolation. A new type of interpolation algorithm is proposed, which is based on the relationship between the image planes, to obtain higher quality colour images. capsule endoscopy, digital image, SCCB protocol, image interpolation
Deep learning methods for CT image-domain metal artifact reduction
NASA Astrophysics Data System (ADS)
Gjesteby, Lars; Yang, Qingsong; Xi, Yan; Shan, Hongming; Claus, Bernhard; Jin, Yannan; De Man, Bruno; Wang, Ge
2017-09-01
Artifacts resulting from metal objects have been a persistent problem in CT images over the last four decades. A common approach to overcome their effects is to replace corrupt projection data with values synthesized from an interpolation scheme or by reprojection of a prior image. State-of-the-art correction methods, such as the interpolation- and normalization-based algorithm NMAR, often do not produce clinically satisfactory results. Residual image artifacts remain in challenging cases and even new artifacts can be introduced by the interpolation scheme. Metal artifacts continue to be a major impediment, particularly in radiation and proton therapy planning as well as orthopedic imaging. A new solution to the long-standing metal artifact reduction (MAR) problem is deep learning, which has been successfully applied to medical image processing and analysis tasks. In this study, we combine a convolutional neural network (CNN) with the state-of-the-art NMAR algorithm to reduce metal streaks in critical image regions. Training data was synthesized from CT simulation scans of a phantom derived from real patient images. The CNN is able to map metal-corrupted images to artifact-free monoenergetic images to achieve additional correction on top of NMAR for improved image quality. Our results indicate that deep learning is a novel tool to address CT reconstruction challenges, and may enable more accurate tumor volume estimation for radiation therapy planning.
Yan, Hao; Mou, Xuanqin; Tang, Shaojie; Xu, Qiong; Zankl, Maria
2010-11-07
Scatter correction is an open problem in x-ray cone beam (CB) CT. The measurement of scatter intensity with a moving beam stop array (BSA) is a promising technique that offers a low patient dose and accurate scatter measurement. However, when restoring the blocked primary fluence behind the BSA, spatial interpolation cannot well restore the high-frequency part, causing streaks in the reconstructed image. To address this problem, we deduce a projection correlation (PC) to utilize the redundancy (over-determined information) in neighbouring CB views. PC indicates that the main high-frequency information is contained in neighbouring angular projections, instead of the current projection itself, which provides a guiding principle that applies to high-frequency information restoration. On this basis, we present the projection correlation based view interpolation (PC-VI) algorithm; that it outperforms the use of only spatial interpolation is validated. The PC-VI based moving BSA method is developed. In this method, PC-VI is employed instead of spatial interpolation, and new moving modes are designed, which greatly improve the performance of the moving BSA method in terms of reliability and practicability. Evaluation is made on a high-resolution voxel-based human phantom realistically including the entire procedure of scatter measurement with a moving BSA, which is simulated by analytical ray-tracing plus Monte Carlo simulation with EGSnrc. With the proposed method, we get visually artefact-free images approaching the ideal correction. Compared with the spatial interpolation based method, the relative mean square error is reduced by a factor of 6.05-15.94 for different slices. PC-VI does well in CB redundancy mining; therefore, it has further potential in CBCT studies.
Ameliorating slice gaps in multislice magnetic resonance images: an interpolation scheme.
Kashou, Nasser H; Smith, Mark A; Roberts, Cynthia J
2015-01-01
Standard two-dimension (2D) magnetic resonance imaging (MRI) clinical acquisition protocols utilize orthogonal plane images which contain slice gaps (SG). The purpose of this work is to introduce a novel interpolation method for these orthogonal plane MRI 2D datasets. Three goals can be achieved: (1) increasing the resolution based on a priori knowledge of scanning protocol, (2) ameliorating the loss of data as a result of SG and (3) reconstructing a three-dimension (3D) dataset from 2D images. MRI data was collected using a 3T GE scanner and simulated using Matlab. The procedure for validating the MRI data combination algorithm was performed using a Shepp-Logan and a Gaussian phantom in both 2D and 3D of varying matrix sizes (64-512), as well as on one MRI dataset of a human brain and on an American College of Radiology magnetic resonance accreditation phantom. The squared error and mean squared error were computed in comparing this scheme to common interpolating functions employed in MR consoles and workstations. The mean structure similarity matrix was computed in 2D as a means of qualitative image assessment. Additionally, MRI scans were used for qualitative assessment of the method. This new scheme was consistently more accurate than upsampling each orientation separately and averaging the upsampled data. An efficient new interpolation approach to resolve SG was developed. This scheme effectively fills in the missing data points by using orthogonal plane images. To date, there have been few attempts to combine the information of three MRI plane orientations using brain images. This has specific applications for clinical MRI, functional MRI, diffusion-weighted imaging/diffusion tensor imaging and MR angiography where 2D slice acquisition are used. In these cases, the 2D data can be combined using our method in order to obtain 3D volume.
NASA Technical Reports Server (NTRS)
Jayroe, R. R., Jr.
1976-01-01
Geographical correction effects on LANDSAT image data are identified, using the nearest neighbor, bilinear interpolation and bicubic interpolation techniques. Potential impacts of registration on image compression and classification are explored.
Interpolation bias for the inverse compositional Gauss-Newton algorithm in digital image correlation
NASA Astrophysics Data System (ADS)
Su, Yong; Zhang, Qingchuan; Xu, Xiaohai; Gao, Zeren; Wu, Shangquan
2018-01-01
It is believed that the classic forward additive Newton-Raphson (FA-NR) algorithm and the recently introduced inverse compositional Gauss-Newton (IC-GN) algorithm give rise to roughly equal interpolation bias. Questioning the correctness of this statement, this paper presents a thorough analysis of interpolation bias for the IC-GN algorithm. A theoretical model is built to analytically characterize the dependence of interpolation bias upon speckle image, target image interpolation, and reference image gradient estimation. The interpolation biases of the FA-NR algorithm and the IC-GN algorithm can be significantly different, whose relative difference can exceed 80%. For the IC-GN algorithm, the gradient estimator can strongly affect the interpolation bias; the relative difference can reach 178%. Since the mean bias errors are insensitive to image noise, the theoretical model proposed remains valid in the presence of noise. To provide more implementation details, source codes are uploaded as a supplement.
Oh, Paul; Lee, Sukho; Kang, Moon Gi
2017-01-01
Recently, several RGB-White (RGBW) color filter arrays (CFAs) have been proposed, which have extra white (W) pixels in the filter array that are highly sensitive. Due to the high sensitivity, the W pixels have better SNR (Signal to Noise Ratio) characteristics than other color pixels in the filter array, especially, in low light conditions. However, most of the RGBW CFAs are designed so that the acquired RGBW pattern image can be converted into the conventional Bayer pattern image, which is then again converted into the final color image by using conventional demosaicing methods, i.e., color interpolation techniques. In this paper, we propose a new RGBW color filter array based on a totally different color interpolation technique, the colorization algorithm. The colorization algorithm was initially proposed for colorizing a gray image into a color image using a small number of color seeds. Here, we adopt this algorithm as a color interpolation technique, so that the RGBW color filter array can be designed with a very large number of W pixels to make the most of the highly sensitive characteristics of the W channel. The resulting RGBW color filter array has a pattern with a large proportion of W pixels, while the small-numbered RGB pixels are randomly distributed over the array. The colorization algorithm makes it possible to reconstruct the colors from such a small number of RGB values. Due to the large proportion of W pixels, the reconstructed color image has a high SNR value, especially higher than those of conventional CFAs in low light condition. Experimental results show that many important information which are not perceived in color images reconstructed with conventional CFAs are perceived in the images reconstructed with the proposed method. PMID:28657602
Oh, Paul; Lee, Sukho; Kang, Moon Gi
2017-06-28
Recently, several RGB-White (RGBW) color filter arrays (CFAs) have been proposed, which have extra white (W) pixels in the filter array that are highly sensitive. Due to the high sensitivity, the W pixels have better SNR (Signal to Noise Ratio) characteristics than other color pixels in the filter array, especially, in low light conditions. However, most of the RGBW CFAs are designed so that the acquired RGBW pattern image can be converted into the conventional Bayer pattern image, which is then again converted into the final color image by using conventional demosaicing methods, i.e., color interpolation techniques. In this paper, we propose a new RGBW color filter array based on a totally different color interpolation technique, the colorization algorithm. The colorization algorithm was initially proposed for colorizing a gray image into a color image using a small number of color seeds. Here, we adopt this algorithm as a color interpolation technique, so that the RGBW color filter array can be designed with a very large number of W pixels to make the most of the highly sensitive characteristics of the W channel. The resulting RGBW color filter array has a pattern with a large proportion of W pixels, while the small-numbered RGB pixels are randomly distributed over the array. The colorization algorithm makes it possible to reconstruct the colors from such a small number of RGB values. Due to the large proportion of W pixels, the reconstructed color image has a high SNR value, especially higher than those of conventional CFAs in low light condition. Experimental results show that many important information which are not perceived in color images reconstructed with conventional CFAs are perceived in the images reconstructed with the proposed method.
Okizaki, Atsutaka; Nakayama, Michihiro; Nakajima, Kaori; Takahashi, Koji
2017-12-01
Positron emission tomography (PET) has become a useful and important technique in oncology. However, spatial resolution of PET is not high; therefore, small abnormalities can sometimes be overlooked with PET. To address this problem, we devised a novel algorithm, iterative modified bicubic interpolation method (IMBIM). IMBIM generates high resolution and -contrast image. The purpose of this study was to investigate the utility of IMBIM for clinical FDG positron emission tomography/X-ray computed tomography (PET/CT) imaging.We evaluated PET images from 1435 patients with malignant tumor and compared the contrast (uptake ratio of abnormal lesions to background) in high resolution image with the standard bicubic interpolation method (SBIM) and IMBIM. In addition to the contrast analysis, 340 out of 1435 patients were selected for visual evaluation by nuclear medicine physicians to investigate lesion detectability. Abnormal uptakes on the images were categorized as either absolutely abnormal or equivocal finding.The average of contrast with IMBIM was significantly higher than that with SBIM (P < .001). The improvements were prominent with large matrix sizes and small lesions. SBIM images showed abnormalities in 198 of 340 lesions (58.2%), while IMBIM indicated abnormalities in 312 (91.8%). There was statistically significant improvement in lesion detectability with IMBIM (P < .001).In conclusion, IMBIM generates high-resolution images with improved contrast and, therefore, may facilitate more accurate diagnoses in clinical practice. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.
Retina-like sensor image coordinates transformation and display
NASA Astrophysics Data System (ADS)
Cao, Fengmei; Cao, Nan; Bai, Tingzhu; Song, Shengyu
2015-03-01
For a new kind of retina-like senor camera, the image acquisition, coordinates transformation and interpolation need to be realized. Both of the coordinates transformation and interpolation are computed in polar coordinate due to the sensor's particular pixels distribution. The image interpolation is based on sub-pixel interpolation and its relative weights are got in polar coordinates. The hardware platform is composed of retina-like senor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes the real-time image acquisition, coordinate transformation and interpolation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, M; Baek, J
2016-06-15
Purpose: To investigate the slice direction dependent detectability in cone beam CT images with anatomical background. Methods: We generated 3D anatomical background images using breast anatomy model. To generate 3D breast anatomy, we filtered 3D Gaussian noise with a square root of 1/f{sup 3}, and then assigned the attenuation coefficient of glandular (0.8cm{sup −1}) and adipose (0.46 cm{sup −1}) tissues based on voxel values. Projections were acquired by forward projection, and quantum noise was added to the projection data. The projection data were reconstructed by FDK algorithm. We compared the detectability of a 3 mm spherical signal in the imagemore » reconstructed from four different backprojection Methods: Hanning weighted ramp filter with linear interpolation (RECON1), Hanning weighted ramp filter with Fourier interpolation (RECON2), ramp filter with linear interpolation (RECON3), and ramp filter with Fourier interpolation (RECON4), respectively. We computed task SNR of the spherical signal in transverse and longitudinal planes using channelized Hotelling observer with Laguerre-Gauss channels. Results: Transverse plane has similar task SNR values for different backprojection methods, while longitudinal plane has a maximum task SNR value in RECON1. For all backprojection methods, longitudinal plane has higher task SNR than transverse plane. Conclusion: In this work, we investigated detectability for different slice direction in cone beam CT images with anatomical background. Longitudinal plane has a higher task SNR than transverse plane, and backprojection with hanning weighted ramp filter with linear interpolation method (i.e., RECON1) produced the highest task SNR among four different backprojection methods. This research was supported by the MSIP (Ministry of Science, ICT and Future Planning), Korea, under the IT Consilience Creative Programs(IITP-2015-R0346-15-1008) supervised by the IITP (Institute for Information & Communications Technology Promotion), Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the MSIP (2015R1C1A1A01052268) and framework of international cooperation program managed by NRF (NRF-2015K2A1A2067635).« less
Interpolation of longitudinal shape and image data via optimal mass transport
NASA Astrophysics Data System (ADS)
Gao, Yi; Zhu, Liang-Jia; Bouix, Sylvain; Tannenbaum, Allen
2014-03-01
Longitudinal analysis of medical imaging data has become central to the study of many disorders. Unfortunately, various constraints (study design, patient availability, technological limitations) restrict the acquisition of data to only a few time points, limiting the study of continuous disease/treatment progression. Having the ability to produce a sensible time interpolation of the data can lead to improved analysis, such as intuitive visualizations of anatomical changes, or the creation of more samples to improve statistical analysis. In this work, we model interpolation of medical image data, in particular shape data, using the theory of optimal mass transport (OMT), which can construct a continuous transition from two time points while preserving "mass" (e.g., image intensity, shape volume) during the transition. The theory even allows a short extrapolation in time and may help predict short-term treatment impact or disease progression on anatomical structure. We apply the proposed method to the hippocampus-amygdala complex in schizophrenia, the heart in atrial fibrillation, and full head MR images in traumatic brain injury.
Visual information processing; Proceedings of the Meeting, Orlando, FL, Apr. 20-22, 1992
NASA Technical Reports Server (NTRS)
Huck, Friedrich O. (Editor); Juday, Richard D. (Editor)
1992-01-01
Topics discussed in these proceedings include nonlinear processing and communications; feature extraction and recognition; image gathering, interpolation, and restoration; image coding; and wavelet transform. Papers are presented on noise reduction for signals from nonlinear systems; driving nonlinear systems with chaotic signals; edge detection and image segmentation of space scenes using fractal analyses; a vision system for telerobotic operation; a fidelity analysis of image gathering, interpolation, and restoration; restoration of images degraded by motion; and information, entropy, and fidelity in visual communication. Attention is also given to image coding methods and their assessment, hybrid JPEG/recursive block coding of images, modified wavelets that accommodate causality, modified wavelet transform for unbiased frequency representation, and continuous wavelet transform of one-dimensional signals by Fourier filtering.
Comparison of rotation algorithms for digital images
NASA Astrophysics Data System (ADS)
Starovoitov, Valery V.; Samal, Dmitry
1999-09-01
The paper presents a comparative study of several algorithms developed for digital image rotation. No losing generality we studied gray scale images. We have tested methods preserving gray values of the original images, performing some interpolation and two procedures implemented into the Corel Photo-paint and Adobe Photoshop soft packages. By the similar way methods for rotation of color images may be evaluated also.
Chen, Lidong; Basu, Anup; Zhang, Maojun; Wang, Wei; Liu, Yu
2014-03-20
A complementary catadioptric imaging technique was proposed to solve the problem of low and nonuniform resolution in omnidirectional imaging. To enhance this research, our paper focuses on how to generate a high-resolution panoramic image from the captured omnidirectional image. To avoid the interference between the inner and outer images while fusing the two complementary views, a cross-selection kernel regression method is proposed. First, in view of the complementarity of sampling resolution in the tangential and radial directions between the inner and the outer images, respectively, the horizontal gradients in the expected panoramic image are estimated based on the scattered neighboring pixels mapped from the outer, while the vertical gradients are estimated using the inner image. Then, the size and shape of the regression kernel are adaptively steered based on the local gradients. Furthermore, the neighboring pixels in the next interpolation step of kernel regression are also selected based on the comparison between the horizontal and vertical gradients. In simulation and real-image experiments, the proposed method outperforms existing kernel regression methods and our previous wavelet-based fusion method in terms of both visual quality and objective evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xi; Mou, Xuanqin; Nishikawa, Robert M.
Purpose: Small calcifications are often the earliest and the main indicator of breast cancer. Dual-energy digital mammography (DEDM) has been considered as a promising technique to improve the detectability of calcifications since it can be used to suppress the contrast between adipose and glandular tissues of the breast. X-ray scatter leads to erroneous calculations of the DEDM image. Although the pinhole-array interpolation method can estimate scattered radiations, it requires extra exposures to measure the scatter and apply the correction. The purpose of this work is to design an algorithmic method for scatter correction in DEDM without extra exposures.Methods: In thismore » paper, a scatter correction method for DEDM was developed based on the knowledge that scattered radiation has small spatial variation and that the majority of pixels in a mammogram are noncalcification pixels. The scatter fraction was estimated in the DEDM calculation and the measured scatter fraction was used to remove scatter from the image. The scatter correction method was implemented on a commercial full-field digital mammography system with breast tissue equivalent phantom and calcification phantom. The authors also implemented the pinhole-array interpolation scatter correction method on the system. Phantom results for both methods are presented and discussed. The authors compared the background DE calcification signals and the contrast-to-noise ratio (CNR) of calcifications in the three DE calcification images: image without scatter correction, image with scatter correction using pinhole-array interpolation method, and image with scatter correction using the authors' algorithmic method.Results: The authors' results show that the resultant background DE calcification signal can be reduced. The root-mean-square of background DE calcification signal of 1962 μm with scatter-uncorrected data was reduced to 194 μm after scatter correction using the authors' algorithmic method. The range of background DE calcification signals using scatter-uncorrected data was reduced by 58% with scatter-corrected data by algorithmic method. With the scatter-correction algorithm and denoising, the minimum visible calcification size can be reduced from 380 to 280 μm.Conclusions: When applying the proposed algorithmic scatter correction to images, the resultant background DE calcification signals can be reduced and the CNR of calcifications can be improved. This method has similar or even better performance than pinhole-array interpolation method in scatter correction for DEDM; moreover, this method is convenient and requires no extra exposure to the patient. Although the proposed scatter correction method is effective, it is validated by a 5-cm-thick phantom with calcifications and homogeneous background. The method should be tested on structured backgrounds to more accurately gauge effectiveness.« less
NASA Astrophysics Data System (ADS)
Zwart, Christine M.; Venkatesan, Ragav; Frakes, David H.
2012-10-01
Interpolation is an essential and broadly employed function of signal processing. Accordingly, considerable development has focused on advancing interpolation algorithms toward optimal accuracy. Such development has motivated a clear shift in the state-of-the art from classical interpolation to more intelligent and resourceful approaches, registration-based interpolation for example. As a natural result, many of the most accurate current algorithms are highly complex, specific, and computationally demanding. However, the diverse hardware destinations for interpolation algorithms present unique constraints that often preclude use of the most accurate available options. For example, while computationally demanding interpolators may be suitable for highly equipped image processing platforms (e.g., computer workstations and clusters), only more efficient interpolators may be practical for less well equipped platforms (e.g., smartphones and tablet computers). The latter examples of consumer electronics present a design tradeoff in this regard: high accuracy interpolation benefits the consumer experience but computing capabilities are limited. It follows that interpolators with favorable combinations of accuracy and efficiency are of great practical value to the consumer electronics industry. We address multidimensional interpolation-based image processing problems that are common to consumer electronic devices through a decomposition approach. The multidimensional problems are first broken down into multiple, independent, one-dimensional (1-D) interpolation steps that are then executed with a newly modified registration-based one-dimensional control grid interpolator. The proposed approach, decomposed multidimensional control grid interpolation (DMCGI), combines the accuracy of registration-based interpolation with the simplicity, flexibility, and computational efficiency of a 1-D interpolation framework. Results demonstrate that DMCGI provides improved interpolation accuracy (and other benefits) in image resizing, color sample demosaicing, and video deinterlacing applications, at a computational cost that is manageable or reduced in comparison to popular alternatives.
Spectral interpolation - Zero fill or convolution. [image processing
NASA Technical Reports Server (NTRS)
Forman, M. L.
1977-01-01
Zero fill, or augmentation by zeros, is a method used in conjunction with fast Fourier transforms to obtain spectral spacing at intervals closer than obtainable from the original input data set. In the present paper, an interpolation technique (interpolation by repetitive convolution) is proposed which yields values accurate enough for plotting purposes and which lie within the limits of calibration accuracies. The technique is shown to operate faster than zero fill, since fewer operations are required. The major advantages of interpolation by repetitive convolution are that efficient use of memory is possible (thus avoiding the difficulties encountered in decimation in time FFTs) and that is is easy to implement.
Experiences with digital processing of images at INPE
NASA Technical Reports Server (NTRS)
Mascarenhas, N. D. A. (Principal Investigator)
1984-01-01
Four different research experiments with digital image processing at INPE will be described: (1) edge detection by hypothesis testing; (2) image interpolation by finite impulse response filters; (3) spatial feature extraction methods in multispectral classification; and (4) translational image registration by sequential tests of hypotheses.
NASA Astrophysics Data System (ADS)
Grycewicz, Thomas J.; Florio, Christopher J.; Franz, Geoffrey A.; Robinson, Ross E.
2007-09-01
When using Fourier plane digital algorithms or an optical correlator to measure the correlation between digital images, interpolation by center-of-mass or quadratic estimation techniques can be used to estimate image displacement to the sub-pixel level. However, this can lead to a bias in the correlation measurement. This bias shifts the sub-pixel output measurement to be closer to the nearest pixel center than the actual location. The paper investigates the bias in the outputs of both digital and optical correlators, and proposes methods to minimize this effect. We use digital studies and optical implementations of the joint transform correlator to demonstrate optical registration with accuracies better than 0.1 pixels. We use both simulations of image shift and movies of a moving target as inputs. We demonstrate bias error for both center-of-mass and quadratic interpolation, and discuss the reasons that this bias is present. Finally, we suggest measures to reduce or eliminate the bias effects. We show that when sub-pixel bias is present, it can be eliminated by modifying the interpolation method. By removing the bias error, we improve registration accuracy by thirty percent.
Single image super resolution algorithm based on edge interpolation in NSCT domain
NASA Astrophysics Data System (ADS)
Zhang, Mengqun; Zhang, Wei; He, Xinyu
2017-11-01
In order to preserve the texture and edge information and to improve the space resolution of single frame, a superresolution algorithm based on Contourlet (NSCT) is proposed. The original low resolution image is transformed by NSCT, and the directional sub-band coefficients of the transform domain are obtained. According to the scale factor, the high frequency sub-band coefficients are amplified by the interpolation method based on the edge direction to the desired resolution. For high frequency sub-band coefficients with noise and weak targets, Bayesian shrinkage is used to calculate the threshold value. The coefficients below the threshold are determined by the correlation among the sub-bands of the same scale to determine whether it is noise and de-noising. The anisotropic diffusion filter is used to effectively enhance the weak target in the low contrast region of the target and background. Finally, the high-frequency sub-band is amplified by the bilinear interpolation method to the desired resolution, and then combined with the high-frequency subband coefficients after de-noising and small target enhancement, the NSCT inverse transform is used to obtain the desired resolution image. In order to verify the effectiveness of the proposed algorithm, the proposed algorithm and several common image reconstruction methods are used to test the synthetic image, motion blurred image and hyperspectral image, the experimental results show that compared with the traditional single resolution algorithm, the proposed algorithm can obtain smooth edges and good texture features, and the reconstructed image structure is well preserved and the noise is suppressed to some extent.
Fan, Chong; Wu, Chaoyun; Li, Grand; Ma, Jun
2017-01-01
To solve the problem on inaccuracy when estimating the point spread function (PSF) of the ideal original image in traditional projection onto convex set (POCS) super-resolution (SR) reconstruction, this paper presents an improved POCS SR algorithm based on PSF estimation of low-resolution (LR) remote sensing images. The proposed algorithm can improve the spatial resolution of the image and benefit agricultural crop visual interpolation. The PSF of the high-resolution (HR) image is unknown in reality. Therefore, analysis of the relationship between the PSF of the HR image and the PSF of the LR image is important to estimate the PSF of the HR image by using multiple LR images. In this study, the linear relationship between the PSFs of the HR and LR images can be proven. In addition, the novel slant knife-edge method is employed, which can improve the accuracy of the PSF estimation of LR images. Finally, the proposed method is applied to reconstruct airborne digital sensor 40 (ADS40) three-line array images and the overlapped areas of two adjacent GF-2 images by embedding the estimated PSF of the HR image to the original POCS SR algorithm. Experimental results show that the proposed method yields higher quality of reconstructed images than that produced by the blind SR method and the bicubic interpolation method. PMID:28208837
Proceedings of the Third Annual Symposium on Mathematical Pattern Recognition and Image Analysis
NASA Technical Reports Server (NTRS)
Guseman, L. F., Jr.
1985-01-01
Topics addressed include: multivariate spline method; normal mixture analysis applied to remote sensing; image data analysis; classifications in spatially correlated environments; probability density functions; graphical nonparametric methods; subpixel registration analysis; hypothesis integration in image understanding systems; rectification of satellite scanner imagery; spatial variation in remotely sensed images; smooth multidimensional interpolation; and optimal frequency domain textural edge detection filters.
Kiani, M A; Sim, K S; Nia, M E; Tso, C P
2015-05-01
A new technique based on cubic spline interpolation with Savitzky-Golay smoothing using weighted least squares error filter is enhanced for scanning electron microscope (SEM) images. A diversity of sample images is captured and the performance is found to be better when compared with the moving average and the standard median filters, with respect to eliminating noise. This technique can be implemented efficiently on real-time SEM images, with all mandatory data for processing obtained from a single image. Noise in images, and particularly in SEM images, are undesirable. A new noise reduction technique, based on cubic spline interpolation with Savitzky-Golay and weighted least squares error method, is developed. We apply the combined technique to single image signal-to-noise ratio estimation and noise reduction for SEM imaging system. This autocorrelation-based technique requires image details to be correlated over a few pixels, whereas the noise is assumed to be uncorrelated from pixel to pixel. The noise component is derived from the difference between the image autocorrelation at zero offset, and the estimation of the corresponding original autocorrelation. In the few test cases involving different images, the efficiency of the developed noise reduction filter is proved to be significantly better than those obtained from the other methods. Noise can be reduced efficiently with appropriate choice of scan rate from real-time SEM images, without generating corruption or increasing scanning time. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Quadratic trigonometric B-spline for image interpolation using GA
Abbas, Samreen; Irshad, Misbah
2017-01-01
In this article, a new quadratic trigonometric B-spline with control parameters is constructed to address the problems related to two dimensional digital image interpolation. The newly constructed spline is then used to design an image interpolation scheme together with one of the soft computing techniques named as Genetic Algorithm (GA). The idea of GA has been formed to optimize the control parameters in the description of newly constructed spline. The Feature SIMilarity (FSIM), Structure SIMilarity (SSIM) and Multi-Scale Structure SIMilarity (MS-SSIM) indices along with traditional Peak Signal-to-Noise Ratio (PSNR) are employed as image quality metrics to analyze and compare the outcomes of approach offered in this work, with three of the present digital image interpolation schemes. The upshots show that the proposed scheme is better choice to deal with the problems associated to image interpolation. PMID:28640906
Quadratic trigonometric B-spline for image interpolation using GA.
Hussain, Malik Zawwar; Abbas, Samreen; Irshad, Misbah
2017-01-01
In this article, a new quadratic trigonometric B-spline with control parameters is constructed to address the problems related to two dimensional digital image interpolation. The newly constructed spline is then used to design an image interpolation scheme together with one of the soft computing techniques named as Genetic Algorithm (GA). The idea of GA has been formed to optimize the control parameters in the description of newly constructed spline. The Feature SIMilarity (FSIM), Structure SIMilarity (SSIM) and Multi-Scale Structure SIMilarity (MS-SSIM) indices along with traditional Peak Signal-to-Noise Ratio (PSNR) are employed as image quality metrics to analyze and compare the outcomes of approach offered in this work, with three of the present digital image interpolation schemes. The upshots show that the proposed scheme is better choice to deal with the problems associated to image interpolation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C; Han, M; Baek, J
Purpose: To investigate the detectability of a small target for different slice direction of a volumetric cone beam CT image and its impact on dose reduction. Methods: Analytic projection data of a sphere object (1 mm diameter, 0.2/cm attenuation coefficient) were generated and reconstructed by FDK algorithm. In this work, we compared the detectability of the small target from four different backprojection Methods: hanning weighted ramp filter with linear interpolation (RECON 1), hanning weighted ramp filter with Fourier interpolation (RECON2), ramp filter with linear interpolation (RECON 3), and ramp filter with Fourier interpolation (RECON4), respectively. For noise simulation, 200 photonsmore » per measurement were used, and the noise only data were reconstructed using FDK algorithm. For each reconstructed volume, axial and coronal slice were extracted and detection-SNR was calculated using channelized Hotelling observer (CHO) with dense difference-of-Gaussian (D-DOG) channels. Results: Detection-SNR of coronal images varies for different backprojection methods, while axial images have a similar detection-SNR. Detection-SNR{sup 2} ratios of coronal and axial images in RECON1 and RECON2 are 1.33 and 1.15, implying that the coronal image has a better detectability than axial image. In other words, using coronal slices for the small target detection can reduce the patient dose about 33% and 15% compared to using axial slices in RECON 1 and RECON 2. Conclusion: In this work, we investigated slice direction dependent detectability of a volumetric cone beam CT image. RECON 1 and RECON 2 produced the highest detection-SNR, with better detectability in coronal slices. These results indicate that it is more beneficial to use coronal slice to improve detectability of a small target in a volumetric cone beam CT image. This research was supported by the MSIP (Ministry of Science, ICT and Future Planning), Korea, under the IT Consilience Creative Program (NIPA-2014-H0201-14-1002) supervised by the NIPA (National IT Industry Promotion Agency). Authors declares that s/he has no conflict of Interest in relation to the work in this abstract.« less
Image registration method for medical image sequences
Gee, Timothy F.; Goddard, James S.
2013-03-26
Image registration of low contrast image sequences is provided. In one aspect, a desired region of an image is automatically segmented and only the desired region is registered. Active contours and adaptive thresholding of intensity or edge information may be used to segment the desired regions. A transform function is defined to register the segmented region, and sub-pixel information may be determined using one or more interpolation methods.
SAR image formation with azimuth interpolation after azimuth transform
Doerry,; Armin W. , Martin; Grant D. , Holzrichter; Michael, W [Albuquerque, NM
2008-07-08
Two-dimensional SAR data can be processed into a rectangular grid format by subjecting the SAR data to a Fourier transform operation, and thereafter to a corresponding interpolation operation. Because the interpolation operation follows the Fourier transform operation, the interpolation operation can be simplified, and the effect of interpolation errors can be diminished. This provides for the possibility of both reducing the re-grid processing time, and improving the image quality.
Reducible dictionaries for single image super-resolution based on patch matching and mean shifting
NASA Astrophysics Data System (ADS)
Rasti, Pejman; Nasrollahi, Kamal; Orlova, Olga; Tamberg, Gert; Moeslund, Thomas B.; Anbarjafari, Gholamreza
2017-03-01
A single-image super-resolution (SR) method is proposed. The proposed method uses a generated dictionary from pairs of high resolution (HR) images and their corresponding low resolution (LR) representations. First, HR images and the corresponding LR ones are divided into patches of HR and LR, respectively, and then they are collected into separate dictionaries. Afterward, when performing SR, the distance between every patch of the input LR image and those of available LR patches in the LR dictionary is calculated. The minimum distance between the input LR patch and those in the LR dictionary is taken, and its counterpart from the HR dictionary is passed through an illumination enhancement process. By this technique, the noticeable change of illumination between neighbor patches in the super-resolved image is significantly reduced. The enhanced HR patch represents the HR patch of the super-resolved image. Finally, to remove the blocking effect caused by merging the patches, an average of the obtained HR image and the interpolated image obtained using bicubic interpolation is calculated. The quantitative and qualitative analyses show the superiority of the proposed technique over the conventional and state-of-art methods.
NASA Astrophysics Data System (ADS)
Wisniewski, Nicholas Andrew
This dissertation is divided into two parts. First we present an exact solution to a generalization of the Behrens-Fisher problem by embedding the problem in the Riemannian manifold of Normal distributions. From this we construct a geometric hypothesis testing scheme. Secondly we investigate the most commonly used geometric methods employed in tensor field interpolation for DT-MRI analysis and cardiac computer modeling. We computationally investigate a class of physiologically motivated orthogonal tensor invariants, both at the full tensor field scale and at the scale of a single interpolation by doing a decimation/interpolation experiment. We show that Riemannian-based methods give the best results in preserving desirable physiological features.
Noise reduction techniques for Bayer-matrix images
NASA Astrophysics Data System (ADS)
Kalevo, Ossi; Rantanen, Henry
2002-04-01
In this paper, some arrangements to apply Noise Reduction (NR) techniques for images captured by a single sensor digital camera are studied. Usually, the NR filter processes full three-color component image data. This requires that raw Bayer-matrix image data, available from the image sensor, is first interpolated by using Color Filter Array Interpolation (CFAI) method. Another choice is that the raw Bayer-matrix image data is processed directly. The advantages and disadvantages of both processing orders, before (pre-) CFAI and after (post-) CFAI, are studied with linear, multi-stage median, multistage median hybrid and median-rational filters .The comparison is based on the quality of the output image, the processing power requirements and the amount of memory needed. Also the solution, which improves preservation of details in the NR filtering before the CFAI, is proposed.
NASA Technical Reports Server (NTRS)
Jasinski, Michael F.; Borak, Jordan S.
2008-01-01
Many earth science modeling applications employ continuous input data fields derived from satellite data. Environmental factors, sensor limitations and algorithmic constraints lead to data products of inherently variable quality. This necessitates interpolation of one form or another in order to produce high quality input fields free of missing data. The present research tests several interpolation techniques as applied to satellite-derived leaf area index, an important quantity in many global climate and ecological models. The study evaluates and applies a variety of interpolation techniques for the Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf-Area Index Product over the time period 2001-2006 for a region containing the conterminous United States. Results indicate that the accuracy of an individual interpolation technique depends upon the underlying land cover. Spatial interpolation provides better results in forested areas, while temporal interpolation performs more effectively over non-forest cover types. Combination of spatial and temporal approaches offers superior interpolative capabilities to any single method, and in fact, generation of continuous data fields requires a hybrid approach such as this.
Zhang, Jialin; Li, Xiuhong; Yang, Rongjin; Liu, Qiang; Zhao, Long; Dou, Baocheng
2017-01-01
In the practice of interpolating near-surface soil moisture measured by a wireless sensor network (WSN) grid, traditional Kriging methods with auxiliary variables, such as Co-kriging and Kriging with external drift (KED), cannot achieve satisfactory results because of the heterogeneity of soil moisture and its low correlation with the auxiliary variables. This study developed an Extended Kriging method to interpolate with the aid of remote sensing images. The underlying idea is to extend the traditional Kriging by introducing spectral variables, and operating on spatial and spectral combined space. The algorithm has been applied to WSN-measured soil moisture data in HiWATER campaign to generate daily maps from 10 June to 15 July 2012. For comparison, three traditional Kriging methods are applied: Ordinary Kriging (OK), which used WSN data only, Co-kriging and KED, both of which integrated remote sensing data as covariate. Visual inspections indicate that the result from Extended Kriging shows more spatial details than that of OK, Co-kriging, and KED. The Root Mean Square Error (RMSE) of Extended Kriging was found to be the smallest among the four interpolation results. This indicates that the proposed method has advantages in combining remote sensing information and ground measurements in soil moisture interpolation. PMID:28617351
NASA Astrophysics Data System (ADS)
Abbasi, Ashkan; Monadjemi, Amirhassan; Fang, Leyuan; Rabbani, Hossein
2018-03-01
We present a nonlocal weighted sparse representation (NWSR) method for reconstruction of retinal optical coherence tomography (OCT) images. To reconstruct a high signal-to-noise ratio and high-resolution OCT images, utilization of efficient denoising and interpolation algorithms are necessary, especially when the original data were subsampled during acquisition. However, the OCT images suffer from the presence of a high level of noise, which makes the estimation of sparse representations a difficult task. Thus, the proposed NWSR method merges sparse representations of multiple similar noisy and denoised patches to better estimate a sparse representation for each patch. First, the sparse representation of each patch is independently computed over an overcomplete dictionary, and then a nonlocal weighted sparse coefficient is computed by averaging representations of similar patches. Since the sparsity can reveal relevant information from noisy patches, combining noisy and denoised patches' representations is beneficial to obtain a more robust estimate of the unknown sparse representation. The denoised patches are obtained by applying an off-the-shelf image denoising method and our method provides an efficient way to exploit information from noisy and denoised patches' representations. The experimental results on denoising and interpolation of spectral domain OCT images demonstrated the effectiveness of the proposed NWSR method over existing state-of-the-art methods.
Minimized-Laplacian residual interpolation for color image demosaicking
NASA Astrophysics Data System (ADS)
Kiku, Daisuke; Monno, Yusuke; Tanaka, Masayuki; Okutomi, Masatoshi
2014-03-01
A color difference interpolation technique is widely used for color image demosaicking. In this paper, we propose a minimized-laplacian residual interpolation (MLRI) as an alternative to the color difference interpolation, where the residuals are differences between observed and tentatively estimated pixel values. In the MLRI, we estimate the tentative pixel values by minimizing the Laplacian energies of the residuals. This residual image transfor- mation allows us to interpolate more easily than the standard color difference transformation. We incorporate the proposed MLRI into the gradient based threshold free (GBTF) algorithm, which is one of current state-of- the-art demosaicking algorithms. Experimental results demonstrate that our proposed demosaicking algorithm can outperform the state-of-the-art algorithms for the 30 images of the IMAX and the Kodak datasets.
Liu, Jiamin; Kabadi, Suraj; Van Uitert, Robert; Petrick, Nicholas; Deriche, Rachid; Summers, Ronald M.
2011-01-01
Purpose: Surface curvatures are important geometric features for the computer-aided analysis and detection of polyps in CT colonography (CTC). However, the general kernel approach for curvature computation can yield erroneous results for small polyps and for polyps that lie on haustral folds. Those erroneous curvatures will reduce the performance of polyp detection. This paper presents an analysis of interpolation’s effect on curvature estimation for thin structures and its application on computer-aided detection of small polyps in CTC. Methods: The authors demonstrated that a simple technique, image interpolation, can improve the accuracy of curvature estimation for thin structures and thus significantly improve the sensitivity of small polyp detection in CTC. Results: Our experiments showed that the merits of interpolating included more accurate curvature values for simulated data, and isolation of polyps near folds for clinical data. After testing on a large clinical data set, it was observed that sensitivities with linear, quadratic B-spline and cubic B-spline interpolations significantly improved the sensitivity for small polyp detection. Conclusions: The image interpolation can improve the accuracy of curvature estimation for thin structures and thus improve the computer-aided detection of small polyps in CTC. PMID:21859029
Fast image interpolation for motion estimation using graphics hardware
NASA Astrophysics Data System (ADS)
Kelly, Francis; Kokaram, Anil
2004-05-01
Motion estimation and compensation is the key to high quality video coding. Block matching motion estimation is used in most video codecs, including MPEG-2, MPEG-4, H.263 and H.26L. Motion estimation is also a key component in the digital restoration of archived video and for post-production and special effects in the movie industry. Sub-pixel accurate motion vectors can improve the quality of the vector field and lead to more efficient video coding. However sub-pixel accuracy requires interpolation of the image data. Image interpolation is a key requirement of many image processing algorithms. Often interpolation can be a bottleneck in these applications, especially in motion estimation due to the large number pixels involved. In this paper we propose using commodity computer graphics hardware for fast image interpolation. We use the full search block matching algorithm to illustrate the problems and limitations of using graphics hardware in this way.
NASA Astrophysics Data System (ADS)
Kim, Juhye; Nam, Haewon; Lee, Rena
2015-07-01
CT (computed tomography) images, metal materials such as tooth supplements or surgical clips can cause metal artifact and degrade image quality. In severe cases, this may lead to misdiagnosis. In this research, we developed a new MAR (metal artifact reduction) algorithm by using an edge preserving filter and the MATLAB program (Mathworks, version R2012a). The proposed algorithm consists of 6 steps: image reconstruction from projection data, metal segmentation, forward projection, interpolation, applied edge preserving smoothing filter, and new image reconstruction. For an evaluation of the proposed algorithm, we obtained both numerical simulation data and data for a Rando phantom. In the numerical simulation data, four metal regions were added into the Shepp Logan phantom for metal artifacts. The projection data of the metal-inserted Rando phantom were obtained by using a prototype CBCT scanner manufactured by medical engineering and medical physics (MEMP) laboratory research group in medical science at Ewha Womans University. After these had been adopted the proposed algorithm was performed, and the result were compared with the original image (with metal artifact without correction) and with a corrected image based on linear interpolation. Both visual and quantitative evaluations were done. Compared with the original image with metal artifacts and with the image corrected by using linear interpolation, both the numerical and the experimental phantom data demonstrated that the proposed algorithm reduced the metal artifact. In conclusion, the evaluation in this research showed that the proposed algorithm outperformed the interpolation based MAR algorithm. If an optimization and a stability evaluation of the proposed algorithm can be performed, the developed algorithm is expected to be an effective tool for eliminating metal artifacts even in commercial CT systems.
Kriging in the Shadows: Geostatistical Interpolation for Remote Sensing
NASA Technical Reports Server (NTRS)
Rossi, Richard E.; Dungan, Jennifer L.; Beck, Louisa R.
1994-01-01
It is often useful to estimate obscured or missing remotely sensed data. Traditional interpolation methods, such as nearest-neighbor or bilinear resampling, do not take full advantage of the spatial information in the image. An alternative method, a geostatistical technique known as indicator kriging, is described and demonstrated using a Landsat Thematic Mapper image in southern Chiapas, Mexico. The image was first classified into pasture and nonpasture land cover. For each pixel that was obscured by cloud or cloud shadow, the probability that it was pasture was assigned by the algorithm. An exponential omnidirectional variogram model was used to characterize the spatial continuity of the image for use in the kriging algorithm. Assuming a cutoff probability level of 50%, the error was shown to be 17% with no obvious spatial bias but with some tendency to categorize nonpasture as pasture (overestimation). While this is a promising result, the method's practical application in other missing data problems for remotely sensed images will depend on the amount and spatial pattern of the unobscured pixels and missing pixels and the success of the spatial continuity model used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korpics, Mark; Surucu, Murat; Mescioglu, Ibrahim
Purpose and Objectives: To quantify, through an observer study, the reduction in metal artifacts on cone beam computed tomographic (CBCT) images using a projection-interpolation algorithm, on images containing metal artifacts from dental fillings and implants in patients treated for head and neck (H&N) cancer. Methods and Materials: An interpolation-substitution algorithm was applied to H&N CBCT images containing metal artifacts from dental fillings and implants. Image quality with respect to metal artifacts was evaluated subjectively and objectively. First, 6 independent radiation oncologists were asked to rank randomly sorted blinded images (before and after metal artifact reduction) using a 5-point rating scalemore » (1 = severe artifacts; 5 = no artifacts). Second, the standard deviation of different regions of interest (ROI) within each image was calculated and compared with the mean rating scores. Results: The interpolation-substitution technique successfully reduced metal artifacts in 70% of the cases. From a total of 60 images from 15 H&N cancer patients undergoing image guided radiation therapy, the mean rating score on the uncorrected images was 2.3 ± 1.1, versus 3.3 ± 1.0 for the corrected images. The mean difference in ranking score between uncorrected and corrected images was 1.0 (95% confidence interval: 0.9-1.2, P<.05). The standard deviation of each ROI significantly decreased after artifact reduction (P<.01). Moreover, a negative correlation between the mean rating score for each image and the standard deviation of the oral cavity and bilateral cheeks was observed. Conclusion: The interpolation-substitution algorithm is efficient and effective for reducing metal artifacts caused by dental fillings and implants on CBCT images, as demonstrated by the statistically significant increase in observer image quality ranking and by the decrease in ROI standard deviation between uncorrected and corrected images.« less
Afzali, Maryam; Fatemizadeh, Emad; Soltanian-Zadeh, Hamid
2015-09-30
Diffusion weighted imaging (DWI) is a non-invasive method for investigating the brain white matter structure and can be used to evaluate fiber bundles. However, due to practical constraints, DWI data acquired in clinics are low resolution. This paper proposes a method for interpolation of orientation distribution functions (ODFs). To this end, fuzzy clustering is applied to segment ODFs based on the principal diffusion directions (PDDs). Next, a cluster is modeled by a tensor so that an ODF is represented by a mixture of tensors. For interpolation, each tensor is rotated separately. The method is applied on the synthetic and real DWI data of control and epileptic subjects. Both experiments illustrate capability of the method in increasing spatial resolution of the data in the ODF field properly. The real dataset show that the method is capable of reliable identification of differences between temporal lobe epilepsy (TLE) patients and normal subjects. The method is compared to existing methods. Comparison studies show that the proposed method generates smaller angular errors relative to the existing methods. Another advantage of the method is that it does not require an iterative algorithm to find the tensors. The proposed method is appropriate for increasing resolution in the ODF field and can be applied to clinical data to improve evaluation of white matter fibers in the brain. Copyright © 2015 Elsevier B.V. All rights reserved.
Sub-pixel localisation of passive micro-coil fiducial markers in interventional MRI.
Rea, Marc; McRobbie, Donald; Elhawary, Haytham; Tse, Zion T H; Lamperth, Michael; Young, Ian
2009-04-01
Electromechanical devices enable increased accuracy in surgical procedures, and the recent development of MRI-compatible mechatronics permits the use of MRI for real-time image guidance. Integrated imaging of resonant micro-coil fiducials provides an accurate method of tracking devices in a scanner with increased flexibility compared to gradient tracking. Here we report on the ability of ten different image-processing algorithms to track micro-coil fiducials with sub-pixel accuracy. Five algorithms: maximum pixel, barycentric weighting, linear interpolation, quadratic fitting and Gaussian fitting were applied both directly to the pixel intensity matrix and to the cross-correlation matrix obtained by 2D convolution with a reference image. Using images of a 3 mm fiducial marker and a pixel size of 1.1 mm, intensity linear interpolation, which calculates the position of the fiducial centre by interpolating the pixel data to find the fiducial edges, was found to give the best performance for minimal computing power; a maximum error of 0.22 mm was observed in fiducial localisation for displacements up to 40 mm. The inherent standard deviation of fiducial localisation was 0.04 mm. This work enables greater accuracy to be achieved in passive fiducial tracking.
Accurate B-spline-based 3-D interpolation scheme for digital volume correlation
NASA Astrophysics Data System (ADS)
Ren, Maodong; Liang, Jin; Wei, Bin
2016-12-01
An accurate and efficient 3-D interpolation scheme, based on sampling theorem and Fourier transform technique, is proposed to reduce the sub-voxel matching error caused by intensity interpolation bias in digital volume correlation. First, the influence factors of the interpolation bias are investigated theoretically using the transfer function of an interpolation filter (henceforth filter) in the Fourier domain. A law that the positional error of a filter can be expressed as a function of fractional position and wave number is found. Then, considering the above factors, an optimized B-spline-based recursive filter, combining B-spline transforms and least squares optimization method, is designed to virtually eliminate the interpolation bias in the process of sub-voxel matching. Besides, given each volumetric image containing different wave number ranges, a Gaussian weighting function is constructed to emphasize or suppress certain of wave number ranges based on the Fourier spectrum analysis. Finally, a novel software is developed and series of validation experiments were carried out to verify the proposed scheme. Experimental results show that the proposed scheme can reduce the interpolation bias to an acceptable level.
Texton-based super-resolution for achieving high spatiotemporal resolution in hybrid camera system
NASA Astrophysics Data System (ADS)
Kamimura, Kenji; Tsumura, Norimichi; Nakaguchi, Toshiya; Miyake, Yoichi
2010-05-01
Many super-resolution methods have been proposed to enhance the spatial resolution of images by using iteration and multiple input images. In a previous paper, we proposed the example-based super-resolution method to enhance an image through pixel-based texton substitution to reduce the computational cost. In this method, however, we only considered the enhancement of a texture image. In this study, we modified this texton substitution method for a hybrid camera to reduce the required bandwidth of a high-resolution video camera. We applied our algorithm to pairs of high- and low-spatiotemporal-resolution videos, which were synthesized to simulate a hybrid camera. The result showed that the fine detail of the low-resolution video can be reproduced compared with bicubic interpolation and the required bandwidth could be reduced to about 1/5 in a video camera. It was also shown that the peak signal-to-noise ratios (PSNRs) of the images improved by about 6 dB in a trained frame and by 1.0-1.5 dB in a test frame, as determined by comparison with the processed image using bicubic interpolation, and the average PSNRs were higher than those obtained by the well-known Freeman’s patch-based super-resolution method. Compared with that of the Freeman’s patch-based super-resolution method, the computational time of our method was reduced to almost 1/10.
NASA Astrophysics Data System (ADS)
Elfarnawany, Mai; Alam, S. Riyahi; Agrawal, Sumit K.; Ladak, Hanif M.
2017-02-01
Cochlear implant surgery is a hearing restoration procedure for patients with profound hearing loss. In this surgery, an electrode is inserted into the cochlea to stimulate the auditory nerve and restore the patient's hearing. Clinical computed tomography (CT) images are used for planning and evaluation of electrode placement, but their low resolution limits the visualization of internal cochlear structures. Therefore, high resolution micro-CT images are used to develop atlas-based segmentation methods to extract these nonvisible anatomical features in clinical CT images. Accurate registration of the high and low resolution CT images is a prerequisite for reliable atlas-based segmentation. In this study, we evaluate and compare different non-rigid B-spline registration parameters using micro-CT and clinical CT images of five cadaveric human cochleae. The varying registration parameters are cost function (normalized correlation (NC), mutual information and mean square error), interpolation method (linear, windowed-sinc and B-spline) and sampling percentage (1%, 10% and 100%). We compare the registration results visually and quantitatively using the Dice similarity coefficient (DSC), Hausdorff distance (HD) and absolute percentage error in cochlear volume. Using MI or MSE cost functions and linear or windowed-sinc interpolation resulted in visually undesirable deformation of internal cochlear structures. Quantitatively, the transforms using 100% sampling percentage yielded the highest DSC and smallest HD (0.828+/-0.021 and 0.25+/-0.09mm respectively). Therefore, B-spline registration with cost function: NC, interpolation: B-spline and sampling percentage: moments 100% can be the foundation of developing an optimized atlas-based segmentation algorithm of intracochlear structures in clinical CT images.
Reduction of background clutter in structured lighting systems
Carlson, Jeffrey J.; Giles, Michael K.; Padilla, Denise D.; Davidson, Jr., Patrick A.; Novick, David K.; Wilson, Christopher W.
2010-06-22
Methods for segmenting the reflected light of an illumination source having a characteristic wavelength from background illumination (i.e. clutter) in structured lighting systems can comprise pulsing the light source used to illuminate a scene, pulsing the light source synchronously with the opening of a shutter in an imaging device, estimating the contribution of background clutter by interpolation of images of the scene collected at multiple spectral bands not including the characteristic wavelength and subtracting the estimated background contribution from an image of the scene comprising the wavelength of the light source and, placing a polarizing filter between the imaging device and the scene, where the illumination source can be polarized in the same orientation as the polarizing filter. Apparatus for segmenting the light of an illumination source from background illumination can comprise an illuminator, an image receiver for receiving images of multiple spectral bands, a processor for calculations and interpolations, and a polarizing filter.
CFA-aware features for steganalysis of color images
NASA Astrophysics Data System (ADS)
Goljan, Miroslav; Fridrich, Jessica
2015-03-01
Color interpolation is a form of upsampling, which introduces constraints on the relationship between neighboring pixels in a color image. These constraints can be utilized to substantially boost the accuracy of steganography detectors. In this paper, we introduce a rich model formed by 3D co-occurrences of color noise residuals split according to the structure of the Bayer color filter array to further improve detection. Some color interpolation algorithms, AHD and PPG, impose pixel constraints so tight that extremely accurate detection becomes possible with merely eight features eliminating the need for model richification. We carry out experiments on non-adaptive LSB matching and the content-adaptive algorithm WOW on five different color interpolation algorithms. In contrast to grayscale images, in color images that exhibit traces of color interpolation the security of WOW is significantly lower and, depending on the interpolation algorithm, may even be lower than non-adaptive LSB matching.
Calibration method of microgrid polarimeters with image interpolation.
Chen, Zhenyue; Wang, Xia; Liang, Rongguang
2015-02-10
Microgrid polarimeters have large advantages over conventional polarimeters because of the snapshot nature and because they have no moving parts. However, they also suffer from several error sources, such as fixed pattern noise (FPN), photon response nonuniformity (PRNU), pixel cross talk, and instantaneous field-of-view (IFOV) error. A characterization method is proposed to improve the measurement accuracy in visible waveband. We first calibrate the camera with uniform illumination so that the response of the sensor is uniform over the entire field of view without IFOV error. Then a spline interpolation method is implemented to minimize IFOV error. Experimental results show the proposed method can effectively minimize the FPN and PRNU.
A fully 3D approach for metal artifact reduction in computed tomography.
Kratz, Barbel; Weyers, Imke; Buzug, Thorsten M
2012-11-01
In computed tomography imaging metal objects in the region of interest introduce inconsistencies during data acquisition. Reconstructing these data leads to an image in spatial domain including star-shaped or stripe-like artifacts. In order to enhance the quality of the resulting image the influence of the metal objects can be reduced. Here, a metal artifact reduction (MAR) approach is proposed that is based on a recomputation of the inconsistent projection data using a fully three-dimensional Fourier-based interpolation. The success of the projection space restoration depends sensitively on a sensible continuation of neighboring structures into the recomputed area. Fortunately, structural information of the entire data is inherently included in the Fourier space of the data. This can be used for a reasonable recomputation of the inconsistent projection data. The key step of the proposed MAR strategy is the recomputation of the inconsistent projection data based on an interpolation using nonequispaced fast Fourier transforms (NFFT). The NFFT interpolation can be applied in arbitrary dimension. The approach overcomes the problem of adequate neighborhood definitions on irregular grids, since this is inherently given through the usage of higher dimensional Fourier transforms. Here, applications up to the third interpolation dimension are presented and validated. Furthermore, prior knowledge may be included by an appropriate damping of the transform during the interpolation step. This MAR method is applicable on each angular view of a detector row, on two-dimensional projection data as well as on three-dimensional projection data, e.g., a set of sequential acquisitions at different spatial positions, projection data of a spiral acquisition, or cone-beam projection data. Results of the novel MAR scheme based on one-, two-, and three-dimensional NFFT interpolations are presented. All results are compared in projection data space and spatial domain with the well-known one-dimensional linear interpolation strategy. In conclusion, it is recommended to include as much spatial information into the recomputation step as possible. This is realized by increasing the dimension of the NFFT. The resulting image quality can be enhanced considerably.
Shape functions for velocity interpolation in general hexahedral cells
Naff, R.L.; Russell, T.F.; Wilson, J.D.
2002-01-01
Numerical methods for grids with irregular cells require discrete shape functions to approximate the distribution of quantities across cells. For control-volume mixed finite-element (CVMFE) methods, vector shape functions approximate velocities and vector test functions enforce a discrete form of Darcy's law. In this paper, a new vector shape function is developed for use with irregular, hexahedral cells (trilinear images of cubes). It interpolates velocities and fluxes quadratically, because as shown here, the usual Piola-transformed shape functions, which interpolate linearly, cannot match uniform flow on general hexahedral cells. Truncation-error estimates for the shape function are demonstrated. CVMFE simulations of uniform and non-uniform flow with irregular meshes show first- and second-order convergence of fluxes in the L2 norm in the presence and absence of singularities, respectively.
Adaptive Wiener filter super-resolution of color filter array images.
Karch, Barry K; Hardie, Russell C
2013-08-12
Digital color cameras using a single detector array with a Bayer color filter array (CFA) require interpolation or demosaicing to estimate missing color information and provide full-color images. However, demosaicing does not specifically address fundamental undersampling and aliasing inherent in typical camera designs. Fast non-uniform interpolation based super-resolution (SR) is an attractive approach to reduce or eliminate aliasing and its relatively low computational load is amenable to real-time applications. The adaptive Wiener filter (AWF) SR algorithm was initially developed for grayscale imaging and has not previously been applied to color SR demosaicing. Here, we develop a novel fast SR method for CFA cameras that is based on the AWF SR algorithm and uses global channel-to-channel statistical models. We apply this new method as a stand-alone algorithm and also as an initialization image for a variational SR algorithm. This paper presents the theoretical development of the color AWF SR approach and applies it in performance comparisons to other SR techniques for both simulated and real data.
Topics in the two-dimensional sampling and reconstruction of images. [in remote sensing
NASA Technical Reports Server (NTRS)
Schowengerdt, R.; Gray, S.; Park, S. K.
1984-01-01
Mathematical analysis of image sampling and interpolative reconstruction is summarized and extended to two dimensions for application to data acquired from satellite sensors such as the Thematic mapper and SPOT. It is shown that sample-scene phase influences the reconstruction of sampled images, adds a considerable blur to the average system point spread function, and decreases the average system modulation transfer function. It is also determined that the parametric bicubic interpolator with alpha = -0.5 is more radiometrically accurate than the conventional bicubic interpolator with alpha = -1, and this at no additional cost. Finally, the parametric bicubic interpolator is found to be suitable for adaptive implementation by relating the alpha parameter to the local frequency content of an image.
NASA Astrophysics Data System (ADS)
Vikhoff-Baaz, Barbro
2000-10-01
The doctoral thesis concerns development, evaluation and performance of quality assessment methods for volume- selection methods in 31P and 1H MR spectroscopy (MRS). It also contains different aspects of the measurement procedure for 1H MR spectroscopic imaging (MRSI) with application on the human brain, image reconstruction of the MRSI images and evaluation methods for lateralization of temporal lobe epilepsy (TLE). Two complementary two-compartment phantoms and evaluation methods for quality assessment of 31P MRS in small-bore MR systems were presented. The first phantom consisted of an inner cube inside a sphere phantom where measurements with and without volume selection where compared for various VOI sizes. The multi-centre showed that the evaluated parameters provide useful information of the performance of volume-selective MRS at the MR system. The second phantom consisted of two compartments divided by a very thin wall and was found useful for measurements of the appearance and position of the VOI profile in specific gradient directions. The second part concerned 1H MRS and MRSI of whole-body MR systems. Different factors that may degrade or complicate the measurement procedure like for MRSI were evaluated, e.g. the volume selection performance, contamination, susceptibility and motion. Two interpolation methods for reconstruction of MRSI images were compared. Measurements and computer simulations showed that Fourier interpolation correctly visualizes the information inherent in the data set, while the results were dependent on the position of the object relative the original matrix using Cubic spline interpolation. Application of spatial filtering may improve the image representation of the data. Finally, 1H MRSI was performed on healthy volunteers and patients with temporal lobe epilepsy (TLE). Metabolite concentration images were used for lateralization of TLE, where the signal intensity in the two hemispheres were compared. Visual analysis of the metabolite concentration images can, with high accuracy, be used for lateralization in routine examinations. Analysis from measurements with region-of-interests (ROI) in different locations gives quantitative information about the degree of signal loss and the spatial distribution.
Adaptive image coding based on cubic-spline interpolation
NASA Astrophysics Data System (ADS)
Jiang, Jian-Xing; Hong, Shao-Hua; Lin, Tsung-Ching; Wang, Lin; Truong, Trieu-Kien
2014-09-01
It has been investigated that at low bit rates, downsampling prior to coding and upsampling after decoding can achieve better compression performance than standard coding algorithms, e.g., JPEG and H. 264/AVC. However, at high bit rates, the sampling-based schemes generate more distortion. Additionally, the maximum bit rate for the sampling-based scheme to outperform the standard algorithm is image-dependent. In this paper, a practical adaptive image coding algorithm based on the cubic-spline interpolation (CSI) is proposed. This proposed algorithm adaptively selects the image coding method from CSI-based modified JPEG and standard JPEG under a given target bit rate utilizing the so called ρ-domain analysis. The experimental results indicate that compared with the standard JPEG, the proposed algorithm can show better performance at low bit rates and maintain the same performance at high bit rates.
An integral conservative gridding--algorithm using Hermitian curve interpolation.
Volken, Werner; Frei, Daniel; Manser, Peter; Mini, Roberto; Born, Ernst J; Fix, Michael K
2008-11-07
The problem of re-sampling spatially distributed data organized into regular or irregular grids to finer or coarser resolution is a common task in data processing. This procedure is known as 'gridding' or 're-binning'. Depending on the quantity the data represents, the gridding-algorithm has to meet different requirements. For example, histogrammed physical quantities such as mass or energy have to be re-binned in order to conserve the overall integral. Moreover, if the quantity is positive definite, negative sampling values should be avoided. The gridding process requires a re-distribution of the original data set to a user-requested grid according to a distribution function. The distribution function can be determined on the basis of the given data by interpolation methods. In general, accurate interpolation with respect to multiple boundary conditions of heavily fluctuating data requires polynomial interpolation functions of second or even higher order. However, this may result in unrealistic deviations (overshoots or undershoots) of the interpolation function from the data. Accordingly, the re-sampled data may overestimate or underestimate the given data by a significant amount. The gridding-algorithm presented in this work was developed in order to overcome these problems. Instead of a straightforward interpolation of the given data using high-order polynomials, a parametrized Hermitian interpolation curve was used to approximate the integrated data set. A single parameter is determined by which the user can control the behavior of the interpolation function, i.e. the amount of overshoot and undershoot. Furthermore, it is shown how the algorithm can be extended to multidimensional grids. The algorithm was compared to commonly used gridding-algorithms using linear and cubic interpolation functions. It is shown that such interpolation functions may overestimate or underestimate the source data by about 10-20%, while the new algorithm can be tuned to significantly reduce these interpolation errors. The accuracy of the new algorithm was tested on a series of x-ray CT-images (head and neck, lung, pelvis). The new algorithm significantly improves the accuracy of the sampled images in terms of the mean square error and a quality index introduced by Wang and Bovik (2002 IEEE Signal Process. Lett. 9 81-4).
Prell, Daniel; Kyriakou, Yiannis; Beister, Marcel; Kalender, Willi A
2009-11-07
Metallic implants generate streak-like artifacts in flat-detector computed tomography (FD-CT) reconstructed volumetric images. This study presents a novel method for reducing these disturbing artifacts by inserting discarded information into the original rawdata using a three-step correction procedure and working directly with each detector element. Computation times are minimized by completely implementing the correction process on graphics processing units (GPUs). First, the original volume is corrected using a three-dimensional interpolation scheme in the rawdata domain, followed by a second reconstruction. This metal artifact-reduced volume is then segmented into three materials, i.e. air, soft-tissue and bone, using a threshold-based algorithm. Subsequently, a forward projection of the obtained tissue-class model substitutes the missing or corrupted attenuation values directly for each flat detector element that contains attenuation values corresponding to metal parts, followed by a final reconstruction. Experiments using tissue-equivalent phantoms showed a significant reduction of metal artifacts (deviations of CT values after correction compared to measurements without metallic inserts reduced typically to below 20 HU, differences in image noise to below 5 HU) caused by the implants and no significant resolution losses even in areas close to the inserts. To cover a variety of different cases, cadaver measurements and clinical images in the knee, head and spine region were used to investigate the effectiveness and applicability of our method. A comparison to a three-dimensional interpolation correction showed that the new approach outperformed interpolation schemes. Correction times are minimized, and initial and corrected images are made available at almost the same time (12.7 s for the initial reconstruction, 46.2 s for the final corrected image compared to 114.1 s and 355.1 s on central processing units (CPUs)).
Adaptive Residual Interpolation for Color and Multispectral Image Demosaicking †
Kiku, Daisuke; Okutomi, Masatoshi
2017-01-01
Color image demosaicking for the Bayer color filter array is an essential image processing operation for acquiring high-quality color images. Recently, residual interpolation (RI)-based algorithms have demonstrated superior demosaicking performance over conventional color difference interpolation-based algorithms. In this paper, we propose adaptive residual interpolation (ARI) that improves existing RI-based algorithms by adaptively combining two RI-based algorithms and selecting a suitable iteration number at each pixel. These are performed based on a unified criterion that evaluates the validity of an RI-based algorithm. Experimental comparisons using standard color image datasets demonstrate that ARI can improve existing RI-based algorithms by more than 0.6 dB in the color peak signal-to-noise ratio and can outperform state-of-the-art algorithms based on training images. We further extend ARI for a multispectral filter array, in which more than three spectral bands are arrayed, and demonstrate that ARI can achieve state-of-the-art performance also for the task of multispectral image demosaicking. PMID:29194407
Adaptive Residual Interpolation for Color and Multispectral Image Demosaicking.
Monno, Yusuke; Kiku, Daisuke; Tanaka, Masayuki; Okutomi, Masatoshi
2017-12-01
Color image demosaicking for the Bayer color filter array is an essential image processing operation for acquiring high-quality color images. Recently, residual interpolation (RI)-based algorithms have demonstrated superior demosaicking performance over conventional color difference interpolation-based algorithms. In this paper, we propose adaptive residual interpolation (ARI) that improves existing RI-based algorithms by adaptively combining two RI-based algorithms and selecting a suitable iteration number at each pixel. These are performed based on a unified criterion that evaluates the validity of an RI-based algorithm. Experimental comparisons using standard color image datasets demonstrate that ARI can improve existing RI-based algorithms by more than 0.6 dB in the color peak signal-to-noise ratio and can outperform state-of-the-art algorithms based on training images. We further extend ARI for a multispectral filter array, in which more than three spectral bands are arrayed, and demonstrate that ARI can achieve state-of-the-art performance also for the task of multispectral image demosaicking.
Fourier-interpolation superresolution optical fluctuation imaging (fSOFi) (Conference Presentation)
NASA Astrophysics Data System (ADS)
Enderlein, Joerg; Stein, Simon C.; Huss, Anja; Hähnel, Dirk; Gregor, Ingo
2016-02-01
Stochastic Optical Fluctuation Imaging (SOFI) is a superresolution fluorescence microscopy technique which allows to enhance the spatial resolution of an image by evaluating the temporal fluctuations of blinking fluorescent emitters. SOFI is not based on the identification and localization of single molecules such as in the widely used Photoactivation Localization Microsopy (PALM) or Stochastic Optical Reconstruction Microscopy (STORM), but computes a superresolved image via temporal cumulants from a recorded movie. A technical challenge hereby is that, when directly applying the SOFI algorithm to a movie of raw images, the pixel size of the final SOFI image is the same as that of the original images, which becomes problematic when the final SOFI resolution is much smaller than this value. In the past, sophisticated cross-correlation schemes have been used for tackling this problem. Here, we present an alternative, exact, straightforward, and simple solution using an interpolation scheme based on Fourier transforms. We exemplify the method on simulated and experimental data.
MRI Superresolution Using Self-Similarity and Image Priors
Manjón, José V.; Coupé, Pierrick; Buades, Antonio; Collins, D. Louis; Robles, Montserrat
2010-01-01
In Magnetic Resonance Imaging typical clinical settings, both low- and high-resolution images of different types are routinarily acquired. In some cases, the acquired low-resolution images have to be upsampled to match with other high-resolution images for posterior analysis or postprocessing such as registration or multimodal segmentation. However, classical interpolation techniques are not able to recover the high-frequency information lost during the acquisition process. In the present paper, a new superresolution method is proposed to reconstruct high-resolution images from the low-resolution ones using information from coplanar high resolution images acquired of the same subject. Furthermore, the reconstruction process is constrained to be physically plausible with the MR acquisition model that allows a meaningful interpretation of the results. Experiments on synthetic and real data are supplied to show the effectiveness of the proposed approach. A comparison with classical state-of-the-art interpolation techniques is presented to demonstrate the improved performance of the proposed methodology. PMID:21197094
Optoelectronic imaging of speckle using image processing method
NASA Astrophysics Data System (ADS)
Wang, Jinjiang; Wang, Pengfei
2018-01-01
A detailed image processing of laser speckle interferometry is proposed as an example for the course of postgraduate student. Several image processing methods were used together for dealing with optoelectronic imaging system, such as the partial differential equations (PDEs) are used to reduce the effect of noise, the thresholding segmentation also based on heat equation with PDEs, the central line is extracted based on image skeleton, and the branch is removed automatically, the phase level is calculated by spline interpolation method, and the fringe phase can be unwrapped. Finally, the imaging processing method was used to automatically measure the bubble in rubber with negative pressure which could be used in the tire detection.
NASA Astrophysics Data System (ADS)
Mefleh, Fuad N.; Baker, G. Hamilton; Kwartowitz, David M.
2014-03-01
In our previous work we presented a novel image-guided surgery (IGS) system, Kit for Navigation by Image Focused Exploration (KNIFE).1,2 KNIFE has been demonstrated to be effective in guiding mock clinical procedures with the tip of an electromagnetically tracked catheter overlaid onto a pre-captured bi-plane fluoroscopic loop. Representation of the catheter in KNIFE differs greatly from what is captured by the fluoroscope, due to distortions and other properties of fluoroscopic images. When imaged by a fluoroscope, catheters can be visualized due to the inclusion of radiopaque materials (i.e. Bi, Ba, W) in the polymer blend.3 However, in KNIFE catheter location is determined using a single tracking seed located in the catheter tip that is represented as a single point overlaid on pre-captured fluoroscopic images. To bridge the gap in catheter representation between KNIFE and traditional methods we constructed a catheter with five tracking seeds positioned along the distal 70 mm of the catheter. We have currently investigated the use of four spline interpolation methods for estimation of true catheter shape and have assesed the error in their estimation of true catheter shape. In this work we present a method for the evaluation of interpolation algorithms with respect to catheter shape determination.
Fast high resolution reconstruction in multi-slice and multi-view cMRI
NASA Astrophysics Data System (ADS)
Velasco Toledo, Nelson; Romero Castro, Eduardo
2015-01-01
Cardiac magnetic resonance imaging (cMRI) is an useful tool in diagnosis, prognosis and research since it functionally tracks the heart structure. Although useful, this imaging technique is limited in spatial resolution because heart is a constant moving organ, also there are other non controled conditions such as patient movements and volumetric changes during apnea periods when data is acquired, those conditions limit the time to capture high quality information. This paper presents a very fast and simple strategy to reconstruct high resolution 3D images from a set of low resolution series of 2D images. The strategy is based on an information reallocation algorithm which uses the DICOM header to relocate voxel intensities in a regular grid. An interpolation method is applied to fill empty places with estimated data, the interpolation resamples the low resolution information to estimate the missing information. As a final step a gaussian filter that denoises the final result. A reconstructed image evaluation is performed using as a reference a super-resolution reconstructed image. The evaluation reveals that the method maintains the general heart structure with a small loss in detailed information (edge sharpening and blurring), some artifacts related with input information quality are detected. The proposed method requires low time and computational resources.
Daily air temperature interpolated at high spatial resolution over a large mountainous region
Dodson, R.; Marks, D.
1997-01-01
Two methods are investigated for interpolating daily minimum and maximum air temperatures (Tmin and Tmax) at a 1 km spatial resolution over a large mountainous region (830 000 km2) in the U.S. Pacific Northwest. The methods were selected because of their ability to (1) account for the effect of elevation on temperature and (2) efficiently handle large volumes of data. The first method, the neutral stability algorithm (NSA), used the hydrostatic and potential temperature equations to convert measured temperatures and elevations to sea-level potential temperatures. The potential temperatures were spatially interpolated using an inverse-squared-distance algorithm and then mapped to the elevation surface of a digital elevation model (DEM). The second method, linear lapse rate adjustment (LLRA), involved the same basic procedure as the NSA, but used a constant linear lapse rate instead of the potential temperature equation. Cross-validation analyses were performed using the NSA and LLRA methods to interpolate Tmin and Tmax each day for the 1990 water year, and the methods were evaluated based on mean annual interpolation error (IE). The NSA method showed considerable bias for sites associated with vertical extrapolation. A correction based on climate station/grid cell elevation differences was developed and found to successfully remove the bias. The LLRA method was tested using 3 lapse rates, none of which produced a serious extrapolation bias. The bias-adjusted NSA and the 3 LLRA methods produced almost identical levels of accuracy (mean absolute errors between 1.2 and 1.3??C), and produced very similar temperature surfaces based on image difference statistics. In terms of accuracy, speed, and ease of implementation, LLRA was chosen as the best of the methods tested.
NASA Technical Reports Server (NTRS)
Hussey, K. J.; Hall, J. R.; Mortensen, R. A.
1986-01-01
Image processing methods and software used to animate nonimaging remotely sensed data on cloud cover are described. Three FORTRAN programs were written in the VICAR2/TAE image processing domain to perform 3D perspective rendering, to interactively select parameters controlling the projection, and to interpolate parameter sets for animation images between key frames. Operation of the 3D programs and transferring the images to film is automated using executive control language and custom hardware to link the computer and camera.
NASA Astrophysics Data System (ADS)
Arinilhaq; Widita, R.
2016-03-01
Diagnosis of macular degeneration using a Stratus OCT with a fast macular thickness map (FMTM) method produced six B-scan images of macula from different angles. The images were converted into a retinal thickness chart to be evaluated by normal distribution percentile of data so that it can be classified as normal thickness of macula or as experiencing abnormality (e.g. thickening and thinning). Unfortunately, the diagnostic images only represent the retinal thickness in several areas of the macular region. Thus, this study is aims to obtain the entire retinal thickness in the macula area from Status OCT's output images. Basically, the volumetric image is obtained by combining each of the six images. Reconstruction consists of a series of processes such as pre-processing, segmentation, and interpolation. Linear interpolation techniques are used to fill the empty pixels in reconstruction matrix. Based on the results, this method is able to provide retinal thickness maps on the macula surface and the macula 3D image. Retinal thickness map can display the macula area which experienced abnormalities. The macula 3D image can show the layers of tissue in the macula that is abnormal. The system built cannot replace ophthalmologist in decision making in term of diagnosis.
Sim, K S; Kiani, M A; Nia, M E; Tso, C P
2014-01-01
A new technique based on cubic spline interpolation with Savitzky-Golay noise reduction filtering is designed to estimate signal-to-noise ratio of scanning electron microscopy (SEM) images. This approach is found to present better result when compared with two existing techniques: nearest neighbourhood and first-order interpolation. When applied to evaluate the quality of SEM images, noise can be eliminated efficiently with optimal choice of scan rate from real-time SEM images, without generating corruption or increasing scanning time. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Tensor scale: An analytic approach with efficient computation and applications☆
Xu, Ziyue; Saha, Punam K.; Dasgupta, Soura
2015-01-01
Scale is a widely used notion in computer vision and image understanding that evolved in the form of scale-space theory where the key idea is to represent and analyze an image at various resolutions. Recently, we introduced a notion of local morphometric scale referred to as “tensor scale” using an ellipsoidal model that yields a unified representation of structure size, orientation and anisotropy. In the previous work, tensor scale was described using a 2-D algorithmic approach and a precise analytic definition was missing. Also, the application of tensor scale in 3-D using the previous framework is not practical due to high computational complexity. In this paper, an analytic definition of tensor scale is formulated for n-dimensional (n-D) images that captures local structure size, orientation and anisotropy. Also, an efficient computational solution in 2- and 3-D using several novel differential geometric approaches is presented and the accuracy of results is experimentally examined. Also, a matrix representation of tensor scale is derived facilitating several operations including tensor field smoothing to capture larger contextual knowledge. Finally, the applications of tensor scale in image filtering and n-linear interpolation are presented and the performance of their results is examined in comparison with respective state-of-art methods. Specifically, the performance of tensor scale based image filtering is compared with gradient and Weickert’s structure tensor based diffusive filtering algorithms. Also, the performance of tensor scale based n-linear interpolation is evaluated in comparison with standard n-linear and windowed-sinc interpolation methods. PMID:26236148
Blind restoration of retinal images degraded by space-variant blur with adaptive blur estimation
NASA Astrophysics Data System (ADS)
Marrugo, Andrés. G.; Millán, María. S.; Å orel, Michal; Å roubek, Filip
2013-11-01
Retinal images are often degraded with a blur that varies across the field view. Because traditional deblurring algorithms assume the blur to be space-invariant they typically fail in the presence of space-variant blur. In this work we consider the blur to be both unknown and space-variant. To carry out the restoration, we assume that in small regions the space-variant blur can be approximated by a space-invariant point-spread function (PSF). However, instead of deblurring the image on a per-patch basis, we extend individual PSFs by linear interpolation and perform a global restoration. Because the blind estimation of local PSFs may fail we propose a strategy for the identification of valid local PSFs and perform interpolation to obtain the space-variant PSF. The method was tested on artificial and real degraded retinal images. Results show significant improvement in the visibility of subtle details like small blood vessels.
2011-01-01
Background Hypertension may increase tortuosity or twistedness of arteries. We applied a centerline extraction algorithm and tortuosity metric to magnetic resonance angiography (MRA) brain images to quantitatively measure the tortuosity of arterial vessel centerlines. The most commonly used arterial tortuosity measure is the distance factor metric (DFM). This study tested a DFM based measurement’s ability to detect increases in arterial tortuosity of hypertensives using existing images. Existing images presented challenges such as different resolutions which may affect the tortuosity measurement, different depths of the area imaged, and different artifacts of imaging that require filtering. Methods The stability and accuracy of alternative centerline algorithms was validated in numerically generated models and test brain MRA data. Existing images were gathered from previous studies and clinical medical systems by manually reading electronic medical records to identify hypertensives and negatives. Images of different resolutions were interpolated to similar resolutions. Arterial tortuosity in MRA images was measured from a DFM curve and tested on numerically generated models as well as MRA images from two hypertensive and three negative control populations. Comparisons were made between different resolutions, different filters, hypertensives versus negatives, and different negative controls. Results In tests using numerical models of a simple helix, the measured tortuosity increased as expected with more tightly coiled helices. Interpolation reduced resolution-dependent differences in measured tortuosity. The Korean hypertensive population had significantly higher arterial tortuosity than its corresponding negative control population across multiple arteries. In addition one negative control population of different ethnicity had significantly less arterial tortuosity than the other two. Conclusions Tortuosity can be compared between images of different resolutions by interpolating from lower to higher resolutions. Use of a universal negative control was not possible in this study. The method described here detected elevated arterial tortuosity in a hypertensive population compared to the negative control population and can be used to study this relation in other populations. PMID:22166145
Semi-automatic breast ultrasound image segmentation based on mean shift and graph cuts.
Zhou, Zhuhuang; Wu, Weiwei; Wu, Shuicai; Tsui, Po-Hsiang; Lin, Chung-Chih; Zhang, Ling; Wang, Tianfu
2014-10-01
Computerized tumor segmentation on breast ultrasound (BUS) images remains a challenging task. In this paper, we proposed a new method for semi-automatic tumor segmentation on BUS images using Gaussian filtering, histogram equalization, mean shift, and graph cuts. The only interaction required was to select two diagonal points to determine a region of interest (ROI) on an input image. The ROI image was shrunken by a factor of 2 using bicubic interpolation to reduce computation time. The shrunken image was smoothed by a Gaussian filter and then contrast-enhanced by histogram equalization. Next, the enhanced image was filtered by pyramid mean shift to improve homogeneity. The object and background seeds for graph cuts were automatically generated on the filtered image. Using these seeds, the filtered image was then segmented by graph cuts into a binary image containing the object and background. Finally, the binary image was expanded by a factor of 2 using bicubic interpolation, and the expanded image was processed by morphological opening and closing to refine the tumor contour. The method was implemented with OpenCV 2.4.3 and Visual Studio 2010 and tested for 38 BUS images with benign tumors and 31 BUS images with malignant tumors from different ultrasound scanners. Experimental results showed that our method had a true positive rate (TP) of 91.7%, a false positive (FP) rate of 11.9%, and a similarity (SI) rate of 85.6%. The mean run time on Intel Core 2.66 GHz CPU and 4 GB RAM was 0.49 ± 0.36 s. The experimental results indicate that the proposed method may be useful in BUS image segmentation. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Zhang, J.; Liu, Q.; Li, X.; Niu, H.; Cai, E.
2015-12-01
In recent years, wireless sensor network (WSN) emerges to collect Earth observation data at relatively low cost and light labor load, while its observations are still point-data. To learn the spatial distribution of a land surface parameter, interpolating the point data is necessary. Taking soil moisture (SM) for example, its spatial distribution is critical information for agriculture management, hydrological and ecological researches. This study developed a method to interpolate the WSN-measured SM to acquire the spatial distribution in a 5km*5km study area, located in the middle reaches of HEIHE River, western China. As SM is related to many factors such as topology, soil type, vegetation and etc., even the WSN observation grid is not dense enough to reflect the SM distribution pattern. Our idea is to revise the traditional Kriging algorithm, introducing spectral variables, i.e., vegetation index (VI) and abledo, from satellite imagery as supplementary information to aid the interpolation. Thus, the new Extended-Kriging algorithm operates on the spatial & spectral combined space. To run the algorithm, first we need to estimate the SM variance function, which is also extended to the combined space. As the number of WSN samples in the study area is not enough to gather robust statistics, we have to assume that the SM variance function is invariant over time. So, the variance function is estimated from a SM map, derived from the airborne CASI/TASI images acquired in July 10, 2012, and then applied to interpolate WSN data in that season. Data analysis indicates that the new algorithm can provide more details to the variation of land SM. Then, the Leave-one-out cross-validation is adopted to estimate the interpolation accuracy. Although a reasonable accuracy can be achieved, the result is not yet satisfactory. Besides improving the algorithm, the uncertainties in WSN measurements may also need to be controlled in our further work.
Duarte-Carvajalino, Julio M.; Sapiro, Guillermo; Harel, Noam; Lenglet, Christophe
2013-01-01
Registration of diffusion-weighted magnetic resonance images (DW-MRIs) is a key step for population studies, or construction of brain atlases, among other important tasks. Given the high dimensionality of the data, registration is usually performed by relying on scalar representative images, such as the fractional anisotropy (FA) and non-diffusion-weighted (b0) images, thereby ignoring much of the directional information conveyed by DW-MR datasets itself. Alternatively, model-based registration algorithms have been proposed to exploit information on the preferred fiber orientation(s) at each voxel. Models such as the diffusion tensor or orientation distribution function (ODF) have been used for this purpose. Tensor-based registration methods rely on a model that does not completely capture the information contained in DW-MRIs, and largely depends on the accurate estimation of tensors. ODF-based approaches are more recent and computationally challenging, but also better describe complex fiber configurations thereby potentially improving the accuracy of DW-MRI registration. A new algorithm based on angular interpolation of the diffusion-weighted volumes was proposed for affine registration, and does not rely on any specific local diffusion model. In this work, we first extensively compare the performance of registration algorithms based on (i) angular interpolation, (ii) non-diffusion-weighted scalar volume (b0), and (iii) diffusion tensor image (DTI). Moreover, we generalize the concept of angular interpolation (AI) to non-linear image registration, and implement it in the FMRIB Software Library (FSL). We demonstrate that AI registration of DW-MRIs is a powerful alternative to volume and tensor-based approaches. In particular, we show that AI improves the registration accuracy in many cases over existing state-of-the-art algorithms, while providing registered raw DW-MRI data, which can be used for any subsequent analysis. PMID:23596381
Duarte-Carvajalino, Julio M; Sapiro, Guillermo; Harel, Noam; Lenglet, Christophe
2013-01-01
Registration of diffusion-weighted magnetic resonance images (DW-MRIs) is a key step for population studies, or construction of brain atlases, among other important tasks. Given the high dimensionality of the data, registration is usually performed by relying on scalar representative images, such as the fractional anisotropy (FA) and non-diffusion-weighted (b0) images, thereby ignoring much of the directional information conveyed by DW-MR datasets itself. Alternatively, model-based registration algorithms have been proposed to exploit information on the preferred fiber orientation(s) at each voxel. Models such as the diffusion tensor or orientation distribution function (ODF) have been used for this purpose. Tensor-based registration methods rely on a model that does not completely capture the information contained in DW-MRIs, and largely depends on the accurate estimation of tensors. ODF-based approaches are more recent and computationally challenging, but also better describe complex fiber configurations thereby potentially improving the accuracy of DW-MRI registration. A new algorithm based on angular interpolation of the diffusion-weighted volumes was proposed for affine registration, and does not rely on any specific local diffusion model. In this work, we first extensively compare the performance of registration algorithms based on (i) angular interpolation, (ii) non-diffusion-weighted scalar volume (b0), and (iii) diffusion tensor image (DTI). Moreover, we generalize the concept of angular interpolation (AI) to non-linear image registration, and implement it in the FMRIB Software Library (FSL). We demonstrate that AI registration of DW-MRIs is a powerful alternative to volume and tensor-based approaches. In particular, we show that AI improves the registration accuracy in many cases over existing state-of-the-art algorithms, while providing registered raw DW-MRI data, which can be used for any subsequent analysis.
Iterative methods for dose reduction and image enhancement in tomography
Miao, Jianwei; Fahimian, Benjamin Pooya
2012-09-18
A system and method for creating a three dimensional cross sectional image of an object by the reconstruction of its projections that have been iteratively refined through modification in object space and Fourier space is disclosed. The invention provides systems and methods for use with any tomographic imaging system that reconstructs an object from its projections. In one embodiment, the invention presents a method to eliminate interpolations present in conventional tomography. The method has been experimentally shown to provide higher resolution and improved image quality parameters over existing approaches. A primary benefit of the method is radiation dose reduction since the invention can produce an image of a desired quality with a fewer number projections than seen with conventional methods.
[Kriging analysis of vegetation index depression in peak cluster karst area].
Yang, Qi-Yong; Jiang, Zhong-Cheng; Ma, Zu-Lu; Cao, Jian-Hua; Luo, Wei-Qun; Li, Wen-Jun; Duan, Xiao-Fang
2012-04-01
In order to master the spatial variability of the normal different vegetation index (NDVI) of the peak cluster karst area, taking into account the problem of the mountain shadow "missing" information of remote sensing images existing in the karst area, NDVI of the non-shaded area were extracted in Guohua Ecological Experimental Area, in Pingguo County, Guangxi applying image processing software, ENVI. The spatial variability of NDVI was analyzed applying geostatistical method, and the NDVI of the mountain shadow areas was predicted and validated. The results indicated that the NDVI of the study area showed strong spatial variability and spatial autocorrelation resulting from the impact of intrinsic factors, and the range was 300 m. The spatial distribution maps of the NDVI interpolated by Kriging interpolation method showed that the mean of NDVI was 0.196, apparently strip and block. The higher NDVI values distributed in the area where the slope was greater than 25 degrees of the peak cluster area, while the lower values distributed in the area such as foot of the peak cluster and depression, where slope was less than 25 degrees. Kriging method validation results show that interpolation has a very high prediction accuracy and could predict the NDVI of the shadow area, which provides a new idea and method for monitoring and evaluation of the karst rocky desertification.
Ferrand, Guillaume; Luong, Michel; Cloos, Martijn A; Amadon, Alexis; Wackernagel, Hans
2014-08-01
Transmit arrays have been developed to mitigate the RF field inhomogeneity commonly observed in high field magnetic resonance imaging (MRI), typically above 3T. To this end, the knowledge of the RF complex-valued B1 transmit-sensitivities of each independent radiating element has become essential. This paper details a method to speed up a currently available B1-calibration method. The principle relies on slice undersampling, slice and channel interleaving and kriging, an interpolation method developed in geostatistics and applicable in many domains. It has been demonstrated that, under certain conditions, kriging gives the best estimator of a field in a region of interest. The resulting accelerated sequence allows mapping a complete set of eight volumetric field maps of the human head in about 1 min. For validation, the accuracy of kriging is first evaluated against a well-known interpolation technique based on Fourier transform as well as to a B1-maps interpolation method presented in the literature. This analysis is carried out on simulated and decimated experimental B1 maps. Finally, the accelerated sequence is compared to the standard sequence on a phantom and a volunteer. The new sequence provides B1 maps three times faster with a loss of accuracy limited potentially to about 5%.
Walimbe, Vivek; Shekhar, Raj
2006-12-01
We present an algorithm for automatic elastic registration of three-dimensional (3D) medical images. Our algorithm initially recovers the global spatial mismatch between the reference and floating images, followed by hierarchical octree-based subdivision of the reference image and independent registration of the floating image with the individual subvolumes of the reference image at each hierarchical level. Global as well as local registrations use the six-parameter full rigid-body transformation model and are based on maximization of normalized mutual information (NMI). To ensure robustness of the subvolume registration with low voxel counts, we calculate NMI using a combination of current and prior mutual histograms. To generate a smooth deformation field, we perform direct interpolation of six-parameter rigid-body subvolume transformations obtained at the last subdivision level. Our interpolation scheme involves scalar interpolation of the 3D translations and quaternion interpolation of the 3D rotational pose. We analyzed the performance of our algorithm through experiments involving registration of synthetically deformed computed tomography (CT) images. Our algorithm is general and can be applied to image pairs of any two modalities of most organs. We have demonstrated successful registration of clinical whole-body CT and positron emission tomography (PET) images using this algorithm. The registration accuracy for this application was evaluated, based on validation using expert-identified anatomical landmarks in 15 CT-PET image pairs. The algorithm's performance was comparable to the average accuracy observed for three expert-determined registrations in the same 15 image pairs.
Luo, Qiang; Yan, Zhuangzhi; Gu, Dongxing; Cao, Lei
This paper proposed an image interpolation algorithm based on bilinear interpolation and a color correction algorithm based on polynomial regression on FPGA, which focused on the limited number of imaging pixels and color distortion of the ultra-thin electronic endoscope. Simulation experiment results showed that the proposed algorithm realized the real-time display of 1280 x 720@60Hz HD video, and using the X-rite color checker as standard colors, the average color difference was reduced about 30% comparing with that before color correction.
A novel weighted-direction color interpolation
NASA Astrophysics Data System (ADS)
Tao, Jin-you; Yang, Jianfeng; Xue, Bin; Liang, Xiaofen; Qi, Yong-hong; Wang, Feng
2013-08-01
A digital camera capture images by covering the sensor surface with a color filter array (CFA), only get a color sample at pixel location. Demosaicking is a process by estimating the missing color components of each pixel to get a full resolution image. In this paper, a new algorithm based on edge adaptive and different weighting factors is proposed. Our method can effectively suppress undesirable artifacts. Experimental results based on Kodak images show that the proposed algorithm obtain higher quality images compared to other methods in numerical and visual aspects.
Adaptive temporal compressive sensing for video with motion estimation
NASA Astrophysics Data System (ADS)
Wang, Yeru; Tang, Chaoying; Chen, Yueting; Feng, Huajun; Xu, Zhihai; Li, Qi
2018-04-01
In this paper, we present an adaptive reconstruction method for temporal compressive imaging with pixel-wise exposure. The motion of objects is first estimated from interpolated images with a designed coding mask. With the help of motion estimation, image blocks are classified according to the degree of motion and reconstructed with the corresponding dictionary, which was trained beforehand. Both the simulation and experiment results show that the proposed method can obtain accurate motion information before reconstruction and efficiently reconstruct compressive video.
An image mosaic method based on corner
NASA Astrophysics Data System (ADS)
Jiang, Zetao; Nie, Heting
2015-08-01
In view of the shortcomings of the traditional image mosaic, this paper describes a new algorithm for image mosaic based on the Harris corner. Firstly, Harris operator combining the constructed low-pass smoothing filter based on splines function and circular window search is applied to detect the image corner, which allows us to have better localisation performance and effectively avoid the phenomenon of cluster. Secondly, the correlation feature registration is used to find registration pair, remove the false registration using random sampling consensus. Finally use the method of weighted trigonometric combined with interpolation function for image fusion. The experiments show that this method can effectively remove the splicing ghosting and improve the accuracy of image mosaic.
Bi-cubic interpolation for shift-free pan-sharpening
NASA Astrophysics Data System (ADS)
Aiazzi, Bruno; Baronti, Stefano; Selva, Massimo; Alparone, Luciano
2013-12-01
Most of pan-sharpening techniques require the re-sampling of the multi-spectral (MS) image for matching the size of the panchromatic (Pan) image, before the geometric details of Pan are injected into the MS image. This operation is usually performed in a separable fashion by means of symmetric digital low-pass filtering kernels with odd lengths that utilize piecewise local polynomials, typically implementing linear or cubic interpolation functions. Conversely, constant, i.e. nearest-neighbour, and quadratic kernels, implementing zero and two degree polynomials, respectively, introduce shifts in the magnified images, that are sub-pixel in the case of interpolation by an even factor, as it is the most usual case. However, in standard satellite systems, the point spread functions (PSF) of the MS and Pan instruments are centered in the middle of each pixel. Hence, commercial MS and Pan data products, whose scale ratio is an even number, are relatively shifted by an odd number of half pixels. Filters of even lengths may be exploited to compensate the half-pixel shifts between the MS and Pan sampling grids. In this paper, it is shown that separable polynomial interpolations of odd degrees are feasible with linear-phase kernels of even lengths. The major benefit is that bi-cubic interpolation, which is known to represent the best trade-off between performances and computational complexity, can be applied to commercial MS + Pan datasets, without the need of performing a further half-pixel registration after interpolation, to align the expanded MS with the Pan image.
Alvarez, Otto; Guo, Qinghua; Klinger, Robert C.; Li, Wenkai; Doherty, Paul
2013-01-01
Climate models may be limited in their inferential use if they cannot be locally validated or do not account for spatial uncertainty. Much of the focus has gone into determining which interpolation method is best suited for creating gridded climate surfaces, which often a covariate such as elevation (Digital Elevation Model, DEM) is used to improve the interpolation accuracy. One key area where little research has addressed is in determining which covariate best improves the accuracy in the interpolation. In this study, a comprehensive evaluation was carried out in determining which covariates were most suitable for interpolating climatic variables (e.g. precipitation, mean temperature, minimum temperature, and maximum temperature). We compiled data for each climate variable from 1950 to 1999 from approximately 500 weather stations across the Western United States (32° to 49° latitude and −124.7° to −112.9° longitude). In addition, we examined the uncertainty of the interpolated climate surface. Specifically, Thin Plate Spline (TPS) was used as the interpolation method since it is one of the most popular interpolation techniques to generate climate surfaces. We considered several covariates, including DEM, slope, distance to coast (Euclidean distance), aspect, solar potential, radar, and two Normalized Difference Vegetation Index (NDVI) products derived from Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS). A tenfold cross-validation was applied to determine the uncertainty of the interpolation based on each covariate. In general, the leading covariate for precipitation was radar, while DEM was the leading covariate for maximum, mean, and minimum temperatures. A comparison to other products such as PRISM and WorldClim showed strong agreement across large geographic areas but climate surfaces generated in this study (ClimSurf) had greater variability at high elevation regions, such as in the Sierra Nevada Mountains.
Scholkmann, F; Spichtig, S; Muehlemann, T; Wolf, M
2010-05-01
Near-infrared imaging (NIRI) is a neuroimaging technique which enables us to non-invasively measure hemodynamic changes in the human brain. Since the technique is very sensitive, the movement of a subject can cause movement artifacts (MAs), which affect the signal quality and results to a high degree. No general method is yet available to reduce these MAs effectively. The aim was to develop a new MA reduction method. A method based on moving standard deviation and spline interpolation was developed. It enables the semi-automatic detection and reduction of MAs in the data. It was validated using simulated and real NIRI signals. The results show that a significant reduction of MAs and an increase in signal quality are achieved. The effectiveness and usability of the method is demonstrated by the improved detection of evoked hemodynamic responses. The present method can not only be used in the postprocessing of NIRI signals but also for other kinds of data containing artifacts, for example ECG or EEG signals.
Sequential and simultaneous SLAR block adjustment. [spline function analysis for mapping
NASA Technical Reports Server (NTRS)
Leberl, F.
1975-01-01
Two sequential methods of planimetric SLAR (Side Looking Airborne Radar) block adjustment, with and without splines, and three simultaneous methods based on the principles of least squares are evaluated. A limited experiment with simulated SLAR images indicates that sequential block formation with splines followed by external interpolative adjustment is superior to the simultaneous methods such as planimetric block adjustment with similarity transformations. The use of the sequential block formation is recommended, since it represents an inexpensive tool for satisfactory point determination from SLAR images.
Definition and verification of a complex aircraft for aerodynamic calculations
NASA Technical Reports Server (NTRS)
Edwards, T. A.
1986-01-01
Techniques are reviewed which are of value in CAD/CAM CFD studies of the geometries of new fighter aircraft. In order to refine the computations of the flows to take advantage of the computing power available from supercomputers, it is often necessary to interpolate the geometry of the mesh selected for the numerical analysis of the aircraft shape. Interpolating the geometry permits a higher level of detail in calculations of the flow past specific regions of a design. A microprocessor-based mathematics engine is described for fast image manipulation and rotation to verify that the interpolated geometry will correspond to the design geometry in order to ensure that the flow calculations will remain valid through the interpolation. Applications of the image manipulation system to verify geometrical representations with wire-frame and shaded-surface images are described.
Super-resolution mapping using multi-viewing CHRIS/PROBA data
NASA Astrophysics Data System (ADS)
Dwivedi, Manish; Kumar, Vinay
2016-04-01
High-spatial resolution Remote Sensing (RS) data provides detailed information which ensures high-definition visual image analysis of earth surface features. These data sets also support improved information extraction capabilities at a fine scale. In order to improve the spatial resolution of coarser resolution RS data, the Super Resolution Reconstruction (SRR) technique has become widely acknowledged which focused on multi-angular image sequences. In this study multi-angle CHRIS/PROBA data of Kutch area is used for SR image reconstruction to enhance the spatial resolution from 18 m to 6m in the hope to obtain a better land cover classification. Various SR approaches like Projection onto Convex Sets (POCS), Robust, Iterative Back Projection (IBP), Non-Uniform Interpolation and Structure-Adaptive Normalized Convolution (SANC) chosen for this study. Subjective assessment through visual interpretation shows substantial improvement in land cover details. Quantitative measures including peak signal to noise ratio and structural similarity are used for the evaluation of the image quality. It was observed that SANC SR technique using Vandewalle algorithm for the low resolution image registration outperformed the other techniques. After that SVM based classifier is used for the classification of SRR and data resampled to 6m spatial resolution using bi-cubic interpolation. A comparative analysis is carried out between classified data of bicubic interpolated and SR derived images of CHRIS/PROBA and SR derived classified data have shown a significant improvement of 10-12% in the overall accuracy. The results demonstrated that SR methods is able to improve spatial detail of multi-angle images as well as the classification accuracy.
Robust sparse image reconstruction of radio interferometric observations with PURIFY
NASA Astrophysics Data System (ADS)
Pratley, Luke; McEwen, Jason D.; d'Avezac, Mayeul; Carrillo, Rafael E.; Onose, Alexandru; Wiaux, Yves
2018-01-01
Next-generation radio interferometers, such as the Square Kilometre Array, will revolutionize our understanding of the Universe through their unprecedented sensitivity and resolution. However, to realize these goals significant challenges in image and data processing need to be overcome. The standard methods in radio interferometry for reconstructing images, such as CLEAN, have served the community well over the last few decades and have survived largely because they are pragmatic. However, they produce reconstructed interferometric images that are limited in quality and scalability for big data. In this work, we apply and evaluate alternative interferometric reconstruction methods that make use of state-of-the-art sparse image reconstruction algorithms motivated by compressive sensing, which have been implemented in the PURIFY software package. In particular, we implement and apply the proximal alternating direction method of multipliers algorithm presented in a recent article. First, we assess the impact of the interpolation kernel used to perform gridding and degridding on sparse image reconstruction. We find that the Kaiser-Bessel interpolation kernel performs as well as prolate spheroidal wave functions while providing a computational saving and an analytic form. Secondly, we apply PURIFY to real interferometric observations from the Very Large Array and the Australia Telescope Compact Array and find that images recovered by PURIFY are of higher quality than those recovered by CLEAN. Thirdly, we discuss how PURIFY reconstructions exhibit additional advantages over those recovered by CLEAN. The latest version of PURIFY, with developments presented in this work, is made publicly available.
Tropospheric Correction for InSAR Using Interpolated ECMWF Data and GPS Zenith Total Delay
NASA Technical Reports Server (NTRS)
Webb, Frank H.; Fishbein, Evan F.; Moore, Angelyn W.; Owen, Susan E.; Fielding, Eric J.; Granger, Stephanie L.; Bjorndahl, Fredrik; Lofgren Johan
2011-01-01
To mitigate atmospheric errors caused by the troposphere, which is a limiting error source for spaceborne interferometric synthetic aperture radar (InSAR) imaging, a tropospheric correction method has been developed using data from the European Centre for Medium- Range Weather Forecasts (ECMWF) and the Global Positioning System (GPS). The ECMWF data was interpolated using a Stretched Boundary Layer Model (SBLM), and ground-based GPS estimates of the tropospheric delay from the Southern California Integrated GPS Network were interpolated using modified Gaussian and inverse distance weighted interpolations. The resulting Zenith Total Delay (ZTD) correction maps have been evaluated, both separately and using a combination of the two data sets, for three short-interval InSAR pairs from Envisat during 2006 on an area stretching from northeast from the Los Angeles basin towards Death Valley. Results show that the root mean square (rms) in the InSAR images was greatly reduced, meaning a significant reduction in the atmospheric noise of up to 32 percent. However, for some of the images, the rms increased and large errors remained after applying the tropospheric correction. The residuals showed a constant gradient over the area, suggesting that a remaining orbit error from Envisat was present. The orbit reprocessing in ROI_pac and the plane fitting both require that the only remaining error in the InSAR image be the orbit error. If this is not fulfilled, the correction can be made anyway, but it will be done using all remaining errors assuming them to be orbit errors. By correcting for tropospheric noise, the biggest error source is removed, and the orbit error becomes apparent and can be corrected for
NASA Astrophysics Data System (ADS)
Yan, Zhiqiang; Yan, Xingpeng; Jiang, Xiaoyu; Gao, Hui; Wen, Jun
2017-11-01
An integral imaging based light field display method is proposed by use of holographic diffuser, and enhanced viewing resolution is gained over conventional integral imaging systems. The holographic diffuser is fabricated with controlled diffusion characteristics, which interpolates the discrete light field of the reconstructed points to approximate the original light field. The viewing resolution can thus be improved and independent of the limitation imposed by Nyquist sampling frequency. An integral imaging system with low Nyquist sampling frequency is constructed, and reconstructed scenes of high viewing resolution using holographic diffuser are demonstrated, verifying the feasibility of the method.
A New Approach to Image Fusion Based on Cokriging
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; LeMoigne, Jacqueline; Mount, David M.; Morisette, Jeffrey T.
2005-01-01
We consider the image fusion problem involving remotely sensed data. We introduce cokriging as a method to perform fusion. We investigate the advantages of fusing Hyperion with ALI. The evaluation is performed by comparing the classification of the fused data with that of input images and by calculating well-chosen quantitative fusion quality metrics. We consider the Invasive Species Forecasting System (ISFS) project as our fusion application. The fusion of ALI with Hyperion data is studies using PCA and wavelet-based fusion. We then propose utilizing a geostatistical based interpolation method called cokriging as a new approach for image fusion.
Earth elevation map production and high resolution sensing camera imaging analysis
NASA Astrophysics Data System (ADS)
Yang, Xiubin; Jin, Guang; Jiang, Li; Dai, Lu; Xu, Kai
2010-11-01
The Earth's digital elevation which impacts space camera imaging has prepared and imaging has analysed. Based on matching error that TDI CCD integral series request of the speed of image motion, statistical experimental methods-Monte Carlo method is used to calculate the distribution histogram of Earth's elevation in image motion compensated model which includes satellite attitude changes, orbital angular rate changes, latitude, longitude and the orbital inclination changes. And then, elevation information of the earth's surface from SRTM is read. Earth elevation map which produced for aerospace electronic cameras is compressed and spliced. It can get elevation data from flash according to the shooting point of latitude and longitude. If elevation data between two data, the ways of searching data uses linear interpolation. Linear interpolation can better meet the rugged mountains and hills changing requests. At last, the deviant framework and camera controller are used to test the character of deviant angle errors, TDI CCD camera simulation system with the material point corresponding to imaging point model is used to analyze the imaging's MTF and mutual correlation similarity measure, simulation system use adding cumulation which TDI CCD imaging exceeded the corresponding pixel horizontal and vertical offset to simulate camera imaging when stability of satellite attitude changes. This process is practicality. It can effectively control the camera memory space, and meet a very good precision TDI CCD camera in the request matches the speed of image motion and imaging.
Context dependent anti-aliasing image reconstruction
NASA Technical Reports Server (NTRS)
Beaudet, Paul R.; Hunt, A.; Arlia, N.
1989-01-01
Image Reconstruction has been mostly confined to context free linear processes; the traditional continuum interpretation of digital array data uses a linear interpolator with or without an enhancement filter. Here, anti-aliasing context dependent interpretation techniques are investigated for image reconstruction. Pattern classification is applied to each neighborhood to assign it a context class; a different interpolation/filter is applied to neighborhoods of differing context. It is shown how the context dependent interpolation is computed through ensemble average statistics using high resolution training imagery from which the lower resolution image array data is obtained (simulation). A quadratic least squares (LS) context-free image quality model is described from which the context dependent interpolation coefficients are derived. It is shown how ensembles of high-resolution images can be used to capture the a priori special character of different context classes. As a consequence, a priori information such as the translational invariance of edges along the edge direction, edge discontinuity, and the character of corners is captured and can be used to interpret image array data with greater spatial resolution than would be expected by the Nyquist limit. A Gibb-like artifact associated with this super-resolution is discussed. More realistic context dependent image quality models are needed and a suggestion is made for using a quality model which now is finding application in data compression.
NASA Astrophysics Data System (ADS)
Pinter, S.; Bagoly, Z.; Balázs, L. G.; Horvath, I.; Racz, I. I.; Zahorecz, S.; Tóth, L. V.
2018-05-01
Investigating the distant extragalactic Universe requires a subtraction of the Galactic foreground. One of the major difficulties deriving the fine structure of the galactic foreground is the embedded foreground and background point sources appearing in the given fields. It is especially so in the infrared. We report our study subtracting point sources from Herschel images with Kriging, an interpolation method where the interpolated values are modelled by a Gaussian process governed by prior covariances. Using the Kriging method on Herschel multi-wavelength observations the structure of the Galactic foreground can be studied with much higher resolution than previously, leading to a better foreground subtraction at the end.
Wang, Hui; Xu, Yanan; Shi, Hongli
2018-03-15
Metal artifacts severely degrade CT image quality in clinical diagnosis, which are difficult to removed, especially for the beam hardening artifacts. The metal artifact reduction (MAR) based on prior images are the most frequently-used methods. However, there exists a lot misclassification in most prior images caused by absence of prior information such as spectrum distribution of X-ray beam source, especially when multiple or big metal are included. This work aims is to identify a more accurate prior image to improve image quality. The proposed method includes four steps. First, the metal image is segmented by thresholding an initial image, where the metal traces are identified in the initial projection data using the forward projection of the metal image. Second, the accurate absorbent model of certain metal image is calculated according to the spectrum distribution of certain X-ray beam source and energy-dependent attenuation coefficients of metal. Third, a new metal image is reconstructed by the general analytical reconstruction algorithm such as filtered back projection (FPB). The prior image is obtained by segmenting the difference image between the initial image and the new metal image into air, tissue and bone. Fourth, the initial projection data are normalized by dividing the projection data of prior image pixel to pixel. The final corrected image is obtained by interpolation, denormalization and reconstruction. Several clinical images with dental fillings and knee prostheses were used to evaluate the proposed algorithm and normalized metal artifact reduction (NMAR) and linear interpolation (LI) method. The results demonstrate the artifacts were reduced efficiently by the proposed method. The proposed method could obtain an exact prior image using the prior information about X-ray beam source and energy-dependent attenuation coefficients of metal. As a result, better performance of reducing beam hardening artifacts can be achieved. Moreover, the process of the proposed method is rather simple and little extra calculation burden is necessary. It has superiorities over other algorithms when include multiple and/or big implants.
An image morphing technique based on optimal mass preserving mapping.
Zhu, Lei; Yang, Yan; Haker, Steven; Tannenbaum, Allen
2007-06-01
Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The L(2) mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods.
An Image Morphing Technique Based on Optimal Mass Preserving Mapping
Zhu, Lei; Yang, Yan; Haker, Steven; Tannenbaum, Allen
2013-01-01
Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The L2 mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods. PMID:17547128
Near real-time skin deformation mapping
NASA Astrophysics Data System (ADS)
Kacenjar, Steve; Chen, Suzie; Jafri, Madiha; Wall, Brian; Pedersen, Richard; Bezozo, Richard
2013-02-01
A novel in vivo approach is described that provides large area mapping of the mechanical properties of the skin in human patients. Such information is important in the understanding of skin health, cosmetic surgery[1], aging, and impacts of sun exposure. Currently, several methods have been developed to estimate the local biomechanical properties of the skin, including the use of a physical biopsy of local areas of the skin (in vitro methods) [2, 3, and 4], and also the use of non-invasive methods (in vivo) [5, 6, and 7]. All such methods examine localized areas of the skin. Our approach examines the local elastic properties via the generation of field displacement maps of the skin created using time-sequence imaging [9] with 2D digital imaging correlation (DIC) [10]. In this approach, large areas of the skin are reviewed rapidly, and skin displacement maps are generated showing the contour maps of skin deformation. These maps are then used to precisely register skin images for purposes of diagnostic comparison. This paper reports on our mapping and registration approach, and demonstrates its ability to accurately measure the skin deformation through a described nulling interpolation process. The result of local translational DIC alignment is compared using this interpolation process. The effectiveness of the approach is reported in terms of residual RMS, image entropy measures, and differential segmented regional errors.
On NUFFT-based gridding for non-Cartesian MRI
NASA Astrophysics Data System (ADS)
Fessler, Jeffrey A.
2007-10-01
For MRI with non-Cartesian sampling, the conventional approach to reconstructing images is to use the gridding method with a Kaiser-Bessel (KB) interpolation kernel. Recently, Sha et al. [L. Sha, H. Guo, A.W. Song, An improved gridding method for spiral MRI using nonuniform fast Fourier transform, J. Magn. Reson. 162(2) (2003) 250-258] proposed an alternative method based on a nonuniform FFT (NUFFT) with least-squares (LS) design of the interpolation coefficients. They described this LS_NUFFT method as shift variant and reported that it yielded smaller reconstruction approximation errors than the conventional shift-invariant KB approach. This paper analyzes the LS_NUFFT approach in detail. We show that when one accounts for a certain linear phase factor, the core of the LS_NUFFT interpolator is in fact real and shift invariant. Furthermore, we find that the KB approach yields smaller errors than the original LS_NUFFT approach. We show that optimizing certain scaling factors can lead to a somewhat improved LS_NUFFT approach, but the high computation cost seems to outweigh the modest reduction in reconstruction error. We conclude that the standard KB approach, with appropriate parameters as described in the literature, remains the practical method of choice for gridding reconstruction in MRI.
Optimized Quasi-Interpolators for Image Reconstruction.
Sacht, Leonardo; Nehab, Diego
2015-12-01
We propose new quasi-interpolators for the continuous reconstruction of sampled images, combining a narrowly supported piecewise-polynomial kernel and an efficient digital filter. In other words, our quasi-interpolators fit within the generalized sampling framework and are straightforward to use. We go against standard practice and optimize for approximation quality over the entire Nyquist range, rather than focusing exclusively on the asymptotic behavior as the sample spacing goes to zero. In contrast to previous work, we jointly optimize with respect to all degrees of freedom available in both the kernel and the digital filter. We consider linear, quadratic, and cubic schemes, offering different tradeoffs between quality and computational cost. Experiments with compounded rotations and translations over a range of input images confirm that, due to the additional degrees of freedom and the more realistic objective function, our new quasi-interpolators perform better than the state of the art, at a similar computational cost.
Method and system for non-linear motion estimation
NASA Technical Reports Server (NTRS)
Lu, Ligang (Inventor)
2011-01-01
A method and system for extrapolating and interpolating a visual signal including determining a first motion vector between a first pixel position in a first image to a second pixel position in a second image, determining a second motion vector between the second pixel position in the second image and a third pixel position in a third image, determining a third motion vector between one of the first pixel position in the first image and the second pixel position in the second image, and the second pixel position in the second image and the third pixel position in the third image using a non-linear model, determining a position of the fourth pixel in a fourth image based upon the third motion vector.
Incompressible Deformation Estimation Algorithm (IDEA) from Tagged MR Images
Liu, Xiaofeng; Abd-Elmoniem, Khaled Z.; Stone, Maureen; Murano, Emi Z.; Zhuo, Jiachen; Gullapalli, Rao P.; Prince, Jerry L.
2013-01-01
Measuring the three-dimensional motion of muscular tissues, e.g., the heart or the tongue, using magnetic resonance (MR) tagging is typically carried out by interpolating the two-dimensional motion information measured on orthogonal stacks of images. The incompressibility of muscle tissue is an important constraint on the reconstructed motion field and can significantly help to counter the sparsity and incompleteness of the available motion information. Previous methods utilizing this fact produced incompressible motions with limited accuracy. In this paper, we present an incompressible deformation estimation algorithm (IDEA) that reconstructs a dense representation of the three-dimensional displacement field from tagged MR images and the estimated motion field is incompressible to high precision. At each imaged time frame, the tagged images are first processed to determine components of the displacement vector at each pixel relative to the reference time. IDEA then applies a smoothing, divergence-free, vector spline to interpolate velocity fields at intermediate discrete times such that the collection of velocity fields integrate over time to match the observed displacement components. Through this process, IDEA yields a dense estimate of a three-dimensional displacement field that matches our observations and also corresponds to an incompressible motion. The method was validated with both numerical simulation and in vivo human experiments on the heart and the tongue. PMID:21937342
The effect of defect cluster size and interpolation on radiographic image quality
NASA Astrophysics Data System (ADS)
Töpfer, Karin; Yip, Kwok L.
2011-03-01
For digital X-ray detectors, the need to control factory yield and cost invariably leads to the presence of some defective pixels. Recently, a standard procedure was developed to identify such pixels for industrial applications. However, no quality standards exist in medical or industrial imaging regarding the maximum allowable number and size of detector defects. While the answer may be application specific, the minimum requirement for any defect specification is that the diagnostic quality of the images be maintained. A more stringent criterion is to keep any changes in the images due to defects below the visual threshold. Two highly sensitive image simulation and evaluation methods were employed to specify the fraction of allowable defects as a function of defect cluster size in general radiography. First, the most critical situation of the defect being located in the center of the disease feature was explored using image simulation tools and a previously verified human observer model, incorporating a channelized Hotelling observer. Detectability index d' was obtained as a function of defect cluster size for three different disease features on clinical lung and extremity backgrounds. Second, four concentrations of defects of four different sizes were added to clinical images with subtle disease features and then interpolated. Twenty observers evaluated the images against the original on a single display using a 2-AFC method, which was highly sensitive to small changes in image detail. Based on a 50% just-noticeable difference, the fraction of allowed defects was specified vs. cluster size.
Patch-Based Super-Resolution of MR Spectroscopic Images: Application to Multiple Sclerosis
Jain, Saurabh; Sima, Diana M.; Sanaei Nezhad, Faezeh; Hangel, Gilbert; Bogner, Wolfgang; Williams, Stephen; Van Huffel, Sabine; Maes, Frederik; Smeets, Dirk
2017-01-01
Purpose: Magnetic resonance spectroscopic imaging (MRSI) provides complementary information to conventional magnetic resonance imaging. Acquiring high resolution MRSI is time consuming and requires complex reconstruction techniques. Methods: In this paper, a patch-based super-resolution method is presented to increase the spatial resolution of metabolite maps computed from MRSI. The proposed method uses high resolution anatomical MR images (T1-weighted and Fluid-attenuated inversion recovery) to regularize the super-resolution process. The accuracy of the method is validated against conventional interpolation techniques using a phantom, as well as simulated and in vivo acquired human brain images of multiple sclerosis subjects. Results: The method preserves tissue contrast and structural information, and matches well with the trend of acquired high resolution MRSI. Conclusions: These results suggest that the method has potential for clinically relevant neuroimaging applications. PMID:28197066
Tomographic Image Reconstruction Using an Interpolation Method for Tree Decay Detection
Hailin Feng; Guanghui Li; Sheng Fu; Xiping Wang
2014-01-01
Stress wave velocity has been traditionally regarded as an indicator of the extent of damage inside wood. This paper aimed to detect internal decay of urban trees through reconstructing tomographic image of the cross section of a tree trunk. A grid model covering the cross section area of a tree trunk was defined with some assumptions. Stress wave data were processed...
On removing interpolation and resampling artifacts in rigid image registration.
Aganj, Iman; Yeo, Boon Thye Thomas; Sabuncu, Mert R; Fischl, Bruce
2013-02-01
We show that image registration using conventional interpolation and summation approximations of continuous integrals can generally fail because of resampling artifacts. These artifacts negatively affect the accuracy of registration by producing local optima, altering the gradient, shifting the global optimum, and making rigid registration asymmetric. In this paper, after an extensive literature review, we demonstrate the causes of the artifacts by comparing inclusion and avoidance of resampling analytically. We show the sum-of-squared-differences cost function formulated as an integral to be more accurate compared with its traditional sum form in a simple case of image registration. We then discuss aliasing that occurs in rotation, which is due to the fact that an image represented in the Cartesian grid is sampled with different rates in different directions, and propose the use of oscillatory isotropic interpolation kernels, which allow better recovery of true global optima by overcoming this type of aliasing. Through our experiments on brain, fingerprint, and white noise images, we illustrate the superior performance of the integral registration cost function in both the Cartesian and spherical coordinates, and also validate the introduced radial interpolation kernel by demonstrating the improvement in registration.
On Removing Interpolation and Resampling Artifacts in Rigid Image Registration
Aganj, Iman; Yeo, Boon Thye Thomas; Sabuncu, Mert R.; Fischl, Bruce
2013-01-01
We show that image registration using conventional interpolation and summation approximations of continuous integrals can generally fail because of resampling artifacts. These artifacts negatively affect the accuracy of registration by producing local optima, altering the gradient, shifting the global optimum, and making rigid registration asymmetric. In this paper, after an extensive literature review, we demonstrate the causes of the artifacts by comparing inclusion and avoidance of resampling analytically. We show the sum-of-squared-differences cost function formulated as an integral to be more accurate compared with its traditional sum form in a simple case of image registration. We then discuss aliasing that occurs in rotation, which is due to the fact that an image represented in the Cartesian grid is sampled with different rates in different directions, and propose the use of oscillatory isotropic interpolation kernels, which allow better recovery of true global optima by overcoming this type of aliasing. Through our experiments on brain, fingerprint, and white noise images, we illustrate the superior performance of the integral registration cost function in both the Cartesian and spherical coordinates, and also validate the introduced radial interpolation kernel by demonstrating the improvement in registration. PMID:23076044
Localization accuracy of sphere fiducials in computed tomography images
NASA Astrophysics Data System (ADS)
Kobler, Jan-Philipp; Díaz Díaz, Jesus; Fitzpatrick, J. Michael; Lexow, G. Jakob; Majdani, Omid; Ortmaier, Tobias
2014-03-01
In recent years, bone-attached robots and microstereotactic frames have attracted increasing interest due to the promising targeting accuracy they provide. Such devices attach to a patient's skull via bone anchors, which are used as landmarks during intervention planning as well. However, as simulation results reveal, the performance of such mechanisms is limited by errors occurring during the localization of their bone anchors in preoperatively acquired computed tomography images. Therefore, it is desirable to identify the most suitable fiducials as well as the most accurate method for fiducial localization. We present experimental results of a study focusing on the fiducial localization error (FLE) of spheres. Two phantoms equipped with fiducials made from ferromagnetic steel and titanium, respectively, are used to compare two clinically available imaging modalities (multi-slice CT (MSCT) and cone-beam CT (CBCT)), three localization algorithms as well as two methods for approximating the FLE. Furthermore, the impact of cubic interpolation applied to the images is investigated. Results reveal that, generally, the achievable localization accuracy in CBCT image data is significantly higher compared to MSCT imaging. The lowest FLEs (approx. 40 μm) are obtained using spheres made from titanium, CBCT imaging, template matching based on cross correlation for localization, and interpolating the images by a factor of sixteen. Nevertheless, the achievable localization accuracy of spheres made from steel is only slightly inferior. The outcomes of the presented study will be valuable considering the optimization of future microstereotactic frame prototypes as well as the operative workflow.
NASA Astrophysics Data System (ADS)
Bagheri, H.; Sadjadi, S. Y.; Sadeghian, S.
2013-09-01
One of the most significant tools to study many engineering projects is three-dimensional modelling of the Earth that has many applications in the Geospatial Information System (GIS), e.g. creating Digital Train Modelling (DTM). DTM has numerous applications in the fields of sciences, engineering, design and various project administrations. One of the most significant events in DTM technique is the interpolation of elevation to create a continuous surface. There are several methods for interpolation, which have shown many results due to the environmental conditions and input data. The usual methods of interpolation used in this study along with Genetic Algorithms (GA) have been optimised and consisting of polynomials and the Inverse Distance Weighting (IDW) method. In this paper, the Artificial Intelligent (AI) techniques such as GA and Neural Networks (NN) are used on the samples to optimise the interpolation methods and production of Digital Elevation Model (DEM). The aim of entire interpolation methods is to evaluate the accuracy of interpolation methods. Universal interpolation occurs in the entire neighbouring regions can be suggested for larger regions, which can be divided into smaller regions. The results obtained from applying GA and ANN individually, will be compared with the typical method of interpolation for creation of elevations. The resulting had performed that AI methods have a high potential in the interpolation of elevations. Using artificial networks algorithms for the interpolation and optimisation based on the IDW method with GA could be estimated the high precise elevations.
Stokes image reconstruction for two-color microgrid polarization imaging systems.
Lemaster, Daniel A
2011-07-18
The Air Force Research Laboratory has developed a new microgrid polarization imaging system capable of simultaneously reconstructing linear Stokes parameter images in two colors on a single focal plane array. In this paper, an effective method for extracting Stokes images is presented for this type of camera system. It is also shown that correlations between the color bands can be exploited to significantly increase overall spatial resolution. Test data is used to show the advantages of this approach over bilinear interpolation. The bounds (in terms of available reconstruction bandwidth) on image resolution are also provided.
Ding, Qian; Wang, Yong; Zhuang, Dafang
2018-04-15
The appropriate spatial interpolation methods must be selected to analyze the spatial distributions of Potentially Toxic Elements (PTEs), which is a precondition for evaluating PTE pollution. The accuracy and effect of different spatial interpolation methods, which include inverse distance weighting interpolation (IDW) (power = 1, 2, 3), radial basis function interpolation (RBF) (basis function: thin-plate spline (TPS), spline with tension (ST), completely regularized spline (CRS), multiquadric (MQ) and inverse multiquadric (IMQ)) and ordinary kriging interpolation (OK) (semivariogram model: spherical, exponential, gaussian and linear), were compared using 166 unevenly distributed soil PTE samples (As, Pb, Cu and Zn) in the Suxian District, Chenzhou City, Hunan Province as the study subject. The reasons for the accuracy differences of the interpolation methods and the uncertainties of the interpolation results are discussed, then several suggestions for improving the interpolation accuracy are proposed, and the direction of pollution control is determined. The results of this study are as follows: (i) RBF-ST and OK (exponential) are the optimal interpolation methods for As and Cu, and the optimal interpolation method for Pb and Zn is RBF-IMQ. (ii) The interpolation uncertainty is positively correlated with the PTE concentration, and higher uncertainties are primarily distributed around mines, which is related to the strong spatial variability of PTE concentrations caused by human interference. (iii) The interpolation accuracy can be improved by increasing the sample size around the mines, introducing auxiliary variables in the case of incomplete sampling and adopting the partition prediction method. (iv) It is necessary to strengthen the prevention and control of As and Pb pollution, particularly in the central and northern areas. The results of this study can provide an effective reference for the optimization of interpolation methods and parameters for unevenly distributed soil PTE data in mining areas. Copyright © 2018 Elsevier Ltd. All rights reserved.
Diedrich, Karl T; Roberts, John A; Schmidt, Richard H; Kang, Chang-Ki; Cho, Zang-Hee; Parker, Dennis L
2011-10-18
Hypertension may increase tortuosity or twistedness of arteries. We applied a centerline extraction algorithm and tortuosity metric to magnetic resonance angiography (MRA) brain images to quantitatively measure the tortuosity of arterial vessel centerlines. The most commonly used arterial tortuosity measure is the distance factor metric (DFM). This study tested a DFM based measurement's ability to detect increases in arterial tortuosity of hypertensives using existing images. Existing images presented challenges such as different resolutions which may affect the tortuosity measurement, different depths of the area imaged, and different artifacts of imaging that require filtering. The stability and accuracy of alternative centerline algorithms was validated in numerically generated models and test brain MRA data. Existing images were gathered from previous studies and clinical medical systems by manually reading electronic medical records to identify hypertensives and negatives. Images of different resolutions were interpolated to similar resolutions. Arterial tortuosity in MRA images was measured from a DFM curve and tested on numerically generated models as well as MRA images from two hypertensive and three negative control populations. Comparisons were made between different resolutions, different filters, hypertensives versus negatives, and different negative controls. In tests using numerical models of a simple helix, the measured tortuosity increased as expected with more tightly coiled helices. Interpolation reduced resolution-dependent differences in measured tortuosity. The Korean hypertensive population had significantly higher arterial tortuosity than its corresponding negative control population across multiple arteries. In addition one negative control population of different ethnicity had significantly less arterial tortuosity than the other two. Tortuosity can be compared between images of different resolutions by interpolating from lower to higher resolutions. Use of a universal negative control was not possible in this study. The method described here detected elevated arterial tortuosity in a hypertensive population compared to the negative control population and can be used to study this relation in other populations.
Spatiotemporal Interpolation Methods for Solar Event Trajectories
NASA Astrophysics Data System (ADS)
Filali Boubrahimi, Soukaina; Aydin, Berkay; Schuh, Michael A.; Kempton, Dustin; Angryk, Rafal A.; Ma, Ruizhe
2018-05-01
This paper introduces four spatiotemporal interpolation methods that enrich complex, evolving region trajectories that are reported from a variety of ground-based and space-based solar observatories every day. Our interpolation module takes an existing solar event trajectory as its input and generates an enriched trajectory with any number of additional time–geometry pairs created by the most appropriate method. To this end, we designed four different interpolation techniques: MBR-Interpolation (Minimum Bounding Rectangle Interpolation), CP-Interpolation (Complex Polygon Interpolation), FI-Interpolation (Filament Polygon Interpolation), and Areal-Interpolation, which are presented here in detail. These techniques leverage k-means clustering, centroid shape signature representation, dynamic time warping, linear interpolation, and shape buffering to generate the additional polygons of an enriched trajectory. Using ground-truth objects, interpolation effectiveness is evaluated through a variety of measures based on several important characteristics that include spatial distance, area overlap, and shape (boundary) similarity. To our knowledge, this is the first research effort of this kind that attempts to address the broad problem of spatiotemporal interpolation of solar event trajectories. We conclude with a brief outline of future research directions and opportunities for related work in this area.
Cheng, Christopher P; Parker, David; Taylor, Charles A
2002-09-01
Arterial wall shear stress is hypothesized to be an important factor in the localization of atherosclerosis. Current methods to compute wall shear stress from magnetic resonance imaging (MRI) data do not account for flow profiles characteristic of pulsatile flow in noncircular vessel lumens. We describe a method to quantify wall shear stress in large blood vessels by differentiating velocity interpolation functions defined using cine phase-contrast MRI data on a band of elements in the neighborhood of the vessel wall. Validation was performed with software phantoms and an in vitro flow phantom. At an image resolution corresponding to in vivo imaging data of the human abdominal aorta, time-averaged, spatially averaged wall shear stress for steady and pulsatile flow were determined to be within 16% and 23% of the analytic solution, respectively. These errors were reduced to 5% and 8% with doubling in image resolution. For the pulsatile software phantom, the oscillation in shear stress was predicted to within 5%. The mean absolute error of circumferentially resolved shear stress for the nonaxisymmetric phantom decreased from 28% to 15% with a doubling in image resolution. The irregularly shaped phantom and in vitro investigation demonstrated convergence of the calculated values with increased image resolution. We quantified the shear stress at the supraceliac and infrarenal regions of a human abdominal aorta to be 3.4 and 2.3 dyn/cm2, respectively.
Accelerated Compressed Sensing Based CT Image Reconstruction.
Hashemi, SayedMasoud; Beheshti, Soosan; Gill, Patrick R; Paul, Narinder S; Cobbold, Richard S C
2015-01-01
In X-ray computed tomography (CT) an important objective is to reduce the radiation dose without significantly degrading the image quality. Compressed sensing (CS) enables the radiation dose to be reduced by producing diagnostic images from a limited number of projections. However, conventional CS-based algorithms are computationally intensive and time-consuming. We propose a new algorithm that accelerates the CS-based reconstruction by using a fast pseudopolar Fourier based Radon transform and rebinning the diverging fan beams to parallel beams. The reconstruction process is analyzed using a maximum-a-posterior approach, which is transformed into a weighted CS problem. The weights involved in the proposed model are calculated based on the statistical characteristics of the reconstruction process, which is formulated in terms of the measurement noise and rebinning interpolation error. Therefore, the proposed method not only accelerates the reconstruction, but also removes the rebinning and interpolation errors. Simulation results are shown for phantoms and a patient. For example, a 512 × 512 Shepp-Logan phantom when reconstructed from 128 rebinned projections using a conventional CS method had 10% error, whereas with the proposed method the reconstruction error was less than 1%. Moreover, computation times of less than 30 sec were obtained using a standard desktop computer without numerical optimization.
Accelerated Compressed Sensing Based CT Image Reconstruction
Hashemi, SayedMasoud; Beheshti, Soosan; Gill, Patrick R.; Paul, Narinder S.; Cobbold, Richard S. C.
2015-01-01
In X-ray computed tomography (CT) an important objective is to reduce the radiation dose without significantly degrading the image quality. Compressed sensing (CS) enables the radiation dose to be reduced by producing diagnostic images from a limited number of projections. However, conventional CS-based algorithms are computationally intensive and time-consuming. We propose a new algorithm that accelerates the CS-based reconstruction by using a fast pseudopolar Fourier based Radon transform and rebinning the diverging fan beams to parallel beams. The reconstruction process is analyzed using a maximum-a-posterior approach, which is transformed into a weighted CS problem. The weights involved in the proposed model are calculated based on the statistical characteristics of the reconstruction process, which is formulated in terms of the measurement noise and rebinning interpolation error. Therefore, the proposed method not only accelerates the reconstruction, but also removes the rebinning and interpolation errors. Simulation results are shown for phantoms and a patient. For example, a 512 × 512 Shepp-Logan phantom when reconstructed from 128 rebinned projections using a conventional CS method had 10% error, whereas with the proposed method the reconstruction error was less than 1%. Moreover, computation times of less than 30 sec were obtained using a standard desktop computer without numerical optimization. PMID:26167200
Disocclusion: a variational approach using level lines.
Masnou, Simon
2002-01-01
Object recognition, robot vision, image and film restoration may require the ability to perform disocclusion. We call disocclusion the recovery of occluded areas in a digital image by interpolation from their vicinity. It is shown in this paper how disocclusion can be performed by means of the level-lines structure, which offers a reliable, complete and contrast-invariant representation of images. Level-lines based disocclusion yields a solution that may have strong discontinuities. The proposed method is compatible with Kanizsa's amodal completion theory.
NASA Astrophysics Data System (ADS)
Parris, B. A.; Egbert, G. D.; Key, K.; Livelybrooks, D.
2016-12-01
Magnetotellurics (MT) is an electromagnetic technique used to model the inner Earth's electrical conductivity structure. MT data can be analyzed using iterative, linearized inversion techniques to generate models imaging, in particular, conductive partial melts and aqueous fluids that play critical roles in subduction zone processes and volcanism. For example, the Magnetotelluric Observations of Cascadia using a Huge Array (MOCHA) experiment provides amphibious data useful for imaging subducted fluids from trench to mantle wedge corner. When using MOD3DEM(Egbert et al. 2012), a finite difference inversion package, we have encountered problems inverting, particularly, sea floor stations due to the strong, nearby conductivity gradients. As a work-around, we have found that denser, finer model grids near the land-sea interface produce better inversions, as characterized by reduced data residuals. This is partly to be due to our ability to more accurately capture topography and bathymetry. We are experimenting with improved interpolation schemes that more accurately track EM fields across cell boundaries, with an eye to enhancing the accuracy of the simulated responses and, thus, inversion results. We are adapting how MOD3DEM interpolates EM fields in two ways. The first seeks to improve weighting functions for interpolants to better address current continuity across grid boundaries. Electric fields are interpolated using a tri-linear spline technique, where the eight nearest electrical field estimates are each given weights determined by the technique, a kind of weighted average. We are modifying these weights to include cross-boundary conductivity ratios to better model current continuity. We are also adapting some of the techniques discussed in Shantsev et al (2014) to enhance the accuracy of the interpolated fields calculated by our forward solver, as well as to better approximate the sensitivities passed to the software's Jacobian that are used to generate a new forward model during each iteration of the inversion.
Image registration using stationary velocity fields parameterized by norm-minimizing Wendland kernel
NASA Astrophysics Data System (ADS)
Pai, Akshay; Sommer, Stefan; Sørensen, Lauge; Darkner, Sune; Sporring, Jon; Nielsen, Mads
2015-03-01
Interpolating kernels are crucial to solving a stationary velocity field (SVF) based image registration problem. This is because, velocity fields need to be computed in non-integer locations during integration. The regularity in the solution to the SVF registration problem is controlled by the regularization term. In a variational formulation, this term is traditionally expressed as a squared norm which is a scalar inner product of the interpolating kernels parameterizing the velocity fields. The minimization of this term using the standard spline interpolation kernels (linear or cubic) is only approximative because of the lack of a compatible norm. In this paper, we propose to replace such interpolants with a norm-minimizing interpolant - the Wendland kernel which has the same computational simplicity like B-Splines. An application on the Alzheimer's disease neuroimaging initiative showed that Wendland SVF based measures separate (Alzheimer's disease v/s normal controls) better than both B-Spline SVFs (p<0.05 in amygdala) and B-Spline freeform deformation (p<0.05 in amygdala and cortical gray matter).
Performance evaluations of demons and free form deformation algorithms for the liver region.
Wang, Hui; Gong, Guanzhong; Wang, Hongjun; Li, Dengwang; Yin, Yong; Lu, Jie
2014-04-01
We investigated the influence of breathing motion on radiation therapy according to four- dimensional computed tomography (4D-CT) technology and indicated the registration of 4D-CT images was significant. The demons algorithm in two interpolation modes was compared to the FFD model algorithm to register the different phase images of 4D-CT in tumor tracking, using iodipin as verification. Linear interpolation was used in both mode 1 and mode 2. Mode 1 set outside pixels to nearest pixel, while mode 2 set outside pixels to zero. We used normalized mutual information (NMI), sum of squared differences, modified Hausdorff-distance, and registration speed to evaluate the performance of each algorithm. The average NMI after demons registration method in mode 1 improved 1.76% and 4.75% when compared to mode 2 and FFD model algorithm, respectively. Further, the modified Hausdorff-distance was no different between demons modes 1 and 2, but mode 1 was 15.2% lower than FFD. Finally, demons algorithm has the absolute advantage in registration speed. The demons algorithm in mode 1 was therefore found to be much more suitable for the registration of 4D-CT images. The subtractions of floating images and reference image before and after registration by demons further verified that influence of breathing motion cannot be ignored and the demons registration method is feasible.
MR Image Based Approach for Metal Artifact Reduction in X-Ray CT
2013-01-01
For decades, computed tomography (CT) images have been widely used to discover valuable anatomical information. Metallic implants such as dental fillings cause severe streaking artifacts which significantly degrade the quality of CT images. In this paper, we propose a new method for metal-artifact reduction using complementary magnetic resonance (MR) images. The method exploits the possibilities which arise from the use of emergent trimodality systems. The proposed algorithm corrects reconstructed CT images. The projected data which is affected by dental fillings is detected and the missing projections are replaced with data obtained from a corresponding MR image. A simulation study was conducted in order to compare the reconstructed images with images reconstructed through linear interpolation, which is a common metal-artifact reduction technique. The results show that the proposed method is successful in reducing severe metal artifacts without introducing significant amount of secondary artifacts. PMID:24302860
High-Speed Digital Scan Converter for High-Frequency Ultrasound Sector Scanners
Chang, Jin Ho; Yen, Jesse T.; Shung, K. Kirk
2008-01-01
This paper presents a high-speed digital scan converter (DSC) capable of providing more than 400 images per second, which is necessary to examine the activities of the mouse heart whose rate is 5–10 beats per second. To achieve the desired high-speed performance in cost-effective manner, the DSC developed adopts a linear interpolation algorithm in which two nearest samples to each object pixel of a monitor are selected and only angular interpolation is performed. Through computer simulation with the Field II program, its accuracy was investigated by comparing it to that of bilinear interpolation known as the best algorithm in terms of accuracy and processing speed. The simulation results show that the linear interpolation algorithm is capable of providing an acceptable image quality, which means that the difference of the root mean square error (RMSE) values of the linear and bilinear interpolation algorithms is below 1 %, if the sample rate of the envelope samples is at least four times higher than the Nyquist rate for the baseband component of echo signals. The designed DSC was implemented with a single FPGA (Stratix EP1S60F1020C6, Altera Corporation, San Jose, CA) on a DSC board that is a part of a high-speed ultrasound imaging system developed. The temporal and spatial resolutions of the implemented DSC were evaluated by examining its maximum processing time with a time stamp indicating when an image is completely formed and wire phantom testing, respectively. The experimental results show that the implemented DSC is capable of providing images at the rate of 400 images per second with negligible processing error. PMID:18430449
NASA Astrophysics Data System (ADS)
Marson, Avishai; Stern, Adrian
2015-05-01
One of the main limitations of horizontal parallax autostereoscopic displays is the horizontal resolution loss due the need to repartition the pixels of the display panel among the multiple views. Recently we have shown that this problem can be alleviated by applying a color sub-pixel rendering technique1. Interpolated views are generated by down-sampling the panel pixels at sub-pixel level, thus increasing the number of views. The method takes advantage of lower acuity of the human eye to chromatic resolution. Here we supply further support of the technique by analyzing the spectra of the subsampled images.
NASA Astrophysics Data System (ADS)
Bensiali, Bouchra; Bodi, Kowsik; Ciraolo, Guido; Ghendrih, Philippe; Liandrat, Jacques
2013-03-01
In this work, we compare different interpolation operators in the context of particle tracking with an emphasis on situations involving velocity field with steep gradients. Since, in this case, most classical methods give rise to the Gibbs phenomenon (generation of oscillations near discontinuities), we present new methods for particle tracking based on subdivision schemes and especially on the Piecewise Parabolic Harmonic (PPH) scheme which has shown its advantage in image processing in presence of strong contrasts. First an analytic univariate case with a discontinuous velocity field is considered in order to highlight the effect of the Gibbs phenomenon on trajectory calculation. Theoretical results are provided. Then, we show, regardless of the interpolation method, the need to use a conservative approach when integrating a conservative problem with a velocity field deriving from a potential. Finally, the PPH scheme is applied in a more realistic case of a time-dependent potential encountered in the edge turbulence of magnetically confined plasmas, to compare the propagation of density structures (turbulence bursts) with the dynamics of test particles. This study highlights the difference between particle transport and density transport in turbulent fields.
A rational interpolation method to compute frequency response
NASA Technical Reports Server (NTRS)
Kenney, Charles; Stubberud, Stephen; Laub, Alan J.
1993-01-01
A rational interpolation method for approximating a frequency response is presented. The method is based on a product formulation of finite differences, thereby avoiding the numerical problems incurred by near-equal-valued subtraction. Also, resonant pole and zero cancellation schemes are developed that increase the accuracy and efficiency of the interpolation method. Selection techniques of interpolation points are also discussed.
Topographic correction realization based on the CBERS-02B image
NASA Astrophysics Data System (ADS)
Qin, Hui-ping; Yi, Wei-ning; Fang, Yong-hua
2011-08-01
The special topography of mountain terrain will induce the retrieval distortion in same species and surface spectral lines. In order to improve the research accuracy of topographic surface characteristic, many researchers have focused on topographic correction. Topographic correction methods can be statistical-empirical model or physical model, in which the methods based on the digital elevation model data are most popular. Restricted by spatial resolution, previous model mostly corrected topographic effect based on Landsat TM image, whose spatial resolution is 30 meter that can be easily achieved from internet or calculated from digital map. Some researchers have also done topographic correction based on high spatial resolution images, such as Quickbird and Ikonos, but there is little correlative research on the topographic correction of CBERS-02B image. In this study, liao-ning mountain terrain was taken as the objective. The digital elevation model data was interpolated to 2.36 meter by 15 meter original digital elevation model one meter by one meter. The C correction, SCS+C correction, Minnaert correction and Ekstrand-r were executed to correct the topographic effect. Then the corrected results were achieved and compared. The images corrected with C correction, SCS+C correction, Minnaert correction and Ekstrand-r were compared, and the scatter diagrams between image digital number and cosine of solar incidence angel with respect to surface normal were shown. The mean value, standard variance, slope of scatter diagram, and separation factor were statistically calculated. The analysed result shows that the shadow is weakened in corrected images than the original images, and the three-dimensional affect is removed. The absolute slope of fitting lines in scatter diagram is minished. Minnaert correction method has the most effective result. These demonstrate that the former correction methods can be successfully adapted to CBERS-02B images. The DEM data can be interpolated step by step to get the corresponding spatial resolution approximately for the condition that high spatial resolution elevation data is hard to get.
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess
2011-01-01
More efficient versions of an interpolation method, called kriging, have been introduced in order to reduce its traditionally high computational cost. Written in C++, these approaches were tested on both synthetic and real data. Kriging is a best unbiased linear estimator and suitable for interpolation of scattered data points. Kriging has long been used in the geostatistic and mining communities, but is now being researched for use in the image fusion of remotely sensed data. This allows a combination of data from various locations to be used to fill in any missing data from any single location. To arrive at the faster algorithms, sparse SYMMLQ iterative solver, covariance tapering, Fast Multipole Methods (FMM), and nearest neighbor searching techniques were used. These implementations were used when the coefficient matrix in the linear system is symmetric, but not necessarily positive-definite.
NASA Astrophysics Data System (ADS)
Liu, X.; Wang, M.
2016-02-01
For coastal and inland waters, complete (in spatial) and frequent satellite measurements are important in order to monitor and understand coastal biological and ecological processes and phenomena, such as diurnal variations. High-frequency images of the water diffuse attenuation coefficient at the wavelength of 490 nm (Kd(490)) derived from the Korean Geostationary Ocean Color Imager (GOCI) provide a unique opportunity to study diurnal variation of the water turbidity in coastal regions of the Bohai Sea, Yellow Sea, and East China Sea. However, there are lots of missing pixels in the original GOCI-derived Kd(490) images due to clouds and various other reasons. Data Interpolating Empirical Orthogonal Function (DINEOF) is a method to reconstruct missing data in geophysical datasets based on Empirical Orthogonal Function (EOF). In this study, the DINEOF is applied to GOCI-derived Kd(490) data in the Yangtze River mouth and the Yellow River mouth regions, the DINEOF reconstructed Kd(490) data are used to fill in the missing pixels, and the spatial patterns and temporal functions of the first three EOF modes are also used to investigate the sub-diurnal variation due to the tidal forcing. In addition, DINEOF method is also applied to the Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi National Polar-orbiting Partnership (SNPP) satellite to reconstruct missing pixels in the daily Kd(490) and chlorophyll-a concentration images, and some application examples in the Chesapeake Bay and the Gulf of Mexico will be presented.
Correction of image drift and distortion in a scanning electron microscopy.
Jin, P; Li, X
2015-12-01
Continuous research on small-scale mechanical structures and systems has attracted strong demand for ultrafine deformation and strain measurements. Conventional optical microscope cannot meet such requirements owing to its lower spatial resolution. Therefore, high-resolution scanning electron microscope has become the preferred system for high spatial resolution imaging and measurements. However, scanning electron microscope usually is contaminated by distortion and drift aberrations which cause serious errors to precise imaging and measurements of tiny structures. This paper develops a new method to correct drift and distortion aberrations of scanning electron microscope images, and evaluates the effect of correction by comparing corrected images with scanning electron microscope image of a standard sample. The drift correction is based on the interpolation scheme, where a series of images are captured at one location of the sample and perform image correlation between the first image and the consequent images to interpolate the drift-time relationship of scanning electron microscope images. The distortion correction employs the axial symmetry model of charged particle imaging theory to two images sharing with the same location of one object under different imaging fields of view. The difference apart from rigid displacement between the mentioned two images will give distortion parameters. Three-order precision is considered in the model and experiment shows that one pixel maximum correction is obtained for the employed high-resolution electron microscopic system. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
A comparison of linear interpolation models for iterative CT reconstruction.
Hahn, Katharina; Schöndube, Harald; Stierstorfer, Karl; Hornegger, Joachim; Noo, Frédéric
2016-12-01
Recent reports indicate that model-based iterative reconstruction methods may improve image quality in computed tomography (CT). One difficulty with these methods is the number of options available to implement them, including the selection of the forward projection model and the penalty term. Currently, the literature is fairly scarce in terms of guidance regarding this selection step, whereas these options impact image quality. Here, the authors investigate the merits of three forward projection models that rely on linear interpolation: the distance-driven method, Joseph's method, and the bilinear method. The authors' selection is motivated by three factors: (1) in CT, linear interpolation is often seen as a suitable trade-off between discretization errors and computational cost, (2) the first two methods are popular with manufacturers, and (3) the third method enables assessing the importance of a key assumption in the other methods. One approach to evaluate forward projection models is to inspect their effect on discretized images, as well as the effect of their transpose on data sets, but significance of such studies is unclear since the matrix and its transpose are always jointly used in iterative reconstruction. Another approach is to investigate the models in the context they are used, i.e., together with statistical weights and a penalty term. Unfortunately, this approach requires the selection of a preferred objective function and does not provide clear information on features that are intrinsic to the model. The authors adopted the following two-stage methodology. First, the authors analyze images that progressively include components of the singular value decomposition of the model in a reconstructed image without statistical weights and penalty term. Next, the authors examine the impact of weights and penalty on observed differences. Image quality metrics were investigated for 16 different fan-beam imaging scenarios that enabled probing various aspects of all models. The metrics include a surrogate for computational cost, as well as bias, noise, and an estimation task, all at matched resolution. The analysis revealed fundamental differences in terms of both bias and noise. Task-based assessment appears to be required to appreciate the differences in noise; the estimation task the authors selected showed that these differences balance out to yield similar performance. Some scenarios highlighted merits for the distance-driven method in terms of bias but with an increase in computational cost. Three combinations of statistical weights and penalty term showed that the observed differences remain the same, but strong edge-preserving penalty can dramatically reduce the magnitude of these differences. In many scenarios, Joseph's method seems to offer an interesting compromise between cost and computational effort. The distance-driven method offers the possibility to reduce bias but with an increase in computational cost. The bilinear method indicated that a key assumption in the other two methods is highly robust. Last, strong edge-preserving penalty can act as a compensator for insufficiencies in the forward projection model, bringing all models to similar levels in the most challenging imaging scenarios. Also, the authors find that their evaluation methodology helps appreciating how model, statistical weights, and penalty term interplay together.
Fast restoration approach for motion blurred image based on deconvolution under the blurring paths
NASA Astrophysics Data System (ADS)
Shi, Yu; Song, Jie; Hua, Xia
2015-12-01
For the real-time motion deblurring, it is of utmost importance to get a higher processing speed with about the same image quality. This paper presents a fast Richardson-Lucy motion deblurring approach to remove motion blur which rotates blurred image under blurring paths. Hence, the computational time is reduced sharply by using one-dimensional Fast Fourier Transform in one-dimensional Richardson-Lucy method. In order to obtain accurate transformational results, interpolation method is incorporated to fetch the gray values. Experiment results demonstrate that the proposed approach is efficient and effective to reduce motion blur under the blur paths.
Missing RRI interpolation for HRV analysis using locally-weighted partial least squares regression.
Kamata, Keisuke; Fujiwara, Koichi; Yamakawa, Toshiki; Kano, Manabu
2016-08-01
The R-R interval (RRI) fluctuation in electrocardiogram (ECG) is called heart rate variability (HRV). Since HRV reflects autonomic nervous function, HRV-based health monitoring services, such as stress estimation, drowsy driving detection, and epileptic seizure prediction, have been proposed. In these HRV-based health monitoring services, precise R wave detection from ECG is required; however, R waves cannot always be detected due to ECG artifacts. Missing RRI data should be interpolated appropriately for HRV analysis. The present work proposes a missing RRI interpolation method by utilizing using just-in-time (JIT) modeling. The proposed method adopts locally weighted partial least squares (LW-PLS) for RRI interpolation, which is a well-known JIT modeling method used in the filed of process control. The usefulness of the proposed method was demonstrated through a case study of real RRI data collected from healthy persons. The proposed JIT-based interpolation method could improve the interpolation accuracy in comparison with a static interpolation method.
Ziemann, Christian; Stille, Maik; Cremers, Florian; Buzug, Thorsten M; Rades, Dirk
2018-04-17
Metal artifacts caused by high-density implants lead to incorrectly reconstructed Hounsfield units in computed tomography images. This can result in a loss of accuracy in dose calculation in radiation therapy. This study investigates the potential of the metal artifact reduction algorithms, Augmented Likelihood Image Reconstruction and linear interpolation, in improving dose calculation in the presence of metal artifacts. In order to simulate a pelvis with a double-sided total endoprosthesis, a polymethylmethacrylate phantom was equipped with two steel bars. Artifacts were reduced by applying the Augmented Likelihood Image Reconstruction, a linear interpolation, and a manual correction approach. Using the treatment planning system Eclipse™, identical planning target volumes for an idealized prostate as well as structures for bladder and rectum were defined in corrected and noncorrected images. Volumetric modulated arc therapy plans have been created with double arc rotations with and without avoidance sectors that mask out the prosthesis. The irradiation plans were analyzed for variations in the dose distribution and their homogeneity. Dosimetric measurements were performed using isocentric positioned ionization chambers. Irradiation plans based on images containing artifacts lead to a dose error in the isocenter of up to 8.4%. Corrections with the Augmented Likelihood Image Reconstruction reduce this dose error to 2.7%, corrections with linear interpolation to 3.2%, and manual artifact correction to 4.1%. When applying artifact correction, the dose homogeneity was slightly improved for all investigated methods. Furthermore, the calculated mean doses are higher for rectum and bladder if avoidance sectors are applied. Streaking artifacts cause an imprecise dose calculation within irradiation plans. Using a metal artifact correction algorithm, the planning accuracy can be significantly improved. Best results were accomplished using the Augmented Likelihood Image Reconstruction algorithm. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Ohmer, Marc; Liesch, Tanja; Goeppert, Nadine; Goldscheider, Nico
2017-11-01
The selection of the best possible method to interpolate a continuous groundwater surface from point data of groundwater levels is a controversial issue. In the present study four deterministic and five geostatistical interpolation methods (global polynomial interpolation, local polynomial interpolation, inverse distance weighting, radial basis function, simple-, ordinary-, universal-, empirical Bayesian and co-Kriging) and six error statistics (ME, MAE, MAPE, RMSE, RMSSE, Pearson R) were examined for a Jurassic karst aquifer and a Quaternary alluvial aquifer. We investigated the possible propagation of uncertainty of the chosen interpolation method on the calculation of the estimated vertical groundwater exchange between the aquifers. Furthermore, we validated the results with eco-hydrogeological data including the comparison between calculated groundwater depths and geographic locations of karst springs, wetlands and surface waters. These results show, that calculated inter-aquifer exchange rates based on different interpolations of groundwater potentials may vary greatly depending on the chosen interpolation method (by factor >10). Therefore, the choice of an interpolation method should be made with care, taking different error measures as well as additional data for plausibility control into account. The most accurate results have been obtained with co-Kriging incorporating secondary data (e.g. topography, river levels).
Selective document image data compression technique
Fu, C.Y.; Petrich, L.I.
1998-05-19
A method of storing information from filled-in form-documents comprises extracting the unique user information in the foreground from the document form information in the background. The contrast of the pixels is enhanced by a gamma correction on an image array, and then the color value of each of pixel is enhanced. The color pixels lying on edges of an image are converted to black and an adjacent pixel is converted to white. The distance between black pixels and other pixels in the array is determined, and a filled-edge array of pixels is created. User information is then converted to a two-color format by creating a first two-color image of the scanned image by converting all pixels darker than a threshold color value to black. All the pixels that are lighter than the threshold color value to white. Then a second two-color image of the filled-edge file is generated by converting all pixels darker than a second threshold value to black and all pixels lighter than the second threshold color value to white. The first two-color image and the second two-color image are then combined and filtered to smooth the edges of the image. The image may be compressed with a unique Huffman coding table for that image. The image file is also decimated to create a decimated-image file which can later be interpolated back to produce a reconstructed image file using a bilinear interpolation kernel. 10 figs.
Selective document image data compression technique
Fu, Chi-Yung; Petrich, Loren I.
1998-01-01
A method of storing information from filled-in form-documents comprises extracting the unique user information in the foreground from the document form information in the background. The contrast of the pixels is enhanced by a gamma correction on an image array, and then the color value of each of pixel is enhanced. The color pixels lying on edges of an image are converted to black and an adjacent pixel is converted to white. The distance between black pixels and other pixels in the array is determined, and a filled-edge array of pixels is created. User information is then converted to a two-color format by creating a first two-color image of the scanned image by converting all pixels darker than a threshold color value to black. All the pixels that are lighter than the threshold color value to white. Then a second two-color image of the filled-edge file is generated by converting all pixels darker than a second threshold value to black and all pixels lighter than the second threshold color value to white. The first two-color image and the second two-color image are then combined and filtered to smooth the edges of the image. The image may be compressed with a unique Huffman coding table for that image. The image file is also decimated to create a decimated-image file which can later be interpolated back to produce a reconstructed image file using a bilinear interpolation kernel.--(235 words)
Cryo-EM image alignment based on nonuniform fast Fourier transform.
Yang, Zhengfan; Penczek, Pawel A
2008-08-01
In single particle analysis, two-dimensional (2-D) alignment is a fundamental step intended to put into register various particle projections of biological macromolecules collected at the electron microscope. The efficiency and quality of three-dimensional (3-D) structure reconstruction largely depends on the computational speed and alignment accuracy of this crucial step. In order to improve the performance of alignment, we introduce a new method that takes advantage of the highly accurate interpolation scheme based on the gridding method, a version of the nonuniform fast Fourier transform, and utilizes a multi-dimensional optimization algorithm for the refinement of the orientation parameters. Using simulated data, we demonstrate that by using less than half of the sample points and taking twice the runtime, our new 2-D alignment method achieves dramatically better alignment accuracy than that based on quadratic interpolation. We also apply our method to image to volume registration, the key step in the single particle EM structure refinement protocol. We find that in this case the accuracy of the method not only surpasses the accuracy of the commonly used real-space implementation, but results are achieved in much shorter time, making gridding-based alignment a perfect candidate for efficient structure determination in single particle analysis.
Cryo-EM Image Alignment Based on Nonuniform Fast Fourier Transform
Yang, Zhengfan; Penczek, Pawel A.
2008-01-01
In single particle analysis, two-dimensional (2-D) alignment is a fundamental step intended to put into register various particle projections of biological macromolecules collected at the electron microscope. The efficiency and quality of three-dimensional (3-D) structure reconstruction largely depends on the computational speed and alignment accuracy of this crucial step. In order to improve the performance of alignment, we introduce a new method that takes advantage of the highly accurate interpolation scheme based on the gridding method, a version of the nonuniform Fast Fourier Transform, and utilizes a multi-dimensional optimization algorithm for the refinement of the orientation parameters. Using simulated data, we demonstrate that by using less than half of the sample points and taking twice the runtime, our new 2-D alignment method achieves dramatically better alignment accuracy than that based on quadratic interpolation. We also apply our method to image to volume registration, the key step in the single particle EM structure refinement protocol. We find that in this case the accuracy of the method not only surpasses the accuracy of the commonly used real-space implementation, but results are achieved in much shorter time, making gridding-based alignment a perfect candidate for efficient structure determination in single particle analysis. PMID:18499351
A multispectral photon-counting double random phase encoding scheme for image authentication.
Yi, Faliu; Moon, Inkyu; Lee, Yeon H
2014-05-20
In this paper, we propose a new method for color image-based authentication that combines multispectral photon-counting imaging (MPCI) and double random phase encoding (DRPE) schemes. The sparsely distributed information from MPCI and the stationary white noise signal from DRPE make intruder attacks difficult. In this authentication method, the original multispectral RGB color image is down-sampled into a Bayer image. The three types of color samples (red, green and blue color) in the Bayer image are encrypted with DRPE and the amplitude part of the resulting image is photon counted. The corresponding phase information that has nonzero amplitude after photon counting is then kept for decryption. Experimental results show that the retrieved images from the proposed method do not visually resemble their original counterparts. Nevertheless, the original color image can be efficiently verified with statistical nonlinear correlations. Our experimental results also show that different interpolation algorithms applied to Bayer images result in different verification effects for multispectral RGB color images.
Stereo matching and view interpolation based on image domain triangulation.
Fickel, Guilherme Pinto; Jung, Claudio R; Malzbender, Tom; Samadani, Ramin; Culbertson, Bruce
2013-09-01
This paper presents a new approach for stereo matching and view interpolation problems based on triangular tessellations suitable for a linear array of rectified cameras. The domain of the reference image is initially partitioned into triangular regions using edge and scale information, aiming to place vertices along image edges and increase the number of triangles in textured regions. A region-based matching algorithm is then used to find an initial disparity for each triangle, and a refinement stage is applied to change the disparity at the vertices of the triangles, generating a piecewise linear disparity map. A simple post-processing procedure is applied to connect triangles with similar disparities generating a full 3D mesh related to each camera (view), which are used to generate new synthesized views along the linear camera array. With the proposed framework, view interpolation reduces to the trivial task of rendering polygonal meshes, which can be done very fast, particularly when GPUs are employed. Furthermore, the generated views are hole-free, unlike most point-based view interpolation schemes that require some kind of post-processing procedures to fill holes.
MODIS Snow Cover Recovery Using Variational Interpolation
NASA Astrophysics Data System (ADS)
Tran, H.; Nguyen, P.; Hsu, K. L.; Sorooshian, S.
2017-12-01
Cloud obscuration is one of the major problems that limit the usages of satellite images in general and in NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) global Snow-Covered Area (SCA) products in particular. Among the approaches to resolve the problem, the Variational Interpolation (VI) algorithm method, proposed by Xia et al., 2012, obtains cloud-free dynamic SCA images from MODIS. This method is automatic and robust. However, computational deficiency is a main drawback that degrades applying the method for larger scales (i.e., spatial and temporal scales). To overcome this difficulty, this study introduces an improved version of the original VI. The modified VI algorithm integrates the MINimum RESidual (MINRES) iteration (Paige and Saunders., 1975) to prevent the system from breaking up when applied to much broader scales. An experiment was done to demonstrate the crash-proof ability of the new algorithm in comparison with the original VI method, an ability that is obtained when maintaining the distribution of the weights set after solving the linear system. After that, the new VI algorithm was applied to the whole Contiguous United States (CONUS) over four winter months of 2016 and 2017, and validated using the snow station network (SNOTEL). The resulting cloud free images have high accuracy in capturing the dynamical changes of snow in contrast with the MODIS snow cover maps. Lastly, the algorithm was applied to create a Cloud free images dataset from March 10, 2000 to February 28, 2017, which is able to provide an overview of snow trends over CONUS for nearly two decades. ACKNOWLEDGMENTSWe would like to acknowledge NASA, NOAA Office of Hydrologic Development (OHD) National Weather Service (NWS), Cooperative Institute for Climate and Satellites (CICS), Army Research Office (ARO), ICIWaRM, and UNESCO for supporting this research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, G; Tyagi, N; Deasy, J
2015-06-15
Purpose: Cine 2DMRI is useful in MR-guided radiotherapy but it lacks volumetric information. We explore the feasibility of estimating timeresolved (TR) 4DMRI based on cine 2DMRI and respiratory-correlated (RC) 4DMRI though simulation. Methods: We hypothesize that a volumetric image during free breathing can be approximated by interpolation among 3DMRI image sets generated from a RC-4DMRI. Two patients’ RC-4DMRI with 4 or 5 phases were used to generate additional 3DMRI by interpolation. For each patient, six libraries were created to have total 5-to-35 3DMRI images by 0–6 equi-spaced tri-linear interpolation between adjacent and full-inhalation/full-exhalation phases. Sagittal cine 2DMRI were generated frommore » reference 3DMRIs created from separate, unique interpolations from the original RC-4DMRI. To test if accurate 3DMRI could be generated through rigid registration of the cine 2DMRI to the 3DMRI libraries, each sagittal 2DMRI was registered to sagittal cuts in the same location in the 3DMRI within each library to identify the two best matches: one with greater lung volume and one with smaller. A final interpolation between the corresponding 3DMRI was then performed to produce the first-order-approximation (FOA) 3DMRI. The quality and performance of the FOA as a function of library size was assessed using both the difference in lung volume and average voxel intensity between the FOA and the reference 3DMRI. Results: The discrepancy between the FOA and reference 3DMRI decreases as the library size increases. The 3D lung volume difference decreases from 5–15% to 1–2% as the library size increases from 5 to 35 image sets. The average difference in lung voxel intensity decreases from 7–8 to 5–6 with the lung intensity being 0–135. Conclusion: This study indicates that the quality of FOA 3DMRI improves with increasing 3DMRI library size. On-going investigations will test this approach using actual cine 2DMRI and introduce a higher order approximation for improvements. This study is in part supported by NIH (U54CA137788 and U54CA132378)« less
NASA Astrophysics Data System (ADS)
Pua, Rizza; Park, Miran; Wi, Sunhee; Cho, Seungryong
2016-12-01
We propose a hybrid metal artifact reduction (MAR) approach for computed tomography (CT) that is computationally more efficient than a fully iterative reconstruction method, but at the same time achieves superior image quality to the interpolation-based in-painting techniques. Our proposed MAR method, an image-based artifact subtraction approach, utilizes an intermediate prior image reconstructed via PDART to recover the background information underlying the high density objects. For comparison, prior images generated by total-variation minimization (TVM) algorithm, as a realization of fully iterative approach, were also utilized as intermediate images. From the simulation and real experimental results, it has been shown that PDART drastically accelerates the reconstruction to an acceptable quality of prior images. Incorporating PDART-reconstructed prior images in the proposed MAR scheme achieved higher quality images than those by a conventional in-painting method. Furthermore, the results were comparable to the fully iterative MAR that uses high-quality TVM prior images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yueqi; Lava, Pascal; Reu, Phillip
This study presents a theoretical uncertainty quantification of displacement measurements by subset-based 2D-digital image correlation. A generalized solution to estimate the random error of displacement measurement is presented. The obtained solution suggests that the random error of displacement measurements is determined by the image noise, the summation of the intensity gradient in a subset, the subpixel part of displacement, and the interpolation scheme. The proposed method is validated with virtual digital image correlation tests.
Wang, Yueqi; Lava, Pascal; Reu, Phillip; ...
2015-12-23
This study presents a theoretical uncertainty quantification of displacement measurements by subset-based 2D-digital image correlation. A generalized solution to estimate the random error of displacement measurement is presented. The obtained solution suggests that the random error of displacement measurements is determined by the image noise, the summation of the intensity gradient in a subset, the subpixel part of displacement, and the interpolation scheme. The proposed method is validated with virtual digital image correlation tests.
Horie, Tomohiko; Takahara, Tarou; Ogino, Tetsuo; Okuaki, Tomoyuki; Honda, Masatoshi; Okumura, Yasuhiro; Kajihara, Nao; Usui, Keisuke; Muro, Isao; Imai, Yutaka
2008-09-20
In recent years, the utility of body diffusion weighted imaging as represented by diffusion weighted whole body imaging with background body signal suppression (DWIBS), the DWIBS method, is very high. However, there was a problem in the DWIBS method involving the artifact corresponding to the distance of the diaphragm. To provide a solution, the respiratory trigger (RT) method and the navigator echo method were used together. A problem was that scan time extended to the compensation and did not predict the extension rate, although both artifacts were reduced. If we used only navigator real time slice tracking (NRST) from the findings obtained by the DWIBS method, we presumed the artifacts would be ameliorable without the extension of scan time. Thus, the TRacking Only Navigator (TRON) method was developed, and a basic examination was carried out for the liver. An important feature of the TRON method is the lack of the navigator gating window (NGW) and addition of the method of linear interpolation prior to NRST. The method required the passing speed and the distance from the volunteer's diaphragm. The estimated error from the 2D-selective RF pulse (2DSRP) of the TRON method to slice excitation was calculated. The condition of 2D SRP, which did not influence the accuracy of NRST, was required by the movement phantom. The volunteer was scanned, and the evaluation and actual scan time of the image quality were compared with the RT and DWIBS methods. Diaphragm displacement speed and the quantity of displacement were determined in the head and foot directions, and the result was 9 mm/sec, and 15 mm. The estimated error was within 2.5 mm in b-factor 1000 sec/mm(2). The FA of 2DSRP was 15 degrees, and the navigator echo length was 120 mm, which was excellent. In the TRON method, the accuracy of NRST was steady because of line interpolation. The TRON method obtained image quality equal to that of the RT method with the b-factor in the volunteer scanning at short actual scan time. The TRON method can obtain image quality equal to that of the RT method in body diffusion weighted imaging within a short time. Moreover, because scan time during planning becomes actual scan time, inspection can be efficiently executed.
Adaptive color demosaicing and false color removal
NASA Astrophysics Data System (ADS)
Guarnera, Mirko; Messina, Giuseppe; Tomaselli, Valeria
2010-04-01
Color interpolation solutions drastically influence the quality of the whole image generation pipeline, so they must guarantee the rendering of high quality pictures by avoiding typical artifacts such as blurring, zipper effects, and false colors. Moreover, demosaicing should avoid emphasizing typical artifacts of real sensors data, such as noise and green imbalance effect, which would be further accentuated by the subsequent steps of the processing pipeline. We propose a new adaptive algorithm that decides the interpolation technique to apply to each pixel, according to its neighborhood analysis. Edges are effectively interpolated through a directional filtering approach that interpolates the missing colors, selecting the suitable filter depending on edge orientation. Regions close to edges are interpolated through a simpler demosaicing approach. Thus flat regions are identified and low-pass filtered to eliminate some residual noise and to minimize the annoying green imbalance effect. Finally, an effective false color removal algorithm is used as a postprocessing step to eliminate residual color errors. The experimental results show how sharp edges are preserved, whereas undesired zipper effects are reduced, improving the edge resolution itself and obtaining superior image quality.
Generalized Fourier slice theorem for cone-beam image reconstruction.
Zhao, Shuang-Ren; Jiang, Dazong; Yang, Kevin; Yang, Kang
2015-01-01
The cone-beam reconstruction theory has been proposed by Kirillov in 1961, Tuy in 1983, Feldkamp in 1984, Smith in 1985, Pierre Grangeat in 1990. The Fourier slice theorem is proposed by Bracewell 1956, which leads to the Fourier image reconstruction method for parallel-beam geometry. The Fourier slice theorem is extended to fan-beam geometry by Zhao in 1993 and 1995. By combining the above mentioned cone-beam image reconstruction theory and the above mentioned Fourier slice theory of fan-beam geometry, the Fourier slice theorem in cone-beam geometry is proposed by Zhao 1995 in short conference publication. This article offers the details of the derivation and implementation of this Fourier slice theorem for cone-beam geometry. Especially the problem of the reconstruction from Fourier domain has been overcome, which is that the value of in the origin of Fourier space is 0/0. The 0/0 type of limit is proper handled. As examples, the implementation results for the single circle and two perpendicular circle source orbits are shown. In the cone-beam reconstruction if a interpolation process is considered, the number of the calculations for the generalized Fourier slice theorem algorithm is
Regional Principal Color Based Saliency Detection
Lou, Jing; Ren, Mingwu; Wang, Huan
2014-01-01
Saliency detection is widely used in many visual applications like image segmentation, object recognition and classification. In this paper, we will introduce a new method to detect salient objects in natural images. The approach is based on a regional principal color contrast modal, which incorporates low-level and medium-level visual cues. The method allows a simple computation of color features and two categories of spatial relationships to a saliency map, achieving higher F-measure rates. At the same time, we present an interpolation approach to evaluate resulting curves, and analyze parameters selection. Our method enables the effective computation of arbitrary resolution images. Experimental results on a saliency database show that our approach produces high quality saliency maps and performs favorably against ten saliency detection algorithms. PMID:25379960
Determining the refractive index of particles using glare-point imaging technique
NASA Astrophysics Data System (ADS)
Meng, Rui; Ge, Baozhen; Lu, Qieni; Yu, Xiaoxue
2018-04-01
A method of measuring the refractive index of a particle is presented from a glare-point image. The space of a doublet image of a particle can be determined with high accuracy by using auto-correlation and Gaussian interpolation, and then the refractive index is obtained from glare-point separation, and a factor that may influence the accuracy of glare-point separation is explored. Experiments are carried out for three different kinds of particles, including polystyrene latex particles, glass beads, and water droplets, whose measuring accuracy is improved by the data fitting method. The research results show that the method presented in this paper is feasible and beneficial to applications such as spray and atmospheric composition measurements.
Half-unit weighted bilinear algorithm for image contrast enhancement in capsule endoscopy
NASA Astrophysics Data System (ADS)
Rukundo, Olivier
2018-04-01
This paper proposes a novel enhancement method based exclusively on the bilinear interpolation algorithm for capsule endoscopy images. The proposed method does not convert the original RBG image components to HSV or any other color space or model; instead, it processes directly RGB components. In each component, a group of four adjacent pixels and half-unit weight in the bilinear weighting function are used to calculate the average pixel value, identical for each pixel in that particular group. After calculations, groups of identical pixels are overlapped successively in horizontal and vertical directions to achieve a preliminary-enhanced image. The final-enhanced image is achieved by halving the sum of the original and preliminary-enhanced image pixels. Quantitative and qualitative experiments were conducted focusing on pairwise comparisons between original and enhanced images. Final-enhanced images have generally the best diagnostic quality and gave more details about the visibility of vessels and structures in capsule endoscopy images.
NASA Astrophysics Data System (ADS)
Xie, Lizhe; Hu, Yining; Chen, Yang; Shi, Luyao
2015-03-01
Projection and back-projection are the most computational consuming parts in Computed Tomography (CT) reconstruction. Parallelization strategies using GPU computing techniques have been introduced. We in this paper present a new parallelization scheme for both projection and back-projection. The proposed method is based on CUDA technology carried out by NVIDIA Corporation. Instead of build complex model, we aimed on optimizing the existing algorithm and make it suitable for CUDA implementation so as to gain fast computation speed. Besides making use of texture fetching operation which helps gain faster interpolation speed, we fixed sampling numbers in the computation of projection, to ensure the synchronization of blocks and threads, thus prevents the latency caused by inconsistent computation complexity. Experiment results have proven the computational efficiency and imaging quality of the proposed method.
NASA Astrophysics Data System (ADS)
Bogusz, Janusz; Kłos, Anna; Grzempowski, Piotr; Kontny, Bernard
2014-06-01
The paper presents the results of testing the various methods of permanent stations' velocity residua interpolation in a regular grid, which constitutes a continuous model of the velocity field in the territory of Poland. Three packages of software were used in the research from the point of view of interpolation: GMT ( The Generic Mapping Tools), Surfer and ArcGIS. The following methods were tested in the softwares: the Nearest Neighbor, Triangulation (TIN), Spline Interpolation, Surface, Inverse Distance to a Power, Minimum Curvature and Kriging. The presented research used the absolute velocities' values expressed in the ITRF2005 reference frame and the intraplate velocities related to the NUVEL model of over 300 permanent reference stations of the EPN and ASG-EUPOS networks covering the area of Europe. Interpolation for the area of Poland was done using data from the whole area of Europe to make the results at the borders of the interpolation area reliable. As a result of this research, an optimum method of such data interpolation was developed. All the mentioned methods were tested for being local or global, for the possibility to compute errors of the interpolated values, for explicitness and fidelity of the interpolation functions or the smoothing mode. In the authors' opinion, the best data interpolation method is Kriging with the linear semivariogram model run in the Surfer programme because it allows for the computation of errors in the interpolated values and it is a global method (it distorts the results in the least way). Alternately, it is acceptable to use the Minimum Curvature method. Empirical analysis of the interpolation results obtained by means of the two methods showed that the results are identical. The tests were conducted using the intraplate velocities of the European sites. Statistics in the form of computing the minimum, maximum and mean values of the interpolated North and East components of the velocity residuum were prepared for all the tested methods, and each of the resulting continuous velocity fields was visualized by means of the GMT programme. The interpolated components of the velocities and their residua are presented in the form of tables and bar diagrams.
Highway 3D model from image and lidar data
NASA Astrophysics Data System (ADS)
Chen, Jinfeng; Chu, Henry; Sun, Xiaoduan
2014-05-01
We present a new method of highway 3-D model construction developed based on feature extraction in highway images and LIDAR data. We describe the processing road coordinate data that connect the image frames to the coordinates of the elevation data. Image processing methods are used to extract sky, road, and ground regions as well as significant objects (such as signs and building fronts) in the roadside for the 3D model. LIDAR data are interpolated and processed to extract the road lanes as well as other features such as trees, ditches, and elevated objects to form the 3D model. 3D geometry reasoning is used to match the image features to the 3D model. Results from successive frames are integrated to improve the final model.
An approach to unbiased subsample interpolation for motion tracking.
McCormick, Matthew M; Varghese, Tomy
2013-04-01
Accurate subsample displacement estimation is necessary for ultrasound elastography because of the small deformations that occur and the subsequent application of a derivative operation on local displacements. Many of the commonly used subsample estimation techniques introduce significant bias errors. This article addresses a reduced bias approach to subsample displacement estimations that consists of a two-dimensional windowed-sinc interpolation with numerical optimization. It is shown that a Welch or Lanczos window with a Nelder-Mead simplex or regular-step gradient-descent optimization is well suited for this purpose. Little improvement results from a sinc window radius greater than four data samples. The strain signal-to-noise ratio (SNR) obtained in a uniformly elastic phantom is compared with other parabolic and cosine interpolation methods; it is found that the strain SNR ratio is improved over parabolic interpolation from 11.0 to 13.6 in the axial direction and 0.7 to 1.1 in the lateral direction for an applied 1% axial deformation. The improvement was most significant for small strains and displacement tracking in the lateral direction. This approach does not rely on special properties of the image or similarity function, which is demonstrated by its effectiveness with the application of a previously described regularization technique.
A simple and effective method for filling gaps in Landsat ETM+ SLC-off images
Chen, Jin; Zhu, Xiaolin; Vogelmann, James E.; Gao, Feng; Jin, Suming
2011-01-01
The scan-line corrector (SLC) of the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) sensor failed in 2003, resulting in about 22% of the pixels per scene not being scanned. The SLC failure has seriously limited the scientific applications of ETM+ data. While there have been a number of methods developed to fill in the data gaps, each method has shortcomings, especially for heterogeneous landscapes. Based on the assumption that the same-class neighboring pixels around the un-scanned pixels have similar spectral characteristics, and that these neighboring and un-scanned pixels exhibit similar patterns of spectral differences between dates, we developed a simple and effective method to interpolate the values of the pixels within the gaps. We refer to this method as the Neighborhood Similar Pixel Interpolator (NSPI). Simulated and actual SLC-off ETM+ images were used to assess the performance of the NSPI. Results indicate that NSPI can restore the value of un-scanned pixels very accurately, and that it works especially well in heterogeneous regions. In addition, it can work well even if there is a relatively long time interval or significant spectral changes between the input and target image. The filled images appear reasonably spatially continuous without obvious striping patterns. Supervised classification using the maximum likelihood algorithm was done on both gap-filled simulated SLC-off data and the original "gap free" data set, and it was found that classification results, including accuracies, were very comparable. This indicates that gap-filled products generated by NSPI will have relevance to the user community for various land cover applications. In addition, the simple principle and high computational efficiency of NSPI will enable processing large volumes of SLC-off ETM+ data.
Huang, Chao-Tsung; Wang, Yu-Wen; Huang, Li-Ren; Chin, Jui; Chen, Liang-Gee
2017-02-01
Digital refocusing has a tradeoff between complexity and quality when using sparsely sampled light fields for low-storage applications. In this paper, we propose a fast physically correct refocusing algorithm to address this issue in a twofold way. First, view interpolation is adopted to provide photorealistic quality at infocus-defocus hybrid boundaries. Regarding its conventional high complexity, we devised a fast line-scan method specifically for refocusing, and its 1D kernel can be 30× faster than the benchmark View Synthesis Reference Software (VSRS)-1D-Fast. Second, we propose a block-based multi-rate processing flow for accelerating purely infocused or defocused regions, and a further 3- 34× speedup can be achieved for high-resolution images. All candidate blocks of variable sizes can interpolate different numbers of rendered views and perform refocusing in different subsampled layers. To avoid visible aliasing and block artifacts, we determine these parameters and the simulated aperture filter through a localized filter response analysis using defocus blur statistics. The final quadtree block partitions are then optimized in terms of computation time. Extensive experimental results are provided to show superior refocusing quality and fast computation speed. In particular, the run time is comparable with the conventional single-image blurring, which causes serious boundary artifacts.
Adaptive kernel regression for freehand 3D ultrasound reconstruction
NASA Astrophysics Data System (ADS)
Alshalalfah, Abdel-Latif; Daoud, Mohammad I.; Al-Najar, Mahasen
2017-03-01
Freehand three-dimensional (3D) ultrasound imaging enables low-cost and flexible 3D scanning of arbitrary-shaped organs, where the operator can freely move a two-dimensional (2D) ultrasound probe to acquire a sequence of tracked cross-sectional images of the anatomy. Often, the acquired 2D ultrasound images are irregularly and sparsely distributed in the 3D space. Several 3D reconstruction algorithms have been proposed to synthesize 3D ultrasound volumes based on the acquired 2D images. A challenging task during the reconstruction process is to preserve the texture patterns in the synthesized volume and ensure that all gaps in the volume are correctly filled. This paper presents an adaptive kernel regression algorithm that can effectively reconstruct high-quality freehand 3D ultrasound volumes. The algorithm employs a kernel regression model that enables nonparametric interpolation of the voxel gray-level values. The kernel size of the regression model is adaptively adjusted based on the characteristics of the voxel that is being interpolated. In particular, when the algorithm is employed to interpolate a voxel located in a region with dense ultrasound data samples, the size of the kernel is reduced to preserve the texture patterns. On the other hand, the size of the kernel is increased in areas that include large gaps to enable effective gap filling. The performance of the proposed algorithm was compared with seven previous interpolation approaches by synthesizing freehand 3D ultrasound volumes of a benign breast tumor. The experimental results show that the proposed algorithm outperforms the other interpolation approaches.
Rareş, Andrei; Reinders, Marcel J T; Biemond, Jan
2005-10-01
In this paper, we propose a new image inpainting algorithm that relies on explicit edge information. The edge information is used both for the reconstruction of a skeleton image structure in the missing areas, as well as for guiding the interpolation that follows. The structure reconstruction part exploits different properties of the edges, such as the colors of the objects they separate, an estimate of how well one edge continues into another one, and the spatial order of the edges with respect to each other. In order to preserve both sharp and smooth edges, the areas delimited by the recovered structure are interpolated independently, and the process is guided by the direction of the nearby edges. The novelty of our approach lies primarily in exploiting explicitly the constraint enforced by the numerical interpretation of the sequential order of edges, as well as in the pixel filling method which takes into account the proximity and direction of edges. Extensive experiments are carried out in order to validate and compare the algorithm both quantitatively and qualitatively. They show the advantages of our algorithm and its readily application to real world cases.
Geometric and shading correction for images of printed materials using boundary.
Brown, Michael S; Tsoi, Yau-Chat
2006-06-01
A novel technique that uses boundary interpolation to correct geometric distortion and shading artifacts present in images of printed materials is presented. Unlike existing techniques, our algorithm can simultaneously correct a variety of geometric distortions, including skew, fold distortion, binder curl, and combinations of these. In addition, the same interpolation framework can be used to estimate the intrinsic illumination component of the distorted image to correct shading artifacts. We detail our algorithm for geometric and shading correction and demonstrate its usefulness on real-world and synthetic data.
Adaptive Markov Random Fields for Example-Based Super-resolution of Faces
NASA Astrophysics Data System (ADS)
Stephenson, Todd A.; Chen, Tsuhan
2006-12-01
Image enhancement of low-resolution images can be done through methods such as interpolation, super-resolution using multiple video frames, and example-based super-resolution. Example-based super-resolution, in particular, is suited to images that have a strong prior (for those frameworks that work on only a single image, it is more like image restoration than traditional, multiframe super-resolution). For example, hallucination and Markov random field (MRF) methods use examples drawn from the same domain as the image being enhanced to determine what the missing high-frequency information is likely to be. We propose to use even stronger prior information by extending MRF-based super-resolution to use adaptive observation and transition functions, that is, to make these functions region-dependent. We show with face images how we can adapt the modeling for each image patch so as to improve the resolution.
NASA Astrophysics Data System (ADS)
Gao, Kun; Yang, Hu; Chen, Xiaomei; Ni, Guoqiang
2008-03-01
Because of complex thermal objects in an infrared image, the prevalent image edge detection operators are often suitable for a certain scene and extract too wide edges sometimes. From a biological point of view, the image edge detection operators work reliably when assuming a convolution-based receptive field architecture. A DoG (Difference-of- Gaussians) model filter based on ON-center retinal ganglion cell receptive field architecture with artificial eye tremors introduced is proposed for the image contour detection. Aiming at the blurred edges of an infrared image, the subsequent orthogonal polynomial interpolation and sub-pixel level edge detection in rough edge pixel neighborhood is adopted to locate the foregoing rough edges in sub-pixel level. Numerical simulations show that this method can locate the target edge accurately and robustly.
Healing X-ray scattering images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jiliang; Lhermitte, Julien; Tian, Ye
X-ray scattering images contain numerous gaps and defects arising from detector limitations and experimental configuration. Here, we present a method to heal X-ray scattering images, filling gaps in the data and removing defects in a physically meaningful manner. Unlike generic inpainting methods, this method is closely tuned to the expected structure of reciprocal-space data. In particular, we exploit statistical tests and symmetry analysis to identify the structure of an image; we then copy, average and interpolate measured data into gaps in a way that respects the identified structure and symmetry. Importantly, the underlying analysis methods provide useful characterization of structuresmore » present in the image, including the identification of diffuseversussharp features, anisotropy and symmetry. The presented method leverages known characteristics of reciprocal space, enabling physically reasonable reconstruction even with large image gaps. The method will correspondingly fail for images that violate these underlying assumptions. The method assumes point symmetry and is thus applicable to small-angle X-ray scattering (SAXS) data, but only to a subset of wide-angle data. Our method succeeds in filling gaps and healing defects in experimental images, including extending data beyond the original detector borders.« less
Healing X-ray scattering images
Liu, Jiliang; Lhermitte, Julien; Tian, Ye; ...
2017-05-24
X-ray scattering images contain numerous gaps and defects arising from detector limitations and experimental configuration. Here, we present a method to heal X-ray scattering images, filling gaps in the data and removing defects in a physically meaningful manner. Unlike generic inpainting methods, this method is closely tuned to the expected structure of reciprocal-space data. In particular, we exploit statistical tests and symmetry analysis to identify the structure of an image; we then copy, average and interpolate measured data into gaps in a way that respects the identified structure and symmetry. Importantly, the underlying analysis methods provide useful characterization of structuresmore » present in the image, including the identification of diffuseversussharp features, anisotropy and symmetry. The presented method leverages known characteristics of reciprocal space, enabling physically reasonable reconstruction even with large image gaps. The method will correspondingly fail for images that violate these underlying assumptions. The method assumes point symmetry and is thus applicable to small-angle X-ray scattering (SAXS) data, but only to a subset of wide-angle data. Our method succeeds in filling gaps and healing defects in experimental images, including extending data beyond the original detector borders.« less
Experimental single-chip color HDTV image acquisition system with 8M-pixel CMOS image sensor
NASA Astrophysics Data System (ADS)
Shimamoto, Hiroshi; Yamashita, Takayuki; Funatsu, Ryohei; Mitani, Kohji; Nojiri, Yuji
2006-02-01
We have developed an experimental single-chip color HDTV image acquisition system using 8M-pixel CMOS image sensor. The sensor has 3840 × 2160 effective pixels and is progressively scanned at 60 frames per second. We describe the color filter array and interpolation method to improve image quality with a high-pixel-count single-chip sensor. We also describe an experimental image acquisition system we used to measured spatial frequency characteristics in the horizontal direction. The results indicate good prospects for achieving a high quality single chip HDTV camera that reduces pseudo signals and maintains high spatial frequency characteristics within the frequency band for HDTV.
Spatial Interpolation of Rain-field Dynamic Time-Space Evolution in Hong Kong
NASA Astrophysics Data System (ADS)
Liu, P.; Tung, Y. K.
2017-12-01
Accurate and reliable measurement and prediction of spatial and temporal distribution of rain-field over a wide range of scales are important topics in hydrologic investigations. In this study, geostatistical treatment of precipitation field is adopted. To estimate the rainfall intensity over a study domain with the sample values and the spatial structure from the radar data, the cumulative distribution functions (CDFs) at all unsampled locations were estimated. Indicator Kriging (IK) was used to estimate the exceedance probabilities for different pre-selected cutoff levels and a procedure was implemented for interpolating CDF values between the thresholds that were derived from the IK. Different interpolation schemes of the CDF were proposed and their influences on the performance were also investigated. The performance measures and visual comparison between the observed rain-field and the IK-based estimation suggested that the proposed method can provide fine results of estimation of indicator variables and is capable of producing realistic image.
Automated brain tumor segmentation using spatial accuracy-weighted hidden Markov Random Field.
Nie, Jingxin; Xue, Zhong; Liu, Tianming; Young, Geoffrey S; Setayesh, Kian; Guo, Lei; Wong, Stephen T C
2009-09-01
A variety of algorithms have been proposed for brain tumor segmentation from multi-channel sequences, however, most of them require isotropic or pseudo-isotropic resolution of the MR images. Although co-registration and interpolation of low-resolution sequences, such as T2-weighted images, onto the space of the high-resolution image, such as T1-weighted image, can be performed prior to the segmentation, the results are usually limited by partial volume effects due to interpolation of low-resolution images. To improve the quality of tumor segmentation in clinical applications where low-resolution sequences are commonly used together with high-resolution images, we propose the algorithm based on Spatial accuracy-weighted Hidden Markov random field and Expectation maximization (SHE) approach for both automated tumor and enhanced-tumor segmentation. SHE incorporates the spatial interpolation accuracy of low-resolution images into the optimization procedure of the Hidden Markov Random Field (HMRF) to segment tumor using multi-channel MR images with different resolutions, e.g., high-resolution T1-weighted and low-resolution T2-weighted images. In experiments, we evaluated this algorithm using a set of simulated multi-channel brain MR images with known ground-truth tissue segmentation and also applied it to a dataset of MR images obtained during clinical trials of brain tumor chemotherapy. The results show that more accurate tumor segmentation results can be obtained by comparing with conventional multi-channel segmentation algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, J; Qi, H; Wu, S
Purpose: In transmitted X-ray tomography imaging, projections are sometimes incomplete due to a variety of reasons, such as geometry inaccuracy, defective detector cells, etc. To address this issue, we have derived a direct consistency condition based on John’s Equation, and proposed a method to effectively restore incomplete projections based on this consistency condition. Methods: Through parameter substitutions, we have derived a direct consistency condition equation from John’s equation, in which the left side is only projection derivative of view and the right side is projection derivative of other geometrical parameters. Based on this consistency condition, a projection restoration method ismore » proposed, which includes five steps: 1) Forward projecting reconstructed image and using linear interpolation to estimate the incomplete projections as the initial result; 2) Performing Fourier transform on the projections; 3) Restoring the incomplete frequency data using the consistency condition equation; 4) Performing inverse Fourier transform; 5) Repeat step 2)∼4) until our criteria is met to terminate the iteration. Results: A beam-blocking-based scatter correction case and a bad-pixel correction case were used to demonstrate the efficacy and robustness of our restoration method. The mean absolute error (MAE), signal noise ratio (SNR) and mean square error (MSE) were employed as our evaluation metrics of the reconstructed images. For the scatter correction case, the MAE is reduced from 63.3% to 71.7% with 4 iterations. Compared with the existing Patch’s method, the MAE of our method is further reduced by 8.72%. For the bad-pixel case, the SNR of the reconstructed image by our method is increased from 13.49% to 21.48%, with the MSE being decreased by 45.95%, compared with linear interpolation method. Conclusion: Our studies have demonstrated that our restoration method based on the new consistency condition could effectively restore the incomplete projections, especially for their high frequency component.« less
High accurate interpolation of NURBS tool path for CNC machine tools
NASA Astrophysics Data System (ADS)
Liu, Qiang; Liu, Huan; Yuan, Songmei
2016-09-01
Feedrate fluctuation caused by approximation errors of interpolation methods has great effects on machining quality in NURBS interpolation, but few methods can efficiently eliminate or reduce it to a satisfying level without sacrificing the computing efficiency at present. In order to solve this problem, a high accurate interpolation method for NURBS tool path is proposed. The proposed method can efficiently reduce the feedrate fluctuation by forming a quartic equation with respect to the curve parameter increment, which can be efficiently solved by analytic methods in real-time. Theoretically, the proposed method can totally eliminate the feedrate fluctuation for any 2nd degree NURBS curves and can interpolate 3rd degree NURBS curves with minimal feedrate fluctuation. Moreover, a smooth feedrate planning algorithm is also proposed to generate smooth tool motion with considering multiple constraints and scheduling errors by an efficient planning strategy. Experiments are conducted to verify the feasibility and applicability of the proposed method. This research presents a novel NURBS interpolation method with not only high accuracy but also satisfying computing efficiency.
NASA Astrophysics Data System (ADS)
Vishnukumar, S.; Wilscy, M.
2017-12-01
In this paper, we propose a single image Super-Resolution (SR) method based on Compressive Sensing (CS) and Improved Total Variation (TV) Minimization Sparse Recovery. In the CS framework, low-resolution (LR) image is treated as the compressed version of high-resolution (HR) image. Dictionary Training and Sparse Recovery are the two phases of the method. K-Singular Value Decomposition (K-SVD) method is used for dictionary training and the dictionary represents HR image patches in a sparse manner. Here, only the interpolated version of the LR image is used for training purpose and thereby the structural self similarity inherent in the LR image is exploited. In the sparse recovery phase the sparse representation coefficients with respect to the trained dictionary for LR image patches are derived using Improved TV Minimization method. HR image can be reconstructed by the linear combination of the dictionary and the sparse coefficients. The experimental results show that the proposed method gives better results quantitatively as well as qualitatively on both natural and remote sensing images. The reconstructed images have better visual quality since edges and other sharp details are preserved.
NASA Astrophysics Data System (ADS)
Reinhardt, Katja; Samimi, Cyrus
2018-01-01
While climatological data of high spatial resolution are largely available in most developed countries, the network of climatological stations in many other regions of the world still constitutes large gaps. Especially for those regions, interpolation methods are important tools to fill these gaps and to improve the data base indispensible for climatological research. Over the last years, new hybrid methods of machine learning and geostatistics have been developed which provide innovative prospects in spatial predictive modelling. This study will focus on evaluating the performance of 12 different interpolation methods for the wind components \\overrightarrow{u} and \\overrightarrow{v} in a mountainous region of Central Asia. Thereby, a special focus will be on applying new hybrid methods on spatial interpolation of wind data. This study is the first evaluating and comparing the performance of several of these hybrid methods. The overall aim of this study is to determine whether an optimal interpolation method exists, which can equally be applied for all pressure levels, or whether different interpolation methods have to be used for the different pressure levels. Deterministic (inverse distance weighting) and geostatistical interpolation methods (ordinary kriging) were explored, which take into account only the initial values of \\overrightarrow{u} and \\overrightarrow{v} . In addition, more complex methods (generalized additive model, support vector machine and neural networks as single methods and as hybrid methods as well as regression-kriging) that consider additional variables were applied. The analysis of the error indices revealed that regression-kriging provided the most accurate interpolation results for both wind components and all pressure heights. At 200 and 500 hPa, regression-kriging is followed by the different kinds of neural networks and support vector machines and for 850 hPa it is followed by the different types of support vector machine and ordinary kriging. Overall, explanatory variables improve the interpolation results.
Method for position emission mammography image reconstruction
Smith, Mark Frederick
2004-10-12
An image reconstruction method comprising accepting coincidence datat from either a data file or in real time from a pair of detector heads, culling event data that is outside a desired energy range, optionally saving the desired data for each detector position or for each pair of detector pixels on the two detector heads, and then reconstructing the image either by backprojection image reconstruction or by iterative image reconstruction. In the backprojection image reconstruction mode, rays are traced between centers of lines of response (LOR's), counts are then either allocated by nearest pixel interpolation or allocated by an overlap method and then corrected for geometric effects and attenuation and the data file updated. If the iterative image reconstruction option is selected, one implementation is to compute a grid Siddon retracing, and to perform maximum likelihood expectation maiximization (MLEM) computed by either: a) tracing parallel rays between subpixels on opposite detector heads; or b) tracing rays between randomized endpoint locations on opposite detector heads.
UltraColor: a new gamut-mapping strategy
NASA Astrophysics Data System (ADS)
Spaulding, Kevin E.; Ellson, Richard N.; Sullivan, James R.
1995-04-01
Many color calibration and enhancement strategies exist for digital systems. Typically, these approaches are optimized to work well with one class of images, but may produce unsatisfactory results for other types of images. For example, a colorimetric strategy may work well when printing photographic scenes, but may give inferior results for business graphic images because of device color gamut limitations. On the other hand, a color enhancement strategy that works well for business graphics images may distort the color reproduction of skintones and other important photographic colors. This paper describes a method for specifying different color mapping strategies in various regions of color space, while providing a mechanism for smooth transitions between the different regions. The method involves a two step process: (1) constraints are applied so some subset of the points in the input color space explicitly specifying the color mapping function; (2) the color mapping for the remainder of the color values is then determined using an interpolation algorithm that preserves continuity and smoothness. The interpolation algorithm that was developed is based on a computer graphics morphing technique. This method was used to develop the UltraColor gamut mapping strategy, which combines a colorimetric mapping for colors with low saturation levels, with a color enhancement technique for colors with high saturation levels. The result is a single color transformation that produces superior quality for all classes of imagery. UltraColor has been incorporated in several models of Kodak printers including the Kodak ColorEase PS and the Kodak XLS 8600 PS thermal dye sublimation printers.
A Review on Medical Image Registration as an Optimization Problem
Song, Guoli; Han, Jianda; Zhao, Yiwen; Wang, Zheng; Du, Huibin
2017-01-01
Objective: In the course of clinical treatment, several medical media are required by a phy-sician in order to provide accurate and complete information about a patient. Medical image registra-tion techniques can provide a richer diagnosis and treatment information to doctors and to provide a comprehensive reference source for the researchers involved in image registration as an optimization problem. Methods: The essence of image registration is associating two or more different images spatial asso-ciation, and getting the translation of their spatial relationship. For medical image registration, its pro-cess is not absolute. Its core purpose is finding the conversion relationship between different images. Result: The major step of image registration includes the change of geometrical dimensions, and change of the image of the combination, image similarity measure, iterative optimization and interpo-lation process. Conclusion: The contribution of this review is sort of related image registration research methods, can provide a brief reference for researchers about image registration. PMID:28845149
Treatment of Outliers via Interpolation Method with Neural Network Forecast Performances
NASA Astrophysics Data System (ADS)
Wahir, N. A.; Nor, M. E.; Rusiman, M. S.; Gopal, K.
2018-04-01
Outliers often lurk in many datasets, especially in real data. Such anomalous data can negatively affect statistical analyses, primarily normality, variance, and estimation aspects. Hence, handling the occurrences of outliers require special attention. Therefore, it is important to determine the suitable ways in treating outliers so as to ensure that the quality of the analyzed data is indeed high. As such, this paper discusses an alternative method to treat outliers via linear interpolation method. In fact, assuming outlier as a missing value in the dataset allows the application of the interpolation method to interpolate the outliers thus, enabling the comparison of data series using forecast accuracy before and after outlier treatment. With that, the monthly time series of Malaysian tourist arrivals from January 1998 until December 2015 had been used to interpolate the new series. The results indicated that the linear interpolation method, which was comprised of improved time series data, displayed better results, when compared to the original time series data in forecasting from both Box-Jenkins and neural network approaches.
Capacitive touch sensing : signal and image processing algorithms
NASA Astrophysics Data System (ADS)
Baharav, Zachi; Kakarala, Ramakrishna
2011-03-01
Capacitive touch sensors have been in use for many years, and recently gained center stage with the ubiquitous use in smart-phones. In this work we will analyze the most common method of projected capacitive sensing, that of absolute capacitive sensing, together with the most common sensing pattern, that of diamond-shaped sensors. After a brief introduction to the problem, and the reasons behind its popularity, we will formulate the problem as a reconstruction from projections. We derive analytic solutions for two simple cases: circular finger on a wire grid, and square finger on a square grid. The solutions give insight into the ambiguities of finding finger location from sensor readings. The main contribution of our paper is the discussion of interpolation algorithms including simple linear interpolation , curve fitting (parabolic and Gaussian), filtering, general look-up-table, and combinations thereof. We conclude with observations on the limits of the present algorithmic methods, and point to possible future research.
Registration-based interpolation applied to cardiac MRI
NASA Astrophysics Data System (ADS)
Ólafsdóttir, Hildur; Pedersen, Henrik; Hansen, Michael S.; Lyksborg, Mark; Hansen, Mads Fogtmann; Darkner, Sune; Larsen, Rasmus
2010-03-01
Various approaches have been proposed for segmentation of cardiac MRI. An accurate segmentation of the myocardium and ventricles is essential to determine parameters of interest for the function of the heart, such as the ejection fraction. One problem with MRI is the poor resolution in one dimension. A 3D registration algorithm will typically use a trilinear interpolation of intensities to determine the intensity of a deformed template image. Due to the poor resolution across slices, such linear approximation is highly inaccurate since the assumption of smooth underlying intensities is violated. Registration-based interpolation is based on 2D registrations between adjacent slices and is independent of segmentations. Hence, rather than assuming smoothness in intensity, the assumption is that the anatomy is consistent across slices. The basis for the proposed approach is the set of 2D registrations between each pair of slices, both ways. The intensity of a new slice is then weighted by (i) the deformation functions and (ii) the intensities in the warped images. Unlike the approach by Penney et al. 2004, this approach takes into account deformation both ways, which gives more robustness where correspondence between slices is poor. We demonstrate the approach on a toy example and on a set of cardiac CINE MRI. Qualitative inspection reveals that the proposed approach provides a more convincing transition between slices than images obtained by linear interpolation. A quantitative validation reveals significantly lower reconstruction errors than both linear and registration-based interpolation based on one-way registrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Y; Sharp, G
2014-06-15
Purpose: Gain calibration for X-ray imaging systems with movable flat panel detectors (FPD) and intrinsic crosshairs is a challenge due to the geometry dependence of the heel effect and crosshair artifact. This study aims to develop a gain correction method for such systems by implementing the multi-acquisition gain image correction (MAGIC) technique. Methods: Raw flat-field images containing crosshair shadows and heel effect were acquired in 4 different FPD positions with fixed exposure parameters. The crosshair region was automatically detected and substituted with interpolated values from nearby exposed regions, generating a conventional single-image gain-map for each FPD position. Large kernel-based correctionmore » was applied to these images to correct the heel effect. A mask filter was used to invalidate the original cross-hair regions previously filled with the interpolated values. A final, seamless gain-map was created from the processed images by either the sequential filling (SF) or selective averaging (SA) techniques developed in this study. Quantitative evaluation was performed based on detective quantum efficiency improvement factor (DQEIF) for gain-corrected images using the conventional and proposed techniques. Results: Qualitatively, the MAGIC technique was found to be more effective in eliminating crosshair artifacts compared to the conventional single-image method. The mean DQEIF over the range of frequencies from 0.5 to 3.5 mm-1 were 1.09±0.06, 2.46±0.32, and 3.34±0.36 in the crosshair-artifact region and 2.35±0.31, 2.33±0.31, and 3.09±0.34 in the normal region, for the conventional, MAGIC-SF, and MAGIC-SA techniques, respectively. Conclusion: The introduced MAGIC technique is appropriate for gain calibration of an imaging system associated with a moving FPD and an intrinsic crosshair. The technique showed advantages over a conventional single image-based technique by successfully reducing residual crosshair artifacts, and higher image quality with respect to DQE.« less
Kerr, Deborah L.; Nitschke, Jack B.
2013-01-01
Abstract Granger causality analysis of functional magnetic resonance imaging (fMRI) blood-oxygen-level-dependent signal data allows one to infer the direction and magnitude of influence that brain regions exert on one another. We employed a method for upsampling the time resolution of fMRI data that does not require additional interpolation beyond the interpolation that is regularly used for slice-timing correction. The mathematics for this new method are provided, and simulations demonstrate its viability. Using fMRI, 17 snake phobics and 19 healthy controls viewed snake, disgust, and neutral fish video clips preceded by anticipatory cues. Multivariate Granger causality models at the native 2-sec resolution and at the upsampled 400-ms resolution assessed directional associations of fMRI data among 13 anatomical regions of interest identified in prior research on anxiety and emotion. Superior sensitivity was observed for the 400-ms model, both for connectivity within each group and for group differences in connectivity. Context-dependent analyses for the 400-ms multivariate Granger causality model revealed the specific trial types showing group differences in connectivity. This is the first demonstration of effective connectivity of fMRI data using a method for achieving 400-ms resolution without sacrificing accuracy available at 2-sec resolution. PMID:23134194
Full-frame video stabilization with motion inpainting.
Matsushita, Yasuyuki; Ofek, Eyal; Ge, Weina; Tang, Xiaoou; Shum, Heung-Yeung
2006-07-01
Video stabilization is an important video enhancement technology which aims at removing annoying shaky motion from videos. We propose a practical and robust approach of video stabilization that produces full-frame stabilized videos with good visual quality. While most previous methods end up with producing smaller size stabilized videos, our completion method can produce full-frame videos by naturally filling in missing image parts by locally aligning image data of neighboring frames. To achieve this, motion inpainting is proposed to enforce spatial and temporal consistency of the completion in both static and dynamic image areas. In addition, image quality in the stabilized video is enhanced with a new practical deblurring algorithm. Instead of estimating point spread functions, our method transfers and interpolates sharper image pixels of neighboring frames to increase the sharpness of the frame. The proposed video completion and deblurring methods enabled us to develop a complete video stabilizer which can naturally keep the original image quality in the stabilized videos. The effectiveness of our method is confirmed by extensive experiments over a wide variety of videos.
Video Extrapolation Method Based on Time-Varying Energy Optimization and CIP.
Sakaino, Hidetomo
2016-09-01
Video extrapolation/prediction methods are often used to synthesize new videos from images. For fluid-like images and dynamic textures as well as moving rigid objects, most state-of-the-art video extrapolation methods use non-physics-based models that learn orthogonal bases from a number of images but at high computation cost. Unfortunately, data truncation can cause image degradation, i.e., blur, artifact, and insufficient motion changes. To extrapolate videos that more strictly follow physical rules, this paper proposes a physics-based method that needs only a few images and is truncation-free. We utilize physics-based equations with image intensity and velocity: optical flow, Navier-Stokes, continuity, and advection equations. These allow us to use partial difference equations to deal with the local image feature changes. Image degradation during extrapolation is minimized by updating model parameters, where a novel time-varying energy balancer model that uses energy based image features, i.e., texture, velocity, and edge. Moreover, the advection equation is discretized by high-order constrained interpolation profile for lower quantization error than can be achieved by the previous finite difference method in long-term videos. Experiments show that the proposed energy based video extrapolation method outperforms the state-of-the-art video extrapolation methods in terms of image quality and computation cost.
Cloud Photogrammetry from Space
NASA Astrophysics Data System (ADS)
Zaksek, K.; Gerst, A.; von der Lieth, J.; Ganci, G.; Hort, M.
2015-04-01
The most commonly used method for satellite cloud top height (CTH) compares brightness temperature of the cloud with the atmospheric temperature profile. Because of the uncertainties of this method, we propose a photogrammetric approach. As clouds can move with high velocities, even instruments with multiple cameras are not appropriate for accurate CTH estimation. Here we present two solutions. The first is based on the parallax between data retrieved from geostationary (SEVIRI, HRV band; 1000 m spatial resolution) and polar orbiting satellites (MODIS, band 1; 250 m spatial resolution). The procedure works well if the data from both satellites are retrieved nearly simultaneously. However, MODIS does not retrieve the data at exactly the same time as SEVIRI. To compensate for advection in the atmosphere we use two sequential SEVIRI images (one before and one after the MODIS retrieval) and interpolate the cloud position from SEVIRI data to the time of MODIS retrieval. CTH is then estimated by intersection of corresponding lines-of-view from MODIS and interpolated SEVIRI data. The second method is based on NASA program Crew Earth observations from the International Space Station (ISS). The ISS has a lower orbit than most operational satellites, resulting in a shorter minimal time between two images, which is needed to produce a suitable parallax. In addition, images made by the ISS crew are taken by a full frame sensor and not a push broom scanner that most operational satellites use. Such data make it possible to observe also short time evolution of clouds.
Hand skin reconstruction from skeletal landmarks.
Lefèvre, P; Van Sint Jan, S; Beauthier, J P; Rooze, M
2007-11-01
Many studies related to three-dimensional facial reconstruction have been previously reported. On the other hand, no extensive work has been found in the literature about hand reconstruction as an identification method. In this paper, the feasibility of virtual reconstruction of hand skin based on (1) its skeleton and (2) another hand skin and skeleton used as template was assessed. One cadaver hand and one volunteer's hand have been used. For the two hands, computer models of the bones and skin were obtained from computerized tomography. A customized software allowed locating spatial coordinates of bony anatomical landmarks on the models. From these landmarks, the spatial relationships between the models were determined and used to interpolate the missing hand skin. The volume of the interpolated skin was compared to the real skin obtained from medical imaging for validation. Results seem to indicate that such a method is of interest to give forensic investigators morphological clues related to an individual hand skin based on its skeleton. Further work is in progress to finalize the method.
An optical systems analysis approach to image resampling
NASA Technical Reports Server (NTRS)
Lyon, Richard G.
1997-01-01
All types of image registration require some type of resampling, either during the registration or as a final step in the registration process. Thus the image(s) must be regridded into a spatially uniform, or angularly uniform, coordinate system with some pre-defined resolution. Frequently the ending resolution is not the resolution at which the data was observed with. The registration algorithm designer and end product user are presented with a multitude of possible resampling methods each of which modify the spatial frequency content of the data in some way. The purpose of this paper is threefold: (1) to show how an imaging system modifies the scene from an end to end optical systems analysis approach, (2) to develop a generalized resampling model, and (3) empirically apply the model to simulated radiometric scene data and tabulate the results. A Hanning windowed sinc interpolator method will be developed based upon the optical characterization of the system. It will be discussed in terms of the effects and limitations of sampling, aliasing, spectral leakage, and computational complexity. Simulated radiometric scene data will be used to demonstrate each of the algorithms. A high resolution scene will be "grown" using a fractal growth algorithm based on mid-point recursion techniques. The result scene data will be convolved with a point spread function representing the optical response. The resultant scene will be convolved with the detection systems response and subsampled to the desired resolution. The resultant data product will be subsequently resampled to the correct grid using the Hanning windowed sinc interpolator and the results and errors tabulated and discussed.
Interpolating precipitation and its relation to runoff and non-point source pollution.
Chang, Chia-Ling; Lo, Shang-Lien; Yu, Shaw-L
2005-01-01
When rainfall spatially varies, complete rainfall data for each region with different rainfall characteristics are very important. Numerous interpolation methods have been developed for estimating unknown spatial characteristics. However, no interpolation method is suitable for all circumstances. In this study, several methods, including the arithmetic average method, the Thiessen Polygons method, the traditional inverse distance method, and the modified inverse distance method, were used to interpolate precipitation. The modified inverse distance method considers not only horizontal distances but also differences between the elevations of the region with no rainfall records and of its surrounding rainfall stations. The results show that when the spatial variation of rainfall is strong, choosing a suitable interpolation method is very important. If the rainfall is uniform, the precipitation estimated using any interpolation method would be quite close to the actual precipitation. When rainfall is heavy in locations with high elevation, the rainfall changes with the elevation. In this situation, the modified inverse distance method is much more effective than any other method discussed herein for estimating the rainfall input for WinVAST to estimate runoff and non-point source pollution (NPSP). When the spatial variation of rainfall is random, regardless of the interpolation method used to yield rainfall input, the estimation errors of runoff and NPSP are large. Moreover, the relationship between the relative error of the predicted runoff and predicted pollutant loading of SS is high. However, the pollutant concentration is affected by both runoff and pollutant export, so the relationship between the relative error of the predicted runoff and the predicted pollutant concentration of SS may be unstable.
Research on facial expression simulation based on depth image
NASA Astrophysics Data System (ADS)
Ding, Sha-sha; Duan, Jin; Zhao, Yi-wu; Xiao, Bo; Wang, Hao
2017-11-01
Nowadays, face expression simulation is widely used in film and television special effects, human-computer interaction and many other fields. Facial expression is captured by the device of Kinect camera .The method of AAM algorithm based on statistical information is employed to detect and track faces. The 2D regression algorithm is applied to align the feature points. Among them, facial feature points are detected automatically and 3D cartoon model feature points are signed artificially. The aligned feature points are mapped by keyframe techniques. In order to improve the animation effect, Non-feature points are interpolated based on empirical models. Under the constraint of Bézier curves we finish the mapping and interpolation. Thus the feature points on the cartoon face model can be driven if the facial expression varies. In this way the purpose of cartoon face expression simulation in real-time is came ture. The experiment result shows that the method proposed in this text can accurately simulate the facial expression. Finally, our method is compared with the previous method. Actual data prove that the implementation efficiency is greatly improved by our method.
A fast image simulation algorithm for scanning transmission electron microscopy.
Ophus, Colin
2017-01-01
Image simulation for scanning transmission electron microscopy at atomic resolution for samples with realistic dimensions can require very large computation times using existing simulation algorithms. We present a new algorithm named PRISM that combines features of the two most commonly used algorithms, namely the Bloch wave and multislice methods. PRISM uses a Fourier interpolation factor f that has typical values of 4-20 for atomic resolution simulations. We show that in many cases PRISM can provide a speedup that scales with f 4 compared to multislice simulations, with a negligible loss of accuracy. We demonstrate the usefulness of this method with large-scale scanning transmission electron microscopy image simulations of a crystalline nanoparticle on an amorphous carbon substrate.
NASA Astrophysics Data System (ADS)
Yi, Longtao; Liu, Zhiguo; Wang, Kai; Chen, Man; Peng, Shiqi; Zhao, Weigang; He, Jialin; Zhao, Guangcui
2015-03-01
A new method is presented to subtract the background from the energy dispersive X-ray fluorescence (EDXRF) spectrum using a cubic spline interpolation. To accurately obtain interpolation nodes, a smooth fitting and a set of discriminant formulations were adopted. From these interpolation nodes, the background is estimated by a calculated cubic spline function. The method has been tested on spectra measured from a coin and an oil painting using a confocal MXRF setup. In addition, the method has been tested on an existing sample spectrum. The result confirms that the method can properly subtract the background.
Ciulla, Carlo; Veljanovski, Dimitar; Rechkoska Shikoska, Ustijana; Risteski, Filip A
2015-11-01
This research presents signal-image post-processing techniques called Intensity-Curvature Measurement Approaches with application to the diagnosis of human brain tumors detected through Magnetic Resonance Imaging (MRI). Post-processing of the MRI of the human brain encompasses the following model functions: (i) bivariate cubic polynomial, (ii) bivariate cubic Lagrange polynomial, (iii) monovariate sinc, and (iv) bivariate linear. The following Intensity-Curvature Measurement Approaches were used: (i) classic-curvature, (ii) signal resilient to interpolation, (iii) intensity-curvature measure and (iv) intensity-curvature functional. The results revealed that the classic-curvature, the signal resilient to interpolation and the intensity-curvature functional are able to add additional information useful to the diagnosis carried out with MRI. The contribution to the MRI diagnosis of our study are: (i) the enhanced gray level scale of the tumor mass and the well-behaved representation of the tumor provided through the signal resilient to interpolation, and (ii) the visually perceptible third dimension perpendicular to the image plane provided through the classic-curvature and the intensity-curvature functional.
Ciulla, Carlo; Veljanovski, Dimitar; Rechkoska Shikoska, Ustijana; Risteski, Filip A.
2015-01-01
This research presents signal-image post-processing techniques called Intensity-Curvature Measurement Approaches with application to the diagnosis of human brain tumors detected through Magnetic Resonance Imaging (MRI). Post-processing of the MRI of the human brain encompasses the following model functions: (i) bivariate cubic polynomial, (ii) bivariate cubic Lagrange polynomial, (iii) monovariate sinc, and (iv) bivariate linear. The following Intensity-Curvature Measurement Approaches were used: (i) classic-curvature, (ii) signal resilient to interpolation, (iii) intensity-curvature measure and (iv) intensity-curvature functional. The results revealed that the classic-curvature, the signal resilient to interpolation and the intensity-curvature functional are able to add additional information useful to the diagnosis carried out with MRI. The contribution to the MRI diagnosis of our study are: (i) the enhanced gray level scale of the tumor mass and the well-behaved representation of the tumor provided through the signal resilient to interpolation, and (ii) the visually perceptible third dimension perpendicular to the image plane provided through the classic-curvature and the intensity-curvature functional. PMID:26644943
An Approach to Unbiased Subsample Interpolation for Motion Tracking
McCormick, Matthew M.; Varghese, Tomy
2013-01-01
Accurate subsample displacement estimation is necessary for ultrasound elastography because of the small deformations that occur and the subsequent application of a derivative operation on local displacements. Many of the commonly used subsample estimation techniques introduce significant bias errors. This article addresses a reduced bias approach to subsample displacement estimations that consists of a two-dimensional windowed-sinc interpolation with numerical optimization. It is shown that a Welch or Lanczos window with a Nelder–Mead simplex or regular-step gradient-descent optimization is well suited for this purpose. Little improvement results from a sinc window radius greater than four data samples. The strain signal-to-noise ratio (SNR) obtained in a uniformly elastic phantom is compared with other parabolic and cosine interpolation methods; it is found that the strain SNR ratio is improved over parabolic interpolation from 11.0 to 13.6 in the axial direction and 0.7 to 1.1 in the lateral direction for an applied 1% axial deformation. The improvement was most significant for small strains and displacement tracking in the lateral direction. This approach does not rely on special properties of the image or similarity function, which is demonstrated by its effectiveness with the application of a previously described regularization technique. PMID:23493609
Using false colors to protect visual privacy of sensitive content
NASA Astrophysics Data System (ADS)
Ćiftçi, Serdar; Korshunov, Pavel; Akyüz, Ahmet O.; Ebrahimi, Touradj
2015-03-01
Many privacy protection tools have been proposed for preserving privacy. Tools for protection of visual privacy available today lack either all or some of the important properties that are expected from such tools. Therefore, in this paper, we propose a simple yet effective method for privacy protection based on false color visualization, which maps color palette of an image into a different color palette, possibly after a compressive point transformation of the original pixel data, distorting the details of the original image. This method does not require any prior face detection or other sensitive regions detection and, hence, unlike typical privacy protection methods, it is less sensitive to inaccurate computer vision algorithms. It is also secure as the look-up tables can be encrypted, reversible as table look-ups can be inverted, flexible as it is independent of format or encoding, adjustable as the final result can be computed by interpolating the false color image with the original using different degrees of interpolation, less distracting as it does not create visually unpleasant artifacts, and selective as it preserves better semantic structure of the input. Four different color scales and four different compression functions, one which the proposed method relies, are evaluated via objective (three face recognition algorithms) and subjective (50 human subjects in an online-based study) assessments using faces from FERET public dataset. The evaluations demonstrate that DEF and RBS color scales lead to the strongest privacy protection, while compression functions add little to the strength of privacy protection. Statistical analysis also shows that recognition algorithms and human subjects perceive the proposed protection similarly
LIP: The Livermore Interpolation Package, Version 1.4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritsch, F N
2011-07-06
This report describes LIP, the Livermore Interpolation Package. Because LIP is a stand-alone version of the interpolation package in the Livermore Equation of State (LEOS) access library, the initials LIP alternatively stand for the 'LEOS Interpolation Package'. LIP was totally rewritten from the package described in [1]. In particular, the independent variables are now referred to as x and y, since the package need not be restricted to equation of state data, which uses variables {rho} (density) and T (temperature). LIP is primarily concerned with the interpolation of two-dimensional data on a rectangular mesh. The interpolation methods provided include piecewisemore » bilinear, reduced (12-term) bicubic, and bicubic Hermite (biherm). There is a monotonicity-preserving variant of the latter, known as bimond. For historical reasons, there is also a biquadratic interpolator, but this option is not recommended for general use. A birational method was added at version 1.3. In addition to direct interpolation of two-dimensional data, LIP includes a facility for inverse interpolation (at present, only in the second independent variable). For completeness, however, the package also supports a compatible one-dimensional interpolation capability. Parametric interpolation of points on a two-dimensional curve can be accomplished by treating the components as a pair of one-dimensional functions with a common independent variable. LIP has an object-oriented design, but it is implemented in ANSI Standard C for efficiency and compatibility with existing applications. First, a 'LIP interpolation object' is created and initialized with the data to be interpolated. Then the interpolation coefficients for the selected method are computed and added to the object. Since version 1.1, LIP has options to instead estimate derivative values or merely store data in the object. (These are referred to as 'partial setup' options.) It is then possible to pass the object to functions that interpolate or invert the interpolant at an arbitrary number of points. The first section of this report describes the overall design of the package, including both forward and inverse interpolation. Sections 2-6 describe each interpolation method in detail. The software that implements this design is summarized function-by-function in Section 7. For a complete example of package usage, refer to Section 8. The report concludes with a few brief notes on possible software enhancements. For guidance on adding other functional forms to LIP, refer to Appendix B. The reader who is primarily interested in using LIP to solve a problem should skim Section 1, then skip to Sections 7.1-4. Finally, jump ahead to Section 8 and study the example. The remaining sections can be referred to in case more details are desired. Changes since version 1.1 of this document include the new Section 3.2.1 that discusses derivative estimation and new Section 6 that discusses the birational interpolation method. Section numbers following the latter have been modified accordingly.« less
LIP: The Livermore Interpolation Package, Version 1.3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritsch, F N
2011-01-04
This report describes LIP, the Livermore Interpolation Package. Because LIP is a stand-alone version of the interpolation package in the Livermore Equation of State (LEOS) access library, the initials LIP alternatively stand for the ''LEOS Interpolation Package''. LIP was totally rewritten from the package described in [1]. In particular, the independent variables are now referred to as x and y, since the package need not be restricted to equation of state data, which uses variables {rho} (density) and T (temperature). LIP is primarily concerned with the interpolation of two-dimensional data on a rectangular mesh. The interpolation methods provided include piecewisemore » bilinear, reduced (12-term) bicubic, and bicubic Hermite (biherm). There is a monotonicity-preserving variant of the latter, known as bimond. For historical reasons, there is also a biquadratic interpolator, but this option is not recommended for general use. A birational method was added at version 1.3. In addition to direct interpolation of two-dimensional data, LIP includes a facility for inverse interpolation (at present, only in the second independent variable). For completeness, however, the package also supports a compatible one-dimensional interpolation capability. Parametric interpolation of points on a two-dimensional curve can be accomplished by treating the components as a pair of one-dimensional functions with a common independent variable. LIP has an object-oriented design, but it is implemented in ANSI Standard C for efficiency and compatibility with existing applications. First, a ''LIP interpolation object'' is created and initialized with the data to be interpolated. Then the interpolation coefficients for the selected method are computed and added to the object. Since version 1.1, LIP has options to instead estimate derivative values or merely store data in the object. (These are referred to as ''partial setup'' options.) It is then possible to pass the object to functions that interpolate or invert the interpolant at an arbitrary number of points. The first section of this report describes the overall design of the package, including both forward and inverse interpolation. Sections 2-6 describe each interpolation method in detail. The software that implements this design is summarized function-by-function in Section 7. For a complete example of package usage, refer to Section 8. The report concludes with a few brief notes on possible software enhancements. For guidance on adding other functional forms to LIP, refer to Appendix B. The reader who is primarily interested in using LIP to solve a problem should skim Section 1, then skip to Sections 7.1-4. Finally, jump ahead to Section 8 and study the example. The remaining sections can be referred to in case more details are desired. Changes since version 1.1 of this document include the new Section 3.2.1 that discusses derivative estimation and new Section 6 that discusses the birational interpolation method. Section numbers following the latter have been modified accordingly.« less
Liu, Derek; Sloboda, Ron S
2014-05-01
Boyer and Mok proposed a fast calculation method employing the Fourier transform (FT), for which calculation time is independent of the number of seeds but seed placement is restricted to calculation grid points. Here an interpolation method is described enabling unrestricted seed placement while preserving the computational efficiency of the original method. The Iodine-125 seed dose kernel was sampled and selected values were modified to optimize interpolation accuracy for clinically relevant doses. For each seed, the kernel was shifted to the nearest grid point via convolution with a unit impulse, implemented in the Fourier domain. The remaining fractional shift was performed using a piecewise third-order Lagrange filter. Implementation of the interpolation method greatly improved FT-based dose calculation accuracy. The dose distribution was accurate to within 2% beyond 3 mm from each seed. Isodose contours were indistinguishable from explicit TG-43 calculation. Dose-volume metric errors were negligible. Computation time for the FT interpolation method was essentially the same as Boyer's method. A FT interpolation method for permanent prostate brachytherapy TG-43 dose calculation was developed which expands upon Boyer's original method and enables unrestricted seed placement. The proposed method substantially improves the clinically relevant dose accuracy with negligible additional computation cost, preserving the efficiency of the original method.
Liu, Hong; Yan, Meng; Song, Enmin; Wang, Jie; Wang, Qian; Jin, Renchao; Jin, Lianghai; Hung, Chih-Cheng
2016-05-01
Myocardial motion estimation of tagged cardiac magnetic resonance (TCMR) images is of great significance in clinical diagnosis and the treatment of heart disease. Currently, the harmonic phase analysis method (HARP) and the local sine-wave modeling method (SinMod) have been proven as two state-of-the-art motion estimation methods for TCMR images, since they can directly obtain the inter-frame motion displacement vector field (MDVF) with high accuracy and fast speed. By comparison, SinMod has better performance over HARP in terms of displacement detection, noise and artifacts reduction. However, the SinMod method has some drawbacks: 1) it is unable to estimate local displacements larger than half of the tag spacing; 2) it has observable errors in tracking of tag motion; and 3) the estimated MDVF usually has large local errors. To overcome these problems, we present a novel motion estimation method in this study. The proposed method tracks the motion of tags and then estimates the dense MDVF by using the interpolation. In this new method, a parameter estimation procedure for global motion is applied to match tag intersections between different frames, ensuring specific kinds of large displacements being correctly estimated. In addition, a strategy of tag motion constraints is applied to eliminate most of errors produced by inter-frame tracking of tags and the multi-level b-splines approximation algorithm is utilized, so as to enhance the local continuity and accuracy of the final MDVF. In the estimation of the motion displacement, our proposed method can obtain a more accurate MDVF compared with the SinMod method and our method can overcome the drawbacks of the SinMod method. However, the motion estimation accuracy of our method depends on the accuracy of tag lines detection and our method has a higher time complexity. Copyright © 2015 Elsevier Inc. All rights reserved.
On the Quality of Velocity Interpolation Schemes for Marker-in-Cell Method and Staggered Grids
NASA Astrophysics Data System (ADS)
Pusok, Adina E.; Kaus, Boris J. P.; Popov, Anton A.
2017-03-01
The marker-in-cell method is generally considered a flexible and robust method to model the advection of heterogenous non-diffusive properties (i.e., rock type or composition) in geodynamic problems. In this method, Lagrangian points carrying compositional information are advected with the ambient velocity field on an Eulerian grid. However, velocity interpolation from grid points to marker locations is often performed without considering the divergence of the velocity field at the interpolated locations (i.e., non-conservative). Such interpolation schemes can induce non-physical clustering of markers when strong velocity gradients are present (Journal of Computational Physics 166:218-252, 2001) and this may, eventually, result in empty grid cells, a serious numerical violation of the marker-in-cell method. To remedy this at low computational costs, Jenny et al. (Journal of Computational Physics 166:218-252, 2001) and Meyer and Jenny (Proceedings in Applied Mathematics and Mechanics 4:466-467, 2004) proposed a simple, conservative velocity interpolation scheme for 2-D staggered grid, while Wang et al. (Geochemistry, Geophysics, Geosystems 16(6):2015-2023, 2015) extended the formulation to 3-D finite element methods. Here, we adapt this formulation for 3-D staggered grids (correction interpolation) and we report on the quality of various velocity interpolation methods for 2-D and 3-D staggered grids. We test the interpolation schemes in combination with different advection schemes on incompressible Stokes problems with strong velocity gradients, which are discretized using a finite difference method. Our results suggest that a conservative formulation reduces the dispersion and clustering of markers, minimizing the need of unphysical marker control in geodynamic models.
5-D interpolation with wave-front attributes
NASA Astrophysics Data System (ADS)
Xie, Yujiang; Gajewski, Dirk
2017-11-01
Most 5-D interpolation and regularization techniques reconstruct the missing data in the frequency domain by using mathematical transforms. An alternative type of interpolation methods uses wave-front attributes, that is, quantities with a specific physical meaning like the angle of emergence and wave-front curvatures. In these attributes structural information of subsurface features like dip and strike of a reflector are included. These wave-front attributes work on 5-D data space (e.g. common-midpoint coordinates in x and y, offset, azimuth and time), leading to a 5-D interpolation technique. Since the process is based on stacking next to the interpolation a pre-stack data enhancement is achieved, improving the signal-to-noise ratio (S/N) of interpolated and recorded traces. The wave-front attributes are determined in a data-driven fashion, for example, with the Common Reflection Surface (CRS method). As one of the wave-front-attribute-based interpolation techniques, the 3-D partial CRS method was proposed to enhance the quality of 3-D pre-stack data with low S/N. In the past work on 3-D partial stacks, two potential problems were still unsolved. For high-quality wave-front attributes, we suggest a global optimization strategy instead of the so far used pragmatic search approach. In previous works, the interpolation of 3-D data was performed along a specific azimuth which is acceptable for narrow azimuth acquisition but does not exploit the potential of wide-, rich- or full-azimuth acquisitions. The conventional 3-D partial CRS method is improved in this work and we call it as a wave-front-attribute-based 5-D interpolation (5-D WABI) as the two problems mentioned above are addressed. Data examples demonstrate the improved performance by the 5-D WABI method when compared with the conventional 3-D partial CRS approach. A comparison of the rank-reduction-based 5-D seismic interpolation technique with the proposed 5-D WABI method is given. The comparison reveals that there are significant advantages for steep dipping events using the 5-D WABI method when compared to the rank-reduction-based 5-D interpolation technique. Diffraction tails substantially benefit from this improved performance of the partial CRS stacking approach while the CPU time is comparable to the CPU time consumed by the rank-reduction-based method.
Minimal norm constrained interpolation. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Irvine, L. D.
1985-01-01
In computational fluid dynamics and in CAD/CAM, a physical boundary is usually known only discreetly and most often must be approximated. An acceptable approximation preserves the salient features of the data such as convexity and concavity. In this dissertation, a smooth interpolant which is locally concave where the data are concave and is locally convex where the data are convex is described. The interpolant is found by posing and solving a minimization problem whose solution is a piecewise cubic polynomial. The problem is solved indirectly by using the Peano Kernal theorem to recast it into an equivalent minimization problem having the second derivative of the interpolant as the solution. This approach leads to the solution of a nonlinear system of equations. It is shown that Newton's method is an exceptionally attractive and efficient method for solving the nonlinear system of equations. Examples of shape-preserving interpolants, as well as convergence results obtained by using Newton's method are also shown. A FORTRAN program to compute these interpolants is listed. The problem of computing the interpolant of minimal norm from a convex cone in a normal dual space is also discussed. An extension of de Boor's work on minimal norm unconstrained interpolation is presented.
Extracting tissue deformation using Gabor filter banks
NASA Astrophysics Data System (ADS)
Montillo, Albert; Metaxas, Dimitris; Axel, Leon
2004-04-01
This paper presents a new approach for accurate extraction of tissue deformation imaged with tagged MR. Our method, based on banks of Gabor filters, adjusts (1) the aspect and (2) orientation of the filter"s envelope and adjusts (3) the radial frequency and (4) angle of the filter"s sinusoidal grating to extract information about the deformation of tissue. The method accurately extracts tag line spacing, orientation, displacement and effective contrast. Existing, non-adaptive methods often fail to recover useful displacement information in the proximity of tissue boundaries while our method works in the proximity of the boundaries. We also present an interpolation method to recover all tag information at a finer resolution than the filter bank parameters. Results are shown on simulated images of translating and contracting tissue.
Learning the dynamics of objects by optimal functional interpolation.
Ahn, Jong-Hoon; Kim, In Young
2012-09-01
Many areas of science and engineering rely on functional data and their numerical analysis. The need to analyze time-varying functional data raises the general problem of interpolation, that is, how to learn a smooth time evolution from a finite number of observations. Here, we introduce optimal functional interpolation (OFI), a numerical algorithm that interpolates functional data over time. Unlike the usual interpolation or learning algorithms, the OFI algorithm obeys the continuity equation, which describes the transport of some types of conserved quantities, and its implementation shows smooth, continuous flows of quantities. Without the need to take into account equations of motion such as the Navier-Stokes equation or the diffusion equation, OFI is capable of learning the dynamics of objects such as those represented by mass, image intensity, particle concentration, heat, spectral density, and probability density.
A Comparative Study of Interferometric Regridding Algorithms
NASA Technical Reports Server (NTRS)
Hensley, Scott; Safaeinili, Ali
1999-01-01
THe paper discusses regridding options: (1) The problem of interpolating data that is not sampled on a uniform grid, that is noisy, and contains gaps is a difficult problem. (2) Several interpolation algorithms have been implemented: (a) Nearest neighbor - Fast and easy but shows some artifacts in shaded relief images. (b) Simplical interpolator - uses plane going through three points containing point where interpolation is required. Reasonably fast and accurate. (c) Convolutional - uses a windowed Gaussian approximating the optimal prolate spheroidal weighting function for a specified bandwidth. (d) First or second order surface fitting - Uses the height data centered in a box about a given point and does a weighted least squares surface fit.
Spatial resolution and chest nodule detection: an interesting incidental finding
NASA Astrophysics Data System (ADS)
Toomey, R. J.; McEntee, M. F.; Ryan, J. T.; Evanoff, M. G.; Hayes, A.; Brennan, P. C.
2010-02-01
This study reports an incidental finding from a larger work. It examines the relationship between spatial resolution and nodule detection for chest radiographs. Twelve examining radiologists with the American Board of Radiology read thirty chest radiographs in two conditions - full (1500 × 1500 pixel) resolution, and 300 × 300 pixel resolution linearly interpolated to 1500 × 1500 pixels. All images were surrounded by a 10-pixel sharp grey border to aid in focussing the observer's eye when viewing the comparatively unsharp interpolated images. Fifteen of the images contained a single simulated pulmonary nodule. Observers were asked to rate their confidence that a nodule was present on each radiograph on a scale of 1 (least confidence, certain no lesion is present) to 6 (most confidence, certain a lesion was present). All other abnormalities were to be ignored. No windowing, levelling or magnification of the images was permitted and viewing distance was constrained to approximately 70cm. Images were displayed on a 3 megapixel greyscale monitor. Receiver operating characteristic (ROC) analysis was applied to the results of the readings using the Dorfman-Berbaum-Metz multiplereader, multiple-case method. No statistically significant differences were found with either readers and cases treated as random or with cases treated as fixed. Low spatial frequency information appears to be sufficient for the detection of chest lesion of the type used in this study.
AUTOMATED CELL SEGMENTATION WITH 3D FLUORESCENCE MICROSCOPY IMAGES.
Kong, Jun; Wang, Fusheng; Teodoro, George; Liang, Yanhui; Zhu, Yangyang; Tucker-Burden, Carol; Brat, Daniel J
2015-04-01
A large number of cell-oriented cancer investigations require an effective and reliable cell segmentation method on three dimensional (3D) fluorescence microscopic images for quantitative analysis of cell biological properties. In this paper, we present a fully automated cell segmentation method that can detect cells from 3D fluorescence microscopic images. Enlightened by fluorescence imaging techniques, we regulated the image gradient field by gradient vector flow (GVF) with interpolated and smoothed data volume, and grouped voxels based on gradient modes identified by tracking GVF field. Adaptive thresholding was then applied to voxels associated with the same gradient mode where voxel intensities were enhanced by a multiscale cell filter. We applied the method to a large volume of 3D fluorescence imaging data of human brain tumor cells with (1) small cell false detection and missing rates for individual cells; and (2) trivial over and under segmentation incidences for clustered cells. Additionally, the concordance of cell morphometry structure between automated and manual segmentation was encouraging. These results suggest a promising 3D cell segmentation method applicable to cancer studies.
Patch-based frame interpolation for old films via the guidance of motion paths
NASA Astrophysics Data System (ADS)
Xia, Tianran; Ding, Youdong; Yu, Bing; Huang, Xi
2018-04-01
Due to improper preservation, traditional films will appear frame loss after digital. To deal with this problem, this paper presents a new adaptive patch-based method of frame interpolation via the guidance of motion paths. Our method is divided into three steps. Firstly, we compute motion paths between two reference frames using optical flow estimation. Then, the adaptive bidirectional interpolation with holes filled is applied to generate pre-intermediate frames. Finally, using patch match to interpolate intermediate frames with the most similar patches. Since the patch match is based on the pre-intermediate frames that contain the motion paths constraint, we show a natural and inartificial frame interpolation. We test different types of old film sequences and compare with other methods, the results prove that our method has a desired performance without hole or ghost effects.
De Los Ríos, F. A.; Paluszny, M.
2015-01-01
We consider some methods to extract information about the rotator cuff based on magnetic resonance images; the study aims to define an alternative method of display that might facilitate the detection of partial tears in the supraspinatus tendon. Specifically, we are going to use families of ellipsoidal triangular patches to cover the humerus head near the affected area. These patches are going to be textured and displayed with the information of the magnetic resonance images using the trilinear interpolation technique. For the generation of points to texture each patch, we propose a new method that guarantees the uniform distribution of its points using a random statistical method. Its computational cost, defined as the average computing time to generate a fixed number of points, is significantly lower as compared with deterministic and other standard statistical techniques. PMID:25650281
Assessment of three dead detector correction methods for cone-beam computed tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelms, David W.; Shukla, Hemant I.; Nixon, Earl
Purpose: Dead detectors due to manufacturing defects or radiation damage in the electronic portal imaging devices (EPIDs) used for cone-beam computed tomography (CBCT) can lead to image degradation and ring artifacts. In this work three dead detector correction methods were assessed using megavoltage CBCT (MVCBCT) as a test system, with the goals of assessing the relative effectiveness of the three methods and establishing the conditions for which they fail. Methods: MVCBCT projections acquired with four linacs at 8 and 60 MU (monitor units) were degraded with varying percentages (2%-95%) of randomly distributed dead single detectors (RDSs), randomly distributed dead detectormore » clusters (RDCs) of 2 mm diameter, and nonrandomly distributed dead detector disks (NRDDs) of varying diameter (4-16 mm). Correction algorithms were bidirectional linear interpolation (BLI), quad-directional linear interpolation (QLI), and a Laplacian solution (LS) method. Correction method failure was defined to occur if ring artifacts were present in the reconstructed phantom images from any linac or if the modulation transfer function (MTF) for any linac dropped below baseline with a p value, calculated with the two sample t test, of less than 0.01. Results: All correction methods failed at the same or lower RDC/RDS percentages and NRDD diameters for the 60 MU as for the 8 MU cases. The LS method tended to outperform or match the BLI and QLI methods. If ring artifacts anywhere in the images were considered unacceptable, the LS method failed for 60 MU at >33% RDS, >2% RDC, and >4 mm NRDD. If ring artifacts within 4 mm longitudinally of the phantom section interfaces were considered acceptable, the LS method failed for 60 MU at >90% RDS, >80% RDC, and >4 mm NRDD. LS failed due to MTF drop for 60 MU at >50% RDS, >25% RDC, and >4 mm NRDD. Conclusions: The LS method is superior to the BLI and QLI methods, and correction algorithm effectiveness decreases as imaging dose increases. All correction methods failed first due to ring artifacts and second due to MTF drop. If ring artifacts in axial slices within a 4 mm longitudinal distance from phantom section interfaces are acceptable, statistically significant loss in spatial resolution does not occur until over 25% of the EPID is covered in randomly distributed dead detectors, or NRDDs of 4 mm diameter are present.« less
Xiao, Yong; Gu, Xiaomin; Yin, Shiyang; Shao, Jingli; Cui, Yali; Zhang, Qiulan; Niu, Yong
2016-01-01
Based on the geo-statistical theory and ArcGIS geo-statistical module, datas of 30 groundwater level observation wells were used to estimate the decline of groundwater level in Beijing piedmont. Seven different interpolation methods (inverse distance weighted interpolation, global polynomial interpolation, local polynomial interpolation, tension spline interpolation, ordinary Kriging interpolation, simple Kriging interpolation and universal Kriging interpolation) were used for interpolating groundwater level between 2001 and 2013. Cross-validation, absolute error and coefficient of determination (R(2)) was applied to evaluate the accuracy of different methods. The result shows that simple Kriging method gave the best fit. The analysis of spatial and temporal variability suggest that the nugget effects from 2001 to 2013 were increasing, which means the spatial correlation weakened gradually under the influence of human activities. The spatial variability in the middle areas of the alluvial-proluvial fan is relatively higher than area in top and bottom. Since the changes of the land use, groundwater level also has a temporal variation, the average decline rate of groundwater level between 2007 and 2013 increases compared with 2001-2006. Urban development and population growth cause over-exploitation of residential and industrial areas. The decline rate of the groundwater level in residential, industrial and river areas is relatively high, while the decreasing of farmland area and development of water-saving irrigation reduce the quantity of water using by agriculture and decline rate of groundwater level in agricultural area is not significant.
Human Performance-Based Measurement System
1999-12-28
is primarily achieved by increasing signal-to- noise , and image resolution through interpolation. One method for spatial resolution is the...potential at an electrode to a quantity that is proportional to the current that enters and exits the scalp at that site. Deblurring is another...direct digitization of EEG signals over analog recording are several, the most important of which is the avoidance of noise patterns that resemble
Huang, Ai-Mei; Nguyen, Truong
2009-04-01
In this paper, we address the problems of unreliable motion vectors that cause visual artifacts but cannot be detected by high residual energy or bidirectional prediction difference in motion-compensated frame interpolation. A correlation-based motion vector processing method is proposed to detect and correct those unreliable motion vectors by explicitly considering motion vector correlation in the motion vector reliability classification, motion vector correction, and frame interpolation stages. Since our method gradually corrects unreliable motion vectors based on their reliability, we can effectively discover the areas where no motion is reliable to be used, such as occlusions and deformed structures. We also propose an adaptive frame interpolation scheme for the occlusion areas based on the analysis of their surrounding motion distribution. As a result, the interpolated frames using the proposed scheme have clearer structure edges and ghost artifacts are also greatly reduced. Experimental results show that our interpolated results have better visual quality than other methods. In addition, the proposed scheme is robust even for those video sequences that contain multiple and fast motions.
NASA Astrophysics Data System (ADS)
Bethmann, F.; Jepping, C.; Luhmann, T.
2013-04-01
This paper reports on a method for the generation of synthetic image data for almost arbitrary static or dynamic 3D scenarios. Image data generation is based on pre-defined 3D objects, object textures, camera orientation data and their imaging properties. The procedure does not focus on the creation of photo-realistic images under consideration of complex imaging and reflection models as they are used by common computer graphics programs. In contrast, the method is designed with main emphasis on geometrically correct synthetic images without radiometric impact. The calculation process includes photogrammetric distortion models, hence cameras with arbitrary geometric imaging characteristics can be applied. Consequently, image sets can be created that are consistent to mathematical photogrammetric models to be used as sup-pixel accurate data for the assessment of high-precision photogrammetric processing methods. In the first instance the paper describes the process of image simulation under consideration of colour value interpolation, MTF/PSF and so on. Subsequently the geometric quality of the synthetic images is evaluated with ellipse operators. Finally, simulated image sets are used to investigate matching and tracking algorithms as they have been developed at IAPG for deformation measurement in car safety testing.
NASA Astrophysics Data System (ADS)
Wu, Bo; Chung Liu, Wai; Grumpe, Arne; Wöhler, Christian
2016-06-01
Lunar topographic information, e.g., lunar DEM (Digital Elevation Model), is very important for lunar exploration missions and scientific research. Lunar DEMs are typically generated from photogrammetric image processing or laser altimetry, of which photogrammetric methods require multiple stereo images of an area. DEMs generated from these methods are usually achieved by various interpolation techniques, leading to interpolation artifacts in the resulting DEM. On the other hand, photometric shape reconstruction, e.g., SfS (Shape from Shading), extensively studied in the field of Computer Vision has been introduced to pixel-level resolution DEM refinement. SfS methods have the ability to reconstruct pixel-wise terrain details that explain a given image of the terrain. If the terrain and its corresponding pixel-wise albedo were to be estimated simultaneously, this is a SAfS (Shape and Albedo from Shading) problem and it will be under-determined without additional information. Previous works show strong statistical regularities in albedo of natural objects, and this is even more logically valid in the case of lunar surface due to its lower surface albedo complexity than the Earth. In this paper we suggest a method that refines a lower-resolution DEM to pixel-level resolution given a monocular image of the coverage with known light source, at the same time we also estimate the corresponding pixel-wise albedo map. We regulate the behaviour of albedo and shape such that the optimized terrain and albedo are the likely solutions that explain the corresponding image. The parameters in the approach are optimized through a kernel-based relaxation framework to gain computational advantages. In this research we experimentally employ the Lunar-Lambertian model for reflectance modelling; the framework of the algorithm is expected to be independent of a specific reflectance model. Experiments are carried out using the monocular images from Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) (0.5 m spatial resolution), constrained by the SELENE and LRO Elevation Model (SLDEM 2015) of 60 m spatial resolution. The results indicate that local details are largely recovered by the algorithm while low frequency topographic consistency is affected by the low-resolution DEM.
Liu, Xinming; Shaw, Chris C; Wang, Tianpeng; Chen, Lingyun; Altunbas, Mustafa C; Kappadath, S Cheenu
2006-02-28
We developed and investigated a scanning sampled measurement (SSM) technique for scatter measurement and correction in cone beam breast CT imaging. A cylindrical polypropylene phantom (water equivalent) was mounted on a rotating table in a stationary gantry experimental cone beam breast CT imaging system. A 2-D array of lead beads, with the beads set apart about ~1 cm from each other and slightly tilted vertically, was placed between the object and x-ray source. A series of projection images were acquired as the phantom is rotated 1 degree per projection view and the lead beads array shifted vertically from one projection view to the next. A series of lead bars were also placed at the phantom edge to produce better scatter estimation across the phantom edges. Image signals in the lead beads/bars shadow were used to obtain sampled scatter measurements which were then interpolated to form an estimated scatter distribution across the projection images. The image data behind the lead bead/bar shadows were restored by interpolating image data from two adjacent projection views to form beam-block free projection images. The estimated scatter distribution was then subtracted from the corresponding restored projection image to obtain the scatter removed projection images.Our preliminary experiment has demonstrated that it is feasible to implement SSM technique for scatter estimation and correction for cone beam breast CT imaging. Scatter correction was successfully performed on all projection images using scatter distribution interpolated from SSM and restored projection image data. The resultant scatter corrected projection image data resulted in elevated CT number and largely reduced the cupping effects.
Geostationary Enhanced Temporal Interpolation for CERES Flux Products
NASA Technical Reports Server (NTRS)
Doelling, David R.; Loeb, Norman G.; Keyes, Dennis F.; Nordeen, Michele L.; Morstad, Daniel; Nguyen, Cathy; Wielicki, Bruce A.; Young, David F.; Sun, Moguo
2013-01-01
The Clouds and the Earth's Radiant Energy System (CERES) instruments on board the Terra and Aqua spacecraft continue to provide an unprecedented global climate record of the earth's top-of-atmosphere (TOA) energy budget since March 2000. A critical step in determining accurate daily averaged flux involves estimating the flux between CERES Terra or Aqua overpass times. CERES employs the CERES-only (CO) and the CERES geostationary (CG) temporal interpolation methods. The CO method assumes that the cloud properties at the time of the CERES observation remain constant and that it only accounts for changes in albedo with solar zenith angle and diurnal land heating, by assuming a shape for unresolved changes in the diurnal cycle. The CG method enhances the CERES data by explicitly accounting for changes in cloud and radiation between CERES observation times using 3-hourly imager data from five geostationary (GEO) satellites. To maintain calibration traceability, GEO radiances are calibrated against Moderate Resolution Imaging Spectroradiometer (MODIS) and the derived GEO fluxes are normalized to the CERES measurements. While the regional (1 deg latitude x 1 deg longitude) monthly-mean difference between the CG and CO methods can exceed 25 W m(sub -2) over marine stratus and land convection, these regional biases nearly cancel in the global mean. The regional monthly CG shortwave (SW) and longwave (LW) flux uncertainty is reduced by 20%, whereas the daily uncertainty is reduced by 50% and 20%, respectively, over the CO method, based on comparisons with 15-min Geostationary Earth Radiation Budget (GERB) data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balasubramoniam, A; Bednarek, D; Rudin, S
Purpose: To create 4D parametric images using biplane Digital Subtraction Angiography (DSA) sequences co-registered with the 3D vascular geometry obtained from Cone Beam-CT (CBCT). Methods: We investigated a method to derive multiple 4D Parametric Imaging (PI) maps using only one CBCT acquisition. During this procedure a 3D-DSA geometry is stored and used subsequently for all 4D images. Each time a biplane DSA is acquired, we calculate 2D parametric maps of Bolus Arrival Time (BAT), Mean Transit Time (MTT) and Time to Peak (TTP). Arterial segments which are nearly parallel with one of the biplane imaging planes in the 2D parametricmore » maps are co-registered with the 3D geometry. The values in the remaining vascular network are found using spline interpolation since the points chosen for co-registration on the vasculature are discrete and remaining regions need to be interpolated. To evaluate the method we used a patient CT volume data set for 3D printing a neurovascular phantom containing a complete Circle of Willis. We connected the phantom to a flow loop with a peristaltic pump, simulating physiological flow conditions. Contrast media was injected with an automatic injector at 10 ml/sec. Images were acquired with a Toshiba Infinix C-arm and 4D parametric image maps of the vasculature were calculated. Results: 4D BAT, MTT, and TTP parametric image maps of the Circle of Willis were derived. We generated color-coded 3D geometries which avoided artifacts due to vessel overlap or foreshortening in the projection direction. Conclusion: The software was tested successfully and multiple 4D parametric images were obtained from biplane DSA sequences without the need to acquire additional 3D-DSA runs. This can benefit the patient by reducing the contrast media and the radiation dose normally associated with these procedures. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less
NASA Astrophysics Data System (ADS)
Tan, Bing; Huang, Min; Zhu, Qibing; Guo, Ya; Qin, Jianwei
2017-12-01
Laser-induced breakdown spectroscopy (LIBS) is an analytical technique that has gained increasing attention because of many applications. The production of continuous background in LIBS is inevitable because of factors associated with laser energy, gate width, time delay, and experimental environment. The continuous background significantly influences the analysis of the spectrum. Researchers have proposed several background correction methods, such as polynomial fitting, Lorenz fitting and model-free methods. However, less of them apply these methods in the field of LIBS Technology, particularly in qualitative and quantitative analyses. This study proposes a method based on spline interpolation for detecting and estimating the continuous background spectrum according to its smooth property characteristic. Experiment on the background correction simulation indicated that, the spline interpolation method acquired the largest signal-to-background ratio (SBR) over polynomial fitting, Lorenz fitting and model-free method after background correction. These background correction methods all acquire larger SBR values than that acquired before background correction (The SBR value before background correction is 10.0992, whereas the SBR values after background correction by spline interpolation, polynomial fitting, Lorentz fitting, and model-free methods are 26.9576, 24.6828, 18.9770, and 25.6273 respectively). After adding random noise with different kinds of signal-to-noise ratio to the spectrum, spline interpolation method acquires large SBR value, whereas polynomial fitting and model-free method obtain low SBR values. All of the background correction methods exhibit improved quantitative results of Cu than those acquired before background correction (The linear correlation coefficient value before background correction is 0.9776. Moreover, the linear correlation coefficient values after background correction using spline interpolation, polynomial fitting, Lorentz fitting, and model-free methods are 0.9998, 0.9915, 0.9895, and 0.9940 respectively). The proposed spline interpolation method exhibits better linear correlation and smaller error in the results of the quantitative analysis of Cu compared with polynomial fitting, Lorentz fitting and model-free methods, The simulation and quantitative experimental results show that the spline interpolation method can effectively detect and correct the continuous background.
Interpolation strategies for reducing IFOV artifacts in microgrid polarimeter imagery.
Ratliff, Bradley M; LaCasse, Charles F; Tyo, J Scott
2009-05-25
Microgrid polarimeters are composed of an array of micro-polarizing elements overlaid upon an FPA sensor. In the past decade systems have been designed and built in all regions of the optical spectrum. These systems have rugged, compact designs and the ability to obtain a complete set of polarimetric measurements during a single image capture. However, these systems acquire the polarization measurements through spatial modulation and each measurement has a varying instantaneous field-of-view (IFOV). When these measurements are combined to estimate the polarization images, strong edge artifacts are present that severely degrade the estimated polarization imagery. These artifacts can be reduced when interpolation strategies are first applied to the intensity data prior to Stokes vector estimation. Here we formally study IFOV error and the performance of several bilinear interpolation strategies used for reducing it.
Oversampling of digitized images. [effects on interpolation in signal processing
NASA Technical Reports Server (NTRS)
Fischel, D.
1976-01-01
Oversampling is defined as sampling with a device whose characteristic width is greater than the interval between samples. This paper shows why oversampling should be avoided and discusses the limitations in data processing if circumstances dictate that oversampling cannot be circumvented. Principally, oversampling should not be used to provide interpolating data points. Rather, the time spent oversampling should be used to obtain more signal with less relative error, and the Sampling Theorem should be employed to provide any desired interpolated values. The concepts are applicable to single-element and multielement detectors.
Spatio-temporal interpolation of precipitation during monsoon periods in Pakistan
NASA Astrophysics Data System (ADS)
Hussain, Ijaz; Spöck, Gunter; Pilz, Jürgen; Yu, Hwa-Lung
2010-08-01
Spatio-temporal estimation of precipitation over a region is essential to the modeling of hydrologic processes for water resources management. The changes of magnitude and space-time heterogeneity of rainfall observations make space-time estimation of precipitation a challenging task. In this paper we propose a Box-Cox transformed hierarchical Bayesian multivariate spatio-temporal interpolation method for the skewed response variable. The proposed method is applied to estimate space-time monthly precipitation in the monsoon periods during 1974-2000, and 27-year monthly average precipitation data are obtained from 51 stations in Pakistan. The results of transformed hierarchical Bayesian multivariate spatio-temporal interpolation are compared to those of non-transformed hierarchical Bayesian interpolation by using cross-validation. The software developed by [11] is used for Bayesian non-stationary multivariate space-time interpolation. It is observed that the transformed hierarchical Bayesian method provides more accuracy than the non-transformed hierarchical Bayesian method.
Efficient Implementation of an Optimal Interpolator for Large Spatial Data Sets
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; Mount, David M.
2007-01-01
Scattered data interpolation is a problem of interest in numerous areas such as electronic imaging, smooth surface modeling, and computational geometry. Our motivation arises from applications in geology and mining, which often involve large scattered data sets and a demand for high accuracy. The method of choice is ordinary kriging. This is because it is a best unbiased estimator. Unfortunately, this interpolant is computationally very expensive to compute exactly. For n scattered data points, computing the value of a single interpolant involves solving a dense linear system of size roughly n x n. This is infeasible for large n. In practice, kriging is solved approximately by local approaches that are based on considering only a relatively small'number of points that lie close to the query point. There are many problems with this local approach, however. The first is that determining the proper neighborhood size is tricky, and is usually solved by ad hoc methods such as selecting a fixed number of nearest neighbors or all the points lying within a fixed radius. Such fixed neighborhood sizes may not work well for all query points, depending on local density of the point distribution. Local methods also suffer from the problem that the resulting interpolant is not continuous. Meyer showed that while kriging produces smooth continues surfaces, it has zero order continuity along its borders. Thus, at interface boundaries where the neighborhood changes, the interpolant behaves discontinuously. Therefore, it is important to consider and solve the global system for each interpolant. However, solving such large dense systems for each query point is impractical. Recently a more principled approach to approximating kriging has been proposed based on a technique called covariance tapering. The problems arise from the fact that the covariance functions that are used in kriging have global support. Our implementations combine, utilize, and enhance a number of different approaches that have been introduced in literature for solving large linear systems for interpolation of scattered data points. For very large systems, exact methods such as Gaussian elimination are impractical since they require 0(n(exp 3)) time and 0(n(exp 2)) storage. As Billings et al. suggested, we use an iterative approach. In particular, we use the SYMMLQ method, for solving the large but sparse ordinary kriging systems that result from tapering. The main technical issue that need to be overcome in our algorithmic solution is that the points' covariance matrix for kriging should be symmetric positive definite. The goal of tapering is to obtain a sparse approximate representation of the covariance matrix while maintaining its positive definiteness. Furrer et al. used tapering to obtain a sparse linear system of the form Ax = b, where A is the tapered symmetric positive definite covariance matrix. Thus, Cholesky factorization could be used to solve their linear systems. They implemented an efficient sparse Cholesky decomposition method. They also showed if these tapers are used for a limited class of covariance models, the solution of the system converges to the solution of the original system. Matrix A in the ordinary kriging system, while symmetric, is not positive definite. Thus, their approach is not applicable to the ordinary kriging system. Therefore, we use tapering only to obtain a sparse linear system. Then, we use SYMMLQ to solve the ordinary kriging system. We show that solving large kriging systems becomes practical via tapering and iterative methods, and results in lower estimation errors compared to traditional local approaches, and significant memory savings compared to the original global system. We also developed a more efficient variant of the sparse SYMMLQ method for large ordinary kriging systems. This approach adaptively finds the correct local neighborhood for each query point in the interpolation process.
Jia, Yuanyuan; He, Zhongshi; Gholipour, Ali; Warfield, Simon K
2016-11-01
In magnetic resonance (MR), hardware limitation, scanning time, and patient comfort often result in the acquisition of anisotropic 3-D MR images. Enhancing image resolution is desired but has been very challenging in medical image processing. Super resolution reconstruction based on sparse representation and overcomplete dictionary has been lately employed to address this problem; however, these methods require extra training sets, which may not be always available. This paper proposes a novel single anisotropic 3-D MR image upsampling method via sparse representation and overcomplete dictionary that is trained from in-plane high resolution slices to upsample in the out-of-plane dimensions. The proposed method, therefore, does not require extra training sets. Abundant experiments, conducted on simulated and clinical brain MR images, show that the proposed method is more accurate than classical interpolation. When compared to a recent upsampling method based on the nonlocal means approach, the proposed method did not show improved results at low upsampling factors with simulated images, but generated comparable results with much better computational efficiency in clinical cases. Therefore, the proposed approach can be efficiently implemented and routinely used to upsample MR images in the out-of-planes views for radiologic assessment and postacquisition processing.
NASA Astrophysics Data System (ADS)
Bornemann, Pierrick; Jean-Philippe, Malet; André, Stumpf; Anne, Puissant; Julien, Travelletti
2016-04-01
Dense multi-temporal point clouds acquired with terrestrial laser scanning (TLS) have proved useful for the study of structure and kinematics of slope movements. Most of the existing deformation analysis methods rely on the use of interpolated data. Approaches that use multiscale image correlation provide a precise and robust estimation of the observed movements; however, for non-rigid motion patterns, these methods tend to underestimate all the components of the movement. Further, for rugged surface topography, interpolated data introduce a bias and a loss of information in some local places where the point cloud information is not sufficiently dense. Those limits can be overcome by using deformation analysis exploiting directly the original 3D point clouds assuming some hypotheses on the deformation (e.g. the classic ICP algorithm requires an initial guess by the user of the expected displacement patterns). The objective of this work is therefore to propose a deformation analysis method applied to a series of 20 3D point clouds covering the period October 2007 - October 2015 at the Super-Sauze landslide (South East French Alps). The dense point clouds have been acquired with a terrestrial long-range Optech ILRIS-3D laser scanning device from the same base station. The time series are analyzed using two approaches: 1) a method of correlation of gradient images, and 2) a method of feature tracking in the raw 3D point clouds. The estimated surface displacements are then compared with GNSS surveys on reference targets. Preliminary results tend to show that the image correlation method provides a good estimation of the displacement fields at first order, but shows limitations such as the inability to track some deformation patterns, and the use of a perspective projection that does not maintain original angles and distances in the correlated images. Results obtained with 3D point clouds comparison algorithms (C2C, ICP, M3C2) bring additional information on the displacement fields. Displacement fields derived from both approaches are then combined and provide a better understanding of the landslide kinematics.
VizieR Online Data Catalog: New atmospheric parameters of MILES cool stars (Sharma+, 2016)
NASA Astrophysics Data System (ADS)
Sharma, K.; Prugniel, P.; Singh, H. P.
2015-11-01
MILES V2 spectral interpolator The FITS file is an improved version of MILES interpolator previously presented in PVK. It contains the coefficients of the interpolator, which allows one to compute an interpolated spectrum, giving an effective temperature, log of surface gravity and metallicity (Teff, logg, and [Fe/H]). The file consists of three extensions containing the three temperature regimes described in the paper. Extension Teff range 0 warm 4000-9000K 1 hot >7000K 2 cold <4550K The three functions are linearly interpolated in the Teff overlapping regions. Each extension contains a 2D image-type array, whose first axis is the wavelength described by a WCS (Air wavelength, starting at 3536Å, step=0.9Å). This FITS file can be used by the ULySS v1.3 or higher. (5 data files).
The natural neighbor series manuals and source codes
NASA Astrophysics Data System (ADS)
Watson, Dave
1999-05-01
This software series is concerned with reconstruction of spatial functions by interpolating a set of discrete observations having two or three independent variables. There are three components in this series: (1) nngridr: an implementation of natural neighbor interpolation, 1994, (2) modemap: an implementation of natural neighbor interpolation on the sphere, 1998 and (3) orebody: an implementation of natural neighbor isosurface generation (publication incomplete). Interpolation is important to geologists because it can offer graphical insights into significant geological structure and behavior, which, although inherent in the data, may not be otherwise apparent. It also is the first step in numerical integration, which provides a primary avenue to detailed quantification of the observed spatial function. Interpolation is implemented by selecting a surface-generating rule that controls the form of a `bridge' built across the interstices between adjacent observations. The cataloging and classification of the many such rules that have been reported is a subject in itself ( Watson, 1992), and the merits of various approaches have been debated at length. However, for practical purposes, interpolation methods are usually judged on how satisfactorily they handle problematic data sets. Sparse scattered data or traverse data, especially if the functional values are highly variable, generally tests interpolation methods most severely; but one method, natural neighbor interpolation, usually does produce preferable results for such data.
Wang, Qiang; Liu, Yuefei; Chen, Yiqiang; Ma, Jing; Tan, Liying; Yu, Siyuan
2017-03-01
Accurate location computation for a beacon is an important factor of the reliability of satellite optical communications. However, location precision is generally limited by the resolution of CCD. How to improve the location precision of a beacon is an important and urgent issue. In this paper, we present two precise centroid computation methods for locating a beacon in satellite optical communications. First, in terms of its characteristics, the beacon is divided into several parts according to the gray gradients. Afterward, different numbers of interpolation points and different interpolation methods are applied in the interpolation area; we calculate the centroid position after interpolation and choose the best strategy according to the algorithm. The method is called a "gradient segmentation interpolation approach," or simply, a GSI (gradient segmentation interpolation) algorithm. To take full advantage of the pixels of the beacon's central portion, we also present an improved segmentation square weighting (SSW) algorithm, whose effectiveness is verified by the simulation experiment. Finally, an experiment is established to verify GSI and SSW algorithms. The results indicate that GSI and SSW algorithms can improve locating accuracy over that calculated by a traditional gray centroid method. These approaches help to greatly improve the location precision for a beacon in satellite optical communications.
NASA Astrophysics Data System (ADS)
Mahmoudabadi, H.; Briggs, G.
2016-12-01
Gridded data sets, such as geoid models or datum shift grids, are commonly used in coordinate transformation algorithms. Grid files typically contain known or measured values at regular fixed intervals. The process of computing a value at an unknown location from the values in the grid data set is called "interpolation". Generally, interpolation methods predict a value at a given point by computing a weighted average of the known values in the neighborhood of the point. Geostatistical Kriging is a widely used interpolation method for irregular networks. Kriging interpolation first analyzes the spatial structure of the input data, then generates a general model to describe spatial dependencies. This model is used to calculate values at unsampled locations by finding direction, shape, size, and weight of neighborhood points. Because it is based on a linear formulation for the best estimation, Kriging it the optimal interpolation method in statistical terms. The Kriging interpolation algorithm produces an unbiased prediction, as well as the ability to calculate the spatial distribution of uncertainty, allowing you to estimate the errors in an interpolation for any particular point. Kriging is not widely used in geospatial applications today, especially applications that run on low power devices or deal with large data files. This is due to the computational power and memory requirements of standard Kriging techniques. In this paper, improvements are introduced in directional kriging implementation by taking advantage of the structure of the grid files. The regular spacing of points simplifies finding the neighborhood points and computing their pairwise distances, reducing the the complexity and improving the execution time of the Kriging algorithm. Also, the proposed method iteratively loads small portion of interest areas in different directions to reduce the amount of required memory. This makes the technique feasible on almost any computer processor. Comparison between kriging and other standard interpolation methods demonstrated more accurate estimations in less denser data files.
NASA Astrophysics Data System (ADS)
Zhang, Fan; Liu, Pinkuan
2018-04-01
In order to improve the inspection precision of the H-drive air-bearing stage for wafer inspection, in this paper the geometric error of the stage is analyzed and compensated. The relationship between the positioning errors and error sources are initially modeled, and seven error components are identified that are closely related to the inspection accuracy. The most effective factor that affects the geometric error is identified by error sensitivity analysis. Then, the Spearman rank correlation method is applied to find the correlation between different error components, aiming at guiding the accuracy design and error compensation of the stage. Finally, different compensation methods, including the three-error curve interpolation method, the polynomial interpolation method, the Chebyshev polynomial interpolation method, and the B-spline interpolation method, are employed within the full range of the stage, and their results are compared. Simulation and experiment show that the B-spline interpolation method based on the error model has better compensation results. In addition, the research result is valuable for promoting wafer inspection accuracy and will greatly benefit the semiconductor industry.
Enhancement of digital radiography image quality using a convolutional neural network.
Sun, Yuewen; Li, Litao; Cong, Peng; Wang, Zhentao; Guo, Xiaojing
2017-01-01
Digital radiography system is widely used for noninvasive security check and medical imaging examination. However, the system has a limitation of lower image quality in spatial resolution and signal to noise ratio. In this study, we explored whether the image quality acquired by the digital radiography system can be improved with a modified convolutional neural network to generate high-resolution images with reduced noise from the original low-quality images. The experiment evaluated on a test dataset, which contains 5 X-ray images, showed that the proposed method outperformed the traditional methods (i.e., bicubic interpolation and 3D block-matching approach) as measured by peak signal to noise ratio (PSNR) about 1.3 dB while kept highly efficient processing time within one second. Experimental results demonstrated that a residual to residual (RTR) convolutional neural network remarkably improved the image quality of object structural details by increasing the image resolution and reducing image noise. Thus, this study indicated that applying this RTR convolutional neural network system was useful to improve image quality acquired by the digital radiography system.
Fletcher, E; Carmichael, O; Decarli, C
2012-01-01
We propose a template-based method for correcting field inhomogeneity biases in magnetic resonance images (MRI) of the human brain. At each algorithm iteration, the update of a B-spline deformation between an unbiased template image and the subject image is interleaved with estimation of a bias field based on the current template-to-image alignment. The bias field is modeled using a spatially smooth thin-plate spline interpolation based on ratios of local image patch intensity means between the deformed template and subject images. This is used to iteratively correct subject image intensities which are then used to improve the template-to-image deformation. Experiments on synthetic and real data sets of images with and without Alzheimer's disease suggest that the approach may have advantages over the popular N3 technique for modeling bias fields and narrowing intensity ranges of gray matter, white matter, and cerebrospinal fluid. This bias field correction method has the potential to be more accurate than correction schemes based solely on intrinsic image properties or hypothetical image intensity distributions.
Fletcher, E.; Carmichael, O.; DeCarli, C.
2013-01-01
We propose a template-based method for correcting field inhomogeneity biases in magnetic resonance images (MRI) of the human brain. At each algorithm iteration, the update of a B-spline deformation between an unbiased template image and the subject image is interleaved with estimation of a bias field based on the current template-to-image alignment. The bias field is modeled using a spatially smooth thin-plate spline interpolation based on ratios of local image patch intensity means between the deformed template and subject images. This is used to iteratively correct subject image intensities which are then used to improve the template-to-image deformation. Experiments on synthetic and real data sets of images with and without Alzheimer’s disease suggest that the approach may have advantages over the popular N3 technique for modeling bias fields and narrowing intensity ranges of gray matter, white matter, and cerebrospinal fluid. This bias field correction method has the potential to be more accurate than correction schemes based solely on intrinsic image properties or hypothetical image intensity distributions. PMID:23365843
NASA Astrophysics Data System (ADS)
Wu, Yichen; Zhang, Yibo; Luo, Wei; Ozcan, Aydogan
2017-03-01
Digital holographic on-chip microscopy achieves large space-bandwidth-products (e.g., >1 billion) by making use of pixel super-resolution techniques. To synthesize a digital holographic color image, one can take three sets of holograms representing the red (R), green (G) and blue (B) parts of the spectrum and digitally combine them to synthesize a color image. The data acquisition efficiency of this sequential illumination process can be improved by 3-fold using wavelength-multiplexed R, G and B illumination that simultaneously illuminates the sample, and using a Bayer color image sensor with known or calibrated transmission spectra to digitally demultiplex these three wavelength channels. This demultiplexing step is conventionally used with interpolation-based Bayer demosaicing methods. However, because the pixels of different color channels on a Bayer image sensor chip are not at the same physical location, conventional interpolation-based demosaicing process generates strong color artifacts, especially at rapidly oscillating hologram fringes, which become even more pronounced through digital wave propagation and phase retrieval processes. Here, we demonstrate that by merging the pixel super-resolution framework into the demultiplexing process, such color artifacts can be greatly suppressed. This novel technique, termed demosaiced pixel super-resolution (D-PSR) for digital holographic imaging, achieves very similar color imaging performance compared to conventional sequential R,G,B illumination, with 3-fold improvement in image acquisition time and data-efficiency. We successfully demonstrated the color imaging performance of this approach by imaging stained Pap smears. The D-PSR technique is broadly applicable to high-throughput, high-resolution digital holographic color microscopy techniques that can be used in resource-limited-settings and point-of-care offices.
Assessment of metal artifact reduction methods in pelvic CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdoli, Mehrsima; Mehranian, Abolfazl; Ailianou, Angeliki
2016-04-15
Purpose: Metal artifact reduction (MAR) produces images with improved quality potentially leading to confident and reliable clinical diagnosis and therapy planning. In this work, the authors evaluate the performance of five MAR techniques for the assessment of computed tomography images of patients with hip prostheses. Methods: Five MAR algorithms were evaluated using simulation and clinical studies. The algorithms included one-dimensional linear interpolation (LI) of the corrupted projection bins in the sinogram, two-dimensional interpolation (2D), a normalized metal artifact reduction (NMAR) technique, a metal deletion technique, and a maximum a posteriori completion (MAPC) approach. The algorithms were applied to ten simulatedmore » datasets as well as 30 clinical studies of patients with metallic hip implants. Qualitative evaluations were performed by two blinded experienced radiologists who ranked overall artifact severity and pelvic organ recognition for each algorithm by assigning scores from zero to five (zero indicating totally obscured organs with no structures identifiable and five indicating recognition with high confidence). Results: Simulation studies revealed that 2D, NMAR, and MAPC techniques performed almost equally well in all regions. LI falls behind the other approaches in terms of reducing dark streaking artifacts as well as preserving unaffected regions (p < 0.05). Visual assessment of clinical datasets revealed the superiority of NMAR and MAPC in the evaluated pelvic organs and in terms of overall image quality. Conclusions: Overall, all methods, except LI, performed equally well in artifact-free regions. Considering both clinical and simulation studies, 2D, NMAR, and MAPC seem to outperform the other techniques.« less
Interpolation Method Needed for Numerical Uncertainty
NASA Technical Reports Server (NTRS)
Groves, Curtis E.; Ilie, Marcel; Schallhorn, Paul A.
2014-01-01
Using Computational Fluid Dynamics (CFD) to predict a flow field is an approximation to the exact problem and uncertainties exist. There is a method to approximate the errors in CFD via Richardson's Extrapolation. This method is based off of progressive grid refinement. To estimate the errors, the analyst must interpolate between at least three grids. This paper describes a study to find an appropriate interpolation scheme that can be used in Richardson's extrapolation or other uncertainty method to approximate errors.
An interpolation method for stream habitat assessments
Sheehan, Kenneth R.; Welsh, Stuart A.
2015-01-01
Interpolation of stream habitat can be very useful for habitat assessment. Using a small number of habitat samples to predict the habitat of larger areas can reduce time and labor costs as long as it provides accurate estimates of habitat. The spatial correlation of stream habitat variables such as substrate and depth improves the accuracy of interpolated data. Several geographical information system interpolation methods (natural neighbor, inverse distance weighted, ordinary kriging, spline, and universal kriging) were used to predict substrate and depth within a 210.7-m2 section of a second-order stream based on 2.5% and 5.0% sampling of the total area. Depth and substrate were recorded for the entire study site and compared with the interpolated values to determine the accuracy of the predictions. In all instances, the 5% interpolations were more accurate for both depth and substrate than the 2.5% interpolations, which achieved accuracies up to 95% and 92%, respectively. Interpolations of depth based on 2.5% sampling attained accuracies of 49–92%, whereas those based on 5% percent sampling attained accuracies of 57–95%. Natural neighbor interpolation was more accurate than that using the inverse distance weighted, ordinary kriging, spline, and universal kriging approaches. Our findings demonstrate the effective use of minimal amounts of small-scale data for the interpolation of habitat over large areas of a stream channel. Use of this method will provide time and cost savings in the assessment of large sections of rivers as well as functional maps to aid the habitat-based management of aquatic species.
Assignment of boundary conditions in embedded ground water flow models
Leake, S.A.
1998-01-01
Many small-scale ground water models are too small to incorporate distant aquifer boundaries. If a larger-scale model exists for the area of interest, flow and head values can be specified for boundaries in the smaller-scale model using values from the larger-scale model. Flow components along rows and columns of a large-scale block-centered finite-difference model can be interpolated to compute horizontal flow across any segment of a perimeter of a small-scale model. Head at cell centers of the larger-scale model can be interpolated to compute head at points on a model perimeter. Simple linear interpolation is proposed for horizontal interpolation of horizontal-flow components. Bilinear interpolation is proposed for horizontal interpolation of head values. The methods of interpolation provided satisfactory boundary conditions in tests using models of hypothetical aquifers.Many small-scale ground water models are too small to incorporate distant aquifer boundaries. If a larger-scale model exists for the area of interest, flow and head values can be specified for boundaries in the smaller-scale model using values from the larger-scale model. Flow components along rows and columns of a large-scale block-centered finite-difference model can be interpolated to compute horizontal flow across any segment of a perimeter of a small-scale model. Head at cell centers of the larger.scale model can be interpolated to compute head at points on a model perimeter. Simple linear interpolation is proposed for horizontal interpolation of horizontal-flow components. Bilinear interpolation is proposed for horizontal interpolation of head values. The methods of interpolation provided satisfactory boundary conditions in tests using models of hypothetical aquifers.
Spatial interpolation of monthly mean air temperature data for Latvia
NASA Astrophysics Data System (ADS)
Aniskevich, Svetlana
2016-04-01
Temperature data with high spatial resolution are essential for appropriate and qualitative local characteristics analysis. Nowadays the surface observation station network in Latvia consists of 22 stations recording daily air temperature, thus in order to analyze very specific and local features in the spatial distribution of temperature values in the whole Latvia, a high quality spatial interpolation method is required. Until now inverse distance weighted interpolation was used for the interpolation of air temperature data at the meteorological and climatological service of the Latvian Environment, Geology and Meteorology Centre, and no additional topographical information was taken into account. This method made it almost impossible to reasonably assess the actual temperature gradient and distribution between the observation points. During this project a new interpolation method was applied and tested, considering auxiliary explanatory parameters. In order to spatially interpolate monthly mean temperature values, kriging with external drift was used over a grid of 1 km resolution, which contains parameters such as 5 km mean elevation, continentality, distance from the Gulf of Riga and the Baltic Sea, biggest lakes and rivers, population density. As the most appropriate of these parameters, based on a complex situation analysis, mean elevation and continentality was chosen. In order to validate interpolation results, several statistical indicators of the differences between predicted values and the values actually observed were used. Overall, the introduced model visually and statistically outperforms the previous interpolation method and provides a meteorologically reasonable result, taking into account factors that influence the spatial distribution of the monthly mean temperature.
NASA Technical Reports Server (NTRS)
Edwards, M. H.; Arvidson, R. E.; Guinness, E. A.
1984-01-01
The problem of displaying information on the seafloor morphology is attacked by utilizing digital image processing techniques to generate images for Seabeam data covering three young seamounts on the eastern flank of the East Pacific Rise. Errors in locations between crossing tracks are corrected by interactively identifying features and translating tracks relative to a control track. Spatial interpolation techniques using moving averages are used to interpolate between gridded depth values to produce images in shaded relief and color-coded forms. The digitally processed images clarify the structural control on seamount growth and clearly show the lateral extent of volcanic materials, including the distribution and fault control of subsidiary volcanic constructional features. The image presentations also clearly show artifacts related to both residual navigational errors and to depth or location differences that depend on ship heading relative to slope orientation in regions with steep slopes.
Generation of real-time mode high-resolution water vapor fields from GPS observations
NASA Astrophysics Data System (ADS)
Yu, Chen; Penna, Nigel T.; Li, Zhenhong
2017-02-01
Pointwise GPS measurements of tropospheric zenith total delay can be interpolated to provide high-resolution water vapor maps which may be used for correcting synthetic aperture radar images, for numeral weather prediction, and for correcting Network Real-time Kinematic GPS observations. Several previous studies have addressed the importance of the elevation dependency of water vapor, but it is often a challenge to separate elevation-dependent tropospheric delays from turbulent components. In this paper, we present an iterative tropospheric decomposition interpolation model that decouples the elevation and turbulent tropospheric delay components. For a 150 km × 150 km California study region, we estimate real-time mode zenith total delays at 41 GPS stations over 1 year by using the precise point positioning technique and demonstrate that the decoupled interpolation model generates improved high-resolution tropospheric delay maps compared with previous tropospheric turbulence- and elevation-dependent models. Cross validation of the GPS zenith total delays yields an RMS error of 4.6 mm with the decoupled interpolation model, compared with 8.4 mm with the previous model. On converting the GPS zenith wet delays to precipitable water vapor and interpolating to 1 km grid cells across the region, validations with the Moderate Resolution Imaging Spectroradiometer near-IR water vapor product show 1.7 mm RMS differences by using the decoupled model, compared with 2.0 mm for the previous interpolation model. Such results are obtained without differencing the tropospheric delays or water vapor estimates in time or space, while the errors are similar over flat and mountainous terrains, as well as for both inland and coastal areas.
Star centroiding error compensation for intensified star sensors.
Jiang, Jie; Xiong, Kun; Yu, Wenbo; Yan, Jinyun; Zhang, Guangjun
2016-12-26
A star sensor provides high-precision attitude information by capturing a stellar image; however, the traditional star sensor has poor dynamic performance, which is attributed to its low sensitivity. Regarding the intensified star sensor, the image intensifier is utilized to improve the sensitivity, thereby further improving the dynamic performance of the star sensor. However, the introduction of image intensifier results in star centroiding accuracy decrease, further influencing the attitude measurement precision of the star sensor. A star centroiding error compensation method for intensified star sensors is proposed in this paper to reduce the influences. First, the imaging model of the intensified detector, which includes the deformation parameter of the optical fiber panel, is established based on the orthographic projection through the analysis of errors introduced by the image intensifier. Thereafter, the position errors at the target points based on the model are obtained by using the Levenberg-Marquardt (LM) optimization method. Last, the nearest trigonometric interpolation method is presented to compensate for the arbitrary centroiding error of the image plane. Laboratory calibration result and night sky experiment result show that the compensation method effectively eliminates the error introduced by the image intensifier, thus remarkably improving the precision of the intensified star sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ho; Xing Lei; Lee, Rena
2012-05-15
Purpose: X-ray scatter incurred to detectors degrades the quality of cone-beam computed tomography (CBCT) and represents a problem in volumetric image guided and adaptive radiation therapy. Several methods using a beam blocker for the estimation and subtraction of scatter have been proposed. However, due to missing information resulting from the obstruction of the blocker, such methods require dual scanning or dynamically moving blocker to obtain a complete volumetric image. Here, we propose a half beam blocker-based approach, in conjunction with a total variation (TV) regularized Feldkamp-Davis-Kress (FDK) algorithm, to correct scatter-induced artifacts by simultaneously acquiring image and scatter information frommore » a single-rotation CBCT scan. Methods: A half beam blocker, comprising lead strips, is used to simultaneously acquire image data on one side of the projection data and scatter data on the other half side. One-dimensional cubic B-Spline interpolation/extrapolation is applied to derive patient specific scatter information by using the scatter distributions on strips. The estimated scatter is subtracted from the projection image acquired at the opposite view. With scatter-corrected projections where this subtraction is completed, the FDK algorithm based on a cosine weighting function is performed to reconstruct CBCT volume. To suppress the noise in the reconstructed CBCT images produced by geometric errors between two opposed projections and interpolated scatter information, total variation regularization is applied by a minimization using a steepest gradient descent optimization method. The experimental studies using Catphan504 and anthropomorphic phantoms were carried out to evaluate the performance of the proposed scheme. Results: The scatter-induced shading artifacts were markedly suppressed in CBCT using the proposed scheme. Compared with CBCT without a blocker, the nonuniformity value was reduced from 39.3% to 3.1%. The root mean square error relative to values inside the regions of interest selected from a benchmark scatter free image was reduced from 50 to 11.3. The TV regularization also led to a better contrast-to-noise ratio. Conclusions: An asymmetric half beam blocker-based FDK acquisition and reconstruction technique has been established. The proposed scheme enables simultaneous detection of patient specific scatter and complete volumetric CBCT reconstruction without additional requirements such as prior images, dual scans, or moving strips.« less
A debugging method of the Quadrotor UAV based on infrared thermal imaging
NASA Astrophysics Data System (ADS)
Cui, Guangjie; Hao, Qian; Yang, Jianguo; Chen, Lizhi; Hu, Hongkang; Zhang, Lijun
2018-01-01
High-performance UAV has been popular and in great need in recent years. The paper introduces a new method in debugging Quadrotor UAVs. Based on the infrared thermal technology and heat transfer theory, a UAV is under debugging above a hot-wire grid which is composed of 14 heated nichrome wires. And the air flow propelled by the rotating rotors has an influence on the temperature distribution of the hot-wire grid. An infrared thermal imager below observes the distribution and gets thermal images of the hot-wire grid. With the assistance of mathematic model and some experiments, the paper discusses the relationship between thermal images and the speed of rotors. By means of getting debugged UAVs into test, the standard information and thermal images can be acquired. The paper demonstrates that comparing to the standard thermal images, a UAV being debugging in the same test can draw some critical data directly or after interpolation. The results are shown in the paper and the advantages are discussed.
Mapping shorelines to subpixel accuracy using Landsat imagery
NASA Astrophysics Data System (ADS)
Abileah, Ron; Vignudelli, Stefano; Scozzari, Andrea
2013-04-01
A promising method to accurately map the shoreline of oceans, lakes, reservoirs, and rivers is proposed and verified in this work. The method is applied to multispectral satellite imagery in two stages. The first stage is a classification of each image pixel into land/water categories using the conventional 'dark pixel' method. The approach presented here, makes use of a single shortwave IR image band (SWIR), if available. It is well known that SWIR has the least water leaving radiance and relatively little sensitivity to water pollutants and suspended sediments. It is generally the darkest (over water) and most reliable single band for land-water discrimination. The boundary of the water cover map determined in stage 1 underestimates the water cover and often misses the true shoreline by a quantity up to one pixel. A more accurate shoreline would be obtained by connecting the center point of pixels with exactly 50-50 mix of water and land. Then, stage 2 finds the 50-50 mix points. According to the method proposed, image data is interpolated and up-sampled to ten times the original resolution. The local gradient in radiance is used to find the direction to the shore, thus searching along that path for the interpolated pixel closest to a 50-50 mix. Landsat images with 30m resolution, processed by this method, may thus provide the shoreline accurate to 3m. Compared to similar approaches available in the literature, the method proposed discriminates sub-pixels crossed by the shoreline by using a criteria based on the absolute value of radiance, rather than its gradient. Preliminary experimentation of the algorithm shows that 10m resolution accuracy is easily achieved and in some cases is often better than 5m. The proposed method can be used to study long term shoreline changes by exploiting the 30 years of archived world-wide coverage Landsat imagery. Landsat imagery is free and easily accessible for downloading. Some applications that exploit the Landsat dataset and the new method are discussed in the companion poster: "Case-studies of potential applications for highly resolved shorelines."
Rainfall Observed Over Bangladesh 2000-2008: A Comparison of Spatial Interpolation Methods
NASA Astrophysics Data System (ADS)
Pervez, M.; Henebry, G. M.
2010-12-01
In preparation for a hydrometeorological study of freshwater resources in the greater Ganges-Brahmaputra region, we compared the results of four methods of spatial interpolation applied to point measurements of daily rainfall over Bangladesh during a seven year period (2000-2008). Two univariate (inverse distance weighted and spline-regularized and tension) and two multivariate geostatistical (ordinary kriging and kriging with external drift) methods were used to interpolate daily observations from a network of 221 rain gauges across Bangladesh spanning an area of 143,000 sq km. Elevation and topographic index were used as the covariates in the geostatistical methods. The validity of the interpolated maps was analyzed through cross-validation. The quality of the methods was assessed through the Pearson and Spearman correlations and root mean square error measurements of accuracy in cross-validation. Preliminary results indicated that the univariate methods performed better than the geostatistical methods at daily scales, likely due to the relatively dense sampled point measurements and a weak correlation between the rainfall and covariates at daily scales in this region. Inverse distance weighted produced the better results than the spline. For the days with extreme or high rainfall—spatially and quantitatively—the correlation between observed and interpolated estimates appeared to be high (r2 ~ 0.6 RMSE ~ 10mm), although for low rainfall days the correlations were poor (r2 ~ 0.1 RMSE ~ 3mm). The performance quality of these methods was influenced by the density of the sample point measurements, the quantity of the observed rainfall along with spatial extent, and an appropriate search radius defining the neighboring points. Results indicated that interpolated rainfall estimates at daily scales may introduce uncertainties in the successive hydrometeorological analysis. Interpolations at 5-day, 10-day, 15-day, and monthly time scales are currently under investigation.
Improved Image Quality in Head and Neck CT Using a 3D Iterative Approach to Reduce Metal Artifact.
Wuest, W; May, M S; Brand, M; Bayerl, N; Krauss, A; Uder, M; Lell, M
2015-10-01
Metal artifacts from dental fillings and other devices degrade image quality and may compromise the detection and evaluation of lesions in the oral cavity and oropharynx by CT. The aim of this study was to evaluate the effect of iterative metal artifact reduction on CT of the oral cavity and oropharynx. Data from 50 consecutive patients with metal artifacts from dental hardware were reconstructed with standard filtered back-projection, linear interpolation metal artifact reduction (LIMAR), and iterative metal artifact reduction. The image quality of sections that contained metal was analyzed for the severity of artifacts and diagnostic value. A total of 455 sections (mean ± standard deviation, 9.1 ± 4.1 sections per patient) contained metal and were evaluated with each reconstruction method. Sections without metal were not affected by the algorithms and demonstrated image quality identical to each other. Of these sections, 38% were considered nondiagnostic with filtered back-projection, 31% with LIMAR, and only 7% with iterative metal artifact reduction. Thirty-three percent of the sections had poor image quality with filtered back-projection, 46% with LIMAR, and 10% with iterative metal artifact reduction. Thirteen percent of the sections with filtered back-projection, 17% with LIMAR, and 22% with iterative metal artifact reduction were of moderate image quality, 16% of the sections with filtered back-projection, 5% with LIMAR, and 30% with iterative metal artifact reduction were of good image quality, and 1% of the sections with LIMAR and 31% with iterative metal artifact reduction were of excellent image quality. Iterative metal artifact reduction yields the highest image quality in comparison with filtered back-projection and linear interpolation metal artifact reduction in patients with metal hardware in the head and neck area. © 2015 by American Journal of Neuroradiology.
Raster Vs. Point Cloud LiDAR Data Classification
NASA Astrophysics Data System (ADS)
El-Ashmawy, N.; Shaker, A.
2014-09-01
Airborne Laser Scanning systems with light detection and ranging (LiDAR) technology is one of the fast and accurate 3D point data acquisition techniques. Generating accurate digital terrain and/or surface models (DTM/DSM) is the main application of collecting LiDAR range data. Recently, LiDAR range and intensity data have been used for land cover classification applications. Data range and Intensity, (strength of the backscattered signals measured by the LiDAR systems), are affected by the flying height, the ground elevation, scanning angle and the physical characteristics of the objects surface. These effects may lead to uneven distribution of point cloud or some gaps that may affect the classification process. Researchers have investigated the conversion of LiDAR range point data to raster image for terrain modelling. Interpolation techniques have been used to achieve the best representation of surfaces, and to fill the gaps between the LiDAR footprints. Interpolation methods are also investigated to generate LiDAR range and intensity image data for land cover classification applications. In this paper, different approach has been followed to classifying the LiDAR data (range and intensity) for land cover mapping. The methodology relies on the classification of the point cloud data based on their range and intensity and then converted the classified points into raster image. The gaps in the data are filled based on the classes of the nearest neighbour. Land cover maps are produced using two approaches using: (a) the conventional raster image data based on point interpolation; and (b) the proposed point data classification. A study area covering an urban district in Burnaby, British Colombia, Canada, is selected to compare the results of the two approaches. Five different land cover classes can be distinguished in that area: buildings, roads and parking areas, trees, low vegetation (grass), and bare soil. The results show that an improvement of around 10 % in the classification results can be achieved by using the proposed approach.
Sim, K S; Lim, M S; Yeap, Z X
2016-07-01
A new technique to quantify signal-to-noise ratio (SNR) value of the scanning electron microscope (SEM) images is proposed. This technique is known as autocorrelation Levinson-Durbin recursion (ACLDR) model. To test the performance of this technique, the SEM image is corrupted with noise. The autocorrelation function of the original image and the noisy image are formed. The signal spectrum based on the autocorrelation function of image is formed. ACLDR is then used as an SNR estimator to quantify the signal spectrum of noisy image. The SNR values of the original image and the quantified image are calculated. The ACLDR is then compared with the three existing techniques, which are nearest neighbourhood, first-order linear interpolation and nearest neighbourhood combined with first-order linear interpolation. It is shown that ACLDR model is able to achieve higher accuracy in SNR estimation. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
A hyperspectral image optimizing method based on sub-pixel MTF analysis
NASA Astrophysics Data System (ADS)
Wang, Yun; Li, Kai; Wang, Jinqiang; Zhu, Yajie
2015-04-01
Hyperspectral imaging is used to collect tens or hundreds of images continuously divided across electromagnetic spectrum so that the details under different wavelengths could be represented. A popular hyperspectral imaging methods uses a tunable optical band-pass filter settled in front of the focal plane to acquire images of different wavelengths. In order to alleviate the influence of chromatic aberration in some segments in a hyperspectral series, in this paper, a hyperspectral optimizing method uses sub-pixel MTF to evaluate image blurring quality was provided. This method acquired the edge feature in the target window by means of the line spread function (LSF) to calculate the reliable position of the edge feature, then the evaluation grid in each line was interpolated by the real pixel value based on its relative position to the optimal edge and the sub-pixel MTF was used to analyze the image in frequency domain, by which MTF calculation dimension was increased. The sub-pixel MTF evaluation was reliable, since no image rotation and pixel value estimation was needed, and no artificial information was introduced. With theoretical analysis, the method proposed in this paper is reliable and efficient when evaluation the common images with edges of small tilt angle in real scene. It also provided a direction for the following hyperspectral image blurring evaluation and the real-time focal plane adjustment in real time in related imaging system.
NASA Astrophysics Data System (ADS)
Ducru, Pablo; Josey, Colin; Dibert, Karia; Sobes, Vladimir; Forget, Benoit; Smith, Kord
2017-04-01
This article establishes a new family of methods to perform temperature interpolation of nuclear interactions cross sections, reaction rates, or cross sections times the energy. One of these quantities at temperature T is approximated as a linear combination of quantities at reference temperatures (Tj). The problem is formalized in a cross section independent fashion by considering the kernels of the different operators that convert cross section related quantities from a temperature T0 to a higher temperature T - namely the Doppler broadening operation. Doppler broadening interpolation of nuclear cross sections is thus here performed by reconstructing the kernel of the operation at a given temperature T by means of linear combination of kernels at reference temperatures (Tj). The choice of the L2 metric yields optimal linear interpolation coefficients in the form of the solutions of a linear algebraic system inversion. The optimization of the choice of reference temperatures (Tj) is then undertaken so as to best reconstruct, in the L∞ sense, the kernels over a given temperature range [Tmin ,Tmax ]. The performance of these kernel reconstruction methods is then assessed in light of previous temperature interpolation methods by testing them upon isotope 238U. Temperature-optimized free Doppler kernel reconstruction significantly outperforms all previous interpolation-based methods, achieving 0.1% relative error on temperature interpolation of 238U total cross section over the temperature range [ 300 K , 3000 K ] with only 9 reference temperatures.
Pryor, Alan; Ophus, Colin; Miao, Jianwei
2017-10-25
Simulation of atomic-resolution image formation in scanning transmission electron microscopy can require significant computation times using traditional methods. A recently developed method, termed plane-wave reciprocal-space interpolated scattering matrix (PRISM), demonstrates potential for significant acceleration of such simulations with negligible loss of accuracy. In this paper, we present a software package called Prismatic for parallelized simulation of image formation in scanning transmission electron microscopy (STEM) using both the PRISM and multislice methods. By distributing the workload between multiple CUDA-enabled GPUs and multicore processors, accelerations as high as 1000 × for PRISM and 15 × for multislice are achieved relative to traditionalmore » multislice implementations using a single 4-GPU machine. We demonstrate a potentially important application of Prismatic, using it to compute images for atomic electron tomography at sufficient speeds to include in the reconstruction pipeline. Prismatic is freely available both as an open-source CUDA/C++ package with a graphical user interface and as a Python package, PyPrismatic.« less
Pryor, Alan; Ophus, Colin; Miao, Jianwei
2017-01-01
Simulation of atomic-resolution image formation in scanning transmission electron microscopy can require significant computation times using traditional methods. A recently developed method, termed plane-wave reciprocal-space interpolated scattering matrix (PRISM), demonstrates potential for significant acceleration of such simulations with negligible loss of accuracy. Here, we present a software package called Prismatic for parallelized simulation of image formation in scanning transmission electron microscopy (STEM) using both the PRISM and multislice methods. By distributing the workload between multiple CUDA-enabled GPUs and multicore processors, accelerations as high as 1000 × for PRISM and 15 × for multislice are achieved relative to traditional multislice implementations using a single 4-GPU machine. We demonstrate a potentially important application of Prismatic , using it to compute images for atomic electron tomography at sufficient speeds to include in the reconstruction pipeline. Prismatic is freely available both as an open-source CUDA/C++ package with a graphical user interface and as a Python package, PyPrismatic .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pryor, Alan; Ophus, Colin; Miao, Jianwei
Simulation of atomic-resolution image formation in scanning transmission electron microscopy can require significant computation times using traditional methods. A recently developed method, termed plane-wave reciprocal-space interpolated scattering matrix (PRISM), demonstrates potential for significant acceleration of such simulations with negligible loss of accuracy. In this paper, we present a software package called Prismatic for parallelized simulation of image formation in scanning transmission electron microscopy (STEM) using both the PRISM and multislice methods. By distributing the workload between multiple CUDA-enabled GPUs and multicore processors, accelerations as high as 1000 × for PRISM and 15 × for multislice are achieved relative to traditionalmore » multislice implementations using a single 4-GPU machine. We demonstrate a potentially important application of Prismatic, using it to compute images for atomic electron tomography at sufficient speeds to include in the reconstruction pipeline. Prismatic is freely available both as an open-source CUDA/C++ package with a graphical user interface and as a Python package, PyPrismatic.« less
Behn, Andrew; Zimmerman, Paul M; Bell, Alexis T; Head-Gordon, Martin
2011-12-13
The growing string method is a powerful tool in the systematic study of chemical reactions with theoretical methods which allows for the rapid identification of transition states connecting known reactant and product structures. However, the efficiency of this method is heavily influenced by the choice of interpolation scheme when adding new nodes to the string during optimization. In particular, the use of Cartesian coordinates with cubic spline interpolation often produces guess structures which are far from the final reaction path and require many optimization steps (and thus many energy and gradient calculations) to yield a reasonable final structure. In this paper, we present a new method for interpolating and reparameterizing nodes within the growing string method using the linear synchronous transit method of Halgren and Lipscomb. When applied to the alanine dipeptide rearrangement and a simplified cationic alkyl ring condensation reaction, a significant speedup in terms of computational cost is achieved (30-50%).
The Natural Neighbour Radial Point Interpolation Meshless Method Applied to the Non-Linear Analysis
NASA Astrophysics Data System (ADS)
Dinis, L. M. J. S.; Jorge, R. M. Natal; Belinha, J.
2011-05-01
In this work the Natural Neighbour Radial Point Interpolation Method (NNRPIM), is extended to large deformation analysis of elastic and elasto-plastic structures. The NNPRIM uses the Natural Neighbour concept in order to enforce the nodal connectivity and to create a node-depending background mesh, used in the numerical integration of the NNRPIM interpolation functions. Unlike the FEM, where geometrical restrictions on elements are imposed for the convergence of the method, in the NNRPIM there are no such restrictions, which permits a random node distribution for the discretized problem. The NNRPIM interpolation functions, used in the Galerkin weak form, are constructed using the Radial Point Interpolators, with some differences that modify the method performance. In the construction of the NNRPIM interpolation functions no polynomial base is required and the used Radial Basis Function (RBF) is the Multiquadric RBF. The NNRPIM interpolation functions posses the delta Kronecker property, which simplify the imposition of the natural and essential boundary conditions. One of the scopes of this work is to present the validation the NNRPIM in the large-deformation elasto-plastic analysis, thus the used non-linear solution algorithm is the Newton-Rapson initial stiffness method and the efficient "forward-Euler" procedure is used in order to return the stress state to the yield surface. Several non-linear examples, exhibiting elastic and elasto-plastic material properties, are studied to demonstrate the effectiveness of the method. The numerical results indicated that NNRPIM handles large material distortion effectively and provides an accurate solution under large deformation.
Servo-controlling structure of five-axis CNC system for real-time NURBS interpolating
NASA Astrophysics Data System (ADS)
Chen, Liangji; Guo, Guangsong; Li, Huiying
2017-07-01
NURBS (Non-Uniform Rational B-Spline) is widely used in CAD/CAM (Computer-Aided Design / Computer-Aided Manufacturing) to represent sculptured curves or surfaces. In this paper, we develop a 5-axis NURBS real-time interpolator and realize it in our developing CNC(Computer Numerical Control) system. At first, we use two NURBS curves to represent tool-tip and tool-axis path respectively. According to feedrate and Taylor series extension, servo-controlling signals of 5 axes are obtained for each interpolating cycle. Then, generation procedure of NC(Numerical Control) code with the presented method is introduced and the method how to integrate the interpolator into our developing CNC system is given. And also, the servo-controlling structure of the CNC system is introduced. Through the illustration, it has been indicated that the proposed method can enhance the machining accuracy and the spline interpolator is feasible for 5-axis CNC system.
Spatiotemporal Interpolation for Environmental Modelling
Susanto, Ferry; de Souza, Paulo; He, Jing
2016-01-01
A variation of the reduction-based approach to spatiotemporal interpolation (STI), in which time is treated independently from the spatial dimensions, is proposed in this paper. We reviewed and compared three widely-used spatial interpolation techniques: ordinary kriging, inverse distance weighting and the triangular irregular network. We also proposed a new distribution-based distance weighting (DDW) spatial interpolation method. In this study, we utilised one year of Tasmania’s South Esk Hydrology model developed by CSIRO. Root mean squared error statistical methods were performed for performance evaluations. Our results show that the proposed reduction approach is superior to the extension approach to STI. However, the proposed DDW provides little benefit compared to the conventional inverse distance weighting (IDW) method. We suggest that the improved IDW technique, with the reduction approach used for the temporal dimension, is the optimal combination for large-scale spatiotemporal interpolation within environmental modelling applications. PMID:27509497
A 4DCT imaging-based breathing lung model with relative hysteresis
Miyawaki, Shinjiro; Choi, Sanghun; Hoffman, Eric A.; Lin, Ching-Long
2016-01-01
To reproduce realistic airway motion and airflow, the authors developed a deforming lung computational fluid dynamics (CFD) model based on four-dimensional (4D, space and time) dynamic computed tomography (CT) images. A total of 13 time points within controlled tidal volume respiration were used to account for realistic and irregular lung motion in human volunteers. Because of the irregular motion of 4DCT-based airways, we identified an optimal interpolation method for airway surface deformation during respiration, and implemented a computational solid mechanics-based moving mesh algorithm to produce smooth deforming airway mesh. In addition, we developed physiologically realistic airflow boundary conditions for both models based on multiple images and a single image. Furthermore, we examined simplified models based on one or two dynamic or static images. By comparing these simplified models with the model based on 13 dynamic images, we investigated the effects of relative hysteresis of lung structure with respect to lung volume, lung deformation, and imaging methods, i.e., dynamic vs. static scans, on CFD-predicted pressure drop. The effect of imaging method on pressure drop was 24 percentage points due to the differences in airflow distribution and airway geometry. PMID:28260811
A 4DCT imaging-based breathing lung model with relative hysteresis
NASA Astrophysics Data System (ADS)
Miyawaki, Shinjiro; Choi, Sanghun; Hoffman, Eric A.; Lin, Ching-Long
2016-12-01
To reproduce realistic airway motion and airflow, the authors developed a deforming lung computational fluid dynamics (CFD) model based on four-dimensional (4D, space and time) dynamic computed tomography (CT) images. A total of 13 time points within controlled tidal volume respiration were used to account for realistic and irregular lung motion in human volunteers. Because of the irregular motion of 4DCT-based airways, we identified an optimal interpolation method for airway surface deformation during respiration, and implemented a computational solid mechanics-based moving mesh algorithm to produce smooth deforming airway mesh. In addition, we developed physiologically realistic airflow boundary conditions for both models based on multiple images and a single image. Furthermore, we examined simplified models based on one or two dynamic or static images. By comparing these simplified models with the model based on 13 dynamic images, we investigated the effects of relative hysteresis of lung structure with respect to lung volume, lung deformation, and imaging methods, i.e., dynamic vs. static scans, on CFD-predicted pressure drop. The effect of imaging method on pressure drop was 24 percentage points due to the differences in airflow distribution and airway geometry.
Noninvasive coronary artery angiography using electron beam computed tomography
NASA Astrophysics Data System (ADS)
Rumberger, John A.; Rensing, Benno J.; Reed, Judd E.; Ritman, Erik L.; Sheedy, Patrick F., II
1996-04-01
Electron beam computed tomography (EBCT), also known as ultrafast-CT or cine-CT, uses a unique scanning architecture which allows for multiple high spatial resolution electrocardiographic triggered images of the beating heart. A recent study has demonstrated the feasibility of qualitative comparisons between EBCT derived 3D coronary angiograms and invasive angiography. Stenoses of the proximal portions of the left anterior descending and right coronary arteries were readily identified, but description of atherosclerotic narrowing in the left circumflex artery (and distal epicardial disease) was not possible with any degree of confidence. Although these preliminary studies support the notion that this approach has potential, the images overall were suboptimal for clinical application as an adjunct to invasive angiography. Furthermore, these studies did not examine different methods of EBCT scan acquisition, tomographic slice thicknesses, extent of scan overlap, or other segmentation, thresholding, and interpolation algorithms. Our laboratory has initiated investigation of these aspects and limitations of EBCT coronary angiography. Specific areas of research include defining effects of cardiac orientation; defining the effects of tomographic slice thickness and intensity (gradient) versus positional (shaped based) interpolation; and defining applicability of imaging each of the major epicardial coronary arteries for quantitative definition of vessel size, cross-sectional area, taper, and discrete vessel narrowing.
DEM interpolation weight calculation modulus based on maximum entropy
NASA Astrophysics Data System (ADS)
Chen, Tian-wei; Yang, Xia
2015-12-01
There is negative-weight in traditional interpolation of gridding DEM, in the article, the principle of Maximum Entropy is utilized to analyze the model system which depends on modulus of space weight. Negative-weight problem of the DEM interpolation is researched via building Maximum Entropy model, and adding nonnegative, first and second order's Moment constraints, the negative-weight problem is solved. The correctness and accuracy of the method was validated with genetic algorithm in matlab program. The method is compared with the method of Yang Chizhong interpolation and quadratic program. Comparison shows that the volume and scaling of Maximum Entropy's weight is fit to relations of space and the accuracy is superior to the latter two.
Ji, Jim; Wright, Steven
2005-01-01
Parallel imaging using multiple phased-array coils and receiver channels has become an effective approach to high-speed magnetic resonance imaging (MRI). To obtain high spatiotemporal resolution, the k-space is subsampled and later interpolated using multiple channel data. Higher subsampling factors result in faster image acquisition. However, the subsampling factors are upper-bounded by the number of parallel channels. Phase constraints have been previously proposed to overcome this limitation with some success. In this paper, we demonstrate that in certain applications it is possible to obtain acceleration factors potentially up to twice the channel numbers by using a real image constraint. Data acquisition and processing methods to manipulate and estimate of the image phase information are presented for improving image reconstruction. In-vivo brain MRI experimental results show that accelerations up to 6 are feasible with 4-channel data.
Image processing of aerodynamic data
NASA Technical Reports Server (NTRS)
Faulcon, N. D.
1985-01-01
The use of digital image processing techniques in analyzing and evaluating aerodynamic data is discussed. An image processing system that converts images derived from digital data or from transparent film into black and white, full color, or false color pictures is described. Applications to black and white images of a model wing with a NACA 64-210 section in simulated rain and to computed low properties for transonic flow past a NACA 0012 airfoil are presented. Image processing techniques are used to visualize the variations of water film thicknesses on the wing model and to illustrate the contours of computed Mach numbers for the flow past the NACA 0012 airfoil. Since the computed data for the NACA 0012 airfoil are available only at discrete spatial locations, an interpolation method is used to provide values of the Mach number over the entire field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arinilhaq,; Widita, Rena
2014-09-30
Optical Coherence Tomography is often used in medical image acquisition to diagnose that change due easy to use and low price. Unfortunately, this type of examination produces a two-dimensional retinal image of the point of acquisition. Therefore, this study developed a method that combines and reconstruct 2-dimensional retinal images into three-dimensional images to display volumetric macular accurately. The system is built with three main stages: data acquisition, data extraction and 3-dimensional reconstruction. At data acquisition step, Optical Coherence Tomography produced six *.jpg images of each patient were further extracted with MATLAB 2010a software into six one-dimensional arrays. The six arraysmore » are combined into a 3-dimensional matrix using a kriging interpolation method with SURFER9 resulting 3-dimensional graphics of macula. Finally, system provides three-dimensional color graphs based on the data distribution normal macula. The reconstruction system which has been designed produces three-dimensional images with size of 481 × 481 × h (retinal thickness) pixels.« less
Efficient Kriging via Fast Matrix-Vector Products
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; Raykar, Vikas C.; Duraiswami, Ramani; Mount, David M.
2008-01-01
Interpolating scattered data points is a problem of wide ranging interest. Ordinary kriging is an optimal scattered data estimator, widely used in geosciences and remote sensing. A generalized version of this technique, called cokriging, can be used for image fusion of remotely sensed data. However, it is computationally very expensive for large data sets. We demonstrate the time efficiency and accuracy of approximating ordinary kriging through the use of fast matrixvector products combined with iterative methods. We used methods based on the fast Multipole methods and nearest neighbor searching techniques for implementations of the fast matrix-vector products.
Automatic Topography Using High Precision Digital Moire Methods
NASA Astrophysics Data System (ADS)
Yatagai, T.; Idesawa, M.; Saito, S.
1983-07-01
Three types of moire topographic methods using digital techniques are proposed. Deformed gratings obtained by projecting a reference grating onto an object under test are subjected to digital analysis. The electronic analysis procedures of deformed gratings described here enable us to distinguish between depression and elevation of the object, so that automatic measurement of 3-D shapes and automatic moire fringe interpolation are performed. Based on the digital moire methods, we have developed a practical measurement system, with a linear photodiode array on a micro-stage as a scanning image sensor. Examples of fringe analysis in medical applications are presented.
Mapping Atmospheric Moisture Climatologies across the Conterminous United States
Daly, Christopher; Smith, Joseph I.; Olson, Keith V.
2015-01-01
Spatial climate datasets of 1981–2010 long-term mean monthly average dew point and minimum and maximum vapor pressure deficit were developed for the conterminous United States at 30-arcsec (~800m) resolution. Interpolation of long-term averages (twelve monthly values per variable) was performed using PRISM (Parameter-elevation Relationships on Independent Slopes Model). Surface stations available for analysis numbered only 4,000 for dew point and 3,500 for vapor pressure deficit, compared to 16,000 for previously-developed grids of 1981–2010 long-term mean monthly minimum and maximum temperature. Therefore, a form of Climatologically-Aided Interpolation (CAI) was used, in which the 1981–2010 temperature grids were used as predictor grids. For each grid cell, PRISM calculated a local regression function between the interpolated climate variable and the predictor grid. Nearby stations entering the regression were assigned weights based on the physiographic similarity of the station to the grid cell that included the effects of distance, elevation, coastal proximity, vertical atmospheric layer, and topographic position. Interpolation uncertainties were estimated using cross-validation exercises. Given that CAI interpolation was used, a new method was developed to allow uncertainties in predictor grids to be accounted for in estimating the total interpolation error. Local land use/land cover properties had noticeable effects on the spatial patterns of atmospheric moisture content and deficit. An example of this was relatively high dew points and low vapor pressure deficits at stations located in or near irrigated fields. The new grids, in combination with existing temperature grids, enable the user to derive a full suite of atmospheric moisture variables, such as minimum and maximum relative humidity, vapor pressure, and dew point depression, with accompanying assumptions. All of these grids are available online at http://prism.oregonstate.edu, and include 800-m and 4-km resolution data, images, metadata, pedigree information, and station inventory files. PMID:26485026
Wong, Stephen; Hargreaves, Eric L; Baltuch, Gordon H; Jaggi, Jurg L; Danish, Shabbar F
2012-01-01
Microelectrode recording (MER) is necessary for precision localization of target structures such as the subthalamic nucleus during deep brain stimulation (DBS) surgery. Attempts to automate this process have produced quantitative temporal trends (feature activity vs. time) extracted from mobile MER data. Our goal was to evaluate computational methods of generating spatial profiles (feature activity vs. depth) from temporal trends that would decouple automated MER localization from the clinical procedure and enhance functional localization in DBS surgery. We evaluated two methods of interpolation (standard vs. kernel) that generated spatial profiles from temporal trends. We compared interpolated spatial profiles to true spatial profiles that were calculated with depth windows, using correlation coefficient analysis. Excellent approximation of true spatial profiles is achieved by interpolation. Kernel-interpolated spatial profiles produced superior correlation coefficient values at optimal kernel widths (r = 0.932-0.940) compared to standard interpolation (r = 0.891). The choice of kernel function and kernel width resulted in trade-offs in smoothing and resolution. Interpolation of feature activity to create spatial profiles from temporal trends is accurate and can standardize and facilitate MER functional localization of subcortical structures. The methods are computationally efficient, enhancing localization without imposing additional constraints on the MER clinical procedure during DBS surgery. Copyright © 2012 S. Karger AG, Basel.
Interpolation Method Needed for Numerical Uncertainty Analysis of Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Groves, Curtis; Ilie, Marcel; Schallhorn, Paul
2014-01-01
Using Computational Fluid Dynamics (CFD) to predict a flow field is an approximation to the exact problem and uncertainties exist. There is a method to approximate the errors in CFD via Richardson's Extrapolation. This method is based off of progressive grid refinement. To estimate the errors in an unstructured grid, the analyst must interpolate between at least three grids. This paper describes a study to find an appropriate interpolation scheme that can be used in Richardson's extrapolation or other uncertainty method to approximate errors. Nomenclature
Liu, Wei; Du, Peijun; Wang, Dongchen
2015-01-01
One important method to obtain the continuous surfaces of soil properties from point samples is spatial interpolation. In this paper, we propose a method that combines ensemble learning with ancillary environmental information for improved interpolation of soil properties (hereafter, EL-SP). First, we calculated the trend value for soil potassium contents at the Qinghai Lake region in China based on measured values. Then, based on soil types, geology types, land use types, and slope data, the remaining residual was simulated with the ensemble learning model. Next, the EL-SP method was applied to interpolate soil potassium contents at the study site. To evaluate the utility of the EL-SP method, we compared its performance with other interpolation methods including universal kriging, inverse distance weighting, ordinary kriging, and ordinary kriging combined geographic information. Results show that EL-SP had a lower mean absolute error and root mean square error than the data produced by the other models tested in this paper. Notably, the EL-SP maps can describe more locally detailed information and more accurate spatial patterns for soil potassium content than the other methods because of the combined use of different types of environmental information; these maps are capable of showing abrupt boundary information for soil potassium content. Furthermore, the EL-SP method not only reduces prediction errors, but it also compliments other environmental information, which makes the spatial interpolation of soil potassium content more reasonable and useful.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vittoria, Fabio A., E-mail: fabio.vittoria.12@ucl.ac.uk; Diemoz, Paul C.; Research Complex at Harwell, Harwell Oxford Campus, OX11 0FA Didcot
2014-03-31
We propose two different approaches to retrieve x-ray absorption, refraction, and scattering signals using a one dimensional scan and a high resolution detector. The first method can be easily implemented in existing procedures developed for edge illumination to retrieve absorption and refraction signals, giving comparable image quality while reducing exposure time and delivered dose. The second method tracks the variations of the beam intensity profile on the detector through a multi-Gaussian interpolation, allowing the additional retrieval of the scattering signal.
Ducru, Pablo; Josey, Colin; Dibert, Karia; ...
2017-01-25
This paper establishes a new family of methods to perform temperature interpolation of nuclear interactions cross sections, reaction rates, or cross sections times the energy. One of these quantities at temperature T is approximated as a linear combination of quantities at reference temperatures (T j). The problem is formalized in a cross section independent fashion by considering the kernels of the different operators that convert cross section related quantities from a temperature T 0 to a higher temperature T — namely the Doppler broadening operation. Doppler broadening interpolation of nuclear cross sections is thus here performed by reconstructing the kernelmore » of the operation at a given temperature T by means of linear combination of kernels at reference temperatures (T j). The choice of the L 2 metric yields optimal linear interpolation coefficients in the form of the solutions of a linear algebraic system inversion. The optimization of the choice of reference temperatures (T j) is then undertaken so as to best reconstruct, in the L∞ sense, the kernels over a given temperature range [T min,T max]. The performance of these kernel reconstruction methods is then assessed in light of previous temperature interpolation methods by testing them upon isotope 238U. Temperature-optimized free Doppler kernel reconstruction significantly outperforms all previous interpolation-based methods, achieving 0.1% relative error on temperature interpolation of 238U total cross section over the temperature range [300 K,3000 K] with only 9 reference temperatures.« less
Multi-test cervical cancer diagnosis with missing data estimation
NASA Astrophysics Data System (ADS)
Xu, Tao; Huang, Xiaolei; Kim, Edward; Long, L. Rodney; Antani, Sameer
2015-03-01
Cervical cancer is a leading most common type of cancer for women worldwide. Existing screening programs for cervical cancer suffer from low sensitivity. Using images of the cervix (cervigrams) as an aid in detecting pre-cancerous changes to the cervix has good potential to improve sensitivity and help reduce the number of cervical cancer cases. In this paper, we present a method that utilizes multi-modality information extracted from multiple tests of a patient's visit to classify the patient visit to be either low-risk or high-risk. Our algorithm integrates image features and text features to make a diagnosis. We also present two strategies to estimate the missing values in text features: Image Classifier Supervised Mean Imputation (ICSMI) and Image Classifier Supervised Linear Interpolation (ICSLI). We evaluate our method on a large medical dataset and compare it with several alternative approaches. The results show that the proposed method with ICSLI strategy achieves the best result of 83.03% specificity and 76.36% sensitivity. When higher specificity is desired, our method can achieve 90% specificity with 62.12% sensitivity.
Scene segmentation of natural images using texture measures and back-propagation
NASA Technical Reports Server (NTRS)
Sridhar, Banavar; Phatak, Anil; Chatterji, Gano
1993-01-01
Knowledge of the three-dimensional world is essential for many guidance and navigation applications. A sequence of images from an electro-optical sensor can be processed using optical flow algorithms to provide a sparse set of ranges as a function of azimuth and elevation. A natural way to enhance the range map is by interpolation. However, this should be undertaken with care since interpolation assumes continuity of range. The range is continuous in certain parts of the image and can jump at object boundaries. In such situations, the ability to detect homogeneous object regions by scene segmentation can be used to determine regions in the range map that can be enhanced by interpolation. The use of scalar features derived from the spatial gray-level dependence matrix for texture segmentation is explored. Thresholding of histograms of scalar texture features is done for several images to select scalar features which result in a meaningful segmentation of the images. Next, the selected scalar features are used with a neural net to automate the segmentation procedure. Back-propagation is used to train the feed forward neural network. The generalization of the network approach to subsequent images in the sequence is examined. It is shown that the use of multiple scalar features as input to the neural network result in a superior segmentation when compared with a single scalar feature. It is also shown that the scalar features, which are not useful individually, result in a good segmentation when used together. The methodology is applied to both indoor and outdoor images.
Allen, Robert C; Rutan, Sarah C
2011-10-31
Simulated and experimental data were used to measure the effectiveness of common interpolation techniques during chromatographic alignment of comprehensive two-dimensional liquid chromatography-diode array detector (LC×LC-DAD) data. Interpolation was used to generate a sufficient number of data points in the sampled first chromatographic dimension to allow for alignment of retention times from different injections. Five different interpolation methods, linear interpolation followed by cross correlation, piecewise cubic Hermite interpolating polynomial, cubic spline, Fourier zero-filling, and Gaussian fitting, were investigated. The fully aligned chromatograms, in both the first and second chromatographic dimensions, were analyzed by parallel factor analysis to determine the relative area for each peak in each injection. A calibration curve was generated for the simulated data set. The standard error of prediction and percent relative standard deviation were calculated for the simulated peak for each technique. The Gaussian fitting interpolation technique resulted in the lowest standard error of prediction and average relative standard deviation for the simulated data. However, upon applying the interpolation techniques to the experimental data, most of the interpolation methods were not found to produce statistically different relative peak areas from each other. While most of the techniques were not statistically different, the performance was improved relative to the PARAFAC results obtained when analyzing the unaligned data. Copyright © 2011 Elsevier B.V. All rights reserved.
Owen, Kevin; Fuller, Michael I.; Hossack, John A.
2015-01-01
Two-dimensional arrays present significant beamforming computational challenges because of their high channel count and data rate. These challenges are even more stringent when incorporating a 2-D transducer array into a battery-powered hand-held device, placing significant demands on power efficiency. Previous work in sonar and ultrasound indicates that 2-D array beamforming can be decomposed into two separable line-array beamforming operations. This has been used in conjunction with frequency-domain phase-based focusing to achieve fast volume imaging. In this paper, we analyze the imaging and computational performance of approximate near-field separable beamforming for high-quality delay-and-sum (DAS) beamforming and for a low-cost, phaserotation-only beamforming method known as direct-sampled in-phase quadrature (DSIQ) beamforming. We show that when high-quality time-delay interpolation is used, separable DAS focusing introduces no noticeable imaging degradation under practical conditions. Similar results for DSIQ focusing are observed. In addition, a slight modification to the DSIQ focusing method greatly increases imaging contrast, making it comparable to that of DAS, despite having a wider main lobe and higher side lobes resulting from the limitations of phase-only time-delay interpolation. Compared with non-separable 2-D imaging, up to a 20-fold increase in frame rate is possible with the separable method. When implemented on a smart-phone-oriented processor to focus data from a 60 × 60 channel array using a 40 × 40 aperture, the frame rate per C-mode volume slice increases from 16 to 255 Hz for DAS, and from 11 to 193 Hz for DSIQ. Energy usage per frame is similarly reduced from 75 to 4.8 mJ/ frame for DAS, and from 107 to 6.3 mJ/frame for DSIQ. We also show that the separable method outperforms 2-D FFT-based focusing by a factor of 1.64 at these data sizes. This data indicates that with the optimal design choices, separable 2-D beamforming can significantly improve frame rate and battery life for hand-held devices with 2-D arrays. PMID:22828829
TU-CD-BRA-01: A Novel 3D Registration Method for Multiparametric Radiological Images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akhbardeh, A; Parekth, VS; Jacobs, MA
2015-06-15
Purpose: Multiparametric and multimodality radiological imaging methods, such as, magnetic resonance imaging(MRI), computed tomography(CT), and positron emission tomography(PET), provide multiple types of tissue contrast and anatomical information for clinical diagnosis. However, these radiological modalities are acquired using very different technical parameters, e.g.,field of view(FOV), matrix size, and scan planes, which, can lead to challenges in registering the different data sets. Therefore, we developed a hybrid registration method based on 3D wavelet transformation and 3D interpolations that performs 3D resampling and rotation of the target radiological images without loss of information Methods: T1-weighted, T2-weighted, diffusion-weighted-imaging(DWI), dynamic-contrast-enhanced(DCE) MRI and PET/CT were usedmore » in the registration algorithm from breast and prostate data at 3T MRI and multimodality(PET/CT) cases. The hybrid registration scheme consists of several steps to reslice and match each modality using a combination of 3D wavelets, interpolations, and affine registration steps. First, orthogonal reslicing is performed to equalize FOV, matrix sizes and the number of slices using wavelet transformation. Second, angular resampling of the target data is performed to match the reference data. Finally, using optimized angles from resampling, 3D registration is performed using similarity transformation(scaling and translation) between the reference and resliced target volume is performed. After registration, the mean-square-error(MSE) and Dice Similarity(DS) between the reference and registered target volumes were calculated. Results: The 3D registration method registered synthetic and clinical data with significant improvement(p<0.05) of overlap between anatomical structures. After transforming and deforming the synthetic data, the MSE and Dice similarity were 0.12 and 0.99. The average improvement of the MSE in breast was 62%(0.27 to 0.10) and prostate was 63%(0.13 to 0.04;p<0.05). The Dice similarity was in breast 8%(0.91 to 0.99) and for prostate was 89%(0.01 to 0.90;p<0.05) Conclusion: Our 3D wavelet hybrid registration approach registered diverse breast and prostate data of different radiological images(MR/PET/CT) with a high accuracy.« less
A method for deriving a 4D-interpolated balanced planning target for mobile tumor radiotherapy.
Roland, Teboh; Hales, Russell; McNutt, Todd; Wong, John; Simari, Patricio; Tryggestad, Erik
2012-01-01
Tumor control and normal tissue toxicity are strongly correlated to the tumor and normal tissue volumes receiving high prescribed dose levels in the course of radiotherapy. Planning target definition is, therefore, crucial to ensure favorable clinical outcomes. This is especially important for stereotactic body radiation therapy of lung cancers, characterized by high fractional doses and steep dose gradients. The shift in recent years from population-based to patient-specific treatment margins, as facilitated by the emergence of 4D medical imaging capabilities, is a major improvement. The commonly used motion-encompassing, or internal-target volume (ITV), target definition approach provides a high likelihood of coverage for the mobile tumor but inevitably exposes healthy tissue to high prescribed dose levels. The goal of this work was to generate an interpolated balanced planning target that takes into account both tumor coverage and normal tissue sparing from high prescribed dose levels, thereby improving on the ITV approach. For each 4DCT dataset, 4D deformable image registration was used to derive two bounding targets, namely, a 4D-intersection and a 4D-composite target which minimized normal tissue exposure to high prescribed dose levels and maximized tumor coverage, respectively. Through definition of an "effective overlap volume histogram" the authors derived an "interpolated balanced planning target" intended to balance normal tissue sparing from prescribed doses with tumor coverage. To demonstrate the dosimetric efficacy of the interpolated balanced planning target, the authors performed 4D treatment planning based on deformable image registration of 4D-CT data for five previously treated lung cancer patients. Two 4D plans were generated per patient, one based on the interpolated balanced planning target and the other based on the conventional ITV target. Plans were compared for tumor coverage and the degree of normal tissue sparing resulting from the new approach was quantified. Analysis of the 4D dose distributions from all five patients showed that while achieving tumor coverage comparable to the ITV approach, the new planning target definition resulted in reductions of lung V(10), V(20), and V(30) of 6.3% ± 1.7%, 10.6% ± 3.9%, and 12.9% ± 5.5%, respectively, as well as reductions in mean lung dose, mean dose to the GTV-ring and mean heart dose of 8.8% ± 2.5%, 7.2% ± 2.5%, and 10.6% ± 3.6%, respectively. The authors have developed a simple and systematic approach to generate a 4D-interpolated balanced planning target volume that implicitly incorporates the dynamics of respiratory-organ motion without requiring 4D-dose computation or optimization. Preliminary results based on 4D-CT data of five previously treated lung patients showed that this new planning target approach may improve normal tissue sparing without sacrificing tumor coverage.
An Immersed Boundary method with divergence-free velocity interpolation and force spreading
NASA Astrophysics Data System (ADS)
Bao, Yuanxun; Donev, Aleksandar; Griffith, Boyce E.; McQueen, David M.; Peskin, Charles S.
2017-10-01
The Immersed Boundary (IB) method is a mathematical framework for constructing robust numerical methods to study fluid-structure interaction in problems involving an elastic structure immersed in a viscous fluid. The IB formulation uses an Eulerian representation of the fluid and a Lagrangian representation of the structure. The Lagrangian and Eulerian frames are coupled by integral transforms with delta function kernels. The discretized IB equations use approximations to these transforms with regularized delta function kernels to interpolate the fluid velocity to the structure, and to spread structural forces to the fluid. It is well-known that the conventional IB method can suffer from poor volume conservation since the interpolated Lagrangian velocity field is not generally divergence-free, and so this can cause spurious volume changes. In practice, the lack of volume conservation is especially pronounced for cases where there are large pressure differences across thin structural boundaries. The aim of this paper is to greatly reduce the volume error of the IB method by introducing velocity-interpolation and force-spreading schemes with the properties that the interpolated velocity field in which the structure moves is at least C1 and satisfies a continuous divergence-free condition, and that the force-spreading operator is the adjoint of the velocity-interpolation operator. We confirm through numerical experiments in two and three spatial dimensions that this new IB method is able to achieve substantial improvement in volume conservation compared to other existing IB methods, at the expense of a modest increase in the computational cost. Further, the new method provides smoother Lagrangian forces (tractions) than traditional IB methods. The method presented here is restricted to periodic computational domains. Its generalization to non-periodic domains is important future work.
Dynamic graphs, community detection, and Riemannian geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakker, Craig; Halappanavar, Mahantesh; Visweswara Sathanur, Arun
A community is a subset of a wider network where the members of that subset are more strongly connected to each other than they are to the rest of the network. In this paper, we consider the problem of identifying and tracking communities in graphs that change over time {dynamic community detection} and present a framework based on Riemannian geometry to aid in this task. Our framework currently supports several important operations such as interpolating between and averaging over graph snapshots. We compare these Riemannian methods with entry-wise linear interpolation and that the Riemannian methods are generally better suited tomore » dynamic community detection. Next steps with the Riemannian framework include developing higher-order interpolation methods (e.g. the analogues of polynomial and spline interpolation) and a Riemannian least-squares regression method for working with noisy data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, T; Koo, T
Purpose: To quantitatively investigate the planar dose difference and the γ value between the reference fluence map with the 1 mm detector-to-detector distance and the other fluence maps with less spatial resolution for head and neck intensity modulated radiation (IMRT) therapy. Methods: For ten head and neck cancer patients, the IMRT quality assurance (QA) beams were generated using by the commercial radiation treatment planning system, Pinnacle3 (ver. 8.0.d Philips Medical System, Madison, WI). For each beam, ten fluence maps (detector-to-detector distance: 1 mm to 10 mm by 1 mm) were generated. The fluence maps with larger than 1 mm detector-todetectormore » distance were interpolated using MATLAB (R2014a, the Math Works,Natick, MA) by four different interpolation Methods: for the bilinear, the cubic spline, the bicubic, and the nearest neighbor interpolation, respectively. These interpolated fluence maps were compared with the reference one using the γ value (criteria: 3%, 3 mm) and the relative dose difference. Results: As the detector-to-detector distance increases, the dose difference between the two maps increases. For the fluence map with the same resolution, the cubic spline interpolation and the bicubic interpolation are almost equally best interpolation methods while the nearest neighbor interpolation is the worst.For example, for 5 mm distance fluence maps, γ≤1 are 98.12±2.28%, 99.48±0.66%, 99.45±0.65% and 82.23±0.48% for the bilinear, the cubic spline, the bicubic, and the nearest neighbor interpolation, respectively. For 7 mm distance fluence maps, γ≤1 are 90.87±5.91%, 90.22±6.95%, 91.79±5.97% and 71.93±4.92 for the bilinear, the cubic spline, the bicubic, and the nearest neighbor interpolation, respectively. Conclusion: We recommend that the 2-dimensional detector array with high spatial resolution should be used as an IMRT QA tool and that the measured fluence maps should be interpolated using by the cubic spline interpolation or the bicubic interpolation for head and neck IMRT delivery. This work was supported by Radiation Technology R&D program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (No. 2013M2A2A7038291)« less
Evaluation of PET Imaging Resolution Using 350 mu{m} Pixelated CZT as a VP-PET Insert Detector
NASA Astrophysics Data System (ADS)
Yin, Yongzhi; Chen, Ximeng; Li, Chongzheng; Wu, Heyu; Komarov, Sergey; Guo, Qingzhen; Krawczynski, Henric; Meng, Ling-Jian; Tai, Yuan-Chuan
2014-02-01
A cadmium-zinc-telluride (CZT) detector with 350 μm pitch pixels was studied in high-resolution positron emission tomography (PET) imaging applications. The PET imaging system was based on coincidence detection between a CZT detector and a lutetium oxyorthosilicate (LSO)-based Inveon PET detector in virtual-pinhole PET geometry. The LSO detector is a 20 ×20 array, with 1.6 mm pitches, and 10 mm thickness. The CZT detector uses ac 20 ×20 ×5 mm substrate, with 350 μm pitch pixelated anodes and a coplanar cathode. A NEMA NU4 Na-22 point source of 250 μm in diameter was imaged by this system. Experiments show that the image resolution of single-pixel photopeak events was 590 μm FWHM while the image resolution of double-pixel photopeak events was 640 μm FWHM. The inclusion of double-pixel full-energy events increased the sensitivity of the imaging system. To validate the imaging experiment, we conducted a Monte Carlo (MC) simulation for the same PET system in Geant4 Application for Emission Tomography. We defined LSO detectors as a scanner ring and 350 μm pixelated CZT detectors as an insert ring. GATE simulated coincidence data were sorted into an insert-scanner sinogram and reconstructed. The image resolution of MC-simulated data (which did not factor in positron range and acolinearity effect) was 460 μm at FWHM for single-pixel events. The image resolutions of experimental data, MC simulated data, and theoretical calculation are all close to 500 μm FWHM when the proposed 350 μm pixelated CZT detector is used as a PET insert. The interpolation algorithm for the charge sharing events was also investigated. The PET image that was reconstructed using the interpolation algorithm shows improved image resolution compared with the image resolution without interpolation algorithm.
A FRACTAL-BASED STOCHASTIC INTERPOLATION SCHEME IN SUBSURFACE HYDROLOGY
The need for a realistic and rational method for interpolating sparse data sets is widespread. Real porosity and hydraulic conductivity data do not vary smoothly over space, so an interpolation scheme that preserves irregularity is desirable. Such a scheme based on the properties...
Investigations of interpolation errors of angle encoders for high precision angle metrology
NASA Astrophysics Data System (ADS)
Yandayan, Tanfer; Geckeler, Ralf D.; Just, Andreas; Krause, Michael; Asli Akgoz, S.; Aksulu, Murat; Grubert, Bernd; Watanabe, Tsukasa
2018-06-01
Interpolation errors at small angular scales are caused by the subdivision of the angular interval between adjacent grating lines into smaller intervals when radial gratings are used in angle encoders. They are often a major error source in precision angle metrology and better approaches for determining them at low levels of uncertainty are needed. Extensive investigations of interpolation errors of different angle encoders with various interpolators and interpolation schemes were carried out by adapting the shearing method to the calibration of autocollimators with angle encoders. The results of the laboratories with advanced angle metrology capabilities are presented which were acquired by the use of four different high precision angle encoders/interpolators/rotary tables. State of the art uncertainties down to 1 milliarcsec (5 nrad) were achieved for the determination of the interpolation errors using the shearing method which provides simultaneous access to the angle deviations of the autocollimator and of the angle encoder. Compared to the calibration and measurement capabilities (CMC) of the participants for autocollimators, the use of the shearing technique represents a substantial improvement in the uncertainty by a factor of up to 5 in addition to the precise determination of interpolation errors or their residuals (when compensated). A discussion of the results is carried out in conjunction with the equipment used.
Interpolation for de-Dopplerisation
NASA Astrophysics Data System (ADS)
Graham, W. R.
2018-05-01
'De-Dopplerisation' is one aspect of a problem frequently encountered in experimental acoustics: deducing an emitted source signal from received data. It is necessary when source and receiver are in relative motion, and requires interpolation of the measured signal. This introduces error. In acoustics, typical current practice is to employ linear interpolation and reduce error by over-sampling. In other applications, more advanced approaches with better performance have been developed. Associated with this work is a large body of theoretical analysis, much of which is highly specialised. Nonetheless, a simple and compact performance metric is available: the Fourier transform of the 'kernel' function underlying the interpolation method. Furthermore, in the acoustics context, it is a more appropriate indicator than other, more abstract, candidates. On this basis, interpolators from three families previously identified as promising - - piecewise-polynomial, windowed-sinc, and B-spline-based - - are compared. The results show that significant improvements over linear interpolation can straightforwardly be obtained. The recommended approach is B-spline-based interpolation, which performs best irrespective of accuracy specification. Its only drawback is a pre-filtering requirement, which represents an additional implementation cost compared to other methods. If this cost is unacceptable, and aliasing errors (on re-sampling) up to approximately 1% can be tolerated, a family of piecewise-cubic interpolators provides the best alternative.
Xu, Yonghong; Gao, Xiaohuan; Wang, Zhengxi
2014-04-01
Missing data represent a general problem in many scientific fields, especially in medical survival analysis. Dealing with censored data, interpolation method is one of important methods. However, most of the interpolation methods replace the censored data with the exact data, which will distort the real distribution of the censored data and reduce the probability of the real data falling into the interpolation data. In order to solve this problem, we in this paper propose a nonparametric method of estimating the survival function of right-censored and interval-censored data and compare its performance to SC (self-consistent) algorithm. Comparing to the average interpolation and the nearest neighbor interpolation method, the proposed method in this paper replaces the right-censored data with the interval-censored data, and greatly improves the probability of the real data falling into imputation interval. Then it bases on the empirical distribution theory to estimate the survival function of right-censored and interval-censored data. The results of numerical examples and a real breast cancer data set demonstrated that the proposed method had higher accuracy and better robustness for the different proportion of the censored data. This paper provides a good method to compare the clinical treatments performance with estimation of the survival data of the patients. This pro vides some help to the medical survival data analysis.
Mayne, Terence P; Paskaranandavadivel, Niranchan; Erickson, Jonathan C; OGrady, Gregory; Cheng, Leo K; Angeli, Timothy R
2018-02-01
High-resolution mapping of gastrointestinal (GI) slow waves is a valuable technique for research and clinical applications. Interpretation of high-resolution GI mapping data relies on animations of slow wave propagation, but current methods remain as rudimentary, pixelated electrode activation animations. This study aimed to develop improved methods of visualizing high-resolution slow wave recordings that increases ease of interpretation. The novel method of "wavefront-orientation" interpolation was created to account for the planar movement of the slow wave wavefront, negate any need for distance calculations, remain robust in atypical wavefronts (i.e., dysrhythmias), and produce an appropriate interpolation boundary. The wavefront-orientation method determines the orthogonal wavefront direction and calculates interpolated values as the mean slow wave activation-time (AT) of the pair of linearly adjacent electrodes along that direction. Stairstep upsampling increased smoothness and clarity. Animation accuracy of 17 human high-resolution slow wave recordings (64-256 electrodes) was verified by visual comparison to the prior method showing a clear improvement in wave smoothness that enabled more accurate interpretation of propagation, as confirmed by an assessment of clinical applicability performed by eight GI clinicians. Quantitatively, the new method produced accurate interpolation values compared to experimental data (mean difference 0.02 ± 0.05 s) and was accurate when applied solely to dysrhythmic data (0.02 ± 0.06 s), both within the error in manual AT marking (mean 0.2 s). Mean interpolation processing time was 6.0 s per wave. These novel methods provide a validated visualization platform that will improve analysis of high-resolution GI mapping in research and clinical translation.
An optical flow-based method for velocity field of fluid flow estimation
NASA Astrophysics Data System (ADS)
Głomb, Grzegorz; Świrniak, Grzegorz; Mroczka, Janusz
2017-06-01
The aim of this paper is to present a method for estimating flow-velocity vector fields using the Lucas-Kanade algorithm. The optical flow measurements are based on the Particle Image Velocimetry (PIV) technique, which is commonly used in fluid mechanics laboratories in both research institutes and industry. Common approaches for an optical characterization of velocity fields base on computation of partial derivatives of the image intensity using finite differences. Nevertheless, the accuracy of velocity field computations is low due to the fact that an exact estimation of spatial derivatives is very difficult in presence of rapid intensity changes in the PIV images, caused by particles having small diameters. The method discussed in this paper solves this problem by interpolating the PIV images using Gaussian radial basis functions. This provides a significant improvement in the accuracy of the velocity estimation but, more importantly, allows for the evaluation of the derivatives in intermediate points between pixels. Numerical analysis proves that the method is able to estimate even a separate vector for each particle with a 5× 5 px2 window, whereas a classical correlation-based method needs at least 4 particle images. With the use of a specialized multi-step hybrid approach to data analysis the method improves the estimation of the particle displacement far above 1 px.
2004-08-01
Mutual Information (NMI) voxel match algorithm of the ANALYZE software package and cubic spline interpolation (Brownell et al. 2003, Appendix). 2...nuclear inclusion and cell survival. Materials and Methods Animals: Male transgenic R6/2 mice, which depict many clinical features of juvenile HD were...purchased from the Jackson Laboratories (Bar Harbor, ME). The mice were housed 3-4 per cage under standard conditions with free access to food and water
Review of image processing fundamentals
NASA Technical Reports Server (NTRS)
Billingsley, F. C.
1985-01-01
Image processing through convolution, transform coding, spatial frequency alterations, sampling, and interpolation are considered. It is postulated that convolution in one domain (real or frequency) is equivalent to multiplication in the other (frequency or real), and that the relative amplitudes of the Fourier components must be retained to reproduce any waveshape. It is suggested that all digital systems may be considered equivalent, with a frequency content approximately at the Nyquist limit, and with a Gaussian frequency response. An optimized cubic version of the interpolation continuum image is derived as a set of cubic spines. Pixel replication has been employed to enlarge the visable area of digital samples, however, suitable elimination of the extraneous high frequencies involved in the visable edges, by defocusing, is necessary to allow the underlying object represented by the data values to be seen.
Power, Jonathan D; Plitt, Mark; Kundu, Prantik; Bandettini, Peter A; Martin, Alex
2017-01-01
Head motion can be estimated at any point of fMRI image processing. Processing steps involving temporal interpolation (e.g., slice time correction or outlier replacement) often precede motion estimation in the literature. From first principles it can be anticipated that temporal interpolation will alter head motion in a scan. Here we demonstrate this effect and its consequences in five large fMRI datasets. Estimated head motion was reduced by 10-50% or more following temporal interpolation, and reductions were often visible to the naked eye. Such reductions make the data seem to be of improved quality. Such reductions also degrade the sensitivity of analyses aimed at detecting motion-related artifact and can cause a dataset with artifact to falsely appear artifact-free. These reduced motion estimates will be particularly problematic for studies needing estimates of motion in time, such as studies of dynamics. Based on these findings, it is sensible to obtain motion estimates prior to any image processing (regardless of subsequent processing steps and the actual timing of motion correction procedures, which need not be changed). We also find that outlier replacement procedures change signals almost entirely during times of motion and therefore have notable similarities to motion-targeting censoring strategies (which withhold or replace signals entirely during times of motion).
Plitt, Mark; Kundu, Prantik; Bandettini, Peter A.; Martin, Alex
2017-01-01
Head motion can be estimated at any point of fMRI image processing. Processing steps involving temporal interpolation (e.g., slice time correction or outlier replacement) often precede motion estimation in the literature. From first principles it can be anticipated that temporal interpolation will alter head motion in a scan. Here we demonstrate this effect and its consequences in five large fMRI datasets. Estimated head motion was reduced by 10–50% or more following temporal interpolation, and reductions were often visible to the naked eye. Such reductions make the data seem to be of improved quality. Such reductions also degrade the sensitivity of analyses aimed at detecting motion-related artifact and can cause a dataset with artifact to falsely appear artifact-free. These reduced motion estimates will be particularly problematic for studies needing estimates of motion in time, such as studies of dynamics. Based on these findings, it is sensible to obtain motion estimates prior to any image processing (regardless of subsequent processing steps and the actual timing of motion correction procedures, which need not be changed). We also find that outlier replacement procedures change signals almost entirely during times of motion and therefore have notable similarities to motion-targeting censoring strategies (which withhold or replace signals entirely during times of motion). PMID:28880888
Personal computer (PC) based image processing applied to fluid mechanics research
NASA Technical Reports Server (NTRS)
Cho, Y.-C.; Mclachlan, B. G.
1987-01-01
A PC based image processing system was employed to determine the instantaneous velocity field of a two-dimensional unsteady flow. The flow was visualized using a suspension of seeding particles in water, and a laser sheet for illumination. With a finite time exposure, the particle motion was captured on a photograph as a pattern of streaks. The streak pattern was digitized and processsed using various imaging operations, including contrast manipulation, noise cleaning, filtering, statistical differencing, and thresholding. Information concerning the velocity was extracted from the enhanced image by measuring the length and orientation of the individual streaks. The fluid velocities deduced from the randomly distributed particle streaks were interpolated to obtain velocities at uniform grid points. For the interpolation a simple convolution technique with an adaptive Gaussian window was used. The results are compared with a numerical prediction by a Navier-Stokes commputation.
Personal Computer (PC) based image processing applied to fluid mechanics
NASA Technical Reports Server (NTRS)
Cho, Y.-C.; Mclachlan, B. G.
1987-01-01
A PC based image processing system was employed to determine the instantaneous velocity field of a two-dimensional unsteady flow. The flow was visualized using a suspension of seeding particles in water, and a laser sheet for illumination. With a finite time exposure, the particle motion was captured on a photograph as a pattern of streaks. The streak pattern was digitized and processed using various imaging operations, including contrast manipulation, noise cleaning, filtering, statistical differencing, and thresholding. Information concerning the velocity was extracted from the enhanced image by measuring the length and orientation of the individual streaks. The fluid velocities deduced from the randomly distributed particle streaks were interpolated to obtain velocities at uniform grid points. For the interpolation a simple convolution technique with an adaptive Gaussian window was used. The results are compared with a numerical prediction by a Navier-Stokes computation.
Low-complexity camera digital signal imaging for video document projection system
NASA Astrophysics Data System (ADS)
Hsia, Shih-Chang; Tsai, Po-Shien
2011-04-01
We present high-performance and low-complexity algorithms for real-time camera imaging applications. The main functions of the proposed camera digital signal processing (DSP) involve color interpolation, white balance, adaptive binary processing, auto gain control, and edge and color enhancement for video projection systems. A series of simulations demonstrate that the proposed method can achieve good image quality while keeping computation cost and memory requirements low. On the basis of the proposed algorithms, the cost-effective hardware core is developed using Verilog HDL. The prototype chip has been verified with one low-cost programmable device. The real-time camera system can achieve 1270 × 792 resolution with the combination of extra components and can demonstrate each DSP function.
A fast image simulation algorithm for scanning transmission electron microscopy
Ophus, Colin
2017-05-10
Image simulation for scanning transmission electron microscopy at atomic resolution for samples with realistic dimensions can require very large computation times using existing simulation algorithms. Here, we present a new algorithm named PRISM that combines features of the two most commonly used algorithms, namely the Bloch wave and multislice methods. PRISM uses a Fourier interpolation factor f that has typical values of 4-20 for atomic resolution simulations. We show that in many cases PRISM can provide a speedup that scales with f 4 compared to multislice simulations, with a negligible loss of accuracy. We demonstrate the usefulness of this methodmore » with large-scale scanning transmission electron microscopy image simulations of a crystalline nanoparticle on an amorphous carbon substrate.« less
The construction of high-accuracy schemes for acoustic equations
NASA Technical Reports Server (NTRS)
Tang, Lei; Baeder, James D.
1995-01-01
An accuracy analysis of various high order schemes is performed from an interpolation point of view. The analysis indicates that classical high order finite difference schemes, which use polynomial interpolation, hold high accuracy only at nodes and are therefore not suitable for time-dependent problems. Thus, some schemes improve their numerical accuracy within grid cells by the near-minimax approximation method, but their practical significance is degraded by maintaining the same stencil as classical schemes. One-step methods in space discretization, which use piecewise polynomial interpolation and involve data at only two points, can generate a uniform accuracy over the whole grid cell and avoid spurious roots. As a result, they are more accurate and efficient than multistep methods. In particular, the Cubic-Interpolated Psuedoparticle (CIP) scheme is recommended for computational acoustics.
A hierarchical transition state search algorithm
NASA Astrophysics Data System (ADS)
del Campo, Jorge M.; Köster, Andreas M.
2008-07-01
A hierarchical transition state search algorithm is developed and its implementation in the density functional theory program deMon2k is described. This search algorithm combines the double ended saddle interpolation method with local uphill trust region optimization. A new formalism for the incorporation of the distance constrain in the saddle interpolation method is derived. The similarities between the constrained optimizations in the local trust region method and the saddle interpolation are highlighted. The saddle interpolation and local uphill trust region optimizations are validated on a test set of 28 representative reactions. The hierarchical transition state search algorithm is applied to an intramolecular Diels-Alder reaction with several internal rotors, which makes automatic transition state search rather challenging. The obtained reaction mechanism is discussed in the context of the experimentally observed product distribution.
NASA Astrophysics Data System (ADS)
Liu, Xiao-Ming; Jiang, Jun; Hong, Ling; Tang, Dafeng
In this paper, a new method of Generalized Cell Mapping with Sampling-Adaptive Interpolation (GCMSAI) is presented in order to enhance the efficiency of the computation of one-step probability transition matrix of the Generalized Cell Mapping method (GCM). Integrations with one mapping step are replaced by sampling-adaptive interpolations of third order. An explicit formula of interpolation error is derived for a sampling-adaptive control to switch on integrations for the accuracy of computations with GCMSAI. By applying the proposed method to a two-dimensional forced damped pendulum system, global bifurcations are investigated with observations of boundary metamorphoses including full to partial and partial to partial as well as the birth of fully Wada boundary. Moreover GCMSAI requires a computational time of one thirtieth up to one fiftieth compared to that of the previous GCM.
NASA Astrophysics Data System (ADS)
Janet, J.; Natesan, T. R.; Santhosh, Ramamurthy; Ibramsha, Mohideen
2005-02-01
An intelligent decision support tool to the Radiologist in telemedicine is described. Medical prescriptions are given based on the images of cyst that has been transmitted over computer networks to the remote medical center. The digital image, acquired by sonography, is converted into an intensity image. This image is then subjected to image preprocessing which involves correction methods to eliminate specific artifacts. The image is resized into a 256 x 256 matrix by using bilinear interpolation method. The background area is detected using distinct block operation. The area of the cyst is calculated by removing the background area from the original image. Boundary enhancement and morphological operations are done to remove unrelated pixels. This gives us the cyst volume. This segmented image of the cyst is sent to the remote medical center for analysis by Knowledge based artificial Intelligent Decision Support System (KIDSS). The type of cyst is detected and reported to the control mechanism of KIDSS. Then the inference engine compares this with the knowledge base and gives appropriate medical prescriptions or treatment recommendations by applying reasoning mechanisms at the remote medical center.
Jia, Zhenyi; Zhou, Shenglu; Su, Quanlong; Yi, Haomin; Wang, Junxiao
2017-12-26
Soil pollution by metal(loid)s resulting from rapid economic development is a major concern. Accurately estimating the spatial distribution of soil metal(loid) pollution has great significance in preventing and controlling soil pollution. In this study, 126 topsoil samples were collected in Kunshan City and the geo-accumulation index was selected as a pollution index. We used Kriging interpolation and BP neural network methods to estimate the spatial distribution of arsenic (As) and cadmium (Cd) pollution in the study area. Additionally, we introduced a cross-validation method to measure the errors of the estimation results by the two interpolation methods and discussed the accuracy of the information contained in the estimation results. The conclusions are as follows: data distribution characteristics, spatial variability, and mean square errors (MSE) of the different methods showed large differences. Estimation results from BP neural network models have a higher accuracy, the MSE of As and Cd are 0.0661 and 0.1743, respectively. However, the interpolation results show significant skewed distribution, and spatial autocorrelation is strong. Using Kriging interpolation, the MSE of As and Cd are 0.0804 and 0.2983, respectively. The estimation results have poorer accuracy. Combining the two methods can improve the accuracy of the Kriging interpolation and more comprehensively represent the spatial distribution characteristics of metal(loid)s in regional soil. The study may provide a scientific basis and technical support for the regulation of soil metal(loid) pollution.
Restoring method for missing data of spatial structural stress monitoring based on correlation
NASA Astrophysics Data System (ADS)
Zhang, Zeyu; Luo, Yaozhi
2017-07-01
Long-term monitoring of spatial structures is of great importance for the full understanding of their performance and safety. The missing part of the monitoring data link will affect the data analysis and safety assessment of the structure. Based on the long-term monitoring data of the steel structure of the Hangzhou Olympic Center Stadium, the correlation between the stress change of the measuring points is studied, and an interpolation method of the missing stress data is proposed. Stress data of correlated measuring points are selected in the 3 months of the season when missing data is required for fitting correlation. Data of daytime and nighttime are fitted separately for interpolation. For a simple linear regression when single point's correlation coefficient is 0.9 or more, the average error of interpolation is about 5%. For multiple linear regression, the interpolation accuracy is not significantly increased after the number of correlated points is more than 6. Stress baseline value of construction step should be calculated before interpolating missing data in the construction stage, and the average error is within 10%. The interpolation error of continuous missing data is slightly larger than that of the discrete missing data. The data missing rate of this method should better not exceed 30%. Finally, a measuring point's missing monitoring data is restored to verify the validity of the method.
A novel method of the image processing on irregular triangular meshes
NASA Astrophysics Data System (ADS)
Vishnyakov, Sergey; Pekhterev, Vitaliy; Sokolova, Elizaveta
2018-04-01
The paper describes a novel method of the image processing based on irregular triangular meshes implementation. The triangular mesh is adaptive to the image content, least mean square linear approximation is proposed for the basic interpolation within the triangle. It is proposed to use triangular numbers to simplify using of the local (barycentric) coordinates for the further analysis - triangular element of the initial irregular mesh is to be represented through the set of the four equilateral triangles. This allows to use fast and simple pixels indexing in local coordinates, e.g. "for" or "while" loops for access to the pixels. Moreover, representation proposed allows to use discrete cosine transform of the simple "rectangular" symmetric form without additional pixels reordering (as it is used for shape-adaptive DCT forms). Furthermore, this approach leads to the simple form of the wavelet transform on triangular mesh. The results of the method application are presented. It is shown that advantage of the method proposed is a combination of the flexibility of the image-adaptive irregular meshes with the simple form of the pixel indexing in local triangular coordinates and the using of the common forms of the discrete transforms for triangular meshes. Method described is proposed for the image compression, pattern recognition, image quality improvement, image search and indexing. It also may be used as a part of video coding (intra-frame or inter-frame coding, motion detection).
Comparing interpolation techniques for annual temperature mapping across Xinjiang region
NASA Astrophysics Data System (ADS)
Ren-ping, Zhang; Jing, Guo; Tian-gang, Liang; Qi-sheng, Feng; Aimaiti, Yusupujiang
2016-11-01
Interpolating climatic variables such as temperature is challenging due to the highly variable nature of meteorological processes and the difficulty in establishing a representative network of stations. In this paper, based on the monthly temperature data which obtained from the 154 official meteorological stations in the Xinjiang region and surrounding areas, we compared five spatial interpolation techniques: Inverse distance weighting (IDW), Ordinary kriging, Cokriging, thin-plate smoothing splines (ANUSPLIN) and Empirical Bayesian kriging(EBK). Error metrics were used to validate interpolations against independent data. Results indicated that, the ANUSPLIN performed best than the other four interpolation methods.
Quasi interpolation with Voronoi splines.
Mirzargar, Mahsa; Entezari, Alireza
2011-12-01
We present a quasi interpolation framework that attains the optimal approximation-order of Voronoi splines for reconstruction of volumetric data sampled on general lattices. The quasi interpolation framework of Voronoi splines provides an unbiased reconstruction method across various lattices. Therefore this framework allows us to analyze and contrast the sampling-theoretic performance of general lattices, using signal reconstruction, in an unbiased manner. Our quasi interpolation methodology is implemented as an efficient FIR filter that can be applied online or as a preprocessing step. We present visual and numerical experiments that demonstrate the improved accuracy of reconstruction across lattices, using the quasi interpolation framework. © 2011 IEEE
Li, Lixin; Losser, Travis; Yorke, Charles; Piltner, Reinhard
2014-09-03
Epidemiological studies have identified associations between mortality and changes in concentration of particulate matter. These studies have highlighted the public concerns about health effects of particulate air pollution. Modeling fine particulate matter PM2.5 exposure risk and monitoring day-to-day changes in PM2.5 concentration is a critical step for understanding the pollution problem and embarking on the necessary remedy. This research designs, implements and compares two inverse distance weighting (IDW)-based spatiotemporal interpolation methods, in order to assess the trend of daily PM2.5 concentration for the contiguous United States over the year of 2009, at both the census block group level and county level. Traditionally, when handling spatiotemporal interpolation, researchers tend to treat space and time separately and reduce the spatiotemporal interpolation problems to a sequence of snapshots of spatial interpolations. In this paper, PM2.5 data interpolation is conducted in the continuous space-time domain by integrating space and time simultaneously, using the so-called extension approach. Time values are calculated with the help of a factor under the assumption that spatial and temporal dimensions are equally important when interpolating a continuous changing phenomenon in the space-time domain. Various IDW-based spatiotemporal interpolation methods with different parameter configurations are evaluated by cross-validation. In addition, this study explores computational issues (computer processing speed) faced during implementation of spatiotemporal interpolation for huge data sets. Parallel programming techniques and an advanced data structure, named k-d tree, are adapted in this paper to address the computational challenges. Significant computational improvement has been achieved. Finally, a web-based spatiotemporal IDW-based interpolation application is designed and implemented where users can visualize and animate spatiotemporal interpolation results.
Li, Lixin; Losser, Travis; Yorke, Charles; Piltner, Reinhard
2014-01-01
Epidemiological studies have identified associations between mortality and changes in concentration of particulate matter. These studies have highlighted the public concerns about health effects of particulate air pollution. Modeling fine particulate matter PM2.5 exposure risk and monitoring day-to-day changes in PM2.5 concentration is a critical step for understanding the pollution problem and embarking on the necessary remedy. This research designs, implements and compares two inverse distance weighting (IDW)-based spatiotemporal interpolation methods, in order to assess the trend of daily PM2.5 concentration for the contiguous United States over the year of 2009, at both the census block group level and county level. Traditionally, when handling spatiotemporal interpolation, researchers tend to treat space and time separately and reduce the spatiotemporal interpolation problems to a sequence of snapshots of spatial interpolations. In this paper, PM2.5 data interpolation is conducted in the continuous space-time domain by integrating space and time simultaneously, using the so-called extension approach. Time values are calculated with the help of a factor under the assumption that spatial and temporal dimensions are equally important when interpolating a continuous changing phenomenon in the space-time domain. Various IDW-based spatiotemporal interpolation methods with different parameter configurations are evaluated by cross-validation. In addition, this study explores computational issues (computer processing speed) faced during implementation of spatiotemporal interpolation for huge data sets. Parallel programming techniques and an advanced data structure, named k-d tree, are adapted in this paper to address the computational challenges. Significant computational improvement has been achieved. Finally, a web-based spatiotemporal IDW-based interpolation application is designed and implemented where users can visualize and animate spatiotemporal interpolation results. PMID:25192146
Resolution improvement in positron emission tomography using anatomical Magnetic Resonance Imaging.
Chu, Yong; Su, Min-Ying; Mandelkern, Mark; Nalcioglu, Orhan
2006-08-01
An ideal imaging system should provide information with high-sensitivity, high spatial, and temporal resolution. Unfortunately, it is not possible to satisfy all of these desired features in a single modality. In this paper, we discuss methods to improve the spatial resolution in positron emission imaging (PET) using a priori information from Magnetic Resonance Imaging (MRI). Our approach uses an image restoration algorithm based on the maximization of mutual information (MMI), which has found significant success for optimizing multimodal image registration. The MMI criterion is used to estimate the parameters in the Sharpness-Constrained Wiener filter. The generated filter is then applied to restore PET images of a realistic digital brain phantom. The resulting restored images show improved resolution and better signal-to-noise ratio compared to the interpolated PET images. We conclude that a Sharpness-Constrained Wiener filter having parameters optimized from a MMI criterion may be useful for restoring spatial resolution in PET based on a priori information from correlated MRI.
Yamada, Haruyasu; Abe, Osamu; Shizukuishi, Takashi; Kikuta, Junko; Shinozaki, Takahiro; Dezawa, Ko; Nagano, Akira; Matsuda, Masayuki; Haradome, Hiroki; Imamura, Yoshiki
2014-01-01
Diffusion imaging is a unique noninvasive tool to detect brain white matter trajectory and integrity in vivo. However, this technique suffers from spatial distortion and signal pileup or dropout originating from local susceptibility gradients and eddy currents. Although there are several methods to mitigate these problems, most techniques can be applicable either to susceptibility or eddy-current induced distortion alone with a few exceptions. The present study compared the correction efficiency of FSL tools, “eddy_correct” and the combination of “eddy” and “topup” in terms of diffusion-derived fractional anisotropy (FA). The brain diffusion images were acquired from 10 healthy subjects using 30 and 60 directions encoding schemes based on the electrostatic repulsive forces. For the 30 directions encoding, 2 sets of diffusion images were acquired with the same parameters, except for the phase-encode blips which had opposing polarities along the anteroposterior direction. For the 60 directions encoding, non–diffusion-weighted and diffusion-weighted images were obtained with forward phase-encoding blips and non–diffusion-weighted images with the same parameter, except for the phase-encode blips, which had opposing polarities. FA images without and with distortion correction were compared in a voxel-wise manner with tract-based spatial statistics. We showed that images corrected with eddy and topup possessed higher FA values than images uncorrected and corrected with eddy_correct with trilinear (FSL default setting) or spline interpolation in most white matter skeletons, using both encoding schemes. Furthermore, the 60 directions encoding scheme was superior as measured by increased FA values to the 30 directions encoding scheme, despite comparable acquisition time. This study supports the combination of eddy and topup as a superior correction tool in diffusion imaging rather than the eddy_correct tool, especially with trilinear interpolation, using 60 directions encoding scheme. PMID:25405472
Yamada, Haruyasu; Abe, Osamu; Shizukuishi, Takashi; Kikuta, Junko; Shinozaki, Takahiro; Dezawa, Ko; Nagano, Akira; Matsuda, Masayuki; Haradome, Hiroki; Imamura, Yoshiki
2014-01-01
Diffusion imaging is a unique noninvasive tool to detect brain white matter trajectory and integrity in vivo. However, this technique suffers from spatial distortion and signal pileup or dropout originating from local susceptibility gradients and eddy currents. Although there are several methods to mitigate these problems, most techniques can be applicable either to susceptibility or eddy-current induced distortion alone with a few exceptions. The present study compared the correction efficiency of FSL tools, "eddy_correct" and the combination of "eddy" and "topup" in terms of diffusion-derived fractional anisotropy (FA). The brain diffusion images were acquired from 10 healthy subjects using 30 and 60 directions encoding schemes based on the electrostatic repulsive forces. For the 30 directions encoding, 2 sets of diffusion images were acquired with the same parameters, except for the phase-encode blips which had opposing polarities along the anteroposterior direction. For the 60 directions encoding, non-diffusion-weighted and diffusion-weighted images were obtained with forward phase-encoding blips and non-diffusion-weighted images with the same parameter, except for the phase-encode blips, which had opposing polarities. FA images without and with distortion correction were compared in a voxel-wise manner with tract-based spatial statistics. We showed that images corrected with eddy and topup possessed higher FA values than images uncorrected and corrected with eddy_correct with trilinear (FSL default setting) or spline interpolation in most white matter skeletons, using both encoding schemes. Furthermore, the 60 directions encoding scheme was superior as measured by increased FA values to the 30 directions encoding scheme, despite comparable acquisition time. This study supports the combination of eddy and topup as a superior correction tool in diffusion imaging rather than the eddy_correct tool, especially with trilinear interpolation, using 60 directions encoding scheme.
Design of interpolation functions for subpixel-accuracy stereo-vision systems.
Haller, Istvan; Nedevschi, Sergiu
2012-02-01
Traditionally, subpixel interpolation in stereo-vision systems was designed for the block-matching algorithm. During the evaluation of different interpolation strategies, a strong correlation was observed between the type of the stereo algorithm and the subpixel accuracy of the different solutions. Subpixel interpolation should be adapted to each stereo algorithm to achieve maximum accuracy. In consequence, it is more important to propose methodologies for interpolation function generation than specific function shapes. We propose two such methodologies based on data generated by the stereo algorithms. The first proposal uses a histogram to model the environment and applies histogram equalization to an existing solution adapting it to the data. The second proposal employs synthetic images of a known environment and applies function fitting to the resulted data. The resulting function matches the algorithm and the data as best as possible. An extensive evaluation set is used to validate the findings. Both real and synthetic test cases were employed in different scenarios. The test results are consistent and show significant improvements compared with traditional solutions. © 2011 IEEE
3D temporal subtraction on multislice CT images using nonlinear warping technique
NASA Astrophysics Data System (ADS)
Ishida, Takayuki; Katsuragawa, Shigehiko; Kawashita, Ikuo; Kim, Hyounseop; Itai, Yoshinori; Awai, Kazuo; Li, Qiang; Doi, Kunio
2007-03-01
The detection of very subtle lesions and/or lesions overlapped with vessels on CT images is a time consuming and difficult task for radiologists. In this study, we have developed a 3D temporal subtraction method to enhance interval changes between previous and current multislice CT images based on a nonlinear image warping technique. Our method provides a subtraction CT image which is obtained by subtraction of a previous CT image from a current CT image. Reduction of misregistration artifacts is important in the temporal subtraction method. Therefore, our computerized method includes global and local image matching techniques for accurate registration of current and previous CT images. For global image matching, we selected the corresponding previous section image for each current section image by using 2D cross-correlation between a blurred low-resolution current CT image and a blurred previous CT image. For local image matching, we applied the 3D template matching technique with translation and rotation of volumes of interests (VOIs) which were selected in the current and the previous CT images. The local shift vector for each VOI pair was determined when the cross-correlation value became the maximum in the 3D template matching. The local shift vectors at all voxels were determined by interpolation of shift vectors of VOIs, and then the previous CT image was nonlinearly warped according to the shift vector for each voxel. Finally, the warped previous CT image was subtracted from the current CT image. The 3D temporal subtraction method was applied to 19 clinical cases. The normal background structures such as vessels, ribs, and heart were removed without large misregistration artifacts. Thus, interval changes due to lung diseases were clearly enhanced as white shadows on subtraction CT images.
Rufo, Montaña; Antolín, Alicia; Paniagua, Jesús M; Jiménez, Antonio
2018-04-01
A comparative study was made of three methods of interpolation - inverse distance weighting (IDW), spline and ordinary kriging - after optimization of their characteristic parameters. These interpolation methods were used to represent the electric field levels for three emission frequencies (774kHz, 900kHz, and 1107kHz) and for the electrical stimulation quotient, Q E , characteristic of complex electromagnetic environments. Measurements were made with a spectrum analyser in a village in the vicinity of medium-wave radio broadcasting antennas. The accuracy of the models was quantified by comparing their predictions with levels measured at the control points not used to generate the models. The results showed that optimizing the characteristic parameters of each interpolation method allows any of them to be used. However, the best results in terms of the regression coefficient between each model's predictions and the actual control point field measurements were for the IDW method. Copyright © 2018 Elsevier Inc. All rights reserved.
Persons Camp Using Interpolation Method
NASA Astrophysics Data System (ADS)
Tawfiq, Luma Naji Mohammed; Najm Abood, Israa
2018-05-01
The aim of this paper is to estimate the rate of contaminated soils by using suitable interpolation method as an alternative accurate tool to evaluate the concentration of heavy metals in soil then compared with standard universal value to determine the rate of contamination in the soil. In particular, interpolation methods are extensively applied in the models of the different phenomena where experimental data must be used in computer studies where expressions of those data are required. In this paper the extended divided difference method in two dimensions is used to solve suggested problem. Then, the modification method is applied to estimate the rate of contaminated soils of displaced persons camp in Diyala Governorate, in Iraq.
Rtop - an R package for interpolation along the stream network
NASA Astrophysics Data System (ADS)
Skøien, J. O.
2009-04-01
Rtop - an R package for interpolation along the stream network Geostatistical methods have been used to a limited extent for estimation along stream networks, with a few exceptions(Gottschalk, 1993; Gottschalk, et al., 2006; Sauquet, et al., 2000; Skøien, et al., 2006). Interpolation of runoff characteristics are more complicated than the traditional random variables estimated by geostatistical methods, as the measurements have a more complicated support, and many catchments are nested. Skøien et al. (2006) presented the model Top-kriging which takes these effects into account for interpolation of stream flow characteristics (exemplified by the 100 year flood). The method has here been implemented as a package in the statistical environment R (R Development Core Team, 2004). Taking advantage of the existing methods in R for working with spatial objects, and the extensive possibilities for visualizing the result, this makes it considerably easier to apply the method on new data sets, in comparison to earlier implementation of the method. Gottschalk, L. 1993. Interpolation of runoff applying objective methods. Stochastic Hydrology and Hydraulics, 7, 269-281. Gottschalk, L., I. Krasovskaia, E. Leblois, and E. Sauquet. 2006. Mapping mean and variance of runoff in a river basin. Hydrology and Earth System Sciences, 10, 469-484. R Development Core Team. 2004. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Sauquet, E., L. Gottschalk, and E. Leblois. 2000. Mapping average annual runoff: a hierarchical approach applying a stochastic interpolation scheme. Hydrological Sciences Journal, 45 (6), 799-815. Skøien, J. O., R. Merz, and G. Blöschl. 2006. Top-kriging - geostatistics on stream networks. Hydrology and Earth System Sciences, 10, 277-287.
LADAR Range Image Interpolation Exploiting Pulse Width Expansion
2012-03-22
normal to each other. The LADAR model needs to include the complete BRDF model covered in Section 2.1.3, which includes speckle reflection as well as...the gradient of a surface. This study estimates the gradi- ent of the surface of an object from a modeled LADAR return pulse that includes accurate...probabilistic noise models . The range and surface gradient estimations are incorporated into a novel interpolator that facilitates an effective three
Direct Three-Dimensional Myocardial Strain Tensor Quantification and Tracking using zHARP★
Abd-Elmoniem, Khaled Z.; Stuber, Matthias; Prince, Jerry L.
2008-01-01
Images of myocardial strain can be used to diagnose heart disease, plan and monitor treatment, and to learn about cardiac structure and function. Three-dimensional (3-D) strain is typically quantified using many magnetic resonance (MR) images obtained in two or three orthogonal planes. Problems with this approach include long scan times, image misregistration, and through-plane motion. This article presents a novel method for calculating cardiac 3-D strain using a stack of two or more images acquired in only one orientation. The zHARP pulse sequence encodes in-plane motion using MR tagging and out-of-plane motion using phase encoding, and has been previously shown to be capable of computing 3D displacement within a single image plane. Here, data from two adjacent image planes are combined to yield a 3-D strain tensor at each pixel; stacks of zHARP images can be used to derive stacked arrays of 3D strain tensors without imaging multiple orientations and without numerical interpolation. The performance and accuracy of the method is demonstrated in-vitro on a phantom and in-vivo in four healthy adult human subjects. PMID:18511332
Pricing and simulation for real estate index options: Radial basis point interpolation
NASA Astrophysics Data System (ADS)
Gong, Pu; Zou, Dong; Wang, Jiayue
2018-06-01
This study employs the meshfree radial basis point interpolation (RBPI) for pricing real estate derivatives contingent on real estate index. This method combines radial and polynomial basis functions, which can guarantee the interpolation scheme with Kronecker property and effectively improve accuracy. An exponential change of variables, a mesh refinement algorithm and the Richardson extrapolation are employed in this study to implement the RBPI. Numerical results are presented to examine the computational efficiency and accuracy of our method.
Antenna pattern interpolation by generalized Whittaker reconstruction
NASA Astrophysics Data System (ADS)
Tjonneland, K.; Lindley, A.; Balling, P.
Whittaker reconstruction is an effective tool for interpolation of band limited data. Whittaker originally introduced the interpolation formula termed the cardinal function as the function that represents a set of equispaced samples but has no periodic components of period less than twice the sample spacing. It appears that its use for reflector antennas was pioneered in France. The method is now a useful tool in the analysis and design of multiple beam reflector antenna systems. A good description of the method has been given by Bucci et al. This paper discusses some problems encountered with the method and their solution.
Visualizing and Understanding the Components of Lagrange and Newton Interpolation
ERIC Educational Resources Information Center
Yang, Yajun; Gordon, Sheldon P.
2016-01-01
This article takes a close look at Lagrange and Newton interpolation by graphically examining the component functions of each of these formulas. Although interpolation methods are often considered simply to be computational procedures, we demonstrate how the components of the polynomial terms in these formulas provide insight into where these…
Binary-space-partitioned images for resolving image-based visibility.
Fu, Chi-Wing; Wong, Tien-Tsin; Tong, Wai-Shun; Tang, Chi-Keung; Hanson, Andrew J
2004-01-01
We propose a novel 2D representation for 3D visibility sorting, the Binary-Space-Partitioned Image (BSPI), to accelerate real-time image-based rendering. BSPI is an efficient 2D realization of a 3D BSP tree, which is commonly used in computer graphics for time-critical visibility sorting. Since the overall structure of a BSP tree is encoded in a BSPI, traversing a BSPI is comparable to traversing the corresponding BSP tree. BSPI performs visibility sorting efficiently and accurately in the 2D image space by warping the reference image triangle-by-triangle instead of pixel-by-pixel. Multiple BSPIs can be combined to solve "disocclusion," when an occluded portion of the scene becomes visible at a novel viewpoint. Our method is highly automatic, including a tensor voting preprocessing step that generates candidate image partition lines for BSPIs, filters the noisy input data by rejecting outliers, and interpolates missing information. Our system has been applied to a variety of real data, including stereo, motion, and range images.
Enhancement of low sampling frequency recordings for ECG biometric matching using interpolation.
Sidek, Khairul Azami; Khalil, Ibrahim
2013-01-01
Electrocardiogram (ECG) based biometric matching suffers from high misclassification error with lower sampling frequency data. This situation may lead to an unreliable and vulnerable identity authentication process in high security applications. In this paper, quality enhancement techniques for ECG data with low sampling frequency has been proposed for person identification based on piecewise cubic Hermite interpolation (PCHIP) and piecewise cubic spline interpolation (SPLINE). A total of 70 ECG recordings from 4 different public ECG databases with 2 different sampling frequencies were applied for development and performance comparison purposes. An analytical method was used for feature extraction. The ECG recordings were segmented into two parts: the enrolment and recognition datasets. Three biometric matching methods, namely, Cross Correlation (CC), Percent Root-Mean-Square Deviation (PRD) and Wavelet Distance Measurement (WDM) were used for performance evaluation before and after applying interpolation techniques. Results of the experiments suggest that biometric matching with interpolated ECG data on average achieved higher matching percentage value of up to 4% for CC, 3% for PRD and 94% for WDM. These results are compared with the existing method when using ECG recordings with lower sampling frequency. Moreover, increasing the sample size from 56 to 70 subjects improves the results of the experiment by 4% for CC, 14.6% for PRD and 0.3% for WDM. Furthermore, higher classification accuracy of up to 99.1% for PCHIP and 99.2% for SPLINE with interpolated ECG data as compared of up to 97.2% without interpolation ECG data verifies the study claim that applying interpolation techniques enhances the quality of the ECG data. Crown Copyright © 2012. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cao, Nan; Cao, Fengmei; Lin, Yabin; Bai, Tingzhu; Song, Shengyu
2015-04-01
For a new kind of retina-like senor camera and a traditional rectangular sensor camera, dual cameras acquisition and display system need to be built. We introduce the principle and the development of retina-like senor. Image coordinates transformation and interpolation based on sub-pixel interpolation need to be realized for our retina-like sensor's special pixels distribution. The hardware platform is composed of retina-like senor camera, rectangular sensor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes two cameras' acquisition and display.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, F; Byrd, D; Bowen, S
2015-06-15
Purpose: Texture metrics extracted from oncologic PET have been investigated with respect to their usefulness as definitive indicants for prognosis in a variety of cancer. Metric calculation is often based on cubic voxels. Most commonly used PET scanners, however, produce rectangular voxels, which may change texture metrics. The objective of this study was to examine the variability of PET texture feature metrics resulting from voxel anisotropy. Methods: Sinograms of NEMA NU-2 phantom for 18F-FDG were simulated using the ASIM simulation tool. The obtained projection data was reconstructed (3D-OSEM) on grids of cubic and rectangular voxels, producing PET images of resolutionmore » of 2.73x2.73x3.27mm3 and 3.27x3.27x3.27mm3, respectively. An interpolated dataset obtained from resampling the rectangular voxel data for isotropic voxel dimension (3.27mm) was also considered. For each image dataset, 28 texture parameters based on grey-level co-occurrence matrices (GLCOM), intensity histograms (GLIH), neighborhood difference matrices (GLNDM), and zone size matrices (GLZSM) were evaluated within lesions of diameter of 33, 28, 22, and 17mm. Results: In reference to the isotopic image data, texture features appearing on the rectangular voxel data varied with a range of -34-10% for GLCOM based, -31-39% for GLIH based, -80 -161% for GLNDM based, and −6–45% for GLZSM based while varied with a range of -35-23% for GLCOM based, -27-35% for GLIH based, -65-86% for GLNDM based, and -22 -18% for GLZSM based for the interpolated image data. For the anisotropic data, GLNDM-cplx exhibited the largest extent of variation (161%) while GLZSM-zp showed the least (<1%). As to the interpolated data, GLNDM-busy varied the most (86%) while GLIH-engy varied the least (<1%). Conclusion: Variability of texture appearance on oncologic PET with respect to voxel representation is substantial and feature-dependent. It necessitates consideration of standardized voxel representation for inter-institution studies attempting to validate prognostic values of PET texture features in cancer treatment.« less
On the influence of zero-padding on the nonlinear operations in Quantitative Susceptibility Mapping
Eskreis-Winkler, Sarah; Zhou, Dong; Liu, Tian; Gupta, Ajay; Gauthier, Susan A.; Wang, Yi; Spincemaille, Pascal
2016-01-01
Purpose Zero padding is a well-studied interpolation technique that improves image visualization without increasing image resolution. This interpolation is often performed as a last step before images are displayed on clinical workstations. Here, we seek to demonstrate the importance of zero padding before rather than after performing non-linear post-processing algorithms, such as Quantitative Susceptibility Mapping (QSM). To do so, we evaluate apparent spatial resolution, relative error and depiction of multiple sclerosis (MS) lesions on images that were zero padded prior to, in the middle of, and after the application of the QSM algorithm. Materials and Methods High resolution gradient echo (GRE) data were acquired on twenty MS patients, from which low resolution data were derived using k-space cropping. Pre-, mid-, and post-zero padded QSM images were reconstructed from these low resolution data by zero padding prior to field mapping, after field mapping, and after susceptibility mapping, respectively. Using high resolution QSM as the gold standard, apparent spatial resolution, relative error, and image quality of the pre-, mid-, and post-zero padded QSM images were measured and compared. Results Both the accuracy and apparent spatial resolution of the pre-zero padded QSM was higher than that of mid-zero padded QSM (p < 0.001; p < 0.001), which was higher than that of post-zero padded QSM (p < 0.001; p < 0.001). The image quality of pre-zero padded reconstructions was higher than that of mid- and post-zero padded reconstructions (p = 0.004; p < 0.001). Conclusion Zero padding of the complex GRE data prior to nonlinear susceptibility mapping improves image accuracy and apparent resolution compared to zero padding afterwards. It also provides better delineation of MS lesion geometry, which may improve lesion subclassification and disease monitoring in MS patients. PMID:27587225
NASA Astrophysics Data System (ADS)
Liu, Shulun; Li, Yuan; Pauwels, Valentijn R. N.; Walker, Jeffrey P.
2017-12-01
Rain gauges are widely used to obtain temporally continuous point rainfall records, which are then interpolated into spatially continuous data to force hydrological models. However, rainfall measurements and interpolation procedure are subject to various uncertainties, which can be reduced by applying quality control and selecting appropriate spatial interpolation approaches. Consequently, the integrated impact of rainfall quality control and interpolation on streamflow simulation has attracted increased attention but not been fully addressed. This study applies a quality control procedure to the hourly rainfall measurements obtained in the Warwick catchment in eastern Australia. The grid-based daily precipitation from the Australian Water Availability Project was used as a reference. The Pearson correlation coefficient between the daily accumulation of gauged rainfall and the reference data was used to eliminate gauges with significant quality issues. The unrealistic outliers were censored based on a comparison between gauged rainfall and the reference. Four interpolation methods, including the inverse distance weighting (IDW), nearest neighbors (NN), linear spline (LN), and ordinary Kriging (OK), were implemented. The four methods were firstly assessed through a cross-validation using the quality-controlled rainfall data. The impacts of the quality control and interpolation on streamflow simulation were then evaluated through a semi-distributed hydrological model. The results showed that the Nash–Sutcliffe model efficiency coefficient (NSE) and Bias of the streamflow simulations were significantly improved after quality control. In the cross-validation, the IDW and OK methods resulted in good interpolation rainfall, while the NN led to the worst result. In term of the impact on hydrological prediction, the IDW led to the most consistent streamflow predictions with the observations, according to the validation at five streamflow-gauged locations. The OK method performed second best according to streamflow predictions at the five gauges in the calibration period (01/01/2007–31/12/2011) and four gauges during the validation period (01/01/2012–30/06/2014). However, NN produced the worst prediction at the outlet of the catchment in the validation period, indicating a low robustness. While the IDW exhibited the best performance in the study catchment in terms of accuracy, robustness and efficiency, more general recommendations on the selection of rainfall interpolation methods need to be further explored.
NASA Astrophysics Data System (ADS)
Liu, Shulun; Li, Yuan; Pauwels, Valentijn R. N.; Walker, Jeffrey P.
2018-01-01
Rain gauges are widely used to obtain temporally continuous point rainfall records, which are then interpolated into spatially continuous data to force hydrological models. However, rainfall measurements and interpolation procedure are subject to various uncertainties, which can be reduced by applying quality control and selecting appropriate spatial interpolation approaches. Consequently, the integrated impact of rainfall quality control and interpolation on streamflow simulation has attracted increased attention but not been fully addressed. This study applies a quality control procedure to the hourly rainfall measurements obtained in the Warwick catchment in eastern Australia. The grid-based daily precipitation from the Australian Water Availability Project was used as a reference. The Pearson correlation coefficient between the daily accumulation of gauged rainfall and the reference data was used to eliminate gauges with significant quality issues. The unrealistic outliers were censored based on a comparison between gauged rainfall and the reference. Four interpolation methods, including the inverse distance weighting (IDW), nearest neighbors (NN), linear spline (LN), and ordinary Kriging (OK), were implemented. The four methods were firstly assessed through a cross-validation using the quality-controlled rainfall data. The impacts of the quality control and interpolation on streamflow simulation were then evaluated through a semi-distributed hydrological model. The results showed that the Nash–Sutcliffe model efficiency coefficient (NSE) and Bias of the streamflow simulations were significantly improved after quality control. In the cross-validation, the IDW and OK methods resulted in good interpolation rainfall, while the NN led to the worst result. In term of the impact on hydrological prediction, the IDW led to the most consistent streamflow predictions with the observations, according to the validation at five streamflow-gauged locations. The OK method performed second best according to streamflow predictions at the five gauges in the calibration period (01/01/2007–31/12/2011) and four gauges during the validation period (01/01/2012–30/06/2014). However, NN produced the worst prediction at the outlet of the catchment in the validation period, indicating a low robustness. While the IDW exhibited the best performance in the study catchment in terms of accuracy, robustness and efficiency, more general recommendations on the selection of rainfall interpolation methods need to be further explored.
NASA Astrophysics Data System (ADS)
Do, Seongju; Li, Haojun; Kang, Myungjoo
2017-06-01
In this paper, we present an accurate and efficient wavelet-based adaptive weighted essentially non-oscillatory (WENO) scheme for hydrodynamics and ideal magnetohydrodynamics (MHD) equations arising from the hyperbolic conservation systems. The proposed method works with the finite difference weighted essentially non-oscillatory (FD-WENO) method in space and the third order total variation diminishing (TVD) Runge-Kutta (RK) method in time. The philosophy of this work is to use the lifted interpolating wavelets as not only detector for singularities but also interpolator. Especially, flexible interpolations can be performed by an inverse wavelet transformation. When the divergence cleaning method introducing auxiliary scalar field ψ is applied to the base numerical schemes for imposing divergence-free condition to the magnetic field in a MHD equation, the approximations to derivatives of ψ require the neighboring points. Moreover, the fifth order WENO interpolation requires large stencil to reconstruct high order polynomial. In such cases, an efficient interpolation method is necessary. The adaptive spatial differentiation method is considered as well as the adaptation of grid resolutions. In order to avoid the heavy computation of FD-WENO, in the smooth regions fixed stencil approximation without computing the non-linear WENO weights is used, and the characteristic decomposition method is replaced by a component-wise approach. Numerical results demonstrate that with the adaptive method we are able to resolve the solutions that agree well with the solution of the corresponding fine grid.
Zhou, Shenglu; Su, Quanlong; Yi, Haomin
2017-01-01
Soil pollution by metal(loid)s resulting from rapid economic development is a major concern. Accurately estimating the spatial distribution of soil metal(loid) pollution has great significance in preventing and controlling soil pollution. In this study, 126 topsoil samples were collected in Kunshan City and the geo-accumulation index was selected as a pollution index. We used Kriging interpolation and BP neural network methods to estimate the spatial distribution of arsenic (As) and cadmium (Cd) pollution in the study area. Additionally, we introduced a cross-validation method to measure the errors of the estimation results by the two interpolation methods and discussed the accuracy of the information contained in the estimation results. The conclusions are as follows: data distribution characteristics, spatial variability, and mean square errors (MSE) of the different methods showed large differences. Estimation results from BP neural network models have a higher accuracy, the MSE of As and Cd are 0.0661 and 0.1743, respectively. However, the interpolation results show significant skewed distribution, and spatial autocorrelation is strong. Using Kriging interpolation, the MSE of As and Cd are 0.0804 and 0.2983, respectively. The estimation results have poorer accuracy. Combining the two methods can improve the accuracy of the Kriging interpolation and more comprehensively represent the spatial distribution characteristics of metal(loid)s in regional soil. The study may provide a scientific basis and technical support for the regulation of soil metal(loid) pollution. PMID:29278363
Gong, Gordon; Mattevada, Sravan; O'Bryant, Sid E
2014-04-01
Exposure to arsenic causes many diseases. Most Americans in rural areas use groundwater for drinking, which may contain arsenic above the currently allowable level, 10µg/L. It is cost-effective to estimate groundwater arsenic levels based on data from wells with known arsenic concentrations. We compared the accuracy of several commonly used interpolation methods in estimating arsenic concentrations in >8000 wells in Texas by the leave-one-out-cross-validation technique. Correlation coefficient between measured and estimated arsenic levels was greater with inverse distance weighted (IDW) than kriging Gaussian, kriging spherical or cokriging interpolations when analyzing data from wells in the entire Texas (p<0.0001). Correlation coefficient was significantly lower with cokriging than any other methods (p<0.006) for wells in Texas, east Texas or the Edwards aquifer. Correlation coefficient was significantly greater for wells in southwestern Texas Panhandle than in east Texas, and was higher for wells in Ogallala aquifer than in Edwards aquifer (p<0.0001) regardless of interpolation methods. In regression analysis, the best models are when well depth and/or elevation were entered into the model as covariates regardless of area/aquifer or interpolation methods, and models with IDW are better than kriging in any area/aquifer. In conclusion, the accuracy in estimating groundwater arsenic level depends on both interpolation methods and wells' geographic distributions and characteristics in Texas. Taking well depth and elevation into regression analysis as covariates significantly increases the accuracy in estimating groundwater arsenic level in Texas with IDW in particular. Published by Elsevier Inc.
Multiprocessor computer overset grid method and apparatus
Barnette, Daniel W.; Ober, Curtis C.
2003-01-01
A multiprocessor computer overset grid method and apparatus comprises associating points in each overset grid with processors and using mapped interpolation transformations to communicate intermediate values between processors assigned base and target points of the interpolation transformations. The method allows a multiprocessor computer to operate with effective load balance on overset grid applications.
NASA Astrophysics Data System (ADS)
Zhang, Dai; Hao, Shiqi; Zhao, Qingsong; Zhao, Qi; Wang, Lei; Wan, Xiongfeng
2018-03-01
Existing wavefront reconstruction methods are usually low in resolution, restricted by structure characteristics of the Shack Hartmann wavefront sensor (SH WFS) and the deformable mirror (DM) in the adaptive optics (AO) system, thus, resulting in weak homodyne detection efficiency for free space optical (FSO) communication. In order to solve this problem, we firstly validate the feasibility of liquid crystal spatial light modulator (LC SLM) using in an AO system. Then, wavefront reconstruction method based on wavelet fractal interpolation is proposed after self-similarity analysis of wavefront distortion caused by atmospheric turbulence. Fast wavelet decomposition is operated to multiresolution analyze the wavefront phase spectrum, during which soft threshold denoising is carried out. The resolution of estimated wavefront phase is then improved by fractal interpolation. Finally, fast wavelet reconstruction is taken to recover wavefront phase. Simulation results reflect the superiority of our method in homodyne detection. Compared with minimum variance estimation (MVE) method based on interpolation techniques, the proposed method could obtain superior homodyne detection efficiency with lower operation complexity. Our research findings have theoretical significance in the design of coherent FSO communication system.
Huang, Junhui; Xue, Qi; Wang, Zhao; Gao, Jianmin
2016-09-03
While color-coding methods have improved the measuring efficiency of a structured light three-dimensional (3D) measurement system, they decreased the measuring accuracy significantly due to lateral chromatic aberration (LCA). In this study, the LCA in a structured light measurement system is analyzed, and a method is proposed to compensate the error caused by the LCA. Firstly, based on the projective transformation, a 3D error map of LCA is constructed in the projector images by using a flat board and comparing the image coordinates of red, green and blue circles with the coordinates of white circles at preselected sample points within the measurement volume. The 3D map consists of the errors, which are the equivalent errors caused by LCA of the camera and projector. Then in measurements, error values of LCA are calculated and compensated to correct the projector image coordinates through the 3D error map and a tri-linear interpolation method. Eventually, 3D coordinates with higher accuracy are re-calculated according to the compensated image coordinates. The effectiveness of the proposed method is verified in the following experiments.
Huang, Junhui; Xue, Qi; Wang, Zhao; Gao, Jianmin
2016-01-01
While color-coding methods have improved the measuring efficiency of a structured light three-dimensional (3D) measurement system, they decreased the measuring accuracy significantly due to lateral chromatic aberration (LCA). In this study, the LCA in a structured light measurement system is analyzed, and a method is proposed to compensate the error caused by the LCA. Firstly, based on the projective transformation, a 3D error map of LCA is constructed in the projector images by using a flat board and comparing the image coordinates of red, green and blue circles with the coordinates of white circles at preselected sample points within the measurement volume. The 3D map consists of the errors, which are the equivalent errors caused by LCA of the camera and projector. Then in measurements, error values of LCA are calculated and compensated to correct the projector image coordinates through the 3D error map and a tri-linear interpolation method. Eventually, 3D coordinates with higher accuracy are re-calculated according to the compensated image coordinates. The effectiveness of the proposed method is verified in the following experiments. PMID:27598174
Photogrammetric retrieval of volcanic ash cloud top height from SEVIRI and MODIS
NASA Astrophysics Data System (ADS)
Zakšek, Klemen; Hort, Matthias; Zaletelj, Janez; Langmann, Bärbel
2013-04-01
Even if erupting in remote areas, volcanoes can have a significant impact on the modern society due to volcanic ash dispersion in the atmosphere. The ash does not affect merely air traffic - its transport in the atmosphere and its deposition on land and in the oceans may also significantly influence the climate through modifications of atmospheric CO2. The emphasis of this contribution is the retrieval of volcanic ash plume height (ACTH). ACTH is important information especially for air traffic but also to predict ash transport and to estimate the mass flux of the ejected material. ACTH is usually estimated from ground measurements, pilot reports, or satellite remote sensing. But ground based instruments are often not available at remote volcanoes and also the pilots reports are a matter of chance. Volcanic ash cloud top height (ACTH) can be monitored on the global level using satellite remote sensing. The most often used method compares brightness temperature of the cloud with the atmospheric temperature profile. Because of uncertainties of this method (unknown emissivity of the ash cloud, tropopause, etc.) we propose photogrammetric methods based on the parallax between data retrieved from geostationary (SEVIRI) and polar orbiting satellites (MODIS). The parallax is estimated using automatic image matching in three level image pyramids. The procedure works well if the data from both satellites are retrieved nearly simultaneously. MODIS does not retrieve the data at exactly the same time as SEVIRI. To compensate for advection we use two sequential SEVIRI images (one before and one after the MODIS retrieval) and interpolate the cloud position from SEVIRI data to the time of MODIS retrieval. ACTH is then estimated by intersection of corresponding lines-of-view from MODIS and interpolated SEVIRI data. The proposed method was tested using MODIS band 1 and SEVIRI HRV band for the case of the Eyjafjallajökull eruption in April 2010. The parallax between MODIS and SEVIRI data can reach over 30 km which implies ACTH of more than 12 km. The accuracy of ACTH was estimated to 0.6 km. The limitation of this procedure is that it has difficulties with automatic image matching if the ash cloud is not opaque.
NASA Astrophysics Data System (ADS)
Šiljeg, A.; Lozić, S.; Šiljeg, S.
2014-12-01
The bathymetric survey of Lake Vrana included a wide range of activities that were performed in several different stages, in accordance with the standards set by the International Hydrographic Organization. The survey was conducted using an integrated measuring system which consisted of three main parts: a single-beam sonar Hydrostar 4300, GPS devices Ashtech Promark 500 - base, and a Thales Z-Max - rover. A total of 12 851 points were gathered. In order to find continuous surfaces necessary for analysing the morphology of the bed of Lake Vrana, it was necessary to approximate values in certain areas that were not directly measured, by using an appropriate interpolation method. The main aims of this research were as follows: to compare the efficiency of 16 different interpolation methods, to discover the most appropriate interpolators for the development of a raster model, to calculate the surface area and volume of Lake Vrana, and to compare the differences in calculations between separate raster models. The best deterministic method of interpolation was ROF multi-quadratic, and the best geostatistical, ordinary cokriging. The mean quadratic error in both methods measured less than 0.3 m. The quality of the interpolation methods was analysed in 2 phases. The first phase used only points gathered by bathymetric measurement, while the second phase also included points gathered by photogrammetric restitution. The first bathymetric map of Lake Vrana in Croatia was produced, as well as scenarios of minimum and maximum water levels. The calculation also included the percentage of flooded areas and cadastre plots in the case of a 2 m increase in the water level. The research presented new scientific and methodological data related to the bathymetric features, surface area and volume of Lake Vrana.
NASA Astrophysics Data System (ADS)
Mezgebo, Biniyam; Nagib, Karim; Fernando, Namal; Kordi, Behzad; Sherif, Sherif
2018-02-01
Swept Source optical coherence tomography (SS-OCT) is an important imaging modality for both medical and industrial diagnostic applications. A cross-sectional SS-OCT image is obtained by applying an inverse discrete Fourier transform (DFT) to axial interferograms measured in the frequency domain (k-space). This inverse DFT is typically implemented as a fast Fourier transform (FFT) that requires the data samples to be equidistant in k-space. As the frequency of light produced by a typical wavelength-swept laser is nonlinear in time, the recorded interferogram samples will not be uniformly spaced in k-space. Many image reconstruction methods have been proposed to overcome this problem. Most such methods rely on oversampling the measured interferogram then use either hardware, e.g., Mach-Zhender interferometer as a frequency clock module, or software, e.g., interpolation in k-space, to obtain equally spaced samples that are suitable for the FFT. To overcome the problem of nonuniform sampling in k-space without any need for interferogram oversampling, an earlier method demonstrated the use of the nonuniform discrete Fourier transform (NDFT) for image reconstruction in SS-OCT. In this paper, we present a more accurate method for SS-OCT image reconstruction from nonuniform samples in k-space using a scaled nonuniform Fourier transform. The result is demonstrated using SS-OCT images of Axolotl salamander eggs.
Cui, Jiwen; Zhao, Shiyuan; Yang, Di; Ding, Zhenyang
2018-02-20
We use a spectrum interpolation technique to improve the distributed strain measurement accuracy in a Rayleigh-scatter-based optical frequency domain reflectometry sensing system. We demonstrate that strain accuracy is not limited by the "uncertainty principle" that exists in the time-frequency analysis. Different interpolation methods are investigated and used to improve the accuracy of peak position of the cross-correlation and, therefore, improve the accuracy of the strain. Interpolation implemented by padding zeros on one side of the windowed data in the spatial domain, before the inverse fast Fourier transform, is found to have the best accuracy. Using this method, the strain accuracy and resolution are both improved without decreasing the spatial resolution. The strain of 3 μϵ within the spatial resolution of 1 cm at the position of 21.4 m is distinguished, and the measurement uncertainty is 3.3 μϵ.
High-speed spectral domain optical coherence tomography using non-uniform fast Fourier transform
Chan, Kenny K. H.; Tang, Shuo
2010-01-01
The useful imaging range in spectral domain optical coherence tomography (SD-OCT) is often limited by the depth dependent sensitivity fall-off. Processing SD-OCT data with the non-uniform fast Fourier transform (NFFT) can improve the sensitivity fall-off at maximum depth by greater than 5dB concurrently with a 30 fold decrease in processing time compared to the fast Fourier transform with cubic spline interpolation method. NFFT can also improve local signal to noise ratio (SNR) and reduce image artifacts introduced in post-processing. Combined with parallel processing, NFFT is shown to have the ability to process up to 90k A-lines per second. High-speed SD-OCT imaging is demonstrated at camera-limited 100 frames per second on an ex-vivo squid eye. PMID:21258551
Development of Spatial Scaling Technique of Forest Health Sample Point Information
NASA Astrophysics Data System (ADS)
Lee, J. H.; Ryu, J. E.; Chung, H. I.; Choi, Y. Y.; Jeon, S. W.; Kim, S. H.
2018-04-01
Forests provide many goods, Ecosystem services, and resources to humans such as recreation air purification and water protection functions. In rececnt years, there has been an increase in the factors that threaten the health of forests such as global warming due to climate change, environmental pollution, and the increase in interest in forests, and efforts are being made in various countries for forest management. Thus, existing forest ecosystem survey method is a monitoring method of sampling points, and it is difficult to utilize forests for forest management because Korea is surveying only a small part of the forest area occupying 63.7 % of the country (Ministry of Land Infrastructure and Transport Korea, 2016). Therefore, in order to manage large forests, a method of interpolating and spatializing data is needed. In this study, The 1st Korea Forest Health Management biodiversity Shannon;s index data (National Institute of Forests Science, 2015) were used for spatial interpolation. Two widely used methods of interpolation, Kriging method and IDW(Inverse Distance Weighted) method were used to interpolate the biodiversity index. Vegetation indices SAVI, NDVI, LAI and SR were used. As a result, Kriging method was the most accurate method.
NASA Technical Reports Server (NTRS)
Kim, Sang-Wook
1988-01-01
A velocity-pressure integrated, mixed interpolation, Galerkin finite element method for the Navier-Stokes equations is presented. In the method, the velocity variables were interpolated using complete quadratic shape functions and the pressure was interpolated using linear shape functions. For the two dimensional case, the pressure is defined on a triangular element which is contained inside the complete biquadratic element for velocity variables; and for the three dimensional case, the pressure is defined on a tetrahedral element which is again contained inside the complete tri-quadratic element. Thus the pressure is discontinuous across the element boundaries. Example problems considered include: a cavity flow for Reynolds number of 400 through 10,000; a laminar backward facing step flow; and a laminar flow in a square duct of strong curvature. The computational results compared favorable with those of the finite difference methods as well as experimental data available. A finite elememt computer program for incompressible, laminar flows is presented.
Tang, Youhua; Chai, Tianfeng; Pan, Li; Lee, Pius; Tong, Daniel; Kim, Hyun-Cheol; Chen, Weiwei
2015-10-01
We employed an optimal interpolation (OI) method to assimilate AIRNow ozone/PM2.5 and MODIS (Moderate Resolution Imaging Spectroradiometer) aerosol optical depth (AOD) data into the Community Multi-scale Air Quality (CMAQ) model to improve the ozone and total aerosol concentration for the CMAQ simulation over the contiguous United States (CONUS). AIRNow data assimilation was applied to the boundary layer, and MODIS AOD data were used to adjust total column aerosol. Four OI cases were designed to examine the effects of uncertainty setting and assimilation time; two of these cases used uncertainties that varied in time and location, or "dynamic uncertainties." More frequent assimilation and higher model uncertainties pushed the modeled results closer to the observation. Our comparison over a 24-hr period showed that ozone and PM2.5 mean biases could be reduced from 2.54 ppbV to 1.06 ppbV and from -7.14 µg/m³ to -0.11 µg/m³, respectively, over CONUS, while their correlations were also improved. Comparison to DISCOVER-AQ 2011 aircraft measurement showed that surface ozone assimilation applied to the CMAQ simulation improves regional low-altitude (below 2 km) ozone simulation. This paper described an application of using optimal interpolation method to improve the model's ozone and PM2.5 estimation using surface measurement and satellite AOD. It highlights the usage of the operational AIRNow data set, which is available in near real time, and the MODIS AOD. With a similar method, we can also use other satellite products, such as the latest VIIRS products, to improve PM2.5 prediction.
NASA Technical Reports Server (NTRS)
Mareboyana, Manohar; Le Moigne-Stewart, Jacqueline; Bennett, Jerome
2016-01-01
In this paper, we demonstrate a simple algorithm that projects low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithm is very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. used in projection yield comparable results. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML), and Maximum a posterior (MAP) algorithms. The algorithm is robust and is not overly sensitive to the registration inaccuracies.
Directional filtering for block recovery using wavelet features
NASA Astrophysics Data System (ADS)
Hyun, Seung H.; Eom, Il K.; Kim, Yoo S.
2005-07-01
When images compressed with block-based compression techniques are transmitted over a noisy channel, unexpected block losses occur. Conventional methods that do not consider edge directions can cause blocked blurring artifacts. In this paper, we present a post-processing-based block recovery scheme using Haar wavelet features. The adaptive selection of neighboring blocks is performed based on the energy of wavelet subbands (EWS) and difference between DC values (DDC). The lost blocks are recovered by linear interpolation in the spatial domain using selected blocks. The method using only EWS performs well for horizontal and vertical edges, but not as well for diagonal edges. Conversely, only using DDC performs well for diagonal edges with the exception of line- or roof-type edge profiles. Therefore, we combine EWS and DDC for better results. The proposed directional recovery method is effective for the strong edge because exploit the varying neighboring blocks adaptively according to the edges and the directional information in the image. The proposed method outperforms the previous methods that used only fixed blocks.
Nakajima, Nobuharu
2010-07-20
When a very intense beam is used for illuminating an object in coherent x-ray diffraction imaging, the intensities at the center of the diffraction pattern for the object are cut off by a beam stop that is utilized to block the intense beam. Until now, only iterative phase-retrieval methods have been applied to object reconstruction from a single diffraction pattern with a deficiency of central data due to a beam stop. As an alternative method, I present a noniterative solution in which an interpolation method based on the sampling theorem for the missing data is used for object reconstruction with our previously proposed phase-retrieval method using an aperture-array filter. Computer simulations demonstrate the reconstruction of a complex-amplitude object from a single diffraction pattern with a missing data area, which is generally difficult to treat with the iterative methods because a nonnegativity constraint cannot be used for such an object.
Fusing Satellite-Derived Irradiance and Point Measurements through Optimal Interpolation
NASA Astrophysics Data System (ADS)
Lorenzo, A.; Morzfeld, M.; Holmgren, W.; Cronin, A.
2016-12-01
Satellite-derived irradiance is widely used throughout the design and operation of a solar power plant. While satellite-derived estimates cover a large area, they also have large errors compared to point measurements from sensors on the ground. We describe an optimal interpolation routine that fuses the broad spatial coverage of satellite-derived irradiance with the high accuracy of point measurements. The routine can be applied to any satellite-derived irradiance and point measurement datasets. Unique aspects of this work include the fact that information is spread using cloud location and thickness and that a number of point measurements are collected from rooftop PV systems. The routine is sensitive to errors in the satellite image geolocation, so care must be taken to adjust the cloud locations based on the solar and satellite geometries. Analysis of the optimal interpolation routine over Tucson, AZ, with 20 point measurements shows a significant improvement in the irradiance estimate for two distinct satellite image to irradiance algorithms. Improved irradiance estimates can be used for resource assessment, distributed generation production estimates, and irradiance forecasts.
Wavelet-Smoothed Interpolation of Masked Scientific Data for JPEG 2000 Compression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brislawn, Christopher M.
2012-08-13
How should we manage scientific data with 'holes'? Some applications, like JPEG 2000, expect logically rectangular data, but some sources, like the Parallel Ocean Program (POP), generate data that isn't defined on certain subsets. We refer to grid points that lack well-defined, scientifically meaningful sample values as 'masked' samples. Wavelet-smoothing is a highly scalable interpolation scheme for regions with complex boundaries on logically rectangular grids. Computation is based on forward/inverse discrete wavelet transforms, so runtime complexity and memory scale linearly with respect to sample count. Efficient state-of-the-art minimal realizations yield small constants (O(10)) for arithmetic complexity scaling, and in-situ implementationmore » techniques make optimal use of memory. Implementation in two dimensions using tensor product filter banks is straighsorward and should generalize routinely to higher dimensions. No hand-tuning required when the interpolation mask changes, making the method aeractive for problems with time-varying masks. Well-suited for interpolating undefined samples prior to JPEG 2000 encoding. The method outperforms global mean interpolation, as judged by both SNR rate-distortion performance and low-rate artifact mitigation, for data distributions whose histograms do not take the form of sharply peaked, symmetric, unimodal probability density functions. These performance advantages can hold even for data whose distribution differs only moderately from the peaked unimodal case, as demonstrated by POP salinity data. The interpolation method is very general and is not tied to any particular class of applications, could be used for more generic smooth interpolation.« less
Interpolating Non-Parametric Distributions of Hourly Rainfall Intensities Using Random Mixing
NASA Astrophysics Data System (ADS)
Mosthaf, Tobias; Bárdossy, András; Hörning, Sebastian
2015-04-01
The correct spatial interpolation of hourly rainfall intensity distributions is of great importance for stochastical rainfall models. Poorly interpolated distributions may lead to over- or underestimation of rainfall and consequently to wrong estimates of following applications, like hydrological or hydraulic models. By analyzing the spatial relation of empirical rainfall distribution functions, a persistent order of the quantile values over a wide range of non-exceedance probabilities is observed. As the order remains similar, the interpolation weights of quantile values for one certain non-exceedance probability can be applied to the other probabilities. This assumption enables the use of kernel smoothed distribution functions for interpolation purposes. Comparing the order of hourly quantile values over different gauges with the order of their daily quantile values for equal probabilities, results in high correlations. The hourly quantile values also show high correlations with elevation. The incorporation of these two covariates into the interpolation is therefore tested. As only positive interpolation weights for the quantile values assure a monotonically increasing distribution function, the use of geostatistical methods like kriging is problematic. Employing kriging with external drift to incorporate secondary information is not applicable. Nonetheless, it would be fruitful to make use of covariates. To overcome this shortcoming, a new random mixing approach of spatial random fields is applied. Within the mixing process hourly quantile values are considered as equality constraints and correlations with elevation values are included as relationship constraints. To profit from the dependence of daily quantile values, distribution functions of daily gauges are used to set up lower equal and greater equal constraints at their locations. In this way the denser daily gauge network can be included in the interpolation of the hourly distribution functions. The applicability of this new interpolation procedure will be shown for around 250 hourly rainfall gauges in the German federal state of Baden-Württemberg. The performance of the random mixing technique within the interpolation is compared to applicable kriging methods. Additionally, the interpolation of kernel smoothed distribution functions is compared with the interpolation of fitted parametric distributions.
Gaussian diffusion sinogram inpainting for X-ray CT metal artifact reduction.
Peng, Chengtao; Qiu, Bensheng; Li, Ming; Guan, Yihui; Zhang, Cheng; Wu, Zhongyi; Zheng, Jian
2017-01-05
Metal objects implanted in the bodies of patients usually generate severe streaking artifacts in reconstructed images of X-ray computed tomography, which degrade the image quality and affect the diagnosis of disease. Therefore, it is essential to reduce these artifacts to meet the clinical demands. In this work, we propose a Gaussian diffusion sinogram inpainting metal artifact reduction algorithm based on prior images to reduce these artifacts for fan-beam computed tomography reconstruction. In this algorithm, prior information that originated from a tissue-classified prior image is used for the inpainting of metal-corrupted projections, and it is incorporated into a Gaussian diffusion function. The prior knowledge is particularly designed to locate the diffusion position and improve the sparsity of the subtraction sinogram, which is obtained by subtracting the prior sinogram of the metal regions from the original sinogram. The sinogram inpainting algorithm is implemented through an approach of diffusing prior energy and is then solved by gradient descent. The performance of the proposed metal artifact reduction algorithm is compared with two conventional metal artifact reduction algorithms, namely the interpolation metal artifact reduction algorithm and normalized metal artifact reduction algorithm. The experimental datasets used included both simulated and clinical datasets. By evaluating the results subjectively, the proposed metal artifact reduction algorithm causes fewer secondary artifacts than the two conventional metal artifact reduction algorithms, which lead to severe secondary artifacts resulting from impertinent interpolation and normalization. Additionally, the objective evaluation shows the proposed approach has the smallest normalized mean absolute deviation and the highest signal-to-noise ratio, indicating that the proposed method has produced the image with the best quality. No matter for the simulated datasets or the clinical datasets, the proposed algorithm has reduced the metal artifacts apparently.
NASA Astrophysics Data System (ADS)
Bolan, Jeffrey; Hall, Elise; Clifford, Chris; Thurow, Brian
The Light-Field Imaging Toolkit (LFIT) is a collection of MATLAB functions designed to facilitate the rapid processing of raw light field images captured by a plenoptic camera. An included graphical user interface streamlines the necessary post-processing steps associated with plenoptic images. The generation of perspective shifted views and computationally refocused images is supported, in both single image and animated formats. LFIT performs necessary calibration, interpolation, and structuring steps to enable future applications of this technology.
Guyader, Jean-Marie; Bernardin, Livia; Douglas, Naomi H M; Poot, Dirk H J; Niessen, Wiro J; Klein, Stefan
2015-08-01
To evaluate the influence of image registration on apparent diffusion coefficient (ADC) images obtained from abdominal free-breathing diffusion-weighted MR images (DW-MRIs). A comprehensive pipeline based on automatic three-dimensional nonrigid image registrations is developed to compensate for misalignments in DW-MRI datasets obtained from five healthy subjects scanned twice. Motion is corrected both within each image and between images in a time series. ADC distributions are compared with and without registration in two abdominal volumes of interest (VOIs). The effects of interpolations and Gaussian blurring as alternative strategies to reduce motion artifacts are also investigated. Among the four considered scenarios (no processing, interpolation, blurring and registration), registration yields the best alignment scores. Median ADCs vary according to the chosen scenario: for the considered datasets, ADCs obtained without processing are 30% higher than with registration. Registration improves voxelwise reproducibility at least by a factor of 2 and decreases uncertainty (Fréchet-Cramér-Rao lower bound). Registration provides similar improvements in reproducibility and uncertainty as acquiring four times more data. Patient motion during image acquisition leads to misaligned DW-MRIs and inaccurate ADCs, which can be addressed using automatic registration. © 2014 Wiley Periodicals, Inc.
Space-time light field rendering.
Wang, Huamin; Sun, Mingxuan; Yang, Ruigang
2007-01-01
In this paper, we propose a novel framework called space-time light field rendering, which allows continuous exploration of a dynamic scene in both space and time. Compared to existing light field capture/rendering systems, it offers the capability of using unsynchronized video inputs and the added freedom of controlling the visualization in the temporal domain, such as smooth slow motion and temporal integration. In order to synthesize novel views from any viewpoint at any time instant, we develop a two-stage rendering algorithm. We first interpolate in the temporal domain to generate globally synchronized images using a robust spatial-temporal image registration algorithm followed by edge-preserving image morphing. We then interpolate these software-synchronized images in the spatial domain to synthesize the final view. In addition, we introduce a very accurate and robust algorithm to estimate subframe temporal offsets among input video sequences. Experimental results from unsynchronized videos with or without time stamps show that our approach is capable of maintaining photorealistic quality from a variety of real scenes.
NASA Astrophysics Data System (ADS)
Hu, Shou-Cun; Ji, Jiang-Hui
2017-12-01
In asteroid rendezvous missions, the dynamical environment near an asteroid’s surface should be made clear prior to launch of the mission. However, most asteroids have irregular shapes, which lower the efficiency of calculating their gravitational field by adopting the traditional polyhedral method. In this work, we propose a method to partition the space near an asteroid adaptively along three spherical coordinates and use Chebyshev polynomial interpolation to represent the gravitational acceleration in each cell. Moreover, we compare four different interpolation schemes to obtain the best precision with identical initial parameters. An error-adaptive octree division is combined to improve the interpolation precision near the surface. As an example, we take the typical irregularly-shaped near-Earth asteroid 4179 Toutatis to demonstrate the advantage of this method; as a result, we show that the efficiency can be increased by hundreds to thousands of times with our method. Our results indicate that this method can be applicable to other irregularly-shaped asteroids and can greatly improve the evaluation efficiency.
A general method for generating bathymetric data for hydrodynamic computer models
Burau, J.R.; Cheng, R.T.
1989-01-01
To generate water depth data from randomly distributed bathymetric data for numerical hydrodymamic models, raw input data from field surveys, water depth data digitized from nautical charts, or a combination of the two are sorted to given an ordered data set on which a search algorithm is used to isolate data for interpolation. Water depths at locations required by hydrodynamic models are interpolated from the bathymetric data base using linear or cubic shape functions used in the finite-element method. The bathymetric database organization and preprocessing, the search algorithm used in finding the bounding points for interpolation, the mathematics of the interpolation formulae, and the features of the automatic generation of water depths at hydrodynamic model grid points are included in the analysis. This report includes documentation of two computer programs which are used to: (1) organize the input bathymetric data; and (2) to interpolate depths for hydrodynamic models. An example of computer program operation is drawn from a realistic application to the San Francisco Bay estuarine system. (Author 's abstract)
Ruth, Veikko; Kolditz, Daniel; Steiding, Christian; Kalender, Willi A
2017-06-01
The performance of metal artifact reduction (MAR) methods in x-ray computed tomography (CT) suffers from incorrect identification of metallic implants in the artifact-affected volumetric images. The aim of this study was to investigate potential improvements of state-of-the-art MAR methods by using prior information on geometry and material of the implant. The influence of a novel prior knowledge-based segmentation (PS) compared with threshold-based segmentation (TS) on 2 MAR methods (linear interpolation [LI] and normalized-MAR [NORMAR]) was investigated. The segmentation is the initial step of both MAR methods. Prior knowledge-based segmentation uses 3-dimensional registered computer-aided design (CAD) data as prior knowledge to estimate the correct position and orientation of the metallic objects. Threshold-based segmentation uses an adaptive threshold to identify metal. Subsequently, for LI and NORMAR, the selected voxels are projected into the raw data domain to mark metal areas. Attenuation values in these areas are replaced by different interpolation schemes followed by a second reconstruction. Finally, the previously selected metal voxels are replaced by the metal voxels determined by PS or TS in the initial reconstruction. First, we investigated in an elaborate phantom study if the knowledge of the exact implant shape extracted from the CAD data provided by the manufacturer of the implant can improve the MAR result. Second, the leg of a human cadaver was scanned using a clinical CT system before and after the implantation of an artificial knee joint. The results were compared regarding segmentation accuracy, CT number accuracy, and the restoration of distorted structures. The use of PS improved the efficacy of LI and NORMAR compared with TS. Artifacts caused by insufficient segmentation were reduced, and additional information was made available within the projection data. The estimation of the implant shape was more exact and not dependent on a threshold value. Consequently, the visibility of structures was improved when comparing the new approach to the standard method. This was further confirmed by improved CT value accuracy and reduced image noise. The PS approach based on prior implant information provides image quality which is superior to TS-based MAR, especially when the shape of the metallic implant is complex. The new approach can be useful for improving MAR methods and dose calculations within radiation therapy based on the MAR corrected CT images.
Crowded Cluster Cores. Algorithms for Deblending in Dark Energy Survey Images
Zhang, Yuanyuan; McKay, Timothy A.; Bertin, Emmanuel; ...
2015-10-26
Deep optical images are often crowded with overlapping objects. We found that this is especially true in the cores of galaxy clusters, where images of dozens of galaxies may lie atop one another. Accurate measurements of cluster properties require deblending algorithms designed to automatically extract a list of individual objects and decide what fraction of the light in each pixel comes from each object. In this article, we introduce a new software tool called the Gradient And Interpolation based (GAIN) deblender. GAIN is used as a secondary deblender to improve the separation of overlapping objects in galaxy cluster cores inmore » Dark Energy Survey images. It uses image intensity gradients and an interpolation technique originally developed to correct flawed digital images. Our paper is dedicated to describing the algorithm of the GAIN deblender and its applications, but we additionally include modest tests of the software based on real Dark Energy Survey co-add images. GAIN helps to extract an unbiased photometry measurement for blended sources and improve detection completeness, while introducing few spurious detections. When applied to processed Dark Energy Survey data, GAIN serves as a useful quick fix when a high level of deblending is desired.« less
Use of shape-preserving interpolation methods in surface modeling
NASA Technical Reports Server (NTRS)
Ftitsch, F. N.
1984-01-01
In many large-scale scientific computations, it is necessary to use surface models based on information provided at only a finite number of points (rather than determined everywhere via an analytic formula). As an example, an equation of state (EOS) table may provide values of pressure as a function of temperature and density for a particular material. These values, while known quite accurately, are typically known only on a rectangular (but generally quite nonuniform) mesh in (T,d)-space. Thus interpolation methods are necessary to completely determine the EOS surface. The most primitive EOS interpolation scheme is bilinear interpolation. This has the advantages of depending only on local information, so that changes in data remote from a mesh element have no effect on the surface over the element, and of preserving shape information, such as monotonicity. Most scientific calculations, however, require greater smoothness. Standard higher-order interpolation schemes, such as Coons patches or bicubic splines, while providing the requisite smoothness, tend to produce surfaces that are not physically reasonable. This means that the interpolant may have bumps or wiggles that are not supported by the data. The mathematical quantification of ideas such as physically reasonable and visually pleasing is examined.
Interpolation schemes for peptide rearrangements.
Bauer, Marianne S; Strodel, Birgit; Fejer, Szilard N; Koslover, Elena F; Wales, David J
2010-02-07
A variety of methods (in total seven) comprising different combinations of internal and Cartesian coordinates are tested for interpolation and alignment in connection attempts for polypeptide rearrangements. We consider Cartesian coordinates, the internal coordinates used in CHARMM, and natural internal coordinates, each of which has been interfaced to the OPTIM code and compared with the corresponding results for united-atom force fields. We show that aligning the methylene hydrogens to preserve the sign of a local dihedral angle, rather than minimizing a distance metric, provides significant improvements with respect to connection times and failures. We also demonstrate the superiority of natural coordinate methods in conjunction with internal alignment. Checking the potential energy of the interpolated structures can act as a criterion for the choice of the interpolation coordinate system, which reduces failures and connection times significantly.
NASA Technical Reports Server (NTRS)
Hurkmans, R.T.W.L.; Bamber, J.L.; Sorensen, L. S.; Joughin, I. R.; Davis, C. H.; Krabill, W. B.
2012-01-01
Estimation of ice sheet mass balance from satellite altimetry requires interpolation of point-scale elevation change (dHdt) data over the area of interest. The largest dHdt values occur over narrow, fast-flowing outlet glaciers, where data coverage of current satellite altimetry is poorest. In those areas, straightforward interpolation of data is unlikely to reflect the true patterns of dHdt. Here, four interpolation methods are compared and evaluated over Jakobshavn Isbr, an outlet glacier for which widespread airborne validation data are available from NASAs Airborne Topographic Mapper (ATM). The four methods are ordinary kriging (OK), kriging with external drift (KED), where the spatial pattern of surface velocity is used as a proxy for that of dHdt, and their spatiotemporal equivalents (ST-OK and ST-KED).
Chirp Scaling Algorithms for SAR Processing
NASA Technical Reports Server (NTRS)
Jin, M.; Cheng, T.; Chen, M.
1993-01-01
The chirp scaling SAR processing algorithm is both accurate and efficient. Successful implementation requires proper selection of the interval of output samples, which is a function of the chirp interval, signal sampling rate, and signal bandwidth. Analysis indicates that for both airborne and spaceborne SAR applications in the slant range domain a linear chirp scaling is sufficient. To perform nonlinear interpolation process such as to output ground range SAR images, one can use a nonlinear chirp scaling interpolator presented in this paper.
Py-SPHViewer: Cosmological simulations using Smoothed Particle Hydrodynamics
NASA Astrophysics Data System (ADS)
Benítez-Llambay, Alejandro
2017-12-01
Py-SPHViewer visualizes and explores N-body + Hydrodynamics simulations. The code interpolates the underlying density field (or any other property) traced by a set of particles, using the Smoothed Particle Hydrodynamics (SPH) interpolation scheme, thus producing not only beautiful but also useful scientific images. Py-SPHViewer enables the user to explore simulated volumes using different projections. Py-SPHViewer also provides a natural way to visualize (in a self-consistent fashion) gas dynamical simulations, which use the same technique to compute the interactions between particles.
Deep learning methods to guide CT image reconstruction and reduce metal artifacts
NASA Astrophysics Data System (ADS)
Gjesteby, Lars; Yang, Qingsong; Xi, Yan; Zhou, Ye; Zhang, Junping; Wang, Ge
2017-03-01
The rapidly-rising field of machine learning, including deep learning, has inspired applications across many disciplines. In medical imaging, deep learning has been primarily used for image processing and analysis. In this paper, we integrate a convolutional neural network (CNN) into the computed tomography (CT) image reconstruction process. Our first task is to monitor the quality of CT images during iterative reconstruction and decide when to stop the process according to an intelligent numerical observer instead of using a traditional stopping rule, such as a fixed error threshold or a maximum number of iterations. After training on ground truth images, the CNN was successful in guiding an iterative reconstruction process to yield high-quality images. Our second task is to improve a sinogram to correct for artifacts caused by metal objects. A large number of interpolation and normalization-based schemes were introduced for metal artifact reduction (MAR) over the past four decades. The NMAR algorithm is considered a state-of-the-art method, although residual errors often remain in the reconstructed images, especially in cases of multiple metal objects. Here we merge NMAR with deep learning in the projection domain to achieve additional correction in critical image regions. Our results indicate that deep learning can be a viable tool to address CT reconstruction challenges.
A Critical Comparison of Some Methods for Interpolation of Scattered Data
1979-12-01
because faster evaluation of the local interpolants is possible. KAll things considered, the method of choice here seems to be the Modified Quadratic...topography and other irregular surfaces," J. of Geophysical Research 76 ( 1971 ) 1905-1915I’ [23) HARDY, Rolland L. - "Analytical topographic surfaces by
Automatic Tortuosity-Based Retinopathy of Prematurity Screening System
NASA Astrophysics Data System (ADS)
Sukkaew, Lassada; Uyyanonvara, Bunyarit; Makhanov, Stanislav S.; Barman, Sarah; Pangputhipong, Pannet
Retinopathy of Prematurity (ROP) is an infant disease characterized by increased dilation and tortuosity of the retinal blood vessels. Automatic tortuosity evaluation from retinal digital images is very useful to facilitate an ophthalmologist in the ROP screening and to prevent childhood blindness. This paper proposes a method to automatically classify the image into tortuous and non-tortuous. The process imitates expert ophthalmologists' screening by searching for clearly tortuous vessel segments. First, a skeleton of the retinal blood vessels is extracted from the original infant retinal image using a series of morphological operators. Next, we propose to partition the blood vessels recursively using an adaptive linear interpolation scheme. Finally, the tortuosity is calculated based on the curvature of the resulting vessel segments. The retinal images are then classified into two classes using segments characterized by the highest tortuosity. For an optimal set of training parameters the prediction is as high as 100%.
Single-shot three-dimensional reconstruction based on structured light line pattern
NASA Astrophysics Data System (ADS)
Wang, ZhenZhou; Yang, YongMing
2018-07-01
Reconstruction of the object by single-shot is of great importance in many applications, in which the object is moving or its shape is non-rigid and changes irregularly. In this paper, we propose a single-shot structured light 3D imaging technique that calculates the phase map from the distorted line pattern. This technique makes use of the image processing techniques to segment and cluster the projected structured light line pattern from one single captured image. The coordinates of the clustered lines are extracted to form a low-resolution phase matrix which is then transformed to full-resolution phase map by spline interpolation. The 3D shape of the object is computed from the full-resolution phase map and the 2D camera coordinates. Experimental results show that the proposed method was able to reconstruct the three-dimensional shape of the object robustly from one single image.
Pre-processing, registration and selection of adaptive optics corrected retinal images.
Ramaswamy, Gomathy; Devaney, Nicholas
2013-07-01
In this paper, the aim is to demonstrate enhanced processing of sequences of fundus images obtained using a commercial AO flood illumination system. The purpose of the work is to (1) correct for uneven illumination at the retina (2) automatically select the best quality images and (3) precisely register the best images. Adaptive optics corrected retinal images are pre-processed to correct uneven illumination using different methods; subtracting or dividing by the average filtered image, homomorphic filtering and a wavelet based approach. These images are evaluated to measure the image quality using various parameters, including sharpness, variance, power spectrum kurtosis and contrast. We have carried out the registration in two stages; a coarse stage using cross-correlation followed by fine registration using two approaches; parabolic interpolation on the peak of the cross-correlation and maximum-likelihood estimation. The angle of rotation of the images is measured using a combination of peak tracking and Procrustes transformation. We have found that a wavelet approach (Daubechies 4 wavelet at 6th level decomposition) provides good illumination correction with clear improvement in image sharpness and contrast. The assessment of image quality using a 'Designer metric' works well when compared to visual evaluation, although it is highly correlated with other metrics. In image registration, sub-pixel translation measured using parabolic interpolation on the peak of the cross-correlation function and maximum-likelihood estimation are found to give very similar results (RMS difference 0.047 pixels). We have confirmed that correcting rotation of the images provides a significant improvement, especially at the edges of the image. We observed that selecting the better quality frames (e.g. best 75% images) for image registration gives improved resolution, at the expense of poorer signal-to-noise. The sharpness map of the registered and de-rotated images shows increased sharpness over most of the field of view. Adaptive optics assisted images of the cone photoreceptors can be better pre-processed using a wavelet approach. These images can be assessed for image quality using a 'Designer Metric'. Two-stage image registration including correcting for rotation significantly improves the final image contrast and sharpness. © 2013 The Authors Ophthalmic & Physiological Optics © 2013 The College of Optometrists.
Edge detection - Image-plane versus digital processing
NASA Technical Reports Server (NTRS)
Huck, Friedrich O.; Fales, Carl L.; Park, Stephen K.; Triplett, Judith A.
1987-01-01
To optimize edge detection with the familiar Laplacian-of-Gaussian operator, it has become common to implement this operator with a large digital convolution mask followed by some interpolation of the processed data to determine the zero crossings that locate edges. It is generally recognized that this large mask causes substantial blurring of fine detail. It is shown that the spatial detail can be improved by a factor of about four with either the Wiener-Laplacian-of-Gaussian filter or an image-plane processor. The Wiener-Laplacian-of-Gaussian filter minimizes the image-gathering degradations if the scene statistics are at least approximately known and also serves as an interpolator to determine the desired zero crossings directly. The image-plane processor forms the Laplacian-of-Gaussian response by properly combining the optical design of the image-gathering system with a minimal three-by-three lateral-inhibitory processing mask. This approach, which is suggested by Marr's model of early processing in human vision, also reduces data processing by about two orders of magnitude and data transmission by up to an order of magnitude.
Sim, Kok Swee; NorHisham, Syafiq
2016-11-01
A technique based on linear Least Squares Regression (LSR) model is applied to estimate signal-to-noise ratio (SNR) of scanning electron microscope (SEM) images. In order to test the accuracy of this technique on SNR estimation, a number of SEM images are initially corrupted with white noise. The autocorrelation function (ACF) of the original and the corrupted SEM images are formed to serve as the reference point to estimate the SNR value of the corrupted image. The LSR technique is then compared with the previous three existing techniques known as nearest neighbourhood, first-order interpolation, and the combination of both nearest neighborhood and first-order interpolation. The actual and the estimated SNR values of all these techniques are then calculated for comparison purpose. It is shown that the LSR technique is able to attain the highest accuracy compared to the other three existing techniques as the absolute difference between the actual and the estimated SNR value is relatively small. SCANNING 38:771-782, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.
Interpolation methods and the accuracy of lattice-Boltzmann mesh refinement
Guzik, Stephen M.; Weisgraber, Todd H.; Colella, Phillip; ...
2013-12-10
A lattice-Boltzmann model to solve the equivalent of the Navier-Stokes equations on adap- tively refined grids is presented. A method for transferring information across interfaces between different grid resolutions was developed following established techniques for finite- volume representations. This new approach relies on a space-time interpolation and solving constrained least-squares problems to ensure conservation. The effectiveness of this method at maintaining the second order accuracy of lattice-Boltzmann is demonstrated through a series of benchmark simulations and detailed mesh refinement studies. These results exhibit smaller solution errors and improved convergence when compared with similar approaches relying only on spatial interpolation. Examplesmore » highlighting the mesh adaptivity of this method are also provided.« less
Interpolation problem for the solutions of linear elasticity equations based on monogenic functions
NASA Astrophysics Data System (ADS)
Grigor'ev, Yuri; Gürlebeck, Klaus; Legatiuk, Dmitrii
2017-11-01
Interpolation is an important tool for many practical applications, and very often it is beneficial to interpolate not only with a simple basis system, but rather with solutions of a certain differential equation, e.g. elasticity equation. A typical example for such type of interpolation are collocation methods widely used in practice. It is known, that interpolation theory is fully developed in the framework of the classical complex analysis. However, in quaternionic analysis, which shows a lot of analogies to complex analysis, the situation is more complicated due to the non-commutative multiplication. Thus, a fundamental theorem of algebra is not available, and standard tools from linear algebra cannot be applied in the usual way. To overcome these problems, a special system of monogenic polynomials the so-called Pseudo Complex Polynomials, sharing some properties of complex powers, is used. In this paper, we present an approach to deal with the interpolation problem, where solutions of elasticity equations in three dimensions are used as an interpolation basis.
Optimal Filter Estimation for Lucas-Kanade Optical Flow
Sharmin, Nusrat; Brad, Remus
2012-01-01
Optical flow algorithms offer a way to estimate motion from a sequence of images. The computation of optical flow plays a key-role in several computer vision applications, including motion detection and segmentation, frame interpolation, three-dimensional scene reconstruction, robot navigation and video compression. In the case of gradient based optical flow implementation, the pre-filtering step plays a vital role, not only for accurate computation of optical flow, but also for the improvement of performance. Generally, in optical flow computation, filtering is used at the initial level on original input images and afterwards, the images are resized. In this paper, we propose an image filtering approach as a pre-processing step for the Lucas-Kanade pyramidal optical flow algorithm. Based on a study of different types of filtering methods and applied on the Iterative Refined Lucas-Kanade, we have concluded on the best filtering practice. As the Gaussian smoothing filter was selected, an empirical approach for the Gaussian variance estimation was introduced. Tested on the Middlebury image sequences, a correlation between the image intensity value and the standard deviation value of the Gaussian function was established. Finally, we have found that our selection method offers a better performance for the Lucas-Kanade optical flow algorithm.
Noninvasive measurement of pharmacokinetics by near-infrared fluorescence imaging in the eye of mice
NASA Astrophysics Data System (ADS)
Dobosz, Michael; Strobel, Steffen; Stubenrauch, Kay-Gunnar; Osl, Franz; Scheuer, Werner
2014-01-01
Purpose: For generating preclinical pharmacokinetics (PKs) of compounds, blood is drawn at different time points and levels are quantified by different analytical methods. In order to receive statistically meaningful data, 3 to 5 animals are used for each time point to get serum peak-level and half-life of the compound. Both characteristics are determined by data interpolation, which may influence the accuracy of these values. We provide a method that allows continuous monitoring of blood levels noninvasively by measuring the fluorescence intensity of labeled compounds in the eye and other body regions of anesthetized mice. Procedures: The method evaluation was performed with four different fluorescent compounds: (i) indocyanine green, a nontargeting dye; (ii) OsteoSense750, a bone targeting agent; (iii) tumor targeting Trastuzumab-Alexa750; and (iv) its F(-alxea750 fragment. The latter was used for a direct comparison between fluorescence imaging and classical blood analysis using enzyme-linked immunosorbent assay (ELISA). Results: We found an excellent correlation between blood levels measured by noninvasive eye imaging with the results generated by classical methods. A strong correlation between eye imaging and ELISA was demonstrated for the F( fragment. Whole body imaging revealed a compound accumulation in the expected regions (e.g., liver, bone). Conclusions: The combination of eye and whole body fluorescence imaging enables the simultaneous measurement of blood PKs and biodistribution of fluorescent-labeled compounds.
NASA Astrophysics Data System (ADS)
Šiljeg, A.; Lozić, S.; Šiljeg, S.
2015-08-01
The bathymetric survey of Lake Vrana included a wide range of activities that were performed in several different stages, in accordance with the standards set by the International Hydrographic Organization. The survey was conducted using an integrated measuring system which consisted of three main parts: a single-beam sonar HydroStar 4300 and GPS devices; a Ashtech ProMark 500 base, and a Thales Z-Max® rover. A total of 12 851 points were gathered. In order to find continuous surfaces necessary for analysing the morphology of the bed of Lake Vrana, it was necessary to approximate values in certain areas that were not directly measured, by using an appropriate interpolation method. The main aims of this research were as follows: (a) to compare the efficiency of 14 different interpolation methods and discover the most appropriate interpolators for the development of a raster model; (b) to calculate the surface area and volume of Lake Vrana, and (c) to compare the differences in calculations between separate raster models. The best deterministic method of interpolation was multiquadric RBF (radio basis function), and the best geostatistical method was ordinary cokriging. The root mean square error in both methods measured less than 0.3 m. The quality of the interpolation methods was analysed in two phases. The first phase used only points gathered by bathymetric measurement, while the second phase also included points gathered by photogrammetric restitution. The first bathymetric map of Lake Vrana in Croatia was produced, as well as scenarios of minimum and maximum water levels. The calculation also included the percentage of flooded areas and cadastre plots in the case of a 2 m increase in the water level. The research presented new scientific and methodological data related to the bathymetric features, surface area and volume of Lake Vrana.
Off disk-center potential field calculations using vector magnetograms
NASA Technical Reports Server (NTRS)
Venkatakrishnan, P.; Gary, G. Allen
1989-01-01
A potential field calculation for off disk-center vector magnetograms that uses all the three components of the measured field is investigated. There is neither any need for interpolation of grid points between the image plane and the heliographic plane nor for an extension or a truncation to a heliographic rectangle. Hence, the method provides the maximum information content from the photospheric field as well as the most consistent potential field independent of the viewing angle. The introduction of polarimetric noise produces a less tolerant extrapolation procedure than using the line-of-sight extrapolation, but the resultant standard deviation is still small enough for the practical utility of this method.
On the Quality of Velocity Interpolation Schemes for Marker-In-Cell Methods on 3-D Staggered Grids
NASA Astrophysics Data System (ADS)
Kaus, B.; Pusok, A. E.; Popov, A.
2015-12-01
The marker-in-cell method is generally considered to be a flexible and robust method to model advection of heterogenous non-diffusive properties (i.e. rock type or composition) in geodynamic problems or incompressible Stokes problems. In this method, Lagrangian points carrying compositional information are advected with the ambient velocity field on an immobile, Eulerian grid. However, velocity interpolation from grid points to marker locations is often performed without preserving the zero divergence of the velocity field at the interpolated locations (i.e. non-conservative). Such interpolation schemes can induce non-physical clustering of markers when strong velocity gradients are present (Jenny et al., 2001) and this may, eventually, result in empty grid cells, a serious numerical violation of the marker-in-cell method. Solutions to this problem include: using larger mesh resolutions and/or marker densities, or repeatedly controlling the marker distribution (i.e. inject/delete), but which does not have an established physical background. To remedy this at low computational costs, Jenny et al. (2001) and Meyer and Jenny (2004) proposed a simple, conservative velocity interpolation (CVI) scheme for 2-D staggered grid, while Wang et al. (2015) extended the formulation to 3-D finite element methods. Here, we follow up with these studies and report on the quality of velocity interpolation methods for 2-D and 3-D staggered grids. We adapt the formulations from both Jenny et al. (2001) and Wang et al. (2015) for use on 3-D staggered grids, where the velocity components have different node locations as compared to finite element, where they share the same node location. We test the different interpolation schemes (CVI and non-CVI) in combination with different advection schemes (Euler, RK2 and RK4) and with/out marker control on Stokes problems with strong velocity gradients, which are discretized using a finite difference method. We show that a conservative formulation reduces the dispersion or clustering of markers and that the density of markers remains steady over time without the need of additional marker control. Jenny et al. (2001, J Comp Phys, 166, 218-252 Meyer and Jenny (2004), Proc Appl Math Mech, 4, 466-467 Wang et al. (2015), G3, Vol.16 Funding was provided by the ERC Starting Grant #258830.
Pansharpening on the Narrow Vnir and SWIR Spectral Bands of SENTINEL-2
NASA Astrophysics Data System (ADS)
Vaiopoulos, A. D.; Karantzalos, K.
2016-06-01
In this paper results from the evaluation of several state-of-the-art pansharpening techniques are presented for the VNIR and SWIR bands of Sentinel-2. A procedure for the pansharpening is also proposed which aims at respecting the closest spectral similarities between the higher and lower resolution bands. The evaluation included 21 different fusion algorithms and three evaluation frameworks based both on standard quantitative image similarity indexes and qualitative evaluation from remote sensing experts. The overall analysis of the evaluation results indicated that remote sensing experts disagreed with the outcomes and method ranking from the quantitative assessment. The employed image quality similarity indexes and quantitative evaluation framework based on both high and reduced resolution data from the literature didn't manage to highlight/evaluate mainly the spatial information that was injected to the lower resolution images. Regarding the SWIR bands none of the methods managed to deliver significantly better results than a standard bicubic interpolation on the original low resolution bands.
NASA Astrophysics Data System (ADS)
Katpatal, Y. B.; Paranjpe, S. V.; Kadu, M. S.
2017-12-01
Geological formations act as aquifer systems and variability in the hydrological properties of aquifers have control over groundwater occurrence and dynamics. To understand the groundwater availability in any terrain, spatial interpolation techniques are widely used. It has been observed that, with varying hydrogeological conditions, even in a geologically homogenous set up, there are large variations in observed groundwater levels. Hence, the accuracy of groundwater estimation depends on the use of appropriate interpretation techniques. The study area of the present study is Venna Basin of Maharashtra State, India which is a basaltic terrain with four different types of basaltic layers laid down horizontally; weathered vesicular basalt, weathered and fractured basalt, highly weathered unclassified basalt and hard massive basalt. The groundwater levels vary with topography as different types of basalts are present at varying depths. The local stratigraphic profiles were generated at different types of basaltic terrains. The present study aims to interpolate the groundwater levels within the basin and to check the co-relation between the estimated and the observed values. The groundwater levels for 125 observation wells situated in these different basaltic terrains for 20 years (1995 - 2015) have been used in the study. The interpolation was carried out in Geographical Information System (GIS) using ordinary kriging and Inverse Distance Weight (IDW) method. A comparative analysis of the interpolated values of groundwater levels is carried out for validating the recorded groundwater level dataset. The results were co-related to various types of basaltic terrains present in basin forming the aquifer systems. Mean Error (ME) and Mean Square Errors (MSE) have been computed and compared. It was observed that within the interpolated values, a good correlation does not exist between the two interpolation methods used. The study concludes that in crystalline basaltic terrain, interpolation methods must be verified with the changes in the geological profiles.
Interpolation of unevenly spaced data using a parabolic leapfrog correction method and cubic splines
Julio L. Guardado; William T. Sommers
1977-01-01
The technique proposed allows interpolation of data recorded at unevenly spaced sites to a regular grid or to other sites. Known data are interpolated to an initial guess field grid of unevenly spaced rows and columns by a simple distance weighting procedure. The initial guess field is then adjusted by using a parabolic leapfrog correction and the known data. The final...
Selection of Optimal Auxiliary Soil Nutrient Variables for Cokriging Interpolation
Song, Genxin; Zhang, Jing; Wang, Ke
2014-01-01
In order to explore the selection of the best auxiliary variables (BAVs) when using the Cokriging method for soil attribute interpolation, this paper investigated the selection of BAVs from terrain parameters, soil trace elements, and soil nutrient attributes when applying Cokriging interpolation to soil nutrients (organic matter, total N, available P, and available K). In total, 670 soil samples were collected in Fuyang, and the nutrient and trace element attributes of the soil samples were determined. Based on the spatial autocorrelation of soil attributes, the Digital Elevation Model (DEM) data for Fuyang was combined to explore the coordinate relationship among terrain parameters, trace elements, and soil nutrient attributes. Variables with a high correlation to soil nutrient attributes were selected as BAVs for Cokriging interpolation of soil nutrients, and variables with poor correlation were selected as poor auxiliary variables (PAVs). The results of Cokriging interpolations using BAVs and PAVs were then compared. The results indicated that Cokriging interpolation with BAVs yielded more accurate results than Cokriging interpolation with PAVs (the mean absolute error of BAV interpolation results for organic matter, total N, available P, and available K were 0.020, 0.002, 7.616, and 12.4702, respectively, and the mean absolute error of PAV interpolation results were 0.052, 0.037, 15.619, and 0.037, respectively). The results indicated that Cokriging interpolation with BAVs can significantly improve the accuracy of Cokriging interpolation for soil nutrient attributes. This study provides meaningful guidance and reference for the selection of auxiliary parameters for the application of Cokriging interpolation to soil nutrient attributes. PMID:24927129
Mapping Urban Environmental Noise Using Smartphones.
Zuo, Jinbo; Xia, Hao; Liu, Shuo; Qiao, Yanyou
2016-10-13
Noise mapping is an effective method of visualizing and accessing noise pollution. In this paper, a noise-mapping method based on smartphones to effectively and easily measure environmental noise is proposed. By using this method, a noise map of an entire area can be created using limited measurement data. To achieve the measurement with certain precision, a set of methods was designed to calibrate the smartphones. Measuring noise with mobile phones is different from the traditional static observations. The users may be moving at any time. Therefore, a method of attaching an additional microphone with a windscreen is proposed to reduce the wind effect. However, covering an entire area is impossible. Therefore, an interpolation method is needed to achieve full coverage of the area. To reduce the influence of spatial heterogeneity and improve the precision of noise mapping, a region-based noise-mapping method is proposed in this paper, which is based on the distribution of noise in different region types tagged by volunteers, to interpolate and combine them to create a noise map. To validate the effect of the method, a comparison of the interpolation results was made to analyse our method and the ordinary Kriging method. The result shows that our method is more accurate in reflecting the local distribution of noise and has better interpolation precision. We believe that the proposed noise-mapping method is a feasible and low-cost noise-mapping solution.
Mapping Urban Environmental Noise Using Smartphones
Zuo, Jinbo; Xia, Hao; Liu, Shuo; Qiao, Yanyou
2016-01-01
Noise mapping is an effective method of visualizing and accessing noise pollution. In this paper, a noise-mapping method based on smartphones to effectively and easily measure environmental noise is proposed. By using this method, a noise map of an entire area can be created using limited measurement data. To achieve the measurement with certain precision, a set of methods was designed to calibrate the smartphones. Measuring noise with mobile phones is different from the traditional static observations. The users may be moving at any time. Therefore, a method of attaching an additional microphone with a windscreen is proposed to reduce the wind effect. However, covering an entire area is impossible. Therefore, an interpolation method is needed to achieve full coverage of the area. To reduce the influence of spatial heterogeneity and improve the precision of noise mapping, a region-based noise-mapping method is proposed in this paper, which is based on the distribution of noise in different region types tagged by volunteers, to interpolate and combine them to create a noise map. To validate the effect of the method, a comparison of the interpolation results was made to analyse our method and the ordinary Kriging method. The result shows that our method is more accurate in reflecting the local distribution of noise and has better interpolation precision. We believe that the proposed noise-mapping method is a feasible and low-cost noise-mapping solution. PMID:27754359
Amini, A A; Chen, Y; Curwen, R W; Mani, V; Sun, J
1998-06-01
Magnetic resonance imaging (MRI) is unique in its ability to noninvasively and selectively alter tissue magnetization and create tagged patterns within a deforming body such as the heart muscle. The resulting patterns define a time-varying curvilinear coordinate system on the tissue, which we track with coupled B-snake grids. B-spline bases provide local control of shape, compact representation, and parametric continuity. Efficient spline warps are proposed which warp an area in the plane such that two embedded snake grids obtained from two tagged frames are brought into registration, interpolating a dense displacement vector field. The reconstructed vector field adheres to the known displacement information at the intersections, forces corresponding snakes to be warped into one another, and for all other points in the plane, where no information is available, a C1 continuous vector field is interpolated. The implementation proposed in this paper improves on our previous variational-based implementation and generalizes warp methods to include biologically relevant contiguous open curves, in addition to standard landmark points. The methods are validated with a cardiac motion simulator, in addition to in-vivo tagging data sets.
NASA Astrophysics Data System (ADS)
Hittmeir, Sabine; Philipp, Anne; Seibert, Petra
2017-04-01
In discretised form, an extensive variable usually represents an integral over a 3-dimensional (x,y,z) grid cell. In the case of vertical fluxes, gridded values represent integrals over a horizontal (x,y) grid face. In meteorological models, fluxes (precipitation, turbulent fluxes, etc.) are usually written out as temporally integrated values, thus effectively forming 3D (x,y,t) integrals. Lagrangian transport models require interpolation of all relevant variables towards the location in 4D space of each of the computational particles. Trivial interpolation algorithms usually implicitly assume the integral value to be a point value valid at the grid centre. If the integral value would be reconstructed from the interpolated point values, it would in general not be correct. If nonlinear interpolation methods are used, non-negativity cannot easily be ensured. This problem became obvious with respect to the interpolation of precipitation for the calculation of wet deposition FLEXPART (http://flexpart.eu) which uses ECMWF model output or other gridded input data. The presently implemented method consists of a special preprocessing in the input preparation software and subsequent linear interpolation in the model. The interpolated values are positive but the criterion of cell-wise conservation of the integral property is violated; it is also not very accurate as it smoothes the field. A new interpolation algorithm was developed which introduces additional supporting grid points in each time interval with linear interpolation to be applied in FLEXPART later between them. It preserves the integral precipitation in each time interval, guarantees the continuity of the time series, and maintains non-negativity. The function values of the remapping algorithm at these subgrid points constitute the degrees of freedom which can be prescribed in various ways. Combining the advantages of different approaches leads to a final algorithm respecting all the required conditions. To improve the monotonicity behaviour we additionally derived a filter to restrict over- or undershooting. At the current stage, the algorithm is meant primarily for the temporal dimension. It can also be applied with operator-splitting to include the two horizontal dimensions. An extension to 2D appears feasible, while a fully 3D version would most likely not justify the effort compared to the operator-splitting approach.
Monte Carlo modeling of a conventional X-ray computed tomography scanner for gel dosimetry purposes.
Hayati, Homa; Mesbahi, Asghar; Nazarpoor, Mahmood
2016-01-01
Our purpose in the current study was to model an X-ray CT scanner with the Monte Carlo (MC) method for gel dosimetry. In this study, a conventional CT scanner with one array detector was modeled with use of the MCNPX MC code. The MC calculated photon fluence in detector arrays was used for image reconstruction of a simple water phantom as well as polyacrylamide polymer gel (PAG) used for radiation therapy. Image reconstruction was performed with the filtered back-projection method with a Hann filter and the Spline interpolation method. Using MC results, we obtained the dose-response curve for images of irradiated gel at different absorbed doses. A spatial resolution of about 2 mm was found for our simulated MC model. The MC-based CT images of the PAG gel showed a reliable increase in the CT number with increasing absorbed dose for the studied gel. Also, our results showed that the current MC model of a CT scanner can be used for further studies on the parameters that influence the usability and reliability of results, such as the photon energy spectra and exposure techniques in X-ray CT gel dosimetry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Javaid, Zarrar; Unsworth, Charles P., E-mail: c.unsworth@auckland.ac.nz; Boocock, Mark G.
2016-03-15
Purpose: The aim of this work is to demonstrate a new image processing technique that can provide a “near real-time” 3D reconstruction of the articular cartilage of the human knee from MR images which is user friendly. This would serve as a point-of-care 3D visualization tool which would benefit a consultant radiologist in the visualization of the human articular cartilage. Methods: The authors introduce a novel fusion of an adaptation of the contour method known as “contour interpolation (CI)” with radial basis functions (RBFs) which they describe as “CI-RBFs.” The authors also present a spline boundary correction which further enhancesmore » volume estimation of the method. A subject cohort consisting of 17 right nonpathological knees (ten female and seven male) is assessed to validate the quality of the proposed method. The authors demonstrate how the CI-RBF method dramatically reduces the number of data points required for fitting an implicit surface to the entire cartilage, thus, significantly improving the speed of reconstruction over the comparable RBF reconstruction method of Carr. The authors compare the CI-RBF method volume estimation to a typical commercial package (3D DOCTOR), Carr’s RBF method, and a benchmark manual method for the reconstruction of the femoral, tibial, and patellar cartilages. Results: The authors demonstrate how the CI-RBF method significantly reduces the number of data points (p-value < 0.0001) required for fitting an implicit surface to the cartilage, by 48%, 31%, and 44% for the patellar, tibial, and femoral cartilages, respectively. Thus, significantly improving the speed of reconstruction (p-value < 0.0001) by 39%, 40%, and 44% for the patellar, tibial, and femoral cartilages over the comparable RBF model of Carr providing a near real-time reconstruction of 6.49, 8.88, and 9.43 min for the patellar, tibial, and femoral cartilages, respectively. In addition, it is demonstrated how the CI-RBF method matches the volume estimation of a typical commercial package (3D DOCTOR), Carr’s RBF method, and a benchmark manual method for the reconstruction of the femoral, tibial, and patellar cartilages. Furthermore, the performance of the segmentation method used for the extraction of the femoral, tibial, and patellar cartilages is assessed with a Dice similarity coefficient, sensitivity, and specificity measure providing high agreement to manual segmentation. Conclusions: The CI-RBF method provides a fast, accurate, and robust 3D model reconstruction that matches Carr’s RBF method, 3D DOCTOR, and a manual benchmark method in accuracy and significantly improves upon Carr’s RBF method in data requirement and computational speed. In addition, the visualization tool has been designed to quickly segment MR images requiring only four mouse clicks per MR image slice.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahunbay, Ergun E., E-mail: eahunbay@mcw.edu; Ates,
Purpose: In a situation where a couch shift for patient positioning is not preferred or prohibited (e.g., MR-linac), segment aperture morphing (SAM) can address target dislocation and deformation. For IMRT/VMAT with flattening-filter-free (FFF) beams, however, SAM method would lead to an adverse translational dose effect due to the beam unflattening. Here the authors propose a new two-step process to address both the translational effect of FFF beams and the target deformation. Methods: The replanning method consists of an offline and an online step. The offline step is to create a series of preshifted-plans (PSPs) obtained by a so-called “warm start”more » optimization (starting optimization from the original plan, rather than from scratch) at a series of isocenter shifts. The PSPs all have the same number of segments with very similar shapes, since the warm start optimization only adjusts the MLC positions instead of regenerating them. In the online step, a new plan is obtained by picking the closest PSP or linearly interpolating the MLC positions and the monitor units of the closest PSPs for the shift determined from the image of the day. This two-step process is completely automated and almost instantaneous (no optimization or dose calculation needed). The previously developed SAM algorithm is then applied for daily deformation. The authors tested the method on sample prostate and pancreas cases. Results: The two-step interpolation method can account for the adverse dose effects from FFF beams, while SAM corrects for the target deformation. Plan interpolation method is effective in diminishing the unflat beam effect and may allow reducing the required number of PSPs. The whole process takes the same time as the previously reported SAM process (5–10 min). Conclusions: The new two-step method plus SAM can address both the translation effects of FFF beams and target deformation, and can be executed in full automation except the delineation of target contour required by the SAM process.« less
Onboard Image Processing System for Hyperspectral Sensor
Hihara, Hiroki; Moritani, Kotaro; Inoue, Masao; Hoshi, Yoshihiro; Iwasaki, Akira; Takada, Jun; Inada, Hitomi; Suzuki, Makoto; Seki, Taeko; Ichikawa, Satoshi; Tanii, Jun
2015-01-01
Onboard image processing systems for a hyperspectral sensor have been developed in order to maximize image data transmission efficiency for large volume and high speed data downlink capacity. Since more than 100 channels are required for hyperspectral sensors on Earth observation satellites, fast and small-footprint lossless image compression capability is essential for reducing the size and weight of a sensor system. A fast lossless image compression algorithm has been developed, and is implemented in the onboard correction circuitry of sensitivity and linearity of Complementary Metal Oxide Semiconductor (CMOS) sensors in order to maximize the compression ratio. The employed image compression method is based on Fast, Efficient, Lossless Image compression System (FELICS), which is a hierarchical predictive coding method with resolution scaling. To improve FELICS’s performance of image decorrelation and entropy coding, we apply a two-dimensional interpolation prediction and adaptive Golomb-Rice coding. It supports progressive decompression using resolution scaling while still maintaining superior performance measured as speed and complexity. Coding efficiency and compression speed enlarge the effective capacity of signal transmission channels, which lead to reducing onboard hardware by multiplexing sensor signals into a reduced number of compression circuits. The circuitry is embedded into the data formatter of the sensor system without adding size, weight, power consumption, and fabrication cost. PMID:26404281
On Applications of Pyramid Doubly Joint Bilateral Filtering in Dense Disparity Propagation
NASA Astrophysics Data System (ADS)
Abadpour, Arash
2014-06-01
Stereopsis is the basis for numerous tasks in machine vision, robotics, and 3D data acquisition and processing. In order for the subsequent algorithms to function properly, it is important that an affordable method exists that, given a pair of images taken by two cameras, can produce a representation of disparity or depth. This topic has been an active research field since the early days of work on image processing problems and rich literature is available on the topic. Joint bilateral filters have been recently proposed as a more affordable alternative to anisotropic diffusion. This class of image operators utilizes correlation in multiple modalities for purposes such as interpolation and upscaling. In this work, we develop the application of bilateral filtering for converting a large set of sparse disparity measurements into a dense disparity map. This paper develops novel methods for utilizing bilateral filters in joint, pyramid, and doubly joint settings, for purposes including missing value estimation and upscaling. We utilize images of natural and man-made scenes in order to exhibit the possibilities offered through the use of pyramid doubly joint bilateral filtering for stereopsis.
Error mitigation for CCSD compressed imager data
NASA Astrophysics Data System (ADS)
Gladkova, Irina; Grossberg, Michael; Gottipati, Srikanth; Shahriar, Fazlul; Bonev, George
2009-08-01
To efficiently use the limited bandwidth available on the downlink from satellite to ground station, imager data is usually compressed before transmission. Transmission introduces unavoidable errors, which are only partially removed by forward error correction and packetization. In the case of the commonly used CCSD Rice-based compression, it results in a contiguous sequence of dummy values along scan lines in a band of the imager data. We have developed a method capable of using the image statistics to provide a principled estimate of the missing data. Our method outperforms interpolation yet can be performed fast enough to provide uninterrupted data flow. The estimation of the lost data provides significant value to end users who may use only part of the data, may not have statistical tools, or lack the expertise to mitigate the impact of the lost data. Since the locations of the lost data will be clearly marked as meta-data in the HDF or NetCDF header, experts who prefer to handle error mitigation themselves will be free to use or ignore our estimates as they see fit.
Adaptive local thresholding for robust nucleus segmentation utilizing shape priors
NASA Astrophysics Data System (ADS)
Wang, Xiuzhong; Srinivas, Chukka
2016-03-01
This paper describes a novel local thresholding method for foreground detection. First, a Canny edge detection method is used for initial edge detection. Then, tensor voting is applied on the initial edge pixels, using a nonsymmetric tensor field tailored to encode prior information about nucleus size, shape, and intensity spatial distribution. Tensor analysis is then performed to generate the saliency image and, based on that, the refined edge. Next, the image domain is divided into blocks. In each block, at least one foreground and one background pixel are sampled for each refined edge pixel. The saliency weighted foreground histogram and background histogram are then created. These two histograms are used to calculate a threshold by minimizing the background and foreground pixel classification error. The block-wise thresholds are then used to generate the threshold for each pixel via interpolation. Finally, the foreground is obtained by comparing the original image with the threshold image. The effective use of prior information, combined with robust techniques, results in far more reliable foreground detection, which leads to robust nucleus segmentation.
Xu, Lijun; Chen, Lulu; Li, Xiaolu; He, Tao
2014-10-01
In this paper, we propose a projective rectification method for infrared images obtained from the measurement of temperature distribution on an air-cooled condenser (ACC) surface by using projection profile features and cross-ratio invariability. In the research, the infrared (IR) images acquired by the four IR cameras utilized are distorted to different degrees. To rectify the distorted IR images, the sizes of the acquired images are first enlarged by means of bicubic interpolation. Then, uniformly distributed control points are extracted in the enlarged images by constructing quadrangles with detected vertical lines and detected or constructed horizontal lines. The corresponding control points in the anticipated undistorted IR images are extracted by using projection profile features and cross-ratio invariability. Finally, a third-order polynomial rectification model is established and the coefficients of the model are computed with the mapping relationship between the control points in the distorted and anticipated undistorted images. Experimental results obtained from an industrial ACC unit show that the proposed method performs much better than any previous method we have adopted. Furthermore, all rectified images are stitched together to obtain a complete image of the whole ACC surface with a much higher spatial resolution than that obtained by using a single camera, which is not only useful but also necessary for more accurate and comprehensive analysis of ACC performance and more reliable optimization of ACC operations.
Neural networks applications to control and computations
NASA Technical Reports Server (NTRS)
Luxemburg, Leon A.
1994-01-01
Several interrelated problems in the area of neural network computations are described. First an interpolation problem is considered, then a control problem is reduced to a problem of interpolation by a neural network via Lyapunov function approach, and finally a new, faster method of learning as compared with the gradient descent method, was introduced.
Multiresolution image registration in digital x-ray angiography with intensity variation modeling.
Nejati, Mansour; Pourghassem, Hossein
2014-02-01
Digital subtraction angiography (DSA) is a widely used technique for visualization of vessel anatomy in diagnosis and treatment. However, due to unavoidable patient motions, both externally and internally, the subtracted angiography images often suffer from motion artifacts that adversely affect the quality of the medical diagnosis. To cope with this problem and improve the quality of DSA images, registration algorithms are often employed before subtraction. In this paper, a novel elastic registration algorithm for registration of digital X-ray angiography images, particularly for the coronary location, is proposed. This algorithm includes a multiresolution search strategy in which a global transformation is calculated iteratively based on local search in coarse and fine sub-image blocks. The local searches are accomplished in a differential multiscale framework which allows us to capture both large and small scale transformations. The local registration transformation also explicitly accounts for local variations in the image intensities which incorporated into our model as a change of local contrast and brightness. These local transformations are then smoothly interpolated using thin-plate spline interpolation function to obtain the global model. Experimental results with several clinical datasets demonstrate the effectiveness of our algorithm in motion artifact reduction.
Delimiting Areas of Endemism through Kernel Interpolation
Oliveira, Ubirajara; Brescovit, Antonio D.; Santos, Adalberto J.
2015-01-01
We propose a new approach for identification of areas of endemism, the Geographical Interpolation of Endemism (GIE), based on kernel spatial interpolation. This method differs from others in being independent of grid cells. This new approach is based on estimating the overlap between the distribution of species through a kernel interpolation of centroids of species distribution and areas of influence defined from the distance between the centroid and the farthest point of occurrence of each species. We used this method to delimit areas of endemism of spiders from Brazil. To assess the effectiveness of GIE, we analyzed the same data using Parsimony Analysis of Endemism and NDM and compared the areas identified through each method. The analyses using GIE identified 101 areas of endemism of spiders in Brazil GIE demonstrated to be effective in identifying areas of endemism in multiple scales, with fuzzy edges and supported by more synendemic species than in the other methods. The areas of endemism identified with GIE were generally congruent with those identified for other taxonomic groups, suggesting that common processes can be responsible for the origin and maintenance of these biogeographic units. PMID:25611971
Creasy, Arch; Reck, Jason; Pabst, Timothy; Hunter, Alan; Barker, Gregory; Carta, Giorgio
2018-05-29
A previously developed empirical interpolation (EI) method is extended to predict highly overloaded multicomponent elution behavior on a cation exchange (CEX) column based on batch isotherm data. Instead of a fully mechanistic model, the EI method employs an empirically modified multicomponent Langmuir equation to correlate two-component adsorption isotherm data at different salt concentrations. Piecewise cubic interpolating polynomials are then used to predict competitive binding at intermediate salt concentrations. The approach is tested for the separation of monoclonal antibody monomer and dimer mixtures by gradient elution on the cation exchange resin Nuvia HR-S. Adsorption isotherms are obtained over a range of salt concentrations with varying monomer and dimer concentrations. Coupled with a lumped kinetic model, the interpolated isotherms predict the column behavior for highly overloaded conditions. Predictions based on the EI method showed good agreement with experimental elution curves for protein loads up to 40 mg/mL column or about 50% of the column binding capacity. The approach can be extended to other chromatographic modalities and to more than two components. This article is protected by copyright. All rights reserved.
Breast segmentation in MR images using three-dimensional spiral scanning and dynamic programming
NASA Astrophysics Data System (ADS)
Jiang, Luan; Lian, Yanyun; Gu, Yajia; Li, Qiang
2013-03-01
Magnetic resonance (MR) imaging has been widely used for risk assessment and diagnosis of breast cancer in clinic. To develop a computer-aided diagnosis (CAD) system, breast segmentation is the first important and challenging task. The accuracy of subsequent quantitative measurement of breast density and abnormalities depends on accurate definition of the breast area in the images. The purpose of this study is to develop and evaluate a fully automated method for accurate segmentation of breast in three-dimensional (3-D) MR images. A fast method was developed to identify bounding box, i.e., the volume of interest (VOI), for breasts. A 3-D spiral scanning method was used to transform the VOI of each breast into a single two-dimensional (2-D) generalized polar-coordinate image. Dynamic programming technique was applied to the transformed 2-D image for delineating the "optimal" contour of the breast. The contour of the breast in the transformed 2-D image was utilized to reconstruct the segmentation results in the 3-D MR images using interpolation and lookup table. The preliminary results on 17 cases show that the proposed method can obtain accurate segmentation of the breast based on subjective observation. By comparing with the manually delineated region of 16 breasts in 8 cases, an overlap index of 87.6% +/- 3.8% (mean +/- SD), and a volume agreement of 93.4% +/- 4.5% (mean +/- SD) were achieved, respectively. It took approximately 3 minutes for our method to segment the breast in an MR scan of 256 slices.
Quadratic polynomial interpolation on triangular domain
NASA Astrophysics Data System (ADS)
Li, Ying; Zhang, Congcong; Yu, Qian
2018-04-01
In the simulation of natural terrain, the continuity of sample points are not in consonance with each other always, traditional interpolation methods often can't faithfully reflect the shape information which lie in data points. So, a new method for constructing the polynomial interpolation surface on triangular domain is proposed. Firstly, projected the spatial scattered data points onto a plane and then triangulated them; Secondly, A C1 continuous piecewise quadric polynomial patch was constructed on each vertex, all patches were required to be closed to the line-interpolation one as far as possible. Lastly, the unknown quantities were gotten by minimizing the object functions, and the boundary points were treated specially. The result surfaces preserve as many properties of data points as possible under conditions of satisfying certain accuracy and continuity requirements, not too convex meantime. New method is simple to compute and has a good local property, applicable to shape fitting of mines and exploratory wells and so on. The result of new surface is given in experiments.
Li, Lixin; Zhou, Xiaolu; Kalo, Marc; Piltner, Reinhard
2016-07-25
Appropriate spatiotemporal interpolation is critical to the assessment of relationships between environmental exposures and health outcomes. A powerful assessment of human exposure to environmental agents would incorporate spatial and temporal dimensions simultaneously. This paper compares shape function (SF)-based and inverse distance weighting (IDW)-based spatiotemporal interpolation methods on a data set of PM2.5 data in the contiguous U.S. Particle pollution, also known as particulate matter (PM), is composed of microscopic solids or liquid droplets that are so small that they can get deep into the lungs and cause serious health problems. PM2.5 refers to particles with a mean aerodynamic diameter less than or equal to 2.5 micrometers. Based on the error statistics results of k-fold cross validation, the SF-based method performed better overall than the IDW-based method. The interpolation results generated by the SF-based method are combined with population data to estimate the population exposure to PM2.5 in the contiguous U.S. We investigated the seasonal variations, identified areas where annual and daily PM2.5 were above the standards, and calculated the population size in these areas. Finally, a web application is developed to interpolate and visualize in real time the spatiotemporal variation of ambient air pollution across the contiguous U.S. using air pollution data from the U.S. Environmental Protection Agency (EPA)'s AirNow program.
Li, Lixin; Zhou, Xiaolu; Kalo, Marc; Piltner, Reinhard
2016-01-01
Appropriate spatiotemporal interpolation is critical to the assessment of relationships between environmental exposures and health outcomes. A powerful assessment of human exposure to environmental agents would incorporate spatial and temporal dimensions simultaneously. This paper compares shape function (SF)-based and inverse distance weighting (IDW)-based spatiotemporal interpolation methods on a data set of PM2.5 data in the contiguous U.S. Particle pollution, also known as particulate matter (PM), is composed of microscopic solids or liquid droplets that are so small that they can get deep into the lungs and cause serious health problems. PM2.5 refers to particles with a mean aerodynamic diameter less than or equal to 2.5 micrometers. Based on the error statistics results of k-fold cross validation, the SF-based method performed better overall than the IDW-based method. The interpolation results generated by the SF-based method are combined with population data to estimate the population exposure to PM2.5 in the contiguous U.S. We investigated the seasonal variations, identified areas where annual and daily PM2.5 were above the standards, and calculated the population size in these areas. Finally, a web application is developed to interpolate and visualize in real time the spatiotemporal variation of ambient air pollution across the contiguous U.S. using air pollution data from the U.S. Environmental Protection Agency (EPA)’s AirNow program. PMID:27463722
Morsbach, Fabian; Bickelhaupt, Sebastian; Wanner, Guido A; Krauss, Andreas; Schmidt, Bernhard; Alkadhi, Hatem
2013-07-01
To assess the value of iterative frequency split-normalized (IFS) metal artifact reduction (MAR) for computed tomography (CT) of hip prostheses. This study had institutional review board and local ethics committee approval. First, a hip phantom with steel and titanium prostheses that had inlays of water, fat, and contrast media in the pelvis was used to optimize the IFS algorithm. Second, 41 consecutive patients with hip prostheses who were undergoing CT were included. Data sets were reconstructed with filtered back projection, the IFS algorithm, and a linear interpolation MAR algorithm. Two blinded, independent readers evaluated axial, coronal, and sagittal CT reformations for overall image quality, image quality of pelvic organs, and assessment of pelvic abnormalities. CT attenuation and image noise were measured. Statistical analysis included the Friedman test, Wilcoxon signed-rank test, and Levene test. Ex vivo experiments demonstrated an optimized IFS algorithm by using a threshold of 2200 HU with four iterations for both steel and titanium prostheses. Measurements of CT attenuation of the inlays were significantly (P < .001) more accurate for IFS when compared with filtered back projection. In patients, best overall and pelvic organ image quality was found in all reformations with IFS (P < .001). Pelvic abnormalities in 11 of 41 patients (27%) were diagnosed with significantly (P = .002) higher confidence on the basis of IFS images. CT attenuation of bladder (P < .001) and muscle (P = .043) was significantly less variable with IFS compared with filtered back projection and linear interpolation MAR. In comparison with that of FBP and linear interpolation MAR, noise with IFS was similar close to and far from the prosthesis (P = .295). The IFS algorithm for CT image reconstruction significantly reduces metal artifacts from hip prostheses, improves the reliability of CT number measurements, and improves the confidence for depicting pelvic abnormalities.