NASA Technical Reports Server (NTRS)
Harwood, P. (Principal Investigator); Finley, R.; Mcculloch, S.; Malin, P. A.; Schell, J. A.
1977-01-01
The author has identified the following significant results. Image interpretation and computer-assisted techniques were developed to analyze LANDSAT scenes in support of resource inventory and monitoring requirements for the Texas coastal region. Land cover and land use maps, at a scale of 1:125,000 for the image interpretation product and 1:24,000 for the computer-assisted product, were generated covering four Texas coastal test sites. Classification schemes which parallel national systems were developed for each procedure, including 23 classes for image interpretation technique and 13 classes for the computer-assisted technique. Results indicate that LANDSAT-derived land cover and land use maps can be successfully applied to a variety of planning and management activities on the Texas coast. Computer-derived land/water maps can be used with tide gage data to assess shoreline boundaries for management purposes.
NASA Technical Reports Server (NTRS)
Harwood, P. (Principal Investigator); Malin, P.; Finley, R.; Mcculloch, S.; Murphy, D.; Hupp, B.; Schell, J. A.
1977-01-01
The author has identified the following significant results. Four LANDSAT scenes were analyzed for the Harbor Island area test sites to produce land cover and land use maps using both image interpretation and computer-assisted techniques. When evaluated against aerial photography, the mean accuracy for three scenes was 84% for the image interpretation product and 62% for the computer-assisted classification maps. Analysis of the fourth scene was not completed using the image interpretation technique, because of poor quality, false color composite, but was available from the computer technique. Preliminary results indicate that these LANDSAT products can be applied to a variety of planning and management activities in the Texas coastal zone.
Computer-Assisted Microscopy in Science Teaching and Research.
ERIC Educational Resources Information Center
Radice, Gary P.
1997-01-01
Describes a technological approach to teaching the relationships between biological form and function. Computer-assisted image analysis was integrated into a microanatomy course. Students spend less time memorizing and more time observing, measuring, and interpreting, building technical and analytical skills. Appendices list hardware and software…
Taylor, Andrew T; Garcia, Ernest V
2014-01-01
The goal of artificial intelligence, expert systems, decision support systems and computer assisted diagnosis (CAD) in imaging is the development and implementation of software to assist in the detection and evaluation of abnormalities, to alert physicians to cognitive biases, to reduce intra and inter-observer variability and to facilitate the interpretation of studies at a faster rate and with a higher level of accuracy. These developments are needed to meet the challenges resulting from a rapid increase in the volume of diagnostic imaging studies coupled with a concurrent increase in the number and complexity of images in each patient data. The convergence of an expanding knowledge base and escalating time constraints increases the likelihood of physician errors. Errors are even more likely when physicians interpret low volume studies such as 99mTc-MAG3 diuretic scans where imagers may have had limited training or experience. Decision support systems include neural networks, case-based reasoning, expert systems and statistical systems. iRENEX (renal expert) is an expert system for diuretic renography that uses a set of rules obtained from human experts to analyze a knowledge base of both clinical parameters and quantitative parameters derived from the renogram. Initial studies have shown that the interpretations provided by iRENEX are comparable to the interpretations of a panel of experts. iRENEX provides immediate patient specific feedback at the time of scan interpretation, can be queried to provide the reasons for its conclusions and can be used as an educational tool to teach trainees to better interpret renal scans. iRENEX also has the capacity to populate a structured reporting module and generate a clear and concise impression based on the elements contained in the report; adherence to the procedural and data entry components of the structured reporting module assures and documents procedural competency. Finally, although the focus is CAD applied to diuretic renography, this review offers a window into the rationale, methodology and broader applications of computer assisted diagnosis in medical imaging. PMID:24484751
Radiology's Achilles' heel: error and variation in the interpretation of the Röntgen image.
Robinson, P J
1997-11-01
The performance of the human eye and brain has failed to keep pace with the enormous technical progress in the first full century of radiology. Errors and variations in interpretation now represent the weakest aspect of clinical imaging. Those interpretations which differ from the consensus view of a panel of "experts" may be regarded as errors; where experts fail to achieve consensus, differing reports are regarded as "observer variation". Errors arise from poor technique, failures of perception, lack of knowledge and misjudgments. Observer variation is substantial and should be taken into account when different diagnostic methods are compared; in many cases the difference between observers outweighs the difference between techniques. Strategies for reducing error include attention to viewing conditions, training of the observers, availability of previous films and relevant clinical data, dual or multiple reporting, standardization of terminology and report format, and assistance from computers. Digital acquisition and display will probably not affect observer variation but the performance of radiologists, as measured by receiver operating characteristic (ROC) analysis, may be improved by computer-directed search for specific image features. Other current developments show that where image features can be comprehensively described, computer analysis can replace the perception function of the observer, whilst the function of interpretation can in some cases be performed better by artificial neural networks. However, computer-assisted diagnosis is still in its infancy and complete replacement of the human observer is as yet a remote possibility.
Medical image computing for computer-supported diagnostics and therapy. Advances and perspectives.
Handels, H; Ehrhardt, J
2009-01-01
Medical image computing has become one of the most challenging fields in medical informatics. In image-based diagnostics of the future software assistance will become more and more important, and image analysis systems integrating advanced image computing methods are needed to extract quantitative image parameters to characterize the state and changes of image structures of interest (e.g. tumors, organs, vessels, bones etc.) in a reproducible and objective way. Furthermore, in the field of software-assisted and navigated surgery medical image computing methods play a key role and have opened up new perspectives for patient treatment. However, further developments are needed to increase the grade of automation, accuracy, reproducibility and robustness. Moreover, the systems developed have to be integrated into the clinical workflow. For the development of advanced image computing systems methods of different scientific fields have to be adapted and used in combination. The principal methodologies in medical image computing are the following: image segmentation, image registration, image analysis for quantification and computer assisted image interpretation, modeling and simulation as well as visualization and virtual reality. Especially, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients and will gain importance in diagnostic and therapy of the future. From a methodical point of view the authors identify the following future trends and perspectives in medical image computing: development of optimized application-specific systems and integration into the clinical workflow, enhanced computational models for image analysis and virtual reality training systems, integration of different image computing methods, further integration of multimodal image data and biosignals and advanced methods for 4D medical image computing. The development of image analysis systems for diagnostic support or operation planning is a complex interdisciplinary process. Image computing methods enable new insights into the patient's image data and have the future potential to improve medical diagnostics and patient treatment.
A Knowledge-Based System for the Computer Assisted Diagnosis of Endoscopic Images
NASA Astrophysics Data System (ADS)
Kage, Andreas; Münzenmayer, Christian; Wittenberg, Thomas
Due to the actual demographic development the use of Computer-Assisted Diagnosis (CAD) systems becomes a more important part of clinical workflows and clinical decision making. Because changes on the mucosa of the esophagus can indicate the first stage of cancerous developments, there is a large interest to detect and correctly diagnose any such lesion. We present a knowledge-based system which is able to support a physician with the interpretation and diagnosis of endoscopic images of the esophagus. Our system is designed to support the physician directly during the examination of the patient, thus prodving diagnostic assistence at the point of care (POC). Based on an interactively marked region in an endoscopic image of interest, the system provides a diagnostic suggestion, based on an annotated reference image database. Furthermore, using relevant feedback mechanisms, the results can be enhanced interactively.
Promise of new imaging technologies for assessing ovarian function.
Singh, Jaswant; Adams, Gregg P; Pierson, Roger A
2003-10-15
Advancements in imaging technologies over the last two decades have ushered a quiet revolution in research approaches to the study of ovarian structure and function. The most significant changes in our understanding of the ovary have resulted from the use of ultrasonography which has enabled sequential analyses in live animals. Computer-assisted image analysis and mathematical modeling of the dynamic changes within the ovary has permitted exciting new avenues of research with readily quantifiable endpoints. Spectral, color-flow and power Doppler imaging now facilitate physiologic interpretations of vascular dynamics over time. Similarly, magnetic resonance imaging (MRI) is emerging as a research tool in ovarian imaging. New technologies, such as three-dimensional ultrasonography and MRI, ultrasound-based biomicroscopy and synchrotron-based techniques each have the potential to enhance our real-time picture of ovarian function to the near-cellular level. Collectively, information available in ultrasonography, MRI, computer-assisted image analysis and mathematical modeling heralds a new era in our understanding of the basic processes of female and male reproduction.
Bain, P; Wareing, A; Henderson, I
2017-09-01
Peer-assisted learning provides a means through which individuals can learn from one another through a reciprocal process. Radiographic image interpretation skills are fundamental to both diagnostic radiography students and medical students due to their shared role in preliminary evaluation of conventional radiographic images. Medical students on graduation, may not be well prepared to carry out image interpretation, since evidence suggests that they perform less well than radiographers in e.g. Accident and Emergency situations. A review of literature was conducted exploring the application of peer-assisted learning within diagnostic radiography and health education more widely as well as the practice of initial image interpretation. An extensive and systematic search strategy was developed which provided a range of material related to the areas. An overview was obtained of the effectiveness of peer-assisted learning and the issues associated with development of image interpretation skills and a degree of discrepancy was identified between the two cohorts regarding their interpretative competence and confidence. This inconsistency may create an opportunity to apply peer-assisted learning, better preparing both disciplines for the practical application of image interpretation skills. The review identified the lack of a substantial evidence base relating to peer-assisted learning in radiography. Peer-assisted learning is not widely embraced in an interprofessional context. Multiple positive factors of such an intervention are identified which outweigh perceived negative issues. Student teacher and learner may benefit as should the clinical service from enhanced practitioner performance. The findings justify further research to develop the evidence base. Copyright © 2017 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hunt, Gordon W.; Hemler, Paul F.; Vining, David J.
1997-05-01
Virtual colonscopy (VC) is a minimally invasive alternative to conventional fiberoptic endoscopy for colorectal cancer screening. The VC technique involves bowel cleansing, gas distension of the colon, spiral computed tomography (CT) scanning of a patient's abdomen and pelvis, and visual analysis of multiplanar 2D and 3D images created from the spiral CT data. Despite the ability of interactive computer graphics to assist a physician in visualizing 3D models of the colon, a correct diagnosis hinges upon a physician's ability to properly identify small and sometimes subtle polyps or masses within hundreds of multiplanar and 3D images. Human visual analysis is time-consuming, tedious, and often prone to error of interpretation.We have addressed the problem of visual analysis by creating a software system that automatically highlights potential lesions in the 2D and 3D images in order to expedite a physician's interpretation of the colon data.
NASA Astrophysics Data System (ADS)
Mehta, Neville; Kompalli, Suryaprakash; Chaudhary, Vipin
Teleradiology is the electronic transmission of radiological patient images, such as x-rays, CT, or MR across multiple locations. The goal could be interpretation, consultation, or medical records keeping. Information technology solutions have enabled electronic records and their associated benefits are evident in health care today. However, salient aspects of collaborative interfaces, and computer assisted diagnostic (CAD) tools are yet to be integrated into workflow designs. The Computer Assisted Diagnostics and Interventions (CADI) group at the University at Buffalo has developed an architecture that facilitates web-enabled use of CAD tools, along with the novel concept of synchronized collaboration. The architecture can support multiple teleradiology applications and case studies are presented here.
Qualitative and quantitative interpretation of SEM image using digital image processing.
Saladra, Dawid; Kopernik, Magdalena
2016-10-01
The aim of the this study is improvement of qualitative and quantitative analysis of scanning electron microscope micrographs by development of computer program, which enables automatic crack analysis of scanning electron microscopy (SEM) micrographs. Micromechanical tests of pneumatic ventricular assist devices result in a large number of micrographs. Therefore, the analysis must be automatic. Tests for athrombogenic titanium nitride/gold coatings deposited on polymeric substrates (Bionate II) are performed. These tests include microshear, microtension and fatigue analysis. Anisotropic surface defects observed in the SEM micrographs require support for qualitative and quantitative interpretation. Improvement of qualitative analysis of scanning electron microscope images was achieved by a set of computational tools that includes binarization, simplified expanding, expanding, simple image statistic thresholding, the filters Laplacian 1, and Laplacian 2, Otsu and reverse binarization. Several modifications of the known image processing techniques and combinations of the selected image processing techniques were applied. The introduced quantitative analysis of digital scanning electron microscope images enables computation of stereological parameters such as area, crack angle, crack length, and total crack length per unit area. This study also compares the functionality of the developed computer program of digital image processing with existing applications. The described pre- and postprocessing may be helpful in scanning electron microscopy and transmission electron microscopy surface investigations. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Computer aided detection system for lung cancer using computer tomography scans
NASA Astrophysics Data System (ADS)
Mahesh, Shanthi; Rakesh, Spoorthi; Patil, Vidya C.
2018-04-01
Lung Cancer is a disease can be defined as uncontrolled cell growth in tissues of the lung. If we detect the Lung Cancer in its early stage, then that could be the key of its cure. In this work the non-invasive methods are studied for assisting in nodule detection. It supplies a Computer Aided Diagnosis System (CAD) for early detection of lung cancer nodules from the Computer Tomography (CT) images. CAD system is the one which helps to improve the diagnostic performance of radiologists in their image interpretations. The main aim of this technique is to develop a CAD system for finding the lung cancer using the lung CT images and classify the nodule as Benign or Malignant. For classifying cancer cells, SVM classifier is used. Here, image processing techniques have been used to de-noise, to enhance, for segmentation and edge detection of an image is used to extract the area, perimeter and shape of nodule. The core factors of this research are Image quality and accuracy.
Visualization of the variability of 3D statistical shape models by animation.
Lamecker, Hans; Seebass, Martin; Lange, Thomas; Hege, Hans-Christian; Deuflhard, Peter
2004-01-01
Models of the 3D shape of anatomical objects and the knowledge about their statistical variability are of great benefit in many computer assisted medical applications like images analysis, therapy or surgery planning. Statistical model of shapes have successfully been applied to automate the task of image segmentation. The generation of 3D statistical shape models requires the identification of corresponding points on two shapes. This remains a difficult problem, especially for shapes of complicated topology. In order to interpret and validate variations encoded in a statistical shape model, visual inspection is of great importance. This work describes the generation and interpretation of statistical shape models of the liver and the pelvic bone.
CAD system for automatic analysis of CT perfusion maps
NASA Astrophysics Data System (ADS)
Hachaj, T.; Ogiela, M. R.
2011-03-01
In this article, authors present novel algorithms developed for the computer-assisted diagnosis (CAD) system for analysis of dynamic brain perfusion, computer tomography (CT) maps, cerebral blood flow (CBF), and cerebral blood volume (CBV). Those methods perform both quantitative analysis [detection and measurement and description with brain anatomy atlas (AA) of potential asymmetries/lesions] and qualitative analysis (semantic interpretation of visualized symptoms). The semantic interpretation (decision about type of lesion: ischemic/hemorrhagic, is the brain tissue at risk of infraction or not) of visualized symptoms is done by, so-called, cognitive inference processes allowing for reasoning on character of pathological regions based on specialist image knowledge. The whole system is implemented in.NET platform (C# programming language) and can be used on any standard PC computer with.NET framework installed.
Towards ubiquitous access of computer-assisted surgery systems.
Liu, Hui; Lufei, Hanping; Shi, Weishong; Chaudhary, Vipin
2006-01-01
Traditional stand-alone computer-assisted surgery (CAS) systems impede the ubiquitous and simultaneous access by multiple users. With advances in computing and networking technologies, ubiquitous access to CAS systems becomes possible and promising. Based on our preliminary work, CASMIL, a stand-alone CAS server developed at Wayne State University, we propose a novel mobile CAS system, UbiCAS, which allows surgeons to retrieve, review and interpret multimodal medical images, and to perform some critical neurosurgical procedures on heterogeneous devices from anywhere at anytime. Furthermore, various optimization techniques, including caching, prefetching, pseudo-streaming-model, and compression, are used to guarantee the QoS of the UbiCAS system. UbiCAS enables doctors at remote locations to actively participate remote surgeries, share patient information in real time before, during, and after the surgery.
Deep Learning in Medical Image Analysis
Shen, Dinggang; Wu, Guorong; Suk, Heung-Il
2016-01-01
The computer-assisted analysis for better interpreting images have been longstanding issues in the medical imaging field. On the image-understanding front, recent advances in machine learning, especially, in the way of deep learning, have made a big leap to help identify, classify, and quantify patterns in medical images. Specifically, exploiting hierarchical feature representations learned solely from data, instead of handcrafted features mostly designed based on domain-specific knowledge, lies at the core of the advances. In that way, deep learning is rapidly proving to be the state-of-the-art foundation, achieving enhanced performances in various medical applications. In this article, we introduce the fundamentals of deep learning methods; review their successes to image registration, anatomical/cell structures detection, tissue segmentation, computer-aided disease diagnosis or prognosis, and so on. We conclude by raising research issues and suggesting future directions for further improvements. PMID:28301734
Computer-assisted instruction and diagnosis of radiographic findings.
Harper, D; Butler, C; Hodder, R; Allman, R; Woods, J; Riordan, D
1984-04-01
Recent advances in computer technology, including high bit-density storage, digital imaging, and the ability to interface microprocessors with videodisk, create enormous opportunities in the field of medical education. This program, utilizing a personal computer, videodisk, BASIC language, a linked textfile system, and a triangulation approach to the interpretation of radiographs developed by Dr. W. L. Thompson, can enable the user to engage in a user-friendly, dynamic teaching program in radiology, applicable to various levels of expertise. Advantages include a relatively more compact and inexpensive system with rapid access and ease of revision which requires little instruction to the user.
Computer-Assisted Classification Patterns in Autoimmune Diagnostics: The AIDA Project
Benammar Elgaaied, Amel; Cascio, Donato; Bruno, Salvatore; Ciaccio, Maria Cristina; Cipolla, Marco; Fauci, Alessandro; Morgante, Rossella; Taormina, Vincenzo; Gorgi, Yousr; Marrakchi Triki, Raja; Ben Ahmed, Melika; Louzir, Hechmi; Yalaoui, Sadok; Imene, Sfar; Issaoui, Yassine; Abidi, Ahmed; Ammar, Myriam; Bedhiafi, Walid; Ben Fraj, Oussama; Bouhaha, Rym; Hamdi, Khouloud; Soumaya, Koudhi; Neili, Bilel; Asma, Gati; Lucchese, Mariano; Catanzaro, Maria; Barbara, Vincenza; Brusca, Ignazio; Fregapane, Maria; Amato, Gaetano; Friscia, Giuseppe; Neila, Trai; Turkia, Souayeh; Youssra, Haouami; Rekik, Raja; Bouokez, Hayet; Vasile Simone, Maria; Fauci, Francesco; Raso, Giuseppe
2016-01-01
Antinuclear antibodies (ANAs) are significant biomarkers in the diagnosis of autoimmune diseases in humans, done by mean of Indirect ImmunoFluorescence (IIF) method, and performed by analyzing patterns and fluorescence intensity. This paper introduces the AIDA Project (autoimmunity: diagnosis assisted by computer) developed in the framework of an Italy-Tunisia cross-border cooperation and its preliminary results. A database of interpreted IIF images is being collected through the exchange of images and double reporting and a Gold Standard database, containing around 1000 double reported images, has been settled. The Gold Standard database is used for optimization of a CAD (Computer Aided Detection) solution and for the assessment of its added value, in order to be applied along with an Immunologist as a second Reader in detection of autoantibodies. This CAD system is able to identify on IIF images the fluorescence intensity and the fluorescence pattern. Preliminary results show that CAD, used as second Reader, appeared to perform better than Junior Immunologists and hence may significantly improve their efficacy; compared with two Junior Immunologists, the CAD system showed higher Intensity Accuracy (85,5% versus 66,0% and 66,0%), higher Patterns Accuracy (79,3% versus 48,0% and 66,2%), and higher Mean Class Accuracy (79,4% versus 56,7% and 64.2%). PMID:27042658
Histology image analysis for carcinoma detection and grading
He, Lei; Long, L. Rodney; Antani, Sameer; Thoma, George R.
2012-01-01
This paper presents an overview of the image analysis techniques in the domain of histopathology, specifically, for the objective of automated carcinoma detection and classification. As in other biomedical imaging areas such as radiology, many computer assisted diagnosis (CAD) systems have been implemented to aid histopathologists and clinicians in cancer diagnosis and research, which have been attempted to significantly reduce the labor and subjectivity of traditional manual intervention with histology images. The task of automated histology image analysis is usually not simple due to the unique characteristics of histology imaging, including the variability in image preparation techniques, clinical interpretation protocols, and the complex structures and very large size of the images themselves. In this paper we discuss those characteristics, provide relevant background information about slide preparation and interpretation, and review the application of digital image processing techniques to the field of histology image analysis. In particular, emphasis is given to state-of-the-art image segmentation methods for feature extraction and disease classification. Four major carcinomas of cervix, prostate, breast, and lung are selected to illustrate the functions and capabilities of existing CAD systems. PMID:22436890
Texture classification of lung computed tomography images
NASA Astrophysics Data System (ADS)
Pheng, Hang See; Shamsuddin, Siti M.
2013-03-01
Current development of algorithms in computer-aided diagnosis (CAD) scheme is growing rapidly to assist the radiologist in medical image interpretation. Texture analysis of computed tomography (CT) scans is one of important preliminary stage in the computerized detection system and classification for lung cancer. Among different types of images features analysis, Haralick texture with variety of statistical measures has been used widely in image texture description. The extraction of texture feature values is essential to be used by a CAD especially in classification of the normal and abnormal tissue on the cross sectional CT images. This paper aims to compare experimental results using texture extraction and different machine leaning methods in the classification normal and abnormal tissues through lung CT images. The machine learning methods involve in this assessment are Artificial Immune Recognition System (AIRS), Naive Bayes, Decision Tree (J48) and Backpropagation Neural Network. AIRS is found to provide high accuracy (99.2%) and sensitivity (98.0%) in the assessment. For experiments and testing purpose, publicly available datasets in the Reference Image Database to Evaluate Therapy Response (RIDER) are used as study cases.
Lee, Matthew H; Schemmel, Andrew J; Pooler, B Dustin; Hanley, Taylor; Kennedy, Tabassum A; Field, Aaron S; Wiegmann, Douglas; Yu, John-Paul J
To assess the impact of separate non-image interpretive task and image-interpretive task workflows in an academic neuroradiology practice. A prospective, randomized, observational investigation of a centralized academic neuroradiology reading room was performed. The primary reading room fellow was observed over a one-month period using a time-and-motion methodology, recording frequency and duration of tasks performed. Tasks were categorized into separate image interpretive and non-image interpretive workflows. Post-intervention observation of the primary fellow was repeated following the implementation of a consult assistant responsible for non-image interpretive tasks. Pre- and post-intervention data were compared. Following separation of image-interpretive and non-image interpretive workflows, time spent on image-interpretive tasks by the primary fellow increased from 53.8% to 73.2% while non-image interpretive tasks decreased from 20.4% to 4.4%. Mean time duration of image interpretation nearly doubled, from 05:44 to 11:01 (p = 0.002). Decreases in specific non-image interpretive tasks, including phone calls/paging (2.86/hr versus 0.80/hr), in-room consultations (1.36/hr versus 0.80/hr), and protocoling (0.99/hr versus 0.10/hr), were observed. The consult assistant experienced 29.4 task switching events per hour. Rates of specific non-image interpretive tasks for the CA were 6.41/hr for phone calls/paging, 3.60/hr for in-room consultations, and 3.83/hr for protocoling. Separating responsibilities into NIT and IIT workflows substantially increased image interpretation time and decreased TSEs for the primary fellow. Consolidation of NITs into a separate workflow may allow for more efficient task completion. Copyright © 2017 Elsevier Inc. All rights reserved.
On the importance of mathematical methods for analysis of MALDI-imaging mass spectrometry data.
Trede, Dennis; Kobarg, Jan Hendrik; Oetjen, Janina; Thiele, Herbert; Maass, Peter; Alexandrov, Theodore
2012-03-21
In the last decade, matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS), also called as MALDI-imaging, has proven its potential in proteomics and was successfully applied to various types of biomedical problems, in particular to histopathological label-free analysis of tissue sections. In histopathology, MALDI-imaging is used as a general analytic tool revealing the functional proteomic structure of tissue sections, and as a discovery tool for detecting new biomarkers discriminating a region annotated by an experienced histologist, in particular, for cancer studies. A typical MALDI-imaging data set contains 10⁸ to 10⁹ intensity values occupying more than 1 GB. Analysis and interpretation of such huge amount of data is a mathematically, statistically and computationally challenging problem. In this paper we overview some computational methods for analysis of MALDI-imaging data sets. We discuss the importance of data preprocessing, which typically includes normalization, baseline removal and peak picking, and hightlight the importance of image denoising when visualizing IMS data.
On the Importance of Mathematical Methods for Analysis of MALDI-Imaging Mass Spectrometry Data.
Trede, Dennis; Kobarg, Jan Hendrik; Oetjen, Janina; Thiele, Herbert; Maass, Peter; Alexandrov, Theodore
2012-03-01
In the last decade, matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS), also called as MALDI-imaging, has proven its potential in proteomics and was successfully applied to various types of biomedical problems, in particular to histopathological label-free analysis of tissue sections. In histopathology, MALDI-imaging is used as a general analytic tool revealing the functional proteomic structure of tissue sections, and as a discovery tool for detecting new biomarkers discriminating a region annotated by an experienced histologist, in particular, for cancer studies. A typical MALDI-imaging data set contains 108 to 109 intensity values occupying more than 1 GB. Analysis and interpretation of such huge amount of data is a mathematically, statistically and computationally challenging problem. In this paper we overview some computational methods for analysis of MALDI-imaging data sets. We discuss the importance of data preprocessing, which typically includes normalization, baseline removal and peak picking, and hightlight the importance of image denoising when visualizing IMS data.
NASA Astrophysics Data System (ADS)
Law, Yuen C.; Tenbrinck, Daniel; Jiang, Xiaoyi; Kuhlen, Torsten
2014-03-01
Computer-assisted processing and interpretation of medical ultrasound images is one of the most challenging tasks within image analysis. Physical phenomena in ultrasonographic images, e.g., the characteristic speckle noise and shadowing effects, make the majority of standard methods from image analysis non optimal. Furthermore, validation of adapted computer vision methods proves to be difficult due to missing ground truth information. There is no widely accepted software phantom in the community and existing software phantoms are not exible enough to support the use of specific speckle models for different tissue types, e.g., muscle and fat tissue. In this work we propose an anatomical software phantom with a realistic speckle pattern simulation to _ll this gap and provide a exible tool for validation purposes in medical ultrasound image analysis. We discuss the generation of speckle patterns and perform statistical analysis of the simulated textures to obtain quantitative measures of the realism and accuracy regarding the resulting textures.
Computer Assisted Thermography And Its Application In Ovulation Detection
NASA Astrophysics Data System (ADS)
Rao, K. H.; Shah, A. V.
1984-08-01
Hardware and software of a computer-assisted image analyzing system used for infrared images in medical applications are discussed. The application of computer-assisted thermography (CAT) as a complementary diagnostic tool in centralized diagnostic management is proposed. The authors adopted 'Computer Assisted Thermography' to study physiological changes in the breasts related to the hormones characterizing the menstrual cycle of a woman. Based on clinical experi-ments followed by thermal image analysis, they suggest that 'differential skin temperature (DST)1 be measured to detect the fertility interval in the menstrual cycle of a woman.
Using x-ray mammograms to assist in microwave breast image interpretation.
Curtis, Charlotte; Frayne, Richard; Fear, Elise
2012-01-01
Current clinical breast imaging modalities include ultrasound, magnetic resonance (MR) imaging, and the ubiquitous X-ray mammography. Microwave imaging, which takes advantage of differing electromagnetic properties to obtain image contrast, shows potential as a complementary imaging technique. As an emerging modality, interpretation of 3D microwave images poses a significant challenge. MR images are often used to assist in this task, and X-ray mammograms are readily available. However, X-ray mammograms provide 2D images of a breast under compression, resulting in significant geometric distortion. This paper presents a method to estimate the 3D shape of the breast and locations of regions of interest from standard clinical mammograms. The technique was developed using MR images as the reference 3D shape with the future intention of using microwave images. Twelve breast shapes were estimated and compared to ground truth MR images, resulting in a skin surface estimation accurate to within an average Euclidean distance of 10 mm. The 3D locations of regions of interest were estimated to be within the same clinical area of the breast as corresponding regions seen on MR imaging. These results encourage investigation into the use of mammography as a source of information to assist with microwave image interpretation as well as validation of microwave imaging techniques.
History of computer-assisted orthopedic surgery (CAOS) in sports medicine.
Jackson, Douglas W; Simon, Timothy M
2008-06-01
Computer-assisted orthopedic surgery and navigation applications have a history rooted in the desire to link imaging technology with real-time anatomic landmarks. Although applications are still evolving in the clinical and research setting, computer-assisted orthopedic surgery has already demonstrated in certain procedures its potential for improving the surgeon's accuracy, reproducibility (once past the learning curve), and in reducing outlier outcomes. It is also being used as an educational tool to assist less experienced surgeons in interpreting measurements and precision placements related to well defined anatomic landmarks. It also can assist experienced surgeons, in real-time, plan their bony cuts, tunnel placement, and with ligament balancing. Presently, the additional time, the expense to acquire the needed software and hardware, and restricted reimbursement have slowed the widespread use of navigation. Its current applications have been primarily in joint replacement surgery, spine surgery, and trauma. It has not been widely used in the clinical setting for sports medicine procedures. Sports medicine applications such as individualizing tunnel placement in ligament surgery, opening wedge osteotomy with and without accompanying ligament reconstruction, and balancing and tensioning of the ligaments during the procedure (allowing real-time corrections if necessary) are currently being evaluated and being used on a limited clinical basis.
Application of Computer-Assisted Learning Methods in the Teaching of Chemical Spectroscopy.
ERIC Educational Resources Information Center
Ayscough, P. B.; And Others
1979-01-01
Discusses the application of computer-assisted learning methods to the interpretation of infrared, nuclear magnetic resonance, and mass spectra; and outlines extensions into the area of integrated spectroscopy. (Author/CMV)
Interactive object recognition assistance: an approach to recognition starting from target objects
NASA Astrophysics Data System (ADS)
Geisler, Juergen; Littfass, Michael
1999-07-01
Recognition of target objects in remotely sensed imagery required detailed knowledge about the target object domain as well as about mapping properties of the sensing system. The art of object recognition is to combine both worlds appropriately and to provide models of target appearance with respect to sensor characteristics. Common approaches to support interactive object recognition are either driven from the sensor point of view and address the problem of displaying images in a manner adequate to the sensing system. Or they focus on target objects and provide exhaustive encyclopedic information about this domain. Our paper discusses an approach to assist interactive object recognition based on knowledge about target objects and taking into account the significance of object features with respect to characteristics of the sensed imagery, e.g. spatial and spectral resolution. An `interactive recognition assistant' takes the image analyst through the interpretation process by indicating step-by-step the respectively most significant features of objects in an actual set of candidates. The significance of object features is expressed by pregenerated trees of significance, and by the dynamic computation of decision relevance for every feature at each step of the recognition process. In the context of this approach we discuss the question of modeling and storing the multisensorial/multispectral appearances of target objects and object classes as well as the problem of an adequate dynamic human-machine-interface that takes into account various mental models of human image interpretation.
Clinical relevance of model based computer-assisted diagnosis and therapy
NASA Astrophysics Data System (ADS)
Schenk, Andrea; Zidowitz, Stephan; Bourquain, Holger; Hindennach, Milo; Hansen, Christian; Hahn, Horst K.; Peitgen, Heinz-Otto
2008-03-01
The ability to acquire and store radiological images digitally has made this data available to mathematical and scientific methods. With the step from subjective interpretation to reproducible measurements and knowledge, it is also possible to develop and apply models that give additional information which is not directly visible in the data. In this context, it is important to know the characteristics and limitations of each model. Four characteristics assure the clinical relevance of models for computer-assisted diagnosis and therapy: ability of patient individual adaptation, treatment of errors and uncertainty, dynamic behavior, and in-depth evaluation. We demonstrate the development and clinical application of a model in the context of liver surgery. Here, a model for intrahepatic vascular structures is combined with individual, but in the degree of vascular details limited anatomical information from radiological images. As a result, the model allows for a dedicated risk analysis and preoperative planning of oncologic resections as well as for living donor liver transplantations. The clinical relevance of the method was approved in several evaluation studies of our medical partners and more than 2900 complex surgical cases have been analyzed since 2002.
Student Performance in Computer-Assisted Instruction in Programming.
ERIC Educational Resources Information Center
Friend, Jamesine E.; And Others
A computer-assisted instructional system to teach college students the computer language, AID (Algebraic Interpretive Dialogue), two control programs, and data collected by the two control programs are described. It was found that although first response errors were often those of AID syntax, such errors were easily corrected. Secondly, while…
Image-Based Predictive Modeling of Heart Mechanics.
Wang, V Y; Nielsen, P M F; Nash, M P
2015-01-01
Personalized biophysical modeling of the heart is a useful approach for noninvasively analyzing and predicting in vivo cardiac mechanics. Three main developments support this style of analysis: state-of-the-art cardiac imaging technologies, modern computational infrastructure, and advanced mathematical modeling techniques. In vivo measurements of cardiac structure and function can be integrated using sophisticated computational methods to investigate mechanisms of myocardial function and dysfunction, and can aid in clinical diagnosis and developing personalized treatment. In this article, we review the state-of-the-art in cardiac imaging modalities, model-based interpretation of 3D images of cardiac structure and function, and recent advances in modeling that allow personalized predictions of heart mechanics. We discuss how using such image-based modeling frameworks can increase the understanding of the fundamental biophysics behind cardiac mechanics, and assist with diagnosis, surgical guidance, and treatment planning. Addressing the challenges in this field will require a coordinated effort from both the clinical-imaging and modeling communities. We also discuss future directions that can be taken to bridge the gap between basic science and clinical translation.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-03
...] Guidances for Industry and Food and Drug Administration Staff: Computer-Assisted Detection Devices Applied... Clinical Performance Assessment: Considerations for Computer-Assisted Detection Devices Applied to... guidance, entitled ``Computer-Assisted Detection Devices Applied to Radiology Images and Radiology Device...
Dodd, Lori E; Wagner, Robert F; Armato, Samuel G; McNitt-Gray, Michael F; Beiden, Sergey; Chan, Heang-Ping; Gur, David; McLennan, Geoffrey; Metz, Charles E; Petrick, Nicholas; Sahiner, Berkman; Sayre, Jim
2004-04-01
Cancer of the lung and bronchus is the leading fatal malignancy in the United States. Five-year survival is low, but treatment of early stage disease considerably improves chances of survival. Advances in multidetector-row computed tomography technology provide detection of smaller lung nodules and offer a potentially effective screening tool. The large number of images per exam, however, requires considerable radiologist time for interpretation and is an impediment to clinical throughput. Thus, computer-aided diagnosis (CAD) methods are needed to assist radiologists with their decision making. To promote the development of CAD methods, the National Cancer Institute formed the Lung Image Database Consortium (LIDC). The LIDC is charged with developing the consensus and standards necessary to create an image database of multidetector-row computed tomography lung images as a resource for CAD researchers. To develop such a prospective database, its potential uses must be anticipated. The ultimate applications will influence the information that must be included along with the images, the relevant measures of algorithm performance, and the number of required images. In this article we outline assessment methodologies and statistical issues as they relate to several potential uses of the LIDC database. We review methods for performance assessment and discuss issues of defining "truth" as well as the complications that arise when truth information is not available. We also discuss issues about sizing and populating a database.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giger, Maryellen L.; Chan, Heang-Ping; Boone, John
2008-12-15
The roles of physicists in medical imaging have expanded over the years, from the study of imaging systems (sources and detectors) and dose to the assessment of image quality and perception, the development of image processing techniques, and the development of image analysis methods to assist in detection and diagnosis. The latter is a natural extension of medical physicists' goals in developing imaging techniques to help physicians acquire diagnostic information and improve clinical decisions. Studies indicate that radiologists do not detect all abnormalities on images that are visible on retrospective review, and they do not always correctly characterize abnormalities thatmore » are found. Since the 1950s, the potential use of computers had been considered for analysis of radiographic abnormalities. In the mid-1980s, however, medical physicists and radiologists began major research efforts for computer-aided detection or computer-aided diagnosis (CAD), that is, using the computer output as an aid to radiologists--as opposed to a completely automatic computer interpretation--focusing initially on methods for the detection of lesions on chest radiographs and mammograms. Since then, extensive investigations of computerized image analysis for detection or diagnosis of abnormalities in a variety of 2D and 3D medical images have been conducted. The growth of CAD over the past 20 years has been tremendous--from the early days of time-consuming film digitization and CPU-intensive computations on a limited number of cases to its current status in which developed CAD approaches are evaluated rigorously on large clinically relevant databases. CAD research by medical physicists includes many aspects--collecting relevant normal and pathological cases; developing computer algorithms appropriate for the medical interpretation task including those for segmentation, feature extraction, and classifier design; developing methodology for assessing CAD performance; validating the algorithms using appropriate cases to measure performance and robustness; conducting observer studies with which to evaluate radiologists in the diagnostic task without and with the use of the computer aid; and ultimately assessing performance with a clinical trial. Medical physicists also have an important role in quantitative imaging, by validating the quantitative integrity of scanners and developing imaging techniques, and image analysis tools that extract quantitative data in a more accurate and automated fashion. As imaging systems become more complex and the need for better quantitative information from images grows, the future includes the combined research efforts from physicists working in CAD with those working on quantitative imaging systems to readily yield information on morphology, function, molecular structure, and more--from animal imaging research to clinical patient care. A historical review of CAD and a discussion of challenges for the future are presented here, along with the extension to quantitative image analysis.« less
Development of an assisting detection system for early infarct diagnosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sim, K. S.; Nia, M. E.; Ee, C. S.
2015-04-24
In this paper, a detection assisting system for early infarct detection is developed. This new developed method is used to assist the medical practitioners to diagnose infarct from computed tomography images of brain. Using this assisting system, the infarct could be diagnosed at earlier stages. The non-contrast computed tomography (NCCT) brain images are the data set used for this system. Detection module extracts the pixel data from NCCT brain images, and produces the colourized version of images. The proposed method showed great potential in detecting infarct, and helps medical practitioners to make earlier and better diagnoses.
Kurtz, Camille; Beaulieu, Christopher F.; Napel, Sandy; Rubin, Daniel L.
2014-01-01
Computer-assisted image retrieval applications could assist radiologist interpretations by identifying similar images in large archives as a means to providing decision support. However, the semantic gap between low-level image features and their high level semantics may impair the system performances. Indeed, it can be challenging to comprehensively characterize the images using low-level imaging features to fully capture the visual appearance of diseases on images, and recently the use of semantic terms has been advocated to provide semantic descriptions of the visual contents of images. However, most of the existing image retrieval strategies do not consider the intrinsic properties of these terms during the comparison of the images beyond treating them as simple binary (presence/absence) features. We propose a new framework that includes semantic features in images and that enables retrieval of similar images in large databases based on their semantic relations. It is based on two main steps: (1) annotation of the images with semantic terms extracted from an ontology, and (2) evaluation of the similarity of image pairs by computing the similarity between the terms using the Hierarchical Semantic-Based Distance (HSBD) coupled to an ontological measure. The combination of these two steps provides a means of capturing the semantic correlations among the terms used to characterize the images that can be considered as a potential solution to deal with the semantic gap problem. We validate this approach in the context of the retrieval and the classification of 2D regions of interest (ROIs) extracted from computed tomographic (CT) images of the liver. Under this framework, retrieval accuracy of more than 0.96 was obtained on a 30-images dataset using the Normalized Discounted Cumulative Gain (NDCG) index that is a standard technique used to measure the effectiveness of information retrieval algorithms when a separate reference standard is available. Classification results of more than 95% were obtained on a 77-images dataset. For comparison purpose, the use of the Earth Mover's Distance (EMD), which is an alternative distance metric that considers all the existing relations among the terms, led to results retrieval accuracy of 0.95 and classification results of 93% with a higher computational cost. The results provided by the presented framework are competitive with the state-of-the-art and emphasize the usefulness of the proposed methodology for radiology image retrieval and classification. PMID:24632078
Imaging and Analytics: The changing face of Medical Imaging
NASA Astrophysics Data System (ADS)
Foo, Thomas
There have been significant technological advances in imaging capability over the past 40 years. Medical imaging capabilities have developed rapidly, along with technology development in computational processing speed and miniaturization. Moving to all-digital, the number of images that are acquired in a routine clinical examination has increased dramatically from under 50 images in the early days of CT and MRI to more than 500-1000 images today. The staggering number of images that are routinely acquired poses significant challenges for clinicians to interpret the data and to correctly identify the clinical problem. Although the time provided to render a clinical finding has not substantially changed, the amount of data available for interpretation has grown exponentially. In addition, the image quality (spatial resolution) and information content (physiologically-dependent image contrast) has also increased significantly with advances in medical imaging technology. On its current trajectory, medical imaging in the traditional sense is unsustainable. To assist in filtering and extracting the most relevant data elements from medical imaging, image analytics will have a much larger role. Automated image segmentation, generation of parametric image maps, and clinical decision support tools will be needed and developed apace to allow the clinician to manage, extract and utilize only the information that will help improve diagnostic accuracy and sensitivity. As medical imaging devices continue to improve in spatial resolution, functional and anatomical information content, image/data analytics will be more ubiquitous and integral to medical imaging capability.
Sinonasal papilloma: what influences the decision to request a magnetic resonance imaging scan?
Kasbekar, A V; Swords, C; Attlmayr, B; Kulkarni, T; Swift, A C
2018-06-18
Computed tomography is the standard pre-operative imaging modality for sinonasal papilloma. The complementary use of magnetic resonance imaging as an additional investigation is debated. This study aimed to establish whether magnetic resonance imaging can accurately detect tumour extent and is a useful adjunct to computed tomography. A retrospective review was conducted on 19 patients with sinonasal papilloma. The interpretation of computed tomography and magnetic resonance imaging scans, by three clinicians, was conducted by comparing prediction of tumour extent. The perceived necessity of magnetic resonance imaging was compared between clinicians. The addition of magnetic resonance imaging improved accuracy of pre-operative interpretation; specifically, this finding was significant in cases with frontal sinus involvement. Surgeons were more likely than a radiologist to request magnetic resonance imaging, particularly when computed tomography indicated frontal sinus disease. Pre-operative combined magnetic resonance imaging and computed tomography helped predict disease in the frontal sinus better than computed tomography alone. A close working relationship between the ENT and radiology departments is important for accurate tumour localisation.
Picture grammars in classification and semantic interpretation of 3D coronary vessels visualisations
NASA Astrophysics Data System (ADS)
Ogiela, M. R.; Tadeusiewicz, R.; Trzupek, M.
2009-09-01
The work presents the new opportunity for making semantic descriptions and analysis of medical structures, especially coronary vessels CT spatial reconstructions, with the use of AI graph-based linguistic formalisms. In the paper there will be discussed the manners of applying methods of computational intelligence to the development of a syntactic semantic description of spatial visualisations of the heart's coronary vessels. Such descriptions may be used for both smart ordering of images while archiving them and for their semantic searches in medical multimedia databases. Presented methodology of analysis can furthermore be used for attaining other goals related performance of computer-assisted semantic interpretation of selected elements and/or the entire 3D structure of the coronary vascular tree. These goals are achieved through the use of graph-based image formalisms based on IE graphs generating grammars that allow discovering and automatic semantic interpretation of irregularities visualised on the images obtained during diagnostic examinations of the heart muscle. The basis for the construction of 3D reconstructions of biological objects used in this work are visualisations obtained from helical CT scans, yet the method itself may be applied also for other methods of medical 3D images acquisition. The obtained semantic information makes it possible to make a description of the structure focused on the semantics of various morphological forms of the visualised vessels from the point of view of the operation of coronary circulation and the blood supply of the heart muscle. Thanks to these, the analysis conducted allows fast and — to a great degree — automated interpretation of the semantics of various morphological changes in the coronary vascular tree, and especially makes it possible to detect these stenoses in the lumen of the vessels that can cause critical decrease in blood supply to extensive or especially important fragments of the heart muscle.
Toward cognitive pipelines of medical assistance algorithms.
Philipp, Patrick; Maleshkova, Maria; Katic, Darko; Weber, Christian; Götz, Michael; Rettinger, Achim; Speidel, Stefanie; Kämpgen, Benedikt; Nolden, Marco; Wekerle, Anna-Laura; Dillmann, Rüdiger; Kenngott, Hannes; Müller, Beat; Studer, Rudi
2016-09-01
Assistance algorithms for medical tasks have great potential to support physicians with their daily work. However, medicine is also one of the most demanding domains for computer-based support systems, since medical assistance tasks are complex and the practical experience of the physician is crucial. Recent developments in the area of cognitive computing appear to be well suited to tackle medicine as an application domain. We propose a system based on the idea of cognitive computing and consisting of auto-configurable medical assistance algorithms and their self-adapting combination. The system enables automatic execution of new algorithms, given they are made available as Medical Cognitive Apps and are registered in a central semantic repository. Learning components can be added to the system to optimize the results in the cases when numerous Medical Cognitive Apps are available for the same task. Our prototypical implementation is applied to the areas of surgical phase recognition based on sensor data and image progressing for tumor progression mappings. Our results suggest that such assistance algorithms can be automatically configured in execution pipelines, candidate results can be automatically scored and combined, and the system can learn from experience. Furthermore, our evaluation shows that the Medical Cognitive Apps are providing the correct results as they did for local execution and run in a reasonable amount of time. The proposed solution is applicable to a variety of medical use cases and effectively supports the automated and self-adaptive configuration of cognitive pipelines based on medical interpretation algorithms.
Radiological interpretation of images displayed on tablet computers: a systematic review.
Caffery, L J; Armfield, N R; Smith, A C
2015-06-01
To review the published evidence and to determine if radiological diagnostic accuracy is compromised when images are displayed on a tablet computer and thereby inform practice on using tablet computers for radiological interpretation by on-call radiologists. We searched the PubMed and EMBASE databases for studies on the diagnostic accuracy or diagnostic reliability of images interpreted on tablet computers. Studies were screened for inclusion based on pre-determined inclusion and exclusion criteria. Studies were assessed for quality and risk of bias using Quality Appraisal of Diagnostic Reliability Studies or the revised Quality Assessment of Diagnostic Accuracy Studies tool. Treatment of studies was reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). 11 studies met the inclusion criteria. 10 of these studies tested the Apple iPad(®) (Apple, Cupertino, CA). The included studies reported high sensitivity (84-98%), specificity (74-100%) and accuracy rates (98-100%) for radiological diagnosis. There was no statistically significant difference in accuracy between a tablet computer and a digital imaging and communication in medicine-calibrated control display. There was a near complete consensus from authors on the non-inferiority of diagnostic accuracy of images displayed on a tablet computer. All of the included studies were judged to be at risk of bias. Our findings suggest that the diagnostic accuracy of radiological interpretation is not compromised by using a tablet computer. This result is only relevant to the Apple iPad and to the modalities of CT, MRI and plain radiography. The iPad may be appropriate for an on-call radiologist to use for radiological interpretation.
ERIC Educational Resources Information Center
Tao, Ping-Kee
2004-01-01
This article reports the use of a computer-based collaborative learning instruction designed to help students develop understanding of image formation by lenses. The study aims to investigate how students, working in dyads and mediated by multimedia computer-assisted learning (CAL) programs, construct shared knowledge and understanding. The…
Navab, Nassir; Fellow, Miccai; Hennersperger, Christoph; Frisch, Benjamin; Fürst, Bernhard
2016-10-01
In the last decade, many researchers in medical image computing and computer assisted interventions across the world focused on the development of the Virtual Physiological Human (VPH), aiming at changing the practice of medicine from classification and treatment of diseases to that of modeling and treating patients. These projects resulted in major advancements in segmentation, registration, morphological, physiological and biomechanical modeling based on state of art medical imaging as well as other sensory data. However, a major issue which has not yet come into the focus is personalizing intra-operative imaging, allowing for optimal treatment. In this paper, we discuss the personalization of imaging and visualization process with particular focus on satisfying the challenging requirements of computer assisted interventions. We discuss such requirements and review a series of scientific contributions made by our research team to tackle some of these major challenges. Copyright © 2016. Published by Elsevier B.V.
Kim, Jin Cheon; Lee, Jong Lyul; Park, Seong Ho
2017-04-01
Since the introduction of indocyanine green angiography more than 25 years ago, few studies have presented interpretative guidelines for indocyanine green fluorescent imaging. We aimed to provide interpretative guidelines for indocyanine green fluorescent imaging through quantitative analysis and to suggest possible indications for indocyanine green fluorescent imaging during robot-assisted sphincter-saving operations. This is a retrospective observational study. This study was conducted at a single center. A cohort of 657 patients with rectal cancer who consecutively underwent curative robot-assisted sphincter-saving operations was enrolled between 2010 and 2016, including 310 patients with indocyanine green imaging (indocyanine green fluorescent imaging+ group) and 347 patients without indocyanine green imaging (indocyanine green fluorescent imaging- group). We tried to quantitatively define the indocyanine green fluorescent imaging findings based on perfusion (mesocolic and colic) time and perfusion intensity (5 grades) to provide probable indications. The anastomotic leakage rate was significantly lower in the indocyanine green fluorescent imaging+ group than in the indocyanine green fluorescent imaging- group (0.6% vs 5.2%) (OR, 0.123; 95% CI, 0.028-0.544; p = 0.006). Anastomotic stricture was closely correlated with anastomotic leakage (p = 0.002) and a short descending mesocolon (p = 0.003). Delayed perfusion (>60 s) and low perfusion intensity (1-2) were more frequently detected in patients with anastomotic stricture and marginal artery defects than in those without these factors (p ≤ 0.001). In addition, perfusion times greater than the mean were more frequently observed in patients aged >58 years, whereas low perfusion intensity was seen more in patients with short descending mesocolon and high ASA classes (≥3). The 300 patients in the indocyanine green fluorescent imaging- group underwent operations 3 years before indocyanine green fluorescent imaging. Quantitative analysis of indocyanine green fluorescent imaging may help prevent anastomotic complications during robot-assisted sphincter-saving operations, and may be of particular value in high-class ASA patients, older patients, and patients with a short descending mesocolon.
Computed-aided diagnosis (CAD) in the detection of breast cancer.
Dromain, C; Boyer, B; Ferré, R; Canale, S; Delaloge, S; Balleyguier, C
2013-03-01
Computer-aided detection (CAD) systems have been developed for interpretation to improve mammographic detection of breast cancer at screening by reducing the number of false-negative interpretation that can be caused by subtle findings, radiologist distraction and complex architecture. They use a digitized mammographic image that can be obtained from both screen-film mammography and full field digital mammography. Its performance in breast cancer detection is dependent on the performance of the CAD itself, the population to which it is applied and the radiologists who use it. There is a clear benefit to the use of CAD in less experienced radiologist and in detecting breast carcinomas presenting as microcalcifications. This review gives a detailed description CAD systems used in mammography and their performance in assistance of reading in screening mammography and as an alternative to double reading. Other CAD systems developed for MRI and ultrasound are also presented and discussed. Copyright © 2012. Published by Elsevier Ireland Ltd.
NASA Astrophysics Data System (ADS)
Hay, D. Robert; Brassard, Michel; Matthews, James R.; Garneau, Stephane; Morchat, Richard
1995-06-01
The convergence of a number of contemporary technologies with increasing demands for improvements in inspection capabilities in maritime applications has created new opportunities for ultrasonic inspection. An automated ultrasonic inspection and data collection system APHIUS (automated pressure hull intelligent ultrasonic system), incorporates hardware and software developments to meet specific requirements for the maritime vessels, in particular, submarines in the Canadian Navy. Housed within a hardened portable computer chassis, instrumentation for digital ultrasonic data acquisition and transducer position measurement provide new capabilities that meet more demanding requirements for inspection of the aging submarine fleet. Digital data acquisition enables a number of new important capabilites including archiving of the complete inspection session, interpretation assistance through imaging, and automated interpretation using artificial intelligence methods. With this new reliable inspection system, in conjunction with a complementary study of the significance of real defect type and location, comprehensive new criteria can be generated which will eliminate unnecessary defect removal. As a consequence, cost savings will be realized through shortened submarine refit schedules.
Phenotype detection in morphological mutant mice using deformation features.
Roy, Sharmili; Liang, Xi; Kitamoto, Asanobu; Tamura, Masaru; Shiroishi, Toshihiko; Brown, Michael S
2013-01-01
Large-scale global efforts are underway to knockout each of the approximately 25,000 mouse genes and interpret their roles in shaping the mammalian embryo. Given the tremendous amount of data generated by imaging mutated prenatal mice, high-throughput image analysis systems are inevitable to characterize mammalian development and diseases. Current state-of-the-art computational systems offer only differential volumetric analysis of pre-defined anatomical structures between various gene-knockout mice strains. For subtle anatomical phenotypes, embryo phenotyping still relies on the laborious histological techniques that are clearly unsuitable in such big data environment. This paper presents a system that automatically detects known phenotypes and assists in discovering novel phenotypes in muCT images of mutant mice. Deformation features obtained from non-linear registration of mutant embryo to a normal consensus average image are extracted and analyzed to compute phenotypic and candidate phenotypic areas. The presented system is evaluated using C57BL/10 embryo images. All cases of ventricular septum defect and polydactyly, well-known to be present in this strain, are successfully detected. The system predicts potential phenotypic areas in the liver that are under active histological evaluation for possible phenotype of this mouse line.
The semiotics of medical image Segmentation.
Baxter, John S H; Gibson, Eli; Eagleson, Roy; Peters, Terry M
2018-02-01
As the interaction between clinicians and computational processes increases in complexity, more nuanced mechanisms are required to describe how their communication is mediated. Medical image segmentation in particular affords a large number of distinct loci for interaction which can act on a deep, knowledge-driven level which complicates the naive interpretation of the computer as a symbol processing machine. Using the perspective of the computer as dialogue partner, we can motivate the semiotic understanding of medical image segmentation. Taking advantage of Peircean semiotic traditions and new philosophical inquiry into the structure and quality of metaphors, we can construct a unified framework for the interpretation of medical image segmentation as a sign exchange in which each sign acts as an interface metaphor. This allows for a notion of finite semiosis, described through a schematic medium, that can rigorously describe how clinicians and computers interpret the signs mediating their interaction. Altogether, this framework provides a unified approach to the understanding and development of medical image segmentation interfaces. Copyright © 2017 Elsevier B.V. All rights reserved.
Fast Image Texture Classification Using Decision Trees
NASA Technical Reports Server (NTRS)
Thompson, David R.
2011-01-01
Texture analysis would permit improved autonomous, onboard science data interpretation for adaptive navigation, sampling, and downlink decisions. These analyses would assist with terrain analysis and instrument placement in both macroscopic and microscopic image data products. Unfortunately, most state-of-the-art texture analysis demands computationally expensive convolutions of filters involving many floating-point operations. This makes them infeasible for radiation- hardened computers and spaceflight hardware. A new method approximates traditional texture classification of each image pixel with a fast decision-tree classifier. The classifier uses image features derived from simple filtering operations involving integer arithmetic. The texture analysis method is therefore amenable to implementation on FPGA (field-programmable gate array) hardware. Image features based on the "integral image" transform produce descriptive and efficient texture descriptors. Training the decision tree on a set of training data yields a classification scheme that produces reasonable approximations of optimal "texton" analysis at a fraction of the computational cost. A decision-tree learning algorithm employing the traditional k-means criterion of inter-cluster variance is used to learn tree structure from training data. The result is an efficient and accurate summary of surface morphology in images. This work is an evolutionary advance that unites several previous algorithms (k-means clustering, integral images, decision trees) and applies them to a new problem domain (morphology analysis for autonomous science during remote exploration). Advantages include order-of-magnitude improvements in runtime, feasibility for FPGA hardware, and significant improvements in texture classification accuracy.
NASA Astrophysics Data System (ADS)
Chan, Harley; Gilbert, Ralph W.; Pagedar, Nitin A.; Daly, Michael J.; Irish, Jonathan C.; Siewerdsen, Jeffrey H.
2010-02-01
esthetic appearance is one of the most important factors for reconstructive surgery. The current practice of maxillary reconstruction chooses radial forearm, fibula or iliac rest osteocutaneous to recreate three-dimensional complex structures of the palate and maxilla. However, these bone flaps lack shape similarity to the palate and result in a less satisfactory esthetic. Considering similarity factors and vasculature advantages, reconstructive surgeons recently explored the use of scapular tip myo-osseous free flaps to restore the excised site. We have developed a new method that quantitatively evaluates the morphological similarity of the scapula tip bone and palate based on a diagnostic volumetric computed tomography (CT) image. This quantitative result was further interpreted as a color map that rendered on the surface of a three-dimensional computer model. For surgical planning, this color interpretation could potentially assist the surgeon to maximize the orientation of the bone flaps for best fit of the reconstruction site. With approval from the Research Ethics Board (REB) of the University Health Network, we conducted a retrospective analysis with CT image obtained from 10 patients. Each patient had a CT scans including the maxilla and chest on the same day. Based on this image set, we simulated total, subtotal and hemi palate reconstruction. The procedure of simulation included volume segmentation, conversing the segmented volume to a stereo lithography (STL) model, manual registration, computation of minimum geometric distances and curvature between STL model. Across the 10 patients data, we found the overall root-mean-square (RMS) conformance was 3.71+/- 0.16 mm
Radiological interpretation of images displayed on tablet computers: a systematic review
Armfield, N R; Smith, A C
2015-01-01
Objective: To review the published evidence and to determine if radiological diagnostic accuracy is compromised when images are displayed on a tablet computer and thereby inform practice on using tablet computers for radiological interpretation by on-call radiologists. Methods: We searched the PubMed and EMBASE databases for studies on the diagnostic accuracy or diagnostic reliability of images interpreted on tablet computers. Studies were screened for inclusion based on pre-determined inclusion and exclusion criteria. Studies were assessed for quality and risk of bias using Quality Appraisal of Diagnostic Reliability Studies or the revised Quality Assessment of Diagnostic Accuracy Studies tool. Treatment of studies was reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Results: 11 studies met the inclusion criteria. 10 of these studies tested the Apple iPad® (Apple, Cupertino, CA). The included studies reported high sensitivity (84–98%), specificity (74–100%) and accuracy rates (98–100%) for radiological diagnosis. There was no statistically significant difference in accuracy between a tablet computer and a digital imaging and communication in medicine-calibrated control display. There was a near complete consensus from authors on the non-inferiority of diagnostic accuracy of images displayed on a tablet computer. All of the included studies were judged to be at risk of bias. Conclusion: Our findings suggest that the diagnostic accuracy of radiological interpretation is not compromised by using a tablet computer. This result is only relevant to the Apple iPad and to the modalities of CT, MRI and plain radiography. Advances in knowledge: The iPad may be appropriate for an on-call radiologist to use for radiological interpretation. PMID:25882691
Flood damage assessment using computer-assisted analysis of color infrared photography
Anderson, William H.
1978-01-01
Use of digitized aerial photographs for flood damage assessment in agriculture is new and largely untested. However, under flooding circumstances similar to the 1975 Red River Valley flood, computer-assisted techniques can be extremely useful, especially if detailed crop damage estimates are needed within a relatively short period of time.Airphoto interpretation techniques, manual or computer-assisted, are not intended to replace conventional ground survey and sampling procedures. But their use should be considered a valuable addition to the tools currently available for assessing agricultural flood damage.
Computer vision cracks the leaf code
Wilf, Peter; Zhang, Shengping; Chikkerur, Sharat; Little, Stefan A.; Wing, Scott L.; Serre, Thomas
2016-01-01
Understanding the extremely variable, complex shape and venation characters of angiosperm leaves is one of the most challenging problems in botany. Machine learning offers opportunities to analyze large numbers of specimens, to discover novel leaf features of angiosperm clades that may have phylogenetic significance, and to use those characters to classify unknowns. Previous computer vision approaches have primarily focused on leaf identification at the species level. It remains an open question whether learning and classification are possible among major evolutionary groups such as families and orders, which usually contain hundreds to thousands of species each and exhibit many times the foliar variation of individual species. Here, we tested whether a computer vision algorithm could use a database of 7,597 leaf images from 2,001 genera to learn features of botanical families and orders, then classify novel images. The images are of cleared leaves, specimens that are chemically bleached, then stained to reveal venation. Machine learning was used to learn a codebook of visual elements representing leaf shape and venation patterns. The resulting automated system learned to classify images into families and orders with a success rate many times greater than chance. Of direct botanical interest, the responses of diagnostic features can be visualized on leaf images as heat maps, which are likely to prompt recognition and evolutionary interpretation of a wealth of novel morphological characters. With assistance from computer vision, leaves are poised to make numerous new contributions to systematic and paleobotanical studies. PMID:26951664
Nondestructive Evaluation of Hardwood Logs Using Automated Interpretation of CT Images
Daniel L. Schmoldt; Dongping Zhu; Richard W. Conners
1993-01-01
Computed tomography (CT) imaging is being used to examine the internal structure of hardwood logs. The following steps are used to automatically interpret CT images: (1) preprocessing to remove unwanted portions of the image, e.g., annual ring structure, (2) image-by-image segmentation to produce relatively homogeneous image areas, (3) volume growing to create volumes...
Fanni, Daniela; Gerosa, Clara; Rais, Monica; Ravarino, Alberto; Van Eyken, Peter; Fanos, Vassilios; Faa, Gavino
2018-03-16
The study of neuropathological markers in patients affected by mental/psychiatric disorders is relevant for the comprehension of the pathogenesis and the correlation with the clinical symptomatology. The neuropathology of Alzheimer's disease (AD) recognizes intraneuronal and extracellular neurofibrillary formation responsible for neuronal degeneration. Immunohistochemical studies discovered many interesting results for a better interpretation of the AD pathogenesis, while the "metal hypothesis" supports that metal ions might differentially influence the formation of amyloid aggregates. The most relevant pathological findings reported in schizophrenia originate from computer assisted tomography (CT), Magnetic Resonance Imaging (MRI) studies and Diffusion Tensor Imaging (DTI), suggesting the brain abnormalities involved in the pathophysiology of schizophrenia. The theory of fetal programming illustrates the epigenetic factors that may act during the intrauterine life on brain development, with relevant consequences on the susceptibility to develop AD or schizophrenia later in life. The neuropathological interpretation of AD and schizophrenia shows that the presence of severe neuropathological changes is not always associated with severe cognitive impairment. A better dialogue between psychiatrics and pathologists might help to halt insurgence and progression of neurodegenerative diseases. Copyright © 2016. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Gulick, V. C.; Morris, R. L.; Bishop, J.; Gazis, P.; Alena, R.; Sierhuis, M.
2002-01-01
We are developing science analyses algorithms to interface with a Geologist's Field Assistant device to allow robotic or human remote explorers to better sense their surroundings during limited surface excursions. Our algorithms will interpret spectral and imaging data obtained by various sensors. Additional information is contained in the original extended abstract.
Mir, R.; Johnson, H.; Mathur, R.; Wise, L.; Kahn, L. B.
1995-01-01
The proliferative index of 63 breast carcinomas was measured on Ki-67 immunostained frozen tissue sections with a computer-assisted image analysis system. The mean proliferative index in estrogen-positive breast carcinomas was lower than in estrogen-negative carcinomas. An inverse relationship between proliferative index and short-term disease-free survival was noted. Images Figure 1 Figure 2 PMID:7674345
Tai, Meng Wei; Chong, Zhen Feng; Asif, Muhammad Khan; Rahmat, Rabiah A; Nambiar, Phrabhakaran
2016-09-01
This study was to compare the suitability and precision of xerographic and computer-assisted methods for bite mark investigations. Eleven subjects were asked to bite on their forearm and the bite marks were photographically recorded. Alginate impressions of the subjects' dentition were taken and their casts were made using dental stone. The overlays generated by xerographic method were obtained by photocopying the subjects' casts and the incisal edge outlines were then transferred on a transparent sheet. The bite mark images were imported into Adobe Photoshop® software and printed to life-size. The bite mark analyses using xerographically generated overlays were done by comparing an overlay to the corresponding printed bite mark images manually. In computer-assisted method, the subjects' casts were scanned into Adobe Photoshop®. The bite mark analyses using computer-assisted overlay generation were done by matching an overlay and the corresponding bite mark images digitally using Adobe Photoshop®. Another comparison method was superimposing the cast images with corresponding bite mark images employing the Adobe Photoshop® CS6 and GIF-Animator©. A score with a range of 0-3 was given during analysis to each precision-determining criterion and the score was increased with better matching. The Kruskal Wallis H test showed significant difference between the three sets of data (H=18.761, p<0.05). In conclusion, bite mark analysis using the computer-assisted animated-superimposition method was the most accurate, followed by the computer-assisted overlay generation and lastly the xerographic method. The superior precision contributed by digital method is discernible despite the human skin being a poor recording medium of bite marks. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Jones, Bruce William
The results of implementing computer-assisted instruction (CAI) in two religion courses and a logic course at California State College, Bakersfield, are examined along with student responses. The main purpose of the CAI project was to teach interpretive skills. The most positive results came in the logic course. The programs in the New Testament…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-19
... assist the office in processing your requests. See the SUPPLEMENTARY INFORMATION section for electronic... considerations for standardization of image acquisition, image interpretation methods, and other procedures to help ensure imaging data quality. The draft guidance describes two categories of image acquisition and...
Nielsen, Tommy Kjærgaard; Østraat, Øyvind; Graumann, Ole; Pedersen, Bodil Ginnerup; Andersen, Gratien; Høyer, Søren; Borre, Michael
2017-08-01
The present study investigates how computed tomography perfusion scans and magnetic resonance imaging correlates with the histopathological alterations in renal tissue after cryoablation. A total of 15 pigs were subjected to laparoscopic-assisted cryoablation on both kidneys. After intervention, each animal was randomized to a postoperative follow-up period of 1, 2, or 4 weeks, after which computed tomography perfusion and magnetic resonance imaging scans were performed. Immediately after imaging, open bilateral nephrectomy was performed allowing for histopathological examination of the cryolesions. On computed tomography perfusion and magnetic resonance imaging examinations, rim enhancement was observed in the transition zone of the cryolesion 1week after laparoscopic-assisted cryoablation. This rim enhancement was found to subside after 2 and 4 weeks of follow-up, which was consistent with the microscopic examinations revealing of fibrotic scar tissue formation in the peripheral zone of the cryolesion. On T2 magnetic resonance imaging sequences, a thin hypointense rim surrounded the cryolesion, separating it from the adjacent renal parenchyma. Microscopic examinations revealed hemorrhage and later hemosiderin located in the peripheral zone. No nodular or diffuse contrast enhancement was found in the central zone of the cryolesions at any follow-up stage on neither computed tomography perfusion nor magnetic resonance imaging. On microscopic examinations, the central zone was found to consist of coagulative necrosis 1 week after laparoscopic-assisted cryoablation, which was partially replaced by fibrotic scar tissue 4 weeks following laparoscopic-assisted cryoablation. Both computed tomography perfusion and magnetic resonance imaging found the renal collecting system to be involved at all 3 stages of follow-up, but on microscopic examination, the urothelium was found to be intact in all cases. In conclusion, cryoablation effectively destroyed renal parenchyma, leaving the urothelium intact. Both computed tomography perfusion and magnetic resonance imaging reflect the microscopic findings but with some differences, especially regarding the peripheral zone. Magnetic resonance imaging seems an attractive modality for early postoperative follow-up.
[Basic concept in computer assisted surgery].
Merloz, Philippe; Wu, Hao
2006-03-01
To investigate application of medical digital imaging systems and computer technologies in orthopedics. The main computer-assisted surgery systems comprise the four following subcategories. (1) A collection and recording process for digital data on each patient, including preoperative images (CT scans, MRI, standard X-rays), intraoperative visualization (fluoroscopy, ultrasound), and intraoperative position and orientation of surgical instruments or bone sections (using 3D localises). Data merging based on the matching of preoperative imaging (CT scans, MRI, standard X-rays) and intraoperative visualization (anatomical landmarks, or bone surfaces digitized intraoperatively via 3D localiser; intraoperative ultrasound images processed for delineation of bone contours). (2) In cases where only intraoperative images are used for computer-assisted surgical navigation, the calibration of the intraoperative imaging system replaces the merged data system, which is then no longer necessary. (3) A system that provides aid in decision-making, so that the surgical approach is planned on basis of multimodal information: the interactive positioning of surgical instruments or bone sections transmitted via pre- or intraoperative images, display of elements to guide surgical navigation (direction, axis, orientation, length and diameter of a surgical instrument, impingement, etc. ). And (4) A system that monitors the surgical procedure, thereby ensuring that the optimal strategy defined at the preoperative stage is taken into account. It is possible that computer-assisted orthopedic surgery systems will enable surgeons to better assess the accuracy and reliability of the various operative techniques, an indispensable stage in the optimization of surgery.
Kish, Gary; Cook, Samuel A; Kis, Gréta
2013-01-01
The University of Debrecen's Faculty of Medicine has an international, multilingual student population with anatomy courses taught in English to all but Hungarian students. An elective computer-assisted gross anatomy course, the Computer Human Anatomy (CHA), has been taught in English at the Anatomy Department since 2008. This course focuses on an introduction to anatomical digital images along with clinical cases. This low-budget course has a large visual component using images from magnetic resonance imaging and computer axial tomogram scans, ultrasound clinical studies, and readily available anatomy software that presents topics which run in parallel to the university's core anatomy curriculum. From the combined computer images and CHA lecture information, students are asked to solve computer-based clinical anatomy problems in the CHA computer laboratory. A statistical comparison was undertaken of core anatomy oral examination performances of English program first-year medical students who took the elective CHA course and those who did not in the three academic years 2007-2008, 2008-2009, and 2009-2010. The results of this study indicate that the CHA-enrolled students improved their performance on required anatomy core curriculum oral examinations (P < 0.001), suggesting that computer-assisted learning may play an active role in anatomy curriculum improvement. These preliminary results have prompted ongoing evaluation of what specific aspects of CHA are valuable and which students benefit from computer-assisted learning in a multilingual and diverse cultural environment. Copyright © 2012 American Association of Anatomists.
Computer-aided diagnosis and artificial intelligence in clinical imaging.
Shiraishi, Junji; Li, Qiang; Appelbaum, Daniel; Doi, Kunio
2011-11-01
Computer-aided diagnosis (CAD) is rapidly entering the radiology mainstream. It has already become a part of the routine clinical work for the detection of breast cancer with mammograms. The computer output is used as a "second opinion" in assisting radiologists' image interpretations. The computer algorithm generally consists of several steps that may include image processing, image feature analysis, and data classification via the use of tools such as artificial neural networks (ANN). In this article, we will explore these and other current processes that have come to be referred to as "artificial intelligence." One element of CAD, temporal subtraction, has been applied for enhancing interval changes and for suppressing unchanged structures (eg, normal structures) between 2 successive radiologic images. To reduce misregistration artifacts on the temporal subtraction images, a nonlinear image warping technique for matching the previous image to the current one has been developed. Development of the temporal subtraction method originated with chest radiographs, with the method subsequently being applied to chest computed tomography (CT) and nuclear medicine bone scans. The usefulness of the temporal subtraction method for bone scans was demonstrated by an observer study in which reading times and diagnostic accuracy improved significantly. An additional prospective clinical study verified that the temporal subtraction image could be used as a "second opinion" by radiologists with negligible detrimental effects. ANN was first used in 1990 for computerized differential diagnosis of interstitial lung diseases in CAD. Since then, ANN has been widely used in CAD schemes for the detection and diagnosis of various diseases in different imaging modalities, including the differential diagnosis of lung nodules and interstitial lung diseases in chest radiography, CT, and position emission tomography/CT. It is likely that CAD will be integrated into picture archiving and communication systems and will become a standard of care for diagnostic examinations in daily clinical work. Copyright © 2011 Elsevier Inc. All rights reserved.
Cardiac imaging: working towards fully-automated machine analysis & interpretation.
Slomka, Piotr J; Dey, Damini; Sitek, Arkadiusz; Motwani, Manish; Berman, Daniel S; Germano, Guido
2017-03-01
Non-invasive imaging plays a critical role in managing patients with cardiovascular disease. Although subjective visual interpretation remains the clinical mainstay, quantitative analysis facilitates objective, evidence-based management, and advances in clinical research. This has driven developments in computing and software tools aimed at achieving fully automated image processing and quantitative analysis. In parallel, machine learning techniques have been used to rapidly integrate large amounts of clinical and quantitative imaging data to provide highly personalized individual patient-based conclusions. Areas covered: This review summarizes recent advances in automated quantitative imaging in cardiology and describes the latest techniques which incorporate machine learning principles. The review focuses on the cardiac imaging techniques which are in wide clinical use. It also discusses key issues and obstacles for these tools to become utilized in mainstream clinical practice. Expert commentary: Fully-automated processing and high-level computer interpretation of cardiac imaging are becoming a reality. Application of machine learning to the vast amounts of quantitative data generated per scan and integration with clinical data also facilitates a move to more patient-specific interpretation. These developments are unlikely to replace interpreting physicians but will provide them with highly accurate tools to detect disease, risk-stratify, and optimize patient-specific treatment. However, with each technological advance, we move further from human dependence and closer to fully-automated machine interpretation.
Ultrasound: Bladder (For Parents)
... the computer screen. A technician (sonographer) trained in ultrasound imaging will spread a clear, warm gel on the ... specially trained in reading and interpreting X-ray, ultrasound, and other imaging studies) will interpret the ultrasound results and then ...
Ultrasound: Pelvis (For Parents)
... the computer screen. A technician (sonographer) trained in ultrasound imaging will spread a clear, warm gel on the ... specially trained in reading and interpreting X-ray, ultrasound, and other imaging studies) will interpret the ultrasound results and then ...
Computer-assisted image analysis to quantify daily growth rates of broiler chickens.
De Wet, L; Vranken, E; Chedad, A; Aerts, J M; Ceunen, J; Berckmans, D
2003-09-01
1. The objective was to investigate the possibility of detecting daily body weight changes of broiler chickens with computer-assisted image analysis. 2. The experiment included 50 broiler chickens reared under commercial conditions. Ten out of 50 chickens were randomly selected and video recorded (upper view) 18 times during the 42-d growing period. The number of surface and periphery pixels from the images was used to derive a relationship between body dimension and live weight. 3. The relative error in weight estimation, expressed in terms of the standard deviation of the residuals from image surface data was 10%, while it was found to be 15% for the image periphery data. 4. Image-processing systems could be developed to assist the farmer in making important management and marketing decisions.
[The history and development of computer assisted orthopaedic surgery].
Jenny, J-Y
2006-10-01
Computer assisted orthopaedic surgery (CAOS) was developed to improve the accuracy of surgical procedures. It has improved dramatically over the last years, being transformed from an experimental, laboratory procedure into a routine procedure theoretically available to every orthopaedic surgeon. The first field of application of computer assistance was neurosurgery. After the application of computer guided spinal surgery, the navigation of total hip and knee joints became available. Currently, several applications for computer assisted surgery are available. At the beginning of navigation, a preoperative CT-scan or several fluoroscopic images were necessary. The imageless systems allow the surgeon to digitize patient anatomy at the beginning of surgery without any preoperative imaging. The future of CAOS remains unknown, but there is no doubt that its importance will grow in the next 10 years, and that this technology will probably modify the conventional practice of orthopaedic surgery.
ERTS data user investigation to develop a multistage forest sampling inventory system
NASA Technical Reports Server (NTRS)
Langley, P. G.; Vanroessel, J. W. (Principal Investigator); Wert, S. L.
1973-01-01
The author has identified the following significant results. A system to provide precision annotation of predetermined forest inventory sampling units on the ERTS-1 MSS images was developed. In addition, an annotation system for high altitude U2 photographs was completed. MSS bulk image accuracy is good enough to allow the use of one square mile sampling units. IMANCO image analyzer interpretation work for small scale images demonstrated the need for much additional analyses. Continuing image interpretation work for the next reporting period is concentrated on manual image interpretation work as well as digital interpretation system development using the computer compatible tapes.
Computed Tomography of the Normal Bovine Tarsus.
Hagag, U; Tawfiek, M; Brehm, W; Gerlach, K
2016-12-01
The objective of this study was to provide a detailed multiplanar computed tomographic (CT) anatomic reference for the bovine tarsus. The tarsal regions from twelve healthy adult cow cadavers were scanned in both soft and bone windows via a 16-slice multidetector CT scanner. Tarsi were frozen at -20 o C and sectioned to 10-mm-thick slices in transverse, dorsal and sagittal planes respecting the imaging protocol. The frozen sections were cleaned and then photographed. Anatomic structures were identified, labelled and compared with the corresponding CT images. The sagittal plane was indispensable for evaluation of bone contours, the dorsal plane was valuable in examination of the collateral ligaments, and both were beneficial for assessment of the tarsal joint articulations. CT images allowed excellent delineation between the cortex and medulla of bones, and the trabecular structure was clearly depicted. The tarsal soft tissues showed variable shades of grey, and the synovial fluid was the lowest attenuated structure. This study provided full assessment of the clinically relevant anatomic structures of the bovine tarsal joint. This technique may be of value when results from other diagnostic imaging techniques are indecisive. Images presented in this study should serve as a basic CT reference and assist in the interpretation of various bovine tarsal pathology. © 2016 Blackwell Verlag GmbH.
Remote sensing: a tool for park planning and management
Draeger, William C.; Pettinger, Lawrence R.
1981-01-01
Remote sensing may be defined as the science of imaging or measuring objects from a distance. More commonly, however, the term is used in reference to the acquisition and use of photographs, photo-like images, and other data acquired from aircraft and satellites. Thus, remote sensing includes the use of such diverse materials as photographs taken by hand from a light aircraft, conventional aerial photographs obtained with a precision mapping camera, satellite images acquired with sophisticated scanning devices, radar images, and magnetic and gravimetric data that may not even be in image form. Remotely sensed images may be color or black and white, can vary in scale from those that cover only a few hectares of the earth's surface to those that cover tens of thousands of square kilometers, and they may be interpreted visually or with the assistance of computer systems. This article attempts to describe several of the commonly available types of remotely sensed data, to discuss approaches to data analysis, and to demonstrate (with image examples) typical applications that might interest managers of parks and natural areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hohn, Michael; Adams, Paul
2006-09-05
The L3 system is a computational steering environment for image processing and scientific computing. It consists of an interactive graphical language and interface. Its purpose is to help advanced users in controlling their computational software and assist in the management of data accumulated during numerical experiments. L3 provides a combination of features not found in other environments; these are: - textual and graphical construction of programs - persistence of programs and associated data - direct mapping between the scripts, the parameters, and the produced data - implicit hierarchial data organization - full programmability, including conditionals and functions - incremental executionmore » of programs The software includes the l3 language and the graphical environment. The language is a single-assignment functional language; the implementation consists of lexer, parser, interpreter, storage handler, and editing support, The graphical environment is an event-driven nested list viewer/editor providing graphical elements corresponding to the language. These elements are both the represenation of a users program and active interfaces to the values computed by that program.« less
Machine-assisted analysis of Landsat data in the study of crop-soils relationships
Draeger, William C.
1976-01-01
To date, relatively few studies have dealt with crop-soil interactions as they affect the appearance of agricultural areas on Landsat imagery, and hence crop and soil classification or the analysis of agricultural land use.The Image 100, a computer-based data analysis system which allows an interpreter to interact directly and rapidly with Landsat computer compatible tape data, provided a tool to assist in the evaluation of the extent and significance of these interactions. Used with timely and accurate ground data, the system made possible a determination of the variability in crop spectral appearance, from soil type to soil type, as recorded on Landsat data. Information was provided in the form of spectral distribution histrograms for each crop-soil class on each Landsat band. Several crop categories in a test area in rookings County, South Dakota, were classified using training fields that were selected to be representative of each major crop-soil class. Accuracies in each case, on a total acreage basis, were greater than 90 percent.
Nonportable computed radiography of the chest--radiologists' acceptance
NASA Astrophysics Data System (ADS)
Gennari, Rose C.; Gur, David; Miketic, Linda M.; Campbell, William L.; Oliver, James H., III; Plunkett, Michael B.
1994-04-01
Following a large ROC study to assess diagnostic accuracy of PA chest computed radiography (CR) images displayed in a variety of formats, we asked nine experienced radiologists to subjectively assess their acceptance of and preferences for display modes in primary diagnosis of erect PA chest images. Our results indicate that radiologists felt somewhat less comfortable interpreting CR images displayed on either laser-printed films or workstations as compared to conventional films. The use of four minified images were thought to somewhat decrease diagnostic confidence, as well as to increase the time of interpretation. The reverse mode (black bone) images increased radiologists' confidence level in the detection of soft tissue abnormalities.
Computational theory of line drawing interpretation
NASA Technical Reports Server (NTRS)
Witkin, A. P.
1981-01-01
The recovery of the three dimensional structure of visible surfaces depicted in an image by emphasizing the role of geometric cues present in line drawings, was studied. Three key components are line classification, line interpretation, and surface interpolation. A model for three dimensional line interpretation and surface orientation was refined and a theory for the recovery of surface shape from surface marking geometry was developed. A new approach to the classification of edges was developed and implemented signatures were deduced for each of several edge types, expressed in terms of correlational properties of the image intensities in the vicinity of the edge. A computer program was developed that evaluates image edges as compared with these prototype signatures.
ERIC Educational Resources Information Center
Ekstrom, James
2001-01-01
Advocates using computer imaging technology to assist students in doing projects in which determining density is important. Students can study quantitative comparisons of masses, lengths, and widths using computer software. Includes figures displaying computer images of shells, yeast cultures, and the Aral Sea. (SAH)
NASA Astrophysics Data System (ADS)
Heinert, G.; Mondorf, W.
1982-11-01
High speed image processing was used to analyse morphologic and metabolic characteristics of clinically relevant kidney tissue alterations.Qualitative computer-assisted histophotometry was performed to measure alterations in levels of the enzymes alkaline phosphatase (Ap),alanine aminopeptidase (AAP),g-glutamyltranspepti-dase (GGTP) and A-glucuronidase (B-G1) and AAP and GGTP immunologically determined in prepared renal and cancer tissue sections. A "Mioro-Videomat 2" image analysis system with a "Tessovar" macroscope,a computer-assisted "Axiomat" photomicroscope and an "Interactive Image Analysis System (IBAS)" were employed for analysing changes in enzyme activities determined by changes in absorbance or transmission.Diseased kidney as well as renal neoplastic tissues could be distinguished by significantly (wilcoxon test,p<0,05) decreased enzyme concentrations as compared to those found in normal human kidney tissues.This image analysis techniques might be of potential use in diagnostic and prognostic evaluation of renal cancer and diseased kidney tissues.
A novel mechatronic tool for computer-assisted arthroscopy.
Dario, P; Carrozza, M C; Marcacci, M; D'Attanasio, S; Magnami, B; Tonet, O; Megali, G
2000-03-01
This paper describes a novel mechatronic tool for arthroscopy, which is at the same time a smart tool for traditional arthroscopy and the main component of a system for computer-assisted arthroscopy. The mechatronic arthroscope has a cable-actuated servomotor-driven multi-joint mechanical structure, is equipped with a position sensor measuring the orientation of the tip and with a force sensor detecting possible contact with delicate tissues in the knee, and incorporates an embedded microcontroller for sensor signal processing, motor driving and interfacing with the surgeon and/or the system control unit. When used manually, the mechatronic arthroscope enhances the surgeon's capabilities by enabling him/her to easily control tip motion and to prevent undesired contacts. When the tool is integrated in a complete system for computer-assisted arthroscopy, the trajectory of the arthroscope is reconstructed in real time by an optical tracking system using infrared emitters located in the handle, providing advantages in terms of improved intervention accuracy. The computer-assisted arthroscopy system comprises an image processing module for segmentation and three-dimensional reconstruction of preoperative computer tomography or magnetic resonance images, a registration module for measuring the position of the knee joint, tracking the trajectory of the operating tools, and matching preoperative and intra-operative images, and a human-machine interface that displays the enhanced reality scenario and data from the mechatronic arthroscope in a friendly and intuitive manner. By integrating preoperative and intra-operative images and information provided by the mechatronic arthroscope, the system allows virtual navigation in the knee joint during the planning phase and computer guidance by augmented reality during the intervention. This paper describes in detail the characteristics of the mechatronic arthroscope and of the system for computer-assisted arthroscopy and discusses experimental results obtained with a preliminary version of the tool and of the system.
Cardiac imaging: working towards fully-automated machine analysis & interpretation
Slomka, Piotr J; Dey, Damini; Sitek, Arkadiusz; Motwani, Manish; Berman, Daniel S; Germano, Guido
2017-01-01
Introduction Non-invasive imaging plays a critical role in managing patients with cardiovascular disease. Although subjective visual interpretation remains the clinical mainstay, quantitative analysis facilitates objective, evidence-based management, and advances in clinical research. This has driven developments in computing and software tools aimed at achieving fully automated image processing and quantitative analysis. In parallel, machine learning techniques have been used to rapidly integrate large amounts of clinical and quantitative imaging data to provide highly personalized individual patient-based conclusions. Areas covered This review summarizes recent advances in automated quantitative imaging in cardiology and describes the latest techniques which incorporate machine learning principles. The review focuses on the cardiac imaging techniques which are in wide clinical use. It also discusses key issues and obstacles for these tools to become utilized in mainstream clinical practice. Expert commentary Fully-automated processing and high-level computer interpretation of cardiac imaging are becoming a reality. Application of machine learning to the vast amounts of quantitative data generated per scan and integration with clinical data also facilitates a move to more patient-specific interpretation. These developments are unlikely to replace interpreting physicians but will provide them with highly accurate tools to detect disease, risk-stratify, and optimize patient-specific treatment. However, with each technological advance, we move further from human dependence and closer to fully-automated machine interpretation. PMID:28277804
[Health technology assessment report: Computer-assisted Pap test for cervical cancer screening].
Della Palma, Paolo; Moresco, Luca; Giorgi Rossi, Paolo
2012-01-01
HEALTH PROBLEM: Cervical cancer is a disease which is highly preventable by means of Pap test screening for the precancerous lesions, which can be easily treated. Furthermore, in the near future, control of the disease will be enhanced by the vaccination which prevents the infection of those human papillomavirus types that cause the vast majority of cervical cancers. The effectiveness of screening in drastically reducing cervical cancer incidence has been clearly demonstrated. The epidemiology of cervical cancer in industrialised countries is now determined mostly by the Pap test coverage of the female population and by the ability of health systems to assure appropriate follow up after an abnormal Pap test. Today there are two fully automated systems for computer-assisted Pap test: the BD FocalPoint and the Hologic Imager. Recently, the Hologic Integrated Imager, a semi-automated system, was launched. The two fully automated systems are composed of a central scanner, where the machine examines the cytologic slide, and of one or more review stations, where the cytologists analyze the slides previously centrally scanned. The softwares used by the two systems identify the fields of interest so that the cytologists can look only at those points, automatically pointed out by the review station. Furthermore, the FocalPoint system classifies the slides according to their level of risk of containing signs of relevant lesions. Those in the upper classes--about one fifth of the slides--are labelled as « further review », while those in the lower level of risk, i.e. slides that have such a low level of risk that they can be considered as negative with no human review, are labelled as « no further review ». The aim of computer-assisted Pap test is to reduce the time of slide examination and to increase productivity. Furthermore, the number of errors due to lack of attention may decrease. Both the systems can be applied to liquidbased cytology, while only the BD Focal Point can be used on conventional smears. Cytology screening has some critical points: there is a shortage of cytologists/cytotechnicians; the quality strongly depends on the experience and ability of the cytologist; there is a subjective component in the cytological diagnosis; in highly screened populations, the prevalence of lesions is very low and the activity of cytologists is very monotonous. On the other hand, a progressive shift to molecular screening using HPV-DNA test as primary screening test is very likely in the near future; cytology will be used as triage test, dramatically reducing the number of slides to process and increasing the prevalence of lesions in those Pap tests. In this Report we assume that the diagnostic accuracy of computer-assisted Pap test is equal to the accuracy of manual Pap test and, consequently, that screening using computer-assisted Pap test has the same efficacy in reducing cervical cancer incidence and mortality. Under this assumption, the effectiveness/ benefit/utility is the same for the two screening modes, i.e. the economic analysis will be a cost minimization study. Furthermore, the screening process is identical for the two modalities in all the phases except for slide interpretation. The cost minimization analysis will be limited to the only phase differing between the two modes, i.e. the study will be a differential cost analysis between a labour-intensive strategy (traditional Pap test) and a technology-intensive strategy (the computer-assisted Pap test). Briefly, the objectives of this HTA Report are: to determine the break even point of computer-assisted Pap test systems, i.e. the volume of slides processed per year at which putting in place a computer-assisted Pap test system becomes economically convenient; to quantify the cost per Pap test in different scenarios according to screening centre activity volume, productivity of cytologist, type of cytology (conventional smear or liquid-based, fully automated or semi-automated computer-assisted); to analyse the computer-assisted Pap test in the Italian context, through a survey of the centres using the technology, collecting data useful for the sensitivity analysis of the economic evaluation; to evaluate the acceptability of the technology in the screening services; to evaluate the organizational and financial impact of the computer-assisted Pap test in different scenarios; to illustrate the ideal organization to implement computer-assisted Pap test in terms of volume of activity, productivity, and human and technological resources. to produce this Report, the following process was adopted: application to the Ministry of health for a grant « Analysis of the impact of professional involvement in evidence generation for the HTA process »; within this project, the sub-project « Cost effectiveness evaluation of the computer-assisted Pap test in the Italian screening programmes » was financed; constitution of the Working Group, which included the project coordinator, the principal investigator, and the health economist; identification of the centres using the computer-assisted Pap test and which had published scientific reports on the subject; identification of the Consulting Committee (stakeholder), which included screening programmes managers, pathologists, economists, health policy-makers, citizen organizations, and manufacturers. Once the evaluation was concluded, a plenary meeting with Working Group and Consulting Committee was held. The working group drafted the final version of this Report, which took into account the comments received. the fully automated computer-assisted Pap test has an important financial and organizational impact on screening programmes. The assessment of this health technology reached the following conclusions: according to the survey results, after some distrust, cytologists accepted the use of the machine and appreciated the reduction in interpretation time and the reliability in identifying the fields of interest; from an economic point of view, the automated computer-assisted Pap test can be convenient only with conventional smears if the screening centre has a volume of more than 49,000 slides/year and the cytologist productivity increases about threefold. It must be highlighted that it is not sufficient to adopt the automated Pap test to reach such an increase in productivity; the laboratory must be organised or re-organised to optimise the use of the review stations and the person time. In the case of liquid-based cytology, the adoption of automated computer- assisted Pap test can only increase the costs. In fact, liquid-based cytology increases the cost of consumable materials but reduces the interpretation time, even in manual screening. Consequently, the reduction of human costs is smaller in the case of computer-assisted screening. Liquid-based cytology has other implications and advantages not linked to the use of computer-assisted Pap test that should be taken into account and are beyond the scope of this Report; given that the computer-assisted Pap test reduces human costs, it may be more advantageous where the cost of cytologists is higher; given the relatively small volume of activity of screening centres in Italy, computer-assisted Pap test may be reasonable for a network using only one central scanner and several remote review stations; the use of automated computer-assisted Pap test only for quality control in a single centre is not economically sustainable. In this case as well, several centres, for example at the regional level, may form a consortium to reach a reasonable number of slides to achieve the break even point. Regarding the use of a machine rather than human intelligence to interpret the slides, some ethical issues were initially raised, but both the scientific community and healthcare professionals have accepted this technology. The identification of fields of interest by the machine is highly reproducible, reducing subjectivity in the diagnostic process. The Hologic system always includes a check by the human eye, while the FocalPoint system identifies about one fifth of the slides as No Further Review. Several studies, some of which conducted in Italy, confirmed the reliability of this classification. There is still some resistance to accept the practice of No Further Review. A check of previous slides and clinical data can be useful to make the cytologist and the clinician more confident. Computer-assisted automated Pap test may be introduced only if there is a need to increase the volume of slides screened to cover the screening target population and sufficient human resources are not available. Switching a programme using conventional slides to automatic scanning can only lead to a reduction in costs if the volume of slides per year exceeds 49,000 slides/annum and cytologist productivity is optimised to more than 20,000 slides per year. At a productivity of 15,000 or fewer, the automated computer-assisted Pap test cannot be convenient. Switching from manual screening with conventional slides to automatic scanning with liquid-based cytology cannot generate any economic saving, but the system could increase output with a given number of staff. The transition from manual to computer assisted automated screening of liquid based cytology will not generate savings and the increase in productivity will be lower than that of the switch from manual/conventional to automated/conventional. The use of biologists or pathologists as cytologists is more costly than the use of cytoscreeners. Given that the automated computer-assisted Pap test reduces human resource costs, its adoption in a model using only biologists and pathologists for screening is more economically advantageous. (ABSTRACT TRUNCATED)
(Computer) Vision without Sight
Manduchi, Roberto; Coughlan, James
2012-01-01
Computer vision holds great promise for helping persons with blindness or visual impairments (VI) to interpret and explore the visual world. To this end, it is worthwhile to assess the situation critically by understanding the actual needs of the VI population and which of these needs might be addressed by computer vision. This article reviews the types of assistive technology application areas that have already been developed for VI, and the possible roles that computer vision can play in facilitating these applications. We discuss how appropriate user interfaces are designed to translate the output of computer vision algorithms into information that the user can quickly and safely act upon, and how system-level characteristics affect the overall usability of an assistive technology. Finally, we conclude by highlighting a few novel and intriguing areas of application of computer vision to assistive technology. PMID:22815563
Computer Vision Assisted Virtual Reality Calibration
NASA Technical Reports Server (NTRS)
Kim, W.
1999-01-01
A computer vision assisted semi-automatic virtual reality (VR) calibration technology has been developed that can accurately match a virtual environment of graphically simulated three-dimensional (3-D) models to the video images of the real task environment.
NASA Astrophysics Data System (ADS)
Wang, Qian; Vaupel, Peter; Ziegler, Sibylle I.; Shi, Kuangyu
2015-03-01
Molecular imaging using PET or hyperpolarized MRI can characterize tumor phenotypes by assessing the related metabolism of certain substrates. However, the interpretation of the substrate turnover in terms of a pathophysiological understanding is not straightforward and only semiquantitative. The metabolism of imaging probes is influenced by a number of factors, such as the microvascular structure or the expression of key enzymes. This study aims to use computational simulation to investigate the relationship between the metabolism behind molecular imaging and the underlying tumor phenotype. The study focused on the pathways of glucose metabolism and lactate oxidation in order to establish the quantitative relationship between the expression of several transporters (GLUT, MCT1 and MCT4), expression of the enzyme hexokinase (HK), microvasculature and the metabolism of glucose or lactate and the extracellular pH distribution. A computational model for a 2D tumor tissue phantom was constructed and the spatio-temporal evolution of related species (e.g. oxygen, glucose, lactate, protons, bicarbonate ions) was estimated by solving reaction-diffusion equations. The proposed model was tested by the verification of the simulation results using in vivo and in vitro literature data. The influences of different expression levels of GLUT, MCT1, MCT4, HK and microvessel distribution on substrate concentrations were analyzed. The major results are consistent with experimental data (e.g. GLUT is more influential to glycolytic flux than HK; extracellular pH is not correlated with MCT expressions) and provide theoretical interpretation of the co-influence of multiple factors of the tumor microenvironment. This computational simulation may assist the generation of hypotheses to bridge the discrepancy between tumor metabolism and the functions of transporters and enzymes. It has the potential to accelerate the development of multi-modal imaging strategies for assessment of tumor phenotypes.
Benchmark datasets for 3D MALDI- and DESI-imaging mass spectrometry.
Oetjen, Janina; Veselkov, Kirill; Watrous, Jeramie; McKenzie, James S; Becker, Michael; Hauberg-Lotte, Lena; Kobarg, Jan Hendrik; Strittmatter, Nicole; Mróz, Anna K; Hoffmann, Franziska; Trede, Dennis; Palmer, Andrew; Schiffler, Stefan; Steinhorst, Klaus; Aichler, Michaela; Goldin, Robert; Guntinas-Lichius, Orlando; von Eggeling, Ferdinand; Thiele, Herbert; Maedler, Kathrin; Walch, Axel; Maass, Peter; Dorrestein, Pieter C; Takats, Zoltan; Alexandrov, Theodore
2015-01-01
Three-dimensional (3D) imaging mass spectrometry (MS) is an analytical chemistry technique for the 3D molecular analysis of a tissue specimen, entire organ, or microbial colonies on an agar plate. 3D-imaging MS has unique advantages over existing 3D imaging techniques, offers novel perspectives for understanding the spatial organization of biological processes, and has growing potential to be introduced into routine use in both biology and medicine. Owing to the sheer quantity of data generated, the visualization, analysis, and interpretation of 3D imaging MS data remain a significant challenge. Bioinformatics research in this field is hampered by the lack of publicly available benchmark datasets needed to evaluate and compare algorithms. High-quality 3D imaging MS datasets from different biological systems at several labs were acquired, supplied with overview images and scripts demonstrating how to read them, and deposited into MetaboLights, an open repository for metabolomics data. 3D imaging MS data were collected from five samples using two types of 3D imaging MS. 3D matrix-assisted laser desorption/ionization imaging (MALDI) MS data were collected from murine pancreas, murine kidney, human oral squamous cell carcinoma, and interacting microbial colonies cultured in Petri dishes. 3D desorption electrospray ionization (DESI) imaging MS data were collected from a human colorectal adenocarcinoma. With the aim to stimulate computational research in the field of computational 3D imaging MS, selected high-quality 3D imaging MS datasets are provided that could be used by algorithm developers as benchmark datasets.
Andriole, Katherine P; Morin, Richard L; Arenson, Ronald L; Carrino, John A; Erickson, Bradley J; Horii, Steven C; Piraino, David W; Reiner, Bruce I; Seibert, J Anthony; Siegel, Eliot
2004-12-01
The Society for Computer Applications in Radiology (SCAR) Transforming the Radiological Interpretation Process (TRIP) Initiative aims to spearhead research, education, and discovery of innovative solutions to address the problem of information and image data overload. The initiative will foster interdisciplinary research on technological, environmental and human factors to better manage and exploit the massive amounts of data. TRIP will focus on the following basic objectives: improving the efficiency of interpretation of large data sets, improving the timeliness and effectiveness of communication, and decreasing medical errors. The ultimate goal of the initiative is to improve the quality and safety of patient care. Interdisciplinary research into several broad areas will be necessary to make progress in managing the ever-increasing volume of data. The six concepts involved are human perception, image processing and computer-aided detection (CAD), visualization, navigation and usability, databases and integration, and evaluation and validation of methods and performance. The result of this transformation will affect several key processes in radiology, including image interpretation; communication of imaging results; workflow and efficiency within the health care enterprise; diagnostic accuracy and a reduction in medical errors; and, ultimately, the overall quality of care.
Interaction techniques for radiology workstations: impact on users' productivity
NASA Astrophysics Data System (ADS)
Moise, Adrian; Atkins, M. Stella
2004-04-01
As radiologists progress from reading images presented on film to modern computer systems with images presented on high-resolution displays, many new problems arise. Although the digital medium has many advantages, the radiologist"s job becomes cluttered with many new tasks related to image manipulation. This paper presents our solution for supporting radiologists" interpretation of digital images by automating image presentation during sequential interpretation steps. Our method supports scenario based interpretation, which group data temporally, according to the mental paradigm of the physician. We extended current hanging protocols with support for "stages". A stage reflects the presentation of digital information required to complete a single step within a complex task. We demonstrated the benefits of staging in a user study with 20 lay subjects involved in a visual conjunctive search for targets, similar to a radiology task of identifying anatomical abnormalities. We designed a task and a set of stimuli which allowed us to simulate the interpretation workflow from a typical radiology scenario - reading a chest computed radiography exam when a prior study is also available. The simulation was possible by abstracting the radiologist"s task and the basic workstation navigation functionality. We introduced "Stages," an interaction technique attuned to the radiologist"s interpretation task. Compared to the traditional user interface, Stages generated a 14% reduction in the average interpretation.
NASA Astrophysics Data System (ADS)
Huang, L.; Zhu, X.; Guo, W.; Xiang, L.; Chen, X.; Mei, Y.
2012-07-01
Existing implementations of collaborative image interpretation have many limitations for very large satellite imageries, such as inefficient browsing, slow transmission, etc. This article presents a KML-based approach to support distributed, real-time, synchronous collaborative interpretation for remote sensing images in the geo-browser. As an OGC standard, KML (Keyhole Markup Language) has the advantage of organizing various types of geospatial data (including image, annotation, geometry, etc.) in the geo-browser. Existing KML elements can be used to describe simple interpretation results indicated by vector symbols. To enlarge its application, this article expands KML elements to describe some complex image processing operations, including band combination, grey transformation, geometric correction, etc. Improved KML is employed to describe and share interpretation operations and results among interpreters. Further, this article develops some collaboration related services that are collaboration launch service, perceiving service and communication service. The launch service creates a collaborative interpretation task and provides a unified interface for all participants. The perceiving service supports interpreters to share collaboration awareness. Communication service provides interpreters with written words communication. Finally, the GeoGlobe geo-browser (an extensible and flexible geospatial platform developed in LIESMARS) is selected to perform experiments of collaborative image interpretation. The geo-browser, which manage and visualize massive geospatial information, can provide distributed users with quick browsing and transmission. Meanwhile in the geo-browser, GIS data (for example DEM, DTM, thematic map and etc.) can be integrated to assist in improving accuracy of interpretation. Results show that the proposed method is available to support distributed collaborative interpretation of remote sensing image
PitScan: Computer-Assisted Feature Detection
NASA Astrophysics Data System (ADS)
Wagner, R. V.; Robinson, M. S.
2018-04-01
We developed PitScan to assist in searching the very large LROC image dataset for pits — unusual <200m wide vertical-walled holes in the Moon's surface. PitScan reduces analysts' workload by pre-filtering images to identify possible pits.
Medical imaging and registration in computer assisted surgery.
Simon, D A; Lavallée, S
1998-09-01
Imaging, sensing, and computing technologies that are being introduced to aid in the planning and execution of surgical procedures are providing orthopaedic surgeons with a powerful new set of tools for improving clinical accuracy, reliability, and patient outcomes while reducing costs and operating times. Current computer assisted surgery systems typically include a measurement process for collecting patient specific medical data, a decision making process for generating a surgical plan, a registration process for aligning the surgical plan to the patient, and an action process for accurately achieving the goals specified in the plan. Some of the key concepts in computer assisted surgery applied to orthopaedics with a focus on the basic framework and underlying technologies is outlined. In addition, technical challenges and future trends in the field are discussed.
Quantitative morphometrical characterization of human pronuclear zygotes.
Beuchat, A; Thévenaz, P; Unser, M; Ebner, T; Senn, A; Urner, F; Germond, M; Sorzano, C O S
2008-09-01
Identification of embryos with high implantation potential remains a challenge in in vitro fertilization (IVF). Subjective pronuclear (PN) zygote scoring systems have been developed for that purpose. The aim of this work was to provide a software tool that enables objective measuring of morphological characteristics of the human PN zygote. A computer program was created to analyse zygote images semi-automatically, providing precise morphological measurements. The accuracy of this approach was first validated by comparing zygotes from two different IVF centres with computer-assisted measurements or subjective scoring. Computer-assisted measurement and subjective scoring were then compared for their ability to classify zygotes with high and low implantation probability by using a linear discriminant analysis. Zygote images coming from the two IVF centres were analysed with the software, resulting in a series of precise measurements of 24 variables. Using subjective scoring, the cytoplasmic halo was the only feature which was significantly different between the two IVF centres. Computer-assisted measurements revealed significant differences between centres in PN centring, PN proximity, cytoplasmic halo and features related to nucleolar precursor bodies distribution. The zygote classification error achieved with the computer-assisted measurements (0.363) was slightly inferior to that of the subjective ones (0.393). A precise and objective characterization of the morphology of human PN zygotes can be achieved by the use of an advanced image analysis tool. This computer-assisted analysis allows for a better morphological characterization of human zygotes and can be used for classification.
Computer-aided interpretation approach for optical tomographic images
NASA Astrophysics Data System (ADS)
Klose, Christian D.; Klose, Alexander D.; Netz, Uwe J.; Scheel, Alexander K.; Beuthan, Jürgen; Hielscher, Andreas H.
2010-11-01
A computer-aided interpretation approach is proposed to detect rheumatic arthritis (RA) in human finger joints using optical tomographic images. The image interpretation method employs a classification algorithm that makes use of a so-called self-organizing mapping scheme to classify fingers as either affected or unaffected by RA. Unlike in previous studies, this allows for combining multiple image features, such as minimum and maximum values of the absorption coefficient for identifying affected and not affected joints. Classification performances obtained by the proposed method were evaluated in terms of sensitivity, specificity, Youden index, and mutual information. Different methods (i.e., clinical diagnostics, ultrasound imaging, magnet resonance imaging, and inspection of optical tomographic images), were used to produce ground truth benchmarks to determine the performance of image interpretations. Using data from 100 finger joints, findings suggest that some parameter combinations lead to higher sensitivities, while others to higher specificities when compared to single parameter classifications employed in previous studies. Maximum performances are reached when combining the minimum/maximum ratio of the absorption coefficient and image variance. In this case, sensitivities and specificities over 0.9 can be achieved. These values are much higher than values obtained when only single parameter classifications were used, where sensitivities and specificities remained well below 0.8.
Digital interactive learning of oral radiographic anatomy.
Vuchkova, J; Maybury, T; Farah, C S
2012-02-01
Studies reporting high number of diagnostic errors made from radiographs suggest the need to improve the learning of radiographic interpretation in the dental curriculum. Given studies that show student preference for computer-assisted or digital technologies, the purpose of this study was to develop an interactive digital tool and to determine whether it was more successful than a conventional radiology textbook in assisting dental students with the learning of radiographic anatomy. Eighty-eight dental students underwent a learning phase of radiographic anatomy using an interactive digital tool alongside a conventional radiology textbook. The success of the digital tool, when compared to the textbook, was assessed by quantitative means using a radiographic interpretation test and by qualitative means using a structured Likert scale survey, asking students to evaluate their own learning outcomes from the digital tool. Student evaluations of the digital tool showed that almost all participants (95%) indicated that the tool positively enhanced their learning of radiographic anatomy and interpretation. The success of the digital tool in assisting the learning of radiographic interpretation is discussed in the broader context of learning and teaching curricula, and preference (by students) for the use of this digital form when compared to the conventional literate form of the textbook. Whilst traditional textbooks are still valued in the dental curriculum, it is evident that the preference for computer-assisted learning of oral radiographic anatomy enhances the learning experience by enabling students to interact and better engage with the course material. © 2011 John Wiley & Sons A/S.
A new approach to develop computer-aided detection schemes of digital mammograms
NASA Astrophysics Data System (ADS)
Tan, Maxine; Qian, Wei; Pu, Jiantao; Liu, Hong; Zheng, Bin
2015-06-01
The purpose of this study is to develop a new global mammographic image feature analysis based computer-aided detection (CAD) scheme and evaluate its performance in detecting positive screening mammography examinations. A dataset that includes images acquired from 1896 full-field digital mammography (FFDM) screening examinations was used in this study. Among them, 812 cases were positive for cancer and 1084 were negative or benign. After segmenting the breast area, a computerized scheme was applied to compute 92 global mammographic tissue density based features on each of four mammograms of the craniocaudal (CC) and mediolateral oblique (MLO) views. After adding three existing popular risk factors (woman’s age, subjectively rated mammographic density, and family breast cancer history) into the initial feature pool, we applied a sequential forward floating selection feature selection algorithm to select relevant features from the bilateral CC and MLO view images separately. The selected CC and MLO view image features were used to train two artificial neural networks (ANNs). The results were then fused by a third ANN to build a two-stage classifier to predict the likelihood of the FFDM screening examination being positive. CAD performance was tested using a ten-fold cross-validation method. The computed area under the receiver operating characteristic curve was AUC = 0.779 ± 0.025 and the odds ratio monotonically increased from 1 to 31.55 as CAD-generated detection scores increased. The study demonstrated that this new global image feature based CAD scheme had a relatively higher discriminatory power to cue the FFDM examinations with high risk of being positive, which may provide a new CAD-cueing method to assist radiologists in reading and interpreting screening mammograms.
Chen, Xiaodong; Ren, Liqiang; Zheng, Bin; Liu, Hong
2013-01-01
The conventional optical microscopes have been used widely in scientific research and in clinical practice. The modern digital microscopic devices combine the power of optical imaging and computerized analysis, archiving and communication techniques. It has a great potential in pathological examinations for improving the efficiency and accuracy of clinical diagnosis. This chapter reviews the basic optical principles of conventional microscopes, fluorescence microscopes and electron microscopes. The recent developments and future clinical applications of advanced digital microscopic imaging methods and computer assisted diagnosis schemes are also discussed.
An evaluation of consensus techniques for diagnostic interpretation
NASA Astrophysics Data System (ADS)
Sauter, Jake N.; LaBarre, Victoria M.; Furst, Jacob D.; Raicu, Daniela S.
2018-02-01
Learning diagnostic labels from image content has been the standard in computer-aided diagnosis. Most computer-aided diagnosis systems use low-level image features extracted directly from image content to train and test machine learning classifiers for diagnostic label prediction. When the ground truth for the diagnostic labels is not available, reference truth is generated from the experts diagnostic interpretations of the image/region of interest. More specifically, when the label is uncertain, e.g. when multiple experts label an image and their interpretations are different, techniques to handle the label variability are necessary. In this paper, we compare three consensus techniques that are typically used to encode the variability in the experts labeling of the medical data: mean, median and mode, and their effects on simple classifiers that can handle deterministic labels (decision trees) and probabilistic vectors of labels (belief decision trees). Given that the NIH/NCI Lung Image Database Consortium (LIDC) data provides interpretations for lung nodules by up to four radiologists, we leverage the LIDC data to evaluate and compare these consensus approaches when creating computer-aided diagnosis systems for lung nodules. First, low-level image features of nodules are extracted and paired with their radiologists semantic ratings (1= most likely benign, , 5 = most likely malignant); second, machine learning multi-class classifiers that handle deterministic labels (decision trees) and probabilistic vectors of labels (belief decision trees) are built to predict the lung nodules semantic ratings. We show that the mean-based consensus generates the most robust classi- fier overall when compared to the median- and mode-based consensus. Lastly, the results of this study show that, when building CAD systems with uncertain diagnostic interpretation, it is important to evaluate different strategies for encoding and predicting the diagnostic label.
A citizen science approach to optimising computer aided detection (CAD) in mammography
NASA Astrophysics Data System (ADS)
Ionescu, Georgia V.; Harkness, Elaine F.; Hulleman, Johan; Astley, Susan M.
2018-03-01
Computer aided detection (CAD) systems assist medical experts during image interpretation. In mammography, CAD systems prompt suspicious regions which help medical experts to detect early signs of cancer. This is a challenging task and prompts may appear in regions that are actually normal, whilst genuine cancers may be missed. The effect prompting has on readers performance is not fully known. In order to explore the effects of prompting errors, we have created an online game (Bat Hunt), designed for non-experts, that mirrors mammographic CAD. This allows us to explore a wider parameter space. Users are required to detect bats in images of flocks of birds, with image difficulty matched to the proportions of screening mammograms in different BI-RADS density categories. Twelve prompted conditions were investigated, along with unprompted detection. On average, players achieved a sensitivity of 0.33 for unprompted detection, and sensitivities of 0.75, 0.83, and 0.92 respectively for 70%, 80%, and 90% of targets prompted, regardless of CAD specificity. False prompts distract players from finding unprompted targets if they appear in the same image. Player performance decreases when the number of false prompts increases, and increases proportionally with prompting sensitivity. Median lowest d' was for unprompted condition (1.08) and the highest for sensitivity 90% and 0.5 false prompts per image (d'=4.48).
Kuhl, Mitchell; Beimel, Claudia
2016-10-01
The goal of this study was to evaluate the ability of a novel computer assisted surgery system to guide ideal placement of a lag screw during cephalomedullary nailing and then accurately measure the tip-apex distance (TAD) measurement intraoperatively. Retrospective case review. Level II trauma hospital. The initial 98 consecutive clinical cases treated with a cephalomedullary nail in conjunction with a novel computer assisted surgery system were retrospectively reviewed. A novel computer assisted surgery system was utilized to enhance lag screw placement during cephalomedullary nailing procedures. The computer assisted surgery system calculates the TAD intraoperatively after final lag screw placement. The ideal TAD was considered to be within a range of 5mm-20mm. The ability of the computer assisted surgery system (CASS) to assist in placement of a lag screw within the ideal TAD was evaluated. Intraoperative TAD measurements provided by the computer assisted surgery system were then compared to standard postoperative TAD measurements on PACS (picture archiving and communication system) images to determine whether these measurements are equivalent. 79 cases (80.6%) were available with complete information for a retrospective review. All cases had CASS TAD and PACS TAD measurements >5mm and<20mm. In addition, no significant difference could be detected between the intraoperative CASS TAD and the postoperative PACS TAD (p=0.374, Wilcoxon Test; p=0.174, paired T-Test). A cut-out rate of 0% was observed in all patients who were treated with CASS in this case series (95% CI: 0 - 3.01%). The novel computer assisted surgery system tested here is an effective and reliable adjunct that can be utilized for optimal lag screw placement in cephalomedullary nailing procedures. The computer assisted surgery system provides an accurate intraoperative TAD measurement that is equivalent to the standard postoperative measurement utilizing PACS images. Therapeutic Level IV. Copyright © 2016 Elsevier Ltd. All rights reserved.
Histopathological Image Analysis: A Review
Gurcan, Metin N.; Boucheron, Laura; Can, Ali; Madabhushi, Anant; Rajpoot, Nasir; Yener, Bulent
2010-01-01
Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement to the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe. PMID:20671804
Computer Vision Tool and Technician as First Reader of Lung Cancer Screening CT Scans.
Ritchie, Alexander J; Sanghera, Calvin; Jacobs, Colin; Zhang, Wei; Mayo, John; Schmidt, Heidi; Gingras, Michel; Pasian, Sergio; Stewart, Lori; Tsai, Scott; Manos, Daria; Seely, Jean M; Burrowes, Paul; Bhatia, Rick; Atkar-Khattra, Sukhinder; van Ginneken, Bram; Tammemagi, Martin; Tsao, Ming Sound; Lam, Stephen
2016-05-01
To implement a cost-effective low-dose computed tomography (LDCT) lung cancer screening program at the population level, accurate and efficient interpretation of a large volume of LDCT scans is needed. The objective of this study was to evaluate a workflow strategy to identify abnormal LDCT scans in which a technician assisted by computer vision (CV) software acts as a first reader with the aim to improve speed, consistency, and quality of scan interpretation. Without knowledge of the diagnosis, a technician reviewed 828 randomly batched scans (136 with lung cancers, 556 with benign nodules, and 136 without nodules) from the baseline Pan-Canadian Early Detection of Lung Cancer Study that had been annotated by the CV software CIRRUS Lung Screening (Diagnostic Image Analysis Group, Nijmegen, The Netherlands). The scans were classified as either normal (no nodules ≥1 mm or benign nodules) or abnormal (nodules or other abnormality). The results were compared with the diagnostic interpretation by Pan-Canadian Early Detection of Lung Cancer Study radiologists. The overall sensitivity and specificity of the technician in identifying an abnormal scan were 97.8% (95% confidence interval: 96.4-98.8) and 98.0% (95% confidence interval: 89.5-99.7), respectively. Of the 112 prevalent nodules that were found to be malignant in follow-up, 92.9% were correctly identified by the technician plus CV compared with 84.8% by the study radiologists. The average time taken by the technician to review a scan after CV processing was 208 ± 120 seconds. Prescreening CV software and a technician as first reader is a promising strategy for improving the consistency and quality of screening interpretation of LDCT scans. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
VRML Industry: Microcosms in the Making.
ERIC Educational Resources Information Center
Brown, Eric
1998-01-01
Discusses VRML (Virtual Reality Modeling Language) technology and some of its possible applications, including creating three-dimensional images on the Web, advertising, and data visualization in computer-assisted design and computer-assisted manufacturing (CAD/CAM). Future improvements are discussed, including streaming, database support, and…
A soft kinetic data structure for lesion border detection.
Kockara, Sinan; Mete, Mutlu; Yip, Vincent; Lee, Brendan; Aydin, Kemal
2010-06-15
The medical imaging and image processing techniques, ranging from microscopic to macroscopic, has become one of the main components of diagnostic procedures to assist dermatologists in their medical decision-making processes. Computer-aided segmentation and border detection on dermoscopic images is one of the core components of diagnostic procedures and therapeutic interventions for skin cancer. Automated assessment tools for dermoscopic images have become an important research field mainly because of inter- and intra-observer variations in human interpretations. In this study, a novel approach-graph spanner-for automatic border detection in dermoscopic images is proposed. In this approach, a proximity graph representation of dermoscopic images in order to detect regions and borders in skin lesion is presented. Graph spanner approach is examined on a set of 100 dermoscopic images whose manually drawn borders by a dermatologist are used as the ground truth. Error rates, false positives and false negatives along with true positives and true negatives are quantified by digitally comparing results with manually determined borders from a dermatologist. The results show that the highest precision and recall rates obtained to determine lesion boundaries are 100%. However, accuracy of assessment averages out at 97.72% and borders errors' mean is 2.28% for whole dataset.
Automated Analysis of Composition and Style of Photographs and Paintings
ERIC Educational Resources Information Center
Yao, Lei
2013-01-01
Computational aesthetics is a newly emerging cross-disciplinary field with its core situated in traditional research areas such as image processing and computer vision. Using a computer to interpret aesthetic terms for images is very challenging. In this dissertation, I focus on solving specific problems about analyzing the composition and style…
The spatial resolving power of earth resources satellites: A review
NASA Technical Reports Server (NTRS)
Townshend, J. R. G.
1980-01-01
The significance of spatial resolving power on the utility of current and future Earth resources satellites is critically discussed and the relative merits of different approaches in defining and estimating spatial resolution are outlined. It is shown that choice of a particular measure of spatial resolution depends strongly on the particular needs of the user. Several experiments have simulated the capabilities of future satellite systems by degradation of aircraft images. Surprisingly, many of these indicated that improvements in resolution may lead to a reduction in the classification accuracy of land cover types using computer assisted methods. However, where the frequency of boundary pixels is high, the converse relationship is found. Use of imagery dependent upon visual interpretation is likely to benefit more consistently from higher resolutions. Extraction of information from images will depend upon several other factors apart from spatial resolving power: these include characteristics of the terrain being sensed, the image processing methods that are applied as well as certain sensor characteristics.
Image-based computer-assisted diagnosis system for benign paroxysmal positional vertigo
NASA Astrophysics Data System (ADS)
Kohigashi, Satoru; Nakamae, Koji; Fujioka, Hiromu
2005-04-01
We develop the image based computer assisted diagnosis system for benign paroxysmal positional vertigo (BPPV) that consists of the balance control system simulator, the 3D eye movement simulator, and the extraction method of nystagmus response directly from an eye movement image sequence. In the system, the causes and conditions of BPPV are estimated by searching the database for record matching with the nystagmus response for the observed eye image sequence of the patient with BPPV. The database includes the nystagmus responses for simulated eye movement sequences. The eye movement velocity is obtained by using the balance control system simulator that allows us to simulate BPPV under various conditions such as canalithiasis, cupulolithiasis, number of otoconia, otoconium size, and so on. Then the eye movement image sequence is displayed on the CRT by the 3D eye movement simulator. The nystagmus responses are extracted from the image sequence by the proposed method and are stored in the database. In order to enhance the diagnosis accuracy, the nystagmus response for a newly simulated sequence is matched with that for the observed sequence. From the matched simulation conditions, the causes and conditions of BPPV are estimated. We apply our image based computer assisted diagnosis system to two real eye movement image sequences for patients with BPPV to show its validity.
Lytro camera technology: theory, algorithms, performance analysis
NASA Astrophysics Data System (ADS)
Georgiev, Todor; Yu, Zhan; Lumsdaine, Andrew; Goma, Sergio
2013-03-01
The Lytro camera is the first implementation of a plenoptic camera for the consumer market. We consider it a successful example of the miniaturization aided by the increase in computational power characterizing mobile computational photography. The plenoptic camera approach to radiance capture uses a microlens array as an imaging system focused on the focal plane of the main camera lens. This paper analyzes the performance of Lytro camera from a system level perspective, considering the Lytro camera as a black box, and uses our interpretation of Lytro image data saved by the camera. We present our findings based on our interpretation of Lytro camera file structure, image calibration and image rendering; in this context, artifacts and final image resolution are discussed.
Yang, Liu; Jin, Rong; Mummert, Lily; Sukthankar, Rahul; Goode, Adam; Zheng, Bin; Hoi, Steven C H; Satyanarayanan, Mahadev
2010-01-01
Similarity measurement is a critical component in content-based image retrieval systems, and learning a good distance metric can significantly improve retrieval performance. However, despite extensive study, there are several major shortcomings with the existing approaches for distance metric learning that can significantly affect their application to medical image retrieval. In particular, "similarity" can mean very different things in image retrieval: resemblance in visual appearance (e.g., two images that look like one another) or similarity in semantic annotation (e.g., two images of tumors that look quite different yet are both malignant). Current approaches for distance metric learning typically address only one goal without consideration of the other. This is problematic for medical image retrieval where the goal is to assist doctors in decision making. In these applications, given a query image, the goal is to retrieve similar images from a reference library whose semantic annotations could provide the medical professional with greater insight into the possible interpretations of the query image. If the system were to retrieve images that did not look like the query, then users would be less likely to trust the system; on the other hand, retrieving images that appear superficially similar to the query but are semantically unrelated is undesirable because that could lead users toward an incorrect diagnosis. Hence, learning a distance metric that preserves both visual resemblance and semantic similarity is important. We emphasize that, although our study is focused on medical image retrieval, the problem addressed in this work is critical to many image retrieval systems. We present a boosting framework for distance metric learning that aims to preserve both visual and semantic similarities. The boosting framework first learns a binary representation using side information, in the form of labeled pairs, and then computes the distance as a weighted Hamming distance using the learned binary representation. A boosting algorithm is presented to efficiently learn the distance function. We evaluate the proposed algorithm on a mammographic image reference library with an Interactive Search-Assisted Decision Support (ISADS) system and on the medical image data set from ImageCLEF. Our results show that the boosting framework compares favorably to state-of-the-art approaches for distance metric learning in retrieval accuracy, with much lower computational cost. Additional evaluation with the COREL collection shows that our algorithm works well for regular image data sets.
Tissue classification for laparoscopic image understanding based on multispectral texture analysis
NASA Astrophysics Data System (ADS)
Zhang, Yan; Wirkert, Sebastian J.; Iszatt, Justin; Kenngott, Hannes; Wagner, Martin; Mayer, Benjamin; Stock, Christian; Clancy, Neil T.; Elson, Daniel S.; Maier-Hein, Lena
2016-03-01
Intra-operative tissue classification is one of the prerequisites for providing context-aware visualization in computer-assisted minimally invasive surgeries. As many anatomical structures are difficult to differentiate in conventional RGB medical images, we propose a classification method based on multispectral image patches. In a comprehensive ex vivo study we show (1) that multispectral imaging data is superior to RGB data for organ tissue classification when used in conjunction with widely applied feature descriptors and (2) that combining the tissue texture with the reflectance spectrum improves the classification performance. Multispectral tissue analysis could thus evolve as a key enabling technique in computer-assisted laparoscopy.
NASA Astrophysics Data System (ADS)
Padgett, Mary Lou; Johnson, John L.; Vemuri, V. Rao
1997-04-01
This paper focuses on use of a new image filtering technique, Pulsed Coupled Neural Network factoring to enhance both the analysis and visual interpretation of noisy sinusoidal time signals, such as those produced by LLNL's Microwave Impulse Radar motion sensor. Separation of a slower, carrier wave from faster, finer detailed signals and from scattered noise is illustrated. The resulting images clearly illustrate the changes over time of simulated heart motion patterns. Such images can potentially assist a field medic in interpretation of the extent of combat injuries. These images can also be transmitted or stored and retrieved for later analysis.
NASA Astrophysics Data System (ADS)
Marrugo, Andrés G.; Millán, María S.; Cristóbal, Gabriel; Gabarda, Salvador; Sorel, Michal; Sroubek, Filip
2012-06-01
Medical digital imaging has become a key element of modern health care procedures. It provides visual documentation and a permanent record for the patients, and most important the ability to extract information about many diseases. Modern ophthalmology thrives and develops on the advances in digital imaging and computing power. In this work we present an overview of recent image processing techniques proposed by the authors in the area of digital eye fundus photography. Our applications range from retinal image quality assessment to image restoration via blind deconvolution and visualization of structural changes in time between patient visits. All proposed within a framework for improving and assisting the medical practice and the forthcoming scenario of the information chain in telemedicine.
Fleury, Eduardo F C; Gianini, Ana Claudia; Marcomini, Karem; Oliveira, Vilmar
2018-01-01
To determine the applicability of a computer-aided diagnostic system strain elastography system for the classification of breast masses diagnosed by ultrasound and scored using the criteria proposed by the breast imaging and reporting data system ultrasound lexicon and to determine the diagnostic accuracy and interobserver variability. This prospective study was conducted between March 1, 2016, and May 30, 2016. A total of 83 breast masses subjected to percutaneous biopsy were included. Ultrasound elastography images before biopsy were interpreted by 3 radiologists with and without the aid of computer-aided diagnostic system for strain elastography. The parameters evaluated by each radiologist results were sensitivity, specificity, and diagnostic accuracy, with and without computer-aided diagnostic system for strain elastography. Interobserver variability was assessed using a weighted κ test and an intraclass correlation coefficient. The areas under the receiver operating characteristic curves were also calculated. The areas under the receiver operating characteristic curve were 0.835, 0.801, and 0.765 for readers 1, 2, and 3, respectively, without computer-aided diagnostic system for strain elastography, and 0.900, 0.926, and 0.868, respectively, with computer-aided diagnostic system for strain elastography. The intraclass correlation coefficient between the 3 readers was 0.6713 without computer-aided diagnostic system for strain elastography and 0.811 with computer-aided diagnostic system for strain elastography. The proposed computer-aided diagnostic system for strain elastography system has the potential to improve the diagnostic performance of radiologists in breast examination using ultrasound associated with elastography.
Computer-Assisted Digital Image Analysis of Plus Disease in Retinopathy of Prematurity.
Kemp, Pavlina S; VanderVeen, Deborah K
2016-01-01
The objective of this study is to review the current state and role of computer-assisted analysis in diagnosis of plus disease in retinopathy of prematurity. Diagnosis and documentation of retinopathy of prematurity are increasingly being supplemented by digital imaging. The incorporation of computer-aided techniques has the potential to add valuable information and standardization regarding the presence of plus disease, an important criterion in deciding the necessity of treatment of vision-threatening retinopathy of prematurity. A review of literature found that several techniques have been published examining the process and role of computer aided analysis of plus disease in retinopathy of prematurity. These techniques use semiautomated image analysis techniques to evaluate retinal vascular dilation and tortuosity, using calculated parameters to evaluate presence or absence of plus disease. These values are then compared with expert consensus. The study concludes that computer-aided image analysis has the potential to use quantitative and objective criteria to act as a supplemental tool in evaluating for plus disease in the setting of retinopathy of prematurity.
NASA Astrophysics Data System (ADS)
Gur, David
2018-03-01
We tested whether a case based CADe scheme, developed only on negatively interpreted screening mammograms, has predictive value for cancer detection during subsequent screening and how this approach may affect radiologists' performances when alerting them to a small subset ( 15%) of exams on which radiologists tend to miss cancers. A series of six parameters case based CADe schemes, using 200 negative mammograms (800 images 100 women with breast cancer at subsequent screening and 100 women who remained negative), carefully matched by age and breast density, were optimized. CADe alone schemes performed at AUC=0.68 (+/- 0.01). Five radiologists and 4 residents interpreted the same cases and performed at AUC =0.71 (experienced radiologists) and AUC= 0.61 (residents). With the "CADe warnings" shown to the interpreters only if they did not recall one of 24 highest CADe scoring cases, assisted performance of radiologists and residents respectively, were 0.71 and 0.63 (p>0.05). However, when the CADe alone performance was raised to an AUC=0.78, by artificially increasing the number of possible warnings from 16 to 24, radiologists' performances significantly improved from an AUC of 0.68 to 0.72 (p<0.05). In conclusion, the use case based information other than breast density could highlight a small fraction of women whose cancers are more likely to be missed by radiologists and later detected during subsequent mammograms, thereby, leading to an assisted approach that improves radiologists' performances. However, to be effective, the performance of the CADe alone should be substantially higher (e.g. ΔAUC >=0.07) than that of the un-assisted radiologist.
Nguyen, Su; Zhang, Mengjie; Tan, Kay Chen
2017-09-01
Automated design of dispatching rules for production systems has been an interesting research topic over the last several years. Machine learning, especially genetic programming (GP), has been a powerful approach to dealing with this design problem. However, intensive computational requirements, accuracy and interpretability are still its limitations. This paper aims at developing a new surrogate assisted GP to help improving the quality of the evolved rules without significant computational costs. The experiments have verified the effectiveness and efficiency of the proposed algorithms as compared to those in the literature. Furthermore, new simplification and visualisation approaches have also been developed to improve the interpretability of the evolved rules. These approaches have shown great potentials and proved to be a critical part of the automated design system.
Assessing Computer Literacy: A Validated Instrument and Empirical Results.
ERIC Educational Resources Information Center
Gabriel, Roy M.
1985-01-01
Describes development of a comprehensive computer literacy assessment battery for K-12 curriculum based on objectives of a curriculum implemented in the Worldwide Department of Defense Dependents Schools system. Test development and field test data are discussed and a correlational analysis which assists in interpretation of test results is…
ICCE/ICCAI 2000 Full & Short Papers (Methodologies).
ERIC Educational Resources Information Center
2000
This document contains the full text of the following full and short papers on methodologies from ICCE/ICCAI 2000 (International Conference on Computers in Education/International Conference on Computer-Assisted Instruction): (1) "A Methodology for Learning Pattern Analysis from Web Logs by Interpreting Web Page Contents" (Chih-Kai Chang and…
Giger, Maryellen L.; Chan, Heang-Ping; Boone, John
2008-01-01
The roles of physicists in medical imaging have expanded over the years, from the study of imaging systems (sources and detectors) and dose to the assessment of image quality and perception, the development of image processing techniques, and the development of image analysis methods to assist in detection and diagnosis. The latter is a natural extension of medical physicists’ goals in developing imaging techniques to help physicians acquire diagnostic information and improve clinical decisions. Studies indicate that radiologists do not detect all abnormalities on images that are visible on retrospective review, and they do not always correctly characterize abnormalities that are found. Since the 1950s, the potential use of computers had been considered for analysis of radiographic abnormalities. In the mid-1980s, however, medical physicists and radiologists began major research efforts for computer-aided detection or computer-aided diagnosis (CAD), that is, using the computer output as an aid to radiologists—as opposed to a completely automatic computer interpretation—focusing initially on methods for the detection of lesions on chest radiographs and mammograms. Since then, extensive investigations of computerized image analysis for detection or diagnosis of abnormalities in a variety of 2D and 3D medical images have been conducted. The growth of CAD over the past 20 years has been tremendous—from the early days of time-consuming film digitization and CPU-intensive computations on a limited number of cases to its current status in which developed CAD approaches are evaluated rigorously on large clinically relevant databases. CAD research by medical physicists includes many aspects—collecting relevant normal and pathological cases; developing computer algorithms appropriate for the medical interpretation task including those for segmentation, feature extraction, and classifier design; developing methodology for assessing CAD performance; validating the algorithms using appropriate cases to measure performance and robustness; conducting observer studies with which to evaluate radiologists in the diagnostic task without and with the use of the computer aid; and ultimately assessing performance with a clinical trial. Medical physicists also have an important role in quantitative imaging, by validating the quantitative integrity of scanners and developing imaging techniques, and image analysis tools that extract quantitative data in a more accurate and automated fashion. As imaging systems become more complex and the need for better quantitative information from images grows, the future includes the combined research efforts from physicists working in CAD with those working on quantitative imaging systems to readily yield information on morphology, function, molecular structure, and more—from animal imaging research to clinical patient care. A historical review of CAD and a discussion of challenges for the future are presented here, along with the extension to quantitative image analysis. PMID:19175137
Computer vision in cell biology.
Danuser, Gaudenz
2011-11-23
Computer vision refers to the theory and implementation of artificial systems that extract information from images to understand their content. Although computers are widely used by cell biologists for visualization and measurement, interpretation of image content, i.e., the selection of events worth observing and the definition of what they mean in terms of cellular mechanisms, is mostly left to human intuition. This Essay attempts to outline roles computer vision may play and should play in image-based studies of cellular life. Copyright © 2011 Elsevier Inc. All rights reserved.
Computer Assisted Virtual Environment - CAVE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, Phillip; Podgorney, Robert; Weingartner,
Research at the Center for Advanced Energy Studies is taking on another dimension with a 3-D device known as a Computer Assisted Virtual Environment. The CAVE uses projection to display high-end computer graphics on three walls and the floor. By wearing 3-D glasses to create depth perception and holding a wand to move and rotate images, users can delve into data.
ERIC Educational Resources Information Center
Bouchefra, Miloud; Baghoussi, Meriem
2017-01-01
Computer Assisted Language Learning (CALL) is still groping its way into Algerian English as a Foreign Language (EFL) classroom, where Information Communications Technologies (ICTs) are defined in terms of occasional use of computers and data projectors for material presentation in the classroom. Though major issues in the image of the lack of…
Computer Assisted Virtual Environment - CAVE
Erickson, Phillip; Podgorney, Robert; Weingartner,
2018-05-30
Research at the Center for Advanced Energy Studies is taking on another dimension with a 3-D device known as a Computer Assisted Virtual Environment. The CAVE uses projection to display high-end computer graphics on three walls and the floor. By wearing 3-D glasses to create depth perception and holding a wand to move and rotate images, users can delve into data.
Plasma cell quantification in bone marrow by computer-assisted image analysis.
Went, P; Mayer, S; Oberholzer, M; Dirnhofer, S
2006-09-01
Minor and major criteria for the diagnosis of multiple meloma according to the definition of the WHO classification include different categories of the bone marrow plasma cell count: a shift from the 10-30% group to the > 30% group equals a shift from a minor to a major criterium, while the < 10% group does not contribute to the diagnosis. Plasma cell fraction in the bone marrow is therefore critical for the classification and optimal clinical management of patients with plasma cell dyscrasias. The aim of this study was (i) to establish a digital image analysis system able to quantify bone marrow plasma cells and (ii) to evaluate two quantification techniques in bone marrow trephines i.e. computer-assisted digital image analysis and conventional light-microscopic evaluation. The results were compared regarding inter-observer variation of the obtained results. Eighty-seven patients, 28 with multiple myeloma, 29 with monoclonal gammopathy of undetermined significance, and 30 with reactive plasmocytosis were included in the study. Plasma cells in H&E- and CD138-stained slides were quantified by two investigators using light-microscopic estimation and computer-assisted digital analysis. The sets of results were correlated with rank correlation coefficients. Patients were categorized according to WHO criteria addressing the plasma cell content of the bone marrow (group 1: 0-10%, group 2: 11-30%, group 3: > 30%), and the results compared by kappa statistics. The degree of agreement in CD138-stained slides was higher for results obtained using the computer-assisted image analysis system compared to light microscopic evaluation (corr.coeff. = 0.782), as was seen in the intra- (corr.coeff. = 0.960) and inter-individual results correlations (corr.coeff. = 0.899). Inter-observer agreement for categorized results (SM/PW: kappa 0.833) was in a high range. Computer-assisted image analysis demonstrated a higher reproducibility of bone marrow plasma cell quantification. This might be of critical importance for diagnosis, clinical management and prognostics when plasma cell numbers are low, which makes exact quantifications difficult.
Phantom feet on digital radionuclide images and other scary computer tales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freitas, J.E.; Dworkin, H.J.; Dees, S.M.
1989-09-01
Malfunction of a computer-assisted digital gamma camera is reported. Despite what appeared to be adequate acceptance testing, an error in the system gave rise to switching of images and identification text. A suggestion is made for using a hot marker, which would avoid the potential error of misinterpretation of patient images.
Comparing errors in ED computer-assisted vs conventional pediatric drug dosing and administration.
Yamamoto, Loren; Kanemori, Joan
2010-06-01
Compared to fixed-dose single-vial drug administration in adults, pediatric drug dosing and administration requires a series of calculations, all of which are potentially error prone. The purpose of this study is to compare error rates and task completion times for common pediatric medication scenarios using computer program assistance vs conventional methods. Two versions of a 4-part paper-based test were developed. Each part consisted of a set of medication administration and/or dosing tasks. Emergency department and pediatric intensive care unit nurse volunteers completed these tasks using both methods (sequence assigned to start with a conventional or a computer-assisted approach). Completion times, errors, and the reason for the error were recorded. Thirty-eight nurses completed the study. Summing the completion of all 4 parts, the mean conventional total time was 1243 seconds vs the mean computer program total time of 879 seconds (P < .001). The conventional manual method had a mean of 1.8 errors vs the computer program with a mean of 0.7 errors (P < .001). Of the 97 total errors, 36 were due to misreading the drug concentration on the label, 34 were due to calculation errors, and 8 were due to misplaced decimals. Of the 36 label interpretation errors, 18 (50%) occurred with digoxin or insulin. Computerized assistance reduced errors and the time required for drug administration calculations. A pattern of errors emerged, noting that reading/interpreting certain drug labels were more error prone. Optimizing the layout of drug labels could reduce the error rate for error-prone labels. Copyright (c) 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mazurowski, Maciej A.; Zhang, Jing; Lo, Joseph Y.; Kuzmiak, Cherie M.; Ghate, Sujata V.; Yoon, Sora
2014-03-01
Providing high quality mammography education to radiology trainees is essential, as good interpretation skills potentially ensure the highest benefit of screening mammography for patients. We have previously proposed a computer-aided education system that utilizes trainee models, which relate human-assessed image characteristics to interpretation error. We proposed that these models be used to identify the most difficult and therefore the most educationally useful cases for each trainee. In this study, as a next step in our research, we propose to build trainee models that utilize features that are automatically extracted from images using computer vision algorithms. To predict error, we used a logistic regression which accepts imaging features as input and returns error as output. Reader data from 3 experts and 3 trainees were used. Receiver operating characteristic analysis was applied to evaluate the proposed trainee models. Our experiments showed that, for three trainees, our models were able to predict error better than chance. This is an important step in the development of adaptive computer-aided education systems since computer-extracted features will allow for faster and more extensive search of imaging databases in order to identify the most educationally beneficial cases.
Tiouririne, Mohamed; Dixon, Adam J; Mauldin, F William; Scalzo, David; Krishnaraj, Arun
2017-08-01
The aim of this study was to evaluate the imaging performance of a handheld ultrasound system and the accuracy of an automated lumbar spine computer-aided detection (CAD) algorithm in the spines of human subjects. This study was approved by the institutional review board of the University of Virginia. The authors designed a handheld ultrasound system with enhanced bone image quality and fully automated CAD of lumbar spine anatomy. The imaging performance was evaluated by imaging the lumbar spines of 68 volunteers with body mass index between 18.5 and 48 kg/m. The accuracy, sensitivity, and specificity of the lumbar spine CAD algorithm were assessed by comparing the algorithm's results to ground-truth segmentations of neuraxial anatomy provided by radiologists. The lumbar spine CAD algorithm detected the epidural space with a sensitivity of 94.2% (95% confidence interval [CI], 85.1%-98.1%) and a specificity of 85.5% (95% CI, 81.7%-88.6%) and measured its depth with an error of approximately ±0.5 cm compared with measurements obtained manually from the 2-dimensional ultrasound images. The spine midline was detected with a sensitivity of 93.9% (95% CI, 85.8%-97.7%) and specificity of 91.3% (95% CI, 83.6%-96.9%), and its lateral position within the ultrasound image was measured with an error of approximately ±0.3 cm. The bone enhancement imaging mode produced images with 5.1- to 10-fold enhanced bone contrast when compared with a comparable handheld ultrasound imaging system. The results of this study demonstrate the feasibility of CAD for assisting with real-time interpretation of ultrasound images of the lumbar spine at the bedside.
Skinner, Sarah
2015-08-01
Thoracic imaging is commonly ordered in general practice. Guidelines exist for ordering thoracic imaging but few are specific for general practice. This article summarises current indications for imaging the thorax with chest X-ray and computed tomography. A simple frame-work for interpretation of the chest X-ray, suitable for trainees and practitioners providing primary care imaging in rural and remote locations, is presented. Interpretation of thoracic imaging is best done using a systematic approach. Radiological investigation is not warranted in un-complicated upper respiratory tract infections or asthma, minor trauma or acute-on-chronic chest pain.
ROC analysis for diagnostic accuracy of fracture by using different monitors.
Liang, Zhigang; Li, Kuncheng; Yang, Xiaolin; Du, Xiangying; Liu, Jiabin; Zhao, Xin; Qi, Xiangdong
2006-09-01
The purpose of this study was to compare diagnostic accuracy by using two types of monitors. Four radiologists with 10 years experience twice interpreted the films of 77 fracture cases by using the ViewSonic P75f+ and BARCO MGD221 monitors, with a time interval of 3 weeks. Each time the radiologists used one type of monitor to interpret the images. The image browser used was the Unisight software provided by Atlastiger Company (Shanghai, China), and interpretation result was analyzed via the LABMRMC software. In studies of receiver operating characteristics to score the presence or absence of fracture, the results of images interpreted through monochromic monitors showed significant statistical difference compared to those interpreted using the color monitors. A significant difference was observed in the results obtained by using two kinds of monitors. Color monitors cannot serve as substitutes for monochromatic monitors in the process of interpreting computed radiography (CR) images with fractures.
Computer-assisted surgical planning and automation of laser delivery systems
NASA Astrophysics Data System (ADS)
Zamorano, Lucia J.; Dujovny, Manuel; Dong, Ada; Kadi, A. Majeed
1991-05-01
This paper describes a 'real time' surgical treatment planning interactive workstation, utilizing multimodality imaging (computer tomography, magnetic resonance imaging, digital angiography) that has been developed to provide the neurosurgeon with two-dimensional multiplanar and three-dimensional 'display' of a patient's lesion.
Quantitative Characterization of Tissue Microstructure with Temporal Diffusion Spectroscopy
Xu, Junzhong; Does, Mark D.; Gore, John C.
2009-01-01
The signals recorded by diffusion-weighted magnetic resonance imaging (DWI) are dependent on the micro-structural properties of biological tissues, so it is possible to obtain quantitative structural information non-invasively from such measurements. Oscillating gradient spin echo (OGSE) methods have the ability to probe the behavior of water diffusion over different time scales and the potential to detect variations in intracellular structure. To assist in the interpretation of OGSE data, analytical expressions have been derived for diffusion-weighted signals with OGSE methods for restricted diffusion in some typical structures, including parallel planes, cylinders and spheres, using the theory of temporal diffusion spectroscopy. These analytical predictions have been confirmed with computer simulations. These expressions suggest how OGSE signals from biological tissues should be analyzed to characterize tissue microstructure, including how to estimate cell nuclear sizes. This approach provides a model to interpret diffusion data obtained from OGSE measurements that can be used for applications such as monitoring tumor response to treatment in vivo. PMID:19616979
See, K C; Ong, V; Wong, S H; Leanda, R; Santos, J; Taculod, J; Phua, J; Teoh, C M
2016-01-01
Guidelines recommend teaching of lung ultrasound for critical care, though little information exists on how much training is required for independent practice, especially for non-physician trainees. We thus aimed to elucidate a threshold number of cases above which competency for independent practice may be attained for respiratory therapists (RTs). We conducted a prospective audit of lung ultrasound training between July 2014 and April 2015 in our 20-bed medical intensive care unit. Following theoretical instruction and self-learning, trainees acquired images from 12 lung zones under direct supervision and classified images into six patterns. Assistance during image acquisition and correct interpretation of ultrasound images were recorded. Eleven ultrasound-naïve RTs scanned an average of 15 patients each (170 patients in total). Among supervisor-adjudicated lung ultrasound findings, 35.5% were abnormal. Blinded verification of the adjudicated findings was done for the first 92 patients (1104 images), with an agreement of 95.4%. As RTs scanned more patients, there was a significant decrease in the proportion of images requiring supervisor assistance (Cuzick's P < 0.001), and a significant increase in the proportion of correctly identified images (Cuzick's P = 0.008). After trainees performed at least ten scans, less than 2% of images required assistance with acquisition and less than 5% were wrongly interpreted. Our training method allowed RTs to independently perform lung ultrasound after at least ten directly supervised scans. Given that RTs are likely to have less ultrasound knowledge and less clinical know-how compared to physicians, we believe that the same threshold number of scans may be also safely applied to the latter.
Research on the Construction of Remote Sensing Automatic Interpretation Symbol Big Data
NASA Astrophysics Data System (ADS)
Gao, Y.; Liu, R.; Liu, J.; Cheng, T.
2018-04-01
Remote sensing automatic interpretation symbol (RSAIS) is an inexpensive and fast method in providing precise in-situ information for image interpretation and accuracy. This study designed a scientific and precise RSAIS data characterization method, as well as a distributed and cloud architecture massive data storage method. Additionally, it introduced an offline and online data update mode and a dynamic data evaluation mechanism, with the aim to create an efficient approach for RSAIS big data construction. Finally, a national RSAIS database with more than 3 million samples covering 86 land types was constructed during 2013-2015 based on the National Geographic Conditions Monitoring Project of China and then annually updated since the 2016 period. The RSAIS big data has proven to be a good method for large scale image interpretation and field validation. It is also notable that it has the potential to solve image automatic interpretation with the assistance of deep learning technology in the remote sensing big data era.
X-Ray Radiography of Gas Turbine Ceramics.
1979-10-20
Microfocus X-ray equipment. 1a4ihe definition of equipment concepts for a computer assisted tomography ( CAT ) system; and 4ffthe development of a CAT ...were obtained from these test coupons using Microfocus X-ray and image en- hancement techniques. A Computer Assisted Tomography ( CAT ) design concept...monitor. Computer reconstruction algorithms were investigated with respect to CAT and a preferred approach was determined. An appropriate CAT algorithm
NASA Technical Reports Server (NTRS)
Markert, Kel; Ashmall, William; Johnson, Gary; Saah, David; Mollicone, Danilo; Diaz, Alfonso Sanchez-Paus; Anderson, Eric; Flores, Africa; Griffin, Robert
2017-01-01
Collect Earth Online (CEO) is a free and open online implementation of the FAO Collect Earth system for collaboratively collecting environmental data through the visual interpretation of Earth observation imagery. The primary collection mechanism in CEO is human interpretation of land surface characteristics in imagery served via Web Map Services (WMS). However, interpreters may not have enough contextual information to classify samples by only viewing the imagery served via WMS, be they high resolution or otherwise. To assist in the interpretation and collection processes in CEO, SERVIR, a joint NASA-USAID initiative that brings Earth observations to improve environmental decision making in developing countries, developed the GeoDash system, an embedded and critical component of CEO. GeoDash leverages Google Earth Engine (GEE) by allowing users to set up custom browser-based widgets that pull from GEE's massive public data catalog. These widgets can be quick looks of other satellite imagery, time series graphs of environmental variables, and statistics panels of the same. Users can customize widgets with any of GEE's image collections, such as the historical Landsat collection with data available since the 1970s, select date ranges, image stretch parameters, graph characteristics, and create custom layouts, all on-the-fly to support plot interpretation in CEO. This presentation focuses on the implementation and potential applications, including the back-end links to GEE and the user interface with custom widget building. GeoDash takes large data volumes and condenses them into meaningful, relevant information for interpreters. While designed initially with national and global forest resource assessments in mind, the system will complement disaster assessments, agriculture management, project monitoring and evaluation, and more.
NASA Astrophysics Data System (ADS)
Markert, K. N.; Ashmall, W.; Johnson, G.; Saah, D. S.; Anderson, E.; Flores Cordova, A. I.; Díaz, A. S. P.; Mollicone, D.; Griffin, R.
2017-12-01
Collect Earth Online (CEO) is a free and open online implementation of the FAO Collect Earth system for collaboratively collecting environmental data through the visual interpretation of Earth observation imagery. The primary collection mechanism in CEO is human interpretation of land surface characteristics in imagery served via Web Map Services (WMS). However, interpreters may not have enough contextual information to classify samples by only viewing the imagery served via WMS, be they high resolution or otherwise. To assist in the interpretation and collection processes in CEO, SERVIR, a joint NASA-USAID initiative that brings Earth observations to improve environmental decision making in developing countries, developed the GeoDash system, an embedded and critical component of CEO. GeoDash leverages Google Earth Engine (GEE) by allowing users to set up custom browser-based widgets that pull from GEE's massive public data catalog. These widgets can be quick looks of other satellite imagery, time series graphs of environmental variables, and statistics panels of the same. Users can customize widgets with any of GEE's image collections, such as the historical Landsat collection with data available since the 1970s, select date ranges, image stretch parameters, graph characteristics, and create custom layouts, all on-the-fly to support plot interpretation in CEO. This presentation focuses on the implementation and potential applications, including the back-end links to GEE and the user interface with custom widget building. GeoDash takes large data volumes and condenses them into meaningful, relevant information for interpreters. While designed initially with national and global forest resource assessments in mind, the system will complement disaster assessments, agriculture management, project monitoring and evaluation, and more.
ERIC Educational Resources Information Center
Yue, Kui
2009-01-01
A shape grammar is a formalism that has been widely applied, in many different fields, to analyzing designs. Computer implementation of a shape grammar interpreter is vital to both research and application. However, implementing a shape grammar interpreter is hard, especially for parametric shapes defined by open terms. This dissertation…
Applied photo interpretation for airbrush cartography
NASA Technical Reports Server (NTRS)
Inge, J. L.; Bridges, P. M.
1976-01-01
New techniques of cartographic portrayal have been developed for the compilation of maps of lunar and planetary surfaces. Conventional photo interpretation methods utilizing size, shape, shadow, tone, pattern, and texture are applied to computer processed satellite television images. The variety of the image data allows the illustrator to interpret image details by inter-comparison and intra-comparison of photographs. Comparative judgements are affected by illumination, resolution, variations in surface coloration, and transmission or processing artifacts. The validity of the interpretation process is tested by making a representational drawing by an airbrush portrayal technique. Production controls insure the consistency of a map series. Photo interpretive cartographic portrayal skills are used to prepare two kinds of map series and are adaptable to map products of different kinds and purposes.
Bayesian network interface for assisting radiology interpretation and education
NASA Astrophysics Data System (ADS)
Duda, Jeffrey; Botzolakis, Emmanuel; Chen, Po-Hao; Mohan, Suyash; Nasrallah, Ilya; Rauschecker, Andreas; Rudie, Jeffrey; Bryan, R. Nick; Gee, James; Cook, Tessa
2018-03-01
In this work, we present the use of Bayesian networks for radiologist decision support during clinical interpretation. This computational approach has the advantage of avoiding incorrect diagnoses that result from known human cognitive biases such as anchoring bias, framing effect, availability bias, and premature closure. To integrate Bayesian networks into clinical practice, we developed an open-source web application that provides diagnostic support for a variety of radiology disease entities (e.g., basal ganglia diseases, bone lesions). The Clinical tool presents the user with a set of buttons representing clinical and imaging features of interest. These buttons are used to set the value for each observed feature. As features are identified, the conditional probabilities for each possible diagnosis are updated in real time. Additionally, using sensitivity analysis, the interface may be set to inform the user which remaining imaging features provide maximum discriminatory information to choose the most likely diagnosis. The Case Submission tools allow the user to submit a validated case and the associated imaging features to a database, which can then be used for future tuning/testing of the Bayesian networks. These submitted cases are then reviewed by an assigned expert using the provided QC tool. The Research tool presents users with cases with previously labeled features and a chosen diagnosis, for the purpose of performance evaluation. Similarly, the Education page presents cases with known features, but provides real time feedback on feature selection.
NASA Astrophysics Data System (ADS)
Shimoyama, Koji; Jeong, Shinkyu; Obayashi, Shigeru
A new approach for multi-objective robust design optimization was proposed and applied to a real-world design problem with a large number of objective functions. The present approach is assisted by response surface approximation and visual data-mining, and resulted in two major gains regarding computational time and data interpretation. The Kriging model for response surface approximation can markedly reduce the computational time for predictions of robustness. In addition, the use of self-organizing maps as a data-mining technique allows visualization of complicated design information between optimality and robustness in a comprehensible two-dimensional form. Therefore, the extraction and interpretation of trade-off relations between optimality and robustness of design, and also the location of sweet spots in the design space, can be performed in a comprehensive manner.
Bruining, David H; Zimmermann, Ellen M; Loftus, Edward V; Sandborn, William J; Sauer, Cary G; Strong, Scott A
2018-03-01
Computed tomography and magnetic resonance enterography have become routine small bowel imaging tests to evaluate patients with established or suspected Crohn's disease, but the interpretation and use of these imaging modalities can vary widely. A shared understanding of imaging findings, nomenclature, and utilization will improve the utility of these imaging techniques to guide treatment options, as well as assess for treatment response and complications. Representatives from the Society of Abdominal Radiology Crohn's Disease-Focused Panel, the Society of Pediatric Radiology, the American Gastroenterological Association, and other experts, systematically evaluated evidence for imaging findings associated with small bowel Crohn's disease enteric inflammation and established recommendations for the evaluation, interpretation, and use of computed tomography and magnetic resonance enterography in small bowel Crohn's disease. This work makes recommendations for imaging findings that indicate small bowel Crohn's disease, how inflammatory small bowel Crohn's disease and its complications should be described, elucidates potential extra-enteric findings that may be seen at imaging, and recommends that cross-sectional enterography should be performed at diagnosis of Crohn's disease and considered for small bowel Crohn's disease monitoring paradigms. A useful morphologic construct describing how imaging findings evolve with disease progression and response is described, and standard impressions for radiologic reports that convey meaningful information to gastroenterologists and surgeons are presented. © 2018, RSNA, AGA Institute, and Society of Abdominal Radiology This article is being published jointly in Radiology and Gastroenterology.
Bruining, David H; Zimmermann, Ellen M; Loftus, Edward V; Sandborn, William J; Sauer, Cary G; Strong, Scott A
2018-03-01
Computed tomography and magnetic resonance enterography have become routine small bowel imaging tests to evaluate patients with established or suspected Crohn's disease, but the interpretation and use of these imaging modalities can vary widely. A shared understanding of imaging findings, nomenclature, and utilization will improve the utility of these imaging techniques to guide treatment options, as well as assess for treatment response and complications. Representatives from the Society of Abdominal Radiology Crohn's Disease-Focused Panel, the Society of Pediatric Radiology, the American Gastroenterological Association, and other experts, systematically evaluated evidence for imaging findings associated with small bowel Crohn's disease enteric inflammation and established recommendations for the evaluation, interpretation, and use of computed tomography and magnetic resonance enterography in small bowel Crohn's disease. This work makes recommendations for imaging findings that indicate small bowel Crohn's disease, how inflammatory small bowel Crohn's disease and its complications should be described, elucidates potential extra-enteric findings that may be seen at imaging, and recommends that cross-sectional enterography should be performed at diagnosis of Crohn's disease and considered for small bowel Crohn's disease monitoring paradigms. A useful morphologic construct describing how imaging findings evolve with disease progression and response is described, and standard impressions for radiologic reports that convey meaningful information to gastroenterologists and surgeons are presented. Copyright © 2018 AGA Institute, RSNA, and Society of Abdominal Radiology. Published by Elsevier Inc. All rights reserved.
[Expert systems and automatic diagnostic systems in histopathology--a review].
Tamai, S
1999-02-01
In this decade, the pathological information system has gradually been settled in many hospitals in Japan. Pathological reports and images are now digitized and managed in the database, and are referred by clinicians at the peripherals. Tele-pathology is also developing; and its users are increasing. However, in many occasions, the problem solving in diagnostic pathology is completely dependent on the solo-pathologist. Considering the need for timely and efficient supports to the solo-pathologist, I reviewed the papers on the knowledge-based interactive expert systems. The interpretations of the histopathological images are dependent on the pathologist, and these expert systems have been evaluated as "educational". With the view of the success in the cytological screening, the development of "image-analysis-based" automatic "histopathological image" classifier has been on ongoing challenges. Our 3 years experience of the development of the pathological image classifier using the artificial neural networks technology is briefly presented. This classifier provides us a "fitting rate" for the individual diagnostic pattern of the breast tumors, such as "fibroadenoma pattern". The diagnosis assisting system with computer technology should provide pathologists, especially solo-pathologists, a useful tool for the quality assurance and improvement of pathological diagnosis.
Clinical decision making using teleradiology in urology.
Lee, B R; Allaf, M; Moore, R; Bohlman, M; Wang, G M; Bishoff, J T; Jackman, S V; Cadeddu, J A; Jarrett, T W; Khazan, R; Kavoussi, L R
1999-01-01
Using a personal computer-based teleradiology system, we compared accuracy, confidence, and diagnostic ability in the interpretation of digitized radiographs to determine if teleradiology-imported studies convey sufficient information to make relevant clinical decisions involving urology. Variables of diagnostic accuracy, confidence, image quality, interpretation, and the impact of clinical decisions made after viewing digitized radiographs were compared with those of original radiographs. We evaluated 956 radiographs that included 94 IV pyelograms, four voiding cystourethrograms, and two nephrostograms. The radiographs were digitized and transferred over an Ethernet network to a remote personal computer-based viewing station. The digitized images were viewed by urologists and graded according to confidence in making a diagnosis, image quality, diagnostic difficulty, clinical management based on the image itself, and brief patient history. The hard-copy radiographs were then interpreted immediately afterward, and diagnostic decisions were reassessed. All analog radiographs were reviewed by an attending radiologist. Ninety-seven percent of the decisions made from the digitized radiographs did not change after reviewing conventional radiographs of the same case. When comparing the variables of clinical confidence, quality of the film on the teleradiology system versus analog films, and diagnostic difficulty, we found no statistical difference (p > .05) between the two techniques. Overall accuracy in interpreting the digitized images on the teleradiology system was 88% by urologists compared with that of the attending radiologist's interpretation of the analog radiographs. However, urologists detected findings on five (5%) analog radiographs that had been previously unreported by the radiologist. Viewing radiographs transmitted to a personal computer-based viewing station is an appropriate means of reviewing films with sufficient quality on which to base clinical decisions. Our focus was whether decisions made after viewing the transmitted radiographs would change after viewing the hard-copy images of the same case. In 97% of the cases, the decision did not change. In those cases in which management was altered, recommendation of further imaging studies was the most common factor.
ERIC Educational Resources Information Center
Jha, Vikram; Widdowson, Shelley; Duffy, Sean
2002-01-01
Discusses computer-assisted learning (CAL) in medical education and describes the development of an interactive CAL program on CD-ROM, combining video, illustrations, and three-dimensional images, to enhance understanding of vaginal hysterectomy in terms of the anatomy and steps of the surgical procedure. (Author/LRW)
NASA Astrophysics Data System (ADS)
El Bekri, Nadia; Angele, Susanne; Ruckhäberle, Martin; Peinsipp-Byma, Elisabeth; Haelke, Bruno
2015-10-01
This paper introduces an interactive recognition assistance system for imaging reconnaissance. This system supports aerial image analysts on missions during two main tasks: Object recognition and infrastructure analysis. Object recognition concentrates on the classification of one single object. Infrastructure analysis deals with the description of the components of an infrastructure and the recognition of the infrastructure type (e.g. military airfield). Based on satellite or aerial images, aerial image analysts are able to extract single object features and thereby recognize different object types. It is one of the most challenging tasks in the imaging reconnaissance. Currently, there are no high potential ATR (automatic target recognition) applications available, as consequence the human observer cannot be replaced entirely. State-of-the-art ATR applications cannot assume in equal measure human perception and interpretation. Why is this still such a critical issue? First, cluttered and noisy images make it difficult to automatically extract, classify and identify object types. Second, due to the changed warfare and the rise of asymmetric threats it is nearly impossible to create an underlying data set containing all features, objects or infrastructure types. Many other reasons like environmental parameters or aspect angles compound the application of ATR supplementary. Due to the lack of suitable ATR procedures, the human factor is still important and so far irreplaceable. In order to use the potential benefits of the human perception and computational methods in a synergistic way, both are unified in an interactive assistance system. RecceMan® (Reconnaissance Manual) offers two different modes for aerial image analysts on missions: the object recognition mode and the infrastructure analysis mode. The aim of the object recognition mode is to recognize a certain object type based on the object features that originated from the image signatures. The infrastructure analysis mode pursues the goal to analyze the function of the infrastructure. The image analyst extracts visually certain target object signatures, assigns them to corresponding object features and is finally able to recognize the object type. The system offers him the possibility to assign the image signatures to features given by sample images. The underlying data set contains a wide range of objects features and object types for different domains like ships or land vehicles. Each domain has its own feature tree developed by aerial image analyst experts. By selecting the corresponding features, the possible solution set of objects is automatically reduced and matches only the objects that contain the selected features. Moreover, we give an outlook of current research in the field of ground target analysis in which we deal with partly automated methods to extract image signatures and assign them to the corresponding features. This research includes methods for automatically determining the orientation of an object and geometric features like width and length of the object. This step enables to reduce automatically the possible object types offered to the image analyst by the interactive recognition assistance system.
Tiwari, Saumya; Reddy, Vijaya B.; Bhargava, Rohit; Raman, Jaishankar
2015-01-01
Rejection is a common problem after cardiac transplants leading to significant number of adverse events and deaths, particularly in the first year of transplantation. The gold standard to identify rejection is endomyocardial biopsy. This technique is complex, cumbersome and requires a lot of expertise in the correct interpretation of stained biopsy sections. Traditional histopathology cannot be used actively or quickly during cardiac interventions or surgery. Our objective was to develop a stain-less approach using an emerging technology, Fourier transform infrared (FT-IR) spectroscopic imaging to identify different components of cardiac tissue by their chemical and molecular basis aided by computer recognition, rather than by visual examination using optical microscopy. We studied this technique in assessment of cardiac transplant rejection to evaluate efficacy in an example of complex cardiovascular pathology. We recorded data from human cardiac transplant patients’ biopsies, used a Bayesian classification protocol and developed a visualization scheme to observe chemical differences without the need of stains or human supervision. Using receiver operating characteristic curves, we observed probabilities of detection greater than 95% for four out of five histological classes at 10% probability of false alarm at the cellular level while correctly identifying samples with the hallmarks of the immune response in all cases. The efficacy of manual examination can be significantly increased by observing the inherent biochemical changes in tissues, which enables us to achieve greater diagnostic confidence in an automated, label-free manner. We developed a computational pathology system that gives high contrast images and seems superior to traditional staining procedures. This study is a prelude to the development of real time in situ imaging systems, which can assist interventionists and surgeons actively during procedures. PMID:25932912
Computer assisted analysis of medical x-ray images
NASA Astrophysics Data System (ADS)
Bengtsson, Ewert
1996-01-01
X-rays were originally used to expose film. The early computers did not have enough capacity to handle images with useful resolution. The rapid development of computer technology over the last few decades has, however, led to the introduction of computers into radiology. In this overview paper, the various possible roles of computers in radiology are examined. The state of the art is briefly presented, and some predictions about the future are made.
NASA Astrophysics Data System (ADS)
Zamorano, Lucia J.; Jiang, Charlie Z. W.
1993-09-01
In this decade the concept and development of computer assisted stereotactic neurological surgery has improved dramatically. First, the computer network replaced the tape as the data transportation media. Second, newer systems include multi-modality image correlation and frameless stereotactics as an integral part of their functionality, and offer extensive assistance to the neurosurgeon from the preplanning stages to and throughout the operation itself. These are very important changes, and have spurred the development of many interesting techniques. Successful systems include the ISG and NSPS-3.0.
Abe, Masanori; Fukazawa, Ryuji; Ogawa, Shunichi; Watanabe, Makoto; Fukushima, Yoshimitsu; Kiriyama, Tomonari; Hayashi, Hiromitsu; Itoh, Yasuhiko
2016-01-01
The coronary arterial lesions of Kawasaki disease are mainly dilative lesions, aneurysms, and stenotic lesions formed before, after, and between aneurysms; these lesions develop in multiple branches resulting in complex coronary hemodynamics. Diagnosis of myocardial ischemia and infarction and evaluation of the culprit coronary arteries and regions is critical to evaluating the treatment and prognosis of patients. This study used hybrid imaging, in which multidetector computed tomographic (CT) images for coronary CT angiography (CCTA) and stress myocardial perfusion single-photon emission CT (SPECT) images were fused. We investigated the diagnosis of blood vessels and regions responsible for myocardial ischemia and infarction in patients with complex coronary arterial lesions; in addition, we evaluated myocardial lesions that developed directly under giant coronary artery aneurysms. The subjects were 17 patients with Kawasaki disease with multiple coronary arterial lesions (median age, 18.0 years; 16 male). Both CCTA using 64-row CT and adenosine-loading myocardial SPECT were performed. Three branches, the right coronary artery (RCA), left anterior descending branch (LAD), and left circumflex branch, were evaluated with the conventional side-by-side interpretation, in which the images were lined up for diagnosis, and hybrid imaging, in which the CCTA and SPECT images were fused with computer processing. In addition, the myocardial lesions directly under giant coronary artery aneurysms were investigated with fusion imaging. Images sufficient for evaluation were acquired in all 17 patients. In the RCA, coronary arterial lesions were detected with CCTA in 16 patients. The evaluations were consistent between the side-by-side and fusion interpretation in 14 patients, and the blood vessel responsible for the myocardial ischemic region was identified in 2 patients. In the left circumflex branch, coronary arterial lesions were confirmed with 3-dimensional CT in 5 patients, and the the culprit coronary arteries for myocardial ischemia/infarction were confirmed with the fusion interpretation but not with the side-by-side interpretation. In the LAD, coronary arterial lesions were present in all patients, and the diagnosis was made with the fusion interpretation in 10 patients. In the LAD, small-range infarct lesions were detected directly under the giant coronary artery aneurysm in 8 patients, but were not confirmed with the side-by-side interpretation. Fusion imaging was capable of accurately evaluating myocardial ischemia/infarction as cardiovascular sequelae of Kawasaki disease and confirming the culprit coronary arteries. In addition, analysis of fusion images confirmed that small-range infarct lesions were concomitantly present directly under giant coronary artery aneurysms in the anterior descending coronary artery.
López, Carlos; Lejeune, Marylène; Escrivà, Patricia; Bosch, Ramón; Salvadó, Maria Teresa; Pons, Lluis E.; Baucells, Jordi; Cugat, Xavier; Álvaro, Tomás; Jaén, Joaquín
2008-01-01
This study investigates the effects of digital image compression on automatic quantification of immunohistochemical nuclear markers. We examined 188 images with a previously validated computer-assisted analysis system. A first group was composed of 47 images captured in TIFF format, and other three contained the same images converted from TIFF to JPEG format with 3×, 23× and 46× compression. Counts of TIFF format images were compared with the other three groups. Overall, differences in the count of the images increased with the percentage of compression. Low-complexity images (≤100 cells/field, without clusters or with small-area clusters) had small differences (<5 cells/field in 95–100% of cases) and high-complexity images showed substantial differences (<35–50 cells/field in 95–100% of cases). Compression does not compromise the accuracy of immunohistochemical nuclear marker counts obtained by computer-assisted analysis systems for digital images with low complexity and could be an efficient method for storing these images. PMID:18755997
Paradigms of perception in clinical practice.
Jacobson, Francine L; Berlanstein, Bruce P; Andriole, Katherine P
2006-06-01
Display strategies for medical images in radiology have evolved in tandem with the technology by which images are made. The close of the 20th century, nearly coincident with the 100th anniversary of the discovery of x-rays, brought radiologists to a new crossroad in the evolution of image display. The increasing availability, speed, and flexibility of computer technology can now revolutionize how images are viewed and interpreted. Radiologists are not yet in agreement regarding the next paradigm for image display. The possibilities are being explored systematically through the Society for Computer Applications in Radiology's Transforming the Radiological Interpretation Process initiative. The varied input of radiologists who work in a large variety of settings will enable new display strategies to best serve radiologists in the detection and quantification of disease. Considerations and possibilities for the future are presented in this paper.
Otitis Media Diagnosis for Developing Countries Using Tympanic Membrane Image-Analysis
Myburgh, Hermanus C.; van Zijl, Willemien H.; Swanepoel, DeWet; Hellström, Sten; Laurent, Claude
2016-01-01
Background Otitis media is one of the most common childhood diseases worldwide, but because of lack of doctors and health personnel in developing countries it is often misdiagnosed or not diagnosed at all. This may lead to serious, and life-threatening complications. There is, thus a need for an automated computer based image-analyzing system that could assist in making accurate otitis media diagnoses anywhere. Methods A method for automated diagnosis of otitis media is proposed. The method uses image-processing techniques to classify otitis media. The system is trained using high quality pre-assessed images of tympanic membranes, captured by digital video-otoscopes, and classifies undiagnosed images into five otitis media categories based on predefined signs. Several verification tests analyzed the classification capability of the method. Findings An accuracy of 80.6% was achieved for images taken with commercial video-otoscopes, while an accuracy of 78.7% was achieved for images captured on-site with a low cost custom-made video-otoscope. Interpretation The high accuracy of the proposed otitis media classification system compares well with the classification accuracy of general practitioners and pediatricians (~ 64% to 80%) using traditional otoscopes, and therefore holds promise for the future in making automated diagnosis of otitis media in medically underserved populations. PMID:27077122
Aaldering, Loes; Vliegenthart, Rens
Despite the large amount of research into both media coverage of politics as well as political leadership, surprisingly little research has been devoted to the ways political leaders are discussed in the media. This paper studies whether computer-aided content analysis can be applied in examining political leadership images in Dutch newspaper articles. It, firstly, provides a conceptualization of political leader character traits that integrates different perspectives in the literature. Moreover, this paper measures twelve political leadership images in media coverage, based on a large-scale computer-assisted content analysis of Dutch media coverage (including almost 150.000 newspaper articles), and systematically tests the quality of the employed measurement instrument by assessing the relationship between the images, the variance in the measurement, the over-time development of images for two party leaders and by comparing the computer results with manual coding. We conclude that the computerized content analysis provides a valid measurement for the leadership images in Dutch newspapers. Moreover, we find that the dimensions political craftsmanship, vigorousness, integrity, communicative performances and consistency are regularly applied in discussing party leaders, but that portrayal of party leaders in terms of responsiveness is almost completely absent in Dutch newspapers.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-02
...)(4)(B) (excluding x-ray, ultrasound, and fluoroscopy), as specified by the Secretary in consultation... imaging services as ``imaging and computer-assisted imaging services, including x-ray, ultrasound...
Zhang, Xue; Xiao, Yang; Zeng, Jie; Qiu, Weibao; Qian, Ming; Wang, Congzhi; Zheng, Rongqin; Zheng, Hairong
2014-01-01
To develop and evaluate a computer-assisted method of quantifying five-point elasticity scoring system based on ultrasound real-time elastography (RTE), for classifying benign and malignant breast lesions, with pathologic results as the reference standard. Conventional ultrasonography (US) and RTE images of 145 breast lesions (67 malignant, 78 benign) were performed in this study. Each lesion was automatically contoured on the B-mode image by the level set method and mapped on the RTE image. The relative elasticity value of each pixel was reconstructed and classified into hard or soft by the fuzzy c-means clustering method. According to the hardness degree inside lesion and its surrounding tissue, the elasticity score of the RTE image was computed in an automatic way. Visual assessments of the radiologists were used for comparing the diagnostic performance. Histopathologic examination was used as the reference standard. The Student's t test and receiver operating characteristic (ROC) curve analysis were performed for statistical analysis. Considering score 4 or higher as test positive for malignancy, the diagnostic accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were 93.8% (136/145), 92.5% (62/67), 94.9% (74/78), 93.9% (62/66), and 93.7% (74/79) for the computer-assisted scheme, and 89.7% (130/145), 85.1% (57/67), 93.6% (73/78), 92.0% (57/62), and 88.0% (73/83) for manual assessment. Area under ROC curve (Az value) for the proposed method was higher than the Az value for visual assessment (0.96 vs. 0.93). Computer-assisted quantification of classical five-point scoring system can significantly eliminate the interobserver variability and thereby improve the diagnostic confidence of classifying the breast lesions to avoid unnecessary biopsy. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Satellite monitoring of vegetation and geology in semi-arid environments. [Tanzania
NASA Technical Reports Server (NTRS)
Kihlblom, U.; Johansson, D. (Principal Investigator)
1980-01-01
The possibility of mapping various characteristics of the natural environment of Tanzania by various LANDSAT techniques was assessed. Interpretation and mapping were carried out using black and white as well as color infrared images on the scale of 1:250,000. The advantages of several computer techniques were also assessed, including contrast-stretched rationing, differential edge enhancement; supervised classification; multitemporal classification; and change detection. Results Show the most useful image for interpretation comes from band 5, with additional information being obtained from either band 6 or band 7. The advantages of using color infrared images for interpreting vegetation and geology are so great that black and white should be used only to supplement the colored images.
NASA Astrophysics Data System (ADS)
Rajabzadeh-Oghaz, Hamidreza; Varble, Nicole; Davies, Jason M.; Mowla, Ashkan; Shakir, Hakeem J.; Sonig, Ashish; Shallwani, Hussain; Snyder, Kenneth V.; Levy, Elad I.; Siddiqui, Adnan H.; Meng, Hui
2017-03-01
Neurosurgeons currently base most of their treatment decisions for intracranial aneurysms (IAs) on morphological measurements made manually from 2D angiographic images. These measurements tend to be inaccurate because 2D measurements cannot capture the complex geometry of IAs and because manual measurements are variable depending on the clinician's experience and opinion. Incorrect morphological measurements may lead to inappropriate treatment strategies. In order to improve the accuracy and consistency of morphological analysis of IAs, we have developed an image-based computational tool, AView. In this study, we quantified the accuracy of computer-assisted adjuncts of AView for aneurysmal morphologic assessment by performing measurement on spheres of known size and anatomical IA models. AView has an average morphological error of 0.56% in size and 2.1% in volume measurement. We also investigate the clinical utility of this tool on a retrospective clinical dataset and compare size and neck diameter measurement between 2D manual and 3D computer-assisted measurement. The average error was 22% and 30% in the manual measurement of size and aneurysm neck diameter, respectively. Inaccuracies due to manual measurements could therefore lead to wrong treatment decisions in 44% and inappropriate treatment strategies in 33% of the IAs. Furthermore, computer-assisted analysis of IAs improves the consistency in measurement among clinicians by 62% in size and 82% in neck diameter measurement. We conclude that AView dramatically improves accuracy for morphological analysis. These results illustrate the necessity of a computer-assisted approach for the morphological analysis of IAs.
NASA Astrophysics Data System (ADS)
Kage, Andreas; Canto, Marcia; Gorospe, Emmanuel; Almario, Antonio; Münzenmayer, Christian
2010-03-01
In the near future, Computer Assisted Diagnosis (CAD) which is well known in the area of mammography might be used to support clinical experts in the diagnosis of images derived from imaging modalities such as endoscopy. In the recent past, a few first approaches for computer assisted endoscopy have been presented already. These systems use a video signal as an input that is provided by the endoscopes video processor. Despite the advent of high-definition systems most standard endoscopy systems today still provide only analog video signals. These signals consist of interlaced images that can not be used in a CAD approach without deinterlacing. Of course, there are many different deinterlacing approaches known today. But most of them are specializations of some basic approaches. In this paper we present four basic deinterlacing approaches. We have used a database of non-interlaced images which have been degraded by artificial interlacing and afterwards processed by these approaches. The database contains regions of interest (ROI) of clinical relevance for the diagnosis of abnormalities in the esophagus. We compared the classification rates on these ROIs on the original images and after the deinterlacing. The results show that the deinterlacing has an impact on the classification rates. The Bobbing approach and the Motion Compensation approach achieved the best classification results in most cases.
[Application of computer-assisted 3D imaging simulation for surgery].
Matsushita, S; Suzuki, N
1994-03-01
This article describes trends in application of various imaging technology in surgical planning, navigation, and computer aided surgery. Imaging information is essential factor for simulation in medicine. It includes three dimensional (3D) image reconstruction, neuro-surgical navigation, creating substantial model based on 3D imaging data and etc. These developments depend mostly on 3D imaging technique, which is much contributed by recent computer technology. 3D imaging can offer new intuitive information to physician and surgeon, and this method is suitable for mechanical control. By utilizing simulated results, we can obtain more precise surgical orientation, estimation, and operation. For more advancement, automatic and high speed recognition of medical imaging is being developed.
NASA Astrophysics Data System (ADS)
Uchiyama, Yoshikazu; Asano, Tatsunori; Hara, Takeshi; Fujita, Hiroshi; Kinosada, Yasutomi; Asano, Takahiko; Kato, Hiroki; Kanematsu, Masayuki; Hoshi, Hiroaki; Iwama, Toru
2009-02-01
The detection of cerebrovascular diseases such as unruptured aneurysm, stenosis, and occlusion is a major application of magnetic resonance angiography (MRA). However, their accurate detection is often difficult for radiologists. Therefore, several computer-aided diagnosis (CAD) schemes have been developed in order to assist radiologists with image interpretation. The purpose of this study was to develop a computerized method for segmenting cerebral arteries, which is an essential component of CAD schemes. For the segmentation of vessel regions, we first used a gray level transformation to calibrate voxel values. To adjust for variations in the positioning of patients, registration was subsequently employed to maximize the overlapping of the vessel regions in the target image and reference image. The vessel regions were then segmented from the background using gray-level thresholding and region growing techniques. Finally, rule-based schemes with features such as size, shape, and anatomical location were employed to distinguish between vessel regions and false positives. Our method was applied to 854 clinical cases obtained from two different hospitals. The segmentation of cerebral arteries in 97.1%(829/854) of the MRA studies was attained as an acceptable result. Therefore, our computerized method would be useful in CAD schemes for the detection of cerebrovascular diseases in MRA images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harwood, S.J.; Anderson, M.W.; Klein, R.C.
1984-01-01
Emission computed tomography (ECT) studies were performed on a GE 400 A/T camera and ADAC computers (system 3 and system 3300). Thirty-three sets of ECT and planar images were obtained in 20 patients over a six month period. Imaging was performed 48 hours after the intravenous administration of 5 mc of Gallium 67 citrate. No bowel preparation was employed. Comparison is made of the initial nuclear medicine report derived from planar and ECT imaging aided by clinical knowledge versus the consensus opinion of two nuclear medicine physicians reading the planar images along with minimal clinical information. The lymphoma series consistsmore » of 18 scans in 10 patients. There were 5 scans in which a false negative planar interpretation was changed to a true positive ECT interpretation. Sensitivity of planar imaging for lymphoma was 58% which rose to 100% with addition of ECT information. There were no false positives by either technique. There were 5 sets of scans in 5 lung carcinoma patients. Sensitivity of the planar images was 60% because of 2 false negative results. Sensitivity of the ECT technique was 100%. There were no false positives. The infection series consists of 10 scans in 5 patients. Sensitivity of ECT was 100%, sensitivity of planar was 66%. There was 1 false positive planar. For the total series the accuracy of planar imaging was 69% and the predictive value of a negative planar interpretation was 44%. Corresponding values for ECT imaging were 100%. The authors' experience demonstrates significant increase in sensitivity without loss of specificity resulting from the use of Emission Computed Tomography in both chest and abdomen in patients with lymphoma, infection, and lung cancer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-11-17
The Republic of the Philippines is intensely interested in the identification, development, and conservation of natural resources. In keeping with this, the Government of the Philippines has recently completed a nation-wide sedimentary basin evaluation program to assess hydrocarbon potential and assist in future exploration activities. This program of collection and interpretation of the radar imagery was designed to augment and complement the existing data base. The primary objective of the project was to further the goals of international energy development by aiding the Republic of the Philippines in the assessment of potential geothermal and petroleum prospects within the areas imaged.more » Secondary goals were to assist the Republic of the Philippines in utilizing state-of-the-art radar remote sensing technology for resource exploration, and to train key Philippines scientists in the use of imaging radar data. 7 refs., 20 figs., 2 tabs.« less
Radar imagery interpretation to assess the hydrocarbon potential of four sites in the Philippines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-11-17
The Republic of the Philippines is intensely interested in the identification, development, and conservation of natural resources. In keeping with this, the Government of the Philippines has recently completed a nationwide sedimentary basin evaluation program to assess hydrocarbon potential and assist in future exploration activities. This program of collection and interpretation of the radar imagery was designed to augment and complement the existing data base. The primary objective of the project was to further the goals of international energy development by aiding the Republic of the Philippines in the assessment of potential petroleum and geothermal prospects within the areas imaged.more » Secondary goals were to assist the Republic of the Philippines in utilizing state-of-the-art radar remote sensing technology for resource exploration, and to train key Philippines scientists in the use of imaging radar data. 29 refs., 30 figs., 14 tabs.« less
Interpretation of forest characteristics from computer-generated images.
T.M. Barrett; H.R. Zuuring; T. Christopher
2006-01-01
The need for effective communication in the management and planning of forested landscapes has led to a substantial increase in the use of visual information. Using forest plots from California, Oregon, and Washington, and a survey of 183 natural resource professionals in these states, we examined the use of computer-generated images to convey information about forest...
Computer-assisted abdominal surgery: new technologies.
Kenngott, H G; Wagner, M; Nickel, F; Wekerle, A L; Preukschas, A; Apitz, M; Schulte, T; Rempel, R; Mietkowski, P; Wagner, F; Termer, A; Müller-Stich, Beat P
2015-04-01
Computer-assisted surgery is a wide field of technologies with the potential to enable the surgeon to improve efficiency and efficacy of diagnosis, treatment, and clinical management. This review provides an overview of the most important new technologies and their applications. A MEDLINE database search was performed revealing a total of 1702 references. All references were considered for information on six main topics, namely image guidance and navigation, robot-assisted surgery, human-machine interface, surgical processes and clinical pathways, computer-assisted surgical training, and clinical decision support. Further references were obtained through cross-referencing the bibliography cited in each work. Based on their respective field of expertise, the authors chose 64 publications relevant for the purpose of this review. Computer-assisted systems are increasingly used not only in experimental studies but also in clinical studies. Although computer-assisted abdominal surgery is still in its infancy, the number of studies is constantly increasing, and clinical studies start showing the benefits of computers used not only as tools of documentation and accounting but also for directly assisting surgeons during diagnosis and treatment of patients. Further developments in the field of clinical decision support even have the potential of causing a paradigm shift in how patients are diagnosed and treated.
Extracting and identifying concrete structural defects in GPR images
NASA Astrophysics Data System (ADS)
Ye, Qiling; Jiao, Liangbao; Liu, Chuanxin; Cao, Xuehong; Huston, Dryver; Xia, Tian
2018-03-01
Traditionally most GPR data interpretations are performed manually. With the advancement of computing technologies, how to automate GPR data interpretation to achieve high efficiency and accuracy has become an active research subject. In this paper, analytical characterizations of major defects in concrete structures, including delamination, air void and moisture in GPR images, are performed. In the study, the image features of different defects are compared. Algorithms are developed for defect feature extraction and identification. For validations, both simulation results and field test data are utilized.
NASA Astrophysics Data System (ADS)
André, M. P.; Galperin, M.; Berry, A.; Ojeda-Fournier, H.; O'Boyle, M.; Olson, L.; Comstock, C.; Taylor, A.; Ledgerwood, M.
Our computer-aided diagnostic (CADx) tool uses advanced image processing and artificial intelligence to analyze findings on breast sonography images. The goal is to standardize reporting of such findings using well-defined descriptors and to improve accuracy and reproducibility of interpretation of breast ultrasound by radiologists. This study examined several factors that may impact accuracy and reproducibility of the CADx software, which proved to be highly accurate and stabile over several operating conditions.
Jayaprakash, Paul T
2017-09-01
Often cited reliability test on video superimposition method integrated scaling face-images in relation to skull-images, tragus-auditory meatus relationship in addition to exocanthion-Whitnall's tubercle relationship when orientating the skull-image and wipe mode imaging in addition to mix mode imaging when obtaining skull-face image overlay and evaluating the goodness of match. However, a report that found higher false positive matches in computer assisted superimposition method transited from the above foundational concepts and relied on images of unspecified sizes that are lesser than 'life-size', frontal plane landmarks in the skull- and face- images alone for orientating the skull-image and mix images alone for evaluating the goodness of match. Recently, arguing the use of 'life-size' images as 'archaic', the authors who tested the reliability in the computer assisted superimposition method have denied any method transition. This article describes that the use of images of unspecified sizes at lesser than 'life-size' eliminates the only possibility to quantify parameters during superimposition which alone enables dynamic skull orientation when overlaying a skull-image with a face-image in an anatomically acceptable orientation. The dynamic skull orientation process mandatorily requires aligning the tragus in the 2D face-image with the auditory meatus in the 3D skull-image for anatomically orientating the skull-image in relation to the posture in the face-image, a step not mentioned by the authors describing the computer assisted superimposition method. Furthermore, mere reliance on mix type images during image overlay eliminates the possibility to assess the relationship between the leading edges of the skull- and face-image outlines as also specific area match among the corresponding craniofacial organs during superimposition. Indicating the possibility of increased false positive matches as a consequence of the above method transitions, the need for testing the reliability in the superimposition method adopting concepts that are considered safe is stressed. Copyright © 2017 Elsevier B.V. All rights reserved.
NiftyNet: a deep-learning platform for medical imaging.
Gibson, Eli; Li, Wenqi; Sudre, Carole; Fidon, Lucas; Shakir, Dzhoshkun I; Wang, Guotai; Eaton-Rosen, Zach; Gray, Robert; Doel, Tom; Hu, Yipeng; Whyntie, Tom; Nachev, Parashkev; Modat, Marc; Barratt, Dean C; Ourselin, Sébastien; Cardoso, M Jorge; Vercauteren, Tom
2018-05-01
Medical image analysis and computer-assisted intervention problems are increasingly being addressed with deep-learning-based solutions. Established deep-learning platforms are flexible but do not provide specific functionality for medical image analysis and adapting them for this domain of application requires substantial implementation effort. Consequently, there has been substantial duplication of effort and incompatible infrastructure developed across many research groups. This work presents the open-source NiftyNet platform for deep learning in medical imaging. The ambition of NiftyNet is to accelerate and simplify the development of these solutions, and to provide a common mechanism for disseminating research outputs for the community to use, adapt and build upon. The NiftyNet infrastructure provides a modular deep-learning pipeline for a range of medical imaging applications including segmentation, regression, image generation and representation learning applications. Components of the NiftyNet pipeline including data loading, data augmentation, network architectures, loss functions and evaluation metrics are tailored to, and take advantage of, the idiosyncracies of medical image analysis and computer-assisted intervention. NiftyNet is built on the TensorFlow framework and supports features such as TensorBoard visualization of 2D and 3D images and computational graphs by default. We present three illustrative medical image analysis applications built using NiftyNet infrastructure: (1) segmentation of multiple abdominal organs from computed tomography; (2) image regression to predict computed tomography attenuation maps from brain magnetic resonance images; and (3) generation of simulated ultrasound images for specified anatomical poses. The NiftyNet infrastructure enables researchers to rapidly develop and distribute deep learning solutions for segmentation, regression, image generation and representation learning applications, or extend the platform to new applications. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Dilsizian, Steven E; Siegel, Eliot L
2014-01-01
Although advances in information technology in the past decade have come in quantum leaps in nearly every aspect of our lives, they seem to be coming at a slower pace in the field of medicine. However, the implementation of electronic health records (EHR) in hospitals is increasing rapidly, accelerated by the meaningful use initiatives associated with the Center for Medicare & Medicaid Services EHR Incentive Programs. The transition to electronic medical records and availability of patient data has been associated with increases in the volume and complexity of patient information, as well as an increase in medical alerts, with resulting "alert fatigue" and increased expectations for rapid and accurate diagnosis and treatment. Unfortunately, these increased demands on health care providers create greater risk for diagnostic and therapeutic errors. In the near future, artificial intelligence (AI)/machine learning will likely assist physicians with differential diagnosis of disease, treatment options suggestions, and recommendations, and, in the case of medical imaging, with cues in image interpretation. Mining and advanced analysis of "big data" in health care provide the potential not only to perform "in silico" research but also to provide "real time" diagnostic and (potentially) therapeutic recommendations based on empirical data. "On demand" access to high-performance computing and large health care databases will support and sustain our ability to achieve personalized medicine. The IBM Jeopardy! Challenge, which pitted the best all-time human players against the Watson computer, captured the imagination of millions of people across the world and demonstrated the potential to apply AI approaches to a wide variety of subject matter, including medicine. The combination of AI, big data, and massively parallel computing offers the potential to create a revolutionary way of practicing evidence-based, personalized medicine.
Macedo, Alessandra A; Pessotti, Hugo C; Almansa, Luciana F; Felipe, Joaquim C; Kimura, Edna T
2016-07-01
The analyses of several systems for medical-imaging processing typically support the extraction of image attributes, but do not comprise some information that characterizes images. For example, morphometry can be applied to find new information about the visual content of an image. The extension of information may result in knowledge. Subsequently, results of mappings can be applied to recognize exam patterns, thus improving the accuracy of image retrieval and allowing a better interpretation of exam results. Although successfully applied in breast lesion images, the morphometric approach is still poorly explored in thyroid lesions due to the high subjectivity thyroid examinations. This paper presents a theoretical-practical study, considering Computer Aided Diagnosis (CAD) and Morphometry, to reduce the semantic discontinuity between medical image features and human interpretation of image content. The proposed method aggregates the content of microscopic images characterized by morphometric information and other image attributes extracted by traditional object extraction algorithms. This method carries out segmentation, feature extraction, image labeling and classification. Morphometric analysis was included as an object extraction method in order to verify the improvement of its accuracy for automatic classification of microscopic images. To validate this proposal and verify the utility of morphometric information to characterize thyroid images, a CAD system was created to classify real thyroid image-exams into Papillary Cancer, Goiter and Non-Cancer. Results showed that morphometric information can improve the accuracy and precision of image retrieval and the interpretation of results in computer-aided diagnosis. For example, in the scenario where all the extractors are combined with the morphometric information, the CAD system had its best performance (70% of precision in Papillary cases). Results signalized a positive use of morphometric information from images to reduce semantic discontinuity between human interpretation and image characterization. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Cairns, Andrew W; Bond, Raymond R; Finlay, Dewar D; Breen, Cathal; Guldenring, Daniel; Gaffney, Robert; Gallagher, Anthony G; Peace, Aaron J; Henn, Pat
2016-12-01
The 12-lead Electrocardiogram (ECG) presents a plethora of information and demands extensive knowledge and a high cognitive workload to interpret. Whilst the ECG is an important clinical tool, it is frequently incorrectly interpreted. Even expert clinicians are known to impulsively provide a diagnosis based on their first impression and often miss co-abnormalities. Given it is widely reported that there is a lack of competency in ECG interpretation, it is imperative to optimise the interpretation process. Predominantly the ECG interpretation process remains a paper based approach and whilst computer algorithms are used to assist interpreters by providing printed computerised diagnoses, there are a lack of interactive human-computer interfaces to guide and assist the interpreter. An interactive computing system was developed to guide the decision making process of a clinician when interpreting the ECG. The system decomposes the interpretation process into a series of interactive sub-tasks and encourages the clinician to systematically interpret the ECG. We have named this model 'Interactive Progressive based Interpretation' (IPI) as the user cannot 'progress' unless they complete each sub-task. Using this model, the ECG is segmented into five parts and presented over five user interfaces (1: Rhythm interpretation, 2: Interpretation of the P-wave morphology, 3: Limb lead interpretation, 4: QRS morphology interpretation with chest lead and rhythm strip presentation and 5: Final review of 12-lead ECG). The IPI model was implemented using emerging web technologies (i.e. HTML5, CSS3, AJAX, PHP and MySQL). It was hypothesised that this system would reduce the number of interpretation errors and increase diagnostic accuracy in ECG interpreters. To test this, we compared the diagnostic accuracy of clinicians when they used the standard approach (control cohort) with clinicians who interpreted the same ECGs using the IPI approach (IPI cohort). For the control cohort, the (mean; standard deviation; confidence interval) of the ECG interpretation accuracy was (45.45%; SD=18.1%; CI=42.07, 48.83). The mean ECG interpretation accuracy rate for the IPI cohort was 58.85% (SD=42.4%; CI=49.12, 68.58), which indicates a positive mean difference of 13.4%. (CI=4.45, 22.35) An N-1 Chi-square test of independence indicated a 92% chance that the IPI cohort will have a higher accuracy rate. Interpreter self-rated confidence also increased between cohorts from a mean of 4.9/10 in the control cohort to 6.8/10 in the IPI cohort (p=0.06). Whilst the IPI cohort had greater diagnostic accuracy, the duration of ECG interpretation was six times longer when compared to the control cohort. We have developed a system that segments and presents the ECG across five graphical user interfaces. Results indicate that this approach improves diagnostic accuracy but with the expense of time, which is a valuable resource in medical practice. Copyright © 2016 Elsevier Inc. All rights reserved.
Computer-assisted diagnosis of melanoma.
Fuller, Collin; Cellura, A Paul; Hibler, Brian P; Burris, Katy
2016-03-01
The computer-assisted diagnosis of melanoma is an exciting area of research where imaging techniques are combined with diagnostic algorithms in an attempt to improve detection and outcomes for patients with skin lesions suspicious for malignancy. Once an image has been acquired, it undergoes a processing pathway which includes preprocessing, enhancement, segmentation, feature extraction, feature selection, change detection, and ultimately classification. Practicality for everyday clinical use remains a vital question. A successful model must obtain results that are on par or outperform experienced dermatologists, keep costs at a minimum, be user-friendly, and be time efficient with high sensitivity and specificity. ©2015 Frontline Medical Communications.
Computer-Aided Diagnosis in Medical Imaging: Historical Review, Current Status and Future Potential
Doi, Kunio
2007-01-01
Computer-aided diagnosis (CAD) has become one of the major research subjects in medical imaging and diagnostic radiology. In this article, the motivation and philosophy for early development of CAD schemes are presented together with the current status and future potential of CAD in a PACS environment. With CAD, radiologists use the computer output as a “second opinion” and make the final decisions. CAD is a concept established by taking into account equally the roles of physicians and computers, whereas automated computer diagnosis is a concept based on computer algorithms only. With CAD, the performance by computers does not have to be comparable to or better than that by physicians, but needs to be complementary to that by physicians. In fact, a large number of CAD systems have been employed for assisting physicians in the early detection of breast cancers on mammograms. A CAD scheme that makes use of lateral chest images has the potential to improve the overall performance in the detection of lung nodules when combined with another CAD scheme for PA chest images. Because vertebral fractures can be detected reliably by computer on lateral chest radiographs, radiologists’ accuracy in the detection of vertebral fractures would be improved by the use of CAD, and thus early diagnosis of osteoporosis would become possible. In MRA, a CAD system has been developed for assisting radiologists in the detection of intracranial aneurysms. On successive bone scan images, a CAD scheme for detection of interval changes has been developed by use of temporal subtraction images. In the future, many CAD schemes could be assembled as packages and implemented as a part of PACS. For example, the package for chest CAD may include the computerized detection of lung nodules, interstitial opacities, cardiomegaly, vertebral fractures, and interval changes in chest radiographs as well as the computerized classification of benign and malignant nodules and the differential diagnosis of interstitial lung diseases. In order to assist in the differential diagnosis, it would be possible to search for and retrieve images (or lesions) with known pathology, which would be very similar to a new unknown case, from PACS when a reliable and useful method has been developed for quantifying the similarity of a pair of images for visual comparison by radiologists. PMID:17349778
Jing, Xueping; Zheng, Xiujuan; Song, Shaoli; Liu, Kai
2017-12-01
Glomerular filtration rate (GFR), which can be estimated by Gates method with dynamic kidney single photon emission computed tomography (SPECT) imaging, is a key indicator of renal function. In this paper, an automatic computer tomography (CT)-assisted detection method of kidney region of interest (ROI) is proposed to achieve the objective and accurate GFR calculation. In this method, the CT coronal projection image and the enhanced SPECT synthetic image are firstly generated and registered together. Then, the kidney ROIs are delineated using a modified level set algorithm. Meanwhile, the background ROIs are also obtained based on the kidney ROIs. Finally, the value of GFR is calculated via Gates method. Comparing with the clinical data, the GFR values estimated by the proposed method were consistent with the clinical reports. This automatic method can improve the accuracy and stability of kidney ROI detection for GFR calculation, especially when the kidney function has been severely damaged.
Computer assisted surgery in preoperative planning of acetabular fracture surgery: state of the art.
Boudissa, Mehdi; Courvoisier, Aurélien; Chabanas, Matthieu; Tonetti, Jérôme
2018-01-01
The development of imaging modalities and computer technology provides a new approach in acetabular surgery. Areas covered: This review describes the role of computer-assisted surgery (CAS) in understanding of the fracture patterns, in the virtual preoperative planning of the surgery and in the use of custom-made plates in acetabular fractures with or without 3D printing technologies. A Pubmed internet research of the English literature of the last 20 years was carried out about studies concerning computer-assisted surgery in acetabular fractures. The several steps for CAS in acetabular fracture surgery are presented and commented by the main author regarding to his personal experience. Expert commentary: Computer-assisted surgery in acetabular fractures is still initial experiences with promising results. Patient-specific biomechanical models considering soft tissues should be developed to allow a more realistic planning.
Issues to consider before implementing digital breast tomosynthesis into a breast imaging practice.
Hardesty, Lara A
2015-03-01
OBJECTIVE. The purpose of this article is to discuss issues surrounding the implementation of digital breast tomosynthesis (DBT) into a clinical breast imaging practice and assist radiologists, technologists, and administrators who are considering the addition of this new technology to their practices. CONCLUSION. When appropriate attention is given to image acquisition, interpretation, storage, technologist and radiologist training, patient selection, billing, radiation dose, and marketing, implementation of DBT into a breast imaging practice can be successful.
Leong, Natalie L; Buijze, Geert A; Fu, Eric C; Stockmans, Filip; Jupiter, Jesse B
2010-12-14
Malunion is the most common complication of distal radius fracture. It has previously been demonstrated that there is a correlation between the quality of anatomical correction and overall wrist function. However, surgical correction can be difficult because of the often complex anatomy associated with this condition. Computer assisted surgical planning, combined with patient-specific surgical guides, has the potential to improve pre-operative understanding of patient anatomy as well as intra-operative accuracy. For patients with malunion of the distal radius fracture, this technology could significantly improve clinical outcomes that largely depend on the quality of restoration of normal anatomy. Therefore, the objective of this study is to compare patient outcomes after corrective osteotomy for distal radius malunion with and without preoperative computer-assisted planning and peri-operative patient-specific surgical guides. This study is a multi-center randomized controlled trial of conventional planning versus computer-assisted planning for surgical correction of distal radius malunion. Adult patients with extra-articular malunion of the distal radius will be invited to enroll in our study. After providing informed consent, subjects will be randomized to two groups: one group will receive corrective surgery with conventional preoperative planning, while the other will receive corrective surgery with computer-assisted pre-operative planning and peri-operative patient specific surgical guides. In the computer-assisted planning group, a CT scan of the affected forearm as well as the normal, contralateral forearm will be obtained. The images will be used to construct a 3D anatomical model of the defect and patient-specific surgical guides will be manufactured. Outcome will be measured by DASH and PRWE scores, grip strength, radiographic measurements, and patient satisfaction at 3, 6, and 12 months postoperatively. Computer-assisted surgical planning, combined with patient-specific surgical guides, is a powerful new technology that has the potential to improve the accuracy and consistency of orthopaedic surgery. To date, the role of this technology in upper extremity surgery has not been adequately investigated, and it is unclear whether its use provides any significant clinical benefit over traditional preoperative imaging protocols. Our study will represent the first randomized controlled trial investigating the use of computer assisted surgery in corrective osteotomy for distal radius malunions. NCT01193010.
Keijzers, Gerben; Sithirasenan, Vasugi
2012-02-01
To assess the chest computed tomography (CT) imaging interpreting skills of emergency department (ED) doctors and to study the effect of a CT chest imaging interpretation lecture on these skills. Sixty doctors in two EDs were randomized, using computerized randomization, to either attend a chest CT interpretation lecture or not to attend this lecture. Within 2 weeks of the lecture, the participants completed a questionnaire on demographic variables, anatomical knowledge, and diagnostic interpretation of 10 chest CT studies. Outcome measures included anatomical knowledge score, diagnosis score, and the combined overall score, all expressed as a percentage of correctly answered questions (0-100). Data on 58 doctors were analyzed, of which 27 were randomized to attend the lecture. The CT interpretation lecture did not have an effect on anatomy knowledge scores (72.9 vs. 70.2%), diagnosis scores (71.2 vs. 69.2%), or overall scores (71.4 vs. 69.5%). Twenty-nine percent of doctors stated that they had a systematic approach to chest CT interpretation. Overall self-perceived competency for interpreting CT imaging (brain, chest, abdomen) was low (between 3.2 and 5.2 on a 10-point Visual Analogue Scale). A single chest CT interpretation lecture did not improve chest CT interpretation by ED doctors. Less than one-third of doctors had a systematic approach to chest CT interpretation. A standardized systematic approach may improve interpretation skills.
Evaluation environment for digital and analog pathology: a platform for validation studies
Gallas, Brandon D.; Gavrielides, Marios A.; Conway, Catherine M.; Ivansky, Adam; Keay, Tyler C.; Cheng, Wei-Chung; Hipp, Jason; Hewitt, Stephen M.
2014-01-01
Abstract. We present a platform for designing and executing studies that compare pathologists interpreting histopathology of whole slide images (WSIs) on a computer display to pathologists interpreting glass slides on an optical microscope. eeDAP is an evaluation environment for digital and analog pathology. The key element in eeDAP is the registration of the WSI to the glass slide. Registration is accomplished through computer control of the microscope stage and a camera mounted on the microscope that acquires real-time images of the microscope field of view (FOV). Registration allows for the evaluation of the same regions of interest (ROIs) in both domains. This can reduce or eliminate disagreements that arise from pathologists interpreting different areas and focuses on the comparison of image quality. We reduced the pathologist interpretation area from an entire glass slide (10 to 30 mm2) to small ROIs (<50 μm2). We also made possible the evaluation of individual cells. We summarize eeDAP’s software and hardware and provide calculations and corresponding images of the microscope FOV and the ROIs extracted from the WSIs. The eeDAP software can be downloaded from the Google code website (project: eeDAP) as a MATLAB source or as a precompiled stand-alone license-free application. PMID:26158076
Evaluation environment for digital and analog pathology: a platform for validation studies.
Gallas, Brandon D; Gavrielides, Marios A; Conway, Catherine M; Ivansky, Adam; Keay, Tyler C; Cheng, Wei-Chung; Hipp, Jason; Hewitt, Stephen M
2014-10-01
We present a platform for designing and executing studies that compare pathologists interpreting histopathology of whole slide images (WSIs) on a computer display to pathologists interpreting glass slides on an optical microscope. eeDAP is an evaluation environment for digital and analog pathology. The key element in eeDAP is the registration of the WSI to the glass slide. Registration is accomplished through computer control of the microscope stage and a camera mounted on the microscope that acquires real-time images of the microscope field of view (FOV). Registration allows for the evaluation of the same regions of interest (ROIs) in both domains. This can reduce or eliminate disagreements that arise from pathologists interpreting different areas and focuses on the comparison of image quality. We reduced the pathologist interpretation area from an entire glass slide (10 to [Formula: see text]) to small ROIs ([Formula: see text]). We also made possible the evaluation of individual cells. We summarize eeDAP's software and hardware and provide calculations and corresponding images of the microscope FOV and the ROIs extracted from the WSIs. The eeDAP software can be downloaded from the Google code website (project: eeDAP) as a MATLAB source or as a precompiled stand-alone license-free application.
Statistical normalization techniques for magnetic resonance imaging.
Shinohara, Russell T; Sweeney, Elizabeth M; Goldsmith, Jeff; Shiee, Navid; Mateen, Farrah J; Calabresi, Peter A; Jarso, Samson; Pham, Dzung L; Reich, Daniel S; Crainiceanu, Ciprian M
2014-01-01
While computed tomography and other imaging techniques are measured in absolute units with physical meaning, magnetic resonance images are expressed in arbitrary units that are difficult to interpret and differ between study visits and subjects. Much work in the image processing literature on intensity normalization has focused on histogram matching and other histogram mapping techniques, with little emphasis on normalizing images to have biologically interpretable units. Furthermore, there are no formalized principles or goals for the crucial comparability of image intensities within and across subjects. To address this, we propose a set of criteria necessary for the normalization of images. We further propose simple and robust biologically motivated normalization techniques for multisequence brain imaging that have the same interpretation across acquisitions and satisfy the proposed criteria. We compare the performance of different normalization methods in thousands of images of patients with Alzheimer's disease, hundreds of patients with multiple sclerosis, and hundreds of healthy subjects obtained in several different studies at dozens of imaging centers.
Retinal imaging analysis based on vessel detection.
Jamal, Arshad; Hazim Alkawaz, Mohammed; Rehman, Amjad; Saba, Tanzila
2017-07-01
With an increase in the advancement of digital imaging and computing power, computationally intelligent technologies are in high demand to be used in ophthalmology cure and treatment. In current research, Retina Image Analysis (RIA) is developed for optometrist at Eye Care Center in Management and Science University. This research aims to analyze the retina through vessel detection. The RIA assists in the analysis of the retinal images and specialists are served with various options like saving, processing and analyzing retinal images through its advanced interface layout. Additionally, RIA assists in the selection process of vessel segment; processing these vessels by calculating its diameter, standard deviation, length, and displaying detected vessel on the retina. The Agile Unified Process is adopted as the methodology in developing this research. To conclude, Retina Image Analysis might help the optometrist to get better understanding in analyzing the patient's retina. Finally, the Retina Image Analysis procedure is developed using MATLAB (R2011b). Promising results are attained that are comparable in the state of art. © 2017 Wiley Periodicals, Inc.
Coleman, R Edward; Delbeke, Dominique; Guiberteau, Milton J; Conti, Peter S; Royal, Henry D; Weinreb, Jeffrey C; Siegel, Barry A; Federle, Michael F; Townsend, David W; Berland, Lincoln L
2005-07-01
Rapid advances in imaging technology are a challenge for health care professionals, who must determine how best to use these technologies to optimize patient care and outcomes. Hybrid imaging instrumentation, combining 2 or more new or existing technologies, each with its own separate history of clinical evolution, such as PET and CT, may be especially challenging. CT and PET provide complementary anatomic information and molecular information, respectively, with PET giving specificity to anatomic findings and CT offering precise localization of metabolic activity. Historically, the acquisition and interpretation of the 2 image sets have been performed separately and very often at different times and locales. Recently, integrated PET/CT systems have become available; these systems provide PET and CT images that are acquired nearly simultaneously and are capable of producing superimposed, coregistered images, greatly facilitating interpretation. As the implementation of this integrated technology has become more widespread in the setting of oncologic imaging, questions and concerns regarding equipment specifications, image acquisition protocols, supervision, interpretation, professional qualifications, and safety have arisen. This article summarizes the discussions and observations surrounding these issues by a collaborative working group consisting of representatives from the American College of Radiology, the Society of Nuclear Medicine, and the Society of Computed Body Tomography and Magnetic Resonance.
Coleman, R Edward; Delbeke, Dominique; Guiberteau, Milton J; Conti, Peter S; Royal, Henry D; Weinreb, Jeffrey C; Siegel, Barry A; Federle, Michael P; Townsend, David W; Berland, Lincoln L
2005-07-01
Rapid advances in imaging technology are a challenge for health care professionals, who must determine how best to use these technologies to optimize patient care and outcomes. Hybrid imaging instrumentation, combining 2 or more new or existing technologies, each with its own separate history of clinical evolution, such as PET and CT, may be especially challenging. CT and PET provide complementary anatomic information and molecular information, respectively, with PET giving specificity to anatomic findings and CT offering precise localization of metabolic activity. Historically, the acquisition and interpretation of the 2 image sets have been performed separately and very often at different times and locales. Recently, integrated PET/CT systems have become available; these systems provide PET and CT images that are acquired nearly simultaneously and are capable of producing superimposed, coregistered images, greatly facilitating interpretation. As the implementation of this integrated technology has become more widespread in the setting of oncologic imaging, questions and concerns regarding equipment specifications, image acquisition protocols, supervision, interpretation, professional qualifications, and safety have arisen. This article summarizes the discussions and observations surrounding these issues by a collaborative working group consisting of representatives from the American College of Radiology, the Society of Nuclear Medicine, and the Society of Computed Body Tomography and Magnetic Resonance.
ERIC Educational Resources Information Center
Yang, Mau-Tsuen; Liao, Wan-Che
2014-01-01
The physical-virtual immersion and real-time interaction play an essential role in cultural and language learning. Augmented reality (AR) technology can be used to seamlessly merge virtual objects with real-world images to realize immersions. Additionally, computer vision (CV) technology can recognize free-hand gestures from live images to enable…
Remote sensing programs and courses in engineering and water resources
NASA Technical Reports Server (NTRS)
Kiefer, R. W.
1981-01-01
The content of typical basic and advanced remote sensing and image interpretation courses are described and typical remote sensing graduate programs of study in civil engineering and in interdisciplinary environmental remote sensing and water resources management programs are outlined. Ideally, graduate programs with an emphasis on remote sensing and image interpretation should be built around a core of five courses: (1) a basic course in fundamentals of remote sensing upon which the more specialized advanced remote sensing courses can build; (2) a course dealing with visual image interpretation; (3) a course dealing with quantitative (computer-based) image interpretation; (4) a basic photogrammetry course; and (5) a basic surveying course. These five courses comprise up to one-half of the course work required for the M.S. degree. The nature of other course work and thesis requirements vary greatly, depending on the department in which the degree is being awarded.
Crossingham, Jodi L; Jenkinson, Jodie; Woolridge, Nick; Gallinger, Steven; Tait, Gordon A; Moulton, Carol-Anne E
2009-01-01
Background: Given the increasing number of indications for liver surgery and the growing complexity of operations, many trainees in surgical, imaging and related subspecialties require a good working knowledge of the complex intrahepatic anatomy. Computed tomography (CT), the most commonly used liver imaging modality, enhances our understanding of liver anatomy, but comprises a two-dimensional (2D) representation of a complex 3D organ. It is challenging for trainees to acquire the necessary skills for converting these 2D images into 3D mental reconstructions because learning opportunities are limited and internal hepatic anatomy is complicated, asymmetrical and variable. We have created a website that uses interactive 3D models of the liver to assist trainees in understanding the complex spatial anatomy of the liver and to help them create a 3D mental interpretation of this anatomy when viewing CT scans. Methods: Computed tomography scans were imported into DICOM imaging software (OsiriX™) to obtain 3D surface renderings of the liver and its internal structures. Using these 3D renderings as a reference, 3D models of the liver surface and the intrahepatic structures, portal veins, hepatic veins, hepatic arteries and the biliary system were created using 3D modelling software (Cinema 4D™). Results: Using current best practices for creating multimedia tools, a unique, freely available, online learning resource has been developed, entitled Visual Interactive Resource for Teaching, Understanding And Learning Liver Anatomy (VIRTUAL Liver) (http://pie.med.utoronto.ca/VLiver). This website uses interactive 3D models to provide trainees with a constructive resource for learning common liver anatomy and liver segmentation, and facilitates the development of the skills required to mentally reconstruct a 3D version of this anatomy from 2D CT scans. Discussion: Although the intended audience for VIRTUAL Liver consists of residents in various medical and surgical specialties, the website will also be useful for other health care professionals (i.e. radiologists, nurses, hepatologists, radiation oncologists, family doctors) and educators because it provides a comprehensive resource for teaching liver anatomy. PMID:19816618
From computer-assisted intervention research to clinical impact: The need for a holistic approach.
Ourselin, Sébastien; Emberton, Mark; Vercauteren, Tom
2016-10-01
The early days of the field of medical image computing (MIC) and computer-assisted intervention (CAI), when publishing a strong self-contained methodological algorithm was enough to produce impact, are over. As a community, we now have substantial responsibility to translate our scientific progresses into improved patient care. In the field of computer-assisted interventions, the emphasis is also shifting from the mere use of well-known established imaging modalities and position trackers to the design and combination of innovative sensing, elaborate computational models and fine-grained clinical workflow analysis to create devices with unprecedented capabilities. The barriers to translating such devices in the complex and understandably heavily regulated surgical and interventional environment can seem daunting. Whether we leave the translation task mostly to our industrial partners or welcome, as researchers, an important share of it is up to us. We argue that embracing the complexity of surgical and interventional sciences is mandatory to the evolution of the field. Being able to do so requires large-scale infrastructure and a critical mass of expertise that very few research centres have. In this paper, we emphasise the need for a holistic approach to computer-assisted interventions where clinical, scientific, engineering and regulatory expertise are combined as a means of moving towards clinical impact. To ensure that the breadth of infrastructure and expertise required for translational computer-assisted intervention research does not lead to a situation where the field advances only thanks to a handful of exceptionally large research centres, we also advocate that solutions need to be designed to lower the barriers to entry. Inspired by fields such as particle physics and astronomy, we claim that centralised very large innovation centres with state of the art technology and health technology assessment capabilities backed by core support staff and open interoperability standards need to be accessible to the wider computer-assisted intervention research community. Copyright © 2016. Published by Elsevier B.V.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-26
...) (excluding x-ray, ultrasound, and fluoroscopy), as specified by the Secretary in consultation with physician... ``imaging and computer-assisted imaging services, including x-ray, ultrasound (including echocardiography...
NASA Astrophysics Data System (ADS)
Barros, George O.; Navarro, Brenda; Duarte, Angelo; Dos-Santos, Washington L. C.
2017-04-01
PathoSpotter is a computational system designed to assist pathologists in teaching about and researching kidney diseases. PathoSpotter-K is the version that was developed to detect nephrological lesions in digital images of kidneys. Here, we present the results obtained using the first version of PathoSpotter-K, which uses classical image processing and pattern recognition methods to detect proliferative glomerular lesions with an accuracy of 88.3 ± 3.6%. Such performance is only achieved by similar systems if they use images of cell in contexts that are much less complex than the glomerular structure. The results indicate that the approach can be applied to the development of systems designed to train pathology students and to assist pathologists in determining large-scale clinicopathological correlations in morphological research.
Computer assisted performance tests of the Lyman Alpha Coronagraph
NASA Technical Reports Server (NTRS)
Parkinson, W. H.; Kohl, J. L.
1979-01-01
Preflight calibration and performance tests of the Lyman Alpha Coronagraph rocket instrument in the laboratory, with the experiment in its flight configuration and illumination levels near those expected during flight were successfully carried out using a pulse code modulation telemetry system simulator interfaced in real time to a PDP 11/10 computer system. Post acquisition data reduction programs developed and implemented on the same computer system aided in the interpretation of test and calibration data.
The use of wireless laptop computers for computer-assisted learning in pharmacokinetics.
Munar, Myrna Y; Singh, Harleen; Belle, Donna; Brackett, Carolyn C; Earle, Sandra B
2006-02-15
To implement computer-assisted learning workshops into pharmacokinetics courses in a doctor of pharmacy (PharmD) program. Workshops were designed for students to utilize computer software programs on laptop computers to build pharmacokinetic models to predict drug concentrations resulting from various dosage regimens. In addition, students were able to visualize through graphing programs how altering different parameters changed drug concentration-time curves. Surveys were conducted to measure students' attitudes toward computer technology before and after implementation. Finally, traditional examinations were used to evaluate student learning. Doctor of pharmacy students responded favorably to the use of wireless laptop computers in problem-based pharmacokinetic workshops. Eighty-eight percent (n = 61/69) and 82% (n = 55/67) of PharmD students completed surveys before and after computer implementation, respectively. Prior to implementation, 95% of students agreed that computers would enhance learning in pharmacokinetics. After implementation, 98% of students strongly agreed (p < 0.05) that computers enhanced learning. Examination results were significantly higher after computer implementation (89% with computers vs. 84% without computers; p = 0.01). Implementation of wireless laptop computers in a pharmacokinetic course enabled students to construct their own pharmacokinetic models that could respond to changing parameters. Students had greater comprehension and were better able to interpret results and provide appropriate recommendations. Computer-assisted pharmacokinetic techniques can be powerful tools when making decisions about drug therapy.
The Use of Wireless Laptop Computers for Computer-Assisted Learning in Pharmacokinetics
Munar, Myrna Y.; Singh, Harleen; Belle, Donna; Brackett, Carolyn C.; Earle, Sandra B.
2006-01-01
Objective To implement computer-assisted learning workshops into pharmacokinetics courses in a doctor of pharmacy (PharmD) program. Design Workshops were designed for students to utilize computer software programs on laptop computers to build pharmacokinetic models to predict drug concentrations resulting from various dosage regimens. In addition, students were able to visualize through graphing programs how altering different parameters changed drug concentration-time curves. Surveys were conducted to measure students’ attitudes toward computer technology before and after implementation. Finally, traditional examinations were used to evaluate student learning. Assessment Doctor of pharmacy students responded favorably to the use of wireless laptop computers in problem-based pharmacokinetic workshops. Eighty-eight percent (n = 61/69) and 82% (n = 55/67) of PharmD students completed surveys before and after computer implementation, respectively. Prior to implementation, 95% of students agreed that computers would enhance learning in pharmacokinetics. After implementation, 98% of students strongly agreed (p < 0.05) that computers enhanced learning. Examination results were significantly higher after computer implementation (89% with computers vs. 84% without computers; p = 0.01). Conclusion Implementation of wireless laptop computers in a pharmacokinetic course enabled students to construct their own pharmacokinetic models that could respond to changing parameters. Students had greater comprehension and were better able to interpret results and provide appropriate recommendations. Computer-assisted pharmacokinetic techniques can be powerful tools when making decisions about drug therapy. PMID:17136147
A computer system for processing data from routine pulmonary function tests.
Pack, A I; McCusker, R; Moran, F
1977-01-01
In larger pulmonary function laboratories there is a need for computerised techniques of data processing. A flexible computer system, which is used routinely, is described. The system processes data from a relatively large range of tests. Two types of output are produced--one for laboratory purposes, and one for return to the referring physician. The system adds an automatic interpretative report for each set of results. In developing the interpretative system it has been necessary to utilise a number of arbitrary definitions. The present terminology for reporting pulmonary function tests has limitations. The computer interpretation system affords the opportunity to take account of known interaction between measurements of function and different pathological states. Images PMID:329462
Ronco, Guglielmo; Confortini, Massimo; Maccallini, Vincenzo; Naldoni, Carlo; Segnan, Nereo; Sideri, Mario; Zappa, Marco; Zorzi, Manuel; Calvia, Maria; Giorgi Rossi, Paolo
2012-01-01
OBJECTIVE OF THE PROJECT: Purpose of this Report is to evaluate the impact of the introduction of liquid-based cytology (LBC) in cervical cancer screening in terms of efficacy, undesired effects, costs and implications for organisation. EFFICACY AND UNDESIRED EFFECTS: LBC WITH MANUAL INTERPRETATION: The estimates of cross-sectional accuracy for high-grade intraepithelial neoplasia (CIN2 or more severe and CIN3 or more severe) obtained by a systematic review and meta-analysis published in 2008 were used. This review considered only studies in which all women underwent colposcopy or randomised controlled trials (RCTs) with complete verification of test positives. A systematic search of RCTs published thereafter was performed. Three RCTs were identified. One of these studies was conducted in 6 Italian regions and was of large size (45,174 women randomised); a second one was conducted in another Italian region (Abruzzo) and was of smaller size (8,654 women randomised); a third RCT was conducted in the Netherlands and was of large size (89,784 women randomised). No longitudinal study was available. There is currently no clear evidence that LBC increases the sensitivity of cytology and even less that its introduction increases the efficacy of cervical screening in preventing invasive cancers. The Italian randomised study NTCC showed a decrease in specificity, which was not observed in the other two RCTs available. In addition, the 2008 meta-analysis observed a reduction - even if minimal - in specificity just at the ASC-US cytological cut-off, but also a remarkable heterogeneity between studies. These results suggest that the effect of LBC on specificity is variable and plausibly related to the local style of cytology interpretation. There is evidence that LBC reduces the proportion of unsatisfactory slides, although the size of this effect varies remarkably. LBC WITH COMPUTER-ASSISTED INTERPRETATION: An Australian study, based on double testing, showed a statistically significant increase of the sensitivity for CIN2 or more of LBC with computer-assisted interpretation vs. conventional cytology with manual interpretation. However, an English RCT estimated that LBC with computer-assisted interpretation has a lower sensitivity than LBC with manual interpretation. COST AND ECONOMIC EVALUATION: In the current Italian situation the use of liquid-based cytology for primary screening is estimated to increase the costs of cytological screening. Liquid-based cytology needs shorter time for interpretation than conventional cytology. However, in the Italian situation, savings obtained from this time reduction and from the decreased number of repeats due to unsatisfactory slides are not currently sufficient to compensate the cost increase due to the prices currently applied by producers and to a possible greater number of colposcopies caused by LBC. In any case, at current prices, cost is estimated to increase even when assuming a referral rate to colposcopy with LBC similar or slightly lower than that with conventional cytology. For the costs of computer-assisted interpretation of liquid-based cytology, readers are referred to the relative HTA report (Epidemiol Prev 2012;36(5) Suppl 3:e1-43). ORGANISATIONAL AND ETHICAL ASPECTS: Ethical, legal and communication problems are judged to remain unchanged when compared to screening with conventional cytology. After having used the test for some time, interpreters prefer liquid-based to conventional cytology. Reduced time for interpretation makes the adoption of LBC a possible approach to deal with shortenings of cytology interpreters which is happening in Italy. However, alternative solutions, such as computer-assisted interpretation of cytology and the use of HPV as primary screening test, should be considered. Liquid-based cytology allows performing molecular tests, in particular the HPV test. This property allows triaging women with borderline or mild cytology by "reflex" molecular or immunocytochemical tests with no need to recall them. LBC sampling can be used also if HPV is applied as the primary screening test, allowing "reflex" triaging of HPV positive women by cytology with no need to recall them nor to take two samples, one for HPV testing and one for conventional cytology. This represents a remarkable advantage in terms of organization. However, costs are high because only 5-7% of women screened with this approach need interpretation of cytology. In addition, HPV testing with the Hybrid Capture assay on material preserved in LBC transport media needs a preliminary conversion phase, which limits the use of LBC for triaging HPV positive women. It is advisable that in the near future industry develops sampling/transport systems that allow performing both the HPV test and cytology or other validated triage tests without additional manipulations and at sustainable costs.
The Problem-Solving Nemesis: Mindless Manipulation.
ERIC Educational Resources Information Center
Hawkins, Vincent J.
1987-01-01
Indicates that only 21% of respondents (secondary school math teachers) used computer-assisted instruction for tutorial work, physical models to interpret abstract concepts, or real-life application of the arithmetic or algebraic manipulation. Recommends that creative teaching methods be applied to problem solving. (NKA)
Webb, Emily M; Vella, Maya; Straus, Christopher M; Phelps, Andrew; Naeger, David M
2015-04-01
There are little data as to whether appropriate, cost effective, and safe ordering of imaging examinations are adequately taught in US medical school curricula. We sought to determine the proportion of noninterpretive content (such as appropriate ordering) versus interpretive content (such as reading a chest x-ray) in the top-selling medical student radiology textbooks. We performed an online search to identify a ranked list of the six top-selling general radiology textbooks for medical students. Each textbook was reviewed including content in the text, tables, images, figures, appendices, practice questions, question explanations, and glossaries. Individual pages of text and individual images were semiquantitatively scored on a six-level scale as to the percentage of material that was interpretive versus noninterpretive. The predominant imaging modality addressed in each was also recorded. Descriptive statistical analysis was performed. All six books had more interpretive content. On average, 1.4 pages of text focused on interpretation for every one page focused on noninterpretive content. Seventeen images/figures were dedicated to interpretive skills for every one focused on noninterpretive skills. In all books, the largest proportion of text and image content was dedicated to plain films (51.2%), with computed tomography (CT) a distant second (16%). The content on radiographs (3.1:1) and CT (1.6:1) was more interpretive than not. The current six top-selling medical student radiology textbooks contain a preponderance of material teaching image interpretation compared to material teaching noninterpretive skills, such as appropriate imaging examination selection, rational utilization, and patient safety. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.
Browsing Software of the Visible Korean Data Used for Teaching Sectional Anatomy
ERIC Educational Resources Information Center
Shin, Dong Sun; Chung, Min Suk; Park, Hyo Seok; Park, Jin Seo; Hwang, Sung Bae
2011-01-01
The interpretation of computed tomographs (CTs) and magnetic resonance images (MRIs) to diagnose clinical conditions requires basic knowledge of sectional anatomy. Sectional anatomy has traditionally been taught using sectioned cadavers, atlases, and/or computer software. The computer software commonly used for this subject is practical and…
Promayon, Emmanuel; Fouard, Céline; Bailet, Mathieu; Deram, Aurélien; Fiard, Gaëlle; Hungr, Nikolai; Luboz, Vincent; Payan, Yohan; Sarrazin, Johan; Saubat, Nicolas; Selmi, Sonia Yuki; Voros, Sandrine; Cinquin, Philippe; Troccaz, Jocelyne
2013-01-01
Computer Assisted Medical Intervention (CAMI hereafter) is a complex multi-disciplinary field. CAMI research requires the collaboration of experts in several fields as diverse as medicine, computer science, mathematics, instrumentation, signal processing, mechanics, modeling, automatics, optics, etc. CamiTK is a modular framework that helps researchers and clinicians to collaborate together in order to prototype CAMI applications by regrouping the knowledge and expertise from each discipline. It is an open-source, cross-platform generic and modular tool written in C++ which can handle medical images, surgical navigation, biomedicals simulations and robot control. This paper presents the Computer Assisted Medical Intervention ToolKit (CamiTK) and how it is used in various applications in our research team.
Computed Tomography of the Musculoskeletal System.
Ballegeer, Elizabeth A
2016-05-01
Computed tomography (CT) has specific uses in veterinary species' appendicular musculoskeletal system. Parameters for acquisition of images, interpretation limitations, as well as published information regarding its use in small animals is reviewed. Copyright © 2016 Elsevier Inc. All rights reserved.
Ultrasonics and space instrumentation
NASA Technical Reports Server (NTRS)
1987-01-01
The design topic selected was an outgrowth of the experimental design work done in the Fluid Behavior in Space experiment, which relies on the measurement of minute changes of the pressure and temperature to obtain reasonably accurate volume determinations. An alternative method of volume determination is the use of ultrasonic imaging. An ultrasonic wave system is generated by wall mounted transducer arrays. The interior liquid configuration causes reflection and refraction of the pattern so that analysis of the received wave system provides a description of the configuration and hence volume. Both continuous and chirp probe beams were used in a laboratory experiment simulating a surface wetting propellant. The hardware included a simulated tank with gaseous voids, transmitting and receiving transducers, transmitters, receivers, computer interface, and computer. Analysis software was developed for image generation and interpretation of results. Space instrumentation was pursued in support of a number of experiments under development for GAS flights. The program included thirty undergraduate students pursuing major qualifying project work under the guidance of eight faculty supported by a teaching assistant. Both mechanical and electrical engineering students designed and built several microprocessor systems to measure parameters such as temperature, acceleration, pressure, velocity, and circulation in order to determine combustion products, vortex formation, gas entrainment, EMR emissions from thunderstorms, and milli-g-accelerations due to crew motions.
PC-assisted translation of photogrammetric papers
NASA Astrophysics Data System (ADS)
Güthner, Karlheinz; Peipe, Jürgen
A PC-based system for machine translation of photogrammetric papers from the English into the German language and vice versa is described. The computer-assisted translating process is not intended to create a perfect interpretation of a text but to produce a rough rendering of the content of a paper. Starting with the original text, a continuous data flow is effected into the translated version by means of hardware (scanner, personal computer, printer) and software (OCR, translation, word processing, DTP). An essential component of the system is a photogrammetric microdictionary which is being established at present. It is based on several sources, including e.g. the ISPRS Multilingual Dictionary.
Pedicle screw placement using image guided techniques.
Merloz, P; Tonetti, J; Pittet, L; Coulomb, M; Lavalleé, S; Sautot, P
1998-09-01
Clinical evaluation of a computer assisted spine surgical system is presented. Eighty pedicle screws were inserted using computer assisted technology in thoracic and lumbar vertebrae for treatment of different types of disorders including fractures, spondylolisthesis, and scoliosis. Fifty-two patients with severe fractures, spondylolisthesis, or pseudoarthrosis of T10 to L5 were treated using a computer assisted technique on 1/2 the patients and performing the screw insertion manually for the other 1/2. At the same time, 28 pedicle screws were inserted in T12 to L4 vertebrae for scoliosis with the help of the computer assisted technique. Surgery was followed in all cases (66 vertebrae; 132 pedicle screws) by postoperative radiographs and computed tomographic examination, on which measurements of screw position relative to pedicle position could be done. For fractures, spondylolisthesis, or pseudarthrosis, comparison between the two groups showed that four screws in 52 (8%) vertebrae had incorrect placement with computer assisted technique whereas 22 screws in 52 (42%) vertebrae had incorrect placement with manual insertion. In patients with scoliosis, four screws in 28 (14%) vertebrae had incorrect placement. In all of the patients (132 pedicle screws) there were no neurologic complications. These results show that a computer assisted technique is much more accurate and safe than manual insertion.
Land classification of south-central Iowa from computer enhanced images
NASA Technical Reports Server (NTRS)
Lucas, J. R. (Principal Investigator); Taranik, J. V.; Billingsley, F. C.
1976-01-01
The author has identified the following significant results. The Iowa Geological Survey developed its own capability for producing color products from digitally enhanced LANDSAT data. Research showed that efficient production of enhanced images required full utilization of both computer and photographic enhancement procedures. The 29 August 1972 photo-optically enhanced color composite was more easily interpreted for land classification purposes than standard color composites.
Computer-assisted virtual autopsy using surgical navigation techniques.
Ebert, Lars Christian; Ruder, Thomas D; Martinez, Rosa Maria; Flach, Patricia M; Schweitzer, Wolf; Thali, Michael J; Ampanozi, Garyfalia
2015-01-01
OBJECTIVE; Virtual autopsy methods, such as postmortem CT and MRI, are increasingly being used in forensic medicine. Forensic investigators with little to no training in diagnostic radiology and medical laypeople such as state's attorneys often find it difficult to understand the anatomic orientation of axial postmortem CT images. We present a computer-assisted system that permits postmortem CT datasets to be quickly and intuitively resliced in real time at the body to narrow the gap between radiologic imaging and autopsy. Our system is a potentially valuable tool for planning autopsies, showing findings to medical laypeople, and teaching CT anatomy, thus further closing the gap between radiology and forensic pathology.
Progress in analysis of computed tomography (CT) images of hardwood logs for defect detection
Erol Sarigul; A. Lynn Abbott; Daniel L. Schmoldt
2003-01-01
This paper addresses the problem of automatically detecting internal defects in logs using computed tomography (CT) images. The overall purpose is to assist in breakdown optimization. Several studies have shown that the commercial value of resulting boards can be increased substantially if defect locations are known in advance, and if this information is used to make...
Visualizing Airborne and Satellite Imagery
NASA Technical Reports Server (NTRS)
Bierwirth, Victoria A.
2011-01-01
Remote sensing is a process able to provide information about Earth to better understand Earth's processes and assist in monitoring Earth's resources. The Cloud Absorption Radiometer (CAR) is one remote sensing instrument dedicated to the cause of collecting data on anthropogenic influences on Earth as well as assisting scientists in understanding land-surface and atmospheric interactions. Landsat is a satellite program dedicated to collecting repetitive coverage of the continental Earth surfaces in seven regions of the electromagnetic spectrum. Combining these two aircraft and satellite remote sensing instruments will provide a detailed and comprehensive data collection able to provide influential information and improve predictions of changes in the future. This project acquired, interpreted, and created composite images from satellite data acquired from Landsat 4-5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper plus (ETM+). Landsat images were processed for areas covered by CAR during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCT AS), Cloud and Land Surface Interaction Campaign (CLASIC), Intercontinental Chemical Transport Experiment-Phase B (INTEXB), and Southern African Regional Science Initiative (SAFARI) 2000 missions. The acquisition of Landsat data will provide supplemental information to assist in visualizing and interpreting airborne and satellite imagery.
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Paradella, W. R.; Vitorello, I.
1982-01-01
Several aspects of computer-assisted analysis techniques for image enhancement and thematic classification by which LANDSAT MSS imagery may be treated quantitatively are explained. On geological applications, computer processing of digital data allows, possibly, the fullest use of LANDSAT data, by displaying enhanced and corrected data for visual analysis and by evaluating and assigning each spectral pixel information to a given class.
NASA Technical Reports Server (NTRS)
1972-01-01
The IDAPS (Image Data Processing System) is a user-oriented, computer-based, language and control system, which provides a framework or standard for implementing image data processing applications, simplifies set-up of image processing runs so that the system may be used without a working knowledge of computer programming or operation, streamlines operation of the image processing facility, and allows multiple applications to be run in sequence without operator interaction. The control system loads the operators, interprets the input, constructs the necessary parameters for each application, and cells the application. The overlay feature of the IBSYS loader (IBLDR) provides the means of running multiple operators which would otherwise overflow core storage.
NASA Technical Reports Server (NTRS)
1986-01-01
Digital Imaging is the computer processed numerical representation of physical images. Enhancement of images results in easier interpretation. Quantitative digital image analysis by Perceptive Scientific Instruments, locates objects within an image and measures them to extract quantitative information. Applications are CAT scanners, radiography, microscopy in medicine as well as various industrial and manufacturing uses. The PSICOM 327 performs all digital image analysis functions. It is based on Jet Propulsion Laboratory technology, is accurate and cost efficient.
eeDAP: An Evaluation Environment for Digital and Analog Pathology.
Gallas, Brandon D; Cheng, Wei-Chung; Gavrielides, Marios A; Ivansky, Adam; Keay, Tyler; Wunderlich, Adam; Hipp, Jason; Hewitt, Stephen M
2014-01-01
The purpose of this work is to present a platform for designing and executing studies that compare pathologists interpreting histopathology of whole slide images (WSI) on a computer display to pathologists interpreting glass slides on an optical microscope. Here we present eeDAP, an evaluation environment for digital and analog pathology. The key element in eeDAP is the registration of the WSI to the glass slide. Registration is accomplished through computer control of the microscope stage and a camera mounted on the microscope that acquires images of the real time microscope view. Registration allows for the evaluation of the same regions of interest (ROIs) in both domains. This can reduce or eliminate disagreements that arise from pathologists interpreting different areas and focuses the comparison on image quality. We reduced the pathologist interpretation area from an entire glass slide (≈10-30 mm) 2 to small ROIs <(50 um) 2 . We also made possible the evaluation of individual cells. We summarize eeDAP's software and hardware and provide calculations and corresponding images of the microscope field of view and the ROIs extracted from the WSIs. These calculations help provide a sense of eeDAP's functionality and operating principles, while the images provide a sense of the look and feel of studies that can be conducted in the digital and analog domains. The eeDAP software can be downloaded from code.google.com (project: eeDAP) as Matlab source or as a precompiled stand-alone license-free application.
Patterson, Emily S.; Rayo, Mike; Gill, Carolina; Gurcan, Metin N.
2011-01-01
Background: Adoption of digital images for pathological specimens has been slower than adoption of digital images in radiology, despite a number of anticipated advantages for digital images in pathology. In this paper, we explore the factors that might explain this slower rate of adoption. Materials and Method: Semi-structured interviews on barriers and facilitators to the adoption of digital images were conducted with two radiologists, three pathologists, and one pathologist's assistant. Results: Barriers and facilitators to adoption of digital images were reported in the areas of performance, workflow-efficiency, infrastructure, integration with other software, and exposure to digital images. The primary difference between the settings was that performance with the use of digital images as compared to the traditional method was perceived to be higher in radiology and lower in pathology. Additionally, exposure to digital images was higher in radiology than pathology, with some radiologists exclusively having been trained and/or practicing with digital images. The integration of digital images both improved and reduced efficiency in routine and non-routine workflow patterns in both settings, and was variable across the different organizations. A comparison of these findings with prior research on adoption of other health information technologies suggests that the barriers to adoption of digital images in pathology are relatively tractable. Conclusions: Improving performance using digital images in pathology would likely accelerate adoption of innovative technologies that are facilitated by the use of digital images, such as electronic imaging databases, electronic health records, double reading for challenging cases, and computer-aided diagnostic systems. PMID:21383925
Akiba, Tadashi; Marushima, Hideki; Harada, Junta; Kobayashi, Susumu; Morikawa, Toshiaki
2009-01-01
Video-assisted thoracic surgery (VATS) has recently been adopted for complicated anatomical lung resections. During these thoracoscopic procedures, surgeons view the operative field on a two-dimensional (2-D) video monitor and cannot palpate the organ directly, thus frequently encountering anatomical difficulties. This study aimed to estimate the usefulness of preoperative three-dimensional (3-D) imaging of thoracic organs. We compared the preoperative 64-row three-dimensional multidetector computed tomography (3DMDCT) findings of lung cancer-affected thoracic organs to the operative findings. In comparison to the operative findings, the branches of pulmonary arteries, veins, and bronchi were well defined in the 3D-MDCT images of 27 patients. 3D-MDCT imaging is useful for preoperatively understanding the individual thoracic anatomy in lung cancer surgery. This modality can therefore contribute to safer anatomical pulmonary operations, especially in VATS.
MO-C-BRCD-03: The Role of Informatics in Medical Physics and Vice Versa.
Andriole, K
2012-06-01
Like Medical Physics, Imaging Informatics encompasses concepts touching every aspect of the imaging chain from image creation, acquisition, management and archival, to image processing, analysis, display and interpretation. The two disciplines are in fact quite complementary, with similar goals to improve the quality of care provided to patients using an evidence-based approach, to assure safety in the clinical and research environments, to facilitate efficiency in the workplace, and to accelerate knowledge discovery. Use-cases describing several areas of informatics activity will be given to illustrate current limitations that would benefit from medical physicist participation, and conversely areas in which informaticists may contribute to the solution. Topics to be discussed include radiation dose monitoring, process management and quality control, display technologies, business analytics techniques, and quantitative imaging. Quantitative imaging is increasingly becoming an essential part of biomedicalresearch as well as being incorporated into clinical diagnostic activities. Referring clinicians are asking for more objective information to be gleaned from the imaging tests that they order so that they may make the best clinical management decisions for their patients. Medical Physicists may be called upon to identify existing issues as well as develop, validate and implement new approaches and technologies to help move the field further toward quantitative imaging methods for the future. Biomedical imaging informatics tools and techniques such as standards, integration, data mining, cloud computing and new systems architectures, ontologies and lexicons, data visualization and navigation tools, and business analytics applications can be used to overcome some of the existing limitations. 1. Describe what is meant by Medical Imaging Informatics and understand why the medical physicist should care. 2. Identify existing limitations in information technologies with respect to Medical Physics, and conversely see how Informatics may assist the medical physicist in filling some of the current gaps in their activities. 3. Understand general informatics concepts and areas of investigation including imaging and workflow standards, systems integration, computing architectures, ontologies, data mining and business analytics, data visualization and human-computer interface tools, and the importance of quantitative imaging for the future of Medical Physics and Imaging Informatics. 4. Become familiar with on-going efforts to address current challenges facing future research into and clinical implementation of quantitative imaging applications. © 2012 American Association of Physicists in Medicine.
High Performance Computing for Medical Image Interpretation
1993-10-01
programme for some key companies in the health care industries (Dumay et al., (1993)). With the modules developed for the "Smart Surgeon" an anatomical model...Interpretation System" (HIPMI 2S) geoft FEL-TNO do mogelijkheid omn haar expertise amn to bieden amn do Nederlandse, en Europese civiole medische industrie ...Spin-off 23 3 HIGH PERFORMANCE COMPUTING 24 3.1 Introduction 24 3.2 Parallel processing 24 3.3 Artificial Neural Networks 25 3.4 European Industry
Gordon, Chad R; Murphy, Ryan J; Coon, Devin; Basafa, Ehsan; Otake, Yoshito; Al Rakan, Mohammed; Rada, Erin; Susarla, Srinivas; Susarla, Sriniras; Swanson, Edward; Fishman, Elliot; Santiago, Gabriel; Brandacher, Gerald; Liacouras, Peter; Grant, Gerald; Armand, Mehran
2014-01-01
Facial transplantation represents one of the most complicated scenarios in craniofacial surgery because of skeletal, aesthetic, and dental discrepancies between donor and recipient. However, standard off-the-shelf vendor computer-assisted surgery systems may not provide custom features to mitigate the increased complexity of this particular procedure. We propose to develop a computer-assisted surgery solution customized for preoperative planning, intraoperative navigation including cutting guides, and dynamic, instantaneous feedback of cephalometric measurements/angles as needed for facial transplantation and other related craniomaxillofacial procedures. We developed the Computer-Assisted Planning and Execution (CAPE) workstation to assist with planning and execution of facial transplantation. Preoperative maxillofacial computed tomography (CT) scans were obtained on 4 size-mismatched miniature swine encompassing 2 live face-jaw-teeth transplants. The system was tested in a laboratory setting using plastic models of mismatched swine, after which the system was used in 2 live swine transplants. Postoperative CT imaging was obtained and compared with the preoperative plan and intraoperative measures from the CAPE workstation for both transplants. Plastic model tests familiarized the team with the CAPE workstation and identified several defects in the workflow. Live swine surgeries demonstrated utility of the CAPE system in the operating room, showing submillimeter registration error of 0.6 ± 0.24 mm and promising qualitative comparisons between intraoperative data and postoperative CT imaging. The initial development of the CAPE workstation demonstrated that integration of computer planning and intraoperative navigation for facial transplantation are possible with submillimeter accuracy. This approach can potentially improve preoperative planning, allowing ideal donor-recipient matching despite significant size mismatch, and accurate surgical execution for numerous types of craniofacial and orthognathic surgical procedures.
76 FR 15988 - National Institute of Biomedical Imaging and Bioengineering; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-22
... assistance, such as sign language interpretation or other reasonable accommodations, should notify the... plan. Place: Bethesda Marriott Suites, 6711 Democracy Boulevard, Independence Room (2nd Level... proposals. Place: Bethesda Marriott Suites, 6711 Democracy Boulevard, Independence Room (2nd Level...
Warmann, Steven W; Schenk, Andrea; Schaefer, Juergen F; Ebinger, Martin; Blumenstock, Gunnar; Tsiflikas, Ilias; Fuchs, Joerg
2016-11-01
In complex malignant pediatric liver tumors there is an ongoing discussion regarding surgical strategy; for example, primary organ transplantation versus extended resection in hepatoblastoma involving 3 or 4 sectors of the liver. We evaluated the possible role of computer-assisted surgery planning in children with complex hepatic tumors. Between May 2004 and March 2016, 24 Children with complex liver tumors underwent standard multislice helical CT scan or MRI scan at our institution. Imaging data were processed using the software assistant LiverAnalyzer (Fraunhofer Institute for Medical Image Computing MEVIS, Bremen, Germany). Results were provided as Portable Document Format (PDF) with embedded interactive 3-dimensional surface mesh models. Median age of patients was 33months. Diagnoses were hepatoblastoma (n=14), sarcoma (n=3), benign parenchyma alteration (n=2), as well as hepatocellular carcinoma, rhabdoid tumor, focal nodular hyperplasia, hemangioendothelioma, or multiple hepatic metastases of a pancreas carcinoma (each n=1). Volumetry of liver segments identified remarkable variations and substantial aberrances from the Couinaud classification. Computer-assisted surgery planning was used to determine surgical strategies in 20/24 children; this was especially relevant in tumors affecting 3 or 4 liver sectors. Primary liver transplantation could be avoided in 12 of 14 hepaoblastoma patients who theoretically were candidates for this approach. Computer-assisted surgery planning substantially contributed to the decision for surgical strategies in children with complex hepatic tumors. This tool possibly allows determination of specific surgical procedures such as extended surgical resection instead of primary transplantation in certain conditions. Copyright © 2016. Published by Elsevier Inc.
Ferreira Junior, José Raniery; Oliveira, Marcelo Costa; de Azevedo-Marques, Paulo Mazzoncini
2016-12-01
Lung cancer is the leading cause of cancer-related deaths in the world, and its main manifestation is pulmonary nodules. Detection and classification of pulmonary nodules are challenging tasks that must be done by qualified specialists, but image interpretation errors make those tasks difficult. In order to aid radiologists on those hard tasks, it is important to integrate the computer-based tools with the lesion detection, pathology diagnosis, and image interpretation processes. However, computer-aided diagnosis research faces the problem of not having enough shared medical reference data for the development, testing, and evaluation of computational methods for diagnosis. In order to minimize this problem, this paper presents a public nonrelational document-oriented cloud-based database of pulmonary nodules characterized by 3D texture attributes, identified by experienced radiologists and classified in nine different subjective characteristics by the same specialists. Our goal with the development of this database is to improve computer-aided lung cancer diagnosis and pulmonary nodule detection and classification research through the deployment of this database in a cloud Database as a Service framework. Pulmonary nodule data was provided by the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI), image descriptors were acquired by a volumetric texture analysis, and database schema was developed using a document-oriented Not only Structured Query Language (NoSQL) approach. The proposed database is now with 379 exams, 838 nodules, and 8237 images, 4029 of them are CT scans and 4208 manually segmented nodules, and it is allocated in a MongoDB instance on a cloud infrastructure.
Magnetic resonance imaging of the knee
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mink, J.H.; Reicher, M.A.; Crues, J.V.
1987-01-01
Introducing a comprehensive, practical guide to the use of magnetic resonance imaging (MRI) in detecting and evaluating knee disorders and planning arthroscopic surgery) This book integrates MRI findings with pertinent anatomy, physiology, and clinical signs to assist radiologists in selecting imaging protocols and interpreting scans. Detailed chapters focus on magnetic resonance imaging of the menisci and ligaments and evaluation of osteonecrosis, osteochondrosis, and osteochondritis. The authors demonstrate the potential of MRI for diagnosing various knee disorders such as arthritis, fractures, popliteal cysts, synovial disease, plicae, popliteal artery aneurysms, tumors, and bone marrow disorders.
Kissinger, Lon; Lorenzana, Roseanne; Mittl, Beth; Lasrado, Merwyn; Iwenofu, Samuel; Olivo, Vanessa; Helba, Cynthia; Capoeman, Pauline; Williams, Ann H
2010-12-01
The authors developed a computer-assisted personal interviewing (CAPI) seafood consumption survey tool from existing Pacific NW Native American seafood consumption survey methodology. The software runs on readily available hardware and software, and is easily configured for different cultures and seafood resources. The CAPI is used with a booklet of harvest location maps and species and portion size images. The use of a CAPI facilitates tribal administration of seafood consumption surveys, allowing cost-effective collection of scientifically defensible data and tribal management of data and data interpretation. Use of tribal interviewers reduces potential bias and discomfort that may be associated with nontribal interviewers. The CAPI contains a 24-hour recall and food frequency questionnaire, and assesses seasonal seafood consumption and temporal changes in consumption. EPA's methodology for developing ambient water quality criteria for tribes assigns a high priority to local data. The CAPI will satisfy this guidance objective. Survey results will support development of tribal water quality standards on their lands and assessment of seafood consumption-related contaminant risks and nutritional benefits. CAPI advantages over paper surveys include complex question branching without raising respondent burden, more complete interviews due to answer error and range checking, data transcription error elimination, printing and mailing cost elimination, and improved data storage. The survey instrument was pilot tested among the Quinault Nation in 2006. © 2010 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
Vuong, Barry; Genis, Helen; Wong, Ronnie; Ramjist, Joel; Jivraj, Jamil; Farooq, Hamza; Sun, Cuiru; Yang, Victor X. D.
2015-03-01
Carotid atherosclerosis is a critical medical concern that can lead to ischemic stroke. Local hemodynamic patterns have also been associated with the development of atherosclerosis, particularly in regions with disturbed flow patterns such as bifurcations. Traditionally, this disease was treated using carotid endarterectomy, however recently there is an increasing trend of carotid artery stenting due to its minimally invasive nature. It is well known that this interventional technique creates changes in vasculature geometry and hemodynamic patterns due to the interaction of stent struts with arterial lumen, and is associated with complications such as distal emboli and restenosis. Currently, there is no standard imaging technique to evaluate regional hemodynamic patterns found in stented vessels. Doppler optical coherence tomography (DOCT) provides an opportunity to identify in vivo hemodynamic changes in vasculature using high-resolution imaging. In this study, blood flow profiles were examined at the bifurcation junction in the internal carotid artery (ICA) in a porcine model following stent deployment. Doppler imaging was further conducted using pulsatile flow in a phantom model, and then compared to computational fluid dynamics (CFD) simulation of a virtual bifurcation to assist with the interpretation of emphin vivo results.
Computer-assisted neurosurgical navigational system for transsphenoidal surgery--technical note.
Onizuka, M; Tokunaga, Y; Shibayama, A; Miyazaki, H
2001-11-01
Transsphenoidal surgery carries the risk of carotid artery injury even for very experienced neurosurgeons. The computer-assisted neurosurgical (CANS) navigational system was used to obtain more precise guidance, based on the axial and coronal images during the transsphenoidal approach for nine pituitary adenomas. The CANS navigator consists of a three-dimensional digitizer, a computer, and a graphic unit, which utilizes electromagnetic coupling technology to detect the spatial position of a suction tube attached to a magnetic sensor. Preoperatively, the magnetic resonance images are transferred and stored in the computer and the tip of the suction tube is shown on a real-time basis superimposed on the preoperative images. The CANS navigation system correctly displayed the surgical orientation and provided localization in all nine patients. No intraoperative complications were associated with the use of this system. However, outflow of cerebrospinal fluid during tumor removal may affect the accuracy, so the position of the probe when the tumor is removed must be accurately determined. The CANS navigator enables precise localization of the suction tube during the transsphenoidal approach and allows safer and less-invasive surgery.
Processing, Cataloguing and Distribution of Uas Images in Near Real Time
NASA Astrophysics Data System (ADS)
Runkel, I.
2013-08-01
Why are UAS such a hype? UAS make the data capture flexible, fast and easy. For many applications this is more important than a perfect photogrammetric aerial image block. To ensure, that the advantage of a fast data capturing will be valid up to the end of the processing chain, all intermediate steps like data processing and data dissemination to the customer need to be flexible and fast as well. GEOSYSTEMS has established the whole processing workflow as server/client solution. This is the focus of the presentation. Depending on the image acquisition system the image data can be down linked during the flight to the data processing computer or it is stored on a mobile device and hooked up to the data processing computer after the flight campaign. The image project manager reads the data from the device and georeferences the images according to the position data. The meta data is converted into an ISO conform format and subsequently all georeferenced images are catalogued in the raster data management System ERDAS APOLLO. APOLLO provides the data, respectively the images as an OGC-conform services to the customer. Within seconds the UAV-images are ready to use for GIS application, image processing or direct interpretation via web applications - where ever you want. The whole processing chain is built in a generic manner. It can be adapted to a magnitude of applications. The UAV imageries can be processed and catalogued as single ortho imges or as image mosaic. Furthermore, image data of various cameras can be fusioned. By using WPS (web processing services) image enhancement, image analysis workflows like change detection layers can be calculated and provided to the image analysts. The processing of the WPS runs direct on the raster data management server. The image analyst has no data and no software on his local computer. This workflow is proven to be fast, stable and accurate. It is designed to support time critical applications for security demands - the images can be checked and interpreted in near real-time. For sensible areas it gives you the possibility to inform remote decision makers or interpretation experts in order to provide them situations awareness, wherever they are. For monitoring and inspection tasks it speeds up the process of data capture and data interpretation. The fully automated workflow of data pre-processing, data georeferencing, data cataloguing and data dissemination in near real time was developed based on the Intergraph products ERDAS IMAGINE, ERDAS APOLLO and GEOSYSTEMS METAmorph!IT. It is offered as adaptable solution by GEOSYSTEMS GmbH.
Low-cost digital image processing at the University of Oklahoma
NASA Technical Reports Server (NTRS)
Harrington, J. A., Jr.
1981-01-01
Computer assisted instruction in remote sensing at the University of Oklahoma involves two separate approaches and is dependent upon initial preprocessing of a LANDSAT computer compatible tape using software developed for an IBM 370/158 computer. In-house generated preprocessing algorithms permits students or researchers to select a subset of a LANDSAT scene for subsequent analysis using either general purpose statistical packages or color graphic image processing software developed for Apple II microcomputers. Procedures for preprocessing the data and image analysis using either of the two approaches for low-cost LANDSAT data processing are described.
Bridging the Gap between Basic and Clinical Sciences: A Description of a Radiological Anatomy Course
ERIC Educational Resources Information Center
Torres, Anna; Staskiewicz, Grzegorz J.; Lisiecka, Justyna; Pietrzyk, Lukasz; Czekajlo, Michael; Arancibia, Carlos U.; Maciejewski, Ryszard; Torres, Kamil
2016-01-01
A wide variety of medical imaging techniques pervade modern medicine, and the changing portability and performance of tools like ultrasound imaging have brought these medical imaging techniques into the everyday practice of many specialties outside of radiology. However, proper interpretation of ultrasonographic and computed tomographic images…
The use of multimedia and programmed teaching machines for remote sensing education
NASA Technical Reports Server (NTRS)
Ulliman, J. J.
1980-01-01
The advantages, limitations, and uses of various audio visual equipments and techniques used in various universities for individualized and group instruction in the interpretation and classification of remotely sensed data are considered as well as systems for programmed and computer-assisted instruction.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-24
..., computer assisted real-time transcription (CART), and sign language interpreters will be available at the... Washington, DC, Monday through Wednesday, July 11-13, 2011, at the times and location noted below. DATES: The... Governments; and Terry Moakley, Association of Travel Instruction). 1:30-3 p.m.--Board Meeting (guest speaker...
Cluster compression algorithm: A joint clustering/data compression concept
NASA Technical Reports Server (NTRS)
Hilbert, E. E.
1977-01-01
The Cluster Compression Algorithm (CCA), which was developed to reduce costs associated with transmitting, storing, distributing, and interpreting LANDSAT multispectral image data is described. The CCA is a preprocessing algorithm that uses feature extraction and data compression to more efficiently represent the information in the image data. The format of the preprocessed data enables simply a look-up table decoding and direct use of the extracted features to reduce user computation for either image reconstruction, or computer interpretation of the image data. Basically, the CCA uses spatially local clustering to extract features from the image data to describe spectral characteristics of the data set. In addition, the features may be used to form a sequence of scalar numbers that define each picture element in terms of the cluster features. This sequence, called the feature map, is then efficiently represented by using source encoding concepts. Various forms of the CCA are defined and experimental results are presented to show trade-offs and characteristics of the various implementations. Examples are provided that demonstrate the application of the cluster compression concept to multi-spectral images from LANDSAT and other sources.
Klapan, Ivica; Vranjes, Zeljko; Prgomet, Drago; Lukinović, Juraj
2008-03-01
The real-time requirement means that the simulation should be able to follow the actions of the user that may be moving in the virtual environment. The computer system should also store in its memory a three-dimensional (3D) model of the virtual environment. In that case a real-time virtual reality system will update the 3D graphic visualization as the user moves, so that up-to-date visualization is always shown on the computer screen. Upon completion of the tele-operation, the surgeon compares the preoperative and postoperative images and models of the operative field, and studies video records of the procedure itself Using intraoperative records, animated images of the real tele-procedure performed can be designed. Virtual surgery offers the possibility of preoperative planning in rhinology. The intraoperative use of computer in real time requires development of appropriate hardware and software to connect medical instrumentarium with the computer and to operate the computer by thus connected instrumentarium and sophisticated multimedia interfaces.
Accessible microscopy workstation for students and scientists with mobility impairments.
Duerstock, Bradley S
2006-01-01
An integrated accessible microscopy workstation was designed and developed to allow persons with mobility impairments to control all aspects of light microscopy with minimal human assistance. This system, named AccessScope, is capable of performing brightfield and fluorescence microscopy, image analysis, and tissue morphometry requisite for undergraduate science courses to graduate-level research. An accessible microscope is necessary for students and scientists with mobility impairments to be able to use a microscope independently to better understand microscopical imaging concepts and cell biology. This knowledge is not always apparent by simply viewing a catalog of histological images. The ability to operate a microscope independently eliminates the need to hire an assistant or rely on a classmate and permits one to take practical laboratory examinations by oneself. Independent microscope handling is also crucial for graduate students and scientists with disabilities to perform scientific research. By making a personal computer as the user interface for controlling AccessScope functions, different upper limb mobility impairments could be accommodated by using various computer input devices and assistive technology software. Participants with a range of upper limb mobility impairments evaluated the prototype microscopy workstation. They were able to control all microscopy functions including loading different slides without assistance.
Hramov, Alexander E.; Maksimenko, Vladimir A.; Pchelintseva, Svetlana V.; Runnova, Anastasiya E.; Grubov, Vadim V.; Musatov, Vyacheslav Yu.; Zhuravlev, Maksim O.; Koronovskii, Alexey A.; Pisarchik, Alexander N.
2017-01-01
In order to classify different human brain states related to visual perception of ambiguous images, we use an artificial neural network (ANN) to analyze multichannel EEG. The classifier built on the basis of a multilayer perceptron achieves up to 95% accuracy in classifying EEG patterns corresponding to two different interpretations of the Necker cube. The important feature of our classifier is that trained on one subject it can be used for the classification of EEG traces of other subjects. This result suggests the existence of common features in the EEG structure associated with distinct interpretations of bistable objects. We firmly believe that the significance of our results is not limited to visual perception of the Necker cube images; the proposed experimental approach and developed computational technique based on ANN can also be applied to study and classify different brain states using neurophysiological data recordings. This may give new directions for future research in the field of cognitive and pathological brain activity, and for the development of brain-computer interfaces. PMID:29255403
Multimedia Messaging Service teleradiology in the provision of emergency neurosurgery services.
Ng, Wai Hoe; Wang, Ernest; Ng, Ivan
2007-04-01
Neurosurgical emergencies constitute a significant proportion of workload of a tertiary neurosurgical service. Prompt diagnosis and emergent institution of definitive treatment are critical to reduce neurological mortality and morbidity. Diagnosis is highly dependent on accurate interpretation of scans by experienced clinicians. This expertise may not be readily available especially after office hours because many neurosurgical units are manned by middle-level neurosurgical staff with varying levels of experience in scan interpretation. Multimedia Messaging Service mobile phone technology offers a simple, cheap, quick, and effective solution to the problem of scan interpretation. An MMS takes only a few minutes to send and receive and allows senior doctors to view important images and make important clinical decisions to enhance patient management in an emergency situation. A mobile phone (with VGA camera and MMS capabilities) was provided to the neurosurgery registrar on call. The on-call mobile phone is passed on to the corresponding registrar on-call the next day. All consultants had personal mobile phones that are MMS-enabled. Relevant representative CT/MRI images can be taken directly from the mobile phone from the PACS off the computer screen. When only hard copies are available, the images can be taken off the light box. After a 12-month trial period, a questionnaire was given to all staff involved in the project to ascertain the usefulness of the MMS teleradiology service. The survey on the use of the MMS service in a tertiary neurosurgical service demonstrated that the technology significantly improved the level of confidence of the senior-level staff in emergent clinical decision making. Significantly, the MMS images were of sufficient quality and resolution to obviate the need to view the actual scans. The impact of MMS is less pronounced in the middle-level staff, but there was a trend that most of the junior staff found the service more useful. The MMS technology is demonstrated to be a useful media for the transmission of high-quality images to assist in the diagnostic process and implementation of emergent clinical therapy. It is already in widespread use and can be seamlessly and rapidly implemented in the clinical arena to improve the quality of patient care.
25 CFR 23.82 - Assistance in identifying language interpreters.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 25 Indians 1 2011-04-01 2011-04-01 false Assistance in identifying language interpreters. 23.82... WELFARE ACT Assistance to State Courts § 23.82 Assistance in identifying language interpreters. Upon the... shall assist in identifying language interpreters. Such requests for assistance should be sent to the...
Stubbs, Matthew; Chan, Kenneth; McMeekin, Helena; Navalkissoor, Shaunak; Wagner, Thomas
2017-02-01
This study aims to compare the incidence of ventilation/perfusion (V/Q) scans interpreted as indeterminate for the diagnosis of pulmonary embolism (PE) using single-photon emission computed tomography (SPECT) versus planar scintigraphy and to consider the effect of variable interpretation of single subsegmental V/Q mismatch (SSM). A total of 1300 consecutive V/Q scans were retrospectively reviewed. After exclusion and matching for age and sex, 542 SPECT and 589 planar scans were included in the analysis. European Association of Nuclear Medicine guidelines were used to interpret the V/Q scans, initially interpreting SSM as negative scans. Patients with SSM were followed up for 3 months and further imaging for PE was collected. Indeterminate scans were significantly fewer in the SPECT than the planar group on the basis of the initial report (7.7 vs. 12.2%, P<0.05). This is irrespective of classification of SSM as a negative scan (4.6 vs. 12.1%, P<0.0001) or an indeterminate scan (8.3 vs. 12.2%, P<0.05). Of the 21 patients who had SSM, 19 underwent computer tomography pulmonary angiogram and embolism was found in one patient. None of these patients died at the 3-month follow-up. V/Q SPECT has greater diagnostic certainty of PE, with a 41% reduction in an indeterminate scan compared with planar scintigraphy. This is irrespective of the clinician's interpretation of SSM as negative or intermediate probability. Patients with SSM would not require further computer tomography pulmonary angiogram imaging.
Computer-Assisted Orthopedic Surgery: Current State and Future Perspective
Zheng, Guoyan; Nolte, Lutz P.
2015-01-01
Introduced about two decades ago, computer-assisted orthopedic surgery (CAOS) has emerged as a new and independent area, due to the importance of treatment of musculoskeletal diseases in orthopedics and traumatology, increasing availability of different imaging modalities, and advances in analytics and navigation tools. The aim of this paper is to present the basic elements of CAOS devices and to review state-of-the-art examples of different imaging modalities used to create the virtual representations, of different position tracking devices for navigation systems, of different surgical robots, of different methods for registration and referencing, and of CAOS modules that have been realized for different surgical procedures. Future perspectives will also be outlined. PMID:26779486
Intraoperative 3-Dimensional Computed Tomography and Navigation in Foot and Ankle Surgery.
Chowdhary, Ashwin; Drittenbass, Lisca; Dubois-Ferrière, Victor; Stern, Richard; Assal, Mathieu
2016-09-01
Computer-assisted orthopedic surgery has developed dramatically during the past 2 decades. This article describes the use of intraoperative 3-dimensional computed tomography and navigation in foot and ankle surgery. Traditional imaging based on serial radiography or C-arm-based fluoroscopy does not provide simultaneous real-time 3-dimensional imaging, and thus leads to suboptimal visualization and guidance. Three-dimensional computed tomography allows for accurate intraoperative visualization of the position of bones and/or navigation implants. Such imaging and navigation helps to further reduce intraoperative complications, leads to improved surgical outcomes, and may become the gold standard in foot and ankle surgery. [Orthopedics.2016; 39(5):e1005-e1010.]. Copyright 2016, SLACK Incorporated.
Evaluating Imaging and Computer-aided Detection and Diagnosis Devices at the FDA
Gallas, Brandon D.; Chan, Heang-Ping; D’Orsi, Carl J.; Dodd, Lori E.; Giger, Maryellen L.; Gur, David; Krupinski, Elizabeth A.; Metz, Charles E.; Myers, Kyle J.; Obuchowski, Nancy A.; Sahiner, Berkman; Toledano, Alicia Y.; Zuley, Margarita L.
2017-01-01
This report summarizes the Joint FDA-MIPS Workshop on Methods for the Evaluation of Imaging and Computer-Assist Devices. The purpose of the workshop was to gather information on the current state of the science and facilitate consensus development on statistical methods and study designs for the evaluation of imaging devices to support US Food and Drug Administration submissions. Additionally, participants expected to identify gaps in knowledge and unmet needs that should be addressed in future research. This summary is intended to document the topics that were discussed at the meeting and disseminate the lessons that have been learned through past studies of imaging and computer-aided detection and diagnosis device performance. PMID:22306064
Learn by Yourself: The Self-Learning Tools for Qualitative Analysis Software Packages
ERIC Educational Resources Information Center
Freitas, Fábio; Ribeiro, Jaime; Brandão, Catarina; Reis, Luís Paulo; de Souza, Francislê Neri; Costa, António Pedro
2017-01-01
Computer Assisted Qualitative Data Analysis Software (CAQDAS) are tools that help researchers to develop qualitative research projects. These software packages help the users with tasks such as transcription analysis, coding and text interpretation, writing and annotation, content search and analysis, recursive abstraction, grounded theory…
Ernst, Günther; Guntinas-Lichius, Orlando; Hauberg-Lotte, Lena; Trede, Dennis; Becker, Michael; Alexandrov, Theodore; von Eggeling, Ferdinand
2015-07-01
Despite efforts in localization of key proteins using immunohistochemistry, the complex proteomic composition of pleomorphic adenomas has not yet been characterized. Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI imaging) allows label-free and spatially resolved detection of hundreds of proteins directly from tissue sections and of histomorphological regions by finding colocalized molecular signals. Spatial segmentation of MALDI imaging data is an algorithmic method for finding regions of similar proteomic composition as functionally similar regions. We investigated 2 pleomorphic adenomas by applying spatial segmentation to the MALDI imaging data of tissue sections. The spatial segmentation subdivided the tissue in a good accordance with the tissue histology. Numerous molecular signals colocalized with histologically defined tissue regions were found. Our study highlights the cellular transdifferentiation within the pleomorphic adenoma. It could be shown that spatial segmentation of MALDI imaging data is a promising approach in the emerging field of digital histological analysis and characterization of tumors. © 2014 Wiley Periodicals, Inc.
An Expert Assistant for Computer Aided Parallelization
NASA Technical Reports Server (NTRS)
Jost, Gabriele; Chun, Robert; Jin, Haoqiang; Labarta, Jesus; Gimenez, Judit
2004-01-01
The prototype implementation of an expert system was developed to assist the user in the computer aided parallelization process. The system interfaces to tools for automatic parallelization and performance analysis. By fusing static program structure information and dynamic performance analysis data the expert system can help the user to filter, correlate, and interpret the data gathered by the existing tools. Sections of the code that show poor performance and require further attention are rapidly identified and suggestions for improvements are presented to the user. In this paper we describe the components of the expert system and discuss its interface to the existing tools. We present a case study to demonstrate the successful use in full scale scientific applications.
Evaluation of total workstation CT interpretation quality: a single-screen pilot study
NASA Astrophysics Data System (ADS)
Beard, David V.; Perry, John R.; Muller, Keith E.; Misra, Ram B.; Brown, P.; Hemminger, Bradley M.; Johnston, Richard E.; Mauro, J. Matthew; Jaques, P. F.; Schiebler, M.
1991-07-01
An interpretation report, generated with an electronic viewbox, is affected by two factors: image quality, which encompasses what can be seen on the display, and computer human interaction (CHI), which accounts for the cognitive load effect of locating, moving, and manipulating images with the workstation controls. While a number of subject experiments have considered image quality, only recently has the affect of CHI on total interpretation quality been measured. This paper presents the results of a pilot study conducted to evaluate the total interpretation quality of the FilmPlane2.2 radiology workstation for patient folders containing single forty-slice CT studies. First, radiologists interpreted cases and dictated reports using FilmPlane2.2. Requisition forms were provided. Film interpretation was provided by the original clinical report and interpretation forms generated from a previous experiment. Second, an evaluator developed a list of findings for each case based on those listed in all the reports for each case and then evaluated each report for its response on each finding. Third, the reports were compared to determine how well they agreed with one another. Interpretation speed and observation data was also gathered.
Reed, Kate; Kochetkova, Inna; Whitby, Elspeth
2016-09-01
Prenatal screening occupies a prominent role within sociological debates on medical uncertainty. A particular issue concerns the limitations of routine screening which tends to be based on risk prediction. Computer assisted visual technologies such as Magnetic Resonance Imaging (MRI) are now starting to be applied to the prenatal realm to assist in the diagnosis of a range of fetal and maternal disorders (from problems with the fetal brain to the placenta). MRI is often perceived in popular and medical discourse as a technology of certainty and truth. However, little is known about the use of MRI as a tool to confirm or refute the diagnosis of a range of disorders in pregnancy. Drawing on qualitative research with pregnant women attending a fetal medicine clinic in the North of England this paper examines the potential role that MRI can play in mediating pregnancy uncertainty. The paper will argue that MRI can create and manage women's feelings of uncertainty during pregnancy. However, while MRI may not always provide women with unequivocal answers, the detailed information provided by MR images combined with the interpretation and communication skills of the radiologist in many ways enables women to navigate the issue. Our analysis of empirical data therefore highlights the value of this novel technological application for women and their partners. It also seeks to stress the merit of taking a productive approach to the study of diagnostic uncertainty, an approach which recognises the concepts dual nature. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
The Physics of Physical Examinations.
ERIC Educational Resources Information Center
Patterson, James D.
1989-01-01
Discussed are several topics on medical imaging including x-rays and Computer Assisted Tomography (CAT) scans, magnetic resonance imaging, fiber optics endoscopy, nuclear medicine and bone scans, positron-emission tomography, and ultrasound. The concepts of radiation dosage, electrocardiograms, and laser therapy are included. (YP)
Sled, Elizabeth A.; Sheehy, Lisa M.; Felson, David T.; Costigan, Patrick A.; Lam, Miu; Cooke, T. Derek V.
2010-01-01
The objective of the study was to evaluate the reliability of frontal plane lower limb alignment measures using a landmark-based method by (1) comparing inter- and intra-reader reliability between measurements of alignment obtained manually with those using a computer program, and (2) determining inter- and intra-reader reliability of computer-assisted alignment measures from full-limb radiographs. An established method for measuring alignment was used, involving selection of 10 femoral and tibial bone landmarks. 1) To compare manual and computer methods, we used digital images and matching paper copies of five alignment patterns simulating healthy and malaligned limbs drawn using AutoCAD. Seven readers were trained in each system. Paper copies were measured manually and repeat measurements were performed daily for 3 days, followed by a similar routine with the digital images using the computer. 2) To examine the reliability of computer-assisted measures from full-limb radiographs, 100 images (200 limbs) were selected as a random sample from 1,500 full-limb digital radiographs which were part of the Multicenter Osteoarthritis (MOST) Study. Three trained readers used the software program to measure alignment twice from the batch of 100 images, with two or more weeks between batch handling. Manual and computer measures of alignment showed excellent agreement (intraclass correlations [ICCs] 0.977 – 0.999 for computer analysis; 0.820 – 0.995 for manual measures). The computer program applied to full-limb radiographs produced alignment measurements with high inter- and intra-reader reliability (ICCs 0.839 – 0.998). In conclusion, alignment measures using a bone landmark-based approach and a computer program were highly reliable between multiple readers. PMID:19882339
NASA Technical Reports Server (NTRS)
Erb, R. B.
1974-01-01
The Coastal Analysis Team of the Johnson Space Center conducted a 1-year investigation of ERTS-1 MSS data to determine its usefulness in coastal zone management. Galveston Bay, Texas, was the study area for evaluating both conventional image interpretation and computer-aided techniques. There was limited success in detecting, identifying and measuring areal extent of water bodies, turbidity zones, phytoplankton blooms, salt marshes, grasslands, swamps, and low wetlands using image interpretation techniques. Computer-aided techniques were generally successful in identifying these features. Aerial measurement of salt marshes accuracies ranged from 89 to 99 percent. Overall classification accuracy of all study sites was 89 percent for Level 1 and 75 percent for Level 2.
NASA Astrophysics Data System (ADS)
Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Ohmatsu, Hironobu; Kaneko, Masahiro; Kakinuma, Ryutaro; Moriyama, Noriyuki
2010-03-01
Diagnostic MDCT imaging requires a considerable number of images to be read. Moreover, the doctor who diagnoses a medical image is insufficient in Japan. Because of such a background, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images, a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification and a vertebra body analysis algorithm for quantitative evaluation of osteoporosis. We also have developed the teleradiology network system by using web medical image conference system. In the teleradiology network system, the security of information network is very important subjects. Our teleradiology network system can perform Web medical image conference in the medical institutions of a remote place using the web medical image conference system. We completed the basic proof experiment of the web medical image conference system with information security solution. We can share the screen of web medical image conference system from two or more web conference terminals at the same time. An opinion can be exchanged mutually by using a camera and a microphone that are connected with the workstation that builds in some diagnostic assistance methods. Biometric face authentication used on site of teleradiology makes "Encryption of file" and "Success in login" effective. Our Privacy and information security technology of information security solution ensures compliance with Japanese regulations. As a result, patients' private information is protected. Based on these diagnostic assistance methods, we have developed a new computer-aided workstation and a new teleradiology network that can display suspected lesions three-dimensionally in a short time. The results of this study indicate that our radiological information system without film by using computer-aided diagnosis workstation and our teleradiology network system can increase diagnostic speed, diagnostic accuracy and security improvement of medical information.
Computer assisted optical biopsy for colorectal polyps
NASA Astrophysics Data System (ADS)
Navarro-Avila, Fernando J.; Saint-Hill-Febles, Yadira; Renner, Janis; Klare, Peter; von Delius, Stefan; Navab, Nassir; Mateus, Diana
2017-03-01
We propose a method for computer-assisted optical biopsy for colorectal polyps, with the final goal of assisting the medical expert during the colonoscopy. In particular, we target the problem of automatic classification of polyp images in two classes: adenomatous vs non-adenoma. Our approach is based on recent advancements in convolutional neural networks (CNN) for image representation. In the paper, we describe and compare four different methodologies to address the binary classification task: a baseline with classical features and a Random Forest classifier, two methods based on features obtained from a pre-trained network, and finally, the end-to-end training of a CNN. With the pre-trained network, we show the feasibility of transferring a feature extraction mechanism trained on millions of natural images, to the task of classifying adenomatous polyps. We then demonstrate further performance improvements when training the CNN for our specific classification task. In our study, 776 polyp images were acquired and histologically analyzed after polyp resection. We report a performance increase of the CNN-based approaches with respect to both, the conventional engineered features and to a state-of-the-art method based on videos and 3D shape features.
The Goddard Profiling Algorithm (GPROF): Description and Current Applications
NASA Technical Reports Server (NTRS)
Olson, William S.; Yang, Song; Stout, John E.; Grecu, Mircea
2004-01-01
Atmospheric scientists use different methods for interpreting satellite data. In the early days of satellite meteorology, the analysis of cloud pictures from satellites was primarily subjective. As computer technology improved, satellite pictures could be processed digitally, and mathematical algorithms were developed and applied to the digital images in different wavelength bands to extract information about the atmosphere in an objective way. The kind of mathematical algorithm one applies to satellite data may depend on the complexity of the physical processes that lead to the observed image, and how much information is contained in the satellite images both spatially and at different wavelengths. Imagery from satellite-borne passive microwave radiometers has limited horizontal resolution, and the observed microwave radiances are the result of complex physical processes that are not easily modeled. For this reason, a type of algorithm called a Bayesian estimation method is utilized to interpret passive microwave imagery in an objective, yet computationally efficient manner.
Subramaniam, Rathan M; Janowitz, Warren R; Johnson, Geoffrey B; Lodge, Martin A; Parisi, Marguerite T; Ferguson, Mark R; Hellinger, Jeffrey C; Gladish, Gregory W; Gupta, Narainder K
2017-12-01
This clinical practice parameter has been developed collaboratively by the American College of Radiology (ACR), the Society for Pediatric Radiology (SPR), and the Society of Thoracic Radiology (STR). This document is intended to act as a guide for physicians performing and interpreting positron emission tomography-computed tomography (PET/CT) of cardiac diseases in adults and children. The primary value of cardiac PET/CT imaging include evaluation of perfusion, function, viability, inflammation, anatomy, and risk stratification for cardiac-related events such as myocardial infarction and death. Optimum utility of cardiac PET/CT is achieved when images are interpreted in conjunction with clinical information and laboratory data. Measurement of myocardial blood flow, coronary flow reserve and detection of balanced ischemia are significant advantages of cardiac PET perfusion studies. Increasingly cardiac PET/CT is used in diagnosis and treatment response assessment for cardiac sarcoidosis.
Video enhancement workbench: an operational real-time video image processing system
NASA Astrophysics Data System (ADS)
Yool, Stephen R.; Van Vactor, David L.; Smedley, Kirk G.
1993-01-01
Video image sequences can be exploited in real-time, giving analysts rapid access to information for military or criminal investigations. Video-rate dynamic range adjustment subdues fluctuations in image intensity, thereby assisting discrimination of small or low- contrast objects. Contrast-regulated unsharp masking enhances differentially shadowed or otherwise low-contrast image regions. Real-time removal of localized hotspots, when combined with automatic histogram equalization, may enhance resolution of objects directly adjacent. In video imagery corrupted by zero-mean noise, real-time frame averaging can assist resolution and location of small or low-contrast objects. To maximize analyst efficiency, lengthy video sequences can be screened automatically for low-frequency, high-magnitude events. Combined zoom, roam, and automatic dynamic range adjustment permit rapid analysis of facial features captured by video cameras recording crimes in progress. When trying to resolve small objects in murky seawater, stereo video places the moving imagery in an optimal setting for human interpretation.
NASA Astrophysics Data System (ADS)
Irshad, Humayun; Oh, Eun-Yeong; Schmolze, Daniel; Quintana, Liza M.; Collins, Laura; Tamimi, Rulla M.; Beck, Andrew H.
2017-02-01
The assessment of protein expression in immunohistochemistry (IHC) images provides important diagnostic, prognostic and predictive information for guiding cancer diagnosis and therapy. Manual scoring of IHC images represents a logistical challenge, as the process is labor intensive and time consuming. Since the last decade, computational methods have been developed to enable the application of quantitative methods for the analysis and interpretation of protein expression in IHC images. These methods have not yet replaced manual scoring for the assessment of IHC in the majority of diagnostic laboratories and in many large-scale research studies. An alternative approach is crowdsourcing the quantification of IHC images to an undefined crowd. The aim of this study is to quantify IHC images for labeling of ER status with two different crowdsourcing approaches, image-labeling and nuclei-labeling, and compare their performance with automated methods. Crowdsourcing- derived scores obtained greater concordance with the pathologist interpretations for both image-labeling and nuclei-labeling tasks (83% and 87%), as compared to the pathologist concordance achieved by the automated method (81%) on 5,338 TMA images from 1,853 breast cancer patients. This analysis shows that crowdsourcing the scoring of protein expression in IHC images is a promising new approach for large scale cancer molecular pathology studies.
Computer vision for microscopy diagnosis of malaria.
Tek, F Boray; Dempster, Andrew G; Kale, Izzet
2009-07-13
This paper reviews computer vision and image analysis studies aiming at automated diagnosis or screening of malaria infection in microscope images of thin blood film smears. Existing works interpret the diagnosis problem differently or propose partial solutions to the problem. A critique of these works is furnished. In addition, a general pattern recognition framework to perform diagnosis, which includes image acquisition, pre-processing, segmentation, and pattern classification components, is described. The open problems are addressed and a perspective of the future work for realization of automated microscopy diagnosis of malaria is provided.
[Virtual reality in video-assisted thoracoscopic lung segmentectomy].
Onuki, Takamasa
2009-07-01
The branching patterns of pulmonary arteries and veins vary greatly in the pulmonary hilar region and are very complicated. We attempted to reconstruct anatomically correct images using a freeware program. After uploading the images to a personal computer, bronchi, pulmonary arteries and veins were traced by moving up and down in the images and the location and thickness of the bronchi and pulmonary vasculture were indicated as different-sized cylinders. Next, based on the resulting numerical data, a 3D image was reconstructed using Metasequoia shareware. The reconstructed images can be manipulated by virtual surgical procedures such as reshaping, cutting and moving. These system would be very helpful in complicated video-assisted thoracic surgery such as lung segmentectomy.
ERIC Educational Resources Information Center
Khalil, Mohammed K.; Paas, Fred; Johnson, Tristan E.; Su, Yung K.; Payer, Andrew F.
2008-01-01
This research is an effort to best utilize the interactive anatomical images for instructional purposes based on cognitive load theory. Three studies explored the differential effects of three computer-based instructional strategies that use anatomical cross-sections to enhance the interpretation of radiological images. These strategies include:…
Linear Optimization and Image Reconstruction
1994-06-01
final example is again a novel one. We formulate the problem of computer assisted tomographic ( CAT ) image reconstruction as a linear optimization...possibility that a patient, Fred, suffers from a brain tumor. Further, the physician opts to make use of the CAT (Computer Aided Tomography) scan device...and examine the inside of Fred’s head without exploratory surgery. The CAT scan machine works by projecting a finite number of X-rays of known
Application of Tablet PCs to Lecture Demonstrations on Optical Mineralogy
ERIC Educational Resources Information Center
Hoisch, Thomas D.; Austin, Barbara A.; Newell, Shawn L.; Manone, Mark F.
2010-01-01
Learning optical mineralogy requires students to integrate a complex theory with microscope manipulations and image interpretation. To assist student learning, we performed lecture demonstrations during which digital photomicrographs were taken and delivered to students using Tablet PCs, whereupon they were imported into note-taking software and…
76 FR 75888 - National Institute of Biomedical Imaging and Bioengineering; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-05
... assistance, such as sign language interpretation or other reasonable accommodations, should notify the... Level, Bethesda, MD 20817. Closed: 1 p.m. to 3 p.m. Agenda: To review and evaluate grant applications... Level, Bethesda, MD 20817. Contact Person: Anthony Demsey, Ph.D., Director, National Institute of...
NASA Astrophysics Data System (ADS)
Ben-Zikri, Yehuda Kfir; Linte, Cristian A.
2016-03-01
Region of interest detection is a precursor to many medical image processing and analysis applications, including segmentation, registration and other image manipulation techniques. The optimal region of interest is often selected manually, based on empirical knowledge and features of the image dataset. However, if inconsistently identified, the selected region of interest may greatly affect the subsequent image analysis or interpretation steps, in turn leading to incomplete assessment during computer-aided diagnosis or incomplete visualization or identification of the surgical targets, if employed in the context of pre-procedural planning or image-guided interventions. Therefore, the need for robust, accurate and computationally efficient region of interest localization techniques is prevalent in many modern computer-assisted diagnosis and therapy applications. Here we propose a fully automated, robust, a priori learning-based approach that provides reliable estimates of the left and right ventricle features from cine cardiac MR images. The proposed approach leverages the temporal frame-to-frame motion extracted across a range of short axis left ventricle slice images with small training set generated from les than 10% of the population. This approach is based on histogram of oriented gradients features weighted by local intensities to first identify an initial region of interest depicting the left and right ventricles that exhibits the greatest extent of cardiac motion. This region is correlated with the homologous region that belongs to the training dataset that best matches the test image using feature vector correlation techniques. Lastly, the optimal left ventricle region of interest of the test image is identified based on the correlation of known ground truth segmentations associated with the training dataset deemed closest to the test image. The proposed approach was tested on a population of 100 patient datasets and was validated against the ground truth region of interest of the test images manually annotated by experts. This tool successfully identified a mask around the LV and RV and furthermore the minimal region of interest around the LV that fully enclosed the left ventricle from all testing datasets, yielding a 98% overlap with their corresponding ground truth. The achieved mean absolute distance error between the two contours that normalized by the radius of the ground truth is 0.20 +/- 0.09.
Mobile augmented reality for computer-assisted percutaneous nephrolithotomy.
Müller, Michael; Rassweiler, Marie-Claire; Klein, Jan; Seitel, Alexander; Gondan, Matthias; Baumhauer, Matthias; Teber, Dogu; Rassweiler, Jens J; Meinzer, Hans-Peter; Maier-Hein, Lena
2013-07-01
Percutaneous nephrolithotomy (PCNL) plays an integral role in treatment of renal stones. Creating percutaneous renal access is the most important and challenging step in the procedure. To facilitate this step, we evaluated our novel mobile augmented reality (AR) system for its feasibility of use for PCNL. A tablet computer, such as an iPad[Formula: see text], is positioned above the patient with its camera pointing toward the field of intervention. The images of the tablet camera are registered with the CT image by means of fiducial markers. Structures of interest can be superimposed semi-transparently on the video images. We present a systematic evaluation by means of a phantom study. An urological trainee and two experts conducted 53 punctures on kidney phantoms. The trainee performed best with the proposed AR system in terms of puncturing time (mean: 99 s), whereas the experts performed best with fluoroscopy (mean: 59 s). iPad assistance lowered radiation exposure by a factor of 3 for the inexperienced physician and by a factor of 1.8 for the experts in comparison with fluoroscopy usage. We achieve a mean visualization accuracy of 2.5 mm. The proposed tablet computer-based AR system has proven helpful in assisting percutaneous interventions such as PCNL and shows benefits compared to other state-of-the-art assistance systems. A drawback of the system in its current state is the lack of depth information. Despite that, the simple integration into the clinical workflow highlights the potential impact of this approach to such interventions.
eeDAP: An Evaluation Environment for Digital and Analog Pathology
Gallas, Brandon D.; Cheng, Wei-Chung; Gavrielides, Marios A.; Ivansky, Adam; Keay, Tyler; Wunderlich, Adam; Hipp, Jason; Hewitt, Stephen M.
2017-01-01
Purpose The purpose of this work is to present a platform for designing and executing studies that compare pathologists interpreting histopathology of whole slide images (WSI) on a computer display to pathologists interpreting glass slides on an optical microscope. Methods Here we present eeDAP, an evaluation environment for digital and analog pathology. The key element in eeDAP is the registration of the WSI to the glass slide. Registration is accomplished through computer control of the microscope stage and a camera mounted on the microscope that acquires images of the real time microscope view. Registration allows for the evaluation of the same regions of interest (ROIs) in both domains. This can reduce or eliminate disagreements that arise from pathologists interpreting different areas and focuses the comparison on image quality. Results We reduced the pathologist interpretation area from an entire glass slide (≈10–30 mm)2 to small ROIs <(50 um)2. We also made possible the evaluation of individual cells. Conclusions We summarize eeDAP’s software and hardware and provide calculations and corresponding images of the microscope field of view and the ROIs extracted from the WSIs. These calculations help provide a sense of eeDAP’s functionality and operating principles, while the images provide a sense of the look and feel of studies that can be conducted in the digital and analog domains. The eeDAP software can be downloaded from code.google.com (project: eeDAP) as Matlab source or as a precompiled stand-alone license-free application. PMID:28845079
NASA Astrophysics Data System (ADS)
Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Moriyama, Noriyuki; Ohmatsu, Hironobu; Masuda, Hideo; Machida, Suguru
2008-03-01
Mass screening based on multi-helical CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. To overcome this problem, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images, a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification and a vertebra body analysis algorithm for quantitative evaluation of osteoporosis likelihood by using helical CT scanner for the lung cancer mass screening. The function to observe suspicious shadow in detail are provided in computer-aided diagnosis workstation with these screening algorithms. We also have developed the telemedicine network by using Web medical image conference system with the security improvement of images transmission, Biometric fingerprint authentication system and Biometric face authentication system. Biometric face authentication used on site of telemedicine makes "Encryption of file" and Success in login" effective. As a result, patients' private information is protected. Based on these diagnostic assistance methods, we have developed a new computer-aided workstation and a new telemedicine network that can display suspected lesions three-dimensionally in a short time. The results of this study indicate that our radiological information system without film by using computer-aided diagnosis workstation and our telemedicine network system can increase diagnostic speed, diagnostic accuracy and security improvement of medical information.
NASA Astrophysics Data System (ADS)
Zheng, Guoyan
2007-03-01
Surgical navigation systems visualize the positions and orientations of surgical instruments and implants as graphical overlays onto a medical image of the operated anatomy on a computer monitor. The orthopaedic surgical navigation systems could be categorized according to the image modalities that are used for the visualization of surgical action. In the so-called CT-based systems or 'surgeon-defined anatomy' based systems, where a 3D volume or surface representation of the operated anatomy could be constructed from the preoperatively acquired tomographic data or through intraoperatively digitized anatomy landmarks, a photorealistic rendering of the surgical action has been identified to greatly improve usability of these navigation systems. However, this may not hold true when the virtual representation of surgical instruments and implants is superimposed onto 2D projection images in a fluoroscopy-based navigation system due to the so-called image occlusion problem. Image occlusion occurs when the field of view of the fluoroscopic image is occupied by the virtual representation of surgical implants or instruments. In these situations, the surgeon may miss part of the image details, even if transparency and/or wire-frame rendering is used. In this paper, we propose to use non-photorealistic rendering to overcome this difficulty. Laboratory testing results on foamed plastic bones during various computer-assisted fluoroscopybased surgical procedures including total hip arthroplasty and long bone fracture reduction and osteosynthesis are shown.
NASA Astrophysics Data System (ADS)
DelGrande, Nancy; Dolan, Kenneth W.; Durbin, Philip F.; Gorvad, Michael R.; Kornblum, B. T.; Perkins, Dwight E.; Schneberk, Daniel J.; Shapiro, Arthur B.
1993-11-01
We discuss three-dimensional dynamic thermal imaging of structural flaws using dual-band infrared (DBIR) computed tomography. Conventional (single-band) thermal imaging is difficult to interpret. It yields imprecise or qualitative information (e.g., when subsurface flaws produce weak heat flow anomalies masked by surface clutter). We use the DBIR imaging technique to clarify interpretation. We capture the time history of surface temperature difference patterns at the epoxy-glue disbond site of a flash-heated lap joint. This type of flawed structure played a significant role in causing damage to the Aloha Aircraft fuselage on the aged Boeing 737 jetliner. The magnitude of surface-temperature differences versus time for 0.1 mm air layer compared to 0.1 mm glue layer, varies from 0.2 to 1.6 degree(s)C, for simultaneously scanned front and back surfaces. The scans are taken every 42 ms from 0 to 8 s after the heat flash. By ratioing 3 - 5 micrometers and 8 - 12 micrometers DBIR images, we located surface temperature patterns from weak heat flow anomalies at the disbond site and remove the emissivity mask from surface paint of roughness variations. Measurements compare well with calculations based on TOPAX3D, a three-dimensional, finite element computer model. We combine infrared, ultrasound and x-ray imaging methods to study heat transfer, bond quality and material differences associated with the lap joint disbond site.
NASA Astrophysics Data System (ADS)
Mehrtash, Alireza; Sedghi, Alireza; Ghafoorian, Mohsen; Taghipour, Mehdi; Tempany, Clare M.; Wells, William M.; Kapur, Tina; Mousavi, Parvin; Abolmaesumi, Purang; Fedorov, Andriy
2017-03-01
Prostate cancer (PCa) remains a leading cause of cancer mortality among American men. Multi-parametric magnetic resonance imaging (mpMRI) is widely used to assist with detection of PCa and characterization of its aggressiveness. Computer-aided diagnosis (CADx) of PCa in MRI can be used as clinical decision support system to aid radiologists in interpretation and reporting of mpMRI. We report on the development of a convolution neural network (CNN) model to support CADx in PCa based on the appearance of prostate tissue in mpMRI, conducted as part of the SPIE-AAPM-NCI PROSTATEx challenge. The performance of different combinations of mpMRI inputs to CNN was assessed and the best result was achieved using DWI and DCE-MRI modalities together with the zonal information of the finding. On the test set, the model achieved an area under the receiver operating characteristic curve of 0.80.
NASA Astrophysics Data System (ADS)
Rudolph, Tobias; Ebert, Lars; Kowal, Jens
2006-03-01
Supporting surgeons in performing minimally invasive surgeries can be considered as one of the major goals of computer assisted surgery. Excellent intraoperative visualization is a prerequisite to achieve this aim. The Siremobil Iso-C 3D has become a widely used imaging device, which, in combination with a navigation system, enables the surgeon to directly navigate within the acquired 3D image volume without any extra registration steps. However, the image quality is rather low compared to a CT scan and the volume size (approx. 12 cm 3) limits its application. A regularly used alternative in computer assisted orthopedic surgery is to use of a preoperatively acquired CT scan to visualize the operating field. But, the additional registration step, necessary in order to use CT stacks for navigation is quite invasive. Therefore the objective of this work is to develop a noninvasive registration technique. In this article a solution is being proposed that registers a preoperatively acquired CT scan to the intraoperatively acquired Iso-C 3D image volume, thereby registering the CT to the tracked anatomy. The procedure aligns both image volumes by maximizing the mutual information, an algorithm that has already been applied to similar registration problems and demonstrated good results. Furthermore the accuracy of such a registration method was investigated in a clinical setup, integrating a navigated Iso-C 3D in combination with an tracking system. Initial tests based on cadaveric animal bone resulted in an accuracy ranging from 0.63mm to 1.55mm mean error.
Development of a fully automatic scheme for detection of masses in whole breast ultrasound images.
Ikedo, Yuji; Fukuoka, Daisuke; Hara, Takeshi; Fujita, Hiroshi; Takada, Etsuo; Endo, Tokiko; Morita, Takako
2007-11-01
Ultrasonography has been used for breast cancer screening in Japan. Screening using a conventional hand-held probe is operator dependent and thus it is possible that some areas of the breast may not be scanned. To overcome such problems, a mechanical whole breast ultrasound (US) scanner has been proposed and developed for screening purposes. However, another issue is that radiologists might tire while interpreting all images in a large-volume screening; this increases the likelihood that masses may remain undetected. Therefore, the aim of this study is to develop a fully automatic scheme for the detection of masses in whole breast US images in order to assist the interpretations of radiologists and potentially improve the screening accuracy. The authors database comprised 109 whole breast US imagoes, which include 36 masses (16 malignant masses, 5 fibroadenomas, and 15 cysts). A whole breast US image with 84 slice images (interval between two slice images: 2 mm) was obtained by the ASU-1004 US scanner (ALOKA Co., Ltd., Japan). The feature based on the edge directions in each slice and a method for subtracting between the slice images were used for the detection of masses in the authors proposed scheme. The Canny edge detector was applied to detect edges in US images; these edges were classified as near-vertical edges or near-horizontal edges using a morphological method. The positions of mass candidates were located using the near-vertical edges as a cue. Then, the located positions were segmented by the watershed algorithm and mass candidate regions were detected using the segmented regions and the low-density regions extracted by the slice subtraction method. For the removal of false positives (FPs), rule-based schemes and a quadratic discriminant analysis were applied for the distribution between masses and FPs. As a result, the sensitivity of the authors scheme for the detection of masses was 80.6% (29/36) with 3.8 FPs per whole breast image. The authors scheme for a computer-aided detection may be useful in improving the screening performance and efficiency.
Imaging deductive reasoning and the new paradigm
Oaksford, Mike
2015-01-01
There has been a great expansion of research into human reasoning at all of Marr’s explanatory levels. There is a tendency for this work to progress within a level largely ignoring the others which can lead to slippage between levels (Chater et al., 2003). It is argued that recent brain imaging research on deductive reasoning—implementational level—has largely ignored the new paradigm in reasoning—computational level (Over, 2009). Consequently, recent imaging results are reviewed with the focus on how they relate to the new paradigm. The imaging results are drawn primarily from a recent meta-analysis by Prado et al. (2011) but further imaging results are also reviewed where relevant. Three main observations are made. First, the main function of the core brain region identified is most likely elaborative, defeasible reasoning not deductive reasoning. Second, the subtraction methodology and the meta-analytic approach may remove all traces of content specific System 1 processes thought to underpin much human reasoning. Third, interpreting the function of the brain regions activated by a task depends on theories of the function that a task engages. When there are multiple interpretations of that function, interpreting what an active brain region is doing is not clear cut. It is concluded that there is a need to more tightly connect brain activation to function, which could be achieved using formalized computational level models and a parametric variation approach. PMID:25774130
Tada, Toshifumi; Kumada, Takashi; Toyoda, Hidenori; Ito, Takanori; Sone, Yasuhiro; Okuda, Seiji; Ogawa, Sadanobu; Igura, Takumi; Imai, Yasuharu
2015-01-01
The macroscopic type of hepatocellular carcinoma (HCC) is a predictor of prognosis. We clarified the diagnostic value of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) in the macroscopic classification of nodular hepatocellular carcinoma (HCC) as compared to angiography-assisted computed tomography (CT). A total of 71 surgically resected nodular HCCs with a maximum diameter of ≤5 cm were investigated. HCCs were evaluated preoperatively using Gd-EOB-DTPA-enhanced MRI and angiography-assisted CT. HCCs were pathologically classified as simple nodular (SN), SN with extranodular growth (SN-EG), or confluent multinodular (CMN). SN-EG and CMN were grouped as non-SN. Five readers independently reviewed the images using a five-point scale. We examined the accuracy of both imaging modalities in differentiating between SN and non-SN HCC. Overall, the area under the receiver operating characteristic curve (A z ) for the diagnosis of non-SN did not differ between Gd-EOB-DTPA-enhanced MRI and angiography-assisted CT [0.879 (95% confidence interval (CI), 0.779-0.937) and 0.845 (95% CI, 0.723-0.919), respectively]. For HCCs >2 cm, the A z for Gd-EOB-DTPA-enhanced MRI was greater than 0.9. The sensitivity, specificity, and accuracy of Gd-EOB-DTPA-enhanced MRI for identifying non-SN were equal to or higher than values with angiography-assisted CT in all three categories (all tumors, ≤2 cm, and >2 cm), but the differences were not statistically significant. Using Gd-EOB-DTPA-enhanced MRI to assess the macroscopic findings in nodular HCC was equal or superior to using angiography-assisted CT.
Maestre-Rendon, J. Rodolfo; Sierra-Hernandez, Juan M.; Contreras-Medina, Luis M.; Fernandez-Jaramillo, Arturo A.
2017-01-01
Manual measurements of foot anthropometry can lead to errors since this task involves the experience of the specialist who performs them, resulting in different subjective measures from the same footprint. Moreover, some of the diagnoses that are given to classify a footprint deformity are based on a qualitative interpretation by the physician; there is no quantitative interpretation of the footprint. The importance of providing a correct and accurate diagnosis lies in the need to ensure that an appropriate treatment is provided for the improvement of the patient without risking his or her health. Therefore, this article presents a smart sensor that integrates the capture of the footprint, a low computational-cost analysis of the image and the interpretation of the results through a quantitative evaluation. The smart sensor implemented required the use of a camera (Logitech C920) connected to a Raspberry Pi 3, where a graphical interface was made for the capture and processing of the image, and it was adapted to a podoscope conventionally used by specialists such as orthopedist, physiotherapists and podiatrists. The footprint diagnosis smart sensor (FPDSS) has proven to be robust to different types of deformity, precise, sensitive and correlated in 0.99 with the measurements from the digitalized image of the ink mat. PMID:29165397
Maestre-Rendon, J Rodolfo; Rivera-Roman, Tomas A; Sierra-Hernandez, Juan M; Cruz-Aceves, Ivan; Contreras-Medina, Luis M; Duarte-Galvan, Carlos; Fernandez-Jaramillo, Arturo A
2017-11-22
Manual measurements of foot anthropometry can lead to errors since this task involves the experience of the specialist who performs them, resulting in different subjective measures from the same footprint. Moreover, some of the diagnoses that are given to classify a footprint deformity are based on a qualitative interpretation by the physician; there is no quantitative interpretation of the footprint. The importance of providing a correct and accurate diagnosis lies in the need to ensure that an appropriate treatment is provided for the improvement of the patient without risking his or her health. Therefore, this article presents a smart sensor that integrates the capture of the footprint, a low computational-cost analysis of the image and the interpretation of the results through a quantitative evaluation. The smart sensor implemented required the use of a camera (Logitech C920) connected to a Raspberry Pi 3, where a graphical interface was made for the capture and processing of the image, and it was adapted to a podoscope conventionally used by specialists such as orthopedist, physiotherapists and podiatrists. The footprint diagnosis smart sensor (FPDSS) has proven to be robust to different types of deformity, precise, sensitive and correlated in 0.99 with the measurements from the digitalized image of the ink mat.
Sacco, Katiuscia; Galetto, Valentina; Dimitri, Danilo; Geda, Elisabetta; Perotti, Francesca; Zettin, Marina; Geminiani, Giuliano C
2016-01-01
Divided attention (DA), the ability to distribute cognitive resources among two or more simultaneous tasks, may be severely compromised after traumatic brain injury (TBI), resulting in problems with numerous activities involved with daily living. So far, no research has investigated whether the use of non-invasive brain stimulation associated with neuropsychological rehabilitation might contribute to the recovery of such cognitive function. The main purpose of this study was to assess the effectiveness of 10 transcranial direct current stimulation (tDCS) sessions combined with computer-assisted training; it also intended to explore the neural modifications induced by the treatment. Thirty-two patients with severe TBI participated in the study: 16 were part of the experimental group, and 16 part of the control group. The treatment included 20' of tDCS, administered twice a day for 5 days. The electrodes were placed on the dorso-lateral prefrontal cortex. Their location varied across patients and it depended on each participant's specific area of damage. The control group received sham tDCS. After each tDCS session, the patient received computer-assisted cognitive training on DA for 40'. The results showed that the experimental group significantly improved in DA performance between pre- and post-treatment, showing faster reaction times (RTs), and fewer omissions. No improvement was detected between the baseline assessment (i.e., 1 month before treatment) and the pre-training assessment, or within the control group. Functional magnetic resonance imaging (fMRI) data, obtained on the experimental group during a DA task, showed post-treatment lower cerebral activations in the right superior temporal gyrus (BA 42), right and left middle frontal gyrus (BA 6), right postcentral gyrus (BA 3) and left inferior frontal gyrus (BA 9). We interpreted such neural changes as normalization of previously abnormal hyperactivations.
[Georg Schlöndorff-the father of computer-assisted surgery].
Mösges, R
2016-09-01
Georg Schlöndorff (1931-2011) developed the idea of computer-assisted surgery (CAS) during his time as professor and chairman of the Department of Otorhinolaryngology at the Medical Faculty of the University of Aachen, Germany. In close cooperation with engineers and physicists, he succeeded in translating this concept into a functional prototype that was applied in live surgery in the operating theatre. The first intervention performed with this image-guided navigation system was a skull base surgical procedure 1987. During the following years, this concept was extended to orbital surgery, neurosurgery, mid-facial traumatology, and brachytherapy of solid tumors in the head and neck region. Further technical developments of this first prototype included touchless optical positioning and the computer vision concept with three orthogonal images, which is still common in contemporary navigation systems. During his time as emeritus professor from 1996, Georg Schlöndorff further pursued his concept of CAS by developing technical innovations such as computational fluid dynamics (CFD).
Frequency analysis of gaze points with CT colonography interpretation using eye gaze tracking system
NASA Astrophysics Data System (ADS)
Tsutsumi, Shoko; Tamashiro, Wataru; Sato, Mitsuru; Okajima, Mika; Ogura, Toshihiro; Doi, Kunio
2017-03-01
It is important to investigate eye tracking gaze points of experts, in order to assist trainees in understanding of image interpretation process. We investigated gaze points of CT colonography (CTC) interpretation process, and analyzed the difference in gaze points between experts and trainees. In this study, we attempted to understand how trainees can be improved to a level achieved by experts in viewing of CTC. We used an eye gaze point sensing system, Gazefineder (JVCKENWOOD Corporation, Tokyo, Japan), which can detect pupil point and corneal reflection point by the dark pupil eye tracking. This system can provide gaze points images and excel file data. The subjects are radiological technologists who are experienced, and inexperienced in reading CTC. We performed observer studies in reading virtual pathology images and examined observer's image interpretation process using gaze points data. Furthermore, we examined eye tracking frequency analysis by using the Fast Fourier Transform (FFT). We were able to understand the difference in gaze points between experts and trainees by use of the frequency analysis. The result of the trainee had a large amount of both high-frequency components and low-frequency components. In contrast, both components by the expert were relatively low. Regarding the amount of eye movement in every 0.02 second we found that the expert tended to interpret images slowly and calmly. On the other hand, the trainee was moving eyes quickly and also looking for wide areas. We can assess the difference in the gaze points on CTC between experts and trainees by use of the eye gaze point sensing system and based on the frequency analysis. The potential improvements in CTC interpretation for trainees can be evaluated by using gaze points data.
Standoff reconnaissance imagery - Applications and interpreter training
NASA Astrophysics Data System (ADS)
Gustafson, G. C.
1980-01-01
The capabilities, advantages and applications of Long Range Oblique Photography (LOROP) standoff air reconnaissance cameras are reviewed, with emphasis on the problems likely to be encountered in photo interpreter training. Results of student exercises in descriptive image analysis and mensuration are presented and discussed, and current work on the computer programming of oblique and panoramic mensuration tasks is summarized. Numerous examples of this class of photographs and their interpretation at various magnifications are also presented.
A manual for inexpensive methods of analyzing and utilizing remote sensor data
NASA Technical Reports Server (NTRS)
Elifrits, C. D.; Barr, D. J.
1978-01-01
Instructions are provided for inexpensive methods of using remote sensor data to assist in the completion of the need to observe the earth's surface. When possible, relative costs were included. Equipment need for analysis of remote sensor data is described, and methods of use of these equipment items are included, as well as advantages and disadvantages of the use of individual items. Interpretation and analysis of stereo photos and the interpretation of typical patterns such as tone and texture, landcover, drainage, and erosional form are described. Similar treatment is given to monoscopic image interpretation, including LANDSAT MSS data. Enhancement techniques are detailed with respect to their application and simple techniques of creating an enhanced data item. Techniques described include additive and subtractive (Diazo processes) color techniques and enlargement of photos or images. Applications of these processes, including mappings of land resources, engineering soils, geology, water resources, environmental conditions, and crops and/or vegetation, are outlined.
Computer-Assisted Analysis of Near-Bottom Photos for Benthic Habitat Studies
2006-09-01
navigated survey platform greatly increases the efficiency of image analysis and provides new insight about the relationships between benthic organisms...increase in the efficiency of image analysis for benthic habitat studies, and provides the opportunity to assess small scale spatial distribution of
A novel graphical user interface for ultrasound-guided shoulder arthroscopic surgery
NASA Astrophysics Data System (ADS)
Tyryshkin, K.; Mousavi, P.; Beek, M.; Pichora, D.; Abolmaesumi, P.
2007-03-01
This paper presents a novel graphical user interface developed for a navigation system for ultrasound-guided computer-assisted shoulder arthroscopic surgery. The envisioned purpose of the interface is to assist the surgeon in determining the position and orientation of the arthroscopic camera and other surgical tools within the anatomy of the patient. The user interface features real time position tracking of the arthroscopic instruments with an optical tracking system, and visualization of their graphical representations relative to a three-dimensional shoulder surface model of the patient, created from computed tomography images. In addition, the developed graphical interface facilitates fast and user-friendly intra-operative calibration of the arthroscope and the arthroscopic burr, capture and segmentation of ultrasound images, and intra-operative registration. A pilot study simulating the computer-aided shoulder arthroscopic procedure on a shoulder phantom demonstrated the speed, efficiency and ease-of-use of the system.
NASA Astrophysics Data System (ADS)
Li, Zhenwei; Sun, Jianyong; Zhang, Jianguo
2012-02-01
As more and more CT/MR studies are scanning with larger volume of data sets, more and more radiologists and clinician would like using PACS WS to display and manipulate these larger data sets of images with 3D rendering features. In this paper, we proposed a design method and implantation strategy to develop 3D image display component not only with normal 3D display functions but also with multi-modal medical image fusion as well as compute-assisted diagnosis of coronary heart diseases. The 3D component has been integrated into the PACS display workstation of Shanghai Huadong Hospital, and the clinical practice showed that it is easy for radiologists and physicians to use these 3D functions such as multi-modalities' (e.g. CT, MRI, PET, SPECT) visualization, registration and fusion, and the lesion quantitative measurements. The users were satisfying with the rendering speeds and quality of 3D reconstruction. The advantages of the component include low requirements for computer hardware, easy integration, reliable performance and comfortable application experience. With this system, the radiologists and the clinicians can manipulate with 3D images easily, and use the advanced visualization tools to facilitate their work with a PACS display workstation at any time.
NASA Astrophysics Data System (ADS)
Satoh, Hitoshi; Niki, Noboru; Mori, Kiyoshi; Eguchi, Kenji; Kaneko, Masahiro; Kakinuma, Ryutarou; Moriyama, Noriyuki; Ohmatsu, Hironobu; Masuda, Hideo; Machida, Suguru; Sasagawa, Michizou
2006-03-01
Multi-helical CT scanner advanced remarkably at the speed at which the chest CT images were acquired for mass screening. Mass screening based on multi-helical CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. To overcome this problem, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images and a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification. We also have developed electronic medical recording system and prototype internet system for the community health in two or more regions by using the Virtual Private Network router and Biometric fingerprint authentication system and Biometric face authentication system for safety of medical information. Based on these diagnostic assistance methods, we have now developed a new computer-aided workstation and database that can display suspected lesions three-dimensionally in a short time. This paper describes basic studies that have been conducted to evaluate this new system. The results of this study indicate that our computer-aided diagnosis workstation and network system can increase diagnostic speed, diagnostic accuracy and safety of medical information.
The Use of Computer-Assisted Identification of ARIMA Time-Series.
ERIC Educational Resources Information Center
Brown, Roger L.
This study was conducted to determine the effects of using various levels of tutorial statistical software for the tentative identification of nonseasonal ARIMA models, a statistical technique proposed by Box and Jenkins for the interpretation of time-series data. The Box-Jenkins approach is an iterative process encompassing several stages of…
Mahmoud, Mohamad S; Merhi, Zaher O
2010-04-01
To report three cases of migrated levonorgestrel intrauterine device (LNG-IUS) into the pelvic/abdominal cavity removed laparoscopically with the aid of preoperative computed tomography (CT) scan imaging. Three patients presenting with a missing LNG-IUS on examination and pelvic ultrasound are presented. A preoperative CT scan was performed, what helped in a successful removal of the LNG-IUS. The patients were discharged home the same day of the procedure. Our cases reinforce, besides the diagnosis of a migrated LNG-IUS by ultrasound, the fact that preoperative CT scan imaging assists in the diagnosis of the precise location of a migrated LNG-IUS into the pelvic/abdominal cavity and helps the physician in the prediction of the difficulty of the laparoscopic removal.
Computational fluid dynamics analysis of a maglev centrifugal left ventricular assist device.
Burgreen, Greg W; Loree, Howard M; Bourque, Kevin; Dague, Charles; Poirier, Victor L; Farrar, David; Hampton, Edward; Wu, Z Jon; Gempp, Thomas M; Schöb, Reto
2004-10-01
The fluid dynamics of the Thoratec HeartMate III (Thoratec Corp., Pleasanton, CA, U.S.A.) left ventricular assist device are analyzed over a range of physiological operating conditions. The HeartMate III is a centrifugal flow pump with a magnetically suspended rotor. The complete pump was analyzed using computational fluid dynamics (CFD) analysis and experimental particle imaging flow visualization (PIFV). A comparison of CFD predictions to experimental imaging shows good agreement. Both CFD and experimental PIFV confirmed well-behaved flow fields in the main components of the HeartMate III pump: inlet, volute, and outlet. The HeartMate III is shown to exhibit clean flow features and good surface washing across its entire operating range.
Chest teleradiology in a teaching hospital emergency practice.
Steckel, R J; Batra, P; Johnson, S; Zucker, M; Sayre, J; Goldin, J; Lee, M; Patel, M; Morrison, H
1997-06-01
New standards for hospital accreditation and health care reimbursement may require that faculty subspecialists be more available after regular working hours to supervise residents in academic radiology departments. We designed a receiver operating characteristic study to determine whether a thoracic radiologist who evaluated computed radiography (CR) images of the chest at a home-based teleradiology workstation could add significant value to a junior resident's interpretations of films within the hospital for acutely ill patients. Using a hybrid cassette, we obtained analog chest films and CR images simultaneously for each of 252 acutely ill patients in the emergency department and in an intensive care unit. Interpretations of the analog films by three first-year residents were analyzed for 11 parameters deemed critical for patient management. Likewise, CR images of the same chest studies were viewed on a home teleradiology workstation by a faculty thoracic radiologist who analyzed the images for these 11 interpretive parameters. All interpretations by radiology residents and by the home-based thoracic radiologist were then compared with the interpretations of a consensus panel consisting of another thoracic radiologist and a full-time emergency department radiologist. Analysis of the pooled results from the three junior residents as a group failed to show significant differences between their interpretations of chest films and the interpretations of CR images by a thoracic radiologist at a home workstation. However, we observed significant differences for several image interpretation parameters between individual residents and the home-based radiology subspecialist. The data confirm that significant value can be added to the interpretations of chest films by individual junior residents when a home-based thoracic radiologist uses teleradiology to provide expert interpretations. Accordingly, it is reasonable to infer that on-line supervision by faculty subspecialists via teleradiology could be used to complement the scheduled visits that are being made now by individual faculty members of our institution to interpret films periodically with a radiology resident during overnight and weekend periods.
Zapotoczny, Piotr; Kozera, Wojciech; Karpiesiuk, Krzysztof; Pawłowski, Rodian
2014-08-01
The effect of management systems on selected physical properties and chemical composition of m. longissimus dorsi was studied in pigs. Muscle texture parameters were determined by computer-assisted image analysis, and the color of muscle samples was evaluated using a spectrophotometer. Highly significant correlations were observed between chemical composition and selected texture variables in the analyzed images. Chemical composition was not correlated with color or spectral distribution. Subject to the applied classification methods and groups of variables included in the classification model, the experimental groups were identified correctly in 35-95%. No significant differences in the chemical composition of m. longissimus dorsi were observed between experimental groups. Significant differences were noted in color lightness (L*) and redness (a*). Copyright © 2014 Elsevier Ltd. All rights reserved.
A Study of Computer-Aided Geometric Optical Design.
1982-10-01
short programs on tape. A computer account number and Cyber computer manuals were obtained. A familiarity with the use and maintenance of computer files...in the interpretation of the information. Ray fans, spot diagrams, wavefront variance, Strehl ratio, vignetting .- diagrams Pnd optical transfer...other surface begins to cut off these rays (20:113). This is characterized by a loss of intensity at the outside of the image. A known manual
Development and Current Status of Skull-Image Superimposition - Methodology and Instrumentation.
Lan, Y
1992-12-01
This article presents a review of the literature and an evaluation on the development and application of skull-image superimposition technology - both instrumentation and methodology - contributed by a number of scholars since 1935. Along with a comparison of the methodologies involved in the two superimposition techniques - photographic and video - the author characterized the techniques in action and the recent advances in computer image superimposition processing technology. The major disadvantage of conventional approaches is its relying on subjective interpretation. Through painstaking comparison and analysis, computer image processing technology can make more conclusive identifications by direct testing and evaluating the various programmed indices. Copyright © 1992 Central Police University.
Liver CT image processing: a short introduction of the technical elements.
Masutani, Y; Uozumi, K; Akahane, Masaaki; Ohtomo, Kuni
2006-05-01
In this paper, we describe the technical aspects of image analysis for liver diagnosis and treatment, including the state-of-the-art of liver image analysis and its applications. After discussion on modalities for liver image analysis, various technical elements for liver image analysis such as registration, segmentation, modeling, and computer-assisted detection are covered with examples performed with clinical data sets. Perspective in the imaging technologies is also reviewed and discussed.
NASA Astrophysics Data System (ADS)
Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Ohmatsu, Hironobu; Kakinuma, Ryutaru; Moriyama, Noriyuki
2009-02-01
Mass screening based on multi-helical CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. Moreover, the doctor who diagnoses a medical image is insufficient in Japan. To overcome these problems, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images, a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification and a vertebra body analysis algorithm for quantitative evaluation of osteoporosis likelihood by using helical CT scanner for the lung cancer mass screening. The functions to observe suspicious shadow in detail are provided in computer-aided diagnosis workstation with these screening algorithms. We also have developed the telemedicine network by using Web medical image conference system with the security improvement of images transmission, Biometric fingerprint authentication system and Biometric face authentication system. Biometric face authentication used on site of telemedicine makes "Encryption of file" and "Success in login" effective. As a result, patients' private information is protected. We can share the screen of Web medical image conference system from two or more web conference terminals at the same time. An opinion can be exchanged mutually by using a camera and a microphone that are connected with workstation. Based on these diagnostic assistance methods, we have developed a new computer-aided workstation and a new telemedicine network that can display suspected lesions three-dimensionally in a short time. The results of this study indicate that our radiological information system without film by using computer-aided diagnosis workstation and our telemedicine network system can increase diagnostic speed, diagnostic accuracy and security improvement of medical information.
Computer-aided diagnosis of early knee osteoarthritis based on MRI T2 mapping.
Wu, Yixiao; Yang, Ran; Jia, Sen; Li, Zhanjun; Zhou, Zhiyang; Lou, Ting
2014-01-01
This work was aimed at studying the method of computer-aided diagnosis of early knee OA (OA: osteoarthritis). Based on the technique of MRI (MRI: Magnetic Resonance Imaging) T2 Mapping, through computer image processing, feature extraction, calculation and analysis via constructing a classifier, an effective computer-aided diagnosis method for knee OA was created to assist doctors in their accurate, timely and convenient detection of potential risk of OA. In order to evaluate this method, a total of 1380 data from the MRI images of 46 samples of knee joints were collected. These data were then modeled through linear regression on an offline general platform by the use of the ImageJ software, and a map of the physical parameter T2 was reconstructed. After the image processing, the T2 values of ten regions in the WORMS (WORMS: Whole-organ Magnetic Resonance Imaging Score) areas of the articular cartilage were extracted to be used as the eigenvalues in data mining. Then,a RBF (RBF: Radical Basis Function) network classifier was built to classify and identify the collected data. The classifier exhibited a final identification accuracy of 75%, indicating a good result of assisting diagnosis. Since the knee OA classifier constituted by a weights-directly-determined RBF neural network didn't require any iteration, our results demonstrated that the optimal weights, appropriate center and variance could be yielded through simple procedures. Furthermore, the accuracy for both the training samples and the testing samples from the normal group could reach 100%. Finally, the classifier was superior both in time efficiency and classification performance to the frequently used classifiers based on iterative learning. Thus it was suitable to be used as an aid to computer-aided diagnosis of early knee OA.
Computerized scheme for detection of diffuse lung diseases on CR chest images
NASA Astrophysics Data System (ADS)
Pereira, Roberto R., Jr.; Shiraishi, Junji; Li, Feng; Li, Qiang; Doi, Kunio
2008-03-01
We have developed a new computer-aided diagnostic (CAD) scheme for detection of diffuse lung disease in computed radiographic (CR) chest images. One hundred ninety-four chest images (56 normals and 138 abnormals with diffuse lung diseases) were used. The 138 abnormal cases were classified into three levels of severity (34 mild, 60 moderate, and 44 severe) by an experienced chest radiologist with use of five different patterns, i.e., reticular, reticulonodular, nodular, air-space opacity, and emphysema. In our computerized scheme, the first moment of the power spectrum, the root-mean-square variation, and the average pixel value were determined for each region of interest (ROI), which was selected automatically in the lung fields. The average pixel value and its dependence on the location of the ROI were employed for identifying abnormal patterns due to air-space opacity or emphysema. A rule-based method was used for determining three levels of abnormality for each ROI (0: normal, 1: mild, 2: moderate, and 3: severe). The distinction between normal lungs and abnormal lungs with diffuse lung disease was determined based on the fractional number of abnormal ROIs by taking into account the severity of abnormalities. Preliminary results indicated that the area under the ROC curve was 0.889 for the 44 severe cases, 0.825 for the 104 severe and moderate cases, and 0.794 for all cases. We have identified a number of problems and reasons causing false positives on normal cases, and also false negatives on abnormal cases. In addition, we have discussed potential approaches for improvement of our CAD scheme. In conclusion, the CAD scheme for detection of diffuse lung diseases based on texture features extracted from CR chest images has the potential to assist radiologists in their interpretation of diffuse lung diseases.
Computational and mathematical methods in brain atlasing.
Nowinski, Wieslaw L
2017-12-01
Brain atlases have a wide range of use from education to research to clinical applications. Mathematical methods as well as computational methods and tools play a major role in the process of brain atlas building and developing atlas-based applications. Computational methods and tools cover three areas: dedicated editors for brain model creation, brain navigators supporting multiple platforms, and atlas-assisted specific applications. Mathematical methods in atlas building and developing atlas-aided applications deal with problems in image segmentation, geometric body modelling, physical modelling, atlas-to-scan registration, visualisation, interaction and virtual reality. Here I overview computational and mathematical methods in atlas building and developing atlas-assisted applications, and share my contribution to and experience in this field.
76 FR 40923 - National Institute of Biomedical Imaging and Bioengineering; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-12
... assistance, such as sign language interpretation or other reasonable accommodations, should notify the..., Independence Room (2nd Level), Bethesda, MD 20817. Closed: 1 p.m. to 4 p.m. Agenda: To review and evaluate..., Independence Room (2nd Level), Bethesda, MD 20817 Contact Person: Anthony Demsey, PhD, Director, National...
75 FR 14175 - National Institute of Biomedical Imaging and Bioengineering; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-24
... assistance, such as sign language interpretation or other reasonable accommodations, should notify the... Level), Bethesda, MD 20817. Closed: 1:30 p.m. to 3 p.m. Agenda: To review and evaluate grant... (2nd Level), Bethesda, MD 20817. Contact Person: Anthony Demsey, PhD, Director, National Institute of...
A Comparison of Four Simulation and Instructional Methods for Endodontic Review.
ERIC Educational Resources Information Center
Sandoval, Victor A.; And Others
1987-01-01
The effects of four different endodontic self-instructional review formats (slide-tape, latent-image simulation, computer text simulation, and computer-assisted video interactive simulation) on senior clinical endodontic performance are compared. Student evaluations, as well as comparative developmental expenditures, are discussed. (Author/MLW)
Yu, Yao; Zhang, Wen-Bo; Liu, Xiao-Jing; Guo, Chuan-Bin; Yu, Guang-Yan; Peng, Xin
2017-06-01
The purpose of this study was to describe new technology assisted by 3-dimensional (3D) image fusion of 18 F-fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) and contrast-enhanced CT (CECT) for computer planning of a maxillectomy of recurrent maxillary squamous cell carcinoma and defect reconstruction. Treatment of recurrent maxillary squamous cell carcinoma usually includes tumor resection and free flap reconstruction. FDG-PET/CT provided images of regions of abnormal glucose uptake and thus showed metabolic tumor volume to guide tumor resection. CECT data were used to create 3D reconstructed images of vessels to show the vascular diameters and locations, so that the most suitable vein and artery could be selected during anastomosis of the free flap. The data from preoperative maxillofacial CECT scans and FDG-PET/CT imaging were imported into the navigation system (iPlan 3.0; Brainlab, Feldkirchen, Germany). Three-dimensional image fusion between FDG-PET/CT and CECT was accomplished using Brainlab software according to the position of the 2 skulls simulated in the CECT image and PET/CT image, respectively. After verification of the image fusion accuracy, the 3D reconstruction images of the metabolic tumor, vessels, and other critical structures could be visualized within the same coordinate system. These sagittal, coronal, axial, and 3D reconstruction images were used to determine the virtual osteotomy sites and reconstruction plan, which was provided to the surgeon and used for surgical navigation. The average shift of the 3D image fusion between FDG-PET/CT and CECT was less than 1 mm. This technique, by clearly showing the metabolic tumor volume and the most suitable vessels for anastomosis, facilitated resection and reconstruction of recurrent maxillary squamous cell carcinoma. We used 3D image fusion of FDG-PET/CT and CECT to successfully accomplish resection and reconstruction of recurrent maxillary squamous cell carcinoma. This method has the potential to improve the clinical outcomes of these challenging procedures. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Three-Dimensional Computer-Assisted Two-Layer Elastic Models of the Face.
Ueda, Koichi; Shigemura, Yuka; Otsuki, Yuki; Fuse, Asuka; Mitsuno, Daisuke
2017-11-01
To make three-dimensional computer-assisted elastic models for the face, we decided on five requirements: (1) an elastic texture like skin and subcutaneous tissue; (2) the ability to take pen marking for incisions; (3) the ability to be cut with a surgical knife; (4) the ability to keep stitches in place for a long time; and (5) a layered structure. After testing many elastic solvents, we have made realistic three-dimensional computer-assisted two-layer elastic models of the face and cleft lip from the computed tomographic and magnetic resonance imaging stereolithographic data. The surface layer is made of polyurethane and the inner layer is silicone. Using this elastic model, we taught residents and young doctors how to make several typical local flaps and to perform cheiloplasty. They could experience realistic simulated surgery and understand three-dimensional movement of the flaps.
NASA Technical Reports Server (NTRS)
Lloyd, J. F., Sr.
1987-01-01
Industrial radiography is a well established, reliable means of providing nondestructive structural integrity information. The majority of industrial radiographs are interpreted by trained human eyes using transmitted light and various visual aids. Hundreds of miles of radiographic information are evaluated, documented and archived annually. In many instances, there are serious considerations in terms of interpreter fatigue, subjectivity and limited archival space. Quite often it is difficult to quickly retrieve radiographic information for further analysis or investigation. Methods of improving the quality and efficiency of the radiographic process are being explored, developed and incorporated whenever feasible. High resolution cameras, digital image processing, and mass digital data storage offer interesting possibilities for improving the industrial radiographic process. A review is presented of computer aided radiographic interpretation technology in terms of how it could be used to enhance the radiographic interpretation process in evaluating radiographs of aluminum welds.
Abe, Yuichiro; Ito, Manabu; Abumi, Kuniyoshi; Kotani, Yoshihisa; Sudo, Hideki; Minami, Akio
2011-11-01
Use of computer-assisted spine surgery (CASS) technologies, such as navigation systems, to improve the accuracy of pedicle screw (PS) placement is increasingly popular. Despite of their benefits, previous CASS systems are too expensive to be ubiquitously employed, and more affordable and portable systems are desirable. The aim of this study was to introduce a novel and affordable computer-assisted technique that 3-dimensionally visualizes anatomical features of the pedicles and assists in PS insertion. The authors have termed this the 3D-visual guidance technique for inserting pedicle screws (3D-VG TIPS). The 3D-VG technique for placing PSs requires only a consumer-class computer with an inexpensive 3D DICOM viewer; other special equipment is unnecessary. Preoperative CT data of the spine were collected for each patient using the 3D-VG TIPS. In this technique, the anatomical axis of each pedicle can be analyzed by volume-rendered 3D models, as with existing navigation systems, and both the ideal entry point and the trajectory of each PS can be visualized on the surface of 3D-rendered images. Intraoperative guidance slides are made from these images and displayed on a TV monitor in the operating room. The surgeon can insert PSs according to these guidance slides. The authors enrolled 30 patients with adolescent idiopathic scoliosis (AIS) who underwent posterior fusion with segmental screw fixation for validation of this technique. The novel technique allowed surgeons, from office or home, to evaluate the precise anatomy of each pedicle and the risks of screw misplacement, and to perform 3D preoperative planning for screw placement on their own computer. Looking at both 3D guidance images on a TV monitor and the bony structures of the posterior elements in each patient in the operating theater, surgeons were able to determine the best entry point for each PS with ease and confidence. Using the current technique, the screw malposition rate was 4.5% in the thoracic region in corrective surgery for AIS. The authors found that 3D-VG TIPS worked on a consumer-class computer and easily visualized the ideal entry point and trajectory of PSs in any operating theater without costly special equipment. This new technique is suitable for preoperative planning and intraoperative guidance when performing reconstructive surgery with PSs.
Miksztai-Réthey, Brigitta; Faragó, Kinga Bettina
2015-01-01
We studied an artificial intelligent assisted interaction between a computer and a human with severe speech and physical impairments (SSPI). In order to speed up AAC, we extended a former study of typing performance optimization using a framework that included head movement controlled assistive technology and an onscreen writing device. Quantitative and qualitative data were collected and analysed with mathematical methods, manual interpretation and semi-supervised machine video annotation. As the result of our research, in contrast to the former experiment's conclusions, we found that our participant had at least two different typing strategies. To maximize his communication efficiency, a more complex assistive tool is suggested, which takes the different methods into consideration.
Security screening via computational imaging using frequency-diverse metasurface apertures
NASA Astrophysics Data System (ADS)
Smith, David R.; Reynolds, Matthew S.; Gollub, Jonah N.; Marks, Daniel L.; Imani, Mohammadreza F.; Yurduseven, Okan; Arnitz, Daniel; Pedross-Engel, Andreas; Sleasman, Timothy; Trofatter, Parker; Boyarsky, Michael; Rose, Alec; Odabasi, Hayrettin; Lipworth, Guy
2017-05-01
Computational imaging is a proven strategy for obtaining high-quality images with fast acquisition rates and simpler hardware. Metasurfaces provide exquisite control over electromagnetic fields, enabling the radiated field to be molded into unique patterns. The fusion of these two concepts can bring about revolutionary advances in the design of imaging systems for security screening. In the context of computational imaging, each field pattern serves as a single measurement of a scene; imaging a scene can then be interpreted as estimating the reflectivity distribution of a target from a set of measurements. As with any computational imaging system, the key challenge is to arrive at a minimal set of measurements from which a diffraction-limited image can be resolved. Here, we show that the information content of a frequency-diverse metasurface aperture can be maximized by design, and used to construct a complete millimeter-wave imaging system spanning a 2 m by 2 m area, consisting of 96 metasurfaces, capable of producing diffraction-limited images of human-scale targets. The metasurfacebased frequency-diverse system presented in this work represents an inexpensive, but tremendously flexible alternative to traditional hardware paradigms, offering the possibility of low-cost, real-time, and ubiquitous screening platforms.
NASA Astrophysics Data System (ADS)
Satoh, Hitoshi; Niki, Noboru; Mori, Kiyoshi; Eguchi, Kenji; Kaneko, Masahiro; Kakinuma, Ryutarou; Moriyama, Noriyuki; Ohmatsu, Hironobu; Masuda, Hideo; Machida, Suguru
2007-03-01
Multislice CT scanner advanced remarkably at the speed at which the chest CT images were acquired for mass screening. Mass screening based on multislice CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. To overcome this problem, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images and a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification. Moreover, we have provided diagnostic assistance methods to medical screening specialists by using a lung cancer screening algorithm built into mobile helical CT scanner for the lung cancer mass screening done in the region without the hospital. We also have developed electronic medical recording system and prototype internet system for the community health in two or more regions by using the Virtual Private Network router and Biometric fingerprint authentication system and Biometric face authentication system for safety of medical information. Based on these diagnostic assistance methods, we have now developed a new computer-aided workstation and database that can display suspected lesions three-dimensionally in a short time. This paper describes basic studies that have been conducted to evaluate this new system.
When Machines Think: Radiology's Next Frontier.
Dreyer, Keith J; Geis, J Raymond
2017-12-01
Artificial intelligence (AI), machine learning, and deep learning are terms now seen frequently, all of which refer to computer algorithms that change as they are exposed to more data. Many of these algorithms are surprisingly good at recognizing objects in images. The combination of large amounts of machine-consumable digital data, increased and cheaper computing power, and increasingly sophisticated statistical models combine to enable machines to find patterns in data in ways that are not only cost-effective but also potentially beyond humans' abilities. Building an AI algorithm can be surprisingly easy. Understanding the associated data structures and statistics, on the other hand, is often difficult and obscure. Converting the algorithm into a sophisticated product that works consistently in broad, general clinical use is complex and incompletely understood. To show how these AI products reduce costs and improve outcomes will require clinical translation and industrial-grade integration into routine workflow. Radiology has the chance to leverage AI to become a center of intelligently aggregated, quantitative, diagnostic information. Centaur radiologists, formed as a synergy of human plus computer, will provide interpretations using data extracted from images by humans and image-analysis computer algorithms, as well as the electronic health record, genomics, and other disparate sources. These interpretations will form the foundation of precision health care, or care customized to an individual patient. © RSNA, 2017.
Metal surface corrosion grade estimation from single image
NASA Astrophysics Data System (ADS)
Chen, Yijun; Qi, Lin; Sun, Huyuan; Fan, Hao; Dong, Junyu
2018-04-01
Metal corrosion can cause many problems, how to quickly and effectively assess the grade of metal corrosion and timely remediation is a very important issue. Typically, this is done by trained surveyors at great cost. Assisting them in the inspection process by computer vision and artificial intelligence would decrease the inspection cost. In this paper, we propose a dataset of metal surface correction used for computer vision detection and present a comparison between standard computer vision techniques by using OpenCV and deep learning method for automatic metal surface corrosion grade estimation from single image on this dataset. The test has been performed by classifying images and calculating the accuracy for the two different approaches.
Wetland mapping from digitized aerial photography. [Sheboygen Marsh, Sheboygen County, Wisconsin
NASA Technical Reports Server (NTRS)
Scarpace, F. L.; Quirk, B. K.; Kiefer, R. W.; Wynn, S. L.
1981-01-01
Computer assisted interpretation of small scale aerial imagery was found to be a cost effective and accurate method of mapping complex vegetation patterns if high resolution information is desired. This type of technique is suited for problems such as monitoring changes in species composition due to environmental factors and is a feasible method of monitoring and mapping large areas of wetlands. The technique has the added advantage of being in a computer compatible form which can be transformed into any georeference system of interest.
2005-10-01
nearly setting-independent features and artificial neural networks. Radiology 2003; 226:504-514. 14. Horsch K, Giger ML, Venta LA, Vyborny CJ...Giger ML, Vyborny CJ, Venta LA. Performance of computer-aided diagnosis in the interpretation of lesions on breast sonography. Acad. Radiol. 2004; 11:272
The World as Viewed by and with Unpaired Electrons
Eaton, Sandra S.; Eaton, Gareth R.
2012-01-01
Recent advances in electron paramagnetic resonance (EPR) include capabilities for applications to areas as diverse as archeology, beer shelf life, biological structure, dosimetry, in vivo imaging, molecular magnets, and quantum computing. Enabling technologies include multifrequency continuous wave, pulsed, and rapid scan EPR. Interpretation is enhanced by increasingly powerful computational models. PMID:22975244
Computed Tomography Window Blending: Feasibility in Thoracic Trauma.
Mandell, Jacob C; Wortman, Jeremy R; Rocha, Tatiana C; Folio, Les R; Andriole, Katherine P; Khurana, Bharti
2018-02-07
This study aims to demonstrate the feasibility of processing computed tomography (CT) images with a custom window blending algorithm that combines soft-tissue, bone, and lung window settings into a single image; to compare the time for interpretation of chest CT for thoracic trauma with window blending and conventional window settings; and to assess diagnostic performance of both techniques. Adobe Photoshop was scripted to process axial DICOM images from retrospective contrast-enhanced chest CTs performed for trauma with a window-blending algorithm. Two emergency radiologists independently interpreted the axial images from 103 chest CTs with both blended and conventional windows. Interpretation time and diagnostic performance were compared with Wilcoxon signed-rank test and McNemar test, respectively. Agreement with Nexus CT Chest injury severity was assessed with the weighted kappa statistic. A total of 13,295 images were processed without error. Interpretation was faster with window blending, resulting in a 20.3% time saving (P < .001), with no difference in diagnostic performance, within the power of the study to detect a difference in sensitivity of 5% as determined by post hoc power analysis. The sensitivity of the window-blended cases was 82.7%, compared to 81.6% for conventional windows. The specificity of the window-blended cases was 93.1%, compared to 90.5% for conventional windows. All injuries of major clinical significance (per Nexus CT Chest criteria) were correctly identified in all reading sessions, and all negative cases were correctly classified. All readers demonstrated near-perfect agreement with injury severity classification with both window settings. In this pilot study utilizing retrospective data, window blending allows faster preliminary interpretation of axial chest CT performed for trauma, with no significant difference in diagnostic performance compared to conventional window settings. Future studies would be required to assess the utility of window blending in clinical practice. Copyright © 2018 The Association of University Radiologists. All rights reserved.
Farahani, Navid; Liu, Zheng; Jutt, Dylan; Fine, Jeffrey L
2017-10-01
- Pathologists' computer-assisted diagnosis (pCAD) is a proposed framework for alleviating challenges through the automation of their routine sign-out work. Currently, hypothetical pCAD is based on a triad of advanced image analysis, deep integration with heterogeneous information systems, and a concrete understanding of traditional pathology workflow. Prototyping is an established method for designing complex new computer systems such as pCAD. - To describe, in detail, a prototype of pCAD for the sign-out of a breast cancer specimen. - Deidentified glass slides and data from breast cancer specimens were used. Slides were digitized into whole-slide images with an Aperio ScanScope XT, and screen captures were created by using vendor-provided software. The advanced workflow prototype was constructed by using PowerPoint software. - We modeled an interactive, computer-assisted workflow: pCAD previews whole-slide images in the context of integrated, disparate data and predefined diagnostic tasks and subtasks. Relevant regions of interest (ROIs) would be automatically identified and triaged by the computer. A pathologist's sign-out work would consist of an interactive review of important ROIs, driven by required diagnostic tasks. The interactive session would generate a pathology report automatically. - Using animations and real ROIs, the pCAD prototype demonstrates the hypothetical sign-out in a stepwise fashion, illustrating various interactions and explaining how steps can be automated. The file is publicly available and should be widely compatible. This mock-up is intended to spur discussion and to help usher in the next era of digitization for pathologists by providing desperately needed and long-awaited automation.
CHARGE Image Generator: Theory of Operation and Author Language Support. Technical Report 75-3.
ERIC Educational Resources Information Center
Gunwaldsen, Roger L.
The image generator function and author language software support for the CHARGE (Color Halftone Area Graphics Environment) Interactive Graphics System are described. Designed initially for use in computer-assisted instruction (CAI) systems, the CHARGE Interactive Graphics System can provide graphic displays for various applications including…
Clinics in diagnostic imaging (153). Severe hypoxic ischaemic brain injury.
Chua, Wynne; Lim, Boon Keat; Lim, Tchoyoson Choie Cheio
2014-01-01
A 58-year-old Indian woman presented with asystole after an episode of haemetemesis, with a patient downtime of 20 mins. After initial resuscitation efforts, computed tomography of the brain, obtained to evaluate neurological injury, demonstrated evidence of severe hypoxic ischaemic brain injury. The imaging features of hypoxic ischaemic brain injury and the potential pitfalls with regard to image interpretation are herein discussed. PMID:25091891
Suenaga, Hideyuki; Taniguchi, Asako; Yonenaga, Kazumichi; Hoshi, Kazuto; Takato, Tsuyoshi
2016-01-01
Computer-assisted preoperative simulation surgery is employed to plan and interact with the 3D images during the orthognathic procedure. It is useful for positioning and fixation of maxilla by a plate. We report a case of maxillary retrusion by a bilateral cleft lip and palate, in which a 2-stage orthognathic procedure (maxillary advancement by distraction technique and mandibular setback surgery) was performed following a computer-assisted preoperative simulation planning to achieve the positioning and fixation of the plate. A high accuracy was achieved in the present case. A 21-year-old male patient presented to our department with a complaint of maxillary retrusion following bilateral cleft lip and palate. Computer-assisted preoperative simulation with 2-stage orthognathic procedure using distraction technique and mandibular setback surgery was planned. The preoperative planning of the procedure resulted in good aesthetic outcomes. The error of the maxillary position was less than 1mm. The implementation of the computer-assisted preoperative simulation for the positioning and fixation of plate in 2-stage orthognathic procedure using distraction technique and mandibular setback surgery yielded good results. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Apple Image Processing Educator
NASA Technical Reports Server (NTRS)
Gunther, F. J.
1981-01-01
A software system design is proposed and demonstrated with pilot-project software. The system permits the Apple II microcomputer to be used for personalized computer-assisted instruction in the digital image processing of LANDSAT images. The programs provide data input, menu selection, graphic and hard-copy displays, and both general and detailed instructions. The pilot-project results are considered to be successful indicators of the capabilities and limits of microcomputers for digital image processing education.
Less is more: development and evaluation of an interactive e-atlas to support anatomy learning.
Guy, Richard; Pisani, Heather R; Rich, Peter; Leahy, Cathy; Mandarano, Giovanni; Molyneux, Tom
2015-01-01
An Interactive electronic Atlas (IeA) was developed to assist first-year nursing students with interpretation of laboratory-based prosected cadaveric material. It was designed, using pedagogically sound principles, as a student-centered resource accessible to students from a wide range of learning backgrounds. It consisted of a highly simplified interactive interface limited to essential anatomical structures and was intended for use in a blended learning situation. The IeA's nine modules mirrored the body systems covered in a Nursing Biosciences course, with each module comprising a maximum of 10 pages using the same template: an image displaying a cadaveric specimen and, in most cases, a corresponding anatomical model with navigation panes (menus) on one side. Cursor movement over the image or clicking the menu highlighted the structure with a transparent overlay and revealed a succinct functional description. The atlas was complemented by a multiple-choice database of nearly 1,000 questions using IeA images. Students' perceptions of usability and utility were measured by survey (n = 115; 57% of the class) revealing mean access of 2.3 times per week during the 12-week semester and a median time of three hours of use. Ratings for usability and utility were high, with means ranging between 4.24 and 4.54 (five-point Likert scale; 5 = strongly agree). Written responses told a similar story for both usability and utility. The role of providing basic computer-assisted learning support for a large first-year class is discussed in the context of current research into student-centered resources and blended learning in human anatomy. © 2014 American Association of Anatomists.
CAI-BASIC: A Program to Teach the Programming Language BASIC.
ERIC Educational Resources Information Center
Barry, Thomas Anthony
A computer-assisted instruction (CAI) program was designed which fulfills the objectives of teaching a simple programing language, interpreting student responses, and executing and editing student programs. The CAI-BASIC program is written in FORTRAN IV and executes on IBM-2741 terminals while running under a time-sharing system on an IBM-360-70…
A Computational Framework for Bioimaging Simulation.
Watabe, Masaki; Arjunan, Satya N V; Fukushima, Seiya; Iwamoto, Kazunari; Kozuka, Jun; Matsuoka, Satomi; Shindo, Yuki; Ueda, Masahiro; Takahashi, Koichi
2015-01-01
Using bioimaging technology, biologists have attempted to identify and document analytical interpretations that underlie biological phenomena in biological cells. Theoretical biology aims at distilling those interpretations into knowledge in the mathematical form of biochemical reaction networks and understanding how higher level functions emerge from the combined action of biomolecules. However, there still remain formidable challenges in bridging the gap between bioimaging and mathematical modeling. Generally, measurements using fluorescence microscopy systems are influenced by systematic effects that arise from stochastic nature of biological cells, the imaging apparatus, and optical physics. Such systematic effects are always present in all bioimaging systems and hinder quantitative comparison between the cell model and bioimages. Computational tools for such a comparison are still unavailable. Thus, in this work, we present a computational framework for handling the parameters of the cell models and the optical physics governing bioimaging systems. Simulation using this framework can generate digital images of cell simulation results after accounting for the systematic effects. We then demonstrate that such a framework enables comparison at the level of photon-counting units.
Barchuk, A A; Podolsky, M D; Tarakanov, S A; Kotsyuba, I Yu; Gaidukov, V S; Kuznetsov, V I; Merabishvili, V M; Barchuk, A S; Levchenko, E V; Filochkina, A V; Arseniev, A I
2015-01-01
This review article analyzes data of literature devoted to the description, interpretation and classification of focal (nodal) changes in the lungs detected by computed tomography of the chest cavity. There are discussed possible criteria for determining the most likely of their character--primary and metastatic tumor processes, inflammation, scarring, and autoimmune changes, tuberculosis and others. Identification of the most characteristic, reliable and statistically significant evidences of a variety of pathological processes in the lungs including the use of modern computer-aided detection and diagnosis of sites will optimize the diagnostic measures and ensure processing of a large volume of medical data in a short time.
Assessing the activity of sarcoidosis: quantitative /sup 67/Ga-citrate imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fajman, W.A.; Greenwald, L.V.; Staton, G.
1984-04-01
Three different methods of quantitating /sup 67/Ga-citrate lung images - a visual index, a computer-assisted index, and the total-lung-to-background ratio - were compared in 71 studies of patients with biopsy-proven sarcoidosis. Fifty consecutive cases were analyzed independently by two different observers using all three methods. In these studies, each index was correlated with the cell differential in the bronchoalveolar lavage fluid. The total-lung-to-background ratio proved to be the simplest to perform; correlated best with the original visual index and the percentage of lymphocytes obtained in bronchoalveolar lavage fluid. Sensitivity for detecting active disease was 84% compared with 64% and 58%more » for the visual and computer-assisted indices, respectively, with no sacrifice in specificity.« less
Recent development on computer aided tissue engineering--a review.
Sun, Wei; Lal, Pallavi
2002-02-01
The utilization of computer-aided technologies in tissue engineering has evolved in the development of a new field of computer-aided tissue engineering (CATE). This article reviews recent development and application of enabling computer technology, imaging technology, computer-aided design and computer-aided manufacturing (CAD and CAM), and rapid prototyping (RP) technology in tissue engineering, particularly, in computer-aided tissue anatomical modeling, three-dimensional (3-D) anatomy visualization and 3-D reconstruction, CAD-based anatomical modeling, computer-aided tissue classification, computer-aided tissue implantation and prototype modeling assisted surgical planning and reconstruction.
NASA Technical Reports Server (NTRS)
Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator)
1975-01-01
The author has identified the following significant results. It was found that the high speed man machine interaction capability is a distinct advantage of the image 100; however, the small size of the digital computer in the system is a definite limitation. The system can be highly useful in an analysis mode in which it complements a large general purpose computer. The image 100 was found to be extremely valuable in the analysis of aircraft MSS data where the spatial resolution begins to approach photographic quality and the analyst can exercise interpretation judgements and readily interact with the machine.
Applying a new mammographic imaging marker to predict breast cancer risk
NASA Astrophysics Data System (ADS)
Aghaei, Faranak; Danala, Gopichandh; Hollingsworth, Alan B.; Stoug, Rebecca G.; Pearce, Melanie; Liu, Hong; Zheng, Bin
2018-02-01
Identifying and developing new mammographic imaging markers to assist prediction of breast cancer risk has been attracting extensive research interest recently. Although mammographic density is considered an important breast cancer risk, its discriminatory power is lower for predicting short-term breast cancer risk, which is a prerequisite to establish a more effective personalized breast cancer screening paradigm. In this study, we presented a new interactive computer-aided detection (CAD) scheme to generate a new quantitative mammographic imaging marker based on the bilateral mammographic tissue density asymmetry to predict risk of cancer detection in the next subsequent mammography screening. An image database involving 1,397 women was retrospectively assembled and tested. Each woman had two digital mammography screenings namely, the "current" and "prior" screenings with a time interval from 365 to 600 days. All "prior" images were originally interpreted negative. In "current" screenings, these cases were divided into 3 groups, which include 402 positive, 643 negative, and 352 biopsy-proved benign cases, respectively. There is no significant difference of BIRADS based mammographic density ratings between 3 case groups (p < 0.6). When applying the CAD-generated imaging marker or risk model to classify between 402 positive and 643 negative cases using "prior" negative mammograms, the area under a ROC curve is 0.70+/-0.02 and the adjusted odds ratios show an increasing trend from 1.0 to 8.13 to predict the risk of cancer detection in the "current" screening. Study demonstrated that this new imaging marker had potential to yield significantly higher discriminatory power to predict short-term breast cancer risk.
Feng, Zhi-hong; Dong, Yan; Bai, Shi-zhu; Wu, Guo-feng; Bi, Yun-peng; Wang, Bo; Zhao, Yi-min
2010-01-01
The aim of this article was to demonstrate a novel approach to designing facial prostheses using the transplantation concept and computer-assisted technology for extensive, large, maxillofacial defects that cross the facial midline. The three-dimensional (3D) facial surface images of a patient and his relative were reconstructed using data obtained through optical scanning. Based on these images, the corresponding portion of the relative's face was transplanted to the patient's where the defect was located, which could not be rehabilitated using mirror projection, to design the virtual facial prosthesis without the eye. A 3D model of an artificial eye that mimicked the patient's remaining one was developed, transplanted, and fit onto the virtual prosthesis. A personalized retention structure for the artificial eye was designed on the virtual facial prosthesis. The wax prosthesis was manufactured through rapid prototyping, and the definitive silicone prosthesis was completed. The size, shape, and cosmetic appearance of the prosthesis were satisfactory and matched the defect area well. The patient's facial appearance was recovered perfectly with the prosthesis, as determined through clinical evaluation. The optical 3D imaging and computer-aided design/computer-assisted manufacturing system used in this study can design and fabricate facial prostheses more precisely than conventional manual sculpturing techniques. The discomfort generally associated with such conventional methods was decreased greatly. The virtual transplantation used to design the facial prosthesis for the maxillofacial defect, which crossed the facial midline, and the development of the retention structure for the eye were both feasible.
Computer-based Learning of Neuroanatomy: A Longitudinal Study of Learning, Transfer, and Retention
Chariker, Julia H.; Naaz, Farah; Pani, John R.
2013-01-01
A longitudinal experiment was conducted to evaluate the effectiveness of new methods for learning neuroanatomy with computer-based instruction. Using a 3D graphical model of the human brain, and sections derived from the model, tools for exploring neuroanatomy were developed to encourage adaptive exploration. This is an instructional method which incorporates graphical exploration in the context of repeated testing and feedback. With this approach, 72 participants learned either sectional anatomy alone or whole anatomy followed by sectional anatomy. Sectional anatomy was explored either with perceptually continuous navigation through the sections or with discrete navigation (as in the use of an anatomical atlas). Learning was measured longitudinally to a high performance criterion. Subsequent tests examined transfer of learning to the interpretation of biomedical images and long-term retention. There were several clear results of this study. On initial exposure to neuroanatomy, whole anatomy was learned more efficiently than sectional anatomy. After whole anatomy was mastered, learners demonstrated high levels of transfer of learning to sectional anatomy and from sectional anatomy to the interpretation of complex biomedical images. Learning whole anatomy prior to learning sectional anatomy led to substantially fewer errors overall than learning sectional anatomy alone. Use of continuous or discrete navigation through sectional anatomy made little difference to measured outcomes. Efficient learning, good long-term retention, and successful transfer to the interpretation of biomedical images indicated that computer-based learning using adaptive exploration can be a valuable tool in instruction of neuroanatomy and similar disciplines. PMID:23349552
2010-12-22
Wireless crop water monitoring project: Dr. Chris Lund, a scientist at the California State University Monterey Bay who is working on the NASA project at NASA Ames installs soil mositure probes in an agricultural field. The soil mositure measurements will be used to assist in interpretation of the satelite estimates of crop water deamand. Image of courtesy of Forrest S. Melton
A Web-Based Search Service to Support Imaging Spectrometer Instrument Operations
NASA Technical Reports Server (NTRS)
Smith, Alexander; Thompson, David R.; Sayfi, Elias; Xing, Zhangfan; Castano, Rebecca
2013-01-01
Imaging spectrometers yield rich and informative data products, but interpreting them demands time and expertise. There is a continual need for new algorithms and methods for rapid first-draft analyses to assist analysts during instrument opera-tions. Intelligent data analyses can summarize scenes to draft geologic maps, searching images to direct op-erator attention to key features. This validates data quality while facilitating rapid tactical decision making to select followup targets. Ideally these algorithms would operate in seconds, never grow bored, and be free from observation bias about the kinds of mineral-ogy that will be found.
NASA Technical Reports Server (NTRS)
Kruse, F. A.; Knepper, D. H., Jr.; Clark, R. N.
1986-01-01
Techniques using Munsell color transformations were developed for reducing 128 channels (or less) of Airborne Imaging Spectrometer (AIS) data to a single color-composite-image suitable for both visual interpretation and digital analysis. Using AIS data acquired in 1984 and 1985, limestone and dolomite roof pendants and sericite-illite and other clay minerals related to alteration were mapped in a quartz monzonite stock in the northern Grapevine Mountains of California and Nevada. Field studies and laboratory spectral measurements verify the mineralogical distributions mapped from the AIS data.
Old Fire/Grand Prix Fire, California
2003-11-19
On November 18, 2003, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite acquired this image of the Old Fire/Grand Prix fire east of Los Angeles. The image is being processed by NASA's Wildfire Response Team and will be sent to the United States Department of Agriculture's Forest Service Remote Sensing Applications Center (RSAC) which provides interpretation services to Burned Area Emergency Response (BAER) teams to assist in mapping the severity of the burned areas. The image combines data from the visible and infrared wavelength regions to highlight the burned areas. http://photojournal.jpl.nasa.gov/catalog/PIA04879
Role of post-mapping computed tomography in virtual-assisted lung mapping.
Sato, Masaaki; Nagayama, Kazuhiro; Kuwano, Hideki; Nitadori, Jun-Ichi; Anraku, Masaki; Nakajima, Jun
2017-02-01
Background Virtual-assisted lung mapping is a novel bronchoscopic preoperative lung marking technique in which virtual bronchoscopy is used to predict the locations of multiple dye markings. Post-mapping computed tomography is performed to confirm the locations of the actual markings. This study aimed to examine the accuracy of marking locations predicted by virtual bronchoscopy and elucidate the role of post-mapping computed tomography. Methods Automated and manual virtual bronchoscopy was used to predict marking locations. After bronchoscopic dye marking under local anesthesia, computed tomography was performed to confirm the actual marking locations before surgery. Discrepancies between marking locations predicted by the different methods and the actual markings were examined on computed tomography images. Forty-three markings in 11 patients were analyzed. Results The average difference between the predicted and actual marking locations was 30 mm. There was no significant difference between the latest version of the automated virtual bronchoscopy system (30.7 ± 17.2 mm) and manual virtual bronchoscopy (29.8 ± 19.1 mm). The difference was significantly greater in the upper vs. lower lobes (37.1 ± 20.1 vs. 23.0 ± 6.8 mm, for automated virtual bronchoscopy; p < 0.01). Despite this discrepancy, all targeted lesions were successfully resected using 3-dimensional image guidance based on post-mapping computed tomography reflecting the actual marking locations. Conclusions Markings predicted by virtual bronchoscopy were dislocated from the actual markings by an average of 3 cm. However, surgery was accurately performed using post-mapping computed tomography guidance, demonstrating the indispensable role of post-mapping computed tomography in virtual-assisted lung mapping.
Preliminary clinical evaluation of hard- and soft-copy digitized chest radiography
NASA Astrophysics Data System (ADS)
Rian, Roger L.; Smerud, Michael J.; Guinn, Todd
1994-05-01
The digital applications in radiology are a controversial advanced which potentially will influence all areas of patient imaging. It is utilized and accepted in angiography, computed tomography, magnetic resonance, nuclear imaging and sonography. More recently Computed Radiography has gained credibility in mobile scenarios as well as specific applications from cervical spine radiography to digital fluoroscopy. Usually this acceptance is related to benefits of lesser radiation exposure or an improved presentation with an incorrect radiographic technique. One advantage of interpreting from digital information is the potential manipulation of the image presentation to the observer through windowing, leveling and edge enhancement pre and/or during image review. Additionally this digital data can be transmitted over distance and represented as hard and/or soft copy for primary or consultative review. The number and quality of the images to be viewed, the environment of the review station as well as the observer experience with conventional radiographic as well as digital image evaluation are important aspects of delivering the radiologist's product i.e. the final interpretation. This paper assesses that product, specifically addressing the question `Is the radiologist's report the same whether derived from the original analog image or from its digitized image.' The object of this study is to determine whether a digital system (3M PACS) designed for consultative viewing in a satellite department can also be used directly for primary diagnosis of conventional chest exams.
NASA Technical Reports Server (NTRS)
Kaupp, V. H.; Macdonald, H. C.; Waite, W. P.
1981-01-01
The initial phase of a program to determine the best interpretation strategy and sensor configuration for a radar remote sensing system for geologic applications is discussed. In this phase, terrain modeling and radar image simulation were used to perform parametric sensitivity studies. A relatively simple computer-generated terrain model is presented, and the data base, backscatter file, and transfer function for digital image simulation are described. Sets of images are presented that simulate the results obtained with an X-band radar from an altitude of 800 km and at three different terrain-illumination angles. The simulations include power maps, slant-range images, ground-range images, and ground-range images with statistical noise incorporated. It is concluded that digital image simulation and computer modeling provide cost-effective methods for evaluating terrain variations and sensor parameter changes, for predicting results, and for defining optimum sensor parameters.
Chest CT window settings with multiscale adaptive histogram equalization: pilot study.
Fayad, Laura M; Jin, Yinpeng; Laine, Andrew F; Berkmen, Yahya M; Pearson, Gregory D; Freedman, Benjamin; Van Heertum, Ronald
2002-06-01
Multiscale adaptive histogram equalization (MAHE), a wavelet-based algorithm, was investigated as a method of automatic simultaneous display of the full dynamic contrast range of a computed tomographic image. Interpretation times were significantly lower for MAHE-enhanced images compared with those for conventionally displayed images. Diagnostic accuracy, however, was insufficient in this pilot study to allow recommendation of MAHE as a replacement for conventional window display.
The world as viewed by and with unpaired electrons.
Eaton, Sandra S; Eaton, Gareth R
2012-10-01
Recent advances in electron paramagnetic resonance (EPR) include capabilities for applications to areas as diverse as archeology, beer shelf life, biological structure, dosimetry, in vivo imaging, molecular magnets, and quantum computing. Enabling technologies include multifrequency continuous wave, pulsed, and rapid scan EPR. Interpretation is enhanced by increasingly powerful computational models. Copyright © 2012 Elsevier Inc. All rights reserved.
GAP: yet another image processing system for solar observations.
NASA Astrophysics Data System (ADS)
Keller, C. U.
GAP is a versatile, interactive image processing system for analyzing solar observations, in particular extended time sequences, and for preparing publication quality figures. It consists of an interpreter that is based on a language with a control flow similar to PASCAL and C. The interpreter may be accessed from a command line editor and from user-supplied functions, procedures, and command scripts. GAP is easily expandable via external FORTRAN programs that are linked to the GAP interface routines. The current version of GAP runs on VAX, DECstation, Sun, and Apollo computers. Versions for MS-DOS and OS/2 are in preparation.
A novel concept for smart trepanation.
Follmann, Axel; Korff, Alexander; Fuertjes, Tobias; Kunze, Sandra C; Schmieder, Kirsten; Radermacher, Klaus
2012-01-01
Trepanation of the skull is a common procedure in craniofacial and neurosurgical interventions, allowing access to the innermost cranial structures. Despite a careful advancement, injury of the dura mater represents a frequent complication during these cranial openings. The technology of computer-assisted surgery offers different support systems such as navigated tools and surgical robots. This article presents a novel technical approach toward an image- and sensor-based synergistic control of the cutting depth of a manually guided soft-tissue-preserving saw. Feasibility studies in a laboratory setup modeling relevant skull tissue parameters demonstrate that errors due to computed tomography or magnetic resonance image segmentation and registration, optical tracking, and mechanical tolerances of up to 2.5 mm, imminent to many computer-assisted surgery systems, can be compensated for by the cutting tool characteristics without damaging the dura. In conclusion, the feasibility of a computer-controlled trepanation system providing a safer and efficient trepanation has been demonstrated. Injuries of the dura mater can be avoided, and the bone cutting gap can be reduced to 0.5 mm with potential benefits for the reintegration of the bone flap.
NASA Astrophysics Data System (ADS)
Amit, Guy; Ben-Ari, Rami; Hadad, Omer; Monovich, Einat; Granot, Noa; Hashoul, Sharbell
2017-03-01
Diagnostic interpretation of breast MRI studies requires meticulous work and a high level of expertise. Computerized algorithms can assist radiologists by automatically characterizing the detected lesions. Deep learning approaches have shown promising results in natural image classification, but their applicability to medical imaging is limited by the shortage of large annotated training sets. In this work, we address automatic classification of breast MRI lesions using two different deep learning approaches. We propose a novel image representation for dynamic contrast enhanced (DCE) breast MRI lesions, which combines the morphological and kinetics information in a single multi-channel image. We compare two classification approaches for discriminating between benign and malignant lesions: training a designated convolutional neural network and using a pre-trained deep network to extract features for a shallow classifier. The domain-specific trained network provided higher classification accuracy, compared to the pre-trained model, with an area under the ROC curve of 0.91 versus 0.81, and an accuracy of 0.83 versus 0.71. Similar accuracy was achieved in classifying benign lesions, malignant lesions, and normal tissue images. The trained network was able to improve accuracy by using the multi-channel image representation, and was more robust to reductions in the size of the training set. A small-size convolutional neural network can learn to accurately classify findings in medical images using only a few hundred images from a few dozen patients. With sufficient data augmentation, such a network can be trained to outperform a pre-trained out-of-domain classifier. Developing domain-specific deep-learning models for medical imaging can facilitate technological advancements in computer-aided diagnosis.
Simple video format for mobile applications
NASA Astrophysics Data System (ADS)
Smith, John R.; Miao, Zhourong; Li, Chung-Sheng
2000-04-01
With the advent of pervasive computing, there is a growing demand for enabling multimedia applications on mobile devices. Large numbers of pervasive computing devices, such as personal digital assistants (PDAs), hand-held computer (HHC), smart phones, portable audio players, automotive computing devices, and wearable computers are gaining access to online information sources. However, the pervasive computing devices are often constrained along a number of dimensions, such as processing power, local storage, display size and depth, connectivity, and communication bandwidth, which makes it difficult to access rich image and video content. In this paper, we report on our initial efforts in designing a simple scalable video format with low-decoding and transcoding complexity for pervasive computing. The goal is to enable image and video access for mobile applications such as electronic catalog shopping, video conferencing, remote surveillance and video mail using pervasive computing devices.
The Sounds of Nanoscience: Acoustic STM Analogues
ERIC Educational Resources Information Center
Euler, Manfred
2013-01-01
A hands-on model of scanning tunnelling microscopy (STM) is presented. It uses near-field imaging with sound and computer assisted visualization to create acoustic mappings of resonator arrangements. Due to the (partial) analogy of matter and sound waves the images closely resemble STM scans of atoms. Moreover, the method can be extended to build…
Volonté, Francesco; Pugin, François; Bucher, Pascal; Sugimoto, Maki; Ratib, Osman; Morel, Philippe
2011-07-01
New technologies can considerably improve preoperative planning, enhance the surgeon's skill and simplify the approach to complex procedures. Augmented reality techniques, robot assisted operations and computer assisted navigation tools will become increasingly important in surgery and in residents' education. We obtained 3D reconstructions from simple spiral computed tomography (CT) slides using OsiriX, an open source processing software package dedicated to DICOM images. These images were then projected on the patient's body with a beamer fixed to the operating table to enhance spatial perception during surgical intervention (augmented reality). Changing a window's deepness level allowed the surgeon to navigate through the patient's anatomy, highlighting regions of interest and marked pathologies. We used image overlay navigation for laparoscopic operations such cholecystectomy, abdominal exploration, distal pancreas resection and robotic liver resection. Augmented reality techniques will transform the behaviour of surgeons, making surgical interventions easier, faster and probably safer. These new techniques will also renew methods of surgical teaching, facilitating transmission of knowledge and skill to young surgeons.
NASA Astrophysics Data System (ADS)
Le Bas, Tim; Scarth, Anthony; Bunting, Peter
2015-04-01
Traditional computer based methods for the interpretation of remotely sensed imagery use each pixel individually or the average of a small window of pixels to calculate a class or thematic value, which provides an interpretation. However when a human expert interprets imagery, the human eye is excellent at finding coherent and homogenous areas and edge features. It may therefore be advantageous for computer analysis to mimic human interpretation. A new toolbox for ArcGIS 10.x will be presented that segments the data layers into a set of polygons. Each polygon is defined by a K-means clustering and region growing algorithm, thus finding areas, their edges and any lineations in the imagery. Attached to each polygon are the characteristics of the imagery such as mean and standard deviation of the pixel values, within the polygon. The segmentation of imagery into a jigsaw of polygons also has the advantage that the human interpreter does not need to spend hours digitising the boundaries. The segmentation process has been taken from the RSGIS library of analysis and classification routines (Bunting et al., 2014). These routines are freeware and have been modified to be available in the ArcToolbox under the Windows (v7) operating system. Input to the segmentation process is a multi-layered raster image, for example; a Landsat image, or a set of raster datasets made up from derivatives of topography. The size and number of polygons are set by the user and are dependent on the imagery used. Examples will be presented of data from the marine environment utilising bathymetric depth, slope, rugosity and backscatter from a multibeam system. Meaningful classification of the polygons using their numerical characteristics is the next goal. Object based image analysis (OBIA) should help this workflow. Fully calibrated imagery systems will allow numerical classification to be translated into more readily understandable terms. Peter Bunting, Daniel Clewley, Richard M. Lucas and Sam Gillingham. 2014. The Remote Sensing and GIS Software Library (RSGISLib), Computers & Geosciences. Volume 62, Pages 216-226 http://dx.doi.org/10.1016/j.cageo.2013.08.007.
Bermo, Mohammed; Behnia, Sanaz; Fair, Joanna; Miyaoka, Robert S; Elojeimy, Saeed
2017-07-31
Recognizing the different mechanisms and imaging appearance of extraskeletal Tc-99m methylene diphosphonate uptake enhances the diagnostic value of bone scan interpretation. In this article, we present a pictorial review of the different mechanisms of extraskeletal Tc-99m methylene diphosphonate uptake on bone scintigraphy including neoplastic, inflammatory, ischemic, traumatic, excretory, and iatrogenic. We also illustrate through case examples the added value of correlation with cross-sectional and single photon emission computed tomography and computed tomography imaging in localizing and characterizing challenging cases of extraskeletal uptake. Copyright © 2017 Elsevier Inc. All rights reserved.
Fast linear feature detection using multiple directional non-maximum suppression.
Sun, C; Vallotton, P
2009-05-01
The capacity to detect linear features is central to image analysis, computer vision and pattern recognition and has practical applications in areas such as neurite outgrowth detection, retinal vessel extraction, skin hair removal, plant root analysis and road detection. Linear feature detection often represents the starting point for image segmentation and image interpretation. In this paper, we present a new algorithm for linear feature detection using multiple directional non-maximum suppression with symmetry checking and gap linking. Given its low computational complexity, the algorithm is very fast. We show in several examples that it performs very well in terms of both sensitivity and continuity of detected linear features.
The image-interpretation-workstation of the future: lessons learned
NASA Astrophysics Data System (ADS)
Maier, S.; van de Camp, F.; Hafermann, J.; Wagner, B.; Peinsipp-Byma, E.; Beyerer, J.
2017-05-01
In recent years, professionally used workstations got increasingly complex and multi-monitor systems are more and more common. Novel interaction techniques like gesture recognition were developed but used mostly for entertainment and gaming purposes. These human computer interfaces are not yet widely used in professional environments where they could greatly improve the user experience. To approach this problem, we combined existing tools in our imageinterpretation-workstation of the future, a multi-monitor workplace comprised of four screens. Each screen is dedicated to a special task in the image interpreting process: a geo-information system to geo-reference the images and provide a spatial reference for the user, an interactive recognition support tool, an annotation tool and a reporting tool. To further support the complex task of image interpreting, self-developed interaction systems for head-pose estimation and hand tracking were used in addition to more common technologies like touchscreens, face identification and speech recognition. A set of experiments were conducted to evaluate the usability of the different interaction systems. Two typical extensive tasks of image interpreting were devised and approved by military personal. They were then tested with a current setup of an image interpreting workstation using only keyboard and mouse against our image-interpretationworkstation of the future. To get a more detailed look at the usefulness of the interaction techniques in a multi-monitorsetup, the hand tracking, head pose estimation and the face recognition were further evaluated using tests inspired by everyday tasks. The results of the evaluation and the discussion are presented in this paper.
Deep Learning in Medical Image Analysis.
Shen, Dinggang; Wu, Guorong; Suk, Heung-Il
2017-06-21
This review covers computer-assisted analysis of images in the field of medical imaging. Recent advances in machine learning, especially with regard to deep learning, are helping to identify, classify, and quantify patterns in medical images. At the core of these advances is the ability to exploit hierarchical feature representations learned solely from data, instead of features designed by hand according to domain-specific knowledge. Deep learning is rapidly becoming the state of the art, leading to enhanced performance in various medical applications. We introduce the fundamentals of deep learning methods and review their successes in image registration, detection of anatomical and cellular structures, tissue segmentation, computer-aided disease diagnosis and prognosis, and so on. We conclude by discussing research issues and suggesting future directions for further improvement.
Patel, Samir N; Klufas, Michael A; Ryan, Michael C; Jonas, Karyn E; Ostmo, Susan; Martinez-Castellanos, Maria Ana; Berrocal, Audina M; Chiang, Michael F; Chan, R V Paul
2015-05-01
To examine the usefulness of fluorescein angiography (FA) in identifying the macular center and diagnosis of zone in patients with retinopathy of prematurity (ROP). Validity and reliability analysis of diagnostic tools. Thirty-two sets (16 color fundus photographs and 16 color fundus photographs paired with the corresponding FA images) of wide-angle retinal images obtained from 16 eyes of 8 infants with ROP were compiled on a secure web site. Nine ROP experts (3 pediatric ophthalmologists and 6 vitreoretinal surgeons) participated in the study. For each image set, experts identified the macular center and provided a diagnosis of zone. (1) Sensitivity and specificity of zone diagnosis and (2) computer-facilitated diagnosis of zone, based on precise measurement of the macular center, optic disc center, and peripheral ROP. Computer-facilitated diagnosis of zone agreed with the expert's diagnosis of zone in 28 (62%) of 45 cases using color fundus photographs and in 31 (69%) of 45 cases using FA images. Mean (95% confidence interval) sensitivity for detection of zone I by experts compared with a consensus reference standard diagnosis when interpreting the color fundus images alone versus interpreting the color fundus photographs and FA images was 47% (range, 35.3% to 59.3%) and 61.1% (range, 48.9% to 72.4%), respectively (t(9) ≥ (2.063); P = .073). There is a marginally significant difference in zone diagnosis when using color fundus photographs compared with using color fundus photographs and the corresponding FA images. There is inconsistency between traditional zone diagnosis (based on ophthalmoscopic examination and image review) compared with a computer-facilitated diagnosis of zone. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Uchiyama, Yoshikazu; Gao, Xin; Hara, Takeshi; Fujita, Hiroshi; Ando, Hiromichi; Yamakawa, Hiroyasu; Asano, Takahiko; Kato, Hiroki; Iwama, Toru; Kanematsu, Masayuki; Hoshi, Hiroaki
2008-03-01
The detection of unruptured aneurysms is a major subject in magnetic resonance angiography (MRA). However, their accurate detection is often difficult because of the overlapping between the aneurysm and the adjacent vessels on maximum intensity projection images. The purpose of this study is to develop a computerized method for the detection of unruptured aneurysms in order to assist radiologists in image interpretation. The vessel regions were first segmented using gray-level thresholding and a region growing technique. The gradient concentration (GC) filter was then employed for the enhancement of the aneurysms. The initial candidates were identified in the GC image using a gray-level threshold. For the elimination of false positives (FPs), we determined shape features and an anatomical location feature. Finally, rule-based schemes and quadratic discriminant analysis were employed along with these features for distinguishing between the aneurysms and the FPs. The sensitivity for the detection of unruptured aneurysms was 90.0% with 1.52 FPs per patient. Our computerized scheme can be useful in assisting the radiologists in the detection of unruptured aneurysms in MRA images.
NASA Astrophysics Data System (ADS)
Lieberman, Robert; Kwong, Heston; Liu, Brent; Huang, H. K.
2009-02-01
The chest x-ray radiological features of tuberculosis patients are well documented, and the radiological features that change in response to successful pharmaceutical therapy can be followed with longitudinal studies over time. The patients can also be classified as either responsive or resistant to pharmaceutical therapy based on clinical improvement. We have retrospectively collected time series chest x-ray images of 200 patients diagnosed with tuberculosis receiving the standard pharmaceutical treatment. Computer algorithms can be created to utilize image texture features to assess the temporal changes in the chest x-rays of the tuberculosis patients. This methodology provides a framework for a computer-assisted detection (CAD) system that may provide physicians with the ability to detect poor treatment response earlier in pharmaceutical therapy. Early detection allows physicians to respond with more timely treatment alternatives and improved outcomes. Such a system has the potential to increase treatment efficacy for millions of patients each year.
Neural networks: Application to medical imaging
NASA Technical Reports Server (NTRS)
Clarke, Laurence P.
1994-01-01
The research mission is the development of computer assisted diagnostic (CAD) methods for improved diagnosis of medical images including digital x-ray sensors and tomographic imaging modalities. The CAD algorithms include advanced methods for adaptive nonlinear filters for image noise suppression, hybrid wavelet methods for feature segmentation and enhancement, and high convergence neural networks for feature detection and VLSI implementation of neural networks for real time analysis. Other missions include (1) implementation of CAD methods on hospital based picture archiving computer systems (PACS) and information networks for central and remote diagnosis and (2) collaboration with defense and medical industry, NASA, and federal laboratories in the area of dual use technology conversion from defense or aerospace to medicine.
Radiomic analysis in prediction of Human Papilloma Virus status.
Yu, Kaixian; Zhang, Youyi; Yu, Yang; Huang, Chao; Liu, Rongjie; Li, Tengfei; Yang, Liuqing; Morris, Jeffrey S; Baladandayuthapani, Veerabhadran; Zhu, Hongtu
2017-12-01
Human Papilloma Virus (HPV) has been associated with oropharyngeal cancer prognosis. Traditionally the HPV status is tested through invasive lab test. Recently, the rapid development of statistical image analysis techniques has enabled precise quantitative analysis of medical images. The quantitative analysis of Computed Tomography (CT) provides a non-invasive way to assess HPV status for oropharynx cancer patients. We designed a statistical radiomics approach analyzing CT images to predict HPV status. Various radiomics features were extracted from CT scans, and analyzed using statistical feature selection and prediction methods. Our approach ranked the highest in the 2016 Medical Image Computing and Computer Assisted Intervention (MICCAI) grand challenge: Oropharynx Cancer (OPC) Radiomics Challenge, Human Papilloma Virus (HPV) Status Prediction. Further analysis on the most relevant radiomic features distinguishing HPV positive and negative subjects suggested that HPV positive patients usually have smaller and simpler tumors.
Computer-assisted segmentation of white matter lesions in 3D MR images using support vector machine.
Lao, Zhiqiang; Shen, Dinggang; Liu, Dengfeng; Jawad, Abbas F; Melhem, Elias R; Launer, Lenore J; Bryan, R Nick; Davatzikos, Christos
2008-03-01
Brain lesions, especially white matter lesions (WMLs), are associated with cardiac and vascular disease, but also with normal aging. Quantitative analysis of WML in large clinical trials is becoming more and more important. In this article, we present a computer-assisted WML segmentation method, based on local features extracted from multiparametric magnetic resonance imaging (MRI) sequences (ie, T1-weighted, T2-weighted, proton density-weighted, and fluid attenuation inversion recovery MRI scans). A support vector machine classifier is first trained on expert-defined WMLs, and is then used to classify new scans. Postprocessing analysis further reduces false positives by using anatomic knowledge and measures of distance from the training set. Cross-validation on a population of 35 patients from three different imaging sites with WMLs of varying sizes, shapes, and locations tests the robustness and accuracy of the proposed segmentation method, compared with the manual segmentation results from two experienced neuroradiologists.
A remote sensing computer-assisted learning tool developed using the unified modeling language
NASA Astrophysics Data System (ADS)
Friedrich, J.; Karslioglu, M. O.
The goal of this work has been to create an easy-to-use and simple-to-make learning tool for remote sensing at an introductory level. Many students struggle to comprehend what seems to be a very basic knowledge of digital images, image processing and image arithmetic, for example. Because professional programs are generally too complex and overwhelming for beginners and often not tailored to the specific needs of a course regarding functionality, a computer-assisted learning (CAL) program was developed based on the unified modeling language (UML), the present standard for object-oriented (OO) system development. A major advantage of this approach is an easier transition from modeling to coding of such an application, if modern UML tools are being used. After introducing the constructed UML model, its implementation is briefly described followed by a series of learning exercises. They illustrate how the resulting CAL tool supports students taking an introductory course in remote sensing at the author's institution.
NASA Technical Reports Server (NTRS)
Vu, Duc; Sandor, Michael; Agarwal, Shri
2005-01-01
CSAM Metrology Software Tool (CMeST) is a computer program for analysis of false-color CSAM images of plastic-encapsulated microcircuits. (CSAM signifies C-mode scanning acoustic microscopy.) The colors in the images indicate areas of delamination within the plastic packages. Heretofore, the images have been interpreted by human examiners. Hence, interpretations have not been entirely consistent and objective. CMeST processes the color information in image-data files to detect areas of delamination without incurring inconsistencies of subjective judgement. CMeST can be used to create a database of baseline images of packages acquired at given times for comparison with images of the same packages acquired at later times. Any area within an image can be selected for analysis, which can include examination of different delamination types by location. CMeST can also be used to perform statistical analyses of image data. Results of analyses are available in a spreadsheet format for further processing. The results can be exported to any data-base-processing software.
ERIC Educational Resources Information Center
Jones, Joan Simon
This review and synthesis of the literature on correctional vocational education includes historical documents, recent surveys and reports, journal articles, dissertations, and speeches and presentations which were located by computer-assisted and manual searches of these data bases: Abstracts of Instructional and Research Materials in Vocational…
ERIC Educational Resources Information Center
Liao, Ying; Lin, Wen-He
2016-01-01
In the era when digitalization is pursued, numbers are the major medium of information performance and statistics is the primary instrument to interpret and analyze numerical information. For this reason, the cultivation of fundamental statistical literacy should be a key in the learning area of mathematics at the stage of compulsory education.…
Image-guided techniques in renal and hepatic interventions.
Najmaei, Nima; Mostafavi, Kamal; Shahbazi, Sahar; Azizian, Mahdi
2013-12-01
Development of new imaging technologies and advances in computing power have enabled the physicians to perform medical interventions on the basis of high-quality 3D and/or 4D visualization of the patient's organs. Preoperative imaging has been used for planning the surgery, whereas intraoperative imaging has been widely employed to provide visual feedback to a clinician when he or she is performing the procedure. In the past decade, such systems demonstrated great potential in image-guided minimally invasive procedures on different organs, such as brain, heart, liver and kidneys. This article focuses on image-guided interventions and surgery in renal and hepatic surgeries. A comprehensive search of existing electronic databases was completed for the period of 2000-2011. Each contribution was assessed by the authors for relevance and inclusion. The contributions were categorized on the basis of the type of operation/intervention, imaging modality and specific techniques such as image fusion and augmented reality, and organ motion tracking. As a result, detailed classification and comparative study of various contributions in image-guided renal and hepatic interventions are provided. In addition, the potential future directions have been sketched. With a detailed review of the literature, potential future trends in development of image-guided abdominal interventions are identified, namely, growing use of image fusion and augmented reality, computer-assisted and/or robot-assisted interventions, development of more accurate registration and navigation techniques, and growing applications of intraoperative magnetic resonance imaging. Copyright © 2012 John Wiley & Sons, Ltd.
The microcomputer in the dental office: a new diagnostic aid.
van der Stelt, P F
1985-06-01
The first computer applications in the dental office were based upon standard accountancy procedures. Recently, more and more computer applications have become available to meet the specific requirements of dental practice. This implies not only business procedures, but also facilities to store patient records in the system and retrieve them easily. Another development concerns the automatic calculation of diagnostic data such as those provided in cephalometric analysis. Furthermore, growth and surgical results in the craniofacial area can be predicted by computerized extrapolation. Computers have been useful in obtaining the patient's anamnestic data objectively and for the making of decisions based on such data. Computer-aided instruction systems have been developed for undergraduate students to bridge the gap between textbook and patient interaction without the risks inherent in the latter. Radiology will undergo substantial changes as a result of the application of electronic imaging devices instead of the conventional radiographic films. Computer-assisted electronic imaging will enable image processing, image enhancement, pattern recognition and data transmission for consultation and storage purposes. Image processing techniques will increase image quality whilst still allowing low-dose systems. Standardization of software and system configuration and the development of 'user friendly' programs is the major concern for the near future.
The interplay of attention economics and computer-aided detection marks in screening mammography
NASA Astrophysics Data System (ADS)
Schwartz, Tayler M.; Sridharan, Radhika; Wei, Wei; Lukyanchenko, Olga; Geiser, William; Whitman, Gary J.; Haygood, Tamara Miner
2016-03-01
Introduction: According to attention economists, overabundant information leads to decreased attention for individual pieces of information. Computer-aided detection (CAD) alerts radiologists to findings potentially associated with breast cancer but is notorious for creating an abundance of false-positive marks. We suspected that increased CAD marks do not lengthen mammogram interpretation time, as radiologists will selectively disregard these marks when present in larger numbers. We explore the relevance of attention economics in mammography by examining how the number of CAD marks affects interpretation time. Methods: We performed a retrospective review of bilateral digital screening mammograms obtained between January 1, 2011 and February 28, 2014, using only weekend interpretations to decrease distractions and the likelihood of trainee participation. We stratified data according to reader and used ANOVA to assess the relationship between number of CAD marks and interpretation time. Results: Ten radiologists, with median experience after residency of 12.5 years (range 6 to 24,) interpreted 1849 mammograms. When accounting for number of images, Breast Imaging Reporting and Data System category, and breast density, increasing numbers of CAD marks was correlated with longer interpretation time only for the three radiologists with the fewest years of experience (median 7 years.) Conclusion: For the 7 most experienced readers, increasing CAD marks did not lengthen interpretation time. We surmise that as CAD marks increase, the attention given to individual marks decreases. Experienced radiologists may rapidly dismiss larger numbers of CAD marks as false-positive, having learned that devoting extra attention to such marks does not improve clinical detection.
Percutaneous computer-assisted translaminar facet screw: an initial human cadaveric study.
Sasso, Rick C; Best, Natalie M; Potts, Eric A
2005-01-01
Translaminar facet screws are a minimally invasive technique for posterior lumbar fixation with good success rates. Computer-assisted image navigation using virtual fluoroscopy allows multiple simultaneous screens in various planes to plan and drive spinal instrumentation. This study evaluates the percutaneous placement of translaminar facet screws with the use of virtual fluoroscopy as an image guidance technique. A human cadaveric study was performed with a percutaneous reference frame applied to the iliac crest. Ten translaminar facet screws were placed bilaterally at five levels. Anteroposterior and lateral images were used to navigate 4.0-mm screws through a percutaneous portal under virtual fluoroscopy. An axial computed tomographic scan through the instrumented levels was obtained after the screws were placed. Screws were graded on entry, course through the lamina, and terminus. A grading system was devised to grade the course through the lamina. All 10 screw-entry points were judged optimal at the spinous process laminar junction. There were five Grade I breeches with less than 1/2 the screw through the lamina, and five Grade 0 screw placements with the screw contained completely within the lamina. The termination point was acceptable in five screws. The screws that began on the right and terminated on the left were all found to have grade II breakouts. No screws placed the spinal canal or exiting nerve root at risk. Virtual fluoroscopy provides significant assistance in percutaneous placement of translaminar facet screws and results in safe position of entry, lamina course, and terminus.
The Java Image Science Toolkit (JIST) for rapid prototyping and publishing of neuroimaging software.
Lucas, Blake C; Bogovic, John A; Carass, Aaron; Bazin, Pierre-Louis; Prince, Jerry L; Pham, Dzung L; Landman, Bennett A
2010-03-01
Non-invasive neuroimaging techniques enable extraordinarily sensitive and specific in vivo study of the structure, functional response and connectivity of biological mechanisms. With these advanced methods comes a heavy reliance on computer-based processing, analysis and interpretation. While the neuroimaging community has produced many excellent academic and commercial tool packages, new tools are often required to interpret new modalities and paradigms. Developing custom tools and ensuring interoperability with existing tools is a significant hurdle. To address these limitations, we present a new framework for algorithm development that implicitly ensures tool interoperability, generates graphical user interfaces, provides advanced batch processing tools, and, most importantly, requires minimal additional programming or computational overhead. Java-based rapid prototyping with this system is an efficient and practical approach to evaluate new algorithms since the proposed system ensures that rapidly constructed prototypes are actually fully-functional processing modules with support for multiple GUI's, a broad range of file formats, and distributed computation. Herein, we demonstrate MRI image processing with the proposed system for cortical surface extraction in large cross-sectional cohorts, provide a system for fully automated diffusion tensor image analysis, and illustrate how the system can be used as a simulation framework for the development of a new image analysis method. The system is released as open source under the Lesser GNU Public License (LGPL) through the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC).
The Java Image Science Toolkit (JIST) for Rapid Prototyping and Publishing of Neuroimaging Software
Lucas, Blake C.; Bogovic, John A.; Carass, Aaron; Bazin, Pierre-Louis; Prince, Jerry L.; Pham, Dzung
2010-01-01
Non-invasive neuroimaging techniques enable extraordinarily sensitive and specific in vivo study of the structure, functional response and connectivity of biological mechanisms. With these advanced methods comes a heavy reliance on computer-based processing, analysis and interpretation. While the neuroimaging community has produced many excellent academic and commercial tool packages, new tools are often required to interpret new modalities and paradigms. Developing custom tools and ensuring interoperability with existing tools is a significant hurdle. To address these limitations, we present a new framework for algorithm development that implicitly ensures tool interoperability, generates graphical user interfaces, provides advanced batch processing tools, and, most importantly, requires minimal additional programming or computational overhead. Java-based rapid prototyping with this system is an efficient and practical approach to evaluate new algorithms since the proposed system ensures that rapidly constructed prototypes are actually fully-functional processing modules with support for multiple GUI's, a broad range of file formats, and distributed computation. Herein, we demonstrate MRI image processing with the proposed system for cortical surface extraction in large cross-sectional cohorts, provide a system for fully automated diffusion tensor image analysis, and illustrate how the system can be used as a simulation framework for the development of a new image analysis method. The system is released as open source under the Lesser GNU Public License (LGPL) through the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC). PMID:20077162
Context dependent anti-aliasing image reconstruction
NASA Technical Reports Server (NTRS)
Beaudet, Paul R.; Hunt, A.; Arlia, N.
1989-01-01
Image Reconstruction has been mostly confined to context free linear processes; the traditional continuum interpretation of digital array data uses a linear interpolator with or without an enhancement filter. Here, anti-aliasing context dependent interpretation techniques are investigated for image reconstruction. Pattern classification is applied to each neighborhood to assign it a context class; a different interpolation/filter is applied to neighborhoods of differing context. It is shown how the context dependent interpolation is computed through ensemble average statistics using high resolution training imagery from which the lower resolution image array data is obtained (simulation). A quadratic least squares (LS) context-free image quality model is described from which the context dependent interpolation coefficients are derived. It is shown how ensembles of high-resolution images can be used to capture the a priori special character of different context classes. As a consequence, a priori information such as the translational invariance of edges along the edge direction, edge discontinuity, and the character of corners is captured and can be used to interpret image array data with greater spatial resolution than would be expected by the Nyquist limit. A Gibb-like artifact associated with this super-resolution is discussed. More realistic context dependent image quality models are needed and a suggestion is made for using a quality model which now is finding application in data compression.
Technical Considerations on Scanning and Image Analysis for Amyloid PET in Dementia.
Akamatsu, Go; Ohnishi, Akihito; Aita, Kazuki; Ikari, Yasuhiko; Yamamoto, Yasuji; Senda, Michio
2017-01-01
Brain imaging techniques, such as computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and positron emission tomography (PET), can provide essential and objective information for the early and differential diagnosis of dementia. Amyloid PET is especially useful to evaluate the amyloid-β pathological process as a biomarker of Alzheimer's disease. This article reviews critical points about technical considerations on the scanning and image analysis methods for amyloid PET. Each amyloid PET agent has its own proper administration instructions and recommended uptake time, scan duration, and the method of image display and interpretation. In addition, we have introduced general scanning information, including subject positioning, reconstruction parameters, and quantitative and statistical image analysis. We believe that this article could make amyloid PET a more reliable tool in clinical study and practice.
[Imaging in ankle traumas with special attention to fractures and their mechanisms].
Meunier, B; Joskin, J; Gillet, P; Magotteaux, P; Simoni, P
2011-09-01
The ankle is the most frequently injured joint. The most common causes include sports injuries, highway accidents and household or workplace accidents. The therapeutic decision is based on radiological and clinical interpretation. This article aims to assist the clinician in deciding the role of radiography in diagnosis, care and treatment. It is also a reminder for the radiologist.
Raghavendra, U; Rajendra Acharya, U; Gudigar, Anjan; Hong Tan, Jen; Fujita, Hamido; Hagiwara, Yuki; Molinari, Filippo; Kongmebhol, Pailin; Hoong Ng, Kwan
2017-05-01
Thyroid is a small gland situated at the anterior side of the neck and one of the largest glands of the endocrine system. The abrupt cell growth or malignancy in the thyroid gland may cause thyroid cancer. Ultrasound images distinctly represent benign and malignant lesions, but accuracy may be poor due to subjective interpretation. Computer Aided Diagnosis (CAD) can minimize the errors created due to subjective interpretation and assists to make fast accurate diagnosis. In this work, fusion of Spatial Gray Level Dependence Features (SGLDF) and fractal textures are used to decipher the intrinsic structure of benign and malignant thyroid lesions. These features are subjected to graph based Marginal Fisher Analysis (MFA) to reduce the number of features. The reduced features are subjected to various ranking methods and classifiers. We have achieved an average accuracy, sensitivity and specificity of 97.52%, 90.32% and 98.57% respectively using Support Vector Machine (SVM) classifier. The achieved maximum Area Under Curve (AUC) is 0.9445. Finally, Thyroid Clinical Risk Index (TCRI) a single number is developed using two MFA features to discriminate the two classes. This prototype system is ready to be tested with huge diverse database. Copyright © 2017 Elsevier B.V. All rights reserved.
Application of machine learning methods in bioinformatics
NASA Astrophysics Data System (ADS)
Yang, Haoyu; An, Zheng; Zhou, Haotian; Hou, Yawen
2018-05-01
Faced with the development of bioinformatics, high-throughput genomic technology have enabled biology to enter the era of big data. [1] Bioinformatics is an interdisciplinary, including the acquisition, management, analysis, interpretation and application of biological information, etc. It derives from the Human Genome Project. The field of machine learning, which aims to develop computer algorithms that improve with experience, holds promise to enable computers to assist humans in the analysis of large, complex data sets.[2]. This paper analyzes and compares various algorithms of machine learning and their applications in bioinformatics.
Application and Utility of iPads in Pediatric Tele-echocardiography.
Colombo, Jamie N; Seckeler, Michael D; Barber, Brent J; Krupinski, Elizabeth A; Weinstein, Ronald S; Sisk, David; Lax, Daniela
2016-05-01
Telemedicine is used with increasing frequency to improve patient care in remote areas. The interpretation of medical imaging on iPad(®) (Apple, Cupertino, CA) tablets has been reported to be accurate. There are no studies on the use of iPads for interpretation of pediatric echocardiograms. We compared the quality of echo images, diagnostic accuracy, and review time using three different modalities: remote access on an iPad Air (iPad), remote access via a computer (Remote), and direct access on a computer linked through Ethernet to the server, the "gold standard" (Direct). Fifty consecutive archived pediatric echocardiograms were interpreted using the three modalities. Studies were analyzed blindly by three pediatric cardiologists; review time, diagnostic accuracy, and image quality were documented. Diagnostic accuracy was assessed by comparing the study diagnoses with the official diagnosis in the patient's chart. Discrepancies between diagnoses were graded as major (more than one grade difference) or minor (one grade difference in severity of lesion). There were no significant differences in accuracy among the three modalities. There was one major discrepancy (size of patent ductus arteriosus); all others were minor, hemodynamically insignificant. Image quality ratings were better for iPad than Remote; Direct had the highest ratings. Review times (mean [standard deviation] minutes) were longest for iPad (5.89 [3.87]) and then Remote (4.72 [2.69]), with Direct having the shortest times (3.52 [1.42]) (p < 0.0001). Pediatric echocardiograms can be interpreted using convenient, portable devices while preserving accuracy and quality with slightly longer review times (1-2 min). These findings are important in the current era of increasing need for mobile health.
Wintermark, M; Zeineh, M; Zaharchuk, G; Srivastava, A; Fischbein, N
2016-07-01
A neuroradiologist's activity includes many tasks beyond interpreting relative value unit-generating imaging studies. Our aim was to test a simple method to record and quantify the non-relative value unit-generating clinical activity represented by consults and clinical conferences, including tumor boards. Four full-time neuroradiologists, working an average of 50% clinical and 50% academic activity, systematically recorded all the non-relative value unit-generating consults and conferences in which they were involved during 3 months by using a simple, Web-based, computer-based application accessible from smartphones, tablets, or computers. The number and type of imaging studies they interpreted during the same period and the associated relative value units were extracted from our billing system. During 3 months, the 4 neuroradiologists working an average of 50% clinical activity interpreted 4241 relative value unit-generating imaging studies, representing 8152 work relative value units. During the same period, they recorded 792 non-relative value unit-generating study reviews as part of consults and conferences (not including reading room consults), representing 19% of the interpreted relative value unit-generating imaging studies. We propose a simple Web-based smartphone app to record and quantify non-relative value unit-generating activities including consults, clinical conferences, and tumor boards. The quantification of non-relative value unit-generating activities is paramount in this time of a paradigm shift from volume to value. It also represents an important tool for determining staffing levels, which cannot be performed on the basis of relative value unit only, considering the importance of time spent by radiologists on non-relative value unit-generating activities. It may also influence payment models from medical centers to radiology departments or practices. © 2016 by American Journal of Neuroradiology.
A web-based instruction module for interpretation of craniofacial cone beam CT anatomy.
Hassan, B A; Jacobs, R; Scarfe, W C; Al-Rawi, W T
2007-09-01
To develop a web-based module for learner instruction in the interpretation and recognition of osseous anatomy on craniofacial cone-beam CT (CBCT) images. Volumetric datasets from three CBCT systems were acquired (i-CAT, NewTom 3G and AccuiTomo FPD) for various subjects using equipment-specific scanning protocols. The datasets were processed using multiple software to provide two-dimensional (2D) multiplanar reformatted (MPR) images (e.g. sagittal, coronal and axial) and three-dimensional (3D) visual representations (e.g. maximum intensity projection, minimum intensity projection, ray sum, surface and volume rendering). Distinct didactic modules which illustrate the principles of CBCT systems, guided navigation of the volumetric dataset, and anatomic correlation of 3D models and 2D MPR graphics were developed using a hybrid combination of web authoring and image analysis techniques. Interactive web multimedia instruction was facilitated by the use of dynamic highlighting and labelling, and rendered video illustrations, supplemented with didactic textual material. HTML coding and Java scripting were heavily implemented for the blending of the educational modules. An interactive, multimedia educational tool for visualizing the morphology and interrelationships of osseous craniofacial anatomy, as depicted on CBCT MPR and 3D images, was designed and implemented. The present design of a web-based instruction module may assist radiologists and clinicians in learning how to recognize and interpret the craniofacial anatomy of CBCT based images more efficiently.
A Classification of Remote Sensing Image Based on Improved Compound Kernels of Svm
NASA Astrophysics Data System (ADS)
Zhao, Jianing; Gao, Wanlin; Liu, Zili; Mou, Guifen; Lu, Lin; Yu, Lina
The accuracy of RS classification based on SVM which is developed from statistical learning theory is high under small number of train samples, which results in satisfaction of classification on RS using SVM methods. The traditional RS classification method combines visual interpretation with computer classification. The accuracy of the RS classification, however, is improved a lot based on SVM method, because it saves much labor and time which is used to interpret images and collect training samples. Kernel functions play an important part in the SVM algorithm. It uses improved compound kernel function and therefore has a higher accuracy of classification on RS images. Moreover, compound kernel improves the generalization and learning ability of the kernel.
Evaluation of computer-aided detection and diagnosis systems.
Petrick, Nicholas; Sahiner, Berkman; Armato, Samuel G; Bert, Alberto; Correale, Loredana; Delsanto, Silvia; Freedman, Matthew T; Fryd, David; Gur, David; Hadjiiski, Lubomir; Huo, Zhimin; Jiang, Yulei; Morra, Lia; Paquerault, Sophie; Raykar, Vikas; Samuelson, Frank; Summers, Ronald M; Tourassi, Georgia; Yoshida, Hiroyuki; Zheng, Bin; Zhou, Chuan; Chan, Heang-Ping
2013-08-01
Computer-aided detection and diagnosis (CAD) systems are increasingly being used as an aid by clinicians for detection and interpretation of diseases. Computer-aided detection systems mark regions of an image that may reveal specific abnormalities and are used to alert clinicians to these regions during image interpretation. Computer-aided diagnosis systems provide an assessment of a disease using image-based information alone or in combination with other relevant diagnostic data and are used by clinicians as a decision support in developing their diagnoses. While CAD systems are commercially available, standardized approaches for evaluating and reporting their performance have not yet been fully formalized in the literature or in a standardization effort. This deficiency has led to difficulty in the comparison of CAD devices and in understanding how the reported performance might translate into clinical practice. To address these important issues, the American Association of Physicists in Medicine (AAPM) formed the Computer Aided Detection in Diagnostic Imaging Subcommittee (CADSC), in part, to develop recommendations on approaches for assessing CAD system performance. The purpose of this paper is to convey the opinions of the AAPM CADSC members and to stimulate the development of consensus approaches and "best practices" for evaluating CAD systems. Both the assessment of a standalone CAD system and the evaluation of the impact of CAD on end-users are discussed. It is hoped that awareness of these important evaluation elements and the CADSC recommendations will lead to further development of structured guidelines for CAD performance assessment. Proper assessment of CAD system performance is expected to increase the understanding of a CAD system's effectiveness and limitations, which is expected to stimulate further research and development efforts on CAD technologies, reduce problems due to improper use, and eventually improve the utility and efficacy of CAD in clinical practice.
Evaluation of computer-aided detection and diagnosis systemsa)
Petrick, Nicholas; Sahiner, Berkman; Armato, Samuel G.; Bert, Alberto; Correale, Loredana; Delsanto, Silvia; Freedman, Matthew T.; Fryd, David; Gur, David; Hadjiiski, Lubomir; Huo, Zhimin; Jiang, Yulei; Morra, Lia; Paquerault, Sophie; Raykar, Vikas; Samuelson, Frank; Summers, Ronald M.; Tourassi, Georgia; Yoshida, Hiroyuki; Zheng, Bin; Zhou, Chuan; Chan, Heang-Ping
2013-01-01
Computer-aided detection and diagnosis (CAD) systems are increasingly being used as an aid by clinicians for detection and interpretation of diseases. Computer-aided detection systems mark regions of an image that may reveal specific abnormalities and are used to alert clinicians to these regions during image interpretation. Computer-aided diagnosis systems provide an assessment of a disease using image-based information alone or in combination with other relevant diagnostic data and are used by clinicians as a decision support in developing their diagnoses. While CAD systems are commercially available, standardized approaches for evaluating and reporting their performance have not yet been fully formalized in the literature or in a standardization effort. This deficiency has led to difficulty in the comparison of CAD devices and in understanding how the reported performance might translate into clinical practice. To address these important issues, the American Association of Physicists in Medicine (AAPM) formed the Computer Aided Detection in Diagnostic Imaging Subcommittee (CADSC), in part, to develop recommendations on approaches for assessing CAD system performance. The purpose of this paper is to convey the opinions of the AAPM CADSC members and to stimulate the development of consensus approaches and “best practices” for evaluating CAD systems. Both the assessment of a standalone CAD system and the evaluation of the impact of CAD on end-users are discussed. It is hoped that awareness of these important evaluation elements and the CADSC recommendations will lead to further development of structured guidelines for CAD performance assessment. Proper assessment of CAD system performance is expected to increase the understanding of a CAD system's effectiveness and limitations, which is expected to stimulate further research and development efforts on CAD technologies, reduce problems due to improper use, and eventually improve the utility and efficacy of CAD in clinical practice. PMID:23927365
Computation of mass-density images from x-ray refraction-angle images.
Wernick, Miles N; Yang, Yongyi; Mondal, Indrasis; Chapman, Dean; Hasnah, Moumen; Parham, Christopher; Pisano, Etta; Zhong, Zhong
2006-04-07
In this paper, we investigate the possibility of computing quantitatively accurate images of mass density variations in soft tissue. This is a challenging task, because density variations in soft tissue, such as the breast, can be very subtle. Beginning from an image of refraction angle created by either diffraction-enhanced imaging (DEI) or multiple-image radiography (MIR), we estimate the mass-density image using a constrained least squares (CLS) method. The CLS algorithm yields accurate density estimates while effectively suppressing noise. Our method improves on an analytical method proposed by Hasnah et al (2005 Med. Phys. 32 549-52), which can produce significant artefacts when even a modest level of noise is present. We present a quantitative evaluation study to determine the accuracy with which mass density can be determined in the presence of noise. Based on computer simulations, we find that the mass-density estimation error can be as low as a few per cent for typical density variations found in the breast. Example images computed from less-noisy real data are also shown to illustrate the feasibility of the technique. We anticipate that density imaging may have application in assessment of water content of cartilage resulting from osteoarthritis, in evaluation of bone density, and in mammographic interpretation.
A scene-analysis approach to remote sensing. [San Francisco, California
NASA Technical Reports Server (NTRS)
Tenenbaum, J. M. (Principal Investigator); Fischler, M. A.; Wolf, H. C.
1978-01-01
The author has identified the following significant results. Geometric correspondance between a sensed image and a symbolic map is established in an initial stage of processing by adjusting parameters of a sensed model so that the image features predicted from the map optimally match corresponding features extracted from the sensed image. Information in the map is then used to constrain where to look in an image, what to look for, and how to interpret what is seen. For simple monitoring tasks involving multispectral classification, these constraints significantly reduce computation, simplify interpretation, and improve the utility of the resulting information. Previously intractable tasks requiring spatial and textural analysis may become straightforward in the context established by the map knowledge. The use of map-guided image analysis in monitoring the volume of water in a reservoir, the number of boxcars in a railyard, and the number of ships in a harbor is demonstrated.
Driving into the future: how imaging technology is shaping the future of cars
NASA Astrophysics Data System (ADS)
Zhang, Buyue
2015-03-01
Fueled by the development of advanced driver assistance system (ADAS), autonomous vehicles, and the proliferation of cameras and sensors, automotive is becoming a rich new domain for innovations in imaging technology. This paper presents an overview of ADAS, the important imaging and computer vision problems to solve for automotive, and examples of how some of these problems are solved, through which we highlight the challenges and opportunities in the automotive imaging space.
Liao, David; Tlsty, Thea D.
2014-01-01
The use of mathematical equations to analyse population dynamics measurements is being increasingly applied to elucidate complex dynamic processes in biological systems, including cancer. Purely ‘empirical’ equations may provide sufficient accuracy to support predictions and therapy design. Nevertheless, interpretation of fitting equations in terms of physical and biological propositions can provide additional insights that can be used both to refine models that prove inconsistent with data and to understand the scope of applicability of models that validate. The purpose of this tutorial is to assist readers in mathematically associating interpretations with equations and to provide guidance in choosing interpretations and experimental systems to investigate based on currently available biological knowledge, techniques in mathematical and computational analysis and methods for in vitro and in vivo experiments. PMID:25097752
The Influence of Visual and Spatial Reasoning in Interpreting Simulated 3D Worlds.
ERIC Educational Resources Information Center
Lowrie, Tom
2002-01-01
Explores ways in which 6-year-old children make sense of screen-based images on the computer. Uses both static and relatively dynamic software programs in the investigation. Suggests that young children should be exposed to activities that establish explicit links between 2D and 3D objects away from the computer before attempting difficult links…
ERIC Educational Resources Information Center
Peterson, Dale
1984-01-01
Discusses the works of Darcy Gerbarg, Ruth Leavitt, David Em, Duane Palyka, and Harold Cohen, visual artists who work with computers to create art works by relying on standard hardware/software tools, using custom tools created for nonartistic tasks, manipulating images at the programing level, and programing creativity into computers themselves.…
NASA Technical Reports Server (NTRS)
1991-01-01
The Computer Graphics Center of North Carolina State University uses LAS, a COSMIC program, to analyze and manipulate data from Landsat and SPOT providing information for government and commercial land resource application projects. LAS is used to interpret aircraft/satellite data and enables researchers to improve image-based classification accuracies. The system is easy to use and has proven to be a valuable remote sensing training tool.
Computer Images for Research, Teaching, and Publication in Art History and Related Disciplines.
ERIC Educational Resources Information Center
Rhyne, Charles S.
The future of digital imagery has emerged as one of the central concerns of professionals in many fields, yet only a handful of art historians have taken advantage of the profession's unique expertise in the reading and interpretation of images. Art historians need to participate in scholarship defining the roles and uses of digital imagery,…
IPL Processing of the Viking Orbiter Images of Mars
NASA Technical Reports Server (NTRS)
Ruiz, R. M.; Elliott, D. A.; Yagi, G. M.; Pomphrey, R. B.; Power, M. A.; Farrell, W., Jr.; Lorre, J. J.; Benton, W. D.; Dewar, R. E.; Cullen, L. E.
1977-01-01
The Viking orbiter cameras returned over 9000 images of Mars during the 6-month nominal mission. Digital image processing was required to produce products suitable for quantitative and qualitative scientific interpretation. Processing included the production of surface elevation data using computer stereophotogrammetric techniques, crater classification based on geomorphological characteristics, and the generation of color products using multiple black-and-white images recorded through spectral filters. The Image Processing Laboratory of the Jet Propulsion Laboratory was responsible for the design, development, and application of the software required to produce these 'second-order' products.
Linking DICOM pixel data with radiology reports using automatic semantic annotation
NASA Astrophysics Data System (ADS)
Pathak, Sayan D.; Kim, Woojin; Munasinghe, Indeera; Criminisi, Antonio; White, Steve; Siddiqui, Khan
2012-02-01
Improved access to DICOM studies to both physicians and patients is changing the ways medical imaging studies are visualized and interpreted beyond the confines of radiologists' PACS workstations. While radiologists are trained for viewing and image interpretation, a non-radiologist physician relies on the radiologists' reports. Consequently, patients historically have been typically informed about their imaging findings via oral communication with their physicians, even though clinical studies have shown that patients respond to physician's advice significantly better when the individual patients are shown their own actual data. Our previous work on automated semantic annotation of DICOM Computed Tomography (CT) images allows us to further link radiology report with the corresponding images, enabling us to bridge the gap between image data with the human interpreted textual description of the corresponding imaging studies. The mapping of radiology text is facilitated by natural language processing (NLP) based search application. When combined with our automated semantic annotation of images, it enables navigation in large DICOM studies by clicking hyperlinked text in the radiology reports. An added advantage of using semantic annotation is the ability to render the organs to their default window level setting thus eliminating another barrier to image sharing and distribution. We believe such approaches would potentially enable the consumer to have access to their imaging data and navigate them in an informed manner.
A comparative study of 2 computer-assisted methods of quantifying brightfield microscopy images.
Tse, George H; Marson, Lorna P
2013-10-01
Immunohistochemistry continues to be a powerful tool for the detection of antigens. There are several commercially available software packages that allow image analysis; however, these can be complex, require relatively high level of computer skills, and can be expensive. We compared 2 commonly available software packages, Adobe Photoshop CS6 and ImageJ, in their ability to quantify percentage positive area after picrosirius red (PSR) staining and 3,3'-diaminobenzidine (DAB) staining. On analysis of DAB-stained B cells in the mouse spleen, with a biotinylated primary rat anti-mouse-B220 antibody, there was no significant difference on converting images from brightfield microscopy to binary images to measure black and white pixels using ImageJ compared with measuring a range of brown pixels with Photoshop (Student t test, P=0.243, correlation r=0.985). When analyzing mouse kidney allografts stained with PSR, Photoshop achieved a greater interquartile range while maintaining a lower 10th percentile value compared with analysis with ImageJ. A lower 10% percentile reflects that Photoshop analysis is better at analyzing tissues with low levels of positive pixels; particularly relevant for control tissues or negative controls, whereas after ImageJ analysis the same images would result in spuriously high levels of positivity. Furthermore comparing the 2 methods by Bland-Altman plot revealed that these 2 methodologies did not agree when measuring images with a higher percentage of positive staining and correlation was poor (r=0.804). We conclude that for computer-assisted analysis of images of DAB-stained tissue there is no difference between using Photoshop or ImageJ. However, for analysis of color images where differentiation into a binary pattern is not easy, such as with PSR, Photoshop is superior at identifying higher levels of positivity while maintaining differentiation of low levels of positive staining.
Gerasimova, Evgeniya; Audit, Benjamin; Roux, Stephane G.; Khalil, André; Gileva, Olga; Argoul, Françoise; Naimark, Oleg; Arneodo, Alain
2014-01-01
Breast cancer is the most common type of cancer among women and despite recent advances in the medical field, there are still some inherent limitations in the currently used screening techniques. The radiological interpretation of screening X-ray mammograms often leads to over-diagnosis and, as a consequence, to unnecessary traumatic and painful biopsies. Here we propose a computer-aided multifractal analysis of dynamic infrared (IR) imaging as an efficient method for identifying women with risk of breast cancer. Using a wavelet-based multi-scale method to analyze the temporal fluctuations of breast skin temperature collected from a panel of patients with diagnosed breast cancer and some female volunteers with healthy breasts, we show that the multifractal complexity of temperature fluctuations observed in healthy breasts is lost in mammary glands with malignant tumor. Besides potential clinical impact, these results open new perspectives in the investigation of physiological changes that may precede anatomical alterations in breast cancer development. PMID:24860510
Genome image programs: visualization and interpretation of Escherichia coli microarray experiments.
Zimmer, Daniel P; Paliy, Oleg; Thomas, Brian; Gyaneshwar, Prasad; Kustu, Sydney
2004-08-01
We have developed programs to facilitate analysis of microarray data in Escherichia coli. They fall into two categories: manipulation of microarray images and identification of known biological relationships among lists of genes. A program in the first category arranges spots from glass-slide DNA microarrays according to their position in the E. coli genome and displays them compactly in genome order. The resulting genome image is presented in a web browser with an image map that allows the user to identify genes in the reordered image. Another program in the first category aligns genome images from two or more experiments. These images assist in visualizing regions of the genome with common transcriptional control. Such regions include multigene operons and clusters of operons, which are easily identified as strings of adjacent, similarly colored spots. The images are also useful for assessing the overall quality of experiments. The second category of programs includes a database and a number of tools for displaying biological information about many E. coli genes simultaneously rather than one gene at a time, which facilitates identifying relationships among them. These programs have accelerated and enhanced our interpretation of results from E. coli DNA microarray experiments. Examples are given. Copyright 2004 Genetics Society of America
Attention trees and semantic paths
NASA Astrophysics Data System (ADS)
Giusti, Christian; Pieroni, Goffredo G.; Pieroni, Laura
2007-02-01
In the last few decades several techniques for image content extraction, often based on segmentation, have been proposed. It has been suggested that under the assumption of very general image content, segmentation becomes unstable and classification becomes unreliable. According to recent psychological theories, certain image regions attract the attention of human observers more than others and, generally, the image main meaning appears concentrated in those regions. Initially, regions attracting our attention are perceived as a whole and hypotheses on their content are formulated; successively the components of those regions are carefully analyzed and a more precise interpretation is reached. It is interesting to observe that an image decomposition process performed according to these psychological visual attention theories might present advantages with respect to a traditional segmentation approach. In this paper we propose an automatic procedure generating image decomposition based on the detection of visual attention regions. A new clustering algorithm taking advantage of the Delaunay- Voronoi diagrams for achieving the decomposition target is proposed. By applying that algorithm recursively, starting from the whole image, a transformation of the image into a tree of related meaningful regions is obtained (Attention Tree). Successively, a semantic interpretation of the leaf nodes is carried out by using a structure of Neural Networks (Neural Tree) assisted by a knowledge base (Ontology Net). Starting from leaf nodes, paths toward the root node across the Attention Tree are attempted. The task of the path consists in relating the semantics of each child-parent node pair and, consequently, in merging the corresponding image regions. The relationship detected in this way between two tree nodes generates, as a result, the extension of the interpreted image area through each step of the path. The construction of several Attention Trees has been performed and partial results will be shown.
NASA Astrophysics Data System (ADS)
Yu, Xin; Wen, Zongyong; Zhu, Zhaorong; Xia, Qiang; Shun, Lan
2016-06-01
Image classification will still be a long way in the future, although it has gone almost half a century. In fact, researchers have gained many fruits in the image classification domain, but there is still a long distance between theory and practice. However, some new methods in the artificial intelligence domain will be absorbed into the image classification domain and draw on the strength of each to offset the weakness of the other, which will open up a new prospect. Usually, networks play the role of a high-level language, as is seen in Artificial Intelligence and statistics, because networks are used to build complex model from simple components. These years, Bayesian Networks, one of probabilistic networks, are a powerful data mining technique for handling uncertainty in complex domains. In this paper, we apply Tree Augmented Naive Bayesian Networks (TAN) to texture classification of High-resolution remote sensing images and put up a new method to construct the network topology structure in terms of training accuracy based on the training samples. Since 2013, China government has started the first national geographical information census project, which mainly interprets geographical information based on high-resolution remote sensing images. Therefore, this paper tries to apply Bayesian network to remote sensing image classification, in order to improve image interpretation in the first national geographical information census project. In the experiment, we choose some remote sensing images in Beijing. Experimental results demonstrate TAN outperform than Naive Bayesian Classifier (NBC) and Maximum Likelihood Classification Method (MLC) in the overall classification accuracy. In addition, the proposed method can reduce the workload of field workers and improve the work efficiency. Although it is time consuming, it will be an attractive and effective method for assisting office operation of image interpretation.
NASA Astrophysics Data System (ADS)
Leader, Joseph K.; Chough, Denise; Clearfield, Ronald J.; Ganott, Marie A.; Hakim, Christiane; Hardesty, Lara; Shindel, Betty; Sumkin, Jules H.; Drescher, John M.; Maitz, Glenn S.; Gur, David
2005-04-01
Radiologists' performance reviewing and rating breast cancer screening mammography exams using a telemammography system was evaluated and compared with the actual clinical interpretations of the same interpretations. Mammography technologists from three remote imaging sites transmitted 245 exams to a central site (radiologists), which they (the technologists) believed needed additional procedures (termed "recall"). Current exam image data and non-image data (i.e., technologist's text message, technologist's graphic marks, patient's prior report, and Computer Aided Detection (CAD) results) were transmitted to the central site and displayed on three high-resolution, portrait monitors. Seven radiologists interpreted ("recall" or "no recall") the exams using the telemammography workstation in three separate multi-mode studies. The mean telemammography recall rates ranged from 72.3% to 82.5% while the actual clinical recall rates ranged from 38.4% to 42.3% across the three studies. Mean Kappa of agreement ranged from 0.102 to 0.213 and mean percent agreement ranged from 48.7% to 57.4% across the three studies. Eighty-seven percent of the disagreement interpretations occurred when the telemammography interpretation resulted in a recommendation to recall and the clinical interpretation resulted in a recommendation not to recall. The poor agreement between the telemammography and clinical interpretations may indicate a critical dependence on images from prior screening exams rather than any text based information. The technologists were sensitive, if not specific, to the mammography features and changes that may lead to recall. Using the telemammography system the radiologists were able to reduce the recommended recalls by the technologist by approximately 25 percent.
Boone, Darren; Mallett, Susan; McQuillan, Justine; Taylor, Stuart A.; Altman, Douglas G.; Halligan, Steve
2015-01-01
Objectives To quantify the incremental benefit of computer-assisted-detection (CAD) for polyps, for inexperienced readers versus experienced readers of CT colonography. Methods 10 inexperienced and 16 experienced radiologists interpreted 102 colonography studies unassisted and with CAD utilised in a concurrent paradigm. They indicated any polyps detected on a study sheet. Readers’ interpretations were compared against a ground-truth reference standard: 46 studies were normal and 56 had at least one polyp (132 polyps in total). The primary study outcome was the difference in CAD net benefit (a combination of change in sensitivity and change in specificity with CAD, weighted towards sensitivity) for detection of patients with polyps. Results Inexperienced readers’ per-patient sensitivity rose from 39.1% to 53.2% with CAD and specificity fell from 94.1% to 88.0%, both statistically significant. Experienced readers’ sensitivity rose from 57.5% to 62.1% and specificity fell from 91.0% to 88.3%, both non-significant. Net benefit with CAD assistance was significant for inexperienced readers but not for experienced readers: 11.2% (95%CI 3.1% to 18.9%) versus 3.2% (95%CI -1.9% to 8.3%) respectively. Conclusions Concurrent CAD resulted in a significant net benefit when used by inexperienced readers to identify patients with polyps by CT colonography. The net benefit was nearly four times the magnitude of that observed for experienced readers. Experienced readers did not benefit significantly from concurrent CAD. PMID:26355745
Renkawitz, Tobias; Tingart, Markus; Grifka, Joachim; Sendtner, Ernst; Kalteis, Thomas
2009-09-01
This article outlines the scientific basis and a state-of-the-art application of computer-assisted orthopedic surgery in total hip arthroplasty (THA) and provides a future perspective on this technology. Computer-assisted orthopedic surgery in primary THA has the potential to couple 3D simulations with real-time evaluations of surgical performance, which has brought these developments from the research laboratory all the way to clinical use. Nonimage- or imageless-based navigation systems without the need for additional pre- or intra-operative image acquisition have stood the test to significantly reduce the variability in positioning the acetabular component and have shown precise measurement of leg length and offset changes during THA. More recently, computer-assisted orthopedic surgery systems have opened a new frontier for accurate surgical practice in minimally invasive, tissue-preserving THA. The future generation of imageless navigation systems will switch from simple measurement tasks to real navigation tools. These software algorithms will consider the cup and stem as components of a coupled biomechanical system, navigating the orthopedic surgeon to find an optimized complementary component orientation rather than target values intraoperatively, and are expected to have a high impact on clinical practice and postoperative functionality in modern THA.
A Computational Framework for Bioimaging Simulation
Watabe, Masaki; Arjunan, Satya N. V.; Fukushima, Seiya; Iwamoto, Kazunari; Kozuka, Jun; Matsuoka, Satomi; Shindo, Yuki; Ueda, Masahiro; Takahashi, Koichi
2015-01-01
Using bioimaging technology, biologists have attempted to identify and document analytical interpretations that underlie biological phenomena in biological cells. Theoretical biology aims at distilling those interpretations into knowledge in the mathematical form of biochemical reaction networks and understanding how higher level functions emerge from the combined action of biomolecules. However, there still remain formidable challenges in bridging the gap between bioimaging and mathematical modeling. Generally, measurements using fluorescence microscopy systems are influenced by systematic effects that arise from stochastic nature of biological cells, the imaging apparatus, and optical physics. Such systematic effects are always present in all bioimaging systems and hinder quantitative comparison between the cell model and bioimages. Computational tools for such a comparison are still unavailable. Thus, in this work, we present a computational framework for handling the parameters of the cell models and the optical physics governing bioimaging systems. Simulation using this framework can generate digital images of cell simulation results after accounting for the systematic effects. We then demonstrate that such a framework enables comparison at the level of photon-counting units. PMID:26147508
NASA Astrophysics Data System (ADS)
Linek, M.; Jungmann, M.; Berlage, T.; Clauser, C.
2005-12-01
Within the Ocean Drilling Program (ODP), image logging tools have been routinely deployed such as the Formation MicroScanner (FMS) or the Resistivity-At-Bit (RAB) tools. Both logging methods are based on resistivity measurements at the borehole wall and therefore are sensitive to conductivity contrasts, which are mapped in color scale images. These images are commonly used to study the structure of the sedimentary rocks and the oceanic crust (petrologic fabric, fractures, veins, etc.). So far, mapping of lithology from electrical images is purely based on visual inspection and subjective interpretation. We apply digital image analysis on electrical borehole wall images in order to develop a method, which augments objective rock identification. We focus on supervised textural pattern recognition which studies the spatial gray level distribution with respect to certain rock types. FMS image intervals of rock classes known from core data are taken in order to train textural characteristics for each class. A so-called gray level co-occurrence matrix is computed by counting the occurrence of a pair of gray levels that are a certain distant apart. Once the matrix for an image interval is computed, we calculate the image contrast, homogeneity, energy, and entropy. We assign characteristic textural features to different rock types by reducing the image information into a small set of descriptive features. Once a discriminating set of texture features for each rock type is found, we are able to discriminate the entire FMS images regarding the trained rock type classification. A rock classification based on texture features enables quantitative lithology mapping and is characterized by a high repeatability, in contrast to a purely visual subjective image interpretation. We show examples for the rock classification between breccias, pillows, massive units, and horizontally bedded tuffs based on ODP image data.
Kutbay, Uğurhan; Hardalaç, Fırat; Akbulut, Mehmet; Akaslan, Ünsal; Serhatlıoğlu, Selami
2016-06-01
This study aims investigating adjustable distant fuzzy c-means segmentation on carotid Doppler images, as well as quaternion-based convolution filters and saliency mapping procedures. We developed imaging software that will simplify the measurement of carotid artery intima-media thickness (IMT) on saliency mapping images. Additionally, specialists evaluated the present images and compared them with saliency mapping images. In the present research, we conducted imaging studies of 25 carotid Doppler images obtained by the Department of Cardiology at Fırat University. After implementing fuzzy c-means segmentation and quaternion-based convolution on all Doppler images, we obtained a model that can be analyzed easily by the doctors using a bottom-up saliency model. These methods were applied to 25 carotid Doppler images and then interpreted by specialists. In the present study, we used color-filtering methods to obtain carotid color images. Saliency mapping was performed on the obtained images, and the carotid artery IMT was detected and interpreted on the obtained images from both methods and the raw images are shown in Results. Also these results were investigated by using Mean Square Error (MSE) for the raw IMT images and the method which gives the best performance is the Quaternion Based Saliency Mapping (QBSM). 0,0014 and 0,000191 mm(2) MSEs were obtained for artery lumen diameters and plaque diameters in carotid arteries respectively. We found that computer-based image processing methods used on carotid Doppler could aid doctors' in their decision-making process. We developed software that could ease the process of measuring carotid IMT for cardiologists and help them to evaluate their findings.
Industrial applications of automated X-ray inspection
NASA Astrophysics Data System (ADS)
Shashishekhar, N.
2015-03-01
Many industries require that 100% of manufactured parts be X-ray inspected. Factors such as high production rates, focus on inspection quality, operator fatigue and inspection cost reduction translate to an increasing need for automating the inspection process. Automated X-ray inspection involves the use of image processing algorithms and computer software for analysis and interpretation of X-ray images. This paper presents industrial applications and illustrative case studies of automated X-ray inspection in areas such as automotive castings, fuel plates, air-bag inflators and tires. It is usually necessary to employ application-specific automated inspection strategies and techniques, since each application has unique characteristics and interpretation requirements.
Joshi, Vinayak; Agurto, Carla; VanNess, Richard; Nemeth, Sheila; Soliz, Peter; Barriga, Simon
2014-01-01
One of the most important signs of systemic disease that presents on the retina is vascular abnormalities such as in hypertensive retinopathy. Manual analysis of fundus images by human readers is qualitative and lacks in accuracy, consistency and repeatability. Present semi-automatic methods for vascular evaluation are reported to increase accuracy and reduce reader variability, but require extensive reader interaction; thus limiting the software-aided efficiency. Automation thus holds a twofold promise. First, decrease variability while increasing accuracy, and second, increasing the efficiency. In this paper we propose fully automated software as a second reader system for comprehensive assessment of retinal vasculature; which aids the readers in the quantitative characterization of vessel abnormalities in fundus images. This system provides the reader with objective measures of vascular morphology such as tortuosity, branching angles, as well as highlights of areas with abnormalities such as artery-venous nicking, copper and silver wiring, and retinal emboli; in order for the reader to make a final screening decision. To test the efficacy of our system, we evaluated the change in performance of a newly certified retinal reader when grading a set of 40 color fundus images with and without the assistance of the software. The results demonstrated an improvement in reader's performance with the software assistance, in terms of accuracy of detection of vessel abnormalities, determination of retinopathy, and reading time. This system enables the reader in making computer-assisted vasculature assessment with high accuracy and consistency, at a reduced reading time.
NASA Astrophysics Data System (ADS)
De Lorenzo, Danilo; De Momi, Elena; Beretta, Elisa; Cerveri, Pietro; Perona, Franco; Ferrigno, Giancarlo
2009-02-01
Computer Assisted Orthopaedic Surgery (CAOS) systems improve the results and the standardization of surgical interventions. Anatomical landmarks and bone surface detection is straightforward to either register the surgical space with the pre-operative imaging space and to compute biomechanical parameters for prosthesis alignment. Surface points acquisition increases the intervention invasiveness and can be influenced by the soft tissue layer interposition (7-15mm localization errors). This study is aimed at evaluating the accuracy of a custom-made A-mode ultrasound (US) system for non invasive detection of anatomical landmarks and surfaces. A-mode solutions eliminate the necessity of US images segmentation, offers real-time signal processing and requires less invasive equipment. The system consists in a single transducer US probe optically tracked, a pulser/receiver and an FPGA-based board, which is responsible for logic control command generation and for real-time signal processing and three custom-made board (signal acquisition, blanking and synchronization). We propose a new calibration method of the US system. The experimental validation was then performed measuring the length of known-shape polymethylmethacrylate boxes filled with pure water and acquiring bone surface points on a bovine bone phantom covered with soft-tissue mimicking materials. Measurement errors were computed through MR and CT images acquisitions of the phantom. Points acquisition on bone surface with the US system demonstrated lower errors (1.2mm) than standard pointer acquisition (4.2mm).
2017-10-01
hypothesis that a computer machine learning algorithm can analyze and classify burn injures using multispectral imaging within 5% of an expert clinician...morbidity. In response to these challenges, the USAISR developed and obtained FDA 510(k) clearance of the Burn Navigator™, a computer decision support... computer decision support software (CDSS), can significantly change the CDSS algorithm’s recommendations and thus the total fluid administered to a
An information gathering system for medical image inspection
NASA Astrophysics Data System (ADS)
Lee, Young-Jin; Bajcsy, Peter
2005-04-01
We present an information gathering system for medical image inspection that consists of software tools for capturing computer-centric and human-centric information. Computer-centric information includes (1) static annotations, such as (a) image drawings enclosing any selected area, a set of areas with similar colors, a set of salient points, and (b) textual descriptions associated with either image drawings or links between pairs of image drawings, and (2) dynamic (or temporal) information, such as mouse movements, zoom level changes, image panning and frame selections from an image stack. Human-centric information is represented by video and audio signals that are acquired by computer-mounted cameras and microphones. The short-term goal of the presented system is to facilitate learning of medical novices from medical experts, while the long-term goal is to data mine all information about image inspection for assisting in making diagnoses. In this work, we built basic software functionality for gathering computer-centric and human-centric information of the aforementioned variables. Next, we developed the information playback capabilities of all gathered information for educational purposes. Finally, we prototyped text-based and image template-based search engines to retrieve information from recorded annotations, for example, (a) find all annotations containing the word "blood vessels", or (b) search for similar areas to a selected image area. The information gathering system for medical image inspection reported here has been tested with images from the Histology Atlas database.
Computed intraoperative navigation guidance--a preliminary report on a new technique.
Enislidis, G; Wagner, A; Ploder, O; Ewers, R
1997-08-01
To assess the value of a computer-assisted three-dimensional guidance system (Virtual Patient System) in maxillofacial operations. Laboratory and open clinical study. Teaching Hospital, Austria. 6 patients undergoing various procedures including removal of foreign body (n=3) and biopsy, maxillary advancement, and insertion of implants (n=1 each). Storage of computed tomographic (CT) pictures on an optical disc, and imposition of intraoperative video images on to these. The resulting display is shown to the surgeon on a micromonitor in his head-up display for guidance during the operations. To improve orientation during complex or minimally invasive maxillofacial procedures and to make such operations easier and less traumatic. Successful transferral of computed navigation technology into an operation room environment and positive evaluation of the method by the surgeons involved. Computer-assisted three-dimensional guidance systems have the potential for making complex or minimally invasive procedures easier to do, thereby reducing postoperative morbidity.
Monte Carlo simulations of medical imaging modalities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estes, G.P.
Because continuous-energy Monte Carlo radiation transport calculations can be nearly exact simulations of physical reality (within data limitations, geometric approximations, transport algorithms, etc.), it follows that one should be able to closely approximate the results of many experiments from first-principles computations. This line of reasoning has led to various MCNP studies that involve simulations of medical imaging modalities and other visualization methods such as radiography, Anger camera, computerized tomography (CT) scans, and SABRINA particle track visualization. It is the intent of this paper to summarize some of these imaging simulations in the hope of stimulating further work, especially as computermore » power increases. Improved interpretation and prediction of medical images should ultimately lead to enhanced medical treatments. It is also reasonable to assume that such computations could be used to design new or more effective imaging instruments.« less
USGS remote sensing coordination for the 2010 Haiti earthquake
Duda, Kenneth A.; Jones, Brenda
2011-01-01
In response to the devastating 12 January 2010, earthquake in Haiti, the US Geological Survey (USGS) provided essential coordinating services for remote sensing activities. Communication was rapidly established between the widely distributed response teams and data providers to define imaging requirements and sensor tasking opportunities. Data acquired from a variety of sources were received and archived by the USGS, and these products were subsequently distributed using the Hazards Data Distribution System (HDDS) and other mechanisms. Within six weeks after the earthquake, over 600,000 files representing 54 terabytes of data were provided to the response community. The USGS directly supported a wide variety of groups in their use of these data to characterize post-earthquake conditions and to make comparisons with pre-event imagery. The rapid and continuing response achieved was enabled by existing imaging and ground systems, and skilled personnel adept in all aspects of satellite data acquisition, processing, distribution and analysis. The information derived from image interpretation assisted senior planners and on-site teams to direct assistance where it was most needed.
ERTS-B imagery interpretation techniques in the Tennessee Valley
NASA Technical Reports Server (NTRS)
Gonzalez, R. C. (Principal Investigator)
1973-01-01
There are no author-identified significant results in this report. The proposed investigation is a continuation of an ERTS-1 project. The principal missions are to serve as the principal supporter on computer and image processing problems for the multidisciplinary ERTS effort of the University of Tennessee, and to carry out research in improved methods for the computer processing, enhancement, and recognition of ERTS imagery.
NASA Technical Reports Server (NTRS)
Yakimovsky, Y.
1974-01-01
An approach to simultaneous interpretation of objects in complex structures so as to maximize a combined utility function is presented. Results of the application of a computer software system to assign meaning to regions in a segmented image based on the principles described in this paper and on a special interactive sequential classification learning system, which is referenced, are demonstrated.
Stereoscopic Vascular Models of the Head and Neck: A Computed Tomography Angiography Visualization
ERIC Educational Resources Information Center
Cui, Dongmei; Lynch, James C.; Smith, Andrew D.; Wilson, Timothy D.; Lehman, Michael N.
2016-01-01
Computer-assisted 3D models are used in some medical and allied health science schools; however, they are often limited to online use and 2D flat screen-based imaging. Few schools take advantage of 3D stereoscopic learning tools in anatomy education and clinically relevant anatomical variations when teaching anatomy. A new approach to teaching…
Exploring an optimal wavelet-based filter for cryo-ET imaging.
Huang, Xinrui; Li, Sha; Gao, Song
2018-02-07
Cryo-electron tomography (cryo-ET) is one of the most advanced technologies for the in situ visualization of molecular machines by producing three-dimensional (3D) biological structures. However, cryo-ET imaging has two serious disadvantages-low dose and low image contrast-which result in high-resolution information being obscured by noise and image quality being degraded, and this causes errors in biological interpretation. The purpose of this research is to explore an optimal wavelet denoising technique to reduce noise in cryo-ET images. We perform tests using simulation data and design a filter using the optimum selected wavelet parameters (three-level decomposition, level-1 zeroed out, subband-dependent threshold, a soft-thresholding and spline-based discrete dyadic wavelet transform (DDWT)), which we call a modified wavelet shrinkage filter; this filter is suitable for noisy cryo-ET data. When testing using real cryo-ET experiment data, higher quality images and more accurate measures of a biological structure can be obtained with the modified wavelet shrinkage filter processing compared with conventional processing. Because the proposed method provides an inherent advantage when dealing with cryo-ET images, it can therefore extend the current state-of-the-art technology in assisting all aspects of cryo-ET studies: visualization, reconstruction, structural analysis, and interpretation.
Automated analysis and classification of melanocytic tumor on skin whole slide images.
Xu, Hongming; Lu, Cheng; Berendt, Richard; Jha, Naresh; Mandal, Mrinal
2018-06-01
This paper presents a computer-aided technique for automated analysis and classification of melanocytic tumor on skin whole slide biopsy images. The proposed technique consists of four main modules. First, skin epidermis and dermis regions are segmented by a multi-resolution framework. Next, epidermis analysis is performed, where a set of epidermis features reflecting nuclear morphologies and spatial distributions is computed. In parallel with epidermis analysis, dermis analysis is also performed, where dermal cell nuclei are segmented and a set of textural and cytological features are computed. Finally, the skin melanocytic image is classified into different categories such as melanoma, nevus or normal tissue by using a multi-class support vector machine (mSVM) with extracted epidermis and dermis features. Experimental results on 66 skin whole slide images indicate that the proposed technique achieves more than 95% classification accuracy, which suggests that the technique has the potential to be used for assisting pathologists on skin biopsy image analysis and classification. Copyright © 2018 Elsevier Ltd. All rights reserved.
New Window into the Human Body
NASA Technical Reports Server (NTRS)
1985-01-01
Michael Vannier, MD, a former NASA engineer, recognized the similarity between NASA's computerized image processing technology and nuclear magnetic resonance. With technical assistance from Kennedy Space Center, he developed a computer program for Mallinckrodt Institute of Radiology enabling Nuclear Magnetic Resonance (NMR) to scan body tissue for earlier diagnoses. Dr. Vannier feels that "satellite imaging" has opened a new window into the human body.
Artificial intelligence and signal processing for infrastructure assessment
NASA Astrophysics Data System (ADS)
Assaleh, Khaled; Shanableh, Tamer; Yehia, Sherif
2015-04-01
The Ground Penetrating Radar (GPR) is being recognized as an effective nondestructive evaluation technique to improve the inspection process. However, data interpretation and complexity of the results impose some limitations on the practicality of using this technique. This is mainly due to the need of a trained experienced person to interpret images obtained by the GPR system. In this paper, an algorithm to classify and assess the condition of infrastructures utilizing image processing and pattern recognition techniques is discussed. Features extracted form a dataset of images of defected and healthy slabs are used to train a computer vision based system while another dataset is used to evaluate the proposed algorithm. Initial results show that the proposed algorithm is able to detect the existence of defects with about 77% success rate.
Bergamasco, Massimo; Frisoli, Antonio; Fontana, Marco; Loconsole, Claudio; Leonardis, Daniele; Troncossi, Marco; Foumashi, Mohammad Mozaffari; Parenti-Castelli, Vincenzo
2011-01-01
This paper presents the preliminary results of the project BRAVO (Brain computer interfaces for Robotic enhanced Action in Visuo-motOr tasks). The objective of this project is to define a new approach to the development of assistive and rehabilitative robots for motor impaired users to perform complex visuomotor tasks that require a sequence of reaches, grasps and manipulations of objects. BRAVO aims at developing new robotic interfaces and HW/SW architectures for rehabilitation and regain/restoration of motor function in patients with upper limb sensorimotor impairment through extensive rehabilitation therapy and active assistance in the execution of Activities of Daily Living. The final system developed within this project will include a robotic arm exoskeleton and a hand orthosis that will be integrated together for providing force assistance. The main novelty that BRAVO introduces is the control of the robotic assistive device through the active prediction of intention/action. The system will actually integrate the information about the movement carried out by the user with a prediction of the performed action through an interpretation of current gaze of the user (measured through eye-tracking), brain activation (measured through BCI) and force sensor measurements. © 2011 IEEE
Correlation Filters for Detection of Cellular Nuclei in Histopathology Images.
Ahmad, Asif; Asif, Amina; Rajpoot, Nasir; Arif, Muhammad; Minhas, Fayyaz Ul Amir Afsar
2017-11-21
Nuclei detection in histology images is an essential part of computer aided diagnosis of cancers and tumors. It is a challenging task due to diverse and complicated structures of cells. In this work, we present an automated technique for detection of cellular nuclei in hematoxylin and eosin stained histopathology images. Our proposed approach is based on kernelized correlation filters. Correlation filters have been widely used in object detection and tracking applications but their strength has not been explored in the medical imaging domain up till now. Our experimental results show that the proposed scheme gives state of the art accuracy and can learn complex nuclear morphologies. Like deep learning approaches, the proposed filters do not require engineering of image features as they can operate directly on histopathology images without significant preprocessing. However, unlike deep learning methods, the large-margin correlation filters developed in this work are interpretable, computationally efficient and do not require specialized or expensive computing hardware. A cloud based webserver of the proposed method and its python implementation can be accessed at the following URL: http://faculty.pieas.edu.pk/fayyaz/software.html#corehist .
Sozzi, Fabiola B; Maiello, Maria; Pelliccia, Francesco; Parato, Vito Maurizio; Canetta, Ciro; Savino, Ketty; Lombardi, Federico; Palmiero, Pasquale
2016-09-01
Coronary computed tomography angiography is a noninvasive heart imaging test currently undergoing rapid development and advancement. The high resolution of the three-dimensional pictures of the moving heart and great vessels is performed during a coronary computed tomography to identify coronary artery disease and classify patient risk for atherosclerotic cardiovascular disease. The technique provides useful information about the coronary tree and atherosclerotic plaques beyond simple luminal narrowing and plaque type defined by calcium content. This application will improve image-guided prevention, medical therapy, and coronary interventions. The ability to interpret coronary computed tomography images is of utmost importance as we develop personalized medical care to enable therapeutic interventions stratified on the bases of plaque characteristics. This overview provides available data and expert's recommendations in the utilization of coronary computed tomography findings. We focus on the use of coronary computed tomography to detect coronary artery disease and stratify patients at risk, illustrating the implications of this test on patient management. We describe its diagnostic power in identifying patients at higher risk to develop acute coronary syndrome and its prognostic significance. Finally, we highlight the features of the vulnerable plaques imaged by coronary computed tomography angiography. © 2016, Wiley Periodicals, Inc.
An interactive system for computer-aided diagnosis of breast masses.
Wang, Xingwei; Li, Lihua; Liu, Wei; Xu, Weidong; Lederman, Dror; Zheng, Bin
2012-10-01
Although mammography is the only clinically accepted imaging modality for screening the general population to detect breast cancer, interpreting mammograms is difficult with lower sensitivity and specificity. To provide radiologists "a visual aid" in interpreting mammograms, we developed and tested an interactive system for computer-aided detection and diagnosis (CAD) of mass-like cancers. Using this system, an observer can view CAD-cued mass regions depicted on one image and then query any suspicious regions (either cued or not cued by CAD). CAD scheme automatically segments the suspicious region or accepts manually defined region and computes a set of image features. Using content-based image retrieval (CBIR) algorithm, CAD searches for a set of reference images depicting "abnormalities" similar to the queried region. Based on image retrieval results and a decision algorithm, a classification score is assigned to the queried region. In this study, a reference database with 1,800 malignant mass regions and 1,800 benign and CAD-generated false-positive regions was used. A modified CBIR algorithm with a new function of stretching the attributes in the multi-dimensional space and decision scheme was optimized using a genetic algorithm. Using a leave-one-out testing method to classify suspicious mass regions, we compared the classification performance using two CBIR algorithms with either equally weighted or optimally stretched attributes. Using the modified CBIR algorithm, the area under receiver operating characteristic curve was significantly increased from 0.865 ± 0.006 to 0.897 ± 0.005 (p < 0.001). This study demonstrated the feasibility of developing an interactive CAD system with a large reference database and achieving improved performance.
Losco, Alessandra; Viganò, Chiara; Conte, Dario; Cesana, Bruno Mario; Basilisco, Guido
2009-05-01
Assessing perianal disease activity is important for the treatment and prognosis of Crohn's disease (CD) patients, but the diagnostic accuracy of the activity indices has not yet been established. The aim of this study was to determine the accuracy and agreement of the Fistula Drainage Assessment (FDA), Perianal Disease Activity Index (PDAI), and computer-assisted anal ultrasound imaging (AUS). Sixty-two consecutive patients with CD and perianal fistulae underwent clinical, FDA, PDAI, and AUS evaluation. Perianal disease was considered active in the presence of visible fistula drainage and/or signs of local inflammation (induration and pain at digital compression) upon clinical examination. The AUS images were analyzed by calculating the mean gray-scale tone of the lesion. The PDAI and gray-scale tone values discriminating active and inactive perianal disease were defined using receiver operating characteristics statistics. Perianal disease was active in 46 patients. The accuracy of the FDA was 87% (confidence interval [CI]: 76%-94%). A PDAI of >4 and a mean gray-scale tone value of 117 maximized sensitivity and specificity; their diagnostic accuracy was, respectively, 87% (CI: 76%-94%) and 81% (CI: 69%-90%). The agreement of the 3 evaluations was fair to moderate. The addition of AUS to the PDAI or FDA increased their diagnostic accuracy to respectively 95% and 98%. The diagnostic accuracy of the FDA, PDAI, and computer-assisted AUS imaging was good in assessing perianal disease activity in patients with CD. The agreement between the techniques was fair to moderate. Overall accuracy can be increased by combining the FDA or PDAI with AUS.
Haranas, Ioannis; Gkigkitzis, Ioannis; Kotsireas, Ilias; Austerlitz, Carlos
2017-01-01
Understanding how the brain encodes information and performs computation requires statistical and functional analysis. Given the complexity of the human brain, simple methods that facilitate the interpretation of statistical correlations among different brain regions can be very useful. In this report we introduce a numerical correlation measure that may serve the interpretation of correlational neuronal data, and may assist in the evaluation of different brain states. The description of the dynamical brain system, through a global numerical measure may indicate the presence of an action principle which may facilitate a application of physics principles in the study of the human brain and cognition.
Computer-assisted detection of epileptiform focuses on SPECT images
NASA Astrophysics Data System (ADS)
Grzegorczyk, Dawid; Dunin-Wąsowicz, Dorota; Mulawka, Jan J.
2010-09-01
Epilepsy is a common nervous system disease often related to consciousness disturbances and muscular spasm which affects about 1% of the human population. Despite major technological advances done in medicine in the last years there was no sufficient progress towards overcoming it. Application of advanced statistical methods and computer image analysis offers the hope for accurate detection and later removal of an epileptiform focuses which are the cause of some types of epilepsy. The aim of this work was to create a computer system that would help to find and diagnose disorders of blood circulation in the brain This may be helpful for the diagnosis of the epileptic seizures onset in the brain.
Phan, Philippe; Mezghani, Neila; Aubin, Carl-Éric; de Guise, Jacques A; Labelle, Hubert
2011-07-01
Adolescent idiopathic scoliosis (AIS) is a complex spinal deformity whose assessment and treatment present many challenges. Computer applications have been developed to assist clinicians. A literature review on computer applications used in AIS evaluation and treatment has been undertaken. The algorithms used, their accuracy and clinical usability were analyzed. Computer applications have been used to create new classifications for AIS based on 2D and 3D features, assess scoliosis severity or risk of progression and assist bracing and surgical treatment. It was found that classification accuracy could be improved using computer algorithms that AIS patient follow-up and screening could be done using surface topography thereby limiting radiation and that bracing and surgical treatment could be optimized using simulations. Yet few computer applications are routinely used in clinics. With the development of 3D imaging and databases, huge amounts of clinical and geometrical data need to be taken into consideration when researching and managing AIS. Computer applications based on advanced algorithms will be able to handle tasks that could otherwise not be done which can possibly improve AIS patients' management. Clinically oriented applications and evidence that they can improve current care will be required for their integration in the clinical setting.
The Importance of Quality in Ventilation-Perfusion Imaging.
Mann, April; DiDea, Mario; Fournier, France; Tempesta, Daniel; Williams, Jessica; LaFrance, Norman
2018-06-01
As the health care environment continues to change and morph into a system focusing on increased quality and evidence-based outcomes, nuclear medicine technologists must be reminded that they play a critical role in achieving high-quality, interpretable images used to drive patient care, treatment, and best possible outcomes. A survey performed by the Quality Committee of the Society of Nuclear Medicine and Molecular Imaging Technologist Section demonstrated that a clear knowledge gap exists among technologists regarding their understanding of quality, how it is measured, and how it should be achieved by all practicing technologists regardless of role and education level. Understanding of these areas within health care, in conjunction with the growing emphasis on evidence-based outcomes, quality measures, and patient satisfaction, will ultimately elevate the role of nuclear medicine technologists today and into the future. The nuclear medicine role now requires technologists to demonstrate patient assessment skills, practice safety procedures with regard to staff and patients, provide patient education and instruction, and provide physicians with information to assist with the interpretation and outcome of the study. In addition, the technologist must be able to evaluate images by performing technical analysis, knowing the demonstrated anatomy and pathophysiology, and assessing overall quality. Technologists must also be able to triage and understand the disease processes being evaluated and how nuclear medicine diagnostic studies may drive care and treatment. Therefore, it is imperative that nuclear medicine technologists understand their role in the achievement of a high-quality, interpretable study by applying quality principles and understanding and using imaging techniques beyond just basic protocols for every type of disease or system being imaged. This article focuses on quality considerations related to ventilation-perfusion imaging. It provides insight on appropriate imaging techniques and protocols, true imaging variants and tracer distributions versus artifacts that may result in a lower-quality or misinterpreted study, and the use of SPECT and SPECT/CT as an alternative providing a high-quality, interpretable study with better diagnostic accuracy and fewer nondiagnostic procedures than historical planar imaging. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
Browsing software of the Visible Korean data used for teaching sectional anatomy.
Shin, Dong Sun; Chung, Min Suk; Park, Hyo Seok; Park, Jin Seo; Hwang, Sung Bae
2011-01-01
The interpretation of computed tomographs (CTs) and magnetic resonance images (MRIs) to diagnose clinical conditions requires basic knowledge of sectional anatomy. Sectional anatomy has traditionally been taught using sectioned cadavers, atlases, and/or computer software. The computer software commonly used for this subject is practical and efficient for students but could be more advanced. The objective of this research was to present browsing software developed from the Visible Korean images that can be used for teaching sectional anatomy. One thousand seven hundred and two sets of MRIs, CTs, and sectioned images (intervals, one millimeter) of a whole male cadaver were prepared. Over 900 structures in the sectioned images were outlined and then filled with different colors to elaborate each structure. Software was developed where four corresponding images could be displayed simultaneously; in addition, the structures in the image data could be readily recognized with the aid of the color-filled outlines. The software, distributed free of charge, could be a valuable tool to teach medical students. For example, sectional anatomy could be taught by showing the sectioned images with real color and high resolution. Students could then review the lecture by using the sectioned and color-filled images on their own computers. Students could also be evaluated using the same software. Furthermore, other investigators would be able to replace the images for more comprehensive sectional anatomy. Copyright © 2011 Wiley-Liss, Inc.
Accuracy of remote chest X-ray interpretation using Google Glass technology.
Spaedy, Emily; Christakopoulos, Georgios E; Tarar, Muhammad Nauman J; Christopoulos, Georgios; Rangan, Bavana V; Roesle, Michele; Ochoa, Cristhiaan D; Yarbrough, William; Banerjee, Subhash; Brilakis, Emmanouil S
2016-09-15
We sought to explore the accuracy of remote chest X-ray reading using hands-free, wearable technology (Google Glass, Google, Mountain View, California). We compared interpretation of twelve chest X-rays with 23 major cardiopulmonary findings by faculty and fellows from cardiology, radiology, and pulmonary-critical care via: (1) viewing the chest X-ray image on the Google Glass screen; (2) viewing a photograph of the chest X-ray taken using Google Glass and interpreted on a mobile device; (3) viewing the original chest X-ray on a desktop computer screen. One point was given for identification of each correct finding and a subjective rating of user experience was recorded. Fifteen physicians (5 faculty and 10 fellows) participated. The average chest X-ray reading score (maximum 23 points) as viewed through the Google Glass, Google Glass photograph on a mobile device, and the original X-ray viewed on a desktop computer was 14.1±2.2, 18.5±1.5 and 21.3±1.7, respectively (p<0.0001 between Google Glass and mobile device, p<0.0001 between Google Glass and desktop computer and p=0.0004 between mobile device and desktop computer). Of 15 physicians, 11 (73.3%) felt confident in detecting findings using the photograph taken by Google Glass as viewed on a mobile device. Remote chest X-ray interpretation using hands-free, wearable technology (Google Glass) is less accurate than interpretation using a desktop computer or a mobile device, suggesting that further technical improvements are needed before widespread application of this novel technology. Published by Elsevier Ireland Ltd.
Gupta, Rajiv; Jones, Stephen E; Mooyaart, Eline A Q; Pomerantz, Stuart R
2006-06-01
The development of multidetector row computed tomography (MDCT) now permits visualization of the entire vascular tree that is relevant for the management of stroke within 15 seconds. Advances in MDCT have brought computed tomography angiography (CTA) to the frontline in evaluation of stroke. CTA is a rapid and noninvasive modality for evaluating the neurovasculature. This article describes the role of CTA in the management of stroke. Fundamentals of contrast delivery, common pathologic findings, artifacts, and pitfalls in CTA interpretation are discussed.
ICADx: interpretable computer aided diagnosis of breast masses
NASA Astrophysics Data System (ADS)
Kim, Seong Tae; Lee, Hakmin; Kim, Hak Gu; Ro, Yong Man
2018-02-01
In this study, a novel computer aided diagnosis (CADx) framework is devised to investigate interpretability for classifying breast masses. Recently, a deep learning technology has been successfully applied to medical image analysis including CADx. Existing deep learning based CADx approaches, however, have a limitation in explaining the diagnostic decision. In real clinical practice, clinical decisions could be made with reasonable explanation. So current deep learning approaches in CADx are limited in real world deployment. In this paper, we investigate interpretability in CADx with the proposed interpretable CADx (ICADx) framework. The proposed framework is devised with a generative adversarial network, which consists of interpretable diagnosis network and synthetic lesion generative network to learn the relationship between malignancy and a standardized description (BI-RADS). The lesion generative network and the interpretable diagnosis network compete in an adversarial learning so that the two networks are improved. The effectiveness of the proposed method was validated on public mammogram database. Experimental results showed that the proposed ICADx framework could provide the interpretability of mass as well as mass classification. It was mainly attributed to the fact that the proposed method was effectively trained to find the relationship between malignancy and interpretations via the adversarial learning. These results imply that the proposed ICADx framework could be a promising approach to develop the CADx system.
Highlighting the medical applications of 3D printing in Egypt
Abdelghany, Khaled; Hamza, Hosamuddin
2015-01-01
Computer-assisted designing/computer-assisted manufacturing (CAD/CAM) technology has enabled medical practitioners to tailor physical models in a patient and purpose-specific fashion. It allows the designing and manufacturing of templates, appliances and devices with a high range of accuracy using biocompatible materials. The technique, nevertheless, relies on digital scanning (e.g., using intraoral scanners) and/or digital imaging (e.g., CT and MRI). In developing countries, there are some technical and financial limitations of implementing such advanced tools as an essential portion of medical applications. This paper focuses on the surgical and dental use of 3D printing technology in Egypt as a developing country. PMID:26807414
Crop-phenology and LANDSAT-based irrigated lands inventory in the high plains. [United States
NASA Technical Reports Server (NTRS)
Martinko, E. A. (Principal Investigator); Poracsky, J.; Kipp, E. R.; Krieger, H.
1981-01-01
Optimal LANDSAT image dates for 1980 were identified based on the weekly crop-weather reports for Colorado, New Mexico, South Dakota, Texas, Oklahoma, Kansas, Nebraska, and Wyoming. The 1979 agricultural statistics data were entered into computer files and a revised questionnaire was developed and mailed to ASCS county agents. A set of computer programs was developed to allow the preparation of computer-assisted graphic displays of much of the collected data.
[Diagnostic imaging and acute abdominal pain].
Liljekvist, Mads Svane; Pommergaard, Hans-Christian; Burcharth, Jakob; Rosenberg, Jacob
2015-01-19
Acute abdominal pain is a common clinical condition. Clinical signs and symptoms can be difficult to interpret, and diagnostic imaging may help to identify intra-abdominal disease. Conventional X-ray, ultrasound (US) and computed tomography (CT) of the abdomen vary in usability between common surgical causes of acute abdominal pain. Overall, conventional X-ray cannot confidently diagnose or rule out disease. US and CT are equally trustworthy for most diseases. US with subsequent CT may enhance diagnostic precision. Magnetic resonance seems promising for future use in acute abdominal imaging.
New Numerical Approaches To thermal Convection In A Compositionally Stratified Fluid
NASA Astrophysics Data System (ADS)
Puckett, E. G.; Turcotte, D. L.; Kellogg, L. H.; Lokavarapu, H. V.; He, Y.; Robey, J.
2016-12-01
Seismic imaging of the mantle has revealed large and small scale heterogeneities in the lower mantle; specifically structures known as large low shear velocity provinces (LLSVP) below Africa and the South Pacific. Most interpretations propose that the heterogeneities are compositional in nature, differing from the overlying mantle, an interpretation that would be consistent with chemical geodynamic models. The LLSVP's are thought to be very old, meaning they have persisted thoughout much of Earth's history. Numerical modeling of persistent compositional interfaces present challenges to even state-of-the-art numerical methodology. It is extremely difficult to maintain sharp composition boundaries which migrate and distort with time dependent fingering without compositional diffusion and / or artificial diffusion. The compositional boundary must persist indefinitely. In this work we present computations of an initial compositionally stratified fluid that is subject to a thermal gradient ΔT = T1 - T0 across the height D of a rectangular domain over a range of buoyancy numbers B and Rayleigh numbers Ra. In these computations we compare three numerical approaches to modeling the movement of two distinct, thermally driven, compositional fields; namely, a high-order Finte Element Method (FEM) that employs artifical viscosity to preserve the maximum and minimum values of the compositional field, a Discontinous Galerkin (DG) method with a Bound Preserving (BP) limiter, and a Volume-of-Fluid (VOF) interface tracking algorithm. Our computations demonstrate that the FEM approach has far too much numerical diffusion to yield meaningful results, the DGBP method yields much better resuts but with small amounts of each compositional field being (numerically) entrained within the other compositional field, while the VOF method maintains a sharp interface between the two compositions throughout the computation. In the figure we show a comparison of between the three methods for a computation made with B = 1.111 and Ra = 10,000 after the flow has reached 'steady state'. (R) the images computed with the standard FEM method (with artifical viscosity), (C) the images computed with the DGBP method (with no artifical viscosity or diffusion due to discretization errors) and (L) the images computed with the VOF algorithm.
Computer-aided diagnosis in radiological imaging: current status and future challenges
NASA Astrophysics Data System (ADS)
Doi, Kunio
2009-10-01
Computer-aided diagnosis (CAD) has become one of the major research subjects in medical imaging and diagnostic radiology. Many different types of CAD schemes are being developed for detection and/or characterization of various lesions in medical imaging, including conventional projection radiography, CT, MRI, and ultrasound imaging. Commercial systems for detection of breast lesions on mammograms have been developed and have received FDA approval for clinical use. CAD may be defined as a diagnosis made by a physician who takes into account the computer output as a "second opinion". The purpose of CAD is to improve the quality and productivity of physicians in their interpretation of radiologic images. The quality of their work can be improved in terms of the accuracy and consistency of their radiologic diagnoses. In addition, the productivity of radiologists is expected to be improved by a reduction in the time required for their image readings. The computer output is derived from quantitative analysis of radiologic images by use of various methods and techniques in computer vision, artificial intelligence, and artificial neural networks (ANNs). The computer output may indicate a number of important parameters, for example, the locations of potential lesions such as lung cancer and breast cancer, the likelihood of malignancy of detected lesions, and the likelihood of various diseases based on differential diagnosis in a given image and clinical parameters. In this review article, the basic concept of CAD is first defined, and the current status of CAD research is then described. In addition, the potential of CAD in the future is discussed and predicted.
IMAGES: An interactive image processing system
NASA Technical Reports Server (NTRS)
Jensen, J. R.
1981-01-01
The IMAGES interactive image processing system was created specifically for undergraduate remote sensing education in geography. The system is interactive, relatively inexpensive to operate, almost hardware independent, and responsive to numerous users at one time in a time-sharing mode. Most important, it provides a medium whereby theoretical remote sensing principles discussed in lecture may be reinforced in laboratory as students perform computer-assisted image processing. In addition to its use in academic and short course environments, the system has also been used extensively to conduct basic image processing research. The flow of information through the system is discussed including an overview of the programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neep, Michael J; Centre for Functioning and Health Research, Metro South Health, Brisbane, Queensland; School of Public Health and Social Work and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland
The provision of a written comment on traumatic abnormalities of the musculoskeletal system detected by radiographers can assist referrers and may improve patient management, but the practice has not been widely adopted outside the United Kingdom. The purpose of this study was to investigate Australian radiographers' perceptions of their readiness for practice in a radiographer commenting system and their educational preferences in relation to two different delivery formats of image interpretation education, intensive and non-intensive. A cross-sectional web-based questionnaire was implemented between August and September 2012. Participants included radiographers with experience working in emergency settings at four Australian metropolitan hospitals.more » Conventional descriptive statistics, frequency histograms, and thematic analysis were undertaken. A Wilcoxon signed-rank test examined whether a difference in preference ratings between intensive and non-intensive education delivery was evident. The questionnaire was completed by 73 radiographers (68% response rate). Radiographers reported higher confidence and self-perceived accuracy to detect traumatic abnormalities than to describe traumatic abnormalities of the musculoskeletal system. Radiographers frequently reported high desirability ratings for both the intensive and the non-intensive education delivery, no difference in desirability ratings for these two formats was evident (z = 1.66, P = 0.11). Some Australian radiographers perceive they are not ready to practise in a frontline radiographer commenting system. Overall, radiographers indicated mixed preferences for image interpretation education delivered via intensive and non-intensive formats. Further research, preferably randomised trials, investigating the effectiveness of intensive and non-intensive education formats of image interpretation education for radiographers is warranted.« less
System and method for object localization
NASA Technical Reports Server (NTRS)
Kelly, Alonzo J. (Inventor); Zhong, Yu (Inventor)
2005-01-01
A computer-assisted method for localizing a rack, including sensing an image of the rack, detecting line segments in the sensed image, recognizing a candidate arrangement of line segments in the sensed image indicative of a predetermined feature of the rack, generating a matrix of correspondence between the candidate arrangement of line segments and an expected position and orientation of the predetermined feature of the rack, and estimating a position and orientation of the rack based on the matrix of correspondence.
Code of Federal Regulations, 2011 CFR
2011-01-01
... personal assistants serving under Schedule A appointments. (a) Agency authority. An agency may convert noncompetitively to career or career-conditional employment, a reader, interpreter, or personal assistant: (1) Who... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Readers, interpreters, and personal...
Code of Federal Regulations, 2012 CFR
2012-01-01
... personal assistants serving under Schedule A appointments. (a) Agency authority. An agency may convert noncompetitively to career or career-conditional employment, a reader, interpreter, or personal assistant: (1) Who... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Readers, interpreters, and personal...
Code of Federal Regulations, 2013 CFR
2013-01-01
... personal assistants serving under Schedule A appointments. (a) Agency authority. An agency may convert noncompetitively to career or career-conditional employment, a reader, interpreter, or personal assistant: (1) Who... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false Readers, interpreters, and personal...
Code of Federal Regulations, 2014 CFR
2014-01-01
... personal assistants serving under Schedule A appointments. (a) Agency authority. An agency may convert noncompetitively to career or career-conditional employment, a reader, interpreter, or personal assistant: (1) Who... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Readers, interpreters, and personal...
Code of Federal Regulations, 2010 CFR
2010-01-01
... personal assistants serving under Schedule A appointments. (a) Agency authority. An agency may convert noncompetitively to career or career-conditional employment, a reader, interpreter, or personal assistant: (1) Who... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Readers, interpreters, and personal...
Banzato, Tommaso; Selleri, Paolo; Veladiano, Irene A; Martin, Andrea; Zanetti, Emanuele; Zotti, Alessandro
2012-05-11
Radiology and computed tomography are the most commonly available diagnostic tools for the diagnosis of pathologies affecting the head and skull in veterinary practice. Nevertheless, accurate interpretation of radiographic and CT studies requires a thorough knowledge of the gross and the cross-sectional anatomy. Despite the increasing success of reptiles as pets, only a few reports over their normal imaging features are currently available. The aim of this study is to describe the normal cadaveric, radiographic and computed tomographic features of the heads of the green iguana, tegu and bearded dragon. 6 adult green iguanas, 4 tegus, 3 bearded dragons, and, the adult cadavers of: 4 green iguana, 4 tegu, 4 bearded dragon were included in the study. 2 cadavers were dissected following a stratigraphic approach and 2 cadavers were cross-sectioned for each species. These latter specimens were stored in a freezer (-20°C) until completely frozen. Transversal sections at 5 mm intervals were obtained by means of an electric band-saw. Each section was cleaned and photographed on both sides. Radiographs of the head of each subject were obtained. Pre- and post- contrast computed tomographic studies of the head were performed on all the live animals. CT images were displayed in both bone and soft tissue windows. Individual anatomic structures were first recognised and labelled on the anatomic images and then matched on radiographs and CT images. Radiographic and CT images of the skull provided good detail of the bony structures in all species. In CT contrast medium injection enabled good detail of the soft tissues to be obtained in the iguana whereas only the eye was clearly distinguishable from the remaining soft tissues in both the tegu and the bearded dragon. The results provide an atlas of the normal anatomical and in vivo radiographic and computed tomographic features of the heads of lizards, and this may be useful in interpreting any imaging modality involving these species.
2012-01-01
Background Radiology and computed tomography are the most commonly available diagnostic tools for the diagnosis of pathologies affecting the head and skull in veterinary practice. Nevertheless, accurate interpretation of radiographic and CT studies requires a thorough knowledge of the gross and the cross-sectional anatomy. Despite the increasing success of reptiles as pets, only a few reports over their normal imaging features are currently available. The aim of this study is to describe the normal cadaveric, radiographic and computed tomographic features of the heads of the green iguana, tegu and bearded dragon. Results 6 adult green iguanas, 4 tegus, 3 bearded dragons, and, the adult cadavers of : 4 green iguana, 4 tegu, 4 bearded dragon were included in the study. 2 cadavers were dissected following a stratigraphic approach and 2 cadavers were cross-sectioned for each species. These latter specimens were stored in a freezer (−20°C) until completely frozen. Transversal sections at 5 mm intervals were obtained by means of an electric band-saw. Each section was cleaned and photographed on both sides. Radiographs of the head of each subject were obtained. Pre- and post- contrast computed tomographic studies of the head were performed on all the live animals. CT images were displayed in both bone and soft tissue windows. Individual anatomic structures were first recognised and labelled on the anatomic images and then matched on radiographs and CT images. Radiographic and CT images of the skull provided good detail of the bony structures in all species. In CT contrast medium injection enabled good detail of the soft tissues to be obtained in the iguana whereas only the eye was clearly distinguishable from the remaining soft tissues in both the tegu and the bearded dragon. Conclusions The results provide an atlas of the normal anatomical and in vivo radiographic and computed tomographic features of the heads of lizards, and this may be useful in interpreting any imaging modality involving these species. PMID:22578088
Slime mold solves maze in one pass, assisted by gradient of chemo-attractants.
Adamatzky, Andrew
2012-06-01
Plasmodium of Physarum polycephalum is a large cell, visible by unaided eye, which exhibits sophisticated patterns of foraging behaviour. The plasmodium's behaviour is well interpreted in terms of computation, where data are spatially extended configurations of nutrients and obstacles, and results of computation are networks of protoplasmic tubes formed by the plasmodium. In laboratory experiments and numerical simulation we show that if plasmodium of P. polycephalum is inoculated in a maze's peripheral channel and an oat flake (source of attractants) in a the maze's central chamber then the plasmodium grows toward target oat flake and connects the flake with the site of original inoculation with a pronounced protoplasmic tube. The protoplasmic tube represents a path in the maze. The plasmodium solves maze in one pass because it is assisted by a gradient of chemo-attractants propagating from the target oat flake.
Wang, Kenneth C; Salunkhe, Aditya R; Morrison, James J; Lee, Pearlene P; Mejino, José L V; Detwiler, Landon T; Brinkley, James F; Siegel, Eliot L; Rubin, Daniel L; Carrino, John A
2015-01-01
Disorders of the peripheral nervous system have traditionally been evaluated using clinical history, physical examination, and electrodiagnostic testing. In selected cases, imaging modalities such as magnetic resonance (MR) neurography may help further localize or characterize abnormalities associated with peripheral neuropathies, and the clinical importance of such techniques is increasing. However, MR image interpretation with respect to peripheral nerve anatomy and disease often presents a diagnostic challenge because the relevant knowledge base remains relatively specialized. Using the radiology knowledge resource RadLex®, a series of RadLex queries, the Annotation and Image Markup standard for image annotation, and a Web services-based software architecture, the authors developed an application that allows ontology-assisted image navigation. The application provides an image browsing interface, allowing users to visually inspect the imaging appearance of anatomic structures. By interacting directly with the images, users can access additional structure-related information that is derived from RadLex (eg, muscle innervation, muscle attachment sites). These data also serve as conceptual links to navigate from one portion of the imaging atlas to another. With 3.0-T MR neurography of the brachial plexus as the initial area of interest, the resulting application provides support to radiologists in the image interpretation process by allowing efficient exploration of the MR imaging appearance of relevant nerve segments, muscles, bone structures, vascular landmarks, anatomic spaces, and entrapment sites, and the investigation of neuromuscular relationships. RSNA, 2015
Salunkhe, Aditya R.; Morrison, James J.; Lee, Pearlene P.; Mejino, José L. V.; Detwiler, Landon T.; Brinkley, James F.; Siegel, Eliot L.; Rubin, Daniel L.; Carrino, John A.
2015-01-01
Disorders of the peripheral nervous system have traditionally been evaluated using clinical history, physical examination, and electrodiagnostic testing. In selected cases, imaging modalities such as magnetic resonance (MR) neurography may help further localize or characterize abnormalities associated with peripheral neuropathies, and the clinical importance of such techniques is increasing. However, MR image interpretation with respect to peripheral nerve anatomy and disease often presents a diagnostic challenge because the relevant knowledge base remains relatively specialized. Using the radiology knowledge resource RadLex®, a series of RadLex queries, the Annotation and Image Markup standard for image annotation, and a Web services–based software architecture, the authors developed an application that allows ontology-assisted image navigation. The application provides an image browsing interface, allowing users to visually inspect the imaging appearance of anatomic structures. By interacting directly with the images, users can access additional structure-related information that is derived from RadLex (eg, muscle innervation, muscle attachment sites). These data also serve as conceptual links to navigate from one portion of the imaging atlas to another. With 3.0-T MR neurography of the brachial plexus as the initial area of interest, the resulting application provides support to radiologists in the image interpretation process by allowing efficient exploration of the MR imaging appearance of relevant nerve segments, muscles, bone structures, vascular landmarks, anatomic spaces, and entrapment sites, and the investigation of neuromuscular relationships. ©RSNA, 2015 PMID:25590394
Measuring the performance of visual to auditory information conversion.
Tan, Shern Shiou; Maul, Tomás Henrique Bode; Mennie, Neil Russell
2013-01-01
Visual to auditory conversion systems have been in existence for several decades. Besides being among the front runners in providing visual capabilities to blind users, the auditory cues generated from image sonification systems are still easier to learn and adapt to compared to other similar techniques. Other advantages include low cost, easy customizability, and universality. However, every system developed so far has its own set of strengths and weaknesses. In order to improve these systems further, we propose an automated and quantitative method to measure the performance of such systems. With these quantitative measurements, it is possible to gauge the relative strengths and weaknesses of different systems and rank the systems accordingly. Performance is measured by both the interpretability and also the information preservation of visual to auditory conversions. Interpretability is measured by computing the correlation of inter image distance (IID) and inter sound distance (ISD) whereas the information preservation is computed by applying Information Theory to measure the entropy of both visual and corresponding auditory signals. These measurements provide a basis and some insights on how the systems work. With an automated interpretability measure as a standard, more image sonification systems can be developed, compared, and then improved. Even though the measure does not test systems as thoroughly as carefully designed psychological experiments, a quantitative measurement like the one proposed here can compare systems to a certain degree without incurring much cost. Underlying this research is the hope that a major breakthrough in image sonification systems will allow blind users to cost effectively regain enough visual functions to allow them to lead secure and productive lives.
The use of computer imaging techniques to visualize cardiac muscle cells in three dimensions.
Marino, T A; Cook, P N; Cook, L T; Dwyer, S J
1980-11-01
Atrial muscle cells and atrioventricular bundle cells were reconstructed using a computer-assisted three-dimensional reconstruction system. This reconstruction technique permitted these cells to be viewed from any direction. The cell surfaces were approximated using triangular tiles, and this optimization technique for cell reconstruction allowed for the computation of cell surface area and cell volume. A transparent mode is described which enables the investigator to examine internal cellular features such as the shape and location of the nucleus. In addition, more than one cell can be displayed simultaneously, and, therefore, spatial relationships are preserved and intercellular relationships viewed directly. The use of computer imaging techniques allows for a more complete collection of quantitative morphological data and also the visualization of the morphological information gathered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poling, Whitney A.; Savic, Vesna; Hector, Louis G.
2016-04-05
The strain-induced, diffusionless shear transformation of retained austenite to martensite during straining of transformation induced plasticity (TRIP) assisted steels increases strain hardening and delays necking and fracture leading to exceptional ductility and strength, which are attractive for automotive applications. A novel technique that provides the retained austenite volume fraction variation with strain in TRIP-assisted steels with improved precision is presented. Digital images of the gauge section of tensile specimens were first recorded up to selected plastic strains with a stereo digital image correlation (DIC) system. The austenite volume fraction was measured by synchrotron X-ray diffraction from small squares cut frommore » the gage section. Strain fields in the squares were then computed by localizing the strain measurement to the corresponding region of a given square during DIC post-processing of the images recorded during tensile testing. Results obtained for a QP980 steel are used to study the influence of initial volume fraction of austenite and the austenite transformation with strain on tensile mechanical behavior.« less
Shaded computer graphic techniques for visualizing and interpreting analytic fluid flow models
NASA Technical Reports Server (NTRS)
Parke, F. I.
1981-01-01
Mathematical models which predict the behavior of fluid flow in different experiments are simulated using digital computers. The simulations predict values of parameters of the fluid flow (pressure, temperature and velocity vector) at many points in the fluid. Visualization of the spatial variation in the value of these parameters is important to comprehend and check the data generated, to identify the regions of interest in the flow, and for effectively communicating information about the flow to others. The state of the art imaging techniques developed in the field of three dimensional shaded computer graphics is applied to visualization of fluid flow. Use of an imaging technique known as 'SCAN' for visualizing fluid flow, is studied and the results are presented.
Large-scale feature searches of collections of medical imagery
NASA Astrophysics Data System (ADS)
Hedgcock, Marcus W.; Karshat, Walter B.; Levitt, Tod S.; Vosky, D. N.
1993-09-01
Large scale feature searches of accumulated collections of medical imagery are required for multiple purposes, including clinical studies, administrative planning, epidemiology, teaching, quality improvement, and research. To perform a feature search of large collections of medical imagery, one can either search text descriptors of the imagery in the collection (usually the interpretation), or (if the imagery is in digital format) the imagery itself. At our institution, text interpretations of medical imagery are all available in our VA Hospital Information System. These are downloaded daily into an off-line computer. The text descriptors of most medical imagery are usually formatted as free text, and so require a user friendly database search tool to make searches quick and easy for any user to design and execute. We are tailoring such a database search tool (Liveview), developed by one of the authors (Karshat). To further facilitate search construction, we are constructing (from our accumulated interpretation data) a dictionary of medical and radiological terms and synonyms. If the imagery database is digital, the imagery which the search discovers is easily retrieved from the computer archive. We describe our database search user interface, with examples, and compare the efficacy of computer assisted imagery searches from a clinical text database with manual searches. Our initial work on direct feature searches of digital medical imagery is outlined.
Platform-independent software for medical image processing on the Internet
NASA Astrophysics Data System (ADS)
Mancuso, Michael E.; Pathak, Sayan D.; Kim, Yongmin
1997-05-01
We have developed a software tool for image processing over the Internet. The tool is a general purpose, easy to use, flexible, platform independent image processing software package with functions most commonly used in medical image processing.It provides for processing of medical images located wither remotely on the Internet or locally. The software was written in Java - the new programming language developed by Sun Microsystems. It was compiled and tested using Microsoft's Visual Java 1.0 and Microsoft's Just in Time Compiler 1.00.6211. The software is simple and easy to use. In order to use the tool, the user needs to download the software from our site before he/she runs it using any Java interpreter, such as those supplied by Sun, Symantec, Borland or Microsoft. Future versions of the operating systems supplied by Sun, Microsoft, Apple, IBM, and others will include Java interpreters. The software is then able to access and process any image on the iNternet or on the local computer. Using a 512 X 512 X 8-bit image, a 3 X 3 convolution took 0.88 seconds on an Intel Pentium Pro PC running at 200 MHz with 64 Mbytes of memory. A window/level operation took 0.38 seconds while a 3 X 3 median filter took 0.71 seconds. These performance numbers demonstrate the feasibility of using this software interactively on desktop computes. Our software tool supports various image processing techniques commonly used in medical image processing and can run without the need of any specialized hardware. It can become an easily accessible resource over the Internet to promote the learning and of understanding image processing algorithms. Also, it could facilitate sharing of medical image databases and collaboration amongst researchers and clinicians, regardless of location.
Observation of extremely strong shock waves in solids launched by petawatt laser heating
Lancaster, K. L.; Robinson, A. P. L.; Pasley, J.; ...
2017-08-25
Understanding hydrodynamic phenomena driven by fast electron heating is important for a range of applications including fast electron collimation schemes for fast ignition and the production and study of hot, dense matter. In this work, detailed numerical simulations modelling the heating, hydrodynamic evolution, and extreme ultra-violet (XUV) emission in combination with experimental XUV images indicate shock waves of exceptional strength (200 Mbar) launched due to rapid heating of materials via a petawatt laser. In conclusion, we discuss in detail the production of synthetic XUV images and how they assist us in interpreting experimental XUV images captured at 256 eV usingmore » a multi-layer spherical mirror.« less
[Myocardial perfusion scintigraphy - short form of the German guideline].
Lindner, O; Burchert, W; Hacker, M; Schaefer, W; Schmidt, M; Schober, O; Schwaiger, M; vom Dahl, J; Zimmermann, R; Schäfers, M
2013-01-01
This guideline is a short summary of the guideline for myocardial perfusion scintigraphy published by the Association of the Scientific Medical Societies in Ger-many (AWMF). The purpose of this guideline is to provide practical assistance for indication and examination procedures as well as image analysis and to present the state-of-the-art of myocardial-perfusion-scintigraphy. After a short introduction on the fundamentals of imaging, precise and detailed information is given on the indications, patient preparation, stress testing, radiopharmaceuticals, examination protocols and techniques, radiation exposure, data reconstruction as well as information on visual and quantitative image analysis and interpretation. In addition possible pitfalls, artefacts and key elements of reporting are described.
Computer Vision Research and Its Applications to Automated Cartography
1984-09-01
reflecting from scene surfaces, and the film and digitization processes that result in the computer representation of the image. These models, when...alone. Specifically, intepretations that are in some sense "orthogonal" are preferred. A method for finding such interpretations for right-angle...saturated colors are not precisely representable and the colors recorded with different films or cameras may differ, but the tricomponent representation is t
The Strata-1 experiment on small body regolith segregation
NASA Astrophysics Data System (ADS)
Fries, Marc; Abell, Paul; Brisset, Julie; Britt, Daniel; Colwell, Joshua; Dove, Adrienne; Durda, Dan; Graham, Lee; Hartzell, Christine; Hrovat, Kenneth; John, Kristen; Karrer, Dakotah; Leonard, Matthew; Love, Stanley; Morgan, Joseph; Poppin, Jayme; Rodriguez, Vincent; Sánchez-Lana, Paul; Scheeres, Dan; Whizin, Akbar
2018-01-01
The Strata-1 experiment studies the mixing and segregation dynamics of regolith on small bodies by exposing a suite of regolith simulants to the microgravity environment aboard the International Space Station (ISS) for one year. This will improve our understanding of regolith dynamics and properties on small asteroids, and may assist in interpreting analyses of samples from missions to small bodies such as OSIRIS-REx, Hayabusa-1 and -2, and future missions to small bodies. The Strata-1 experiment consists of four evacuated tubes partially filled with regolith simulants. The simulants are chosen to represent models of regolith covering a range of complexity and tailored to inform and improve computational studies. The four tubes are regularly imaged while moving in response to the ambient vibrational environment using dedicated cameras. The imagery is then downlinked to the Strata-1 science team about every two months. Analyses performed on the imagery includes evaluating the extent of the segregation of Strata-1 samples and comparing the observations to computational models. After Strata-1's return to Earth, x-ray tomography and optical microscopy will be used to study the post-flight simulant distribution. Strata-1 is also a pathfinder for the new "1E" ISS payload class, which is intended to simplify and accelerate emplacement of experiments on board ISS.
NASA Technical Reports Server (NTRS)
Schell, J. A.
1974-01-01
The recent availability of timely synoptic earth imagery from the Earth Resources Technology Satellites (ERTS) provides a wealth of information for the monitoring and management of vital natural resources. Formal language definitions and syntax interpretation algorithms were adapted to provide a flexible, computer information system for the maintenance of resource interpretation of imagery. These techniques are incorporated, together with image analysis functions, into an Interactive Resource Information Management and Analysis System, IRIMAS, which is implemented on a Texas Instruments 980A minicomputer system augmented with a dynamic color display for image presentation. A demonstration of system usage and recommendations for further system development are also included.
NASA Astrophysics Data System (ADS)
Gustafsson, Alexander; Okabayashi, Norio; Peronio, Angelo; Giessibl, Franz J.; Paulsson, Magnus
2017-08-01
We describe a first-principles method to calculate scanning tunneling microscopy (STM) images, and compare the results to well-characterized experiments combining STM with atomic force microscopy (AFM). The theory is based on density functional theory with a localized basis set, where the wave functions in the vacuum gap are computed by propagating the localized-basis wave functions into the gap using a real-space grid. Constant-height STM images are computed using Bardeen's approximation method, including averaging over the reciprocal space. We consider copper adatoms and single CO molecules adsorbed on Cu(111), scanned with a single-atom copper tip with and without CO functionalization. The calculated images agree with state-of-the-art experiments, where the atomic structure of the tip apex is determined by AFM. The comparison further allows for detailed interpretation of the STM images.
Cardiac image modelling: Breadth and depth in heart disease.
Suinesiaputra, Avan; McCulloch, Andrew D; Nash, Martyn P; Pontre, Beau; Young, Alistair A
2016-10-01
With the advent of large-scale imaging studies and big health data, and the corresponding growth in analytics, machine learning and computational image analysis methods, there are now exciting opportunities for deepening our understanding of the mechanisms and characteristics of heart disease. Two emerging fields are computational analysis of cardiac remodelling (shape and motion changes due to disease) and computational analysis of physiology and mechanics to estimate biophysical properties from non-invasive imaging. Many large cohort studies now underway around the world have been specifically designed based on non-invasive imaging technologies in order to gain new information about the development of heart disease from asymptomatic to clinical manifestations. These give an unprecedented breadth to the quantification of population variation and disease development. Also, for the individual patient, it is now possible to determine biophysical properties of myocardial tissue in health and disease by interpreting detailed imaging data using computational modelling. For these population and patient-specific computational modelling methods to develop further, we need open benchmarks for algorithm comparison and validation, open sharing of data and algorithms, and demonstration of clinical efficacy in patient management and care. The combination of population and patient-specific modelling will give new insights into the mechanisms of cardiac disease, in particular the development of heart failure, congenital heart disease, myocardial infarction, contractile dysfunction and diastolic dysfunction. Copyright © 2016. Published by Elsevier B.V.
2010-12-22
Wireless crop water monitoring project: Dr. Chris Lund and Forrest Melton, California State University Monterey Bay research scientists who work at NASA Ames Research Center, check data being returned from a wireless soil moisture monitoring network, installed in an agricultural field. Data from the soil moisture sensor network will be used to assist in interpretation of the satellite estimates of crop water demand. Image of courtesy of Forrest S. Melton
Students' learning of clinical sonography: use of computer-assisted instruction and practical class.
Wood, A K; Dadd, M J; Lublin, J R
1996-08-01
The application of information technology to teaching radiology will profoundly change the way learning is mediated to students. In this project, the integration of veterinary medical students' knowledge of sonography was promoted by a computer-assisted instruction program and a subsequent practical class. The computer-assisted instruction program emphasized the physical principles of clinical sonography and contained simulations and user-active experiments. In the practical class, the students used an actual sonographic machine for the first time and made images of a tissue-equivalent phantom. Students' responses to questionnaires were analyzed. On completing the overall project, 96% of the students said that they now understood sonographic concepts very or reasonably well, and 98% had become very or moderately interested in clinical sonography. The teaching and learning initiatives enhanced an integrated approach to learning, stimulated student interest and curiosity, improved understanding of sonographic principles, and contributed to an increased confidence and skill in using sonographic equipment.
NASA Astrophysics Data System (ADS)
Kuvich, Gary
2004-08-01
Vision is only a part of a system that converts visual information into knowledge structures. These structures drive the vision process, resolving ambiguity and uncertainty via feedback, and provide image understanding, which is an interpretation of visual information in terms of these knowledge models. These mechanisms provide a reliable recognition if the object is occluded or cannot be recognized as a whole. It is hard to split the entire system apart, and reliable solutions to the target recognition problems are possible only within the solution of a more generic Image Understanding Problem. Brain reduces informational and computational complexities, using implicit symbolic coding of features, hierarchical compression, and selective processing of visual information. Biologically inspired Network-Symbolic representation, where both systematic structural/logical methods and neural/statistical methods are parts of a single mechanism, is the most feasible for such models. It converts visual information into relational Network-Symbolic structures, avoiding artificial precise computations of 3-dimensional models. Network-Symbolic Transformations derive abstract structures, which allows for invariant recognition of an object as exemplar of a class. Active vision helps creating consistent models. Attention, separation of figure from ground and perceptual grouping are special kinds of network-symbolic transformations. Such Image/Video Understanding Systems will be reliably recognizing targets.
Gomes, Guilherme Francisco; Bonin, Eduardo Aimore; Noda, Rafael William; Cavazzola, Leandro Totti; Bartholomei, Thiago Ferreira
2016-01-01
Meckel’s diverticulum (MD) is estimated to affect 1%-2% of the general population, and it represents a clinically silent finding of a congenital anomaly in up to 85% of the cases. In adults, MD may cause symptoms, such as overt occult lower gastrointestinal bleeding. The diagnostic imaging workup includes computed tomography scan, magnetic resonance imaging enterography, technetium 99m scintigraphy (99mTc) using either labeled red blood cells or pertechnetate (known as the Meckel’s scan) and angiography. The preoperative detection rate of MD in adults is low, and many patients ultimately undergo exploratory laparoscopy. More recently, however, endoscopic identification of MD has been possible with the use of balloon-assisted enteroscopy via direct luminal access, which also provides visualization of the diverticular ostium. The aim of this study was to review the diagnosis by double-balloon enteroscopy of 4 adults with symptomatic MD but who had negative diagnostic imaging workups. These cases indicate that balloon-assisted enteroscopy is a valuable diagnostic method and should be considered in adult patients who have suspected MD and indefinite findings on diagnostic imaging workup, including negative Meckel’s scan. PMID:27803776
Reconstruction and 3D visualisation based on objective real 3D based documentation.
Bolliger, Michael J; Buck, Ursula; Thali, Michael J; Bolliger, Stephan A
2012-09-01
Reconstructions based directly upon forensic evidence alone are called primary information. Historically this consists of documentation of findings by verbal protocols, photographs and other visual means. Currently modern imaging techniques such as 3D surface scanning and radiological methods (computer tomography, magnetic resonance imaging) are also applied. Secondary interpretation is based on facts and the examiner's experience. Usually such reconstructive expertises are given in written form, and are often enhanced by sketches. However, narrative interpretations can, especially in complex courses of action, be difficult to present and can be misunderstood. In this report we demonstrate the use of graphic reconstruction of secondary interpretation with supporting pictorial evidence, applying digital visualisation (using 'Poser') or scientific animation (using '3D Studio Max', 'Maya') and present methods of clearly distinguishing between factual documentation and examiners' interpretation based on three cases. The first case involved a pedestrian who was initially struck by a car on a motorway and was then run over by a second car. The second case involved a suicidal gunshot to the head with a rifle, in which the trigger was pushed with a rod. The third case dealt with a collision between two motorcycles. Pictorial reconstruction of the secondary interpretation of these cases has several advantages. The images enable an immediate overview, give rise to enhanced clarity, and compel the examiner to look at all details if he or she is to create a complete image.
Kiriyama, Tomonari; Kumita, Shin-Ichiro; Moroi, Masao; Nishimura, Tsunehiko; Tamaki, Nagara; Hasebe, Naoyuki; Kikuchi, Kenjiro
2015-01-01
The severity of impaired fatty acid utilization in the myocardium can predict cardiac death in asymptomatic patients on hemodialysis. However, interpretive variability and its impact on the prognostic value of myocardial fatty acid imaging are unknown. A total of 677 patients who received hemodialysis for ≥ 20 years and had one or more cardiovascular risk factors underwent (123)I-labeled β-methyl iodophenyl-pentadecanoic acid (BMIPP) single-photon emission computed tomography (SPECT) at 48 hospitals across Japan. SPECT images were interpreted by experts at the nuclear core laboratory and by readers with varying skill levels at clinical centers, based on the standard 17-segment model and 5-point scoring systems, independently. The κ values only reached fair agreement both for overall impression (κ=0.298, normal vs. abnormal) and for categorical impression (κ=0.244, normal vs. mildly abnormal vs. severely abnormal). The normalcy rate was lower in readers at the clinical centers (60.9%) than in experts (69.9%). In contrast to the results assessed by experts, a Kaplan-Meier analysis based on the interpretation by readers at the clinical centers failed to distinguish the risk of events in patients with normal scans from that of patients with mildly abnormal scans. Considerable variability and its impact on prognostic value were observed in the visual interpretation of BMIPP SPECT images between experts and readers at the clinical centers.
Interpretation and mapping of geological features using mobile devices for 3D outcrop modelling
NASA Astrophysics Data System (ADS)
Buckley, Simon J.; Kehl, Christian; Mullins, James R.; Howell, John A.
2016-04-01
Advances in 3D digital geometric characterisation have resulted in widespread adoption in recent years, with photorealistic models utilised for interpretation, quantitative and qualitative analysis, as well as education, in an increasingly diverse range of geoscience applications. Topographic models created using lidar and photogrammetry, optionally combined with imagery from sensors such as hyperspectral and thermal cameras, are now becoming commonplace in geoscientific research. Mobile devices (tablets and smartphones) are maturing rapidly to become powerful field computers capable of displaying and interpreting 3D models directly in the field. With increasingly high-quality digital image capture, combined with on-board sensor pose estimation, mobile devices are, in addition, a source of primary data, which can be employed to enhance existing geological models. Adding supplementary image textures and 2D annotations to photorealistic models is therefore a desirable next step to complement conventional field geoscience. This contribution reports on research into field-based interpretation and conceptual sketching on images and photorealistic models on mobile devices, motivated by the desire to utilise digital outcrop models to generate high quality training images (TIs) for multipoint statistics (MPS) property modelling. Representative training images define sedimentological concepts and spatial relationships between elements in the system, which are subsequently modelled using artificial learning to populate geocellular models. Photorealistic outcrop models are underused sources of quantitative and qualitative information for generating TIs, explored further in this research by linking field and office workflows through the mobile device. Existing textured models are loaded to the mobile device, allowing rendering in a 3D environment. Because interpretation in 2D is more familiar and comfortable for users, the developed application allows new images to be captured with the device's digital camera, and an interface is available for annotating (interpreting) the image using lines and polygons. Image-to-geometry registration is then performed using a developed algorithm, initialised using the coarse pose from the on-board orientation and positioning sensors. The annotations made on the captured images are then available in the 3D model coordinate system for overlay and export. This workflow allows geologists to make interpretations and conceptual models in the field, which can then be linked to and refined in office workflows for later MPS property modelling.
NASA Technical Reports Server (NTRS)
Senger, Steven O.
1998-01-01
Volumetric data sets have become common in medicine and many sciences through technologies such as computed x-ray tomography (CT), magnetic resonance (MR), positron emission tomography (PET), confocal microscopy and 3D ultrasound. When presented with 2D images humans immediately and unconsciously begin a visual analysis of the scene. The viewer surveys the scene identifying significant landmarks and building an internal mental model of presented information. The identification of features is strongly influenced by the viewers expectations based upon their expert knowledge of what the image should contain. While not a conscious activity, the viewer makes a series of choices about how to interpret the scene. These choices occur in parallel with viewing the scene and effectively change the way the viewer sees the image. It is this interaction of viewing and choice which is the basis of many familiar visual illusions. This is especially important in the interpretation of medical images where it is the expert knowledge of the radiologist which interprets the image. For 3D data sets this interaction of view and choice is frustrated because choices must precede the visualization of the data set. It is not possible to visualize the data set with out making some initial choices which determine how the volume of data is presented to the eye. These choices include, view point orientation, region identification, color and opacity assignments. Further compounding the problem is the fact that these visualization choices are defined in terms of computer graphics as opposed to language of the experts knowledge. The long term goal of this project is to develop an environment where the user can interact with volumetric data sets using tools which promote the utilization of expert knowledge by incorporating visualization and choice into a tight computational loop. The tools will support activities involving the segmentation of structures, construction of surface meshes and local filtering of the data set. To conform to this environment tools should have several key attributes. First, they should be only rely on computations over a local neighborhood of the probe position. Second, they should operate iteratively over time converging towards a limit behavior. Third, they should adapt to user input modifying they operational parameters with time.
Digital radiographic imaging transfer: comparison with plain radiographs.
Averch, T D; O'Sullivan, D; Breitenbach, C; Beser, N; Schulam, P G; Moore, R G; Kavoussi, L R
1997-04-01
Advances in digital imaging and computer display technology have allowed development of clinical teleradiographic systems. There are limited data assessing the effectiveness of such systems when applied to urologic pathology. In an effort to appraise the effectiveness of teleradiology in identifying renal calculi, the accuracy of findings on transmitted radiographic images were compared with those made when viewing the actual plain film. Plain films (KUB) were obtained from 26 patients who presented to the radiology department to rule out urinary calculous disease. The films were digitalized by a radiograph scanner into ARCNEMA-2 file format, compressed by a NASA algorithm, and transferred via a 28.8-kbps modern over standard telephone lines to a remote section 25 miles away, where they were decompressed and viewed on a 1600 x 1200-pixel monitor. Two attending urologists and two endourologic fellows were randomized to read either the transmitted image or the original radiograph with minimal clinical history provided. Of the 26 plain radiographic films, 24 were correctly interpreted by the fellows and 25 by the attending physicians (92% and 96% accuracy, respectively) for a total accuracy of 94% with no statistical difference (p = 0.16). After compression, all but one of the digital images were transferred successfully. The attending physicians correctly interpreted 24 of the 25 digital images (96%), whereas the fellows were correct on 21 interpretations (84%), resulting in a total 90% accuracy with a significant difference between the groups (p < or = 0.04). Overall, no statistical difference between the interpretations of the plain film and the digital image was revealed (p = 0.21). Using available technology, KUB images can be transmitted to a remote site, and the location of a stone can be determined correctly. Higher accuracy is demonstrated by experienced surgeons.
Depeursinge, Adrien; Kurtz, Camille; Beaulieu, Christopher; Napel, Sandy; Rubin, Daniel
2014-08-01
We describe a framework to model visual semantics of liver lesions in CT images in order to predict the visual semantic terms (VST) reported by radiologists in describing these lesions. Computational models of VST are learned from image data using linear combinations of high-order steerable Riesz wavelets and support vector machines (SVM). In a first step, these models are used to predict the presence of each semantic term that describes liver lesions. In a second step, the distances between all VST models are calculated to establish a nonhierarchical computationally-derived ontology of VST containing inter-term synonymy and complementarity. A preliminary evaluation of the proposed framework was carried out using 74 liver lesions annotated with a set of 18 VSTs from the RadLex ontology. A leave-one-patient-out cross-validation resulted in an average area under the ROC curve of 0.853 for predicting the presence of each VST. The proposed framework is expected to foster human-computer synergies for the interpretation of radiological images while using rotation-covariant computational models of VSTs to 1) quantify their local likelihood and 2) explicitly link them with pixel-based image content in the context of a given imaging domain.
Awais, Muhammad; Khan, Dawar Burhan; Barakzai, Muhammad Danish; Rehman, Abdul; Baloch, Noor Ul-Ain; Nadeem, Naila
2018-05-01
To ascertain the accuracy and reliability of tablet as an imaging console for detection of radiological signs of acute appendicitis [on focused appendiceal computed tomography (FACT)] using Picture Archiving and Communication System (PACS) workstation as reference standard. From January, 2014 to June, 2015, 225 patients underwent FACT at our institution. These scans were blindly re-interpreted by an independent consultant radiologist, first on PACS workstation and, two weeks later, on tablet. Scans were interpreted for the presence of radiological signs of acute appendicitis. Accuracy of tablet was calculated using PACS as reference standard. Kappa (κ) statistics were calculated as a measure of reliability. Of 225 patients, 99 had radiological evidence of acute appendicitis on PACS workstation. Tablet was 100% accurate in detecting radiological signs of acute appendicitis. Appendicoliths, free fluid, lymphadenopathy, phlegmon/abscess, and perforation were identified on PACS in 90, 43, 39, 10, and 12 scans, respectively. There was excellent agreement between tablet and PACS for detection of appendicolith (к = 0.924), phlegmon/abscess (к = 0.904), free fluid (к = 0.863), lymphadenopathy (к = 0.879), and perforation (к = 0.904). Tablet computer, as an imaging console, was highly reliable and was as accurate as PACS workstation for the radiological diagnosis of acute appendicitis.
NASA Astrophysics Data System (ADS)
Suzuki, Makoto; Kameda, Toshimasa; Doi, Ayumi; Borisov, Sergey; Babin, Sergey
2018-03-01
The interpretation of scanning electron microscopy (SEM) images of the latest semiconductor devices is not intuitive and requires comparison with computed images based on theoretical modeling and simulations. For quantitative image prediction and geometrical reconstruction of the specimen structure, the accuracy of the physical model is essential. In this paper, we review the current models of electron-solid interaction and discuss their accuracy. We perform the comparison of the simulated results with our experiments of SEM overlay of under-layer, grain imaging of copper interconnect, and hole bottom visualization by angular selective detectors, and show that our model well reproduces the experimental results. Remaining issues for quantitative simulation are also discussed, including the accuracy of the charge dynamics, treatment of beam skirt, and explosive increase in computing time.
Crowdtruth validation: a new paradigm for validating algorithms that rely on image correspondences.
Maier-Hein, Lena; Kondermann, Daniel; Roß, Tobias; Mersmann, Sven; Heim, Eric; Bodenstedt, Sebastian; Kenngott, Hannes Götz; Sanchez, Alexandro; Wagner, Martin; Preukschas, Anas; Wekerle, Anna-Laura; Helfert, Stefanie; März, Keno; Mehrabi, Arianeb; Speidel, Stefanie; Stock, Christian
2015-08-01
Feature tracking and 3D surface reconstruction are key enabling techniques to computer-assisted minimally invasive surgery. One of the major bottlenecks related to training and validation of new algorithms is the lack of large amounts of annotated images that fully capture the wide range of anatomical/scene variance in clinical practice. To address this issue, we propose a novel approach to obtaining large numbers of high-quality reference image annotations at low cost in an extremely short period of time. The concept is based on outsourcing the correspondence search to a crowd of anonymous users from an online community (crowdsourcing) and comprises four stages: (1) feature detection, (2) correspondence search via crowdsourcing, (3) merging multiple annotations per feature by fitting Gaussian finite mixture models, (4) outlier removal using the result of the clustering as input for a second annotation task. On average, 10,000 annotations were obtained within 24 h at a cost of $100. The annotation of the crowd after clustering and before outlier removal was of expert quality with a median distance of about 1 pixel to a publically available reference annotation. The threshold for the outlier removal task directly determines the maximum annotation error, but also the number of points removed. Our concept is a novel and effective method for fast, low-cost and highly accurate correspondence generation that could be adapted to various other applications related to large-scale data annotation in medical image computing and computer-assisted interventions.
Radar imagery interpretation to assess the hydrocarbon potential of four sites in the Philippines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-11-17
The Government of the Republic of the Philippines has invited new bids from international companies to explore for oil and gas in onshore and offshore sedimentary basins. To assist the private oil industry in the evaluation of the petroleum potential of these basins, the Government, with the assistance of a loan from the World Bank has completed a nation-wide basin evaluation program. The primary objective of the project is to further the goals of international energy development by aiding the Republic of the Philippines in the assessment of potential petroleum prospects within the areas imaged by radar. Secondary goals aremore » to assist the Republic of the Philippines in utilizing state-of-the-art radar remote sensing technology for resource exploration, and to train key Philippines scientists in the use of imaging radar data. Geologic maps were prepared for each petroleum prospect region and are included in this report. A discussion on radar principles, lithography, and stratigraphy of the areas is also included. 29 refs., 27 figs., 12 tabs.« less
Machine Learning in Medical Imaging.
Giger, Maryellen L
2018-03-01
Advances in both imaging and computers have synergistically led to a rapid rise in the potential use of artificial intelligence in various radiological imaging tasks, such as risk assessment, detection, diagnosis, prognosis, and therapy response, as well as in multi-omics disease discovery. A brief overview of the field is given here, allowing the reader to recognize the terminology, the various subfields, and components of machine learning, as well as the clinical potential. Radiomics, an expansion of computer-aided diagnosis, has been defined as the conversion of images to minable data. The ultimate benefit of quantitative radiomics is to (1) yield predictive image-based phenotypes of disease for precision medicine or (2) yield quantitative image-based phenotypes for data mining with other -omics for discovery (ie, imaging genomics). For deep learning in radiology to succeed, note that well-annotated large data sets are needed since deep networks are complex, computer software and hardware are evolving constantly, and subtle differences in disease states are more difficult to perceive than differences in everyday objects. In the future, machine learning in radiology is expected to have a substantial clinical impact with imaging examinations being routinely obtained in clinical practice, providing an opportunity to improve decision support in medical image interpretation. The term of note is decision support, indicating that computers will augment human decision making, making it more effective and efficient. The clinical impact of having computers in the routine clinical practice may allow radiologists to further integrate their knowledge with their clinical colleagues in other medical specialties and allow for precision medicine. Copyright © 2018. Published by Elsevier Inc.
Image Harvest: an open-source platform for high-throughput plant image processing and analysis
Knecht, Avi C.; Campbell, Malachy T.; Caprez, Adam; Swanson, David R.; Walia, Harkamal
2016-01-01
High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets. PMID:27141917
Constantinou, P.; Daane, S.; Dev, P.
1994-01-01
Traditional teaching of anatomy can be a difficult process of rote memorization. Computers allow information presentation to be much more dynamic, and interactive; the same information can be presented in multiple organizations. Using this idea, we have implemented a new pedagogy for computer-assisted instruction in The Anatomy Lesson, an interactive digital teacher which uses a "Socratic Dialogue" metaphor, as well as a textbook-like approach, to facilitate conceptual learning in anatomy. Images Figure 1 PMID:7949881
Smith, Matthew B; Karatekin, Erdem; Gohlke, Andrea; Mizuno, Hiroaki; Watanabe, Naoki; Vavylonis, Dimitrios
2011-10-05
Analysis of particle trajectories in images obtained by fluorescence microscopy reveals biophysical properties such as diffusion coefficient or rates of association and dissociation. Particle tracking and lifetime measurement is often limited by noise, large mobilities, image inhomogeneities, and path crossings. We present Speckle TrackerJ, a tool that addresses some of these challenges using computer-assisted techniques for finding positions and tracking particles in different situations. A dynamic user interface assists in the creation, editing, and refining of particle tracks. The following are results from application of this program: 1), Tracking single molecule diffusion in simulated images. The shape of the diffusing marker on the image changes from speckle to cloud, depending on the relationship of the diffusion coefficient to the camera exposure time. We use these images to illustrate the range of diffusion coefficients that can be measured. 2), We used the program to measure the diffusion coefficient of capping proteins in the lamellipodium. We found values ∼0.5 μm(2)/s, suggesting capping protein association with protein complexes or the membrane. 3), We demonstrate efficient measuring of appearance and disappearance of EGFP-actin speckles within the lamellipodium of motile cells that indicate actin monomer incorporation into the actin filament network. 4), We marked appearance and disappearance events of fluorescently labeled vesicles to supported lipid bilayers and tracked single lipids from the fused vesicle on the bilayer. This is the first time, to our knowledge, that vesicle fusion has been detected with single molecule sensitivity and the program allowed us to perform a quantitative analysis. 5), By discriminating between undocking and fusion events, dwell times for vesicle fusion after vesicle docking to membranes can be measured. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Fusion Imaging: A Novel Staging Modality in Testis Cancer
Sterbis, Joseph R.; Rice, Kevin R.; Javitt, Marcia C.; Schenkman, Noah S.; Brassell, Stephen A.
2010-01-01
Objective: Computed tomography and chest radiographs provide the standard imaging for staging, treatment, and surveillance of testicular germ cell neoplasms. Positron emission tomography has recently been utilized for staging, but is somewhat limited in its ability to provide anatomic localization. Fusion imaging combines the metabolic information provided by positron emission tomography with the anatomic precision of computed tomography. To the best of our knowledge, this represents the first study of the effectiveness using fusion imaging in evaluation of patients with testis cancer. Methods: A prospective study of 49 patients presenting to Walter Reed Army Medical Center with testicular cancer from 2003 to 2009 was performed. Fusion imaging was compared with conventional imaging, tumor markers, pathologic results, and clinical follow-up. Results: There were 14 true positives, 33 true negatives, 1 false positive, and 1 false negative. Sensitivity, specificity, positive predictive value, and negative predictive value were 93.3, 97.0, 93.3, and 97.0% respectively. In 11 patient scenarios, fusion imaging differed from conventional imaging. Utility was found in superior lesion detection compared to helical computed tomography due to anatomical/functional image co-registration, detection of micrometastasis in lymph nodes (pathologic nodes < 1cm), surveillance for recurrence post-chemotherapy, differentiating fibrosis from active disease in nodes < 2.5cm, and acting as a quality assurance measure to computed tomography alone. Conclusions: In addition to demonstrating a sensitivity and specificity comparable or superior to conventional imaging, fusion imaging shows promise in providing additive data that may assist in clinical decision-making. PMID:21103077
Fusion imaging: a novel staging modality in testis cancer.
Sterbis, Joseph R; Rice, Kevin R; Javitt, Marcia C; Schenkman, Noah S; Brassell, Stephen A
2010-11-05
Computed tomography and chest radiographs provide the standard imaging for staging, treatment, and surveillance of testicular germ cell neoplasms. Positron emission tomography has recently been utilized for staging, but is somewhat limited in its ability to provide anatomic localization. Fusion imaging combines the metabolic information provided by positron emission tomography with the anatomic precision of computed tomography. To the best of our knowledge, this represents the first study of the effectiveness using fusion imaging in evaluation of patients with testis cancer. A prospective study of 49 patients presenting to Walter Reed Army Medical Center with testicular cancer from 2003 to 2009 was performed. Fusion imaging was compared with conventional imaging, tumor markers, pathologic results, and clinical follow-up. There were 14 true positives, 33 true negatives, 1 false positive, and 1 false negative. Sensitivity, specificity, positive predictive value, and negative predictive value were 93.3, 97.0, 93.3, and 97.0% respectively. In 11 patient scenarios, fusion imaging differed from conventional imaging. Utility was found in superior lesion detection compared to helical computed tomography due to anatomical/functional image co-registration, detection of micrometastasis in lymph nodes (pathologic nodes < 1cm), surveillance for recurrence post-chemotherapy, differentiating fibrosis from active disease in nodes < 2.5cm, and acting as a quality assurance measure to computed tomography alone. In addition to demonstrating a sensitivity and specificity comparable or superior to conventional imaging, fusion imaging shows promise in providing additive data that may assist in clinical decision-making.
Minimally Invasive Spinal Surgery with Intraoperative Image-Guided Navigation
Kim, Terrence T.; Johnson, J. Patrick; Pashman, Robert; Drazin, Doniel
2016-01-01
We present our perioperative minimally invasive spine surgery technique using intraoperative computed tomography image-guided navigation for the treatment of various lumbar spine pathologies. We present an illustrative case of a patient undergoing minimally invasive percutaneous posterior spinal fusion assisted by the O-arm system with navigation. We discuss the literature and the advantages of the technique over fluoroscopic imaging methods: lower occupational radiation exposure for operative room personnel, reduced need for postoperative imaging, and decreased revision rates. Most importantly, we demonstrate that use of intraoperative cone beam CT image-guided navigation has been reported to increase accuracy. PMID:27213152
Diagnostic Imaging of the Hepatobiliary System: An Update.
Marolf, Angela J
2017-05-01
Recent advances in diagnostic imaging of the hepatobiliary system include MRI, computed tomography (CT), contrast-enhanced ultrasound, and ultrasound elastography. With the advent of multislice CT scanners, sedated examinations in veterinary patients are feasible, increasing the utility of this imaging modality. CT and MRI provide additional information for dogs and cats with hepatobiliary diseases due to lack of superimposition of structures, operator dependence, and through intravenous contrast administration. Advanced ultrasound methods can offer complementary information to standard ultrasound imaging. These newer imaging modalities assist clinicians by aiding diagnosis, prognostication, and surgical planning. Copyright © 2016 Elsevier Inc. All rights reserved.
Digital image processing for information extraction.
NASA Technical Reports Server (NTRS)
Billingsley, F. C.
1973-01-01
The modern digital computer has made practical image processing techniques for handling nonlinear operations in both the geometrical and the intensity domains, various types of nonuniform noise cleanup, and the numerical analysis of pictures. An initial requirement is that a number of anomalies caused by the camera (e.g., geometric distortion, MTF roll-off, vignetting, and nonuniform intensity response) must be taken into account or removed to avoid their interference with the information extraction process. Examples illustrating these operations are discussed along with computer techniques used to emphasize details, perform analyses, classify materials by multivariate analysis, detect temporal differences, and aid in human interpretation of photos.
Artifice, Interpretation and Nature: Key Categories in Radiology Work
NASA Astrophysics Data System (ADS)
Nyce, James M.
This paper extends on some prior work on nature, culture and computation. This paper will look at “image work” in a radiology department, i.e, how radiologists use images and other kinds of knowledge in daily clinical work. In particular, the paper will look at the role tacit knowledge and categories have in the work radiologists carry out. How radiologists make use of and contrast analog and digital representations of nature will be explored here because this is key to how radiologists work and think. In other words, the role that computer derived artifacts, correspondence theory and mimesis play in the clinical work of radiology will be discussed.
Panoramic autofluorescence: highlighting retinal pathology.
Slotnick, Samantha; Sherman, Jerome
2012-05-01
Recent technological advances in fundus autofluorescence (FAF) are providing new opportunities for insight into retinal physiology and pathophysiology. FAF provides distinctly different imaging information than standard photography or color separation. A review of the basis for this imaging technology is included to help the clinician understand how to interpret FAF images. Cases are presented to illustrate image interpretation. Optos, which manufactures equipment for simultaneous panoramic imaging, has recently outfitted several units with AF capabilities. Six cases are presented in which panoramic autofluorescent (PAF) images highlight retinal pathology, using Optos' Ultra-Widefield technology. Supportive imaging technologies, such as Optomap® images and spectral domain optical coherence tomography (SD-OCT), are used to assist in the clinical interpretation of retinal pathology detected on PAF. Hypofluorescent regions on FAF are identified to occur along with a disruption in the photoreceptors and/or retinal pigment epithelium, as borne out on SD-OCT. Hyperfluorescent regions on FAF occur at the advancing zones of retinal degeneration, indicating impending damage. PAF enables such inferences to be made in retinal areas which lie beyond the reach of SD-OCT imaging. PAF also enhances clinical pattern recognition over a large area and in comparison with the fellow eye. Symmetric retinal degenerations often occur with genetic conditions, such as retinitis pigmentosa, and may impel the clinician to recommend genetic testing. Autofluorescent ophthalmoscopy is a non-invasive procedure that can detect changes in metabolic activity at the retinal pigment epithelium before clinical ophthalmoscopy. Already, AF is being used as an adjunct technology to fluorescein angiography in cases of age-related macular degeneration. Both hyper- and hypoautofluorescent changes are indicative of pathology. Peripheral retinal abnormalities may precede central retinal impacts, potentially providing early signs for intervention before impacting visual acuity. The panoramic image enhances clinical pattern recognition over a large area and in comparison between eyes. Optos' Ultra-Widefield technology is capable of capturing high-resolution images of the peripheral retina without requiring dilation.
Speckle interferometry. Data acquisition and control for the SPID instrument.
NASA Astrophysics Data System (ADS)
Altarac, S.; Tallon, M.; Thiebaut, E.; Foy, R.
1998-08-01
SPID (SPeckle Imaging by Deconvolution) is a new speckle camera currently under construction at CRAL-Observatoire de Lyon. Its high spectral resolution and high image restoration capabilities open new astrophysical programs. The instrument SPID is composed of four main optical modules which are fully automated and computer controlled by a software written in Tcl/Tk/Tix and C. This software provides an intelligent assistance to the user by choosing observational parameters as a function of atmospheric parameters, computed in real time, and the desired restored image quality. Data acquisition is made by a photon-counting detector (CP40). A VME-based computer under OS9 controls the detector and stocks the data. The intelligent system runs under Linux on a PC. A slave PC under DOS commands the motors. These 3 computers communicate through an Ethernet network. SPID can be considered as a precursor for VLT's (Very Large Telescope, four 8-meter telescopes currently built in Chile by European Southern Observatory) very high spatial resolution camera.
NASA Astrophysics Data System (ADS)
Gilbert, B. K.; Robb, R. A.; Chu, A.; Kenue, S. K.; Lent, A. H.; Swartzlander, E. E., Jr.
1981-02-01
Rapid advances during the past ten years of several forms of computer-assisted tomography (CT) have resulted in the development of numerous algorithms to convert raw projection data into cross-sectional images. These reconstruction algorithms are either 'iterative,' in which a large matrix algebraic equation is solved by successive approximation techniques; or 'closed form'. Continuing evolution of the closed form algorithms has allowed the newest versions to produce excellent reconstructed images in most applications. This paper will review several computer software and special-purpose digital hardware implementations of closed form algorithms, either proposed during the past several years by a number of workers or actually implemented in commercial or research CT scanners. The discussion will also cover a number of recently investigated algorithmic modifications which reduce the amount of computation required to execute the reconstruction process, as well as several new special-purpose digital hardware implementations under development in laboratories at the Mayo Clinic.
Newton, Peter O; Hahn, Gregory W; Fricka, Kevin B; Wenger, Dennis R
2002-04-15
A retrospective radiographic review of 31 patients with congenital spine abnormalities who underwent conventional radiography and advanced imaging studies was conducted. To analyze the utility of three-dimensional computed tomography with multiplanar reformatted images for congenital spine anomalies, as compared with plain radiographs and axial two-dimensional computed tomography imaging. Conventional radiographic imaging for congenital spine disorders often are difficult to interpret because of the patient's small size, the complexity of the disorder, a deformity not in the plane of the radiographs, superimposed structures, and difficulty in forming a mental three-dimensional image. Multiplanar reformatted and three-dimensional computed tomographic imaging offers many potential advantages for defining congenital spine anomalies including visualization of the deformity in any plane, from any angle, with the overlying structures subtracted. The imaging studies of patients who had undergone a three-dimensional computed tomography for congenital deformities of the spine between 1992 and 1998 were reviewed (31 cases). All plain radiographs and axial two-dimensional computed tomography images performed before the three-dimensional computed tomography were reviewed and the findings documented. This was repeated for the three-dimensional reconstructions and, when available, the multiplanar reformatted images (15 cases). In each case, the utility of the advanced imaging was graded as one of the following: Grade A (substantial new information obtained), Grade B (confirmatory with improved visualization and understanding of the deformity), and Grade C (no added useful information obtained). In 17 of 31 cases, the multiplanar reformatted and three-dimensional images allowed identification of unrecognized malformations. In nine additional cases, the advanced imaging was helpful in better visualizing and understanding previously identified deformities. In five cases, no new information was gained. The standard and curved multiplanar reformatted images were best for defining the occiput-C1-C2 anatomy and the extent of segmentation defects. The curved multiplanar reformatted images were especially helpful in keeping the spine from "coming in" and "going out" of the plane of the image when there was significant spine deformity in the sagittal or coronal plane. The three-dimensional reconstructions proved valuable in defining failures of formation. Advanced computed tomography imaging (three-dimensional computed tomography and curved/standard multiplanar reformatted images) allows better definition of congenital spine anomalies. More than 50% of the cases showed additional abnormalities not appreciated on plain radiographs or axial two-dimensional computed tomography images. Curved multiplanar reformatted images allowed imaging in the coronal and sagittal planes of the entire deformity.
Cicero, Raúl; Criales, José Luis; Cardoso, Manuel
2009-01-01
The impressive development of computed tomography (CT) techniques such as the three dimensional helical CT produces a spatial image of the thoracic skull. At the beginning of the 16th century Leonardo da Vinci drew with great precision the thorax oseum. These drawings show an outstanding similarity with the images obtained by three dimensional helical CT. The cumbersome task of the Renaissance genius is a prime example of the careful study of human anatomy. Modern imaging techniques require perfect anatomic knowledge of the human body in order to generate exact interpretations of images. Leonardo's example is alive for anybody devoted to modern imaging studies.
Haj-Mirzaian, Arya; Thawait, Gaurav K; Tanaka, Miho J; Demehri, Shadpour
2017-06-01
Patellofemoral instability (PI) is defined as single or multiple episodes of patellar dislocation. Imaging modalities are useful for characterization of patellar malalignment, maltracking, underlying morphologic abnormalities, and stabilizing soft-tissue injuries. Using these findings, orthopedic surgeons can decide when to operate, determine the best operation, and measure degree of correction postoperatively in PI patients. Also, these methods assist with PI diagnosis in some suspicious cases. Magnetic resonance imaging is the preferred method especially in the setting of acute dislocations. Multidetector computed tomography allows a more accurate assessment for malalignment such as patellar tilt and lateral subluxation and secondary osteoarthritis. Dynamic magnetic resonance imaging and 4-dimensional computed tomography have been introduced for better kinematic assessment of the patellofemoral maltracking during extension-flexion motions. In this review article, we will discuss the currently available evidence regarding both the conventional and the novel imaging modalities that can be used for diagnosis and characterization of PI.
Tracked 3D ultrasound in radio-frequency liver ablation
NASA Astrophysics Data System (ADS)
Boctor, Emad M.; Fichtinger, Gabor; Taylor, Russell H.; Choti, Michael A.
2003-05-01
Recent studies have shown that radio frequency (RF) ablation is a simple, safe and potentially effective treatment for selected patients with liver metastases. Despite all recent therapeutic advancements, however, intra-procedural target localization and precise and consistent placement of the tissue ablator device are still unsolved problems. Various imaging modalities, including ultrasound (US) and computed tomography (CT) have been tried as guidance modalities. Transcutaneous US imaging, due to its real-time nature, may be beneficial in many cases, but unfortunately, fails to adequately visualize the tumor in many cases. Intraoperative or laparoscopic US, on the other hand, provides improved visualization and target imaging. This paper describes a system for computer-assisted RF ablation of liver tumors, combining navigational tracking of a conventional imaging ultrasound probe to produce 3D ultrasound imaging with a tracked RF ablation device supported by a passive mechanical arm and spatially registered to the ultrasound volume.
Chaudhry, Waseem; Hussain, Nasir; Ahlberg, Alan W; Croft, Lori B; Fernandez, Antonio B; Parker, Mathew W; Swales, Heather H; Slomka, Piotr J; Henzlova, Milena J; Duvall, W Lane
2017-06-01
A stress-first myocardial perfusion imaging (MPI) protocol saves time, is cost effective, and decreases radiation exposure. A limitation of this protocol is the requirement for physician review of the stress images to determine the need for rest images. This hurdle could be eliminated if an experienced technologist and/or automated computer quantification could make this determination. Images from consecutive patients who were undergoing a stress-first MPI with attenuation correction at two tertiary care medical centers were prospectively reviewed independently by a technologist and cardiologist blinded to clinical and stress test data. Their decision on the need for rest imaging along with automated computer quantification of perfusion results was compared with the clinical reference standard of an assessment of perfusion images by a board-certified nuclear cardiologist that included clinical and stress test data. A total of 250 patients (mean age 61 years and 55% female) who underwent a stress-first MPI were studied. According to the clinical reference standard, 42 (16.8%) and 208 (83.2%) stress-first images were interpreted as "needing" and "not needing" rest images, respectively. The technologists correctly classified 229 (91.6%) stress-first images as either "needing" (n = 28) or "not needing" (n = 201) rest images. Their sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were 66.7%, 96.6%, 80.0%, and 93.5%, respectively. An automated stress TPD score ≥1.2 was associated with optimal sensitivity and specificity and correctly classified 179 (71.6%) stress-first images as either "needing" (n = 31) or "not needing" (n = 148) rest images. Its sensitivity, specificity, PPV, and NPV were 73.8%, 71.2%, 34.1%, and 93.1%, respectively. In a model whereby the computer or technologist could correct for the other's incorrect classification, 242 (96.8%) stress-first images were correctly classified. The composite sensitivity, specificity, PPV, and NPV were 83.3%, 99.5%, 97.2%, and 96.7%, respectively. Technologists and automated quantification software had a high degree of agreement with the clinical reference standard for determining the need for rest images in a stress-first imaging protocol. Utilizing an experienced technologist and automated systems to screen stress-first images could expand the use of stress-first MPI to sites where the cardiologist is not immediately available for interpretation.
Markerless laser registration in image-guided oral and maxillofacial surgery.
Marmulla, Rüdiger; Lüth, Tim; Mühling, Joachim; Hassfeld, Stefan
2004-07-01
The use of registration markers in computer-assisted surgery is combined with high logistic costs and efforts. Markerless patient registration using laser scan surface registration techniques is a new challenging method. The present study was performed to evaluate the clinical accuracy in finding defined target points within the surgical site after markerless patient registration in image-guided oral and maxillofacial surgery. Twenty consecutive patients with different cranial diseases were scheduled for computer-assisted surgery. Data set alignment between the surgical site and the computed tomography (CT) data set was performed by markerless laser scan surface registration of the patient's face. Intraoral rigidly attached registration markers were used as target points, which had to be detected by an infrared pointer. The Surgical Segment Navigator SSN++ has been used for all procedures. SSN++ is an investigative product based on the SSN system that had previously been developed by the presenting authors with the support of Carl Zeiss (Oberkochen, Germany). SSN++ is connected to a Polaris infrared camera (Northern Digital, Waterloo, Ontario, Canada) and to a Minolta VI 900 3D digitizer (Tokyo, Japan) for high-resolution laser scanning. Minimal differences in shape between the laser scan surface and the surface generated from the CT data set could be detected. Nevertheless, high-resolution laser scan of the skin surface allows for a precise patient registration (mean deviation 1.1 mm, maximum deviation 1.8 mm). Radiation load, logistic costs, and efforts arising from the planning of computer-assisted surgery of the head can be reduced because native (markerless) CT data sets can be used for laser scan-based surface registration.
A novel computer algorithm for modeling and treating mandibular fractures: A pilot study.
Rizzi, Christopher J; Ortlip, Timothy; Greywoode, Jewel D; Vakharia, Kavita T; Vakharia, Kalpesh T
2017-02-01
To describe a novel computer algorithm that can model mandibular fracture repair. To evaluate the algorithm as a tool to model mandibular fracture reduction and hardware selection. Retrospective pilot study combined with cross-sectional survey. A computer algorithm utilizing Aquarius Net (TeraRecon, Inc, Foster City, CA) and Adobe Photoshop CS6 (Adobe Systems, Inc, San Jose, CA) was developed to model mandibular fracture repair. Ten different fracture patterns were selected from nine patients who had already undergone mandibular fracture repair. The preoperative computed tomography (CT) images were processed with the computer algorithm to create virtual images that matched the actual postoperative three-dimensional CT images. A survey comparing the true postoperative image with the virtual postoperative images was created and administered to otolaryngology resident and attending physicians. They were asked to rate on a scale from 0 to 10 (0 = completely different; 10 = identical) the similarity between the two images in terms of the fracture reduction and fixation hardware. Ten mandible fracture cases were analyzed and processed. There were 15 survey respondents. The mean score for overall similarity between the images was 8.41 ± 0.91; the mean score for similarity of fracture reduction was 8.61 ± 0.98; and the mean score for hardware appearance was 8.27 ± 0.97. There were no significant differences between attending and resident responses. There were no significant differences based on fracture location. This computer algorithm can accurately model mandibular fracture repair. Images created by the algorithm are highly similar to true postoperative images. The algorithm can potentially assist a surgeon planning mandibular fracture repair. 4. Laryngoscope, 2016 127:331-336, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
NASA Technical Reports Server (NTRS)
Russell, O. R. (Principal Investigator); Nichols, D. A.; Anderson, R.
1977-01-01
The author has identified the following significant results. Evaluation of LANDSAT imagery indicates severe limitations in its utility for surface mine land studies. Image stripping resulting from unequal detector response on satellite degrades the image quality to the extent that images of scales larger than 1:125,000 are of limited value for manual interpretation. Computer processing of LANDSAT data to improve image quality is essential; the removal of scanline stripping and enhancement of mine land reflectance data combined with color composite printing permits useful photographic enlargements to approximately 1:60,000.
ERIC Educational Resources Information Center
Branzburg, Jeffrey
2007-01-01
Interactive whiteboards have made quite a splash in classrooms in recent years. When a computer image is projected on the whiteboard using an LCD projector, users can directly control the computer from the whiteboard. In some systems such as Smart and Mimio, the finger is used in place of a mouse to open and run programs or move windows around. In…
NASA Astrophysics Data System (ADS)
Zhang, Dong Ping; Edwards, Eddie; Mei, Lin; Rueckert, Daniel
2009-02-01
In this paper, we present a novel approach for coronary artery motion modeling from cardiac Computed Tomography( CT) images. The aim of this work is to develop a 4D motion model of the coronaries for image guidance in robotic-assisted totally endoscopic coronary artery bypass (TECAB) surgery. To utilize the pre-operative cardiac images to guide the minimally invasive surgery, it is essential to have a 4D cardiac motion model to be registered with the stereo endoscopic images acquired intraoperatively using the da Vinci robotic system. In this paper, we are investigating the extraction of the coronary arteries and the modelling of their motion from a dynamic sequence of cardiac CT. We use a multi-scale vesselness filter to enhance vessels in the cardiac CT images. The centerlines of the arteries are extracted using a ridge traversal algorithm. Using this method the coronaries can be extracted in near real-time as only local information is used in vessel tracking. To compute the deformation of the coronaries due to cardiac motion, the motion is extracted from a dynamic sequence of cardiac CT. Each timeframe in this sequence is registered to the end-diastole timeframe of the sequence using a non-rigid registration algorithm based on free-form deformations. Once the images have been registered a dynamic motion model of the coronaries can be obtained by applying the computed free-form deformations to the extracted coronary arteries. To validate the accuracy of the motion model we compare the actual position of the coronaries in each time frame with the predicted position of the coronaries as estimated from the non-rigid registration. We expect that this motion model of coronaries can facilitate the planning of TECAB surgery, and through the registration with real-time endoscopic video images it can reduce the conversion rate from TECAB to conventional procedures.
NASA Astrophysics Data System (ADS)
Alzubaidi, Mohammad; Patel, Ameet; Panchanathan, Sethuraman; Black, John A., Jr.
2010-02-01
Radiological images constitute a special class of images that are captured (or computed) specifically for the purpose of diagnosing patients. However, because these are not "natural" images, radiologists must be trained to interpret them through a process called "perceptual learning". However, because perceptual learning is implicit, experienced radiologists may sometimes find it difficult to explicitly (i.e. verbally) train less experienced colleagues. As a result, current methods of training can take years before a new radiologist is fully competent to independently interpret medical images. We hypothesize that eye tracking technology (coupled with multimedia technology) can be used to accelerate the process of perceptual training, through a Hebbian learning process. This would be accomplished by providing a radiologist-in-training with real-time feedback as he/she is fixating on important regions of an image. Of course this requires that the training system have information about what regions of an image are important - information that could presumably be solicited from experienced radiologists. However, our previous work has suggested that experienced radiologists are not always aware of those regions of an image that attract their attention, but are not clinically significant - information that is very important to a radiologist in training. This paper discusses a study in which local entropy computations were done on scan path data, and were found to provide a quantitative measure of the moment-by-moment interest level of radiologists as they scanned chest x-rays. The results also showed a striking contrast between the moment-by-moment deployment of attention between experienced radiologists and radiologists in training.
LoPresti, Melissa; Daniels, Bradley; Buchanan, Edward P; Monson, Laura; Lam, Sandi
2017-04-01
Repeat surgery for restenosis after initial nonsyndromic craniosynostosis intervention is sometimes needed. Calvarial vault reconstruction through a healed surgical bed adds a level of intraoperative complexity and may benefit from preoperative and intraoperative definitions of biometric and aesthetic norms. Computer-assisted design and manufacturing using 3D imaging allows the precise formulation of operative plans in anticipation of surgical intervention. 3D printing turns virtual plans into anatomical replicas, templates, or customized implants by using a variety of materials. The authors present a technical note illustrating the use of this technology: a repeat calvarial vault reconstruction that was planned and executed using computer-assisted design and 3D printed intraoperative guides.
The impact of digital imaging in the field of cytopathology.
Pantanowitz, Liron; Hornish, Maryanne; Goulart, Robert A
2009-03-06
With the introduction of digital imaging, pathology is undergoing a digital transformation. In the field of cytology, digital images are being used for telecytology, automated screening of Pap test slides, training and education (e.g. online digital atlases), and proficiency testing. To date, there has been no systematic review on the impact of digital imaging on the practice of cytopathology. This article critically addresses the emerging role of computer-assisted screening and the application of digital imaging to the field of cytology, including telecytology, virtual microscopy, and the impact of online cytology resources. The role of novel diagnostic techniques like image cytometry is also reviewed.
A low-cost universal cumulative gating circuit for small and large animal clinical imaging
NASA Astrophysics Data System (ADS)
Gioux, Sylvain; Frangioni, John V.
2008-02-01
Image-assisted diagnosis and therapy is becoming more commonplace in medicine. However, most imaging techniques suffer from voluntary or involuntary motion artifacts, especially cardiac and respiratory motions, which degrade image quality. Current software solutions either induce computational overhead or reject out-of-focus images after acquisition. In this study we demonstrate a hardware-only gating circuit that accepts multiple, pseudo-periodic signals and produces a single TTL (0-5 V) imaging window of accurate phase and period. The electronic circuit Gerber files described in this article and the list of components are available online at www.frangionilab.org.
Adaptive noise correction of dual-energy computed tomography images.
Maia, Rafael Simon; Jacob, Christian; Hara, Amy K; Silva, Alvin C; Pavlicek, William; Mitchell, J Ross
2016-04-01
Noise reduction in material density images is a necessary preprocessing step for the correct interpretation of dual-energy computed tomography (DECT) images. In this paper we describe a new method based on a local adaptive processing to reduce noise in DECT images An adaptive neighborhood Wiener (ANW) filter was implemented and customized to use local characteristics of material density images. The ANW filter employs a three-level wavelet approach, combined with the application of an anisotropic diffusion filter. Material density images and virtual monochromatic images are noise corrected with two resulting noise maps. The algorithm was applied and quantitatively evaluated in a set of 36 images. From that set of images, three are shown here, and nine more are shown in the online supplementary material. Processed images had higher signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) than the raw material density images. The average improvements in SNR and CNR for the material density images were 56.5 and 54.75%, respectively. We developed a new DECT noise reduction algorithm. We demonstrate throughout a series of quantitative analyses that the algorithm improves the quality of material density images and virtual monochromatic images.
NASA Astrophysics Data System (ADS)
Wiebe, S.; Rhoades, G.; Wei, Z.; Rosenberg, A.; Belev, G.; Chapman, D.
2013-05-01
Refraction x-ray contrast is an imaging modality used primarily in a research setting at synchrotron facilities, which have a biomedical imaging research program. The most common method for exploiting refraction contrast is by using a technique called Diffraction Enhanced Imaging (DEI). The DEI apparatus allows the detection of refraction between two materials and produces a unique ''edge enhanced'' contrast appearance, very different from the traditional absorption x-ray imaging used in clinical radiology. In this paper we aim to explain the features of x-ray refraction contrast as a typical clinical radiologist would understand. Then a discussion regarding what needs to be considered in the interpretation of the refraction image takes place. Finally we present a discussion about the limitations of planar refraction imaging and the potential of DEI Computed Tomography. This is an original work that has not been submitted to any other source for publication. The authors have no commercial interests or conflicts of interest to disclose.
Opolski, Maksymilian P; Debski, Artur; Borucki, Bartosz A; Staruch, Adam D; Kepka, Cezary; Rokicki, Jakub K; Sieradzki, Bartosz; Witkowski, Adam
2017-11-01
Percutaneous coronary intervention (PCI) of chronic total occlusion (CTO) may be facilitated by projection of coronary computed tomography angiography (CTA) datasets in the catheterization laboratory. There is no data on the feasibility and safety outcomes of CTA-assisted CTO PCI using a wearable augmented-reality glass. A total of 15 patients scheduled for elective antegrade CTO intervention were prospectively enrolled and underwent preprocedural coronary CTA. Three-dimensional and curved multiplanar CT reconstructions were transmitted to a head-mounted hands-free computer worn by interventional cardiologists during CTO PCI to provide additional information on CTO tortuosity and calcification. The results of CTO PCI using a wearable computer were compared with a time-matched prospective angiographic registry of 59 patients undergoing antegrade CTO PCI without a wearable computer. Operators' satisfaction was assessed by a 5-point Likert scale. Mean age was 64 ± 8 years and the mean J-CTO score was 2.1 ± 0.9 in the CTA-assisted group. The voice-activated co-registration and review of CTA images in a wearable computer during CTO PCI were feasible and highly rated by PCI operators (4.7/5 points). There were no major adverse cardiovascular events. Compared with standard CTO PCI, CTA-assisted recanalization of CTO using a wearable computer showed more frequent selection of the first-choice stiff wire (0% vs 40%, p < 0.001) and lower contrast exposure (166 ± 52 vs 134 ± 43 ml, p = 0.03). Overall CTO success rates and safety outcomes remained similar between both groups. CTA-assisted CTO PCI using an augmented-reality glass is feasible and safe, and might reduce the resources required for the interventional treatment of CTO. Copyright © 2017 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.
User's manual for SEDCALC, a computer program for computation of suspended-sediment discharge
Koltun, G.F.; Gray, John R.; McElhone, T.J.
1994-01-01
Sediment-Record Calculations (SEDCALC), a menu-driven set of interactive computer programs, was developed to facilitate computation of suspended-sediment records. The programs comprising SEDCALC were developed independently in several District offices of the U.S. Geological Survey (USGS) to minimize the intensive labor associated with various aspects of sediment-record computations. SEDCALC operates on suspended-sediment-concentration data stored in American Standard Code for Information Interchange (ASCII) files in a predefined card-image format. Program options within SEDCALC can be used to assist in creating and editing the card-image files, as well as to reformat card-image files to and from formats used by the USGS Water-Quality System. SEDCALC provides options for creating card-image files containing time series of equal-interval suspended-sediment concentrations from 1. digitized suspended-sediment-concentration traces, 2. linear interpolation between log-transformed instantaneous suspended-sediment-concentration data stored at unequal time intervals, and 3. nonlinear interpolation between log-transformed instantaneous suspended-sediment-concentration data stored at unequal time intervals. Suspended-sediment discharge can be computed from the streamflow and suspended-sediment-concentration data or by application of transport relations derived by regressing log-transformed instantaneous streamflows on log-transformed instantaneous suspended-sediment concentrations or discharges. The computed suspended-sediment discharge data are stored in card-image files that can be either directly imported to the USGS Automated Data Processing System or used to generate plots by means of other SEDCALC options.
From medical images to minimally invasive intervention: Computer assistance for robotic surgery.
Lee, Su-Lin; Lerotic, Mirna; Vitiello, Valentina; Giannarou, Stamatia; Kwok, Ka-Wai; Visentini-Scarzanella, Marco; Yang, Guang-Zhong
2010-01-01
Minimally invasive surgery has been established as an important way forward in surgery for reducing patient trauma and hospitalization with improved prognosis. The introduction of robotic assistance enhances the manual dexterity and accuracy of instrument manipulation. Further development of the field in using pre- and intra-operative imaging guidance requires the integration of the general anatomy of the patient with clear pathologic indications and geometrical information for preoperative planning and intra-operative manipulation. It also requires effective visualization and the recreation of haptic and tactile sensing with dynamic active constraints to improve consistency and safety of the surgical procedures. This paper describes key technical considerations of tissue deformation tracking, 3D reconstruction, subject-specific modeling, image guidance and augmented reality for robotic assisted minimally invasive surgery. It highlights the importance of adapting preoperative surgical planning according to intra-operative data and illustrates how dynamic information such as tissue deformation can be incorporated into the surgical navigation framework. Some of the recent trends are discussed in terms of instrument design and the usage of dynamic active constraints and human-robot perceptual docking for robotic assisted minimally invasive surgery. Copyright 2009 Elsevier Ltd. All rights reserved.
Semi-Automated Identification of Rocks in Images
NASA Technical Reports Server (NTRS)
Bornstein, Benjamin; Castano, Andres; Anderson, Robert
2006-01-01
Rock Identification Toolkit Suite is a computer program that assists users in identifying and characterizing rocks shown in images returned by the Mars Explorer Rover mission. Included in the program are components for automated finding of rocks, interactive adjustments of outlines of rocks, active contouring of rocks, and automated analysis of shapes in two dimensions. The program assists users in evaluating the surface properties of rocks and soil and reports basic properties of rocks. The program requires either the Mac OS X operating system running on a G4 (or more capable) processor or a Linux operating system running on a Pentium (or more capable) processor, plus at least 128MB of random-access memory.