Science.gov

Sample records for image perception observer

  1. The potential of pigeons as surrogate observers in medical image perception studies

    NASA Astrophysics Data System (ADS)

    Krupinski, Elizabeth A.; Levenson, Richard M.; Navarro, Victor; Wasserman, Edward A.

    2016-03-01

    Assessment of medical image quality and how changes in image appearance impact performance are critical but assessment can be expensive and time-consuming. Could an animal (pigeon) observer with well-known visual skills and documented ability to distinguish complex visual stimuli serve as a surrogate for the human observer? Using sets of whole slide pathology (WSI) and mammographic images we trained pigeons (cohorts of 4) to detect and/or classify lesions in medical images. Standard training methods were used. A chamber equipped with a 15' display with a resistive touchscreen was used to display the images and record responses (pecks). Pigeon pellets were dispensed for correct responses. The pigeons readily learned to distinguish benign from malignant breast cancer histopathology in WSI (mean % correct responses rose 50% to 85% over 15 days) and generalized readily from 4X to 10X and 20X magnifications; to detect microcalcifications (mean % correct responses rose 50% to over 85% over 25 days); to distinguish benign from malignant breast masses (3 of 4 birds learned this task to around 80% and 60% over 10 days); and ignore compression artifacts in WSI (performance with uncompressed slides averaged 95% correct; 15:1 and 27:1 compression slides averaged 92% and 90% correct). Pigeons models may help us better understand medical image perception and may be useful in quality assessment by serving as surrogate observers for certain types of studies.

  2. Mechanisms of percept-percept and image-percept integration in vision: behavioral and electrophysiological evidence.

    PubMed

    Dalvit, Silvia; Eimer, Martin

    2011-02-01

    Previous research has shown that the detection of a visual target can be guided not only by the temporal integration of two percepts, but also by integrating a percept and an image held in working memory. Behavioral and event-related brain potential (ERP) measures were obtained in a target detection task that required temporal integration of 2 successively presented stimuli in the left or right hemifield. Task performance was good when both displays followed each other immediately (percept-percept integration) and when displays were separated by a 300- or 900-ms interval (image-percept integration), but was poor with intermediate interstimulus intervals. An enhanced posterior negativity at electrodes contralateral to the side of the target was observed for percept-percept and for image-percept integration, demonstrating that both are based on spatiotopic representations. However, this contralateral negativity emerged later and was more sustained on trials with long interstimulus intervals, indicating that image-percept integration is slower and involves a sustained activation of working memory.

  3. Tactile perception during action observation.

    PubMed

    Vastano, Roberta; Inuggi, Alberto; Vargas, Claudia D; Baud-Bovy, Gabriel; Jacono, Marco; Pozzo, Thierry

    2016-09-01

    It has been suggested that tactile perception becomes less acute during movement to optimize motor control and to prevent an overload of afferent information generated during action. This empirical phenomenon, known as "tactile gating effect," has been associated with mechanisms of sensory feedback prediction. However, less attention has been given to the tactile attenuation effect during the observation of an action. The aim of this study was to investigate whether and how the observation of a goal-directed action influences tactile perception as during overt action. In a first experiment, we recorded vocal reaction times (RTs) of participants to tactile stimulations during the observation of a reach-to-grasp action. The stimulations were delivered on different body parts that could be either congruent or incongruent with the observed effector (the right hand and the right leg, respectively). The tactile stimulation was contrasted with a no body-related stimulation (an auditory beep). We found increased RTs for tactile congruent stimuli compared to both tactile incongruent and auditory stimuli. This effect was reported only during the observation of the reaching phase, whereas RTs were not modulated during the grasping phase. A tactile two-alternative forced-choice (2AFC) discrimination task was then conducted in order to quantify the changes in tactile sensitivity during the observation of the same goal-directed actions. In agreement with the first experiment, the tactile perceived intensity was reduced only during the reaching phase. These results suggest that tactile processing during action observation relies on a process similar to that occurring during action execution.

  4. Actors', partners', and observers' perceptions of sarcasm.

    PubMed

    Rockwell, P

    2000-10-01

    This study compared actors', partners', and observers' perceptions of the amount of sarcasm used by participants (n = 80) in videotaped conversations. Significant differences were found among perceptions of actors, partners, and observers. Of the three perspectives, actors perceived themselves as using the greatest amount of sarcasm, followed by partners' perceptions of actors. Observers perceived actors as using the least amount of sarcasm. Correlations conducted to assess whether partners and observers recognized actors' individual attempts at sarcasm during the conversations were generally low.

  5. Psychophysical study of image orientation perception.

    PubMed

    Luo, Jiebo; Crandall, David; Singhal, Amit; Boutell, Matthew; Gray, Robert T

    2003-01-01

    The experiment reported here investigates the perception of orientation of color photographic images. A collection of 1000 images (mix of professional photos and consumer snapshots) was used in this study. Each image was examined by at least five observers and shown at varying resolutions. At each resolution, observers were asked to indicate the image orientation, the level of confidence, and the cues they used to make the decision. The results show that for typical images, accuracy is close to 98% when using all available semantic cues from high-resolution images, and 84% when using only low-level vision features and coarse semantics from thumbnails. The accuracy by human observers suggests an upper bound for the performance of an automatic system. In addition, the use of a large, carefully chosen image set that spans the 'photo space' (in terms of occasions and subject matter) and extensive interaction with the human observers reveals cues used by humans at various image resolutions: sky and people are the most useful and reliable among a number of important semantic cues.

  6. Predicting Complexity Perception of Real World Images

    PubMed Central

    Corchs, Silvia Elena; Ciocca, Gianluigi; Bricolo, Emanuela; Gasparini, Francesca

    2016-01-01

    The aim of this work is to predict the complexity perception of real world images. We propose a new complexity measure where different image features, based on spatial, frequency and color properties are linearly combined. In order to find the optimal set of weighting coefficients we have applied a Particle Swarm Optimization. The optimal linear combination is the one that best fits the subjective data obtained in an experiment where observers evaluate the complexity of real world scenes on a web-based interface. To test the proposed complexity measure we have performed a second experiment on a different database of real world scenes, where the linear combination previously obtained is correlated with the new subjective data. Our complexity measure outperforms not only each single visual feature but also two visual clutter measures frequently used in the literature to predict image complexity. To analyze the usefulness of our proposal, we have also considered two different sets of stimuli composed of real texture images. Tuning the parameters of our measure for this kind of stimuli, we have obtained a linear combination that still outperforms the single measures. In conclusion our measure, properly tuned, can predict complexity perception of different kind of images. PMID:27336469

  7. Predicting Complexity Perception of Real World Images.

    PubMed

    Corchs, Silvia Elena; Ciocca, Gianluigi; Bricolo, Emanuela; Gasparini, Francesca

    2016-01-01

    The aim of this work is to predict the complexity perception of real world images. We propose a new complexity measure where different image features, based on spatial, frequency and color properties are linearly combined. In order to find the optimal set of weighting coefficients we have applied a Particle Swarm Optimization. The optimal linear combination is the one that best fits the subjective data obtained in an experiment where observers evaluate the complexity of real world scenes on a web-based interface. To test the proposed complexity measure we have performed a second experiment on a different database of real world scenes, where the linear combination previously obtained is correlated with the new subjective data. Our complexity measure outperforms not only each single visual feature but also two visual clutter measures frequently used in the literature to predict image complexity. To analyze the usefulness of our proposal, we have also considered two different sets of stimuli composed of real texture images. Tuning the parameters of our measure for this kind of stimuli, we have obtained a linear combination that still outperforms the single measures. In conclusion our measure, properly tuned, can predict complexity perception of different kind of images.

  8. The Handbook of Medical Image Perception and Techniques

    NASA Astrophysics Data System (ADS)

    Samei, Ehsan; Krupinski, Elizabeth

    2009-12-01

    1. Medical image perception Ehsan Samei and Elizabeth Krupinski; Part I. Historical Reflections and Theoretical Foundations: 2. A short history of image perception in medical radiology Harold Kundel and Calvin Nodine; 3. Spatial vision research without noise Arthur Burgess; 4. Signal detection theory, a brief history Arthur Burgess; 5. Signal detection in radiology Arthur Burgess; 6. Lessons from dinners with the giants of modern image science Robert Wagner; Part II. Science of Image Perception: 7. Perceptual factors in reading medical images Elizabeth Krupinski; 8. Cognitive factors in reading medical images David Manning; 9. Satisfaction of search in traditional radiographic imaging Kevin Berbaum, Edmund Franken, Robert Caldwell and Kevin Schartz; 10. The role of expertise in radiologic image interpretation Calvin Nodine and Claudia Mello-Thoms; 11. A primer of image quality and its perceptual relevance Robert Saunders and Ehsan Samei; 12. Beyond the limitations of human vision Maria Petrou; Part III. Perception Metrology: 13. Logistical issues in designing perception experiments Ehsan Samei and Xiang Li; 14. ROC analysis: basic concepts and practical applications Georgia Tourassi; 15. Multi-reader ROC Steve Hillis; 16. Recent developments in FROC methodology Dev Chakraborty; 17. Observer models as a surrogate to perception experiments Craig Abbey and Miguel Eckstein; 18. Implementation of observer models Matthew Kupinski; Part IV. Decision Support and Computer Aided Detection: 19. CAD: an image perception perspective Maryellen Giger and Weijie Chen; 20. Common designs of CAD studies Yulei Jiang; 21. Perceptual effect of CAD in reading chest images Matthew Freedman and Teresa Osicka; 22. Perceptual issues in mammography and CAD Michael Ulissey; 23. How perceptual factors affect the use and accuracy of CAD for interpretation of CT images Ronald Summers; 24. CAD: risks and benefits for radiologists' decisions Eugenio Alberdi, Andrey Povyakalo, Lorenzo Strigini and

  9. The Handbook of Medical Image Perception and Techniques

    NASA Astrophysics Data System (ADS)

    Samei, Ehsan; Krupinski, Elizabeth

    2014-07-01

    1. Medical image perception Ehsan Samei and Elizabeth Krupinski; Part I. Historical Reflections and Theoretical Foundations: 2. A short history of image perception in medical radiology Harold Kundel and Calvin Nodine; 3. Spatial vision research without noise Arthur Burgess; 4. Signal detection theory, a brief history Arthur Burgess; 5. Signal detection in radiology Arthur Burgess; 6. Lessons from dinners with the giants of modern image science Robert Wagner; Part II. Science of Image Perception: 7. Perceptual factors in reading medical images Elizabeth Krupinski; 8. Cognitive factors in reading medical images David Manning; 9. Satisfaction of search in traditional radiographic imaging Kevin Berbaum, Edmund Franken, Robert Caldwell and Kevin Schartz; 10. The role of expertise in radiologic image interpretation Calvin Nodine and Claudia Mello-Thoms; 11. A primer of image quality and its perceptual relevance Robert Saunders and Ehsan Samei; 12. Beyond the limitations of human vision Maria Petrou; Part III. Perception Metrology: 13. Logistical issues in designing perception experiments Ehsan Samei and Xiang Li; 14. ROC analysis: basic concepts and practical applications Georgia Tourassi; 15. Multi-reader ROC Steve Hillis; 16. Recent developments in FROC methodology Dev Chakraborty; 17. Observer models as a surrogate to perception experiments Craig Abbey and Miguel Eckstein; 18. Implementation of observer models Matthew Kupinski; Part IV. Decision Support and Computer Aided Detection: 19. CAD: an image perception perspective Maryellen Giger and Weijie Chen; 20. Common designs of CAD studies Yulei Jiang; 21. Perceptual effect of CAD in reading chest images Matthew Freedman and Teresa Osicka; 22. Perceptual issues in mammography and CAD Michael Ulissey; 23. How perceptual factors affect the use and accuracy of CAD for interpretation of CT images Ronald Summers; 24. CAD: risks and benefits for radiologists' decisions Eugenio Alberdi, Andrey Povyakalo, Lorenzo Strigini and

  10. Organizational Image Perceptions of Higher Education Students

    ERIC Educational Resources Information Center

    Küçüksüleymanoglu, Rüyam

    2015-01-01

    Colleges and universities rely on their image to attract new members. Organizational image is the total of thoughts, emotions and perceptions resulting from clear conclusions of information formed in the minds of stakeholders as a result of communication with the institution about that institution and its elements. The purpose of this study is to…

  11. Is pictorial perception robust? The effect of the observer vantage point on the perceived depth structure of linear-perspective images.

    PubMed

    Todorović, Dejan

    2008-01-01

    Every image of a scene produced in accord with the rules of linear perspective has an associated projection centre. Only if observed from that position does the image provide the stimulus which is equivalent to the one provided by the original scene. According to the perspective-transformation hypothesis, observing the image from other vantage points should result in specific transformations of the structure of the conveyed scene, whereas according to the vantage-point compensation hypothesis it should have little effect. Geometrical analyses illustrating the transformation theory are presented. An experiment is reported to confront the two theories. The results provide little support for the compensation theory and are generally in accord with the transformation theory, but also show systematic deviations from it, possibly due to cue conflict and asymmetry of visual angles.

  12. Current perspectives in medical image perception

    PubMed Central

    Krupinski, Elizabeth A.

    2013-01-01

    Medical images constitute a core portion of the information a physician utilizes to render diagnostic and treatment decisions. At a fundamental level, this diagnostic process involves two basic processes: visually inspecting the image (visual perception) and rendering an interpretation (cognition). The likelihood of error in the interpretation of medical images is, unfortunately, not negligible. Errors do occur, and patients’ lives are impacted, underscoring our need to understand how physicians interact with the information in an image during the interpretation process. With improved understanding, we can develop ways to further improve decision making and, thus, to improve patient care. The science of medical image perception is dedicated to understanding and improving the clinical interpretation process. PMID:20601701

  13. Mechanisms of Percept-Percept and Image-Percept Integration in Vision: Behavioral and Electrophysiological Evidence

    ERIC Educational Resources Information Center

    Dalvit, Silvia; Eimer, Martin

    2011-01-01

    Previous research has shown that the detection of a visual target can be guided not only by the temporal integration of two percepts, but also by integrating a percept and an image held in working memory. Behavioral and event-related brain potential (ERP) measures were obtained in a target detection task that required temporal integration of 2…

  14. Mechanisms of Percept-Percept and Image-Percept Integration in Vision: Behavioral and Electrophysiological Evidence

    ERIC Educational Resources Information Center

    Dalvit, Silvia; Eimer, Martin

    2011-01-01

    Previous research has shown that the detection of a visual target can be guided not only by the temporal integration of two percepts, but also by integrating a percept and an image held in working memory. Behavioral and event-related brain potential (ERP) measures were obtained in a target detection task that required temporal integration of 2…

  15. Spectropolarimetric Imaging Observations

    NASA Astrophysics Data System (ADS)

    Bradley, Christine Lavella

    The capability to map anthropogenic aerosol quantities and properties over land can provide significant insights for climate and environmental studies on global and regional scales. One of the primary challenges in aerosol information monitoring is separating two signals measured by downward-viewing airborne or spaceborne instruments: the light scattered from the aerosols and light reflected from the Earth's surface. In order to study the aerosols independently, the surface signal needs to be subtracted out from the measurements. Some observational modalities, such as multispectral and multiangle, do not provide enough information to uniquely define the Earth's directional reflectance properties for this task due to the high magnitude and inhomogeneity of albedo for land surface types. Polarization, however, can provide additional information to define surface reflection. To improve upon current measurement capabilities of aerosols over urban areas, Jet Propulsion Laboratory developed the Multiangle SpectroPolarimetric Imager (MSPI) that can accurately measure the Degree of Linear Polarization to 0.5%. In particular, data acquired by the ground-based prototype, GroundMSPI, is used for directional reflectance studies of outdoor surfaces in this dissertation. This work expands upon an existing model, the microfacet model, to characterize the polarized bidirectional reflectance distribution function (pBRDF) of surfaces and validate an assumption, the Spectral Invariance Hypothesis, on the surface pBRDF that is used in aerosol retrieval algorithms. The microfacet model is commonly used to represent the pBRDF of Earth's surface types, such as ocean and land. It represents a roughened surface comprised of randomly oriented facets that specularly reflect incoming light into the upward hemisphere. The analytic form of the pBRDF for this model assumes only a single reflection of light from the microfaceted surface. If the incoming illumination is unpolarized, as it is with

  16. Perception of absolute and relative distances in stereoscopic image

    NASA Astrophysics Data System (ADS)

    Shidoji, Kazunori; Funakoshi, Masakazu; Ogawa, Masahiko

    2010-02-01

    In 3-D movies and virtual reality and augmented reality systems, stereoscopic images are used to improve perceptions of realism and depth. The distance (depth) that we perceive can be classified into absolute distance, which is the distance between the observer and the objects, and relative distance, which is the distance between the objects. It is known that in the real environment these two distances are independent. Previous studies have reported that we underestimate or overestimate the absolute distance in stereoscopic images under some circumstances. We examined perceptions of both absolute and relative distances in stereoscopic images to investigate the depth perception of virtual objects. The results of the experiments showed that (1) the perceived absolute distance from the observer to images in front of the screen was nearly accurate and that to images farther behind the screen was underestimated; (2) this underestimation tendency increased in short viewing distances; and (3) the relative distance from the screen to images in front of the screen was overestimated, whereas that to images farther behind the screen was underestimated.

  17. Radiology image perception and observer performance: How does expertise and clinical information alter interpretation? Stroke detection explored through eye-tracking

    NASA Astrophysics Data System (ADS)

    Cooper, Lindsey; Gale, Alastair; Darker, Iain; Toms, Andoni; Saada, Janak

    2009-02-01

    Historically, radiology research has been dominated by chest and breast screening. Few studies have examined complex interpretative tasks such as the reading of multidimensional brain CT or MRI scans. Additionally, no studies at the time of writing have explored the interpretation of stroke images; from novices through to experienced practitioners using eye movement analysis. Finally, there appears a lack of evidence on the clinical effects of radiology reports and their influence on image appraisal and clinical diagnosis. A computer-based, eye-tracking study was designed to assess diagnostic accuracy and interpretation in stroke CT and MR imagery. Eight predetermined clinical cases, five images per case, were presented to participants (novices, trainee, and radiologists; n=8). The presence or absence of abnormalities was rated on a five-point Likert scale and their locations reported. Half cases of the cases were accompanied by clinical information; half were not, to assess the impact of information on observer performance. Results highlight differences in visual search patterns amongst novice, trainee and expert observers; the most marked differences occurred between novice readers and experts. Experts spent more time in challenging areas of interest (AOI) than novices and trainee, and were more confident unless a lesion was large and obvious. The time to first AOI fixation differed by size, shape and clarity of lesion. 'Time to lesion' dropped significantly when recognition appeared to occur between slices. The influence of clinical information was minimal.

  18. Image quality measurements with a neural brightness perception model

    NASA Astrophysics Data System (ADS)

    Grogan, Timothy A.; Wu, Mei

    1991-06-01

    A computational model for the human perception of image brightness has been advanced by Cohen, Grossberg, and Todorovic. The research describes how this model can be used to assess perceived image quality. The implementation of the model is extended to allow the processing of larger images and an increased dynamic range of the gray scale. The model is validated by examining the simulation of some classical brightness perception phenomena including the Herman grid illusion, and the Craik-O'Brien-Cornsweet effect. Results of a comparative evaluation of three halftoning algorithms are offered which indicate that the model is useful for the evaluation of image processing algorithms. Human subjects ranked the quality of the images halftoned with each of three different algorithms at three different viewing distances. Objective measures of the halftoned images were obtained after preprocessing to account for the different viewing distances. The ranking of the objective measures did not correspond to those of the majority of the human observers. However, after processing by the brightness perception model, ranking of the objective measures do correspond with the rankings assigned by human observers.

  19. Velocity perception in a moving observer.

    PubMed

    Hogendoorn, Hinze; Alais, David; MacDougall, Hamish; Verstraten, Frans A J

    2017-09-01

    Previous research has shown that when a moving stimulus is presented to a moving observer, the perceived speed of the stimulus is affected by vestibular self-motion signals (Hogendoorn, Verstraten, MacDougall, & Alais, 2017. Vision Research 130, 22-30.). This interaction was interpreted as a weighted sum of visual and vestibular motion signals. This interpretation also predicts effects of vestibular self-motion signals on perceived speed. Here, we test this prediction in two experiments. In Experiment 1, moving observers carried out a visual speed discrimination task in order to establish points of subjective equality (PSE) between stimuli presented in the same or opposite direction of self-motion. We observed robust effects of self-motion on perceived speed, with self-motion in the same direction as visual motion resulting in increases in perceived speed and vice versa. These effects were well- described by a limited-width integration window. In Experiment 2, the same observers carried out another speed discrimination task in order to establish discrimination thresholds. According to the Weber-Fechner law, these thresholds are expected to increase or decrease along with perceived speed. However, no effect of self-motion on discrimination thresholds was observed. This pattern of results suggests a limit on speed discrimination performance early in the visual system, with visuo-vestibular integration in later downstream areas. These results are consistent with previous work on heading perception. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Adaptation aftereffects in the perception of radiological images.

    PubMed

    Kompaniez, Elysse; Abbey, Craig K; Boone, John M; Webster, Michael A

    2013-01-01

    Radiologists must classify and interpret medical images on the basis of visual inspection. We examined how the perception of radiological scans might be affected by common processes of adaptation in the visual system. Adaptation selectively adjusts sensitivity to the properties of the stimulus in current view, inducing an aftereffect in the appearance of stimuli viewed subsequently. These perceptual changes have been found to affect many visual attributes, but whether they are relevant to medical image perception is not well understood. To examine this we tested whether aftereffects could be generated by the characteristic spatial structure of radiological scans, and whether this could bias their appearance along dimensions that are routinely used to classify them. Measurements were focused on the effects of adaptation to images of normal mammograms, and were tested in observers who were not radiologists. Tissue density in mammograms is evaluated visually and ranges from "dense" to "fatty." Arrays of images varying in intermediate levels between these categories were created by blending dense and fatty images with different weights. Observers first adapted by viewing image samples of dense or fatty tissue, and then judged the appearance of the intermediate images by using a texture matching task. This revealed pronounced perceptual aftereffects - prior exposure to dense images caused an intermediate image to appear more fatty and vice versa. Moreover, the appearance of the adapting images themselves changed with prolonged viewing, so that they became less distinctive as textures. These aftereffects could not be accounted for by the contrast differences or power spectra of the images, and instead tended to follow from the phase spectrum. Our results suggest that observers can selectively adapt to the properties of radiological images, and that this selectivity could strongly impact the perceived textural characteristics of the images.

  1. Adaptation Aftereffects in the Perception of Radiological Images

    PubMed Central

    Kompaniez, Elysse; Abbey, Craig K.; Boone, John M.; Webster, Michael A.

    2013-01-01

    Radiologists must classify and interpret medical images on the basis of visual inspection. We examined how the perception of radiological scans might be affected by common processes of adaptation in the visual system. Adaptation selectively adjusts sensitivity to the properties of the stimulus in current view, inducing an aftereffect in the appearance of stimuli viewed subsequently. These perceptual changes have been found to affect many visual attributes, but whether they are relevant to medical image perception is not well understood. To examine this we tested whether aftereffects could be generated by the characteristic spatial structure of radiological scans, and whether this could bias their appearance along dimensions that are routinely used to classify them. Measurements were focused on the effects of adaptation to images of normal mammograms, and were tested in observers who were not radiologists. Tissue density in mammograms is evaluated visually and ranges from "dense" to "fatty." Arrays of images varying in intermediate levels between these categories were created by blending dense and fatty images with different weights. Observers first adapted by viewing image samples of dense or fatty tissue, and then judged the appearance of the intermediate images by using a texture matching task. This revealed pronounced perceptual aftereffects – prior exposure to dense images caused an intermediate image to appear more fatty and vice versa. Moreover, the appearance of the adapting images themselves changed with prolonged viewing, so that they became less distinctive as textures. These aftereffects could not be accounted for by the contrast differences or power spectra of the images, and instead tended to follow from the phase spectrum. Our results suggest that observers can selectively adapt to the properties of radiological images, and that this selectivity could strongly impact the perceived textural characteristics of the images. PMID:24146833

  2. Image Statistics and the Fine Lines of Material Perception

    PubMed Central

    Tan, Kairen; Chowdhury, Nahian S.

    2016-01-01

    We experience vivid percepts of objects and materials despite complexities in the way images are structured by the interaction of light with surface properties (3D shape, albedo, and gloss or specularity). Although the perception of gloss (and lightness) has been argued to depend on image statistics (e.g., sub-band skew), studies have shown that perceived gloss depends critically on the structure of luminance variations in images. Here, we found that separately adapting observers to either positive or negative skew generated declines in perceived gloss, contrary to the predictions of theories involving image statistics. We also found similar declines in perceived gloss following adaptation to contours geometrically correlated with sharp specular edges. We further found this aftereffect was stronger when contour adaptors were aligned with specular edges compared with adaptation to the same contours rotated by 90°. These findings support the view that the perception of gloss depends critically on the visual system’s ability to encode specular edge structure and not image skew. PMID:27698976

  3. Linking brain imaging signals to visual perception.

    PubMed

    Welchman, Andrew E; Kourtzi, Zoe

    2013-11-01

    The rapid advances in brain imaging technology over the past 20 years are affording new insights into cortical processing hierarchies in the human brain. These new data provide a complementary front in seeking to understand the links between perceptual and physiological states. Here we review some of the challenges associated with incorporating brain imaging data into such "linking hypotheses," highlighting some of the considerations needed in brain imaging data acquisition and analysis. We discuss work that has sought to link human brain imaging signals to existing electrophysiological data and opened up new opportunities in studying the neural basis of complex perceptual judgments. We consider a range of approaches when using human functional magnetic resonance imaging to identify brain circuits whose activity changes in a similar manner to perceptual judgments and illustrate these approaches by discussing work that has studied the neural basis of 3D perception and perceptual learning. Finally, we describe approaches that have sought to understand the information content of brain imaging data using machine learning and work that has integrated multimodal data to overcome the limitations associated with individual brain imaging approaches. Together these approaches provide an important route in seeking to understand the links between physiological and psychological states.

  4. Coding depth perception from image defocus.

    PubMed

    Supèr, Hans; Romeo, August

    2014-12-01

    As a result of the spider experiments in Nagata et al. (2012), it was hypothesized that the depth perception mechanisms of these animals should be based on how much images are defocused. In the present paper, assuming that relative chromatic aberrations or blur radii values are known, we develop a formulation relating the values of these cues to the actual depth distance. Taking into account the form of the resulting signals, we propose the use of latency coding from a spiking neuron obeying Izhikevich's 'simple model'. If spider jumps can be viewed as approximately parabolic, some estimates allow for a sensory-motor relation between the time to the first spike and the magnitude of the initial velocity of the jump.

  5. Depth perception of stereo overlays in image-guided surgery

    NASA Astrophysics Data System (ADS)

    Johnson, Laura; Edwards, Philip; Griffin, Lewis; Hawkes, David

    2004-05-01

    See-through augmented reality (AR) systems for image-guided surgery merge volume rendered MRI/CT data directly with the surgeon"s view of the patient during surgery. Research has so far focused on optimizing the technique of aligning and registering the computer-generated anatomical images with the patient"s anatomy during surgery. We have previously developed a registration and calibration method that allows alignment of the virtual and real anatomy to ~1mm accuracy. Recently we have been investigating the accuracy with which observers can interpret the combined visual information presented with an optical see-through AR system. We found that depth perception of a virtual image presented in stereo below a physical surface was misperceived compared to viewing the target in the absence of a surface. Observers overestimated depth for a target 0-2cm below the surface and underestimated the depth for all other presentation depths. The perceptual error could be reduced, but not eliminated, when a virtual rendering of the physical surface was displayed simultaneously with the virtual image. The findings suggest that misperception is due either to accommodation conflict between the physical surface and the projected AR image, or the lack of correct occlusion between the virtual and real surfaces.

  6. Agile beam laser radar using computational imaging for robotic perception

    NASA Astrophysics Data System (ADS)

    Powers, Michael A.; Stann, Barry L.; Giza, Mark M.

    2015-05-01

    This paper introduces a new concept that applies computational imaging techniques to laser radar for robotic perception. We observe that nearly all contemporary laser radars for robotic (i.e., autonomous) applications use pixel basis scanning where there is a one-to-one correspondence between world coordinates and the measurements directly produced by the instrument. In such systems this is accomplished through beam scanning and/or the imaging properties of focal-plane optics. While these pixel-basis measurements yield point clouds suitable for straightforward human interpretation, the purpose of robotic perception is the extraction of meaningful features from a scene, making human interpretability and its attendant constraints mostly unnecessary. The imposing size, weight, power and cost of contemporary systems is problematic, and relief from factors that increase these metrics is important to the practicality of robotic systems. We present a system concept free from pixel basis sampling constraints that promotes efficient and adaptable sensing modes. The cornerstone of our approach is agile and arbitrary beam formation that, when combined with a generalized mathematical framework for imaging, is suited to the particular challenges and opportunities of robotic perception systems. Our hardware concept looks toward future systems with optical device technology closely resembling modern electronically-scanned-array radar that may be years away from practicality. We present the design concept and results from a prototype system constructed and tested in a laboratory environment using a combination of developed hardware and surrogate devices for beam formation. The technological status and prognosis for key components in the system is discussed.

  7. Model observers in medical imaging research.

    PubMed

    He, Xin; Park, Subok

    2013-10-04

    Model observers play an important role in the optimization and assessment of imaging devices. In this review paper, we first discuss the basic concepts of model observers, which include the mathematical foundations and psychophysical considerations in designing both optimal observers for optimizing imaging systems and anthropomorphic observers for modeling human observers. Second, we survey a few state-of-the-art computational techniques for estimating model observers and the principles of implementing these techniques. Finally, we review a few applications of model observers in medical imaging research.

  8. Earth Observation Services Weather Imaging

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Microprocessor-based systems for processing satellite data offer mariners real-time images of weather systems, day and night, of large areas or allow them to zoom in on a few square miles. Systems West markets these commercial image processing systems, which have significantly decreased the cost of satellite weather stations. The company was assisted by the EOCAP program, which provides government co-funding to encourage private investment in, and to broaden the use of, NASA-developed technology for analyzing information about Earth and ocean resources.

  9. Viewers' Perception of TV Images: Empirical Research and Television Aesthetics.

    ERIC Educational Resources Information Center

    Metallinos, Nikos

    To relate scientific evidence with subjective interpretations relevant to the construction and appreciation of visual images, this paper reviews the literature pertinent to the processes involving the perception of visual images, the distinct functions of the left and right hemispheres of the human brain in recording and interpreting visual data,…

  10. Cross-Cultural Examination of Women's Body Image Perception.

    ERIC Educational Resources Information Center

    Huber, R. John; And Others

    The media's portrayal of the ideal body image has been shown to be a large determinant of one's body image perception. The desire to be excessively thin can be conceived of as an artifact of White-American culture largely due to the media's influence. This study looks at cultures that have had limited exposure to the American ideal and examines…

  11. An approach to integrate the human vision psychology and perception knowledge into image enhancement

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Huang, Xifeng; Ping, Jiang

    2009-07-01

    Image enhancement is very important image preprocessing technology especially when the image is captured in the poor imaging condition or dealing with the high bits image. The benefactor of image enhancement either may be a human observer or a computer vision process performing some kind of higher-level image analysis, such as target detection or scene understanding. One of the main objects of the image enhancement is getting a high dynamic range image and a high contrast degree image for human perception or interpretation. So, it is very necessary to integrate either empirical or statistical human vision psychology and perception knowledge into image enhancement. The human vision psychology and perception claims that humans' perception and response to the intensity fluctuation δu of visual signals are weighted by the background stimulus u, instead of being plainly uniform. There are three main laws: Weber's law, Weber- Fechner's law and Stevens's Law that describe this phenomenon in the psychology and psychophysics. This paper will integrate these three laws of the human vision psychology and perception into a very popular image enhancement algorithm named Adaptive Plateau Equalization (APE). The experiments were done on the high bits star image captured in night scene and the infrared-red image both the static image and the video stream. For the jitter problem in the video stream, this algorithm reduces this problem using the difference between the current frame's plateau value and the previous frame's plateau value to correct the current frame's plateau value. Considering the random noise impacts, the pixel value mapping process is not only depending on the current pixel but the pixels in the window surround the current pixel. The window size is usually 3×3. The process results of this improved algorithms is evaluated by the entropy analysis and visual perception analysis. The experiments' result showed the improved APE algorithms improved the quality of the

  12. Image Visual Realism: From Human Perception to Machine Computation.

    PubMed

    Fan, Shaojing; Ng, Tian-Tsong; Koenig, Bryan L; Herberg, Jonathan S; Jiang, Ming; Shen, Zhiqi; Zhao, Qi

    2017-08-30

    Visual realism is defined as the extent to which an image appears to people as a photo rather than computer generated. Assessing visual realism is important in applications like computer graphics rendering and photo retouching. However, current realism evaluation approaches use either labor-intensive human judgments or automated algorithms largely dependent on comparing renderings to reference images. We develop a reference-free computational framework for visual realism prediction to overcome these constraints. First, we construct a benchmark dataset of 2520 images with comprehensive human annotated attributes. From statistical modeling on this data, we identify image attributes most relevant for visual realism. We propose both empirically-based (guided by our statistical modeling of human data) and CNN-learned features to predict visual realism of images. Our framework has the following advantages: (1) it creates an interpretable and concise empirical model that characterizes human perception of visual realism; (2) it links computational features to latent factors of human image perception.

  13. Staging a performance: learners' perceptions about direct observation during residency.

    PubMed

    LaDonna, Kori A; Hatala, Rose; Lingard, Lorelei; Voyer, Stephane; Watling, Christopher

    2017-05-01

    Evidence strongly supports that direct observation is a valid and reliable assessment tool; support for its impact on learning is less compelling, and we know that some learners are ambivalent about being observed. However, learners' perceptions about the impact of direct observation on their learning and professional development remain underexplored. To promote learning, we need to understand what makes direct observation valuable for learners. Informed by constructivist grounded theory, we interviewed 22 learners about their observation experiences. Data collection and analysis occurred iteratively; themes were identified using constant comparative analysis. Direct observation was widely endorsed as an important educational strategy, albeit one that created significant anxiety. Opaque expectations exacerbated participants' discomfort, and participants described that being observed felt like being assessed. Consequently, participants exchanged their 'usual' practice for a 'textbook' approach; alterations to performance generated uncertainty about their role, and raised questions about whether observers saw an authentic portrayal of their knowledge and skill. An 'observer effect' may partly explain learners' ambivalence about direct observation; being observed seemed to magnify learners' role ambiguity, intensify their tensions around professional development and raise questions about the credibility of feedback. In turn, an observer effect may impact learners' receptivity to feedback and may explain, in part, learners' perceptions that useful feedback is scant. For direct observation to be valuable, educators must be explicit about expectations, and they must be aware that how learners perform in the presence of an observer may not reflect what they do as independent practitioners. To nurture learners' professional development, educators must create a culture of observation-based coaching that is divorced from assessment and is tailored to developing learners

  14. A Bayesian observer replicates convexity context effects in figure-ground perception.

    PubMed

    Goldreich, Daniel; Peterson, Mary A

    2012-01-01

    Peterson and Salvagio (2008) demonstrated convexity context effects in figure-ground perception. Subjects shown displays consisting of unfamiliar alternating convex and concave regions identified the convex regions as foreground objects progressively more frequently as the number of regions increased; this occurred only when the concave regions were homogeneously colored. The origins of these effects have been unclear. Here, we present a two-free-parameter Bayesian observer that replicates convexity context effects. The Bayesian observer incorporates two plausible expectations regarding three-dimensional scenes: (1) objects tend to be convex rather than concave, and (2) backgrounds tend (more than foreground objects) to be homogeneously colored. The Bayesian observer estimates the probability that a depicted scene is three-dimensional, and that the convex regions are figures. It responds stochastically by sampling from its posterior distributions. Like human observers, the Bayesian observer shows convexity context effects only for images with homogeneously colored concave regions. With optimal parameter settings, it performs similarly to the average human subject on the four display types tested. We propose that object convexity and background color homogeneity are environmental regularities exploited by human visual perception; vision achieves figure-ground perception by interpreting ambiguous images in light of these and other expected regularities in natural scenes.

  15. Dieting practices and body image perception among Lebanese university students.

    PubMed

    Yahia, Najat; El-Ghazale, Hiba; Achkar, Alice; Rizk, Sandra

    2011-01-01

    Dieting is becoming a popular phenomenon among university students to achieve or maintain a healthy weight. The purpose of this study is to obtain a preliminary understanding of what dieting practices university students use in order to achieve their desirable body weight and to determine the magnitude of body dissatisfaction in relation to weight status among a sample of students (n=252) from the Lebanese American University in Beirut, Lebanon. Students filled out a self-reported questionnaire that included questions on their dieting and physical activity practices in addition to the body shape questionnaire (BSQ). Weight and height were measured to calculate body mass index. Percentage body fat was measured using Tanita scale body fat analyzer 300A. The outcome of this study showed that smoking and unhealthy dieting practices were not common among students (only 26% reported smoking, 8% reported taking laxatives and 4% taking diet pills). Half of the students reported practicing regular physical activity. Multivitamin intake was also not popular among students. BSQ scores indicate that the majority of students were not worried about their body image perception (64% reported not being worried, 19% were slightly worried, 12% were moderately worried and 5% were extremely worried). A gender difference was observed in the BSQ scores, as 89% of the "extremely worried" students were females. Collectively, results indicate that unhealthy dieting practices are uncommon among students. However, developing health promotion awareness' programs to promote good self image within the concept of a realistic healthy weight will be beneficial, especially among females.

  16. Examining the Perceptions of Brand Images Regarding Competing MBA Programs

    ERIC Educational Resources Information Center

    Hinds, Timothee; Falgoust, Dexter; Thomas, Kerry, Jr.; Budden, Michael C.

    2010-01-01

    In today's economic environment, it is crucial to create a strong, consistent brand image within a graduate business program. This study examines the perceptions that students at Southeastern Louisiana University hold about its MBA program and the MBA programs of its main competitors. A focus group was conducted to identify competitors and factors…

  17. Perceptions and Images of North Africa: What American Schools Teach.

    ERIC Educational Resources Information Center

    Robinson, Victoria

    2002-01-01

    Examined descriptions of North Africa (particularly Tunisia) found in U.S. high school social studies textbooks, noting the resulting perceptions and images these descriptions created in the minds of teachers and students. Data from examination of textbooks and interviews with teachers indicated that few high school students were exposed to images…

  18. Brain potentials indicate the effect of other observers' emotions on perceptions of facial attractiveness.

    PubMed

    Huang, Yujing; Pan, Xuwei; Mo, Yan; Ma, Qingguo

    2016-03-23

    Perceptions of facial attractiveness are sensitive to emotional expression of the perceived face. However, little is known about whether the emotional expression on the face of another observer of the perceived face may have an effect on perceptions of facial attractiveness. The present study used event-related potential technique to examine social influence of the emotional expression on the face of another observer of the perceived face on perceptions of facial attractiveness. The experiment consisted of two phases. In the first phase, a neutral target face was paired with two images of individuals gazing at the target face with smiling, fearful or neutral expressions. In the second phase, participants were asked to judge the attractiveness of the target face. We found that a target face was more attractive when other observers positively gazing at the target face in contrast to the condition when other observers were negative. Additionally, the results of brain potentials showed that the visual positive component P3 with peak latency from 270 to 330 ms was larger after participants observed the target face paired with smiling individuals than the target face paired with neutral individuals. These findings suggested that facial attractiveness of an individual may be influenced by the emotional expression on the face of another observer of the perceived face.

  19. Model Observers for Assessment of Image Quality

    NASA Astrophysics Data System (ADS)

    Barrett, Harrison H.; Yao, Jie; Rolland, Jannick P.; Myers, Kyle J.

    1993-11-01

    Image quality can be defined objectively in terms of the performance of some "observer" (either a human or a mathematical model) for some task of practical interest. If the end user of the image will be a human, model observers are used to predict the task performance of the human, as measured by psychophysical studies, and hence to serve as the basis for optimization of image quality. In this paper, we consider the task of detection of a weak signal in a noisy image. The mathematical observers considered include the ideal Bayesian, the nonprewhitening matched filter, a model based on lineardiscriminant analysis and referred to as the Hotelling observer, and the Hotelling and Bayesian observers modified to account for the spatial-frequency-selective channels in the human visual system. The theory behind these observer models is briefly reviewed, and several psychophysical studies relating to the choice among them are summarized. Only the Hotelling model with channels is mathematically tractable in all cases considered here and capable of accounting for all of these data. This model requires no adjustment of parameters to fit the data and is relatively insensitive to the details of the channel mechanism. We therefore suggest it as a useful model observer for the purpose of assessing and optimizing image quality with respect to simple detection tasks.

  20. Implied motion perception from a still image in infancy.

    PubMed

    Shirai, Nobu; Imura, Tomoko

    2014-10-01

    Visual motion perception can arise from non-directional visual stimuli, such as still images (implied motion, cf. Kourtzi, Trends Cogn Sci 8:47-49, 2004). We tested 5- to 8-month-old infants' implied motion perception with two experiments using the forced-choice preferential looking method. Our results indicated that a still image of a person running toward either the left or right side significantly enhanced infants' visual preference for a visual target that consistently appeared on the same side as the running direction (the run condition in Experiment 1). Such enhanced visual preference disappeared in response to an image of the same person standing and facing the left/right side (the stand condition in Experiment 1), an image of the running figure covered with a set of opaque rectangles (the block condition in Experiment 2) (Gervais et al. in Atten Percept Psychophys 72:1437-1443, 2010), and an image of the inverted running figure (the inversion condition in Experiment 3). These results suggest that only the figure that implied dynamic body motion shifted the infants' visual preference to the same direction as the implied running action. These findings demonstrate that even infants as young as 5 to 8 months old are sensitive to the implied motion of static figures.

  1. Influential sources affecting Bangkok adolescent body image perceptions.

    PubMed

    Thianthai, Chulanee

    2006-01-01

    The study of body image-related problems in non-Western countries is still very limited. Thus, this study aims to identify the main influential sources and show how they affect the body image perceptions of Bangkok adolescents. The researcher recruited 400 Thai male and female adolescents in Bangkok, attending high school to freshmen level, ranging from 16-19 years, to participate in this study. Survey questionnaires were distributed to every student and follow-up interviews conducted with 40 students. The findings showed that there are eight main influential sources respectively ranked from the most influential to the least influential: magazines, television, peer group, familial, fashion trend, the opposite gender, self-realization and health knowledge. Similar to those studies conducted in Western countries, more than half of the total percentage was the influence of mass media and peer groups. Bangkok adolescents also internalized Western ideal beauty through these mass media channels. Alike studies conducted in the West, there was similarities in the process of how these influential sources affect Bangkok adolescent body image perception, with the exception of familial source. In conclusion, taking the approach of identifying the main influential sources and understanding how they affect adolescent body image perceptions can help prevent adolescents from having unhealthy views and taking risky measures toward their bodies. More studies conducted in non-Western countries are needed in order to build a cultural sensitive program, catered to the body image problems occurring in adolescents within that particular society.

  2. Depth perception from image defocus in a jumping spider.

    PubMed

    Nagata, Takashi; Koyanagi, Mitsumasa; Tsukamoto, Hisao; Saeki, Shinjiro; Isono, Kunio; Shichida, Yoshinori; Tokunaga, Fumio; Kinoshita, Michiyo; Arikawa, Kentaro; Terakita, Akihisa

    2012-01-27

    The principal eyes of jumping spiders have a unique retina with four tiered photoreceptor layers, on each of which light of different wavelengths is focused by a lens with appreciable chromatic aberration. We found that all photoreceptors in both the deepest and second-deepest layers contain a green-sensitive visual pigment, although green light is only focused on the deepest layer. This mismatch indicates that the second-deepest layer always receives defocused images, which contain depth information of the scene in optical theory. Behavioral experiments revealed that depth perception in the spider was affected by the wavelength of the illuminating light, which affects the amount of defocus in the images resulting from chromatic aberration. Therefore, we propose a depth perception mechanism based on how much the retinal image is defocused.

  3. Ultraviolet Imaging Telescope (UIT) observations of galaxies

    NASA Technical Reports Server (NTRS)

    Neff, S. G.

    1993-01-01

    Ultraviolet images of several galaxies were obtained during the ASTRO-1 shuttle mission in December, 1990. The images have a FWHM angular resolution of approximately 3 arcsecond and are of circular fields approximately 40 arcminutes in diameter. Most galaxies were observed in at least two and sometimes as many as four broad bands. A very few fields were observed with narrower band filters. The most basic result of these observations is that most systems look dramatically different in the UV from their well-known optical appearances. Preliminary results of these studies will be presented. Information will be available on fields observed by the UTI during the ASTRO 1 mission; when that data becomes public it can be obtained from the NSSDC. The ASTRO observatory is expected to fly again in 1994 with approximately half of the observing time from that mission devoted to guest observers. The Ultraviolet Imaging telescope is extremely well suited for galaxy studies, and the UIT term is interested in encouraging a wide range of scientific studies by guest observers. Ultraviolet Imaging telescope is extremely well suited for galaxy studies, and the UIT team is interested in encouraging a wide range of scientific studies by guest observers.

  4. One Mars year: viking lander imaging observations.

    PubMed

    Jones, K L; Arvidson, R E; Guinness, E A; Bragg, S L; Wall, S D; Carlston, C E; Pidek, D G

    1979-05-25

    Throughout the complete Mars year during which they have been on the planet, the imaging systems aboard the two Viking landers have documented a variety of surface changes. Surface condensates, consisting of both solid H(2)O and CO(2), formed at the Viking 2 lander site during the winter. Additional observations suggest that surface erosion rates due to dust redistribution may be substantially less than those predicted on the basis of pre-Viking observations. The Viking 1 lander will continue to acquire and transmit a predetermined sequence of imaging and meteorology data as long as it is operative.

  5. The Collaborative Image of The City: Mapping the Inequality of Urban Perception

    PubMed Central

    Salesses, Philip; Schechtner, Katja; Hidalgo, César A.

    2013-01-01

    A traveler visiting Rio, Manila or Caracas does not need a report to learn that these cities are unequal; she can see it directly from the taxicab window. This is because in most cities inequality is conspicuous, but also, because cities express different forms of inequality that are evident to casual observers. Cities are highly heterogeneous and often unequal with respect to the income of their residents, but also with respect to the cleanliness of their neighborhoods, the beauty of their architecture, and the liveliness of their streets, among many other evaluative dimensions. Until now, however, our ability to understand the effect of a city's built environment on social and economic outcomes has been limited by the lack of quantitative data on urban perception. Here, we build on the intuition that inequality is partly conspicuous to create quantitative measure of a city's contrasts. Using thousands of geo-tagged images, we measure the perception of safety, class and uniqueness; in the cities of Boston and New York in the United States, and Linz and Salzburg in Austria, finding that the range of perceptions elicited by the images of New York and Boston is larger than the range of perceptions elicited by images from Linz and Salzburg. We interpret this as evidence that the cityscapes of Boston and New York are more contrasting, or unequal, than those of Linz and Salzburg. Finally, we validate our measures by exploring the connection between them and homicides, finding a significant correlation between the perceptions of safety and class and the number of homicides in a NYC zip code, after controlling for the effects of income, population, area and age. Our results show that online images can be used to create reproducible quantitative measures of urban perception and characterize the inequality of different cities. PMID:23894301

  6. The collaborative image of the city: mapping the inequality of urban perception.

    PubMed

    Salesses, Philip; Schechtner, Katja; Hidalgo, César A

    2013-01-01

    A traveler visiting Rio, Manila or Caracas does not need a report to learn that these cities are unequal; she can see it directly from the taxicab window. This is because in most cities inequality is conspicuous, but also, because cities express different forms of inequality that are evident to casual observers. Cities are highly heterogeneous and often unequal with respect to the income of their residents, but also with respect to the cleanliness of their neighborhoods, the beauty of their architecture, and the liveliness of their streets, among many other evaluative dimensions. Until now, however, our ability to understand the effect of a city's built environment on social and economic outcomes has been limited by the lack of quantitative data on urban perception. Here, we build on the intuition that inequality is partly conspicuous to create quantitative measure of a city's contrasts. Using thousands of geo-tagged images, we measure the perception of safety, class and uniqueness; in the cities of Boston and New York in the United States, and Linz and Salzburg in Austria, finding that the range of perceptions elicited by the images of New York and Boston is larger than the range of perceptions elicited by images from Linz and Salzburg. We interpret this as evidence that the cityscapes of Boston and New York are more contrasting, or unequal, than those of Linz and Salzburg. Finally, we validate our measures by exploring the connection between them and homicides, finding a significant correlation between the perceptions of safety and class and the number of homicides in a NYC zip code, after controlling for the effects of income, population, area and age. Our results show that online images can be used to create reproducible quantitative measures of urban perception and characterize the inequality of different cities.

  7. Range image statistics can explain the anomalous perception of length.

    PubMed

    Howe, Catherine Q; Purves, Dale

    2002-10-01

    A long-standing puzzle in visual perception is that the apparent extent of a spatial interval (e.g., the distance between two points or the length of a line) does not simply accord with the length of the stimulus but varies as a function of orientation in the retinal image. Here, we show that this anomaly can be explained by the statistical relationship between the length of retinal projections and the length of their real-world sources. Using a laser range scanner, we acquired a database of natural images that included the three-dimensional location of every point in the scenes. An analysis of these range images showed that the average length of a physical interval in three-dimensional space changes systematically as a function of the orientation of the corresponding interval in the projected image, the variation being in good agreement with perceived length. This evidence implies that the perception of visual space is determined by the probability distribution of the possible real-world sources of retinal images.

  8. Humanly space objects-Perception and connection with the observer

    NASA Astrophysics Data System (ADS)

    Balint, Tibor S.; Hall, Ashley

    2015-05-01

    Expanding humanity into space is an inevitable step in our quest to explore our world. Yet space exploration is costly, and the awaiting environment challenges us with extreme cold, heat, vacuum and radiation, unlike anything encountered on Earth. Thus, the few pioneers who experience it needed to be well protected throughout their spaceflight. The resulting isolation heightens the senses and increases the desire to make humanly connections with any other perceived manifestation of life. Such connections may occur via sensory inputs, namely vision, touch, sound, smell, and taste. This then follows the process of sensing, interpreting, and recognizing familiar patterns, or learning from new experiences. The desire to connect could even transfer to observed objects, if their movements and characteristics trigger the appropriate desires from the observer. When ordered in a familiar way, for example visual stimuli from lights and movements of an object, it may create a perceived real bond with an observer, and evoke the feeling of surprise when the expected behavior changes to something no longer predictable or recognizable. These behavior patterns can be designed into an object and performed autonomously in front of an observer, in our case an astronaut. The experience may introduce multiple responses, including communication, connection, empathy, order, and disorder. While emotions are clearly evoked in the observer and may seem one sided, in effect the object itself provides a decoupled bond, connectivity and communication between the observer and the artist-designer of the object. In this paper we will discuss examples from the field of arts and other domains, including robotics, where human perception through object interaction was explored, and investigate the starting point for new innovative design concepts and future prototype designs, that extend these experiences beyond the boundaries of Earth, while taking advantage of remoteness and the zero gravity

  9. Imaging radar observations of frozen Arctic lakes

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Bryan, M. L.; Weeks, W. F.

    1976-01-01

    A synthetic aperture imaging L-band radar flown aboard the NASA CV-990 remotely sensed a number of ice-covered lakes about 48 km northwest of Bethel, Alaska. The image obtained is a high resolution, two-dimensional representation of the surface backscatter cross section, and large differences in backscatter returns are observed: homogeneous low returns, homogeneous high returns and/or low returns near lake borders, and high returns from central areas. It is suggested that a low return indicates that the lake is frozen completely to the bottom, while a high return indicates the presence of fresh water between the ice cover and the lake bed.

  10. Granular convection observed by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Ehrichs, E. E.; Jaeger, H. M.; Karczmar, Greg S.; Knight, James B.; Kuperman, Vadim Yu.; Nagel, Sidney R.

    1995-03-01

    Vibrations in a granular material can spontaneously produce convection rolls reminiscent of those seen in fluids. Magnetic resonance imaging provides a sensitive and noninvasive probe for the detection of these convection currents, which have otherwise been difficult to observe. A magnetic resonance imaging study of convection in a column of poppy seeds yielded data about the detailed shape of the convection rolls and the depth dependence of the convection velocity. The velocity was found to decrease exponentially with depth; a simple model for this behavior is presented here.

  11. Granular convection observed by magnetic resonance imaging

    SciTech Connect

    Ehrichs, E.E.; Jaeger, H.M.; Knight, J.B.; Nagel, S.R.; Karczmar, G.S.; Kuperman, V.Yu.

    1995-03-17

    Vibrations in a granular material can spontaneously produce convection rolls reminiscent of those seen in fluids. Magnetic resonance imaging provides a sensitive and noninvasive probe for the detection of these convection currents, which have otherwise been difficult to observe. A magnetic resonance imaging study of convection in a column of poppy seeds yielded data about the detailed shape of the convection rolls and the depth dependence of the convection velocity. The velocity was found to decrease exponentially with depth; a simple model for this behavior is presented here. 31 refs., 4 figs.

  12. Uncertainty in Citizen Science observations: from measurement to user perception

    NASA Astrophysics Data System (ADS)

    Lahoz, William; Schneider, Philipp; Castell, Nuria

    2016-04-01

    Citizen Science activities concern general public engagement in scientific research activities when citizens actively contribute to science either with their intellectual effort or surrounding knowledge or with their tools and resources. The advent of technologies such as the Internet and smartphones, and the growth in their usage, has significantly increased the potential benefits from Citizen Science activities. Citizen Science observations from low-cost sensors, smartphones and Citizen Observatories, provide a novel and recent development in platforms for observing the Earth System, with the opportunity to extend the range of observational platforms available to society to spatio-temporal scales (10-100s m; 1 hr or less) highly relevant to citizen needs. The potential value of Citizen Science is high, with applications in science, education, social aspects, and policy aspects, but this potential, particularly for citizens and policymakers, remains largely untapped. Key areas where Citizen Science data start to have demonstrable benefits include GEOSS Societal Benefit Areas such as Health and Weather. Citizen Science observations have many challenges, including simulation of smaller spatial scales, noisy data, combination with traditional observational methods (satellite and in situ data), and assessment, representation and visualization of uncertainty. Within these challenges, that of the assessment and representation of uncertainty and its communication to users is fundamental, as it provides qualitative and/or quantitative information that influences the belief users will have in environmental information. This presentation will discuss the challenges in assessment and representation of uncertainty in Citizen Science observations, its communication to users, including the use of visualization, and the perception of this uncertainty information by users of Citizen Science observations.

  13. Observing the magnetosphere through global auroral imaging: 2. Observing techniques

    NASA Astrophysics Data System (ADS)

    Mende, Stephen B.

    2016-10-01

    In a companion paper four auroral regions were identified. The source of the first three regions is the plasma sheet, whereas the source of the fourth, the region of Alfvenic auroras, is the ionosphere. It is a primary goal of global auroral imaging to identify these source regions. Space-based imaging can be used to obtain ion and electron, mean energy, and energy flux as a basis for such identification. Measurement of direct emission from precipitating ions or their charge exchange products can be used to determine the ion precipitation characteristics. For electrons, it is necessary to use the atmosphere as a spectrometer. Total precipitated energy can be derived from the luminosity of spectral features where the production cross sections are known. The mean energy of precipitation is inferred from the luminosity height profile deduced from (1) collisional quenching of long lifetime emitters, (2) atmospheric composition, (3) degree of O2 absorption in the UV, or (4) the local atmospheric neutral temperature. There are fundamental advantages in viewing the aurora from space; for example, auroras can be observed in the far ultraviolet range where daylight contamination is much less severe. The various approaches to spaceborne auroral imaging depend on the wavelength selection requirements. UV interferometers show promise of improved light collection efficiency and higher spectral resolution.

  14. Weight status and body image perceptions in adolescents: current perspectives

    PubMed Central

    Voelker, Dana K; Reel, Justine J; Greenleaf, Christy

    2015-01-01

    Adolescence represents a pivotal stage in the development of positive or negative body image. Many influences exist during the teen years including transitions (eg, puberty) that affect one’s body shape, weight status, and appearance. Weight status exists along a spectrum between being obese (ie, where one’s body weight is in the 95th percentile for age and gender) to being underweight. Salient influences on body image include the media, which can target adolescents, and peers who help shape beliefs about the perceived body ideal. Internalization of and pressures to conform to these socially prescribed body ideals help to explain associations between weight status and body image. The concepts of fat talk and weight-related bullying during adolescence greatly contribute to an overemphasis on body weight and appearance as well as the development of negative body perceptions and dissatisfaction surrounding specific body parts. This article provides an overview of the significance of adolescent development in shaping body image, the relationship between body image and adolescent weight status, and the consequences of having a negative body image during adolescence (ie, disordered eating, eating disorders, and dysfunctional exercise). Practical implications for promoting a healthy weight status and positive body image among adolescents will be discussed. PMID:26347007

  15. Weight status and body image perceptions in adolescents: current perspectives.

    PubMed

    Voelker, Dana K; Reel, Justine J; Greenleaf, Christy

    2015-01-01

    Adolescence represents a pivotal stage in the development of positive or negative body image. Many influences exist during the teen years including transitions (eg, puberty) that affect one's body shape, weight status, and appearance. Weight status exists along a spectrum between being obese (ie, where one's body weight is in the 95th percentile for age and gender) to being underweight. Salient influences on body image include the media, which can target adolescents, and peers who help shape beliefs about the perceived body ideal. Internalization of and pressures to conform to these socially prescribed body ideals help to explain associations between weight status and body image. The concepts of fat talk and weight-related bullying during adolescence greatly contribute to an overemphasis on body weight and appearance as well as the development of negative body perceptions and dissatisfaction surrounding specific body parts. This article provides an overview of the significance of adolescent development in shaping body image, the relationship between body image and adolescent weight status, and the consequences of having a negative body image during adolescence (ie, disordered eating, eating disorders, and dysfunctional exercise). Practical implications for promoting a healthy weight status and positive body image among adolescents will be discussed.

  16. Imaging radar observations of Askja Caldera, Iceland

    NASA Technical Reports Server (NTRS)

    Malin, M. C.; Evans, D.; Elachi, C.

    1978-01-01

    A 'blind' test involving interpretation of computer-enhanced like- and cross-polarized radar images is used to evaluate the surface roughness of Askja Caldera, a large volcanic complex in central Iceland. The 'blind' test differs from earlier analyses of radar observations in that computer-processes images and both qualitative and quantitative analyses are used. Attention is given to photogeologic examination and subsequent survey-type field observations, along with aerial photography during the field trip. The results indicate that the 'blind' test of radar interpretation of the Askja volcanic area can be considered suitable within the framework of limitations of radar data considered explicitly from the onset. The limitations of the radar techniques can be eliminated by using oblique-viewing conditions to remove geometric distortions and slope effects.

  17. Imaging radar observations of Askja Caldera, Iceland

    NASA Technical Reports Server (NTRS)

    Malin, M. C.; Evans, D.; Elachi, C.

    1978-01-01

    A 'blind' test involving interpretation of computer-enhanced like- and cross-polarized radar images is used to evaluate the surface roughness of Askja Caldera, a large volcanic complex in central Iceland. The 'blind' test differs from earlier analyses of radar observations in that computer-processes images and both qualitative and quantitative analyses are used. Attention is given to photogeologic examination and subsequent survey-type field observations, along with aerial photography during the field trip. The results indicate that the 'blind' test of radar interpretation of the Askja volcanic area can be considered suitable within the framework of limitations of radar data considered explicitly from the onset. The limitations of the radar techniques can be eliminated by using oblique-viewing conditions to remove geometric distortions and slope effects.

  18. Study of quality perception in medical images based on comparison of contrast enhancement techniques in mammographic images

    NASA Astrophysics Data System (ADS)

    Matheus, B.; Verçosa, L. B.; Barufaldi, B.; Schiabel, H.

    2014-03-01

    With the absolute prevalence of digital images in mammography several new tools became available for radiologist; such as CAD schemes, digital zoom and contrast alteration. This work focuses in contrast variation and how the radiologist reacts to these changes when asked to evaluated image quality. Three contrast enhancing techniques were used in this study: conventional equalization, CCB Correction [1] - a digitization correction - and value subtraction. A set of 100 images was used in tests from some available online mammographic databases. The tests consisted of the presentation of all four versions of an image (original plus the three contrast enhanced images) to the specialist, requested to rank each one from the best up to worst quality for diagnosis. Analysis of results has demonstrated that CCB Correction [1] produced better images in almost all cases. Equalization, which mathematically produces a better contrast, was considered the worst for mammography image quality enhancement in the majority of cases (69.7%). The value subtraction procedure produced images considered better than the original in 84% of cases. Tests indicate that, for the radiologist's perception, it seems more important to guaranty full visualization of nuances than a high contrast image. Another result observed is that the "ideal" scanner curve does not yield the best result for a mammographic image. The important contrast range is the middle of the histogram, where nodules and masses need to be seen and clearly distinguished.

  19. WorkstationJ: workstation emulation software for medical image perception and technology evaluation research

    NASA Astrophysics Data System (ADS)

    Schartz, Kevin M.; Berbaum, Kevin S.; Caldwell, Robert T.; Madsen, Mark T.

    2007-03-01

    We developed image presentation software that mimics the functionality available in the clinic, but also records time-stamped, observer-display interactions and is readily deployable on diverse workstations making it possible to collect comparable observer data at multiple sites. Commercial image presentation software for clinical use has limited application for research on image perception, ergonomics, computer-aids and informatics because it does not collect observer responses, or other information on observer-display interactions, in real time. It is also very difficult to collect observer data from multiple institutions unless the same commercial software is available at different sites. Our software not only records observer reports of abnormalities and their locations, but also inspection time until report, inspection time for each computed radiograph and for each slice of tomographic studies, window/level, and magnification settings used by the observer. The software is a modified version of the open source ImageJ software available from the National Institutes of Health. Our software involves changes to the base code and extensive new plugin code. Our free software is currently capable of displaying computed tomography and computed radiography images. The software is packaged as Java class files and can be used on Windows, Linux, or Mac systems. By deploying our software together with experiment-specific script files that administer experimental procedures and image file handling, multi-institutional studies can be conducted that increase reader and/or case sample sizes or add experimental conditions.

  20. A color fusion method of infrared and low-light-level images based on visual perception

    NASA Astrophysics Data System (ADS)

    Han, Jing; Yan, Minmin; Zhang, Yi; Bai, Lianfa

    2014-11-01

    The color fusion images can be obtained through the fusion of infrared and low-light-level images, which will contain both the information of the two. The fusion images can help observers to understand the multichannel images comprehensively. However, simple fusion may lose the target information due to inconspicuous targets in long-distance infrared and low-light-level images; and if targets extraction is adopted blindly, the perception of the scene information will be affected seriously. To solve this problem, a new fusion method based on visual perception is proposed in this paper. The extraction of the visual targets ("what" information) and parallel processing mechanism are applied in traditional color fusion methods. The infrared and low-light-level color fusion images are achieved based on efficient typical targets learning. Experimental results show the effectiveness of the proposed method. The fusion images achieved by our algorithm can not only improve the detection rate of targets, but also get rich natural information of the scenes.

  1. Peer Observation of Teaching: Perceptions of the Observer and the Observed

    ERIC Educational Resources Information Center

    Kohut, Gary F.; Burnap, Charles; Yon, Maria G.

    2007-01-01

    While peer observation of teaching is regarded as an important part of a faculty member's promotion and tenure portfolio, little has been reported on its usefulness. Results from this study indicate that both observers and observees value the peer observation process, are neutral about the adequacy of observer training, use a variety of…

  2. Depth Perception Not Found in Human Observers for Static or Dynamic Anti-Correlated Random Dot Stereograms

    PubMed Central

    Hibbard, Paul B.; Scott-Brown, Kenneth C.; Haigh, Emma C.; Adrain, Melanie

    2014-01-01

    One of the greatest challenges in visual neuroscience is that of linking neural activity with perceptual experience. In the case of binocular depth perception, important insights have been achieved through comparing neural responses and the perception of depth, for carefully selected stimuli. One of the most important types of stimulus that has been used here is the anti-correlated random dot stereogram (ACRDS). In these stimuli, the contrast polarity of one half of a stereoscopic image is reversed. While neurons in cortical area V1 respond reliably to the binocular disparities in ACRDS, they do not create a sensation of depth. This discrepancy has been used to argue that depth perception must rely on neural activity elsewhere in the brain. Currently, the psychophysical results on which this argument rests are not clear-cut. While it is generally assumed that ACRDS do not support the perception of depth, some studies have reported that some people, some of the time, perceive depth in some types of these stimuli. Given the importance of these results for understanding the neural correlates of stereopsis, we studied depth perception in ACRDS using a large number of observers, in order to provide an unambiguous conclusion about the extent to which these stimuli support the perception of depth. We presented observers with random dot stereograms in which correlated dots were presented in a surrounding annulus and correlated or anti-correlated dots were presented in a central circular region. While observers could reliably report the depth of the central region for correlated stimuli, we found no evidence for depth perception in static or dynamic anti-correlated stimuli. Confidence ratings for stereoscopic perception were uniformly low for anti-correlated stimuli, but showed normal variation with disparity for correlated stimuli. These results establish that the inability of observers to perceive depth in ACRDS is a robust phenomenon. PMID:24416195

  3. Depth perception not found in human observers for static or dynamic anti-correlated random dot stereograms.

    PubMed

    Hibbard, Paul B; Scott-Brown, Kenneth C; Haigh, Emma C; Adrain, Melanie

    2014-01-01

    One of the greatest challenges in visual neuroscience is that of linking neural activity with perceptual experience. In the case of binocular depth perception, important insights have been achieved through comparing neural responses and the perception of depth, for carefully selected stimuli. One of the most important types of stimulus that has been used here is the anti-correlated random dot stereogram (ACRDS). In these stimuli, the contrast polarity of one half of a stereoscopic image is reversed. While neurons in cortical area V1 respond reliably to the binocular disparities in ACRDS, they do not create a sensation of depth. This discrepancy has been used to argue that depth perception must rely on neural activity elsewhere in the brain. Currently, the psychophysical results on which this argument rests are not clear-cut. While it is generally assumed that ACRDS do not support the perception of depth, some studies have reported that some people, some of the time, perceive depth in some types of these stimuli. Given the importance of these results for understanding the neural correlates of stereopsis, we studied depth perception in ACRDS using a large number of observers, in order to provide an unambiguous conclusion about the extent to which these stimuli support the perception of depth. We presented observers with random dot stereograms in which correlated dots were presented in a surrounding annulus and correlated or anti-correlated dots were presented in a central circular region. While observers could reliably report the depth of the central region for correlated stimuli, we found no evidence for depth perception in static or dynamic anti-correlated stimuli. Confidence ratings for stereoscopic perception were uniformly low for anti-correlated stimuli, but showed normal variation with disparity for correlated stimuli. These results establish that the inability of observers to perceive depth in ACRDS is a robust phenomenon.

  4. Focal Length Affects Depicted Shape and Perception of Facial Images.

    PubMed

    Třebický, Vít; Fialová, Jitka; Kleisner, Karel; Havlíček, Jan

    2016-01-01

    Static photographs are currently the most often employed stimuli in research on social perception. The method of photograph acquisition might affect the depicted subject's facial appearance and thus also the impression of such stimuli. An important factor influencing the resulting photograph is focal length, as different focal lengths produce various levels of image distortion. Here we tested whether different focal lengths (50, 85, 105 mm) affect depicted shape and perception of female and male faces. We collected three portrait photographs of 45 (22 females, 23 males) participants under standardized conditions and camera setting varying only in the focal length. Subsequently, the three photographs from each individual were shown on screen in a randomized order using a 3-alternative forced-choice paradigm. The images were judged for attractiveness, dominance, and femininity/masculinity by 369 raters (193 females, 176 males). Facial width-to-height ratio (fWHR) was measured from each photograph and overall facial shape was analysed employing geometric morphometric methods (GMM). Our results showed that photographs taken with 50 mm focal length were rated as significantly less feminine/masculine, attractive, and dominant compared to the images taken with longer focal lengths. Further, shorter focal lengths produced faces with smaller fWHR. Subsequent GMM revealed focal length significantly affected overall facial shape of the photographed subjects. Thus methodology of photograph acquisition, focal length in this case, can significantly affect results of studies using photographic stimuli perhaps due to different levels of perspective distortion that influence shapes and proportions of morphological traits.

  5. Reducing the Observed Curriculum Perception Gaps between Stakeholders

    ERIC Educational Resources Information Center

    Chang, Amy; Churyk, Natalie Tatiana; Yu, Shaokun

    2015-01-01

    Developing a vibrant and relevant accounting curriculum requires involvement of many stakeholders such as interns, alumni, and firms. Each has a distinct perspective regarding the strengths and weaknesses of accounting education. Discussion of perception gaps between the three groups and the importance of aligning these perceptions are presented.…

  6. Space Perception of Strabismic Observers in the Real World Environment

    PubMed Central

    Ooi, Teng Leng; He, Zijiang J.

    2015-01-01

    Purpose. Space perception beyond the near distance range (>2 m) is important for target localization, and for directing and guiding a variety of daily activities, including driving and walking. However, it is unclear whether the absolute (egocentric) localization of a single target in the intermediate distance range requires binocular vision, and if so, whether having subnormal stereopsis in strabismus impairs one's ability to localize the target. Methods. We investigated this by measuring the perceived absolute location of a target by observers with normal binocular vision (n = 8; mean age, 24.5 years) and observers with strabismus (n = 8; mean age, 24.9 years) under monocular and binocular conditions. The observers used the blind walking-gesturing task to indicate the judged location of a target located at various viewing distances (2.73–6.93 m) and heights (0, 30, and 90 cm) above the floor. Near stereopsis was assessed with the Randot Stereotest. Results. Both groups of observers accurately judged the absolute distance of the target on the ground (height = 0 cm) either with monocular or binocular viewing. However, when the target was suspended in midair, the normal observers accurately judged target location with binocular viewing, but not with monocular viewing (mean slant angle, 0.8° ± 0.5° vs. 7.4° ± 1.4°; P < 0.001, with a slant angle of 0° representing accurate localization). In contrast, the strabismic observers with poorer stereo acuity made larger errors in target localization in both viewing conditions, though with fewer errors during binocular viewing (mean slant angle, 2.7° ± 0.4° vs. 9.2° ± 1.3°; P < 0.0025). Further analysis reveals the localization error, that is, slant angle, correlates positively with stereo threshold during binocular viewing (r2 = 0.479, P < 0.005), but not during monocular viewing (r2 = 0.0002, P = 0.963). Conclusions. Locating a single target on the ground is sufficient with monocular depth information, but

  7. Space perception of strabismic observers in the real world environment.

    PubMed

    Ooi, Teng Leng; He, Zijiang J

    2015-02-19

    Space perception beyond the near distance range (>2 m) is important for target localization, and for directing and guiding a variety of daily activities, including driving and walking. However, it is unclear whether the absolute (egocentric) localization of a single target in the intermediate distance range requires binocular vision, and if so, whether having subnormal stereopsis in strabismus impairs one's ability to localize the target. We investigated this by measuring the perceived absolute location of a target by observers with normal binocular vision (n = 8; mean age, 24.5 years) and observers with strabismus (n = 8; mean age, 24.9 years) under monocular and binocular conditions. The observers used the blind walking-gesturing task to indicate the judged location of a target located at various viewing distances (2.73-6.93 m) and heights (0, 30, and 90 cm) above the floor. Near stereopsis was assessed with the Randot Stereotest. Both groups of observers accurately judged the absolute distance of the target on the ground (height = 0 cm) either with monocular or binocular viewing. However, when the target was suspended in midair, the normal observers accurately judged target location with binocular viewing, but not with monocular viewing (mean slant angle, 0.8° ± 0.5° vs. 7.4° ± 1.4°; P < 0.001, with a slant angle of 0° representing accurate localization). In contrast, the strabismic observers with poorer stereo acuity made larger errors in target localization in both viewing conditions, though with fewer errors during binocular viewing (mean slant angle, 2.7° ± 0.4° vs. 9.2° ± 1.3°; P < 0.0025). Further analysis reveals the localization error, that is, slant angle, correlates positively with stereo threshold during binocular viewing (r(2) = 0.479, P < 0.005), but not during monocular viewing (r(2) = 0.0002, P = 0.963). Locating a single target on the ground is sufficient with monocular depth information, but binocular depth information is required

  8. Impact of crooked nose rhinoplasty on observer perceptions of attractiveness.

    PubMed

    Roxbury, Christopher; Ishii, Masaru; Godoy, Andres; Papel, Ira; Byrne, Patrick J; Boahene, Kofi D O; Ishii, Lisa E

    2012-04-01

    To evaluate the impact of a crooked nose on observer perceptions of facial asymmetry and attractiveness and the ability of rhinoplasty to minimize it. We hypothesized that the presence of a crooked nose would penalize symmetry and attractiveness ratings as compared to normal faces. We further hypothesized that straightening rhinoplasty would restore symmetry and improve attractiveness. Randomized controlled experiment. A group of 39 naïve observers viewed pictures of patients with crooked noses before and after straightening rhinoplasty, and normal patients. Observers rated the overall asymmetry and attractiveness, and the asymmetry of facial subunits using a survey with a rating scale of 1 to 10 for each category. For asymmetry, patient group (preoperative, postoperative, normal) was statistically significant by multivariate analysis of the variance. Post-analysis of variance showed significant differences in asymmetry scores for overall, nose subunit, and mouth subunit. Pairwise testing then showed significantly different overall asymmetry scores between normal and preoperative (P < .001), and preoperative and postoperative (P < .001), but not between normal and postoperative (P = .215) groups. Mixed linear regression analysis showed that decreasing nasal asymmetry by 1 point increases attractiveness by 0.18 points or 0.082 attractiveness standard deviations (P < .001). Faces with crooked noses were rated less symmetrical overall and less symmetrical at the nose and mouth subunits as compared to normal and postoperative faces. Straightening rhinoplasty diminished overall facial asymmetry and subunit asymmetry scores. Decreasing nasal asymmetry led to significant improvements in facial attractiveness. These data provide objective evidence supporting the idea that a straightening rhinoplasty can improve attractiveness. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  9. Observing the magnetosphere through global auroral imaging: 1. Observables

    NASA Astrophysics Data System (ADS)

    Mende, Stephen B.

    2016-10-01

    Over the years, it has become clear that there are fundamental limitations in observing magnetospheric processes through their auroral footprints. Most electron auroras are formed in the auroral acceleration region relatively close to the Earth at altitudes (<2 RE). There are four distinct auroral types: (1) downward field-aligned current (FAC) regions where ion precipitation is dominant, (2) pitch angle diffusion aurora (or briefly "diffusion aurora") region without significant FAC, (3) upward FAC regions of precipitating electrons and monoenergetic auroral arc formations, and (4) Alfvénic auroral regions, where low-energy electrons from the ionosphere are accelerated by incoming Alfvén waves. Alfvénic auroras are the footprints of magnetospheric regions where waves are produced by dynamic events such as reconnection, substorm onset initiation, and magnetic field dipolarization. Based on the mean energy and density of the precipitating electrons, ground-based and spacecraft-based optical observations can be used to distinguish between auroras where the source is the plasma sheet (types 1, 2, and 3) and Alfvénic auroras, where the source is the ionosphere (type 4). Imaging of the Alfvénic auroral region could be used to map the dynamically active regions of the magnetosphere. The energy distribution of the most significant precipitating ions, protons, can be measured from the Doppler profile of the hydrogen emission lines. Mapping of the time dependent global energy distribution of proton precipitation would allow the observation of the associated magnetospheric boundaries.

  10. The (In)Effectiveness of Simulated Blur for Depth Perception in Naturalistic Images.

    PubMed

    Maiello, Guido; Chessa, Manuela; Solari, Fabio; Bex, Peter J

    2015-01-01

    We examine depth perception in images of real scenes with naturalistic variation in pictorial depth cues, simulated dioptric blur and binocular disparity. Light field photographs of natural scenes were taken with a Lytro plenoptic camera that simultaneously captures images at up to 12 focal planes. When accommodation at any given plane was simulated, the corresponding defocus blur at other depth planes was extracted from the stack of focal plane images. Depth information from pictorial cues, relative blur and stereoscopic disparity was separately introduced into the images. In 2AFC tasks, observers were required to indicate which of two patches extracted from these images was farther. Depth discrimination sensitivity was highest when geometric and stereoscopic disparity cues were both present. Blur cues impaired sensitivity by reducing the contrast of geometric information at high spatial frequencies. While simulated generic blur may not assist depth perception, it remains possible that dioptric blur from the optics of an observer's own eyes may be used to recover depth information on an individual basis. The implications of our findings for virtual reality rendering technology are discussed.

  11. Insight into shark magnetic field perception from empirical observations.

    PubMed

    Anderson, James M; Clegg, Tamrynn M; Véras, Luisa V M V Q; Holland, Kim N

    2017-09-08

    Elasmobranch fishes are among a broad range of taxa believed to gain positional information and navigate using the earth's magnetic field, yet in sharks, much remains uncertain regarding the sensory receptors and pathways involved, or the exact nature of perceived stimuli. Captive sandbar sharks, Carcharhinus plumbeus were conditioned to respond to presentation of a magnetic stimulus by seeking out a target in anticipation of reward (food). Sharks in the study demonstrated strong responses to magnetic stimuli, making significantly more approaches to the target (p = < 0.01) during stimulus activation (S+) than before or after activation (S-). Sharks exposed to reversible magnetosensory impairment were less capable of discriminating changes to the local magnetic field, with no difference seen in approaches to the target under the S+ and S- conditions (p = 0.375). We provide quantified detection and discrimination thresholds of magnetic stimuli presented, and quantify associated transient electrical artefacts. We show that the likelihood of such artefacts serving as the stimulus for observed behavioural responses was low. These impairment experiments support hypotheses that magnetic field perception in sharks is not solely performed via the electrosensory system, and that putative magnetoreceptor structures may be located in the naso-olfactory capsules of sharks.

  12. An image stabilization system for solar observations

    NASA Astrophysics Data System (ADS)

    Sridharan, R.; Raja Bayanna, A.; Louis, Rohan Eugene; Kumar, Brajesh; Mathew, Shibu K.; Venkatakrishnan, P.

    2007-09-01

    An image stabilization system has been developed and demonstrated for solar observations in the visible wave-length at Udaipur Solar Observatory (USO) with a 15 cm Coudé-refractor. The softwa4re and hardware components of the system are similar to that of the low cost solar adaptive optics system developed for the 1.5 m McMath-Pierce solar telescope at Kitt Peak observatory for solar observations in the infrared. The first results presented. The system has a closed loop correction bandwidth in the range of 70 to 100 Hz. The root mean by a factor of 10 to 20. The software developes and key issues concerning optimum system performance have been addressed.

  13. Weight status and the perception of body image in men.

    PubMed

    Gardner, Rick M

    2014-01-01

    Understanding the role of body size in relation to the accuracy of body image perception in men is an important topic because of the implications for avoiding and treating obesity, and it may serve as a potential diagnostic criterion for eating disorders. The early research on this topic produced mixed findings. About one-half of the early studies showed that obese men overestimated their body size, with the remaining half providing accurate estimates. Later, improvements in research technology and methodology provided a clearer indication of the role of weight status in body image perception. Research in our laboratory has also produced diverse findings, including that obese subjects sometimes overestimate their body size. However, when examining our findings across several studies, obese subjects had about the same level of accuracy in estimating their body size as normal-weight subjects. Studies in our laboratory also permitted the separation of sensory and nonsensory factors in body image perception. In all but one instance, no differences were found overall between the ability of obese and normal-weight subjects to detect overall changes in body size. Importantly, however, obese subjects are better at detecting changes in their body size when the image is distorted to be too thin as compared to too wide. Both obese and normal-weight men require about a 3%-7% change in the width of their body size in order to detect the change reliably. Correlations between a range of body mass index values and body size estimation accuracy indicated no relationship between these variables. Numerous studies in other laboratories asked men to place their body size into discrete categorizes, ranging from thin to obese. Researchers found that overweight and obese men underestimate their weight status, and that men are less accurate in their categorizations than are women. Cultural influences have been found to be important, with body size underestimations occurring in cultures

  14. Weight status and the perception of body image in men

    PubMed Central

    Gardner, Rick M

    2014-01-01

    Understanding the role of body size in relation to the accuracy of body image perception in men is an important topic because of the implications for avoiding and treating obesity, and it may serve as a potential diagnostic criterion for eating disorders. The early research on this topic produced mixed findings. About one-half of the early studies showed that obese men overestimated their body size, with the remaining half providing accurate estimates. Later, improvements in research technology and methodology provided a clearer indication of the role of weight status in body image perception. Research in our laboratory has also produced diverse findings, including that obese subjects sometimes overestimate their body size. However, when examining our findings across several studies, obese subjects had about the same level of accuracy in estimating their body size as normal-weight subjects. Studies in our laboratory also permitted the separation of sensory and nonsensory factors in body image perception. In all but one instance, no differences were found overall between the ability of obese and normal-weight subjects to detect overall changes in body size. Importantly, however, obese subjects are better at detecting changes in their body size when the image is distorted to be too thin as compared to too wide. Both obese and normal-weight men require about a 3%–7% change in the width of their body size in order to detect the change reliably. Correlations between a range of body mass index values and body size estimation accuracy indicated no relationship between these variables. Numerous studies in other laboratories asked men to place their body size into discrete categorizes, ranging from thin to obese. Researchers found that overweight and obese men underestimate their weight status, and that men are less accurate in their categorizations than are women. Cultural influences have been found to be important, with body size underestimations occurring in cultures

  15. A software framework for diagnostic medical image perception with feedback, and a novel perception visualization technique

    NASA Astrophysics Data System (ADS)

    Phillips, Peter W.; Manning, David J.; Donovan, Tim; Crawford, Trevor; Higham, Stephen

    2005-04-01

    This paper describes a software framework and analysis tool to support the collection and analysis of eye movement and perceptual feedback data for a variety of diagnostic imaging modalities. The framework allows the rapid creation of experiment software that can display a collection of medical images of a particular modality, capture eye trace data, and record marks added to an image by the observer, together with their final decision. There are also a number of visualisation techniques for the display of eye trace information. The analysis tool supports the comparison of individual eye traces for a particular observer or traces from multiple observers for a particular image. Saccade and fixation data can be visualised, with user control of fixation identification functions and properties. Observer markings are displayed, and predefined regions of interest are supported. The software also supports some interactive and multi-image modalities. The analysis tool includes a novel visualisation of scan paths across multi-image modalities. Using an exploded 3D view of a stack of MRI scan sections, an observer's scan path can be shown traversing between images, in addition to inspecting them.

  16. Perception of Perspective Distortions in Image-Based Rendering

    PubMed Central

    Vangorp, Peter; Richardt, Christian; Cooper, Emily A.; Chaurasia, Gaurav; Banks, Martin S.; Drettakis, George

    2013-01-01

    Image-based rendering (IBR) creates realistic images by enriching simple geometries with photographs, e.g., mapping the photograph of a building façade onto a plane. However, as soon as the viewer moves away from the correct viewpoint, the image in the retina becomes distorted, sometimes leading to gross misperceptions of the original geometry. Two hypotheses from vision science state how viewers perceive such image distortions, one claiming that they can compensate for them (and therefore perceive scene geometry reasonably correctly), and one claiming that they cannot compensate (and therefore can perceive rather significant distortions). We modified the latter hypothesis so that it extends to street-level IBR. We then conducted a rigorous experiment that measured the magnitude of perceptual distortions that occur with IBR for façade viewing. We also conducted a rating experiment that assessed the acceptability of the distortions. The results of the two experiments were consistent with one another. They showed that viewers’ percepts are indeed distorted, but not as severely as predicted by the modified vision science hypothesis. From our experimental results, we develop a predictive model of distortion for street-level IBR, which we use to provide guidelines for acceptability of virtual views and for capture camera density. We perform a confirmatory study to validate our predictions, and illustrate their use with an application that guides users in IBR navigation to stay in regions where virtual views yield acceptable perceptual distortions. PMID:24273376

  17. The (In)Effectiveness of Simulated Blur for Depth Perception in Naturalistic Images

    PubMed Central

    Maiello, Guido; Chessa, Manuela; Solari, Fabio; Bex, Peter J.

    2015-01-01

    We examine depth perception in images of real scenes with naturalistic variation in pictorial depth cues, simulated dioptric blur and binocular disparity. Light field photographs of natural scenes were taken with a Lytro plenoptic camera that simultaneously captures images at up to 12 focal planes. When accommodation at any given plane was simulated, the corresponding defocus blur at other depth planes was extracted from the stack of focal plane images. Depth information from pictorial cues, relative blur and stereoscopic disparity was separately introduced into the images. In 2AFC tasks, observers were required to indicate which of two patches extracted from these images was farther. Depth discrimination sensitivity was highest when geometric and stereoscopic disparity cues were both present. Blur cues impaired sensitivity by reducing the contrast of geometric information at high spatial frequencies. While simulated generic blur may not assist depth perception, it remains possible that dioptric blur from the optics of an observer’s own eyes may be used to recover depth information on an individual basis. The implications of our findings for virtual reality rendering technology are discussed. PMID:26447793

  18. Focal Length Affects Depicted Shape and Perception of Facial Images

    PubMed Central

    Třebický, Vít; Fialová, Jitka; Kleisner, Karel; Havlíček, Jan

    2016-01-01

    Static photographs are currently the most often employed stimuli in research on social perception. The method of photograph acquisition might affect the depicted subject’s facial appearance and thus also the impression of such stimuli. An important factor influencing the resulting photograph is focal length, as different focal lengths produce various levels of image distortion. Here we tested whether different focal lengths (50, 85, 105 mm) affect depicted shape and perception of female and male faces. We collected three portrait photographs of 45 (22 females, 23 males) participants under standardized conditions and camera setting varying only in the focal length. Subsequently, the three photographs from each individual were shown on screen in a randomized order using a 3-alternative forced-choice paradigm. The images were judged for attractiveness, dominance, and femininity/masculinity by 369 raters (193 females, 176 males). Facial width-to-height ratio (fWHR) was measured from each photograph and overall facial shape was analysed employing geometric morphometric methods (GMM). Our results showed that photographs taken with 50 mm focal length were rated as significantly less feminine/masculine, attractive, and dominant compared to the images taken with longer focal lengths. Further, shorter focal lengths produced faces with smaller fWHR. Subsequent GMM revealed focal length significantly affected overall facial shape of the photographed subjects. Thus methodology of photograph acquisition, focal length in this case, can significantly affect results of studies using photographic stimuli perhaps due to different levels of perspective distortion that influence shapes and proportions of morphological traits. PMID:26894832

  19. A model observer based on human perception to quantify the detectability

    NASA Astrophysics Data System (ADS)

    Acharian, Georges; Guyader, Nathalie; Vignolle, Jean-Michel; Jutten, Christian

    2014-03-01

    In medical imaging, model observers such as the "Hotelling observer" and the "Non Prewhitening Matched Filter" have been proposed to detect objects in X-ray images. These models, based on decision theory, are applied over the entire image. In this paper, we developed a model that mimics some processes of human visual perception. The proposed model is locally applied on some particular areas that correspond to the salient areas of the object. By doing this, the model mimics the sequence of eye fixations that we make when we explore an image for example in order to detect an object. The study is divided into three parts: a psychophysical experiment to obtain human's performance to detect various objects in noises, a theoretical part to develop the proposed model, and finally, a result part. During the experiment, several participants were asked to detect objects in noisy images using a free search task. The luminance contrast of objects was adaptively adjusted according to their responses to obtain a percentage of correct detection for each object of 50 %. The proposed model, based on decision theory, was applied locally on some areas of the image that has a size corresponding to the high visual acuity of foveal vision. Areas were chosen according to their high saliency values computed through a bio-inspired model of visual attention. For each area, our model returned a detectability index. By supposing statistical independence between areas, the local indexes are combined into a global detectability index. Results show that the proposed model fits the results of the psychophysical experiment and outperforms classical models of the literature.

  20. Final year MBBS students' perception for observed structured clinical examination.

    PubMed

    Siddiqui, Faisal Ghani

    2013-01-01

    To determine perceptions of final year students about observed structured clinical examination (OSCE) and to determine its acceptance among these students. Sequential mixed method design using survey questionnair and in-depth interviews. The study constituted a one-time survey and in-depth interviews conducted over a period of three consecutive days during final year MBBS annual examination at OSCE centre, from April 04, 2010 to April 06, 2010. Three hundred and fifty final year MBBS students, selected through non-probability convenience sampling, were asked to fill the 12-item questionnaire. Three hundred and thirty one students returned the forms. In-depth, structured interviews with 22 students, selected by non-probability purposive sampling, were conducted. The interviews were tape recorded for subsequent transcription. The statistical analysis was done using SPSS 17. The qualitative data was analyzed through content analysis techniques. Three hundred and thirty one final year MBBS students (50.6% females) filled the questionnaire (response rate 94.6%). Fifty three percent respondents agreed that the OSCE tasks were taught during clinical rotations. The experience was stressful for 67.9% respondents. Inadequate prior guidelines, inadequate time for stations, newness of the assessment format and vague instructions were the main causes for stress. Over 70% of the students felt that OSCE helped them identify areas of weakness in their practical and clinical skills; 56.5% felt that the stations dealt with practical skills. Seventy nine percent students were happy with the attitude of the examiners while 19% students felt that the facilitators were uncooperative; failure of the examiners to observe the students during performance of the tasks was the major cause for dissatisfaction. Nearly thirty percent (29.9%) respondent felt that the stations were difficult to understand. Over forty nine percent (49.7%) complained that adequate guidelines were not given prior to

  1. Bayesian Analysis Of HMI Solar Image Observables And Comparison To TSI Variations And MWO Image Observables

    NASA Astrophysics Data System (ADS)

    Parker, D. G.; Ulrich, R. K.; Beck, J.

    2014-12-01

    We have previously applied the Bayesian automatic classification system AutoClass to solar magnetogram and intensity images from the 150 Foot Solar Tower at Mount Wilson to identify classes of solar surface features associated with variations in total solar irradiance (TSI) and, using those identifications, modeled TSI time series with improved accuracy (r > 0.96). (Ulrich, et al, 2010) AutoClass identifies classes by a two-step process in which it: (1) finds, without human supervision, a set of class definitions based on specified attributes of a sample of the image data pixels, such as magnetic field and intensity in the case of MWO images, and (2) applies the class definitions thus found to new data sets to identify automatically in them the classes found in the sample set. HMI high resolution images capture four observables-magnetic field, continuum intensity, line depth and line width-in contrast to MWO's two observables-magnetic field and intensity. In this study, we apply AutoClass to the HMI observables for images from May, 2010 to June, 2014 to identify solar surface feature classes. We use contemporaneous TSI measurements to determine whether and how variations in the HMI classes are related to TSI variations and compare the characteristic statistics of the HMI classes to those found from MWO images. We also attempt to derive scale factors between the HMI and MWO magnetic and intensity observables. The ability to categorize automatically surface features in the HMI images holds out the promise of consistent, relatively quick and manageable analysis of the large quantity of data available in these images. Given that the classes found in MWO images using AutoClass have been found to improve modeling of TSI, application of AutoClass to the more complex HMI images should enhance understanding of the physical processes at work in solar surface features and their implications for the solar-terrestrial environment. Ulrich, R.K., Parker, D, Bertello, L. and

  2. Corrective Feedback in L2 Latvian Classrooms: Teacher Perceptions versus the Observed Actualities of Practice

    ERIC Educational Resources Information Center

    Dilans, Gatis

    2016-01-01

    This two-part study aims to investigate teacher perceptions about providing oral corrective feedback (CF) to minority students of Latvian as a second language and compare the perceptions to the actual provision of CF in L2 Latvian classrooms. The survey sample represents sixty-six L2 Latvian teachers while the classroom observations involved 13…

  3. Corrective Feedback in L2 Latvian Classrooms: Teacher Perceptions versus the Observed Actualities of Practice

    ERIC Educational Resources Information Center

    Dilans, Gatis

    2016-01-01

    This two-part study aims to investigate teacher perceptions about providing oral corrective feedback (CF) to minority students of Latvian as a second language and compare the perceptions to the actual provision of CF in L2 Latvian classrooms. The survey sample represents sixty-six L2 Latvian teachers while the classroom observations involved 13…

  4. Observing the magnetosphere through auroral imaging.

    NASA Astrophysics Data System (ADS)

    Mende, S. B.

    2015-12-01

    Although the terrestrial aurora is often regarded as 2 dimensional projection of the 3 dimensional magnetosphere there are fundamental limitations in observing magnetospheric processes through their auroral footprints. It has been shown that most electron auroras are produced in the auroral acceleration region at lower altitudes (<2Re) in the last steps of processing the auroral particles. From FAST, IMAGE , Cluster and THEMIS data we can distinguish between four fundamentally different types of auroral acceleration regions. A primary task is to distinguish (1) the upward current, (2) downward current, (3) diffuse aurora and (4) Alfven wave accelerated types of auroral acceleration regions. Type (1) contains the "inverted V" type electron precipitation distinguishable by several keV mono-energetic electron spectra, and low number flux consistent with the source population in the plasma sheet. Our understanding of how these auroras relate to magnetospheric processes is still vague, probably associated with convection sheer. Alfven wave electron auroras (4) are of low average energy (<2 keV) high electron flux consistent with ionospheric electron source predominantly occurring during substorms, and they are generated by wave energy carried from the magnetosphere into the ionosphere, where it is converted into electron energy. These are most promising candidates for observing the footprints of source regions associated with reconnection sites or magnetospheric dB/dt events. Optical measuring techniques of electron energy use the atmosphere as a spectrometer, obtaining the penetration altitude as a proxy for energy, that can be obtained from atmospheric composition, quenching lifetime of the emitters, UV absorption pass-length of O2 to the source or the local atmospheric temperature. Precipitating protons are usually an order of magnitude more energetic and less affected by fields in the low altitude auroral acceleration region. Energetic proton precipitation is a more

  5. The role of body image and self-perception in anorexia nervosa: the neuroimaging perspective.

    PubMed

    Esposito, Roberto; Cieri, Filippo; di Giannantonio, Massimo; Tartaro, Armando

    2016-05-25

    Anorexia nervosa is a severe psychiatric illness characterized by intense fear of gaining weight, relentless pursuit of thinness, deep concerns about food and a pervasive disturbance of body image. Functional magnetic resonance imaging tries to shed light on the neurobiological underpinnings of anorexia nervosa. This review aims to evaluate the empirical neuroimaging literature about self-perception in anorexia nervosa. This narrative review summarizes a number of task-based and resting-state functional magnetic resonance imaging studies in anorexia nervosa about body image and self-perception. The articles listed in references were searched using electronic databases (PubMed and Google Scholar) from 1990 to February 2016 using specific key words. All studies were reviewed with regard to their quality and eligibility for the review. Differences in brain activity were observed using body image perception and body size estimation tasks showing significant modifications in activity of specific brain areas (extrastriate body area, fusiform body area, inferior parietal lobule). Recent studies highlighted the role of emotions and self-perception in anorexia nervosa and their neural substrate involving resting-state networks and particularly frontal and posterior midline cortical structures within default mode network and insula. These findings open new horizons to understand the neural substrate of anorexia nervosa. © 2016 The British Psychological Society.

  6. Earth Observation Services (Image Processing Software)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    San Diego State University and Environmental Systems Research Institute, with other agencies, have applied satellite imaging and image processing techniques to geographic information systems (GIS) updating. The resulting images display land use and are used by a regional planning agency for applications like mapping vegetation distribution and preserving wildlife habitats. The EOCAP program provides government co-funding to encourage private investment in, and to broaden the use of NASA-developed technology for analyzing information about Earth and ocean resources.

  7. Undetectable Changes in Image Resolution of Luminance-Contrast Gradients Affect Depth Perception

    PubMed Central

    Tsushima, Yoshiaki; Komine, Kazuteru; Sawahata, Yasuhito; Morita, Toshiya

    2016-01-01

    A great number of studies have suggested a variety of ways to get depth information from two dimensional images such as binocular disparity, shape-from-shading, size gradient/foreshortening, aerial perspective, and so on. Are there any other new factors affecting depth perception? A recent psychophysical study has investigated the correlation between image resolution and depth sensation of Cylinder images (A rectangle contains gradual luminance-contrast changes.). It was reported that higher resolution images facilitate depth perception. However, it is still not clear whether or not the finding generalizes to other kinds of visual stimuli, because there are more appropriate visual stimuli for exploration of depth perception of luminance-contrast changes, such as Gabor patch. Here, we further examined the relationship between image resolution and depth perception by conducting a series of psychophysical experiments with not only Cylinders but also Gabor patches having smoother luminance-contrast gradients. As a result, higher resolution images produced stronger depth sensation with both images. This finding suggests that image resolution affects depth perception of simple luminance-contrast differences (Gabor patch) as well as shape-from-shading (Cylinder). In addition, this phenomenon was found even when the resolution difference was undetectable. This indicates the existence of consciously available and unavailable information in our visual system. These findings further support the view that image resolution is a cue for depth perception that was previously ignored. It partially explains the unparalleled viewing experience of novel high resolution displays. PMID:26941693

  8. Undetectable Changes in Image Resolution of Luminance-Contrast Gradients Affect Depth Perception.

    PubMed

    Tsushima, Yoshiaki; Komine, Kazuteru; Sawahata, Yasuhito; Morita, Toshiya

    2016-01-01

    A great number of studies have suggested a variety of ways to get depth information from two dimensional images such as binocular disparity, shape-from-shading, size gradient/foreshortening, aerial perspective, and so on. Are there any other new factors affecting depth perception? A recent psychophysical study has investigated the correlation between image resolution and depth sensation of Cylinder images (A rectangle contains gradual luminance-contrast changes.). It was reported that higher resolution images facilitate depth perception. However, it is still not clear whether or not the finding generalizes to other kinds of visual stimuli, because there are more appropriate visual stimuli for exploration of depth perception of luminance-contrast changes, such as Gabor patch. Here, we further examined the relationship between image resolution and depth perception by conducting a series of psychophysical experiments with not only Cylinders but also Gabor patches having smoother luminance-contrast gradients. As a result, higher resolution images produced stronger depth sensation with both images. This finding suggests that image resolution affects depth perception of simple luminance-contrast differences (Gabor patch) as well as shape-from-shading (Cylinder). In addition, this phenomenon was found even when the resolution difference was undetectable. This indicates the existence of consciously available and unavailable information in our visual system. These findings further support the view that image resolution is a cue for depth perception that was previously ignored. It partially explains the unparalleled viewing experience of novel high resolution displays.

  9. Imaging and spectrographic observations of artificial

    NASA Astrophysics Data System (ADS)

    Sentman, D.; Wuerker, R.; McCarrick, M.; Pedersen, T.; Wescott, E.; Stenbaek-Nielsen, H.; Wong, A.; Kubota, M.; São Sabbas, F.; Lummerzheim, D.

    F-region airglow artificially excited by the HAARP and HIPAS phased arr ay RF facilities in Alaska was the subject of experiments conducted during three successive moon-down periods in February -April 2002. A new discovery of the HAARP February experiments is that artificially-created F-region airglow is enhanced in OI 557.7 nm and 630.0 nm emissions by approximately an order of magnitude when the RF beam is directed toward the magnetic zenith, ~15o away from vertical. Stereo imaging of the heated region from sites located at Poker Flat and the HIPAS Observatory, near Fairbanks, determined the height of maximum optical intensities to be ~300 km, and the FWHM transverse dimension to be ~30 km. The HIPAS experiments in March replicated many of HAARP results from a month earlier, and further revealed excitation in OI 777.4 and 844.6 nm emissions. In April, a joint HAARP-HIPAS twilight campaign yielded the first measurements, from Poker Flat, of the optical spectra of the artificially excited airglow and detection, at HAARP, of 427.8 nm N2+ 1N emissions. The results of these measurements suggest that the airglow emissions in the higher energy (> 10 eV) states occur by way of RF heating of electrons to several eV and impact excitation of preexisting excited states. In the case of nighttime conditions the heating is sufficient to produce 557.7 and 630.0 nm emissions. Under twilight or diffuse auroral conditions excitation may occur from a previously photoexcited, long lived O electronic state or photoionized N 2+ ground state to produce the observed excited state (>10 eV) OI and N 2 ion optical emissions.

  10. Factors Associated With Body Image Perception Among Brazilian Students From Low Human Development Index Areas.

    PubMed

    de Araujo, Thábyta Silva; Barbosa Filho, Valter Cordeiro; Gubert, Fabiane do Amaral; de Almeida, Paulo César; Martins, Mariana Cavalcante; Carvalho, Queliane Gomes da Silva; Costa, Ana Cristina Pereira de Jesus; Vieira, Neiva Francenely Cunha

    2017-01-01

    This study aimed to evaluate sociodemographic, behavioral, and individual factors associated with body image perception in a sample of adolescents from schools in low Human Development Index areas in Brazil. This cross-sectional study included 609 boys and 573 girls (aged 11-17 years). Body image perception (nine-silhouettes scale) and sociodemographic, behavioral, and individual variables were included. Multinomial logistic regression analysis was used. Most boys (76.9%) and girls (77.5%) were dissatisfied with their body image. Body mass index status and healthy body image evaluation were significantly associated with body image dissatisfaction in both boys and girls ( p < .001), and daily fruit consumption was associated with body image dissatisfaction only in boys ( p = .035). Education and health care focused on body image can pay special attention to young people from vulnerable areas with unhealthy nutritional status and focus on strategies that enable improving the perception of a healthy body and a healthy diet.

  11. Enhancement of Glossiness Perception by Retinal-Image Motion: Additional Effect of Head-Yoked Motion Parallax

    PubMed Central

    Tani, Yusuke; Araki, Keisuke; Nagai, Takehiro; Koida, Kowa; Nakauchi, Shigeki; Kitazaki, Michiteru

    2013-01-01

    It has been argued that when an observer moves, a contingent retinal-image motion of a stimulus would strengthen the perceived glossiness. This would be attributed to the veridical perception of three-dimensional structure by motion parallax. However, it has not been investigated whether the effect of motion parallax is more than that of retinal-image motion of the stimulus. Using a magnitude estimation method, we examine in this paper whether cross-modal coordination of the stimulus change and the observer's motion (i.e., motion parallax) is essential or the retinal-image motion alone is sufficient for enhancing the perceived glossiness. Our data show that a retinal-image motion simulating motion parallax without head motion strengthened the perceived glossiness but that its effect was weaker than that of motion parallax with head motion. These results suggest the existence of an additional effect of the cross-modal coordination between vision and proprioception on glossiness perception. That is, motion parallax enhances the perception of glossiness, in addition to retinal-image motions of specular surfaces. PMID:23336006

  12. Body image perception of African immigrants in Europe.

    PubMed

    Toselli, Stefania; Rinaldo, Natascia; Gualdi-Russo, Emanuela

    2016-08-23

    Nutritional disorders are now spreading worldwide both in developed and developing countries. Body image ideals and dissatisfaction have been linked to a number of poor health outcomes, including nutritional disorders. While previous studies have offered insight into weight status and body image perception of immigrants in North America, very few studies have analysed these aspects in migrants from Africa to Europe. Our review examines the effects of the migration process on beauty ideals and body dissatisfaction in African immigrants in Europe compared to residents in their own countries. The PubMed, PsycINFO and Google Scholar databases were searched for studies published from January 2000 till November 2015. Of the 730 titles identified, 26 met the inclusion criteria and were included in the present review. Among African residents, the body preferences depend on the country of residence and their socio-cultural status. Ethnic groups living in great isolation or with low incomes still have an ancestral idea of beauty, preferring a shapely body. However ethnic groups living in urban areas are moving toward Westernization of beauty ideals, preferring underweight or normal weight bodies. This review highlights that both residents and migrants are at high risk of nutritional disorders due to the adoption of Western beauty ideals. The results suggest that body dissatisfaction and BMI are increasing from Southern Africa to Europe according to a geographical gradient (described for females by Spearman's coefficient and linear regression, respectively). We emphasize the need for monitoring of the weight and psychological status of immigrants and the development of specific preventive strategies in European countries.

  13. "Eye-tracking" for assessment of image perception in gastrointestinal endoscopy with narrow-band imaging compared with white-light endoscopy.

    PubMed

    Meining, A; Atasoy, S; Chung, A; Navab, N; Yang, G Z

    2010-08-01

    Narrow-band imaging (NBI) is a new imaging methodology for improving the detection rate of gastrointestinal lesions. We aimed to evaluate perception of images by NBI and corresponding standard white-light-endoscopy (WLE) using a computer-guided eye-tracking system. A total of 23 NBI images of various lesions with the 23 corresponding WLE images were assessed in random order by 18 subjects with various endoscopy experience. Before evaluation, a teaching set of three NBI and corresponding WLE images was shown to highlight the characteristics of lesions. An eye-tracking system (Tobii X series with integrated 17-inch monitor) was used to record the eye movements of the subjects while they examined respective images. The following parameters were measured: total time spent on image, time until first fixation of lesion, total number of fixations per image and per lesion, and number of fixations until finding the lesion. In total, 828 experiments were conducted. Lesions could not be detected in 6.5 % (NBI) and 4.1 % (WLE) of images ( P = NS). The total number of fixations and total time spent on respective figures as a whole were significantly greater for NBI images compared with WLE images ( P < 0.003). However, the number of fixations until the lesion was found, the number of fixations on the lesion, and the time until first fixation of the lesion did not differ between the two image groups ( P > 0.1). This is the first study using eye tracking to evaluate image perception in gastrointestinal endoscopy. Significant differences in the interpretation of NBI and WLE images were observed, which may be relevant for the detection and characterization of lesions during endoscopy. (c) Georg Thieme Verlag KG Stuttgart . New York.

  14. Neural impact of the semantic content of visual mental images and visual percepts.

    PubMed

    Mazard, A; Laou, L; Joliot, M; Mellet, E

    2005-08-01

    The existence of hemispheric lateralization of visual mental imagery remains controversial. In light of the literature, we used fMRI to test whether processing of mental images of object drawings preferentially engages the left hemisphere to compared non-object drawings. An equivalent comparison was also made while participants actually perceived object and non-object drawings. Although these two conditions engaged both hemispheres, activation was significantly stronger in the left occipito-temporo-frontal network during mental inspection of object than of non-object drawings. This network was also activated when perception of object drawings was compared to that of non-object drawings. An interaction was nonetheless observed: this effect was stronger during imagery than during perception in the left inferior frontal and the left inferior temporal gyrus. Although the tasks subjects performed did not explicitly require semantic analysis, activation of this network probably reflected, at least in part, a semantic and possibly a verbal retrieval component when object drawings were processed. Mental imagery tasks elicited activation of early visual cortex at a lower level than perception tasks. In the context of the imagery debate, these findings indicate that, as previously suggested, figurative imagery could involve primary visual cortex and adjacent areas.

  15. The BAA Observers' Workshops: Imaging comets

    NASA Astrophysics Data System (ADS)

    Mobberley, M. P.

    2003-10-01

    Imaging comets, especially from the UK, used to be nothing less than a battle against the insensitivity of photographic film and the inevitable arrival of cloud on those crucial moon-free nights when a bright comet was close to perihelion. In recent years the situation has changed considerably. On the positive side modern CCDs are twenty times more light-sensitive than the best photographic emulsions, and image processing is far easier than messing around for hours with revolting chemicals in a darkroom. On the negative side the modern lives of working people leave little room for learning new skills and the stress of the modern working day leaves little enthusiasm for a night-time battle with clouds and unfriendly equipment. This author firmly believes that well-thought-out observatories and patient perseverance are the key to achieving success where imaging comets is concerned. Basically, anyone who has learned to use a computer can learn to take good comet images; it is all a question of surmounting the various hurdles in a systematic fashion.

  16. Health Perceptions, Self and Body Image, Physical Activity and Nutrition among Undergraduate Students in Israel

    PubMed Central

    Korn, Liat; Gonen, Ester; Shaked, Yael; Golan, Moria

    2013-01-01

    Purpose This study examines health perceptions, self and body image, physical exercise and nutrition among undergraduate students. Methods A structured, self-reported questionnaire was administered to more than 1500 students at a large academic institute in Israel. The study population was heterogenic in both gender and fields of academic study. Results High correlations between health perceptions, appropriate nutrition, and positive self and body image were found. The relationships between these variables differed between the subpopulation in the sample and the different genders. Engagement in physical exercise contributed to positive body image and positive health perceptions more than engagement in healthy nutrition. Nutrition students reported higher frequencies of positive health perceptions, positive self and body image and higher engagement in physical exercise in comparison to all other students in the sample. Conclusions This study suggests, as have many before, that successful health promotion policy should reflect a collectivist rather than an individualist ethos by providing health prerequisites through a public policy of health-promotion, where the academic settings support a healthy lifestyle policy, by increasing availability of a healthy, nutritious and varied menu in the cafeterias, and offering students various activities that enhance healthy eating and exercise. Implications and contribution This study examined health perceptions, self-image, physical exercise and nutrition among undergraduate students and found high correlations between these topics. Nutrition students reported higher frequencies of positive health perceptions, and positive self and body image and engaged more in physical exercise when compared with all other students in the sample. PMID:23516503

  17. Health perceptions, self and body image, physical activity and nutrition among undergraduate students in Israel.

    PubMed

    Korn, Liat; Gonen, Ester; Shaked, Yael; Golan, Moria

    2013-01-01

    This study examines health perceptions, self and body image, physical exercise and nutrition among undergraduate students. A structured, self-reported questionnaire was administered to more than 1500 students at a large academic institute in Israel. The study population was heterogenic in both gender and fields of academic study. High correlations between health perceptions, appropriate nutrition, and positive self and body image were found. The relationships between these variables differed between the subpopulation in the sample and the different genders. Engagement in physical exercise contributed to positive body image and positive health perceptions more than engagement in healthy nutrition. Nutrition students reported higher frequencies of positive health perceptions, positive self and body image and higher engagement in physical exercise in comparison to all other students in the sample. This study suggests, as have many before, that successful health promotion policy should reflect a collectivist rather than an individualist ethos by providing health prerequisites through a public policy of health-promotion, where the academic settings support a healthy lifestyle policy, by increasing availability of a healthy, nutritious and varied menu in the cafeterias, and offering students various activities that enhance healthy eating and exercise. IMPLICATIONS AND CONTRIBUTION: This study examined health perceptions, self-image, physical exercise and nutrition among undergraduate students and found high correlations between these topics. Nutrition students reported higher frequencies of positive health perceptions, and positive self and body image and engaged more in physical exercise when compared with all other students in the sample.

  18. An Image Study on the Rich and Poor Perception

    ERIC Educational Resources Information Center

    Koçak, Recep

    2015-01-01

    The aim of this study is to project people's perceptions about the rich and poor. In this descriptive study, a questionnaire developed by the researcher and caricatures were used to collect data. The questionnaire composed of seven items including questions directed to adjectives related to the participants' perceptions about the rich and poor as…

  19. An Image Study on the Rich and Poor Perception

    ERIC Educational Resources Information Center

    Koçak, Recep

    2015-01-01

    The aim of this study is to project people's perceptions about the rich and poor. In this descriptive study, a questionnaire developed by the researcher and caricatures were used to collect data. The questionnaire composed of seven items including questions directed to adjectives related to the participants' perceptions about the rich and poor as…

  20. Brain imaging in the context of food perception and eating.

    PubMed

    Hollmann, Maurice; Pleger, Burkhard; Villringer, Arno; Horstmann, Annette

    2013-02-01

    Eating behavior depends heavily on brain function. In recent years, brain imaging has proved to be a powerful tool to elucidate brain function and brain structure in the context of eating. In this review, we summarize recent findings in the fast growing body of literature in the field and provide an overview of technical aspects as well as the basic brain mechanisms identified with imaging. Furthermore, we highlight findings linking neural processing of eating-related stimuli with obesity. The consumption of food is based on a complex interplay between homeostatic and hedonic mechanisms. Several hormones influence brain activity to regulate food intake and interact with the brain's reward circuitry, which is partly mediated by dopamine signaling. Additionally, it was shown that food stimuli trigger cognitive control mechanisms that incorporate internal goals into food choice. The brain mechanisms observed in this context are strongly influenced by genetic factors, sex and personality traits. Overall, a complex picture arises from brain-imaging findings, because a multitude of factors influence human food choice. Although several key mechanisms have been identified, there is no comprehensive model that is able to explain the behavioral observations to date. Especially a careful characterization of patients according to genotypes and phenotypes could help to better understand the current and future findings in neuroimaging studies.

  1. Designing observer trials for image fusion experiments with Latin Squares

    NASA Astrophysics Data System (ADS)

    Michaelsen, Eckart; Schwan, Gabriele; Scherer-Negenborn, Norbert

    2017-05-01

    Multisensor image fusion (e.g. IR with visual) is the process of combining relevant information from two or more images into a single image. The aim is to find an objective quality measure, which can be used in automatic applications, that correlates best with subjective observer trials. Not all combinations of image, algorithm, and test observer can be worked out. In this paper R. Fisher's Design of Experiments approach based on Latin Squares is used for thinning out the number of experiments for each observer in such observer trials while preserving exactness and reliability of the result.

  2. The disagreement between the ideal observer and human observers in hardware and software imaging system optimization: theoretical explanations and evidence

    NASA Astrophysics Data System (ADS)

    He, Xin

    2017-03-01

    The ideal observer is widely used in imaging system optimization. One practical question remains open: do the ideal and human observers have the same preference in system optimization and evaluation? Based on the ideal observer's mathematical properties proposed by Barrett et. al. and the empirical properties of human observers investigated by Myers et. al., I attempt to pursue the general rules regarding the applicability of the ideal observer in system optimization. Particularly, in software optimization, the ideal observer pursues data conservation while humans pursue data presentation or perception. In hardware optimization, the ideal observer pursues a system with the maximum total information, while humans pursue a system with the maximum selected (e.g., certain frequency bands) information. These different objectives may result in different system optimizations between human and the ideal observers. Thus, an ideal observer optimized system is not necessarily optimal for humans. I cite empirical evidence in search and detection tasks, in hardware and software evaluation, in X-ray CT, pinhole imaging, as well as emission computed tomography to corroborate the claims. (Disclaimer: the views expressed in this work do not necessarily represent those of the FDA)

  3. Living with floods - Household perception and satellite observations in the Barotse floodplain, Zambia

    NASA Astrophysics Data System (ADS)

    Cai, Xueliang; Haile, Alemseged Tamiru; Magidi, James; Mapedza, Everisto; Nhamo, Luxon

    2017-08-01

    The Barotse Floodplain, a designated Ramsar site, is home to thousands of indigenous people along with an extensive wetland ecosystem and food production system. Increasingly it is also a popular tourist destination with its annual Kuomboka festival which celebrates the relocation of the king and the Lozi people to higher ground before the onset of the flood season. This paper presents an integrated approach which cross validates and combines the floodplain residents' perceptions about recent floods with information on flood inundation levels derived from satellite observations. Local residents' surveys were conducted to assess farmers' perception on the flooding patterns and the impact on their livelihoods. Further, a series of flood inundation maps from 1989 to 2014 generated from remotely sensed Landsat imagery were used to assess the recent patterns of floods. Results show that the floodplain has a population of 33 thousand living in 10,849 small permeant or temporary buildings with a total cropland area of 4976 ha. The floodplain hydrology and flooding patterns have changed, confirmed by both surveys and satellite image analysis, due to catchment development and changing climate. The average annual inundated areas have increased from about 316 thousand ha in 1989-1998 to 488 thousand ha in 2005-2014. As a result the inundated cropland and houses increased from 9% to 6% in 1989 to 73% and 47% in 2014, respectively. The timing of the floods has also changed with both delaying and early onset happening more frequently. These changes cause increasing difficulties in flood forecast and preparation using indigenous knowledge, therefore creating greater damages to crops, livestock, and houses. Current floodplain management system is inadequate and new interventions are needed to help manage the floods at a systematic manner.

  4. Observed Workplace Incivility toward Women, Perceptions of Interpersonal Injustice, and Observer Occupational Well-Being: Differential Effects for Gender of the Observer

    PubMed Central

    Miner, Kathi N.; Cortina, Lilia M.

    2016-01-01

    The present study examined perceptions of interpersonal injustice as a mediator of the relationship between observed incivility toward women at work and employees' occupational well-being. We also examined gender of the observer as a moderator of these mediational relationships. Using online survey data from 1702 (51% women; 92% White) employees, results showed that perceptions of injustice partially mediated the relationship between observed incivility toward women and job satisfaction, turnover intentions, and organizational trust. Men reported greater perceptions of injustice than did women the more they observed the uncivil treatment of women at work, and the indirect effects of observed incivility toward women on well-being were stronger for men compared to women. Observed incivility toward women also had direct relationships with the occupational well-being outcomes over and above the impact mediated through injustice, particularly for women. Specifically, observing incivility toward female coworkers directly related to lowered job satisfaction and perceptions of safety for female bystanders. In addition, although both male and female bystanders reported heightened turnover intentions and lowered trust in the organization with higher levels of observed incivility toward women, these relationships were stronger for female than male observers. Our findings both replicate and extend past research on vicarious workplace incivility toward women. PMID:27242558

  5. Observed Workplace Incivility toward Women, Perceptions of Interpersonal Injustice, and Observer Occupational Well-Being: Differential Effects for Gender of the Observer.

    PubMed

    Miner, Kathi N; Cortina, Lilia M

    2016-01-01

    The present study examined perceptions of interpersonal injustice as a mediator of the relationship between observed incivility toward women at work and employees' occupational well-being. We also examined gender of the observer as a moderator of these mediational relationships. Using online survey data from 1702 (51% women; 92% White) employees, results showed that perceptions of injustice partially mediated the relationship between observed incivility toward women and job satisfaction, turnover intentions, and organizational trust. Men reported greater perceptions of injustice than did women the more they observed the uncivil treatment of women at work, and the indirect effects of observed incivility toward women on well-being were stronger for men compared to women. Observed incivility toward women also had direct relationships with the occupational well-being outcomes over and above the impact mediated through injustice, particularly for women. Specifically, observing incivility toward female coworkers directly related to lowered job satisfaction and perceptions of safety for female bystanders. In addition, although both male and female bystanders reported heightened turnover intentions and lowered trust in the organization with higher levels of observed incivility toward women, these relationships were stronger for female than male observers. Our findings both replicate and extend past research on vicarious workplace incivility toward women.

  6. The impact of observer dynamics on sonar perception

    NASA Astrophysics Data System (ADS)

    Rikoski, Richard J.

    2004-05-01

    The minimum information necessary for a moving observer to track objects depends on body dynamics, sensor design, sensor configuration, and environmental perturbations. This paper will present governing equations relating sonar measurements to 6 DOF dynamics, and eight nondimensional parameters describing the transitions between various regimes. Using nondimensional analysis, it will be shown that to minimize second-order effects, an observer should increase its ping rate as it approaches a target. Bats have been observed to increase their ping rate as they approach a target [Altringham, Bats: Biology and Behavior (1996)]. Alternatively, an observer might use a target's angular rate to predict second-order range effects. This requires the angular rate to become observable prior to second-order range effects becoming observable. This yields a design constraint relating velocity, ping rate, and aperture, but not wavelength. Based on this constraint, it appears some marine mammals could track objects in the second-order regime [Au, The Sonar of Dolphins (1993)]. [Work supported by ONR.

  7. 3D panorama stereo visual perception centering on the observers

    NASA Astrophysics Data System (ADS)

    Tang, YiPing; Zhou, Jingkai; Xu, Haitao; Xiang, Yun

    2015-09-01

    For existing three-dimensional (3D) laser scanners, acquiring geometry and color information of the objects simultaneously is difficult. Moreover, the current techniques cannot store, modify, and model the point clouds efficiently. In this work, we have developed a novel sensor system, which is called active stereo omni-directional vision sensor (ASODVS), to address those problems. ASODVS is an integrated system composed of a single-view omni-directional vision sensor and a mobile planar green laser generator platform. Driven by a stepper motor, the laser platform can move vertically along the axis of the ASODVS. During the scanning of the laser generators, the panoramic images of the environment are captured and the characteristics and space location information of the laser points are calculated accordingly. Based on the image information of the laser points, the 3D space can be reconstructed. Experimental results demonstrate that the proposed ASODVS system can measure and reconstruct the 3D space in real-time and with high quality.

  8. Auroral Observations from the POLAR Ultraviolet Imager (UVI)

    NASA Technical Reports Server (NTRS)

    Germany, G. A.; Spann, J. F.; Parks, G. K.; Brittnacher, M. J.; Elsen, R.; Chen, L.; Lummerzheim, D.; Rees, M. H.

    1998-01-01

    Because of the importance of the auroral regions as a remote diagnostic of near-Earth plasma processes and magnetospheric structure, spacebased instrumentation for imaging the auroral regions have been designed and operated for the last twenty-five years. The latest generation of imagers, including those flown on the POLAR satellite, extends this quest for multispectral resolution by providing three separate imagers for the visible, ultraviolet, and X ray images of the aurora. The ability to observe extended regions allows imaging missions to significantly extend the observations available from in situ or groundbased instrumentation. The complementary nature of imaging and other observations is illustrated below using results from tile GGS Ultraviolet Imager (UVI). Details of the requisite energy and intensity analysis are also presented.

  9. The Potential of General Classroom Observation: Turkish EFL Teachers' Perceptions, Sentiments, and Readiness for Action

    ERIC Educational Resources Information Center

    Merç, Ali

    2015-01-01

    The purpose of this study was to determine Turkish EFL teachers' attitudes towards classroom observation. 204 teachers from different school settings responded to an online questionnaire. Data were analyzed according to three types of attitudes towards classroom observation: perceptions, sentiments, and readiness for action. The findings revealed…

  10. The Effects of Lesson Study on Classroom Observations and Perceptions of Lesson Effectiveness

    ERIC Educational Resources Information Center

    Myers, Julia

    2012-01-01

    This study examined the effects of lesson study on participants' classroom observations and perceptions of lesson effectiveness, by investigating the focus of their observations during a mathematics lesson and their ratings of the lesson's effectiveness, both preceding and subsequent to the lesson study experience. Prior to the lesson study,…

  11. Parietal theta burst TMS: Functional fractionation observed during bistable perception not evident in attention tasks.

    PubMed

    Schauer, Georg; Kanai, Ryota; Brascamp, Jan W

    2016-02-01

    When visual input is ambiguous, perception spontaneously alternates between interpretations: bistable perception. Studies have identified two distinct sites near the right intraparietal sulcus where inhibitory transcranial magnetic stimulation (TMS) affects the frequency of occurrence of these alternations, but strikingly with opposite directions of effect for the two sites. Lesion and TMS studies on spatial and sustained attention have also indicated a parcellation of right parietal cortex, into areas serving distinct attentional functions. We used the exact TMS procedure previously employed to affect bistable perception, yet measured its effect on spatial and sustained attention tasks. Although there was a trend for TMS to affect performance, trends were consistently similar for both parietal sites, with no indication of opposite effects. We interpret this as signifying that the previously observed parietal fractionation of function regarding the perception of ambiguous stimuli is not due to TMS-induced modification of spatial or sustained attention. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Monocular depth perception using image processing and machine learning

    NASA Astrophysics Data System (ADS)

    Hombali, Apoorv; Gorde, Vaibhav; Deshpande, Abhishek

    2011-10-01

    This paper primarily exploits some of the more obscure, but inherent properties of camera and image to propose a simpler and more efficient way of perceiving depth. The proposed method involves the use of a single stationary camera at an unknown perspective and an unknown height to determine depth of an object on unknown terrain. In achieving so a direct correlation between a pixel in an image and the corresponding location in real space has to be formulated. First, a calibration step is undertaken whereby the equation of the plane visible in the field of view is calculated along with the relative distance between camera and plane by using a set of derived spatial geometrical relations coupled with a few intrinsic properties of the system. The depth of an unknown object is then perceived by first extracting the object under observation using a series of image processing steps followed by exploiting the aforementioned mapping of pixel and real space coordinate. The performance of the algorithm is greatly enhanced by the introduction of reinforced learning making the system independent of hardware and environment. Furthermore the depth calculation function is modified with a supervised learning algorithm giving consistent improvement in results. Thus, the system uses the experience in past and optimizes the current run successively. Using the above procedure a series of experiments and trials are carried out to prove the concept and its efficacy.

  13. Aspiring School Leaders' Perceptions of the Walkthrough Observations

    ERIC Educational Resources Information Center

    Garza, Ruben; Ovando, Martha; O'Doherty, Ann

    2016-01-01

    The accountability pressures of the recent decade require that instructional leaders work with teachers to ensure student academic success. The "walkthrough" or "walkthrough observation" is an instructional leadership practice that has been regarded as a promising avenue to collaboratively work with teachers. This exploratory…

  14. Imaging artificial satellites: An observational challenge

    NASA Astrophysics Data System (ADS)

    Smith, D. A.; Hill, D. C.

    2016-10-01

    According to the Union of Concerned Scientists, as of the beginning of 2016 there are 1381 active satellites orbiting the Earth, and the United States' Space Surveillance Network tracks about 8000 manmade orbiting objects of baseball-size and larger. NASA estimates debris larger than 1 cm to number more than half a million. The largest ones can be seen by eye—unresolved dots of light that move across the sky in minutes. For most astrophotographers, satellites are annoying streaks that can ruin hours of work. However, capturing a resolved image of an artificial satellite can pose an interesting challenge for a student, and such a project can provide connections between objects in the sky and commercial and political activities here on Earth.

  15. High Resolution Astrophysical Observations Using Speckle Imaging

    DTIC Science & Technology

    1986-04-11

    efficient in optimizing an observing program, since no manual intervention is required. Its first se was at the CTIO observatory in Chile , where it...CODE GRAY CODE 0 DETECTED O INTENSIFIED PHOTON K LENSES MASKS MASKS J1NO NO XEQ5!UIT DIUAR RA 0 000 000 2 00 i l o THERMOELECTRIC COLLIMATOR FIELDJ

  16. An Amateur's Guide to Observing and Imaging the Heavens

    NASA Astrophysics Data System (ADS)

    Morison, Ian

    2014-06-01

    Foreword; Acknowledgments; Prologue: a tale of two scopes; 1. Telescope and observing fundamentals; 2. Refractors; 3. Binoculars and spotting scopes; 4. The Newtonian telescope and its derivatives; 5. The Cassegrain telescope and its derivatives - Schmidt-Cassegrains and Maksutovs; 6. Telescope maintenance, collimation and star testing; 7. Telescope accessories: finders, eyepieces and bino-viewers; 8. Telescope mounts: alt/az and equatorial with their computerised variants; 9. The art of visual observing; 10. Visual observations of the Moon and planets; 11. Imaging the Moon and planets with DSLRs and web-cams; 12. Observing and imaging the Sun in white light and H-alpha; 13. Observing with an astro-video camera to 'see' faint objects; 14. Deep sky imaging with standard and H-alpha modified DSLR cameras; 15. Deep sky imaging with cooled CCD cameras; 16. Auto-guiding techniques and equipment; 17. Spectral studies of the Sun, stars and galaxies; 18. Improving and enhancing images in Photoshop; Index.

  17. Visual Images of Subjective Perception of Time in a Literary Text

    ERIC Educational Resources Information Center

    Nesterik, Ella V.; Issina, Gaukhar I.; Pecherskikh, Taliya F.; Belikova, Oxana V.

    2016-01-01

    The article is devoted to the subjective perception of time, or psychological time, as a text category and a literary image. It focuses on the visual images that are characteristic of different types of literary time--accelerated, decelerated and frozen (vanished). The research is based on the assumption that the category of subjective perception…

  18. Body Weight, Body Image, and Perception of Fad Diets in Adolescent Girls.

    ERIC Educational Resources Information Center

    Storz, Nancy S.; Greene, Walter H.

    1983-01-01

    Examined relationships among adolescent girls' (N=203) satisfaction with body weight, body image, and perception/use of fad diets. Subjects wanting to lose weight were placed into two groups based on amount of weight-loss desired and compared in terms of body image scores, ratings of fad diets, and frequency of using the diets. (JN)

  19. Teachers' Images of Their Schools and Perceptions of Their Work Environments.

    ERIC Educational Resources Information Center

    Fisher, Darrell; Grady, Neville

    1998-01-01

    Describes development of the Images Through Metaphor Questionnaire and its application in an investigation of relationships between 162 (Tasmanian) teachers' images of their schools and their perceptions of their work environment as assessed by the School Level Environment Questionnaire. Results revealed a strong relationship between these…

  20. Body Weight, Body Image, and Perception of Fad Diets in Adolescent Girls.

    ERIC Educational Resources Information Center

    Storz, Nancy S.; Greene, Walter H.

    1983-01-01

    Examined relationships among adolescent girls' (N=203) satisfaction with body weight, body image, and perception/use of fad diets. Subjects wanting to lose weight were placed into two groups based on amount of weight-loss desired and compared in terms of body image scores, ratings of fad diets, and frequency of using the diets. (JN)

  1. A new Speckle Imager and speckle observations at SHAO

    NASA Astrophysics Data System (ADS)

    Ding, Yuanyuan; Li, Kexin; Chen, Zhendong

    2015-08-01

    Speckle interferometry is achieved by the integration of a series of short-exposure images of the object. It has been the method of choice for high-resolution observations of binary stars. It has yielded thousands of excellent angular separations and position angles. This technique can easily be actualized because it doesn’t need exploration and revision system for wavefront. So it is widely used in observational astronomy, especially for observing binary stars. Recently, the research shows that it also can provide high-resolution satellite image.Speckle imaging of binary stars carried out by the research team of Shanghai Astronomical Observatory (SHAO) from 2006, and we have got some valuable results. With the increasing urbanization, the night sky background getting brighter at Sheshan area, the former speckle imager can't meet the needs of the observation experiment. In the years 2013-2014, a new speckle imager was developed at SHAO, we called it as NSIS. It is a speckle imaging system that use Ultra897 EMCCD as the image recording device. Short exposure images are recorded by this device at a 1.56-m telescope. Collimating lens and imaging lens are adopted for magnification, and the space between two lens can be changed which is set for the filter and Risley prisms or other future use. Construction of NSIS has been completed at SHAO, and more than twenty binary stars were observed in 2014. The results shows that the detection capability of the new imager is stronger than the original one. At present, the magnitude of the faintest star we observed is 7.67. In the future, we will observe more binary stars fainter than 8.In this paper, we will give the description of system design and the observations of binary stars. , The image reconstruction and initial results will be presented too.

  2. NOVEL OBSERVATIONS AND POTENTIAL APPLICATIONS USING DIGITAL INFRARED IRIS IMAGING

    PubMed Central

    Roberts, Daniel K.; Lukic, Ana; Yang, Yongyi; Moroi, Sayoko E.; Wilensky, Jacob T.; Wernick, Miles N.

    2017-01-01

    Digital infrared (IR) iris photography using a modified digital camera system was carried out on about 300 subjects seen during routine clinical care and research at one facility. Since this image database offered opportunity to gain new insight into the potential utility of IR iris imaging, it was surveyed for unique image patterns. Then, a selection of photos was compiled that would illustrate the spectrum of this imaging experience. Potentially informative image patterns were observed in subjects with cataracts, diabetic retinopathy, Posner-Schlossman syndrome, iridociliary cysts, long anterior lens zonules, nevi, oculocutaneous albinism, pigment dispersion syndrome, pseudophakia, suspected vascular anomaly, and trauma. Image patterns were often unanticipated regardless of pre-existing information and suggest that IR iris imaging may have numerous potential clinical and research applications, some of which may still not be recognized. These observations suggest further development and study of this technology. PMID:19320317

  3. Neuroelectrical imaging study of music perception by children with unilateral and bilateral cochlear implants.

    PubMed

    Marsella, Pasquale; Scorpecci, Alessandro; Vecchiato, Giovanni; Colosimo, Alfredo; Maglione, Anton Giulio; Babiloni, Fabio

    2014-05-01

    To investigate by means of non-invasive neuroelectrical imaging the differences in the perceived pleasantness of music between children with cochlear implants (CI) and normal-hearing (NH) children. 5 NH children and 5 children who received a sequential bilateral CI were assessed by means of High-Resolution EEG with Source Reconstruction as they watched a musical cartoon. Implanted children were tested before and after the second implant. For each subject the scalp Power Spectral Density was calculated in order to investigate the EEG alpha asymmetry. The scalp topographic distribution of the EEG power spectrum in the alpha band was different in children using one CI as compared to NH children (see figure). With two CIs the cortical activation pattern changed significantly, becoming more similar to the one observed in NH children. The findings support the hypothesis that bilateral CI users have a closer-to-normal perception of the pleasantness of music than unilaterally implanted children.

  4. Generating an image that affords slant perception from stereo, without pictorial cues.

    PubMed

    Galeotti, J; Macdonald, K; Wang, J; Horvath, S; Zhang, A; Klatzky, R

    2017-01-01

    This paper describes an algorithm for generating a planar image that when tilted provides stereo cues to slant, without contamination from pictorial gradients. As the stimuli derived from this image are ultimately intended for use in studies of slant perception under magnification, a further requirement is that the generated image be suitable for high-definition printing or display on a monitor. A first stage generates an image consisting of overlapping edges with sufficient density that when zoomed, edges that nearly span the original scale are replaced with newly emergent content that leaves the visible edge statistics unchanged. A second stage reduces intensity clumping while preserving edges by enforcing a broad dynamic range across the image. Spectral analyses demonstrate that the low-frequency content of the resulting image, which would correspond to the pictorial cue of texture gradient changes under slant, (a) has a power fall-off deviating from 1/f noise (to which the visual system is particularly sensitive), and (b) does not offer systematic cues under changes in scale or slant. Two behavioral experiments tested whether the algorithm generates stimuli that offer cues to slant under stereo viewing only, and not when disparities are eliminated. With a particular adjustment of dynamic range (and nearly so with the other version that was tested), participants viewing without stereo cues were essentially unable to discriminate slanted from flat (frontal) stimuli, and when slant was reported, they failed to discriminate its direction. In contrast, non-stereo viewing of a control stimulus with pictorial cues, as well as stereoscopic observation, consistently allowed participants to perceive slant correctly. Experiment 2 further showed that these results generalized across a population of different stimuli from the same generation process and demonstrated that the process did not substitute biased slant cues.

  5. Parallel and serial grouping of image elements in visual perception.

    PubMed

    Houtkamp, Roos; Roelfsema, Pieter R

    2010-12-01

    The visual system groups image elements that belong to an object and segregates them from other objects and the background. Important cues for this grouping process are the Gestalt criteria, and most theories propose that these are applied in parallel across the visual scene. Here, we find that Gestalt grouping can indeed occur in parallel in some situations, but we demonstrate that there are also situations where Gestalt grouping becomes serial. We observe substantial time delays when image elements have to be grouped indirectly through a chain of local groupings. We call this chaining process incremental grouping and demonstrate that it can occur for only a single object at a time. We suggest that incremental grouping requires the gradual spread of object-based attention so that eventually all the object's parts become grouped explicitly by an attentional labeling process. Our findings inspire a new incremental grouping theory that relates the parallel, local grouping process to feedforward processing and the serial, incremental grouping process to recurrent processing in the visual cortex.

  6. Women's meta-perceptions of attractiveness and their relations to body image.

    PubMed

    Dijkstra, Pieternel; Barelds, Dick P H

    2011-01-01

    The present study examined meta-perceptions of attractiveness among women. More specifically, ratings were collected about how women thought their partner, family and friends, and strangers would view their physical attractiveness. In an online survey, 1287 Dutch women (aged 19-80 years) answered questions concerning meta-perceptions of attractiveness, demographic data, body mass index (BMI), body image (Body Areas Satisfaction Scale, self-rated general physical attractiveness, and actual-ideal weight discrepancy), and self-esteem. Results showed that women's meta-perceptions of attractiveness reflected the level of closeness of the relationship with the other person, with the most positive meta-perceptions reported for the partner, followed by those for family and friends, and the least positive meta-perceptions for strangers. Meta-perceptions were strongly related to body image, self-esteem and BMI. Self-ratings of attractiveness appeared to be lower than all meta-perceptions of attractiveness, suggesting that women are aware of their own negative self-bias and/or other people's positive bias. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Improving the quality perception of digital images using modified method of the eye aberration correction

    NASA Astrophysics Data System (ADS)

    Kvyetnyy, Roman; Sofina, Olga; Orlyk, Pavel; Utreras, Andres J.; Smolarz, Andrzej; Wójcik, Waldemar; Orazalieva, Sandugash

    2016-09-01

    A new approach to solve the problem of image correction to improve the quality perception of graphic information by people with aberrations of the eye optical system is considered in given article. The model of higher order aberrations which may appear in the human eye optical system is described. The developed approach is based on the pre-processing of digital images and applying of the filtration methods to the adjusted images.

  8. Asteroid (4179) Toutatis size determination via optical images observed by the Chang'e-2 probe

    NASA Astrophysics Data System (ADS)

    Liu, P.; Huang, J.; Zhao, W.; Wang, X.; Meng, L.; Tang, X.

    2014-07-01

    This work is a physical and statistical study of the asteroid (4179) Toutatis using the optical images obtained by a solar panel monitor of the Chang'e-2 probe on Dec. 13, 2012 [1]. In the imaging strategy, the camera is focused at infinity. This is specially designed for the probe with its solar panels monitor's principle axis pointing to the relative velocity direction of the probe and Toutatis. The imaging strategy provides a dedicated way to resolve the size by multi-frame optical images. The inherent features of the data are: (1) almost no rotation was recorded because of the 5.41-7.35 Earth-day rotation period and the small amount of elapsed imaging time, only minutes, make the object stay in the images in a fixed position and orientation; (2) the sharpness of the upper left boundary and the vagueness of lower right boundary resulting from the direction of SAP (Sun-Asteroid-Probe angle) cause a varying accuracy in locating points at different parts of Toutatis. A common view is that direct, accurate measurements of asteroid shapes, sizes, and pole positions are now possible for larger asteroids that can be spatially resolved using the Hubble Space Telescope or large ground-based telescopes equipped with adaptive optics. For a quite complex planetary/asteroid probe study, these measurements certainly need continuous validation via a variety of ways [2]. Based on engineering parameters of the probe during the fly-by, the target spatial resolving and measuring procedures are described in the paper. Results estimated are optical perceptible size on the flyby epoch under the solar phase angles during the imaging. It is found that the perceptible size measured using the optical observations and the size derived from the radar observations by Ostro et al.~in 1995 [3], are close to one another.

  9. Administrators' Perceptions Regarding the Effectiveness of the Teacher Observation Evaluation System

    ERIC Educational Resources Information Center

    Williams, Kathleen Riley

    2015-01-01

    This phenomenological narrative study was designed to explore public school administrators' perceptions regarding Louisiana's Compass teacher observation evaluation system as a method for assessing teacher performance. Participants were administrators with at least two years of experience as a public school administrator at the secondary level,…

  10. Administrators' Perceptions Regarding the Effectiveness of the Teacher Observation Evaluation System

    ERIC Educational Resources Information Center

    Williams, Kathleen Riley

    2015-01-01

    This phenomenological narrative study was designed to explore public school administrators' perceptions regarding Louisiana's Compass teacher observation evaluation system as a method for assessing teacher performance. Participants were administrators with at least two years of experience as a public school administrator at the secondary level,…

  11. A Window into Mathematical Support: How Parents' Perceptions Change Following Observations of Mathematics Tutoring

    ERIC Educational Resources Information Center

    Westenskow, Arla; Boyer-Thurgood, Jennifer; Moyer-Packenham, Patricia S.

    2015-01-01

    This research study examined the perceptions of 24 parents of rising 5th-grade students with mathematics learning difficulties as part of a 10-week summer mathematics tutoring experience. During the summer tutoring program, parents observed their children participating in mathematics learning experiences during one-to-one tutoring sessions. At the…

  12. A Window into Mathematical Support: How Parents' Perceptions Change Following Observations of Mathematics Tutoring

    ERIC Educational Resources Information Center

    Westenskow, Arla; Boyer-Thurgood, Jennifer; Moyer-Packenham, Patricia S.

    2015-01-01

    This research study examined the perceptions of 24 parents of rising 5th-grade students with mathematics learning difficulties as part of a 10-week summer mathematics tutoring experience. During the summer tutoring program, parents observed their children participating in mathematics learning experiences during one-to-one tutoring sessions. At the…

  13. Peer Observation of Teaching: Perceptions and Experiences of Teachers in a Primary School in Cyprus

    ERIC Educational Resources Information Center

    Karagiorgi, Yiasemina

    2012-01-01

    This article examines teachers' perceptions of, and experiences with, professional development opportunities involving a school-based project on peer observation of teaching. The study aims to reveal the ways in which seven teachers in one primary school in Cyprus see themselves as agents improving their own and peers' teaching through informal…

  14. Images and Perceptions of Vocational Agriculture Programs in Mississippi.

    ERIC Educational Resources Information Center

    Shoemake, Ralph Glenn

    The objectives of this study were to: (1) compare perceptions of administrators, school board members, students, and vocational agriculture teachers concerning the vocational agriculture programs in Mississippi, (2) determine program strengths and weaknesses in order to improve present programs and plan future ones for Mississippi, and (3) provide…

  15. Plasmaspheric Structures Observed by the CLUSTER and IMAGE Spacecraft

    NASA Technical Reports Server (NTRS)

    Fung, S. F.; Adrian, M. L.; Benson, R. F.; Garcia, L. N.; Goldstein, M. L.; Sandel, B.

    2008-01-01

    Global EUV imaging observations by the IMAGE satellite have revealed spectacularly complex changes in plasmaspheric structures as the plasmaspheric plasmas respond to geomagnetic activity while remaining under varying degrees of influence by co-rotation, depending on the radial distance. This complex plasmaspheric plasma dynamics, with its numerous scales of variability, is clearly far from being well understood. There is now renewed interest in studying the plasmasphere due to its apparent connections with the development of the ring current and radiation belt and loss of ionospheric plasmas. Earlier in the mission, the Cluster spacecraft only crossed the plasmapause (L - 4) occasionally and made measurements of the cold plasma in the plasmasphere and plasmaspheric drainage plumes. The study by Darrouzet et al. [2006], for example, provided detailed analyses of in situ Cluster observations and IMAGE EUV imaging observations of three plasmaspheric plumes detected in April-June, 2002. Within the next couple of years, Cluster orbit will change, causing perigee to migrate to lower altitudes, and thus providing excellent opportunities to obtain more detailed measurements of the plasmasphere. In this paper, we report our analyses of the earlier Cluster-IMAGE events by incorporating the different perspectives provided by the IMAGE Radio Plasma Imager (RPI) observations through the plasmasphere. We will describe our new understanding of the Cluster-IMAGE events and their implications on plasmaspheric dynamics.

  16. An objective assessment method of digital image mosaic artifacts visibility based on visual perception

    NASA Astrophysics Data System (ADS)

    Yu, Hongsheng; Jin, Weiqi; Liu, Xiusheng

    2010-10-01

    The difference of illumination between to-be-mosaicked images will cause mosaic artifacts when digital images are mosaicked. An objective assessment method of digital images mosaic artifacts visibility based on human visual perception has been studied in this paper. The process of the method are as follows; 1) the gradient errors image is obtained according to the to-be-mosaicked images, 2) the just noticeable difference (JND) of reference image is derived by considering the human visual frequency sensitivity, the brightness mask effects and texture mask effects on visual resolution comprehensively; 3) the mosaic artifacts image which is perceptible visually can be acquired by subtracting the JND threshold values from the wavelet coefficients of gradient errors image in wavelet domain. The mosaic artifacts visibility (MAV) of digital image is constructed to use as an objective assessment index of image stitching seam visibility by considering the average value and information entropy of the mosaic artifacts image comprehensively. The experiment indicates that the objective assessment results of digital image mosaic artifacts visibility by MAV index are consistent with those of the subjective perceptual method basically.

  17. Older adults' perceptions of ageing and their health and functioning: a systematic review of observational studies.

    PubMed

    Warmoth, Krystal; Tarrant, Mark; Abraham, Charles; Lang, Iain A

    2016-07-01

    Many older people perceive ageing negatively, describing it in terms of poor or declining health and functioning. These perceptions may be related to older adults' health. The aim of this review was to synthesise existing research on the relationship between older adults' perceptions of ageing and their health and functioning. A systematic search was conducted of five electronic databases (ASSIA, CINAHL, IBSS, MEDLINE and PsycINFO). Citations within identified reports were also searched. Observational studies were included if they included perceptions of ageing and health-related measures involving participants aged 60 years and older. Study selection, data extraction and quality appraisal were conducted using predefined criteria. Twenty-eight reports met the criteria for inclusion. Older adults' perceptions of ageing were assessed with a variety of measures. Perceptions were related to health and functioning across seven health domains: memory and cognitive performance, physical and physiological performance, medical conditions and outcomes, disability, care-seeking, self-rated health, quality of life and death. How ageing is perceived by older adults is related to their health and functioning in multiple domains. However, higher quality and longitudinal studies are needed to further investigate this relationship.

  18. New Developments in Observer Performance Methodology in Medical Imaging

    PubMed Central

    Chakraborty, Dev P.

    2011-01-01

    A common task in medical imaging is assessing whether a new imaging system, or a variant of an existing one, is an improvement over an existing imaging technology. Imaging systems are generally quite complex, consisting of several components – e.g., image acquisition hardware, image processing and display hardware and software, and image interpretation by radiologists– each of which can affect performance. While it may appear odd to include the radiologist as a “component” of the imaging chain, since the radiologist’s decision determines subsequent patient care, the effect of the human interpretation has to be included. Physical measurements like modulation transfer function, signal to noise ratio, etc., are useful for characterizing the non-human parts of the imaging chain under idealized and often unrealistic conditions, such as uniform background phantoms, target objects with sharp edges, etc. Measuring the effect on performance of the entire imaging chain, including the radiologist, and using real clinical images, requires different methods that fall under the rubric of observer performance methods or “ROC analysis”. The purpose of this paper is to review recent developments in this field, particularly with respect to the free-response method. PMID:21978444

  19. New Mexicans` images and perceptions of Los Alamos National Laboratory. Winter, 1992--1993

    SciTech Connect

    1993-01-01

    This report uses survey data to profile New Mexico residents` images and perceptions of Los Alamos National Laboratory (LANL). The survey results are the responses of a representative, stratified random sample of 992 New Mexico households to a set of questions asked in October, 1992. The data allow statistical inference to the general population`s responses to the same set of questions at the time the survey was administered. The results provide an overview of New Mexico residents` current images and perceptions of the Laboratory. The sample margin of error is plus or minus 3.5% at the 95% confidence level.

  20. Intermittent behavior in the brain neuronal network in the perception of ambiguous images

    NASA Astrophysics Data System (ADS)

    Hramov, Alexander E.; Kurovskaya, Maria K.; Runnova, Anastasiya E.; Zhuravlev, Maxim O.; Grubov, Vadim V.; Koronovskii, Alexey A.; Pavlov, Alexey N.; Pisarchik, Alexander N.

    2017-03-01

    Characteristics of intermittency during the perception of ambiguous images have been studied in the case the Necker cube image has been used as a bistable object for demonstration in the experiments, with EEG being simultaneously measured. Distributions of time interval lengths corresponding to the left-oriented and right-oriented Necker cube perception have been obtain. EEG data have been analyzed using continuous wavelet transform which was shown that the destruction of alpha rhythm with accompanying generation of high frequency oscillations can serve as a electroencephalographical marker of Necker cube recognition process in human brain.

  1. Human perception of trademark images: implications for retrieval system design

    NASA Astrophysics Data System (ADS)

    Ren, Manling; Eakins, John P.; Briggs, Pamela

    2000-10-01

    A crucial aspect of shape similarity estimation is the identification of perceptually significant image elements. In order to understand more about the process of human segmentation of abstract images, a sample of 63 trademark images was shown to several groups of students in two experiments. Students were first presented with printed versions of a number of abstract trademark images, and invited to sketch their preferred segmentation of each image. A second group of students was then shown each image, plus its set of alternative segmentations, and invited to rank each alternative in order of preference. Our results suggest that most participants used a relatively small number of segmentation strategies, reflecting well-known psychological principles. Agreement between human image segmentations and those generated by the ARTISAN trademark retrieval system was quite limited; the most common causes of discrepancy were failure to handle texture and incorrect grouping of components into regions. Ways of improving ARTISAN's ability to model human segmentation behavior are discussed.

  2. Does nutritional status interfere with adolescents' body image perception?

    PubMed

    Mendonça, Karla L; Sousa, Ana L L; Carneiro, Carolina S; Nascente, Flávia M N; Póvoa, Thaís I R; Souza, Weimar K S B; Jardim, Thiago S V; Jardim, Paulo C B V

    2014-08-01

    Adolescents' body image (BI) may not match their nutritional status. This study selected representative sample of healthy adolescents aged between 12 and 18 from public and private schools. Anthropometric measures were performed in order to calculate the body mass index (BMI) percentile. The silhouette scale proposed by Childress was used to evaluate BI, making it possible to assess BI satisfaction and BI distortion. The sample was composed of 1168 adolescents with a mean age of 14.7 years; 52.9% were female, 50.9% were fair-skinned, 62.4% had consumed or still consume alcohol and 67% attended public school. Male adolescents presented more overweight and obesity (28.4%) (p<0.05) than the female (17.1%). It was observed that 69.4% were dissatisfied with BI, 91.1% of the obese and 69.8% of those with overweight wished to lose body weight and 82.5% of those underweight wished to gain body weight. BI distortion was identified, since 35% of the adolescents who were underweight did not regard themselves thin, 39.1% of the overweight individuals and 62.1% of the obese did not see themselves in their adequate classifications. Adolescents with overweight/obesity were those who presented higher dissatisfaction with BI, mainly the females. Male individuals presented a greater wish of gaining weight. BI distortion was present in adolescents of all classes of BMI percentile.

  3. Percept

    SciTech Connect

    2014-11-26

    The Percept software package is a collection of libraries and executables that provide tools for verifying computer simulations of engineering components and systems. Percept is useful for simulations using the finite element or finite volume methods on unstructured meshes. Percept includes API's for adaptive mesh refinement, geometry representation, the method of manufactured solutions, analysis of convergence including the convergence of vibrational eigenmodes, and metrics for analyzing the difference between fields represented on two different overlapping unstructured grids.

  4. Pain perception in the self and observation of others: an ERP investigation.

    PubMed

    Meng, Jing; Jackson, Todd; Chen, Hong; Hu, Li; Yang, Zhou; Su, Yanhua; Huang, Xiting

    2013-05-15

    The nature of interactions between observing pain in others (other-pain) and subjective pain perception (self-pain) has been debated. To test whether other-pain and self-pain primes increase or decrease responsiveness to complementary self-pain or other-pain targets, two ERP studies were conducted. In Study 1, twenty participants (10 women, 10 men) were exposed to pictures depicting other-pain or other non-painful situations, followed by self-pain or non-nociceptive heat stimulation delivered to the forearm. Significant visual prime×sensory target interactions indicated that compared to other non-painful primes, other-pain visual primes predicted faster reaction times (RTs) and smaller P2 amplitudes in response to self-pain stimuli while responses to self-heat stimuli were not affected by priming images. However, effects of other-pain primes on elevations in intensity ratings were not specific to self-pain and extended to self-heat targets. In Study 2, self-pain and self-heat stimuli were applied to the same participants followed by other-pain and other non-painful visual targets. Similar to the pattern for Study 1, sensory prime×visual target interactions indicated that compared to self-heat primes, self-pain sensory primes predicted marginally faster RTs and smaller P3 amplitudes in response to other-pain targets while responses to other non-painful targets were unaffected by sensory priming stimuli. Again, self-pain primes predicted higher intensity ratings for both target types compared to self-heat primes. Together, findings supported the shared-representation model of pain empathy more strongly than the threat value of pain hypothesis.

  5. Exploring the Image Types of Secondary School Students' Perception about the Talented Person in Convergence

    NASA Astrophysics Data System (ADS)

    Lee, Jun-Ki; Chung, Duk Ho

    2014-05-01

    This study aims to identify the image types of secondary school students' perception about the talented person in convergence and to find the differences in drawing images of the talented person in convergence among the students who have taken STEAM class and the ones who haven't. One hundred and eighty seven students in middle and high schools located in the southern part of South Korea participated in this study and they were asked to draw a picture of the talented person in convergence with a brief explanation. Based on students' pictures, researchers categorized their perception about convergence and talented person in convergence by using an inductive method. The result indicated that secondary school students' perceptions were categorized into convergence as individual cognitive processing and collective cognitive processing and convergence as outcomes. The image of the convergence in a talented person leaning toward individual cognitive processing was divided into the following seven types: idea banker type, various talented celebrity type, multi-tasking master type, multi-talented career type, active problem-solver type, creative developer type, and unrealistic ideal man type. Another image of collective cognitive processing was split into expert group type and interactive-mates group type. The other image was transformer type which is the subcategory of convergence as outcomes. From this study, it can be suggested that secondary school students express the various images of the talented person in convergence depending on experiencing STEAM or not. Keywords: talented person in convergence, secondary school students, STEAM, image types

  6. Human perception of trademark images: implications for retrieval system design

    NASA Astrophysics Data System (ADS)

    Ren, Manling; Eakins, John P.; Briggs, Pamela

    1999-08-01

    Modeling human shape similarity judgments involves identifying perceptually significant image elements, selecting appropriate features to represent their shape, and computing suitable similarity measures. This paper is concerned with the first of these - identification of the way in which humans segment abstract trademark images. A sample of 63 trademark images was shown to several groups of students from different subject backgrounds in two experiments. Students were first presented with printed versions of a number of abstract trademark images, and invited to sketch their preferred segmentation of each image. A second group of studies was then shown each image, plus its set of alternative segmentations, and invited to rank each alternative in order of preference. The degree of agreement over how images should be segmented varied substantially form one image to another. Qualitative analysis of our result suggested that participants used a relatively small number of segmentation strategies, reflecting well-known psychological principles. Agreement between human image segmentations and those generated by our ARTISAN trademark retrieval system was quite limited, indicating that ARTISAN is currently capable of modeling only a small subset of the mechanisms used by human participants. The implications of these experiments for the future development of ARTISAN are discussed.

  7. Cross-Modal Distortion of Time Perception: Demerging the Effects of Observed and Performed Motion

    PubMed Central

    Hass, Joachim; Blaschke, Stefan; Herrmann, J. Michael

    2012-01-01

    Temporal information is often contained in multi-sensory stimuli, but it is currently unknown how the brain combines e.g. visual and auditory cues into a coherent percept of time. The existing studies of cross-modal time perception mainly support the “modality appropriateness hypothesis”, i.e. the domination of auditory temporal cues over visual ones because of the higher precision of audition for time perception. However, these studies suffer from methodical problems and conflicting results. We introduce a novel experimental paradigm to examine cross-modal time perception by combining an auditory time perception task with a visually guided motor task, requiring participants to follow an elliptic movement on a screen with a robotic manipulandum. We find that subjective duration is distorted according to the speed of visually observed movement: The faster the visual motion, the longer the perceived duration. In contrast, the actual execution of the arm movement does not contribute to this effect, but impairs discrimination performance by dual-task interference. We also show that additional training of the motor task attenuates the interference, but does not affect the distortion of subjective duration. The study demonstrates direct influence of visual motion on auditory temporal representations, which is independent of attentional modulation. At the same time, it provides causal support for the notion that time perception and continuous motor timing rely on separate mechanisms, a proposal that was formerly supported by correlational evidence only. The results constitute a counterexample to the modality appropriateness hypothesis and are best explained by Bayesian integration of modality-specific temporal information into a centralized “temporal hub”. PMID:22701603

  8. Cross-modal distortion of time perception: demerging the effects of observed and performed motion.

    PubMed

    Hass, Joachim; Blaschke, Stefan; Herrmann, J Michael

    2012-01-01

    Temporal information is often contained in multi-sensory stimuli, but it is currently unknown how the brain combines e.g. visual and auditory cues into a coherent percept of time. The existing studies of cross-modal time perception mainly support the "modality appropriateness hypothesis", i.e. the domination of auditory temporal cues over visual ones because of the higher precision of audition for time perception. However, these studies suffer from methodical problems and conflicting results. We introduce a novel experimental paradigm to examine cross-modal time perception by combining an auditory time perception task with a visually guided motor task, requiring participants to follow an elliptic movement on a screen with a robotic manipulandum. We find that subjective duration is distorted according to the speed of visually observed movement: The faster the visual motion, the longer the perceived duration. In contrast, the actual execution of the arm movement does not contribute to this effect, but impairs discrimination performance by dual-task interference. We also show that additional training of the motor task attenuates the interference, but does not affect the distortion of subjective duration. The study demonstrates direct influence of visual motion on auditory temporal representations, which is independent of attentional modulation. At the same time, it provides causal support for the notion that time perception and continuous motor timing rely on separate mechanisms, a proposal that was formerly supported by correlational evidence only. The results constitute a counterexample to the modality appropriateness hypothesis and are best explained by Bayesian integration of modality-specific temporal information into a centralized "temporal hub".

  9. Spaceborne radar observations: A guide for Magellan radar-image analysis

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Blom, R. G.; Crisp, J. A.; Elachi, Charles; Farr, T. G.; Saunders, R. Stephen; Theilig, E. E.; Wall, S. D.; Yewell, S. B.

    1989-01-01

    Geologic analyses of spaceborne radar images of Earth are reviewed and summarized with respect to detecting, mapping, and interpreting impact craters, volcanic landforms, eolian and subsurface features, and tectonic landforms. Interpretations are illustrated mostly with Seasat synthetic aperture radar and shuttle-imaging-radar images. Analogies are drawn for the potential interpretation of radar images of Venus, with emphasis on the effects of variation in Magellan look angle with Venusian latitude. In each landform category, differences in feature perception and interpretive capability are related to variations in imaging geometry, spatial resolution, and wavelength of the imaging radar systems. Impact craters and other radially symmetrical features may show apparent bilateral symmetry parallel to the illumination vector at low look angles. The styles of eruption and the emplacement of major and minor volcanic constructs can be interpreted from morphological features observed in images. Radar responses that are governed by small-scale surface roughness may serve to distinguish flow types, but do not provide unambiguous information. Imaging of sand dunes is rigorously constrained by specific angular relations between the illumination vector and the orientation and angle of repose of the dune faces, but is independent of radar wavelength. With a single look angle, conditions that enable shallow subsurface imaging to occur do not provide the information necessary to determine whether the radar has recorded surface or subsurface features. The topographic linearity of many tectonic landforms is enhanced on images at regional and local scales, but the detection of structural detail is a strong function of illumination direction. Nontopographic tectonic lineaments may appear in response to contrasts in small-surface roughness or dielectric constant. The breakpoint for rough surfaces will vary by about 25 percent through the Magellan viewing geometries from low to high

  10. Plasmaspheric Plumes Observed by the CLUSTER and IMAGE Spacecraft

    NASA Technical Reports Server (NTRS)

    Fung, S. F.; Benson, R. F.; Garcia, L. N.; Adrian, M. L.; Sandel, B.; Goldstein, M. L.

    2008-01-01

    Global IMAGE/EUV observations have revealed complex changes in plasmaspheric structures as the plasmasphere responds to geomagnetic activity while remaining under varying degrees of influence by co-rotation, depending on the radial distance. The complex plasmaspheric dynamics, with different scales of variability, is clearly far from being well understood. There is now renewed interest in the plasmasphere due to its apparent connections with the development of the ring current and radiation belt, and loss of ionospheric plasmas. Early in the mission, the Cluster spacecraft only crossed the plasmapause (L - 4) occasionally and made measurements of the outer plasmasphere and plasmaspheric drainage plumes. The study by Darrouzet et al. [2006] provided detailed analyses of in situ Cluster observations and IMAGE EUV observations of three plasmaspheric plumes detected in April-June, 2002. Within the next couple of years, Cluster orbit will change, causing perigee to migrate to lower altitudes, and thus providing excellent opportunities to obtain more detailed measurements of the plasmasphere. In this paper, we report our analyses of the earlier Cluster-IMAGE events by incorporating the different perspectives provided by the IMAGE Radio Plasma Imager (RPI) observations. We will discuss our new understanding of the structure and dynamics of the Cluster-IMAGE events.

  11. Teacher Candidates' Perceptions of Scientists: Images and Attributes

    ERIC Educational Resources Information Center

    McCarthy, Deborah

    2015-01-01

    The masculine image of scientists as elderly men wearing white coats and glasses, working alone in the laboratory has been documented since the 1950s. Because it is important that teacher candidates have a scientifically literate image of scientists due to the impact they have on their future students, this investigation is salient. This study…

  12. Teacher Candidates' Perceptions of Scientists: Images and Attributes

    ERIC Educational Resources Information Center

    McCarthy, Deborah

    2015-01-01

    The masculine image of scientists as elderly men wearing white coats and glasses, working alone in the laboratory has been documented since the 1950s. Because it is important that teacher candidates have a scientifically literate image of scientists due to the impact they have on their future students, this investigation is salient. This study…

  13. Modelling elderly patients' perception of the community pharmacist image when providing professional services.

    PubMed

    Sabater-Galindo, Marta; Sabater-Hernández, Daniel; Ruiz de Maya, Salvador; Gastelurrutia, Miguel Angel; Martínez-Martínez, Fernando; Benrimoj, Shalom I

    2017-06-01

    Professional pharmaceutical services may impact on patient's health behaviour as well as influence on patients' perceptions of the pharmacist image. The Health Belief Model predicts health-related behaviours using patients' beliefs. However, health beliefs (HBs) could transcend beyond predicting health behaviour and may have an impact on the patients' perceptions of the pharmacist image. This study objective was to develop and test a model that relates patients' HBs to patient's perception of the image of the pharmacist, and to assess if the provision of pharmacy services (Intervention group-IG) influences this perception compared to usual care (Control group). A qualitative study was undertaken and a questionnaire was created for the development of the model. The content, dimensions, validity and reliability of the questionnaire were pre-tested qualitatively and in a pilot mail survey. The reliability and validity of the proposed model were tested using Confirmatory Factor Analysis (CFA). Structural Equation Modelling (SEM) was used to explain relationships between dimensions of the final model and to analyse differences between groups. As a result, a final model was developed. CFA concluded that the model was valid and reliable (Goodness of Fit indices: x²(80) = 125.726, p = .001, RMSEA = .04, SRMR = .04, GFI = .997, NFI = .93, CFI = .974). SEM indicated that 'Perceived benefits' were significantly associated with 'Perceived Pharmacist Image' in the whole sample. Differences were found in the IG with also 'Self-efficacy' significantly influencing 'Perceived pharmacist image'. A model of patients' HBs related to their image of the pharmacist was developed and tested. When pharmacists deliver professional services, these services modify some patients' HBs that in turn influence public perception of the pharmacist.

  14. Fourier Power Spectrum Characteristics of Face Photographs: Attractiveness Perception Depends on Low-Level Image Properties

    PubMed Central

    Langner, Oliver; Wiese, Holger; Redies, Christoph

    2015-01-01

    We investigated whether low-level processed image properties that are shared by natural scenes and artworks – but not veridical face photographs – affect the perception of facial attractiveness and age. Specifically, we considered the slope of the radially averaged Fourier power spectrum in a log-log plot. This slope is a measure of the distribution of special frequency power in an image. Images of natural scenes and artworks possess – compared to face images – a relatively shallow slope (i.e., increased high spatial frequency power). Since aesthetic perception might be based on the efficient processing of images with natural scene statistics, we assumed that the perception of facial attractiveness might also be affected by these properties. We calculated Fourier slope and other beauty-associated measurements in face images and correlated them with ratings of attractiveness and age of the depicted persons (Study 1). We found that Fourier slope – in contrast to the other tested image properties – did not predict attractiveness ratings when we controlled for age. In Study 2A, we overlaid face images with random-phase patterns with different statistics. Patterns with a slope similar to those in natural scenes and artworks resulted in lower attractiveness and higher age ratings. In Studies 2B and 2C, we directly manipulated the Fourier slope of face images and found that images with shallower slopes were rated as more attractive. Additionally, attractiveness of unaltered faces was affected by the Fourier slope of a random-phase background (Study 3). Faces in front of backgrounds with statistics similar to natural scenes and faces were rated as more attractive. We conclude that facial attractiveness ratings are affected by specific image properties. An explanation might be the efficient coding hypothesis. PMID:25835539

  15. Fourier power spectrum characteristics of face photographs: attractiveness perception depends on low-level image properties.

    PubMed

    Menzel, Claudia; Hayn-Leichsenring, Gregor U; Langner, Oliver; Wiese, Holger; Redies, Christoph

    2015-01-01

    We investigated whether low-level processed image properties that are shared by natural scenes and artworks - but not veridical face photographs - affect the perception of facial attractiveness and age. Specifically, we considered the slope of the radially averaged Fourier power spectrum in a log-log plot. This slope is a measure of the distribution of special frequency power in an image. Images of natural scenes and artworks possess - compared to face images - a relatively shallow slope (i.e., increased high spatial frequency power). Since aesthetic perception might be based on the efficient processing of images with natural scene statistics, we assumed that the perception of facial attractiveness might also be affected by these properties. We calculated Fourier slope and other beauty-associated measurements in face images and correlated them with ratings of attractiveness and age of the depicted persons (Study 1). We found that Fourier slope - in contrast to the other tested image properties - did not predict attractiveness ratings when we controlled for age. In Study 2A, we overlaid face images with random-phase patterns with different statistics. Patterns with a slope similar to those in natural scenes and artworks resulted in lower attractiveness and higher age ratings. In Studies 2B and 2C, we directly manipulated the Fourier slope of face images and found that images with shallower slopes were rated as more attractive. Additionally, attractiveness of unaltered faces was affected by the Fourier slope of a random-phase background (Study 3). Faces in front of backgrounds with statistics similar to natural scenes and faces were rated as more attractive. We conclude that facial attractiveness ratings are affected by specific image properties. An explanation might be the efficient coding hypothesis.

  16. Body-Image Perceptions: Reliability of a BMI-Based Silhouette Matching Test

    ERIC Educational Resources Information Center

    Peterson, Michael; Ellenberg, Deborah; Crossan, Sarah

    2003-01-01

    Objective: To assess the reliability of a BMI-based Silhouette Matching Test (BMI-SMT). Methods: The perceptions of ideal and current body images of 215 ninth through twelfth graders' were assessed at 5 different schools within a mid-Atlantic state public school system. Results: Findings provided quantifiable data and discriminating measurements…

  17. An Emphasis on Perception: Teaching Image Formation Using a Mechanistic Model of Vision.

    ERIC Educational Resources Information Center

    Allen, Sue; And Others

    An effective way to teach the concept of image is to give students a model of human vision which incorporates a simple mechanism of depth perception. In this study two almost identical versions of a curriculum in geometrical optics were created. One used a mechanistic, interpretive eye model, and in the other the eye was modeled as a passive,…

  18. The Influence of Television Images on Black Females' Self- Perceptions of Physical Attractiveness.

    ERIC Educational Resources Information Center

    Perkins, Karen R.

    1996-01-01

    Examines the role television images play in African American women's perceptions of their own physical attractiveness. The significance of physical attractiveness is discussed in relation to age, gender, and race. Several research questions are posed and suggestions are made that may assist parents, educators, and clinicians in prevention of…

  19. Correlation between model observer and human observer performance in CT imaging when lesion location is uncertain

    SciTech Connect

    Leng, Shuai; Yu, Lifeng; Zhang, Yi; McCollough, Cynthia H.; Carter, Rickey; Toledano, Alicia Y.

    2013-08-15

    Purpose: The purpose of this study was to investigate the correlation between model observer and human observer performance in CT imaging for the task of lesion detection and localization when the lesion location is uncertain.Methods: Two cylindrical rods (3-mm and 5-mm diameters) were placed in a 35 × 26 cm torso-shaped water phantom to simulate lesions with −15 HU contrast at 120 kV. The phantom was scanned 100 times on a 128-slice CT scanner at each of four dose levels (CTDIvol = 5.7, 11.4, 17.1, and 22.8 mGy). Regions of interest (ROIs) around each lesion were extracted to generate images with signal-present, with each ROI containing 128 × 128 pixels. Corresponding ROIs of signal-absent images were generated from images without lesion mimicking rods. The location of the lesion (rod) in each ROI was randomly distributed by moving the ROIs around each lesion. Human observer studies were performed by having three trained observers identify the presence or absence of lesions, indicating the lesion location in each image and scoring confidence for the detection task on a 6-point scale. The same image data were analyzed using a channelized Hotelling model observer (CHO) with Gabor channels. Internal noise was added to the decision variables for the model observer study. Area under the curve (AUC) of ROC and localization ROC (LROC) curves were calculated using a nonparametric approach. The Spearman's rank order correlation between the average performance of the human observers and the model observer performance was calculated for the AUC of both ROC and LROC curves for both the 3- and 5-mm diameter lesions.Results: In both ROC and LROC analyses, AUC values for the model observer agreed well with the average values across the three human observers. The Spearman's rank order correlation values for both ROC and LROC analyses for both the 3- and 5-mm diameter lesions were all 1.0, indicating perfect rank ordering agreement of the figures of merit (AUC) between the

  20. Assessing the impact of image manipulation on users' perceptions of deception

    NASA Astrophysics Data System (ADS)

    Conotter, Valentina; Dang-Nguyen, Duc-Tien; Boato, Giulia; Menéndez, María.; Larson, Martha

    2014-02-01

    Generally, we expect images to be an honest reflection of reality. However, this assumption is undermined by the new image editing technology, which allows for easy manipulation and distortion of digital contents. Our understanding of the implications related to the use of a manipulated data is lagging behind. In this paper we propose to exploit crowdsourcing tools in order to analyze the impact of different types of manipulation on users' perceptions of deception. Our goal is to gain significant insights about how different types of manipulations impact users' perceptions and how the context in which a modified image is used influences human perception of image deceptiveness. Through an extensive crowdsourcing user study, we aim at demonstrating that the problem of predicting user-perceived deception can be approached by automatic methods. Analysis of results collected on Amazon Mechanical Turk platform highlights how deception is related to the level of modifications applied to the image and to the context within modified pictures are used. To the best of our knowledge, this work represents the first attempt to address to the image editing debate using automatic approaches and going beyond investigation of forgeries.

  1. Holistic component of image perception in mammogram interpretation: gaze-tracking study.

    PubMed

    Kundel, Harold L; Nodine, Calvin F; Conant, Emily F; Weinstein, Susan P

    2007-02-01

    To test the hypothesis that rapid and accurate performance of the proficient observer in mammogram interpretation involves a shift in the mechanism of image perception from a relatively slow search-to-find mode to a relatively fast holistic mode. This HIPAA-compliant study had institutional review board approval, and participant informed consent was obtained; patient informed consent was not required. The eye positions of three full-time mammographers, one attending radiologist, two mammography fellows, and three radiology residents were recorded during the interpretation of 20 normal and 20 subtly abnormal mammograms. The search time required to first locate a cancer, as well as the initial eye scan path, was determined and compared with diagnostic performance as measured with receiver operating characteristic (ROC) analysis. The median time for all observers to fixate a cancer, regardless of the decision outcome, was 1.13 seconds, with a range of 0.68 second to 3.06 seconds. Even though most of the lesions were fixated, recognition of them as cancerous ranged from 85% (17 of 20) to 10% (two of 20), with corresponding areas under the ROC curve of 0.87-0.40. The ROC index of detectability, d(a), was linearly related to the time to first fixate a cancer with a correlation (r(2)) of 0.81. The rapid initial fixation of a true abnormality is evidence for a global perceptual process capable of analyzing the visual input of the entire retinal image and pinpointing the spatial location of an abnormality. It appears to be more highly developed in the most proficient observers, replacing the less efficient initial search-to-find strategies. (c) RSNA, 2007.

  2. Pigeons (Columba livia) as Trainable Observers of Pathology and Radiology Breast Cancer Images

    PubMed Central

    Levenson, Richard M.; Krupinski, Elizabeth A.; Navarro, Victor M.; Wasserman, Edward A.

    2015-01-01

    Pathologists and radiologists spend years acquiring and refining their medically essential visual skills, so it is of considerable interest to understand how this process actually unfolds and what image features and properties are critical for accurate diagnostic performance. Key insights into human behavioral tasks can often be obtained by using appropriate animal models. We report here that pigeons (Columba livia)—which share many visual system properties with humans—can serve as promising surrogate observers of medical images, a capability not previously documented. The birds proved to have a remarkable ability to distinguish benign from malignant human breast histopathology after training with differential food reinforcement; even more importantly, the pigeons were able to generalize what they had learned when confronted with novel image sets. The birds’ histological accuracy, like that of humans, was modestly affected by the presence or absence of color as well as by degrees of image compression, but these impacts could be ameliorated with further training. Turning to radiology, the birds proved to be similarly capable of detecting cancer-relevant microcalcifications on mammogram images. However, when given a different (and for humans quite difficult) task—namely, classification of suspicious mammographic densities (masses)—the pigeons proved to be capable only of image memorization and were unable to successfully generalize when shown novel examples. The birds’ successes and difficulties suggest that pigeons are well-suited to help us better understand human medical image perception, and may also prove useful in performance assessment and development of medical imaging hardware, image processing, and image analysis tools. PMID:26581091

  3. Pigeons (Columba livia) as Trainable Observers of Pathology and Radiology Breast Cancer Images.

    PubMed

    Levenson, Richard M; Krupinski, Elizabeth A; Navarro, Victor M; Wasserman, Edward A

    2015-01-01

    Pathologists and radiologists spend years acquiring and refining their medically essential visual skills, so it is of considerable interest to understand how this process actually unfolds and what image features and properties are critical for accurate diagnostic performance. Key insights into human behavioral tasks can often be obtained by using appropriate animal models. We report here that pigeons (Columba livia)-which share many visual system properties with humans-can serve as promising surrogate observers of medical images, a capability not previously documented. The birds proved to have a remarkable ability to distinguish benign from malignant human breast histopathology after training with differential food reinforcement; even more importantly, the pigeons were able to generalize what they had learned when confronted with novel image sets. The birds' histological accuracy, like that of humans, was modestly affected by the presence or absence of color as well as by degrees of image compression, but these impacts could be ameliorated with further training. Turning to radiology, the birds proved to be similarly capable of detecting cancer-relevant microcalcifications on mammogram images. However, when given a different (and for humans quite difficult) task-namely, classification of suspicious mammographic densities (masses)-the pigeons proved to be capable only of image memorization and were unable to successfully generalize when shown novel examples. The birds' successes and difficulties suggest that pigeons are well-suited to help us better understand human medical image perception, and may also prove useful in performance assessment and development of medical imaging hardware, image processing, and image analysis tools.

  4. What we think we learn from watching others: the moderating role of ability on perceptions of learning from observation.

    PubMed

    Hodges, Nicola J; Coppola, Thomas

    2015-07-01

    Despite increased interest in the processes guiding action observation and observational learning, we know little about what people think they learn from watching, how well perceptions of learning marry with actual ability and how ability perceptions develop across multiple observation trials. Based on common coding ideas, we would think that ability and perceptions of ability from watching should be well matched. We conducted two studies to answer these questions that involved repeated observation of a 2-ball juggling task. After each video observation, observers judged if they could perform the skill and gave a confidence score (0-100%). In Experiment 1, an Observe-only group was compared to an Observe + Physical practice and No-practice group. Both observer groups showed a better physical approximation of the juggling action after practice and in retention and their confidence increased in a linear fashion. Confidence showed a small, yet significant relationship to actual success. In Experiment 2, we limited physical practice to 5 attempts (across 50 observation trials). In general, people who had high perceptions of ability following a demonstration were overconfident, whereas those with lower perceptions of ability were accurate in their assessments. Confidence generally increased across practice, particularly for trials following observation rather than physical practice. We conclude that while perceptions of ability and actual ability show congruence across trials and individuals, observational practice increases people's confidence in their ability to perform a skill, even despite physical experiences to the contrary.

  5. Application of MCM image construction to IRAS comet observations

    NASA Technical Reports Server (NTRS)

    Schlapfer, Martin F.; Walker, Russell G.

    1994-01-01

    There is a wealth of IRAS comet data, obtained in both the survey and pointed observations modes. However, these measurements have remained largely untouched due to difficulties in removing instrumental effects from the data. We have developed a version of the Maximum Correlation Method for Image Construction algorithm (MCM) which operates in the moving coordinate system of the comet and properly treats both real cometary motion and apparent motion due to spacecraft parallax. This algorithm has been implemented on a 486/33 PC in FORTRAN and IDL codes. Preprocessing of the IRAS CRDD includes baseline removal, deglitching, and removal of long tails due to dielectric time constants of the detectors. The resulting images are virtually free from instrumental effects and have the highest possible spatial resolution consistent with the data sampling. We present examples of high resolution IRAS images constructed from survey observations of Comets P/Tempel 1 and P/Tempel 2, and pointed observations of IRAS-Araki-Alcock.

  6. Automatic Annotation of Radiological Observations in Liver CT Images

    PubMed Central

    Gimenez, Francisco; Xu, Jiajing; Liu, Yi; Liu, Tiffany; Beaulieu, Christopher; Rubin, Daniel; Napel, Sandy

    2012-01-01

    We aim to predict radiological observations using computationally-derived imaging features extracted from computed tomography (CT) images. We created a dataset of 79 CT images containing liver lesions identified and annotated by a radiologist using a controlled vocabulary of 76 semantic terms. Computationally-derived features were extracted describing intensity, texture, shape, and edge sharpness. Traditional logistic regression was compared to L1-regularized logistic regression (LASSO) in order to predict the radiological observations using computational features. The approach was evaluated by leave one out cross-validation. Informative radiological observations such as lesion enhancement, hypervascular attenuation, and homogeneous retention were predicted well by computational features. By exploiting relationships between computational and semantic features, this approach could lead to more accurate and efficient radiology reporting. PMID:23304295

  7. A Novel Image Quality Assessment with Globally and Locally Consilient Visual Quality Perception.

    PubMed

    Bae, Sung-Ho; Kim, Munchurl

    2016-03-25

    Computational models for image quality assessment (IQA) have been developed by exploring effective features that are consistent with the characteristics of human visual system (HVS) for visual quality perception. In this paper, we firstly reveal that many existing features used in computational IQA methods can hardly characterize visual quality perception for local image characteristics and various distortion types. To solve this problem, we propose a new IQA method, called Structural Contrast-Quality Index (SC-QI) by adopting a structural contrast index (SCI) which can well characterize local and global visual quality perceptions for various image characteristics with structural-distortion types. In addition to SCI, we devise some other perceptually important features for our SC-QI that can effectively reflect the characteristics of HVS for contrast sensitivity and chrominance component variation. Furthermore, we develop a modified SC-QI, called structural contrast distortion metric (SC-DM) which inherits desirable mathematical properties of valid distance metricability and quasi-convexity. So, it can effectively be used as a distance metric for image quality optimization problems. Extensive experimental results show that both SC-QI and SC-DM can very well characterize the HVS's properties of visual quality perception for local image characteristics and various distortion types, which is a distinctive merit of our methods compared to other IQA methods. As a result, both SC-QI and SC-DM have better performances with a strong consilience of global and local visual quality perception as well as with much lower computation complexity, compared to state-of-the-art IQA methods. The MATLAB source codes of the proposed SC-QI and SC-DM are publicly available online at https://sites.google.com/site/sunghobaecv/iqa.

  8. A Novel Image Quality Assessment With Globally and Locally Consilient Visual Quality Perception.

    PubMed

    Bae, Sung-Ho; Kim, Munchurl

    2016-05-01

    Computational models for image quality assessment (IQA) have been developed by exploring effective features that are consistent with the characteristics of a human visual system (HVS) for visual quality perception. In this paper, we first reveal that many existing features used in computational IQA methods can hardly characterize visual quality perception for local image characteristics and various distortion types. To solve this problem, we propose a new IQA method, called the structural contrast-quality index (SC-QI), by adopting a structural contrast index (SCI), which can well characterize local and global visual quality perceptions for various image characteristics with structural-distortion types. In addition to SCI, we devise some other perceptually important features for our SC-QI that can effectively reflect the characteristics of HVS for contrast sensitivity and chrominance component variation. Furthermore, we develop a modified SC-QI, called structural contrast distortion metric (SC-DM), which inherits desirable mathematical properties of valid distance metricability and quasi-convexity. So, it can effectively be used as a distance metric for image quality optimization problems. Extensive experimental results show that both SC-QI and SC-DM can very well characterize the HVS's properties of visual quality perception for local image characteristics and various distortion types, which is a distinctive merit of our methods compared with other IQA methods. As a result, both SC-QI and SC-DM have better performances with a strong consilience of global and local visual quality perception as well as with much lower computation complexity, compared with the state-of-the-art IQA methods. The MATLAB source codes of the proposed SC-QI and SC-DM are publicly available online at https://sites.google.com/site/sunghobaecv/iqa.

  9. The social perception of emotional abilities: expanding what we know about observer ratings of emotional intelligence.

    PubMed

    Elfenbein, Hillary Anger; Barsade, Sigal G; Eisenkraft, Noah

    2015-02-01

    We examine the social perception of emotional intelligence (EI) through the use of observer ratings. Individuals frequently judge others' emotional abilities in real-world settings, yet we know little about the properties of such ratings. This article examines the social perception of EI and expands the evidence to evaluate its reliability and cross-judge agreement, as well as its convergent, divergent, and predictive validity. Three studies use real-world colleagues as observers and data from 2,521 participants. Results indicate significant consensus across observers about targets' EI, moderate but significant self-observer agreement, and modest but relatively consistent discriminant validity across the components of EI. Observer ratings significantly predicted interdependent task performance, even after controlling for numerous factors. Notably, predictive validity was greater for observer-rated than for self-rated or ability-tested EI. We discuss the minimal associations of observer ratings with ability-tested EI, study limitations, future directions, and practical implications. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  10. [Influence of "optical illusion" on detectability in diagnosis for head CT images: participation of optical illusion of light perception in medical image reading and diagnosis].

    PubMed

    Henmi, Shuichi

    2006-07-20

    Even if the visual impression of the photographic density of the brain in head CT images is shown as physically the same, it is known that optical illusions of lightness perception (assimilation, contrast, picture frame effect, etc.) occur and that practical density can be observed psychologically differently, according to differences in the color of the skull and background, and differences in cases (differences in picture pattern). Therefore, in this study, in order to clarify the influence of optical illusion on detectability in diagnosis, the author attempted to compare detectability in four sample cases, consisting of acute cerebral infarction (1), acute epidural hematoma (1), and chronic subdural hematoma (2), using visual subjective evaluation. In the case of acute cerebral infarction, there was no significant difference in detectability between the original image and the virtual images. Further, it clarified that the original head CT image (acute epidural hematoma) with the high-density hematoma recognized at the marginal limited part of the brain was inferior to virtual images in detectability, while it clarified that the original head CT image (chronic subdural hematoma) with the low-density hematoma was superior to virtual images in detectability, because of visual psychological emphasis on the difference of the film contrast between the hematoma and white skull.

  11. The importance of trunk perception during brace treatment in moderate juvenile idiopathic scoliosis: What is the impact on self-image?

    PubMed

    Paolucci, Teresa; Piccinini, Giulia; Iosa, Marco; Piermattei, Cristina; De Angelis, Simona; Zangrando, Federico; Saraceni, Vincenzo Maria

    2017-01-01

    The perception of body image and the deformity of the trunk in patients with adolescent idiopathic scoliosis (AIS) are a silver lining that has yet to be discussed in the relevant literature during brace rehabilitation treatment. To determine whether and how the use of the brace changes perception of the trunk in patients with AIS by the drawing test. We observed 32 subjects with AIS from our Rehabilitation outpatient clinic and divided them into the brace treatment (BG-16 subjects) and the non-brace treatment (CG-16 subjects). Trunk perception and quality of life were evaluated using the Trunk Appearance Perception Scale and Scoliosis Research Society-22 questionnaire, and the perception of one's back was measured by the drawing test. Pain was lower in BG versus CG (p= 0.095). Satisfaction with the treatment was higher in BG than in CG (p= 0.002). Self-image did not differ significantly between the groups in terms of TAPS. Drawings of the most severe cases of scoliosis were made by the group without the brace. The use of the brace corrects the function of the trunk and has a positive influence on its perception.

  12. [Specifics of perception of acoustic image of intrinsic bioelectric brain activity].

    PubMed

    Konstantinov, K V; Leonova, M K; Miroshnikov, D B; Klimenko, V M

    2014-06-01

    We studied the particularities of perception of the acoustic image of intrinsic EEG. We found that the assessment of perception of sounds, the presentation of which was synchronized and was agreed with current bioelectric brain activity, is higher that assessment of perception of acoustic EEG image presented in recorded form. Presentation of recorded acoustic image of EEG is accompanied by increased activity of beta-band in the frontal areas, while real-time presentation of acoustic EEG image is accompanied by the increase of slow wave activity: theta- and delta-bands of occipital areas of the brain. Increase activity in theta- and delta-bands of occipital areas in sessions of hearing the acoustic image of EEG in real time depend on the baseline frequency structure of EEG and correlates with expression of alpha-, beta- and theta-bands of bioelectric brain activity in both frontal and occipital areas. We suppose that presentation of sounds synchronized and agreed with the current bioelectric activity, activated the regulatory brain structures.

  13. Intermittency in electric brain activity in the perception of ambiguous images

    NASA Astrophysics Data System (ADS)

    Kurovskaya, Maria K.; Runnova, Anastasiya E.; Zhuravlev, Maxim O.; Grubov, Vadim V.; Koronovskii, Alexey A.; Pavlov, Alexey N.; Pisarchik, Alexander N.

    2017-04-01

    Present paper is devoted to the study of intermittency during the perception of bistable Necker cube image being a good example of an ambiguous object, with simultaneous measurement of EEG. Distributions of time interval lengths corresponding to the left-oriented and right-oriented cube perception have been obtain. EEG data have been analyzed using continuous wavelet transform and it was shown that the destruction of alpha rhythm with accompanying generation of high frequency oscillations can serve as a marker of Necker cube recognition process.

  14. Stellar Source Selections for Image Validation of Earth Observation Satellite

    NASA Astrophysics Data System (ADS)

    Yu, Jiwoong; Park, Sang-Young; Lim, Dongwook; Lee, Dong-Han; Sohn, Young-Jong

    2011-12-01

    A method of stellar source selection for validating the quality of image is investigated for a low Earth orbit optical remote sensing satellite. Image performance of the optical payload needs to be validated after its launch into orbit. The stellar sources are ideal source points that can be used to validate the quality of optical images. For the image validation, stellar sources should be the brightest as possible in the charge-coupled device dynamic range. The time delayed and integration technique, which is used to observe the ground, is also performed to observe the selected stars. The relations between the incident radiance at aperture and V magnitude of a star are established using Gunn & Stryker's star catalogue of spectrum. Applying this result, an appropriate image performance index is determined, and suitable stars and areas of the sky scene are selected for the optical payload on a remote sensing satellite to observe. The result of this research can be utilized to validate the quality of optical payload of a satellite in orbit.

  15. On VI Imaging Instrumentation and Spectroscopic Observations in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Beasley, M. N.

    2003-12-01

    For my thesis, I designed and built a high resolution imaging spectrograph, the Imaging Spectrograph for Interstellar Shocks (ISIS), that flew on a sub-orbital rocket from White Sands Missile Range on November 18th, 2002. This rocket-borne instrument was designed to image hot plasma at O vi λ λ 1032/1038 Å \\space behind a shock front in the Cygnus Loop. The new type of instrument developed for this application is a novel type of spectrograph that relies on a standard telescope for its optical layout. This layout, in conjunction with aberration-corrected holography, is capable of arcsecond quality imaging in diffracted light while maintaining arcsecond imaging at the telescope focus. The follow-up research is based on observations of N132D, a young, oxygen rich supernova remnant in the Large Magellanic Cloud. These new spectroscopic observations from the Far Ultraviolet Spectroscopic Explorer of emitting O vi in the shocked stellar ejecta were used to distinguish between different models of the ejecta and demonstrate that there is lack of appropriate observations of this type of remnant. This work was supported by NASA grants NAG5-5096, NAG5-7465, NAG5-8955, and NAG5-10319. M. Beasley was supported by a Graduate Student Research Program fellowship NGT5-50340.

  16. On VI imaging instrumentation and spectroscopic observations in supernova remnants

    NASA Astrophysics Data System (ADS)

    Beasley, Matthew Nelson

    2003-10-01

    For my thesis project, I designed and built a high resolution imaging spectrograph, the Imaging Spectrograph for Interstellar Shocks (ISIS), that flew on a sub-orbital rocket from White Sands Missile Range on November 18th, 2002. This rocket-borne instrument was designed to image hot plasma at O VI lambdalambda1032/1038 A behind a shock front in the Cygnus Loop. The new type of instrument developed for this application is a novel type of spectrograph that relies on a standard telescope for its optical layout. This layout, in conjunction with aberration-corrected holography, is capable of arcsecond quality imaging in diffracted light while maintaining an arcsecond image at the telescope focus. The follow-up research is based on observations of N132D, a young, oxygen rich supernova remnant in the Large Magellanic Cloud. These new spectroscopic observations from the Far Ultraviolet Spectroscopic Explorer of emitting O VI in the shocked stellar ejecta were used to distinguish between different models of the ejecta and demonstrate that there is lack of appropriate observations of this type of remnant.

  17. Drumlin fields and glaciated mountains - A contrast in geomorphic perception from Seasat radar images

    NASA Technical Reports Server (NTRS)

    Ford, J. P.

    1981-01-01

    Digitally correlated Seasat synthetic-aperture radar (SAR) images of the Alaska Range, Alaska, and the drumlin-drift belt in Ireland are analyzed for the perception and identification of geomorphic features. The two terrains display strongly contrasted types of glacial topography whose identification in each case is related to the geometry of the Seasat imaging radar. Identification of terrain shape and form is important within the caveats imposed by the intrinsic distortions on the radar images. Image texture serves coarsely to distinguish topography. Image tones are scene-dependent and do not uniquely identify specific targets. Extensive alignments of linear and curvilinear features provide some of the more important image information from which to make geologic interpretations in each case.

  18. Imaging coherent backscatter radar observations of topside equatorial spread F

    NASA Astrophysics Data System (ADS)

    Hysell, D. L.; Woodman, R. F.

    1997-11-01

    Multiple baseline interferometric imaging of a large-scale topside spread F depletion has been performed at the Jicamarca Radio Observatory near Lima, Perú. A new imaging technique makes it possible to examine the detailed structure of the scatter from field-aligned irregularities in and around the depletion, A new antenna at Jicamarca, physically separated from the main antenna array, provided very long interferometry baselines up to ˜94 λ long for the observations. High-resolution images of coherent backscatter from the radar plume were computed from the interferometry data using the maximum entropy method. These images show that scattering regions with small Doppler velocities lay mainly along the boundary of the depleted region. Meanwhile, regions with high Doppler velocities were located within the depletion itself and could be seen convecting upward through the depleted channel.

  19. Applying an Automatic Image-Processing Method to Synoptic Observations

    NASA Astrophysics Data System (ADS)

    Tlatov, Andrey G.; Vasil'eva, Valeria V.; Makarova, Valentina V.; Otkidychev, Pavel A.

    2014-04-01

    We used an automatic image-processing method to detect solar-activity features observed in white light at the Kislovodsk Solar Station. This technique was applied to automatically or semi-automatically detect sunspots and active regions. The results of this automated recognition were verified with statistical data available from other observatories and revealed a high detection accuracy. We also provide parameters of sunspot areas, of the umbra, and of faculae as observed in Solar Cycle 23 as well as the magnetic flux of these active elements, calculated at the Kislovodsk Solar Station, together with white-light images and magnetograms from the Michaelson Doppler Imager onboard the Solar and Heliospheric Observatory (SOHO/MDI). The ratio of umbral and total sunspot areas during Solar Cycle 23 is ≈ 0.19. The area of sunspots of the leading polarity was approximately 2.5 times the area of sunspots of the trailing polarity.

  20. Modelling Subjectivity in Visual Perception of Orientation for Image Retrieval.

    ERIC Educational Resources Information Center

    Sanchez, D.; Chamorro-Martinez, J.; Vila, M. A.

    2003-01-01

    Discussion of multimedia libraries and the need for storage, indexing, and retrieval techniques focuses on the combination of computer vision and data mining techniques to model high-level concepts for image retrieval based on perceptual features of the human visual system. Uses fuzzy set theory to measure users' assessments and to capture users'…

  1. Parallel and Serial Grouping of Image Elements in Visual Perception

    ERIC Educational Resources Information Center

    Houtkamp, Roos; Roelfsema, Pieter R.

    2010-01-01

    The visual system groups image elements that belong to an object and segregates them from other objects and the background. Important cues for this grouping process are the Gestalt criteria, and most theories propose that these are applied in parallel across the visual scene. Here, we find that Gestalt grouping can indeed occur in parallel in some…

  2. Parallel and Serial Grouping of Image Elements in Visual Perception

    ERIC Educational Resources Information Center

    Houtkamp, Roos; Roelfsema, Pieter R.

    2010-01-01

    The visual system groups image elements that belong to an object and segregates them from other objects and the background. Important cues for this grouping process are the Gestalt criteria, and most theories propose that these are applied in parallel across the visual scene. Here, we find that Gestalt grouping can indeed occur in parallel in some…

  3. Modelling Subjectivity in Visual Perception of Orientation for Image Retrieval.

    ERIC Educational Resources Information Center

    Sanchez, D.; Chamorro-Martinez, J.; Vila, M. A.

    2003-01-01

    Discussion of multimedia libraries and the need for storage, indexing, and retrieval techniques focuses on the combination of computer vision and data mining techniques to model high-level concepts for image retrieval based on perceptual features of the human visual system. Uses fuzzy set theory to measure users' assessments and to capture users'…

  4. Investigating Image-Based Perception and Reasoning in Geometry

    ERIC Educational Resources Information Center

    Campbell, Stephen R.; Handscomb, Kerry; Zaparyniuk, Nicholas E.; Sha, Li; Cimen, O. Arda; Shipulina, Olga V.

    2009-01-01

    Geometry is required for many secondary school students, and is often learned, taught, and assessed more in a heuristic image-based manner, than as a formal axiomatic deductive system. Students are required to prove general theorems, but diagrams are usually used. It follows that understanding how students engage in perceiving and reasoning about…

  5. A Causal Role for Primary Motor Cortex in Perception of Observed Actions

    PubMed Central

    Palmer, Clare E.; Bunday, Karen L.; Davare, Marco; Kilner, James M.

    2017-01-01

    It has been proposed that motor system activity during action observation may be modulated by the kinematics of observed actions. One purpose of this activity during action observation may be to predict the visual consequence of another person’s action based on their movement kinematics. Here, we tested the hypothesis that the primary motor cortex (M1) may have a causal role in inferring information that is present in the kinematics of observed actions. Healthy participants completed an action perception task before and after applying continuous theta burst stimulation (cTBS) over left M1. A neurophysiological marker was used to quantify the extent of M1 disruption following cTBS and stratify our sample a priori to provide an internal control. We found that a disruption to M1 caused a reduction in an individual’s sensitivity to interpret the kinematics of observed actions; the magnitude of suppression of motor excitability predicted this change in sensitivity. PMID:27458752

  6. Perceptions of body image among Malaysian male and female adolescents.

    PubMed

    Khor, G L; Zalilah, M S; Phan, Y Y; Ang, M; Maznah, B; Norimah, A K

    2009-03-01

    Body image concerns are common among adolescents as they undergo rapid physical growth and body shape changes. Having a distorted body image is a risk factor for the development of disordered eating behaviours and eating disorders. This study was undertaken to investigate body image concerns among Malaysian male and female adolescents aged 11-15 years. A total of 2,050 adolescents (1,043 males and 1,007 females) with a mean age of 13.1 +/- 0.8 years from secondary schools in Kedah and Pulau Pinang were included in the study. Questionnaires were used to collect socioeconomic data and body image indicators. The majority (87 percent) of the adolescents were concerned with their body shape. While the majority of underweight, normal weight and overweight male and female subjects perceived their body weight status correctly according to their body mass index (BMI), a noteworthy proportion in each category misjudged their body weight. About 35.4 percent of the males and 20.5 percent of the females in the underweight category perceived themselves as having a normal weight, while 29.4 percent and 26.7 percent of the overweight males and females respectively also perceived that they had a normal weight. A higher proportion of the females (20 percent) than males (9 percent) with a normal BMI perceived themselves as fat. Most of the male (78-83 percent) and female subjects (69-74 percent) in all the BMI categories desired to be taller than their current height. An appreciable proportion of both the males (41.9 percent) and females (38.2 percent) preferred to remain thin, or even to be thinner (23.7 percent of males and 5.9 percent of females). Females had a significantly higher mean body dissatisfaction score than males, indicating their preference for a slimmer body shape. More males (49.1 percent) preferred a larger body size while more females (58.3 percent) idealised a smaller body size. Compared to normal weight and underweight subjects, overweight males and females

  7. Observation of image pair creation and annihilation from superluminal scattering sources

    PubMed Central

    Clerici, Matteo; Spalding, Gabriel C.; Warburton, Ryan; Lyons, Ashley; Aniculaesei, Constantin; Richards, Joseph M.; Leach, Jonathan; Henderson, Robert; Faccio, Daniele

    2016-01-01

    The invariance of the speed of light is one of the foundational pillars of our current understanding of the universe. It implies a series of consequences related to our perception of simultaneity and, ultimately, of time itself. Whereas these consequences are experimentally well studied in the case of subluminal motion, the kinematics of superluminal motion lack direct evidence or even a clear experimental approach. We investigate kinematic effects associated with the superluminal motion of a light source. By using high-temporal-resolution imaging techniques, we directly demonstrate that if the source approaches an observer at superluminal speeds, the temporal ordering of events is inverted and its image appears to propagate backward. Moreover, for a source changing its speed and crossing the interface between subluminal and superluminal propagation regions, we observe image pair annihilation and creation, depending on the crossing direction. These results are very general and show that, regardless of the emitter speed, it is not possible to unambiguously determine the kinematics of an event from imaging and time-resolved measurements alone. This has implications not only for light, but also, for example, for sound and other wave phenomena. PMID:27152347

  8. Observation of image pair creation and annihilation from superluminal scattering sources.

    PubMed

    Clerici, Matteo; Spalding, Gabriel C; Warburton, Ryan; Lyons, Ashley; Aniculaesei, Constantin; Richards, Joseph M; Leach, Jonathan; Henderson, Robert; Faccio, Daniele

    2016-04-01

    The invariance of the speed of light is one of the foundational pillars of our current understanding of the universe. It implies a series of consequences related to our perception of simultaneity and, ultimately, of time itself. Whereas these consequences are experimentally well studied in the case of subluminal motion, the kinematics of superluminal motion lack direct evidence or even a clear experimental approach. We investigate kinematic effects associated with the superluminal motion of a light source. By using high-temporal-resolution imaging techniques, we directly demonstrate that if the source approaches an observer at superluminal speeds, the temporal ordering of events is inverted and its image appears to propagate backward. Moreover, for a source changing its speed and crossing the interface between subluminal and superluminal propagation regions, we observe image pair annihilation and creation, depending on the crossing direction. These results are very general and show that, regardless of the emitter speed, it is not possible to unambiguously determine the kinematics of an event from imaging and time-resolved measurements alone. This has implications not only for light, but also, for example, for sound and other wave phenomena.

  9. Depth perception based on fusion of stereo images

    NASA Astrophysics Data System (ADS)

    Yeh, Chih-Ping

    1992-08-01

    In this paper, we present an edge-based stereo vision algorithm that treats the stereo correspondence problem as a resolution problem rather than a searching problem as in earlier work. The stereopsis is obtained through `fusion' rather than `point-to-point' matching. Rayleigh criterion for resolution diffraction pattern is applied in the fusion process, and the disparity information of the entire image is obtained in one convolution operation. The computation burden is largely reduced. This algorithm uses cross-looking cameras model so that the fixation point can be used as a reference point to register the two images. The edge filter used is developed according to the schematic model of cortical simple cells in the human visual system. During the fusion process, an additional procedure imitating the `optic decussation' in human visual processing is performed so as to minimize the ambiguity due to surface occlusion.

  10. Asymmetries in the direction of saccades during perception of scenes and fractals: effects of image type and image features.

    PubMed

    Foulsham, Tom; Kingstone, Alan

    2010-04-07

    The direction in which people tend to move their eyes when inspecting images can reveal the different influences on eye guidance in scene perception, and their time course. We investigated biases in saccade direction during a memory-encoding task with natural scenes and computer-generated fractals. Images were rotated to disentangle egocentric and image-based guidance. Saccades in fractals were more likely to be horizontal, regardless of orientation. In scenes, the first saccade often moved down and subsequent eye movements were predominantly vertical, relative to the scene. These biases were modulated by the distribution of visual features (saliency and clutter) in the scene. The results suggest that image orientation, visual features and the scene frame-of-reference have a rapid effect on eye guidance. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Correlation between model observer and human observer performance in CT imaging when lesion location is uncertain

    NASA Astrophysics Data System (ADS)

    Leng, Shuai; Yu, Lifeng; Chen, Lingyun; Ramirez Giraldo, Juan C.; McCollough, Cynthia H.

    2012-03-01

    The purpose of this study is to investigate how well model observer can correlate with human observer in the lesion detection and localization task when the location of lesion is uncertain in CT imaging. A 35 × 26 cm oblong-shaped water phantom was scanned with and without two cylindrical rods (3 mm and 5 mm diameters) to simulate lesions with - 15HU contrast. Scans were repeated 100 times with the rods and 100 times without for each of 4 dose levels. Signal and background images were generated by selecting ROIs with 128x128 pixels, with the location of signal in each ROI randomly distributed. Human observer studies were conducted as three medical physicists identified the presence or absence of lesion, indicated the lesion location in each image and scored confidence level with a 6-point scale. ROC curves were fitted and area under curve (AUC) was calculated. The same data set was also analyzed using a Channelized Hottelling model observer with Gabor channels. Internal noise was added to the test variables for model observer study. AUC of ROC and LROC curves were calculated using non-parametric approach. The performance of human observer and model observer was compared. The Peason's product-moment correlation coefficients were 0.994 and 0.998 for 3mm and 5mm diameter lesions in ROC analysis and 0.987 and 0.999 in LROC analysis, indicating that model observer performance was highly correlated with the human observer performance for different size of lesions and different dose levels when signal location is uncertain. These results provide the potential of using model observer that correlates with human observer to assess CT image quality, optimize scanning protocol and reduce radiation dose.

  12. Fractal image perception provides novel insights into hierarchical cognition.

    PubMed

    Martins, M J; Fischmeister, F P; Puig-Waldmüller, E; Oh, J; Geissler, A; Robinson, S; Fitch, W T; Beisteiner, R

    2014-08-01

    Hierarchical structures play a central role in many aspects of human cognition, prominently including both language and music. In this study we addressed hierarchy in the visual domain, using a novel paradigm based on fractal images. Fractals are self-similar patterns generated by repeating the same simple rule at multiple hierarchical levels. Our hypothesis was that the brain uses different resources for processing hierarchies depending on whether it applies a "fractal" or a "non-fractal" cognitive strategy. We analyzed the neural circuits activated by these complex hierarchical patterns in an event-related fMRI study of 40 healthy subjects. Brain activation was compared across three different tasks: a similarity task, and two hierarchical tasks in which subjects were asked to recognize the repetition of a rule operating transformations either within an existing hierarchical level, or generating new hierarchical levels. Similar hierarchical images were generated by both rules and target images were identical. We found that when processing visual hierarchies, engagement in both hierarchical tasks activated the visual dorsal stream (occipito-parietal cortex, intraparietal sulcus and dorsolateral prefrontal cortex). In addition, the level-generating task specifically activated circuits related to the integration of spatial and categorical information, and with the integration of items in contexts (posterior cingulate cortex, retrosplenial cortex, and medial, ventral and anterior regions of temporal cortex). These findings provide interesting new clues about the cognitive mechanisms involved in the generation of new hierarchical levels as required for fractals. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Binge Eating Disorder and body image perception among university students.

    PubMed

    Nicoli, Marina G; Junior, Raphael D R Liberatore

    2011-12-01

    Binge Eating Disorder (BED) is characterized by recurrent episodes of compulsive eating, without any compensatory behavior to avoid possible gain weight. Individuals who suffer from eating disorders often show negative self-image. The present paper aimed to assess BED prevalence and self-image disorders among university students in the city of São José do Rio Preto, State of São Paulo, Brazil. The survey had the participation of 217 undergraduates. The following procedures were carried out: a personal data questionnaire, the Binge Eating Scale and a figure scale. In the surveyed population, 12.90% showed BED. Most subjects (86.32%) chose larger figures when compared to their current BMI, overestimating their body size. Furthermore, BED individuals showed higher self-image inadequacy in comparison to people without the disorder. Therefore, this is a public health problem to which undergraduates are exposed; forthcoming studies may be carried out to understand BED and associated commorbidities. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Altering Visual Perception Abnormalities: A Marker for Body Image Concern

    PubMed Central

    Duncum, Anna J. F.; Mundy, Matthew E.

    2016-01-01

    The body image concern (BIC) continuum ranges from a healthy and positive body image, to clinical diagnoses of abnormal body image, like body dysmorphic disorder (BDD). BDD and non-clinical, yet high-BIC participants have demonstrated a local visual processing bias, characterised by reduced inversion effects. To examine whether this bias is a potential marker of BDD, the visual processing of individuals across the entire BIC continuum was examined. Dysmorphic Concern Questionnaire (DCQ; quantified BIC) scores were expected to correlate with higher discrimination accuracy and faster reaction times of inverted stimuli, indicating reduced inversion effects (occurring due to increased local visual processing). Additionally, an induced global or local processing bias via Navon stimulus presentation was expected to alter these associations. Seventy-four participants completed the DCQ and upright-inverted face and body stimulus discrimination task. Moderate positive associations were revealed between DCQ scores and accuracy rates for inverted face and body stimuli, indicating a graded local bias accompanying increases in BIC. This relationship supports a local processing bias as a marker for BDD, which has significant assessment implications. Furthermore, a moderate negative relationship was found between DCQ score and inverted face accuracy after inducing global processing, indicating the processing bias can temporarily be reversed in high BIC individuals. Navon stimuli were successfully able to alter the visual processing of individuals across the BIC continuum, which has important implications for treating BDD. PMID:27003715

  15. Augmented depth perception visualization in 2D/3D image fusion.

    PubMed

    Wang, Jian; Kreiser, Matthias; Wang, Lejing; Navab, Nassir; Fallavollita, Pascal

    2014-12-01

    2D/3D image fusion applications are widely used in endovascular interventions. Complaints from interventionists about existing state-of-art visualization software are usually related to the strong compromise between 2D and 3D visibility or the lack of depth perception. In this paper, we investigate several concepts enabling improvement of current image fusion visualization found in the operating room. First, a contour enhanced visualization is used to circumvent hidden information in the X-ray image. Second, an occlusion and depth color-coding scheme is considered to improve depth perception. To validate our visualization technique both phantom and clinical data are considered. An evaluation is performed in the form of a questionnaire which included 24 participants: ten clinicians and fourteen non-clinicians. Results indicate that the occlusion correction method provides 100% correctness when determining the true position of an aneurysm in X-ray. Further, when integrating an RGB or RB color-depth encoding in the image fusion both perception and intuitiveness are improved. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Imaging protoplanets: observing transition disks with non-redundant masking

    NASA Astrophysics Data System (ADS)

    Sallum, Steph; Eisner, Josh; Close, Laird M.; Hinz, Philip M.; Follette, Katherine B.; Kratter, Kaitlin; Skemer, Andrew J.; Bailey, Vanessa P.; Briguglio, Runa; Defrere, Denis; Macintosh, Bruce A.; Males, Jared R.; Morzinski, Katie M.; Puglisi, Alfio T.; Rodigas, Timothy J.; Spalding, Eckhart; Tuthill, Peter G.; Vaz, Amali; Weinberger, Alycia; Xomperio, Marco

    2016-08-01

    Transition disks, protoplanetary disks with inner clearings, are promising objects in which to directly image forming planets. The high contrast imaging technique of non-redundant masking is well posed to detect planetary mass companions at several to tens of AU in nearby transition disks. We present non-redundant masking observations of the T Cha and LkCa 15 transition disks, both of which host posited sub-stellar mass companions. However, due to a loss of information intrinsic to the technique, observations of extended sources (e.g. scattered light from disks) can be misinterpreted as moving companions. We discuss tests to distinguish between these two scenarios, with applications to the T Cha and LkCa 15 observations. We argue that a static, forward-scattering disk can explain the T Cha data, while LkCa 15 is best explained by multiple orbiting companions.

  17. Field observations using an AOTF polarimetric imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Hamilton, Mike; Mahoney, Colin; Reyes, George

    1993-01-01

    This paper reports preliminary results of recent field observations using a prototype acousto-optic tunable filter (AOTF) polarimetric imaging spectrometer. The data illustrate application potentials for geoscience. The operation principle of this instrument is different from that of current airborne multispectral imaging instruments, such as AVIRIS. The AOTF instrument takes two orthogonally polarized images at a desired wavelength at one time, whereas AVIRIS takes a spectrum over a predetermined wavelength range at one pixel at a time and the image is constructed later. AVIRIS does not have any polarization measuring capability. The AOTF instrument could be a complement tool to AVIRIS. Polarization measurement is a desired capability for many applications in remote sensing. It is well know that natural light is often polarized due to various scattering phenomena in the atmosphere. Also, scattered light from canopies is reported to have a polarized component. To characterize objects of interest correctly requires a remote sensing imaging spectrometer capable of measuring object signal and background radiation in both intensity and polarization so that the characteristics of the object can be determined. The AORF instrument has the capability to do so. The AOTF instrument has other unique properties. For example, it can provide spectral images immediately after the observation. The instrument can also allow observations to be tailored in real time to perform the desired experiments and to collect only required data. Consequently, the performance in each mission can be increased with minimal resources. The prototype instrument was completed in the beginning of this year. A number of outdoor field experiments were performed with the objective to evaluate the capability of this new technology for remote sensing applications and to determine issues for further improvements.

  18. Visual perception and stereoscopic imaging: an artist's perspective

    NASA Astrophysics Data System (ADS)

    Mason, Steve

    2015-03-01

    This paper continues my 2014 February IS and T/SPIE Convention exploration into the relationship of stereoscopic vision and consciousness (90141F-1). It was proposed then that by using stereoscopic imaging people may consciously experience, or see, what they are viewing and thereby help make them more aware of the way their brains manage and interpret visual information. Environmental imaging was suggested as a way to accomplish this. This paper is the result of further investigation, research, and follow-up imaging. A show of images, that is a result of this research, allows viewers to experience for themselves the effects of stereoscopy on consciousness. Creating dye-infused aluminum prints while employing ChromaDepth® 3D glasses, I hope to not only raise awareness of visual processing but also explore the differences and similarities between the artist and scientist―art increases right brain spatial consciousness, not only empirical thinking, while furthering the viewer's cognizance of the process of seeing. The artist must abandon preconceptions and expectations, despite what the evidence and experience may indicate in order to see what is happening in his work and to allow it to develop in ways he/she could never anticipate. This process is then revealed to the viewer in a show of work. It is in the experiencing, not just from the thinking, where insight is achieved. Directing the viewer's awareness during the experience using stereoscopic imaging allows for further understanding of the brain's function in the visual process. A cognitive transformation occurs, the preverbal "left/right brain shift," in order for viewers to "see" the space. Using what we know from recent brain research, these images will draw from certain parts of the brain when viewed in two dimensions and different ones when viewed stereoscopically, a shift, if one is looking for it, which is quite noticeable. People who have experienced these images in the context of examining their own

  19. Simultaneous multi-frequency imaging observations of solar microwave bursts

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; White, S. M.; Schmahl, E. J.

    1989-01-01

    The results of simultaneous two-frequency imaging observations of solar microwave bursts with the Very Large Array are reviewed. Simultaneous 2 and 6 cm observations have been made of bursts which are optically thin at both frequencies, or optically thick at the lower frequency. In the latter case, the source structure may differ at the two frequencies, but the two sources usually seem to be related. However, this is not always true of simultaneous 6 and 20 cm observations. The results have implications for the analysis of nonimaging radio data of solar and stellar flares.

  20. How musical expertise shapes speech perception: evidence from auditory classification images

    PubMed Central

    Varnet, Léo; Wang, Tianyun; Peter, Chloe; Meunier, Fanny; Hoen, Michel

    2015-01-01

    It is now well established that extensive musical training percolates to higher levels of cognition, such as speech processing. However, the lack of a precise technique to investigate the specific listening strategy involved in speech comprehension has made it difficult to determine how musicians’ higher performance in non-speech tasks contributes to their enhanced speech comprehension. The recently developed Auditory Classification Image approach reveals the precise time-frequency regions used by participants when performing phonemic categorizations in noise. Here we used this technique on 19 non-musicians and 19 professional musicians. We found that both groups used very similar listening strategies, but the musicians relied more heavily on the two main acoustic cues, at the first formant onset and at the onsets of the second and third formants onsets. Additionally, they responded more consistently to stimuli. These observations provide a direct visualization of auditory plasticity resulting from extensive musical training and shed light on the level of functional transfer between auditory processing and speech perception. PMID:26399909

  1. Earth Observing-1 Advanced Land Imager: Radiometric Response Calibration

    NASA Technical Reports Server (NTRS)

    Mendenhall, J. A.; Lencioni, D. E.; Evans, J. B.

    2000-01-01

    The Advanced Land Imager (ALI) is one of three instruments to be flown on the first Earth Observing mission (EO-1) under NASA's New Millennium Program (NMP). ALI contains a number of innovative features, including a wide field of view optical design, compact multispectral focal plane arrays, non-cryogenic HgCdTe detectors for the short wave infrared bands, and silicon carbide optics. This document outlines the techniques adopted during ground calibration of the radiometric response of the Advanced Land Imager. Results from system level measurements of the instrument response, signal-to-noise ratio, saturation radiance, and dynamic range for all detectors of every spectral band are also presented.

  2. Applications of Geostationary Ocean Color Imager (GOCI) observations

    NASA Astrophysics Data System (ADS)

    Park, Y. J.

    2016-02-01

    Ocean color remote-sensing technique opened a new era for biological oceanography by providing the global distribution of phytoplankton biomass every a few days. It has been proved useful for a variety of applications in coastal waters as well as oceanic waters. However, most ocean color sensors deliver less than one image per day for low and middle latitude areas, and this once a day image is insufficient to resolve transient or high frequency processes. Korean Geostationary Ocean Color Imager (GOCI), the first ever ocean color instrument operated on geostationary orbit, is collecting ocean color radiometry (OCR) data (multi-band radiances at the visible to NIR spectral wavelengths) since July, 2010. GOCI has an unprecedented capability to provide eight OCR images a day with a 500m resolution for the North East Asian seas Monitoring the spatial and temporal variability is important to understand many processes occurring in open ocean and coastal environments. With a series of images consecutively acquired by GOCI, we are now able to look into (sub-)diurnal variabilities of coastal ocean color products such as phytoplankton biomass, suspended particles concentrations, and primary production. The eight images taken a day provide another way to derive maps of ocean current velocity. Compared to polar orbiters, GOCI delivers more frequent images with constant viewing angle, which enables to better monitor and thus respond to coastal water issues such as harmful algal blooms, floating green and brown algae. The frequent observation capability for local area allows us to respond timely to natural disasters and hazards. GOCI images are often useful to identify sea fog, sea ice, wild fires, volcanic eruptions, transport of dust aerosols, snow covered area, etc.

  3. Electrical brain imaging reveals spatio-temporal dynamics of timbre perception in humans.

    PubMed

    Meyer, Martin; Baumann, Simon; Jancke, Lutz

    2006-10-01

    Timbre is a major attribute of sound perception and a key feature for the identification of sound quality. Here, we present event-related brain potentials (ERPs) obtained from sixteen healthy individuals while they discriminated complex instrumental tones (piano, trumpet, and violin) or simple sine wave tones that lack the principal features of timbre. Data analysis yielded enhanced N1 and P2 responses to instrumental tones relative to sine wave tones. Furthermore, we applied an electrical brain imaging approach using low-resolution electromagnetic tomography (LORETA) to estimate the neural sources of N1/P2 responses. Separate significance tests of instrumental vs. sine wave tones for N1 and P2 revealed distinct regions as principally governing timbre perception. In an initial stage (N1), timbre perception recruits left and right (peri-)auditory fields with an activity maximum over the right posterior Sylvian fissure (SF) and the posterior cingulate (PCC) territory. In the subsequent stage (P2), we uncovered enhanced activity in the vicinity of the entire cingulate gyrus. The involvement of extra-auditory areas in timbre perception may imply the presence of a highly associative processing level which might be generally related to musical sensations and integrates widespread medial areas of the human cortex. In summary, our results demonstrate spatio-temporally distinct stages in timbre perception which not only involve bilateral parts of the peri-auditory cortex but also medially situated regions of the human brain associated with emotional and auditory imagery functions.

  4. Learning a channelized observer for image quality assessment.

    PubMed

    Brankov, Jovan G; Yang, Yongyi; Wei, Liyang; El Naqa, Issam; Wernick, Miles N

    2009-07-01

    It is now widely accepted that image quality should be evaluated using task-based criteria, such as human-observer performance in a lesion-detection task. The channelized Hotelling observer (CHO) has been widely used as a surrogate for human observers in evaluating lesion detectability. In this paper, we propose that the problem of developing a numerical observer can be viewed as a system-identification or supervised-learning problem, in which the goal is to identify the unknown system of the human observer. Following this approach, we explore the possibility of replacing the Hotelling detector within the CHO with an algorithm that learns the relationship between measured channel features and human observer scores. Specifically, we develop a channelized support vector machine (CSVM) which we compare to the CHO in terms of its ability to predict human-observer performance. In the examples studied, we find that the CSVM is better able to generalize to unseen images than the CHO, and therefore may represent a useful improvement on the CHO methodology, while retaining its essential features.

  5. Comparison of male and female junior athletes' self-perceptions and body image.

    PubMed

    Daley, A J; Hunter, B

    2001-12-01

    Few studies have examined sex differences in body perceptions in sports where the pressure to display a certain physique is reduced. The aim of the present study was to investigate sex differences in physical self-perceptions and body image in junior athletes who are involved in sprint kayaking, a sport where a low body weight is relatively unimportant. 12 male and 13 female members (aged 13-17 yr.) of the British Canoe Union Junior Development Squad for sprint-kayak racing completed the Physical Self-perception Profile for Children and the Multidimensional Body-Self Relations Questionnaire. Multivariate analysis of variance indicated that girls reported significandy higher Sports Competence and lower Appearance Orientation scores than boys. This study has raised a number of issues surrounding the physical self-perceptions and body image of junior athletes involved in a power- and strength-based sport. It seems that male athletes may also experience pressures to conform to a male version of a 'beautiful body'.

  6. Emergency Department Patients' Perceptions of Radiation From Medical Imaging.

    PubMed

    Repplinger, Michael D; Li, Annabel J; Svenson, James E; Ehlenbach, William J; Westergaard, Ryan P; Reeder, Scott B; Jacobs, Elizabeth A

    2016-02-01

    To evaluate emergency department patients' knowledge of radiation exposure and subsequent risks from computed tomography (CT) and magnetic resonance imaging (MRI) scans. This is a cross-sectional survey study of adult, English-speaking patients from June to August 2011 at 2 emergency departments--1 academic and 1 community-based--in the upper Midwest. The survey consisted of 2 sets of 3 questions evaluating patients' knowledge of radiation exposure from medical imaging and subsequent radiation-induced malignancies and was based on a previously published survey. The question sets paralleled each other, but one pertained to CT and the other to MRI. Questions in the survey ascertained patients' understanding of (1) the relative amount of radiation exposed from CT/MRI compared with a single chest x-ray; (2) the relative amount of radiation exposed from CT/MRI compared with a nuclear power plant accident; and (3) the possibility of radiation-induced malignancies from CT/MRl. Sociodemographic data also were gathered. The primary outcome measure was the proportion of correct answers to each survey question. Multiple logistic regression then was used to examine the relationship between the percentage correct for each question and sociodemographic variables, using odds ratios with 95% confidence intervals. P-values less than 0.05 were considered statistically significant. There were 500 participants in this study, 315 from the academic center and 185 from the community hospital. Overall, 14.1% (95% CI, 11.0%-17.2%) of participants understood the relative radiation exposure of a CT scan compared with a chest x-ray, while 22.8% (95% CI, 18.9%-26.7%) of respondents understood the lack of ionizing radiation use with MRI. At the same time, 25.6% (95% CI, 21.8%- 29.4%) believed that there was an increased risk of developing cancer from repeated abdominal CTs, while 55.6% (95% CI, 51.1%-60.1%) believed this to be true of abdominal MRI. Higher educational level and identification

  7. High-speed imaging system for observation of discharge phenomena

    NASA Astrophysics Data System (ADS)

    Tanabe, R.; Kusano, H.; Ito, Y.

    2008-11-01

    A thin metal electrode tip instantly changes its shape into a sphere or a needlelike shape in a single electrical discharge of high current. These changes occur within several hundred microseconds. To observe these high-speed phenomena in a single discharge, an imaging system using a high-speed video camera and a high repetition rate pulse laser was constructed. A nanosecond laser, the wavelength of which was 532 nm, was used as the illuminating source of a newly developed high-speed video camera, HPV-1. The time resolution of our system was determined by the laser pulse width and was about 80 nanoseconds. The system can take one hundred pictures at 16- or 64-microsecond intervals in a single discharge event. A band-pass filter at 532 nm was placed in front of the camera to block the emission of the discharge arc at other wavelengths. Therefore, clear images of the electrode were recorded even during the discharge. If the laser was not used, only images of plasma during discharge and thermal radiation from the electrode after discharge were observed. These results demonstrate that the combination of a high repetition rate and a short pulse laser with a high speed video camera provides a unique and powerful method for high speed imaging.

  8. Difference Image Analysis of Defocused Observations With CSTAR

    NASA Astrophysics Data System (ADS)

    Oelkers, Ryan J.; Macri, Lucas M.; Wang, Lifan; Ashley, Michael C. B.; Cui, Xiangqun; Feng, Long-Long; Gong, Xuefei; Lawrence, Jon S.; Qiang, Liu; Luong-Van, Daniel; Pennypacker, Carl R.; Yang, Huigen; Yuan, Xiangyan; York, Donald G.; Zhou, Xu; Zhu, Zhenxi

    2015-02-01

    The Chinese Small Telescope ARray carried out high-cadence time-series observations of 27 square degrees centered on the South Celestial Pole during the Antarctic winter seasons of 2008-2010. Aperture photometry of the 2008 and 2010 i-band images resulted in the discovery of over 200 variable stars. Yearly servicing left the array defocused for the 2009 winter season, during which the system also suffered from intermittent frosting and power failures. Despite these technical issues, nearly 800,000 useful images were obtained using g, r, and clear filters. We developed a combination of difference imaging and aperture photometry to compensate for the highly crowded, blended, and defocused frames. We present details of this approach, which may be useful for the analysis of time-series data from other small-aperture telescopes regardless of their image quality. Using this approach, we were able to recover 68 previously known variables and detected variability in 37 additional objects. We also have determined the observing statistics for Dome A during the 2009 winter season; we find the extinction due to clouds to be less than 0.1 and 0.4 mag for 40% and 63% of the dark time, respectively.

  9. Difference image analysis of defocused observations with CSTAR

    SciTech Connect

    Oelkers, Ryan J.; Macri, Lucas M.; Wang, Lifan; Ashley, Michael C. B.; Lawrence, Jon S.; Luong-Van, Daniel; Cui, Xiangqun; Gong, Xuefei; Qiang, Liu; Yang, Huigen; Yuan, Xiangyan; Zhou, Xu; Feng, Long-Long; Zhu, Zhenxi; Pennypacker, Carl R.; York, Donald G.

    2015-02-01

    The Chinese Small Telescope ARray carried out high-cadence time-series observations of 27 square degrees centered on the South Celestial Pole during the Antarctic winter seasons of 2008–2010. Aperture photometry of the 2008 and 2010 i-band images resulted in the discovery of over 200 variable stars. Yearly servicing left the array defocused for the 2009 winter season, during which the system also suffered from intermittent frosting and power failures. Despite these technical issues, nearly 800,000 useful images were obtained using g, r, and clear filters. We developed a combination of difference imaging and aperture photometry to compensate for the highly crowded, blended, and defocused frames. We present details of this approach, which may be useful for the analysis of time-series data from other small-aperture telescopes regardless of their image quality. Using this approach, we were able to recover 68 previously known variables and detected variability in 37 additional objects. We also have determined the observing statistics for Dome A during the 2009 winter season; we find the extinction due to clouds to be less than 0.1 and 0.4 mag for 40% and 63% of the dark time, respectively.

  10. MPEG-7 Descriptors for Earth Observation Satellite Images

    NASA Astrophysics Data System (ADS)

    Nieto, X. Giro I.; Marques Acosta, F.

    The amount of digital multimedia information has experienced a spectacular growth during the last years thanks to the advances on digital systems of image, video and audio acquisition. As a response to the need of organising all this information, ISO/IEC has developed a new standard for multimedia content description called MPEG-7. Among other topics, MPEG-7 defines a set of multimedia descriptors that can be automatically generated using signal processing techniques. Earth Observation Satellites generate large quantities of images stored on enormous databases that can take advantage of the new standard. An automatic indexation of these images using MPEG-7 metadata can improve their contents management as well as simplify interaction between independent databases. This paper gives an overall description on MPEG-7 standard focusing on the low-level Visual Descriptors. These descriptors can be grouped into four categories: color, texture, shape and motion. Visual Color Descriptors represent the colour distribution of an image in terms of a specified colour space. Visual Texture Descriptors define the visual pattern of an image according to its homogenities and non-homogenities. Visual Shape Descriptors describe the shape of 2D and 3D objects being, at the same time, invariant to scaling, rotation and translation. Motion Descriptors give the essential characteristics of objects and camera motions. These descriptors can be used individually or in combination to index and retrieve satellite images of the Earth from a database. For example, oceans and glaciars can be discerned based on their Colour Descriptors, also cities and deserts based on the Texture Descriptors, island images can be grouped using the Shape Descriptors, and cyclone trajectories studied and compared using the Motion Descriptors.

  11. How Do I Look? Body Image Perceptions among University Students from England and Denmark

    PubMed Central

    Ansari, Walid El; Clausen, Susanne Vodder; Mabhala, Andi; Stock, Christiane

    2010-01-01

    This study examined differences in body image perception between university students in two European countries, United Kingdom and Denmark. A total of 816 British and 548 Danish university students participated in a cross-sectional survey. A self-administered questionnaire assessed socio-demographic information, body image perception (as “too thin”, “just right” or “too fat”), and the association of related factors with body image perception (nutrition behaviour, social support, perceived stressors and quality of life). The proportions of students who perceived themselves as “too thin”, “just right”, or “too fat” were 8.6%, 37.7%, and 53.7% respectively. Multi-factorial logistic regression analysis showed that students who perceived themselves as “too fat” were more likely to be from the British university, to be females, to be older than 30 years, to report stress due to their financial situation and were less likely to have a high quality of life. The findings highlight the need for interventions with focus on healthy food choices whilst acknowledging financial stressors and quality of life. PMID:20616992

  12. How do I look? Body image perceptions among university students from England and Denmark.

    PubMed

    El Ansari, Walid; Clausen, Susanne Vodder; Mabhala, Andi; Stock, Christiane

    2010-02-01

    This study examined differences in body image perception between university students in two European countries, United Kingdom and Denmark. A total of 816 British and 548 Danish university students participated in a cross-sectional survey. A self-administered questionnaire assessed socio-demographic information, body image perception (as "too thin", "just right" or "too fat"), and the association of related factors with body image perception (nutrition behaviour, social support, perceived stressors and quality of life). The proportions of students who perceived themselves as "too thin", "just right", or "too fat" were 8.6%, 37.7%, and 53.7% respectively. Multi-factorial logistic regression analysis showed that students who perceived themselves as "too fat" were more likely to be from the British university, to be females, to be older than 30 years, to report stress due to their financial situation and were less likely to have a high quality of life. The findings highlight the need for interventions with focus on healthy food choices whilst acknowledging financial stressors and quality of life.

  13. Patient Perceptions of Participating in the RSNA Image Share Project: a Preliminary Study.

    PubMed

    Hiremath, Atheeth; Awan, Omer; Mendelson, David; Siegel, Eliot L

    2016-04-01

    The purpose of this study was to gauge patient perceptions of the RSNA Image Share Project (ISP), a pilot program that provides patients access to their imaging studies online via secure Personal Health Record (PHR) accounts. Two separate Institutional Review Board exempted surveys were distributed to patients depending on whether they decided to enroll or opt out of enrollment in the ISP. For patients that enrolled, a survey gauged baseline computer usage, perceptions of online access to images through the ISP, effect of patient access to images on patient-physician relationships, and interest in alternative use of images. The other survey documented the age and reasons for declining participation for those that opted out of enrolling in the ISP. Out of 564 patients, 470 enrolled in the ISP (83 % participation rate) and 456 of these 470 individuals completed the survey for a survey participation rate of 97 %. Patients who enrolled overwhelmingly perceived access to online images as beneficial and felt it bolstered their patient-physician relationship. Out of 564 patients, 94 declined enrollment in the ISP and all 94 individuals completed the survey for a survey participation rate of 100 %. Patients who declined to participate in the ISP cited unreliable access to Internet and existing availability of non-web-based intra-network images to their physicians. Patients who participated in the ISP found having a measure of control over their images to be beneficial and felt that patient-physician relationships could be negatively affected by challenges related to image accessibility.

  14. Terrestrial Myriametric Radio Burst Observed by IMAGE and Geotail Satellites

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.; Hashimoto, Kozo; Boardsen, Scott A.; Garcia, Leonard N.; Green, James L.; Matsumoto, Hiroshi; Reinisch, Bodo W.

    2010-01-01

    We report IMAGE and Geotail simultaneous observations of a terrestrial myriametric radio burst (TMRB) detected on August 19, 2001. The TMRB was confined in time (0830-1006 UT) and frequency (12-50 kHz), suggesting a fan beam-like emission pattern from a single discrete source. Analysis and comparisons with existing TMR radiations strongly suggest that the TMRB is a distinct emission perhaps resulting from dayside magnetic reconnection instigated by northward interplanetary field condition.

  15. Retinex Image Processing: Improved Fidelity To Direct Visual Observation

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.; Rahman, Zia-Ur; Woodell, Glenn A.

    1996-01-01

    Recorded color images differ from direct human viewing by the lack of dynamic range compression and color constancy. Research is summarized which develops the center/surround retinex concept originated by Edwin Land through a single scale design to a multi-scale design with color restoration (MSRCR). The MSRCR synthesizes dynamic range compression, color constancy, and color rendition and, thereby, approaches fidelity to direct observation.

  16. Digital image processing of earth observation sensor data

    NASA Technical Reports Server (NTRS)

    Bernstein, R.

    1976-01-01

    This paper describes digital image processing techniques that were developed to precisely correct Landsat multispectral earth observation data and gives illustrations of the results achieved, e.g., geometric corrections with an error of less than one picture element, a relative error of one-fourth picture element, and no radiometric error effect. Techniques for enhancing the sensor data, digitally mosaicking multiple scenes, and extracting information are also illustrated.

  17. Gravity wave observations using an all-sky imager network

    NASA Astrophysics Data System (ADS)

    Wrasse, Cristiano Max; Almeida, Lazaro M.; Abalde Guede, Jose Ricardo; Fagundes, Paulo Roberto; Nicoli Candido, Claudia Maria; Alves Bolzan, Maurício José; Guarnieri, Fernando; Messias Almeida, Lazaro

    Gravity waves in the mesosphere were observed by airglow all-sky imager network of the UNI- VAP at São José dos Campos (23o S, 45o W), Braśpolis (22o S, 45o W) and Palmas (10o S, 48o W), a e o Brazil. Gravity wave characteristics like morphology, horizontal wavelength, period, phase speed and propagation direction will be analysed and discussed. The results will be compared with other observation sites in Brazil. Wave directionality will also be discussed in terms of wave sources and wind filtering.

  18. Direct observation of up-conversion via femtosecond photoelectron imaging

    NASA Astrophysics Data System (ADS)

    Liu, Yuzhu; Knopp, Gregor; Gerber, Thomas

    2015-10-01

    Ultrafast relaxation dynamics in 2-methylfuran has been investigated by time-resolved photoelectron imaging. An "up" internal conversion from a low-lying state into a higher-lying one has been observed experimentally. Temporal photoelectron kinetic-energy distributions and angular distributions of the photoelectrons are analyzed. In the up-conversion process, the vibrational energy in the initial state is converted to the electronic energy of the final state during the energy transfer. And the time scale for the up-conversion process is estimated by the observed onset delay for the corresponding photoelectron bands.

  19. Emergency Department Patients’ Perceptions of Radiation from Medical Imaging

    PubMed Central

    Repplinger, Michael D.; Li, Annabel J.; Svenson, James E.; Ehlehbach, William J.; Westergaard, Ryan P.; Reeder, Scott B.; Jacobs, Elizabeth A.

    2016-01-01

    Objective To evaluate emergency department patients’ knowledge of radiation exposure and subsequent risks from CT and MRI scans. Methods This is a cross-sectional survey study of adult, English-speaking patients from 6/2011-8/2011 at two emergency departments, one academic and one community-based, in the upper Midwest. The survey consisted of two sets of three questions evaluating patients’ knowledge of radiation exposure from medical imaging and subsequent radiation-induced malignancies, and was based on a previously published survey. The question sets paralleled each other, but one pertained to CT and the other to MRI. Questions in the survey ascertained patients’ understanding of: 1) the relative amount of radiation exposed from CT/MRI compared with a single chest x-ray, 2) the relative amount of radiation exposed from CT/MRI compared with a nuclear power plant accident, and 3) the possibility of radiation-induced malignancies from CT/MRI. Sociodemographic data were also gathered. The primary outcome measure was the proportion of correct answers to each question of the survey. Multiple logistic regression was then used to examine the relationship between the percentage correct for each question and sociodemographic variables, using odds ratios with 95% confidence intervals. P-values less than 0.05 were considered statistically significant. Results There were 500 participants in this study, 315 from the academic center and 185 from the community hospital. Overall, 14.1% (95% CI 11.0%-17.2%) of participants understood the relative radiation exposure of a CT scan compared with a chest x-ray while 22.8% (95% CI 18.9%-26.7%) of respondents understood the lack of ionizing radiation use with MRI. 25.6% (95% CI 21.8%-29.4%) believed that there was an increased risk of developing cancer from repeated abdominal CTs while 55.6% (95% CI 51.1%-60.1%) believed this to be true of abdominal MRI. Higher educational level and identification as a healthcare professional were

  20. Simple color conversion method to perceptible images for color vision deficiencies

    NASA Astrophysics Data System (ADS)

    Meguro, Mitsuhiko; Takahashi, Chihiro; Koga, Toshio

    2006-02-01

    In this paper, we propose a color conversion method for realizing barrier free systems for color-defective vision. Human beings are perceiving colors by a ratio of reaction values by three kinds of cones on the retina. The three cones have different sensitivity to a wavelength of light. Nevertheless, dichromats, who are lacking of one of the three cones, tends to be diffcult for discriminating colors of a certain combination. The proposed techniques make new images by converting color for creating perceptible combination of color. The proposed method has three parts of processes. Firstly, we do image segmentation based on the color space L*a*b*. Secondly, we judge whether mean colors of divided regions of the segmented image tend to be confusion or not by using confusion color loci and color vision models of the persons with color-defective vision. Finally, the proposed technique realizes the perceptible images for dichromats by changing the confusion color in several regions of images. We show how effectiveness of the method by some application results.

  1. X-ray phase imaging-From static observation to dynamic observation-

    SciTech Connect

    Momose, A.; Yashiro, W.; Olbinado, M. P.; Harasse, S.

    2012-07-31

    We are attempting to expand the technology of X-ray grating phase imaging/tomography to enable dynamic observation. X-ray phase imaging has been performed mainly for static cases, and this challenge is significant since properties of materials (and hopefully their functions) would be understood by observing their dynamics in addition to their structure, which is an inherent advantage of X-ray imaging. Our recent activities in combination with white synchrotron radiation for this purpose are described. Taking advantage of the fact that an X-ray grating interferometer functions with X-rays of a broad energy bandwidth (and therefore high flux), movies of differential phase images and visibility images are obtained with a time resolution of a millisecond. The time resolution of X-ray phase tomography can therefore be a second. This study is performed as a part of a project to explore X-ray grating interferometry, and our other current activities are also briefly outlined.

  2. A Framework for Fast Image Deconvolution With Incomplete Observations.

    PubMed

    Simoes, Miguel; Almeida, Luis B; Bioucas-Dias, Jose; Chanussot, Jocelyn

    2016-11-01

    In image deconvolution problems, the diagonalization of the underlying operators by means of the fast Fourier transform (FFT) usually yields very large speedups. When there are incomplete observations (e.g., in the case of unknown boundaries), standard deconvolution techniques normally involve non-diagonalizable operators, resulting in rather slow methods or, otherwise, use inexact convolution models, resulting in the occurrence of artifacts in the enhanced images. In this paper, we propose a new deconvolution framework for images with incomplete observations that allows us to work with diagonalized convolution operators, and therefore is very fast. We iteratively alternate the estimation of the unknown pixels and of the deconvolved image, using, e.g., an FFT-based deconvolution method. This framework is an efficient, high-quality alternative to existing methods of dealing with the image boundaries, such as edge tapering. It can be used with any fast deconvolution method. We give an example in which a state-of-the-art method that assumes periodic boundary conditions is extended, using this framework, to unknown boundary conditions. Furthermore, we propose a specific implementation of this framework, based on the alternating direction method of multipliers (ADMM). We provide a proof of convergence for the resulting algorithm, which can be seen as a "partial" ADMM, in which not all variables are dualized. We report experimental comparisons with other primal-dual methods, where the proposed one performed at the level of the state of the art. Four different kinds of applications were tested in the experiments: deconvolution, deconvolution with inpainting, superresolution, and demosaicing, all with unknown boundaries.

  3. A Framework for Fast Image Deconvolution with Incomplete Observations.

    PubMed

    Simoes, Miguel; Almeida, Luis B; Bioucas-Dias, Jose; Chanussot, Jocelyn

    2016-08-26

    In image deconvolution problems, the diagonalization of the underlying operators by means of the FFT usually yields very large speedups. When there are incomplete observations (e.g., in the case of unknown boundaries), standard deconvolution techniques normally involve non-diagonalizable operators, resulting in rather slow methods, or, otherwise, use inexact convolution models, resulting in the occurrence of artifacts in the enhanced images. In this paper, we propose a new deconvolution framework for images with incomplete observations that allows us to work with diagonalized convolution operators, and therefore is very fast. We iteratively alternate the estimation of the unknown pixels and of the deconvolved image, using, e.g., an FFT-based deconvolution method. This framework is an efficient, high-quality alternative to existing methods of dealing with the image boundaries, such as edge tapering. It can be used with any fast deconvolution method. We give an example in which a state-of-the-art method that assumes periodic boundary conditions is extended, through the use of this framework, to unknown boundary conditions. Furthermore, we propose a specific implementation of this framework, based on the alternating direction method of multipliers (ADMM). We provide a proof of convergence for the resulting algorithm, which can be seen as a "partial" ADMM, in which not all variables are dualized. We report experimental comparisons with other primal-dual methods, where the proposed one performed at the level of the state of the art. Four different kinds of applications were tested in the experiments: deconvolution, deconvolution with inpainting, superresolution, and demosaicing, all with unknown boundaries.

  4. [Self-perception of body image, physical activity and risk factors].

    PubMed

    Silva-Filho, Lindomar da; Rabelo-Leitão, Alethéa C; Menezes-Cabral, Roberto L; Knackfuss, Maria I

    2008-01-01

    Analysing the risk-factors associated with perception of self-image in middle-aged walkers. Four groups were evaluated regarding gender and age-group. Non-invasive morphological and functional variables were colleted and body image identification was processed using a set of numbered silhouettes. Descriptive and inferential statistics were used in decision-making. Greater risk-factors were found in both genders and among the age-groups being studied. There was a difference between genders regarding self-perceived body image and between two groups from the same gender. The volunteers wished to reduce their silhouettes. The risk-factors were associated with self-perceived body image in both genders being studied here.

  5. Observer detection limits for a dedicated SPECT breast imaging system

    PubMed Central

    Cutler, S J; Perez, K L; Barnhart, H X; Tornai, M P

    2012-01-01

    An observer-based contrast-detail study is performed in an effort to evaluate the limits of object detectability using a dedicated CZT-based breast SPECT imaging system under various imaging conditions. A custom geometric contrast-resolution phantom was developed that can be used for both positive (‘hot’) and negative contrasts (‘cold’). The 3 cm long fillable tubes are arranged in six sectors having equal inner diameters ranging from 1 mm to 6 mm with plastic wall thicknesses of <0.25 mm, on a pitch of twice their inner diameters. Scans of the activity filled tubes using simple circular trajectories are obtained in a 215 mL uniform water filled cylinder, varying the rod:background concentration ratios from 10:1 to 1:10 simulating a large range of biological uptake ratios. The rod phantom is then placed inside a non-uniformly shaped 500 mL breast phantom and scans are again acquired using both simple and complex 3D trajectories for similarly varying contrasts. Summed slice and contiguous multi-slice images are evaluated by five independent readers, identifying the smallest distinguishable rod for each concentration and experimental setup. Linear and quadratic regression is used to compare the resulting contrast-detail curves. Results indicate that in a moderately low-noise 500 mL background, using the SPECT camera having 2.5 mm intrinsic pixels, the mean detectable rod was ~3.4 mm at a 10:1 ratio, degrading to ~5.2 mm with the 2.5:1 concentration ratio. The smallest object detail was observed using a 45° tilted trajectory acquisition. The complex 3D projected sine wave acquisition, however, had the most consistent combined intra- and inter-observer results, making it potentially the best imaging approach for consistent results. PMID:20224159

  6. Spatial frequency characteristics at image decision-point locations for observers with different radiological backgrounds in lung nodule detection

    NASA Astrophysics Data System (ADS)

    Pietrzyk, Mariusz W.; Manning, David J.; Dix, Alan; Donovan, Tim

    2009-02-01

    Aim: The goal of the study is to determine the spatial frequency characteristics at locations in the image of overt and covert observers' decisions and find out if there are any similarities in different observers' groups: the same radiological experience group or the same accuracy scored level. Background: The radiological task is described as a visual searching decision making procedure involving visual perception and cognitive processing. Humans perceive the world through a number of spatial frequency channels, each sensitive to visual information carried by different spatial frequency ranges and orientations. Recent studies have shown that particular physical properties of local and global image-based elements are correlated with the performance and the level of experience of human observers in breast cancer and lung nodule detections. Neurological findings in visual perception were an inspiration for wavelet applications in vision research because the methodology tries to mimic the brain processing algorithms. Methods: The wavelet approach to the set of postero-anterior chest radiographs analysis has been used to characterize perceptual preferences observers with different levels of experience in the radiological task. Psychophysical methodology has been applied to track eye movements over the image, where particular ROIs related to the observers' fixation clusters has been analysed in the spaces frame by Daubechies functions. Results: Significance differences have been found between the spatial frequency characteristics at the location of different decisions.

  7. Teacher Perceptions about Observation Conferences: What Do Teachers Think about Their Formative Supervision in One US School District?

    ERIC Educational Resources Information Center

    Range, Bret G.; Young, Suzie; Hvidston, David

    2013-01-01

    This study measured teachers' perceptions about the important elements of the pre- and post-observation conferences within one school district in a US state. Overall, respondents valued the post-observation conference more than the pre-observation conference and identified trusting relationships, constructive feedback, reflection and areas of…

  8. Teacher Perceptions about Observation Conferences: What Do Teachers Think about Their Formative Supervision in One US School District?

    ERIC Educational Resources Information Center

    Range, Bret G.; Young, Suzie; Hvidston, David

    2013-01-01

    This study measured teachers' perceptions about the important elements of the pre- and post-observation conferences within one school district in a US state. Overall, respondents valued the post-observation conference more than the pre-observation conference and identified trusting relationships, constructive feedback, reflection and areas of…

  9. Imaging Observations of Magnetic Reconnection in a Solar Eruptive Flare

    NASA Astrophysics Data System (ADS)

    Li, Y.; Sun, X.; Ding, M. D.; Qiu, J.; Priest, E. R.

    2017-02-01

    Solar flares are among the most energetic events in the solar atmosphere. It is widely accepted that flares are powered by magnetic reconnection in the corona. An eruptive flare is usually accompanied by a coronal mass ejection, both of which are probably driven by the eruption of a magnetic flux rope (MFR). Here we report an eruptive flare on 2016 March 23 observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. The extreme-ultraviolet imaging observations exhibit the clear rise and eruption of an MFR. In particular, the observations reveal solid evidence of magnetic reconnection from both the corona and chromosphere during the flare. Moreover, weak reconnection is observed before the start of the flare. We find that the preflare weak reconnection is of tether-cutting type and helps the MFR to rise slowly. Induced by a further rise of the MFR, strong reconnection occurs in the rise phases of the flare, which is temporally related to the MFR eruption. We also find that the magnetic reconnection is more of 3D-type in the early phase, as manifested in a strong-to-weak shear transition in flare loops, and becomes more 2D-like in the later phase, as shown by the apparent rising motion of an arcade of flare loops.

  10. Center determination for trailed sources in astronomical observation images

    NASA Astrophysics Data System (ADS)

    Du, Jun Ju; Hu, Shao Ming; Chen, Xu; Guo, Di Fu

    2014-11-01

    Images with trailed sources can be obtained when observing near-Earth objects, such as small astroids, space debris, major planets and their satellites, no matter the telescopes track on sidereal speed or the speed of target. The low centering accuracy of these trailed sources is one of the most important sources of the astrometric uncertainty, but how to determine the central positions of the trailed sources accurately remains a significant challenge to image processing techniques, especially in the study of faint or fast moving objects. According to the conditions of one-meter telescope at Weihai Observatory of Shandong University, moment and point-spread-function (PSF) fitting were chosen to develop the image processing pipeline for space debris. The principles and the implementations of both two methods are introduced in this paper. And some simulated images containing trailed sources are analyzed with each technique. The results show that two methods are comparable to obtain the accurate central positions of trailed sources when the signal to noise (SNR) is high. But moment tends to fail for the objects with low SNR. Compared with moment, PSF fitting seems to be more robust and versatile. However, PSF fitting is quite time-consuming. Therefore, if there are enough bright stars in the field, or the high astronometric accuracy is not necessary, moment is competent. Otherwise, the combination of moment and PSF fitting is recommended.

  11. Probing the functions of contextual modulation by adapting images rather than observers

    PubMed Central

    Webster, Michael A.

    2014-01-01

    Countless visual aftereffects have illustrated how visual sensitivity and perception can be biased by adaptation to the recent temporal context. This contextual modulation has been proposed to serve a variety of functions, but the actual benefits of adaptation remain uncertain. We describe an approach we have recently developed for exploring these benefits by adapting images instead of observers, to simulate how images should appear under theoretically optimal states of adaptation. This allows the long-term consequences of adaptation to be evaluated in ways that are difficult to probe by adapting observers, and provides a common framework for understanding how visual coding changes when the environment or the observer changes, or for evaluating how the effects of temporal context depend on different models of visual coding or the adaptation processes. The approach is illustrated for the specific case of adaptation to color, for which the initial neural coding and adaptation processes are relatively well understood, but can in principle be applied to examine the consequences of adaptation for any stimulus dimension. A simple calibration that adjusts each neuron’s sensitivity according to the stimulus level it is exposed to is sufficient to normalize visual coding and generate a host of benefits, from increased efficiency to perceptual constancy to enhanced discrimination. This temporal normalization may also provide an important precursor for the effective operation of contextual mechanisms operating across space or feature dimensions. To the extent that the effects of adaptation can be predicted, images from new environments could be “pre-adapted” to match them to the observer, eliminating the need for observers to adapt. PMID:25281412

  12. A Neuroelectrical Brain Imaging Study on the Perception of Figurative Paintings against Only their Color or Shape Contents

    PubMed Central

    Maglione, Anton G.; Brizi, Ambra; Vecchiato, Giovanni; Rossi, Dario; Trettel, Arianna; Modica, Enrica; Babiloni, Fabio

    2017-01-01

    In this study, the cortical activity correlated with the perception and appreciation of different set of pictures was estimated by using neuroelectric brain activity and graph theory methodologies in a group of artistic educated persons. The pictures shown to the subjects consisted of original pictures of Titian's and a contemporary artist's paintings (Orig dataset) plus two sets of additional pictures. These additional datasets were obtained from the previous paintings by removing all but the colors or the shapes employed (Color and Style dataset, respectively). Results suggest that the verbal appreciation of Orig dataset when compared to Color and Style ones was mainly correlated to the neuroelectric indexes estimated during the first 10 s of observation of the pictures. Always in the first 10 s of observation: (1) Orig dataset induced more emotion and is perceived with more appreciation than the other two Color and Style datasets; (2) Style dataset is perceived with more attentional effort than the other investigated datasets. During the whole period of observation of 30 s: (1) emotion induced by Color and Style datasets increased across the time while that induced of the Orig dataset remain stable; (2) Color and Style dataset were perceived with more attentional effort than the Orig dataset. During the entire experience, there is evidence of a cortical flow of activity from the parietal and central areas toward the prefrontal and frontal areas during the observation of the images of all the datasets. This is coherent from the notion that active perception of the images with sustained cognitive attention in parietal and central areas caused the generation of the judgment about their aesthetic appreciation in frontal areas. PMID:28790907

  13. Top-down influences on ambiguous perception: the role of stable and transient states of the observer.

    PubMed

    Scocchia, Lisa; Valsecchi, Matteo; Triesch, Jochen

    2014-01-01

    The world as it appears to the viewer is the result of a complex process of inference performed by the brain. The validity of this apparently counter-intuitive assertion becomes evident whenever we face noisy, feeble or ambiguous visual stimulation: in these conditions, the state of the observer may play a decisive role in determining what is currently perceived. On this background, ambiguous perception and its amenability to top-down influences can be employed as an empirical paradigm to explore the principles of perception. Here we offer an overview of both classical and recent contributions on how stable and transient states of the observer can impact ambiguous perception. As to the influence of the stable states of the observer, we show that what is currently perceived can be influenced (1) by cognitive and affective aspects, such as meaning, prior knowledge, motivation, and emotional content and (2) by individual differences, such as gender, handedness, genetic inheritance, clinical conditions, and personality traits and by (3) learning and conditioning. As to the impact of transient states of the observer, we outline the effects of (4) attention and (5) voluntary control, which have attracted much empirical work along the history of ambiguous perception. In the huge literature on the topic we trace a difference between the observer's ability to control dominance (i.e., the maintenance of a specific percept in visual awareness) and reversal rate (i.e., the switching between two alternative percepts). Other transient states of the observer that have more recently drawn researchers' attention regard (6) the effects of imagery and visual working memory. (7) Furthermore, we describe the transient effects of prior history of perceptual dominance. (8) Finally, we address the currently available computational models of ambiguous perception and how they can take into account the crucial share played by the state of the observer in perceiving ambiguous displays.

  14. Top-down influences on ambiguous perception: the role of stable and transient states of the observer

    PubMed Central

    Scocchia, Lisa; Valsecchi, Matteo; Triesch, Jochen

    2014-01-01

    The world as it appears to the viewer is the result of a complex process of inference performed by the brain. The validity of this apparently counter-intuitive assertion becomes evident whenever we face noisy, feeble or ambiguous visual stimulation: in these conditions, the state of the observer may play a decisive role in determining what is currently perceived. On this background, ambiguous perception and its amenability to top-down influences can be employed as an empirical paradigm to explore the principles of perception. Here we offer an overview of both classical and recent contributions on how stable and transient states of the observer can impact ambiguous perception. As to the influence of the stable states of the observer, we show that what is currently perceived can be influenced (1) by cognitive and affective aspects, such as meaning, prior knowledge, motivation, and emotional content and (2) by individual differences, such as gender, handedness, genetic inheritance, clinical conditions, and personality traits and by (3) learning and conditioning. As to the impact of transient states of the observer, we outline the effects of (4) attention and (5) voluntary control, which have attracted much empirical work along the history of ambiguous perception. In the huge literature on the topic we trace a difference between the observer's ability to control dominance (i.e., the maintenance of a specific percept in visual awareness) and reversal rate (i.e., the switching between two alternative percepts). Other transient states of the observer that have more recently drawn researchers' attention regard (6) the effects of imagery and visual working memory. (7) Furthermore, we describe the transient effects of prior history of perceptual dominance. (8) Finally, we address the currently available computational models of ambiguous perception and how they can take into account the crucial share played by the state of the observer in perceiving ambiguous displays. PMID

  15. Face or House Image Perception: Beta and Gamma Bands of Oscillations in Brain Networks Carry Out Decision-Making.

    PubMed

    Chand, Ganesh B; Lamichhane, Bidhan; Dhamala, Mukesh

    2016-08-22

    Previous functional magnetic resonance imaging studies have consistently shown that perception of visual objects, such as faces and houses, involves distributed brain networks that include the fusiform face area (FFA), parahippocampal place area (PPA), and dorsolateral prefrontal cortex (DLPFC). These regions are commonly observed to be coactivated in BOLD measurements during perception of visual objects. In this study, we aimed to disentangle node-level and network-level activities in millisecond timescale of perception and decision-making in attempts to answer questions about timing and frequency of brain oscillatory activities. We used clear and noisy face-house image categorization tasks and human scalp electroencephalography recordings combined with source reconstruction techniques to study when and how oscillatory activity organizes within the FFA, PPA, and DLPFC. We uncovered the dynamics of two oscillatory networks-beta (13-30 Hz) and gamma (30-100 Hz). In beta band, the node and network activities were enhanced in time frame of 125-250 msec after stimulus onset, the FFA and PPA acted as main outflow hubs and the DLPFC as a main inflow hub, and network activities negatively correlated with behavior measures of noise levels (response times). In gamma band, node and network activities were elevated in time frame of 0-125 msec after stimulus onset, the DLPFC acted as a main outflow hub, and finally network activities were positively correlated with the noise level. These findings broaden our understanding of temporal evolution of node and network features associated with visual perceptual decision-making.

  16. Weight status and perception of body image in children: the effect of maternal immigrant status.

    PubMed

    Gualdi-Russo, Emanuela; Manzon, Vanessa Samantha; Masotti, Sabrina; Toselli, Stefania; Albertini, Augusta; Celenza, Francesca; Zaccagni, Luciana

    2012-10-15

    Recent studies have shown that body image perception is an important factor in weight control and may be influenced by culture and ethnicity. The aim of the present study was to assess the relationship between immigrant status of the mother and weight status and body image perception of the child. In total, 2706 schoolchildren (1405 boys and 1301 girls) aged 8-9 years and their mothers participated in a cross-sectional survey in Emilia-Romagna region (northern Italy). Weight and height of the children were measured and Body Mass Index (BMI) was calculated. Actual and ideal body image perception by the children and by the mothers with respect to their children was evaluated according to Collins' body image silhouettes. The BMI values were significantly lower in children of immigrants than in children of Italian mothers (F:17.27 vs 17.99 kg/m²; M:17.77 vs 18.13 kg/m²). The prevalence of overweight/obesity was lower, and the prevalence of underweight higher, in children of immigrant mothers than in those of Italian mothers (overweight- F:21.3 vs 29.1%; M. 28.3 vs 31.4%; underweight- F:5.16 vs 3.84%; M:6.63 vs 2.82%). The children's body image perception was consistent with the differing pattern of nutritional status. In the comparison between actual and ideal figures, the Feel-Ideal Difference Index (FID) scores resulted different between the subsample with foreign-born mother in comparison to the native one (significantly lower in daughters of immigrants) (FID- F: 0.31 vs 0.57; M: 0.35 vs 0.32). There were significant differences in the choice of the ideal figure of the child between immigrant mothers and Italian mothers (FID- F: -0.05 vs 0.19; M: -0.35 vs -0.03): the ideal figure values were higher in the immigrant mothers of male children and lower in the Italian mothers of female children. Our results suggest that cultural and behavioral factors linked to ethnicity play an important role in the nutritional status of children and in the perceived and ideal body

  17. Weight status and perception of body image in children: the effect of maternal immigrant status

    PubMed Central

    2012-01-01

    Background Recent studies have shown that body image perception is an important factor in weight control and may be influenced by culture and ethnicity. The aim of the present study was to assess the relationship between immigrant status of the mother and weight status and body image perception of the child. Methods In total, 2706 schoolchildren (1405 boys and 1301 girls) aged 8–9 years and their mothers participated in a cross-sectional survey in Emilia-Romagna region (northern Italy). Weight and height of the children were measured and Body Mass Index (BMI) was calculated. Actual and ideal body image perception by the children and by the mothers with respect to their children was evaluated according to Collins’ body image silhouettes. Results The BMI values were significantly lower in children of immigrants than in children of Italian mothers (F:17.27 vs 17.99 kg/m2; M:17.77 vs 18.13 kg/m2). The prevalence of overweight/obesity was lower, and the prevalence of underweight higher, in children of immigrant mothers than in those of Italian mothers (overweight- F:21.3 vs 29.1%; M. 28.3 vs 31.4%; underweight- F:5.16 vs 3.84%; M:6.63 vs 2.82%). The children's body image perception was consistent with the differing pattern of nutritional status. In the comparison between actual and ideal figures, the Feel-Ideal Difference Index (FID) scores resulted different between the subsample with foreign-born mother in comparison to the native one (significantly lower in daughters of immigrants) (FID- F: 0.31 vs 0.57; M: 0.35 vs 0.32). There were significant differences in the choice of the ideal figure of the child between immigrant mothers and Italian mothers (FID- F: -0.05 vs 0.19; M: -0.35 vs −0.03): the ideal figure values were higher in the immigrant mothers of male children and lower in the Italian mothers of female children. Conclusion Our results suggest that cultural and behavioral factors linked to ethnicity play an important role in the nutritional status of

  18. Brain imaging reveals neuronal circuitry underlying the crow's perception of human faces.

    PubMed

    Marzluff, John M; Miyaoka, Robert; Minoshima, Satoshi; Cross, Donna J

    2012-09-25

    Crows pay close attention to people and can remember specific faces for several years after a single encounter. In mammals, including humans, faces are evaluated by an integrated neural system involving the sensory cortex, limbic system, and striatum. Here we test the hypothesis that birds use a similar system by providing an imaging analysis of an awake, wild animal's brain as it performs an adaptive, complex cognitive task. We show that in vivo imaging of crow brain activity during exposure to familiar human faces previously associated with either capture (threatening) or caretaking (caring) activated several brain regions that allow birds to discriminate, associate, and remember visual stimuli, including the rostral hyperpallium, nidopallium, mesopallium, and lateral striatum. Perception of threatening faces activated circuitry including amygdalar, thalamic, and brainstem regions, known in humans and other vertebrates to be related to emotion, motivation, and conditioned fear learning. In contrast, perception of caring faces activated motivation and striatal regions. In our experiments and in nature, when perceiving a threatening face, crows froze and fixed their gaze (decreased blink rate), which was associated with activation of brain regions known in birds to regulate perception, attention, fear, and escape behavior. These findings indicate that, similar to humans, crows use sophisticated visual sensory systems to recognize faces and modulate behavioral responses by integrating visual information with expectation and emotion. Our approach has wide applicability and potential to improve our understanding of the neural basis for animal behavior.

  19. Brain imaging reveals neuronal circuitry underlying the crow’s perception of human faces

    PubMed Central

    Marzluff, John M.; Miyaoka, Robert; Minoshima, Satoshi; Cross, Donna J.

    2012-01-01

    Crows pay close attention to people and can remember specific faces for several years after a single encounter. In mammals, including humans, faces are evaluated by an integrated neural system involving the sensory cortex, limbic system, and striatum. Here we test the hypothesis that birds use a similar system by providing an imaging analysis of an awake, wild animal’s brain as it performs an adaptive, complex cognitive task. We show that in vivo imaging of crow brain activity during exposure to familiar human faces previously associated with either capture (threatening) or caretaking (caring) activated several brain regions that allow birds to discriminate, associate, and remember visual stimuli, including the rostral hyperpallium, nidopallium, mesopallium, and lateral striatum. Perception of threatening faces activated circuitry including amygdalar, thalamic, and brainstem regions, known in humans and other vertebrates to be related to emotion, motivation, and conditioned fear learning. In contrast, perception of caring faces activated motivation and striatal regions. In our experiments and in nature, when perceiving a threatening face, crows froze and fixed their gaze (decreased blink rate), which was associated with activation of brain regions known in birds to regulate perception, attention, fear, and escape behavior. These findings indicate that, similar to humans, crows use sophisticated visual sensory systems to recognize faces and modulate behavioral responses by integrating visual information with expectation and emotion. Our approach has wide applicability and potential to improve our understanding of the neural basis for animal behavior. PMID:22984177

  20. On Alternative Approaches to 3D Image Perception: Monoscopic 3D Techniques

    NASA Astrophysics Data System (ADS)

    Blundell, Barry G.

    2015-06-01

    In the eighteenth century, techniques that enabled a strong sense of 3D perception to be experienced without recourse to binocular disparities (arising from the spatial separation of the eyes) underpinned the first significant commercial sales of 3D viewing devices and associated content. However following the advent of stereoscopic techniques in the nineteenth century, 3D image depiction has become inextricably linked to binocular parallax and outside the vision science and arts communities relatively little attention has been directed towards earlier approaches. Here we introduce relevant concepts and terminology and consider a number of techniques and optical devices that enable 3D perception to be experienced on the basis of planar images rendered from a single vantage point. Subsequently we allude to possible mechanisms for non-binocular parallax based 3D perception. Particular attention is given to reviewing areas likely to be thought-provoking to those involved in 3D display development, spatial visualization, HCI, and other related areas of interdisciplinary research.

  1. Observation, reflection, and reinforcement: surgery faculty members' and residents' perceptions of how they learned professionalism.

    PubMed

    Park, Jason; Woodrow, Sarah I; Reznick, Richard K; Beales, Jennifer; MacRae, Helen M

    2010-01-01

    To explore perceptions of how professionalism is learned in the current academic environment. Professionalism is a core competency in surgery (as in all of medical practice), and its presence or absence affects all aspects of clinical education and practice, but the ways in which professional values and attitudes are best transmitted to developing generations of surgeons have not been well defined. The authors conducted 34 semistructured interviews of individual surgery residents and faculty members at two academic institutions from 2004 to 2006. Interviews consisted of open-ended questions on how the participants learned professionalism and what they perceived as challenges to learning professionalism. Two researchers analyzed the interview transcripts for emergent themes by using a grounded-theory approach. Faculty members' and residents' perceptions of how they learned professionalism reflected four major themes: (1) personal values and upbringing, including premedical education experiences, (2) learning by example from professional role models, (3) the structure of the surgery residency, and (4) formal instruction on professionalism. Of these, role modeling was the dominant theme: Participants identified observation, reflection, and reinforcement as playing key roles in their learning from role models and in distinguishing the sometimes blurred boundary between positive and negative role models. The theoretical framework generated out of this study proposes a focus on specific activities to improve professional education, including an active approach to role modeling through the intentional and explicit demonstration of professional behavior during the course of everyday work; structured, reflective self-examination; and timely and meaningful evaluation and feedback for reinforcement.

  2. The perception-action dynamics of action competency are altered by both physical and observational training.

    PubMed

    Buchanan, John J; Ramos, Jorge; Robson, Nina

    2015-04-01

    Action competency is defined as the ability of an individual to self-evaluate their own performance capabilities. The current experiment demonstrated that physical and observational training with a motor skill alters action competency ratings in a similar manner. Using a pre-test and post-test protocol, the results revealed that action competency is constrained prior to training by the intrinsic dynamics of relative phase (ϕ), with in-phase (ϕ = 0°) and anti-phase (ϕ = 180°) patterns receiving higher competency ratings than other relative phase patterns. After 2 days of training, action competency ratings for two trained relative phase patterns, +60° and +120°, increased following physical practice or observational practice. A transfer test revealed that both physical performance ability and action competency ability transferred to the symmetry partners (-60° and -120°) of the two trained relative phase patterns following physical or observational training. The findings also revealed that relative motion direction acts as categorical information that helps to organize action production and facilitate action competency. The results are interpreted based on the coordination dynamics theory of perception-action coupling, and extend this theory by showing that visual perception, action production, and action competency are all constrained in a consistent manner by the dynamics of the order parameter relative phase. As a whole, the findings revealed that relative motion, relative phase, and possibly relative amplitude information are all distinct sources of information that contribute to the emergence of a kinematic understanding of action in the nervous system.

  3. Analyzing Serendipitous Asteroid Observations in Imaging Data using PHOTOMETRYPIPELINE

    NASA Astrophysics Data System (ADS)

    Ard, Christopher; Mommert, Michael; Trilling, David E.

    2016-10-01

    Asteroids are nearly ubiquitous in the night sky, making them present in the majority of imaging data taken every night. Serendipitous asteroid observations represent a treasure trove to Solar System researchers: accurate positional measurements of asteroids provide important constraints on their sometimes highly uncertain orbits, whereas calibrated photometric measurements can be used to establish rotational periods, intrinsic colors, or photometric phase curves.We present an add-on to the PHOTOMETRYPIPELINE (PP, github.com/mommermi/photometrypipeline, see Poster presentation 123.42) that identifies asteroids that have been observed serendipitously and extracts astrometry and calibrated photometry for these objects. PP is an open-source Python 2.7 software suite that provides image registration, aperture photometry, photometric calibration, and target identification with only minimal human interaction.Asteroids are identified based on approximate positions that are pre-calculated for a range of dates. Using interpolated coordinates, we identify potential asteroids that might be in the observed field and query their exact positions and positional uncertainties from the JPL Horizons system. The method results in robust astrometry and calibrated photometry for all asteroids in the field as a function of time. Our measurements will supplement existing photometric databases of asteroids and improve their orbits.We present first results using this procedure based on imaging data from the Vatican Advanced Technology Telescope.This work was done in the framework of NAU's REU summer program that is supported by NSF grant AST-1461200. PP was developed in the framework of the "Mission Accessible Near-Earth Object Survey" (MANOS) and is supported by NASA SSO grants NNX15AE90G and NNX14AN82G.

  4. Observation and image-making in Gothic art

    PubMed

    Givens

    1999-01-01

    Since the 16th century, art historians have debated the methods of medieval artists. A frequent topic of discussion and one that has been invoked at times to distinguish the medieval artist from his early modern successor is the extent to which medieval art is based on the observation of nature. In this vein, much recent commentary has focused on selected works whose descriptiveness challenges the schematism of most medieval imagery. As argued here, assessing these images and the visual evidence they present of the artist's working method requires a methodology that is sensitive to the syntax of visual communication.

  5. Quality of life for our patients: how media images and messages: influence their perceptions.

    PubMed

    Carr, Ellen R

    2008-02-01

    Media messages and images shape patients' perceptions about quality of life (QOL) through various "old" media-literature, film, television, and music-and so-called "new" media-the Internet, e-mail, blogs, and cell phones. In this article, the author provides a brief overview of QOL from the academic perspectives of nursing, psychology, behavioral medicine, multicultural studies, and consumer marketing. Selected theories about mass communication are discussed, as well as new technologies and their impact on QOL in our society. Examples of media messages about QOL and the QOL experience reported by patients with cancer include an excerpt from the Canadian Broadcasting Corporation radio interview with author Carol Shields, the 60 Minutes television interview focusing on Elizabeth Edwards (wife of presidential candidate John Edwards), and an excerpt from the 1994 filmThe Shawshank Redemption. Nurses are challenged to think about how they and their patients develop their perceptions about QOL through the media.

  6. What do you think of my picture? Investigating factors of influence in profile images context perception

    NASA Astrophysics Data System (ADS)

    Mazza, F.; Da Silva, M. P.; Le Callet, P.; Heynderickx, I. E. J.

    2015-03-01

    Multimedia quality assessment has been an important research topic during the last decades. The original focus on artifact visibility has been extended during the years to aspects as image aesthetics, interestingness and memorability. More recently, Fedorovskaya proposed the concept of 'image psychology': this concept focuses on additional quality dimensions related to human content processing. While these additional dimensions are very valuable in understanding preferences, it is very hard to define, isolate and measure their effect on quality. In this paper we continue our research on face pictures investigating which image factors influence context perception. We collected perceived fit of a set of images to various content categories. These categories were selected based on current typologies in social networks. Logistic regression was adopted to model category fit based on images features. In this model we used both low level and high level features, the latter focusing on complex features related to image content. In order to extract these high level features, we relied on crowdsourcing, since computer vision algorithms are not yet sufficiently accurate for the features we needed. Our results underline the importance of some high level content features, e.g. the dress of the portrayed person and scene setting, in categorizing image.

  7. Eye fixations of deaf and hearing observers in simultaneous communication perception.

    PubMed

    De Filippo, Carol Lee; Lansing, Charissa R

    2006-08-01

    -critical items, even after adjusting for stimulus length. In addition, experienced, adult deaf users of SC made more, brief eye fixations than observers who had normal hearing. Finally, differences in eye fixation patterns toward different senders indicates that sender characteristics affect visual processes in SC perception. This study provides supportive evidence of brief, frequent eye movements by deaf perceivers over small areas of a video display during reception of visuospatial linguistic information. These movements could be used to enhance activation of brain centers responsible for processing motion, consistent with neurophysiological evidence of attentional mechanisms or visual processes unique to perception of a visual language.

  8. Paradoxical fusion of two images and depth perception with a squinting eye.

    PubMed

    Rychkova, S I; Ninio, J

    2009-03-01

    Some strabismic patients with inconstant squint can fuse two images in a single eye, and experience lustre and depth. One of these images is foveal and the other extrafoveal. Depth perception was tested on 30 such subjects. Relief was perceived mostly on the fixated image. Camouflaged continuous surfaces (hemispheres, cylinders) were perceived as bumps or hollows, without detail. Camouflaged rectangles could not be separated in depth from the background, while their explicit counterparts could. Slanted bars were mostly interpreted as frontoparallel near or remote bars. Depth responses were more frequent with stimuli involving inward rather than outward disparities, and were then heavily biased towards "near" judgements. All monocular fusion effects were markedly reduced after the recovery of normal stereoscopic vision following an orthoptic treatment. The depth effects reported here may provide clues on what stereoscopic pathways may or may not accomplish with incomplete retinal and misleading vergence information.

  9. MOLECULAR AND IONIZED HYDROGEN IN 30 DORADUS. I. IMAGING OBSERVATIONS

    SciTech Connect

    Yeh, Sherry C. C.; Seaquist, Ernest R.; Matzner, Christopher D.; Pellegrini, Eric W.

    2015-07-10

    We present the first fully calibrated H{sub 2} 1–0 S(1) image of the entire 30 Doradus nebula. The observations were conducted using the NOAO Extremely Wide-field Infrared Imager (NEWFIRM) on the CTIO 4 m Blanco Telescope. Together with a NEWFIRM Brγ image of 30 Doradus, our data reveal the morphologies of the warm molecular gas and ionized gas in 30 Doradus. The brightest H{sub 2}-emitting area, which extends from the northeast to the southwest of R136, is a photodissociation region (PDR) viewed face-on, while many clumps and pillar features located at the outer shells of 30 Doradus are PDRs viewed edge-on. Based on the morphologies of H{sub 2}, Brγ, CO, and 8 μm emission, the H{sub 2} to Brγ line ratio, and Cloudy models, we find that the H{sub 2} emission is formed inside the PDRs of 30 Doradus, 2–3 pc to the ionization front of the H ii region, in a relatively low-density environment <10{sup 4} cm{sup −3}. Comparisons with Brγ, 8 μm, and CO emission indicate that H{sub 2} emission is due to fluorescence, and provide no evidence for shock excited emission of this line.

  10. Observing submesoscale currents from high resolution surface roughness images

    NASA Astrophysics Data System (ADS)

    Rascle, N.; Chapron, B.; Nouguier, F.; Mouche, A.; Ponte, A.

    2015-12-01

    At times, high resolution sea surface roughness variations can provide stunning details of submesoscale upper ocean dynamics. As interpreted, transformations of short scale wind waves by horizontal current gradients are responsible for those spectacular observations. Here we present tow major advances towards the quantitative interpretation of those observations. First, we show that surface roughness variations mainly trace two particular characteristics of the current gradient tensor, the divergence and the strain in the wind direction. Local vorticity and shear in the wind direction should not affect short scale roughness distribution and would not be detectable. Second, we discuss the effect of the viewing direction using sets of quasi-simultaneous sun glitter images, taken from different satellites to provide different viewing configurations. We show that upwind and crosswind viewing observations can be markedly different. As further confirmed with idealized numerical simulations, this anisotropy well traces surface current strain area, while more isotropic contrasts likely trace areas dominated by surface divergence conditions. These findings suggest the potential to directly observe surface currents at submesoscale by using high resolution roughness observations at multiple azimuth viewing angles.

  11. Bayesian Analysis of Hmi Images and Comparison to Tsi Variations and MWO Image Observables

    NASA Astrophysics Data System (ADS)

    Parker, D. G.; Ulrich, R. K.; Beck, J.; Tran, T. V.

    2015-12-01

    We have previously applied the Bayesian automatic classification system AutoClass to solar magnetogram and intensity images from the 150 Foot Solar Tower at Mount Wilson to identify classes of solar surface features associated with variations in total solar irradiance (TSI) and, using those identifications, modeled TSI time series with improved accuracy (r > 0.96). (Ulrich, et al, 2010) AutoClass identifies classes by a two-step process in which it: (1) finds, without human supervision, a set of class definitions based on specified attributes of a sample of the image data pixels, such as magnetic field and intensity in the case of MWO images, and (2) applies the class definitions thus found to new data sets to identify automatically in them the classes found in the sample set. HMI high resolution images capture four observables-magnetic field, continuum intensity, line depth and line width-in contrast to MWO's two observables-magnetic field and intensity. In this study, we apply AutoClass to the HMI observables for images from June, 2010 to December, 2014 to identify solar surface feature classes. We use contemporaneous TSI measurements to determine whether and how variations in the HMI classes are related to TSI variations and compare the characteristic statistics of the HMI classes to those found from MWO images. We also attempt to derive scale factors between the HMI and MWO magnetic and intensity observables.The ability to categorize automatically surface features in the HMI images holds out the promise of consistent, relatively quick and manageable analysis of the large quantity of data available in these images. Given that the classes found in MWO images using AutoClass have been found to improve modeling of TSI, application of AutoClass to the more complex HMI images should enhance understanding of the physical processes at work in solar surface features and their implications for the solar-terrestrial environment.Ulrich, R.K., Parker, D, Bertello, L. and

  12. Imaging X-ray spectrophotometric observation of SN 1006

    NASA Technical Reports Server (NTRS)

    Vartanian, M. H.; Lum, K. S. K.; Ku, W. H.-M.

    1985-01-01

    An imaging gas scintillation proportional counter (IGSPC) at the focal plane of a grazing incidence telescope was carried aloft by a sounding rocket and used to observe soft X-ray emission from the supernova remnant SN 1006. The instrument obtained the first unambiguous detection of strong (8 + or 0.0-2 photons/sq cm s) oxygen He-alpha and Ly-alpha emission at 0.59 + or - 0.02 keV from SN 1006. This line emission is consistent with emission from a 1.8 x 10 to the 6th K plasma, although hard X-ray emission from an additional power law or a higher temperature component was also observed. The X-ray emission may be interpreted as due to either (1) a combination of blast-wave and reverse shock assuming equilibrium ionization in the plasma or (2) blast-wave emission alone with a significant degree of ionization disequilibrium.

  13. Imaging X-ray spectrophotometric observation of SN 1006

    NASA Technical Reports Server (NTRS)

    Vartanian, M. H.; Lum, K. S. K.; Ku, W. H.-M.

    1985-01-01

    An imaging gas scintillation proportional counter (IGSPC) at the focal plane of a grazing incidence telescope was carried aloft by a sounding rocket and used to observe soft X-ray emission from the supernova remnant SN 1006. The instrument obtained the first unambiguous detection of strong (8 + or 0.0-2 photons/sq cm s) oxygen He-alpha and Ly-alpha emission at 0.59 + or - 0.02 keV from SN 1006. This line emission is consistent with emission from a 1.8 x 10 to the 6th K plasma, although hard X-ray emission from an additional power law or a higher temperature component was also observed. The X-ray emission may be interpreted as due to either (1) a combination of blast-wave and reverse shock assuming equilibrium ionization in the plasma or (2) blast-wave emission alone with a significant degree of ionization disequilibrium.

  14. First Radio Burst Imaging Observation From Mingantu Ultrawide Spectral Radioheliograph

    NASA Astrophysics Data System (ADS)

    Yan, Yihua; Chen, Linjie; Yu, Sijie; CSRH Team

    2015-08-01

    Radio imaging spectroscopy over wide range wavelength in dm/cm-bands will open new windows on solar flares and coronal mass ejections by tracing the radio emissions from accelerated electrons. The Chinese Spectral Radioheliograph (CSRH) with two arrays in 400MHz-2GHz /2-15GHz ranges with 64/532 frequency channels have been established in Mingantu Observing Station, Inner Mongolia of China, since 2013 and is in test observations now. CSRH is renamed as MUSER (Mingantu Ultrawide SpEctral Radioheliograph) after it's accomplishment We will introduce the progress and current status of CSRH. Some preliminary results of CSRH will be presented.On 11 Nov2014, the first burst event was registered by MUSER-I array at 400MHz-2GHz waveband. According to SGD event list there was a C-class flare peaked at 04:49UT in the disk center and the radio bursts around 04:22-04:24UT was attributed to this flare. However, MUSER-I image observation of the burst indicates that the radio burst peaked around 04:22UT was due to the eruption at the east limb of the Sun and connected to a CME appeared in that direction about 1 hour later. This demonstrate the importance of the spectroscopy observation of the solar radio burst.Acknowledgement: The CSRH team includes Wei Wang, Zhijun Chen, Fei Liu, Lihong Geng and Jian Zhang and CSRH project is supported by National Major Scientific Equipment R&D Project ZDYZ2009-3. The research was also supported by NSFC grants (11433006, 11221063), MOST grant (MOST2011CB811401), CAS Pilot-B Project (XDB09000000) and Marie Curie PIRSES- GA-295272-RADIOSUN.

  15. Exploring students' perceptions and performance on predict-observe-explain tasks in high school chemistry laboratory

    NASA Astrophysics Data System (ADS)

    Vadapally, Praveen

    This study sought to understand the impact of gender and reasoning level on students' perceptions and performances of Predict-Observe-Explain (POE) laboratory tasks in a high school chemistry laboratory. Several literature reviews have reported that students at all levels have not developed the specific knowledge and skills that were expected from their laboratory work. Studies conducted over the last several decades have found that boys tend to be more successful than girls in science and mathematics courses. However, some recent studies have suggested that girls may be reducing this gender gap. This gender difference is the focal point of this research study, which was conducted at a mid-western, rural high school. The participants were 24 boys and 25 girls enrolled in two physical science classes taught by the same teacher. In this mixed methods study, qualitative and quantitative methods were implemented simultaneously over the entire period of the study. MANOVA statistics revealed significant effects due to gender and level of reasoning on the outcome variables, which were POE performances and perceptions of the chemistry laboratory environment. There were no significant interactions between these effects. For the qualitative method, IRB-approved information was collected, coded, grouped, and analyzed. This method was used to derive themes from students' responses on questionnaires and semi-structured interviews. Students with different levels of reasoning and gender were interviewed, and many of them expressed positive themes, which was a clear indication that they had enjoyed participating in the POE learning tasks and they had developed positive perceptions towards POE inquiry laboratory learning environment. When students are capable of formal reasoning, they can use an abstract scientific concept effectively and then relate it to the ideas they generate in their minds. Thus, instructors should factor the nature of students' thinking abilities into their

  16. The Saturn System as Observed by Cassini's Ultraviolet Imaging Spectrograph

    NASA Technical Reports Server (NTRS)

    Esposito, L. W.; Hansen, C. J.; Colwell, J.; Hendrix, A. R.; McClintock, W. E.; Shemansky, D. E.

    2005-01-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) has major new findings in all aspects of Saturn science: Saturn, its rings, Titan and the icy satellites, and the Saturn magnetosphere. Dynamic interactions between neutrals, ions, rings, moons and meteoroids produce a highly structured and time variable Saturn system. Highlights and outstanding new results will be reported, focusing on Saturn s moons and their interaction with their environment. The UVIS is one of Cassini s suite of remote sensing instruments. The UVIS instrument includes channels for extreme UV (55 to 110 nm) and far UV (110 to 190 nm) spectroscopic imaging, high speed photometry of stellar occultations, solar EUV occultation, and a hydrogen/deuterium absorption cell. UVIS has detected products of water dissociation, neutral oxygen and OH, which dominate the Saturn inner magnetosphere, in contrast to Jupiter, and H fills the entire magnetosphere apparently extending through the magnetopause at far greater density than the ion population. The O and OH and a fraction of the H are probably the products of water physical chemistry, and derived ultimately from water ice. Observed fluctuations indicate close interactions with plasma sources. Sputtering from the satellites water ice surfaces is insufficient to supply the observed mass. Stochastic events in the E ring may be the ultimate source.

  17. ROSAT High Resolution Imager observations of PSR 0656 + 14

    NASA Technical Reports Server (NTRS)

    Anderson, S. B.; Cordova, F. A.; Pavlov, G. G.; Robinson, C. R.; Thompson, R. J., Jr.

    1993-01-01

    We have used the High Resolution Imager (HRI) on ROSAT to image PSR 0656 + 14 at soft X-ray energies. With a net observing time of 10,326 s, we obtained a source event rate of 0.382 +/- 0.007 counts/s. Comparing the radial distribution of these counts between 15 and 100 arcsec to an empirically derived point spread function for HRI soft sources, we find no evidence of a spatially extended X-ray nebula to a limiting surface brightness of 1.67 x 10 exp -6 counts/s/sq arcsec, corresponding to a limit of 14 percent of the observed flux out to a radius of 100 arcsec. The X-ray emission of the pulsar is pulsed at the 0.385 s period of the radio pulsar, with a pulse fraction of 7 +/- 2.2 percent and a FWHM of 0.10 s. We discuss some models of the X-ray radiation of PSR 0656 + 14 compatible with both the HRI and PSPC results.

  18. Processing Earth Observing images with Ames Stereo Pipeline

    NASA Astrophysics Data System (ADS)

    Beyer, R. A.; Moratto, Z. M.; Alexandrov, O.; Fong, T.; Shean, D. E.; Smith, B. E.

    2013-12-01

    ICESat with its GLAS instrument provided valuable elevation measurements of glaciers. The loss of this spacecraft caused a demand for alternative elevation sources. In response to that, we have improved our Ames Stereo Pipeline (ASP) software (version 2.1+) to ingest satellite imagery from Earth satellite sources in addition to its support of planetary missions. This enables the open source community a free method to generate digital elevation models (DEM) from Digital Globe stereo imagery and alternatively other cameras using RPC camera models. Here we present details of the software. ASP is a collection of utilities written in C++ and Python that implement stereogrammetry. It contains utilities to manipulate DEMs, project imagery, create KML image quad-trees, and perform simplistic 3D rendering. However its primary application is the creation of DEMs. This is achieved by matching every pixel between the images of a stereo observation via a hierarchical coarse-to-fine template matching method. Matched pixels between images represent a single feature that is triangulated using each image's camera model. The collection of triangulated features represents a point cloud that is then grid resampled to create a DEM. In order for ASP to match pixels/features between images, it requires a search range defined in pixel units. Total processing time is proportional to the area of the first image being matched multiplied by the area of the search range. An incorrect search range for ASP causes repeated false positive matches at each level of the image pyramid and causes excessive processing times with no valid DEM output. Therefore our system contains automatic methods for deducing what the correct search range should be. In addition, we provide options for reducing the overall search range by applying affine epipolar rectification, homography transform, or by map projecting against a prior existing low resolution DEM. Depending on the size of the images, parallax, and image

  19. Image quality in CT: From physical measurements to model observers.

    PubMed

    Verdun, F R; Racine, D; Ott, J G; Tapiovaara, M J; Toroi, P; Bochud, F O; Veldkamp, W J H; Schegerer, A; Bouwman, R W; Giron, I Hernandez; Marshall, N W; Edyvean, S

    2015-12-01

    Evaluation of image quality (IQ) in Computed Tomography (CT) is important to ensure that diagnostic questions are correctly answered, whilst keeping radiation dose to the patient as low as is reasonably possible. The assessment of individual aspects of IQ is already a key component of routine quality control of medical x-ray devices. These values together with standard dose indicators can be used to give rise to 'figures of merit' (FOM) to characterise the dose efficiency of the CT scanners operating in certain modes. The demand for clinically relevant IQ characterisation has naturally increased with the development of CT technology (detectors efficiency, image reconstruction and processing), resulting in the adaptation and evolution of assessment methods. The purpose of this review is to present the spectrum of various methods that have been used to characterise image quality in CT: from objective measurements of physical parameters to clinically task-based approaches (i.e. model observer (MO) approach) including pure human observer approach. When combined together with a dose indicator, a generalised dose efficiency index can be explored in a framework of system and patient dose optimisation. We will focus on the IQ methodologies that are required for dealing with standard reconstruction, but also for iterative reconstruction algorithms. With this concept the previously used FOM will be presented with a proposal to update them in order to make them relevant and up to date with technological progress. The MO that objectively assesses IQ for clinically relevant tasks represents the most promising method in terms of radiologist sensitivity performance and therefore of most relevance in the clinical environment.

  20. The Neurobiology of Speech Perception and Production-Can Functional Imaging Tell Us Anything We Did Not Already Know?

    ERIC Educational Resources Information Center

    Scott, Sophie K.

    2012-01-01

    Our understanding of the neurobiological basis for human speech production and perception has benefited from insights from psychology, neuropsychology and neurology. In this overview, I outline some of the ways that functional imaging has added to this knowledge and argue that, as a neuroanatomical tool, functional imaging has led to some…

  1. The Neurobiology of Speech Perception and Production-Can Functional Imaging Tell Us Anything We Did Not Already Know?

    ERIC Educational Resources Information Center

    Scott, Sophie K.

    2012-01-01

    Our understanding of the neurobiological basis for human speech production and perception has benefited from insights from psychology, neuropsychology and neurology. In this overview, I outline some of the ways that functional imaging has added to this knowledge and argue that, as a neuroanatomical tool, functional imaging has led to some…

  2. 'They look like my kind of people'--perceptions of smoking images in youth magazines.

    PubMed

    MacFadyen, Lynn; Amos, Amanda; Hastings, Gerard; Parkes, Edward

    2003-02-01

    Ten years ago research showed that pro-smoking images were prevalent in British youth magazines, whereas there was little coverage of smoking and health. Since then there has been a great expansion in the number of youth magazines, and particularly those aimed at young men. Titles such as FHM and Loaded, which did not exist at the time of the previous research, are now market leaders. New qualitative and quantitative research has therefore been conducted to examine the prevalence and impact of smoking images in this revitalised youth style magazines market. This paper presents the findings of the qualitative element of this research, which examined British first year students' perceptions of the pro-smoking imagery found in the magazines and explored the relationship between this and their own smoking images and identities. The research found that: (a) this imagery was perceived to be, on the whole, attractive, sociable and reassuring; (b) that it supported young people's perceptions of smoking and reinforced their smoker identities; and (c) that it has the potential to be more powerful than advertising imagery.

  3. Toward a unified color space for perception-based image processing.

    PubMed

    Lissner, Ingmar; Urban, Philipp

    2012-03-01

    Image processing methods that utilize characteristics of the human visual system require color spaces with certain properties to operate effectively. After analyzing different types of perception-based image processing problems, we present a list of properties that a unified color space should have. Due to contradictory perceptual phenomena and geometric issues, a color space cannot incorporate all these properties. We therefore identify the most important properties and focus on creating opponent color spaces without cross contamination between color attributes (i.e., lightness, chroma, and hue) and with maximum perceptual uniformity induced by color-difference formulas. Color lookup tables define simple transformations from an initial color space to the new spaces. We calculate such tables using multigrid optimization considering the Hung and Berns data of constant perceived hue and the CMC, CIE94, and CIEDE2000 color-difference formulas. The resulting color spaces exhibit low cross contamination between color attributes and are only slightly less perceptually uniform than spaces optimized exclusively for perceptual uniformity. We compare the CIEDE2000-based space with commonly used color spaces in two examples of perception-based image processing. In both cases, standard methods show improved results if the new space is used. All color-space transformations and examples are provided as MATLAB codes on our website.

  4. Collaborative real-time motion video analysis by human observer and image exploitation algorithms

    NASA Astrophysics Data System (ADS)

    Hild, Jutta; Krüger, Wolfgang; Brüstle, Stefan; Trantelle, Patrick; Unmüßig, Gabriel; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen

    2015-05-01

    Motion video analysis is a challenging task, especially in real-time applications. In most safety and security critical applications, a human observer is an obligatory part of the overall analysis system. Over the last years, substantial progress has been made in the development of automated image exploitation algorithms. Hence, we investigate how the benefits of automated video analysis can be integrated suitably into the current video exploitation systems. In this paper, a system design is introduced which strives to combine both the qualities of the human observer's perception and the automated algorithms, thus aiming to improve the overall performance of a real-time video analysis system. The system design builds on prior work where we showed the benefits for the human observer by means of a user interface which utilizes the human visual focus of attention revealed by the eye gaze direction for interaction with the image exploitation system; eye tracker-based interaction allows much faster, more convenient, and equally precise moving target acquisition in video images than traditional computer mouse selection. The system design also builds on prior work we did on automated target detection, segmentation, and tracking algorithms. Beside the system design, a first pilot study is presented, where we investigated how the participants (all non-experts in video analysis) performed in initializing an object tracking subsystem by selecting a target for tracking. Preliminary results show that the gaze + key press technique is an effective, efficient, and easy to use interaction technique when performing selection operations on moving targets in videos in order to initialize an object tracking function.

  5. The Earth's Shape and Movements: Teachers' Perception of the Relations Between Daily Observation and Scientific Models

    NASA Astrophysics Data System (ADS)

    Ferreira, Flávia Polati; Leite, Cristina

    2015-07-01

    The Earth’s shape and movements are some of the most common issues in official documents and research studies of astronomy education. Many didactic proposals suggest these issues within observational astronomy. Therefore, we present in this paper some of the main results of a research study of the teachers’ perception of the relations between the knowledge from daily observation and scientific models currently accepted about the “earth’s shape and movements”. Data were obtained in application of the didactic proposal during a teacher training course for teachers from São Paulo, have been constructed with the dynamics “Three Pedagogical Moments” and guided by some of the central ideas of the educator Paulo Freire. The results indicate that a small proportion of teachers seem to understand some of the relations of “apparent contradictions” and “limitations” with the concepts of spatiality, and many of them argued based only on vague phrases or "buzzwords", unconnected to the problem explored. The difficulties of teachers to relate elements of daily observation with scientific models seem to indicate a necessity to approach some these aspects with the astronomical knowledge in the teacher training courses.

  6. When Action Observation Facilitates Visual Perception: Activation in Visuo-Motor Areas Contributes to Object Recognition.

    PubMed

    Sim, Eun-Jin; Helbig, Hannah B; Graf, Markus; Kiefer, Markus

    2015-09-01

    Recent evidence suggests an interaction between the ventral visual-perceptual and dorsal visuo-motor brain systems during the course of object recognition. However, the precise function of the dorsal stream for perception remains to be determined. The present study specified the functional contribution of the visuo-motor system to visual object recognition using functional magnetic resonance imaging and event-related potential (ERP) during action priming. Primes were movies showing hands performing an action with an object with the object being erased, followed by a manipulable target object, which either afforded a similar or a dissimilar action (congruent vs. incongruent condition). Participants had to recognize the target object within a picture-word matching task. Priming-related reductions of brain activity were found in frontal and parietal visuo-motor areas as well as in ventral regions including inferior and anterior temporal areas. Effective connectivity analyses suggested functional influences of parietal areas on anterior temporal areas. ERPs revealed priming-related source activity in visuo-motor regions at about 120 ms and later activity in the ventral stream at about 380 ms. Hence, rapidly initiated visuo-motor processes within the dorsal stream functionally contribute to visual object recognition in interaction with ventral stream processes dedicated to visual analysis and semantic integration.

  7. Effects of motor intention on the perception of somatosensory events: a behavioural and functional magnetic resonance imaging study.

    PubMed

    Jackson, Stephen R; Parkinson, Amy; Pears, Sally L; Nam, Se-Ho

    2011-05-01

    The intention to execute a movement can modulate our perception of sensory events, and this modulation is observed ahead of both ocular and upper limb movements. However, theoretical accounts of these effects, and also the empirical data, are often contradictory. Accounts of "active touch", and the premotor theory of attention, have emphasized how movement intention leads to enhanced perceptual processing at the target of a movement, or on the to-be-moved effector. By contrast, recent theories of motor control emphasize how internal "forward" model (FM) estimates may be used to cancel or attenuate sensory signals that arise as a result of self-generated movements. We used behavioural and functional brain imaging (functional magnetic resonance imaging, fMRI) to investigate how perception of a somatosensory stimulus differed according to whether it was delivered to a hand that was about to execute a reaching movement or the alternative, nonmoving, hand. The results of our study demonstrate that a somatosensory stimulus delivered to a hand that is being prepared for movement is perceived to have occurred later than when that same stimulus is delivered to a nonmoving hand. This result indicates that it takes longer for a tactile stimulus to be detected when it is delivered to a moving limb and may correspond to a change in perceptual threshold. Our behavioural results are paralleled by the results of our fMRI study that demonstrated that there were significantly reduced blood-oxygen-level-dependent (BOLD) responses within the parietal operculum and insula following somatosensory stimulation of the hand being prepared for movement, compared to when an identical stimulus was delivered to a nonmoving hand. These findings are consistent with the prediction of FM accounts of motor control that postulate that central sensory suppression of somatosensation accompanies self-generated limb movements, and with previous reports indicating that effects of sensory suppression are

  8. [Body image perception and associated factors among elderly residents in a city in northeast Brazil: a population-based study].

    PubMed

    Menezes, Tarciana Nobre de; Brito, Kyonayra Quezia Duarte; Oliveira, Elaine Cristina Tôrres; Pedraza, Dixis Figueroa

    2014-08-01

    The article aims to verify body image perception and associated factors among elderly individuals in Campina Grande, State of Paraiba. It involves a cross-sectional, population and home-based study, with individuals 60 years or older of both sexes. Body image perception was considered the dependent variable for purposes of analysis and study of possible associations. The independent variables were: age group, nutritional status, number of diseases, health perception and regular practice of physical activities. To identify associated factors, univariate and multivariate regression analyses were carried out using SPSS 17.0 software. Overall, 806 elderly individuals were interviewed. Men showed greater satisfaction with body image when compared to women and older participants were more satisfied than younger participants. Among the factors related to dissatisfaction in women, underweight and overweight/obesity were associated with an increased risk of dissatisfaction. Among men, older age constituted a protective factor for dissatisfaction, while underweight and overweight/obesity were risk factors for dissatisfaction. The results of this study suggest a possible influence of nutritional status on body image perception among the elderly, negatively affecting their perception of body image.

  9. Would you hire me? Selfie portrait images perception in a recruitment context

    NASA Astrophysics Data System (ADS)

    Mazza, F.; Da Silva, M. P.; Le Callet, P.

    2014-02-01

    Human content perception has been underlined to be important in multimedia quality evaluation. Recently aesthetic considerations have been subject of research in this field. First attempts in aesthetics took into account perceived low-level features, especially taken from photography theory. However they demonstrated to be insuf- ficient to characterize human content perception. More recently image psychology started to be considered as higher cognitive feature impacting user perception. In this paper we follow this idea introducing social cognitive elements. Our experiments focus on the influence of different versions of portrait pictures in context where they are showed aside some completely unrelated informations; this can happen for example in social networks interactions between users, where profile pictures are present aside almost every user action. In particular, we tested this impact on resumes between professional portrait and self shot pictures. Moreover, as we run tests in crowdsourcing, we will discuss the use of this methodology for these tests. Our final aim is to analyse social biases' impact on multimedia aesthetics evaluation and how this bias influences messages that go along with pictures, as in public online platforms and social networks.

  10. Images of Bottomside Irregularities Observed at Topside Altitudes

    NASA Technical Reports Server (NTRS)

    Burke, William J.; Gentile, Louise C.; Shomo, Shannon R.; Roddy, Patrick A.; Pfaff, Robert F.

    2012-01-01

    We analyzed plasma and field measurements acquired by the Communication/ Navigation Outage Forecasting System (C/NOFS) satellite during an eight-hour period on 13-14 January 2010 when strong to moderate 250 MHz scintillation activity was observed at nearby Scintillation Network Decision Aid (SCINDA) ground stations. C/NOFS consistently detected relatively small-scale density and electric field irregularities embedded within large-scale (approx 100 km) structures at topside altitudes. Significant spectral power measured at the Fresnel (approx 1 km) scale size suggests that C/NOFS was magnetically conjugate to bottomside irregularities similar to those directly responsible for the observed scintillations. Simultaneous ion drift and plasma density measurements indicate three distinct types of large-scale irregularities: (1) upward moving depletions, (2) downward moving depletions, and (3) upward moving density enhancements. The first type has the characteristics of equatorial plasma bubbles; the second and third do not. The data suggest that both downward moving depletions and upward moving density enhancements and the embedded small-scale irregularities may be regarded as Alfvenic images of bottomside irregularities. This interpretation is consistent with predictions of previously reported theoretical modeling and with satellite observations of upward-directed Poynting flux in the low-latitude ionosphere.

  11. ASCA solid state imaging spectrometer observations of O stars

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Waldron, W. L.; Macfarlane, J. J.; Chen, W.; Pollock, A. M. T.; Torrii, K.; Kitamoto, S.; Muira, N.; Egoshi, M.; Ohno, Y.

    1995-01-01

    We report ASCA Solid State Imaging Spectrometer (SIS) x-ray observations of the O stars delta Ori and lambda Ori. The energy resolution of the SIS allows us to resolve features in the O star x-ray spectra which are not apparent in spectra obtained by x-ray spectrometers with lower energy resolution. SIS spectra from both stars show evidence of line emission, suggesting the thermal nature of the x-ray source. However, the observed line strengths are different for the two stars. The observed stellar x-ray spectra are not well described by isothermal models although absorbed thermal emission models with two or more temperatures can provide an adequate fit to the data. For both stars we present evidence of absorbing columns significantly larger than the known ISM columns, indicative of absorption by a circumstellar medium, presumably the stellar winds. In addition, the lambda Ori spectrum shows the presence of emission at energies greater than 3 keV which is not seen in the delta Ori spectrum.

  12. ASCA solid state imaging spectrometer observations of O stars

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Waldron, W. L.; Macfarlane, J. J.; Chen, W.; Pollock, A. M. T.; Torii, K.; Kitamoto, S.; Miura, N.; Egoshi, M.; Ohno, Y.

    1994-01-01

    We report ASCA Solid State Imaging Spectrometer (SIS) X-ray observations of the O stars delta Ori and lambda Ori. The energy resolution of the SIS allows us to resolve features in the O star X-ray spectra which are not apparent in spectra obtained by X-ray spectrometers with lower energy resolution. SIS spectra from both stars show evidence of line emission, suggesting the thermal nature of the X-ray source. However, the observed line strengths are different for the two stars. The observed stellar X-ray spectra are not well described by isothermal models although absorbed thermal emission models with two or more temperatures can provide an adequate fit to the data. For both stars we present evidence of absorbing columns significantly larger than the known Interstellar Medium (ISM) columns, indicative of absorption by a circumstellar medium, presumably the stellar winds. In addition, the lambda Ori spectrum shows the presence of emission at energies greater than 3 keV which is not seen in the delta Ori spectrum.

  13. Images of Bottomside Irregularities Observed at Topside Altitudes

    NASA Astrophysics Data System (ADS)

    Gentile, L. C.; Burke, W. J.; Shomo, S. R.; Roddy, P. A.; Pfaff, R. F.

    2011-12-01

    We have analyzed plasma and field measurements acquired by the Communication/ Navigation Outage Forecasting System (C/NOFS) satellite during an eight-hour interval on 13 - 14 January 2010 when strong to moderate 250 MHz scintillation activity was observed at nearby Scintillation Network Decision Aid (SCINDA) ground stations. C/NOFS consistently detected relatively small-scale density and electric field irregularities embedded within large-scale (~100 km) structures at topside altitudes. Significant spectral power measured at the Fresnel (~1 km) scale size suggests that C/NOFS was magnetically conjugate to bottomside irregularities similar to those directly responsible for the observed scintillations. Simultaneous ion drift and plasma density measurements indicate three distinct types of large-scale irregularities: (1) upward moving depletions, (2) downward moving depletions, and (3) upward moving density enhancements. The first type has the characteristics of equatorial plasma bubbles, the second and third do not. The data suggest that both they and embedded small-scale irregularities may be regarded as Alfvénic images of bottomside irregularities. This interpretation is consistent with predictions of previously reported theoretical modeling and with satellite observations of upward directed Poynting flux in the low-latitude ionosphere.

  14. Images of bottomside irregularities observed at topside altitudes

    NASA Astrophysics Data System (ADS)

    Burke, William J.; Gentile, Louise C.; Shomo, Shannon R.; Roddy, Patrick A.; Pfaff, Robert F.

    2012-03-01

    We analyzed plasma and field measurements acquired by the Communication/Navigation Outage Forecasting System (C/NOFS) satellite during an eight-hour period on 13-14 January 2010 when strong to moderate 250 MHz scintillation activity was observed at nearby Scintillation Network Decision Aid (SCINDA) ground stations. C/NOFS consistently detected relatively small-scale density and electric field irregularities embedded within large-scale (˜100 km) structures at topside altitudes. Significant spectral power measured at the Fresnel (˜1 km) scale size suggests that C/NOFS was magnetically conjugate to bottomside irregularities similar to those directly responsible for the observed scintillations. Simultaneous ion drift and plasma density measurements indicate three distinct types of large-scale irregularities: (1) upward moving depletions, (2) downward moving depletions, and (3) upward moving density enhancements. The first type has the characteristics of equatorial plasma bubbles; the second and third do not. The data suggest that both downward moving depletions and upward moving density enhancements and the embedded small-scale irregularities may be regarded as Alfvénic images of bottomside irregularities. This interpretation is consistent with predictions of previously reported theoretical modeling and with satellite observations of upward-directed Poynting flux in the low-latitude ionosphere.

  15. Imaging Protoplanets: Observing Transition Disks with Non-Redundant Masking

    NASA Astrophysics Data System (ADS)

    Sallum, Stephanie

    2017-01-01

    Transition disks - protoplanetary disks with inner, solar system sized clearings - may be shaped by young planets. Directly imaging protoplanets in these objects requires high contrast and resolution, making them promising targets for future extremely large telescopes. The interferometric technique of non-redundant masking (NRM) is well suited for these observations, enabling companion detection for contrasts of 1:100 - 1:1000 at or within the diffraction limit. My dissertation focuses on searching for and characterizing companions in transition disk clearings using NRM. I will briefly describe the technique and present spatially resolved observations of the T Cha and LkCa 15 transition disks. Both of these objects hosted posited substellar companions. However multi-epoch T Cha datasets cannot be explained by planets orbiting in the disk plane. Conversely, LkCa 15 data taken with the Large Binocular Telescope (LBT) in single-aperture mode reveal the presence of multiple forming planets. The dual aperture LBT will provide triple the angular resolution of these observations, dramatically increasing the phase space for exoplanet detection. I will also present new results from the dual-aperture LBT, with similar resolution to that expected for next generation facilities like GMT.

  16. Instrument for the monochromatic observation of all sky auroral images.

    PubMed

    Mende, S B; Eather, R H; Aamodt, E K

    1977-06-01

    To investigate the dynamics of auroras and faint upper atmospheric emissions, a new type of imaging instrument was developed. The instrument is a wide field of view, narrow-spectral-band imaging system using an intensified S.E.C. TV camera in a time exposure mode. Pictures were taken at very low light levels of a few photons per exposure per resolution element. These pictures are displayed in the form of a pseudocolor presentation in which the color represents spectral ratios of two of the observed auroral spectral emission features. The spectral ratios play an important part in the interpretation of auroral particle dynamics. A digital picture processing facility is also part of the system which enables the digital manppulation of the pictures at standard TV rates. As an example, hydrogen auroras can be displayed having been corrected for nonspectral background by subtracting a picture obtained by a suitable background filter. The instrumentation was calibrated in the laboratory and was used in several field xperiments. Elaborate exposure sequences were developed to extend the dynamic range and to cover the large range of auroral brightnesses in a fairly linear manner.

  17. Observing and recording instantaneous images on ATM television monitors

    NASA Technical Reports Server (NTRS)

    Patterson, N. P.; Delamere, W. A.; Tousey, R.

    1977-01-01

    A persistent image-converter device was utilized to make visible to the astronaut solar images that were isolated, instantaneous flashes on the ATM TV monitors. In addition, these instantaneous images, as well as normal TV images, were recorded with a Polaroid SX-70 camera for study by the astronauts.

  18. BATMAN flies: a compact spectro-imager for space observation

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frederic; Ilbert, Olivier; Zoubian, Julien; Delsanti, Audrey; Boissier, Samuel; Lancon, Ariane

    2014-08-01

    BATMAN flies is a compact spectro-imager based on MOEMS for generating reconfigurable slit masks, and feeding two arms in parallel. The FOV is 25 x 12 arcmin2 for a 1m telescope, in infrared (0.85-1.7μm) and 500-1000 spectral resolution. Unique science cases for Space Observation are reachable with this deep spectroscopic multi-survey instrument: deep survey of high-z galaxies down to H=25 on 5 deg2 with continuum detection and all z>7 candidates at H=26.2 over 5 deg2; deep survey of young stellar clusters in nearby galaxies; deep survey of the Kuiper Belt of ALL known objects down to H=22. Pathfinder towards BATMAN in space is already running with ground-based demonstrators.

  19. VISPO project: visible image-spectrometer for planetary observations

    NASA Astrophysics Data System (ADS)

    Melchiorri, R.; Capaccioni, F.; Coradini, A.; Filacchione, G.; Piccioni, G.; De Petris, M.

    2004-10-01

    Satellite instrumentations designed for planetary studies are often open to other interesting applications from ground: not only one can efficiently carry out detailed calibrations before space data become available, but also the prototypes of the satellite instruments can be successfully employed in different fields ranging from astrophysics to cosmology. Both possibilities are opened by coupling these instruments with ground based telescopes having short focal ratios, like those designed for far infrared studies. These possibilities are particularly amazing in view of the long delay usually present between the launch and the collection of the first scientific data (months in case of Mars Express, years in case of Rosetta). We propose in this article to employ immediately this technology, by coupling the developing model of the Image-Spectrometer VIRTIS-M with the ground telescope MITO. This project will allow us to perform a better calibration of the space qualified instrument and observational campaigns, including some important cosmological investigations.

  20. Terrestrial Myriametric Radio Burst Observed by IMAGE and Geotail Satellites

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.; Hashimoto, KoZo; Kojima, Hirotsugu; Boardson, Scott A.; Garcia, Leonard N.; Matsumoto, Hiroshi; Green, James L.; Reinisch, Bodo W.

    2013-01-01

    We report the simultaneous detection of a terrestrial myriametric radio burst (TMRB) by IMAGE and Geotail on 19 August 2001. The TMRB was confined in time (0830-1006 UT) and frequency (12-50kHz). Comparisons with all known nonthermal myriametric radiation components reveal that the TMRB might be a distinct radiation with a source that is unrelated to the previously known radiation. Considerations of beaming from spin-modulation analysis and observing satellite and source locations suggest that the TMRB may have a fan beamlike radiation pattern emitted by a discrete, dayside source located along the poleward edge of magnetospheric cusp field lines. TMRB responsiveness to IMF Bz and By orientations suggests that a possible source of the TMRB could be due to dayside magnetic reconnection instigated by northward interplanetary field condition.

  1. Nursing on television: student perceptions of television's role in public image, recruitment and education.

    PubMed

    Weaver, Roslyn; Salamonson, Yenna; Koch, Jane; Jackson, Debra

    2013-12-01

    To explore nursing students' perceptions of how their profession is portrayed on medical television programmes. Recruitment and retention in nursing have been linked to the image of the profession in society. Images of nursing in popular media frequently draw on stereotypes that may damage the appeal of nursing for potential students and denigrate the value and status of the profession. A growing body of work analyses how nursing is portrayed in popular media, but less research asks nursing students themselves to reflect on this area. Convergent parallel mixed methods. Data were collected in 2011 from surveys of 484 undergraduate nursing students at a large university in New South Wales, Australia, that included demographic data, their viewing habits of medical television programmes and their opinions of how the shows handled nursing ethics and professionalism and the image of nursing on television and nursing role models. Most students watch medical television programmes. Students who do not speak English at home watched fewer programmes but were more positive about the depictions of professionalism. The qualitative data showed students were concerned that television can have a negative influence on the image of nursing, but they also recognized some educational and recruitment value in television programmes. It is important for nurses, educators and students to be critically engaged with the image of their profession in society. There is value in engaging more closely with contemporary media portrayals of nursing for students and educators alike. © 2013 John Wiley & Sons Ltd.

  2. Impact of defective pixels in AMLCDs on the perception of medical images

    NASA Astrophysics Data System (ADS)

    Kimpe, Tom; Sneyders, Yuri

    2006-03-01

    With LCD displays, each pixel has its own individual transistor that controls the transmittance of that pixel. Occasionally, these individual transistors will short or alternatively malfunction, resulting in a defective pixel that always shows the same brightness. With ever increasing resolution of displays the number of defect pixels per display increases accordingly. State of the art processes are capable of producing displays with no more than one faulty transistor out of 3 million. A five Mega Pixel medical LCD panel contains 15 million individual sub pixels (3 sub pixels per pixel), each having an individual transistor. This means that a five Mega Pixel display on average will have 5 failing pixels. This paper investigates the visibility of defective pixels and analyzes the possible impact of defective pixels on the perception of medical images. JND simulations were done to study the effect of defective pixels on medical images. Our results indicate that defective LCD pixels can mask subtle features in medical images in an unexpectedly broad area around the defect and therefore may reduce the quality of diagnosis for specific high-demanding areas such as mammography. As a second contribution an innovative solution is proposed. A specialized image processing algorithm can make defective pixels completely invisible and moreover can also recover the information of the defect so that the radiologist perceives the medical image correctly. This correction algorithm has been validated with both JND simulations and psycho visual tests.

  3. Multitemporal Observations of Sugarcane by TerraSAR-X Images

    PubMed Central

    Baghdadi, Nicolas; Cresson, Rémi; Todoroff, Pierre; Moinet, Soizic

    2010-01-01

    The objective of this study is to investigate the potential of TerraSAR-X (X-band) in monitoring sugarcane growth on Reunion Island (located in the Indian Ocean). Multi-temporal TerraSAR data acquired at various incidence angles (17°, 31°, 37°, 47°, 58°) and polarizations (HH, HV, VV) were analyzed in order to study the behaviour of SAR (synthetic aperture radar) signal as a function of sugarcane height and NDVI (Normalized Difference Vegetation Index). The potential of TerraSAR for mapping the sugarcane harvest was also studied. Radar signal increased quickly with crop height until a threshold height, which depended on polarization and incidence angle. Beyond this threshold, the signal increased only slightly, remained constant, or even decreased. The threshold height is slightly higher with cross polarization and higher incidence angles (47° in comparison with 17° and 31°). Results also showed that the co-polarizations channels (HH and VV) were well correlated. High correlation between SAR signal and NDVI calculated from SPOT-4/5 images was observed. TerraSAR data showed that after strong rains the soil contribution to the backscattering of sugarcane fields can be important for canes with heights of terminal visible dewlap (htvd) less than 50 cm (total cane heights around 155 cm). This increase in radar signal after strong rains could involve an ambiguity between young and mature canes. Indeed, the radar signal on TerraSAR images acquired in wet soil conditions could be of the same order for fields recently harvested and mature sugarcane fields, making difficult the detection of cuts. Finally, TerraSAR data at high spatial resolution were shown to be useful for monitoring sugarcane harvest when the fields are of small size or when the cut is spread out in time. The comparison between incidence angles of 17°, 37° and 58° shows that 37° is more suitable to monitor the sugarcane harvest. The cut is easily detectable on TerraSAR images for data acquired

  4. Multitemporal observations of sugarcane by TerraSAR-X images.

    PubMed

    Baghdadi, Nicolas; Cresson, Rémi; Todoroff, Pierre; Moinet, Soizic

    2010-01-01

    The objective of this study is to investigate the potential of TerraSAR-X (X-band) in monitoring sugarcane growth on Reunion Island (located in the Indian Ocean). Multi-temporal TerraSAR data acquired at various incidence angles (17°, 31°, 37°, 47°, 58°) and polarizations (HH, HV, VV) were analyzed in order to study the behaviour of SAR (synthetic aperture radar) signal as a function of sugarcane height and NDVI (Normalized Difference Vegetation Index). The potential of TerraSAR for mapping the sugarcane harvest was also studied. Radar signal increased quickly with crop height until a threshold height, which depended on polarization and incidence angle. Beyond this threshold, the signal increased only slightly, remained constant, or even decreased. The threshold height is slightly higher with cross polarization and higher incidence angles (47° in comparison with 17° and 31°). Results also showed that the co-polarizations channels (HH and VV) were well correlated. High correlation between SAR signal and NDVI calculated from SPOT-4/5 images was observed. TerraSAR data showed that after strong rains the soil contribution to the backscattering of sugarcane fields can be important for canes with heights of terminal visible dewlap (htvd) less than 50 cm (total cane heights around 155 cm). This increase in radar signal after strong rains could involve an ambiguity between young and mature canes. Indeed, the radar signal on TerraSAR images acquired in wet soil conditions could be of the same order for fields recently harvested and mature sugarcane fields, making difficult the detection of cuts. Finally, TerraSAR data at high spatial resolution were shown to be useful for monitoring sugarcane harvest when the fields are of small size or when the cut is spread out in time. The comparison between incidence angles of 17°, 37° and 58° shows that 37° is more suitable to monitor the sugarcane harvest. The cut is easily detectable on TerraSAR images for data acquired

  5. Galileo imaging observations of Lunar Maria and related deposits

    NASA Astrophysics Data System (ADS)

    Greeley, Ronald; Kadel, Steven D.; Williams, David A.; Gaddis, Lisa R.; Head, James W.; McEwen, Alfred S.; Murchie, Scott L.; Nagel, Engelbert; Neukum, Gerhard; Pieters, Carle M.; Sunshine, Jessica M.; Wagner, Roland; Belton, Michael J. S.

    The Galileo spacecraft imaged parts of the western limb and far side of the Moon in December 1990. Ratios of 0.41/0.56 μm filter images from the Solid State Imaging (SSI) experiment provided information on the titanium content of mare deposits; ratios of the 0.76/0.99 μm images indicated 1 μm absorptions associated with Fe2+ in mafic minerals. Mare ages were derived from crater statistics obtained from Lunar Orbiter images. Results on mare compositions in western Oceanus Procellarum and the Humorum basin are consistent with previous Earth-based observations, thus providing confidence in the use of Galileo data to extract compositional information. Mare units in the Grimaldi and Riccioli basins range in age from 3.25 to 3.48 Ga and consist of medium- to medium-high titanium (<4 to 7% TiO2) content lavas. The Schiller-Zucchius basin shows a higher 0.76/0.99 μm ratio than the surrounding highlands, indicating a potentially higher mafic mineral content consistent with previous interpretations that the area includes mare deposits blanketed by highland ejecta and light plains materials. The oldest mare materials in the Orientale basin occur in south-central Mare Orientale and are 3.7 Ga old; youngest mare materials are in Lacus Autumni and are 2.85 Ga old; these units are medium- to medium-high titanium (<4 to 7% TiO2) basalts. Thus, volcanism was active in Orientale for 0.85 Ga, but lavas were relatively constant in composition. Galileo data suggest that Mendel-Rydberg mare is similar to Mare Orientale; cryptomare are present as well. Thus, the mare lavas on the western limb and far side (to 178°E) are remarkably uniform in composition, being generally of medium- to medium-high titanium content and having relatively low 0.76/0.99 μm ratios. This region of the Moon is between two postulated large impact structures, the Procellarum and the South Pole-Aitken basins, and may have a relatively thick crust. In areas underlain by an inferred thinner crust, i.e., zones

  6. Radio imaging observations of hard x-ray microflares observed by RHESSI

    NASA Astrophysics Data System (ADS)

    Kundu, M.; Trottet, G.; Garaimov, V.; Grigis, P.

    We describe the properties of two sets of microflares observed simultaneously by RHESSI (Ramaty High Energy Solar Spectroscopic Imager) in hard X-rays and by two radio imaging instruments--NoRH (Nobeyama Radio Heliograph) in microwaves (17 GHz) and NRH (Nancay Radio Heliograph) at metric wavelengths. The two sets of events occurred in two different time zones, and as a result we do not have simultaneous imaging data in microwaves and metric wavlengths for the same RHESSI events. We'll discuss four events--two observed by NoRH in microwaves and two observed by NRH in meter waves, along with RHESSI events. The microwave (17 GHz) events occurred in AR 9934 at 03:58 UT May 3, 2002 and at 05:08 UT May 4, 2002. We have detected microwave (17 & 34 GHz) emissions in association with RHESSI microflares in the energy range 3-50 keV. The microwave emission comes from footpoints for higher energies, and from the entire mini or small flaring loop for lower energies. The relative positions of microwaves and hard X-rays are as they should be in normal flares. Sometimes the two sources coincide, at other times the two sources are at opposite ends of the flaring loop. One sees the mini flaring loops clearly in NoRH images. RHESSI maps at the time of maximum X-ray emission during the event of May 3, 2002 clearly show an X-ray loop in the range 3-6 keV and two footpoints of the loop in the 6-12 and 12-25 keV ranges. These footpoints are located above opposite magnetic polarities as seen in overlays of hard X-ray images on the MDI images. The MDI magnetograms taken before the microflares show rapid evolution of the magnetic field, including sometimes the emergence of a new region. The hard X-ray spectrum of microwave associated RHESSI microflares can be fit by a thermal component (EM ˜ 3× 1046 cm-3) at low energies (3-6 keV) and a nonthermal component (with slope -3.2) at higher energies. The two metric events imaged by NRH occurred on August 5 and September 3, 2003, one located on

  7. Overweight and Body Image Perception in Adolescents with Triage of Eating Disorders

    PubMed Central

    Franceschini, Sylvia do Carmo Castro; Hermsdorff, Helen Hermana Miranda; Priore, Silvia Eloiza

    2017-01-01

    Purpose To verify the influence of overweight and alteration in the perception of the corporal image during the triage of eating disorders. Method A food disorder triage was performed in adolescents with 10 to 19 years of age using the Eating Attitudes Test (EAT-26), Children's Eating Attitudes Test (ChEAT), and Bulimic Investigatory Test Edinburgh (BITE), as well as a nutritional status evaluation. The perception of body image was evaluated in a subsample of adolescents with 10 to 14 years of age, using the Brazilian Silhouette Scale. The project was approved by the Human Research Ethics Committee of the Federal University of Viçosa, Minas Gerais, Brazil. Results The prevalence of eating disorder triage was 11.4% (n = 242) for the 2,123 adolescents evaluated. Overweight was present in 21.1% (n = 447) of the students, being more prevalent in the early adolescence phase, which presented levels of distortion of 56.9% (n = 740) and dissatisfaction of 79.3% (n = 1031). Body dissatisfaction was considered as a risk factor, increasing by more than 13 times the chance of TA screening. Conclusion Overweight was correlated with the ED triage and body dissatisfaction was considered as a risk factor, increasing the chances of these disorders by more than 13 times. PMID:28856236

  8. Weight status, fatness and body image perception of North African immigrant women in Italy.

    PubMed

    Gualdi-Russo, Emanuela; Rinaldo, Natascia; Khyatti, Meriem; Lakhoua, Chérifa; Toselli, Stefania

    2016-10-01

    To investigate the nutritional status of North African (NA) immigrant women in Italy, analysing their body size, adiposity and body image perception in comparison to Italian natives and NA residents. The study utilized a cross-sectional design. Anthropometric traits were directly measured and a few indices were computed as proxy measures of nutritional status and adiposity. Body image perception was assessed using silhouette drawings. ANCOVA, adjusted for age, was used to compare anthropometric traits among different groups of women and the χ 2 test to analyse differences in the prevalence of nutritional status. Italy and North Africa (Tunisia, Morocco). A sample of 433 women aged 18-60 years old: NA immigrants (n 105); Italians (n 100); Tunisians (n 104); Moroccans (n 124). Overweight/obesity prevalence was very high in immigrants (79·8 %). Immigrants had the highest BMI value, the greatest hip circumference and mid upper-arm circumference. Their triceps skinfold thickness was significantly higher than that of Italians, but lower than that of NA residents. NA immigrant women in Italy showed a higher incidence of overweight compared with Italians and NA residents. All groups showed a preference for a thinner body in comparison to their actual bodies and the immigrants are the most dissatisfied. Immigrants remain a high-risk group for obesity. Assessment of their body composition and health risk profile should be improved by using specific anthropometric measures that are easy to collect even in the case of large migration flows.

  9. Design of a practical model-observer-based image quality assessment method for CT imaging systems

    NASA Astrophysics Data System (ADS)

    Tseng, Hsin-Wu; Fan, Jiahua; Cao, Guangzhi; Kupinski, Matthew A.; Sainath, Paavana

    2014-03-01

    The channelized Hotelling observer (CHO) is a powerful method for quantitative image quality evaluations of CT systems and their image reconstruction algorithms. It has recently been used to validate the dose reduction capability of iterative image-reconstruction algorithms implemented on CT imaging systems. The use of the CHO for routine and frequent system evaluations is desirable both for quality assurance evaluations as well as further system optimizations. The use of channels substantially reduces the amount of data required to achieve accurate estimates of observer performance. However, the number of scans required is still large even with the use of channels. This work explores different data reduction schemes and designs a new approach that requires only a few CT scans of a phantom. For this work, the leave-one-out likelihood (LOOL) method developed by Hoffbeck and Landgrebe is studied as an efficient method of estimating the covariance matrices needed to compute CHO performance. Three different kinds of approaches are included in the study: a conventional CHO estimation technique with a large sample size, a conventional technique with fewer samples, and the new LOOL-based approach with fewer samples. The mean value and standard deviation of area under ROC curve (AUC) is estimated by shuffle method. Both simulation and real data results indicate that an 80% data reduction can be achieved without loss of accuracy. This data reduction makes the proposed approach a practical tool for routine CT system assessment.

  10. Earth Observing-1 Advanced Land Imager: Imaging Performance On-Orbit

    NASA Technical Reports Server (NTRS)

    Hearn, D. R.

    2002-01-01

    This report analyzes the on-orbit imaging performance of the Advanced Land Imager (ALI) on the Earth Observing-1 satellite. The pre-flight calibrations are first summarized. The methods used to reconstruct and geometrically correct the image data from this push-broom sensor are described. The method used here does not refer to the position and attitude telemetry from the spacecraft. Rather, it is assumed that the image of the scene moves across the focal plane with a constant velocity, which can be ascertained from the image data itself. Next, an assortment of the images so reconstructed is presented. Color images sharpened with the 10-m panchromatic band data are shown, and the algorithm for producing them from the 30-m multispectral data is described. The approach taken for assessing spatial resolution is to compare the sharpness of features in the on-orbit image data with profiles predicted on the basis of the pre-flight calibrations. A large assortment of bridge profiles is analyzed, and very good fits to the predicted shapes are obtained. Lunar calibration scans are analyzed to examine the sharpness of the edge-spread function at the limb of the moon. The darkness of the space beyond the limb is better for this purpose than anything that could be simulated on the ground. From these scans, we find clear evidence of scattering in the optical system, as well as some weak ghost images. Scans of planets and stars are also analyzed. Stars are useful point sources of light at all wavelengths, and delineate the point-spread functions of the system. From a quarter-speed scan over the Pleiades, we find that the ALI can detect 6th magnitude stars. The quality of the reconstructed images verifies the capability of the ALI to produce Landsat-type multi spectral data. The signal-to-noise and panchromatic spatial resolution are considerably superior to those of the existing Landsat sensors. The spatial resolution is confirmed to be as good as it was designed to be.

  11. Earth Observing-1 Advanced Land Imager: Imaging Performance On-Orbit

    NASA Technical Reports Server (NTRS)

    Hearn, D. R.

    2002-01-01

    This report analyzes the on-orbit imaging performance of the Advanced Land Imager (ALI) on the Earth Observing-1 satellite. The pre-flight calibrations are first summarized. The methods used to reconstruct and geometrically correct the image data from this push-broom sensor are described. The method used here does not refer to the position and attitude telemetry from the spacecraft. Rather, it is assumed that the image of the scene moves across the focal plane with a constant velocity, which can be ascertained from the image data itself. Next, an assortment of the images so reconstructed is presented. Color images sharpened with the 10-m panchromatic band data are shown, and the algorithm for producing them from the 30-m multispectral data is described. The approach taken for assessing spatial resolution is to compare the sharpness of features in the on-orbit image data with profiles predicted on the basis of the pre-flight calibrations. A large assortment of bridge profiles is analyzed, and very good fits to the predicted shapes are obtained. Lunar calibration scans are analyzed to examine the sharpness of the edge-spread function at the limb of the moon. The darkness of the space beyond the limb is better for this purpose than anything that could be simulated on the ground. From these scans, we find clear evidence of scattering in the optical system, as well as some weak ghost images. Scans of planets and stars are also analyzed. Stars are useful point sources of light at all wavelengths, and delineate the point-spread functions of the system. From a quarter-speed scan over the Pleiades, we find that the ALI can detect 6th magnitude stars. The quality of the reconstructed images verifies the capability of the ALI to produce Landsat-type multi spectral data. The signal-to-noise and panchromatic spatial resolution are considerably superior to those of the existing Landsat sensors. The spatial resolution is confirmed to be as good as it was designed to be.

  12. A Psychophysical Imaging Method Evidencing Auditory Cue Extraction during Speech Perception: A Group Analysis of Auditory Classification Images

    PubMed Central

    Varnet, Léo; Knoblauch, Kenneth; Serniclaes, Willy; Meunier, Fanny; Hoen, Michel

    2015-01-01

    Although there is a large consensus regarding the involvement of specific acoustic cues in speech perception, the precise mechanisms underlying the transformation from continuous acoustical properties into discrete perceptual units remains undetermined. This gap in knowledge is partially due to the lack of a turnkey solution for isolating critical speech cues from natural stimuli. In this paper, we describe a psychoacoustic imaging method known as the Auditory Classification Image technique that allows experimenters to estimate the relative importance of time-frequency regions in categorizing natural speech utterances in noise. Importantly, this technique enables the testing of hypotheses on the listening strategies of participants at the group level. We exemplify this approach by identifying the acoustic cues involved in da/ga categorization with two phonetic contexts, Al- or Ar-. The application of Auditory Classification Images to our group of 16 participants revealed significant critical regions on the second and third formant onsets, as predicted by the literature, as well as an unexpected temporal cue on the first formant. Finally, through a cluster-based nonparametric test, we demonstrate that this method is sufficiently sensitive to detect fine modifications of the classification strategies between different utterances of the same phoneme. PMID:25781470

  13. A psychophysical imaging method evidencing auditory cue extraction during speech perception: a group analysis of auditory classification images.

    PubMed

    Varnet, Léo; Knoblauch, Kenneth; Serniclaes, Willy; Meunier, Fanny; Hoen, Michel

    2015-01-01

    Although there is a large consensus regarding the involvement of specific acoustic cues in speech perception, the precise mechanisms underlying the transformation from continuous acoustical properties into discrete perceptual units remains undetermined. This gap in knowledge is partially due to the lack of a turnkey solution for isolating critical speech cues from natural stimuli. In this paper, we describe a psychoacoustic imaging method known as the Auditory Classification Image technique that allows experimenters to estimate the relative importance of time-frequency regions in categorizing natural speech utterances in noise. Importantly, this technique enables the testing of hypotheses on the listening strategies of participants at the group level. We exemplify this approach by identifying the acoustic cues involved in da/ga categorization with two phonetic contexts, Al- or Ar-. The application of Auditory Classification Images to our group of 16 participants revealed significant critical regions on the second and third formant onsets, as predicted by the literature, as well as an unexpected temporal cue on the first formant. Finally, through a cluster-based nonparametric test, we demonstrate that this method is sufficiently sensitive to detect fine modifications of the classification strategies between different utterances of the same phoneme.

  14. Teachers' Perceptions of Teacher-Child Relationships: Links with Children's Observed Interactions

    ERIC Educational Resources Information Center

    Hartz, Karyn; Williford, Amanda P.; Koomen, Helma M. Y.

    2017-01-01

    Research Findings: The present study examined associations between children's classroom interactions and teachers' perceptions of teacher-child relationships during 1 year of preschool. Teachers (n = 223) reported their perceptions of closeness and conflict in their teacher-child relationships in the fall and spring. Children's (n = 895) positive…

  15. The VIRMOS deep imaging survey. IV. Near-infrared observations

    NASA Astrophysics Data System (ADS)

    Iovino, A.; McCracken, H. J.; Garilli, B.; Foucaud, S.; Le Fèvre, O.; Maccagni, D.; Saracco, P.; Bardelli, S.; Busarello, G.; Scodeggio, M.; Zanichelli, A.; Paioro, L.; Bottini, D.; Le Brun, V.; Picat, J. P.; Scaramella, R.; Tresse, L.; Vettolani, G.; Adami, C.; Arnaboldi, M.; Arnouts, S.; Bolzonella, M.; Cappi, A.; Charlot, S.; Ciliegi, P.; Contini, T.; Franzetti, P.; Gavignaud, I.; Guzzo, L.; Ilbert, O.; Marano, B.; Marinoni, C.; Mazure, A.; Meneux, B.; Merighi, R.; Paltani, S.; Pellò, R.; Pollo, A.; Pozzetti, L.; Radovich, M.; Zamorani, G.; Zucca, E.; Bertin, E.; Bondi, M.; Bongiorno, A.; Cucciati, O.; Gregorini, L.; Mathez, G.; Mellier, Y.; Merluzzi, P.; Ripepi, V.; Rizzo, D.

    2005-11-01

    In this paper we present a new deep, wide-field near-infrared imaging survey. Our J- and K-band observations in four separate fields (0226-04, 2217+00, 1003+02, 1400+05) complement optical BVRI, ultraviolet and spectroscopic observations undertaken as part of the VIMOS-VLT deep survey (VVDS). In total, our survey spans ~400 arcmin2. Our catalogues are reliable in all fields to at least K˜20.75 and J˜21.50 (defined as the magnitude where object contamination is less than 10% and completeness greater than 90%). Taken together these four fields represents a unique combination of depth, wavelength coverage and area. Most importantly, our survey regions span a broad range of right ascension and declination which allow us to make a robust estimate of the effects of cosmic variance. We describe the complete data reduction process from raw observations to the construction of source lists and outline a comprehensive series of tests carried out to characterise the reliability of the final catalogues. From simulations we determine the completeness function of each final stacked image, and estimate the fraction of spurious sources in each magnitude bin. We compare the statistical properties of our catalogues with literature compilations. We find that our J- and K-selected galaxy counts are in good agreement with previously published works, as are our (J-K) versus K colour-magnitude diagrams. Stellar number counts extracted from our fields are consistent with a synthetic model of our galaxy. Using the location of the stellar locus in colour-magnitude space and the measured field-to-field variation in galaxy number counts we demonstrate that the absolute accuracy of our photometric calibration is at the 5% level or better. Finally, an investigation of the angular clustering of K-selected extended sources in our survey displays the expected scaling behaviour with limiting magnitude, with amplitudes in each magnitude bin in broad agreement with literature values. In summary

  16. Perceptions of parental attitudes toward body and eating: associations with body image among Black and White college women.

    PubMed

    Bardone-Cone, Anna M; Harney, Megan B; Sayen, Laura

    2011-03-01

    This study examined Black and White young women's perceptions of parental body- and eating-related attitudes and behaviors from growing up and the relations of these parental factors with their current body image. Female undergraduates (97 Black women, 179 White women) completed questionnaires of perceptions of parental attitudes/behaviors related to body image and eating and of their current body image, operationalized as weight/shape concern. Results indicated that perceived parental communication was more strongly related to body image than perceived parental modeling in both ethnic groups, and that there were some differences in how frequently Black and White women reported encountering specific maternal messages about the body or eating. Perceived parental modeling and communication constructs were related to body image in similar ways for both ethnic groups after controlling for BMI. Future research directions are discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Exploring Teachers' Knowledge of Second Language Pronunciation Techniques: Teacher Cognitions, Observed Classroom Practices, and Student Perceptions

    ERIC Educational Resources Information Center

    Baker, Amanda

    2014-01-01

    This study explored some of the intricate connections between the cognitions (beliefs, knowledge, perceptions, attitudes) and pedagogical practices of five English language teachers, specifically in relation to pronunciation-oriented techniques. Integral to the study was the use of semistructured interviews, classroom observations, and stimulated…

  18. Observations and Student Perceptions of the Quality of Preservice Teachers' Teaching Behaviour: Construct Representation and Predictive Quality

    ERIC Educational Resources Information Center

    Maulana, Ridwan; Helms-Lorenz, Michelle

    2016-01-01

    Observations and student perceptions are recognised as important tools for examining teaching behaviour, but little is known about whether both perspectives share similar construct representations and how both perspectives link with student academic outcomes. The present study compared the construct representation of preservice teachers' teaching…

  19. Exploring Teachers' Knowledge of Second Language Pronunciation Techniques: Teacher Cognitions, Observed Classroom Practices, and Student Perceptions

    ERIC Educational Resources Information Center

    Baker, Amanda

    2014-01-01

    This study explored some of the intricate connections between the cognitions (beliefs, knowledge, perceptions, attitudes) and pedagogical practices of five English language teachers, specifically in relation to pronunciation-oriented techniques. Integral to the study was the use of semistructured interviews, classroom observations, and stimulated…

  20. FAR-INFRARED IMAGING OBSERVATIONS OF THE CHAMAELEON REGION

    SciTech Connect

    Ikeda, Norio; Kitamura, Yoshimi; Takita, Satoshi; Ueno, Munetaka; Suzuki, Toyoaki

    2012-01-20

    We have carried out far-infrared imaging observations toward the Chamaeleon star-forming region by the Far-Infrared Surveyor (FIS) on board the AKARI satellite. The AKARI images cover a total area of 33.79 deg{sup 2}, corresponding to 210 pc{sup 2} at the distance to the source. Using the FIS bands of 65-160 {mu}m and the COBE/DIRBE bands of 60-240 {mu}m, we constructed column density maps of cold (11.7 K) and warm (22.1 K) dust components with a linear resolution of 0.04 pc. On the basis of their spatial distributions and physical properties, we interpret that the cold component corresponds to the molecular clouds and the warm one the cold H I clouds, which are thought to be in a transient phase between atomic and molecular media. The warm component is shown to be uniformly distributed at a large spatial scale of {approx}50 pc, while a several pc-scale gradient along the east-west direction is found in the distribution of the cold component. The former is consistent with a formation scenario of the cold H I clouds through the thermal instability in the warm neutral medium triggered by a 100 pc scale supernova explosion. This scenario, however, cannot produce the latter, several pc-scale gradient in molecular cloud mass. We conclude that the gravitational fragmentation of the cold H I cloud likely created the molecular clouds with spatial scale as small as several pc.

  1. What visual illusions tell us about underlying neural mechanisms and observer strategies for tackling the inverse problem of achromatic perception

    PubMed Central

    Blakeslee, Barbara; McCourt, Mark E.

    2015-01-01

    Research in lightness perception centers on understanding the prior assumptions and processing strategies the visual system uses to parse the retinal intensity distribution (the proximal stimulus) into the surface reflectance and illumination components of the scene (the distal stimulus—ground truth). It is agreed that the visual system must compare different regions of the visual image to solve this inverse problem; however, the nature of the comparisons and the mechanisms underlying them are topics of intense debate. Perceptual illusions are of value because they reveal important information about these visual processing mechanisms. We propose a framework for lightness research that resolves confusions and paradoxes in the literature, and provides insight into the mechanisms the visual system employs to tackle the inverse problem. The main idea is that much of the debate and confusion in the literature stems from the fact that lightness, defined as apparent reflectance, is underspecified and refers to three different types of judgments that are not comparable. Under stimulus conditions containing a visible illumination component, such as a shadow boundary, observers can distinguish and match three independent dimensions of achromatic experience: apparent intensity (brightness), apparent local intensity ratio (brightness-contrast), and apparent reflectance (lightness). In the absence of a visible illumination boundary, however, achromatic vision reduces to two dimensions and, depending on stimulus conditions and observer instructions, judgments of lightness are identical to judgments of brightness or brightness-contrast. Furthermore, because lightness judgments are based on different information under different conditions, they can differ greatly in their degree of difficulty and in their accuracy. This may, in part, explain the large variability in lightness constancy across studies. PMID:25954181

  2. Body image perceptions in women with pelvic organ prolapse: a qualitative study.

    PubMed

    Lowder, Jerry L; Ghetti, Chiara; Nikolajski, Cara; Oliphant, Sallie S; Zyczynski, Halina M

    2011-05-01

    To describe perceptions of prolapse-specific body image in women with symptomatic prolapse. Women with symptomatic pelvic organ prolapse quantification stage ≥ II prolapse participated in semistructured focus groups or self-report questionnaire. Transcripts were independently reviewed and body image themes were identified and confirmed by consensus. Twenty-five women participated in focus groups and 27 in online questionnaires. Transcript analysis revealed 3 central themes and 25 body-image related subthemes. Women living with prolapse were more likely to feel self-conscious, isolated, "different," less feminine, and less attractive. Women often changed sexual intimacy practices because of embarrassment or discomfort, and many avoided intimacy all together. Prolapse greatly affected women's personal and professional activities causing some women to adjust routines or stop activities. Women reported loss of interest in activities, distraction while performing daily/work-related tasks, and embarrassment when asking for help with activities. Themes identified in this qualitative study demonstrate the profound effect of prolapse on a woman's body image. Copyright © 2011 Mosby, Inc. All rights reserved.

  3. Effect of Subliminal Lexical Priming on the Subjective Perception of Images: A Machine Learning Approach.

    PubMed

    Mohan, Dhanya Menoth; Kumar, Parmod; Mahmood, Faisal; Wong, Kian Foong; Agrawal, Abhishek; Elgendi, Mohamed; Shukla, Rohit; Ang, Natania; Ching, April; Dauwels, Justin; Chan, Alice H D

    2016-01-01

    The purpose of the study is to examine the effect of subliminal priming in terms of the perception of images influenced by words with positive, negative, and neutral emotional content, through electroencephalograms (EEGs). Participants were instructed to rate how much they like the stimuli images, on a 7-point Likert scale, after being subliminally exposed to masked lexical prime words that exhibit positive, negative, and neutral connotations with respect to the images. Simultaneously, the EEGs were recorded. Statistical tests such as repeated measures ANOVAs and two-tailed paired-samples t-tests were performed to measure significant differences in the likability ratings among the three prime affect types; the results showed a strong shift in the likeness judgment for the images in the positively primed condition compared to the other two. The acquired EEGs were examined to assess the difference in brain activity associated with the three different conditions. The consistent results obtained confirmed the overall priming effect on participants' explicit ratings. In addition, machine learning algorithms such as support vector machines (SVMs), and AdaBoost classifiers were applied to infer the prime affect type from the ERPs. The highest classification rates of 95.0% and 70.0% obtained respectively for average-trial binary classifier and average-trial multi-class further emphasize that the ERPs encode information about the different kinds of primes.

  4. Changing job seekers' image perceptions during recruitment visits: the moderating role of belief confidence.

    PubMed

    Slaughter, Jerel E; Cable, Daniel M; Turban, Daniel B

    2014-11-01

    The purpose of this study was to understand how an important construct in social psychology-confidence in one's beliefs-could both (a) influence the effectiveness of organizations' recruiting processes and (b) be changed during recruitment. Using a sample of recruits to a branch of the United States military, the authors studied belief confidence before and after recruits' formal visits to the organization's recruiting stations. Personal sources of information had a stronger influence on recruits' belief confidence than impersonal sources. Moreover, recruits' confidence in their initial beliefs affected how perceptions of the recruiter changed their employer images. Among participants with low-initial confidence, the relation between recruitment experiences and employer images was positive and linear across the whole range of recruitment experiences. Among recruits with high-initial confidence, however, the recruitment experience-image relationship was curvilinear, such that recruitment experiences were related to images only at more positive recruitment experiences. The relationship between recruitment experiences and changes in belief confidence was also curvilinear, such that only more positive recruitment experiences led to changes in confidence. These results indicate not only that belief confidence influences the effectiveness of recruiting efforts but also that recruiting efforts can influence belief confidence. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  5. Effect of Subliminal Lexical Priming on the Subjective Perception of Images: A Machine Learning Approach

    PubMed Central

    Mahmood, Faisal; Wong, Kian Foong; Agrawal, Abhishek; Elgendi, Mohamed; Shukla, Rohit; Ang, Natania; Ching, April; Dauwels, Justin; Chan, Alice H. D.

    2016-01-01

    The purpose of the study is to examine the effect of subliminal priming in terms of the perception of images influenced by words with positive, negative, and neutral emotional content, through electroencephalograms (EEGs). Participants were instructed to rate how much they like the stimuli images, on a 7-point Likert scale, after being subliminally exposed to masked lexical prime words that exhibit positive, negative, and neutral connotations with respect to the images. Simultaneously, the EEGs were recorded. Statistical tests such as repeated measures ANOVAs and two-tailed paired-samples t-tests were performed to measure significant differences in the likability ratings among the three prime affect types; the results showed a strong shift in the likeness judgment for the images in the positively primed condition compared to the other two. The acquired EEGs were examined to assess the difference in brain activity associated with the three different conditions. The consistent results obtained confirmed the overall priming effect on participants’ explicit ratings. In addition, machine learning algorithms such as support vector machines (SVMs), and AdaBoost classifiers were applied to infer the prime affect type from the ERPs. The highest classification rates of 95.0% and 70.0% obtained respectively for average-trial binary classifier and average-trial multi-class further emphasize that the ERPs encode information about the different kinds of primes. PMID:26866807

  6. [Auditory perception and language: functional imaging of speech sensitive auditory cortex].

    PubMed

    Samson, Y; Belin, P; Thivard, L; Boddaert, N; Crozier, S; Zilbovicius, M

    2001-09-01

    Since the description of cortical deafness, it has been known that the superior temporal cortex is bilaterally involved in the initial stages of language auditory perception but the precise anatomical limits and the function of this area remain debated. Here we reviewed more than 40 recent papers of positron emission tomography and functional magnetic resonance imaging related to language auditory perception, and we performed a meta-analysis of the localization of the peaks of activation in the Talairach's space. We found 8 studies reporting word versus non-word listening contrasts with 54 activation peaks in the temporal lobes. These peaks clustered in a bilateral and well-limited area of the temporal superior cortex, which is here operationally defined as the speech sensitive auditory cortex. This area is more than 4cm long, located in the superior temporal gyrus and the superior temporal sulcus, both anterior and posterior to Heschl's gyrus. It do not include the primary auditory cortex nor the ascending part of the planum temporale. The speech sensitive auditory cortex is not activated by pure tones, environmental sounds, or attention directed toward elementary components of a sound such as intensity, pitch, or duration, and thus has some specificity for speech signals. The specificity is not perfect, since we found a number of non-speech auditory stimuli activating the speech sensitive auditory cortex. Yet the latter studies always involve auditory perception mechanisms which are also relevant to speech perception either at the level of primitive auditory scene analysis processes, or at the level of specific schema-based recognition processes. The dorsal part of the speech sensitive auditory cortex may be involved in primitive scene analysis processes, whereas distributed activation of this area may contribute to the emergence of a broad class of "voice" schemas and of more specific "speech schemas/phonetic modules" related to different languages. In addition

  7. Habituation of Sleep to Road Traffic Noise Observed not by Polygraphy but by Perception

    NASA Astrophysics Data System (ADS)

    KUROIWA, M.; XIN, P.; SUZUKI, S.; SASAZAWA, Y.; KAWADA, T.; TAMURA, Y.

    2002-02-01

    The habituation of sleep to road traffic noise was investigated. Habituation of sleep is improvement of sleep quality. Nine male students aged 19-21 were exposed to tape-recorded road traffic noise ofLeq 49·6 dB(A) in an experimental bedroom. Among 17 nights, the first four and the last three nights were non-exposure nights and the other consecutive 10 were exposure nights. The polygraphic sleep parameters were: sleep stages S1, S2, S(3+4), rapid eye movements (REM), and so on. Subjective sleep quality was assessed by five scales of a self-rating sleep questionnaire named the OSA, sleepiness (F1), sleep maintenance (F2), worry (F3), integrated sleep feeling (F4), and sleep initiation (F5). In this experiment, the habituation of sleep to road traffic noise was observed clearly in all of the subjective sleep parameters of the OSA, though all of the polygraphic sleep parameters showed little or no evidence of habituation. This suggests that habituation to noise has two aspects, sensation and perception mechanisms, corresponding to sleep polygraphy and to questionnaire respectively.

  8. An integrative neural model of social perception, action observation, and theory of mind

    PubMed Central

    Yang, Daniel Y.-J.; Rosenblau, Gabriela; Keifer, Cara; Pelphrey, Kevin A.

    2016-01-01

    In the field of social neuroscience, major branches of research have been instrumental in describing independent components of typical and aberrant social information processing, but the field as a whole lacks a comprehensive model that integrates different branches. We review existing research related to the neural basis of three key neural systems underlying social information processing: social perception, action observation, and theory of mind. We propose an integrative model that unites these three processes and highlights the posterior superior temporal sulcus (pSTS), which plays a central role in all three systems. Furthermore, we integrate these neural systems with the dual system account of implicit and explicit social information processing. Large-scale meta-analyses based on Neurosynth confirmed that the pSTS is at the intersection of the three neural systems. Resting-state functional connectivity analysis with 1000 subjects confirmed that the pSTS is connected to all other regions in these systems. The findings presented in this review are specifically relevant for psychiatric research especially disorders characterized by social deficits such as autism spectrum disorder. PMID:25660957

  9. An integrative neural model of social perception, action observation, and theory of mind.

    PubMed

    Yang, Daniel Y-J; Rosenblau, Gabriela; Keifer, Cara; Pelphrey, Kevin A

    2015-04-01

    In the field of social neuroscience, major branches of research have been instrumental in describing independent components of typical and aberrant social information processing, but the field as a whole lacks a comprehensive model that integrates different branches. We review existing research related to the neural basis of three key neural systems underlying social information processing: social perception, action observation, and theory of mind. We propose an integrative model that unites these three processes and highlights the posterior superior temporal sulcus (pSTS), which plays a central role in all three systems. Furthermore, we integrate these neural systems with the dual system account of implicit and explicit social information processing. Large-scale meta-analyses based on Neurosynth confirmed that the pSTS is at the intersection of the three neural systems. Resting-state functional connectivity analysis with 1000 subjects confirmed that the pSTS is connected to all other regions in these systems. The findings presented in this review are specifically relevant for psychiatric research especially disorders characterized by social deficits such as autism spectrum disorder. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Student perceptions regarding the usefulness of explicit discussion of "Structure of the Observed Learning Outcome" taxonomy.

    PubMed

    Prakash, E S; Narayan, K A; Sethuraman, K R

    2010-09-01

    One method of grading responses of the descriptive type is by using Structure of Observed Learning Outcomes (SOLO) taxonomy. The basis of this study was the expectation that if students were oriented to SOLO taxonomy, it would provide them an opportunity to understand some of the factors that teachers consider while grading descriptive responses and possibly develop strategies to improve scores. We first sampled the perceptions of 68 second-year undergraduate medical students doing the Respiratory System course regarding the usefulness of explicit discussion of SOLO taxonomy. Subsequently, in a distinct cohort of 20 second-year medical students doing the Central Nervous System course, we sought to determine whether explicit illustration of SOLO taxonomy combined with some advice on better answering descriptive test questions (to an experimental group) resulted in better student scores in a continuous assessment test compared with providing advice for better answering test questions but without any reference to SOLO taxonomy (the control group). Student ratings of the clarity of the presentation on SOLO taxonomy appeared satisfactory to the authors, as was student understanding of our presentation. The majority of participants indicated that knowledge of SOLO taxonomy would help them study and prepare better answers for questions of the descriptive type. Although scores in the experimental and control group were comparable, this experience nonetheless provided us with the motivation to orient students to SOLO taxonomy early on in the medical program and further research factors that affect students' development of strategies based on knowledge of SOLO taxonomy.

  11. Body image emotions, perceptions, and cognitions distinguish physically active and inactive smokers

    PubMed Central

    Contreras, Gisèle A.; Sabiston, Catherine M.; O'Loughlin, Erin K.; Bélanger, Mathieu; O'Loughlin, Jennifer

    2015-01-01

    Objectives To determine if body image emotions (body-related shame and guilt, weight-related stress), perceptions (self-perceived overweight), or cognitions (trying to change weight) differ between adolescents characterized by smoking and physical activity (PA) behavior. Methods Data for this cross-sectional analysis were collected in 2010–11 and were available for 1017 participants (mean (SD) age = 16.8 (0.5) years). Participants were categorized according to smoking and PA status into four groups: inactive smokers, inactive non-smokers, active smokers and active non-smokers. Associations between body image emotions, perceptions and cognitions, and group membership were estimated in multinomial logistic regression. Results Participants who reported body-related shame were less likely (OR (95% CI) = 0.52 (0.29–0.94)) to be in the active smoker group than the inactive smoker group; those who reported body-related guilt and those trying to gain weight were more likely (2.14 (1.32–3.48) and 2.49 (1.22–5.08), respectively) to be in the active smoker group than the inactive smoker group; those who were stressed about weight and those perceiving themselves as overweight were less likely to be in the active non-smoker group than the inactive smoker group (0.79 (0.64–0.97) and 0.41 (0.19–0.89), respectively). Conclusion Body image emotions and cognitions differentiated the active smoker group from the other three groups. PMID:26844062

  12. P1 and P2 components of human visual evoked potentials are modulated by depth perception of 3-dimensional images.

    PubMed

    Omoto, Shu; Kuroiwa, Yoshiyuki; Otsuka, Saika; Baba, Yasuhisa; Wang, Chuanwei; Li, Mei; Mizuki, Nobuhisa; Ueda, Naohisa; Koyano, Shigeru; Suzuki, Yume

    2010-03-01

    To determine the cerebral activity correlated with depth perception of 3-dimensional (3D) images, by recording of human visual evoked potentials (VEPs). Two figures consisting of smaller and larger squares were presented alternately. VEPs were recorded in two conditions. In condition I, we used two figures which yielded flat 2-dimensional images. In condition II, we used two figures which yielded 3D images, which were concave and convex, respectively. P1, P2, and N1/P2 amplitude were significantly greater in condition II than in condition I. The P1/N1 amplitude tended to be greater in condition II than in condition I. P1 and N1 were predominantly distributed over the right temporo-parieto-occipital regions. P2 and N2 were distributed over bilateral parieto-occipital regions. The difference in P1 amplitude between two conditions can be explained by the difference between conditions, one of which yielded depth perception while the other did not, since previous studies showed that P1 and N1 are modulated by perception of images in depth. The role of P2 and the mechanism responsible for the increase in P2 amplitude during condition II remain unknown. We recorded VEPs and identified electrophysiological correlates of depth perception with 3D images produced by concave/convex figures.

  13. Lightning Imaging Sensor (LIS) for the Earth Observing System

    NASA Technical Reports Server (NTRS)

    Christian, Hugh J.; Blakeslee, Richard J.; Goodman, Steven J.

    1992-01-01

    Not only are scientific objectives and instrument characteristics given of a calibrated optical LIS for the EOS but also for the Tropical Rainfall Measuring Mission (TRMM) which was designed to acquire and study the distribution and variability of total lightning on a global basis. The LIS can be traced to a lightning mapper sensor planned for flight on the GOES meteorological satellites. The LIS consists of a staring imager optimized to detect and locate lightning. The LIS will detect and locate lightning with storm scale resolution (i.e., 5 to 10 km) over a large region of the Earth's surface along the orbital track of the satellite, mark the time of occurrence of the lightning, and measure the radiant energy. The LIS will have a nearly uniform 90 pct. detection efficiency within the area viewed by the sensor, and will detect intracloud and cloud-to-ground discharges during day and night conditions. Also, the LIS will monitor individual storms and storm systems long enough to obtain a measure of the lightning flashing rate when they are within the field of view of the LIS. The LIS attributes include low cost, low weight and power, low data rate, and important science. The LIS will study the hydrological cycle, general circulation and sea surface temperature variations, along with examinations of the electrical coupling of thunderstorms with the ionosphere and magnetosphere, and observations and modeling of the global electric circuit.

  14. The Image of E-Learning: Perceptions about a Chilean University and the E-Learning System in the Context of Chile

    ERIC Educational Resources Information Center

    Farcas, Daniel

    2010-01-01

    The purpose of this research is to determine the image of a Chilean university, as perceived by those inside and outside of the institution, in contrast with the general image of the e-learning system in Chile. The internal perceptions are those of current students and graduates of this Chilean university, while the external perceptions are those…

  15. Can the perception of depth in stereoscopic images be influenced by 3D sound?

    NASA Astrophysics Data System (ADS)

    Turner, Amy; Berry, Jonathan; Holliman, Nick

    2011-03-01

    The creation of binocular images for stereoscopic display has benefited from significant research and commercial development in recent years. However, perhaps surprisingly, the effect of adding 3D sound to stereoscopic images has rarely been studied. If auditory depth information can enhance or extend the visual depth experience it could become an important way to extend the limited depth budget on all 3D displays and reduce the potential for fatigue from excessive use of disparity. Objective: As there is limited research in this area our objective was to ask two preliminary questions. First what is the smallest difference in forward depth that can be reliably detected using 3D sound alone? Second does the addition of auditory depth information influence the visual perception of depth in a stereoscopic image? Method: To investigate auditory depth cues we use a simple sound system to test the experimental hypothesis that: participants will perform better than chance at judging the depth differences between two speakers a set distance apart. In our second experiment investigating both auditory and visual depth cues we setup a sound system and a stereoscopic display to test the experimental hypothesis that: participants judge a visual stimulus to be closer if they hear a closer sound when viewing the stimulus. Results: In the auditory depth cue trial every depth difference tested gave significant results demonstrating that the human ear can hear depth differences between physical sources as short as 0.25 m at 1 m. In our trial investigating whether audio information can influence the visual perception of depth we found that participants did report visually perceiving an object to be closer when the sound was played closer to them even though the image depth remained unchanged. Conclusion: The positive results in the two trials show that we can hear small differences in forward depth between sound sources and suggest that it could be practical to extend the apparent

  16. Factors affecting patient's perception of anticancer treatments side-effects: an observational study.

    PubMed

    Russo, Stefania; Cinausero, Marika; Gerratana, Lorenzo; Bozza, Claudia; Iacono, Donatella; Driol, Pamela; Deroma, Laura; Sottile, Roberta; Fasola, Gianpiero; Puglisi, Fabio

    2014-02-01

    Analysis of relative importance of side effects of anticancer therapy is extremely useful in the process of clinical decision making. There is evidence that patients' perception of the side effects of anticancer treatments changes over time. Aim of this study was to evaluate the cancer patients' perceptions of physical and non-physical side effects of contemporary anticancer therapy. Four hundred and sixty-four patients entered the study (153 men and 311 women). Participants were asked to rank their side effects in order of distress by using two sets of cards naming physical and non-physical effects, respectively. Influencing factors, including treatment and patient characteristics, were also analysed. Patients ranked the non-physical side effect 'Affects my family or partner' first. 'Constantly tired' and 'Loss of hair' were ranked second and third, respectively. Significant differences from previous studies on this topic emerged. In particular, 'Vomiting', a predominant concern in previous studies, almost disappeared, whereas 'Nausea' and 'Loss of hair' remained important side effects in the patients' perception. Interestingly, marital status was predominant in driving patients' perception, being associated with several side effects ('Constantly tired', 'Loss of appetite', 'Affects my work/Home duties', 'Affects my social activities', 'Infertility'). Other significant factors influencing patient's perception of side effects included age, disease characteristics and ongoing anticancer therapy. This study provided information on current status of patients' perceptions of side effects of anticancer treatment. These results could be used in pre-treatment patient education and counselling.

  17. Adolescents' perceptions of cigarette brand image: does plain packaging make a difference?

    PubMed

    Germain, Daniella; Wakefield, Melanie A; Durkin, Sarah J

    2010-04-01

    To examine the effect of plain packaging on adolescents' perceptions of cigarette packs, attributes of smokers, and expectations of cigarette taste, and to identify the effect of increasing the size of pictorial health warnings on appraisal of plain packs. We used a 5 (degree of plain packaging and graphic health warning)x 3 (brand type) between-subjects experimental design, using a Web-based methodology to expose adolescents to one randomly selected cigarette pack, during which respondents completed ratings. When brand elements such as color, branded fonts, and imagery were progressively removed from cigarette packs, adolescents perceived packs to be less appealing, rated attributes of a typical smoker of the pack less positively, and had more negative expectations of cigarette taste. Pack appeal was reduced even further when the size of the pictorial health warning on the most plain pack was increased from 30% to 80% of the pack face, with this effect apparent among susceptible nonsmokers, experimenters, and established smokers. Removing as much brand information from cigarette packs as possible is likely to reduce positive cigarette brand image associations among adolescents. By additionally increasing the size of pictorial health warnings, positive pack perceptions of those who are at greater risk of becoming regular addicted adult smokers are most likely to be reduced. Copyright 2010 Society for Adolescent Medicine. Published by Elsevier Inc. All rights reserved.

  18. Neural substrates for depth perception of the Necker cube; a functional magnetic resonance imaging study in human subjects.

    PubMed

    Inui, T; Tanaka, S; Okada, T; Nishizawa, S; Katayama, M; Konishi, J

    2000-03-24

    We have studied the cerebral activity for the depth perception of the Necker cube by functional magnetic resonance imaging. Three types of line drawing figures were used as stimuli, the Necker cube, hidden line elimination cube and overlapping squares. Subjects were instructed to perceive both orientations of the depth of the Necker cube. They were instructed to shift their attention voluntarily during viewing overlapping squares to obtain a control for the attentional shift in perceiving the Necker cube. A hidden line elimination cube was used as a control for monocular stereopsis. The results showed a clear symmetrical activation in premotor and parietal areas during the Necker cube perception compared with other conditions. The present result suggests that a neural process similar to mental image manipulation occurs during depth perception of the Necker cube.

  19. [Olfactory perception and learning in the honey bee (Apis mellifera): calcium imaging in the antenna lobe].

    PubMed

    Sandoz, Jean-Christophe

    2003-01-01

    Honey bees are a key-model in the study of learning and memory, because they show considerable learning abilities, their brain is well described and is accessible to a wide range of physiological recordings and treatments. We use in vivo calcium imaging to study olfactory perception in the bee brain, and combine this method to appetitive olfactory conditioning to unravel the neural substrates of olfactory learning. Odours are detected by receptor neurons on the antennae. Each receptor neuron projects to the first-order neuropile of the olfactory pathway, the antennal lobe, connecting to projection neurons in one of its 160 functional units, the glomeruli. In calcium imaging experiments, each odour elicits a particular activity pattern of antennal lobe glomeruli, according to a code conserved between individuals. The antennal lobe is also a site where the olfactory memory is formed. Using optical imaging, two studies have shown modulations of odour representation in the antennal lobe after learning, with different effects depending on the type of conditioning used. While simple differential conditioning (A + B- training) showed an increased calcium response to the reinforced odour, side-specific conditioning (A + B-/B + A- training) decorrelated the calcium responses of odours between brain sides. This difference may owe to the formation of different memories, which will be addressed in future work. By specifically staining antennal lobe neuronal subpopulations, we hope to be able in the future to study synaptic plasticity in the honey bee.

  20. The effect of expertise on eye movement behaviour in medical image perception.

    PubMed

    Bertram, Raymond; Helle, Laura; Kaakinen, Johanna K; Svedström, Erkki

    2013-01-01

    The present eye-movement study assessed the effect of expertise on eye-movement behaviour during image perception in the medical domain. To this end, radiologists, computed-tomography radiographers and psychology students were exposed to nine volumes of multi-slice, stack-view, axial computed-tomography images from the upper to the lower part of the abdomen with or without abnormality. The images were presented in succession at low, medium or high speed, while the participants had to detect enlarged lymph nodes or other visually more salient abnormalities. The radiologists outperformed both other groups in the detection of enlarged lymph nodes and their eye-movement behaviour also differed from the other groups. Their general strategy was to use saccades of shorter amplitude than the two other participant groups. In the presence of enlarged lymph nodes, they increased the number of fixations on the relevant areas and reverted to even shorter saccades. In volumes containing enlarged lymph nodes, radiologists' fixation durations were longer in comparison to their fixation durations in volumes without enlarged lymph nodes. More salient abnormalities were detected equally well by radiologists and radiographers, with both groups outperforming psychology students. However, to accomplish this, radiologists actually needed fewer fixations on the relevant areas than the radiographers. On the basis of these results, we argue that expert behaviour is manifested in distinct eye-movement patterns of proactivity, reactivity and suppression, depending on the nature of the task and the presence of abnormalities at any given moment.

  1. The Effect of Expertise on Eye Movement Behaviour in Medical Image Perception

    PubMed Central

    Bertram, Raymond; Helle, Laura; Kaakinen, Johanna K.; Svedström, Erkki

    2013-01-01

    The present eye-movement study assessed the effect of expertise on eye-movement behaviour during image perception in the medical domain. To this end, radiologists, computed-tomography radiographers and psychology students were exposed to nine volumes of multi-slice, stack-view, axial computed-tomography images from the upper to the lower part of the abdomen with or without abnormality. The images were presented in succession at low, medium or high speed, while the participants had to detect enlarged lymph nodes or other visually more salient abnormalities. The radiologists outperformed both other groups in the detection of enlarged lymph nodes and their eye-movement behaviour also differed from the other groups. Their general strategy was to use saccades of shorter amplitude than the two other participant groups. In the presence of enlarged lymph nodes, they increased the number of fixations on the relevant areas and reverted to even shorter saccades. In volumes containing enlarged lymph nodes, radiologists’ fixation durations were longer in comparison to their fixation durations in volumes without enlarged lymph nodes. More salient abnormalities were detected equally well by radiologists and radiographers, with both groups outperforming psychology students. However, to accomplish this, radiologists actually needed fewer fixations on the relevant areas than the radiographers. On the basis of these results, we argue that expert behaviour is manifested in distinct eye-movement patterns of proactivity, reactivity and suppression, depending on the nature of the task and the presence of abnormalities at any given moment. PMID:23785481

  2. [Investigation of the Reactivity of the Mu Rhythm during Observation, Auditory Perception and Movement Imitation: Correlation with Empathic Ability].

    PubMed

    Makhin, S A; Makaricheva, A A; Lutsuk, N V; Pavlenko, V B

    2015-01-01

    The purpose of this work was to study the reactivity of EEG mu-rhythm during observation, auditory perception and imitation of circular hand movements with a computer mouse, and its correlation with empathic ability of an individual. During observation of hand movements, we discovered a significant desynchronization of the mu rhythm in the hemisphere contralateral to the observed hand (electrode C3; a decrease by 6.9%). During auditory perception of the sounds of computer mouse movements (with eyes closed), we observed a significant decrease in the amplitude of the mu rhythm under electrodes C(z) (6.7%) and C3 (4.4%). During movement imitation, we discovered a decrease in the amplitude of the mu rhythm under electrodes C(z) (12.6%), C3 (23.2%) and C4 (16.7%). The result of self-assessment of empathic ability by the Questionnaire of Emotional Empathy of Mehrabian and Epstein was positively correlated (r = 0.47) with the averaged values of desynchronization of the mu rthythm under three central electrodes during auditory perception; during observation and imitation, no significant correlations were found. We suggest that empatic ability is more likely to correlate with the activity of "logically related" mirror neurons, than with that of "strictly congruent" ones.

  3. Improving emotional face perception in autism with diuretic bumetanide: a proof-of-concept behavioral and functional brain imaging pilot study.

    PubMed

    Hadjikhani, Nouchine; Zürcher, Nicole R; Rogier, Ophelie; Ruest, Torsten; Hippolyte, Loyse; Ben-Ari, Yehezkel; Lemonnier, Eric

    2015-02-01

    Clinical observations have shown that GABA-acting benzodiazepines exert paradoxical excitatory effects in autism, suggesting elevated intracellular chloride (Cl-)i and excitatory action of GABA. In a previous double-blind randomized study, we have shown that the diuretic NKCC1 chloride importer antagonist bumetanide, that decreases (Cl-)i and reinforces GABAergic inhibition, reduces the severity of autism symptoms. Here, we report results from an open-label trial pilot study in which we used functional magnetic resonance imaging and neuropsychological testing to determine the effects of 10 months bumetanide treatment in adolescents and young adults with autism. We show that bumetanide treatment improves emotion recognition and enhances the activation of brain regions involved in social and emotional perception during the perception of emotional faces. The improvement of emotion processing by bumetanide reinforces the usefulness of bumetanide as a promising treatment to improve social interactions in autism.

  4. Sociocultural Differences in Eating Disordered Behaviors and Body Image Perception: A Comparison between Puerto Rican and American College Women.

    ERIC Educational Resources Information Center

    Encarnacion-Garcia, Haydee

    This study investigated whether differences attributable to sociocultural factors existed in the eating-disorder behaviors and body image perception of Puerto Rican and U.S. college women. Participants (n=440) completed the Eating Disorder Inventory-2 and provided demographic information. Results indicated significant differences between the…

  5. First- and third-person perceptions of images of older people in advertising: an inter-generational evaluation.

    PubMed

    Robinson, Tom; Umphery, Don

    2006-01-01

    With the baby boomers increasing in age, the number of older Americans is projected to increase to 82 million by 2050, an increase of 225% from the year 2000. But despite their growing numbers, older individuals continue to face negative attitudes toward them, their way of thinking, and their abilities. These negative attitudes result from the assumption that older people have diminished physical and mental abilities, when in fact, today's older adults are more active and in better physical and mental health than those in any previous generation. This study examines the relationship between first- and third-person perceptions and positive and negative images by determining how older people and younger people perceive each other. More specifically, when older and younger individuals look at positive and negative images of older people in advertisements, what is their perception of the effects those images will have on the other generation? Our findings show that both first- and third-person effects exist and that their perceptions depend on whether the images in the advertisements are positive or negative. The results also indicate that young people rely on the stereotypes they hold of older people when making their perceptions.

  6. The Relationship of Body Image Perception and Weight Status to Recent Change in Weight Status of the Adolescent Female.

    ERIC Educational Resources Information Center

    Fowler, Barbara Ann

    1989-01-01

    Investigated relationship of body image perception and weight status to recent change in weight status of adolescent females. Nonobese, overweight, and obese girls (N=90) aged 13 through 17 completed Body-Cathexis Scale and self-report recent change in weight status and demographic questionnaire. Results revealed significant positive correlation…

  7. Pregnant Teens vs. Teen Mothers: Impact of Self-Image, Style of Coping, and Family Environment on Caretaking Perceptions.

    ERIC Educational Resources Information Center

    Stern, Marilyn; Alvarez, Aracelly

    The purpose of this ongoing study is to assess the impact of style of coping, self-image, family environment, and perceptions of parenting skills on the adaptation of adolescents to the stressors of parenthood. A total of 27 adolescent mothers and their infants, and a cohort of 16 pregnant teens, have thus far participated in the study. Each of…

  8. Image and video compression/decompression based on human visual perception system and transform coding

    SciTech Connect

    Fu, Chi Yung., Petrich, L.I., Lee, M.

    1997-02-01

    The quantity of information has been growing exponentially, and the form and mix of information have been shifting into the image and video areas. However, neither the storage media nor the available bandwidth can accommodated the vastly expanding requirements for image information. A vital, enabling technology here is compression/decompression. Our compression work is based on a combination of feature-based algorithms inspired by the human visual- perception system (HVS), and some transform-based algorithms (such as our enhanced discrete cosine transform, wavelet transforms), vector quantization and neural networks. All our work was done on desktop workstations using the C++ programming language and commercially available software. During FY 1996, we explored and implemented an enhanced feature-based algorithms, vector quantization, and neural- network-based compression technologies. For example, we improved the feature compression for our feature-based algorithms by a factor of two to ten, a substantial improvement. We also found some promising results when using neural networks and applying them to some video sequences. In addition, we also investigated objective measures to characterize compression results, because traditional means such as the peak signal- to-noise ratio (PSNR) are not adequate to fully characterize the results, since such measures do not take into account the details of human visual perception. We have successfully used our one- year LDRD funding as seed money to explore new research ideas and concepts, the results of this work have led us to obtain external funding from the dud. At this point, we are seeking matching funds from DOE to match the dud funding so that we can bring such technologies into fruition. 9 figs., 2 tabs.

  9. H I Imaging Observations of Superthin Galaxies. I. UGC 7321

    NASA Astrophysics Data System (ADS)

    Uson, Juan M.; Matthews, L. D.

    2003-05-01

    We have used the Very Large Array to image the isolated ``superthin'' galaxy UGC 7321 in the H I line with a spatial resolution of 16" and a spectral resolution of 24 kHz (5.2 km s-1). We have reached a sensitivity of (0.36-0.40) mJy beam-1 channel-1, which correspond to a column density of (8-9)×1018 atoms cm-2 (1 σ). UGC 7321 has a gas-rich disk, with MHI=(1.06+/-0.01)×109 d210 Msolar and MHI/LB=1.0 (d10 is the distance to UGC 7321 in units of 10 Mpc, the value adopted in this paper), and no detectable radio continuum emission (FCONT=0.41+/-0.25 mJy). The global H I distribution of UGC 7321 is rather symmetric and extends to ~1.5 times the optical radius (DHI=8.65‧+/-0.15‧ at nHI=3×1019 atoms cm-2). An ``integral sign'' warp is observed in the H I disk, commencing near the edge of the stellar distribution and twisting back toward the equatorial plane in the outermost regions. In addition, the position-velocity diagram suggests the presence of a bar or inner arm within ~40" from the center. The rotation curve of UGC 7321 is slowly rising; it reaches its asymptotic velocity of ~110 km s-1 at ~2.5‧ from the center (about 0.9 optical radii) and declines near the edge of the H I disk. The ratio of the inferred dynamical mass to the mass in gas and stars is ~12d-110, implying that UGC 7321 is a highly dark-matter-dominated galaxy.

  10. Thai district Leaders' perceptions of managing the direct observation treatment program in Trang Province, Thailand.

    PubMed

    Choowong, Jiraporn; Tillgren, Per; Söderbäck, Maja

    2016-07-28

    Thailand is 18th out of the 22 countries with the highest tuberculosis (TB) burden. It will be a challenge for Thailand to achieve the UN Millennium Development target for TB, as well as the new WHO targets for eliminating TB by 2035. More knowledge and a new approach are needed to tackle the complex challenges of managing the DOT program in Thailand. Contextual factors strongly influence the local implementation of evidence in practice. Using the PARIHS model, the aim has been to explore district leaders' perceptions of the management of the DOT program in Trang province, Thailand. A phenomenographic approach was used to explore the perceptions among district DOT program leaders in Trang province. We conducted semi-structured interviews with district leaders responsible for managing the DOT program in five districts. The analysis of the data transcriptions was done by grouping similarities and differences of perceptions, which were constructed in a hierarchical outcome space that shows a set of descriptive categories. The first descriptive category revealed a common perception of the leaders' duty and wish to comply with the NTP guidelines when managing and implementing the DOT program in their districts. More varied perceptions among the leaders concerned how to achieve successful treatment. Other perceptions concerned practical dilemmas, which included fear of infection, mutual distrust, and inadequate knowledge about TB. Further, the leaders perceived a need for improved management practices in implementing the TB guidelines. Using the PARIHS framework to gain a retrospective perspective on the district-level policy implementation of the DOT program and studying the leadership's perceptions about applying the guidelines to practice, has brought new knowledge about management practices. Additional support and resources from the regional level are needed to manage the challenges.

  11. Mesospheric imaging Michelson interferometer instrument development and observations

    NASA Astrophysics Data System (ADS)

    Babcock, David D.

    This dissertation demonstrated the capability of the Mesospheric Imaging Michelson Interferometer (MIMI) instrument to passively measure wind velocities from Doppler-shifted atmospheric airglow emissions. The work consisted of two parts, (i) laboratory work focused on the measurement of simulated atmospheric winds with both Doppler-shifted visible and near-IR wavelengths and (ii) the development of a field instrument based on a lab prototype to investigate the potential of measuring Mesospheric winds from the ground. The primary component of the MIMI instrument was a custom built Michelson interferometer which was field widened, chromatically compensated, thermally compensated, and monolithic with no moving parts. The Michelson interferometer, used together with a novel four-point wind retrieval algorithm, provides simultaneous emission rate and wind velocity data over a single integration time. Simultaneously measuring the emission rate over the FOV and measuring wind velocity relative to the observer, of an air parcel containing an emitting chemical species, is a unique feature of the MIMI instrument. Eliminating sequential scanning of the Michelson to measure wind velocities (or being able to take a 'snapshot' of the atmosphere) and provide data on the emission rates and wind velocities, renders the instrument insensitive to scene changes over the integration time, which is an advantage over traditional scanning Michelson interferometers. Spectral lines from visible and near-IR sources were Doppler shifted in a controllable procedure to provide known velocities which were compared to the velocities measured by the interferometer. Wind simulations completed in the visible wavelength region retrieved velocities to within a standard deviation of +/-1ms-1. Wind simulations in the near-IR retrieved wind velocities to within a standard deviation of +/-2ms -1. These standard deviations are acceptable when compared to typical Mesospheric winds of 10 to 100ms-1 and when

  12. [Perceptions of Nursing Image Held by Third and Fourth-Year Baccalaureate Nursing Students and Related Factors].

    PubMed

    Cheng, Chia-Hsin

    2016-04-01

    Prior studies indicate that the perception of nursing image heldx by nursing students influences the attitudes of these students toward nursing care and their future professional role identity as nurses. However, few studies have investigated this issue in Taiwan in recent years. To examine the perceptions of nursing image held by third- and fourth-year baccalaureate nursing students and the factors that influence these perceptions. The present study employed a cross-sectional survey design. Questionnaires were administered to a total of 219 nursing students who were currently enrolled at a university in southern Taiwan. Descriptive statistics, chi-square test, Pearson product-moment correlation, multiple linear regression, and simple logistic regression analysis were conducted using SPSS 12.0, Chinese version. The mean age of participants was 22.2 years; most were fourth-year students (58.9%) and female (85.8%). Regarding the images of nursing, most participants indicated that current nursing work possesses characteristics that include: "being a profession", "emphasizing care and concern for patients", "requiring meticulousness", and "requiring emotional control". In terms of perceptions of professional nurses, most participants considered nurses to be: "constantly needing to progress and innovate", "capable of caring for and respecting others", "independent and self-conscious", and "sufficiently intelligent". The present study identified significant differences between third- and fourth-year students in only three variables, with a larger percentage of fourth-year students perceiving nurses as "dedicated and willing to sacrifice", "handmaidens to doctors", and "not bossy and stern" than their third-year peers. In addition, it demonstrated significantly positive relationships between the dependent variables of traditional/bureaucratic image and advanced professional image and the independent variables of willingness to become nursing professionals after graduation

  13. Observation of pressure ridges in SAR images of sea ice: Scattering theory and comparison with observations

    NASA Technical Reports Server (NTRS)

    Vesecky, J. F.; Daida, J. M.; Shuchman, R. A.; Onstott, R. H.; Camiso, J. C.

    1993-01-01

    Ridges and keels (hummocks and bummocks) in sea ice flows are important in sea ice research for both scientific and practical reasons. Sea ice movement and deformation is driven by internal and external stresses on the ice. Ridges and keels play important roles in both cases because they determine the external wind and current stresses via drag coefficients. For example, the drag coefficient over sea ice can vary by a factor of several depending on the fluid mechanical roughness length of the surface. This roughness length is thought to be strongly dependent on the ridge structures present. Thus, variations in ridge and keel structure can cause gradients in external stresses which must be balanced by internal stresses and possibly fracture of the ice. Ridging in sea ice is also a sign of fracture. In a practical sense, large ridges form the biggest impediment to surface travel over the ice or penetration through sea ice by ice-strengthened ships. Ridges also play an important role in the damage caused by sea ice to off-shore structures. Hence, observation and measurement of sea ice ridges is an important component of sea ice remote sensing. The research reported here builds on previous work, estimating the characteristics of ridges and leads in sea ice from SAR images. Our objective is to develop methods for quantitative measurement of sea ice ridges from SAR images. To make further progress, in particular, to estimate ridge height, a scattering model for ridges is needed. Our research approach for a ridge scattering model begins with a survey of the geometrical properties of ridges and a comparison with the characteristics of the surrounding ice. For this purpose we have used airborne optical laser (AOL) data collected during the 1987 Greenland Sea Experiment. These data were used to generate a spatial wavenumber spectrum for height variance for a typical ridge - the typical ridge is the average over 10 large ridges. Our first-order model radar scattering includes

  14. Observation of pressure ridges in SAR images of sea ice: Scattering theory and comparison with observations

    NASA Technical Reports Server (NTRS)

    Vesecky, J. F.; Daida, J. M.; Shuchman, R. A.; Onstott, R. H.; Camiso, J. C.

    1993-01-01

    Ridges and keels (hummocks and bummocks) in sea ice flows are important in sea ice research for both scientific and practical reasons. Sea ice movement and deformation is driven by internal and external stresses on the ice. Ridges and keels play important roles in both cases because they determine the external wind and current stresses via drag coefficients. For example, the drag coefficient over sea ice can vary by a factor of several depending on the fluid mechanical roughness length of the surface. This roughness length is thought to be strongly dependent on the ridge structures present. Thus, variations in ridge and keel structure can cause gradients in external stresses which must be balanced by internal stresses and possibly fracture of the ice. Ridging in sea ice is also a sign of fracture. In a practical sense, large ridges form the biggest impediment to surface travel over the ice or penetration through sea ice by ice-strengthened ships. Ridges also play an important role in the damage caused by sea ice to off-shore structures. Hence, observation and measurement of sea ice ridges is an important component of sea ice remote sensing. The research reported here builds on previous work, estimating the characteristics of ridges and leads in sea ice from SAR images. Our objective is to develop methods for quantitative measurement of sea ice ridges from SAR images. To make further progress, in particular, to estimate ridge height, a scattering model for ridges is needed. Our research approach for a ridge scattering model begins with a survey of the geometrical properties of ridges and a comparison with the characteristics of the surrounding ice. For this purpose we have used airborne optical laser (AOL) data collected during the 1987 Greenland Sea Experiment. These data were used to generate a spatial wavenumber spectrum for height variance for a typical ridge - the typical ridge is the average over 10 large ridges. Our first-order model radar scattering includes

  15. Curiosity's Mars Hand Lens Imager (MAHLI): Inital Observations and Activities

    NASA Technical Reports Server (NTRS)

    Edgett, K. S.; Yingst, R. A.; Minitti, M. E.; Robinson, M. L.; Kennedy, M. R.; Lipkaman, L. J.; Jensen, E. H.; Anderson, R. C.; Bean, K. M.; Beegle, L. W.; hide

    2013-01-01

    MAHLI (Mars Hand Lens Imager) is a 2-megapixel focusable macro lens color camera on the turret on Curiosity's robotic arm. The investigation centers on stratigraphy, grain-scale texture, structure, mineralogy, and morphology of geologic materials at Curiosity's Gale robotic field site. MAHLI acquires focused images at working distances of 2.1 cm to infinity; for reference, at 2.1 cm the scale is 14 microns/pixel; at 6.9 cm it is 31 microns/pixel, like the Spirit and Opportunity Microscopic Imager (MI) cameras.

  16. Effect of Beam Motion on Observed Image at Imaging Station C

    SciTech Connect

    Schulze, Martin E.

    2014-01-17

    Imaging Station C on the DARHT II accelerator is used to measure beam spot sizes. Solenoid scans are used to measure the spot sizes as a function of the solenoid current and infer the beam emittance. Beam motion is observed during the measurement window and can contribute to the measured spot size. The effect of beam motion on the observed images at Station C is examined in this note. The variation in the beam position during the kicked beam pulse contributes to the beam spot size as measured at Station C. The beam motion is primarily in the vertical plane and is due to the kicker voltage rise time prior to the solenoid magnet. The effect of beam motion on the spot size is studied using LAMDA. From the measured beam position at BPM28 and BPM29 we determine the beam position and angle at the start of the LAMDA simulation. We then calculate the beam motion at Station C as a function of the S4 solenoid magnet current. The shot-to-shot variation in the beam motion is very small.

  17. Ideal-observer computation in medical imaging with use of Markov-chain Monte Carlo techniques.

    PubMed

    Kupinski, Matthew A; Hoppin, John W; Clarkson, Eric; Barrett, Harrison H

    2003-03-01

    The ideal observer sets an upper limit on the performance of an observer on a detection or classification task. The performance of the ideal observer can be used to optimize hardware components of imaging systems and also to determine another observer's relative performance in comparison with the best possible observer. The ideal observer employs complete knowledge of the statistics of the imaging system, including the noise and object variability. Thus computing the ideal observer for images (large-dimensional vectors) is burdensome without severely restricting the randomness in the imaging system, e.g., assuming a flat object. We present a method for computing the ideal-observer test statistic and performance by using Markov-chain Monte Carlo techniques when we have a well-characterized imaging system, knowledge of the noise statistics, and a stochastic object model. We demonstrate the method by comparing three different parallel-hole collimator imaging systems in simulation.

  18. Going for distance and going for speed: effort and optical variables shape information for distance perception from observation to response.

    PubMed

    Hajnal, Alen; Bunch, David A; Kelty-Stephen, Damian G

    2014-05-01

    Visually guided distance perception reflects a relationship of geometrical optical variables with the effort required when traversing the distance. We probed how the representations encoding optical variables might define this relationship. Participants visually judged distances on sloped surfaces and reproduced these distances over flat terrain by walking while blindfolded. We examined the responses for the effects of optical variables (i.e., angular declinations from eye height) and tested whether four measures of trial-by-trial effort moderated the use of the represented optical variables. We predicted that observation time and response speed relative to the observed distance would accentuate the effects of encoded optical variables, and that response time and response speed relative to the traversed distance would reduce the effects of those variables. The results confirmed all of the effects except those of observation time. Given the benefits of longer study for strengthening a memory trace, the failure of observation time to predict the use of optical variables raises questions about the representational encoding of visual traces for distance perception. Relationships among optical variables and other effort measures implicate the interaction of processes across multiple time scales, as in cascade dynamics. Cascade dynamics may provide new directions for accounts of visually guided distance perception.

  19. Effects of Body Orientation and Retinal Image Pitch on the Perception of Gravity-Referenced Eye Level (GREL)

    NASA Technical Reports Server (NTRS)

    Cohen, Malcolm M.; Guzy, Larry T.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    It has been asserted that the pitch orientation of a visual array and of an observer's body jointly determine the perception of GREL. The current study formally tests this assertion over an extended range with multiple combinations of visual and body pitch orientations. Ten subjects were individually secured in a Circolectric bed surrounded by a room (pitchroom) with walls that could be pitched at various angles with respect to gravity. The bed and the walls of the room were independently adjusted to each of five positions relative to gravitational vertical: -15, -7.5, 0, +7.5, and +15 degrees, yielding 25 combinations of body x room pitch angles, and retinal image pitch (RIP) conditions ranging from -30 to +30 degrees. Each subject set a target to apparent GREL while viewing it against a background of two electroluminescent strips on the outer edges of the far wall of the room. As determined by ANOVA, the orientation of the room, and its interaction with that of the observer, significantly altered GREL (p less than 0.01). Regression analysis showed that GREL was best described as a linear summation of the weighted independent contributions from a body-referenced mechanism (B) and a visual mechanism given by the orientation of the background array on the retina (RIP). The equation for this relationship is: GREL = .74 (B) +.64 (RIP) - 1.42; r-squared = .994.

  20. Effects of Body Orientation and Retinal Image Pitch on the Perception of Gravity-Referenced Eye Level (GREL)

    NASA Technical Reports Server (NTRS)

    Cohen, Malcolm M.; Guzy, Larry T.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    It has been asserted that the pitch orientation of a visual array and of an observer's body jointly determine the perception of GREL. The current study formally tests this assertion over an extended range with multiple combinations of visual and body pitch orientations. Ten subjects were individually secured in a Circolectric bed surrounded by a room (pitchroom) with walls that could be pitched at various angles with respect to gravity. The bed and the walls of the room were independently adjusted to each of five positions relative to gravitational vertical: -15, -7.5, 0, +7.5, and +15 degrees, yielding 25 combinations of body x room pitch angles, and retinal image pitch (RIP) conditions ranging from -30 to +30 degrees. Each subject set a target to apparent GREL while viewing it against a background of two electroluminescent strips on the outer edges of the far wall of the room. As determined by ANOVA, the orientation of the room, and its interaction with that of the observer, significantly altered GREL (p less than 0.01). Regression analysis showed that GREL was best described as a linear summation of the weighted independent contributions from a body-referenced mechanism (B) and a visual mechanism given by the orientation of the background array on the retina (RIP). The equation for this relationship is: GREL = .74 (B) +.64 (RIP) - 1.42; r-squared = .994.

  1. Tactile orientation perception: an ideal observer analysis of human psychophysical performance in relation to macaque area 3b receptive fields.

    PubMed

    Peters, Ryan M; Staibano, Phillip; Goldreich, Daniel

    2015-12-01

    The ability to resolve the orientation of edges is crucial to daily tactile and sensorimotor function, yet the means by which edge perception occurs is not well understood. Primate cortical area 3b neurons have diverse receptive field (RF) spatial structures that may participate in edge orientation perception. We evaluated five candidate RF models for macaque area 3b neurons, previously recorded while an oriented bar contacted the monkey's fingertip. We used a Bayesian classifier to assign each neuron a best-fit RF structure. We generated predictions for human performance by implementing an ideal observer that optimally decoded stimulus-evoked spike counts in the model neurons. The ideal observer predicted a saturating reduction in bar orientation discrimination threshold with increasing bar length. We tested 24 humans on an automated, precision-controlled bar orientation discrimination task and observed performance consistent with that predicted. We next queried the ideal observer to discover the RF structure and number of cortical neurons that best matched each participant's performance. Human perception was matched with a median of 24 model neurons firing throughout a 1-s period. The 10 lowest-performing participants were fit with RFs lacking inhibitory sidebands, whereas 12 of the 14 higher-performing participants were fit with RFs containing inhibitory sidebands. Participants whose discrimination improved as bar length increased to 10 mm were fit with longer RFs; those who performed well on the 2-mm bar, with narrower RFs. These results suggest plausible RF features and computational strategies underlying tactile spatial perception and may have implications for perceptual learning.

  2. Tactile orientation perception: an ideal observer analysis of human psychophysical performance in relation to macaque area 3b receptive fields

    PubMed Central

    Peters, Ryan M.; Staibano, Phillip

    2015-01-01

    The ability to resolve the orientation of edges is crucial to daily tactile and sensorimotor function, yet the means by which edge perception occurs is not well understood. Primate cortical area 3b neurons have diverse receptive field (RF) spatial structures that may participate in edge orientation perception. We evaluated five candidate RF models for macaque area 3b neurons, previously recorded while an oriented bar contacted the monkey's fingertip. We used a Bayesian classifier to assign each neuron a best-fit RF structure. We generated predictions for human performance by implementing an ideal observer that optimally decoded stimulus-evoked spike counts in the model neurons. The ideal observer predicted a saturating reduction in bar orientation discrimination threshold with increasing bar length. We tested 24 humans on an automated, precision-controlled bar orientation discrimination task and observed performance consistent with that predicted. We next queried the ideal observer to discover the RF structure and number of cortical neurons that best matched each participant's performance. Human perception was matched with a median of 24 model neurons firing throughout a 1-s period. The 10 lowest-performing participants were fit with RFs lacking inhibitory sidebands, whereas 12 of the 14 higher-performing participants were fit with RFs containing inhibitory sidebands. Participants whose discrimination improved as bar length increased to 10 mm were fit with longer RFs; those who performed well on the 2-mm bar, with narrower RFs. These results suggest plausible RF features and computational strategies underlying tactile spatial perception and may have implications for perceptual learning. PMID:26354318

  3. Dependence of the appearance-based perception of criminality, suggestibility, and trustworthiness on the level of pixelation of facial images.

    PubMed

    Nurmoja, Merle; Eamets, Triin; Härma, Hanne-Loore; Bachmann, Talis

    2012-10-01

    While the dependence of face identification on the level of pixelation-transform of the images of faces has been well studied, similar research on face-based trait perception is underdeveloped. Because depiction formats used for hiding individual identity in visual media and evidential material recorded by surveillance cameras often consist of pixelized images, knowing the effects of pixelation on person perception has practical relevance. Here, the results of two experiments are presented showing the effect of facial image pixelation on the perception of criminality, trustworthiness, and suggestibility. It appears that individuals (N = 46, M age = 21.5 yr., SD = 3.1 for criminality ratings; N = 94, M age = 27.4 yr., SD = 10.1 for other ratings) have the ability to discriminate between facial cues ndicative of these perceived traits from the coarse level of image pixelation (10-12 pixels per face horizontally) and that the discriminability increases with a decrease in the coarseness of pixelation. Perceived criminality and trustworthiness appear to be better carried by the pixelized images than perceived suggestibility.

  4. [Decorative elements in the medical imaging area improve patients' perception of pleasantness].

    PubMed

    García Marcos, R; Martí-Bonmatí, L; Martínez, J J; Vilar, J; Katic, N; Lemercier, P; Díaz Dhó, R

    2014-01-01

    To evaluate the sensation of pleasantness perceived by patients attended in the radiology department in response to decorative elements hung on the walls in the waiting rooms and in the hallways of the imaging area. The material resources comprised works of art in the form of "magic windows" representing scenes from nature installed on the ceilings and walls of the waiting area and hallways of the imaging area. Patients were given a brief questionnaire with general data and questions (sadness-cheerfulness, coldness-warmth, darkness-light, and pessimism-optimism) about their perception of the decorative elements. Of the 150 questionnaires collected, 142 were filled out correctly. The overall health of these patients was good in 84 (56%), not bad in 58 (39%), and poor in 8 (5%). The idea seemed very good to 70 patients (47%), good to 58 (39%), not bad to 8 (5%), indifferent to 11 (7%), bad to 1 (1%), and very bad to 2 (1%). As far a patients' mobility, 119 patients (79%) walked into the department, 18 (12%) were wheeled in on beds, and 13 (9%) needed wheelchairs. We found a high level of satisfaction with the decorative elements. Copyright © 2012 SERAM. Published by Elsevier Espana. All rights reserved.

  5. Children's Drawings--Resource for Development and Observation of Perception of Numbers of Children

    ERIC Educational Resources Information Center

    Pavlovicová, Gabriela; Švecová, Valéria

    2011-01-01

    Children's drawings are one of the most appropriate approach to knowing children, their individuality and also their perceptions. Child is not always able to express their thoughts precisely, because their vocabulary is still incomplete and is gained just lately. In our paper we concentrate on drawing as a communication means, with which we can…

  6. Gravity and observer's body orientation influence the visual perception of human body postures.

    PubMed

    Lopez, Christophe; Bachofner, Christelle; Mercier, Manuel; Blanke, Olaf

    2009-05-04

    Since human behavior and perception have evolved within the Earth's gravitational field, humans possess an internal model of gravity. Although gravity is known to influence the visual perception of moving objects, the evidence is less clear concerning the visual perception of static objects. We investigated whether a visual judgment of the stability of human body postures (static postures of a human standing on a platform and tilted in the roll plane) may also be influenced by gravity and by the participant's orientation. Pictures of human body postures were presented in different orientations with respect to gravity and the participant's body. The participant's body was aligned to gravity (upright) or not (lying on one side). Participants performed stability judgments with respect to the platform, imagining that gravity operates in the direction indicated by the platform (that was or was not concordant with physical gravity). Such visual judgments were influenced by the picture's orientation with respect to physical gravity. When pictures were tilted by 90 degrees with respect to physical gravity, the human postures that were tilted toward physical gravity (down) were perceived as more unstable than similar postures tilted away from physical gravity (up). Stability judgments were also influenced by the picture's orientation with respect to the participant's body. This indicates that gravity and the participant's body position may influence the visual perception of static objects.

  7. Perceptions and Practices of Student Binge Drinking: An Observational Study of Residential College Students

    ERIC Educational Resources Information Center

    Clinkinbeard, Samantha S.; Johnson, Michael A.

    2013-01-01

    Professionals have debated the use of the term binge drinking over the past couple of decades, yet little attention has been paid to college student perceptions. We explored how students at one university qualitatively defined binge drinking; whether their own definitions coincided with those adopted by researchers; and whether students' own…

  8. Observations of Beta Pictoris b with the Gemini Planet Imager

    NASA Astrophysics Data System (ADS)

    Chilcote, J.; Graham, J.; Barman, T.; Fitzgerald, M.; Larkin, J.; Macintosh, B.; Bauman, B.; Burrows, A.; Cardwell, A.; De Rosa, R.; Dillon, D.; Doyon, R.; Dunn, J.; Erikson, D.; Gavel, D.; Goodsell, S.; Hartung, M.; Hibon, P.; Ingraham, P.; Kalas, P.; Konopacky, Q.; Maire, J.; Marchis, F.; Marley, M.; Mcbride, J.; Millar-Blanchaer, M.; Morzinski, K.; Norton, A.; Oppenheimer, B.; Palmer, D.; Patience, J.; Pueyo, L.; Rantakyro, F.; Sadakuni, N.; Saddlemyer, L.; Savransky, D.; Serio, A.; Soummer, R.; Sivaramakrishnan, A.; Song, I.; Thomas, S.; Wallace, K.; Wiktorowicz, S.; Wolff, S.

    2014-09-01

    Using the recently installed Gemini Planet Imager (GPI), we present measurements of the planetary companion to the nearby young star beta Pic. GPI is a facility class instrument located at Gemini South designed to image and provide low-resolution spectra of Jupiter sized, self-luminous planetary companions around young nearby stars. We present the current imaged spectrum and atmospheric models of the planet based upon GPI's R ˜50 integral field spectrograph. Further, we present a joint analysis of the GPI and NACO astrometry, and the Snellen et al. (2014) radial velocity measurement of beta Pic b that provides the first constraint on the argument of periastron, providing a causal link to the infalling, evaporating bodies.

  9. Ultraviolet Imaging Telescope observations of the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Hennessy, Gregory S.; O'Connell, Robert W.; Cheng, Kwang P.; Bohlin, Ralph C.; Collins, Nicholas R.; Gull, Theodore R.; Hintzen, Paul; Isensee, Joan E.; Landsman, Wayne B.; Roberts, Morton S.; Smith, Andrew M.; Smith, Eric P.; Stecher, Theodore P.

    1992-08-01

    We obtained ultraviolet images of the Crab Nebula with the Ultraviolet Imaging Telescope during the Astro-1 Space Shuttle mission in 1990 December. The UV continuum morphology of the Crab is generally similar to that in the optical region, but the wispy structures are less conspicuous in the UV and X-ray. UV line emission from the thermal filaments is not strong. UV spectral index maps with a resolution of 10 arcsecs show a significant gradient across the nebula, with the outer parts being redder, as expected from synchrotron losses. The location of the bluest synchrotron continuum does not coincide with the pulsar.

  10. Lunar and Planetary Science XXXV: Image Processing and Earth Observations

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The titles in this section include: 1) Expansion in Geographic Information Services for PIGWAD; 2) Modernization of the Integrated Software for Imagers and Spectrometers; 3) Science-based Region-of-Interest Image Compression; 4) Topographic Analysis with a Stereo Matching Tool Kit; 5) Central Avra Valley Storage and Recovery Project (CAVSARP) Site, Tucson, Arizona: Floodwater and Soil Moisture Investigations with Extraterrestrial Applications; 6) ASE Floodwater Classifier Development for EO-1 HYPERION Imagery; 7) Autonomous Sciencecraft Experiment (ASE) Operations on EO-1 in 2004; 8) Autonomous Vegetation Cover Scene Classification of EO-1 Hyperion Hyperspectral Data; 9) Long-Term Continental Areal Reduction Produced by Tectonic Processes.

  11. Lunar and Planetary Science XXXV: Image Processing and Earth Observations

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The titles in this section include: 1) Expansion in Geographic Information Services for PIGWAD; 2) Modernization of the Integrated Software for Imagers and Spectrometers; 3) Science-based Region-of-Interest Image Compression; 4) Topographic Analysis with a Stereo Matching Tool Kit; 5) Central Avra Valley Storage and Recovery Project (CAVSARP) Site, Tucson, Arizona: Floodwater and Soil Moisture Investigations with Extraterrestrial Applications; 6) ASE Floodwater Classifier Development for EO-1 HYPERION Imagery; 7) Autonomous Sciencecraft Experiment (ASE) Operations on EO-1 in 2004; 8) Autonomous Vegetation Cover Scene Classification of EO-1 Hyperion Hyperspectral Data; 9) Long-Term Continental Areal Reduction Produced by Tectonic Processes.

  12. Ultraviolet Imaging Telescope observations of the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Hennessy, Gregory S.; O'Connell, Robert W.; Cheng, Kwang P.; Bohlin, Ralph C.; Collins, Nicholas R.; Gull, Theodore P.; Hintzen, Paul; Isensee, Joan E.; Landsman, Wayne B.; Roberts, Morton S.

    1992-01-01

    We obtained ultraviolet images of the Crab Nebula with the Ultraviolet Imaging Telescope during the Astro-1 Space Shuttle mission in 1990 December. The UV continuum morphology of the Crab is generally similar to that in the optical region, but the wispy structures are less conspicuous in the UV and X-ray. UV line emission from the thermal filaments is not strong. UV spectral index maps with a resolution of 10 arcsecs show a significant gradient across the nebula, with the outer parts being redder, as expected from synchrotron losses. The location of the bluest synchrotron continuum does not coincide with the pulsar.

  13. Dance and Music in "Gangnam Style": How Dance Observation Affects Meter Perception.

    PubMed

    Lee, Kyung Myun; Barrett, Karen Chan; Kim, Yeonhwa; Lim, Yeoeun; Lee, Kyogu

    2015-01-01

    Dance and music often co-occur as evidenced when viewing choreographed dances or singers moving while performing. This study investigated how the viewing of dance motions shapes sound perception. Previous research has shown that dance reflects the temporal structure of its accompanying music, communicating musical meter (i.e. a hierarchical organization of beats) via coordinated movement patterns that indicate where strong and weak beats occur. Experiments here investigated the effects of dance cues on meter perception, hypothesizing that dance could embody the musical meter, thereby shaping participant reaction times (RTs) to sound targets occurring at different metrical positions.In experiment 1, participants viewed a video with dance choreography indicating 4/4 meter (dance condition) or a series of color changes repeated in sequences of four to indicate 4/4 meter (picture condition). A sound track accompanied these videos and participants reacted to timbre targets at different metrical positions. Participants had the slowest RT's at the strongest beats in the dance condition only. In experiment 2, participants viewed the choreography of the horse-riding dance from Psy's "Gangnam Style" in order to examine how a familiar dance might affect meter perception. Moreover, participants in this experiment were divided into a group with experience dancing this choreography and a group without experience. Results again showed slower RTs to stronger metrical positions and the group with experience demonstrated a more refined perception of metrical hierarchy. Results likely stem from the temporally selective division of attention between auditory and visual domains. This study has implications for understanding: 1) the impact of splitting attention among different sensory modalities, and 2) the impact of embodiment, on perception of musical meter. Viewing dance may interfere with sound processing, particularly at critical metrical positions, but embodied familiarity with

  14. Dance and Music in “Gangnam Style”: How Dance Observation Affects Meter Perception

    PubMed Central

    Lee, Kyung Myun; Barrett, Karen Chan; Kim, Yeonhwa; Lim, Yeoeun; Lee, Kyogu

    2015-01-01

    Dance and music often co-occur as evidenced when viewing choreographed dances or singers moving while performing. This study investigated how the viewing of dance motions shapes sound perception. Previous research has shown that dance reflects the temporal structure of its accompanying music, communicating musical meter (i.e. a hierarchical organization of beats) via coordinated movement patterns that indicate where strong and weak beats occur. Experiments here investigated the effects of dance cues on meter perception, hypothesizing that dance could embody the musical meter, thereby shaping participant reaction times (RTs) to sound targets occurring at different metrical positions.In experiment 1, participants viewed a video with dance choreography indicating 4/4 meter (dance condition) or a series of color changes repeated in sequences of four to indicate 4/4 meter (picture condition). A sound track accompanied these videos and participants reacted to timbre targets at different metrical positions. Participants had the slowest RT’s at the strongest beats in the dance condition only. In experiment 2, participants viewed the choreography of the horse-riding dance from Psy’s “Gangnam Style” in order to examine how a familiar dance might affect meter perception. Moreover, participants in this experiment were divided into a group with experience dancing this choreography and a group without experience. Results again showed slower RTs to stronger metrical positions and the group with experience demonstrated a more refined perception of metrical hierarchy. Results likely stem from the temporally selective division of attention between auditory and visual domains. This study has implications for understanding: 1) the impact of splitting attention among different sensory modalities, and 2) the impact of embodiment, on perception of musical meter. Viewing dance may interfere with sound processing, particularly at critical metrical positions, but embodied

  15. Dust Transport and Deposition Observed from the Terra-Moderate Image Spectrometer (MODIS) Space Observations

    NASA Technical Reports Server (NTRS)

    Kaufman, Y.

    2004-01-01

    Meteorological observations, in situ data and satellite images of dust episodes were used already in the 1970s to estimate that 100 tg of dust are transported from Africa over the Atlantic Ocean every year between June and August and deposited in the Atlantic Ocean and the Americas. Desert dust is a main source of nutrients to oceanic biota and the Amazon forest, but deteriorates air quality and caries pathogens as shown for Florida. Dust affects the Earth radiation budget, thus participating in climate change and feedback mechanisms. There is an urgent need for new tools for quantitative evaluation of the dust distribution, transport and deposition. The Terra spacecraft launched at the dawn of the last millennium provides first systematic well calibrated multispectral measurements from the MODIS instrument, for daily global analysis of aerosol. MODIS data are used here to distinguish dust from smoke and maritime aerosols and evaluate the African dust column concentration, transport and deposition. We found that 230 plus or minus 80 tg of dust are transported annually from Africa to the Atlantic Ocean, 30 tg return to Africa and Europe, 70 tg reach the Caribbean, 45 tg fertilize the Amazon Basin, 4 times as previous estimates thus explaining a paradox regarding the source of nutrition to the Amazon forest, and 120 plus or minus 40 tg are deposited in the Atlantic Ocean. The results are compared favorably with dust transport models for particle radius less than or equal to 12 microns. This study is a first example of quantitative use of MODIS aerosol for a geophysical study.

  16. Advanced scanners and imaging systems for earth observations. [conferences

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Assessments of present and future sensors and sensor related technology are reported along with a description of user needs and applications. Five areas are outlined: (1) electromechanical scanners, (2) self-scanned solid state sensors, (3) electron beam imagers, (4) sensor related technology, and (5) user applications. Recommendations, charts, system designs, technical approaches, and bibliographies are included for each area.

  17. Optically perceptible characteristics of sprites observed in Central Europe in 2007-2009

    NASA Astrophysics Data System (ADS)

    Bór, József

    2013-01-01

    Sprites are luminous optical emissions accompanying electric discharges in the mesosphere. 489 sprite events have been observed with a TV frame rate video system in Central Europe from Sopron (47.68°N, 16.58°E, ˜230 m MSL), Hungary between 2007 and 2009. Characteristic sprite forms, i.e., column, wishbone, tree, angel, and carrot have been identified in the set of records. Characteristic morphological properties corresponding to each type are given; earlier definitions and observations as well as the related theoretical considerations are reviewed. Based on the knowledge and experience from high-speed imaging in sprite observations, probable time sequences of streamer propagation directions were associated with the characteristic sprite types. It is suggested that different streamer propagation sequences corresponding to different dynamic processes may result in similar sprite forms. Several occasionally detectable sprite features are noted and described: tendrils, glows, puffs, beads, and spots. Spots are distinguished from the similar beads by their characteristic brightness, size, and location relative to the bright body of the sprite. The events observed in Central Europe have been classified by the number of individual sprites and by the variety of types appearing in them. More than 90% of the recorded sprites were found to occur in clusters rather than alone, and more than half of the sprite clusters contained more than one sprite types. Jellyfish and dancing sprite events are described as being special subsets of sprite clusters. Statistical analysis of the occurrences of morphological types, various sprite features, and event durations indicated that jellyfish sprites and clusters of column sprites with glows and tendrils do not tend to have long optical lifetimes. Sprite events with more morphological types, on the other hand, more likely have extended durations. The maximum of the encountered event duration was lower for events with many sprite

  18. Study and Removal of the Interference Fringes in Images Observed by the Imaging System of NVST

    NASA Astrophysics Data System (ADS)

    Wang, S. B.; Xu, Z.; Xiang, Y. Y.; Jin, Z. Y.

    2016-09-01

    The 1-meter New Vacuum Solar Telescope is a new generation ground-based solar observation facility of China, located at the FuXian-Lake Solar Observatory of Yunnan Observatories. One of its instrumentations is a five-channel high-resolution image system, while the Hα-channel is used as the traditional way for solar chromospheric observation. Using a pco.4000 CCD as the detector, we usually observe complicated fringes resulted from the thin-film interference in scientific data. These fringes can not be eliminated completely by flat-field calibration, and even be intensified after image reconstruction processes. From about 4-hour continuous Hα off-band observations, we study the temporal-variation of the fringe pattern and amplitude. We find that in contrast to the stable pattern, the fringe amplitude obviously changed with time. The visibility increases 9 times over 4 hours. We speculate that it is due to the temporal-variation of the incident light intensity and the direction with respect to the CCD position. Consequently, we suggest two methods to calibrate or eliminate the fringes. On one hand, we suggest to change the CCD inner-glass-window to a wedge-shape with a wedge-angle of about 2 degree in order to reduce the fringe-interval to a CCD pixel size. It is shown that this change can eliminate the majority of fringes. Only few fringes with the visibility of 0.6% can be found in 1/24 of field-of-view. On the other hand, we make efforts to eliminate the fringes by correcting the data using a so-called fringe-flat again after the normal data reduction (flat-field and dark-field modification). A fringe-flat is extracted from the data by using a Fourier filtering technique in frequency domain or a median-filter in space domain, and both produce a very similar result. We find that the corrected data using the fringe-flat produces a substantial reduction in the fringe amplitude with the visibility decreasing to about 1/8. However, we have to point out that there

  19. Self-image and perception of mother and father in psychotic and borderline patients.

    PubMed

    Armelius, K; Granberg

    2000-02-01

    Psychotic and borderline patients rated their self-image and their perception of their mother and father using the Structural Analysis of Social Behavior model (SASB). The borderline patients had more negative images of themselves and their parents, especially their fathers, than did the psychotic patients and the normal subjects, while the psychotic patients' ratings did not differ much from those of the normal subjects. The self-image was related to the images of both parents for borderline patients and normal subjects, while for the psychotic patients only the image of the mother was important for the self-image. In addition, the psychotic patients did not differentiate between the poles of control and autonomy in the introjected self-image. It was concluded that borderline patients are characterized by negative attachment, while psychotic patients are characterized by poor separation from the mother and poor differentiation between autonomy and control. The paper also discusses how this may influence the patients' relations to others. Psychotische und Borderline Patienten beurteilten ihr Selbstbild und ihre Wahrnehmung von Mutter und Vater mit Hilfe der strukturalen Analyse sozialen Verhaltens (SASB). Die Borderline Patienten hattten negativere Selbstbilder und Elternbilder (speziell Vaterbilder) als die psychotischen Patienten und gesunde Personen. Die Beurteilungen der psychotischen Patienten unterschieden sich dagegen nicht besonders von jenen Gesunder. Das Selbstbild stand in Beziehung zu beiden Elternbildern bei den Borderline Patienten und den Gesunden, während bei den psychotischen Patienten nur das Mutterbild für das Selbstbild bedeutsam war. Außerdem konnte bei den psychotischen Patienten nicht zwischen den Polen der Kontrolle und Autonomie bzgl. der introjizierten Selbstbilder differenziert werden. Aus den Ergebnissen wird gefolgert, dass Borderline Patienten durch eine negative Bindung charackterisiert sind, psychotische Patienten dagegen durch

  20. Angioscopic image-enhanced observation of atherosclerotic plaque phantom by near-infrared multispectral imaging at wavelengths around 1200 nm

    NASA Astrophysics Data System (ADS)

    Ishii, K.; Nagao, R.; Matsui, D.; Awazu, K.

    2015-02-01

    Spectroscopic techniques have been researched for intravascular diagnostic imaging of atherosclerotic plaque. Nearinfrared (NIR) light efficiently penetrates of biological tissues, and the NIR region contains the characteristic absorption range of lipid-rich plaques. The objective of this study is to observe atherosclerotic plaque using a NIR multispectral angioscopic imaging. Atherosclerotic plaque phantoms were prepared using a biological tissue model and bovine fat. For the study, we developed an NIR multispectral angioscopic imaging system with a halogen light, mercury-cadmiumtelluride camera, band-pass filters and an image fiber. Apparent spectral absorbance was obtained at three wavelengths, 1150, 1200 and 1300 nm. Multispectral images of the phantom were constructed using the spectral angle mapper algorithm. As a result, the lipid area, which was difficult to observe in a visible image, could be clearly observed in a multispectral image. Our results show that image-enhanced observation and quantification of atherosclerotic plaque by NIR multispectral imaging at wavelengths around 1200 nm is a promising angioscopic technique with the potential to identify lipid-rich plaques.

  1. Observation angle and plane characterisation for ISAR imaging of LEO space objects

    NASA Astrophysics Data System (ADS)

    Chen, Jin; Fu, Tuo; Chen, Defeng; Gao, Meiguo

    2016-07-01

    For inverse synthetic aperture radar (ISAR) imaging of low Earth orbit (LEO) space objects, examining the variations in the image plane of the object over the entire visible arc period allows more direct characterisation of the variations in the object imaging. In this study, the ideal turntable model was extended to determine the observation geometry of near-circular LEO objects. Two approximations were applied to the observation model to calculate the image plane's normal and observation angles for near-circular orbit objects. One approximation treats the orbit of the space object as a standard arc relative to the Earth during the radar observation period, and the other omits the effect of the rotation of the Earth on the observations. First, the closed-form solution of the image plane normal in various attitude-stabilisation approaches was determined based on geometric models. The characteristics of the image plane and the observation angle of the near-circular orbit object were then analysed based on the common constraints of the radar line-of-sight (LOS). Subsequently, the variations in the image plane and the geometric constraints of the ISAR imaging were quantified. Based on the image plane's normal, the rotational angular velocity of the radar LOS was estimated. The cross-range direction of the ISAR image was then calibrated. Three-dimensional imaging was then reconstructed based on dual station interferometry. Finally, simulations were performed to verify the result of the three-dimensional interferometric reconstruction and to calculate the reconstruction's precision errors.

  2. Global Observation Information Networking: Using the Distributed Image Spreadsheet (DISS)

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz

    1999-01-01

    The DISS and many other tools will be used to present visualizations which span the period from the original Suomi/Hasler animations of the first ATS-1 GEO weather satellite images in 1966 ....... to the latest 1999 NASA Earth Science Vision for the next 25 years. Hot off the SGI Onyx Graphics-Supercomputers are NASA's visualizations of Hurricanes Mitch, Georges, Fran and Linda. These storms have been recently featured on the covers of National Geographic, Time, Newsweek and Popular Science and used repeatedly this season on National and International network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1-min GOES images that appeared in the November BAMS.

  3. Global Observation Information Networking: Using the Distributed Image Spreadsheet (DISS)

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz

    1999-01-01

    The DISS and many other tools will be used to present visualizations which span the period from the original Suomi/Hasler animations of the first ATS-1 GEO weather satellite images in 1966 ....... to the latest 1999 NASA Earth Science Vision for the next 25 years. Hot off the SGI Onyx Graphics-Supercomputers are NASA's visualizations of Hurricanes Mitch, Georges, Fran and Linda. These storms have been recently featured on the covers of National Geographic, Time, Newsweek and Popular Science and used repeatedly this season on National and International network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1-min GOES images that appeared in the November BAMS.

  4. Earth observation images taken during the Expedition Three mission

    NASA Image and Video Library

    2001-09-11

    ISS003-E-5434 (11 September 2001) --- One of a series of pictures taken of metropolitan New York City (and other parts of New York as well as New Jersey) by one of the Expedition Three crew members onboard the International Space Station (ISS) at various times during the day of September 11, 2001. The image shows a smoke plume rising from the Manhattan area. The orbital outpost was flying at an altitude of approximately 250 miles. The image was recorded with a digital still camera. Please note: The date identifiers on some frames (other than those that indicate Sept. 11, 2001) are not accurate due to a technical problem with one of the Expedition Three cameras.

  5. Earth observation images taken during the Expedition Three mission

    NASA Image and Video Library

    2001-09-11

    ISS003-E-5435 (11 September 2001) --- One of a series of pictures taken of metropolitan New York City (and other parts of New York as well as New Jersey) by one of the Expedition Three crew members onboard the International Space Station (ISS) at various times during the day of September 11, 2001. The image shows a smoke plume rising from the Manhattan area. The orbital outpost was flying at an altitude of approximately 250 miles. The image was recorded with a digital still camera. Please note: The date identifiers on some frames (other than those that indicate Sept. 11, 2001) are not accurate due to a technical problem with one of the Expedition Three cameras.

  6. Earth observation images taken during the Expedition Three mission

    NASA Image and Video Library

    2001-09-11

    ISS003-E-5438 (11 September 2001) --- One of a series of pictures taken of metropolitan New York City (and other parts of New York as well as New Jersey) by one of the Expedition Three crew members onboard the International Space Station (ISS) at various times during the day of September 11, 2001. The image shows a smoke plume rising from the Manhattan area. The orbital outpost was flying at an altitude of approximately 250 miles. The image was recorded with a digital still camera. Please note: The date identifiers on some frames (other than those that indicate Sept. 11, 2001) are not accurate due to a technical problem with one of the Expedition Three cameras.

  7. Earth observation images taken during the Expedition Three mission

    NASA Image and Video Library

    2001-09-11

    ISS003-E-5441 (11 September 2001) --- One of a series of pictures taken of metropolitan New York City (and other parts of New York as well as New Jersey) by one of the Expedition Three crew members onboard the International Space Station (ISS) at various times during the day of September 11, 2001. The image shows a smoke plume rising from the Manhattan area. The orbital outpost was flying at an altitude of approximately 250 miles. The image was recorded with a digital still camera. Please note: The date identifiers on some frames (other than those that indicate Sept. 11, 2001) are not accurate due to a technical problem with one of the Expedition Three cameras.

  8. Earth observation images taken during the Expedition Three mission

    NASA Image and Video Library

    2001-09-11

    ISS003-E-5436 (11 September 2001) --- One of a series of pictures taken of metropolitan New York City (and other parts of New York as well as New Jersey) by one of the Expedition Three crew members onboard the International Space Station (ISS) at various times during the day of September 11, 2001. The image shows a smoke plume rising from the Manhattan area. The orbital outpost was flying at an altitude of approximately 250 miles. The image was recorded with a digital still camera. Please note: The date identifiers on some frames (other than those that indicate Sept. 11, 2001) are not accurate due to a technical problem with one of the Expedition Three cameras.

  9. Flight Test Results of the Earth Observing-1 Advanced Land Imager Advanced Land Imager

    NASA Astrophysics Data System (ADS)

    Mendenhall, Jeffrey A.; Lencioni, Donald E.; Hearn, David R.; Digenis, Constantine J.

    2002-09-01

    The Advanced Land Imager (ALI) is the primary instrument on the Earth Observing-1 spacecraft (EO-1) and was developed under NASA's New Millennium Program (NMP). The NMP mission objective is to flight-validate advanced technologies that will enable dramatic improvements in performance, cost, mass, and schedule for future, Landsat-like, Earth Science Enterprise instruments. ALI contains a number of innovative features designed to achieve this objective. These include the basic instrument architecture, which employs a push-broom data collection mode, a wide field-of-view optical design, compact multi-spectral detector arrays, non-cryogenic HgCdTe for the short wave infrared bands, silicon carbide optics, and a multi-level solar calibration technique. The sensor includes detector arrays that operate in ten bands, one panchromatic, six VNIR and three SWIR, spanning the range from 0.433 to 2.35 μm. Launched on November 21, 2000, ALI instrument performance was monitored during its first year on orbit using data collected during solar, lunar, stellar, and earth observations. This paper will provide an overview of EO-1 mission activities during this period. Additionally, the on-orbit spatial and radiometric performance of the instrument will be compared to pre-flight measurements and the temporal stability of ALI will be presented.

  10. Depth perception estimation of various stereoscopic displays.

    PubMed

    Baek, Sangwook; Lee, Chulhee

    2016-10-17

    In this paper, we investigate the relationship between depth perception and several disparity parameters in stereoscopic images. A number of subjective experiments were conducted using various 3D displays, which indicate that depth perception of stereoscopic images is proportional to depth difference and is inversely related to the camera distance. Based on this observation, we developed some formulas to quantify the degree of depth perception of stereoscopic images. The proposed method uses depth differences and the camera distance between the objects and the 3D camera. This method also produces improved depth perception estimation by using non-linear functions whose inputs include a depth difference and a camera distance. The results show that the proposed method provides noticeable improvements in terms of correlation and produces more accurate depth perception estimations of stereoscopic images.

  11. Stellar Imager - Observing the Universe in High Definition

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth

    2009-01-01

    Stellar Imager (SI) is a space-based, UV Optical Interferometer (UVOI) with over 200x the resolution of HST. It will enable 0.1 milli-arcsec spectral imaging of stellar surfaces and the Universe in general and open an enormous new 'discovery space' for Astrophysics with its combination of high angular resolution, dynamic imaging, and spectral energy resolution. SI's goal is to study the role of magnetism in the Universe and revolutionize our understanding of: 1) Solar/Stellar Magnetic Activity and their impact on Space Weather, Planetary Climates. and Life, 2) Magnetic and Accretion Processes and their roles in the Origin and Evolution of Structure and in the Transport of Matter throughout the Universe, 3) the close-in structure of Active Galactic Nuclei and their winds, and 4) Exo-Solar Planet Transits and Disks. The SI mission is targeted for the mid 2020's - thus significant technology development in the upcoming decade is critical to enabling it and future spacebased sparse aperture telescope and distributed spacecraft missions. The key technology needs include: 1) precision formation flying of many spacecraft, 2) precision metrology over km-scales, 3) closed-loop control of many-element, sparse optical arrays, 4) staged-control systems with very high dynamic ranges (nm to km-scale). It is critical that the importance of timely development of these capabilities is called out in the upcoming Astrophysics and Heliophysics Decadal Surveys, to enable the flight of such missions in the following decade. S1 is a 'Landmark/Discovery Mission' in 2005 Heliophysics Roadmap and a candidate UVOI in the 2006 Astrophysics Strategic Plan. It is a NASA Vision Mission ('NASA Space Science Vision Missions' (2008), ed. M. Allen) and has also been recommended for further study in the 2008 NRC interim report on missions potentially enabled enhanced by an Ares V' launch, although a incrementally-deployed version could be launched using smaller rockets.

  12. Stellar Imager - Observing the Universe in High Definition

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth

    2009-01-01

    Stellar Imager (SI) is a space-based, UV Optical Interferometer (UVOI) with over 200x the resolution of HST. It will enable 0.1 milli-arcsec spectral imaging of stellar surfaces and the Universe in general and open an enormous new 'discovery space' for Astrophysics with its combination of high angular resolution, dynamic imaging, and spectral energy resolution. SI's goal is to study the role of magnetism in the Universe and revolutionize our understanding of: 1) Solar/Stellar Magnetic Activity and their impact on Space Weather, Planetary Climates. and Life, 2) Magnetic and Accretion Processes and their roles in the Origin and Evolution of Structure and in the Transport of Matter throughout the Universe, 3) the close-in structure of Active Galactic Nuclei and their winds, and 4) Exo-Solar Planet Transits and Disks. The SI mission is targeted for the mid 2020's - thus significant technology development in the upcoming decade is critical to enabling it and future spacebased sparse aperture telescope and distributed spacecraft missions. The key technology needs include: 1) precision formation flying of many spacecraft, 2) precision metrology over km-scales, 3) closed-loop control of many-element, sparse optical arrays, 4) staged-control systems with very high dynamic ranges (nm to km-scale). It is critical that the importance of timely development of these capabilities is called out in the upcoming Astrophysics and Heliophysics Decadal Surveys, to enable the flight of such missions in the following decade. S1 is a 'Landmark/Discovery Mission' in 2005 Heliophysics Roadmap and a candidate UVOI in the 2006 Astrophysics Strategic Plan. It is a NASA Vision Mission ('NASA Space Science Vision Missions' (2008), ed. M. Allen) and has also been recommended for further study in the 2008 NRC interim report on missions potentially enabled enhanced by an Ares V' launch, although a incrementally-deployed version could be launched using smaller rockets.

  13. Stellar Imager (SI) - Observing the Universe in High Definition

    NASA Astrophysics Data System (ADS)

    Carpenter, Kenneth G.; Karovska, M.; Schrijver, C. J.; SI Development Team

    2009-01-01

    Stellar Imager (http://hires.gsfc.nasa.gov/si/) is a space-based, UV/Optical Interferometer (UVOI) with over 200x HST's resolution. It will enable 0.1 milli-arcsec spectral imaging of stellar surfaces and the Universe in general and open an enormous new "discovery space" for Astrophysics with its combination of high angular resolution, dynamic imaging, and spectral energy resolution. SI's goal is to study the role of magnetism in the Universe and revolutionize our understanding of: 1) Solar/Stellar Magnetic Activity and their impact on Space Weather, Planetary Climates, and Life, 2) Magnetic and Accretion Processes and their roles in the Origin and Evolution of Structure and in the Transport of Matter throughout the Universe, 3) the close-in structure of Active Galactic Nuclei, and 4) Exo-Solar Planet Transits and Disks. The SI mission is targeted for the mid 2020's - thus significant technology development in the upcoming decade is critical to enabling it and future space-based sparse aperture telescope and distributed spacecraft missions. The key technology needs include: 1) precision formation flying of many spacecraft, 2) precision metrology over km-scales, 3) closed-loop control of many-element, sparse optical arrays, 4) staged-control systems with very high dynamic ranges (nm to km-scale). It is critical that the importance of timely development of these capabilities is called out in the upcoming Astrophysics and Heliophysics Decadal Surveys, to enable the flight of such missions in the following decade. SI is a "Landmark/Discovery Mission" in the 2005 Heliophysics Roadmap and a candidate UVOI in the 2006 Astrophysics Strategic Plan. It is a NASA Vision Mission ("NASA Space Science Vision Missions" (2008), ed. M. Allen) and has also been recommended for further study in the 2008 NRC interim report on missions potentially enabled or enhanced by an Ares V launch, although an incrementally-deployed version could be launched using smaller rockets.

  14. Imaging utilization from the ED: no difference between observation and admitted patients.

    PubMed

    Prabhakar, Anand M; Misono, Alexander S; Harvey, H Benjamin; Yun, Brian J; Saini, Sanjay; Oklu, Rahmi

    2015-08-01

    This study aims to determine the use of diagnostic imaging in emergency department (ED) observation units, particularly relative to inpatients admitted from the ED. Retrospective, descriptive analysis. Our database of ED patients was retrospectively reviewed to identify patients managed in the observation unit or admitted to inpatient services. In February 2014, we randomly selected 105 ED observation patients and 108 patients admitted to inpatient services from the ED. Electronic medical records were reviewed to assess diagnosis as well as type and quantity of imaging tests obtained. Eighty (76%) ED observation patients underwent imaging tests (radiographs, 39%; computed tomography, 25%; magnetic resonance imaging (MRI), 24%; ultrasound, 8%; other, 4%); 85 inpatients (79%) underwent imaging tests while in the ED (radiographs, 52%; computed tomography, 30%; MRI, 8%; ultrasound, 9%; other, 1%). There was no significant difference in overall imaging use between ED observation patients and inpatients, but ED observation patients were more likely to undergo MRI (P=.0243). The most common presenting diagnoses to the ED observation unit were neurologic complaints (25%), abdominal pain (17%), and cardiac symptoms (16%). There is no difference in the overall use of imaging in patients transferred to the ED observation unit vs those directly admitted from the ED. However, because ED observation unit patients tend to be accountable for a higher proportion of their health care bill, the impact of imaging in these patients is likely substantive. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Near-infrared spectroscopy of image clarity perception in the human brain

    NASA Astrophysics Data System (ADS)

    Lugo, J. E.; Habak, C.; Doti, Rafael; Faubert, Jocelyn

    2014-09-01

    The perception of blur in humans is intrinsic to our visual system, and dioptric power can improve clarity in many cases. This was evaluated experimentally to establish the best correction with dioptric power shifts. We used Near Infrared Spectroscopy (NIRS) to measure Oxy-, Deoxy- and Total-hemoglobin concentration changes in the brain while viewing images and reading a Snellen chart. Participants were tested with their usual correction (no diopter power shift (0 D)), with a 0.25 diopter power shift (0.25 D), and with a 0.5 diopter power shift (0.5 D). The concept of Approximate Entropy (AE) was applied to quantify the regularity of these hemoglobin time series of finite length. AE computations are based on the likelihood that similar templates in a time series remain similar on the next incremental comparison, so that time series with large AE have high irregular fluctuation. We found that the dioptric power shift eliciting the highest AE indicates the clearest visual condition for subjects. This technique may impact the current way in which ophthalmic lenses are prescribed.

  16. Perception of runway image shape and approach angle magnitude by pilots in simulated night landing approaches.

    PubMed

    Mertens, H W

    1981-07-01

    One cue for visual judgments of glidepath angle has been referred to as form ratio. Form ratio is defined as the ratio of vertical height of the runway to width of the far end in the runway retinal image. The ability of pilots to judge form ratios was compared with the ability to judge approach angles in the nighttime "black hole" situation in two experiments. Responses in both static and dynamic simulated approach conditions indicated a general tendency to overestimate form ratios and approach angles less than 3 degrees. Intersubject and intrasubject variability of form ratio and approach angle responses were comparable. These findings (i) do not support the utility of form ratio judgments as an aid in selecting approach angle, (ii) add to the empirical evidence of visual illusions and the danger of reliance on visual information for judgment of approach angle in the nighttime "black hole" situation where only runway light are visible, and (iii) point to variability in perception of approach angle as an important part of the problem.

  17. Bit-plane-channelized hotelling observer for predicting task performance using lossy-compressed images

    NASA Astrophysics Data System (ADS)

    Schmanske, Brian M.; Loew, Murray H.

    2003-05-01

    A technique for assessing the impact of lossy wavelet-based image compression on signal detection tasks is presented. A medical image"s value is based on its ability to support clinical decisions such as detecting and diagnosing abnormalities. Image quality of compressed images is, however, often stated in terms of mathematical metrics such as mean square error. The presented technique provides a more suitable measure of image degradation by building on the channelized Hotelling observer model, which has been shown to predict human performance of signal detection tasks in noise-limited images. The technique first decomposes an image into its constituent wavelet subband coefficient bit-planes. Channel responses for the individual subband bit-planes are computed, combined,and processed with a Hotelling observer model to provide a measure of signal detectability versus compression ratio. This allows a user to determine how much compression can be tolerated before signal detectability drops below a certain threshold.

  18. Imaging-based observational databases for clinical problem solving: the role of informatics

    PubMed Central

    Bui, Alex A T; Hsu, William; Arnold, Corey; El-Saden, Suzie; Aberle, Denise R; Taira, Ricky K

    2013-01-01

    Imaging has become a prevalent tool in the diagnosis and treatment of many diseases, providing a unique in vivo, multi-scale view of anatomic and physiologic processes. With the increased use of imaging and its progressive technical advances, the role of imaging informatics is now evolving—from one of managing images, to one of integrating the full scope of clinical information needed to contextualize and link observations across phenotypic and genotypic scales. Several challenges exist for imaging informatics, including the need for methods to transform clinical imaging studies and associated data into structured information that can be organized and analyzed. We examine some of these challenges in establishing imaging-based observational databases that can support the creation of comprehensive disease models. The development of these databases and ensuing models can aid in medical decision making and knowledge discovery and ultimately, transform the use of imaging to support individually-tailored patient care. PMID:23775172

  19. Peritoneal manifestations of fascioliasis on CT images: a new observation.

    PubMed

    Song, Kyoung Doo; Lim, Jae Hoon; Kim, Mi Jeong; Jang, Yun Jin; Kim, Jae Woon; Cho, Seung Hyun; Kwon, Jung Hyeok

    2013-08-01

    To describe peritoneal manifestations of fascioliasis on CT. We reviewed CT images in 31 patients with fascioliasis confirmed by enzyme-linked immunosorbent assay (ELISA) (n = 24) or surgery (n = 7). Image analyses were performed to identify hepatic, biliary, and peritoneal abnormalities. Hepatic abnormalities were seen in 28 (90.3 %) of the 31 patients. The most common finding was caves sign, which was present in 25 (80.1 %) patients. Three patients (9.7 %) presented with biliary abnormalities exhibiting dilatation and enhancing wall thickening of the bile duct, wall thickening of the gallbladder, and elongated structures in the bile duct or gallbladder. Peritoneal abnormalities were seen in 14 (45.2 %) of the 31 patients. The most common peritoneal abnormality was mesenteric or omental infiltration, which was seen in 9 (29.0 %) patients. Other peritoneal findings included lymph node enlargement (n = 7), ascites (n = 7), thickening of ligamentum teres (n = 2), and peritoneal mass (n = 2). Peritoneal manifestations of fascioliasis are relatively common, and CT findings include mesenteric or omental infiltration, lymph node enlargement, ascites, thickening of the ligamentum teres, and peritoneal masses.

  20. Perception of the Image of a Child and Oneself in the Role of a Mother by Women Parenting Disabled Children

    PubMed Central

    Inevatkina, Svetlana Evgenyevna

    2015-01-01

    The article discusses the role of the parent-child interaction in the development of a young child with disabilities. It mentions possible distortions of the said interaction. In addition, the submitted material contains the results of an empirical study on the structure and content of the image of a child and perception of oneself in the role of a mother by women parenting children with disabilities. PMID:26156936

  1. Perception of the Image of a Child and Oneself in the Role of a Mother by Women Parenting Disabled Children.

    PubMed

    Inevatkina, Svetlana Evgenyevna

    2015-03-30

    The article discusses the role of the parent-child interaction in the development of a young child with disabilities. It mentions possible distortions of the said interaction. In addition, the submitted material contains the results of an empirical study on the structure and content of the image of a child and perception of oneself in the role of a mother by women parenting children with disabilities.

  2. Initial Results from Fitting p-Modes Using Intensity Observations from the Helioseismic and Magnetic Imager

    NASA Astrophysics Data System (ADS)

    Korzennik, Sylvain G.

    2017-09-01

    The Helioseismic and Magnetic Imager project recently started processing the continuum-intensity images following global helioseismology procedures similar to those used to process the velocity images. The spatial decomposition of these images has produced time series of spherical harmonic coefficients for degrees up to ℓ=300, using a different apodization than the one used for velocity observations. The first 360 days of observations were processed and are made available. I present initial results from fitting these time series using my fitting method and compare the derived mode characteristics to those estimated using coeval velocity observations.

  3. A Self-determination Theory approach to the study of body image concerns, self-presentation and self-perceptions in a sample of aerobic instructors.

    PubMed

    Thøgersen-Ntoumani, Cecilie; Ntoumanis, Nikos

    2007-03-01

    This study examined motivational predictors of body image concerns, self-presentation and self-perceptions using Self-determination Theory as a guiding framework. Aerobic instructors (N = 149) completed questionnaires measuring general need satisfaction, exercise motivational regulations, body image concerns, social physique anxiety and self-perceptions. Introjected regulation predicted all outcome variables in the expected direction. Intrinsic motivation positively predicted physical self-worth. Further, autonomy need satisfaction negatively predicted body image concerns. Finally, differences existed in need satisfaction, introjected regulation, self-perceptions and social physique anxiety between those at risk of developing eating disorders and those not at risk. The results underline the importance of overall and exercise-specific feelings of self-determination in dealing with body image concerns and low self-perceptions of aerobics instructors.

  4. Observer Bias: An Interaction of Temperament Traits with Biases in the Semantic Perception of Lexical Material

    PubMed Central

    Trofimova, Ira

    2014-01-01

    The lexical approach is a method in differential psychology that uses people's estimations of verbal descriptors of human behavior in order to derive the structure of human individuality. The validity of the assumptions of this method about the objectivity of people's estimations is rarely questioned. Meanwhile the social nature of language and the presence of emotionality biases in cognition are well-recognized in psychology. A question remains, however, as to whether such an emotionality-capacities bias is strong enough to affect semantic perception of verbal material. For the lexical approach to be valid as a method of scientific investigations, such biases should not exist in semantic perception of the verbal material that is used by this approach. This article reports on two studies investigating differences between groups contrasted by 12 temperament traits (i.e. by energetic and other capacities, as well as emotionality) in the semantic perception of very general verbal material. Both studies contrasted the groups by a variety of capacities: endurance, lability and emotionality separately in physical, social-verbal and mental aspects of activities. Hypotheses of “background emotionality” and a “projection through capacities” were supported. Non-evaluative criteria for categorization (related to complexity, organization, stability and probability of occurrence of objects) followed the polarity of evaluative criteria, and did not show independence from this polarity. Participants with stronger physical or social endurance gave significantly more positive ratings to a variety of concepts, and participants with faster physical tempo gave more positive ratings to timing-related concepts. The results suggest that people's estimations of lexical material related to human behavior have emotionality, language- and dynamical capacities-related biases and therefore are unreliable. This questions the validity of the lexical approach as a method for the objective

  5. Observer bias: an interaction of temperament traits with biases in the semantic perception of lexical material.

    PubMed

    Trofimova, Ira

    2014-01-01

    The lexical approach is a method in differential psychology that uses people's estimations of verbal descriptors of human behavior in order to derive the structure of human individuality. The validity of the assumptions of this method about the objectivity of people's estimations is rarely questioned. Meanwhile the social nature of language and the presence of emotionality biases in cognition are well-recognized in psychology. A question remains, however, as to whether such an emotionality-capacities bias is strong enough to affect semantic perception of verbal material. For the lexical approach to be valid as a method of scientific investigations, such biases should not exist in semantic perception of the verbal material that is used by this approach. This article reports on two studies investigating differences between groups contrasted by 12 temperament traits (i.e. by energetic and other capacities, as well as emotionality) in the semantic perception of very general verbal material. Both studies contrasted the groups by a variety of capacities: endurance, lability and emotionality separately in physical, social-verbal and mental aspects of activities. Hypotheses of "background emotionality" and a "projection through capacities" were supported. Non-evaluative criteria for categorization (related to complexity, organization, stability and probability of occurrence of objects) followed the polarity of evaluative criteria, and did not show independence from this polarity. Participants with stronger physical or social endurance gave significantly more positive ratings to a variety of concepts, and participants with faster physical tempo gave more positive ratings to timing-related concepts. The results suggest that people's estimations of lexical material related to human behavior have emotionality, language- and dynamical capacities-related biases and therefore are unreliable. This questions the validity of the lexical approach as a method for the objective study

  6. Illness Perceptions and Mortality in Patients With Gout: A Prospective Observational Study.

    PubMed

    Serlachius, Anna; Gamble, Greg; House, Meaghan; Vincent, Zoe L; Knight, Julie; Horne, Anne; Taylor, William J; Petrie, Keith J; Dalbeth, Nicola

    2017-09-01

    To examine whether illness perceptions independently predict mortality in early-onset gout. Between December 2006 and January 2014, a total of 295 participants with early-onset gout (<10 years) were recruited in Auckland and Wellington, New Zealand. The participants were followed up until February 2015, and mortality information was collected. Participants with complete data were included in the current study (n = 242). Cox proportional hazards models were used to examine the association between illness perceptions and mortality risk, after adjustment for covariates associated with disease severity and mortality in gout. In a Cox proportional hazards model adjusted for predictors of disease severity and mortality in gout (number of tophi, serum urate level, and frequency of flares), consequence beliefs, identity beliefs, concern beliefs, and emotional response to gout were associated with all-cause mortality (hazard ratios [HRs] 1.29, 1.15, 1.18, and 1.19, respectively; P < 0.05 for all). In the fully saturated model, the association between consequence beliefs and mortality remained robust after additional adjustment for ethnicity, disease duration, diuretic use, serum creatinine, and pain score (HR 1.18 [95% confidence interval 1.02-1.37]; P = 0.029). Negative beliefs about the impact of gout and severity of symptoms, as well as concerns about gout and the emotional response to gout, were independently associated with all-cause mortality. Illness perceptions are important and potentially modifiable risk factors to target in future interventions. © 2016, American College of Rheumatology.

  7. Earth observation image of Lake Powell taken during STS-100.

    NASA Image and Video Library

    2001-04-30

    STS100-716-176 (19 April-1 May 2001) --- The deeply entrenched, meandering Colorado River is distinctively dark as the river winds its way across the arid terrain of southeast Utah in this 70mm frame photographed from the Earth-orbiting Space Shuttle Endeavour. While Glen Canyon Dam (bottom of image) is located in northern Arizona, the reservoir of Lake Powell is in Utah. The Escalante and San Juan Rivers, two major tributaries that flow into Lake Powell (from the northwest and east respectively) are also discernable. The darker-looking, elongated and elevated feature north of Lake Powell is the Kaiparowits Plateau. Navajo Mountain is the darker circular feature to the south (to the right) of the lake.

  8. Observing temperature fluctuations in humans using infrared imaging

    PubMed Central

    Liu, Wei-Min; Meyer, Joseph; Scully, Christopher G.; Elster, Eric; Gorbach, Alexander M.

    2013-01-01

    In this work we demonstrate that functional infrared imaging is capable of detecting low frequency temperature fluctuations in intact human skin and revealing spatial, temporal, spectral, and time-frequency based differences among three tissue classes: microvasculature, large sub-cutaneous veins, and the remaining surrounding tissue of the forearm. We found that large veins have stronger contractility in the range of 0.005-0.06 Hz compared to the other two tissue classes. Wavelet phase coherence and power spectrum correlation analysis show that microvasculature and skin areas without vessels visible by IR have high phase coherence in the lowest three frequency ranges (0.005-0.0095 Hz, 0.0095-0.02 Hz, and 0.02-0.06 Hz), whereas large veins oscillate independently. PMID:23538682

  9. Three Mars years: viking lander 1 imaging observations.

    PubMed

    Arvidson, R E; Guinness, E A; Moore, H J; Tillman, J; Wall, S D

    1983-11-04

    The Mutch Memorial Station (Viking Lander 1) on Mars acquired imaging and meteorological data over a period of 2245 martian days (3:3 martian years). This article discusses the deposition and erosion of thin deposits (ten to hundreds of micrometers) of bright red dust associated with global dust storms, and the removal of centimeter amounts of material in selected areas during a dust storm late in the third winter. Atmospheric pressure data acquired during the period of intense erosion imply that baroclinic disturbances and strong diurnal solar tidal heating combined to produce strong winds. Erosion occurred principally in areas where soil cohesion was reduced by earlier surface sampler activities. Except for redistribution of thin layers of materials, the surface appears to be remarkably stable, perhaps because of cohesion of the undisturbed surface material.

  10. Three mars years: Viking lander 1 imaging observations

    USGS Publications Warehouse

    Arvidson, R. E.; Guinness, E.A.; Moore, H.J.; Tillman, J.; Wall, S.D.

    1983-01-01

    The Mutch Memorial Station (Viking Lander 1) on Mars acquired imaging and meteorological data over a period of 2245 martian days (3:3 martian years). This article discusses the deposition and erosion of thin deposits (ten to hundreds of micrometers) of bright red dust associated with global dust storms, and the removal of centimeter amounts of material in selected areas during a dust storm late in the third winter. Atmospheric pressure data acquired during the period of intense erosion imply that baroclinic disturbances and strong diurnal solar tidal heating combined to produce strong winds. Erosion occurred principally in areas where soil cohesion was reduced by earlier surface sampler activities. Except for redistribution of thin layers of materials, the surface appears to be remarkably stable, perhaps because of cohesion of the undisturbed surface material.

  11. Radiometric Calibration of the Earth Observing System's Imaging Sensors

    NASA Technical Reports Server (NTRS)

    Slater, Philip N. (Principal Investigator)

    1997-01-01

    The work on the grant was mainly directed towards developing new, accurate, redundant methods for the in-flight, absolute radiometric calibration of satellite multispectral imaging systems and refining the accuracy of methods already in use. Initially the work was in preparation for the calibration of MODIS and HIRIS (before the development of that sensor was canceled), with the realization it would be applicable to most imaging multi- or hyper-spectral sensors provided their spatial or spectral resolutions were not too coarse. The work on the grant involved three different ground-based, in-flight calibration methods reflectance-based radiance-based and diffuse-to-global irradiance ratio used with the reflectance-based method. This continuing research had the dual advantage of: (1) developing several independent methods to create the redundancy that is essential for the identification and hopefully the elimination of systematic errors; and (2) refining the measurement techniques and algorithms that can be used not only for improving calibration accuracy but also for the reverse process of retrieving ground reflectances from calibrated remote-sensing data. The grant also provided the support necessary for us to embark on other projects such as the ratioing radiometer approach to on-board calibration (this has been further developed by SBRS as the 'solar diffuser stability monitor' and is incorporated into the most important on-board calibration system for MODIS)- another example of the work, which was a spin-off from the grant funding, was a study of solar diffuser materials. Journal citations, titles and abstracts of publications authored by faculty, staff, and students are also attached.

  12. A comparison of observed teaching practices with teacher perceptions of their teaching during and following major funding

    NASA Astrophysics Data System (ADS)

    Kimble, Larry Lee

    The purposes of this study were: (1) to determine how the teaching practices of eight exemplary Iowa teachers changed over time (1994--1999); (2) to investigate discrepancies between the perceptions of teaching compared with actual performance of these behaviors exhibited in videotapes of their teaching; and (3) to determine how STS/Constructivist teaching behaviors changed after major NSF funding. Data were collected at multiple times over a five year period. Quantitative data included use of the ESTEEM for evaluating three consecutive days of "best" teaching on the part of the eight teachers. The TPI and CLES were used for measuring perceptions of the teachers. Interviews concerning classrooms and teaching practices were conducted. Assessment and teaching methods were also reviewed. Major findings include: (1) Teaching practices indicate that all eight teachers achieved expert status in all four areas measured by the ESTEEM. These include (1) facilitating the learning process from a constructivist perspective; (2) content-specific pedagogy related to student understanding; (3) adjustments in strategies based on interactions with the students; and (4) teacher knowledge of subject matter. Constructivist practices improved significantly at each data sampling over the studied period (significant at the .05 level). (2) Teacher perceptions of their constructivist teaching practices as measured by the TPI and CLES were very high. This was especially true for the CLES where five areas of constructivist teaching were evaluated, namely: (1) personal relevance; (2) scientific uncertainty; (3) critical voice; (4) shared control, and (5) student negotiations. The perceptions continued to improve over the studied period (significant at the .05 level). (3) Similarities between teacher observed practices and their perceptions of their teaching were noted. In many cases, the actual practices were observed to be better. (4) The teachers improved regarding wait-time between teacher

  13. X-ray imaging optimization using virtual phantoms and computerized observer modelling

    NASA Astrophysics Data System (ADS)

    Son, I.-Y.; Winslow, M.; Yazici, B.; Xu, X. G.

    2006-09-01

    This study develops and demonstrates a realistic x-ray imaging simulator with computerized observers to maximize lesion detectability and minimize patient exposure. A software package, ViPRIS, incorporating two computational patient phantoms, has been developed for simulating x-ray radiographic images. A tomographic phantom, VIP-Man, constructed from Visible Human anatomical colour images is used to simulate the scattered portion using the ESGnrc Monte Carlo code. The primary portion of an x-ray image is simulated using the projection ray-tracing method through the Visible Human CT data set. To produce a realistic image, the software simulates quantum noise, blurring effects, lesions, detector absorption efficiency and other imaging artefacts. The primary and scattered portions of an x-ray chest image are combined to form a final image for computerized observer studies and image quality analysis. Absorbed doses in organs and tissues of the segmented VIP-Man phantom were also obtained from the Monte Carlo simulations. Approximately 25 000 simulated images and 2500 000 data files were analysed using computerized observers. Hotelling and Laguerre-Gauss Hotelling observers are used to perform various lesion detection tasks. Several model observer tasks were used including SKE/BKE, MAFC and SKEV. The energy levels and fluence at the minimum dose required to detect a small lesion were determined with respect to lesion size, location and system parameters.

  14. Body image perception and its association with body mass index and nutrient intakes among female college students aged 18-35 years from Tabriz, Iran.

    PubMed

    Alipour, Beitullah; Abbasalizad Farhangi, Mahdieh; Dehghan, Parvin; Alipour, Mahdieh

    2015-12-01

    Recent studies have shown that body image perception is an important factor in weight management and can be influenced by several social or cultural factors in Western or non-Western societies; however, body image perception and its nutritional and demographic determinants in Iran have not been extensively studied. In the current study, we aimed to evaluate body image perception and its socio-demographic and nutritional determinants among female university students in Tabriz City of Iran. In the current cross-sectional survey, 184 female students aged 18-35 years from Tabriz, Iran, were enrolled. Anthropometric variables including weight, height, waist and hip circumference were measured and body mass index (BMI) and waist to hip ratio (WHR) were calculated. Body image perception and distortion were assessed by Figure Rating Scale (FRS) developed by Stunkard consisting of nine silhouettes. Nutrition intake was assessed by a 3-day 24-h dietary recall method and analyzed by Nutritionist IV software. Most of the participants in the underweight (41.66%), normal weight (67.71%) and overweight (57.14%) categories of BMI selected the thinnest figure as their desirable or ideal body image perception. The total prevalences of body image dissatisfaction and distortion were 51.63% and 64.13%, respectively. Subjects who had undistorted body image perception consumed more time for physical activity and had more night sleeping hours compared with others (P < 0.05). Subjects who perceived themselves as being of normal weight had significantly lower intake of total fat and saturated fatty acids and higher intakes of monounsaturated fatty acids (MUFAs) compared with other groups (P < 0.05). According to our findings, female participants had a higher tendency to consider thinness as the preferred body image style. Persons with undistorted body image perception had healthy nutritional status compared with others. Due to high prevalence of body image dissatisfaction, the need for

  15. First Observations from the Multi-Application Solar Telescope (MAST) Narrow-Band Imager

    NASA Astrophysics Data System (ADS)

    Mathew, Shibu K.; Bayanna, Ankala Raja; Tiwary, Alok Ranjan; Bireddy, Ramya; Venkatakrishnan, Parameswaran

    2017-08-01

    The Multi-Application Solar Telescope is a 50 cm off-axis Gregorian telescope recently installed at the Udaipur Solar Observatory, India. In order to obtain near-simultaneous observations at photospheric and chromospheric heights, an imager optimized for two or more wavelengths is being integrated with the telescope. Two voltage-tuneable lithium-niobate Fabry-Perot etalons along with a set of interference blocking filters have been used for developing the imager. Both of the etalons are used in tandem for photospheric observations in Fe i 6173 Å and chromospheric observation in Hα 6563 Å spectral lines, whereas only one of the etalons is used for the chromospheric Ca II line at 8542 Å. The imager is also being used for spectropolarimetric observations. We discuss the characterization of the etalons at the above wavelengths, detail the integration of the imager with the telescope, and present a few sets of observations taken with the imager set-up.

  16. Perceptions of early body image socialization in families: Exploring knowledge, beliefs, and strategies among mothers of preschoolers.

    PubMed

    Liechty, Janet M; Clarke, Samantha; Birky, Julie P; Harrison, Kristen

    2016-12-01

    This study sought to explore parental perceptions of body image in preschoolers. We conducted semi-structured interviews with 30 primary caregivers of preschoolers to examine knowledge, beliefs, and strategies regarding early body image socialization in families. Thematic Analysis yielded three themes highlighting knowledge gaps, belief discrepancies, and limited awareness of strategies. Findings regarding knowledge: Most participants defined body image as objective attractiveness rather than subjective self-assessment (53%) and focused on negative body image. Beliefs: Although 97% of participants believed weight and shape impact children's self-esteem, 63% believed preschoolers too young to have a body image. Strategies: Most participants (53%) said family was a primary influence on body image, but identified few effective strategies and 63% said they did not do anything to influence children's body image. Findings suggested family body image socialization in preschoolers is occurring outside the awareness of parents and the concept of positive body image is underdeveloped. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The relationship between expectation, experience and perception of labour pain: an observational study.

    PubMed

    Aksoy, Huseyin; Yücel, Burak; Aksoy, Ulku; Acmaz, Gokhan; Aydin, Turgut; Babayigit, Mustafa Alparslan

    2016-01-01

    The present study was aimed to assess the relationship between pain expectation before labour, labour pain and pain perception after the labour. Pregnant women were asked to rate their pain level on a standard continuous visual analogue scale at various time points. Pain expectancy (PE), labour pain (LP) and postpartum pain perception (PPP) scores were calculated. The final study group was composed of 230 pregnant women after exclusions. Mean age of pregnant women was 26.2 ± 5.79. The mean PE, LP, and PPP scores were 70.11 ± 18.82, 75.72 ± 19.2 and 65.84 ± 19.56, respectively. The difference among pain scores was statistically significant (p < 0.001). There was a positive correlation between PE and LP or PE and PPP scores (p = 0.27 and p = 0.21). The correlations were statistically significant (p = 0.01 or p = 0.01). In addition, there was a positive correlation between LP and PPP scores (p = 0.87) and the correlation was statistically significant (p = 0.01). This study showed that, if pregnant women had lower expectations of pain before the labour, they indeed experienced lower amount of pain during the labour.

  18. Living with dementia in hospital wards: a comparative study of staff perceptions of practice and observed patient experience.

    PubMed

    Innes, Anthea; Kelly, Fiona; Scerri, Charles; Abela, Stephen

    2016-06-01

    To ascertain the experiences, attitudes and knowledge of staff working in two Maltese hospital wards and the observed experiences of people with dementia living there. To examine the impact of recommendations made in October 2011 for improving the psychosocial and physical environments of the wards 1 year later. There is an increasing policy recognition of the need for a better trained and educated dementia care workforce and of ensuring that the environmental design of care settings meets the needs of people with dementia. At both time points, three established and validated data-collection methods evaluated (i) staff/patient interaction and patient experience, (ii) the extent to which the wards met dementia friendly principles and (iii) staff views about their work environment and their perceptions about their practice. Sixteen (five male and 11 female) patients with dementia and 69 staff in the two wards participated in the study. We noted small but important changes; however, the physical and psychosocial environments of the wards did not always align to current recommendations for dementia care, with staff perceptions of care delivery not always reflecting the observed experiences of care of those living with dementia. Comparing staff questionnaire data with observational methods offered a unique opportunity to understand multiple perspectives in a complex hospital setting. Incorporating these perspectives into staff and management feedback allowed for recommendations that recognised both patient-centred values and staff constraints. © 2016 John Wiley & Sons Ltd.

  19. New observations with the gamma ray imager SIGMA

    NASA Technical Reports Server (NTRS)

    Roques, J. P.; Vedrenne, G.

    1992-01-01

    Results from the use of the gamma ray telescope SIGMA are given. An identification and an extensive study was done of sources contributing to the emission of the Galactic center region above 30 keV. A strong line was observed at 480 keV from Nova Muscae, which may be interpreted as an annihilation line with a redshift due to the presence of a compact object. The soft x-ray tails observed by SIGMA in some transient sources already identified as soft x-ray transients might be a common characteristic of these objects and has to be explained. The unusual spectrum of NGC4151 with a break around 50 keV can characterize a particular state of this kind of object. If it is the case, it has interesting implications for the origin of the Cosmic Diffuse Background.

  20. Infrared imaging-spectroscopic observations of Venus atmosphere

    NASA Astrophysics Data System (ADS)

    Ohtsuki, Shoko; Sagawa, Hideo; Ueno, Munetaka

    2005-01-01

    We present a report on our recent observations of Venus atmosphere which we have performed in infrared wavelength at Okayama Astrophysical Observatory. The data show important results on the CO distribution and on O2 IRA (0,0) 1.27μm airglow in the atmosphere. The infrared windows of the Venusian atmosphere are rather developing areas and will give us important information on the dynamics of Venus atmosphere.

  1. Images of Bottomside Irregularities Observed at Topside Altitudes (Postprint)

    DTIC Science & Technology

    2012-04-04

    launched from the disturbed region toward the quiescent con- jugate ionosphere . Adapted from Kelley [2009]. Figure 13. Schematic representation of...JA091iA12p13723. Fejer, B. G., and L. Scherliess (1995), Time dependent response of equato- rial ionospheric electric fields to magnetospheric disturbances ...theoretical modeling and with satellite observations of upward-directed Poynting flux in the low-latitude ionosphere . 15. SUBJECT TERMS C/NOFS

  2. Gemini planet imager observational calibrations V: astrometry and distortion

    NASA Astrophysics Data System (ADS)

    Konopacky, Quinn M.; Thomas, Sandrine J.; Macintosh, Bruce A.; Dillon, Daren; Sadakuni, Naru; Maire, Jérôme; Fitzgerald, Michael; Hinkley, Sasha; Kalas, Paul; Esposito, Thomas; Marois, Christian; Ingraham, Patrick J.; Marchis, Franck; Perrin, Marshall D.; Graham, James R.; Wang, Jason J.; De Rosa, Robert J.; Morzinski, Katie; Pueyo, Laurent; Chilcote, Jeffrey K.; Larkin, James E.; Fabrycky, Daniel; Goodsell, Stephen J.; Oppenheimer, Ben R.; Patience, Jenny; Saddlemyer, Leslie; Sivaramakrishnan, Anand

    2014-07-01

    We present the results of both laboratory and on sky astrometric characterization of the Gemini Planet Imager (GPI). This characterization includes measurement of the pixel scale* of the integral field spectrograph (IFS), the position of the detector with respect to north, and optical distortion. Two of these three quantities (pixel scale and distortion) were measured in the laboratory using two transparent grids of spots, one with a square pattern and the other with a random pattern. The pixel scale in the laboratory was also estimate using small movements of the artificial star unit (ASU) in the GPI adaptive optics system. On sky, the pixel scale and the north angle are determined using a number of known binary or multiple systems and Solar System objects, a subsample of which had concurrent measurements at Keck Observatory. Our current estimate of the GPI pixel scale is 14.14 +/- 0.01 millarcseconds/pixel, and the north angle is -1.00 +/- 0.03°. Distortion is shown to be small, with an average positional residual of 0.26 pixels over the field of view, and is corrected using a 5th order polynomial. We also present results from Monte Carlo simulations of the GPI Exoplanet Survey (GPIES) assuming GPI achieves ~1 milliarcsecond relative astrometric precision. We find that with this precision, we will be able to constrain the eccentricities of all detected planets, and possibly determine the underlying eccentricity distribution of widely separated Jovians.

  3. Improving Resolution and Depth of Astronomical Observations via Modern Mathematical Methods for Image Analysis

    NASA Astrophysics Data System (ADS)

    Castellano, M.; Ottaviani, D.; Fontana, A.; Merlin, E.; Pilo, S.; Falcone, M.

    2015-09-01

    In the past years modern mathematical methods for image analysis have led to a revolution in many fields, from computer vision to scientific imaging. However, some recently developed image processing techniques successfully exploited by other sectors have been rarely, if ever, experimented on astronomical observations. We present here tests of two classes of variational image enhancement techniques: "structure-texture decomposition" and "super-resolution" showing that they are effective in improving the quality of observations. Structure-texture decomposition allows to recover faint sources previously hidden by the background noise, effectively increasing the depth of available observations. Super-resolution yields an higher-resolution and a better sampled image out of a set of low resolution frames, thus mitigating problematics in data analysis arising from the difference in resolution/sampling between different instruments, as in the case of EUCLID VIS and NIR imagers.

  4. [Body composition assessment and body image perception in a group of University females of the Basque Country].

    PubMed

    Arroyo, M; Ansotegui, L; Pereira, E; Lacerda, F; Valador, N; Serrano, L; Rocandio, A Ma

    2008-01-01

    [corrected] To assess the body image perception and to compare the results with the true measurements in a group of university students. Participants were 28 volunteer females recruited from the degree in Human Nutrition and Dietetic from the University of the Basque Country (Spain). All participants gave their informed consent. The mean (SD) age of the participants was 22.01 (2.12) years (20,23-28,25). Anthropometric measurement estimated directly and the derived indexes were compared with reference values. The assessment of body image perception was made using a somatomorphic software. The difference between the perceived measurements and the ideals were used as measure of body dissatisfaction. Data were analyzed using SPSS vs 14.0. Prevalence of overweight and obesity was 10.7%, and of under-weight was 70.1%. The body fat perception was well, while the perception of the muscle index was significantly different from the real measure (3.91+/-2.75 kg/m2; P<0.001). The level of body dissatisfaction was higher for the body fat (6.00+/-8.61%; P<0.001) than for the muscle index (1.65+/-2.82 kg/m2; P<0.01). This result can be justified for the present canons of beauty and for the overvaluation of the thinness. Additional research is needed to further know the relation between female body image and true measurements of body composition. Future research will allow to compare the results with other populations.

  5. Radiometric calibration of the Earth observing system's imaging sensors

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1987-01-01

    Philosophy, requirements, and methods of calibration of multispectral space sensor systems as applicable to the Earth Observing System (EOS) are discussed. Vicarious methods for calibration of low spatial resolution systems, with respect to the Advanced Very High Resolution Radiometer (AVHRR), are then summarized. Finally, a theoretical introduction is given to a new vicarious method of calibration using the ratio of diffuse-to-global irradiance at the Earth's surfaces as the key input. This may provide an additional independent method for in-flight calibration.

  6. Perceptions and practices of student binge drinking: an observational study of residential college students.

    PubMed

    Clinkinbeard, Samantha S; Johnson, Michael A

    2013-01-01

    Professionals have debated the use of the term binge drinking over the past couple of decades, yet little attention has been paid to college student perceptions. We explored how students at one university qualitatively defined binge drinking; whether their own definitions coincided with those adopted by researchers; and whether students' own definitions varied according to their behavior. The most common definition provided by students included a description of the consumption of a large, non-specific, amount of alcohol. Only half of the students who, by standard definition, participated in binge drinking in the previous 30 days actually identified their behavior as such. Finally, binge drinkers were more likely to define binge drinking in an extreme manner such that it results in vomiting or blacking out.

  7. High resolution reconstruction of solar prominence images observed by the New Vacuum Solar Telescope

    NASA Astrophysics Data System (ADS)

    Xiang, Yong-yuan; Liu, Zhong; Jin, Zhen-yu

    2016-11-01

    A high resolution image showing fine structures is crucial for understanding the nature of solar prominence. In this paper, high resolution imaging of solar prominence on the New Vacuum Solar Telescope (NVST) is introduced, using speckle masking. Each step of the data reduction especially the image alignment is discussed. Accurate alignment of all frames and the non-isoplanatic calibration of each image are the keys for a successful reconstruction. Reconstructed high resolution images from NVST also indicate that under normal seeing condition, it is feasible to carry out high resolution observations of solar prominence by a ground-based solar telescope, even in the absence of adaptive optics.

  8. Towards image quality assessment in mammography using model observers: detection of a calcification like object.

    PubMed

    Bouwman, Ramona W; Mackenzie, Alistair; van Engen, Ruben E; M Broeders, Mireille J; Young, Kenneth C; Dance, David R; den Heeten, Gerard J; Veldkamp, Wouter J H

    2017-08-24

    Model observers (MOs) are of interest in the field of medical imaging to asses image quality. However, before procedures using MOs can be proposed in quality control guidelines for mammography systems, we need to know whether MOs are sensitive to changes in image quality and correlations in background structure. Therefore, as a proof of principle, in this study human and model observer (MO) performance are compared for the detection of calcification like objects using different background structures and image quality levels of unprocessed mammography images. Three different phantoms, homogeneous polymethyl methacrylate, BR3D slabs with swirled patterns (CIRS, Norfolk, USA) and a prototype anthropomorphic breast phantom (Institute of Medical Physics and Radiation Protection, Technische Hochschule Mittelhessen, Germany) were imaged on an Amulet Innovality (FujiFilm, Tokyo, Japan) mammographic X-ray unit. Because the complexities of the structures of these three phantoms were different and not optimized to match the characteristics of real mammographic images, image processing was not applied in this study. Additionally, real mammograms were acquired on the same system. Regions of interest (ROIs) were extracted from each image. In half of the ROIs a 0.25 mm diameter disk was inserted at four different contrast levels to represent a calcification-like object. Each ROI was then modified so four image qualities relevant for mammography were simulated. The signal-present and signal-absent ROIs were evaluated by a non-pre-whitening model observer with eye filter (NPWE) and a channelized Hotelling observer (CHO) using dense-difference of Gaussian channels. The ROIs were also evaluated by human observers in a 2 alternative forced choice experiment. Detectability results for the human and model observer experiments were correlated using a mixed effect regression model. Threshold disk contrasts for human and predicted human observer performance based on the NPWE MO and CHO

  9. Visual-search observers for assessing tomographic x-ray image quality

    PubMed Central

    Gifford, Howard C.; Liang, Zhihua; Das, Mini

    2016-01-01

    Purpose: Mathematical model observers commonly used for diagnostic image-quality assessments in x-ray imaging research are generally constrained to relatively simple detection tasks due to their need for statistical prior information. Visual-search (VS) model observers that employ morphological features in sequential search and analysis stages have less need for such information and fewer task constraints. The authors compared four VS observers against human observers and an existing scanning model observer in a pilot study that quantified how mass detection and localization in simulated digital breast tomosynthesis (DBT) can be affected by the number P of acquired projections. Methods: Digital breast phantoms with embedded spherical masses provided single-target cases for a localization receiver operating characteristic (LROC) study. DBT projection sets based on an acquisition arc of 60° were generated for values of P between 3 and 51. DBT volumes were reconstructed using filtered backprojection with a constant 3D Butterworth postfilter; extracted 2D slices were used as test images. Three imaging physicists participated as observers. A scanning channelized nonprewhitening (CNPW) observer had knowledge of the mean lesion-absent images. The VS observers computed an initial single-feature search statistic that identified candidate locations as local maxima of either a template matched-filter (MF) image or a gradient-template MF (GMF) image. Search inefficiencies that modified the statistic were also considered. Subsequent VS candidate analyses were carried out with (i) the CNPW statistical discriminant and (ii) the discriminant computed from GMF training images. These location-invariant discriminants did not utilize covariance information. All observers read 36 training images and 108 study images per P value. Performance was scored in terms of area under the LROC curve. Results: Average human-observer performance was stable for P between 7 and 35. In the absence of

  10. Study of eating attitudes and body image perception in the preadolescent age.

    PubMed

    Marković, J; Votava-Raić, A; Nikolić, S

    1998-06-01

    Eating attitudes and body image have been studied in a group of 109 girls, pupils of the fifth primary school grade (average age 10 years and 8 months). The Children's Eating Attitude Test (ChEAT) has been used in the study of eating attitudes. The mean questionnaire score is 11.38 +/- 8 with a range of 0 to 45. Fourteen girls (12.8%) had a total score higher than 20, making them an eating disorder risk group. A set of seven schematic figures showing silhouettes of girls ranging from very thin to very heavy has been used in the study of body image perception. The girls were supposed to indicate the figure having the highest resemblance to their own figure (self figure), and the figure they would like to have (ideal self figure). The mean value of the current figure was 4.28, and that of the ideal figure 3.95. Satisfaction with their figure was expressed by 46.79% of the girls; 39.45% wanted to be thinner, and 13.45% to be heavier. When these data were compared with BMI, 27.52% (of the total) of the girls wanting to be thinner were found to have a normal BMI, and 11.93% a > 95 centile BMI. Among the girls satisfied with their figure 2 had a low and 2 a high BMI, while 43.12% were within the normal BMI range. Out of the 13.45% of girls wanting to be heavier, 6.42% (of the total) had a low BMI, 6.42% a normal BMI, and 0.92% (one girl) a > 95 centile BMI. The girls were divided into two groups in terms of the ChEAT score: ChEAT+ (anorexia risk) and ChEAT-. The groups differed in terms of body weight and BMI (the ChEAT+ group was heavier); ChEAT+ girls tended to prefer a thinner figure and experienced themselves as being heavier.

  11. Nobody's perfect: a qualitative examination of African American maternal caregivers' and their adolescent girls' perceptions of body image.

    PubMed

    Pope, Michell; Corona, Rosalie; Belgrave, Faye Z

    2014-06-01

    Using semi-structured interviews, we explored African American maternal caregivers' and their adolescent girls' (N=25 dyads) perceptions about the adolescent's body using Grounded Theory. Caregivers and adolescent girls (Mage=13.42) were asked what the adolescent girls liked most/least about their bodies and how peers and media may affect adolescent girls' perceptions. While some adolescent girls reported overall body satisfaction, others described features they would like to change. Belief in God, body acceptance, and appreciation for average/moderate features helped the adolescent girls maintain their positive body image. The body-related messages that adolescent girls received from caregivers and peers included compliments, pressure to lose weight, teasing, and advice. Adolescent girls also reported being either influenced by or skeptical of the images presented in the media. Programs that promote caregiver-adolescent communication about body perceptions and that build on the adolescent girls' media skepticism may prove useful for their health-related attitudes and behaviors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The Eye Gaze Direction of an Observed Person Can Bias Perception, Memory, and Attention in Adolescents with and without Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Freeth, M.; Ropar, D.; Chapman, P.; Mitchell, P.

    2010-01-01

    The reported experiments aimed to investigate whether a person and his or her gaze direction presented in the context of a naturalistic scene cause perception, memory, and attention to be biased in typically developing adolescents and high-functioning adolescents with autism spectrum disorder (ASD). A novel computerized image manipulation program…

  13. Imaging Analysis of Near-Field Recording Technique for Observation of Biological Specimens

    NASA Astrophysics Data System (ADS)

    Moriguchi, Chihiro; Ohta, Akihiro; Egami, Chikara; Kawata, Yoshimasa; Terakawa, Susumu; Tsuchimori, Masaaki; Watanabe, Osamu

    2006-07-01

    We present an analysis of the properties of an imaging based on a near-field recording technique in comparison with simulation results. In the system, the optical field distributions localized near the specimens are recorded as the surface topographic distributions of a photosensitive film. It is possible to observe both soft and moving specimens, because the system does not require a scanning probe to obtain the observed image. The imaging properties are evaluated using fine structures of paramecium, and we demonstrate that it is possible to observe minute differences of refractive indices.

  14. Accounting for anatomical noise in search-capable model observers for planar nuclear imaging

    PubMed Central

    Sen, Anando; Gifford, Howard C.

    2016-01-01

    Abstract. Model observers intended to predict the diagnostic performance of human observers should account for the effects of both quantum and anatomical noise. We compared the abilities of several visual-search (VS) and scanning Hotelling-type models to account for anatomical noise in a localization receiver operating characteristic (LROC) study involving simulated nuclear medicine images. Our VS observer invoked a two-stage process of search and analysis. The images featured lesions in the prostate and pelvic lymph nodes. Lesion contrast and the geometric resolution and sensitivity of the imaging collimator were the study variables. A set of anthropomorphic mathematical phantoms was imaged with an analytic projector based on eight parallel-hole collimators with different sensitivity and resolution properties. The LROC study was conducted with human observers and the channelized nonprewhitening, channelized Hotelling (CH) and VS model observers. The CH observer was applied in a “background-known-statistically” protocol while the VS observer performed a quasi-background-known-exactly task. Both of these models were applied with and without internal noise in the decision variables. A perceptual search threshold was also tested with the VS observer. The model observers without inefficiencies failed to mimic the average performance trend for the humans. The CH and VS observers with internal noise matched the humans primarily at low collimator sensitivities. With both internal noise and the search threshold, the VS observer attained quantitative agreement with the human observers. Computational efficiency is an important advantage of the VS observer. PMID:26835503

  15. Generalization Evaluation of Machine Learning Numerical Observers for Image Quality Assessment

    PubMed Central

    Kalayeh, Mahdi M.; Marin, Thibault; Brankov, Jovan G.

    2014-01-01

    In this paper, we present two new numerical observers (NO) based on machine learning for image quality assessment. The proposed NOs aim to predict human observer performance in a cardiac perfusion-defect detection task for single-photon emission computed tomography (SPECT) images. Human observer (HumO) studies are now considered to be the gold standard for task-based evaluation of medical images. However such studies are impractical for use in early stages of development for imaging devices and algorithms, because they require extensive involvement of trained human observers who must evaluate a large number of images. To address this problem, numerical observers (also called model observers) have been developed as a surrogate for human observers. The channelized Hotelling observer (CHO), with or without internal noise model, is currently the most widely used NO of this kind. In our previous work we argued that development of a NO model to predict human observers' performance can be viewed as a machine learning (or system identification) problem. This consideration led us to develop a channelized support vector machine (CSVM) observer, a kernel-based regression model that greatly outperformed the popular and widely used CHO. This was especially evident when the numerical observers were evaluated in terms of generalization performance. To evaluate generalization we used a typical situation for the practical use of a numerical observer: after optimizing the NO (which for a CHO might consist of adjusting the internal noise model) based upon a broad set of reconstructed images, we tested it on a broad (but different) set of images obtained by a different reconstruction method. In this manuscript we aim to evaluate two new regression models that achieve accuracy higher than the CHO and comparable to our earlier CSVM method, while dramatically reducing model complexity and computation time. The new models are defined in a Bayesian machine-learning framework: a channelized

  16. Generalization Evaluation of Machine Learning Numerical Observers for Image Quality Assessment.

    PubMed

    Kalayeh, Mahdi M; Marin, Thibault; Brankov, Jovan G

    2013-06-01

    In this paper, we present two new numerical observers (NO) based on machine learning for image quality assessment. The proposed NOs aim to predict human observer performance in a cardiac perfusion-defect detection task for single-photon emission computed tomography (SPECT) images. Human observer (HumO) studies are now considered to be the gold standard for task-based evaluation of medical images. However such studies are impractical for use in early stages of development for imaging devices and algorithms, because they require extensive involvement of trained human observers who must evaluate a large number of images. To address this problem, numerical observers (also called model observers) have been developed as a surrogate for human observers. The channelized Hotelling observer (CHO), with or without internal noise model, is currently the most widely used NO of this kind. In our previous work we argued that development of a NO model to predict human observers' performance can be viewed as a machine learning (or system identification) problem. This consideration led us to develop a channelized support vector machine (CSVM) observer, a kernel-based regression model that greatly outperformed the popular and widely used CHO. This was especially evident when the numerical observers were evaluated in terms of generalization performance. To evaluate generalization we used a typical situation for the practical use of a numerical observer: after optimizing the NO (which for a CHO might consist of adjusting the internal noise model) based upon a broad set of reconstructed images, we tested it on a broad (but different) set of images obtained by a different reconstruction method. In this manuscript we aim to evaluate two new regression models that achieve accuracy higher than the CHO and comparable to our earlier CSVM method, while dramatically reducing model complexity and computation time. The new models are defined in a Bayesian machine-learning framework: a channelized

  17. African American male and female student perceptions of Pulvers Body Images: implications for obesity, health care, and prevention.

    PubMed

    Brown, Sherine R; Hossain, Mian Bazle; Bronner, Yvonne

    2014-08-01

    Differences in male and female perception response to the Pulvers Body Image Scale (PBIS) were examined among 356 freshmen African American students attending an urban historically Black college/university (HBCU). Participants completed a questionnaire identifying images that best represented their current, healthy, and ideal body image. Compared with males, more females selected the normal body image as their ideal (63.3% vs. 15.3%) and healthy body shape (59.3% vs. 15.3%) (p<.001). Compared with females, more males selected the overweight body image as their ideal (44.6% vs. 30.2%) and healthy body shape (52.2% vs. 36.2%) (p<.01). Similarly, more males selected the obese body image as their ideal (40.1% vs. 6.5%) and healthy body shape (32.5% vs. 4.5%) compared with females (p<.001). Male freshmen at an HBCU perceive a larger body image as healthy and ideal more often than their female counterparts, thereby increasing the potential for their weight-related health risks.

  18. Impact of long-term meditation practice on cardiovascular reactivity during perception and reappraisal of affective images.

    PubMed

    Pavlov, Sergei V; Reva, Natalia V; Loktev, Konstantin V; Korenyok, Vladimir V; Aftanas, Lyubomir I

    2015-03-01

    Meditation has been found to be an efficient strategy for coping with stress in healthy individuals and in patients with psychosomatic disorders. The main objective of the present study was to investigate the psychophysiological mechanisms of beneficial effects of meditation on cardiovascular reactivity. We examined effects of long-term Sahaja Yoga meditation on cardiovascular reactivity during affective image processing under "unregulated" and "emotion regulation" conditions. Twenty two experienced meditators and 20 control subjects participated in the study. Under "unregulated" conditions participants were shown neutral and affective images and were asked to attend to them. Under "emotion regulation" conditions they down-regulated negative affect through reappraisal of negative images or up-regulated positive affect through reappraisal of positive images. Under "unregulated" conditions while anticipating upcoming images meditators vs. controls did not show larger pre-stimulus total peripheral resistance and greater cardiac output for negative images in comparison with neutral and positive ones. Control subjects showed TPR decrease for negative images only when they consciously intended to reappraise them (i.e. in the "emotion regulation" condition). Both meditators and controls showed comparable cardiovascular reactivity during perception of positive stimuli, whereas up-regulating of positive affect was associated with more pronounced cardiac activation in meditators. The findings provide some insight into understanding the beneficial influence of meditation on top-down control of emotion and cardiovascular reactivity. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Development of Fluorescence Imaging Lidar for Boat-Based Coral Observation

    NASA Astrophysics Data System (ADS)

    Sasano, Masahiko; Imasato, Motonobu; Yamano, Hiroya; Oguma, Hiroyuki

    2016-06-01

    A fluorescence imaging lidar system installed in a boat-towable buoy has been developed for the observation of reef-building corals. Long-range fluorescent images of the sea bed can be recorded in the daytime with this system. The viability of corals is clear in these fluorescent images because of the innate fluorescent proteins. In this study, the specifications and performance of the system are shown.

  20. Pain Sensitivity and Observer Perception of Pain in Individuals with Autistic Spectrum Disorder

    PubMed Central

    Allely, C. S.

    2013-01-01

    The peer-reviewed literature investigating the relationship between pain expression and perception of pain in individuals with ASD is sparse. The aim of the present systematic PRIMSA review was twofold: first, to see what evidence there is for the widely held belief that individuals with ASD are insensitive to pain or have a high pain threshold in the peer-reviewed literature and, second, to examine whether individuals with ASD react or express pain differently. Fifteen studies investigating pain in individuals with ASD were identified. The case studies all reported pain insensitivity in individuals with ASD. However, the majority of the ten experimental studies reviewed indicate that the idea that individuals with ASD are pain insensitive needs to be challenged. The findings also highlight the strong possibility that not all children with ASD express their physical discomfort in the same way as a neurotypical child would (i.e., cry, moan, seek comfort, etc.) which may lead caregivers and the medical profession to interpret this as pain insensitivity or incorrectly lead them to believe that the child is in no pain. These results have important implications for the assessment and management of pain in children with ASD. PMID:23843740

  1. Body Image Perceptions of Persons With a Stoma and Their Partners: A Descriptive, Cross-sectional Study.

    PubMed

    Aktas, Dilek; Gocman Baykara, Zehra

    2015-05-01

    The body image perceptions of persons with a stoma and their partners are rarely examined and have yet to be evaluated in a Turkish sample. Using convenience sampling methods, a descriptive, cross-sectional study was conducted among individuals receiving treatment at the authors' stomatherapy unit between March 1, 2012 and May 31, 2012 to assess the effect of the stoma on self-image and partner perception. Eligible participants had to be >18 years of age, married, and with an abdominal stoma (colostomy, urostomy, or ileostomy) for at least 2 months. Data were obtained through separate (patient or partner), face-to-face, 30-minute to 45-minute interviews using the appropriate questionnaire. Questionnaire items assessed demographic variables and patient/partner feelings toward the ostomate's body using the Body Cathexis Scale (BCS) and author-developed questionnaires comprising statements eliciting individual responses (agree, disagree, undecided) regarding their feelings toward the stoma. Data were tabulated and analyzed using percentile distributions, and Mann Whitney U and Kruskal Wallis H tests were performed (Bonferroni correction was applied). Sixty (60) patients (25 women, 35 men, mean age 56.01 ± 10.1 years; 25 with an ileostomy, 30 with a colostomy, 5 with an ileostomy) participated, along with their 60 heterosexual partners (mean age 54.56 ± 10.25 years) married a mean of 33.06 ± 11.03 years. Mean patient BCS score was 133.15 ± 20.58 (range 40--low perception--to 200--high perception). Mean BCS score of patients whose partner helped in stoma care was significantly higher (136.04) than those whose partners did not (120.27) (P = 0.033). Patients who consulted their partners' opinions on stoma creation and participation in care had significantly higher BCS scores (P <0.05), and BCS scores of patients whose partners thought the stoma had a negative effect on their relationship were significantly lower (P = 0.040); patients' perceptions toward their bodies

  2. NEQ and task in dual-energy imaging: from cascaded systems analysis to human observer performance

    NASA Astrophysics Data System (ADS)

    Richard, Samuel; Siewerdsen, Jeffrey H.; Tward, Daniel J.

    2008-03-01

    The relationship between theoretical descriptions of imaging performance (Fourier-based cascaded systems analysis) and the performance of real human observers was investigated for various detection and discrimination tasks. Dual-energy (DE) imaging provided a useful basis for investigating this relationship, because it presents a host of acquisition and processing parameters that can significantly affect signal and noise transfer characteristics and, correspondingly, human observer performance. The detectability index was computed theoretically using: 1) cascaded systems analysis of the modulation transfer function (MTF), and noise-power spectrum (NPS) for DE imaging; 2) a Fourier description of imaging task; and 3.) integration of MTF, NPS, and task function according to various observer models, including Fisher-Hotelling and non-prewhitening with and without an eye filter and internal noise. Three idealized tasks were considered: sphere detection, shape discrimination (sphere vs. disk), and texture discrimination (uniform vs. textured disk). Using images of phantoms acquired on a prototype DE imaging system, human observer performance was assessed in multiple-alternative forced choice (MAFC) tests, giving an estimate of area under the ROC curve (A Ζ). The degree to which the theoretical detectability index correlated with human observer performance was investigated, and results agreed well over a broad range of imaging conditions, depending on the choice of observer model. Results demonstrated that optimal DE image acquisition and decomposition parameters depend significantly on the imaging task. These studies provide important initial validation that the detectability index derived theoretically by Fourier-based cascaded systems analysis correlates well with actual human observer performance and represents a meaningful metric for system optimization.

  3. The need for hard X-ray imaging observations at the next solar maximum

    NASA Technical Reports Server (NTRS)

    Emslie, A. Gordon

    1988-01-01

    Canonical models of solar hard X-ray bursts; associated length and time scales; the adequacies and inadequacies of previous observations; theoretical modeling predictions; arcsecond imaging of solar hard X-rays are outlined.

  4. Evaluation of the channelized Hotelling observer for signal detection in 2D tomographic imaging

    NASA Astrophysics Data System (ADS)

    LaRoque, Samuel J.; Sidky, Emil Y.; Edwards, Darrin C.; Pan, Xiaochuan

    2007-03-01

    Signal detection by the channelized Hotelling (ch-Hotelling) observer is studied for tomographic application by employing a small, tractable 2D model of a computed tomography (CT) system. The primary goal of this manuscript is to develop a practical method for evaluating the ch-Hotelling observer that can generalize to larger 3D cone-beam CT systems. The use of the ch-Hotelling observer for evaluating tomographic image reconstruction algorithms is also demonstrated. For a realistic model for CT, the ch-Hotelling observer can be a good approximation to the ideal observer. The ch-Hotelling observer is applied to both the projection data and the reconstructed images. The difference in signal-to-noise ratio for signal detection in both of these domains provides a metric for evaluating the image reconstruction algorithm.

  5. Do You See What I Am? How Observers' Backgrounds Affect Their Perceptions of Multiracial Faces

    ERIC Educational Resources Information Center

    Herman, Melissa R.

    2010-01-01

    Although race is one of the most salient status characteristics in American society, many observers cannot distinguish the racial ancestries of multiracial youth. This paper examines how people perceive multiracial adolescents: specifically, I investigate whether observers perceive the adolescents as multiracial and whether these racial…

  6. Numerical surrogates for human observers in myocardial motion evaluation from SPECT image

    PubMed Central

    Marin, Thibault; Kalayehis, Mahdi M.; Parages, Felipe M.; Brankov, Jovan G.

    2014-01-01

    In medical imaging, the gold standard for image-quality assessment is a task-based approach in which one evaluates human observer performance for a given diagnostic task (e.g., detection of a myocardial perfusion or motion defect). To facilitate practical task-based image-quality assessment, model observers are needed as approximate surrogates for human observers. In cardiac-gated SPECT imaging, diagnosis relies on evaluation of the myocardial motion as well as perfusion. Model observers for the perfusion-defect detection task have been studied previously, but little effort has been devoted toward development of a model observer for cardiac-motion defect detection. In this work describe two model observers for predicting human observer performance in detection of cardiac-motion defects. Both proposed methods rely on motion features extracted using previously reported deformable mesh model for myocardium motion estimation. The first method is based on a Hotelling linear discriminant that is similar in concept to that used commonly for perfusion-defect detection. In the second method, based on relevance vector machines (RVM) for regression, we compute average human observer performance by first directly predicting individual human observer scores, and then using multi reader receiver operating characteristic (ROC) analysis. Our results suggest that the proposed RVM model observer can predict human observer performance accurately, while the new Hotelling motion-defect detector is somewhat less effective. PMID:23981533

  7. The facing bias in biological motion perception: Effects of stimulus gender and observer sex.

    PubMed

    Schouten, Ben; Troje, Nikolaus F; Brooks, Anna; van der Zwan, Rick; Verfaillie, Karl

    2010-07-01

    Under orthographic projection, biological motion point-light walkers offer no cues to the order of the dots in depth: Views from the front and from the back result in the very same stimulus. Yet observers show a bias toward seeing a walker facing the viewer (Vanrie, Dekeyser, & Verfaillie, 2004). Recently, we reported that this facing bias strongly depends on the gender of the walker (Brooks et al., 2008). The goal of the present study was, first, to examine the robustness of the effect by testing a much larger subject sample and, second, to investigate whether the effect depends on observer sex. Despite the fact that we found a significant effect of figure gender, we clearly failed to replicate the strong effect observed in the original study. We did, however, observe a significant interaction between figure gender and observer sex.

  8. RecceMan: an interactive recognition assistance for image-based reconnaissance: synergistic effects of human perception and computational methods for object recognition, identification, and infrastructure analysis

    NASA Astrophysics Data System (ADS)

    El Bekri, Nadia; Angele, Susanne; Ruckhäberle, Martin; Peinsipp-Byma, Elisabeth; Haelke, Bruno

    2015-10-01

    This paper introduces an interactive recognition assistance system for imaging reconnaissance. This system supports aerial image analysts on missions during two main tasks: Object recognition and infrastructure analysis. Object recognition concentrates on the classification of one single object. Infrastructure analysis deals with the description of the components of an infrastructure and the recognition of the infrastructure type (e.g. military airfield). Based on satellite or aerial images, aerial image analysts are able to extract single object features and thereby recognize different object types. It is one of the most challenging tasks in the imaging reconnaissance. Currently, there are no high potential ATR (automatic target recognition) applications available, as consequence the human observer cannot be replaced entirely. State-of-the-art ATR applications cannot assume in equal measure human perception and interpretation. Why is this still such a critical issue? First, cluttered and noisy images make it difficult to automatically extract, classify and identify object types. Second, due to the changed warfare and the rise of asymmetric threats it is nearly impossible to create an underlying data set containing all features, objects or infrastructure types. Many other reasons like environmental parameters or aspect angles compound the application of ATR supplementary. Due to the lack of suitable ATR procedures, the human factor is still important and so far irreplaceable. In order to use the potential benefits of the human perception and computational methods in a synergistic way, both are unified in an interactive assistance system. RecceMan® (Reconnaissance Manual) offers two different modes for aerial image analysts on missions: the object recognition mode and the infrastructure analysis mode. The aim of the object recognition mode is to recognize a certain object type based on the object features that originated from the image signatures. The

  9. Linking Perception, Cognition, and Action: Psychophysical Observations and Neural Network Modelling

    PubMed Central

    Prado, Luis; Merchant, Hugo

    2014-01-01

    It has been argued that perception, decision making, and movement planning are in reality tightly interwoven brain processes. However, how they are implemented in neural circuits is still a matter of debate. We tested human subjects in a temporal categorization task in which intervals had to be categorized as short or long. Subjects communicated their decision by moving a cursor into one of two possible targets, which appeared separated by different angles from trial to trial. Even though there was a 1 second-long delay between interval presentation and decision communication, categorization difficulty affected subjects’ performance, reaction (RT) and movement time (MT). In addition, reaction and movement times were also influenced by the distance between the targets. This implies that not only perceptual, but also movement-related considerations were incorporated into the decision process. Therefore, we searched for a model that could use categorization difficulty and target separation to describe subjects’ performance, RT, and MT. We developed a network consisting of two mutually inhibiting neural populations, each tuned to one of the possible categories and composed of an accumulation and a memory node. This network sequentially acquired interval information, maintained it in working memory and was then attracted to one of two possible states, corresponding to a categorical decision. It faithfully replicated subjects’ RT and MT as a function of categorization difficulty and target distance; it also replicated performance as a function of categorization difficulty. Furthermore, this model was used to make new predictions about the effect of untested durations, target distances and delay durations. To our knowledge, this is the first biologically plausible model that has been proposed to account for decision making and communication by integrating both sensory and motor planning information. PMID:25029193

  10. Model observer design for detecting multiple abnormalities in anatomical background images

    NASA Astrophysics Data System (ADS)

    Wen, Gezheng; Markey, Mia K.; Park, Subok

    2016-03-01

    As psychophysical studies are resource-intensive to conduct, model observers are commonly used to assess and optimize medical imaging quality. Existing model observers were typically designed to detect at most one signal. However, in clinical practice, there may be multiple abnormalities in a single image set (e.g., multifocal and multicentric breast cancers (MMBC)), which can impact treatment planning. Prevalence of signals can be different across anatomical regions, and human observers do not know the number or location of signals a priori. As new imaging techniques have the potential to improve multiple-signal detection (e.g., digital breast tomosynthesis may be more effective for diagnosis of MMBC than planar mammography), image quality assessment approaches addressing such tasks are needed. In this study, we present a model-observer mechanism to detect multiple signals in the same image dataset. To handle the high dimensionality of images, a novel implementation of partial least squares (PLS) was developed to estimate different sets of efficient channels directly from the images. Without any prior knowledge of the background or the signals, the PLS channels capture interactions between signals and the background which provide discriminant image information. Corresponding linear decision templates are employed to generate both image-level and location-specific scores on the presence of signals. Our preliminary results show that the model observer using PLS channels, compared to our first attempts with Laguerre-Gauss channels, can achieve high performance with a reasonably small number of channels, and the optimal design of the model observer may vary as the tasks of clinical interest change.

  11. Detailed Image Comparison using MDI, HMI and GONG Co-Eval Observations

    NASA Astrophysics Data System (ADS)

    Korzennik, Sylvain G.

    2017-08-01

    I present preliminary results from detailed image comparison using MDI, HMI and GONG co-eval observations taken in 2014, when all three instruments were operational. This comparison allows me to estimate both the instrumental image distortion and the instrument PSF, with respect to HMI. Both intensity and velocity images are compared when available. The precise observing perspective of each instrument had to be accounted since it affects the projected image on the instrument detector at the required level of precision (i.e., a fraction of an HMI pixel). In the process, it was discovered that the meta data generated by the respective projects were not accurate enough. While the inclusion of the image distortion and the instrument PSF in the spatial decomposition will improve the determination of high degree modes, it may also benefit other local helioseismic analysis.

  12. Average coherence image derived observations over an urban area: the case of Athens city

    NASA Astrophysics Data System (ADS)

    Parcharidis, I.; Foumelis, M.; Kourkouli, P.

    2007-10-01

    In the present study coherence observations, in relation to the land-cover type, obtained using 20 C-band ERS SAR Single Look Complex (SLC) VV-polarization images acquired in descending mode over the metropolitan area of Athens covering the period 1992-1999 are presented. A straightforward approach using a single master SAR image on which the other images are mapped was adopted ensuring perfect registration of the interferometric results. After generating single coherence images, with temporal separation varying between 138 and 1335 days, an averaging procedure followed leading to the average coherence image. In order to identify and statistically interpret the properties of selected land cover types in terms of average degree of coherence, very high resolution QuickBird imagery was downloaded from Google Earth environment. The final geocoding of the average coherence image has been improved using common features in the coherence image and the very high-resolution QuickBird image. Overlay of coherence product on the QuickBird image allows correlating the level of coherence with characteristics and properties of the urban shell. As urban areas are considered of high coherence, observations of this type permit to investigate and evaluate their phase stability in details.

  13. Modulation of human visual evoked potentials in 3-dimensional perception after stimuli produced with an integral imaging method.

    PubMed

    Omoto, Shu; Kuroiwa, Yoshiyuki; Otsuka, Saika; Wang, Chuanwei; Mizuki, Nobuhisa; Nagatani, Hiroyuki; Hirayama, Yuzo

    2012-10-01

    We investigated the neurophysiological correlates of stereoscopic 3-dimensional (3-D) depth perception by studying human visual evoked potentials (VEPs) with an integral imaging method characterized by horizontal but not vertical disparity. The VEPs were recorded in 10 healthy men under 4 conditions. In condition I, stimuli A (flat, 2-dimensional [2-D] image) and B (concave 3-D image) were presented at random. In condition II, stimuli A and C (convex 3-D image) were presented at random. In condition III, stimuli B and C were presented at random. In condition IV, stimuli A, B, and C were presented at random. The data for flat VEPs to stimulus A were combined in conditions I and II. The data for concave VEPs to stimulus B were combined in conditions I and III. The data for convex VEPs to stimulus C were combined in conditions II and III. When 2-way analysis of variance (ANOVA) for 2 factors, stimulus conditions (flat VEPs, concave VEPs, and convex VEPs) and electrode positions, was applied for VEP data, the N1 and N2 peak amplitudes differed significantly among the 3 stimulus conditions. In condition IV, the N1 peak amplitudes differed significantly among the 3 stimuli. Multiple comparisons followed by Bonferroni adjustment did not detect differences in the N1 peak amplitude between stimuli A and B, between stimuli A and C, or between stimuli B and C. We concluded that VEPs to concave or convex 3-D stimuli were significantly different from VEPs to flat 2-D stimuli. This is the first report showing modulation of human VEPs in 3-D perception with an integral imaging method.

  14. Prediction of perceptible artifacts in JPEG 2000-compressed chest CT images using mathematical and perceptual quality metrics.

    PubMed

    Kim, Bohyoung; Lee, Kyoung Ho; Kim, Kil Joong; Mantiuk, Rafal; Hahn, Seokyung; Kim, Tae Jung; Kim, Young Hoon

    2008-02-01

    The objective of our study was to determine whether peak signal-to-noise ratio (PSNR) and a perceptual quality metric (High-Dynamic Range Visual Difference Predictor [HDR-VDP]) can predict the presence of perceptible artifacts in Joint Photographic Experts Group (JPEG) 2000-compressed chest CT images. One hundred chest CT images were compressed to 5:1, 8:1, 10:1, and 15:1. Five radiologists determined if the original and compressed images were identical (negative response) or different (positive response). The correlation between the results for each metric and the number of readers with positive responses was evaluated using Spearman's rank correlation test. Using the pooled readers' responses as the reference standard, we performed receiver operating characteristic (ROC) analysis to determine the cutoff values balancing sensitivity and specificity and yielding 100% sensitivity in each metric. These cutoff values were then used to estimate the visually lossless thresholds for the compressions for the 100 original images, and the accuracy of the estimates of two metrics was compared (McNemar test). The correlation coefficients were -0.918 and 0.925 for PSNR and the HDR-VDP, respectively. The areas under the ROC curves for the two metrics were 0.983 and 0.984, respectively (p = 0.11). The PSNR and HDR-VDP accurately predicted the visually lossless threshold for 69% and 72% of the 100 images (p = 0.68), respectively, at the cutoff values balancing sensitivity and specificity and for 43% and 47% (p = 0.22), respectively, at the cutoff values reaching 100% sensitivity. Both metrics are promising in predicting the perceptible compression artifacts and therefore can potentially be used to estimate the visually lossless threshold.

  15. The effect of the observer vantage point on perceived distortions in linear perspective images.

    PubMed

    Todorović, Dejan

    2009-01-01

    Some features of linear perspective images may look distorted. Such distortions appear in two drawings by Jan Vredeman de Vries involving perceived elliptical, instead of circular, pillars and tilted, instead of upright, columns. Distortions may be due to factors intrinsic to the images, such as violations of the so-called Perkins's laws, or factors extrinsic to them, such as observing the images from positions different from their center of projection. When the correct projection centers for the two drawings were reconstructed, it was found that they were very close to the images and, therefore, practically unattainable in normal observation. In two experiments, enlarged versions of images were used as stimuli, making the positions of the projection centers attainable for observers. When observed from the correct positions, the perceived distortions disappeared or were greatly diminished. Distortions perceived from other positions were smaller than would be predicted by geometrical analyses, possibly due to flatness cues in the images. The results are relevant for the practical purposes of creating faithful impressions of 3-D spaces using 2-D images.

  16. Trainers' perceptions of the direct observation of practical skills assessment in histopathology training: a qualitative pilot study.

    PubMed

    Finall, Alison

    2012-06-01

    This pilot study of the direct observation of practical skills (DOPS) assessment of histopathology trainees is needed in the absence of existing information on histopathology in the UK. The aim of the study was to explore the experiences and perceptions of trainers in using the DOPS tool with histopathology trainees. A qualitative approach was taken using paper-based questionnaires to consultants in a single teaching hospital histopathology department. DOPS was perceived by all trainers as a valid form of assessment. There was a spread of opinion regarding its feasibility, with some respondents raising concern about its impact on time. 28% of respondents were doubtful about the formative nature of DOPS. All stated the assessment was fair. Themes that have emerged include concerns about impact on trainer time, whether DOPS is used in a formative manner and concerns about the amount of guidance provided to trainers. Further research is required to expand on these points.

  17. Brain imaging signatures of the relationship between epidermal nerve fibers and heat pain perception.

    PubMed

    Tseng, Ming-Tsung; Kong, Yazhuo; Chiang, Ming-Chang; Chao, Chi-Chao; Tseng, Wen-Yih I; Hsieh, Sung-Tsang

    2015-11-15

    Although the small-diameter primary afferent fibers in the skin promptly respond to nociceptive stimuli and convey sensory inputs to the central nervous system, the neural signatures that underpin the relationship between cutaneous afferent fibers and pain perception remain elusive. We combined skin biopsy at the lateral aspect of the distal leg, which is used to quantify cutaneous afferent fibers, with fMRI, which is used to assess brain responses and functional connectivity, to investigate the relationship between cutaneous sensory nerves and the corresponding pain perception in the brain after applying heat pain stimulation to the dorsum of the right foot in healthy subjects. During painful stimulation, the degree of cutaneous innervation, as measured by epidermal nerve fiber density, was correlated with individual blood oxygen level-dependent (BOLD) signals of the posterior insular cortex and of the thalamus, periaqueductal gray, and rostral ventromedial medulla. Pain perception was associated with the activation of the anterior insular cortex and with the functional connectivity from the anterior insular cortex to the primary somatosensory cortex during painful stimulation. Most importantly, both epidermal nerve fiber density and activity in the posterior insular cortex showed a positive correlation with the strength of coupling under pain between the anterior insular cortex and the primary somatosensory cortex. Thus, our findings support the notion that the neural circuitry subserving pain perception interacts with the cerebral correlates of peripheral nociceptive fibers, which implicates an indirect role for skin nerves in human pain perception.

  18. Experimental observation of sub-Rayleigh quantum imaging with a two-photon entangled source

    SciTech Connect

    Xu, De-Qin; Song, Xin-Bing; Li, Hong-Guo; Zhang, De-Jian; Wang, Hai-Bo; Xiong, Jun Wang, Kaige

    2015-04-27

    It has been theoretically predicted that N-photon quantum imaging can realize either an N-fold resolution improvement (Heisenberg-like scaling) or a √(N)-fold resolution improvement (standard quantum limit) beyond the Rayleigh diffraction bound, over classical imaging. Here, we report the experimental study on spatial sub-Rayleigh quantum imaging using a two-photon entangled source. Two experimental schemes are proposed and performed. In a Fraunhofer diffraction scheme with a lens, two-photon Airy disk pattern is observed with subwavelength diffraction property. In a lens imaging apparatus, however, two-photon sub-Rayleigh imaging for an object is realized with super-resolution property. The experimental results agree with the theoretical prediction in the two-photon quantum imaging regime.

  19. Experimental observation of sub-Rayleigh quantum imaging with a two-photon entangled source

    NASA Astrophysics Data System (ADS)

    Xu, De-Qin; Song, Xin-Bing; Li, Hong-Guo; Zhang, De-Jian; Wang, Hai-Bo; Xiong, Jun; Wang, Kaige

    2015-04-01

    It has been theoretically predicted that N-photon quantum imaging can realize either an N-fold resolution improvement (Heisenberg-like scaling) or a √{ N } -fold resolution improvement (standard quantum limit) beyond the Rayleigh diffraction bound, over classical imaging. Here, we report the experimental study on spatial sub-Rayleigh quantum imaging using a two-photon entangled source. Two experimental schemes are proposed and performed. In a Fraunhofer diffraction scheme with a lens, two-photon Airy disk pattern is observed with subwavelength diffraction property. In a lens imaging apparatus, however, two-photon sub-Rayleigh imaging for an object is realized with super-resolution property. The experimental results agree with the theoretical prediction in the two-photon quantum imaging regime.

  20. High-Definition Television (HDTV) Images for Earth Observations and Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Holland, S. Douglas; Runco, Susan K.; Pitts, David E.; Whitehead, Victor S.; Andrefouet, Serge M.

    2000-01-01

    As part of Detailed Test Objective 700-17A, astronauts acquired Earth observation images from orbit using a high-definition television (HDTV) camcorder, Here we provide a summary of qualitative findings following completion of tests during missions STS (Space Transport System)-93 and STS-99. We compared HDTV imagery stills to images taken using payload bay video cameras, Hasselblad film camera, and electronic still camera. We also evaluated the potential for motion video observations of changes in sunlight and the use of multi-aspect viewing to image aerosols. Spatial resolution and color quality are far superior in HDTV images compared to National Television Systems Committee (NTSC) video images. Thus, HDTV provides the first viable option for video-based remote sensing observations of Earth from orbit. Although under ideal conditions, HDTV images have less spatial resolution than medium-format film cameras, such as the Hasselblad, under some conditions on orbit, the HDTV image acquired compared favorably with the Hasselblad. Of particular note was the quality of color reproduction in the HDTV images HDTV and electronic still camera (ESC) were not compared with matched fields of view, and so spatial resolution could not be compared for the two image types. However, the color reproduction of the HDTV stills was truer than colors in the ESC images. As HDTV becomes the operational video standard for Space Shuttle and Space Station, HDTV has great potential as a source of Earth-observation data. Planning for the conversion from NTSC to HDTV video standards should include planning for Earth data archiving and distribution.

  1. Combining Imaging and Non-Imaging Observations for Improved Space-Object Identification

    DTIC Science & Technology

    2011-09-27

    Optical and Digital Superresolution Early in the project, we expolited Fisher information (FI) to characterize the extent of spatial-frequency...extrapolation beyond the diffraction-limited optical bandwidth when the support of the object is known a priori. This support-assisted optical superresolution ...both digital (DSR) and optical superresolution (OSR). Indeed, by analyzing a se- quence of sub-pixel-shifted undersampled images one can show the

  2. Spatio-temporal Hotelling observer for signal detection from image sequences.

    PubMed

    Caucci, Luca; Barrett, Harrison H; Rodriguez, Jeffrey J

    2009-06-22

    Detection of signals in noisy images is necessary in many applications, including astronomy and medical imaging. The optimal linear observer for performing a detection task, called the Hotelling observer in the medical literature, can be regarded as a generalization of the familiar prewhitening matched filter. Performance on the detection task is limited by randomness in the image data, which stems from randomness in the object, randomness in the imaging system, and randomness in the detector outputs due to photon and readout noise, and the Hotelling observer accounts for all of these effects in an optimal way. If multiple temporal frames of images are acquired, the resulting data set is a spatio-temporal random process, and the Hotelling observer becomes a spatio-temporal linear operator. This paper discusses the theory of the spatio-temporal Hotelling observer and estimation of the required spatio-temporal covariance matrices. It also presents a parallel implementation of the observer on a cluster of Sony PLAYSTATION 3 gaming consoles. As an example, we consider the use of the spatio-temporal Hotelling observer for exoplanet detection.

  3. Spatio-temporal Hotelling observer for signal detection from image sequences

    PubMed Central

    Caucci, Luca; Barrett, Harrison H.; Rodríguez, Jeffrey J.

    2010-01-01

    Detection of signals in noisy images is necessary in many applications, including astronomy and medical imaging. The optimal linear observer for performing a detection task, called the Hotelling observer in the medical literature, can be regarded as a generalization of the familiar prewhitening matched filter. Performance on the detection task is limited by randomness in the image data, which stems from randomness in the object, randomness in the imaging system, and randomness in the detector outputs due to photon and readout noise, and the Hotelling observer accounts for all of these effects in an optimal way. If multiple temporal frames of images are acquired, the resulting data set is a spatio-temporal random process, and the Hotelling observer becomes a spatio-temporal linear operator. This paper discusses the theory of the spatio-temporal Hotelling observer and estimation of the required spatio-temporal covariance matrices. It also presents a parallel implementation of the observer on a cluster of Sony PLAYSTATION 3 gaming consoles. As an example, we consider the use of the spatio-temporal Hotelling observer for exoplanet detection. PMID:19550494

  4. Involvement of the Extrageniculate System in the Perception of Optical Illusions: A Functional Magnetic Resonance Imaging Study.

    PubMed

    Tabei, Ken-Ichi; Satoh, Masayuki; Kida, Hirotaka; Kizaki, Moeni; Sakuma, Haruno; Sakuma, Hajime; Tomimoto, Hidekazu

    2015-01-01

    Research on the neural processing of optical illusions can provide clues for understanding the neural mechanisms underlying visual perception. Previous studies have shown that some visual areas contribute to the perception of optical illusions such as the Kanizsa triangle and Müller-Lyer figure; however, the neural mechanisms underlying the processing of these and other optical illusions have not been clearly identified. Using functional magnetic resonance imaging (fMRI), we determined which brain regions are active during the perception of optical illusions. For our study, we enrolled 18 participants. The illusory optical stimuli consisted of many kana letters, which are Japanese phonograms. During the shape task, participants stated aloud whether they perceived the shapes of two optical illusions as being the same or not. During the word task, participants read aloud the kana letters in the stimuli. A direct comparison between the shape and word tasks showed activation of the right inferior frontal gyrus, left medial frontal gyrus, and right pulvinar. It is well known that there are two visual pathways, the geniculate and extrageniculate systems, which belong to the higher-level and primary visual systems, respectively. The pulvinar belongs to the latter system, and the findings of the present study suggest that the extrageniculate system is involved in the cognitive processing of optical illusions.

  5. A new human perception-based over-exposure detection method for color images.

    PubMed

    Yoon, Yeo-Jin; Byun, Keun-Yung; Lee, Dae-Hong; Jung, Seung-Won; Ko, Sung-Jea

    2014-09-15

    To correct an over-exposure within an image, the over-exposed region (OER) must first be detected. Detecting the OER accurately has a significant effect on the performance of the over-exposure correction. However, the results of conventional OER detection methods, which generally use the brightness and color information of each pixel, often deviate from the actual OER perceived by the human eye. To overcome this problem, in this paper, we propose a novel method for detecting the perceived OER more accurately. Based on the observation that recognizing the OER in an image is dependent on the saturation sensitivity of the human visual system (HVS), we detect the OER by thresholding the saturation value of each pixel. Here, a function of the proposed method, which is designed based on the results of a subjective evaluation on the saturation sensitivity of the HVS, adaptively determines the saturation threshold value using the color and the perceived brightness of each pixel. Experimental results demonstrate that the proposed method accurately detects the perceived OER, and furthermore, the over-exposure correction can be improved by adopting the proposed OER detection method.

  6. Perception of color emotions for single colors in red-green defective observers.

    PubMed

    Sato, Keiko; Inoue, Takaaki

    2016-01-01

    It is estimated that inherited red-green color deficiency, which involves both the protan and deutan deficiency types, is common in men. For red-green defective observers, some reddish colors appear desaturated and brownish, unlike those seen by normal observers. Despite its prevalence, few studies have investigated the effects that red-green color deficiency has on the psychological properties of colors (color emotions). The current study investigated the influence of red-green color deficiency on the following six color emotions: cleanliness, freshness, hardness, preference, warmth, and weight. Specifically, this study aimed to: (1) reveal differences between normal and red-green defective observers in rating patterns of six color emotions; (2) examine differences in color emotions related to the three cardinal channels in human color vision; and (3) explore relationships between color emotions and color naming behavior. Thirteen men and 10 women with normal vision and 13 men who were red-green defective performed both a color naming task and an emotion rating task with 32 colors from the Berkeley Color Project (BCP). Results revealed noticeable differences in the cleanliness and hardness ratings between the normal vision observers, particularly in women, and red-green defective observers, which appeared mainly for colors in the orange to cyan range, and in the preference and warmth ratings for colors with cyan and purple hues. Similarly, naming errors also mainly occurred in the cyan colors. A regression analysis that included the three cone-contrasts (i.e., red-green, blue-yellow, and luminance) as predictors significantly accounted for variability in color emotion ratings for the red-green defective observers as much as the normal individuals. Expressly, for warmth ratings, the weight of the red-green opponent channel was significantly lower in color defective observers than in normal participants. In addition, the analyses for individual warmth ratings in

  7. Perception of color emotions for single colors in red-green defective observers

    PubMed Central

    Inoue, Takaaki

    2016-01-01

    It is estimated that inherited red-green color deficiency, which involves both the protan and deutan deficiency types, is common in men. For red-green defective observers, some reddish colors appear desaturated and brownish, unlike those seen by normal observers. Despite its prevalence, few studies have investigated the effects that red-green color deficiency has on the psychological properties of colors (color emotions). The current study investigated the influence of red-green color deficiency on the following six color emotions: cleanliness, freshness, hardness, preference, warmth, and weight. Specifically, this study aimed to: (1) reveal differences between normal and red-green defective observers in rating patterns of six color emotions; (2) examine differences in color emotions related to the three cardinal channels in human color vision; and (3) explore relationships between color emotions and color naming behavior. Thirteen men and 10 women with normal vision and 13 men who were red-green defective performed both a color naming task and an emotion rating task with 32 colors from the Berkeley Color Project (BCP). Results revealed noticeable differences in the cleanliness and hardness ratings between the normal vision observers, particularly in women, and red-green defective observers, which appeared mainly for colors in the orange to cyan range, and in the preference and warmth ratings for colors with cyan and purple hues. Similarly, naming errors also mainly occurred in the cyan colors. A regression analysis that included the three cone-contrasts (i.e., red-green, blue-yellow, and luminance) as predictors significantly accounted for variability in color emotion ratings for the red-green defective observers as much as the normal individuals. Expressly, for warmth ratings, the weight of the red-green opponent channel was significantly lower in color defective observers than in normal participants. In addition, the analyses for individual warmth ratings in

  8. Relationship between texture terms and texture images: a study in human texture perception

    NASA Astrophysics Data System (ADS)

    Rao, A. Ravishankar; Bhushan, Nalini; Lohse, Gerald L.

    1996-03-01

    The specification of image content is a critical issue in image databases. In this paper we explore the problem of specifying an important visual cue, that of image texture. The approach we have taken is to separately categorize texture images and texture words (in the English language), and then explore the relationships between the identified categories of images and words. These relationships are expressed as association matrices, and measure the mapping between the visual texture space and lexical texture space. Based on experiments with human subjects, we determined Pearson's coefficient of contingency (which measures the degree of association) to be 0.63 for the association matrix mapping images to words, and 0.56 for the association matrix mapping words to images. These indicate a strong association between texture words and images. Furthermore, like categories of texture words map onto like categories of texture images, e.g. words dealing with repetition map onto images of repetitive texture.

  9. Influences of Teacher Delivery, Student Engagement, and Observation Focus on Preservice Teachers' Perceptions of Teaching Effectiveness

    ERIC Educational Resources Information Center

    Napoles, Jessica; MacLeod, Rebecca B.

    2016-01-01

    The purpose of this study was to examine how teacher delivery, student engagement, and observation focus influenced preservice teachers' ratings of teaching effectiveness. Participants (N = 84 preservice teachers) viewed short teaching excerpts of orchestral and choral rehearsals wherein the teacher displayed either high or low teacher delivery,…

  10. Student Perceptions Regarding the Usefulness of Explicit Discussion of "Structure of the Observed Learning Outcome" Taxonomy

    ERIC Educational Resources Information Center

    Prakash, E. S.; Narayan, K. A.; Sethuraman, K. R.

    2010-01-01

    One method of grading responses of the descriptive type is by using Structure of Observed Learning Outcomes (SOLO) taxonomy. The basis of this study was the expectation that if students were oriented to SOLO taxonomy, it would provide them an opportunity to understand some of the factors that teachers consider while grading descriptive responses…

  11. Influences of Teacher Delivery, Student Engagement, and Observation Focus on Preservice Teachers' Perceptions of Teaching Effectiveness

    ERIC Educational Resources Information Center

    Napoles, Jessica; MacLeod, Rebecca B.

    2016-01-01

    The purpose of this study was to examine how teacher delivery, student engagement, and observation focus influenced preservice teachers' ratings of teaching effectiveness. Participants (N = 84 preservice teachers) viewed short teaching excerpts of orchestral and choral rehearsals wherein the teacher displayed either high or low teacher delivery,…

  12. Student Perceptions Regarding the Usefulness of Explicit Discussion of "Structure of the Observed Learning Outcome" Taxonomy

    ERIC Educational Resources Information Center

    Prakash, E. S.; Narayan, K. A.; Sethuraman, K. R.

    2010-01-01

    One method of grading responses of the descriptive type is by using Structure of Observed Learning Outcomes (SOLO) taxonomy. The basis of this study was the expectation that if students were oriented to SOLO taxonomy, it would provide them an opportunity to understand some of the factors that teachers consider while grading descriptive responses…

  13. Imaging observation of the Earth's upper atmosphere by Ionosphere, Mesosphere, upper Atmosphere, and Plasmasphere mapping observation (ISS-IMAP) mission

    NASA Astrophysics Data System (ADS)

    Saito, A.; Sakanoi, T.; Yoshikawa, I.; Yamazaki, A.; Abe, T.; Suzuki, M.; Otsuka, Y.; Nakamura, T.; Masayuki, K.; Ejiri, M. K.; Taguchi, M.; Yamamoto, M.; Kawano, H.; Fujiwara, H.; Ishii, M.; Kubota, M.; Sakanoi, K.; Hoshinoo, K.

    2011-12-01

    ISS-IMAP (Ionosphere, Mesosphere, upper Atmosphere, and Plasmasphere mapping) mission is a scientific mission that will make imaging observation of the Earth's upper Atmosphere from the Exposed Facility of Japanese Experiment Module on the International Space Station (EF of ISS-JEM). It will be installed in Multi-mission Consolidated Equipment (MCE) on EF of ISS-JEM, and start the observation in 2012. It consists of two imager sets. Visible-light and infrared spectrum imager (VISI) will detect the airglow emission in the mesosphere and the thermosphere/ionosphere, and extra ultraviolet imager (EUVI) will detect the resonant scattering emission from the ions in the ionosphere and the plasmasphere. The objective of this mission is to clarify the physical mechanism of the following three processes: (1) energy transport process by the atmospheric structures whose horizontal scale is 50-500km in the upper atmosphere (2) process of the plasma transport up to 20,000km altitude (3) effect of the upper atmosphere on the space-borne engineering system. ISS-IMAP will measure the following three parameters in the lower latitude region than 50 degrees: (1) distribution of the atmospheric gravity wave in the mesopause (87km), the ionospheric E-region (95km), and the ionospheric F-region (250km) (2) distribution of the ionized atmosphere in the ionospheric F-region (3) distribution of O+ and He+ ions in the ionosphere and plasmasphere. VISI will observe the airglow of 730nm (OH, Alt. 85km), 762nm (O2, Alt 95km) and 630nm(O, Alt.250km) in the Nadir direction. Its field-of-view is 90-degree width perpendicular to the trajectory of ISS, and direct in two directions, forward and backward. The vertical structure of the airglow will be determined by stereo observation with these two slits. EUVI will measure the resonant scattering of 30.4nm [He+] and 83.4nm [O+] with 15 degrees of field-of-view. It points the limb of the Earth to observe the vertical distribution of the ions. The

  14. Comparing the Scoring of Human Decomposition from Digital Images to Scoring Using On-site Observations.

    PubMed

    Dabbs, Gretchen R; Bytheway, Joan A; Connor, Melissa

    2017-01-25

    When in forensic casework or empirical research in-person assessment of human decomposition is not possible, the sensible substitution is color photographic images. To date, no research has confirmed the utility of color photographic images as a proxy for in situ observation of the level of decomposition. Sixteen observers scored photographs of 13 human cadavers in varying decomposition stages (PMI 2-186 days) using the Total Body Score system (total n = 929 observations). The on-site TBS was compared with recorded observations from digital color images using a paired samples t-test. The average difference between on-site and photographic observations was -0.20 (t = -1.679, df = 928, p = 0.094). Individually, only two observers, both students with <1 year of experience, demonstrated TBS statistically significantly different than the on-site value, suggesting that with experience, observations of human decomposition based on digital images can be substituted for assessments based on observation of the corpse in situ, when necessary.

  15. Observational Signatures of Planets in Protoplanetary Disks: Spiral Arms Observed in Scattered Light Imaging Can be Induced by Planets

    NASA Astrophysics Data System (ADS)

    Dong, Ruobing; Zhu, Zhaohuan; Rafikov, Roman R.; Stone, James M.

    2015-08-01

    Using 3D global hydro simulations coupled with radiative transfer calculations, we study the appearance of density waves induced by giant planets in direct imaging observations at near-infrared wavelengths. We find that a 6{M}{{J}} planet in a typical disk around a 1{M}⊙ star can produce prominent and detectable spiral arms both interior and exterior to its orbit. The inner arms have (1) two well separated arms in roughly m = 2 symmetry, (2) exhibit ˜10°-15° pitch angles, (3) ˜180°-270° extension in the azimuthal direction, and (4) ˜ 150 % surface brightness enhancement, all broadly consistent with observed spiral arms in the SAO 206462 and MWC 758 systems. The outer arms cannot explain observations as they are too tightly wound given typical disk scale height. We confirm previous results that the outer density waves excited by a 1{M}{{J}} planet exhibit low contrast in the IR and are practically not detectable. We also find that 3D effects of the waves are important. Compared to isothermal models, density waves in adiabatic disks exhibit weaker contrast in surface density but stronger contrast in scattered light images, due to a more pronounced vertical structure in the former caused by shock heating and maybe hydraulic jump effect. To drive observed pairs of arms with an external companion on a circular orbit, a massive planet, possibly a brown dwarf, is needed at around [r˜ 0\\buildrel{\\prime\\prime}\\over{.} 7, {PA}˜ 10^\\circ ] (position angle PA from north to east) in SAO 206462 and [r˜ 0\\buildrel{\\prime\\prime}\\over{.} 6, {PA}˜ 10^\\circ ] in MWC 758. Their existence may be confirmed by direct imaging planet searches.

  16. IMAGE EUV Observation of a Radially, Bifurcated Plasmapause: First Observations of a Possible Standing ULF Waveform in the Inner Magnetosphere

    NASA Technical Reports Server (NTRS)

    Adrian, M. L.; Gallagher, D. L.; Avanov, L. A.

    2003-01-01

    We present EUV observations of the plasmasphere-plasmapause from 19:38-22:11 UT on 28 June 2000 characterized by the presence of bifurcated radial enhancements of the He(+) plasma distribution in the nighside sector. These features remain stable throughout the period of observation and are found to co-rotate at 67% of the expected rate. Two-dimensional simulation of the plasmasphere assuming the presence of field lines resonances at L = 1.8 and 2.5 suggest that the organization of the outer plasmasphere and plasmapause is the result convective motion driven by a standing ULF-wave. Preliminary analysis of ground-based magnetometer data provided by the IMAGE magnetometer network during the period of EUV observation indicates the presence of a discrete spectrum of field line resonances extending down to 0.68-mHz.

  17. Imaging and spectroscopic observations of the 9 March 2016 Total Solar Eclipse in Palangkaraya

    NASA Astrophysics Data System (ADS)

    Kholish, Abdul Majid Al; Jihad, Imanul; Taufik Andika, Irham; Puspitaningrum, Evaria; Ainy, Fathin Q.; Ramadhan, Sahlan; Ikbal Arifyanto, M.; Malasan, Hakim L.

    2016-11-01

    The March 9th 2016 total solar eclipse observation was carried out at Universitas Palangkaraya, Central Kalimantan. Time-resolved imaging of the Sun has been conducted before, after, and during totality of eclipse while optical spectroscopic observation has been carried out only at the totality. The imaging observation in white light was done to take high resolution images of solar corona. The images were taken with a DSLR camera that is attached to a refractor telescope (d=66 mm, f/5.9). Despite cloudy weather during the eclipse moments, we managed to obtain the images with lower signal-to-noise ratio, including identifiable diamond ring, prominence and coronal structure. The images were processed using standard reduction procedure to increase the signal-to-noise ratio and to enhance the corona. Then, the coronal structure is determined and compared with ultraviolet data from SOHO to analyze the correlation between visual and ultraviolet corona. The spectroscopic observation was conducted using a slit-less spectrograph and a DSLR camera to obtain solar flash spectra. The flash spectra taken during the eclipse show emissions of H 4861 Å, He I 5876 Å, and H 6563 Å. The Fe XIV 5303 Å and Fe X 6374 Å lines are hardly detected due to low signal-to-noise ratio. Spectral reduction and analysis are conducted to derive the emission lines intensity relative to continuum intensity. We use the measured parameters to determine the temperature of solar chromosphere.

  18. Perception-based 3D tactile rendering from a single image for human skin examinations by dynamic touch.

    PubMed

    Kim, K; Lee, S

    2015-05-01

    Diagnosis of skin conditions is dependent on the assessment of skin surface properties that are represented by more tactile properties such as stiffness, roughness, and friction than visual information. Due to this reason, adding tactile feedback to existing vision based diagnosis systems can help dermatologists diagnose skin diseases or disorders more accurately. The goal of our research was therefore to develop a tactile rendering system for skin examinations by dynamic touch. Our development consists of two stages: converting a single image to a 3D haptic surface and rendering the generated haptic surface in real-time. Converting to 3D surfaces from 2D single images was implemented with concerning human perception data collected by a psychophysical experiment that measured human visual and haptic sensibility to 3D skin surface changes. For the second stage, we utilized real skin biomechanical properties found by prior studies. Our tactile rendering system is a standalone system that can be used with any single cameras and haptic feedback devices. We evaluated the performance of our system by conducting an identification experiment with three different skin images with five subjects. The participants had to identify one of the three skin surfaces by using a haptic device (Falcon) only. No visual cue was provided for the experiment. The results indicate that our system provides sufficient performance to render discernable tactile rendering with different skin surfaces. Our system uses only a single skin image and automatically generates a 3D haptic surface based on human haptic perception. Realistic skin interactions can be provided in real-time for the purpose of skin diagnosis, simulations, or training. Our system can also be used for other applications like virtual reality and cosmetic applications. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Body mass index through self-reported data and body image perception in Spanish adults attending dietary consultation.

    PubMed

    Acevedo, Paula; López-Ejeda, Noemí; Alférez-García, Irene; Martínez-Álvarez, Jesús R; Villarino, Antonio; Cabañas, M Dolores; Marrodán, M Dolores

    2014-06-01

    The aim of this study was to explore, based on sex and age, knowledge regarding weight, height, and the perception of body shape in Spanish adults who attend dietary consultation. We also wanted to determine the participants' desired body shapes and what they considered their best health status. The sample consisted of 8100 women and 1220 men from Spain. They were between the ages of 18 and 75 y. Weight (kg) and height (cm) were measured and body mass index (BMI) was calculated. Participants were nutritionally classified following the cutoffs proposed by the World Health Organization. Each individual was asked about his or her weight and height and self-reported BMI was calculated. They also answered a test of body image perception through drawings of human silhouettes that corresponded to an exact BMI. With this, perceived BMI, desired BMI, and BMI considered healthy were estimated. Parametric statistic tests for contrast of mean and percentages were applied. Self-reported and perceived BMI underestimate the BMI obtained through anthropometry. Differences between measured and self-reported BMI are lower in women and increase with age in both sexes. The same result was obtained when comparing measured BMI with perceived BMI through silhouette test. On average, desired BMI and healthy BMI were in the limits of normal weight for all ages and both sexes. However, the difference between them was also lower in women. Age and sex influence the perception of excess weight and body image. This could condition the demand of dietary treatment to improve the nutritional status. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Image-domain sampling properties of the Hotelling Observer in CT using filtered back-projection

    NASA Astrophysics Data System (ADS)

    Sanchez, Adrian A.; Sidky, Emil Y.; Pan, Xiaochuan

    2015-03-01

    The Hotelling Observer (HO),1 along with its channelized variants,2 has been proposed for image quality evaluation in x-ray CT.3,4 In this work, we investigate HO performance for a detection task in parallel-beam FBP as a function of two image-domain sampling parameters, namely pixel size and field-of-view. These two parameters are of central importance in adapting HO methods to use in CT, since the large number of pixels in a single image makes direct computation of HO performance for a full image infeasible in most cases. Reduction of the number of image pixels and/or restriction of the image to a region-of-interest (ROI) has the potential to make direct computation of HO statistics feasible in CT, provided that the signal and noise properties lead to redundant information in some regions of the image. For small signals, we hypothesize that reduction of image pixel size and enlargement of the image field-of-view are approximately equivalent means of gaining additional information relevant to a detection task. The rationale for this hypothesis is that the backprojection operation in FBP introduces long range correlations so that, for small signals, the reconstructed signal outside of a small ROI is not linearly independent of the signal within the ROI. In this work, we perform a preliminary investigation of this hypothesis by sweeping these two sampling parameters and computing HO performance for a signal detection task.

  1. Perceptions and Positionings of Colleges in New York City: A Longitudinal Study of Brand Images

    ERIC Educational Resources Information Center

    Clark, Sylvia D.

    2005-01-01

    A study of high school seniors' perceptions of colleges, conducted in 1979, was replicated 23 years later. The study affords an opportunity to examine perceptual changes over time and provides an additional perspective on the positioning of colleges, apart from other well-known surveys. This information may be useful for those involved in…

  2. Perceptions and Positionings of Colleges in New York City: A Longitudinal Study of Brand Images

    ERIC Educational Resources Information Center

    Clark, Sylvia D.

    2005-01-01

    A study of high school seniors' perceptions of colleges, conducted in 1979, was replicated 23 years later. The study affords an opportunity to examine perceptual changes over time and provides an additional perspective on the positioning of colleges, apart from other well-known surveys. This information may be useful for those involved in…

  3. The Blackberry Image: Self-Identified Perceptions and Motivations Associated with College Student Blackberry Use

    ERIC Educational Resources Information Center

    Firmin, Michael W.; Firmin, Ruth L.; Orient, Katlyn M.; Edwards, Anna J.; Cunliff, Jennifer M.

    2012-01-01

    We report the results of a qualitative research study conducted with university students regarding their phenomenological perspectives of BlackBerry use. Three key themes inductively emerged throughout the interview and analysis process regarding self-perceptions college students reported regarding their own BlackBerry use. First, students offered…

  4. The Blackberry Image: Self-Identified Perceptions and Motivations Associated with College Student Blackberry Use

    ERIC Educational Resources Information Center

    Firmin, Michael W.; Firmin, Ruth L.; Orient, Katlyn M.; Edwards, Anna J.; Cunliff, Jennifer M.

    2012-01-01

    We report the results of a qualitative research study conducted with university students regarding their phenomenological perspectives of BlackBerry use. Three key themes inductively emerged throughout the interview and analysis process regarding self-perceptions college students reported regarding their own BlackBerry use. First, students offered…

  5. Study on Image Drift Induced by Charging during Observation by Scanning Electron Microscope

    NASA Astrophysics Data System (ADS)

    Okai, Nobuhiro; Sohda, Yasunari

    2012-06-01

    The mechanism of image drift in the observation of a boundary between a metal and an insulator by scanning electron microscope (SEM) is clarified by electron-trajectory simulation and experiment. In the region involving a straight boundary between a large-area metal layer and an insulating substrate, the largest image drift is expected to be observed owing to an asymmetric charging on the sample surface. The simulation result shows that a metal-insulator boundary in the SEM image shifts toward the metal part over several seconds, which is induced by a positively charged area outside of the irradiation region in the insulator part. This simulation result is confirmed to qualitatively coincide with the experimental one. In addition, we demonstrate that the direction and magnitude of the image drift can be controlled by changing the charging voltage of the insulating substrate by applying a bias voltage to the anode facing the sample surface.

  6. Chandra Observations of the Sextuply Imaged Quasar SDSS J2222+2745

    NASA Astrophysics Data System (ADS)

    Pooley, David A.; Rappaport, Saul A.

    2017-01-01

    While there are ˜100 examples of background quasars strongly lensed by galaxies, there are only a few examples of background quasars strongly lensed by clusters. These systems are both rare and important because they can provide unique constraints on the internal structure of clusters through measurements of the frequency of occurrence and modeling the mass distributions. These constraints, along with statistics of image multiplicity can provide a strong test of the ΛCDM paradigm.SDSS J2222+2745 was discovered by Dahle et al. (2013), and three images (A-C) of the quasar are immediately obvious in the SDSS image, with a fourth image (D) also evident. Through follow-up imaging and spectroscopy, Dahle et al. found evidence for two additional images (E and F), which are not evident in the SDSS image since they are overwhelmed by the light from the red elliptical galaxies in the center of the system. While there are no direct predictions of the occurrence of six-imaged cluster-lensed quasars in the literature, the predicted occurrence of any type of cluster-lensed quasar is very rare and depends sensitively on cosmological parameters such as the matter density ΩM and the matter power spectrum σ8. We report on our Chandra observation of SDSS J2222+2745, which clearly shows all six images of the quasar. We present the lensing model based on our Chandra observation and discuss the effects of stellar microlensing on the observed flux ratios in the X-ray and optical bands.

  7. Ground-Truth Observations of Ice-Covered North Slope Lakes Imaged by Radar

    DTIC Science & Technology

    1981-10-01

    published by the American Society for Testing and Materi- als, 1916 Race St., Philadelphia, Pa. 19103. Cover: Radar image of the north coast of Alaska...truth observations of ice-covered North Slope lakes imaged by radar W.F. Weeks, A.J. Cow and R.J. Schertler J October 1981 ’AA Prepared for OCEAN...PROCESSES BRANCH NATIONAL AERONAUTICS AND SPACE ADMINISTRATION By UNITED STATES ARMY CORPS OF ENGINEERS COLD REGIONS RESEARCH AND ENGINEERING LABORATORY

  8. Perceptions of Public Breastfeeding Images and Their Association With Breastfeeding Knowledge and Attitudes Among an Internet Panel of Men Ages 21-44 in the United States.

    PubMed

    Magnusson, Brianna M; Thackeray, Callie R; Van Wagenen, Sarah A; Davis, Siena F; Richards, Rickelle; Merrill, Ray M

    2017-02-01

    Men's attitudes toward public breastfeeding may influence a woman's decisions about breastfeeding and her perceived comfort with public breastfeeding. Research aim: This study aimed to evaluate factors associated with men's visual perception of images of public breastfeeding. A 95-item online survey was administered to 502 U.S. men ages 21 to 44. Respondents were presented with four images of women breastfeeding and asked to evaluate agreement with 15 adjectives describing each image. Based on factor analysis, 13 of these adjectives were combined to create the Breastfeeding Images Scale for each image. An 8-item Situational Statements Scale and the 17-item Iowa Infant Feeding Attitude Scale (IIFAS) were used to assess breastfeeding knowledge and attitudes. Multiple regression was used to evaluate the association between breastfeeding attitudes and knowledge and the Breastfeeding Images Scale. The image depicting a woman breastfeeding privately at home had the highest mean score of 71.95, 95% confidence interval (CI) [70.69, 73.22], on the Breastfeeding Images Scale, compared with 61.93, 95% CI [60.51, 63.36], for the image of a woman breastfeeding in a public setting. The overall mean scale score for the IIFAS was 56.99, 95% CI [56.27, 57.70], and for the Situational Statements Scale was 28.80, 95% CI [27.92, 29.69]. For all images, increasing breastfeeding knowledge and attitudes measured by the IIFAS and the Situational Statements Scale were associated with a more positive perception of the image. Images of public breastfeeding are viewed less favorably by men in the sample than are images of private breastfeeding. Knowledge and attitudes toward breastfeeding are positively associated with perception of breastfeeding images.

  9. Earth-based Radar Observations of Mercury: Imaging Results with the Upgraded Arecibo Radar

    NASA Astrophysics Data System (ADS)

    Harmon, J.

    With the completion of the Arecibo upgrade in 1998 came the opportunity to do Mercury radar imaging of unprecedented quality. Among the early results with the upgraded S-band radar was the delay-Doppler imaging of the north polar ice features at 1.5-km resolution (Harmon et al., 2001). These images provided accurate mapping of the putative ice deposits within shaded crater floors as well as a precise determination of the pole position. They also produced the surprising discovery of ice features in small craters and at relatively low latitudes, which places important constraints on thermal models. We are also planning imaging observations of the south pole as it returns to view in 2004 and subsequent years. Besides polar studies, an important component of the Arecibo program is full-disk radar imaging around the entire planet, with a special emphasis on the hemisphere left unimaged by Mariner 10. For this purpose we are conducting a program of delay-Doppler observations using the long-code method (Harmon, 2002), which produces cleaner images than conventional delay-Doppler. Most striking are the depolarized images, which are found to be dominated by bright features associated with fresh crater ejecta. These images show some spectacular rayed craters in the Tycho class, as well as numerous bright, rayless features from smaller impacts. Also visible are some diffuse albedo features with no obvious impact association. Some of these high-albedo patches are found in smooth plains regions such as Tolstoy basin and Tir Planitia, which is the reverse of the mare-highland contrast seen in radar images of the Moon. In addition to the imaging results, we will briefly review the major findings from the pre-upgrade radar altimetry measurements.

  10. Observer perceptions of moral obligations in groups with a history of victimization.

    PubMed

    Warner, Ruth H; Branscombe, Nyla R

    2012-07-01

    The authors investigated when observers assign contemporary group members moral obligations based on their group's victimization history. In Experiment 1, Americans perceived Israelis as obligated to help Sudanese genocide victims and as guiltworthy for not helping if reminded of the Holocaust and its descendants were linked to this history. In Experiment 2, participants perceived Israelis as more obligated to help and guiltworthy for not helping when the Holocaust was presented as a unique victimization event compared with when genocide was presented as pervasive. Experiments 3 and 4 replicated the effects of Experiment 1 with Cambodians as the victimized group. Experiment 5 demonstrated that participants perceived Cambodians as having more obligations under high just world threat compared with low just world threat. Perceiving victimized groups as incurring obligations is one just world restoration method of providing meaning to collective injustice.

  11. ALIS (Auroral Large Imaging System) used for optical observations of the meteor impact process

    NASA Astrophysics Data System (ADS)

    Brändström, U.; Gustavsson, B.; Steen, A.; Pellinen-Wannberg, Asta

    2001-11-01

    This paper outlines a possibly new use of the Auroral Large Imaging System (ALIS) for studies of differential ablation phenomena in meteor trails. By simultaneous imaging from up to six stations, the altitude distribution of the meteor trails could be triangulated, while some stations simultaneously image the trails in for example the sodium (5893 Å) and calcium (4227 Å) lines. ALIS was primarily designed for auroral studies, but has also been used for studies of heater-induced airglow, polar stratospheric clouds as well as other phenomena. The system consits of six unmanned remote-controlled observation stations located in northern Sweden.

  12. Hubble Space Telescope observations of the 1990 equatorial disturbance on Saturn - Images, albedos, and limb darkening

    NASA Technical Reports Server (NTRS)

    Westphal, James A.; Baum, William A.; Ingersoll, Andrew P.; Barnet, Christopher D.; De Jong, Eric M.; Danielson, G. E.; Caldwell, John

    1992-01-01

    The HST recorded 150 images of the September 1990 equatorial eruption on Saturn in six passbands; four of the passbands were selected for photometric analysis, and the images are compared with those obtained before the onset of the disturbance and those from a time when no indication of the disturbance remained. Using deconvolved images from all three observational epochs, measurements were conducted of reflectivities of the disk along parallels of latitude as a function of longitudinal distance from the central meridian, as well as along the central meridian, as a function of latitude from zero to 90 deg.

  13. A line rate calculation method for arbitrary directional imaging of an Earth observing satellite

    NASA Astrophysics Data System (ADS)

    Jeon, Moon-Jin; Kim, Eunghyun; Lim, Seong-Bin; Choi, Seok-Weon

    2016-10-01

    For an earth observing satellite, a line rate is the number of lines which the CCD of push broom type camera scans in a second. It can be easily calculated by ground velocity divided by ground sample distance. Accurate calculation of line rate is necessary to obtain high quality image using TDI CCD. The earth observing satellite has four types of imaging missions which are strip imaging, stereo imaging, multi-point imaging, and arbitrary directional imaging. For the first three types of imaging, ground scanning direction is aligned with satellite velocity direction. Therefore, if the orbit propagation and spacecraft attitude information are available, the ground velocity and ground sample distance could be easily calculated. However, the calculation method might not be applicable to the arbitrary directional imaging. In the arbitrary directional imaging mode, the ground velocity is not fixed value which could be directly derived by orbit information. Furthermore, the ground sample distance might not be easily calculated by simple trigonometry which is possible for the other types of imaging. In this paper, we proposed a line rate calculation method for the arbitrary directional imaging. We applied spherical geometry to derive the equation of ground point which is the intersection between the line of sight vector of the camera and earth surface. The derivative of this equation for time is the ground velocity except the factor of earth rotation. By adding this equation and earth rotation factor, the true ground velocity vector could be derived. For the ground sample distance, we applied the equation of circle and ellipse for yaw angle difference. The equation of circle is used for the yaw angle representation on the plane which is orthogonal to the line of sight vector. The equation of ellipse is used for the yaw angle representation on the ground surface. We applied the proposed method to the KOMPSAT-3A (Korea Multi-Purpose Satellite 3A) mission which is the first

  14. High-precision image aided inertial navigation with known features: observability analysis and performance evaluation.

    PubMed

    Jiang, Weiping; Wang, Li; Niu, Xiaoji; Zhang, Quan; Zhang, Hui; Tang, Min; Hu, Xiangyun

    2014-10-17

    A high-precision image-aided inertial navigation system (INS) is proposed as an alternative to the carrier-phase-based differential Global Navigation Satellite Systems (CDGNSSs) when satellite-based navigation systems are unavailable. In this paper, the image/INS integrated algorithm is modeled by a tightly-coupled iterative extended Kalman filter (IEKF). Tightly-coupled integration ensures that the integrated system is reliable, even if few known feature points (i.e., less than three) are observed in the images. A new global observability analysis of this tightly-coupled integration is presented to guarantee that the system is observable under the necessary conditions. The analysis conclusions were verified by simulations and field tests. The field tests also indicate that high-precision position (centimeter-level) and attitude (half-degree-level)-integrated solutions can be achieved in a global reference.

  15. High-Precision Image Aided Inertial Navigation with Known Features: Observability Analysis and Performance Evaluation

    PubMed Central

    Jiang, Weiping; Wang, Li; Niu, Xiaoji; Zhang, Quan; Zhang, Hui; Tang, Min; Hu, Xiangyun

    2014-01-01

    A high-precision image-aided inertial navigation system (INS) is proposed as an alternative to the carrier-phase-based differential Global Navigation Satellite Systems (CDGNSSs) when satellite-based navigation systems are unavailable. In this paper, the image/INS integrated algorithm is modeled by a tightly-coupled iterative extended Kalman filter (IEKF). Tightly-coupled integration ensures that the integrated system is reliable, even if few known feature points (i.e., less than three) are observed in the images. A new global observability analysis of this tightly-coupled integration is presented to guarantee that the system is observable under the necessary conditions. The analysis conclusions were verified by simulations and field tests. The field tests also indicate that high-precision position (centimeter-level) and attitude (half-degree-level)-integrated solutions can be achieved in a global reference. PMID:25330046

  16. Lava flow surface textures - SIR-B radar image texture, field observations, and terrain measurements

    NASA Technical Reports Server (NTRS)

    Gaddis, Lisa R.; Mouginis-Mark, Peter J.; Hayashi, Joan N.

    1990-01-01

    SIR-B images, field observations, and small-scale (cm) terrain measurements are used to study lave flow surface textures related to emplacement processes of a single Hawaiian lava flow. Although smooth pahoehoe textures are poorly characterized on the SIR-B data, rougher pahoehoe types and the a'a flow portion show image textures attributed to spatial variations in surface roughness. Field observations of six distinct lava flow textural units are described and used to interpret modes of emplacement. The radar smooth/rough boundary between pahoehoe and a'a occurs at a vertical relief of about 10 cm on this lava flow. While direct observation and measurement most readily yield information related to lava eruption and emplacement process