Sample records for image processing method

  1. Methods in Astronomical Image Processing

    NASA Astrophysics Data System (ADS)

    Jörsäter, S.

    A Brief Introductory Note History of Astronomical Imaging Astronomical Image Data Images in Various Formats Digitized Image Data Digital Image Data Philosophy of Astronomical Image Processing Properties of Digital Astronomical Images Human Image Processing Astronomical vs. Computer Science Image Processing Basic Tools of Astronomical Image Processing Display Applications Calibration of Intensity Scales Calibration of Length Scales Image Re-shaping Feature Enhancement Noise Suppression Noise and Error Analysis Image Processing Packages: Design of AIPS and MIDAS AIPS MIDAS Reduction of CCD Data Bias Subtraction Clipping Preflash Subtraction Dark Subtraction Flat Fielding Sky Subtraction Extinction Correction Deconvolution Methods Rebinning/Combining Summary and Prospects for the Future

  2. Markov Processes in Image Processing

    NASA Astrophysics Data System (ADS)

    Petrov, E. P.; Kharina, N. L.

    2018-05-01

    Digital images are used as an information carrier in different sciences and technologies. The aspiration to increase the number of bits in the image pixels for the purpose of obtaining more information is observed. In the paper, some methods of compression and contour detection on the basis of two-dimensional Markov chain are offered. Increasing the number of bits on the image pixels will allow one to allocate fine object details more precisely, but it significantly complicates image processing. The methods of image processing do not concede by the efficiency to well-known analogues, but surpass them in processing speed. An image is separated into binary images, and processing is carried out in parallel with each without an increase in speed, when increasing the number of bits on the image pixels. One more advantage of methods is the low consumption of energy resources. Only logical procedures are used and there are no computing operations. The methods can be useful in processing images of any class and assignment in processing systems with a limited time and energy resources.

  3. Compressive sensing method for recognizing cat-eye effect targets.

    PubMed

    Li, Li; Li, Hui; Dang, Ersheng; Liu, Bo

    2013-10-01

    This paper proposes a cat-eye effect target recognition method with compressive sensing (CS) and presents a recognition method (sample processing before reconstruction based on compressed sensing, or SPCS) for image processing. In this method, the linear projections of original image sequences are applied to remove dynamic background distractions and extract cat-eye effect targets. Furthermore, the corresponding imaging mechanism for acquiring active and passive image sequences is put forward. This method uses fewer images to recognize cat-eye effect targets, reduces data storage, and translates the traditional target identification, based on original image processing, into measurement vectors processing. The experimental results show that the SPCS method is feasible and superior to the shape-frequency dual criteria method.

  4. [Development of an automated processing method to detect coronary motion for coronary magnetic resonance angiography].

    PubMed

    Asou, Hiroya; Imada, N; Sato, T

    2010-06-20

    On coronary MR angiography (CMRA), cardiac motions worsen the image quality. To improve the image quality, detection of cardiac especially for individual coronary motion is very important. Usually, scan delay and duration were determined manually by the operator. We developed a new evaluation method to calculate static time of individual coronary artery. At first, coronary cine MRI was taken at the level of about 3 cm below the aortic valve (80 images/R-R). Chronological change of the signals were evaluated with Fourier transformation of each pixel of the images were done. Noise reduction with subtraction process and extraction process were done. To extract higher motion such as coronary arteries, morphological filter process and labeling process were added. Using these imaging processes, individual coronary motion was extracted and individual coronary static time was calculated automatically. We compared the images with ordinary manual method and new automated method in 10 healthy volunteers. Coronary static times were calculated with our method. Calculated coronary static time was shorter than that of ordinary manual method. And scan time became about 10% longer than that of ordinary method. Image qualities were improved in our method. Our automated detection method for coronary static time with chronological Fourier transformation has a potential to improve the image quality of CMRA and easy processing.

  5. Patch-based models and algorithms for image processing: a review of the basic principles and methods, and their application in computed tomography.

    PubMed

    Karimi, Davood; Ward, Rabab K

    2016-10-01

    Image models are central to all image processing tasks. The great advancements in digital image processing would not have been made possible without powerful models which, themselves, have evolved over time. In the past decade, "patch-based" models have emerged as one of the most effective models for natural images. Patch-based methods have outperformed other competing methods in many image processing tasks. These developments have come at a time when greater availability of powerful computational resources and growing concerns over the health risks of the ionizing radiation encourage research on image processing algorithms for computed tomography (CT). The goal of this paper is to explain the principles of patch-based methods and to review some of their recent applications in CT. We first review the central concepts in patch-based image processing and explain some of the state-of-the-art algorithms, with a focus on aspects that are more relevant to CT. Then, we review some of the recent application of patch-based methods in CT. Patch-based methods have already transformed the field of image processing, leading to state-of-the-art results in many applications. More recently, several studies have proposed patch-based algorithms for various image processing tasks in CT, from denoising and restoration to iterative reconstruction. Although these studies have reported good results, the true potential of patch-based methods for CT has not been yet appreciated. Patch-based methods can play a central role in image reconstruction and processing for CT. They have the potential to lead to substantial improvements in the current state of the art.

  6. Method for localizing and isolating an errant process step

    DOEpatents

    Tobin, Jr., Kenneth W.; Karnowski, Thomas P.; Ferrell, Regina K.

    2003-01-01

    A method for localizing and isolating an errant process includes the steps of retrieving from a defect image database a selection of images each image having image content similar to image content extracted from a query image depicting a defect, each image in the selection having corresponding defect characterization data. A conditional probability distribution of the defect having occurred in a particular process step is derived from the defect characterization data. A process step as a highest probable source of the defect according to the derived conditional probability distribution is then identified. A method for process step defect identification includes the steps of characterizing anomalies in a product, the anomalies detected by an imaging system. A query image of a product defect is then acquired. A particular characterized anomaly is then correlated with the query image. An errant process step is then associated with the correlated image.

  7. Optoelectronic imaging of speckle using image processing method

    NASA Astrophysics Data System (ADS)

    Wang, Jinjiang; Wang, Pengfei

    2018-01-01

    A detailed image processing of laser speckle interferometry is proposed as an example for the course of postgraduate student. Several image processing methods were used together for dealing with optoelectronic imaging system, such as the partial differential equations (PDEs) are used to reduce the effect of noise, the thresholding segmentation also based on heat equation with PDEs, the central line is extracted based on image skeleton, and the branch is removed automatically, the phase level is calculated by spline interpolation method, and the fringe phase can be unwrapped. Finally, the imaging processing method was used to automatically measure the bubble in rubber with negative pressure which could be used in the tire detection.

  8. Remote Sensing Image Quality Assessment Experiment with Post-Processing

    NASA Astrophysics Data System (ADS)

    Jiang, W.; Chen, S.; Wang, X.; Huang, Q.; Shi, H.; Man, Y.

    2018-04-01

    This paper briefly describes the post-processing influence assessment experiment, the experiment includes three steps: the physical simulation, image processing, and image quality assessment. The physical simulation models sampled imaging system in laboratory, the imaging system parameters are tested, the digital image serving as image processing input are produced by this imaging system with the same imaging system parameters. The gathered optical sampled images with the tested imaging parameters are processed by 3 digital image processes, including calibration pre-processing, lossy compression with different compression ratio and image post-processing with different core. Image quality assessment method used is just noticeable difference (JND) subject assessment based on ISO20462, through subject assessment of the gathered and processing images, the influence of different imaging parameters and post-processing to image quality can be found. The six JND subject assessment experimental data can be validated each other. Main conclusions include: image post-processing can improve image quality; image post-processing can improve image quality even with lossy compression, image quality with higher compression ratio improves less than lower ratio; with our image post-processing method, image quality is better, when camera MTF being within a small range.

  9. Dynamic deformation image de-blurring and image processing for digital imaging correlation measurement

    NASA Astrophysics Data System (ADS)

    Guo, X.; Li, Y.; Suo, T.; Liu, H.; Zhang, C.

    2017-11-01

    This paper proposes a method for de-blurring of images captured in the dynamic deformation of materials. De-blurring is achieved based on the dynamic-based approach, which is used to estimate the Point Spread Function (PSF) during the camera exposure window. The deconvolution process involving iterative matrix calculations of pixels, is then performed on the GPU to decrease the time cost. Compared to the Gauss method and the Lucy-Richardson method, it has the best result of the image restoration. The proposed method has been evaluated by using the Hopkinson bar loading system. In comparison to the blurry image, the proposed method has successfully restored the image. It is also demonstrated from image processing applications that the de-blurring method can improve the accuracy and the stability of the digital imaging correlation measurement.

  10. Development of a piecewise linear omnidirectional 3D image registration method

    NASA Astrophysics Data System (ADS)

    Bae, Hyunsoo; Kang, Wonjin; Lee, SukGyu; Kim, Youngwoo

    2016-12-01

    This paper proposes a new piecewise linear omnidirectional image registration method. The proposed method segments an image captured by multiple cameras into 2D segments defined by feature points of the image and then stitches each segment geometrically by considering the inclination of the segment in the 3D space. Depending on the intended use of image registration, the proposed method can be used to improve image registration accuracy or reduce the computation time in image registration because the trade-off between the computation time and image registration accuracy can be controlled for. In general, nonlinear image registration methods have been used in 3D omnidirectional image registration processes to reduce image distortion by camera lenses. The proposed method depends on a linear transformation process for omnidirectional image registration, and therefore it can enhance the effectiveness of the geometry recognition process, increase image registration accuracy by increasing the number of cameras or feature points of each image, increase the image registration speed by reducing the number of cameras or feature points of each image, and provide simultaneous information on shapes and colors of captured objects.

  11. A comparison of performance of automatic cloud coverage assessment algorithm for Formosat-2 image using clustering-based and spatial thresholding methods

    NASA Astrophysics Data System (ADS)

    Hsu, Kuo-Hsien

    2012-11-01

    Formosat-2 image is a kind of high-spatial-resolution (2 meters GSD) remote sensing satellite data, which includes one panchromatic band and four multispectral bands (Blue, Green, Red, near-infrared). An essential sector in the daily processing of received Formosat-2 image is to estimate the cloud statistic of image using Automatic Cloud Coverage Assessment (ACCA) algorithm. The information of cloud statistic of image is subsequently recorded as an important metadata for image product catalog. In this paper, we propose an ACCA method with two consecutive stages: preprocessing and post-processing analysis. For pre-processing analysis, the un-supervised K-means classification, Sobel's method, thresholding method, non-cloudy pixels reexamination, and cross-band filter method are implemented in sequence for cloud statistic determination. For post-processing analysis, Box-Counting fractal method is implemented. In other words, the cloud statistic is firstly determined via pre-processing analysis, the correctness of cloud statistic of image of different spectral band is eventually cross-examined qualitatively and quantitatively via post-processing analysis. The selection of an appropriate thresholding method is very critical to the result of ACCA method. Therefore, in this work, We firstly conduct a series of experiments of the clustering-based and spatial thresholding methods that include Otsu's, Local Entropy(LE), Joint Entropy(JE), Global Entropy(GE), and Global Relative Entropy(GRE) method, for performance comparison. The result shows that Otsu's and GE methods both perform better than others for Formosat-2 image. Additionally, our proposed ACCA method by selecting Otsu's method as the threshoding method has successfully extracted the cloudy pixels of Formosat-2 image for accurate cloud statistic estimation.

  12. Image processing based detection of lung cancer on CT scan images

    NASA Astrophysics Data System (ADS)

    Abdillah, Bariqi; Bustamam, Alhadi; Sarwinda, Devvi

    2017-10-01

    In this paper, we implement and analyze the image processing method for detection of lung cancer. Image processing techniques are widely used in several medical problems for picture enhancement in the detection phase to support the early medical treatment. In this research we proposed a detection method of lung cancer based on image segmentation. Image segmentation is one of intermediate level in image processing. Marker control watershed and region growing approach are used to segment of CT scan image. Detection phases are followed by image enhancement using Gabor filter, image segmentation, and features extraction. From the experimental results, we found the effectiveness of our approach. The results show that the best approach for main features detection is watershed with masking method which has high accuracy and robust.

  13. Rapid 3D bioprinting from medical images: an application to bone scaffolding

    NASA Astrophysics Data System (ADS)

    Lee, Daniel Z.; Peng, Matthew W.; Shinde, Rohit; Khalid, Arbab; Hong, Abigail; Pennacchi, Sara; Dawit, Abel; Sipzner, Daniel; Udupa, Jayaram K.; Rajapakse, Chamith S.

    2018-03-01

    Bioprinting of tissue has its applications throughout medicine. Recent advances in medical imaging allows the generation of 3-dimensional models that can then be 3D printed. However, the conventional method of converting medical images to 3D printable G-Code instructions has several limitations, namely significant processing time for large, high resolution images, and the loss of microstructural surface information from surface resolution and subsequent reslicing. We have overcome these issues by creating a JAVA program that skips the intermediate triangularization and reslicing steps and directly converts binary dicom images into G-Code. In this study, we tested the two methods of G-Code generation on the application of synthetic bone graft scaffold generation. We imaged human cadaveric proximal femurs at an isotropic resolution of 0.03mm using a high resolution peripheral quantitative computed tomography (HR-pQCT) scanner. These images, of the Digital Imaging and Communications in Medicine (DICOM) format, were then processed through two methods. In each method, slices and regions of print were selected, filtered to generate a smoothed image, and thresholded. In the conventional method, these processed images are converted to the STereoLithography (STL) format and then resliced to generate G-Code. In the new, direct method, these processed images are run through our JAVA program and directly converted to G-Code. File size, processing time, and print time were measured for each. We found that this new method produced a significant reduction in G-Code file size as well as processing time (92.23% reduction). This allows for more rapid 3D printing from medical images.

  14. Edge Detection Method Based on Neural Networks for COMS MI Images

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Ho; Park, Eun-Bin; Woo, Sun-Hee

    2016-12-01

    Communication, Ocean And Meteorological Satellite (COMS) Meteorological Imager (MI) images are processed for radiometric and geometric correction from raw image data. When intermediate image data are matched and compared with reference landmark images in the geometrical correction process, various techniques for edge detection can be applied. It is essential to have a precise and correct edged image in this process, since its matching with the reference is directly related to the accuracy of the ground station output images. An edge detection method based on neural networks is applied for the ground processing of MI images for obtaining sharp edges in the correct positions. The simulation results are analyzed and characterized by comparing them with the results of conventional methods, such as Sobel and Canny filters.

  15. Advances in medical image computing.

    PubMed

    Tolxdorff, T; Deserno, T M; Handels, H; Meinzer, H-P

    2009-01-01

    Medical image computing has become a key technology in high-tech applications in medicine and an ubiquitous part of modern imaging systems and the related processes of clinical diagnosis and intervention. Over the past years significant progress has been made in the field, both on methodological and on application level. Despite this progress there are still big challenges to meet in order to establish image processing routinely in health care. In this issue, selected contributions of the German Conference on Medical Image Processing (BVM) are assembled to present latest advances in the field of medical image computing. The winners of scientific awards of the German Conference on Medical Image Processing (BVM) 2008 were invited to submit a manuscript on their latest developments and results for possible publication in Methods of Information in Medicine. Finally, seven excellent papers were selected to describe important aspects of recent advances in the field of medical image processing. The selected papers give an impression of the breadth and heterogeneity of new developments. New methods for improved image segmentation, non-linear image registration and modeling of organs are presented together with applications of image analysis methods in different medical disciplines. Furthermore, state-of-the-art tools and techniques to support the development and evaluation of medical image processing systems in practice are described. The selected articles describe different aspects of the intense development in medical image computing. The image processing methods presented enable new insights into the patient's image data and have the future potential to improve medical diagnostics and patient treatment.

  16. Automatic cloud coverage assessment of Formosat-2 image

    NASA Astrophysics Data System (ADS)

    Hsu, Kuo-Hsien

    2011-11-01

    Formosat-2 satellite equips with the high-spatial-resolution (2m ground sampling distance) remote sensing instrument. It has been being operated on the daily-revisiting mission orbit by National Space organization (NSPO) of Taiwan since May 21 2004. NSPO has also serving as one of the ground receiving stations for daily processing the received Formosat- 2 images. The current cloud coverage assessment of Formosat-2 image for NSPO Image Processing System generally consists of two major steps. Firstly, an un-supervised K-means method is used for automatically estimating the cloud statistic of Formosat-2 image. Secondly, manual estimation of cloud coverage from Formosat-2 image is processed by manual examination. Apparently, a more accurate Automatic Cloud Coverage Assessment (ACCA) method certainly increases the efficiency of processing step 2 with a good prediction of cloud statistic. In this paper, mainly based on the research results from Chang et al, Irish, and Gotoh, we propose a modified Formosat-2 ACCA method which considered pre-processing and post-processing analysis. For pre-processing analysis, cloud statistic is determined by using un-supervised K-means classification, Sobel's method, Otsu's method, non-cloudy pixels reexamination, and cross-band filter method. Box-Counting fractal method is considered as a post-processing tool to double check the results of pre-processing analysis for increasing the efficiency of manual examination.

  17. The Goddard Space Flight Center Program to develop parallel image processing systems

    NASA Technical Reports Server (NTRS)

    Schaefer, D. H.

    1972-01-01

    Parallel image processing which is defined as image processing where all points of an image are operated upon simultaneously is discussed. Coherent optical, noncoherent optical, and electronic methods are considered parallel image processing techniques.

  18. A New Parallel Approach for Accelerating the GPU-Based Execution of Edge Detection Algorithms

    PubMed Central

    Emrani, Zahra; Bateni, Soroosh; Rabbani, Hossein

    2017-01-01

    Real-time image processing is used in a wide variety of applications like those in medical care and industrial processes. This technique in medical care has the ability to display important patient information graphi graphically, which can supplement and help the treatment process. Medical decisions made based on real-time images are more accurate and reliable. According to the recent researches, graphic processing unit (GPU) programming is a useful method for improving the speed and quality of medical image processing and is one of the ways of real-time image processing. Edge detection is an early stage in most of the image processing methods for the extraction of features and object segments from a raw image. The Canny method, Sobel and Prewitt filters, and the Roberts’ Cross technique are some examples of edge detection algorithms that are widely used in image processing and machine vision. In this work, these algorithms are implemented using the Compute Unified Device Architecture (CUDA), Open Source Computer Vision (OpenCV), and Matrix Laboratory (MATLAB) platforms. An existing parallel method for Canny approach has been modified further to run in a fully parallel manner. This has been achieved by replacing the breadth- first search procedure with a parallel method. These algorithms have been compared by testing them on a database of optical coherence tomography images. The comparison of results shows that the proposed implementation of the Canny method on GPU using the CUDA platform improves the speed of execution by 2–100× compared to the central processing unit-based implementation using the OpenCV and MATLAB platforms. PMID:28487831

  19. A New Parallel Approach for Accelerating the GPU-Based Execution of Edge Detection Algorithms.

    PubMed

    Emrani, Zahra; Bateni, Soroosh; Rabbani, Hossein

    2017-01-01

    Real-time image processing is used in a wide variety of applications like those in medical care and industrial processes. This technique in medical care has the ability to display important patient information graphi graphically, which can supplement and help the treatment process. Medical decisions made based on real-time images are more accurate and reliable. According to the recent researches, graphic processing unit (GPU) programming is a useful method for improving the speed and quality of medical image processing and is one of the ways of real-time image processing. Edge detection is an early stage in most of the image processing methods for the extraction of features and object segments from a raw image. The Canny method, Sobel and Prewitt filters, and the Roberts' Cross technique are some examples of edge detection algorithms that are widely used in image processing and machine vision. In this work, these algorithms are implemented using the Compute Unified Device Architecture (CUDA), Open Source Computer Vision (OpenCV), and Matrix Laboratory (MATLAB) platforms. An existing parallel method for Canny approach has been modified further to run in a fully parallel manner. This has been achieved by replacing the breadth- first search procedure with a parallel method. These algorithms have been compared by testing them on a database of optical coherence tomography images. The comparison of results shows that the proposed implementation of the Canny method on GPU using the CUDA platform improves the speed of execution by 2-100× compared to the central processing unit-based implementation using the OpenCV and MATLAB platforms.

  20. Methods for destriping Landsat Thematic Mapper images - A feasibility study for an online destriping process in the Thematic Mapper Image Processing System (TIPS)

    NASA Technical Reports Server (NTRS)

    Poros, D. J.; Peterson, C. J.

    1985-01-01

    Methods for destriping TM images and results of the application of these methods to selected TM scenes with sensor and scan striping, which was not removed by the radiometric correction during the TM Archive Generation Phase in TIPS, are presented. These methods correct only for gain and offset differences between detectors over many image lines and do not consider within-line effects. The feasibility of implementing a destriping process online in TIPS is also described.

  1. A new method of SC image processing for confluence estimation.

    PubMed

    Soleimani, Sajjad; Mirzaei, Mohsen; Toncu, Dana-Cristina

    2017-10-01

    Stem cells images are a strong instrument in the estimation of confluency during their culturing for therapeutic processes. Various laboratory conditions, such as lighting, cell container support and image acquisition equipment, effect on the image quality, subsequently on the estimation efficiency. This paper describes an efficient image processing method for cell pattern recognition and morphological analysis of images that were affected by uneven background. The proposed algorithm for enhancing the image is based on coupling a novel image denoising method through BM3D filter with an adaptive thresholding technique for improving the uneven background. This algorithm works well to provide a faster, easier, and more reliable method than manual measurement for the confluency assessment of stem cell cultures. The present scheme proves to be valid for the prediction of the confluency and growth of stem cells at early stages for tissue engineering in reparatory clinical surgery. The method used in this paper is capable of processing the image of the cells, which have already contained various defects due to either personnel mishandling or microscope limitations. Therefore, it provides proper information even out of the worst original images available. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Making the PACS workstation a browser of image processing software: a feasibility study using inter-process communication techniques.

    PubMed

    Wang, Chunliang; Ritter, Felix; Smedby, Orjan

    2010-07-01

    To enhance the functional expandability of a picture archiving and communication systems (PACS) workstation and to facilitate the integration of third-part image-processing modules, we propose a browser-server style method. In the proposed solution, the PACS workstation shows the front-end user interface defined in an XML file while the image processing software is running in the background as a server. Inter-process communication (IPC) techniques allow an efficient exchange of image data, parameters, and user input between the PACS workstation and stand-alone image-processing software. Using a predefined communication protocol, the PACS workstation developer or image processing software developer does not need detailed information about the other system, but will still be able to achieve seamless integration between the two systems and the IPC procedure is totally transparent to the final user. A browser-server style solution was built between OsiriX (PACS workstation software) and MeVisLab (Image-Processing Software). Ten example image-processing modules were easily added to OsiriX by converting existing MeVisLab image processing networks. Image data transfer using shared memory added <10ms of processing time while the other IPC methods cost 1-5 s in our experiments. The browser-server style communication based on IPC techniques is an appealing method that allows PACS workstation developers and image processing software developers to cooperate while focusing on different interests.

  3. Vision based tunnel inspection using non-rigid registration

    NASA Astrophysics Data System (ADS)

    Badshah, Amir; Ullah, Shan; Shahzad, Danish

    2015-04-01

    Growing numbers of long tunnels across the globe has increased the need for safety measurements and inspections of tunnels in these days. To avoid serious damages, tunnel inspection is highly recommended at regular intervals of time to find any deformations or cracks at the right time. While following the stringent safety and tunnel accessibility standards, conventional geodetic surveying using techniques of civil engineering and other manual and mechanical methods are time consuming and results in troublesome of routine life. An automatic tunnel inspection by image processing techniques using non rigid registration has been proposed. There are many other image processing methods used for image registration purposes. Most of the processes are operation of images in its spatial domain like finding edges and corners by Harris edge detection method. These methods are quite time consuming and fail for some or other reasons like for blurred or images with noise. Due to use of image features directly by these methods in the process, are known by the group, correlation by image features. The other method is featureless correlation, in which the images are converted into its frequency domain and then correlated with each other. The shift in spatial domain is the same as in frequency domain, but the processing is order faster than in spatial domain. In the proposed method modified normalized phase correlation has been used to find any shift between two images. As pre pre-processing the tunnel images i.e. reference and template are divided into small patches. All these relative patches are registered by the proposed modified normalized phase correlation. By the application of the proposed algorithm we get the pixel movement of the images. And then these pixels shifts are converted to measuring units like mm, cm etc. After the complete process if there is any shift in the tunnel at described points are located.

  4. Fingerprint pattern restoration by digital image processing techniques.

    PubMed

    Wen, Che-Yen; Yu, Chiu-Chung

    2003-09-01

    Fingerprint evidence plays an important role in solving criminal problems. However, defective (lacking information needed for completeness) or contaminated (undesirable information included) fingerprint patterns make identifying and recognizing processes difficult. Unfortunately. this is the usual case. In the recognizing process (enhancement of patterns, or elimination of "false alarms" so that a fingerprint pattern can be searched in the Automated Fingerprint Identification System (AFIS)), chemical and physical techniques have been proposed to improve pattern legibility. In the identifying process, a fingerprint examiner can enhance contaminated (but not defective) fingerprint patterns under guidelines provided by the Scientific Working Group on Friction Ridge Analysis, Study and Technology (SWGFAST), the Scientific Working Group on Imaging Technology (SWGIT), and an AFIS working group within the National Institute of Justice. Recently, the image processing techniques have been successfully applied in forensic science. For example, we have applied image enhancement methods to improve the legibility of digital images such as fingerprints and vehicle plate numbers. In this paper, we propose a novel digital image restoration technique based on the AM (amplitude modulation)-FM (frequency modulation) reaction-diffusion method to restore defective or contaminated fingerprint patterns. This method shows its potential application to fingerprint pattern enhancement in the recognizing process (but not for the identifying process). Synthetic and real images are used to show the capability of the proposed method. The results of enhancing fingerprint patterns by the manual process and our method are evaluated and compared.

  5. A new automated assessment method for contrast-detail images by applying support vector machine and its robustness to nonlinear image processing.

    PubMed

    Takei, Takaaki; Ikeda, Mitsuru; Imai, Kuniharu; Yamauchi-Kawaura, Chiyo; Kato, Katsuhiko; Isoda, Haruo

    2013-09-01

    The automated contrast-detail (C-D) analysis methods developed so-far cannot be expected to work well on images processed with nonlinear methods, such as noise reduction methods. Therefore, we have devised a new automated C-D analysis method by applying support vector machine (SVM), and tested for its robustness to nonlinear image processing. We acquired the CDRAD (a commercially available C-D test object) images at a tube voltage of 120 kV and a milliampere-second product (mAs) of 0.5-5.0. A partial diffusion equation based technique was used as noise reduction method. Three radiologists and three university students participated in the observer performance study. The training data for our SVM method was the classification data scored by the one radiologist for the CDRAD images acquired at 1.6 and 3.2 mAs and their noise-reduced images. We also compared the performance of our SVM method with the CDRAD Analyser algorithm. The mean C-D diagrams (that is a plot of the mean of the smallest visible hole diameter vs. hole depth) obtained from our devised SVM method agreed well with the ones averaged across the six human observers for both original and noise-reduced CDRAD images, whereas the mean C-D diagrams from the CDRAD Analyser algorithm disagreed with the ones from the human observers for both original and noise-reduced CDRAD images. In conclusion, our proposed SVM method for C-D analysis will work well for the images processed with the non-linear noise reduction method as well as for the original radiographic images.

  6. An anisotropic diffusion method for denoising dynamic susceptibility contrast-enhanced magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Murase, Kenya; Yamazaki, Youichi; Shinohara, Masaaki; Kawakami, Kazunori; Kikuchi, Keiichi; Miki, Hitoshi; Mochizuki, Teruhito; Ikezoe, Junpei

    2001-10-01

    The purpose of this study was to present an application of a novel denoising technique for improving the accuracy of cerebral blood flow (CBF) images generated from dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI). The method presented in this study was based on anisotropic diffusion (AD). The usefulness of this method was firstly investigated using computer simulations. We applied this method to patient data acquired using a 1.5 T MR system. After a bolus injection of Gd-DTPA, we obtained 40-50 dynamic images with a 1.32-2.08 s time resolution in 4-6 slices. The dynamic images were processed using the AD method, and then the CBF images were generated using pixel-by-pixel deconvolution analysis. For comparison, the CBF images were also generated with or without processing the dynamic images using a median or Gaussian filter. In simulation studies, the standard deviation of the CBF values obtained after processing by the AD method was smaller than that of the CBF values obtained without any processing, while the mean value agreed well with the true CBF value. Although the median and Gaussian filters also reduced image noise, the mean CBF values were considerably underestimated compared with the true values. Clinical studies also suggested that the AD method was capable of reducing the image noise while preserving the quantitative accuracy of CBF images. In conclusion, the AD method appears useful for denoising DSC-MRI, which will make the CBF images generated from DSC-MRI more reliable.

  7. Novel image processing method study for a label-free optical biosensor

    NASA Astrophysics Data System (ADS)

    Yang, Chenhao; Wei, Li'an; Yang, Rusong; Feng, Ying

    2015-10-01

    Optical biosensor is generally divided into labeled type and label-free type, the former mainly contains fluorescence labeled method and radioactive-labeled method, while fluorescence-labeled method is more mature in the application. The mainly image processing methods of fluorescent-labeled biosensor includes smooth filtering, artificial gridding and constant thresholding. Since some fluorescent molecules may influence the biological reaction, label-free methods have been the main developing direction of optical biosensors nowadays. The using of wider field of view and larger angle of incidence light path which could effectively improve the sensitivity of the label-free biosensor also brought more difficulties in image processing, comparing with the fluorescent-labeled biosensor. Otsu's method is widely applied in machine vision, etc, which choose the threshold to minimize the intraclass variance of the thresholded black and white pixels. It's capacity-constrained with the asymmetrical distribution of images as a global threshold segmentation. In order to solve the irregularity of light intensity on the transducer, we improved the algorithm. In this paper, we present a new image processing algorithm based on a reflectance modulation biosensor platform, which mainly comprises the design of sliding normalization algorithm for image rectification and utilizing the improved otsu's method for image segmentation, in order to implement automatic recognition of target areas. Finally we used adaptive gridding method extracting the target parameters for analysis. Those methods could improve the efficiency of image processing, reduce human intervention, enhance the reliability of experiments and laid the foundation for the realization of high throughput of label-free optical biosensors.

  8. Normalized Temperature Contrast Processing in Flash Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2016-01-01

    The paper presents further development in normalized contrast processing of flash infrared thermography method by the author given in US 8,577,120 B1. The method of computing normalized image or pixel intensity contrast, and normalized temperature contrast are provided, including converting one from the other. Methods of assessing emissivity of the object, afterglow heat flux, reflection temperature change and temperature video imaging during flash thermography are provided. Temperature imaging and normalized temperature contrast imaging provide certain advantages over pixel intensity normalized contrast processing by reducing effect of reflected energy in images and measurements, providing better quantitative data. The subject matter for this paper mostly comes from US 9,066,028 B1 by the author. Examples of normalized image processing video images and normalized temperature processing video images are provided. Examples of surface temperature video images, surface temperature rise video images and simple contrast video images area also provided. Temperature video imaging in flash infrared thermography allows better comparison with flash thermography simulation using commercial software which provides temperature video as the output. Temperature imaging also allows easy comparison of surface temperature change to camera temperature sensitivity or noise equivalent temperature difference (NETD) to assess probability of detecting (POD) anomalies.

  9. SU-E-J-16: Automatic Image Contrast Enhancement Based On Automatic Parameter Optimization for Radiation Therapy Setup Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, J; Washington University in St Louis, St Louis, MO; Li, H. Harlod

    Purpose: In RT patient setup 2D images, tissues often cannot be seen well due to the lack of image contrast. Contrast enhancement features provided by image reviewing software, e.g. Mosaiq and ARIA, require manual selection of the image processing filters and parameters thus inefficient and cannot be automated. In this work, we developed a novel method to automatically enhance the 2D RT image contrast to allow automatic verification of patient daily setups as a prerequisite step of automatic patient safety assurance. Methods: The new method is based on contrast limited adaptive histogram equalization (CLAHE) and high-pass filtering algorithms. The mostmore » important innovation is to automatically select the optimal parameters by optimizing the image contrast. The image processing procedure includes the following steps: 1) background and noise removal, 2) hi-pass filtering by subtracting the Gaussian smoothed Result, and 3) histogram equalization using CLAHE algorithm. Three parameters were determined through an iterative optimization which was based on the interior-point constrained optimization algorithm: the Gaussian smoothing weighting factor, the CLAHE algorithm block size and clip limiting parameters. The goal of the optimization is to maximize the entropy of the processed Result. Results: A total 42 RT images were processed. The results were visually evaluated by RT physicians and physicists. About 48% of the images processed by the new method were ranked as excellent. In comparison, only 29% and 18% of the images processed by the basic CLAHE algorithm and by the basic window level adjustment process, were ranked as excellent. Conclusion: This new image contrast enhancement method is robust and automatic, and is able to significantly outperform the basic CLAHE algorithm and the manual window-level adjustment process that are currently used in clinical 2D image review software tools.« less

  10. Research on pre-processing of QR Code

    NASA Astrophysics Data System (ADS)

    Sun, Haixing; Xia, Haojie; Dong, Ning

    2013-10-01

    QR code encodes many kinds of information because of its advantages: large storage capacity, high reliability, full arrange of utter-high-speed reading, small printing size and high-efficient representation of Chinese characters, etc. In order to obtain the clearer binarization image from complex background, and improve the recognition rate of QR code, this paper researches on pre-processing methods of QR code (Quick Response Code), and shows algorithms and results of image pre-processing for QR code recognition. Improve the conventional method by changing the Souvola's adaptive text recognition method. Additionally, introduce the QR code Extraction which adapts to different image size, flexible image correction approach, and improve the efficiency and accuracy of QR code image processing.

  11. A Study of Light Level Effect on the Accuracy of Image Processing-based Tomato Grading

    NASA Astrophysics Data System (ADS)

    Prijatna, D.; Muhaemin, M.; Wulandari, R. P.; Herwanto, T.; Saukat, M.; Sugandi, W. K.

    2018-05-01

    Image processing method has been used in non-destructive tests of agricultural products. Compared to manual method, image processing method may produce more objective and consistent results. Image capturing box installed in currently used tomato grading machine (TEP-4) is equipped with four fluorescence lamps to illuminate the processed tomatoes. Since the performance of any lamp will decrease if its service time has exceeded its lifetime, it is predicted that this will affect tomato classification. The objective of this study was to determine the minimum light levels which affect classification accuracy. This study was conducted by varying light level from minimum and maximum on tomatoes in image capturing boxes and then investigates its effects on image characteristics. Research results showed that light intensity affects two variables which are important for classification, for example, area and color of captured image. Image processing program was able to determine correctly the weight and classification of tomatoes when light level was 30 lx to 140 lx.

  12. Optimization of digital image processing to determine quantum dots' height and density from atomic force microscopy.

    PubMed

    Ruiz, J E; Paciornik, S; Pinto, L D; Ptak, F; Pires, M P; Souza, P L

    2018-01-01

    An optimized method of digital image processing to interpret quantum dots' height measurements obtained by atomic force microscopy is presented. The method was developed by combining well-known digital image processing techniques and particle recognition algorithms. The properties of quantum dot structures strongly depend on dots' height, among other features. Determination of their height is sensitive to small variations in their digital image processing parameters, which can generate misleading results. Comparing the results obtained with two image processing techniques - a conventional method and the new method proposed herein - with the data obtained by determining the height of quantum dots one by one within a fixed area, showed that the optimized method leads to more accurate results. Moreover, the log-normal distribution, which is often used to represent natural processes, shows a better fit to the quantum dots' height histogram obtained with the proposed method. Finally, the quantum dots' height obtained were used to calculate the predicted photoluminescence peak energies which were compared with the experimental data. Again, a better match was observed when using the proposed method to evaluate the quantum dots' height. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Normalized Temperature Contrast Processing in Infrared Flash Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2016-01-01

    The paper presents further development in normalized contrast processing used in flash infrared thermography method. Method of computing normalized image or pixel intensity contrast, and normalized temperature contrast are provided. Methods of converting image contrast to temperature contrast and vice versa are provided. Normalized contrast processing in flash thermography is useful in quantitative analysis of flash thermography data including flaw characterization and comparison of experimental results with simulation. Computation of normalized temperature contrast involves use of flash thermography data acquisition set-up with high reflectivity foil and high emissivity tape such that the foil, tape and test object are imaged simultaneously. Methods of assessing other quantitative parameters such as emissivity of object, afterglow heat flux, reflection temperature change and surface temperature during flash thermography are also provided. Temperature imaging and normalized temperature contrast processing provide certain advantages over normalized image contrast processing by reducing effect of reflected energy in images and measurements, therefore providing better quantitative data. Examples of incorporating afterglow heat-flux and reflection temperature evolution in flash thermography simulation are also discussed.

  14. Study on Mosaic and Uniform Color Method of Satellite Image Fusion in Large Srea

    NASA Astrophysics Data System (ADS)

    Liu, S.; Li, H.; Wang, X.; Guo, L.; Wang, R.

    2018-04-01

    Due to the improvement of satellite radiometric resolution and the color difference for multi-temporal satellite remote sensing images and the large amount of satellite image data, how to complete the mosaic and uniform color process of satellite images is always an important problem in image processing. First of all using the bundle uniform color method and least squares mosaic method of GXL and the dodging function, the uniform transition of color and brightness can be realized in large area and multi-temporal satellite images. Secondly, using Color Mapping software to color mosaic images of 16bit to mosaic images of 8bit based on uniform color method with low resolution reference images. At last, qualitative and quantitative analytical methods are used respectively to analyse and evaluate satellite image after mosaic and uniformity coloring. The test reflects the correlation of mosaic images before and after coloring is higher than 95 % and image information entropy increases, texture features are enhanced which have been proved by calculation of quantitative indexes such as correlation coefficient and information entropy. Satellite image mosaic and color processing in large area has been well implemented.

  15. Image stitching and image reconstruction of intestines captured using radial imaging capsule endoscope

    NASA Astrophysics Data System (ADS)

    Ou-Yang, Mang; Jeng, Wei-De; Wu, Yin-Yi; Dung, Lan-Rong; Wu, Hsien-Ming; Weng, Ping-Kuo; Huang, Ker-Jer; Chiu, Luan-Jiau

    2012-05-01

    This study investigates image processing using the radial imaging capsule endoscope (RICE) system. First, an experimental environment is established in which a simulated object has a shape that is similar to a cylinder, such that a triaxial platform can be used to push the RICE into the sample and capture radial images. Then four algorithms (mean absolute error, mean square error, Pearson correlation coefficient, and deformation processing) are used to stitch the images together. The Pearson correlation coefficient method is the most effective algorithm because it yields the highest peak signal-to-noise ratio, higher than 80.69 compared to the original image. Furthermore, a living animal experiment is carried out. Finally, the Pearson correlation coefficient method and vector deformation processing are used to stitch the images that were captured in the living animal experiment. This method is very attractive because unlike the other methods, in which two lenses are required to reconstruct the geometrical image, RICE uses only one lens and one mirror.

  16. System and method for image mapping and visual attention

    NASA Technical Reports Server (NTRS)

    Peters, II, Richard A. (Inventor)

    2010-01-01

    A method is described for mapping dense sensory data to a Sensory Ego Sphere (SES). Methods are also described for finding and ranking areas of interest in the images that form a complete visual scene on an SES. Further, attentional processing of image data is best done by performing attentional processing on individual full-size images from the image sequence, mapping each attentional location to the nearest node, and then summing attentional locations at each node.

  17. System and method for image mapping and visual attention

    NASA Technical Reports Server (NTRS)

    Peters, II, Richard A. (Inventor)

    2011-01-01

    A method is described for mapping dense sensory data to a Sensory Ego Sphere (SES). Methods are also described for finding and ranking areas of interest in the images that form a complete visual scene on an SES. Further, attentional processing of image data is best done by performing attentional processing on individual full-size images from the image sequence, mapping each attentional location to the nearest node, and then summing all attentional locations at each node.

  18. Stochastic simulation by image quilting of process-based geological models

    NASA Astrophysics Data System (ADS)

    Hoffimann, Júlio; Scheidt, Céline; Barfod, Adrian; Caers, Jef

    2017-09-01

    Process-based modeling offers a way to represent realistic geological heterogeneity in subsurface models. The main limitation lies in conditioning such models to data. Multiple-point geostatistics can use these process-based models as training images and address the data conditioning problem. In this work, we further develop image quilting as a method for 3D stochastic simulation capable of mimicking the realism of process-based geological models with minimal modeling effort (i.e. parameter tuning) and at the same time condition them to a variety of data. In particular, we develop a new probabilistic data aggregation method for image quilting that bypasses traditional ad-hoc weighting of auxiliary variables. In addition, we propose a novel criterion for template design in image quilting that generalizes the entropy plot for continuous training images. The criterion is based on the new concept of voxel reuse-a stochastic and quilting-aware function of the training image. We compare our proposed method with other established simulation methods on a set of process-based training images of varying complexity, including a real-case example of stochastic simulation of the buried-valley groundwater system in Denmark.

  19. Particle Morphology Analysis of Biomass Material Based on Improved Image Processing Method

    PubMed Central

    Lu, Zhaolin

    2017-01-01

    Particle morphology, including size and shape, is an important factor that significantly influences the physical and chemical properties of biomass material. Based on image processing technology, a method was developed to process sample images, measure particle dimensions, and analyse the particle size and shape distributions of knife-milled wheat straw, which had been preclassified into five nominal size groups using mechanical sieving approach. Considering the great variation of particle size from micrometer to millimeter, the powders greater than 250 μm were photographed by a flatbed scanner without zoom function, and the others were photographed using a scanning electron microscopy (SEM) with high-image resolution. Actual imaging tests confirmed the excellent effect of backscattered electron (BSE) imaging mode of SEM. Particle aggregation is an important factor that affects the recognition accuracy of the image processing method. In sample preparation, the singulated arrangement and ultrasonic dispersion methods were used to separate powders into particles that were larger and smaller than the nominal size of 250 μm. In addition, an image segmentation algorithm based on particle geometrical information was proposed to recognise the finer clustered powders. Experimental results demonstrated that the improved image processing method was suitable to analyse the particle size and shape distributions of ground biomass materials and solve the size inconsistencies in sieving analysis. PMID:28298925

  20. Image processing pipeline for segmentation and material classification based on multispectral high dynamic range polarimetric images.

    PubMed

    Martínez-Domingo, Miguel Ángel; Valero, Eva M; Hernández-Andrés, Javier; Tominaga, Shoji; Horiuchi, Takahiko; Hirai, Keita

    2017-11-27

    We propose a method for the capture of high dynamic range (HDR), multispectral (MS), polarimetric (Pol) images of indoor scenes using a liquid crystal tunable filter (LCTF). We have included the adaptive exposure estimation (AEE) method to fully automatize the capturing process. We also propose a pre-processing method which can be applied for the registration of HDR images after they are already built as the result of combining different low dynamic range (LDR) images. This method is applied to ensure a correct alignment of the different polarization HDR images for each spectral band. We have focused our efforts in two main applications: object segmentation and classification into metal and dielectric classes. We have simplified the segmentation using mean shift combined with cluster averaging and region merging techniques. We compare the performance of our segmentation with that of Ncut and Watershed methods. For the classification task, we propose to use information not only in the highlight regions but also in their surrounding area, extracted from the degree of linear polarization (DoLP) maps. We present experimental results which proof that the proposed image processing pipeline outperforms previous techniques developed specifically for MSHDRPol image cubes.

  1. A novel data processing technique for image reconstruction of penumbral imaging

    NASA Astrophysics Data System (ADS)

    Xie, Hongwei; Li, Hongyun; Xu, Zeping; Song, Guzhou; Zhang, Faqiang; Zhou, Lin

    2011-06-01

    CT image reconstruction technique was applied to the data processing of the penumbral imaging. Compared with other traditional processing techniques for penumbral coded pinhole image such as Wiener, Lucy-Richardson and blind technique, this approach is brand new. In this method, the coded aperture processing method was used for the first time independent to the point spread function of the image diagnostic system. In this way, the technical obstacles was overcome in the traditional coded pinhole image processing caused by the uncertainty of point spread function of the image diagnostic system. Then based on the theoretical study, the simulation of penumbral imaging and image reconstruction was carried out to provide fairly good results. While in the visible light experiment, the point source of light was used to irradiate a 5mm×5mm object after diffuse scattering and volume scattering. The penumbral imaging was made with aperture size of ~20mm. Finally, the CT image reconstruction technique was used for image reconstruction to provide a fairly good reconstruction result.

  2. Image quality and dose differences caused by vendor-specific image processing of neonatal radiographs.

    PubMed

    Sensakovic, William F; O'Dell, M Cody; Letter, Haley; Kohler, Nathan; Rop, Baiywo; Cook, Jane; Logsdon, Gregory; Varich, Laura

    2016-10-01

    Image processing plays an important role in optimizing image quality and radiation dose in projection radiography. Unfortunately commercial algorithms are black boxes that are often left at or near vendor default settings rather than being optimized. We hypothesize that different commercial image-processing systems, when left at or near default settings, create significant differences in image quality. We further hypothesize that image-quality differences can be exploited to produce images of equivalent quality but lower radiation dose. We used a portable radiography system to acquire images on a neonatal chest phantom and recorded the entrance surface air kerma (ESAK). We applied two image-processing systems (Optima XR220amx, by GE Healthcare, Waukesha, WI; and MUSICA(2) by Agfa HealthCare, Mortsel, Belgium) to the images. Seven observers (attending pediatric radiologists and radiology residents) independently assessed image quality using two methods: rating and matching. Image-quality ratings were independently assessed by each observer on a 10-point scale. Matching consisted of each observer matching GE-processed images and Agfa-processed images with equivalent image quality. A total of 210 rating tasks and 42 matching tasks were performed and effective dose was estimated. Median Agfa-processed image-quality ratings were higher than GE-processed ratings. Non-diagnostic ratings were seen over a wider range of doses for GE-processed images than for Agfa-processed images. During matching tasks, observers matched image quality between GE-processed images and Agfa-processed images acquired at a lower effective dose (11 ± 9 μSv; P < 0.0001). Image-processing methods significantly impact perceived image quality. These image-quality differences can be exploited to alter protocols and produce images of equivalent image quality but lower doses. Those purchasing projection radiography systems or third-party image-processing software should be aware that image processing can significantly impact image quality when settings are left near default values.

  3. Hyperspectral image processing methods

    USDA-ARS?s Scientific Manuscript database

    Hyperspectral image processing refers to the use of computer algorithms to extract, store and manipulate both spatial and spectral information contained in hyperspectral images across the visible and near-infrared portion of the electromagnetic spectrum. A typical hyperspectral image processing work...

  4. Distributed processing method for arbitrary view generation in camera sensor network

    NASA Astrophysics Data System (ADS)

    Tehrani, Mehrdad P.; Fujii, Toshiaki; Tanimoto, Masayuki

    2003-05-01

    Camera sensor network as a new advent of technology is a network that each sensor node can capture video signals, process and communicate them with other nodes. The processing task in this network is to generate arbitrary view, which can be requested from central node or user. To avoid unnecessary communication between nodes in camera sensor network and speed up the processing time, we have distributed the processing tasks between nodes. In this method, each sensor node processes part of interpolation algorithm to generate the interpolated image with local communication between nodes. The processing task in camera sensor network is ray-space interpolation, which is an object independent method and based on MSE minimization by using adaptive filtering. Two methods were proposed for distributing processing tasks, which are Fully Image Shared Decentralized Processing (FIS-DP), and Partially Image Shared Decentralized Processing (PIS-DP), to share image data locally. Comparison of the proposed methods with Centralized Processing (CP) method shows that PIS-DP has the highest processing speed after FIS-DP, and CP has the lowest processing speed. Communication rate of CP and PIS-DP is almost same and better than FIS-DP. So, PIS-DP is recommended because of its better performance than CP and FIS-DP.

  5. Anniversary Paper: Image processing and manipulation through the pages of Medical Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armato, Samuel G. III; Ginneken, Bram van; Image Sciences Institute, University Medical Center Utrecht, Heidelberglaan 100, Room Q0S.459, 3584 CX Utrecht

    The language of radiology has gradually evolved from ''the film'' (the foundation of radiology since Wilhelm Roentgen's 1895 discovery of x-rays) to ''the image,'' an electronic manifestation of a radiologic examination that exists within the bits and bytes of a computer. Rather than simply storing and displaying radiologic images in a static manner, the computational power of the computer may be used to enhance a radiologist's ability to visually extract information from the image through image processing and image manipulation algorithms. Image processing tools provide a broad spectrum of opportunities for image enhancement. Gray-level manipulations such as histogram equalization, spatialmore » alterations such as geometric distortion correction, preprocessing operations such as edge enhancement, and enhanced radiography techniques such as temporal subtraction provide powerful methods to improve the diagnostic quality of an image or to enhance structures of interest within an image. Furthermore, these image processing algorithms provide the building blocks of more advanced computer vision methods. The prominent role of medical physicists and the AAPM in the advancement of medical image processing methods, and in the establishment of the ''image'' as the fundamental entity in radiology and radiation oncology, has been captured in 35 volumes of Medical Physics.« less

  6. A Rotor Tip Vortex Tracing Algorithm for Image Post-Processing

    NASA Technical Reports Server (NTRS)

    Overmeyer, Austin D.

    2015-01-01

    A neurite tracing algorithm, originally developed for medical image processing, was used to trace the location of the rotor tip vortex in density gradient flow visualization images. The tracing algorithm was applied to several representative test images to form case studies. The accuracy of the tracing algorithm was compared to two current methods including a manual point and click method and a cross-correlation template method. It is shown that the neurite tracing algorithm can reduce the post-processing time to trace the vortex by a factor of 10 to 15 without compromising the accuracy of the tip vortex location compared to other methods presented in literature.

  7. Frequency division multiplexed multi-color fluorescence microscope system

    NASA Astrophysics Data System (ADS)

    Le, Vu Nam; Yang, Huai Dong; Zhang, Si Chun; Zhang, Xin Rong; Jin, Guo Fan

    2017-10-01

    Grayscale camera can only obtain gray scale image of object, while the multicolor imaging technology can obtain the color information to distinguish the sample structures which have the same shapes but in different colors. In fluorescence microscopy, the current method of multicolor imaging are flawed. Problem of these method is affecting the efficiency of fluorescence imaging, reducing the sampling rate of CCD etc. In this paper, we propose a novel multiple color fluorescence microscopy imaging method which based on the Frequency division multiplexing (FDM) technology, by modulating the excitation lights and demodulating the fluorescence signal in frequency domain. This method uses periodic functions with different frequency to modulate amplitude of each excitation lights, and then combine these beams for illumination in a fluorescence microscopy imaging system. The imaging system will detect a multicolor fluorescence image by a grayscale camera. During the data processing, the signal obtained by each pixel of the camera will be processed with discrete Fourier transform, decomposed by color in the frequency domain and then used inverse discrete Fourier transform. After using this process for signals from all of the pixels, monochrome images of each color on the image plane can be obtained and multicolor image is also acquired. Based on this method, this paper has constructed and set up a two-color fluorescence microscope system with two excitation wavelengths of 488 nm and 639 nm. By using this system to observe the linearly movement of two kinds of fluorescent microspheres, after the data processing, we obtain a two-color fluorescence dynamic video which is consistent with the original image. This experiment shows that the dynamic phenomenon of multicolor fluorescent biological samples can be generally observed by this method. Compared with the current methods, this method can obtain the image signals of each color at the same time, and the color video's frame rate is consistent with the frame rate of the camera. The optical system is simpler and does not need extra color separation element. In addition, this method has a good filtering effect on the ambient light or other light signals which are not affected by the modulation process.

  8. Crop Row Detection in Maize Fields Inspired on the Human Visual Perception

    PubMed Central

    Romeo, J.; Pajares, G.; Montalvo, M.; Guerrero, J. M.; Guijarro, M.; Ribeiro, A.

    2012-01-01

    This paper proposes a new method, oriented to image real-time processing, for identifying crop rows in maize fields in the images. The vision system is designed to be installed onboard a mobile agricultural vehicle, that is, submitted to gyros, vibrations, and undesired movements. The images are captured under image perspective, being affected by the above undesired effects. The image processing consists of two main processes: image segmentation and crop row detection. The first one applies a threshold to separate green plants or pixels (crops and weeds) from the rest (soil, stones, and others). It is based on a fuzzy clustering process, which allows obtaining the threshold to be applied during the normal operation process. The crop row detection applies a method based on image perspective projection that searches for maximum accumulation of segmented green pixels along straight alignments. They determine the expected crop lines in the images. The method is robust enough to work under the above-mentioned undesired effects. It is favorably compared against the well-tested Hough transformation for line detection. PMID:22623899

  9. Fractional domain varying-order differential denoising method

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Shan; Zhang, Feng; Li, Bing-Zhao; Tao, Ran

    2014-10-01

    Removal of noise is an important step in the image restoration process, and it remains a challenging problem in image processing. Denoising is a process used to remove the noise from the corrupted image, while retaining the edges and other detailed features as much as possible. Recently, denoising in the fractional domain is a hot research topic. The fractional-order anisotropic diffusion method can bring a less blocky effect and preserve edges in image denoising, a method that has received much interest in the literature. Based on this method, we propose a new method for image denoising, in which fractional-varying-order differential, rather than constant-order differential, is used. The theoretical analysis and experimental results show that compared with the state-of-the-art fractional-order anisotropic diffusion method, the proposed fractional-varying-order differential denoising model can preserve structure and texture well, while quickly removing noise, and yields good visual effects and better peak signal-to-noise ratio.

  10. Processing the image gradient field using a topographic primal sketch approach.

    PubMed

    Gambaruto, A M

    2015-03-01

    The spatial derivatives of the image intensity provide topographic information that may be used to identify and segment objects. The accurate computation of the derivatives is often hampered in medical images by the presence of noise and a limited resolution. This paper focuses on accurate computation of spatial derivatives and their subsequent use to process an image gradient field directly, from which an image with improved characteristics can be reconstructed. The improvements include noise reduction, contrast enhancement, thinning object contours and the preservation of edges. Processing the gradient field directly instead of the image is shown to have numerous benefits. The approach is developed such that the steps are modular, allowing the overall method to be improved and possibly tailored to different applications. As presented, the approach relies on a topographic representation and primal sketch of an image. Comparisons with existing image processing methods on a synthetic image and different medical images show improved results and accuracy in segmentation. Here, the focus is on objects with low spatial resolution, which is often the case in medical images. The methods developed show the importance of improved accuracy in derivative calculation and the potential in processing the image gradient field directly. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Restoration of motion blurred images

    NASA Astrophysics Data System (ADS)

    Gaxiola, Leopoldo N.; Juarez-Salazar, Rigoberto; Diaz-Ramirez, Victor H.

    2017-08-01

    Image restoration is a classic problem in image processing. Image degradations can occur due to several reasons, for instance, imperfections of imaging systems, quantization errors, atmospheric turbulence, relative motion between camera or objects, among others. Motion blur is a typical degradation in dynamic imaging systems. In this work, we present a method to estimate the parameters of linear motion blur degradation from a captured blurred image. The proposed method is based on analyzing the frequency spectrum of a captured image in order to firstly estimate the degradation parameters, and then, to restore the image with a linear filter. The performance of the proposed method is evaluated by processing synthetic and real-life images. The obtained results are characterized in terms of accuracy of image restoration given by an objective criterion.

  12. Using fuzzy fractal features of digital images for the material surface analisys

    NASA Astrophysics Data System (ADS)

    Privezentsev, D. G.; Zhiznyakov, A. L.; Astafiev, A. V.; Pugin, E. V.

    2018-01-01

    Edge detection is an important task in image processing. There are a lot of approaches in this area: Sobel, Canny operators and others. One of the perspective techniques in image processing is the use of fuzzy logic and fuzzy sets theory. They allow us to increase processing quality by representing information in its fuzzy form. Most of the existing fuzzy image processing methods switch to fuzzy sets on very late stages, so this leads to some useful information loss. In this paper, a novel method of edge detection based on fuzzy image representation and fuzzy pixels is proposed. With this approach, we convert the image to fuzzy form on the first step. Different approaches to this conversion are described. Several membership functions for fuzzy pixel description and requirements for their form and view are given. A novel approach to edge detection based on Sobel operator and fuzzy image representation is proposed. Experimental testing of developed method was performed on remote sensing images.

  13. A novel Kalman filter based video image processing scheme for two-photon fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Sun, Wenqing; Huang, Xia; Li, Chunqiang; Xiao, Chuan; Qian, Wei

    2016-03-01

    Two-photon fluorescence microscopy (TPFM) is a perfect optical imaging equipment to monitor the interaction between fast moving viruses and hosts. However, due to strong unavoidable background noises from the culture, videos obtained by this technique are too noisy to elaborate this fast infection process without video image processing. In this study, we developed a novel scheme to eliminate background noises, recover background bacteria images and improve video qualities. In our scheme, we modified and implemented the following methods for both host and virus videos: correlation method, round identification method, tree-structured nonlinear filters, Kalman filters, and cell tracking method. After these procedures, most of noises were eliminated and host images were recovered with their moving directions and speed highlighted in the videos. From the analysis of the processed videos, 93% bacteria and 98% viruses were correctly detected in each frame on average.

  14. Automatic x-ray image contrast enhancement based on parameter auto-optimization.

    PubMed

    Qiu, Jianfeng; Harold Li, H; Zhang, Tiezhi; Ma, Fangfang; Yang, Deshan

    2017-11-01

    Insufficient image contrast associated with radiation therapy daily setup x-ray images could negatively affect accurate patient treatment setup. We developed a method to perform automatic and user-independent contrast enhancement on 2D kilo voltage (kV) and megavoltage (MV) x-ray images. The goal was to provide tissue contrast optimized for each treatment site in order to support accurate patient daily treatment setup and the subsequent offline review. The proposed method processes the 2D x-ray images with an optimized image processing filter chain, which consists of a noise reduction filter and a high-pass filter followed by a contrast limited adaptive histogram equalization (CLAHE) filter. The most important innovation is to optimize the image processing parameters automatically to determine the required image contrast settings per disease site and imaging modality. Three major parameters controlling the image processing chain, i.e., the Gaussian smoothing weighting factor for the high-pass filter, the block size, and the clip limiting parameter for the CLAHE filter, were determined automatically using an interior-point constrained optimization algorithm. Fifty-two kV and MV x-ray images were included in this study. The results were manually evaluated and ranked with scores from 1 (worst, unacceptable) to 5 (significantly better than adequate and visually praise worthy) by physicians and physicists. The average scores for the images processed by the proposed method, the CLAHE, and the best window-level adjustment were 3.92, 2.83, and 2.27, respectively. The percentage of the processed images received a score of 5 were 48, 29, and 18%, respectively. The proposed method is able to outperform the standard image contrast adjustment procedures that are currently used in the commercial clinical systems. When the proposed method is implemented in the clinical systems as an automatic image processing filter, it could be useful for allowing quicker and potentially more accurate treatment setup and facilitating the subsequent offline review and verification. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  15. A Method to Measure and Estimate Normalized Contrast in Infrared Flash Thermography

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2016-01-01

    The paper presents further development in normalized contrast processing used in flash infrared thermography method. Method of computing normalized image or pixel intensity contrast, and normalized temperature contrast are provided. Methods of converting image contrast to temperature contrast and vice versa are provided. Normalized contrast processing in flash thermography is useful in quantitative analysis of flash thermography data including flaw characterization and comparison of experimental results with simulation. Computation of normalized temperature contrast involves use of flash thermography data acquisition set-up with high reflectivity foil and high emissivity tape such that the foil, tape and test object are imaged simultaneously. Methods of assessing other quantitative parameters such as emissivity of object, afterglow heat flux, reflection temperature change and surface temperature during flash thermography are also provided. Temperature imaging and normalized temperature contrast processing provide certain advantages over normalized image contrast processing by reducing effect of reflected energy in images and measurements, therefore providing better quantitative data. Examples of incorporating afterglow heat-flux and reflection temperature evolution in flash thermography simulation are also discussed.

  16. Heuristic Analysis Model of Nitrided Layers’ Formation Consisting of the Image Processing and Analysis and Elements of Artificial Intelligence

    PubMed Central

    Wójcicki, Tomasz; Nowicki, Michał

    2016-01-01

    The article presents a selected area of research and development concerning the methods of material analysis based on the automatic image recognition of the investigated metallographic sections. The objectives of the analyses of the materials for gas nitriding technology are described. The methods of the preparation of nitrided layers, the steps of the process and the construction and operation of devices for gas nitriding are given. We discuss the possibility of using the methods of digital images processing in the analysis of the materials, as well as their essential task groups: improving the quality of the images, segmentation, morphological transformations and image recognition. The developed analysis model of the nitrided layers formation, covering image processing and analysis techniques, as well as selected methods of artificial intelligence are presented. The model is divided into stages, which are formalized in order to better reproduce their actions. The validation of the presented method is performed. The advantages and limitations of the developed solution, as well as the possibilities of its practical use, are listed. PMID:28773389

  17. Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture

    DOEpatents

    Lassahn, Gordon D.; Lancaster, Gregory D.; Apel, William A.; Thompson, Vicki S.

    2013-01-08

    Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture are described. According to one embodiment, an image portion identification method includes accessing data regarding an image depicting a plurality of biological substrates corresponding to at least one biological sample and indicating presence of at least one biological indicator within the biological sample and, using processing circuitry, automatically identifying a portion of the image depicting one of the biological substrates but not others of the biological substrates.

  18. Automatic detection of blurred images in UAV image sets

    NASA Astrophysics Data System (ADS)

    Sieberth, Till; Wackrow, Rene; Chandler, Jim H.

    2016-12-01

    Unmanned aerial vehicles (UAV) have become an interesting and active research topic for photogrammetry. Current research is based on images acquired by an UAV, which have a high ground resolution and good spectral and radiometrical resolution, due to the low flight altitudes combined with a high resolution camera. UAV image flights are also cost effective and have become attractive for many applications including, change detection in small scale areas. One of the main problems preventing full automation of data processing of UAV imagery is the degradation effect of blur caused by camera movement during image acquisition. This can be caused by the normal flight movement of the UAV as well as strong winds, turbulence or sudden operator inputs. This blur disturbs the visual analysis and interpretation of the data, causes errors and can degrade the accuracy in automatic photogrammetric processing algorithms. The detection and removal of these images is currently achieved manually, which is both time consuming and prone to error, particularly for large image-sets. To increase the quality of data processing an automated process is necessary, which must be both reliable and quick. This paper describes the development of an automatic filtering process, which is based upon the quantification of blur in an image. Images with known blur are processed digitally to determine a quantifiable measure of image blur. The algorithm is required to process UAV images fast and reliably to relieve the operator from detecting blurred images manually. The newly developed method makes it possible to detect blur caused by linear camera displacement and is based on human detection of blur. Humans detect blurred images best by comparing it to other images in order to establish whether an image is blurred or not. The developed algorithm simulates this procedure by creating an image for comparison using image processing. Creating internally a comparable image makes the method independent of additional images. However, the calculated blur value named SIEDS (saturation image edge difference standard-deviation) on its own does not provide an absolute number to judge if an image is blurred or not. To achieve a reliable judgement of image sharpness the SIEDS value has to be compared to other SIEDS values from the same dataset. The speed and reliability of the method was tested using a range of different UAV datasets. Two datasets will be presented in this paper to demonstrate the effectiveness of the algorithm. The algorithm proves to be fast and the returned values are optically correct, making the algorithm applicable for UAV datasets. Additionally, a close range dataset was processed to determine whether the method is also useful for close range applications. The results show that the method is also reliable for close range images, which significantly extends the field of application for the algorithm.

  19. A Segmentation Method for Lung Parenchyma Image Sequences Based on Superpixels and a Self-Generating Neural Forest

    PubMed Central

    Liao, Xiaolei; Zhao, Juanjuan; Jiao, Cheng; Lei, Lei; Qiang, Yan; Cui, Qiang

    2016-01-01

    Background Lung parenchyma segmentation is often performed as an important pre-processing step in the computer-aided diagnosis of lung nodules based on CT image sequences. However, existing lung parenchyma image segmentation methods cannot fully segment all lung parenchyma images and have a slow processing speed, particularly for images in the top and bottom of the lung and the images that contain lung nodules. Method Our proposed method first uses the position of the lung parenchyma image features to obtain lung parenchyma ROI image sequences. A gradient and sequential linear iterative clustering algorithm (GSLIC) for sequence image segmentation is then proposed to segment the ROI image sequences and obtain superpixel samples. The SGNF, which is optimized by a genetic algorithm (GA), is then utilized for superpixel clustering. Finally, the grey and geometric features of the superpixel samples are used to identify and segment all of the lung parenchyma image sequences. Results Our proposed method achieves higher segmentation precision and greater accuracy in less time. It has an average processing time of 42.21 seconds for each dataset and an average volume pixel overlap ratio of 92.22 ± 4.02% for four types of lung parenchyma image sequences. PMID:27532214

  20. A new data processing technique for Rayleigh-Taylor instability growth experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Yongteng; Tu, Shaoyong; Miao, Wenyong

    Typical face-on experiments for Rayleigh-Taylor instability study involve the time-resolved radiography of an accelerated foil with line-of-sight of the radiography along the direction of motion. The usual method which derives perturbation amplitudes from the face-on images reverses the actual image transmission procedure, so the obtained results will have a large error in the case of large optical depth. In order to improve the accuracy of data processing, a new data processing technique has been developed to process the face-on images. This technique based on convolution theorem, refined solutions of optical depth can be achieved by solving equations. Furthermore, we discussmore » both techniques for image processing, including the influence of modulation transfer function of imaging system and the backlighter spatial profile. Besides, we use the two methods to the process the experimental results in Shenguang-II laser facility and the comparison shows that the new method effectively improve the accuracy of data processing.« less

  1. Real-time biscuit tile image segmentation method based on edge detection.

    PubMed

    Matić, Tomislav; Aleksi, Ivan; Hocenski, Željko; Kraus, Dieter

    2018-05-01

    In this paper we propose a novel real-time Biscuit Tile Segmentation (BTS) method for images from ceramic tile production line. BTS method is based on signal change detection and contour tracing with a main goal of separating tile pixels from background in images captured on the production line. Usually, human operators are visually inspecting and classifying produced ceramic tiles. Computer vision and image processing techniques can automate visual inspection process if they fulfill real-time requirements. Important step in this process is a real-time tile pixels segmentation. BTS method is implemented for parallel execution on a GPU device to satisfy the real-time constraints of tile production line. BTS method outperforms 2D threshold-based methods, 1D edge detection methods and contour-based methods. Proposed BTS method is in use in the biscuit tile production line. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Image processing methods in two and three dimensions used to animate remotely sensed data. [cloud cover

    NASA Technical Reports Server (NTRS)

    Hussey, K. J.; Hall, J. R.; Mortensen, R. A.

    1986-01-01

    Image processing methods and software used to animate nonimaging remotely sensed data on cloud cover are described. Three FORTRAN programs were written in the VICAR2/TAE image processing domain to perform 3D perspective rendering, to interactively select parameters controlling the projection, and to interpolate parameter sets for animation images between key frames. Operation of the 3D programs and transferring the images to film is automated using executive control language and custom hardware to link the computer and camera.

  3. Autocorrelation techniques for soft photogrammetry

    NASA Astrophysics Data System (ADS)

    Yao, Wu

    In this thesis research is carried out on image processing, image matching searching strategies, feature type and image matching, and optimal window size in image matching. To make comparisons, the soft photogrammetry package SoftPlotter is used. Two aerial photographs from the Iowa State University campus high flight 94 are scanned into digital format. In order to create a stereo model from them, interior orientation, single photograph rectification and stereo rectification are done. Two new image matching methods, multi-method image matching (MMIM) and unsquare window image matching are developed and compared. MMIM is used to determine the optimal window size in image matching. Twenty four check points from four different types of ground features are used for checking the results from image matching. Comparison between these four types of ground feature shows that the methods developed here improve the speed and the precision of image matching. A process called direct transformation is described and compared with the multiple steps in image processing. The results from image processing are consistent with those from SoftPlotter. A modified LAN image header is developed and used to store the information about the stereo model and image matching. A comparison is also made between cross correlation image matching (CCIM), least difference image matching (LDIM) and least square image matching (LSIM). The quality of image matching in relation to ground features are compared using two methods developed in this study, the coefficient surface for CCIM and the difference surface for LDIM. To reduce the amount of computation in image matching, the best-track searching algorithm, developed in this research, is used instead of the whole range searching algorithm.

  4. Search systems and computer-implemented search methods

    DOEpatents

    Payne, Deborah A.; Burtner, Edwin R.; Hampton, Shawn D.; Gillen, David S.; Henry, Michael J.

    2017-03-07

    Search systems and computer-implemented search methods are described. In one aspect, a search system includes a communications interface configured to access a plurality of data items of a collection, wherein the data items include a plurality of image objects individually comprising image data utilized to generate an image of the respective data item. The search system may include processing circuitry coupled with the communications interface and configured to process the image data of the data items of the collection to identify a plurality of image content facets which are indicative of image content contained within the images and to associate the image objects with the image content facets and a display coupled with the processing circuitry and configured to depict the image objects associated with the image content facets.

  5. Search systems and computer-implemented search methods

    DOEpatents

    Payne, Deborah A.; Burtner, Edwin R.; Bohn, Shawn J.; Hampton, Shawn D.; Gillen, David S.; Henry, Michael J.

    2015-12-22

    Search systems and computer-implemented search methods are described. In one aspect, a search system includes a communications interface configured to access a plurality of data items of a collection, wherein the data items include a plurality of image objects individually comprising image data utilized to generate an image of the respective data item. The search system may include processing circuitry coupled with the communications interface and configured to process the image data of the data items of the collection to identify a plurality of image content facets which are indicative of image content contained within the images and to associate the image objects with the image content facets and a display coupled with the processing circuitry and configured to depict the image objects associated with the image content facets.

  6. Quantitative evaluation method of the bubble structure of sponge cake by using morphology image processing

    NASA Astrophysics Data System (ADS)

    Tatebe, Hironobu; Kato, Kunihito; Yamamoto, Kazuhiko; Katsuta, Yukio; Nonaka, Masahiko

    2005-12-01

    Now a day, many evaluation methods for the food industry by using image processing are proposed. These methods are becoming new evaluation method besides the sensory test and the solid-state measurement that are using for the quality evaluation. An advantage of the image processing is to be able to evaluate objectively. The goal of our research is structure evaluation of sponge cake by using image processing. In this paper, we propose a feature extraction method of the bobble structure in the sponge cake. Analysis of the bubble structure is one of the important properties to understand characteristics of the cake from the image. In order to take the cake image, first we cut cakes and measured that's surface by using the CIS scanner. Because the depth of field of this type scanner is very shallow, the bubble region of the surface has low gray scale values, and it has a feature that is blur. We extracted bubble regions from the surface images based on these features. First, input image is binarized, and the feature of bubble is extracted by the morphology analysis. In order to evaluate the result of feature extraction, we compared correlation with "Size of the bubble" of the sensory test result. From a result, the bubble extraction by using morphology analysis gives good correlation. It is shown that our method is as well as the subjectivity evaluation.

  7. Mapping biomass for a northern forest ecosystem using multi-frequency SAR data

    NASA Technical Reports Server (NTRS)

    Ranson, K. J.; Sun, Guoqing

    1992-01-01

    Image processing methods for mapping standing biomass for a forest in Maine, using NASA/JPL airborne synthetic aperture radar (AIRSAR) polarimeter data, are presented. By examining the dependence of backscattering on standing biomass, it is determined that the ratio of HV backscattering from a longer wavelength (P- or L-band) to a shorter wavelength (C) is a good combination for mapping total biomass. This ratio enhances the correlation of the image signature to the standing biomass and compensates for a major part of the variations in backscattering attributed to radar incidence angle. The image processing methods used include image calibration, ratioing, filtering, and segmentation. The image segmentation algorithm uses both means and variances of the image, and it is combined with the image filtering process. Preliminary assessment of the resultant biomass maps suggests that this is a promising method.

  8. A new stationary gridline artifact suppression method based on the 2D discrete wavelet transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Hui, E-mail: corinna@seu.edu.cn; Key Laboratory of Computer Network and Information Integration; Centre de Recherche en Information Biomédicale sino-français, Laboratoire International Associé, Inserm, Université de Rennes 1, Rennes 35000

    2015-04-15

    Purpose: In digital x-ray radiography, an antiscatter grid is inserted between the patient and the image receptor to reduce scattered radiation. If the antiscatter grid is used in a stationary way, gridline artifacts will appear in the final image. In most of the gridline removal image processing methods, the useful information with spatial frequencies close to that of the gridline is usually lost or degraded. In this study, a new stationary gridline suppression method is designed to preserve more of the useful information. Methods: The method is as follows. The input image is first recursively decomposed into several smaller subimagesmore » using a multiscale 2D discrete wavelet transform. The decomposition process stops when the gridline signal is found to be greater than a threshold in one or several of these subimages using a gridline detection module. An automatic Gaussian band-stop filter is then applied to the detected subimages to remove the gridline signal. Finally, the restored image is achieved using the corresponding 2D inverse discrete wavelet transform. Results: The processed images show that the proposed method can remove the gridline signal efficiently while maintaining the image details. The spectra of a 1D Fourier transform of the processed images demonstrate that, compared with some existing gridline removal methods, the proposed method has better information preservation after the removal of the gridline artifacts. Additionally, the performance speed is relatively high. Conclusions: The experimental results demonstrate the efficiency of the proposed method. Compared with some existing gridline removal methods, the proposed method can preserve more information within an acceptable execution time.« less

  9. Fast Image Restoration for Spatially Varying Defocus Blur of Imaging Sensor

    PubMed Central

    Cheong, Hejin; Chae, Eunjung; Lee, Eunsung; Jo, Gwanghyun; Paik, Joonki

    2015-01-01

    This paper presents a fast adaptive image restoration method for removing spatially varying out-of-focus blur of a general imaging sensor. After estimating the parameters of space-variant point-spread-function (PSF) using the derivative in each uniformly blurred region, the proposed method performs spatially adaptive image restoration by selecting the optimal restoration filter according to the estimated blur parameters. Each restoration filter is implemented in the form of a combination of multiple FIR filters, which guarantees the fast image restoration without the need of iterative or recursive processing. Experimental results show that the proposed method outperforms existing space-invariant restoration methods in the sense of both objective and subjective performance measures. The proposed algorithm can be employed to a wide area of image restoration applications, such as mobile imaging devices, robot vision, and satellite image processing. PMID:25569760

  10. Joint Processing of Envelope Alignment and Phase Compensation for Isar Imaging

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Jin, Guanghu; Dong, Zhen

    2018-04-01

    Range envelope alignment and phase compensation are spilt into two isolated parts in the classical methods of translational motion compensation in Inverse Synthetic Aperture Radar (ISAR) imaging. In classic method of the rotating object imaging, the two reference points of the envelope alignment and the Phase Difference (PD) estimation are probably not the same point, making it difficult to uncouple the coupling term by conducting the correction of Migration Through Resolution Cell (MTRC). In this paper, an improved approach of joint processing which chooses certain scattering point as the sole reference point is proposed to perform with utilizing the Prominent Point Processing (PPP) method. With this end in view, we firstly get the initial image using classical methods from which a certain scattering point can be chose. The envelope alignment and phase compensation using the selected scattering point as the same reference point are subsequently conducted. The keystone transform is thus smoothly applied to further improve imaging quality. Both simulation experiments and real data processing are provided to demonstrate the performance of the proposed method compared with classical method.

  11. High resolution x-ray CMT: Reconstruction methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, J.K.

    This paper qualitatively discusses the primary characteristics of methods for reconstructing tomographic images from a set of projections. These reconstruction methods can be categorized as either {open_quotes}analytic{close_quotes} or {open_quotes}iterative{close_quotes} techniques. Analytic algorithms are derived from the formal inversion of equations describing the imaging process, while iterative algorithms incorporate a model of the imaging process and provide a mechanism to iteratively improve image estimates. Analytic reconstruction algorithms are typically computationally more efficient than iterative methods; however, analytic algorithms are available for a relatively limited set of imaging geometries and situations. Thus, the framework of iterative reconstruction methods is better suited formore » high accuracy, tomographic reconstruction codes.« less

  12. Enhancement of Satellite Image Compression Using a Hybrid (DWT-DCT) Algorithm

    NASA Astrophysics Data System (ADS)

    Shihab, Halah Saadoon; Shafie, Suhaidi; Ramli, Abdul Rahman; Ahmad, Fauzan

    2017-12-01

    Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) image compression techniques have been utilized in most of the earth observation satellites launched during the last few decades. However, these techniques have some issues that should be addressed. The DWT method has proven to be more efficient than DCT for several reasons. Nevertheless, the DCT can be exploited to improve the high-resolution satellite image compression when combined with the DWT technique. Hence, a proposed hybrid (DWT-DCT) method was developed and implemented in the current work, simulating an image compression system on-board on a small remote sensing satellite, with the aim of achieving a higher compression ratio to decrease the onboard data storage and the downlink bandwidth, while avoiding further complex levels of DWT. This method also succeeded in maintaining the reconstructed satellite image quality through replacing the standard forward DWT thresholding and quantization processes with an alternative process that employed the zero-padding technique, which also helped to reduce the processing time of DWT compression. The DCT, DWT and the proposed hybrid methods were implemented individually, for comparison, on three LANDSAT 8 images, using the MATLAB software package. A comparison was also made between the proposed method and three other previously published hybrid methods. The evaluation of all the objective and subjective results indicated the feasibility of using the proposed hybrid (DWT-DCT) method to enhance the image compression process on-board satellites.

  13. Direct-to-digital holography reduction of reference hologram noise and fourier space smearing

    DOEpatents

    Voelkl, Edgar

    2006-06-27

    Systems and methods are described for reduction of reference hologram noise and reduction of Fourier space smearing, especially in the context of direct-to-digital holography (off-axis interferometry). A method of reducing reference hologram noise includes: recording a plurality of reference holograms; processing the plurality of reference holograms into a corresponding plurality of reference image waves; and transforming the corresponding plurality of reference image waves into a reduced noise reference image wave. A method of reducing smearing in Fourier space includes: recording a plurality of reference holograms; processing the plurality of reference holograms into a corresponding plurality of reference complex image waves; transforming the corresponding plurality of reference image waves into a reduced noise reference complex image wave; recording a hologram of an object; processing the hologram of the object into an object complex image wave; and dividing the complex image wave of the object by the reduced noise reference complex image wave to obtain a reduced smearing object complex image wave.

  14. Possibilities of Processing Archival Photogrammetric Images Captured by Rollei 6006 Metric Camera Using Current Method

    NASA Astrophysics Data System (ADS)

    Dlesk, A.; Raeva, P.; Vach, K.

    2018-05-01

    Processing of analog photogrammetric negatives using current methods brings new challenges and possibilities, for example, creation of a 3D model from archival images which enables the comparison of historical state and current state of cultural heritage objects. The main purpose of this paper is to present possibilities of processing archival analog images captured by photogrammetric camera Rollei 6006 metric. In 1994, the Czech company EuroGV s.r.o. carried out photogrammetric measurements of former limestone quarry the Great America located in the Central Bohemian Region in the Czech Republic. All the negatives of photogrammetric images, complete documentation, coordinates of geodetically measured ground control points, calibration reports and external orientation of images calculated in the Combined Adjustment Program are preserved and were available for the current processing. Negatives of images were scanned and processed using structure from motion method (SfM). The result of the research is a statement of what accuracy is possible to expect from the proposed methodology using Rollei metric images originally obtained for terrestrial intersection photogrammetry while adhering to the proposed methodology.

  15. Implementation of an anonymisation tool for clinical trials using a clinical trial processor integrated with an existing trial patient data information system.

    PubMed

    Aryanto, Kadek Y E; Broekema, André; Oudkerk, Matthijs; van Ooijen, Peter M A

    2012-01-01

    To present an adapted Clinical Trial Processor (CTP) test set-up for receiving, anonymising and saving Digital Imaging and Communications in Medicine (DICOM) data using external input from the original database of an existing clinical study information system to guide the anonymisation process. Two methods are presented for an adapted CTP test set-up. In the first method, images are pushed from the Picture Archiving and Communication System (PACS) using the DICOM protocol through a local network. In the second method, images are transferred through the internet using the HTTPS protocol. In total 25,000 images from 50 patients were moved from the PACS, anonymised and stored within roughly 2 h using the first method. In the second method, an average of 10 images per minute were transferred and processed over a residential connection. In both methods, no duplicated images were stored when previous images were retransferred. The anonymised images are stored in appropriate directories. The CTP can transfer and process DICOM images correctly in a very easy set-up providing a fast, secure and stable environment. The adapted CTP allows easy integration into an environment in which patient data are already included in an existing information system.

  16. Survey: interpolation methods for whole slide image processing.

    PubMed

    Roszkowiak, L; Korzynska, A; Zak, J; Pijanowska, D; Swiderska-Chadaj, Z; Markiewicz, T

    2017-02-01

    Evaluating whole slide images of histological and cytological samples is used in pathology for diagnostics, grading and prognosis . It is often necessary to rescale whole slide images of a very large size. Image resizing is one of the most common applications of interpolation. We collect the advantages and drawbacks of nine interpolation methods, and as a result of our analysis, we try to select one interpolation method as the preferred solution. To compare the performance of interpolation methods, test images were scaled and then rescaled to the original size using the same algorithm. The modified image was compared to the original image in various aspects. The time needed for calculations and results of quantification performance on modified images were also compared. For evaluation purposes, we used four general test images and 12 specialized biological immunohistochemically stained tissue sample images. The purpose of this survey is to determine which method of interpolation is the best to resize whole slide images, so they can be further processed using quantification methods. As a result, the interpolation method has to be selected depending on the task involving whole slide images. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  17. Hyperspectral imaging in medicine: image pre-processing problems and solutions in Matlab.

    PubMed

    Koprowski, Robert

    2015-11-01

    The paper presents problems and solutions related to hyperspectral image pre-processing. New methods of preliminary image analysis are proposed. The paper shows problems occurring in Matlab when trying to analyse this type of images. Moreover, new methods are discussed which provide the source code in Matlab that can be used in practice without any licensing restrictions. The proposed application and sample result of hyperspectral image analysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Commercial Implementation of Ultrasonic Velocity Imaging Methods via Cooperative Agreement Between NASA Lewis Research Center and Sonix, Inc.

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Hendricks, J. Lynne; Whalen, Mike F.; Bodis, James R.; Martin, Katherine

    1996-01-01

    This article describes the commercial implementation of ultrasonic velocity imaging methods developed and refined at NASA Lewis Research Center on the Sonix c-scan inspection system. Two velocity imaging methods were implemented: thickness-based and non-thickness-based reflector plate methods. The article demonstrates capabilities of the commercial implementation and gives the detailed operating procedures required for Sonix customers to achieve optimum velocity imaging results. This commercial implementation of velocity imaging provides a 100x speed increase in scanning and processing over the lab-based methods developed at LeRC. The significance of this cooperative effort is that the aerospace and other materials development-intensive industries which use extensive ultrasonic inspection for process control and failure analysis will now have an alternative, highly accurate imaging method commercially available.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoaf, S.; APS Engineering Support Division

    A real-time image analysis system was developed for beam imaging diagnostics. An Apple Power Mac G5 with an Active Silicon LFG frame grabber was used to capture video images that were processed and analyzed. Software routines were created to utilize vector-processing hardware to reduce the time to process images as compared to conventional methods. These improvements allow for more advanced image processing diagnostics to be performed in real time.

  20. An Automated Measurement of Ciliary Beating Frequency using a Combined Optical Flow and Peak Detection.

    PubMed

    Kim, Woojae; Han, Tae Hwa; Kim, Hyun Jun; Park, Man Young; Kim, Ku Sang; Park, Rae Woong

    2011-06-01

    The mucociliary transport system is a major defense mechanism of the respiratory tract. The performance of mucous transportation in the nasal cavity can be represented by a ciliary beating frequency (CBF). This study proposes a novel method to measure CBF by using optical flow. To obtain objective estimates of CBF from video images, an automated computer-based image processing technique is developed. This study proposes a new method based on optical flow for image processing and peak detection for signal processing. We compare the measuring accuracy of the method in various combinations of image processing (optical flow versus difference image) and signal processing (fast Fourier transform [FFT] vs. peak detection [PD]). The digital high-speed video method with a manual count of CBF in slow motion video play, is the gold-standard in CBF measurement. We obtained a total of fifty recorded ciliated sinonasal epithelium images to measure CBF from the Department of Otolaryngology. The ciliated sinonasal epithelium images were recorded at 50-100 frames per second using a charge coupled device camera with an inverted microscope at a magnification of ×1,000. The mean square errors and variance for each method were 1.24, 0.84 Hz; 11.8, 2.63 Hz; 3.22, 1.46 Hz; and 3.82, 1.53 Hz for optical flow (OF) + PD, OF + FFT, difference image [DI] + PD, and DI + FFT, respectively. Of the four methods, PD using optical flow showed the best performance for measuring the CBF of nasal mucosa. The proposed method was able to measure CBF more objectively and efficiently than what is currently possible.

  1. Platform for Post-Processing Waveform-Based NDE

    NASA Technical Reports Server (NTRS)

    Roth, Don J.

    2010-01-01

    Signal- and image-processing methods are commonly needed to extract information from the waves, improve resolution of, and highlight defects in an image. Since some similarity exists for all waveform-based nondestructive evaluation (NDE) methods, it would seem that a common software platform containing multiple signal- and image-processing techniques to process the waveforms and images makes sense where multiple techniques, scientists, engineers, and organizations are involved. NDE Wave & Image Processor Version 2.0 software provides a single, integrated signal- and image-processing and analysis environment for total NDE data processing and analysis. It brings some of the most useful algorithms developed for NDE over the past 20 years into a commercial-grade product. The software can import signal/spectroscopic data, image data, and image series data. This software offers the user hundreds of basic and advanced signal- and image-processing capabilities including esoteric 1D and 2D wavelet-based de-noising, de-trending, and filtering. Batch processing is included for signal- and image-processing capability so that an optimized sequence of processing operations can be applied to entire folders of signals, spectra, and images. Additionally, an extensive interactive model-based curve-fitting facility has been included to allow fitting of spectroscopy data such as from Raman spectroscopy. An extensive joint-time frequency module is included for analysis of non-stationary or transient data such as that from acoustic emission, vibration, or earthquake data.

  2. The image enhancement and region of interest extraction of lobster-eye X-ray dangerous material inspection system

    NASA Astrophysics Data System (ADS)

    Zhan, Qi; Wang, Xin; Mu, Baozhong; Xu, Jie; Xie, Qing; Li, Yaran; Chen, Yifan; He, Yanan

    2016-10-01

    Dangerous materials inspection is an important technique to confirm dangerous materials crimes. It has significant impact on the prohibition of dangerous materials-related crimes and the spread of dangerous materials. Lobster-Eye Optical Imaging System is a kind of dangerous materials detection device which mainly takes advantage of backscatter X-ray. The strength of the system is its applicability to access only one side of an object, and to detect dangerous materials without disturbing the surroundings of the target material. The device uses Compton scattered x-rays to create computerized outlines of suspected objects during security detection process. Due to the grid structure of the bionic object glass, which imitate the eye of a lobster, grids contribute to the main image noise during the imaging process. At the same time, when used to inspect structured or dense materials, the image is plagued by superposition artifacts and limited by attenuation and noise. With the goal of achieving high quality images which could be used for dangerous materials detection and further analysis, we developed effective image process methods applied to the system. The first aspect of the image process is the denoising and enhancing edge contrast process, during the process, we apply deconvolution algorithm to remove the grids and other noises. After image processing, we achieve high signal-to-noise ratio image. The second part is to reconstruct image from low dose X-ray exposure condition. We developed a kind of interpolation method to achieve the goal. The last aspect is the region of interest (ROI) extraction process, which could be used to help identifying dangerous materials mixed with complex backgrounds. The methods demonstrated in the paper have the potential to improve the sensitivity and quality of x-ray backscatter system imaging.

  3. A real time mobile-based face recognition with fisherface methods

    NASA Astrophysics Data System (ADS)

    Arisandi, D.; Syahputra, M. F.; Putri, I. L.; Purnamawati, S.; Rahmat, R. F.; Sari, P. P.

    2018-03-01

    Face Recognition is a field research in Computer Vision that study about learning face and determine the identity of the face from a picture sent to the system. By utilizing this face recognition technology, learning process about people’s identity between students in a university will become simpler. With this technology, student won’t need to browse student directory in university’s server site and look for the person with certain face trait. To obtain this goal, face recognition application use image processing methods consist of two phase, pre-processing phase and recognition phase. In pre-processing phase, system will process input image into the best image for recognition phase. Purpose of this pre-processing phase is to reduce noise and increase signal in image. Next, to recognize face phase, we use Fisherface Methods. This methods is chosen because of its advantage that would help system of its limited data. Therefore from experiment the accuracy of face recognition using fisherface is 90%.

  4. [Research on spatially modulated Fourier transform imaging spectrometer data processing method].

    PubMed

    Huang, Min; Xiangli, Bin; Lü, Qun-Bo; Zhou, Jin-Song; Jing, Juan-Juan; Cui, Yan

    2010-03-01

    Fourier transform imaging spectrometer is a new technic, and has been developed very rapidly in nearly ten years. The data catched by Fourier transform imaging spectrometer is indirect data, can not be used by user, and need to be processed by various approaches, including data pretreatment, apodization, phase correction, FFT, and spectral radicalization calibration. No paper so far has been found roundly to introduce this method. In the present paper, the author will give an effective method to process the interfering data to spectral data, and with this method we can obtain good result.

  5. Recognition of Roasted Coffee Bean Levels using Image Processing and Neural Network

    NASA Astrophysics Data System (ADS)

    Nasution, T. H.; Andayani, U.

    2017-03-01

    The coffee beans roast levels have some characteristics. However, some people cannot recognize the coffee beans roast level. In this research, we propose to design a method to recognize the coffee beans roast level of images digital by processing the image and classifying with backpropagation neural network. The steps consist of how to collect the images data with image acquisition, pre-processing, feature extraction using Gray Level Co-occurrence Matrix (GLCM) method and finally normalization of data extraction using decimal scaling features. The values of decimal scaling features become an input of classifying in backpropagation neural network. We use the method of backpropagation to recognize the coffee beans roast levels. The results showed that the proposed method is able to identify the coffee roasts beans level with an accuracy of 97.5%.

  6. Spatial recurrence analysis: A sensitive and fast detection tool in digital mammography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prado, T. L.; Galuzio, P. P.; Lopes, S. R.

    Efficient diagnostics of breast cancer requires fast digital mammographic image processing. Many breast lesions, both benign and malignant, are barely visible to the untrained eye and requires accurate and reliable methods of image processing. We propose a new method of digital mammographic image analysis that meets both needs. It uses the concept of spatial recurrence as the basis of a spatial recurrence quantification analysis, which is the spatial extension of the well-known time recurrence analysis. The recurrence-based quantifiers are able to evidence breast lesions in a way as good as the best standard image processing methods available, but with amore » better control over the spurious fragments in the image.« less

  7. Space-based optical image encryption.

    PubMed

    Chen, Wen; Chen, Xudong

    2010-12-20

    In this paper, we propose a new method based on a three-dimensional (3D) space-based strategy for the optical image encryption. The two-dimensional (2D) processing of a plaintext in the conventional optical encryption methods is extended to a 3D space-based processing. Each pixel of the plaintext is considered as one particle in the proposed space-based optical image encryption, and the diffraction of all particles forms an object wave in the phase-shifting digital holography. The effectiveness and advantages of the proposed method are demonstrated by numerical results. The proposed method can provide a new optical encryption strategy instead of the conventional 2D processing, and may open up a new research perspective for the optical image encryption.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gratama van Andel, H. A. F.; Venema, H. W.; Streekstra, G. J.

    For clear visualization of vessels in CT angiography (CTA) images of the head and neck using maximum intensity projection (MIP) or volume rendering (VR) bone has to be removed. In the past we presented a fully automatic method to mask the bone [matched mask bone elimination (MMBE)] for this purpose. A drawback is that vessels adjacent to bone may be partly masked as well. We propose a modification, multiscale MMBE, which reduces this problem by using images at two scales: a higher resolution than usual for image processing and a lower resolution to which the processed images are transformed formore » use in the diagnostic process. A higher in-plane resolution is obtained by the use of a sharper reconstruction kernel. The out-of-plane resolution is improved by deconvolution or by scanning with narrower collimation. The quality of the mask that is used to remove bone is improved by using images at both scales. After masking, the desired resolution for the normal clinical use of the images is obtained by blurring with Gaussian kernels of appropriate widths. Both methods (multiscale and original) were compared in a phantom study and with clinical CTA data sets. With the multiscale approach the width of the strip of soft tissue adjacent to the bone that is masked can be reduced from 1.0 to 0.2 mm without reducing the quality of the bone removal. The clinical examples show that vessels adjacent to bone are less affected and therefore better visible. Images processed with multiscale MMBE have a slightly higher noise level or slightly reduced resolution compared with images processed by the original method and the reconstruction and processing time is also somewhat increased. Nevertheless, multiscale MMBE offers a way to remove bone automatically from CT angiography images without affecting the integrity of the blood vessels. The overall image quality of MIP or VR images is substantially improved relative to images processed with the original MMBE method.« less

  9. Removal of bone in CT angiography by multiscale matched mask bone elimination.

    PubMed

    Gratama van Andel, H A F; Venema, H W; Streekstra, G J; van Straten, M; Majoie, C B L M; den Heeten, G J; Grimbergen, C A

    2007-10-01

    For clear visualization of vessels in CT angiography (CTA) images of the head and neck using maximum intensity projection (MIP) or volume rendering (VR) bone has to be removed. In the past we presented a fully automatic method to mask the bone [matched mask bone elimination (MMBE)] for this purpose. A drawback is that vessels adjacent to bone may be partly masked as well. We propose a modification, multiscale MMBE, which reduces this problem by using images at two scales: a higher resolution than usual for image processing and a lower resolution to which the processed images are transformed for use in the diagnostic process. A higher in-plane resolution is obtained by the use of a sharper reconstruction kernel. The out-of-plane resolution is improved by deconvolution or by scanning with narrower collimation. The quality of the mask that is used to remove bone is improved by using images at both scales. After masking, the desired resolution for the normal clinical use of the images is obtained by blurring with Gaussian kernels of appropriate widths. Both methods (multiscale and original) were compared in a phantom study and with clinical CTA data sets. With the multiscale approach the width of the strip of soft tissue adjacent to the bone that is masked can be reduced from 1.0 to 0.2 mm without reducing the quality of the bone removal. The clinical examples show that vessels adjacent to bone are less affected and therefore better visible. Images processed with multiscale MMBE have a slightly higher noise level or slightly reduced resolution compared with images processed by the original method and the reconstruction and processing time is also somewhat increased. Nevertheless, multiscale MMBE offers a way to remove bone automatically from CT angiography images without affecting the integrity of the blood vessels. The overall image quality of MIP or VR images is substantially improved relative to images processed with the original MMBE method.

  10. A study for watermark methods appropriate to medical images.

    PubMed

    Cho, Y; Ahn, B; Kim, J S; Kim, I Y; Kim, S I

    2001-06-01

    The network system, including the picture archiving and communication system (PACS), is essential in hospital and medical imaging fields these days. Many medical images are accessed and processed on the web, as well as in PACS. Therefore, any possible accidents caused by the illegal modification of medical images must be prevented. Digital image watermark techniques have been proposed as a method to protect against illegal copying or modification of copyrighted material. Invisible signatures made by a digital image watermarking technique can be a solution to these problems. However, medical images have some different characteristics from normal digital images in that one must not corrupt the information contained in the original medical images. In this study, we suggest modified watermark methods appropriate for medical image processing and communication system that prevent clinically important data contained in original images from being corrupted.

  11. Visual enhancement of unmixed multispectral imagery using adaptive smoothing

    USGS Publications Warehouse

    Lemeshewsky, G.P.; Rahman, Z.-U.; Schowengerdt, R.A.; Reichenbach, S.E.

    2004-01-01

    Adaptive smoothing (AS) has been previously proposed as a method to smooth uniform regions of an image, retain contrast edges, and enhance edge boundaries. The method is an implementation of the anisotropic diffusion process which results in a gray scale image. This paper discusses modifications to the AS method for application to multi-band data which results in a color segmented image. The process was used to visually enhance the three most distinct abundance fraction images produced by the Lagrange constraint neural network learning-based unmixing of Landsat 7 Enhanced Thematic Mapper Plus multispectral sensor data. A mutual information-based method was applied to select the three most distinct fraction images for subsequent visualization as a red, green, and blue composite. A reported image restoration technique (partial restoration) was applied to the multispectral data to reduce unmixing error, although evaluation of the performance of this technique was beyond the scope of this paper. The modified smoothing process resulted in a color segmented image with homogeneous regions separated by sharpened, coregistered multiband edges. There was improved class separation with the segmented image, which has importance to subsequent operations involving data classification.

  12. Evaluation of width and width uniformity of near-field electrospinning printed micro and sub-micrometer lines based on optical image processing

    NASA Astrophysics Data System (ADS)

    Zhao, Libo; Xia, Yong; Hebibul, Rahman; Wang, Jiuhong; Zhou, Xiangyang; Hu, Yingjie; Li, Zhikang; Luo, Guoxi; Zhao, Yulong; Jiang, Zhuangde

    2018-03-01

    This paper presents an experimental study using image processing to investigate width and width uniformity of sub-micrometer polyethylene oxide (PEO) lines fabricated by near-filed electrospinning (NFES) technique. An adaptive thresholding method was developed to determine the optimal gray values to accurately extract profiles of printed lines from original optical images. And it was proved with good feasibility. The mechanism of the proposed thresholding method was believed to take advantage of statistic property and get rid of halo induced errors. Triangular method and relative standard deviation (RSD) were introduced to calculate line width and width uniformity, respectively. Based on these image processing methods, the effects of process parameters including substrate speed (v), applied voltage (U), nozzle-to-collector distance (H), and syringe pump flow rate (Q) on width and width uniformity of printed lines were discussed. The research results are helpful to promote the NFES technique for fabricating high resolution micro and sub-micro lines and also helpful to optical image processing at sub-micro level.

  13. Can image enhancement allow radiation dose to be reduced whilst maintaining the perceived diagnostic image quality required for coronary angiography?

    PubMed Central

    Joshi, Anuja; Gislason-Lee, Amber J; Keeble, Claire; Sivananthan, Uduvil M

    2017-01-01

    Objective: The aim of this research was to quantify the reduction in radiation dose facilitated by image processing alone for percutaneous coronary intervention (PCI) patient angiograms, without reducing the perceived image quality required to confidently make a diagnosis. Methods: Incremental amounts of image noise were added to five PCI angiograms, simulating the angiogram as having been acquired at corresponding lower dose levels (10–89% dose reduction). 16 observers with relevant experience scored the image quality of these angiograms in 3 states—with no image processing and with 2 different modern image processing algorithms applied. These algorithms are used on state-of-the-art and previous generation cardiac interventional X-ray systems. Ordinal regression allowing for random effects and the delta method were used to quantify the dose reduction possible by the processing algorithms, for equivalent image quality scores. Results: Observers rated the quality of the images processed with the state-of-the-art and previous generation image processing with a 24.9% and 15.6% dose reduction, respectively, as equivalent in quality to the unenhanced images. The dose reduction facilitated by the state-of-the-art image processing relative to previous generation processing was 10.3%. Conclusion: Results demonstrate that statistically significant dose reduction can be facilitated with no loss in perceived image quality using modern image enhancement; the most recent processing algorithm was more effective in preserving image quality at lower doses. Advances in knowledge: Image enhancement was shown to maintain perceived image quality in coronary angiography at a reduced level of radiation dose using computer software to produce synthetic images from real angiograms simulating a reduction in dose. PMID:28124572

  14. Point Cloud Generation from Aerial Image Data Acquired by a Quadrocopter Type Micro Unmanned Aerial Vehicle and a Digital Still Camera

    PubMed Central

    Rosnell, Tomi; Honkavaara, Eija

    2012-01-01

    The objective of this investigation was to develop and investigate methods for point cloud generation by image matching using aerial image data collected by quadrocopter type micro unmanned aerial vehicle (UAV) imaging systems. Automatic generation of high-quality, dense point clouds from digital images by image matching is a recent, cutting-edge step forward in digital photogrammetric technology. The major components of the system for point cloud generation are a UAV imaging system, an image data collection process using high image overlaps, and post-processing with image orientation and point cloud generation. Two post-processing approaches were developed: one of the methods is based on Bae Systems’ SOCET SET classical commercial photogrammetric software and another is built using Microsoft®’s Photosynth™ service available in the Internet. Empirical testing was carried out in two test areas. Photosynth processing showed that it is possible to orient the images and generate point clouds fully automatically without any a priori orientation information or interactive work. The photogrammetric processing line provided dense and accurate point clouds that followed the theoretical principles of photogrammetry, but also some artifacts were detected. The point clouds from the Photosynth processing were sparser and noisier, which is to a large extent due to the fact that the method is not optimized for dense point cloud generation. Careful photogrammetric processing with self-calibration is required to achieve the highest accuracy. Our results demonstrate the high performance potential of the approach and that with rigorous processing it is possible to reach results that are consistent with theory. We also point out several further research topics. Based on theoretical and empirical results, we give recommendations for properties of imaging sensor, data collection and processing of UAV image data to ensure accurate point cloud generation. PMID:22368479

  15. Point cloud generation from aerial image data acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still camera.

    PubMed

    Rosnell, Tomi; Honkavaara, Eija

    2012-01-01

    The objective of this investigation was to develop and investigate methods for point cloud generation by image matching using aerial image data collected by quadrocopter type micro unmanned aerial vehicle (UAV) imaging systems. Automatic generation of high-quality, dense point clouds from digital images by image matching is a recent, cutting-edge step forward in digital photogrammetric technology. The major components of the system for point cloud generation are a UAV imaging system, an image data collection process using high image overlaps, and post-processing with image orientation and point cloud generation. Two post-processing approaches were developed: one of the methods is based on Bae Systems' SOCET SET classical commercial photogrammetric software and another is built using Microsoft(®)'s Photosynth™ service available in the Internet. Empirical testing was carried out in two test areas. Photosynth processing showed that it is possible to orient the images and generate point clouds fully automatically without any a priori orientation information or interactive work. The photogrammetric processing line provided dense and accurate point clouds that followed the theoretical principles of photogrammetry, but also some artifacts were detected. The point clouds from the Photosynth processing were sparser and noisier, which is to a large extent due to the fact that the method is not optimized for dense point cloud generation. Careful photogrammetric processing with self-calibration is required to achieve the highest accuracy. Our results demonstrate the high performance potential of the approach and that with rigorous processing it is possible to reach results that are consistent with theory. We also point out several further research topics. Based on theoretical and empirical results, we give recommendations for properties of imaging sensor, data collection and processing of UAV image data to ensure accurate point cloud generation.

  16. [Method of correcting sensitivity nonuniformity using gaussian distribution on 3.0 Tesla abdominal MRI].

    PubMed

    Hayashi, Norio; Miyati, Tosiaki; Takanaga, Masako; Ohno, Naoki; Hamaguchi, Takashi; Kozaka, Kazuto; Sanada, Shigeru; Yamamoto, Tomoyuki; Matsui, Osamu

    2011-01-01

    In the direction where the phased array coil used in parallel magnetic resonance imaging (MRI) is perpendicular to the arrangement, sensitivity falls significantly. Moreover, in a 3.0 tesla (3T) abdominal MRI, the quality of the image is reduced by changes in the relaxation time, reinforcement of the magnetic susceptibility effect, etc. In a 3T MRI, which has a high resonant frequency, the signal of the depths (central part) is reduced in the trunk part. SCIC, which is sensitivity correction processing, has inadequate correction processing, such as that edges are emphasized and the central part is corrected. Therefore, we used 3T with a Gaussian distribution. The uneven compensation processing for sensitivity of an abdomen MR image was considered. The correction processing consisted of the following methods. 1) The center of gravity of the domain of the human body in an abdomen MR image was calculated. 2) The correction coefficient map was created from the center of gravity using the Gaussian distribution. 3) The sensitivity correction image was created from the correction coefficient map and the original picture image. Using the Gaussian correction to process the image, the uniformity calculated using the NEMA method was improved significantly compared to the original image of a phantom. In a visual evaluation by radiologists, the uniformity was improved significantly using the Gaussian correction processing. Because of the homogeneous improvement of the abdomen image taken using 3T MRI, the Gaussian correction processing is considered to be a very useful technique.

  17. A brain MRI bias field correction method created in the Gaussian multi-scale space

    NASA Astrophysics Data System (ADS)

    Chen, Mingsheng; Qin, Mingxin

    2017-07-01

    A pre-processing step is needed to correct for the bias field signal before submitting corrupted MR images to such image-processing algorithms. This study presents a new bias field correction method. The method creates a Gaussian multi-scale space by the convolution of the inhomogeneous MR image with a two-dimensional Gaussian function. In the multi-Gaussian space, the method retrieves the image details from the differentiation of the original image and convolution image. Then, it obtains an image whose inhomogeneity is eliminated by the weighted sum of image details in each layer in the space. Next, the bias field-corrected MR image is retrieved after the Υ correction, which enhances the contrast and brightness of the inhomogeneity-eliminated MR image. We have tested the approach on T1 MRI and T2 MRI with varying bias field levels and have achieved satisfactory results. Comparison experiments with popular software have demonstrated superior performance of the proposed method in terms of quantitative indices, especially an improvement in subsequent image segmentation.

  18. Research on assessment and improvement method of remote sensing image reconstruction

    NASA Astrophysics Data System (ADS)

    Sun, Li; Hua, Nian; Yu, Yanbo; Zhao, Zhanping

    2018-01-01

    Remote sensing image quality assessment and improvement is an important part of image processing. Generally, the use of compressive sampling theory in remote sensing imaging system can compress images while sampling which can improve efficiency. A method of two-dimensional principal component analysis (2DPCA) is proposed to reconstruct the remote sensing image to improve the quality of the compressed image in this paper, which contain the useful information of image and can restrain the noise. Then, remote sensing image quality influence factors are analyzed, and the evaluation parameters for quantitative evaluation are introduced. On this basis, the quality of the reconstructed images is evaluated and the different factors influence on the reconstruction is analyzed, providing meaningful referential data for enhancing the quality of remote sensing images. The experiment results show that evaluation results fit human visual feature, and the method proposed have good application value in the field of remote sensing image processing.

  19. Advanced image based methods for structural integrity monitoring: Review and prospects

    NASA Astrophysics Data System (ADS)

    Farahani, Behzad V.; Sousa, Pedro José; Barros, Francisco; Tavares, Paulo J.; Moreira, Pedro M. G. P.

    2018-02-01

    There is a growing trend in engineering to develop methods for structural integrity monitoring and characterization of in-service mechanical behaviour of components. The fast growth in recent years of image processing techniques and image-based sensing for experimental mechanics, brought about a paradigm change in phenomena sensing. Hence, several widely applicable optical approaches are playing a significant role in support of experiment. The current review manuscript describes advanced image based methods for structural integrity monitoring, and focuses on methods such as Digital Image Correlation (DIC), Thermoelastic Stress Analysis (TSA), Electronic Speckle Pattern Interferometry (ESPI) and Speckle Pattern Shearing Interferometry (Shearography). These non-contact full-field techniques rely on intensive image processing methods to measure mechanical behaviour, and evolve even as reviews such as this are being written, which justifies a special effort to keep abreast of this progress.

  20. An integral design strategy combining optical system and image processing to obtain high resolution images

    NASA Astrophysics Data System (ADS)

    Wang, Jiaoyang; Wang, Lin; Yang, Ying; Gong, Rui; Shao, Xiaopeng; Liang, Chao; Xu, Jun

    2016-05-01

    In this paper, an integral design that combines optical system with image processing is introduced to obtain high resolution images, and the performance is evaluated and demonstrated. Traditional imaging methods often separate the two technical procedures of optical system design and imaging processing, resulting in the failures in efficient cooperation between the optical and digital elements. Therefore, an innovative approach is presented to combine the merit function during optical design together with the constraint conditions of image processing algorithms. Specifically, an optical imaging system with low resolution is designed to collect the image signals which are indispensable for imaging processing, while the ultimate goal is to obtain high resolution images from the final system. In order to optimize the global performance, the optimization function of ZEMAX software is utilized and the number of optimization cycles is controlled. Then Wiener filter algorithm is adopted to process the image simulation and mean squared error (MSE) is taken as evaluation criterion. The results show that, although the optical figures of merit for the optical imaging systems is not the best, it can provide image signals that are more suitable for image processing. In conclusion. The integral design of optical system and image processing can search out the overall optimal solution which is missed by the traditional design methods. Especially, when designing some complex optical system, this integral design strategy has obvious advantages to simplify structure and reduce cost, as well as to gain high resolution images simultaneously, which has a promising perspective of industrial application.

  1. A new iterative triclass thresholding technique in image segmentation.

    PubMed

    Cai, Hongmin; Yang, Zhong; Cao, Xinhua; Xia, Weiming; Xu, Xiaoyin

    2014-03-01

    We present a new method in image segmentation that is based on Otsu's method but iteratively searches for subregions of the image for segmentation, instead of treating the full image as a whole region for processing. The iterative method starts with Otsu's threshold and computes the mean values of the two classes as separated by the threshold. Based on the Otsu's threshold and the two mean values, the method separates the image into three classes instead of two as the standard Otsu's method does. The first two classes are determined as the foreground and background and they will not be processed further. The third class is denoted as a to-be-determined (TBD) region that is processed at next iteration. At the succeeding iteration, Otsu's method is applied on the TBD region to calculate a new threshold and two class means and the TBD region is again separated into three classes, namely, foreground, background, and a new TBD region, which by definition is smaller than the previous TBD regions. Then, the new TBD region is processed in the similar manner. The process stops when the Otsu's thresholds calculated between two iterations is less than a preset threshold. Then, all the intermediate foreground and background regions are, respectively, combined to create the final segmentation result. Tests on synthetic and real images showed that the new iterative method can achieve better performance than the standard Otsu's method in many challenging cases, such as identifying weak objects and revealing fine structures of complex objects while the added computational cost is minimal.

  2. Image processing of metal surface with structured light

    NASA Astrophysics Data System (ADS)

    Luo, Cong; Feng, Chang; Wang, Congzheng

    2014-09-01

    In structured light vision measurement system, the ideal image of structured light strip, in addition to black background , contains only the gray information of the position of the stripe. However, the actual image contains image noise, complex background and so on, which does not belong to the stripe, and it will cause interference to useful information. To extract the stripe center of mental surface accurately, a new processing method was presented. Through adaptive median filtering, the noise can be preliminary removed, and the noise which introduced by CCD camera and measured environment can be further removed with difference image method. To highlight fine details and enhance the blurred regions between the stripe and noise, the sharping algorithm is used which combine the best features of Laplacian operator and Sobel operator. Morphological opening operation and closing operation are used to compensate the loss of information.Experimental results show that this method is effective in the image processing, not only to restrain the information but also heighten contrast. It is beneficial for the following processing.

  3. Evaluation of clinical image processing algorithms used in digital mammography.

    PubMed

    Zanca, Federica; Jacobs, Jurgen; Van Ongeval, Chantal; Claus, Filip; Celis, Valerie; Geniets, Catherine; Provost, Veerle; Pauwels, Herman; Marchal, Guy; Bosmans, Hilde

    2009-03-01

    Screening is the only proven approach to reduce the mortality of breast cancer, but significant numbers of breast cancers remain undetected even when all quality assurance guidelines are implemented. With the increasing adoption of digital mammography systems, image processing may be a key factor in the imaging chain. Although to our knowledge statistically significant effects of manufacturer-recommended image processings have not been previously demonstrated, the subjective experience of our radiologists, that the apparent image quality can vary considerably between different algorithms, motivated this study. This article addresses the impact of five such algorithms on the detection of clusters of microcalcifications. A database of unprocessed (raw) images of 200 normal digital mammograms, acquired with the Siemens Novation DR, was collected retrospectively. Realistic simulated microcalcification clusters were inserted in half of the unprocessed images. All unprocessed images were subsequently processed with five manufacturer-recommended image processing algorithms (Agfa Musica 1, IMS Raffaello Mammo 1.2, Sectra Mamea AB Sigmoid, Siemens OPVIEW v2, and Siemens OPVIEW v1). Four breast imaging radiologists were asked to locate and score the clusters in each image on a five point rating scale. The free-response data were analyzed by the jackknife free-response receiver operating characteristic (JAFROC) method and, for comparison, also with the receiver operating characteristic (ROC) method. JAFROC analysis revealed highly significant differences between the image processings (F = 8.51, p < 0.0001), suggesting that image processing strongly impacts the detectability of clusters. Siemens OPVIEW2 and Siemens OPVIEW1 yielded the highest and lowest performances, respectively. ROC analysis of the data also revealed significant differences between the processing but at lower significance (F = 3.47, p = 0.0305) than JAFROC. Both statistical analysis methods revealed that the same six pairs of modalities were significantly different, but the JAFROC confidence intervals were about 32% smaller than ROC confidence intervals. This study shows that image processing has a significant impact on the detection of microcalcifications in digital mammograms. Objective measurements, such as described here, should be used by the manufacturers to select the optimal image processing algorithm.

  4. Automatic registration of fused lidar/digital imagery (texel images) for three-dimensional image creation

    NASA Astrophysics Data System (ADS)

    Budge, Scott E.; Badamikar, Neeraj S.; Xie, Xuan

    2015-03-01

    Several photogrammetry-based methods have been proposed that the derive three-dimensional (3-D) information from digital images from different perspectives, and lidar-based methods have been proposed that merge lidar point clouds and texture the merged point clouds with digital imagery. Image registration alone has difficulty with smooth regions with low contrast, whereas point cloud merging alone has difficulty with outliers and a lack of proper convergence in the merging process. This paper presents a method to create 3-D images that uses the unique properties of texel images (pixel-fused lidar and digital imagery) to improve the quality and robustness of fused 3-D images. The proposed method uses both image processing and point-cloud merging to combine texel images in an iterative technique. Since the digital image pixels and the lidar 3-D points are fused at the sensor level, more accurate 3-D images are generated because registration of image data automatically improves the merging of the point clouds, and vice versa. Examples illustrate the value of this method over other methods. The proposed method also includes modifications for the situation where an estimate of position and attitude of the sensor is known, when obtained from low-cost global positioning systems and inertial measurement units sensors.

  5. Bidirectional light-scattering image processing method for high-concentration jet sprays

    NASA Astrophysics Data System (ADS)

    Shimizu, I.; Emori, Y.; Yang, W.-J.; Shimoda, M.; Suzuki, T.

    1985-01-01

    In order to study the distributions of droplet size and volume density in high-concentration jet sprays, a new technique is developed, which combines the forward and backward light scattering method and an image processing method. A pulsed ruby laser is used as the light source. The Mie scattering theory is applied to the results obtained from image processing on the scattering photographs. The time history is obtained for the droplet size and volume density distributions, and the method is demonstrated by diesel fuel sprays under various injecting conditions. The validity of the technique is verified by a good agreement in the injected fuel volume distributions obtained by the present method and by injection rate measurements.

  6. Extended morphological processing: a practical method for automatic spot detection of biological markers from microscopic images.

    PubMed

    Kimori, Yoshitaka; Baba, Norio; Morone, Nobuhiro

    2010-07-08

    A reliable extraction technique for resolving multiple spots in light or electron microscopic images is essential in investigations of the spatial distribution and dynamics of specific proteins inside cells and tissues. Currently, automatic spot extraction and characterization in complex microscopic images poses many challenges to conventional image processing methods. A new method to extract closely located, small target spots from biological images is proposed. This method starts with a simple but practical operation based on the extended morphological top-hat transformation to subtract an uneven background. The core of our novel approach is the following: first, the original image is rotated in an arbitrary direction and each rotated image is opened with a single straight line-segment structuring element. Second, the opened images are unified and then subtracted from the original image. To evaluate these procedures, model images of simulated spots with closely located targets were created and the efficacy of our method was compared to that of conventional morphological filtering methods. The results showed the better performance of our method. The spots of real microscope images can be quantified to confirm that the method is applicable in a given practice. Our method achieved effective spot extraction under various image conditions, including aggregated target spots, poor signal-to-noise ratio, and large variations in the background intensity. Furthermore, it has no restrictions with respect to the shape of the extracted spots. The features of our method allow its broad application in biological and biomedical image information analysis.

  7. Visual communications and image processing '92; Proceedings of the Meeting, Boston, MA, Nov. 18-20, 1992

    NASA Astrophysics Data System (ADS)

    Maragos, Petros

    The topics discussed at the conference include hierarchical image coding, motion analysis, feature extraction and image restoration, video coding, and morphological and related nonlinear filtering. Attention is also given to vector quantization, morphological image processing, fractals and wavelets, architectures for image and video processing, image segmentation, biomedical image processing, and model-based analysis. Papers are presented on affine models for motion and shape recovery, filters for directly detecting surface orientation in an image, tracking of unresolved targets in infrared imagery using a projection-based method, adaptive-neighborhood image processing, and regularized multichannel restoration of color images using cross-validation. (For individual items see A93-20945 to A93-20951)

  8. Three-dimensional image signals: processing methods

    NASA Astrophysics Data System (ADS)

    Schiopu, Paul; Manea, Adrian; Craciun, Anca-Ileana; Craciun, Alexandru

    2010-11-01

    Over the years extensive studies have been carried out to apply coherent optics methods in real-time processing, communications and transmission image. This is especially true when a large amount of information needs to be processed, e.g., in high-resolution imaging. The recent progress in data-processing networks and communication systems has considerably increased the capacity of information exchange. We describe the results of literature investigation research of processing methods for the signals of the three-dimensional images. All commercially available 3D technologies today are based on stereoscopic viewing. 3D technology was once the exclusive domain of skilled computer-graphics developers with high-end machines and software. The images capture from the advanced 3D digital camera can be displayed onto screen of the 3D digital viewer with/ without special glasses. For this is needed considerable processing power and memory to create and render the complex mix of colors, textures, and virtual lighting and perspective necessary to make figures appear three-dimensional. Also, using a standard digital camera and a technique called phase-shift interferometry we can capture "digital holograms." These are holograms that can be stored on computer and transmitted over conventional networks. We present some research methods to process "digital holograms" for the Internet transmission and results.

  9. Detecting Edges in Images by Use of Fuzzy Reasoning

    NASA Technical Reports Server (NTRS)

    Dominguez, Jesus A.; Klinko, Steve

    2003-01-01

    A method of processing digital image data to detect edges includes the use of fuzzy reasoning. The method is completely adaptive and does not require any advance knowledge of an image. During initial processing of image data at a low level of abstraction, the nature of the data is indeterminate. Fuzzy reasoning is used in the present method because it affords an ability to construct useful abstractions from approximate, incomplete, and otherwise imperfect sets of data. Humans are able to make some sense of even unfamiliar objects that have imperfect high-level representations. It appears that to perceive unfamiliar objects or to perceive familiar objects in imperfect images, humans apply heuristic algorithms to understand the images

  10. Geometric shapes inversion method of space targets by ISAR image segmentation

    NASA Astrophysics Data System (ADS)

    Huo, Chao-ying; Xing, Xiao-yu; Yin, Hong-cheng; Li, Chen-guang; Zeng, Xiang-yun; Xu, Gao-gui

    2017-11-01

    The geometric shape of target is an effective characteristic in the process of space targets recognition. This paper proposed a method of shape inversion of space target based on components segmentation from ISAR image. The Radon transformation, Hough transformation, K-means clustering, triangulation will be introduced into ISAR image processing. Firstly, we use Radon transformation and edge detection to extract space target's main body spindle and solar panel spindle from ISAR image. Then the targets' main body, solar panel, rectangular and circular antenna are segmented from ISAR image based on image detection theory. Finally, the sizes of every structural component are computed. The effectiveness of this method is verified using typical targets' simulation data.

  11. Introduction to computer image processing

    NASA Technical Reports Server (NTRS)

    Moik, J. G.

    1973-01-01

    Theoretical backgrounds and digital techniques for a class of image processing problems are presented. Image formation in the context of linear system theory, image evaluation, noise characteristics, mathematical operations on image and their implementation are discussed. Various techniques for image restoration and image enhancement are presented. Methods for object extraction and the problem of pictorial pattern recognition and classification are discussed.

  12. Automatic Feature Extraction from Planetary Images

    NASA Technical Reports Server (NTRS)

    Troglio, Giulia; Le Moigne, Jacqueline; Benediktsson, Jon A.; Moser, Gabriele; Serpico, Sebastiano B.

    2010-01-01

    With the launch of several planetary missions in the last decade, a large amount of planetary images has already been acquired and much more will be available for analysis in the coming years. The image data need to be analyzed, preferably by automatic processing techniques because of the huge amount of data. Although many automatic feature extraction methods have been proposed and utilized for Earth remote sensing images, these methods are not always applicable to planetary data that often present low contrast and uneven illumination characteristics. Different methods have already been presented for crater extraction from planetary images, but the detection of other types of planetary features has not been addressed yet. Here, we propose a new unsupervised method for the extraction of different features from the surface of the analyzed planet, based on the combination of several image processing techniques, including a watershed segmentation and the generalized Hough Transform. The method has many applications, among which image registration and can be applied to arbitrary planetary images.

  13. On detection of median filtering in digital images

    NASA Astrophysics Data System (ADS)

    Kirchner, Matthias; Fridrich, Jessica

    2010-01-01

    In digital image forensics, it is generally accepted that intentional manipulations of the image content are most critical and hence numerous forensic methods focus on the detection of such 'malicious' post-processing. However, it is also beneficial to know as much as possible about the general processing history of an image, including content-preserving operations, since they can affect the reliability of forensic methods in various ways. In this paper, we present a simple yet effective technique to detect median filtering in digital images-a widely used denoising and smoothing operator. As a great variety of forensic methods relies on some kind of a linearity assumption, a detection of non-linear median filtering is of particular interest. The effectiveness of our method is backed with experimental evidence on a large image database.

  14. Image Enhancement via Subimage Histogram Equalization Based on Mean and Variance

    PubMed Central

    2017-01-01

    This paper puts forward a novel image enhancement method via Mean and Variance based Subimage Histogram Equalization (MVSIHE), which effectively increases the contrast of the input image with brightness and details well preserved compared with some other methods based on histogram equalization (HE). Firstly, the histogram of input image is divided into four segments based on the mean and variance of luminance component, and the histogram bins of each segment are modified and equalized, respectively. Secondly, the result is obtained via the concatenation of the processed subhistograms. Lastly, the normalization method is deployed on intensity levels, and the integration of the processed image with the input image is performed. 100 benchmark images from a public image database named CVG-UGR-Database are used for comparison with other state-of-the-art methods. The experiment results show that the algorithm can not only enhance image information effectively but also well preserve brightness and details of the original image. PMID:29403529

  15. Assessment of Restoration Methods of X-Ray Images with Emphasis on Medical Photogrammetric Usage

    NASA Astrophysics Data System (ADS)

    Hosseinian, S.; Arefi, H.

    2016-06-01

    Nowadays, various medical X-ray imaging methods such as digital radiography, computed tomography and fluoroscopy are used as important tools in diagnostic and operative processes especially in the computer and robotic assisted surgeries. The procedures of extracting information from these images require appropriate deblurring and denoising processes on the pre- and intra-operative images in order to obtain more accurate information. This issue becomes more considerable when the X-ray images are planned to be employed in the photogrammetric processes for 3D reconstruction from multi-view X-ray images since, accurate data should be extracted from images for 3D modelling and the quality of X-ray images affects directly on the results of the algorithms. For restoration of X-ray images, it is essential to consider the nature and characteristics of these kinds of images. X-ray images exhibit severe quantum noise due to limited X-ray photons involved. The assumptions of Gaussian modelling are not appropriate for photon-limited images such as X-ray images, because of the nature of signal-dependant quantum noise. These images are generally modelled by Poisson distribution which is the most common model for low-intensity imaging. In this paper, existing methods are evaluated. For this purpose, after demonstrating the properties of medical X-ray images, the more efficient and recommended methods for restoration of X-ray images would be described and assessed. After explaining these approaches, they are implemented on samples from different kinds of X-ray images. By considering the results, it is concluded that using PURE-LET, provides more effective and efficient denoising than other examined methods in this research.

  16. Hiding Information Using different lighting Color images

    NASA Astrophysics Data System (ADS)

    Majead, Ahlam; Awad, Rash; Salman, Salema S.

    2018-05-01

    The host medium for the secret message is one of the important principles for the designers of steganography method. In this study, the best color image was studied to carrying any secret image.The steganography approach based Lifting Wavelet Transform (LWT) and Least Significant Bits (LSBs) substitution. The proposed method offers lossless and unnoticeable changes in the contrast carrier color image and imperceptible by human visual system (HVS), especially the host images which was captured in dark lighting conditions. The aim of the study was to study the process of masking the data in colored images with different light intensities. The effect of the masking process was examined on the images that are classified by a minimum distance and the amount of noise and distortion in the image. The histogram and statistical characteristics of the cover image the results showed the efficient use of images taken with different light intensities in hiding data using the least important bit substitution method. This method succeeded in concealing textual data without distorting the original image (low light) Lire developments due to the concealment process.The digital image segmentation technique was used to distinguish small areas with masking. The result is that smooth homogeneous areas are less affected as a result of hiding comparing with high light areas. It is possible to use dark color images to send any secret message between two persons for the purpose of secret communication with good security.

  17. Fringe image processing based on structured light series

    NASA Astrophysics Data System (ADS)

    Gai, Shaoyan; Da, Feipeng; Li, Hongyan

    2009-11-01

    The code analysis of the fringe image is playing a vital role in the data acquisition of structured light systems, which affects precision, computational speed and reliability of the measurement processing. According to the self-normalizing characteristic, a fringe image processing method based on structured light is proposed. In this method, a series of projective patterns is used when detecting the fringe order of the image pixels. The structured light system geometry is presented, which consist of a white light projector and a digital camera, the former projects sinusoidal fringe patterns upon the object, and the latter acquires the fringe patterns that are deformed by the object's shape. Then the binary images with distinct white and black strips can be obtained and the ability to resist image noise is improved greatly. The proposed method can be implemented easily and applied for profile measurement based on special binary code in a wide field.

  18. Fast data reconstructed method of Fourier transform imaging spectrometer based on multi-core CPU

    NASA Astrophysics Data System (ADS)

    Yu, Chunchao; Du, Debiao; Xia, Zongze; Song, Li; Zheng, Weijian; Yan, Min; Lei, Zhenggang

    2017-10-01

    Imaging spectrometer can gain two-dimensional space image and one-dimensional spectrum at the same time, which shows high utility in color and spectral measurements, the true color image synthesis, military reconnaissance and so on. In order to realize the fast reconstructed processing of the Fourier transform imaging spectrometer data, the paper designed the optimization reconstructed algorithm with OpenMP parallel calculating technology, which was further used for the optimization process for the HyperSpectral Imager of `HJ-1' Chinese satellite. The results show that the method based on multi-core parallel computing technology can control the multi-core CPU hardware resources competently and significantly enhance the calculation of the spectrum reconstruction processing efficiency. If the technology is applied to more cores workstation in parallel computing, it will be possible to complete Fourier transform imaging spectrometer real-time data processing with a single computer.

  19. Generation of synthetic image sequences for the verification of matching and tracking algorithms for deformation analysis

    NASA Astrophysics Data System (ADS)

    Bethmann, F.; Jepping, C.; Luhmann, T.

    2013-04-01

    This paper reports on a method for the generation of synthetic image data for almost arbitrary static or dynamic 3D scenarios. Image data generation is based on pre-defined 3D objects, object textures, camera orientation data and their imaging properties. The procedure does not focus on the creation of photo-realistic images under consideration of complex imaging and reflection models as they are used by common computer graphics programs. In contrast, the method is designed with main emphasis on geometrically correct synthetic images without radiometric impact. The calculation process includes photogrammetric distortion models, hence cameras with arbitrary geometric imaging characteristics can be applied. Consequently, image sets can be created that are consistent to mathematical photogrammetric models to be used as sup-pixel accurate data for the assessment of high-precision photogrammetric processing methods. In the first instance the paper describes the process of image simulation under consideration of colour value interpolation, MTF/PSF and so on. Subsequently the geometric quality of the synthetic images is evaluated with ellipse operators. Finally, simulated image sets are used to investigate matching and tracking algorithms as they have been developed at IAPG for deformation measurement in car safety testing.

  20. A Software Platform for Post-Processing Waveform-Based NDE

    NASA Technical Reports Server (NTRS)

    Roth, Donald J.; Martin, Richard E.; Seebo, Jeff P.; Trinh, Long B.; Walker, James L.; Winfree, William P.

    2007-01-01

    Ultrasonic, microwave, and terahertz nondestructive evaluation imaging systems generally require the acquisition of waveforms at each scan point to form an image. For such systems, signal and image processing methods are commonly needed to extract information from the waves and improve resolution of, and highlight, defects in the image. Since some similarity exists for all waveform-based NDE methods, it would seem a common software platform containing multiple signal and image processing techniques to process the waveforms and images makes sense where multiple techniques, scientists, engineers, and organizations are involved. This presentation describes NASA Glenn Research Center's approach in developing a common software platform for processing waveform-based NDE signals and images. This platform is currently in use at NASA Glenn and at Lockheed Martin Michoud Assembly Facility for processing of pulsed terahertz and ultrasonic data. Highlights of the software operation will be given. A case study will be shown for use with terahertz data. The authors also request scientists and engineers who are interested in sharing customized signal and image processing algorithms to contribute to this effort by letting the authors code up and include these algorithms in future releases.

  1. Measurement of smaller colon polyp in CT colonography images using morphological image processing.

    PubMed

    Manjunath, K N; Siddalingaswamy, P C; Prabhu, G K

    2017-11-01

    Automated measurement of the size and shape of colon polyps is one of the challenges in Computed tomography colonography (CTC). The objective of this retrospective study was to improve the sensitivity and specificity of smaller polyp measurement in CTC using image processing techniques. A domain knowledge-based method has been implemented with hybrid method of colon segmentation, morphological image processing operators for detecting the colonic structures, and the decision-making system for delineating the smaller polyp-based on a priori knowledge. The method was applied on 45 CTC dataset. The key finding was that the smaller polyps were accurately measured. In addition to 6-9 mm range, polyps of even <5 mm were also detected. The results were validated qualitatively and quantitatively using both 2D MPR and 3D view. Implementation was done on a high-performance computer with parallel processing. It takes [Formula: see text] min for measuring the smaller polyp in a dataset of 500 CTC images. With this method, [Formula: see text] and [Formula: see text] were achieved. The domain-based approach with morphological image processing has given good results. The smaller polyps were measured accurately which helps in making right clinical decisions. Qualitatively and quantitatively the results were acceptable when compared to the ground truth at [Formula: see text].

  2. SU-E-J-15: Automatically Detect Patient Treatment Position and Orientation in KV Portal Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, J; Yang, D

    2015-06-15

    Purpose: In the course of radiation therapy, the complex information processing workflow will Result in potential errors, such as incorrect or inaccurate patient setups. With automatic image check and patient identification, such errors could be effectively reduced. For this purpose, we developed a simple and rapid image processing method, to automatically detect the patient position and orientation in 2D portal images, so to allow automatic check of positions and orientations for patient daily RT treatments. Methods: Based on the principle of portal image formation, a set of whole body DRR images were reconstructed from multiple whole body CT volume datasets,more » and fused together to be used as the matching template. To identify the patient setup position and orientation shown in a 2D portal image, the 2D portal image was preprocessed (contrast enhancement, down-sampling and couch table detection), then matched to the template image so to identify the laterality (left or right), position, orientation and treatment site. Results: Five day’s clinical qualified portal images were gathered randomly, then were processed by the automatic detection and matching method without any additional information. The detection results were visually checked by physicists. 182 images were correct detection in a total of 200kV portal images. The correct rate was 91%. Conclusion: The proposed method can detect patient setup and orientation quickly and automatically. It only requires the image intensity information in KV portal images. This method can be useful in the framework of Electronic Chart Check (ECCK) to reduce the potential errors in workflow of radiation therapy and so to improve patient safety. In addition, the auto-detection results, as the patient treatment site position and patient orientation, could be useful to guide the sequential image processing procedures, e.g. verification of patient daily setup accuracy. This work was partially supported by research grant from Varian Medical System.« less

  3. Image object recognition based on the Zernike moment and neural networks

    NASA Astrophysics Data System (ADS)

    Wan, Jianwei; Wang, Ling; Huang, Fukan; Zhou, Liangzhu

    1998-03-01

    This paper first give a comprehensive discussion about the concept of artificial neural network its research methods and the relations with information processing. On the basis of such a discussion, we expound the mathematical similarity of artificial neural network and information processing. Then, the paper presents a new method of image recognition based on invariant features and neural network by using image Zernike transform. The method not only has the invariant properties for rotation, shift and scale of image object, but also has good fault tolerance and robustness. Meanwhile, it is also compared with statistical classifier and invariant moments recognition method.

  4. Automatic Sea Bird Detection from High Resolution Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Mader, S.; Grenzdörffer, G. J.

    2016-06-01

    Great efforts are presently taken in the scientific community to develop computerized and (fully) automated image processing methods allowing for an efficient and automatic monitoring of sea birds and marine mammals in ever-growing amounts of aerial imagery. Currently the major part of the processing, however, is still conducted by especially trained professionals, visually examining the images and detecting and classifying the requested subjects. This is a very tedious task, particularly when the rate of void images regularly exceeds the mark of 90%. In the content of this contribution we will present our work aiming to support the processing of aerial images by modern methods from the field of image processing. We will especially focus on the combination of local, region-based feature detection and piecewise global image segmentation for automatic detection of different sea bird species. Large image dimensions resulting from the use of medium and large-format digital cameras in aerial surveys inhibit the applicability of image processing methods based on global operations. In order to efficiently handle those image sizes and to nevertheless take advantage of globally operating segmentation algorithms, we will describe the combined usage of a simple performant feature detector based on local operations on the original image with a complex global segmentation algorithm operating on extracted sub-images. The resulting exact segmentation of possible candidates then serves as a basis for the determination of feature vectors for subsequent elimination of false candidates and for classification tasks.

  5. Automatic extraction of nuclei centroids of mouse embryonic cells from fluorescence microscopy images.

    PubMed

    Bashar, Md Khayrul; Komatsu, Koji; Fujimori, Toshihiko; Kobayashi, Tetsuya J

    2012-01-01

    Accurate identification of cell nuclei and their tracking using three dimensional (3D) microscopic images is a demanding task in many biological studies. Manual identification of nuclei centroids from images is an error-prone task, sometimes impossible to accomplish due to low contrast and the presence of noise. Nonetheless, only a few methods are available for 3D bioimaging applications, which sharply contrast with 2D analysis, where many methods already exist. In addition, most methods essentially adopt segmentation for which a reliable solution is still unknown, especially for 3D bio-images having juxtaposed cells. In this work, we propose a new method that can directly extract nuclei centroids from fluorescence microscopy images. This method involves three steps: (i) Pre-processing, (ii) Local enhancement, and (iii) Centroid extraction. The first step includes two variations: first variation (Variant-1) uses the whole 3D pre-processed image, whereas the second one (Variant-2) modifies the preprocessed image to the candidate regions or the candidate hybrid image for further processing. At the second step, a multiscale cube filtering is employed in order to locally enhance the pre-processed image. Centroid extraction in the third step consists of three stages. In Stage-1, we compute a local characteristic ratio at every voxel and extract local maxima regions as candidate centroids using a ratio threshold. Stage-2 processing removes spurious centroids from Stage-1 results by analyzing shapes of intensity profiles from the enhanced image. An iterative procedure based on the nearest neighborhood principle is then proposed to combine if there are fragmented nuclei. Both qualitative and quantitative analyses on a set of 100 images of 3D mouse embryo are performed. Investigations reveal a promising achievement of the technique presented in terms of average sensitivity and precision (i.e., 88.04% and 91.30% for Variant-1; 86.19% and 95.00% for Variant-2), when compared with an existing method (86.06% and 90.11%), originally developed for analyzing C. elegans images.

  6. A motion deblurring method with long/short exposure image pairs

    NASA Astrophysics Data System (ADS)

    Cui, Guangmang; Hua, Weiping; Zhao, Jufeng; Gong, Xiaoli; Zhu, Liyao

    2018-01-01

    In this paper, a motion deblurring method with long/short exposure image pairs is presented. The long/short exposure image pairs are captured for the same scene under different exposure time. The image pairs are treated as the input of the deblurring method and more information could be used to obtain a deblurring result with high image quality. Firstly, the luminance equalization process is carried out to the short exposure image. And the blur kernel is estimated with the image pair under the maximum a posteriori (MAP) framework using conjugate gradient algorithm. Then a L0 image smoothing based denoising method is applied to the luminance equalized image. And the final deblurring result is obtained with the gain controlled residual image deconvolution process with the edge map as the gain map. Furthermore, a real experimental optical system is built to capture the image pair in order to demonstrate the effectiveness of the proposed deblurring framework. The long/short image pairs are obtained under different exposure time and camera gain control. Experimental results show that the proposed method could provide a superior deblurring result in both subjective and objective assessment compared with other deblurring approaches.

  7. Automatic screening and classification of diabetic retinopathy and maculopathy using fuzzy image processing.

    PubMed

    Rahim, Sarni Suhaila; Palade, Vasile; Shuttleworth, James; Jayne, Chrisina

    2016-12-01

    Digital retinal imaging is a challenging screening method for which effective, robust and cost-effective approaches are still to be developed. Regular screening for diabetic retinopathy and diabetic maculopathy diseases is necessary in order to identify the group at risk of visual impairment. This paper presents a novel automatic detection of diabetic retinopathy and maculopathy in eye fundus images by employing fuzzy image processing techniques. The paper first introduces the existing systems for diabetic retinopathy screening, with an emphasis on the maculopathy detection methods. The proposed medical decision support system consists of four parts, namely: image acquisition, image preprocessing including four retinal structures localisation, feature extraction and the classification of diabetic retinopathy and maculopathy. A combination of fuzzy image processing techniques, the Circular Hough Transform and several feature extraction methods are implemented in the proposed system. The paper also presents a novel technique for the macula region localisation in order to detect the maculopathy. In addition to the proposed detection system, the paper highlights a novel online dataset and it presents the dataset collection, the expert diagnosis process and the advantages of our online database compared to other public eye fundus image databases for diabetic retinopathy purposes.

  8. An Adaptive Image Enhancement Technique by Combining Cuckoo Search and Particle Swarm Optimization Algorithm

    PubMed Central

    Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper. PMID:25784928

  9. An adaptive image enhancement technique by combining cuckoo search and particle swarm optimization algorithm.

    PubMed

    Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper.

  10. Method for Assessment of Changes in the Width of Cracks in Cement Composites with Use of Computer Image Processing and Analysis

    NASA Astrophysics Data System (ADS)

    Tomczak, Kamil; Jakubowski, Jacek; Fiołek, Przemysław

    2017-06-01

    Crack width measurement is an important element of research on the progress of self-healing cement composites. Due to the nature of this research, the method of measuring the width of cracks and their changes over time must meet specific requirements. The article presents a novel method of measuring crack width based on images from a scanner with an optical resolution of 6400 dpi, subject to initial image processing in the ImageJ development environment and further processing and analysis of results. After registering a series of images of the cracks at different times using SIFT conversion (Scale-Invariant Feature Transform), a dense network of line segments is created in all images, intersecting the cracks perpendicular to the local axes. Along these line segments, brightness profiles are extracted, which are the basis for determination of crack width. The distribution and rotation of the line of intersection in a regular layout, automation of transformations, management of images and profiles of brightness, and data analysis to determine the width of cracks and their changes over time are made automatically by own code in the ImageJ and VBA environment. The article describes the method, tests on its properties, sources of measurement uncertainty. It also presents an example of application of the method in research on autogenous self-healing of concrete, specifically the ability to reduce a sample crack width and its full closure within 28 days of the self-healing process.

  11. Quantitative analysis of phosphoinositide 3-kinase (PI3K) signaling using live-cell total internal reflection fluorescence (TIRF) microscopy.

    PubMed

    Johnson, Heath E; Haugh, Jason M

    2013-12-02

    This unit focuses on the use of total internal reflection fluorescence (TIRF) microscopy and image analysis methods to study the dynamics of signal transduction mediated by class I phosphoinositide 3-kinases (PI3Ks) in mammalian cells. The first four protocols cover live-cell imaging experiments, image acquisition parameters, and basic image processing and segmentation. These methods are generally applicable to live-cell TIRF experiments. The remaining protocols outline more advanced image analysis methods, which were developed in our laboratory for the purpose of characterizing the spatiotemporal dynamics of PI3K signaling. These methods may be extended to analyze other cellular processes monitored using fluorescent biosensors. Copyright © 2013 John Wiley & Sons, Inc.

  12. Non-rigid ultrasound image registration using generalized relaxation labeling process

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Ha; Seong, Yeong Kyeong; Park, MoonHo; Woo, Kyoung-Gu; Ku, Jeonghun; Park, Hee-Jun

    2013-03-01

    This research proposes a novel non-rigid registration method for ultrasound images. The most predominant anatomical features in medical images are tissue boundaries, which appear as edges. In ultrasound images, however, other features can be identified as well due to the specular reflections that appear as bright lines superimposed on the ideal edge location. In this work, an image's local phase information (via the frequency domain) is used to find the ideal edge location. The generalized relaxation labeling process is then formulated to align the feature points extracted from the ideal edge location. In this work, the original relaxation labeling method was generalized by taking n compatibility coefficient values to improve non-rigid registration performance. This contextual information combined with a relaxation labeling process is used to search for a correspondence. Then the transformation is calculated by the thin plate spline (TPS) model. These two processes are iterated until the optimal correspondence and transformation are found. We have tested our proposed method and the state-of-the-art algorithms with synthetic data and bladder ultrasound images of in vivo human subjects. Experiments show that the proposed method improves registration performance significantly, as compared to other state-of-the-art non-rigid registration algorithms.

  13. Counting pollen grains using readily available, free image processing and analysis software.

    PubMed

    Costa, Clayton M; Yang, Suann

    2009-10-01

    Although many methods exist for quantifying the number of pollen grains in a sample, there are few standard methods that are user-friendly, inexpensive and reliable. The present contribution describes a new method of counting pollen using readily available, free image processing and analysis software. Pollen was collected from anthers of two species, Carduus acanthoides and C. nutans (Asteraceae), then illuminated on slides and digitally photographed through a stereomicroscope. Using ImageJ (NIH), these digital images were processed to remove noise and sharpen individual pollen grains, then analysed to obtain a reliable total count of the number of grains present in the image. A macro was developed to analyse multiple images together. To assess the accuracy and consistency of pollen counting by ImageJ analysis, counts were compared with those made by the human eye. Image analysis produced pollen counts in 60 s or less per image, considerably faster than counting with the human eye (5-68 min). In addition, counts produced with the ImageJ procedure were similar to those obtained by eye. Because count parameters are adjustable, this image analysis protocol may be used for many other plant species. Thus, the method provides a quick, inexpensive and reliable solution to counting pollen from digital images, not only reducing the chance of error but also substantially lowering labour requirements.

  14. Single-pixel imaging by Hadamard transform and its application for hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Mizutani, Yasuhiro; Shibuya, Kyuki; Taguchi, Hiroki; Iwata, Tetsuo; Takaya, Yasuhiro; Yasui, Takeshi

    2016-10-01

    In this paper, we report on comparisons of single-pixel imagings using Hadamard Transform (HT) and the ghost imaging (GI) in the view point of the visibility under weak light conditions. For comparing the two methods, we have discussed about qualities of images based on experimental results and numerical analysis. To detect images by the TH method, we have illuminated the Hadamard-pattern mask and calculated by orthogonal transform. On the other hand, the GH method can detect images by illuminating random patterns and a correlation measurement. For comparing two methods under weak light intensity, we have controlled illuminated intensities of a DMD projector about 0.1 in signal-to-noise ratio. Though a process speed of the HT image was faster then an image via the GI, the GI method has an advantage of detection under weak light condition. An essential difference between the HT and the GI method is discussed about reconstruction process. Finally, we also show a typical application of the single-pixel imaging such as hyperspectral images by using dual-optical frequency combs. An optical setup consists of two fiber lasers, spatial light modulated for generating patten illumination, and a single pixel detector. We are successful to detect hyperspectrul images in a range from 1545 to 1555 nm at 0.01nm resolution.

  15. Comparison of an adaptive local thresholding method on CBCT and µCT endodontic images

    NASA Astrophysics Data System (ADS)

    Michetti, Jérôme; Basarab, Adrian; Diemer, Franck; Kouame, Denis

    2018-01-01

    Root canal segmentation on cone beam computed tomography (CBCT) images is difficult because of the noise level, resolution limitations, beam hardening and dental morphological variations. An image processing framework, based on an adaptive local threshold method, was evaluated on CBCT images acquired on extracted teeth. A comparison with high quality segmented endodontic images on micro computed tomography (µCT) images acquired from the same teeth was carried out using a dedicated registration process. Each segmented tooth was evaluated according to volume and root canal sections through the area and the Feret’s diameter. The proposed method is shown to overcome the limitations of CBCT and to provide an automated and adaptive complete endodontic segmentation. Despite a slight underestimation (-4, 08%), the local threshold segmentation method based on edge-detection was shown to be fast and accurate. Strong correlations between CBCT and µCT segmentations were found both for the root canal area and diameter (respectively 0.98 and 0.88). Our findings suggest that combining CBCT imaging with this image processing framework may benefit experimental endodontology, teaching and could represent a first development step towards the clinical use of endodontic CBCT segmentation during pulp cavity treatment.

  16. Research on fast Fourier transforms algorithm of huge remote sensing image technology with GPU and partitioning technology.

    PubMed

    Yang, Xue; Li, Xue-You; Li, Jia-Guo; Ma, Jun; Zhang, Li; Yang, Jan; Du, Quan-Ye

    2014-02-01

    Fast Fourier transforms (FFT) is a basic approach to remote sensing image processing. With the improvement of capacity of remote sensing image capture with the features of hyperspectrum, high spatial resolution and high temporal resolution, how to use FFT technology to efficiently process huge remote sensing image becomes the critical step and research hot spot of current image processing technology. FFT algorithm, one of the basic algorithms of image processing, can be used for stripe noise removal, image compression, image registration, etc. in processing remote sensing image. CUFFT function library is the FFT algorithm library based on CPU and FFTW. FFTW is a FFT algorithm developed based on CPU in PC platform, and is currently the fastest CPU based FFT algorithm function library. However there is a common problem that once the available memory or memory is less than the capacity of image, there will be out of memory or memory overflow when using the above two methods to realize image FFT arithmetic. To address this problem, a CPU and partitioning technology based Huge Remote Fast Fourier Transform (HRFFT) algorithm is proposed in this paper. By improving the FFT algorithm in CUFFT function library, the problem of out of memory and memory overflow is solved. Moreover, this method is proved rational by experiment combined with the CCD image of HJ-1A satellite. When applied to practical image processing, it improves effect of the image processing, speeds up the processing, which saves the time of computation and achieves sound result.

  17. Developing image processing meta-algorithms with data mining of multiple metrics.

    PubMed

    Leung, Kelvin; Cunha, Alexandre; Toga, A W; Parker, D Stott

    2014-01-01

    People often use multiple metrics in image processing, but here we take a novel approach of mining the values of batteries of metrics on image processing results. We present a case for extending image processing methods to incorporate automated mining of multiple image metric values. Here by a metric we mean any image similarity or distance measure, and in this paper we consider intensity-based and statistical image measures and focus on registration as an image processing problem. We show how it is possible to develop meta-algorithms that evaluate different image processing results with a number of different metrics and mine the results in an automated fashion so as to select the best results. We show that the mining of multiple metrics offers a variety of potential benefits for many image processing problems, including improved robustness and validation.

  18. Improved Discrete Approximation of Laplacian of Gaussian

    NASA Technical Reports Server (NTRS)

    Shuler, Robert L., Jr.

    2004-01-01

    An improved method of computing a discrete approximation of the Laplacian of a Gaussian convolution of an image has been devised. The primary advantage of the method is that without substantially degrading the accuracy of the end result, it reduces the amount of information that must be processed and thus reduces the amount of circuitry needed to perform the Laplacian-of- Gaussian (LOG) operation. Some background information is necessary to place the method in context. The method is intended for application to the LOG part of a process of real-time digital filtering of digitized video data that represent brightnesses in pixels in a square array. The particular filtering process of interest is one that converts pixel brightnesses to binary form, thereby reducing the amount of information that must be performed in subsequent correlation processing (e.g., correlations between images in a stereoscopic pair for determining distances or correlations between successive frames of the same image for detecting motions). The Laplacian is often included in the filtering process because it emphasizes edges and textures, while the Gaussian is often included because it smooths out noise that might not be consistent between left and right images or between successive frames of the same image.

  19. Semi-automated Image Processing for Preclinical Bioluminescent Imaging.

    PubMed

    Slavine, Nikolai V; McColl, Roderick W

    Bioluminescent imaging is a valuable noninvasive technique for investigating tumor dynamics and specific biological molecular events in living animals to better understand the effects of human disease in animal models. The purpose of this study was to develop and test a strategy behind automated methods for bioluminescence image processing from the data acquisition to obtaining 3D images. In order to optimize this procedure a semi-automated image processing approach with multi-modality image handling environment was developed. To identify a bioluminescent source location and strength we used the light flux detected on the surface of the imaged object by CCD cameras. For phantom calibration tests and object surface reconstruction we used MLEM algorithm. For internal bioluminescent sources we used the diffusion approximation with balancing the internal and external intensities on the boundary of the media and then determined an initial order approximation for the photon fluence we subsequently applied a novel iterative deconvolution method to obtain the final reconstruction result. We find that the reconstruction techniques successfully used the depth-dependent light transport approach and semi-automated image processing to provide a realistic 3D model of the lung tumor. Our image processing software can optimize and decrease the time of the volumetric imaging and quantitative assessment. The data obtained from light phantom and lung mouse tumor images demonstrate the utility of the image reconstruction algorithms and semi-automated approach for bioluminescent image processing procedure. We suggest that the developed image processing approach can be applied to preclinical imaging studies: characteristics of tumor growth, identify metastases, and potentially determine the effectiveness of cancer treatment.

  20. Fault Diagnosis for Rotating Machinery: A Method based on Image Processing

    PubMed Central

    Lu, Chen; Wang, Yang; Ragulskis, Minvydas; Cheng, Yujie

    2016-01-01

    Rotating machinery is one of the most typical types of mechanical equipment and plays a significant role in industrial applications. Condition monitoring and fault diagnosis of rotating machinery has gained wide attention for its significance in preventing catastrophic accident and guaranteeing sufficient maintenance. With the development of science and technology, fault diagnosis methods based on multi-disciplines are becoming the focus in the field of fault diagnosis of rotating machinery. This paper presents a multi-discipline method based on image-processing for fault diagnosis of rotating machinery. Different from traditional analysis method in one-dimensional space, this study employs computing method in the field of image processing to realize automatic feature extraction and fault diagnosis in a two-dimensional space. The proposed method mainly includes the following steps. First, the vibration signal is transformed into a bi-spectrum contour map utilizing bi-spectrum technology, which provides a basis for the following image-based feature extraction. Then, an emerging approach in the field of image processing for feature extraction, speeded-up robust features, is employed to automatically exact fault features from the transformed bi-spectrum contour map and finally form a high-dimensional feature vector. To reduce the dimensionality of the feature vector, thus highlighting main fault features and reducing subsequent computing resources, t-Distributed Stochastic Neighbor Embedding is adopt to reduce the dimensionality of the feature vector. At last, probabilistic neural network is introduced for fault identification. Two typical rotating machinery, axial piston hydraulic pump and self-priming centrifugal pumps, are selected to demonstrate the effectiveness of the proposed method. Results show that the proposed method based on image-processing achieves a high accuracy, thus providing a highly effective means to fault diagnosis for rotating machinery. PMID:27711246

  1. Fault Diagnosis for Rotating Machinery: A Method based on Image Processing.

    PubMed

    Lu, Chen; Wang, Yang; Ragulskis, Minvydas; Cheng, Yujie

    2016-01-01

    Rotating machinery is one of the most typical types of mechanical equipment and plays a significant role in industrial applications. Condition monitoring and fault diagnosis of rotating machinery has gained wide attention for its significance in preventing catastrophic accident and guaranteeing sufficient maintenance. With the development of science and technology, fault diagnosis methods based on multi-disciplines are becoming the focus in the field of fault diagnosis of rotating machinery. This paper presents a multi-discipline method based on image-processing for fault diagnosis of rotating machinery. Different from traditional analysis method in one-dimensional space, this study employs computing method in the field of image processing to realize automatic feature extraction and fault diagnosis in a two-dimensional space. The proposed method mainly includes the following steps. First, the vibration signal is transformed into a bi-spectrum contour map utilizing bi-spectrum technology, which provides a basis for the following image-based feature extraction. Then, an emerging approach in the field of image processing for feature extraction, speeded-up robust features, is employed to automatically exact fault features from the transformed bi-spectrum contour map and finally form a high-dimensional feature vector. To reduce the dimensionality of the feature vector, thus highlighting main fault features and reducing subsequent computing resources, t-Distributed Stochastic Neighbor Embedding is adopt to reduce the dimensionality of the feature vector. At last, probabilistic neural network is introduced for fault identification. Two typical rotating machinery, axial piston hydraulic pump and self-priming centrifugal pumps, are selected to demonstrate the effectiveness of the proposed method. Results show that the proposed method based on image-processing achieves a high accuracy, thus providing a highly effective means to fault diagnosis for rotating machinery.

  2. Graphical user interface to optimize image contrast parameters used in object segmentation - biomed 2009.

    PubMed

    Anderson, Jeffrey R; Barrett, Steven F

    2009-01-01

    Image segmentation is the process of isolating distinct objects within an image. Computer algorithms have been developed to aid in the process of object segmentation, but a completely autonomous segmentation algorithm has yet to be developed [1]. This is because computers do not have the capability to understand images and recognize complex objects within the image. However, computer segmentation methods [2], requiring user input, have been developed to quickly segment objects in serial sectioned images, such as magnetic resonance images (MRI) and confocal laser scanning microscope (CLSM) images. In these cases, the segmentation process becomes a powerful tool in visualizing the 3D nature of an object. The user input is an important part of improving the performance of many segmentation methods. A double threshold segmentation method has been investigated [3] to separate objects in gray scaled images, where the gray level of the object is among the gray levels of the background. In order to best determine the threshold values for this segmentation method the image must be manipulated for optimal contrast. The same is true of other segmentation and edge detection methods as well. Typically, the better the image contrast, the better the segmentation results. This paper describes a graphical user interface (GUI) that allows the user to easily change image contrast parameters that will optimize the performance of subsequent object segmentation. This approach makes use of the fact that the human brain is extremely effective in object recognition and understanding. The GUI provides the user with the ability to define the gray scale range of the object of interest. These lower and upper bounds of this range are used in a histogram stretching process to improve image contrast. Also, the user can interactively modify the gamma correction factor that provides a non-linear distribution of gray scale values, while observing the corresponding changes to the image. This interactive approach gives the user the power to make optimal choices in the contrast enhancement parameters.

  3. Single image interpolation via adaptive nonlocal sparsity-based modeling.

    PubMed

    Romano, Yaniv; Protter, Matan; Elad, Michael

    2014-07-01

    Single image interpolation is a central and extensively studied problem in image processing. A common approach toward the treatment of this problem in recent years is to divide the given image into overlapping patches and process each of them based on a model for natural image patches. Adaptive sparse representation modeling is one such promising image prior, which has been shown to be powerful in filling-in missing pixels in an image. Another force that such algorithms may use is the self-similarity that exists within natural images. Processing groups of related patches together exploits their correspondence, leading often times to improved results. In this paper, we propose a novel image interpolation method, which combines these two forces-nonlocal self-similarities and sparse representation modeling. The proposed method is contrasted with competitive and related algorithms, and demonstrated to achieve state-of-the-art results.

  4. A NOISE ADAPTIVE FUZZY EQUALIZATION METHOD FOR PROCESSING SOLAR EXTREME ULTRAVIOLET IMAGES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Druckmueller, M., E-mail: druckmuller@fme.vutbr.cz

    A new image enhancement tool ideally suited for the visualization of fine structures in extreme ultraviolet images of the corona is presented in this paper. The Noise Adaptive Fuzzy Equalization method is particularly suited for the exceptionally high dynamic range images from the Atmospheric Imaging Assembly instrument on the Solar Dynamics Observatory. This method produces artifact-free images and gives significantly better results than methods based on convolution or Fourier transform which are often used for that purpose.

  5. Spatial Statistics for Tumor Cell Counting and Classification

    NASA Astrophysics Data System (ADS)

    Wirjadi, Oliver; Kim, Yoo-Jin; Breuel, Thomas

    To count and classify cells in histological sections is a standard task in histology. One example is the grading of meningiomas, benign tumors of the meninges, which requires to assess the fraction of proliferating cells in an image. As this process is very time consuming when performed manually, automation is required. To address such problems, we propose a novel application of Markov point process methods in computer vision, leading to algorithms for computing the locations of circular objects in images. In contrast to previous algorithms using such spatial statistics methods in image analysis, the present one is fully trainable. This is achieved by combining point process methods with statistical classifiers. Using simulated data, the method proposed in this paper will be shown to be more accurate and more robust to noise than standard image processing methods. On the publicly available SIMCEP benchmark for cell image analysis algorithms, the cell count performance of the present paper is significantly more accurate than results published elsewhere, especially when cells form dense clusters. Furthermore, the proposed system performs as well as a state-of-the-art algorithm for the computer-aided histological grading of meningiomas when combined with a simple k-nearest neighbor classifier for identifying proliferating cells.

  6. Image change detection systems, methods, and articles of manufacture

    DOEpatents

    Jones, James L.; Lassahn, Gordon D.; Lancaster, Gregory D.

    2010-01-05

    Aspects of the invention relate to image change detection systems, methods, and articles of manufacture. According to one aspect, a method of identifying differences between a plurality of images is described. The method includes loading a source image and a target image into memory of a computer, constructing source and target edge images from the source and target images to enable processing of multiband images, displaying the source and target images on a display device of the computer, aligning the source and target edge images, switching displaying of the source image and the target image on the display device, to enable identification of differences between the source image and the target image.

  7. Automated and unsupervised detection of malarial parasites in microscopic images.

    PubMed

    Purwar, Yashasvi; Shah, Sirish L; Clarke, Gwen; Almugairi, Areej; Muehlenbachs, Atis

    2011-12-13

    Malaria is a serious infectious disease. According to the World Health Organization, it is responsible for nearly one million deaths each year. There are various techniques to diagnose malaria of which manual microscopy is considered to be the gold standard. However due to the number of steps required in manual assessment, this diagnostic method is time consuming (leading to late diagnosis) and prone to human error (leading to erroneous diagnosis), even in experienced hands. The focus of this study is to develop a robust, unsupervised and sensitive malaria screening technique with low material cost and one that has an advantage over other techniques in that it minimizes human reliance and is, therefore, more consistent in applying diagnostic criteria. A method based on digital image processing of Giemsa-stained thin smear image is developed to facilitate the diagnostic process. The diagnosis procedure is divided into two parts; enumeration and identification. The image-based method presented here is designed to automate the process of enumeration and identification; with the main advantage being its ability to carry out the diagnosis in an unsupervised manner and yet have high sensitivity and thus reducing cases of false negatives. The image based method is tested over more than 500 images from two independent laboratories. The aim is to distinguish between positive and negative cases of malaria using thin smear blood slide images. Due to the unsupervised nature of method it requires minimal human intervention thus speeding up the whole process of diagnosis. Overall sensitivity to capture cases of malaria is 100% and specificity ranges from 50-88% for all species of malaria parasites. Image based screening method will speed up the whole process of diagnosis and is more advantageous over laboratory procedures that are prone to errors and where pathological expertise is minimal. Further this method provides a consistent and robust way of generating the parasite clearance curves.

  8. Stable image acquisition for mobile image processing applications

    NASA Astrophysics Data System (ADS)

    Henning, Kai-Fabian; Fritze, Alexander; Gillich, Eugen; Mönks, Uwe; Lohweg, Volker

    2015-02-01

    Today, mobile devices (smartphones, tablets, etc.) are widespread and of high importance for their users. Their performance as well as versatility increases over time. This leads to the opportunity to use such devices for more specific tasks like image processing in an industrial context. For the analysis of images requirements like image quality (blur, illumination, etc.) as well as a defined relative position of the object to be inspected are crucial. Since mobile devices are handheld and used in constantly changing environments the challenge is to fulfill these requirements. We present an approach to overcome the obstacles and stabilize the image capturing process such that image analysis becomes significantly improved on mobile devices. Therefore, image processing methods are combined with sensor fusion concepts. The approach consists of three main parts. First, pose estimation methods are used to guide a user moving the device to a defined position. Second, the sensors data and the pose information are combined for relative motion estimation. Finally, the image capturing process is automated. It is triggered depending on the alignment of the device and the object as well as the image quality that can be achieved under consideration of motion and environmental effects.

  9. Adaptive Image Processing Methods for Improving Contaminant Detection Accuracy on Poultry Carcasses

    USDA-ARS?s Scientific Manuscript database

    Technical Abstract A real-time multispectral imaging system has demonstrated a science-based tool for fecal and ingesta contaminant detection during poultry processing. In order to implement this imaging system at commercial poultry processing industry, the false positives must be removed. For doi...

  10. Digital processing of radiographic images for print publication.

    PubMed

    Cockerill, James W

    2002-01-01

    Digital imaging of X-rays yields high quality, evenly exposed negatives and prints. This article outlines the method used, materials and methods of this technique and discusses the advantages of digital radiographic images.

  11. Improving the Performance of the Prony Method Using a Wavelet Domain Filter for MRI Denoising

    PubMed Central

    Lentini, Marianela; Paluszny, Marco

    2014-01-01

    The Prony methods are used for exponential fitting. We use a variant of the Prony method for abnormal brain tissue detection in sequences of T 2 weighted magnetic resonance images. Here, MR images are considered to be affected only by Rician noise, and a new wavelet domain bilateral filtering process is implemented to reduce the noise in the images. This filter is a modification of Kazubek's algorithm and we use synthetic images to show the ability of the new procedure to suppress noise and compare its performance with respect to the original filter, using quantitative and qualitative criteria. The tissue classification process is illustrated using a real sequence of T 2 MR images, and the filter is applied to each image before using the variant of the Prony method. PMID:24834108

  12. Improving the performance of the prony method using a wavelet domain filter for MRI denoising.

    PubMed

    Jaramillo, Rodney; Lentini, Marianela; Paluszny, Marco

    2014-01-01

    The Prony methods are used for exponential fitting. We use a variant of the Prony method for abnormal brain tissue detection in sequences of T 2 weighted magnetic resonance images. Here, MR images are considered to be affected only by Rician noise, and a new wavelet domain bilateral filtering process is implemented to reduce the noise in the images. This filter is a modification of Kazubek's algorithm and we use synthetic images to show the ability of the new procedure to suppress noise and compare its performance with respect to the original filter, using quantitative and qualitative criteria. The tissue classification process is illustrated using a real sequence of T 2 MR images, and the filter is applied to each image before using the variant of the Prony method.

  13. New scheme for image edge detection using the switching mechanism of nonlinear optical material

    NASA Astrophysics Data System (ADS)

    Pahari, Nirmalya; Mukhopadhyay, Sourangshu

    2006-03-01

    The limitations of electronics in conducting parallel arithmetic, algebraic, and logic processing are well known. Very high-speed (terahertz) performance cannot be expected in conventional electronic mechanisms. To achieve such performance we can introduce optics instead of electronics for information processing, computing, and data handling. Nonlinear optical material (NOM) is a successful candidate in this regard to play a major role in the domain of optically controlled switching systems. The character of some NOMs is such as to reflect the probe beam in the presence of two read beams (or pump beams) exciting the material from opposite directions, using the principle of four-wave mixing. In image processing, edge extraction from an image is an important and essential task. Several optical methods of digital image processing are used for properly evaluating the image edges. We propose here a new method of image edge detection, extraction, and enhancement by use of AND-based switching operations with NOM. In this process we have used the optically inverted image of a supplied image. This can be obtained by the EXOR switching operation of the NOM.

  14. Experiences with digital processing of images at INPE

    NASA Technical Reports Server (NTRS)

    Mascarenhas, N. D. A. (Principal Investigator)

    1984-01-01

    Four different research experiments with digital image processing at INPE will be described: (1) edge detection by hypothesis testing; (2) image interpolation by finite impulse response filters; (3) spatial feature extraction methods in multispectral classification; and (4) translational image registration by sequential tests of hypotheses.

  15. Image enhancement in positron emission mammography

    NASA Astrophysics Data System (ADS)

    Slavine, Nikolai V.; Seiler, Stephen; McColl, Roderick W.; Lenkinski, Robert E.

    2017-02-01

    Purpose: To evaluate an efficient iterative deconvolution method (RSEMD) for improving the quantitative accuracy of previously reconstructed breast images by commercial positron emission mammography (PEM) scanner. Materials and Methods: The RSEMD method was tested on breast phantom data and clinical PEM imaging data. Data acquisition was performed on a commercial Naviscan Flex Solo II PEM camera. This method was applied to patient breast images previously reconstructed with Naviscan software (MLEM) to determine improvements in resolution, signal to noise ratio (SNR) and contrast to noise ratio (CNR.) Results: In all of the patients' breast studies the post-processed images proved to have higher resolution and lower noise as compared with images reconstructed by conventional methods. In general, the values of SNR reached a plateau at around 6 iterations with an improvement factor of about 2 for post-processed Flex Solo II PEM images. Improvements in image resolution after the application of RSEMD have also been demonstrated. Conclusions: A rapidly converging, iterative deconvolution algorithm with a novel resolution subsets-based approach RSEMD that operates on patient DICOM images has been used for quantitative improvement in breast imaging. The RSEMD method can be applied to clinical PEM images to improve image quality to diagnostically acceptable levels and will be crucial in order to facilitate diagnosis of tumor progression at the earliest stages. The RSEMD method can be considered as an extended Richardson-Lucy algorithm with multiple resolution levels (resolution subsets).

  16. Critical object recognition in millimeter-wave images with robustness to rotation and scale.

    PubMed

    Mohammadzade, Hoda; Ghojogh, Benyamin; Faezi, Sina; Shabany, Mahdi

    2017-06-01

    Locating critical objects is crucial in various security applications and industries. For example, in security applications, such as in airports, these objects might be hidden or covered under shields or secret sheaths. Millimeter-wave images can be utilized to discover and recognize the critical objects out of the hidden cases without any health risk due to their non-ionizing features. However, millimeter-wave images usually have waves in and around the detected objects, making object recognition difficult. Thus, regular image processing and classification methods cannot be used for these images and additional pre-processings and classification methods should be introduced. This paper proposes a novel pre-processing method for canceling rotation and scale using principal component analysis. In addition, a two-layer classification method is introduced and utilized for recognition. Moreover, a large dataset of millimeter-wave images is collected and created for experiments. Experimental results show that a typical classification method such as support vector machines can recognize 45.5% of a type of critical objects at 34.2% false alarm rate (FAR), which is a drastically poor recognition. The same method within the proposed recognition framework achieves 92.9% recognition rate at 0.43% FAR, which indicates a highly significant improvement. The significant contribution of this work is to introduce a new method for analyzing millimeter-wave images based on machine vision and learning approaches, which is not yet widely noted in the field of millimeter-wave image analysis.

  17. Adaptive multifocus image fusion using block compressed sensing with smoothed projected Landweber integration in the wavelet domain.

    PubMed

    V S, Unni; Mishra, Deepak; Subrahmanyam, G R K S

    2016-12-01

    The need for image fusion in current image processing systems is increasing mainly due to the increased number and variety of image acquisition techniques. Image fusion is the process of combining substantial information from several sensors using mathematical techniques in order to create a single composite image that will be more comprehensive and thus more useful for a human operator or other computer vision tasks. This paper presents a new approach to multifocus image fusion based on sparse signal representation. Block-based compressive sensing integrated with a projection-driven compressive sensing (CS) recovery that encourages sparsity in the wavelet domain is used as a method to get the focused image from a set of out-of-focus images. Compression is achieved during the image acquisition process using a block compressive sensing method. An adaptive thresholding technique within the smoothed projected Landweber recovery process reconstructs high-resolution focused images from low-dimensional CS measurements of out-of-focus images. Discrete wavelet transform and dual-tree complex wavelet transform are used as the sparsifying basis for the proposed fusion. The main finding lies in the fact that sparsification enables a better selection of the fusion coefficients and hence better fusion. A Laplacian mixture model fit is done in the wavelet domain and estimation of the probability density function (pdf) parameters by expectation maximization leads us to the proper selection of the coefficients of the fused image. Using the proposed method compared with the fusion scheme without employing the projected Landweber (PL) scheme and the other existing CS-based fusion approaches, it is observed that with fewer samples itself, the proposed method outperforms other approaches.

  18. Oil Spill Detection in Terma-Side-Looking Airborne Radar Images Using Image Features and Region Segmentation

    PubMed Central

    Alacid, Beatriz

    2018-01-01

    This work presents a method for oil-spill detection on Spanish coasts using aerial Side-Looking Airborne Radar (SLAR) images, which are captured using a Terma sensor. The proposed method uses grayscale image processing techniques to identify the dark spots that represent oil slicks on the sea. The approach is based on two steps. First, the noise regions caused by aircraft movements are detected and labeled in order to avoid the detection of false-positives. Second, a segmentation process guided by a map saliency technique is used to detect image regions that represent oil slicks. The results show that the proposed method is an improvement on the previous approaches for this task when employing SLAR images. PMID:29316716

  19. Accelerating Spaceborne SAR Imaging Using Multiple CPU/GPU Deep Collaborative Computing

    PubMed Central

    Zhang, Fan; Li, Guojun; Li, Wei; Hu, Wei; Hu, Yuxin

    2016-01-01

    With the development of synthetic aperture radar (SAR) technologies in recent years, the huge amount of remote sensing data brings challenges for real-time imaging processing. Therefore, high performance computing (HPC) methods have been presented to accelerate SAR imaging, especially the GPU based methods. In the classical GPU based imaging algorithm, GPU is employed to accelerate image processing by massive parallel computing, and CPU is only used to perform the auxiliary work such as data input/output (IO). However, the computing capability of CPU is ignored and underestimated. In this work, a new deep collaborative SAR imaging method based on multiple CPU/GPU is proposed to achieve real-time SAR imaging. Through the proposed tasks partitioning and scheduling strategy, the whole image can be generated with deep collaborative multiple CPU/GPU computing. In the part of CPU parallel imaging, the advanced vector extension (AVX) method is firstly introduced into the multi-core CPU parallel method for higher efficiency. As for the GPU parallel imaging, not only the bottlenecks of memory limitation and frequent data transferring are broken, but also kinds of optimized strategies are applied, such as streaming, parallel pipeline and so on. Experimental results demonstrate that the deep CPU/GPU collaborative imaging method enhances the efficiency of SAR imaging on single-core CPU by 270 times and realizes the real-time imaging in that the imaging rate outperforms the raw data generation rate. PMID:27070606

  20. Accelerating Spaceborne SAR Imaging Using Multiple CPU/GPU Deep Collaborative Computing.

    PubMed

    Zhang, Fan; Li, Guojun; Li, Wei; Hu, Wei; Hu, Yuxin

    2016-04-07

    With the development of synthetic aperture radar (SAR) technologies in recent years, the huge amount of remote sensing data brings challenges for real-time imaging processing. Therefore, high performance computing (HPC) methods have been presented to accelerate SAR imaging, especially the GPU based methods. In the classical GPU based imaging algorithm, GPU is employed to accelerate image processing by massive parallel computing, and CPU is only used to perform the auxiliary work such as data input/output (IO). However, the computing capability of CPU is ignored and underestimated. In this work, a new deep collaborative SAR imaging method based on multiple CPU/GPU is proposed to achieve real-time SAR imaging. Through the proposed tasks partitioning and scheduling strategy, the whole image can be generated with deep collaborative multiple CPU/GPU computing. In the part of CPU parallel imaging, the advanced vector extension (AVX) method is firstly introduced into the multi-core CPU parallel method for higher efficiency. As for the GPU parallel imaging, not only the bottlenecks of memory limitation and frequent data transferring are broken, but also kinds of optimized strategies are applied, such as streaming, parallel pipeline and so on. Experimental results demonstrate that the deep CPU/GPU collaborative imaging method enhances the efficiency of SAR imaging on single-core CPU by 270 times and realizes the real-time imaging in that the imaging rate outperforms the raw data generation rate.

  1. Novel optical scanning cryptography using Fresnel telescope imaging.

    PubMed

    Yan, Aimin; Sun, Jianfeng; Hu, Zhijuan; Zhang, Jingtao; Liu, Liren

    2015-07-13

    We propose a new method called modified optical scanning cryptography using Fresnel telescope imaging technique for encryption and decryption of remote objects. An image or object can be optically encrypted on the fly by Fresnel telescope scanning system together with an encryption key. For image decryption, the encrypted signals are received and processed with an optical coherent heterodyne detection system. The proposed method has strong performance through use of secure Fresnel telescope scanning with orthogonal polarized beams and efficient all-optical information processing. The validity of the proposed method is demonstrated by numerical simulations and experimental results.

  2. A Computer-Aided Diagnosis System for Measuring Carotid Artery Intima-Media Thickness (IMT) Using Quaternion Vectors.

    PubMed

    Kutbay, Uğurhan; Hardalaç, Fırat; Akbulut, Mehmet; Akaslan, Ünsal; Serhatlıoğlu, Selami

    2016-06-01

    This study aims investigating adjustable distant fuzzy c-means segmentation on carotid Doppler images, as well as quaternion-based convolution filters and saliency mapping procedures. We developed imaging software that will simplify the measurement of carotid artery intima-media thickness (IMT) on saliency mapping images. Additionally, specialists evaluated the present images and compared them with saliency mapping images. In the present research, we conducted imaging studies of 25 carotid Doppler images obtained by the Department of Cardiology at Fırat University. After implementing fuzzy c-means segmentation and quaternion-based convolution on all Doppler images, we obtained a model that can be analyzed easily by the doctors using a bottom-up saliency model. These methods were applied to 25 carotid Doppler images and then interpreted by specialists. In the present study, we used color-filtering methods to obtain carotid color images. Saliency mapping was performed on the obtained images, and the carotid artery IMT was detected and interpreted on the obtained images from both methods and the raw images are shown in Results. Also these results were investigated by using Mean Square Error (MSE) for the raw IMT images and the method which gives the best performance is the Quaternion Based Saliency Mapping (QBSM). 0,0014 and 0,000191 mm(2) MSEs were obtained for artery lumen diameters and plaque diameters in carotid arteries respectively. We found that computer-based image processing methods used on carotid Doppler could aid doctors' in their decision-making process. We developed software that could ease the process of measuring carotid IMT for cardiologists and help them to evaluate their findings.

  3. Using digital photo technology to improve visualization of gastric lumen CT images

    NASA Astrophysics Data System (ADS)

    Pyrgioti, M.; Kyriakidis, A.; Chrysostomou, S.; Panaritis, V.

    2006-12-01

    In order to evaluate the gastric lumen CT images better, a new method is being applied to images using an Image Processing software. During a 12-month period, 69 patients with various gastric symptoms and 20 normal (as far as it concerns the upper gastrointestinal system) volunteers underwent computed tomography of the upper gastrointestinal system. Just before the examination the patients and the normal volunteers underwent preparation with 40 ml soda water and 10 ml gastrografin. All the CT images were digitized with an Olympus 3.2 Mpixel digital camera and further processed with an Image Processing software. The administration per os of gastrografin and soda water resulted in the distension of the stomach and consequently better visualization of all the anatomic parts. By using an Image Processing software in a PC, all the pathological and normal images of the stomach were better diagnostically estimated. We believe that the photo digital technology improves the diagnostic capacity not only of the CT image but also in MRI and probably many other imaging methods.

  4. Protocols for Image Processing based Underwater Inspection of Infrastructure Elements

    NASA Astrophysics Data System (ADS)

    O'Byrne, Michael; Ghosh, Bidisha; Schoefs, Franck; Pakrashi, Vikram

    2015-07-01

    Image processing can be an important tool for inspecting underwater infrastructure elements like bridge piers and pile wharves. Underwater inspection often relies on visual descriptions of divers who are not necessarily trained in specifics of structural degradation and the information may often be vague, prone to error or open to significant variation of interpretation. Underwater vehicles, on the other hand can be quite expensive to deal with for such inspections. Additionally, there is now significant encouragement globally towards the deployment of more offshore renewable wind turbines and wave devices and the requirement for underwater inspection can be expected to increase significantly in the coming years. While the merit of image processing based assessment of the condition of underwater structures is understood to a certain degree, there is no existing protocol on such image based methods. This paper discusses and describes an image processing protocol for underwater inspection of structures. A stereo imaging image processing method is considered in this regard and protocols are suggested for image storage, imaging, diving, and inspection. A combined underwater imaging protocol is finally presented which can be used for a variety of situations within a range of image scenes and environmental conditions affecting the imaging conditions. An example of detecting marine growth is presented of a structure in Cork Harbour, Ireland.

  5. Image Segmentation Using Minimum Spanning Tree

    NASA Astrophysics Data System (ADS)

    Dewi, M. P.; Armiati, A.; Alvini, S.

    2018-04-01

    This research aim to segmented the digital image. The process of segmentation is to separate the object from the background. So the main object can be processed for the other purposes. Along with the development of technology in digital image processing application, the segmentation process becomes increasingly necessary. The segmented image which is the result of the segmentation process should accurate due to the next process need the interpretation of the information on the image. This article discussed the application of minimum spanning tree on graph in segmentation process of digital image. This method is able to separate an object from the background and the image will change to be the binary images. In this case, the object that being the focus is set in white, while the background is black or otherwise.

  6. [Detecting fire smoke based on the multispectral image].

    PubMed

    Wei, Ying-Zhuo; Zhang, Shao-Wu; Liu, Yan-Wei

    2010-04-01

    Smoke detection is very important for preventing forest-fire in the fire early process. Because the traditional technologies based on video and image processing are easily affected by the background dynamic information, three limitations exist in these technologies, i. e. lower anti-interference ability, higher false detection rate and the fire smoke and water fog being not easily distinguished. A novel detection method for detecting smoke based on the multispectral image was proposed in the present paper. Using the multispectral digital imaging technique, the multispectral image series of fire smoke and water fog were obtained in the band scope of 400 to 720 nm, and the images were divided into bins. The Euclidian distance among the bins was taken as a measurement for showing the difference of spectrogram. After obtaining the spectral feature vectors of dynamic region, the regions of fire smoke and water fog were extracted according to the spectrogram feature difference between target and background. The indoor and outdoor experiments show that the smoke detection method based on multispectral image can be applied to the smoke detection, which can effectively distinguish the fire smoke and water fog. Combined with video image processing method, the multispectral image detection method can also be applied to the forest fire surveillance, reducing the false alarm rate in forest fire detection.

  7. A Q-Ising model application for linear-time image segmentation

    NASA Astrophysics Data System (ADS)

    Bentrem, Frank W.

    2010-10-01

    A computational method is presented which efficiently segments digital grayscale images by directly applying the Q-state Ising (or Potts) model. Since the Potts model was first proposed in 1952, physicists have studied lattice models to gain deep insights into magnetism and other disordered systems. For some time, researchers have realized that digital images may be modeled in much the same way as these physical systems ( i.e., as a square lattice of numerical values). A major drawback in using Potts model methods for image segmentation is that, with conventional methods, it processes in exponential time. Advances have been made via certain approximations to reduce the segmentation process to power-law time. However, in many applications (such as for sonar imagery), real-time processing requires much greater efficiency. This article contains a description of an energy minimization technique that applies four Potts (Q-Ising) models directly to the image and processes in linear time. The result is analogous to partitioning the system into regions of four classes of magnetism. This direct Potts segmentation technique is demonstrated on photographic, medical, and acoustic images.

  8. TU-FG-209-11: Validation of a Channelized Hotelling Observer to Optimize Chest Radiography Image Processing for Nodule Detection: A Human Observer Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, A; Little, K; Chung, J

    Purpose: To validate the use of a Channelized Hotelling Observer (CHO) model for guiding image processing parameter selection and enable improved nodule detection in digital chest radiography. Methods: In a previous study, an anthropomorphic chest phantom was imaged with and without PMMA simulated nodules using a GE Discovery XR656 digital radiography system. The impact of image processing parameters was then explored using a CHO with 10 Laguerre-Gauss channels. In this work, we validate the CHO’s trend in nodule detectability as a function of two processing parameters by conducting a signal-known-exactly, multi-reader-multi-case (MRMC) ROC observer study. Five naive readers scored confidencemore » of nodule visualization in 384 images with 50% nodule prevalence. The image backgrounds were regions-of-interest extracted from 6 normal patient scans, and the digitally inserted simulated nodules were obtained from phantom data in previous work. Each patient image was processed with both a near-optimal and a worst-case parameter combination, as determined by the CHO for nodule detection. The same 192 ROIs were used for each image processing method, with 32 randomly selected lung ROIs per patient image. Finally, the MRMC data was analyzed using the freely available iMRMC software of Gallas et al. Results: The image processing parameters which were optimized for the CHO led to a statistically significant improvement (p=0.049) in human observer AUC from 0.78 to 0.86, relative to the image processing implementation which produced the lowest CHO performance. Conclusion: Differences in user-selectable image processing methods on a commercially available digital radiography system were shown to have a marked impact on performance of human observers in the task of lung nodule detection. Further, the effect of processing on humans was similar to the effect on CHO performance. Future work will expand this study to include a wider range of detection/classification tasks and more observers, including experienced chest radiologists.« less

  9. Matrix decomposition graphics processing unit solver for Poisson image editing

    NASA Astrophysics Data System (ADS)

    Lei, Zhao; Wei, Li

    2012-10-01

    In recent years, gradient-domain methods have been widely discussed in the image processing field, including seamless cloning and image stitching. These algorithms are commonly carried out by solving a large sparse linear system: the Poisson equation. However, solving the Poisson equation is a computational and memory intensive task which makes it not suitable for real-time image editing. A new matrix decomposition graphics processing unit (GPU) solver (MDGS) is proposed to settle the problem. A matrix decomposition method is used to distribute the work among GPU threads, so that MDGS will take full advantage of the computing power of current GPUs. Additionally, MDGS is a hybrid solver (combines both the direct and iterative techniques) and has two-level architecture. These enable MDGS to generate identical solutions with those of the common Poisson methods and achieve high convergence rate in most cases. This approach is advantageous in terms of parallelizability, enabling real-time image processing, low memory-taken and extensive applications.

  10. Feature-Motivated Simplified Adaptive PCNN-Based Medical Image Fusion Algorithm in NSST Domain.

    PubMed

    Ganasala, Padma; Kumar, Vinod

    2016-02-01

    Multimodality medical image fusion plays a vital role in diagnosis, treatment planning, and follow-up studies of various diseases. It provides a composite image containing critical information of source images required for better localization and definition of different organs and lesions. In the state-of-the-art image fusion methods based on nonsubsampled shearlet transform (NSST) and pulse-coupled neural network (PCNN), authors have used normalized coefficient value to motivate the PCNN-processing both low-frequency (LF) and high-frequency (HF) sub-bands. This makes the fused image blurred and decreases its contrast. The main objective of this work is to design an image fusion method that gives the fused image with better contrast, more detail information, and suitable for clinical use. We propose a novel image fusion method utilizing feature-motivated adaptive PCNN in NSST domain for fusion of anatomical images. The basic PCNN model is simplified, and adaptive-linking strength is used. Different features are used to motivate the PCNN-processing LF and HF sub-bands. The proposed method is extended for fusion of functional image with an anatomical image in improved nonlinear intensity hue and saturation (INIHS) color model. Extensive fusion experiments have been performed on CT-MRI and SPECT-MRI datasets. Visual and quantitative analysis of experimental results proved that the proposed method provides satisfactory fusion outcome compared to other image fusion methods.

  11. Segmentation of the spinous process and its acoustic shadow in vertebral ultrasound images.

    PubMed

    Berton, Florian; Cheriet, Farida; Miron, Marie-Claude; Laporte, Catherine

    2016-05-01

    Spinal ultrasound imaging is emerging as a low-cost, radiation-free alternative to conventional X-ray imaging for the clinical follow-up of patients with scoliosis. Currently, deformity measurement relies almost entirely on manual identification of key vertebral landmarks. However, the interpretation of vertebral ultrasound images is challenging, primarily because acoustic waves are entirely reflected by bone. To alleviate this problem, we propose an algorithm to segment these images into three regions: the spinous process, its acoustic shadow and other tissues. This method consists, first, in the extraction of several image features and the selection of the most relevant ones for the discrimination of the three regions. Then, using this set of features and linear discriminant analysis, each pixel of the image is classified as belonging to one of the three regions. Finally, the image is segmented by regularizing the pixel-wise classification results to account for some geometrical properties of vertebrae. The feature set was first validated by analyzing the classification results across a learning database. The database contained 107 vertebral ultrasound images acquired with convex and linear probes. Classification rates of 84%, 92% and 91% were achieved for the spinous process, the acoustic shadow and other tissues, respectively. Dice similarity coefficients of 0.72 and 0.88 were obtained respectively for the spinous process and acoustic shadow, confirming that the proposed method accurately segments the spinous process and its acoustic shadow in vertebral ultrasound images. Furthermore, the centroid of the automatically segmented spinous process was located at an average distance of 0.38 mm from that of the manually labeled spinous process, which is on the order of image resolution. This suggests that the proposed method is a promising tool for the measurement of the Spinous Process Angle and, more generally, for assisting ultrasound-based assessment of scoliosis progression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Developing Image Processing Meta-Algorithms with Data Mining of Multiple Metrics

    PubMed Central

    Cunha, Alexandre; Toga, A. W.; Parker, D. Stott

    2014-01-01

    People often use multiple metrics in image processing, but here we take a novel approach of mining the values of batteries of metrics on image processing results. We present a case for extending image processing methods to incorporate automated mining of multiple image metric values. Here by a metric we mean any image similarity or distance measure, and in this paper we consider intensity-based and statistical image measures and focus on registration as an image processing problem. We show how it is possible to develop meta-algorithms that evaluate different image processing results with a number of different metrics and mine the results in an automated fashion so as to select the best results. We show that the mining of multiple metrics offers a variety of potential benefits for many image processing problems, including improved robustness and validation. PMID:24653748

  13. Application of image processing to calculate the number of fish seeds using raspberry-pi

    NASA Astrophysics Data System (ADS)

    Rahmadiansah, A.; Kusumawardhani, A.; Duanto, F. N.; Qoonita, F.

    2018-03-01

    Many fish cultivator in Indonesia who suffered losses due to the sale and purchase of fish seeds did not match the agreed amount. The loss is due to the calculation of fish seed still using manual method. To overcome these problems, then in this study designed fish counting system automatically and real-time fish using the image processing based on Raspberry Pi. Used image processing because it can calculate moving objects and eliminate noise. Image processing method used to calculate moving object is virtual loop detector or virtual detector method and the approach used is “double difference image”. The “double difference” approach uses information from the previous frame and the next frame to estimate the shape and position of the object. Using these methods and approaches, the results obtained were quite good with an average error of 1.0% for 300 individuals in a test with a virtual detector width of 96 pixels and a slope of 1 degree test plane.

  14. Statistical iterative reconstruction for streak artefact reduction when using multidetector CT to image the dento-alveolar structures.

    PubMed

    Dong, J; Hayakawa, Y; Kober, C

    2014-01-01

    When metallic prosthetic appliances and dental fillings exist in the oral cavity, the appearance of metal-induced streak artefacts is not avoidable in CT images. The aim of this study was to develop a method for artefact reduction using the statistical reconstruction on multidetector row CT images. Adjacent CT images often depict similar anatomical structures. Therefore, reconstructed images with weak artefacts were attempted using projection data of an artefact-free image in a neighbouring thin slice. Images with moderate and strong artefacts were continuously processed in sequence by successive iterative restoration where the projection data was generated from the adjacent reconstructed slice. First, the basic maximum likelihood-expectation maximization algorithm was applied. Next, the ordered subset-expectation maximization algorithm was examined. Alternatively, a small region of interest setting was designated. Finally, the general purpose graphic processing unit machine was applied in both situations. The algorithms reduced the metal-induced streak artefacts on multidetector row CT images when the sequential processing method was applied. The ordered subset-expectation maximization and small region of interest reduced the processing duration without apparent detriments. A general-purpose graphic processing unit realized the high performance. A statistical reconstruction method was applied for the streak artefact reduction. The alternative algorithms applied were effective. Both software and hardware tools, such as ordered subset-expectation maximization, small region of interest and general-purpose graphic processing unit achieved fast artefact correction.

  15. Camera calibration based on the back projection process

    NASA Astrophysics Data System (ADS)

    Gu, Feifei; Zhao, Hong; Ma, Yueyang; Bu, Penghui

    2015-12-01

    Camera calibration plays a crucial role in 3D measurement tasks of machine vision. In typical calibration processes, camera parameters are iteratively optimized in the forward imaging process (FIP). However, the results can only guarantee the minimum of 2D projection errors on the image plane, but not the minimum of 3D reconstruction errors. In this paper, we propose a universal method for camera calibration, which uses the back projection process (BPP). In our method, a forward projection model is used to obtain initial intrinsic and extrinsic parameters with a popular planar checkerboard pattern. Then, the extracted image points are projected back into 3D space and compared with the ideal point coordinates. Finally, the estimation of the camera parameters is refined by a non-linear function minimization process. The proposed method can obtain a more accurate calibration result, which is more physically useful. Simulation and practical data are given to demonstrate the accuracy of the proposed method.

  16. A New Test Method of Circuit Breaker Spring Telescopic Characteristics Based Image Processing

    NASA Astrophysics Data System (ADS)

    Huang, Huimin; Wang, Feifeng; Lu, Yufeng; Xia, Xiaofei; Su, Yi

    2018-06-01

    This paper applied computer vision technology to the fatigue condition monitoring of springs, and a new telescopic characteristics test method is proposed for circuit breaker operating mechanism spring based on image processing technology. High-speed camera is utilized to capture spring movement image sequences when high voltage circuit breaker operated. Then the image-matching method is used to obtain the deformation-time curve and speed-time curve, and the spring expansion and deformation parameters are extracted from it, which will lay a foundation for subsequent spring force analysis and matching state evaluation. After performing simulation tests at the experimental site, this image analyzing method could solve the complex problems of traditional mechanical sensor installation and monitoring online, status assessment of the circuit breaker spring.

  17. 3D shape recovery of smooth surfaces: dropping the fixed-viewpoint assumption.

    PubMed

    Moses, Yael; Shimshoni, Ilan

    2009-07-01

    We present a new method for recovering the 3D shape of a featureless smooth surface from three or more calibrated images illuminated by different light sources (three of them are independent). This method is unique in its ability to handle images taken from unconstrained perspective viewpoints and unconstrained illumination directions. The correspondence between such images is hard to compute and no other known method can handle this problem locally from a small number of images. Our method combines geometric and photometric information in order to recover dense correspondence between the images and accurately computes the 3D shape. Only a single pass starting at one point and local computation are used. This is in contrast to methods that use the occluding contours recovered from many images to initialize and constrain an optimization process. The output of our method can be used to initialize such processes. In the special case of fixed viewpoint, the proposed method becomes a new perspective photometric stereo algorithm. Nevertheless, the introduction of the multiview setup, self-occlusions, and regions close to the occluding boundaries are better handled, and the method is more robust to noise than photometric stereo. Experimental results are presented for simulated and real images.

  18. Region-based multifocus image fusion for the precise acquisition of Pap smear images.

    PubMed

    Tello-Mijares, Santiago; Bescós, Jesús

    2018-05-01

    A multifocus image fusion method to obtain a single focused image from a sequence of microscopic high-magnification Papanicolau source (Pap smear) images is presented. These images, captured each in a different position of the microscope lens, frequently show partially focused cells or parts of cells, which makes them unpractical for the direct application of image analysis techniques. The proposed method obtains a focused image with a high preservation of original pixels information while achieving a negligible visibility of the fusion artifacts. The method starts by identifying the best-focused image of the sequence; then, it performs a mean-shift segmentation over this image; the focus level of the segmented regions is evaluated in all the images of the sequence, and best-focused regions are merged in a single combined image; finally, this image is processed with an adaptive artifact removal process. The combination of a region-oriented approach, instead of block-based approaches, and a minimum modification of the value of focused pixels in the original images achieve a highly contrasted image with no visible artifacts, which makes this method especially convenient for the medical imaging domain. The proposed method is compared with several state-of-the-art alternatives over a representative dataset. The experimental results show that our proposal obtains the best and more stable quality indicators. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  19. Detection of fuze defects by image-processing methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, M.J.

    1988-03-01

    This paper describes experimental studies of the detection of mechanical defects by the application of computer-processing methods to real-time radiographic images of fuze assemblies. The experimental results confirm that a new algorithm developed at Materials Research Laboratory has potential for the automatic inspection of these assemblies and of others that contain discrete components. The algorithm was applied to images that contain a range of grey levels and has been found to be tolerant to image variations encountered under simulated production conditions.

  20. Varying face occlusion detection and iterative recovery for face recognition

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Hu, Zhengping; Sun, Zhe; Zhao, Shuhuan; Sun, Mei

    2017-05-01

    In most sparse representation methods for face recognition (FR), occlusion problems were usually solved via removing the occlusion part of both query samples and training samples to perform the recognition process. This practice ignores the global feature of facial image and may lead to unsatisfactory results due to the limitation of local features. Considering the aforementioned drawback, we propose a method called varying occlusion detection and iterative recovery for FR. The main contributions of our method are as follows: (1) to detect an accurate occlusion area of facial images, an image processing and intersection-based clustering combination method is used for occlusion FR; (2) according to an accurate occlusion map, the new integrated facial images are recovered iteratively and put into a recognition process; and (3) the effectiveness on recognition accuracy of our method is verified by comparing it with three typical occlusion map detection methods. Experiments show that the proposed method has a highly accurate detection and recovery performance and that it outperforms several similar state-of-the-art methods against partial contiguous occlusion.

  1. TH-E-17A-07: Improved Cine Four-Dimensional Computed Tomography (4D CT) Acquisition and Processing Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castillo, S; Castillo, R; Castillo, E

    2014-06-15

    Purpose: Artifacts arising from the 4D CT acquisition and post-processing methods add systematic uncertainty to the treatment planning process. We propose an alternate cine 4D CT acquisition and post-processing method to consistently reduce artifacts, and explore patient parameters indicative of image quality. Methods: In an IRB-approved protocol, 18 patients with primary thoracic malignancies received a standard cine 4D CT acquisition followed by an oversampling 4D CT that doubled the number of images acquired. A second cohort of 10 patients received the clinical 4D CT plus 3 oversampling scans for intra-fraction reproducibility. The clinical acquisitions were processed by the standard phasemore » sorting method. The oversampling acquisitions were processed using Dijkstras algorithm to optimize an artifact metric over available image data. Image quality was evaluated with a one-way mixed ANOVA model using a correlation-based artifact metric calculated from the final 4D CT image sets. Spearman correlations and a linear mixed model tested the association between breathing parameters, patient characteristics, and image quality. Results: The oversampling 4D CT scans reduced artifact presence significantly by 27% and 28%, for the first cohort and second cohort respectively. From cohort 2, the inter-replicate deviation for the oversampling method was within approximately 13% of the cross scan average at the 0.05 significance level. Artifact presence for both clinical and oversampling methods was significantly correlated with breathing period (ρ=0.407, p-value<0.032 clinical, ρ=0.296, p-value<0.041 oversampling). Artifact presence in the oversampling method was significantly correlated with amount of data acquired, (ρ=-0.335, p-value<0.02) indicating decreased artifact presence with increased breathing cycles per scan location. Conclusion: The 4D CT oversampling acquisition with optimized sorting reduced artifact presence significantly and reproducibly compared to the phase-sorted clinical acquisition.« less

  2. Automated image analysis for quantification of reactive oxygen species in plant leaves.

    PubMed

    Sekulska-Nalewajko, Joanna; Gocławski, Jarosław; Chojak-Koźniewska, Joanna; Kuźniak, Elżbieta

    2016-10-15

    The paper presents an image processing method for the quantitative assessment of ROS accumulation areas in leaves stained with DAB or NBT for H 2 O 2 and O 2 - detection, respectively. Three types of images determined by the combination of staining method and background color are considered. The method is based on the principle of supervised machine learning with manually labeled image patterns used for training. The method's algorithm is developed as a JavaScript macro in the public domain Fiji (ImageJ) environment. It allows to select the stained regions of ROS-mediated histochemical reactions, subsequently fractionated according to the weak, medium and intense staining intensity and thus ROS accumulation. It also evaluates total leaf blade area. The precision of ROS accumulation area detection is validated by the Dice Similarity Coefficient in the case of manual patterns. The proposed framework reduces the computation complexity, once prepared, requires less image processing expertise than the competitive methods and represents a routine quantitative imaging assay for a general histochemical image classification. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Blood pulsation measurement using cameras operating in visible light: limitations.

    PubMed

    Koprowski, Robert

    2016-10-03

    The paper presents an automatic method for analysis and processing of images from a camera operating in visible light. This analysis applies to images containing the human facial area (body) and enables to measure the blood pulse rate. Special attention was paid to the limitations of this measurement method taking into account the possibility of using consumer cameras in real conditions (different types of lighting, different camera resolution, camera movement). The proposed new method of image analysis and processing was associated with three stages: (1) image pre-processing-allowing for the image filtration and stabilization (object location tracking); (2) main image processing-allowing for segmentation of human skin areas, acquisition of brightness changes; (3) signal analysis-filtration, FFT (Fast Fourier Transformation) analysis, pulse calculation. The presented algorithm and method for measuring the pulse rate has the following advantages: (1) it allows for non-contact and non-invasive measurement; (2) it can be carried out using almost any camera, including webcams; (3) it enables to track the object on the stage, which allows for the measurement of the heart rate when the patient is moving; (4) for a minimum of 40,000 pixels, it provides a measurement error of less than ±2 beats per minute for p < 0.01 and sunlight, or a slightly larger error (±3 beats per minute) for artificial lighting; (5) analysis of a single image takes about 40 ms in Matlab Version 7.11.0.584 (R2010b) with Image Processing Toolbox Version 7.1 (R2010b).

  4. Research on interpolation methods in medical image processing.

    PubMed

    Pan, Mei-Sen; Yang, Xiao-Li; Tang, Jing-Tian

    2012-04-01

    Image interpolation is widely used for the field of medical image processing. In this paper, interpolation methods are divided into three groups: filter interpolation, ordinary interpolation and general partial volume interpolation. Some commonly-used filter methods for image interpolation are pioneered, but the interpolation effects need to be further improved. When analyzing and discussing ordinary interpolation, many asymmetrical kernel interpolation methods are proposed. Compared with symmetrical kernel ones, the former are have some advantages. After analyzing the partial volume and generalized partial volume estimation interpolations, the new concept and constraint conditions of the general partial volume interpolation are defined, and several new partial volume interpolation functions are derived. By performing the experiments of image scaling, rotation and self-registration, the interpolation methods mentioned in this paper are compared in the entropy, peak signal-to-noise ratio, cross entropy, normalized cross-correlation coefficient and running time. Among the filter interpolation methods, the median and B-spline filter interpolations have a relatively better interpolating performance. Among the ordinary interpolation methods, on the whole, the symmetrical cubic kernel interpolations demonstrate a strong advantage, especially the symmetrical cubic B-spline interpolation. However, we have to mention that they are very time-consuming and have lower time efficiency. As for the general partial volume interpolation methods, from the total error of image self-registration, the symmetrical interpolations provide certain superiority; but considering the processing efficiency, the asymmetrical interpolations are better.

  5. Multiscale Image Processing of Solar Image Data

    NASA Astrophysics Data System (ADS)

    Young, C.; Myers, D. C.

    2001-12-01

    It is often said that the blessing and curse of solar physics is too much data. Solar missions such as Yohkoh, SOHO and TRACE have shown us the Sun with amazing clarity but have also increased the amount of highly complex data. We have improved our view of the Sun yet we have not improved our analysis techniques. The standard techniques used for analysis of solar images generally consist of observing the evolution of features in a sequence of byte scaled images or a sequence of byte scaled difference images. The determination of features and structures in the images are done qualitatively by the observer. There is little quantitative and objective analysis done with these images. Many advances in image processing techniques have occured in the past decade. Many of these methods are possibly suited for solar image analysis. Multiscale/Multiresolution methods are perhaps the most promising. These methods have been used to formulate the human ability to view and comprehend phenomena on different scales. So these techniques could be used to quantitify the imaging processing done by the observers eyes and brains. In this work we present several applications of multiscale techniques applied to solar image data. Specifically, we discuss uses of the wavelet, curvelet, and related transforms to define a multiresolution support for EIT, LASCO and TRACE images.

  6. Spot restoration for GPR image post-processing

    DOEpatents

    Paglieroni, David W; Beer, N. Reginald

    2014-05-20

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  7. Color transfer method preserving perceived lightness

    NASA Astrophysics Data System (ADS)

    Ueda, Chiaki; Azetsu, Tadahiro; Suetake, Noriaki; Uchino, Eiji

    2016-06-01

    Color transfer originally proposed by Reinhard et al. is a method to change the color appearance of an input image by using the color information of a reference image. The purpose of this study is to modify color transfer so that it works well even when the scenes of the input and reference images are not similar. Concretely, a color transfer method with lightness correction and color gamut adjustment is proposed. The lightness correction is applied to preserve the perceived lightness which is explained by the Helmholtz-Kohlrausch (H-K) effect. This effect is the phenomenon that vivid colors are perceived as brighter than dull colors with the same lightness. Hence, when the chroma is changed by image processing, the perceived lightness is also changed even if the physical lightness is preserved after the image processing. In the proposed method, by considering the H-K effect, color transfer that preserves the perceived lightness after processing is realized. Furthermore, color gamut adjustment is introduced to address the color gamut problem, which is caused by color space conversion. The effectiveness of the proposed method is verified by performing some experiments.

  8. An image-processing methodology for extracting bloodstain pattern features.

    PubMed

    Arthur, Ravishka M; Humburg, Philomena J; Hoogenboom, Jerry; Baiker, Martin; Taylor, Michael C; de Bruin, Karla G

    2017-08-01

    There is a growing trend in forensic science to develop methods to make forensic pattern comparison tasks more objective. This has generally involved the application of suitable image-processing methods to provide numerical data for identification or comparison. This paper outlines a unique image-processing methodology that can be utilised by analysts to generate reliable pattern data that will assist them in forming objective conclusions about a pattern. A range of features were defined and extracted from a laboratory-generated impact spatter pattern. These features were based in part on bloodstain properties commonly used in the analysis of spatter bloodstain patterns. The values of these features were consistent with properties reported qualitatively for such patterns. The image-processing method developed shows considerable promise as a way to establish measurable discriminating pattern criteria that are lacking in current bloodstain pattern taxonomies. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Performance assessment of multi-frequency processing of ICU chest images for enhanced visualization of tubes and catheters

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohui; Couwenhoven, Mary E.; Foos, David H.; Doran, James; Yankelevitz, David F.; Henschke, Claudia I.

    2008-03-01

    An image-processing method has been developed to improve the visibility of tube and catheter features in portable chest x-ray (CXR) images captured in the intensive care unit (ICU). The image-processing method is based on a multi-frequency approach, wherein the input image is decomposed into different spatial frequency bands, and those bands that contain the tube and catheter signals are individually enhanced by nonlinear boosting functions. Using a random sampling strategy, 50 cases were retrospectively selected for the study from a large database of portable CXR images that had been collected from multiple institutions over a two-year period. All images used in the study were captured using photo-stimulable, storage phosphor computed radiography (CR) systems. Each image was processed two ways. The images were processed with default image processing parameters such as those used in clinical settings (control). The 50 images were then separately processed using the new tube and catheter enhancement algorithm (test). Three board-certified radiologists participated in a reader study to assess differences in both detection-confidence performance and diagnostic efficiency between the control and test images. Images were evaluated on a diagnostic-quality, 3-megapixel monochrome monitor. Two scenarios were studied: the baseline scenario, representative of today's workflow (a single-control image presented with the window/level adjustments enabled) vs. the test scenario (a control/test image pair presented with a toggle enabled and the window/level settings disabled). The radiologists were asked to read the images in each scenario as they normally would for clinical diagnosis. Trend analysis indicates that the test scenario offers improved reading efficiency while providing as good or better detection capability compared to the baseline scenario.

  10. Experiments with recursive estimation in astronomical image processing

    NASA Technical Reports Server (NTRS)

    Busko, I.

    1992-01-01

    Recursive estimation concepts were applied to image enhancement problems since the 70's. However, very few applications in the particular area of astronomical image processing are known. These concepts were derived, for 2-dimensional images, from the well-known theory of Kalman filtering in one dimension. The historic reasons for application of these techniques to digital images are related to the images' scanned nature, in which the temporal output of a scanner device can be processed on-line by techniques borrowed directly from 1-dimensional recursive signal analysis. However, recursive estimation has particular properties that make it attractive even in modern days, when big computer memories make the full scanned image available to the processor at any given time. One particularly important aspect is the ability of recursive techniques to deal with non-stationary phenomena, that is, phenomena which have their statistical properties variable in time (or position in a 2-D image). Many image processing methods make underlying stationary assumptions either for the stochastic field being imaged, for the imaging system properties, or both. They will underperform, or even fail, when applied to images that deviate significantly from stationarity. Recursive methods, on the contrary, make it feasible to perform adaptive processing, that is, to process the image by a processor with properties tuned to the image's local statistical properties. Recursive estimation can be used to build estimates of images degraded by such phenomena as noise and blur. We show examples of recursive adaptive processing of astronomical images, using several local statistical properties to drive the adaptive processor, as average signal intensity, signal-to-noise and autocorrelation function. Software was developed under IRAF, and as such will be made available to interested users.

  11. Underwater image enhancement based on the dark channel prior and attenuation compensation

    NASA Astrophysics Data System (ADS)

    Guo, Qingwen; Xue, Lulu; Tang, Ruichun; Guo, Lingrui

    2017-10-01

    Aimed at the two problems of underwater imaging, fog effect and color cast, an Improved Segmentation Dark Channel Prior (ISDCP) defogging method is proposed to solve the fog effects caused by physical properties of water. Due to mass refraction of light in the process of underwater imaging, fog effects would lead to image blurring. And color cast is closely related to different degree of attenuation while light with different wavelengths is traveling in water. The proposed method here integrates the ISDCP and quantitative histogram stretching techniques into the image enhancement procedure. Firstly, the threshold value is set during the refinement process of the transmission maps to identify the original mismatching, and to conduct the differentiated defogging process further. Secondly, a method of judging the propagating distance of light is adopted to get the attenuation degree of energy during the propagation underwater. Finally, the image histogram is stretched quantitatively in Red-Green-Blue channel respectively according to the degree of attenuation in each color channel. The proposed method ISDCP can reduce the computational complexity and improve the efficiency in terms of defogging effect to meet the real-time requirements. Qualitative and quantitative comparison for several different underwater scenes reveals that the proposed method can significantly improve the visibility compared with previous methods.

  12. A robust object-based shadow detection method for cloud-free high resolution satellite images over urban areas and water bodies

    NASA Astrophysics Data System (ADS)

    Tatar, Nurollah; Saadatseresht, Mohammad; Arefi, Hossein; Hadavand, Ahmad

    2018-06-01

    Unwanted contrast in high resolution satellite images such as shadow areas directly affects the result of further processing in urban remote sensing images. Detecting and finding the precise position of shadows is critical in different remote sensing processing chains such as change detection, image classification and digital elevation model generation from stereo images. The spectral similarity between shadow areas, water bodies, and some dark asphalt roads makes the development of robust shadow detection algorithms challenging. In addition, most of the existing methods work on pixel-level and neglect the contextual information contained in neighboring pixels. In this paper, a new object-based shadow detection framework is introduced. In the proposed method a pixel-level shadow mask is built by extending established thresholding methods with a new C4 index which enables to solve the ambiguity of shadow and water bodies. Then the pixel-based results are further processed in an object-based majority analysis to detect the final shadow objects. Four different high resolution satellite images are used to validate this new approach. The result shows the superiority of the proposed method over some state-of-the-art shadow detection method with an average of 96% in F-measure.

  13. High-throughput method for ear phenotyping and kernel weight estimation in maize using ear digital imaging.

    PubMed

    Makanza, R; Zaman-Allah, M; Cairns, J E; Eyre, J; Burgueño, J; Pacheco, Ángela; Diepenbrock, C; Magorokosho, C; Tarekegne, A; Olsen, M; Prasanna, B M

    2018-01-01

    Grain yield, ear and kernel attributes can assist to understand the performance of maize plant under different environmental conditions and can be used in the variety development process to address farmer's preferences. These parameters are however still laborious and expensive to measure. A low-cost ear digital imaging method was developed that provides estimates of ear and kernel attributes i.e., ear number and size, kernel number and size as well as kernel weight from photos of ears harvested from field trial plots. The image processing method uses a script that runs in a batch mode on ImageJ; an open source software. Kernel weight was estimated using the total kernel number derived from the number of kernels visible on the image and the average kernel size. Data showed a good agreement in terms of accuracy and precision between ground truth measurements and data generated through image processing. Broad-sense heritability of the estimated parameters was in the range or higher than that for measured grain weight. Limitation of the method for kernel weight estimation is discussed. The method developed in this work provides an opportunity to significantly reduce the cost of selection in the breeding process, especially for resource constrained crop improvement programs and can be used to learn more about the genetic bases of grain yield determinants.

  14. Digital mammography, cancer screening: Factors important for image compression

    NASA Technical Reports Server (NTRS)

    Clarke, Laurence P.; Blaine, G. James; Doi, Kunio; Yaffe, Martin J.; Shtern, Faina; Brown, G. Stephen; Winfield, Daniel L.; Kallergi, Maria

    1993-01-01

    The use of digital mammography for breast cancer screening poses several novel problems such as development of digital sensors, computer assisted diagnosis (CAD) methods for image noise suppression, enhancement, and pattern recognition, compression algorithms for image storage, transmission, and remote diagnosis. X-ray digital mammography using novel direct digital detection schemes or film digitizers results in large data sets and, therefore, image compression methods will play a significant role in the image processing and analysis by CAD techniques. In view of the extensive compression required, the relative merit of 'virtually lossless' versus lossy methods should be determined. A brief overview is presented here of the developments of digital sensors, CAD, and compression methods currently proposed and tested for mammography. The objective of the NCI/NASA Working Group on Digital Mammography is to stimulate the interest of the image processing and compression scientific community for this medical application and identify possible dual use technologies within the NASA centers.

  15. Assessment of body fat based on potential function clustering segmentation of computed tomography images

    NASA Astrophysics Data System (ADS)

    Zhang, Lixin; Lin, Min; Wan, Baikun; Zhou, Yu; Wang, Yizhong

    2005-01-01

    In this paper, a new method of body fat and its distribution testing is proposed based on CT image processing. As it is more sensitive to slight differences in attenuation than standard radiography, CT depicts the soft tissues with better clarity. And body fat has a distinct grayness range compared with its neighboring tissues in a CT image. An effective multi-thresholds image segmentation method based on potential function clustering is used to deal with multiple peaks in the grayness histogram of a CT image. The CT images of abdomens of 14 volunteers with different fatness are processed with the proposed method. Not only can the result of total fat area be got, but also the differentiation of subcutaneous fat from intra-abdominal fat has been identified. The results show the adaptability and stability of the proposed method, which will be a useful tool for diagnosing obesity.

  16. Discriminative feature representation: an effective postprocessing solution to low dose CT imaging

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Liu, Jin; Hu, Yining; Yang, Jian; Shi, Luyao; Shu, Huazhong; Gui, Zhiguo; Coatrieux, Gouenou; Luo, Limin

    2017-03-01

    This paper proposes a concise and effective approach termed discriminative feature representation (DFR) for low dose computerized tomography (LDCT) image processing, which is currently a challenging problem in medical imaging field. This DFR method assumes LDCT images as the superposition of desirable high dose CT (HDCT) 3D features and undesirable noise-artifact 3D features (the combined term of noise and artifact features induced by low dose scan protocols), and the decomposed HDCT features are used to provide the processed LDCT images with higher quality. The target HDCT features are solved via the DFR algorithm using a featured dictionary composed by atoms representing HDCT features and noise-artifact features. In this study, the featured dictionary is efficiently built using physical phantom images collected from the same CT scanner as the target clinical LDCT images to process. The proposed DFR method also has good robustness in parameter setting for different CT scanner types. This DFR method can be directly applied to process DICOM formatted LDCT images, and has good applicability to current CT systems. Comparative experiments with abdomen LDCT data validate the good performance of the proposed approach. This research was supported by National Natural Science Foundation under grants (81370040, 81530060), the Fundamental Research Funds for the Central Universities, and the Qing Lan Project in Jiangsu Province.

  17. Radial line method for rear-view mirror distortion detection

    NASA Astrophysics Data System (ADS)

    Rahmah, Fitri; Kusumawardhani, Apriani; Setijono, Heru; Hatta, Agus M.; Irwansyah, .

    2015-01-01

    An image of the object can be distorted due to a defect in a mirror. A rear-view mirror is an important component for the vehicle safety. One of standard parameters of the rear-view mirror is a distortion factor. This paper presents a radial line method for distortion detection of the rear-view mirror. The rear-view mirror was tested for the distortion detection by using a system consisting of a webcam sensor and an image-processing unit. In the image-processing unit, the captured image from the webcam were pre-processed by using smoothing and sharpening techniques and then a radial line method was used to define the distortion factor. It was demonstrated successfully that the radial line method could be used to define the distortion factor. This detection system is useful to be implemented such as in Indonesian's automotive component industry while the manual inspection still be used.

  18. Fingerprint image enhancement by differential hysteresis processing.

    PubMed

    Blotta, Eduardo; Moler, Emilce

    2004-05-10

    A new method to enhance defective fingerprints images through image digital processing tools is presented in this work. When the fingerprints have been taken without any care, blurred and in some cases mostly illegible, as in the case presented here, their classification and comparison becomes nearly impossible. A combination of spatial domain filters, including a technique called differential hysteresis processing (DHP), is applied to improve these kind of images. This set of filtering methods proved to be satisfactory in a wide range of cases by uncovering hidden details that helped to identify persons. Dactyloscopy experts from Policia Federal Argentina and the EAAF have validated these results.

  19. Reconstructing Face Image from the Thermal Infrared Spectrum to the Visible Spectrum †

    PubMed Central

    Kresnaraman, Brahmastro; Deguchi, Daisuke; Takahashi, Tomokazu; Mekada, Yoshito; Ide, Ichiro; Murase, Hiroshi

    2016-01-01

    During the night or in poorly lit areas, thermal cameras are a better choice instead of normal cameras for security surveillance because they do not rely on illumination. A thermal camera is able to detect a person within its view, but identification from only thermal information is not an easy task. The purpose of this paper is to reconstruct the face image of a person from the thermal spectrum to the visible spectrum. After the reconstruction, further image processing can be employed, including identification/recognition. Concretely, we propose a two-step thermal-to-visible-spectrum reconstruction method based on Canonical Correlation Analysis (CCA). The reconstruction is done by utilizing the relationship between images in both thermal infrared and visible spectra obtained by CCA. The whole image is processed in the first step while the second step processes patches in an image. Results show that the proposed method gives satisfying results with the two-step approach and outperforms comparative methods in both quality and recognition evaluations. PMID:27110781

  20. Low-count PET image restoration using sparse representation

    NASA Astrophysics Data System (ADS)

    Li, Tao; Jiang, Changhui; Gao, Juan; Yang, Yongfeng; Liang, Dong; Liu, Xin; Zheng, Hairong; Hu, Zhanli

    2018-04-01

    In the field of positron emission tomography (PET), reconstructed images are often blurry and contain noise. These problems are primarily caused by the low resolution of projection data. Solving this problem by improving hardware is an expensive solution, and therefore, we attempted to develop a solution based on optimizing several related algorithms in both the reconstruction and image post-processing domains. As sparse technology is widely used, sparse prediction is increasingly applied to solve this problem. In this paper, we propose a new sparse method to process low-resolution PET images. Two dictionaries (D1 for low-resolution PET images and D2 for high-resolution PET images) are learned from a group real PET image data sets. Among these two dictionaries, D1 is used to obtain a sparse representation for each patch of the input PET image. Then, a high-resolution PET image is generated from this sparse representation using D2. Experimental results indicate that the proposed method exhibits a stable and superior ability to enhance image resolution and recover image details. Quantitatively, this method achieves better performance than traditional methods. This proposed strategy is a new and efficient approach for improving the quality of PET images.

  1. A New Feedback-Based Method for Parameter Adaptation in Image Processing Routines.

    PubMed

    Khan, Arif Ul Maula; Mikut, Ralf; Reischl, Markus

    2016-01-01

    The parametrization of automatic image processing routines is time-consuming if a lot of image processing parameters are involved. An expert can tune parameters sequentially to get desired results. This may not be productive for applications with difficult image analysis tasks, e.g. when high noise and shading levels in an image are present or images vary in their characteristics due to different acquisition conditions. Parameters are required to be tuned simultaneously. We propose a framework to improve standard image segmentation methods by using feedback-based automatic parameter adaptation. Moreover, we compare algorithms by implementing them in a feedforward fashion and then adapting their parameters. This comparison is proposed to be evaluated by a benchmark data set that contains challenging image distortions in an increasing fashion. This promptly enables us to compare different standard image segmentation algorithms in a feedback vs. feedforward implementation by evaluating their segmentation quality and robustness. We also propose an efficient way of performing automatic image analysis when only abstract ground truth is present. Such a framework evaluates robustness of different image processing pipelines using a graded data set. This is useful for both end-users and experts.

  2. A New Feedback-Based Method for Parameter Adaptation in Image Processing Routines

    PubMed Central

    Mikut, Ralf; Reischl, Markus

    2016-01-01

    The parametrization of automatic image processing routines is time-consuming if a lot of image processing parameters are involved. An expert can tune parameters sequentially to get desired results. This may not be productive for applications with difficult image analysis tasks, e.g. when high noise and shading levels in an image are present or images vary in their characteristics due to different acquisition conditions. Parameters are required to be tuned simultaneously. We propose a framework to improve standard image segmentation methods by using feedback-based automatic parameter adaptation. Moreover, we compare algorithms by implementing them in a feedforward fashion and then adapting their parameters. This comparison is proposed to be evaluated by a benchmark data set that contains challenging image distortions in an increasing fashion. This promptly enables us to compare different standard image segmentation algorithms in a feedback vs. feedforward implementation by evaluating their segmentation quality and robustness. We also propose an efficient way of performing automatic image analysis when only abstract ground truth is present. Such a framework evaluates robustness of different image processing pipelines using a graded data set. This is useful for both end-users and experts. PMID:27764213

  3. Synthetic Foveal Imaging Technology

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh (Inventor); Monacos, Steve P. (Inventor); Hoenk, Michael E. (Inventor)

    2013-01-01

    Apparatuses and methods are disclosed that create a synthetic fovea in order to identify and highlight interesting portions of an image for further processing and rapid response. Synthetic foveal imaging implements a parallel processing architecture that uses reprogrammable logic to implement embedded, distributed, real-time foveal image processing from different sensor types while simultaneously allowing for lossless storage and retrieval of raw image data. Real-time, distributed, adaptive processing of multi-tap image sensors with coordinated processing hardware used for each output tap is enabled. In mosaic focal planes, a parallel-processing network can be implemented that treats the mosaic focal plane as a single ensemble rather than a set of isolated sensors. Various applications are enabled for imaging and robotic vision where processing and responding to enormous amounts of data quickly and efficiently is important.

  4. The vision guidance and image processing of AGV

    NASA Astrophysics Data System (ADS)

    Feng, Tongqing; Jiao, Bin

    2017-08-01

    Firstly, the principle of AGV vision guidance is introduced and the deviation and deflection angle are measured by image coordinate system. The visual guidance image processing platform is introduced. In view of the fact that the AGV guidance image contains more noise, the image has already been smoothed by a statistical sorting. By using AGV sampling way to obtain image guidance, because the image has the best and different threshold segmentation points. In view of this situation, the method of two-dimensional maximum entropy image segmentation is used to solve the problem. We extract the foreground image in the target band by calculating the contour area method and obtain the centre line with the least square fitting algorithm. With the help of image and physical coordinates, we can obtain the guidance information.

  5. Currently available methodologies for the processing of intravascular ultrasound and optical coherence tomography images.

    PubMed

    Athanasiou, Lambros; Sakellarios, Antonis I; Bourantas, Christos V; Tsirka, Georgia; Siogkas, Panagiotis; Exarchos, Themis P; Naka, Katerina K; Michalis, Lampros K; Fotiadis, Dimitrios I

    2014-07-01

    Optical coherence tomography and intravascular ultrasound are the most widely used methodologies in clinical practice as they provide high resolution cross-sectional images that allow comprehensive visualization of the lumen and plaque morphology. Several methods have been developed in recent years to process the output of these imaging modalities, which allow fast, reliable and reproducible detection of the luminal borders and characterization of plaque composition. These methods have proven useful in the study of the atherosclerotic process as they have facilitated analysis of a vast amount of data. This review presents currently available intravascular ultrasound and optical coherence tomography processing methodologies for segmenting and characterizing the plaque area, highlighting their advantages and disadvantages, and discusses the future trends in intravascular imaging.

  6. Developing tools for digital radar image data evaluation

    NASA Technical Reports Server (NTRS)

    Domik, G.; Leberl, F.; Raggam, J.

    1986-01-01

    The refinement of radar image analysis methods has led to a need for a systems approach to radar image processing software. Developments stimulated through satellite radar are combined with standard image processing techniques to create a user environment to manipulate and analyze airborne and satellite radar images. One aim is to create radar products for the user from the original data to enhance the ease of understanding the contents. The results are called secondary image products and derive from the original digital images. Another aim is to support interactive SAR image analysis. Software methods permit use of a digital height model to create ortho images, synthetic images, stereo-ortho images, radar maps or color combinations of different component products. Efforts are ongoing to integrate individual tools into a combined hardware/software environment for interactive radar image analysis.

  7. Quantitative Analysis of Rat Dorsal Root Ganglion Neurons Cultured on Microelectrode Arrays Based on Fluorescence Microscopy Image Processing.

    PubMed

    Mari, João Fernando; Saito, José Hiroki; Neves, Amanda Ferreira; Lotufo, Celina Monteiro da Cruz; Destro-Filho, João-Batista; Nicoletti, Maria do Carmo

    2015-12-01

    Microelectrode Arrays (MEA) are devices for long term electrophysiological recording of extracellular spontaneous or evocated activities on in vitro neuron culture. This work proposes and develops a framework for quantitative and morphological analysis of neuron cultures on MEAs, by processing their corresponding images, acquired by fluorescence microscopy. The neurons are segmented from the fluorescence channel images using a combination of segmentation by thresholding, watershed transform, and object classification. The positioning of microelectrodes is obtained from the transmitted light channel images using the circular Hough transform. The proposed method was applied to images of dissociated culture of rat dorsal root ganglion (DRG) neuronal cells. The morphological and topological quantitative analysis carried out produced information regarding the state of culture, such as population count, neuron-to-neuron and neuron-to-microelectrode distances, soma morphologies, neuron sizes, neuron and microelectrode spatial distributions. Most of the analysis of microscopy images taken from neuronal cultures on MEA only consider simple qualitative analysis. Also, the proposed framework aims to standardize the image processing and to compute quantitative useful measures for integrated image-signal studies and further computational simulations. As results show, the implemented microelectrode identification method is robust and so are the implemented neuron segmentation and classification one (with a correct segmentation rate up to 84%). The quantitative information retrieved by the method is highly relevant to assist the integrated signal-image study of recorded electrophysiological signals as well as the physical aspects of the neuron culture on MEA. Although the experiments deal with DRG cell images, cortical and hippocampal cell images could also be processed with small adjustments in the image processing parameter estimation.

  8. Detection of wood failure by image processing method: influence of algorithm, adhesive and wood species

    Treesearch

    Lanying Lin; Sheng He; Feng Fu; Xiping Wang

    2015-01-01

    Wood failure percentage (WFP) is an important index for evaluating the bond strength of plywood. Currently, the method used for detecting WFP is visual inspection, which lacks efficiency. In order to improve it, image processing methods are applied to wood failure detection. The present study used thresholding and K-means clustering algorithms in wood failure detection...

  9. Compensation for the signal processing characteristics of ultrasound B-mode scanners in adaptive speckle reduction.

    PubMed

    Crawford, D C; Bell, D S; Bamber, J C

    1993-01-01

    A systematic method to compensate for nonlinear amplification of individual ultrasound B-scanners has been investigated in order to optimise performance of an adaptive speckle reduction (ASR) filter for a wide range of clinical ultrasonic imaging equipment. Three potential methods have been investigated: (1) a method involving an appropriate selection of the speckle recognition feature was successful when the scanner signal processing executes simple logarithmic compressions; (2) an inverse transform (decompression) of the B-mode image was effective in correcting for the measured characteristics of image data compression when the algorithm was implemented in full floating point arithmetic; (3) characterising the behaviour of the statistical speckle recognition feature under conditions of speckle noise was found to be the method of choice for implementation of the adaptive speckle reduction algorithm in limited precision integer arithmetic. In this example, the statistical features of variance and mean were investigated. The third method may be implemented on commercially available fast image processing hardware and is also better suited for transfer into dedicated hardware to facilitate real-time adaptive speckle reduction. A systematic method is described for obtaining ASR calibration data from B-mode images of a speckle producing phantom.

  10. Objective and expert-independent validation of retinal image registration algorithms by a projective imaging distortion model.

    PubMed

    Lee, Sangyeol; Reinhardt, Joseph M; Cattin, Philippe C; Abràmoff, Michael D

    2010-08-01

    Fundus camera imaging of the retina is widely used to diagnose and manage ophthalmologic disorders including diabetic retinopathy, glaucoma, and age-related macular degeneration. Retinal images typically have a limited field of view, and multiple images can be joined together using an image registration technique to form a montage with a larger field of view. A variety of methods for retinal image registration have been proposed, but evaluating such methods objectively is difficult due to the lack of a reference standard for the true alignment of the individual images that make up the montage. A method of generating simulated retinal images by modeling the geometric distortions due to the eye geometry and the image acquisition process is described in this paper. We also present a validation process that can be used for any retinal image registration method by tracing through the distortion path and assessing the geometric misalignment in the coordinate system of the reference standard. The proposed method can be used to perform an accuracy evaluation over the whole image, so that distortion in the non-overlapping regions of the montage components can be easily assessed. We demonstrate the technique by generating test image sets with a variety of overlap conditions and compare the accuracy of several retinal image registration models. Copyright 2010 Elsevier B.V. All rights reserved.

  11. System and method for bullet tracking and shooter localization

    DOEpatents

    Roberts, Randy S [Livermore, CA; Breitfeller, Eric F [Dublin, CA

    2011-06-21

    A system and method of processing infrared imagery to determine projectile trajectories and the locations of shooters with a high degree of accuracy. The method includes image processing infrared image data to reduce noise and identify streak-shaped image features, using a Kalman filter to estimate optimal projectile trajectories, updating the Kalman filter with new image data, determining projectile source locations by solving a combinatorial least-squares solution for all optimal projectile trajectories, and displaying all of the projectile source locations. Such a shooter-localization system is of great interest for military and law enforcement applications to determine sniper locations, especially in urban combat scenarios.

  12. MEMS-based system and image processing strategy for epiretinal prosthesis.

    PubMed

    Xia, Peng; Hu, Jie; Qi, Jin; Gu, Chaochen; Peng, Yinghong

    2015-01-01

    Retinal prostheses have the potential to restore some level of visual function to the patients suffering from retinal degeneration. In this paper, an epiretinal approach with active stimulation devices is presented. The MEMS-based processing system consists of an external micro-camera, an information processor, an implanted electrical stimulator and a microelectrode array. The image processing strategy combining image clustering and enhancement techniques was proposed and evaluated by psychophysical experiments. The results indicated that the image processing strategy improved the visual performance compared with direct merging pixels to low resolution. The image processing methods assist epiretinal prosthesis for vision restoration.

  13. Nondestructive, fast, and cost-effective image processing method for roughness measurement of randomly rough metallic surfaces.

    PubMed

    Ghodrati, Sajjad; Kandi, Saeideh Gorji; Mohseni, Mohsen

    2018-06-01

    In recent years, various surface roughness measurement methods have been proposed as alternatives to the commonly used stylus profilometry, which is a low-speed, destructive, expensive but precise method. In this study, a novel method, called "image profilometry," has been introduced for nondestructive, fast, and low-cost surface roughness measurement of randomly rough metallic samples based on image processing and machine vision. The impacts of influential parameters such as image resolution and filtering approach for elimination of the long wavelength surface undulations on the accuracy of the image profilometry results have been comprehensively investigated. Ten surface roughness parameters were measured for the samples using both the stylus and image profilometry. Based on the results, the best image resolution was 800 dpi, and the most practical filtering method was Gaussian convolution+cutoff. In these conditions, the best and worst correlation coefficients (R 2 ) between the stylus and image profilometry results were 0.9892 and 0.9313, respectively. Our results indicated that the image profilometry predicted the stylus profilometry results with high accuracy. Consequently, it could be a viable alternative to the stylus profilometry, particularly in online applications.

  14. 3D image acquisition by fiber-based fringe projection

    NASA Astrophysics Data System (ADS)

    Pfeifer, Tilo; Driessen, Sascha

    2005-02-01

    In macroscopic production processes several measuring methods are used to assure the quality of 3D parts. Definitely, one of the most widespread techniques is the fringe projection. It"s a fast and accurate method to receive the topography of a part as a computer file which can be processed in further steps, e.g. to compare the measured part to a given CAD file. In this article it will be shown how the fringe projection method is applied to a fiber-optic system. The fringes generated by a miniaturized fringe projector (MiniRot) are first projected onto the front-end of an image guide using special optics. The image guide serves as a transmitter for the fringes in order to get them onto the surface of a micro part. A second image guide is used to observe the micro part. It"s mounted under an angle relating to the illuminating image guide so that the triangulation condition is fulfilled. With a CCD camera connected to the second image guide the projected fringes are recorded and those data is analyzed by an image processing system.

  15. Complex noise suppression using a sparse representation and 3D filtering of images

    NASA Astrophysics Data System (ADS)

    Kravchenko, V. F.; Ponomaryov, V. I.; Pustovoit, V. I.; Palacios-Enriquez, A.

    2017-08-01

    A novel method for the filtering of images corrupted by complex noise composed of randomly distributed impulses and additive Gaussian noise has been substantiated for the first time. The method consists of three main stages: the detection and filtering of pixels corrupted by impulsive noise, the subsequent image processing to suppress the additive noise based on 3D filtering and a sparse representation of signals in a basis of wavelets, and the concluding image processing procedure to clean the final image of the errors emerged at the previous stages. A physical interpretation of the filtering method under complex noise conditions is given. A filtering block diagram has been developed in accordance with the novel approach. Simulations of the novel image filtering method have shown an advantage of the proposed filtering scheme in terms of generally recognized criteria, such as the structural similarity index measure and the peak signal-to-noise ratio, and when visually comparing the filtered images.

  16. Accuracy improvement of multimodal measurement of speed of sound based on image processing

    NASA Astrophysics Data System (ADS)

    Nitta, Naotaka; Kaya, Akio; Misawa, Masaki; Hyodo, Koji; Numano, Tomokazu

    2017-07-01

    Since the speed of sound (SOS) reflects tissue characteristics and is expected as an evaluation index of elasticity and water content, the noninvasive measurement of SOS is eagerly anticipated. However, it is difficult to measure the SOS by using an ultrasound device alone. Therefore, we have presented a noninvasive measurement method of SOS using ultrasound (US) and magnetic resonance (MR) images. By this method, we determine the longitudinal SOS based on the thickness measurement using the MR image and the time of flight (TOF) measurement using the US image. The accuracy of SOS measurement is affected by the accuracy of image registration and the accuracy of thickness measurements in the MR and US images. In this study, we address the accuracy improvement in the latter thickness measurement, and present an image-processing-based method for improving the accuracy of thickness measurement. The method was investigated by using in vivo data obtained from a tissue-engineered cartilage implanted in the back of a rat, with an unclear boundary.

  17. Pixel-based speckle adjustment for noise reduction in Fourier-domain OCT images.

    PubMed

    Zhang, Anqi; Xi, Jiefeng; Sun, Jitao; Li, Xingde

    2017-03-01

    Speckle resides in OCT signals and inevitably effects OCT image quality. In this work, we present a novel method for speckle noise reduction in Fourier-domain OCT images, which utilizes the phase information of complex OCT data. In this method, speckle area is pre-delineated pixelwise based on a phase-domain processing method and then adjusted by the results of wavelet shrinkage of the original image. Coefficient shrinkage method such as wavelet or contourlet is applied afterwards for further suppressing the speckle noise. Compared with conventional methods without speckle adjustment, the proposed method demonstrates significant improvement of image quality.

  18. Optical Fourier diffractometry applied to degraded bone structure recognition

    NASA Astrophysics Data System (ADS)

    Galas, Jacek; Godwod, Krzysztof; Szawdyn, Jacek; Sawicki, Andrzej

    1993-09-01

    Image processing and recognition methods are useful in many fields. This paper presents the hybrid optical and digital method applied to recognition of pathological changes in bones involved by metabolic bone diseases. The trabecular bone structure, registered by x ray on the photographic film, is analyzed in the new type of computer controlled diffractometer. The set of image parameters, extracted from diffractogram, is evaluated by statistical analysis. The synthetic image descriptors in discriminant space, constructed on the base of 3 training groups of images (control, osteoporosis, and osteomalacia groups) by discriminant analysis, allow us to recognize bone samples with degraded bone structure and to recognize the disease. About 89% of the images were classified correctly. This method after optimization process will be verified in medical investigations.

  19. Speckle noise removal applied to ultrasound image of carotid artery based on total least squares model.

    PubMed

    Yang, Lei; Lu, Jun; Dai, Ming; Ren, Li-Jie; Liu, Wei-Zong; Li, Zhen-Zhou; Gong, Xue-Hao

    2016-10-06

    An ultrasonic image speckle noise removal method by using total least squares model is proposed and applied onto images of cardiovascular structures such as the carotid artery. On the basis of the least squares principle, the related principle of minimum square method is applied to cardiac ultrasound image speckle noise removal process to establish the model of total least squares, orthogonal projection transformation processing is utilized for the output of the model, and the denoising processing for the cardiac ultrasound image speckle noise is realized. Experimental results show that the improved algorithm can greatly improve the resolution of the image, and meet the needs of clinical medical diagnosis and treatment of the cardiovascular system for the head and neck. Furthermore, the success in imaging of carotid arteries has strong implications in neurological complications such as stroke.

  20. OPTICAL correlation identification technology applied in underwater laser imaging target identification

    NASA Astrophysics Data System (ADS)

    Yao, Guang-tao; Zhang, Xiao-hui; Ge, Wei-long

    2012-01-01

    The underwater laser imaging detection is an effective method of detecting short distance target underwater as an important complement of sonar detection. With the development of underwater laser imaging technology and underwater vehicle technology, the underwater automatic target identification has gotten more and more attention, and is a research difficulty in the area of underwater optical imaging information processing. Today, underwater automatic target identification based on optical imaging is usually realized with the method of digital circuit software programming. The algorithm realization and control of this method is very flexible. However, the optical imaging information is 2D image even 3D image, the amount of imaging processing information is abundant, so the electronic hardware with pure digital algorithm will need long identification time and is hard to meet the demands of real-time identification. If adopt computer parallel processing, the identification speed can be improved, but it will increase complexity, size and power consumption. This paper attempts to apply optical correlation identification technology to realize underwater automatic target identification. The optics correlation identification technology utilizes the Fourier transform characteristic of Fourier lens which can accomplish Fourier transform of image information in the level of nanosecond, and optical space interconnection calculation has the features of parallel, high speed, large capacity and high resolution, combines the flexibility of calculation and control of digital circuit method to realize optoelectronic hybrid identification mode. We reduce theoretical formulation of correlation identification and analyze the principle of optical correlation identification, and write MATLAB simulation program. We adopt single frame image obtained in underwater range gating laser imaging to identify, and through identifying and locating the different positions of target, we can improve the speed and orientation efficiency of target identification effectively, and validate the feasibility of this method primarily.

  1. Preprocessing with Photoshop Software on Microscopic Images of A549 Cells in Epithelial-Mesenchymal Transition.

    PubMed

    Ren, Zhou-Xin; Yu, Hai-Bin; Shen, Jun-Ling; Li, Ya; Li, Jian-Sheng

    2015-06-01

    To establish a preprocessing method for cell morphometry in microscopic images of A549 cells in epithelial-mesenchymal transition (EMT). Adobe Photoshop CS2 (Adobe Systems, Inc.) was used for preprocessing the images. First, all images were processed for size uniformity and high distinguishability between the cell and background area. Then, a blank image with the same size and grids was established and cross points of the grids were added into a distinct color. The blank image was merged into a processed image. In the merged images, the cells with 1 or more cross points were chosen, and then the cell areas were enclosed and were replaced in a distinct color. Except for chosen cellular areas, all areas were changed into a unique hue. Three observers quantified roundness of cells in images with the image preprocess (IPP) or without the method (Controls), respectively. Furthermore, 1 observer measured the roundness 3 times with the 2 methods, respectively. The results between IPPs and Controls were compared for repeatability and reproducibility. As compared with the Control method, among 3 observers, use of the IPP method resulted in a higher number and a higher percentage of same-chosen cells in an image. The relative average deviation values of roundness, either for 3 observers or 1 observer, were significantly higher in Controls than in IPPs (p < 0.01 or 0.001). The values of intraclass correlation coefficient, both in Single Type or Average, were higher in IPPs than in Controls both for 3 observers and 1 observer. Processed with Adobe Photoshop, a chosen cell from an image was more objective, regular, and accurate, creating an increase of reproducibility and repeatability on morphometry of A549 cells in epithelial to mesenchymal transition.

  2. Global rotational motion and displacement estimation of digital image stabilization based on the oblique vectors matching algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Fei; Hui, Mei; Zhao, Yue-jin

    2009-08-01

    The image block matching algorithm based on motion vectors of correlative pixels in oblique direction is presented for digital image stabilization. The digital image stabilization is a new generation of image stabilization technique which can obtains the information of relative motion among frames of dynamic image sequences by the method of digital image processing. In this method the matching parameters are calculated from the vectors projected in the oblique direction. The matching parameters based on the vectors contain the information of vectors in transverse and vertical direction in the image blocks at the same time. So the better matching information can be obtained after making correlative operation in the oblique direction. And an iterative weighted least square method is used to eliminate the error of block matching. The weights are related with the pixels' rotational angle. The center of rotation and the global emotion estimation of the shaking image can be obtained by the weighted least square from the estimation of each block chosen evenly from the image. Then, the shaking image can be stabilized with the center of rotation and the global emotion estimation. Also, the algorithm can run at real time by the method of simulated annealing in searching method of block matching. An image processing system based on DSP was used to exam this algorithm. The core processor in the DSP system is TMS320C6416 of TI, and the CCD camera with definition of 720×576 pixels was chosen as the input video signal. Experimental results show that the algorithm can be performed at the real time processing system and have an accurate matching precision.

  3. Edge enhancement of color images using a digital micromirror device.

    PubMed

    Di Martino, J Matías; Flores, Jorge L; Ayubi, Gastón A; Alonso, Julia R; Fernández, Ariel; Ferrari, José A

    2012-06-01

    A method for orientation-selective enhancement of edges in color images is proposed. The method utilizes the capacity of digital micromirror devices to generate a positive and a negative color replica of the image used as input. When both images are slightly displaced and imagined together, one obtains an image with enhanced edges. The proposed technique does not require a coherent light source or precise alignment. The proposed method could be potentially useful for processing large image sequences in real time. Validation experiments are presented.

  4. Spatially assisted down-track median filter for GPR image post-processing

    DOEpatents

    Paglieroni, David W; Beer, N Reginald

    2014-10-07

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  5. On an image reconstruction method for ECT

    NASA Astrophysics Data System (ADS)

    Sasamoto, Akira; Suzuki, Takayuki; Nishimura, Yoshihiro

    2007-04-01

    An image by Eddy Current Testing(ECT) is a blurred image to original flaw shape. In order to reconstruct fine flaw image, a new image reconstruction method has been proposed. This method is based on an assumption that a very simple relationship between measured data and source were described by a convolution of response function and flaw shape. This assumption leads to a simple inverse analysis method with deconvolution.In this method, Point Spread Function (PSF) and Line Spread Function(LSF) play a key role in deconvolution processing. This study proposes a simple data processing to determine PSF and LSF from ECT data of machined hole and line flaw. In order to verify its validity, ECT data for SUS316 plate(200x200x10mm) with artificial machined hole and notch flaw had been acquired by differential coil type sensors(produced by ZETEC Inc). Those data were analyzed by the proposed method. The proposed method restored sharp discrete multiple hole image from interfered data by multiple holes. Also the estimated width of line flaw has been much improved compared with original experimental data. Although proposed inverse analysis strategy is simple and easy to implement, its validity to holes and line flaw have been shown by many results that much finer image than original image have been reconstructed.

  6. Nighttime images fusion based on Laplacian pyramid

    NASA Astrophysics Data System (ADS)

    Wu, Cong; Zhan, Jinhao; Jin, Jicheng

    2018-02-01

    This paper expounds method of the average weighted fusion, image pyramid fusion, the wavelet transform and apply these methods on the fusion of multiple exposures nighttime images. Through calculating information entropy and cross entropy of fusion images, we can evaluate the effect of different fusion. Experiments showed that Laplacian pyramid image fusion algorithm is suitable for processing nighttime images fusion, it can reduce the halo while preserving image details.

  7. Information theoretic analysis of edge detection in visual communication

    NASA Astrophysics Data System (ADS)

    Jiang, Bo; Rahman, Zia-ur

    2010-08-01

    Generally, the designs of digital image processing algorithms and image gathering devices remain separate. Consequently, the performance of digital image processing algorithms is evaluated without taking into account the artifacts introduced into the process by the image gathering process. However, experiments show that the image gathering process profoundly impacts the performance of digital image processing and the quality of the resulting images. Huck et al. proposed one definitive theoretic analysis of visual communication channels, where the different parts, such as image gathering, processing, and display, are assessed in an integrated manner using Shannon's information theory. In this paper, we perform an end-to-end information theory based system analysis to assess edge detection methods. We evaluate the performance of the different algorithms as a function of the characteristics of the scene, and the parameters, such as sampling, additive noise etc., that define the image gathering system. The edge detection algorithm is regarded to have high performance only if the information rate from the scene to the edge approaches the maximum possible. This goal can be achieved only by jointly optimizing all processes. People generally use subjective judgment to compare different edge detection methods. There is not a common tool that can be used to evaluate the performance of the different algorithms, and to give people a guide for selecting the best algorithm for a given system or scene. Our information-theoretic assessment becomes this new tool to which allows us to compare the different edge detection operators in a common environment.

  8. Metal-induced streak artifact reduction using iterative reconstruction algorithms in x-ray computed tomography image of the dentoalveolar region.

    PubMed

    Dong, Jian; Hayakawa, Yoshihiko; Kannenberg, Sven; Kober, Cornelia

    2013-02-01

    The objective of this study was to reduce metal-induced streak artifact on oral and maxillofacial x-ray computed tomography (CT) images by developing the fast statistical image reconstruction system using iterative reconstruction algorithms. Adjacent CT images often depict similar anatomical structures in thin slices. So, first, images were reconstructed using the same projection data of an artifact-free image. Second, images were processed by the successive iterative restoration method where projection data were generated from reconstructed image in sequence. Besides the maximum likelihood-expectation maximization algorithm, the ordered subset-expectation maximization algorithm (OS-EM) was examined. Also, small region of interest (ROI) setting and reverse processing were applied for improving performance. Both algorithms reduced artifacts instead of slightly decreasing gray levels. The OS-EM and small ROI reduced the processing duration without apparent detriments. Sequential and reverse processing did not show apparent effects. Two alternatives in iterative reconstruction methods were effective for artifact reduction. The OS-EM algorithm and small ROI setting improved the performance. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Study on polarization image methods in turbid medium

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Mo, Chunhe; Liu, Boyu; Duan, Jin; Zhang, Su; Zhu, Yong

    2014-11-01

    Polarization imaging detection technology in addition to the traditional imaging information, also can get polarization multi-dimensional information, thus improve the probability of target detection and recognition.Image fusion in turbid medium target polarization image research, is helpful to obtain high quality images. Based on visible light wavelength of light wavelength of laser polarization imaging, through the rotation Angle of polaroid get corresponding linear polarized light intensity, respectively to obtain the concentration range from 5% to 10% of turbid medium target stocks of polarization parameters, introduces the processing of image fusion technology, main research on access to the polarization of the image by using different polarization image fusion methods for image processing, discusses several kinds of turbid medium has superior performance of polarization image fusion method, and gives the treatment effect and analysis of data tables. Then use pixel level, feature level and decision level fusion algorithm on three levels of information fusion, DOLP polarization image fusion, the results show that: with the increase of the polarization Angle, polarization image will be more and more fuzzy, quality worse and worse. Than a single fused image contrast of the image be improved obviously, the finally analysis on reasons of the increase the image contrast and polarized light.

  10. Quantitative imaging biomarkers: the application of advanced image processing and analysis to clinical and preclinical decision making.

    PubMed

    Prescott, Jeffrey William

    2013-02-01

    The importance of medical imaging for clinical decision making has been steadily increasing over the last four decades. Recently, there has also been an emphasis on medical imaging for preclinical decision making, i.e., for use in pharamaceutical and medical device development. There is also a drive towards quantification of imaging findings by using quantitative imaging biomarkers, which can improve sensitivity, specificity, accuracy and reproducibility of imaged characteristics used for diagnostic and therapeutic decisions. An important component of the discovery, characterization, validation and application of quantitative imaging biomarkers is the extraction of information and meaning from images through image processing and subsequent analysis. However, many advanced image processing and analysis methods are not applied directly to questions of clinical interest, i.e., for diagnostic and therapeutic decision making, which is a consideration that should be closely linked to the development of such algorithms. This article is meant to address these concerns. First, quantitative imaging biomarkers are introduced by providing definitions and concepts. Then, potential applications of advanced image processing and analysis to areas of quantitative imaging biomarker research are described; specifically, research into osteoarthritis (OA), Alzheimer's disease (AD) and cancer is presented. Then, challenges in quantitative imaging biomarker research are discussed. Finally, a conceptual framework for integrating clinical and preclinical considerations into the development of quantitative imaging biomarkers and their computer-assisted methods of extraction is presented.

  11. Simulated electronic heterodyne recording and processing of pulsed-laser holograms

    NASA Technical Reports Server (NTRS)

    Decker, A. J.

    1979-01-01

    The electronic recording of pulsed-laser holograms is proposed. The polarization sensitivity of each resolution element of the detector is controlled independently to add an arbitrary phase to the image waves. This method which can be used to simulate heterodyne recording and to process three-dimensional optical images, is based on a similar method for heterodyne recording and processing of continuous-wave holograms.

  12. Real-time hyperspectral imaging for food safety applications

    USDA-ARS?s Scientific Manuscript database

    Multispectral imaging systems with selected bands can commonly be used for real-time applications of food processing. Recent research has demonstrated several image processing methods including binning, noise removal filter, and appropriate morphological analysis in real-time mode can remove most fa...

  13. Real-time optical image processing techniques

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang

    1988-01-01

    Nonlinear real-time optical processing on spatial pulse frequency modulation has been pursued through the analysis, design, and fabrication of pulse frequency modulated halftone screens and the modification of micro-channel spatial light modulators (MSLMs). Micro-channel spatial light modulators are modified via the Fabry-Perot method to achieve the high gamma operation required for non-linear operation. Real-time nonlinear processing was performed using the halftone screen and MSLM. The experiments showed the effectiveness of the thresholding and also showed the needs of higher SBP for image processing. The Hughes LCLV has been characterized and found to yield high gamma (about 1.7) when operated in low frequency and low bias mode. Cascading of two LCLVs should also provide enough gamma for nonlinear processing. In this case, the SBP of the LCLV is sufficient but the uniformity of the LCLV needs improvement. These include image correlation, computer generation of holograms, pseudo-color image encoding for image enhancement, and associative-retrieval in neural processing. The discovery of the only known optical method for dynamic range compression of an input image in real-time by using GaAs photorefractive crystals is reported. Finally, a new architecture for non-linear multiple sensory, neural processing has been suggested.

  14. Optical image encryption scheme with multiple light paths based on compressive ghost imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Jinan; Yang, Xiulun; Meng, Xiangfeng; Wang, Yurong; Yin, Yongkai; Sun, Xiaowen; Dong, Guoyan

    2018-02-01

    An optical image encryption method with multiple light paths is proposed based on compressive ghost imaging. In the encryption process, M random phase-only masks (POMs) are generated by means of logistic map algorithm, and these masks are then uploaded to the spatial light modulator (SLM). The collimated laser light is divided into several beams by beam splitters as it passes through the SLM, and the light beams illuminate the secret images, which are converted into sparse images by discrete wavelet transform beforehand. Thus, the secret images are simultaneously encrypted into intensity vectors by ghost imaging. The distances between the SLM and secret images vary and can be used as the main keys with original POM and the logistic map algorithm coefficient in the decryption process. In the proposed method, the storage space can be significantly decreased and the security of the system can be improved. The feasibility, security and robustness of the method are further analysed through computer simulations.

  15. 3D printing in X-ray and Gamma-Ray Imaging: A novel method for fabricating high-density imaging apertures☆

    PubMed Central

    Miller, Brian W.; Moore, Jared W.; Barrett, Harrison H.; Fryé, Teresa; Adler, Steven; Sery, Joe; Furenlid, Lars R.

    2011-01-01

    Advances in 3D rapid-prototyping printers, 3D modeling software, and casting techniques allow for cost-effective fabrication of custom components in gamma-ray and X-ray imaging systems. Applications extend to new fabrication methods for custom collimators, pinholes, calibration and resolution phantoms, mounting and shielding components, and imaging apertures. Details of the fabrication process for these components, specifically the 3D printing process, cold casting with a tungsten epoxy, and lost-wax casting in platinum are presented. PMID:22199414

  16. Target recognition for ladar range image using slice image

    NASA Astrophysics Data System (ADS)

    Xia, Wenze; Han, Shaokun; Wang, Liang

    2015-12-01

    A shape descriptor and a complete shape-based recognition system using slice images as geometric feature descriptor for ladar range images are introduced. A slice image is a two-dimensional image generated by three-dimensional Hough transform and the corresponding mathematical transformation. The system consists of two processes, the model library construction and recognition. In the model library construction process, a series of range images are obtained after the model object is sampled at preset attitude angles. Then, all the range images are converted into slice images. The number of slice images is reduced by clustering analysis and finding a representation to reduce the size of the model library. In the recognition process, the slice image of the scene is compared with the slice image in the model library. The recognition results depend on the comparison. Simulated ladar range images are used to analyze the recognition and misjudgment rates, and comparison between the slice image representation method and moment invariants representation method is performed. The experimental results show that whether in conditions without noise or with ladar noise, the system has a high recognition rate and low misjudgment rate. The comparison experiment demonstrates that the slice image has better representation ability than moment invariants.

  17. Development and Validation of the Suprathreshold Stochastic Resonance-Based Image Processing Method for the Detection of Abdomino-pelvic Tumor on PET/CT Scans.

    PubMed

    Saroha, Kartik; Pandey, Anil Kumar; Sharma, Param Dev; Behera, Abhishek; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh

    2017-01-01

    The detection of abdomino-pelvic tumors embedded in or nearby radioactive urine containing 18F-FDG activity is a challenging task on PET/CT scan. In this study, we propose and validate the suprathreshold stochastic resonance-based image processing method for the detection of these tumors. The method consists of the addition of noise to the input image, and then thresholding it that creates one frame of intermediate image. One hundred such frames were generated and averaged to get the final image. The method was implemented using MATLAB R2013b on a personal computer. Noisy image was generated using random Poisson variates corresponding to each pixel of the input image. In order to verify the method, 30 sets of pre-diuretic and its corresponding post-diuretic PET/CT scan images (25 tumor images and 5 control images with no tumor) were included. For each sets of pre-diuretic image (input image), 26 images (at threshold values equal to mean counts multiplied by a constant factor ranging from 1.0 to 2.6 with increment step of 0.1) were created and visually inspected, and the image that most closely matched with the gold standard (corresponding post-diuretic image) was selected as the final output image. These images were further evaluated by two nuclear medicine physicians. In 22 out of 25 images, tumor was successfully detected. In five control images, no false positives were reported. Thus, the empirical probability of detection of abdomino-pelvic tumors evaluates to 0.88. The proposed method was able to detect abdomino-pelvic tumors on pre-diuretic PET/CT scan with a high probability of success and no false positives.

  18. Extended depth of field integral imaging using multi-focus fusion

    NASA Astrophysics Data System (ADS)

    Piao, Yongri; Zhang, Miao; Wang, Xiaohui; Li, Peihua

    2018-03-01

    In this paper, we propose a new method for depth of field extension in integral imaging by realizing the image fusion method on the multi-focus elemental images. In the proposed method, a camera is translated on a 2D grid to take multi-focus elemental images by sweeping the focus plane across the scene. Simply applying an image fusion method on the elemental images holding rich parallax information does not work effectively because registration accuracy of images is the prerequisite for image fusion. To solve this problem an elemental image generalization method is proposed. The aim of this generalization process is to geometrically align the objects in all elemental images so that the correct regions of multi-focus elemental images can be exacted. The all-in focus elemental images are then generated by fusing the generalized elemental images using the block based fusion method. The experimental results demonstrate that the depth of field of synthetic aperture integral imaging system has been extended by realizing the generation method combined with the image fusion on multi-focus elemental images in synthetic aperture integral imaging system.

  19. Twofold processing for denoising ultrasound medical images.

    PubMed

    Kishore, P V V; Kumar, K V V; Kumar, D Anil; Prasad, M V D; Goutham, E N D; Rahul, R; Krishna, C B S Vamsi; Sandeep, Y

    2015-01-01

    Ultrasound medical (US) imaging non-invasively pictures inside of a human body for disease diagnostics. Speckle noise attacks ultrasound images degrading their visual quality. A twofold processing algorithm is proposed in this work to reduce this multiplicative speckle noise. First fold used block based thresholding, both hard (BHT) and soft (BST), on pixels in wavelet domain with 8, 16, 32 and 64 non-overlapping block sizes. This first fold process is a better denoising method for reducing speckle and also inducing object of interest blurring. The second fold process initiates to restore object boundaries and texture with adaptive wavelet fusion. The degraded object restoration in block thresholded US image is carried through wavelet coefficient fusion of object in original US mage and block thresholded US image. Fusion rules and wavelet decomposition levels are made adaptive for each block using gradient histograms with normalized differential mean (NDF) to introduce highest level of contrast between the denoised pixels and the object pixels in the resultant image. Thus the proposed twofold methods are named as adaptive NDF block fusion with hard and soft thresholding (ANBF-HT and ANBF-ST). The results indicate visual quality improvement to an interesting level with the proposed twofold processing, where the first fold removes noise and second fold restores object properties. Peak signal to noise ratio (PSNR), normalized cross correlation coefficient (NCC), edge strength (ES), image quality Index (IQI) and structural similarity index (SSIM), measure the quantitative quality of the twofold processing technique. Validation of the proposed method is done by comparing with anisotropic diffusion (AD), total variational filtering (TVF) and empirical mode decomposition (EMD) for enhancement of US images. The US images are provided by AMMA hospital radiology labs at Vijayawada, India.

  20. Visual information processing II; Proceedings of the Meeting, Orlando, FL, Apr. 14-16, 1993

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O. (Editor); Juday, Richard D. (Editor)

    1993-01-01

    Various papers on visual information processing are presented. Individual topics addressed include: aliasing as noise, satellite image processing using a hammering neural network, edge-detetion method using visual perception, adaptive vector median filters, design of a reading test for low-vision image warping, spatial transformation architectures, automatic image-enhancement method, redundancy reduction in image coding, lossless gray-scale image compression by predictive GDF, information efficiency in visual communication, optimizing JPEG quantization matrices for different applications, use of forward error correction to maintain image fidelity, effect of peanoscanning on image compression. Also discussed are: computer vision for autonomous robotics in space, optical processor for zero-crossing edge detection, fractal-based image edge detection, simulation of the neon spreading effect by bandpass filtering, wavelet transform (WT) on parallel SIMD architectures, nonseparable 2D wavelet image representation, adaptive image halftoning based on WT, wavelet analysis of global warming, use of the WT for signal detection, perfect reconstruction two-channel rational filter banks, N-wavelet coding for pattern classification, simulation of image of natural objects, number-theoretic coding for iconic systems.

  1. Ethnomathematics elements in Batik Bali using backpropagation method

    NASA Astrophysics Data System (ADS)

    Lestari, Mei; Irawan, Ari; Rahayu, Wanti; Wayan Parwati, Ni

    2018-05-01

    Batik is one of traditional arts that has been established by the UNESCO as Indonesia’s cultural heritage. Batik has varieties and motifs, and each motifs has its own uniqueness but seems similar, that makes it difficult to identify. This study aims to develop an application that can identify typical batik Bali with etnomatematics elements on it. Etnomatematics is a study that shows relation between culture and mathematics concepts. Etnomatematics in Batik Bali is more to geometrical concept in line of strong Balinese culture element. The identification process is use backpropagation method. Steps of backpropagation methods are image processing (including scalling and tresholding image process). Next step is insert the processed image to an artificial neural network. This study resulted an accuracy of identification of batik Bali that has Etnomatematics elements on it.

  2. Digital image modification detection using color information and its histograms.

    PubMed

    Zhou, Haoyu; Shen, Yue; Zhu, Xinghui; Liu, Bo; Fu, Zigang; Fan, Na

    2016-09-01

    The rapid development of many open source and commercial image editing software makes the authenticity of the digital images questionable. Copy-move forgery is one of the most widely used tampering techniques to create desirable objects or conceal undesirable objects in a scene. Existing techniques reported in the literature to detect such tampering aim to improve the robustness of these methods against the use of JPEG compression, blurring, noise, or other types of post processing operations. These post processing operations are frequently used with the intention to conceal tampering and reduce tampering clues. A robust method based on the color moments and other five image descriptors is proposed in this paper. The method divides the image into fixed size overlapping blocks. Clustering operation divides entire search space into smaller pieces with similar color distribution. Blocks from the tampered regions will reside within the same cluster since both copied and moved regions have similar color distributions. Five image descriptors are used to extract block features, which makes the method more robust to post processing operations. An ensemble of deep compositional pattern-producing neural networks are trained with these extracted features. Similarity among feature vectors in clusters indicates possible forged regions. Experimental results show that the proposed method can detect copy-move forgery even if an image was distorted by gamma correction, addictive white Gaussian noise, JPEG compression, or blurring. Copyright © 2016. Published by Elsevier Ireland Ltd.

  3. A method of fast mosaic for massive UAV images

    NASA Astrophysics Data System (ADS)

    Xiang, Ren; Sun, Min; Jiang, Cheng; Liu, Lei; Zheng, Hui; Li, Xiaodong

    2014-11-01

    With the development of UAV technology, UAVs are used widely in multiple fields such as agriculture, forest protection, mineral exploration, natural disaster management and surveillances of public security events. In contrast of traditional manned aerial remote sensing platforms, UAVs are cheaper and more flexible to use. So users can obtain massive image data with UAVs, but this requires a lot of time to process the image data, for example, Pix4UAV need approximately 10 hours to process 1000 images in a high performance PC. But disaster management and many other fields require quick respond which is hard to realize with massive image data. Aiming at improving the disadvantage of high time consumption and manual interaction, in this article a solution of fast UAV image stitching is raised. GPS and POS data are used to pre-process the original images from UAV, belts and relation between belts and images are recognized automatically by the program, in the same time useless images are picked out. This can boost the progress of finding match points between images. Levenberg-Marquard algorithm is improved so that parallel computing can be applied to shorten the time of global optimization notably. Besides traditional mosaic result, it can also generate superoverlay result for Google Earth, which can provide a fast and easy way to show the result data. In order to verify the feasibility of this method, a fast mosaic system of massive UAV images is developed, which is fully automated and no manual interaction is needed after original images and GPS data are provided. A test using 800 images of Kelan River in Xinjiang Province shows that this system can reduce 35%-50% time consumption in contrast of traditional methods, and increases respond speed of UAV image processing rapidly.

  4. Comparison of ring artifact removal methods using flat panel detector based CT images

    PubMed Central

    2011-01-01

    Background Ring artifacts are the concentric rings superimposed on the tomographic images often caused by the defective and insufficient calibrated detector elements as well as by the damaged scintillator crystals of the flat panel detector. It may be also generated by objects attenuating X-rays very differently in different projection direction. Ring artifact reduction techniques so far reported in the literature can be broadly classified into two groups. One category of the approaches is based on the sinogram processing also known as the pre-processing techniques and the other category of techniques perform processing on the 2-D reconstructed images, recognized as the post-processing techniques in the literature. The strength and weakness of these categories of approaches are yet to be explored from a common platform. Method In this paper, a comparative study of the two categories of ring artifact reduction techniques basically designed for the multi-slice CT instruments is presented from a common platform. For comparison, two representative algorithms from each of the two categories are selected from the published literature. A very recently reported state-of-the-art sinogram domain ring artifact correction method that classifies the ring artifacts according to their strength and then corrects the artifacts using class adaptive correction schemes is also included in this comparative study. The first sinogram domain correction method uses a wavelet based technique to detect the corrupted pixels and then using a simple linear interpolation technique estimates the responses of the bad pixels. The second sinogram based correction method performs all the filtering operations in the transform domain, i.e., in the wavelet and Fourier domain. On the other hand, the two post-processing based correction techniques actually operate on the polar transform domain of the reconstructed CT images. The first method extracts the ring artifact template vector using a homogeneity test and then corrects the CT images by subtracting the artifact template vector from the uncorrected images. The second post-processing based correction technique performs median and mean filtering on the reconstructed images to produce the corrected images. Results The performances of the comparing algorithms have been tested by using both quantitative and perceptual measures. For quantitative analysis, two different numerical performance indices are chosen. On the other hand, different types of artifact patterns, e.g., single/band ring, artifacts from defective and mis-calibrated detector elements, rings in highly structural object and also in hard object, rings from different flat-panel detectors are analyzed to perceptually investigate the strength and weakness of the five methods. An investigation has been also carried out to compare the efficacy of these algorithms in correcting the volume images from a cone beam CT with the parameters determined from one particular slice. Finally, the capability of each correction technique in retaining the image information (e.g., small object at the iso-center) accurately in the corrected CT image has been also tested. Conclusions The results show that the performances of the algorithms are limited and none is fully suitable for correcting different types of ring artifacts without introducing processing distortion to the image structure. To achieve the diagnostic quality of the corrected slices a combination of the two approaches (sinogram- and post-processing) can be used. Also the comparing methods are not suitable for correcting the volume images from a cone beam flat-panel detector based CT. PMID:21846411

  5. Buried object detection in GPR images

    DOEpatents

    Paglieroni, David W; Chambers, David H; Bond, Steven W; Beer, W. Reginald

    2014-04-29

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  6. Adaptive marginal median filter for colour images.

    PubMed

    Morillas, Samuel; Gregori, Valentín; Sapena, Almanzor

    2011-01-01

    This paper describes a new filter for impulse noise reduction in colour images which is aimed at improving the noise reduction capability of the classical vector median filter. The filter is inspired by the application of a vector marginal median filtering process over a selected group of pixels in each filtering window. This selection, which is based on the vector median, along with the application of the marginal median operation constitutes an adaptive process that leads to a more robust filter design. Also, the proposed method is able to process colour images without introducing colour artifacts. Experimental results show that the images filtered with the proposed method contain less noisy pixels than those obtained through the vector median filter.

  7. Radar signal pre-processing to suppress surface bounce and multipath

    DOEpatents

    Paglieroni, David W; Mast, Jeffrey E; Beer, N. Reginald

    2013-12-31

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes that return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  8. Bone surface enhancement in ultrasound images using a new Doppler-based acquisition/processing method.

    PubMed

    Yang, Xu; Tang, Songyuan; Tasciotti, Ennio; Righetti, Raffaella

    2018-01-17

    Ultrasound (US) imaging has long been considered as a potential aid in orthopedic surgeries. US technologies are safe, portable and do not use radiations. This would make them a desirable tool for real-time assessment of fractures and to monitor fracture healing. However, image quality of US imaging methods in bone applications is limited by speckle, attenuation, shadow, multiple reflections and other imaging artifacts. While bone surfaces typically appear in US images as somewhat 'brighter' than soft tissue, they are often not easily distinguishable from the surrounding tissue. Therefore, US imaging methods aimed at segmenting bone surfaces need enhancement in image contrast prior to segmentation to improve the quality of the detected bone surface. In this paper, we present a novel acquisition/processing technique for bone surface enhancement in US images. Inspired by elastography and Doppler imaging methods, this technique takes advantage of the difference between the mechanical and acoustic properties of bones and those of soft tissues to make the bone surface more easily distinguishable in US images. The objective of this technique is to facilitate US-based bone segmentation methods and improve the accuracy of their outcomes. The newly proposed technique is tested both in in vitro and in vivo experiments. The results of these preliminary experiments suggest that the use of the proposed technique has the potential to significantly enhance the detectability of bone surfaces in noisy ultrasound images.

  9. Bone surface enhancement in ultrasound images using a new Doppler-based acquisition/processing method

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Tang, Songyuan; Tasciotti, Ennio; Righetti, Raffaella

    2018-01-01

    Ultrasound (US) imaging has long been considered as a potential aid in orthopedic surgeries. US technologies are safe, portable and do not use radiations. This would make them a desirable tool for real-time assessment of fractures and to monitor fracture healing. However, image quality of US imaging methods in bone applications is limited by speckle, attenuation, shadow, multiple reflections and other imaging artifacts. While bone surfaces typically appear in US images as somewhat ‘brighter’ than soft tissue, they are often not easily distinguishable from the surrounding tissue. Therefore, US imaging methods aimed at segmenting bone surfaces need enhancement in image contrast prior to segmentation to improve the quality of the detected bone surface. In this paper, we present a novel acquisition/processing technique for bone surface enhancement in US images. Inspired by elastography and Doppler imaging methods, this technique takes advantage of the difference between the mechanical and acoustic properties of bones and those of soft tissues to make the bone surface more easily distinguishable in US images. The objective of this technique is to facilitate US-based bone segmentation methods and improve the accuracy of their outcomes. The newly proposed technique is tested both in in vitro and in vivo experiments. The results of these preliminary experiments suggest that the use of the proposed technique has the potential to significantly enhance the detectability of bone surfaces in noisy ultrasound images.

  10. A Novel Bit-level Image Encryption Method Based on Chaotic Map and Dynamic Grouping

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Ji; Shen, Yan

    2012-10-01

    In this paper, a novel bit-level image encryption method based on dynamic grouping is proposed. In the proposed method, the plain-image is divided into several groups randomly, then permutation-diffusion process on bit level is carried out. The keystream generated by logistic map is related to the plain-image, which confuses the relationship between the plain-image and the cipher-image. The computer simulation results of statistical analysis, information entropy analysis and sensitivity analysis show that the proposed encryption method is secure and reliable enough to be used for communication application.

  11. A Method for Identifying Contours in Processing Digital Images from Computer Tomograph

    NASA Astrophysics Data System (ADS)

    Roşu, Şerban; Pater, Flavius; Costea, Dan; Munteanu, Mihnea; Roşu, Doina; Fratila, Mihaela

    2011-09-01

    The first step in digital processing of two-dimensional computed tomography images is to identify the contour of component elements. This paper deals with the collective work of specialists in medicine and applied mathematics in computer science on elaborating new algorithms and methods in medical 2D and 3D imagery.

  12. Reducing noise component on medical images

    NASA Astrophysics Data System (ADS)

    Semenishchev, Evgeny; Voronin, Viacheslav; Dub, Vladimir; Balabaeva, Oksana

    2018-04-01

    Medical visualization and analysis of medical data is an actual direction. Medical images are used in microbiology, genetics, roentgenology, oncology, surgery, ophthalmology, etc. Initial data processing is a major step towards obtaining a good diagnostic result. The paper considers the approach allows an image filtering with preservation of objects borders. The algorithm proposed in this paper is based on sequential data processing. At the first stage, local areas are determined, for this purpose the method of threshold processing, as well as the classical ICI algorithm, is applied. The second stage uses a method based on based on two criteria, namely, L2 norm and the first order square difference. To preserve the boundaries of objects, we will process the transition boundary and local neighborhood the filtering algorithm with a fixed-coefficient. For example, reconstructed images of CT, x-ray, and microbiological studies are shown. The test images show the effectiveness of the proposed algorithm. This shows the applicability of analysis many medical imaging applications.

  13. Highway 3D model from image and lidar data

    NASA Astrophysics Data System (ADS)

    Chen, Jinfeng; Chu, Henry; Sun, Xiaoduan

    2014-05-01

    We present a new method of highway 3-D model construction developed based on feature extraction in highway images and LIDAR data. We describe the processing road coordinate data that connect the image frames to the coordinates of the elevation data. Image processing methods are used to extract sky, road, and ground regions as well as significant objects (such as signs and building fronts) in the roadside for the 3D model. LIDAR data are interpolated and processed to extract the road lanes as well as other features such as trees, ditches, and elevated objects to form the 3D model. 3D geometry reasoning is used to match the image features to the 3D model. Results from successive frames are integrated to improve the final model.

  14. Designing Image Analysis Pipelines in Light Microscopy: A Rational Approach.

    PubMed

    Arganda-Carreras, Ignacio; Andrey, Philippe

    2017-01-01

    With the progress of microscopy techniques and the rapidly growing amounts of acquired imaging data, there is an increased need for automated image processing and analysis solutions in biological studies. Each new application requires the design of a specific image analysis pipeline, by assembling a series of image processing operations. Many commercial or free bioimage analysis software are now available and several textbooks and reviews have presented the mathematical and computational fundamentals of image processing and analysis. Tens, if not hundreds, of algorithms and methods have been developed and integrated into image analysis software, resulting in a combinatorial explosion of possible image processing sequences. This paper presents a general guideline methodology to rationally address the design of image processing and analysis pipelines. The originality of the proposed approach is to follow an iterative, backwards procedure from the target objectives of analysis. The proposed goal-oriented strategy should help biologists to better apprehend image analysis in the context of their research and should allow them to efficiently interact with image processing specialists.

  15. In-line monitoring of pellet coating thickness growth by means of visual imaging.

    PubMed

    Oman Kadunc, Nika; Sibanc, Rok; Dreu, Rok; Likar, Boštjan; Tomaževič, Dejan

    2014-08-15

    Coating thickness is the most important attribute of coated pharmaceutical pellets as it directly affects release profiles and stability of the drug. Quality control of the coating process of pharmaceutical pellets is thus of utmost importance for assuring the desired end product characteristics. A visual imaging technique is presented and examined as a process analytic technology (PAT) tool for noninvasive continuous in-line and real time monitoring of coating thickness of pharmaceutical pellets during the coating process. Images of pellets were acquired during the coating process through an observation window of a Wurster coating apparatus. Image analysis methods were developed for fast and accurate determination of pellets' coating thickness during a coating process. The accuracy of the results for pellet coating thickness growth obtained in real time was evaluated through comparison with an off-line reference method and a good agreement was found. Information about the inter-pellet coating uniformity was gained from further statistical analysis of the measured pellet size distributions. Accuracy and performance analysis of the proposed method showed that visual imaging is feasible as a PAT tool for in-line and real time monitoring of the coating process of pharmaceutical pellets. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. A Range Ambiguity Suppression Processing Method for Spaceborne SAR with Up and Down Chirp Modulation.

    PubMed

    Wen, Xuejiao; Qiu, Xiaolan; Han, Bing; Ding, Chibiao; Lei, Bin; Chen, Qi

    2018-05-07

    Range ambiguity is one of the factors which affect the SAR image quality. Alternately transmitting up and down chirp modulation pulses is one of the methods used to suppress the range ambiguity. However, the defocusing range ambiguous signal can still hold the stronger backscattering intensity than the mainlobe imaging area in some case, which has a severe impact on visual effects and subsequent applications. In this paper, a novel hybrid range ambiguity suppression method for up and down chirp modulation is proposed. The method can obtain the ambiguity area image and reduce the ambiguity signal power appropriately, by applying pulse compression using a contrary modulation rate and CFAR detecting method. The effectiveness and correctness of the approach is demonstrated by processing the archive images acquired by Chinese Gaofen-3 SAR sensor in full-polarization mode.

  17. Image interpolation and denoising for division of focal plane sensors using Gaussian processes.

    PubMed

    Gilboa, Elad; Cunningham, John P; Nehorai, Arye; Gruev, Viktor

    2014-06-16

    Image interpolation and denoising are important techniques in image processing. These methods are inherent to digital image acquisition as most digital cameras are composed of a 2D grid of heterogeneous imaging sensors. Current polarization imaging employ four different pixelated polarization filters, commonly referred to as division of focal plane polarization sensors. The sensors capture only partial information of the true scene, leading to a loss of spatial resolution as well as inaccuracy of the captured polarization information. Interpolation is a standard technique to recover the missing information and increase the accuracy of the captured polarization information. Here we focus specifically on Gaussian process regression as a way to perform a statistical image interpolation, where estimates of sensor noise are used to improve the accuracy of the estimated pixel information. We further exploit the inherent grid structure of this data to create a fast exact algorithm that operates in ����(N(3/2)) (vs. the naive ���� (N³)), thus making the Gaussian process method computationally tractable for image data. This modeling advance and the enabling computational advance combine to produce significant improvements over previously published interpolation methods for polarimeters, which is most pronounced in cases of low signal-to-noise ratio (SNR). We provide the comprehensive mathematical model as well as experimental results of the GP interpolation performance for division of focal plane polarimeter.

  18. Probing amyloid protein aggregation with optical superresolution methods: from the test tube to models of disease

    PubMed Central

    Kaminski, Clemens F.; Kaminski Schierle, Gabriele S.

    2016-01-01

    Abstract. The misfolding and self-assembly of intrinsically disordered proteins into insoluble amyloid structures are central to many neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases. Optical imaging of this self-assembly process in vitro and in cells is revolutionizing our understanding of the molecular mechanisms behind these devastating conditions. In contrast to conventional biophysical methods, optical imaging and, in particular, optical superresolution imaging, permits the dynamic investigation of the molecular self-assembly process in vitro and in cells, at molecular-level resolution. In this article, current state-of-the-art imaging methods are reviewed and discussed in the context of research into neurodegeneration. PMID:27413767

  19. Joint image registration and fusion method with a gradient strength regularization

    NASA Astrophysics Data System (ADS)

    Lidong, Huang; Wei, Zhao; Jun, Wang

    2015-05-01

    Image registration is an essential process for image fusion, and fusion performance can be used to evaluate registration accuracy. We propose a maximum likelihood (ML) approach to joint image registration and fusion instead of treating them as two independent processes in the conventional way. To improve the visual quality of a fused image, a gradient strength (GS) regularization is introduced in the cost function of ML. The GS of the fused image is controllable by setting the target GS value in the regularization term. This is useful because a larger target GS brings a clearer fused image and a smaller target GS makes the fused image smoother and thus restrains noise. Hence, the subjective quality of the fused image can be improved whether the source images are polluted by noise or not. We can obtain the fused image and registration parameters successively by minimizing the cost function using an iterative optimization method. Experimental results show that our method is effective with transformation, rotation, and scale parameters in the range of [-2.0, 2.0] pixel, [-1.1 deg, 1.1 deg], and [0.95, 1.05], respectively, and variances of noise smaller than 300. It also demonstrated that our method yields a more visual pleasing fused image and higher registration accuracy compared with a state-of-the-art algorithm.

  20. Single Anisotropic 3-D MR Image Upsampling via Overcomplete Dictionary Trained From In-Plane High Resolution Slices.

    PubMed

    Jia, Yuanyuan; He, Zhongshi; Gholipour, Ali; Warfield, Simon K

    2016-11-01

    In magnetic resonance (MR), hardware limitation, scanning time, and patient comfort often result in the acquisition of anisotropic 3-D MR images. Enhancing image resolution is desired but has been very challenging in medical image processing. Super resolution reconstruction based on sparse representation and overcomplete dictionary has been lately employed to address this problem; however, these methods require extra training sets, which may not be always available. This paper proposes a novel single anisotropic 3-D MR image upsampling method via sparse representation and overcomplete dictionary that is trained from in-plane high resolution slices to upsample in the out-of-plane dimensions. The proposed method, therefore, does not require extra training sets. Abundant experiments, conducted on simulated and clinical brain MR images, show that the proposed method is more accurate than classical interpolation. When compared to a recent upsampling method based on the nonlocal means approach, the proposed method did not show improved results at low upsampling factors with simulated images, but generated comparable results with much better computational efficiency in clinical cases. Therefore, the proposed approach can be efficiently implemented and routinely used to upsample MR images in the out-of-planes views for radiologic assessment and postacquisition processing.

  1. Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods

    NASA Astrophysics Data System (ADS)

    Verrelst, Jochem; Malenovský, Zbyněk; Van der Tol, Christiaan; Camps-Valls, Gustau; Gastellu-Etchegorry, Jean-Philippe; Lewis, Philip; North, Peter; Moreno, Jose

    2018-06-01

    An unprecedented spectroscopic data stream will soon become available with forthcoming Earth-observing satellite missions equipped with imaging spectroradiometers. This data stream will open up a vast array of opportunities to quantify a diversity of biochemical and structural vegetation properties. The processing requirements for such large data streams require reliable retrieval techniques enabling the spatiotemporally explicit quantification of biophysical variables. With the aim of preparing for this new era of Earth observation, this review summarizes the state-of-the-art retrieval methods that have been applied in experimental imaging spectroscopy studies inferring all kinds of vegetation biophysical variables. Identified retrieval methods are categorized into: (1) parametric regression, including vegetation indices, shape indices and spectral transformations; (2) nonparametric regression, including linear and nonlinear machine learning regression algorithms; (3) physically based, including inversion of radiative transfer models (RTMs) using numerical optimization and look-up table approaches; and (4) hybrid regression methods, which combine RTM simulations with machine learning regression methods. For each of these categories, an overview of widely applied methods with application to mapping vegetation properties is given. In view of processing imaging spectroscopy data, a critical aspect involves the challenge of dealing with spectral multicollinearity. The ability to provide robust estimates, retrieval uncertainties and acceptable retrieval processing speed are other important aspects in view of operational processing. Recommendations towards new-generation spectroscopy-based processing chains for operational production of biophysical variables are given.

  2. Novel Algorithm for Classification of Medical Images

    NASA Astrophysics Data System (ADS)

    Bhushan, Bharat; Juneja, Monika

    2010-11-01

    Content-based image retrieval (CBIR) methods in medical image databases have been designed to support specific tasks, such as retrieval of medical images. These methods cannot be transferred to other medical applications since different imaging modalities require different types of processing. To enable content-based queries in diverse collections of medical images, the retrieval system must be familiar with the current Image class prior to the query processing. Further, almost all of them deal with the DICOM imaging format. In this paper a novel algorithm based on energy information obtained from wavelet transform for the classification of medical images according to their modalities is described. For this two types of wavelets have been used and have been shown that energy obtained in either case is quite distinct for each of the body part. This technique can be successfully applied to different image formats. The results are shown for JPEG imaging format.

  3. Image pre-processing method for near-wall PIV measurements over moving curved interfaces

    NASA Astrophysics Data System (ADS)

    Jia, L. C.; Zhu, Y. D.; Jia, Y. X.; Yuan, H. J.; Lee, C. B.

    2017-03-01

    PIV measurements near a moving interface are always difficult. This paper presents a PIV image pre-processing method that returns high spatial resolution velocity profiles near the interface. Instead of re-shaping or re-orientating the interrogation windows, interface tracking and an image transformation are used to stretch the particle image strips near a curved interface into rectangles. Then the adaptive structured interrogation windows can be arranged at specified distances from the interface. Synthetic particles are also added into the solid region to minimize interfacial effects and to restrict particles on both sides of the interface. Since a high spatial resolution is only required in high velocity gradient region, adaptive meshing and stretching of the image strips in the normal direction is used to improve the cross-correlation signal-to-noise ratio (SN) by reducing the velocity difference and the particle image distortion within the interrogation window. A two dimensional Gaussian fit is used to compensate for the effects of stretching particle images. The working hypothesis is that fluid motion near the interface is ‘quasi-tangential flow’, which is reasonable in most fluid-structure interaction scenarios. The method was validated against the window deformation iterative multi-grid scheme (WIDIM) using synthetic image pairs with different velocity profiles. The method was tested for boundary layer measurements of a supersonic turbulent boundary layer on a flat plate, near a rotating blade and near a flexible flapping flag. This image pre-processing method provides higher spatial resolution than conventional WIDIM and good robustness for measuring velocity profiles near moving interfaces.

  4. MATHEMATICAL METHODS IN MEDICAL IMAGE PROCESSING

    PubMed Central

    ANGENENT, SIGURD; PICHON, ERIC; TANNENBAUM, ALLEN

    2013-01-01

    In this paper, we describe some central mathematical problems in medical imaging. The subject has been undergoing rapid changes driven by better hardware and software. Much of the software is based on novel methods utilizing geometric partial differential equations in conjunction with standard signal/image processing techniques as well as computer graphics facilitating man/machine interactions. As part of this enterprise, researchers have been trying to base biomedical engineering principles on rigorous mathematical foundations for the development of software methods to be integrated into complete therapy delivery systems. These systems support the more effective delivery of many image-guided procedures such as radiation therapy, biopsy, and minimally invasive surgery. We will show how mathematics may impact some of the main problems in this area, including image enhancement, registration, and segmentation. PMID:23645963

  5. Pixel-based speckle adjustment for noise reduction in Fourier-domain OCT images

    PubMed Central

    Zhang, Anqi; Xi, Jiefeng; Sun, Jitao; Li, Xingde

    2017-01-01

    Speckle resides in OCT signals and inevitably effects OCT image quality. In this work, we present a novel method for speckle noise reduction in Fourier-domain OCT images, which utilizes the phase information of complex OCT data. In this method, speckle area is pre-delineated pixelwise based on a phase-domain processing method and then adjusted by the results of wavelet shrinkage of the original image. Coefficient shrinkage method such as wavelet or contourlet is applied afterwards for further suppressing the speckle noise. Compared with conventional methods without speckle adjustment, the proposed method demonstrates significant improvement of image quality. PMID:28663860

  6. Virtual Averaging Making Nonframe-Averaged Optical Coherence Tomography Images Comparable to Frame-Averaged Images

    PubMed Central

    Chen, Chieh-Li; Ishikawa, Hiroshi; Wollstein, Gadi; Bilonick, Richard A.; Kagemann, Larry; Schuman, Joel S.

    2016-01-01

    Purpose Developing a novel image enhancement method so that nonframe-averaged optical coherence tomography (OCT) images become comparable to active eye-tracking frame-averaged OCT images. Methods Twenty-one eyes of 21 healthy volunteers were scanned with noneye-tracking nonframe-averaged OCT device and active eye-tracking frame-averaged OCT device. Virtual averaging was applied to nonframe-averaged images with voxel resampling and adding amplitude deviation with 15-time repetitions. Signal-to-noise (SNR), contrast-to-noise ratios (CNR), and the distance between the end of visible nasal retinal nerve fiber layer (RNFL) and the foveola were assessed to evaluate the image enhancement effect and retinal layer visibility. Retinal thicknesses before and after processing were also measured. Results All virtual-averaged nonframe-averaged images showed notable improvement and clear resemblance to active eye-tracking frame-averaged images. Signal-to-noise and CNR were significantly improved (SNR: 30.5 vs. 47.6 dB, CNR: 4.4 vs. 6.4 dB, original versus processed, P < 0.0001, paired t-test). The distance between the end of visible nasal RNFL and the foveola was significantly different before (681.4 vs. 446.5 μm, Cirrus versus Spectralis, P < 0.0001) but not after processing (442.9 vs. 446.5 μm, P = 0.76). Sectoral macular total retinal and circumpapillary RNFL thicknesses showed systematic differences between Cirrus and Spectralis that became not significant after processing. Conclusion The virtual averaging method successfully improved nontracking nonframe-averaged OCT image quality and made the images comparable to active eye-tracking frame-averaged OCT images. Translational Relevance Virtual averaging may enable detailed retinal structure studies on images acquired using a mixture of nonframe-averaged and frame-averaged OCT devices without concerning about systematic differences in both qualitative and quantitative aspects. PMID:26835180

  7. Redundancy Analysis of Capacitance Data of a Coplanar Electrode Array for Fast and Stable Imaging Processing

    PubMed Central

    Wen, Yintang; Zhang, Zhenda; Zhang, Yuyan; Sun, Dongtao

    2017-01-01

    A coplanar electrode array sensor is established for the imaging of composite-material adhesive-layer defect detection. The sensor is based on the capacitive edge effect, which leads to capacitance data being considerably weak and susceptible to environmental noise. The inverse problem of coplanar array electrical capacitance tomography (C-ECT) is ill-conditioning, in which a small error of capacitance data can seriously affect the quality of reconstructed images. In order to achieve a stable image reconstruction process, a redundancy analysis method for capacitance data is proposed. The proposed method is based on contribution rate and anti-interference capability. According to the redundancy analysis, the capacitance data are divided into valid and invalid data. When the image is reconstructed by valid data, the sensitivity matrix needs to be changed accordingly. In order to evaluate the effectiveness of the sensitivity map, singular value decomposition (SVD) is used. Finally, the two-dimensional (2D) and three-dimensional (3D) images are reconstructed by the Tikhonov regularization method. Through comparison of the reconstructed images of raw capacitance data, the stability of the image reconstruction process can be improved, and the quality of reconstructed images is not degraded. As a result, much invalid data are not collected, and the data acquisition time can also be reduced. PMID:29295537

  8. Automatic tissue image segmentation based on image processing and deep learning

    NASA Astrophysics Data System (ADS)

    Kong, Zhenglun; Luo, Junyi; Xu, Shengpu; Li, Ting

    2018-02-01

    Image segmentation plays an important role in multimodality imaging, especially in fusion structural images offered by CT, MRI with functional images collected by optical technologies or other novel imaging technologies. Plus, image segmentation also provides detailed structure description for quantitative visualization of treating light distribution in the human body when incorporated with 3D light transport simulation method. Here we used image enhancement, operators, and morphometry methods to extract the accurate contours of different tissues such as skull, cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) on 5 fMRI head image datasets. Then we utilized convolutional neural network to realize automatic segmentation of images in a deep learning way. We also introduced parallel computing. Such approaches greatly reduced the processing time compared to manual and semi-automatic segmentation and is of great importance in improving speed and accuracy as more and more samples being learned. Our results can be used as a criteria when diagnosing diseases such as cerebral atrophy, which is caused by pathological changes in gray matter or white matter. We demonstrated the great potential of such image processing and deep leaning combined automatic tissue image segmentation in personalized medicine, especially in monitoring, and treatments.

  9. Research on remote sensing image pixel attribute data acquisition method in AutoCAD

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyang; Sun, Guangtong; Liu, Jun; Liu, Hui

    2013-07-01

    The remote sensing image has been widely used in AutoCAD, but AutoCAD lack of the function of remote sensing image processing. In the paper, ObjectARX was used for the secondary development tool, combined with the Image Engine SDK to realize remote sensing image pixel attribute data acquisition in AutoCAD, which provides critical technical support for AutoCAD environment remote sensing image processing algorithms.

  10. Note: A simple image processing based fiducial auto-alignment method for sample registration.

    PubMed

    Robertson, Wesley D; Porto, Lucas R; Ip, Candice J X; Nantel, Megan K T; Tellkamp, Friedjof; Lu, Yinfei; Miller, R J Dwayne

    2015-08-01

    A simple method for the location and auto-alignment of sample fiducials for sample registration using widely available MATLAB/LabVIEW software is demonstrated. The method is robust, easily implemented, and applicable to a wide variety of experiment types for improved reproducibility and increased setup speed. The software uses image processing to locate and measure the diameter and center point of circular fiducials for distance self-calibration and iterative alignment and can be used with most imaging systems. The method is demonstrated to be fast and reliable in locating and aligning sample fiducials, provided here by a nanofabricated array, with accuracy within the optical resolution of the imaging system. The software was further demonstrated to register, load, and sample the dynamically wetted array.

  11. New method for identifying features of an image on a digital video display

    NASA Astrophysics Data System (ADS)

    Doyle, Michael D.

    1991-04-01

    The MetaMap process extends the concept of direct manipulation human-computer interfaces to new limits. Its specific capabilities include the correlation of discrete image elements to relevant text information and the correlation of these image features to other images as well as to program control mechanisms. The correlation is accomplished through reprogramming of both the color map and the image so that discrete image elements comprise unique sets of color indices. This process allows the correlation to be accomplished with very efficient data storage and program execution times. Image databases adapted to this process become object-oriented as a result. Very sophisticated interrelationships can be set up between images text and program control mechanisms using this process. An application of this interfacing process to the design of an interactive atlas of medical histology as well as other possible applications are described. The MetaMap process is protected by U. S. patent #4

  12. Quantification technology study on flaws in steam-filled pipelines based on image processing

    NASA Astrophysics Data System (ADS)

    Sun, Lina; Yuan, Peixin

    2009-07-01

    Starting from exploiting the applied detection system of gas transmission pipeline, a set of X-ray image processing methods and pipeline flaw quantificational evaluation methods are proposed. Defective and non-defective strings and rows in gray image were extracted and oscillogram was obtained. We can distinguish defects in contrast with two gray images division. According to the gray value of defects with different thicknesses, the gray level depth curve is founded. Through exponential and polynomial fitting way to obtain the attenuation mathematical model which the beam penetrates pipeline, thus attain flaw deep dimension. This paper tests on the PPR pipe in the production of simulated holes flaw and cracks flaw, 135KV used the X-ray source on the testing. Test results show that X-ray image processing method, which meet the needs of high efficient flaw detection and provide quality safeguard for thick oil recovery, can be used successfully in detecting corrosion of insulated pipe.

  13. Quantification technology study on flaws in steam-filled pipelines based on image processing

    NASA Astrophysics Data System (ADS)

    Yuan, Pei-xin; Cong, Jia-hui; Chen, Bo

    2008-03-01

    Starting from exploiting the applied detection system of gas transmission pipeline, a set of X-ray image processing methods and pipeline flaw quantificational evaluation methods are proposed. Defective and non-defective strings and rows in gray image were extracted and oscillogram was obtained. We can distinguish defects in contrast with two gray images division. According to the gray value of defects with different thicknesses, the gray level depth curve is founded. Through exponential and polynomial fitting way to obtain the attenuation mathematical model which the beam penetrates pipeline, thus attain flaw deep dimension. This paper tests on the PPR pipe in the production of simulated holes flaw and cracks flaw. The X-ray source tube voltage was selected as 130kv and valve current was 1.5mA.Test results show that X-ray image processing methods, which meet the needs of high efficient flaw detection and provide quality safeguard for thick oil recovery, can be used successfully in detecting corrosion of insulated pipe.

  14. Multistage morphological segmentation of bright-field and fluorescent microscopy images

    NASA Astrophysics Data System (ADS)

    Korzyńska, A.; Iwanowski, M.

    2012-06-01

    This paper describes the multistage morphological segmentation method (MSMA) for microscopic cell images. The proposed method enables us to study the cell behaviour by using a sequence of two types of microscopic images: bright field images and/or fluorescent images. The proposed method is based on two types of information: the cell texture coming from the bright field images and intensity of light emission, done by fluorescent markers. The method is dedicated to the image sequences segmentation and it is based on mathematical morphology methods supported by other image processing techniques. The method allows for detecting cells in image independently from a degree of their flattening and from presenting structures which produce the texture. It makes use of some synergic information from the fluorescent light emission image as the support information. The MSMA method has been applied to images acquired during the experiments on neural stem cells as well as to artificial images. In order to validate the method, two types of errors have been considered: the error of cell area detection and the error of cell position using artificial images as the "gold standard".

  15. Refraction-based X-ray Computed Tomography for Biomedical Purpose Using Dark Field Imaging Method

    NASA Astrophysics Data System (ADS)

    Sunaguchi, Naoki; Yuasa, Tetsuya; Huo, Qingkai; Ichihara, Shu; Ando, Masami

    We have proposed a tomographic x-ray imaging system using DFI (dark field imaging) optics along with a data-processing method to extract information on refraction from the measured intensities, and a reconstruction algorithm to reconstruct a refractive-index field from the projections generated from the extracted refraction information. The DFI imaging system consists of a tandem optical system of Bragg- and Laue-case crystals, a positioning device system for a sample, and two CCD (charge coupled device) cameras. Then, we developed a software code to simulate the data-acquisition, data-processing, and reconstruction methods to investigate the feasibility of the proposed methods. Finally, in order to demonstrate its efficacy, we imaged a sample with DCIS (ductal carcinoma in situ) excised from a breast cancer patient using a system constructed at the vertical wiggler beamline BL-14C in KEK-PF. Its CT images depicted a variety of fine histological structures, such as milk ducts, duct walls, secretions, adipose and fibrous tissue. They correlate well with histological sections.

  16. Statistical lamb wave localization based on extreme value theory

    NASA Astrophysics Data System (ADS)

    Harley, Joel B.

    2018-04-01

    Guided wave localization methods based on delay-and-sum imaging, matched field processing, and other techniques have been designed and researched to create images that locate and describe structural damage. The maximum value of these images typically represent an estimated damage location. Yet, it is often unclear if this maximum value, or any other value in the image, is a statistically significant indicator of damage. Furthermore, there are currently few, if any, approaches to assess the statistical significance of guided wave localization images. As a result, we present statistical delay-and-sum and statistical matched field processing localization methods to create statistically significant images of damage. Our framework uses constant rate of false alarm statistics and extreme value theory to detect damage with little prior information. We demonstrate our methods with in situ guided wave data from an aluminum plate to detect two 0.75 cm diameter holes. Our results show an expected improvement in statistical significance as the number of sensors increase. With seventeen sensors, both methods successfully detect damage with statistical significance.

  17. Advanced Imaging Methods for Long-Baseline Optical Interferometry

    NASA Astrophysics Data System (ADS)

    Le Besnerais, G.; Lacour, S.; Mugnier, L. M.; Thiebaut, E.; Perrin, G.; Meimon, S.

    2008-11-01

    We address the data processing methods needed for imaging with a long baseline optical interferometer. We first describe parametric reconstruction approaches and adopt a general formulation of nonparametric image reconstruction as the solution of a constrained optimization problem. Within this framework, we present two recent reconstruction methods, Mira and Wisard, representative of the two generic approaches for dealing with the missing phase information. Mira is based on an implicit approach and a direct optimization of a Bayesian criterion while Wisard adopts a self-calibration approach and an alternate minimization scheme inspired from radio-astronomy. Both methods can handle various regularization criteria. We review commonly used regularization terms and introduce an original quadratic regularization called ldquosoft support constraintrdquo that favors the object compactness. It yields images of quality comparable to nonquadratic regularizations on the synthetic data we have processed. We then perform image reconstructions, both parametric and nonparametric, on astronomical data from the IOTA interferometer, and discuss the respective roles of parametric and nonparametric approaches for optical interferometric imaging.

  18. The Study of Residential Areas Extraction Based on GF-3 Texture Image Segmentation

    NASA Astrophysics Data System (ADS)

    Shao, G.; Luo, H.; Tao, X.; Ling, Z.; Huang, Y.

    2018-04-01

    The study chooses the standard stripe and dual polarization SAR images of GF-3 as the basic data. Residential areas extraction processes and methods based upon GF-3 images texture segmentation are compared and analyzed. GF-3 images processes include radiometric calibration, complex data conversion, multi-look processing, images filtering, and then conducting suitability analysis for different images filtering methods, the filtering result show that the filtering method of Kuan is efficient for extracting residential areas, then, we calculated and analyzed the texture feature vectors using the GLCM (the Gary Level Co-occurrence Matrix), texture feature vectors include the moving window size, step size and angle, the result show that window size is 11*11, step is 1, and angle is 0°, which is effective and optimal for the residential areas extracting. And with the FNEA (Fractal Net Evolution Approach), we segmented the GLCM texture images, and extracted the residential areas by threshold setting. The result of residential areas extraction verified and assessed by confusion matrix. Overall accuracy is 0.897, kappa is 0.881, and then we extracted the residential areas by SVM classification based on GF-3 images, the overall accuracy is less 0.09 than the accuracy of extraction method based on GF-3 Texture Image Segmentation. We reached the conclusion that residential areas extraction based on GF-3 SAR texture image multi-scale segmentation is simple and highly accurate. although, it is difficult to obtain multi-spectrum remote sensing image in southern China, in cloudy and rainy weather throughout the year, this paper has certain reference significance.

  19. [An Improved Spectral Quaternion Interpolation Method of Diffusion Tensor Imaging].

    PubMed

    Xu, Yonghong; Gao, Shangce; Hao, Xiaofei

    2016-04-01

    Diffusion tensor imaging(DTI)is a rapid development technology in recent years of magnetic resonance imaging.The diffusion tensor interpolation is a very important procedure in DTI image processing.The traditional spectral quaternion interpolation method revises the direction of the interpolation tensor and can preserve tensors anisotropy,but the method does not revise the size of tensors.The present study puts forward an improved spectral quaternion interpolation method on the basis of traditional spectral quaternion interpolation.Firstly,we decomposed diffusion tensors with the direction of tensors being represented by quaternion.Then we revised the size and direction of the tensor respectively according to different situations.Finally,we acquired the tensor of interpolation point by calculating the weighted average.We compared the improved method with the spectral quaternion method and the Log-Euclidean method by the simulation data and the real data.The results showed that the improved method could not only keep the monotonicity of the fractional anisotropy(FA)and the determinant of tensors,but also preserve the tensor anisotropy at the same time.In conclusion,the improved method provides a kind of important interpolation method for diffusion tensor image processing.

  20. Linear prediction data extrapolation superresolution radar imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Zhaoda; Ye, Zhenru; Wu, Xiaoqing

    1993-05-01

    Range resolution and cross-range resolution of range-doppler imaging radars are related to the effective bandwidth of transmitted signal and the angle through which the object rotates relatively to the radar line of sight (RLOS) during the coherent processing time, respectively. In this paper, linear prediction data extrapolation discrete Fourier transform (LPDEDFT) superresolution imaging method is investigated for the purpose of surpassing the limitation imposed by the conventional FFT range-doppler processing and improving the resolution capability of range-doppler imaging radar. The LPDEDFT superresolution imaging method, which is conceptually simple, consists of extrapolating observed data beyond the observation windows by means of linear prediction, and then performing the conventional IDFT of the extrapolated data. The live data of a metalized scale model B-52 aircraft mounted on a rotating platform in a microwave anechoic chamber and a flying Boeing-727 aircraft were processed. It is concluded that, compared to the conventional Fourier method, either higher resolution for the same effective bandwidth of transmitted signals and total rotation angle of the object or equal-quality images from smaller bandwidth and total angle may be obtained by LPDEDFT.

  1. A fractal concentration area method for assigning a color palette for image representation

    NASA Astrophysics Data System (ADS)

    Cheng, Qiuming; Li, Qingmou

    2002-05-01

    Displaying the remotely sensed image with a proper color palette is the first task in any kind of image processing and pattern recognition in GIS and image processing environments. The purpose of displaying the image should be not only to provide a visual representation of the variance of the image, although this has been the primary objective of most conventional methods, but also the color palette should reflect real-world features on the ground which must be the primary objective of employing remotely sensed data. Although most conventional methods focus only on the first purpose of image representation, the concentration-area ( C- A plot) fractal method proposed in this paper aims to meet both purposes on the basis of pixel values and pixel value frequency distribution as well as spatial and geometrical properties of image patterns. The C- A method can be used to establish power-law relationships between the area A(⩾ s) with the pixel values greater than s and the pixel value s itself after plotting these values on log-log paper. A number of straight-line segments can be manually or automatically fitted to the points on the log-log paper, each representing a power-law relationship between the area A and the cutoff pixel value for s in a particular range. These straight-line segments can yield a group of cutoff values on the basis of which the image can be classified into discrete classes or zones. These zones usually correspond to the real-world features on the ground. A Windows program has been prepared in ActiveX format for implementing the C- A method and integrating it into other GIS and image processing systems. A case study of Landsat TM band 5 has been used to demonstrate the application of the method and the flexibility of the computer program.

  2. Development of an inexpensive optical method for studies of dental erosion process in vitro

    NASA Astrophysics Data System (ADS)

    Nasution, A. M. T.; Noerjanto, B.; Triwanto, L.

    2008-09-01

    Teeth have important roles in digestion of food, supporting the facial-structure, as well as in articulation of speech. Abnormality in teeth structure can be initiated by an erosion process due to diet or beverages consumption that lead to destruction which affect their functionality. Research to study the erosion processes that lead to teeth's abnormality is important in order to be used as a care and prevention purpose. Accurate measurement methods would be necessary as a research tool, in order to be capable for quantifying dental destruction's degree. In this work an inexpensive optical method as tool to study dental erosion process is developed. It is based on extraction the parameters from the 3D dental visual information. The 3D visual image is obtained from reconstruction of multiple lateral projection of 2D images that captured from many angles. Using a simple motor stepper and a pocket digital camera, sequence of multi-projection 2D images of premolar tooth is obtained. This images are then reconstructed to produce a 3D image, which is useful for quantifying related dental erosion parameters. The quantification process is obtained from the shrinkage of dental volume as well as surface properties due to erosion process. Results of quantification is correlated to the ones of dissolved calcium atom which released from the tooth using atomic absorption spectrometry. This proposed method would be useful as visualization tool in many engineering, dentistry, and medical research. It would be useful also for the educational purposes.

  3. An automatic method for segmentation of fission tracks in epidote crystal photomicrographs

    NASA Astrophysics Data System (ADS)

    de Siqueira, Alexandre Fioravante; Nakasuga, Wagner Massayuki; Pagamisse, Aylton; Tello Saenz, Carlos Alberto; Job, Aldo Eloizo

    2014-08-01

    Manual identification of fission tracks has practical problems, such as variation due to observe-observation efficiency. An automatic processing method that could identify fission tracks in a photomicrograph could solve this problem and improve the speed of track counting. However, separation of nontrivial images is one of the most difficult tasks in image processing. Several commercial and free softwares are available, but these softwares are meant to be used in specific images. In this paper, an automatic method based on starlet wavelets is presented in order to separate fission tracks in mineral photomicrographs. Automatization is obtained by the Matthews correlation coefficient, and results are evaluated by precision, recall and accuracy. This technique is an improvement of a method aimed at segmentation of scanning electron microscopy images. This method is applied in photomicrographs of epidote phenocrystals, in which accuracy higher than 89% was obtained in fission track segmentation, even for difficult images. Algorithms corresponding to the proposed method are available for download. Using the method presented here, a user could easily determine fission tracks in photomicrographs of mineral samples.

  4. Demonstration of a forward iterative method to reconstruct brachytherapy seed configurations from x-ray projections

    NASA Astrophysics Data System (ADS)

    Murphy, Martin J.; Todor, Dorin A.

    2005-06-01

    By monitoring brachytherapy seed placement and determining the actual configuration of the seeds in vivo, one can optimize the treatment plan during the process of implantation. Two or more radiographic images from different viewpoints can in principle allow one to reconstruct the configuration of implanted seeds uniquely. However, the reconstruction problem is complicated by several factors: (1) the seeds can overlap and cluster in the images; (2) the images can have distortion that varies with viewpoint when a C-arm fluoroscope is used; (3) there can be uncertainty in the imaging viewpoints; (4) the angular separation of the imaging viewpoints can be small owing to physical space constraints; (5) there can be inconsistency in the number of seeds detected in the images; and (6) the patient can move while being imaged. We propose and conceptually demonstrate a novel reconstruction method that handles all of these complications and uncertainties in a unified process. The method represents the three-dimensional seed and camera configurations as parametrized models that are adjusted iteratively to conform to the observed radiographic images. The morphed model seed configuration that best reproduces the appearance of the seeds in the radiographs is the best estimate of the actual seed configuration. All of the information needed to establish both the seed configuration and the camera model is derived from the seed images without resort to external calibration fixtures. Furthermore, by comparing overall image content rather than individual seed coordinates, the process avoids the need to establish correspondence between seed identities in the several images. The method has been shown to work robustly in simulation tests that simultaneously allow for unknown individual seed positions, uncertainties in the imaging viewpoints and variable image distortion.

  5. [Application of Fourier transform profilometry in 3D-surface reconstruction].

    PubMed

    Shi, Bi'er; Lu, Kuan; Wang, Yingting; Li, Zhen'an; Bai, Jing

    2011-08-01

    With the improvement of system frame and reconstruction methods in fluorescent molecules tomography (FMT), the FMT technology has been widely used as an important experimental tool in biomedical research. It is necessary to get the 3D-surface profile of the experimental object as the boundary constraints of FMT reconstruction algorithms. We proposed a new 3D-surface reconstruction method based on Fourier transform profilometry (FTP) method under the blue-purple light condition. The slice images were reconstructed using proper image processing methods, frequency spectrum analysis and filtering. The results of experiment showed that the method properly reconstructed the 3D-surface of objects and has the mm-level accuracy. Compared to other methods, this one is simple and fast. Besides its well-reconstructed, the proposed method could help monitor the behavior of the object during the experiment to ensure the correspondence of the imaging process. Furthermore, the method chooses blue-purple light section as its light source to avoid the interference towards fluorescence imaging.

  6. 3CCD image segmentation and edge detection based on MATLAB

    NASA Astrophysics Data System (ADS)

    He, Yong; Pan, Jiazhi; Zhang, Yun

    2006-09-01

    This research aimed to identify weeds from crops in early stage in the field operation by using image-processing technology. As 3CCD images offer greater binary value difference between weed and crop section than ordinary digital images taken by common cameras. It has 3 channels (green, red, ifred) which takes a snap-photo of the same area, and the three images can be composed into one image, which facilitates the segmentation of different areas. By the application of image-processing toolkit on MATLAB, the different areas in the image can be segmented clearly. As edge detection technique is the first and very important step in image processing, The different result of different processing method was compared. Especially, by using the wavelet packet transform toolkit on MATLAB, An image was preprocessed and then the edge was extracted, and getting more clearly cut image of edge. The segmentation methods include operations as erosion, dilation and other algorithms to preprocess the images. It is of great importance to segment different areas in digital images in field real time, so as to be applied in precision farming, to saving energy and herbicide and many other materials. At present time Large scale software as MATLAB on PC was used, but the computation can be reduced and integrated into a small embed system, which means that the application of this technique in agricultural engineering is feasible and of great economical value.

  7. The effect of image processing on the detection of cancers in digital mammography.

    PubMed

    Warren, Lucy M; Given-Wilson, Rosalind M; Wallis, Matthew G; Cooke, Julie; Halling-Brown, Mark D; Mackenzie, Alistair; Chakraborty, Dev P; Bosmans, Hilde; Dance, David R; Young, Kenneth C

    2014-08-01

    OBJECTIVE. The objective of our study was to investigate the effect of image processing on the detection of cancers in digital mammography images. MATERIALS AND METHODS. Two hundred seventy pairs of breast images (both breasts, one view) were collected from eight systems using Hologic amorphous selenium detectors: 80 image pairs showed breasts containing subtle malignant masses; 30 image pairs, biopsy-proven benign lesions; 80 image pairs, simulated calcification clusters; and 80 image pairs, no cancer (normal). The 270 image pairs were processed with three types of image processing: standard (full enhancement), low contrast (intermediate enhancement), and pseudo-film-screen (no enhancement). Seven experienced observers inspected the images, locating and rating regions they suspected to be cancer for likelihood of malignancy. The results were analyzed using a jackknife-alternative free-response receiver operating characteristic (JAFROC) analysis. RESULTS. The detection of calcification clusters was significantly affected by the type of image processing: The JAFROC figure of merit (FOM) decreased from 0.65 with standard image processing to 0.63 with low-contrast image processing (p = 0.04) and from 0.65 with standard image processing to 0.61 with film-screen image processing (p = 0.0005). The detection of noncalcification cancers was not significantly different among the image-processing types investigated (p > 0.40). CONCLUSION. These results suggest that image processing has a significant impact on the detection of calcification clusters in digital mammography. For the three image-processing versions and the system investigated, standard image processing was optimal for the detection of calcification clusters. The effect on cancer detection should be considered when selecting the type of image processing in the future.

  8. Recovery of chemical Estimates by Field Inhomogeneity Neighborhood Error Detection (REFINED): Fat/Water Separation at 7T

    PubMed Central

    Narayan, Sreenath; Kalhan, Satish C.; Wilson, David L.

    2012-01-01

    I.Abstract Purpose To reduce swaps in fat-water separation methods, a particular issue on 7T small animal scanners due to field inhomogeneity, using image postprocessing innovations that detect and correct errors in the B0 field map. Materials and Methods Fat-water decompositions and B0 field maps were computed for images of mice acquired on a 7T Bruker BioSpec scanner, using a computationally efficient method for solving the Markov Random Field formulation of the multi-point Dixon model. The B0 field maps were processed with a novel hole-filling method, based on edge strength between regions, and a novel k-means method, based on field-map intensities, which were iteratively applied to automatically detect and reinitialize error regions in the B0 field maps. Errors were manually assessed in the B0 field maps and chemical parameter maps both before and after error correction. Results Partial swaps were found in 6% of images when processed with FLAWLESS. After REFINED correction, only 0.7% of images contained partial swaps, resulting in an 88% decrease in error rate. Complete swaps were not problematic. Conclusion Ex post facto error correction is a viable supplement to a priori techniques for producing globally smooth B0 field maps, without partial swaps. With our processing pipeline, it is possible to process image volumes rapidly, robustly, and almost automatically. PMID:23023815

  9. Automated processing for proton spectroscopic imaging using water reference deconvolution.

    PubMed

    Maudsley, A A; Wu, Z; Meyerhoff, D J; Weiner, M W

    1994-06-01

    Automated formation of MR spectroscopic images (MRSI) is necessary before routine application of these methods is possible for in vivo studies; however, this task is complicated by the presence of spatially dependent instrumental distortions and the complex nature of the MR spectrum. A data processing method is presented for completely automated formation of in vivo proton spectroscopic images, and applied for analysis of human brain metabolites. This procedure uses the water reference deconvolution method (G. A. Morris, J. Magn. Reson. 80, 547(1988)) to correct for line shape distortions caused by instrumental and sample characteristics, followed by parametric spectral analysis. Results for automated image formation were found to compare favorably with operator dependent spectral integration methods. While the water reference deconvolution processing was found to provide good correction of spatially dependent resonance frequency shifts, it was found to be susceptible to errors for correction of line shape distortions. These occur due to differences between the water reference and the metabolite distributions.

  10. Retrieval of land cover information under thin fog in Landsat TM image

    NASA Astrophysics Data System (ADS)

    Wei, Yuchun

    2008-04-01

    Thin fog, which often appears in remote sensing image of subtropical climate region, has resulted in the low image quantity and bad image mapping. Therefore, it is necessary to develop the image processing method to retrieve land cover information under thin fog. In this paper, the Landsat TM image near the Taihu Lake that is in the subtropical climate zone of China was used as an example, and the workflow and method used to retrieve the land cover information under thin fog have been built based on ENVI software and a single TM image. The basic step covers three parts: 1) isolating the thin fog area in image according to the spectral difference of different bands; 2) retrieving the visible band information of different land cover types under thin fog from the near-infrared bands according to the relationships between near-infrared bands and visible bands of different land cover types in the area without fog; 3) image post-process. The result showed that the method in the paper is easy and suitable, and can be used to improve the quantity of TM image mapping more effectively.

  11. In-line agglomeration degree estimation in fluidized bed pellet coating processes using visual imaging.

    PubMed

    Mehle, Andraž; Kitak, Domen; Podrekar, Gregor; Likar, Boštjan; Tomaževič, Dejan

    2018-05-09

    Agglomeration of pellets in fluidized bed coating processes is an undesirable phenomenon that affects the yield and quality of the product. In scope of PAT guidance, we present a system that utilizes visual imaging for in-line monitoring of the agglomeration degree. Seven pilot-scale Wurster coating processes were executed under various process conditions, providing a wide spectrum of process outcomes. Images of pellets were acquired during the coating processes in a contactless manner through an observation window of the coating apparatus. Efficient image analysis methods were developed for automatic recognition of discrete pellets and agglomerates in the acquired images. In-line obtained agglomeration degree trends revealed the agglomeration dynamics in distinct phases of the coating processes. We compared the in-line estimated agglomeration degree in the end point of each process to the results obtained by the off-line sieve analysis reference method. A strong positive correlation was obtained (coefficient of determination R 2 =0.99), confirming the feasibility of the approach. The in-line estimated agglomeration degree enables early detection of agglomeration and provides means for timely interventions to retain it in an acceptable range. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Enhancing hyperspectral spatial resolution using multispectral image fusion: A wavelet approach

    NASA Astrophysics Data System (ADS)

    Jazaeri, Amin

    High spectral and spatial resolution images have a significant impact in remote sensing applications. Because both spatial and spectral resolutions of spaceborne sensors are fixed by design and it is not possible to further increase the spatial or spectral resolution, techniques such as image fusion must be applied to achieve such goals. This dissertation introduces the concept of wavelet fusion between hyperspectral and multispectral sensors in order to enhance the spectral and spatial resolution of a hyperspectral image. To test the robustness of this concept, images from Hyperion (hyperspectral sensor) and Advanced Land Imager (multispectral sensor) were first co-registered and then fused using different wavelet algorithms. A regression-based fusion algorithm was also implemented for comparison purposes. The results show that the fused images using a combined bi-linear wavelet-regression algorithm have less error than other methods when compared to the ground truth. In addition, a combined regression-wavelet algorithm shows more immunity to misalignment of the pixels due to the lack of proper registration. The quantitative measures of average mean square error show that the performance of wavelet-based methods degrades when the spatial resolution of hyperspectral images becomes eight times less than its corresponding multispectral image. Regardless of what method of fusion is utilized, the main challenge in image fusion is image registration, which is also a very time intensive process. Because the combined regression wavelet technique is computationally expensive, a hybrid technique based on regression and wavelet methods was also implemented to decrease computational overhead. However, the gain in faster computation was offset by the introduction of more error in the outcome. The secondary objective of this dissertation is to examine the feasibility and sensor requirements for image fusion for future NASA missions in order to be able to perform onboard image fusion. In this process, the main challenge of image registration was resolved by registering the input images using transformation matrices of previously acquired data. The composite image resulted from the fusion process remarkably matched the ground truth, indicating the possibility of real time onboard fusion processing.

  13. High Throughput Multispectral Image Processing with Applications in Food Science.

    PubMed

    Tsakanikas, Panagiotis; Pavlidis, Dimitris; Nychas, George-John

    2015-01-01

    Recently, machine vision is gaining attention in food science as well as in food industry concerning food quality assessment and monitoring. Into the framework of implementation of Process Analytical Technology (PAT) in the food industry, image processing can be used not only in estimation and even prediction of food quality but also in detection of adulteration. Towards these applications on food science, we present here a novel methodology for automated image analysis of several kinds of food products e.g. meat, vanilla crème and table olives, so as to increase objectivity, data reproducibility, low cost information extraction and faster quality assessment, without human intervention. Image processing's outcome will be propagated to the downstream analysis. The developed multispectral image processing method is based on unsupervised machine learning approach (Gaussian Mixture Models) and a novel unsupervised scheme of spectral band selection for segmentation process optimization. Through the evaluation we prove its efficiency and robustness against the currently available semi-manual software, showing that the developed method is a high throughput approach appropriate for massive data extraction from food samples.

  14. Error Estimation Techniques to Refine Overlapping Aerial Image Mosaic Processes via Detected Parameters

    ERIC Educational Resources Information Center

    Bond, William Glenn

    2012-01-01

    In this paper, I propose to demonstrate a means of error estimation preprocessing in the assembly of overlapping aerial image mosaics. The mosaic program automatically assembles several hundred aerial images from a data set by aligning them, via image registration using a pattern search method, onto a GIS grid. The method presented first locates…

  15. A novel pre-processing technique for improving image quality in digital breast tomosynthesis.

    PubMed

    Kim, Hyeongseok; Lee, Taewon; Hong, Joonpyo; Sabir, Sohail; Lee, Jung-Ryun; Choi, Young Wook; Kim, Hak Hee; Chae, Eun Young; Cho, Seungryong

    2017-02-01

    Nonlinear pre-reconstruction processing of the projection data in computed tomography (CT) where accurate recovery of the CT numbers is important for diagnosis is usually discouraged, for such a processing would violate the physics of image formation in CT. However, one can devise a pre-processing step to enhance detectability of lesions in digital breast tomosynthesis (DBT) where accurate recovery of the CT numbers is fundamentally impossible due to the incompleteness of the scanned data. Since the detection of lesions such as micro-calcifications and mass in breasts is the purpose of using DBT, it is justified that a technique producing higher detectability of lesions is a virtue. A histogram modification technique was developed in the projection data domain. Histogram of raw projection data was first divided into two parts: One for the breast projection data and the other for background. Background pixel values were set to a single value that represents the boundary between breast and background. After that, both histogram parts were shifted by an appropriate amount of offset and the histogram-modified projection data were log-transformed. Filtered-backprojection (FBP) algorithm was used for image reconstruction of DBT. To evaluate performance of the proposed method, we computed the detectability index for the reconstructed images from clinically acquired data. Typical breast border enhancement artifacts were greatly suppressed and the detectability of calcifications and masses was increased by use of the proposed method. Compared to a global threshold-based post-reconstruction processing technique, the proposed method produced images of higher contrast without invoking additional image artifacts. In this work, we report a novel pre-processing technique that improves detectability of lesions in DBT and has potential advantages over the global threshold-based post-reconstruction processing technique. The proposed method not only increased the lesion detectability but also reduced typical image artifacts pronounced in conventional FBP-based DBT. © 2016 American Association of Physicists in Medicine.

  16. High quality image-pair-based deblurring method using edge mask and improved residual deconvolution

    NASA Astrophysics Data System (ADS)

    Cui, Guangmang; Zhao, Jufeng; Gao, Xiumin; Feng, Huajun; Chen, Yueting

    2017-04-01

    Image deconvolution problem is a challenging task in the field of image process. Using image pairs could be helpful to provide a better restored image compared with the deblurring method from a single blurred image. In this paper, a high quality image-pair-based deblurring method is presented using the improved RL algorithm and the gain-controlled residual deconvolution technique. The input image pair includes a non-blurred noisy image and a blurred image captured for the same scene. With the estimated blur kernel, an improved RL deblurring method based on edge mask is introduced to obtain the preliminary deblurring result with effective ringing suppression and detail preservation. Then the preliminary deblurring result is served as the basic latent image and the gain-controlled residual deconvolution is utilized to recover the residual image. A saliency weight map is computed as the gain map to further control the ringing effects around the edge areas in the residual deconvolution process. The final deblurring result is obtained by adding the preliminary deblurring result with the recovered residual image. An optical experimental vibration platform is set up to verify the applicability and performance of the proposed algorithm. Experimental results demonstrate that the proposed deblurring framework obtains a superior performance in both subjective and objective assessments and has a wide application in many image deblurring fields.

  17. Optimization method of superpixel analysis for multi-contrast Jones matrix tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Miyazawa, Arata; Hong, Young-Joo; Makita, Shuichi; Kasaragod, Deepa K.; Miura, Masahiro; Yasuno, Yoshiaki

    2017-02-01

    Local statistics are widely utilized for quantification and image processing of OCT. For example, local mean is used to reduce speckle, local variation of polarization state (degree-of-polarization-uniformity (DOPU)) is used to visualize melanin. Conventionally, these statistics are calculated in a rectangle kernel whose size is uniform over the image. However, the fixed size and shape of the kernel result in a tradeoff between image sharpness and statistical accuracy. Superpixel is a cluster of pixels which is generated by grouping image pixels based on the spatial proximity and similarity of signal values. Superpixels have variant size and flexible shapes which preserve the tissue structure. Here we demonstrate a new superpixel method which is tailored for multifunctional Jones matrix OCT (JM-OCT). This new method forms the superpixels by clustering image pixels in a 6-dimensional (6-D) feature space (spatial two dimensions and four dimensions of optical features). All image pixels were clustered based on their spatial proximity and optical feature similarity. The optical features are scattering, OCT-A, birefringence and DOPU. The method is applied to retinal OCT. Generated superpixels preserve the tissue structures such as retinal layers, sclera, vessels, and retinal pigment epithelium. Hence, superpixel can be utilized as a local statistics kernel which would be more suitable than a uniform rectangle kernel. Superpixelized image also can be used for further image processing and analysis. Since it reduces the number of pixels to be analyzed, it reduce the computational cost of such image processing.

  18. Image Corruption Detection in Diffusion Tensor Imaging for Post-Processing and Real-Time Monitoring

    PubMed Central

    Li, Yue; Shea, Steven M.; Lorenz, Christine H.; Jiang, Hangyi; Chou, Ming-Chung; Mori, Susumu

    2013-01-01

    Due to the high sensitivity of diffusion tensor imaging (DTI) to physiological motion, clinical DTI scans often suffer a significant amount of artifacts. Tensor-fitting-based, post-processing outlier rejection is often used to reduce the influence of motion artifacts. Although it is an effective approach, when there are multiple corrupted data, this method may no longer correctly identify and reject the corrupted data. In this paper, we introduce a new criterion called “corrected Inter-Slice Intensity Discontinuity” (cISID) to detect motion-induced artifacts. We compared the performance of algorithms using cISID and other existing methods with regard to artifact detection. The experimental results show that the integration of cISID into fitting-based methods significantly improves the retrospective detection performance at post-processing analysis. The performance of the cISID criterion, if used alone, was inferior to the fitting-based methods, but cISID could effectively identify severely corrupted images with a rapid calculation time. In the second part of this paper, an outlier rejection scheme was implemented on a scanner for real-time monitoring of image quality and reacquisition of the corrupted data. The real-time monitoring, based on cISID and followed by post-processing, fitting-based outlier rejection, could provide a robust environment for routine DTI studies. PMID:24204551

  19. A Mathematical Model for Storage and Recall of Images using Targeted Synchronization of Coupled Maps.

    PubMed

    Palaniyandi, P; Rangarajan, Govindan

    2017-08-21

    We propose a mathematical model for storage and recall of images using coupled maps. We start by theoretically investigating targeted synchronization in coupled map systems wherein only a desired (partial) subset of the maps is made to synchronize. A simple method is introduced to specify coupling coefficients such that targeted synchronization is ensured. The principle of this method is extended to storage/recall of images using coupled Rulkov maps. The process of adjusting coupling coefficients between Rulkov maps (often used to model neurons) for the purpose of storing a desired image mimics the process of adjusting synaptic strengths between neurons to store memories. Our method uses both synchronisation and synaptic weight modification, as the human brain is thought to do. The stored image can be recalled by providing an initial random pattern to the dynamical system. The storage and recall of the standard image of Lena is explicitly demonstrated.

  20. Semi-automation of Doppler Spectrum Image Analysis for Grading Aortic Valve Stenosis Severity.

    PubMed

    Niakšu, O; Balčiunaitė, G; Kizlaitis, R J; Treigys, P

    2016-01-01

    Doppler echocardiography analysis has become a golden standard in the modern diagnosis of heart diseases. In this paper, we propose a set of techniques for semi-automated parameter extraction for aortic valve stenosis severity grading. The main objectives of the study is to create echocardiography image processing techniques, which minimize manual image processing work of clinicians and leads to reduced human error rates. Aortic valve and left ventricle output tract spectrogram images have been processed and analyzed. A novel method was developed to trace systoles and to extract diagnostic relevant features. The results of the introduced method have been compared to the findings of the participating cardiologists. The experimental results showed the accuracy of the proposed method is comparable to the manual measurement performed by medical professionals. Linear regression analysis of the calculated parameters and the measurements manually obtained by the cardiologists resulted in the strongly correlated values: peak systolic velocity's and mean pressure gradient's R2 both equal to 0.99, their means' differences equal to 0.02 m/s and 4.09 mmHg, respectively, and aortic valve area's R2 of 0.89 with the two methods means' difference of 0.19 mm. The introduced Doppler echocardiography images processing method can be used as a computer-aided assistance in the aortic valve stenosis diagnostics. In our future work, we intend to improve precision of left ventricular outflow tract spectrogram measurements and apply data mining methods to propose a clinical decision support system for diagnosing aortic valve stenosis.

  1. Spatially adaptive migration tomography for multistatic GPR imaging

    DOEpatents

    Paglieroni, David W; Beer, N. Reginald

    2013-08-13

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  2. Synthetic aperture integration (SAI) algorithm for SAR imaging

    DOEpatents

    Chambers, David H; Mast, Jeffrey E; Paglieroni, David W; Beer, N. Reginald

    2013-07-09

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  3. Zero source insertion technique to account for undersampling in GPR imaging

    DOEpatents

    Chambers, David H; Mast, Jeffrey E; Paglieroni, David W

    2014-02-25

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  4. Real-time system for imaging and object detection with a multistatic GPR array

    DOEpatents

    Paglieroni, David W; Beer, N Reginald; Bond, Steven W; Top, Philip L; Chambers, David H; Mast, Jeffrey E; Donetti, John G; Mason, Blake C; Jones, Steven M

    2014-10-07

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  5. Image re-sampling detection through a novel interpolation kernel.

    PubMed

    Hilal, Alaa

    2018-06-01

    Image re-sampling involved in re-size and rotation transformations is an essential element block in a typical digital image alteration. Fortunately, traces left from such processes are detectable, proving that the image has gone a re-sampling transformation. Within this context, we present in this paper two original contributions. First, we propose a new re-sampling interpolation kernel. It depends on five independent parameters that controls its amplitude, angular frequency, standard deviation, and duration. Then, we demonstrate its capacity to imitate the same behavior of the most frequent interpolation kernels used in digital image re-sampling applications. Secondly, the proposed model is used to characterize and detect the correlation coefficients involved in re-sampling transformations. The involved process includes a minimization of an error function using the gradient method. The proposed method is assessed over a large database of 11,000 re-sampled images. Additionally, it is implemented within an algorithm in order to assess images that had undergone complex transformations. Obtained results demonstrate better performance and reduced processing time when compared to a reference method validating the suitability of the proposed approaches. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Image Mosaic Method Based on SIFT Features of Line Segment

    PubMed Central

    Zhu, Jun; Ren, Mingwu

    2014-01-01

    This paper proposes a novel image mosaic method based on SIFT (Scale Invariant Feature Transform) feature of line segment, aiming to resolve incident scaling, rotation, changes in lighting condition, and so on between two images in the panoramic image mosaic process. This method firstly uses Harris corner detection operator to detect key points. Secondly, it constructs directed line segments, describes them with SIFT feature, and matches those directed segments to acquire rough point matching. Finally, Ransac method is used to eliminate wrong pairs in order to accomplish image mosaic. The results from experiment based on four pairs of images show that our method has strong robustness for resolution, lighting, rotation, and scaling. PMID:24511326

  7. Saliency-aware food image segmentation for personal dietary assessment using a wearable computer

    USDA-ARS?s Scientific Manuscript database

    Image-based dietary assessment has recently received much attention in the community of obesity research. In this assessment, foods in digital pictures are specified, and their portion sizes (volumes) are estimated. Although manual processing is currently the most utilized method, image processing h...

  8. Latent Image Processing Can Bolster the Value of Quizzes.

    ERIC Educational Resources Information Center

    Singer, David

    1985-01-01

    Latent image processing is a method which reveals hidden ink when marked with a special pen. Using multiple-choice items with commercially available latent image transfers can provide immediate feedback on take-home quizzes. Students benefitted from formative evaluation and were challenged to search for alternative solutions and explain unexpected…

  9. Active learning methods for interactive image retrieval.

    PubMed

    Gosselin, Philippe Henri; Cord, Matthieu

    2008-07-01

    Active learning methods have been considered with increased interest in the statistical learning community. Initially developed within a classification framework, a lot of extensions are now being proposed to handle multimedia applications. This paper provides algorithms within a statistical framework to extend active learning for online content-based image retrieval (CBIR). The classification framework is presented with experiments to compare several powerful classification techniques in this information retrieval context. Focusing on interactive methods, active learning strategy is then described. The limitations of this approach for CBIR are emphasized before presenting our new active selection process RETIN. First, as any active method is sensitive to the boundary estimation between classes, the RETIN strategy carries out a boundary correction to make the retrieval process more robust. Second, the criterion of generalization error to optimize the active learning selection is modified to better represent the CBIR objective of database ranking. Third, a batch processing of images is proposed. Our strategy leads to a fast and efficient active learning scheme to retrieve sets of online images (query concept). Experiments on large databases show that the RETIN method performs well in comparison to several other active strategies.

  10. Visualizing tissue molecular structure of a black type of canola (Brassica) seed with a thick seed coat after heat-related processing in a chemical way.

    PubMed

    Yu, Peiqiang

    2013-02-20

    Heat-related processing of cereal grains, legume seeds, and oil seeds could be used to improve nutrient availability in ruminants. However, different types of processing may have a different impact on intrinsic structure of tissues. To date, there is little research on structure changes after processing within intact tissues. The synchrotron-based molecular imaging technique enables us to detect inherent structure change on a molecular level. The objective of this study was to visualize tissue of black-type canola (Brassica) seed with a thick seed coat after heat-related processing in a chemical way using the synchrotron imaging technique. The results showed that the chemical images of protein amides were obtained through the imaging technique for the raw, wet, and dry heated black type of canola seed tissues. It seems that different types of processing have a different impact on the protein spectral profile in the black type of canola tissues. Wet heating had a greater impact on the protein α-helix to β-sheet ratio than dry heating. Both dry and wet heating resulted in different patterns in amide I, the second derivative, and FSD spectra. However, the exact differences in the tissue images are relatively difficult to be obtained through visual comparison. Future studies should focus on (1) comparing the response and sensitivity of canola seeds to various processing methods between the yellow-type and black-type of canola seeds; (2) developing a sensitive method to compare the image difference between tissues and between treatments; (3) developing a method to link images to nutrient digestion, and (4) revealing how structure changes affect nutrient absorption in humans and animals.

  11. Automatic image enhancement based on multi-scale image decomposition

    NASA Astrophysics Data System (ADS)

    Feng, Lu; Wu, Zhuangzhi; Pei, Luo; Long, Xiong

    2014-01-01

    In image processing and computational photography, automatic image enhancement is one of the long-range objectives. Recently the automatic image enhancement methods not only take account of the globe semantics, like correct color hue and brightness imbalances, but also the local content of the image, such as human face and sky of landscape. In this paper we describe a new scheme for automatic image enhancement that considers both global semantics and local content of image. Our automatic image enhancement method employs the multi-scale edge-aware image decomposition approach to detect the underexposure regions and enhance the detail of the salient content. The experiment results demonstrate the effectiveness of our approach compared to existing automatic enhancement methods.

  12. DSP+FPGA-based real-time histogram equalization system of infrared image

    NASA Astrophysics Data System (ADS)

    Gu, Dongsheng; Yang, Nansheng; Pi, Defu; Hua, Min; Shen, Xiaoyan; Zhang, Ruolan

    2001-10-01

    Histogram Modification is a simple but effective method to enhance an infrared image. There are several methods to equalize an infrared image's histogram due to the different characteristics of the different infrared images, such as the traditional HE (Histogram Equalization) method, and the improved HP (Histogram Projection) and PE (Plateau Equalization) method and so on. If to realize these methods in a single system, the system must have a mass of memory and extremely fast speed. In our system, we introduce a DSP + FPGA based real-time procession technology to do these things together. FPGA is used to realize the common part of these methods while DSP is to do the different part. The choice of methods and the parameter can be input by a keyboard or a computer. By this means, the function of the system is powerful while it is easy to operate and maintain. In this article, we give out the diagram of the system and the soft flow chart of the methods. And at the end of it, we give out the infrared image and its histogram before and after the process of HE method.

  13. Fruit fly optimization based least square support vector regression for blind image restoration

    NASA Astrophysics Data System (ADS)

    Zhang, Jiao; Wang, Rui; Li, Junshan; Yang, Yawei

    2014-11-01

    The goal of image restoration is to reconstruct the original scene from a degraded observation. It is a critical and challenging task in image processing. Classical restorations require explicit knowledge of the point spread function and a description of the noise as priors. However, it is not practical for many real image processing. The recovery processing needs to be a blind image restoration scenario. Since blind deconvolution is an ill-posed problem, many blind restoration methods need to make additional assumptions to construct restrictions. Due to the differences of PSF and noise energy, blurring images can be quite different. It is difficult to achieve a good balance between proper assumption and high restoration quality in blind deconvolution. Recently, machine learning techniques have been applied to blind image restoration. The least square support vector regression (LSSVR) has been proven to offer strong potential in estimating and forecasting issues. Therefore, this paper proposes a LSSVR-based image restoration method. However, selecting the optimal parameters for support vector machine is essential to the training result. As a novel meta-heuristic algorithm, the fruit fly optimization algorithm (FOA) can be used to handle optimization problems, and has the advantages of fast convergence to the global optimal solution. In the proposed method, the training samples are created from a neighborhood in the degraded image to the central pixel in the original image. The mapping between the degraded image and the original image is learned by training LSSVR. The two parameters of LSSVR are optimized though FOA. The fitness function of FOA is calculated by the restoration error function. With the acquired mapping, the degraded image can be recovered. Experimental results show the proposed method can obtain satisfactory restoration effect. Compared with BP neural network regression, SVR method and Lucy-Richardson algorithm, it speeds up the restoration rate and performs better. Both objective and subjective restoration performances are studied in the comparison experiments.

  14. Spatiotemporal Pixelization to Increase the Recognition Score of Characters for Retinal Prostheses

    PubMed Central

    Kim, Hyun Seok; Park, Kwang Suk

    2017-01-01

    Most of the retinal prostheses use a head-fixed camera and a video processing unit. Some studies proposed various image processing methods to improve visual perception for patients. However, previous studies only focused on using spatial information. The present study proposes a spatiotemporal pixelization method mimicking fixational eye movements to generate stimulation images for artificial retina arrays by combining spatial and temporal information. Input images were sampled with a resolution that was four times higher than the number of pixel arrays. We subsampled this image and generated four different phosphene images. We then evaluated the recognition scores of characters by sequentially presenting phosphene images with varying pixel array sizes (6 × 6, 8 × 8 and 10 × 10) and stimulus frame rates (10 Hz, 15 Hz, 20 Hz, 30 Hz, and 60 Hz). The proposed method showed the highest recognition score at a stimulus frame rate of approximately 20 Hz. The method also significantly improved the recognition score for complex characters. This method provides a new way to increase practical resolution over restricted spatial resolution by merging the higher resolution image into high-frame time slots. PMID:29073735

  15. Fault detection and isolation in the challenging Tennessee Eastman process by using image processing techniques.

    PubMed

    Hajihosseini, Payman; Anzehaee, Mohammad Mousavi; Behnam, Behzad

    2018-05-22

    The early fault detection and isolation in industrial systems is a critical factor in preventing equipment damage. In the proposed method, instead of using the time signals of sensors, the 2D image obtained by placing these signals next to each other in a matrix has been used; and then a novel fault detection and isolation procedure has been carried out based on image processing techniques. Different features including texture, wavelet transform, mean and standard deviation of the image accompanied with MLP and RBF neural networks based classifiers have been used for this purpose. Obtained results indicate the notable efficacy and success of the proposed method in detecting and isolating faults of the Tennessee Eastman benchmark process and its superiority over previous techniques. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  16. [Three-dimensional reconstruction of functional brain images].

    PubMed

    Inoue, M; Shoji, K; Kojima, H; Hirano, S; Naito, Y; Honjo, I

    1999-08-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: 1) routine images by SPM, 2) three-dimensional static images, and 3) three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface model is the most common method of three-dimensional display. However, the volume rendering method may be more effective for imaging regions such as the brain.

  17. A Focusing Method in the Calibration Process of Image Sensors Based on IOFBs

    PubMed Central

    Fernández, Pedro R.; Lázaro, José L.; Gardel, Alfredo; Cano, Ángel E.; Bravo, Ignacio

    2010-01-01

    A focusing procedure in the calibration process of image sensors based on Incoherent Optical Fiber Bundles (IOFBs) is described using the information extracted from fibers. These procedures differ from any other currently known focusing method due to the non spatial in-out correspondence between fibers, which produces a natural codification of the image to transmit. Focus measuring is essential prior to carrying out calibration in order to guarantee accurate processing and decoding. Four algorithms have been developed to estimate the focus measure; two methods based on mean grey level, and the other two based on variance. In this paper, a few simple focus measures are defined and compared. Some experimental results referred to the focus measure and the accuracy of the developed methods are discussed in order to demonstrate its effectiveness. PMID:22315526

  18. Terahertz reflection imaging using Kirchhoff migration.

    PubMed

    Dorney, T D; Johnson, J L; Van Rudd, J; Baraniuk, R G; Symes, W W; Mittleman, D M

    2001-10-01

    We describe a new imaging method that uses single-cycle pulses of terahertz (THz) radiation. This technique emulates data-collection and image-processing procedures developed for geophysical prospecting and is made possible by the availability of fiber-coupled THz receiver antennas. We use a simple migration procedure to solve the inverse problem; this permits us to reconstruct the location and shape of targets. These results demonstrate the feasibility of the THz system as a test-bed for the exploration of new seismic processing methods involving complex model systems.

  19. An approach of point cloud denoising based on improved bilateral filtering

    NASA Astrophysics Data System (ADS)

    Zheng, Zeling; Jia, Songmin; Zhang, Guoliang; Li, Xiuzhi; Zhang, Xiangyin

    2018-04-01

    An omnidirectional mobile platform is designed for building point cloud based on an improved filtering algorithm which is employed to handle the depth image. First, the mobile platform can move flexibly and the control interface is convenient to control. Then, because the traditional bilateral filtering algorithm is time-consuming and inefficient, a novel method is proposed which called local bilateral filtering (LBF). LBF is applied to process depth image obtained by the Kinect sensor. The results show that the effect of removing noise is improved comparing with the bilateral filtering. In the condition of off-line, the color images and processed images are used to build point clouds. Finally, experimental results demonstrate that our method improves the speed of processing time of depth image and the effect of point cloud which has been built.

  20. Single-random-phase holographic encryption of images

    NASA Astrophysics Data System (ADS)

    Tsang, P. W. M.

    2017-02-01

    In this paper, a method is proposed for encrypting an optical image onto a phase-only hologram, utilizing a single random phase mask as the private encryption key. The encryption process can be divided into 3 stages. First the source image to be encrypted is scaled in size, and pasted onto an arbitrary position in a larger global image. The remaining areas of the global image that are not occupied by the source image could be filled with randomly generated contents. As such, the global image as a whole is very different from the source image, but at the same time the visual quality of the source image is preserved. Second, a digital Fresnel hologram is generated from the new image, and converted into a phase-only hologram based on bi-directional error diffusion. In the final stage, a fixed random phase mask is added to the phase-only hologram as the private encryption key. In the decryption process, the global image together with the source image it contained, can be reconstructed from the phase-only hologram if it is overlaid with the correct decryption key. The proposed method is highly resistant to different forms of Plain-Text-Attacks, which are commonly used to deduce the encryption key in existing holographic encryption process. In addition, both the encryption and the decryption processes are simple and easy to implement.

  1. The Pedestrian Detection Method Using an Extension Background Subtraction about the Driving Safety Support Systems

    NASA Astrophysics Data System (ADS)

    Muranaka, Noriaki; Date, Kei; Tokumaru, Masataka; Imanishi, Shigeru

    In recent years, the traffic accident occurs frequently with explosion of traffic density. Therefore, we think that the safe and comfortable transportation system to defend the pedestrian who is the traffic weak is necessary. First, we detect and recognize the pedestrian (the crossing person) by the image processing. Next, we inform all the drivers of the right or left turn that the pedestrian exists by the sound and the image and so on. By prompting a driver to do safe driving in this way, the accident to the pedestrian can decrease. In this paper, we are using a background subtraction method for the movement detection of the movement object. In the background subtraction method, the update method in the background was important, and as for the conventional way, the threshold values of the subtraction processing and background update were identical. That is, the mixing rate of the input image and the background image of the background update was a fixation value, and the fine tuning which corresponded to the environment change of the weather was difficult. Therefore, we propose the update method of the background image that the estimated mistake is difficult to be amplified. We experiment and examines in the comparison about five cases of sunshine, cloudy, evening, rain, sunlight change, except night. This technique can set separately the threshold values of the subtraction processing and background update processing which suited the environmental condition of the weather and so on. Therefore, the fine tuning becomes possible freely in the mixing rate of the input image and the background image of the background update. Because the setting of the parameter which suited an environmental condition becomes important to minimize mistaking percentage, we examine about the setting of a parameter.

  2. A new method for fusion, denoising and enhancement of x-ray images retrieved from Talbot-Lau grating interferometry.

    PubMed

    Scholkmann, Felix; Revol, Vincent; Kaufmann, Rolf; Baronowski, Heidrun; Kottler, Christian

    2014-03-21

    This paper introduces a new image denoising, fusion and enhancement framework for combining and optimal visualization of x-ray attenuation contrast (AC), differential phase contrast (DPC) and dark-field contrast (DFC) images retrieved from x-ray Talbot-Lau grating interferometry. The new image fusion framework comprises three steps: (i) denoising each input image (AC, DPC and DFC) through adaptive Wiener filtering, (ii) performing a two-step image fusion process based on the shift-invariant wavelet transform, i.e. first fusing the AC with the DPC image and then fusing the resulting image with the DFC image, and finally (iii) enhancing the fused image to obtain a final image using adaptive histogram equalization, adaptive sharpening and contrast optimization. Application examples are presented for two biological objects (a human tooth and a cherry) and the proposed method is compared to two recently published AC/DPC/DFC image processing techniques. In conclusion, the new framework for the processing of AC, DPC and DFC allows the most relevant features of all three images to be combined in one image while reducing the noise and enhancing adaptively the relevant image features. The newly developed framework may be used in technical and medical applications.

  3. Gaussian Process Interpolation for Uncertainty Estimation in Image Registration

    PubMed Central

    Wachinger, Christian; Golland, Polina; Reuter, Martin; Wells, William

    2014-01-01

    Intensity-based image registration requires resampling images on a common grid to evaluate the similarity function. The uncertainty of interpolation varies across the image, depending on the location of resampled points relative to the base grid. We propose to perform Bayesian inference with Gaussian processes, where the covariance matrix of the Gaussian process posterior distribution estimates the uncertainty in interpolation. The Gaussian process replaces a single image with a distribution over images that we integrate into a generative model for registration. Marginalization over resampled images leads to a new similarity measure that includes the uncertainty of the interpolation. We demonstrate that our approach increases the registration accuracy and propose an efficient approximation scheme that enables seamless integration with existing registration methods. PMID:25333127

  4. Automated imaging system for single molecules

    DOEpatents

    Schwartz, David Charles; Runnheim, Rodney; Forrest, Daniel

    2012-09-18

    There is provided a high throughput automated single molecule image collection and processing system that requires minimal initial user input. The unique features embodied in the present disclosure allow automated collection and initial processing of optical images of single molecules and their assemblies. Correct focus may be automatically maintained while images are collected. Uneven illumination in fluorescence microscopy is accounted for, and an overall robust imaging operation is provided yielding individual images prepared for further processing in external systems. Embodiments described herein are useful in studies of any macromolecules such as DNA, RNA, peptides and proteins. The automated image collection and processing system and method of same may be implemented and deployed over a computer network, and may be ergonomically optimized to facilitate user interaction.

  5. Contour Detection and Completion for Inpainting and Segmentation Based on Topological Gradient and Fast Marching Algorithms

    PubMed Central

    Auroux, Didier; Cohen, Laurent D.; Masmoudi, Mohamed

    2011-01-01

    We combine in this paper the topological gradient, which is a powerful method for edge detection in image processing, and a variant of the minimal path method in order to find connected contours. The topological gradient provides a more global analysis of the image than the standard gradient and identifies the main edges of an image. Several image processing problems (e.g., inpainting and segmentation) require continuous contours. For this purpose, we consider the fast marching algorithm in order to find minimal paths in the topological gradient image. This coupled algorithm quickly provides accurate and connected contours. We present then two numerical applications, to image inpainting and segmentation, of this hybrid algorithm. PMID:22194734

  6. A Novel Method for Block Size Forensics Based on Morphological Operations

    NASA Astrophysics Data System (ADS)

    Luo, Weiqi; Huang, Jiwu; Qiu, Guoping

    Passive forensics analysis aims to find out how multimedia data is acquired and processed without relying on pre-embedded or pre-registered information. Since most existing compression schemes for digital images are based on block processing, one of the fundamental steps for subsequent forensics analysis is to detect the presence of block artifacts and estimate the block size for a given image. In this paper, we propose a novel method for blind block size estimation. A 2×2 cross-differential filter is first applied to detect all possible block artifact boundaries, morphological operations are then used to remove the boundary effects caused by the edges of the actual image contents, and finally maximum-likelihood estimation (MLE) is employed to estimate the block size. The experimental results evaluated on over 1300 nature images show the effectiveness of our proposed method. Compared with existing gradient-based detection method, our method achieves over 39% accuracy improvement on average.

  7. Community detection for fluorescent lifetime microscopy image segmentation

    NASA Astrophysics Data System (ADS)

    Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Achilefu, Samuel; Nussinov, Zohar

    2014-03-01

    Multiresolution community detection (CD) method has been suggested in a recent work as an efficient method for performing unsupervised segmentation of fluorescence lifetime (FLT) images of live cell images containing fluorescent molecular probes.1 In the current paper, we further explore this method in FLT images of ex vivo tissue slices. The image processing problem is framed as identifying clusters with respective average FLTs against a background or "solvent" in FLT imaging microscopy (FLIM) images derived using NIR fluorescent dyes. We have identified significant multiresolution structures using replica correlations in these images, where such correlations are manifested by information theoretic overlaps of the independent solutions ("replicas") attained using the multiresolution CD method from different starting points. In this paper, our method is found to be more efficient than a current state-of-the-art image segmentation method based on mixture of Gaussian distributions. It offers more than 1:25 times diversity based on Shannon index than the latter method, in selecting clusters with distinct average FLTs in NIR FLIM images.

  8. Noise Estimation and Quality Assessment of Gaussian Noise Corrupted Images

    NASA Astrophysics Data System (ADS)

    Kamble, V. M.; Bhurchandi, K.

    2018-03-01

    Evaluating the exact quantity of noise present in an image and quality of an image in the absence of reference image is a challenging task. We propose a near perfect noise estimation method and a no reference image quality assessment method for images corrupted by Gaussian noise. The proposed methods obtain initial estimate of noise standard deviation present in an image using the median of wavelet transform coefficients and then obtains a near to exact estimate using curve fitting. The proposed noise estimation method provides the estimate of noise within average error of +/-4%. For quality assessment, this noise estimate is mapped to fit the Differential Mean Opinion Score (DMOS) using a nonlinear function. The proposed methods require minimum training and yields the noise estimate and image quality score. Images from Laboratory for image and Video Processing (LIVE) database and Computational Perception and Image Quality (CSIQ) database are used for validation of the proposed quality assessment method. Experimental results show that the performance of proposed quality assessment method is at par with the existing no reference image quality assessment metric for Gaussian noise corrupted images.

  9. Evaluation of security algorithms used for security processing on DICOM images

    NASA Astrophysics Data System (ADS)

    Chen, Xiaomeng; Shuai, Jie; Zhang, Jianguo; Huang, H. K.

    2005-04-01

    In this paper, we developed security approach to provide security measures and features in PACS image acquisition and Tele-radiology image transmission. The security processing on medical images was based on public key infrastructure (PKI) and including digital signature and data encryption to achieve the security features of confidentiality, privacy, authenticity, integrity, and non-repudiation. There are many algorithms which can be used in PKI for data encryption and digital signature. In this research, we select several algorithms to perform security processing on different DICOM images in PACS environment, evaluate the security processing performance of these algorithms, and find the relationship between performance with image types, sizes and the implementation methods.

  10. Quantum image pseudocolor coding based on the density-stratified method

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Wu, Wenya; Wang, Luo; Zhao, Na

    2015-05-01

    Pseudocolor processing is a branch of image enhancement. It dyes grayscale images to color images to make the images more beautiful or to highlight some parts on the images. This paper proposes a quantum image pseudocolor coding scheme based on the density-stratified method which defines a colormap and changes the density value from gray to color parallel according to the colormap. Firstly, two data structures: quantum image GQIR and quantum colormap QCR are reviewed or proposed. Then, the quantum density-stratified algorithm is presented. Based on them, the quantum realization in the form of circuits is given. The main advantages of the quantum version for pseudocolor processing over the classical approach are that it needs less memory and can speed up the computation. Two kinds of examples help us to describe the scheme further. Finally, the future work are analyzed.

  11. Geometric correction of synchronous scanned Operational Modular Imaging Spectrometer II hyperspectral remote sensing images using spatial positioning data of an inertial navigation system

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaohu; Neubauer, Franz; Zhao, Dong; Xu, Shichao

    2015-01-01

    The high-precision geometric correction of airborne hyperspectral remote sensing image processing was a hard nut to crack, and conventional methods of remote sensing image processing by selecting ground control points to correct the images are not suitable in the correction process of airborne hyperspectral image. The optical scanning system of an inertial measurement unit combined with differential global positioning system (IMU/DGPS) is introduced to correct the synchronous scanned Operational Modular Imaging Spectrometer II (OMIS II) hyperspectral remote sensing images. Posture parameters, which were synchronized with the OMIS II, were first obtained from the IMU/DGPS. Second, coordinate conversion and flight attitude parameters' calculations were conducted. Third, according to the imaging principle of OMIS II, mathematical correction was applied and the corrected image pixels were resampled. Then, better image processing results were achieved.

  12. Localization of the transverse processes in ultrasound for spinal curvature measurement

    NASA Astrophysics Data System (ADS)

    Kamali, Shahrokh; Ungi, Tamas; Lasso, Andras; Yan, Christina; Lougheed, Matthew; Fichtinger, Gabor

    2017-03-01

    PURPOSE: In scoliosis monitoring, tracked ultrasound has been explored as a safer imaging alternative to traditional radiography. The use of ultrasound in spinal curvature measurement requires identification of vertebral landmarks such as transverse processes, but as bones have reduced visibility in ultrasound imaging, skeletal landmarks are typically segmented manually, which is an exceedingly laborious and long process. We propose an automatic algorithm to segment and localize the surface of bony areas in the transverse process for scoliosis in ultrasound. METHODS: The algorithm uses cascade of filters to remove low intensity pixels, smooth the image and detect bony edges. By applying first differentiation, candidate bony areas are classified. The average intensity under each area has a correlation with the possibility of a shadow, and areas with strong shadow are kept for bone segmentation. The segmented images are used to reconstruct a 3-D volume to represent the whole spinal structure around the transverse processes. RESULTS: A comparison between the manual ground truth segmentation and the automatic algorithm in 50 images showed 0.17 mm average difference. The time to process all 1,938 images was about 37 Sec. (0.0191 Sec. / Image), including reading the original sequence file. CONCLUSION: Initial experiments showed the algorithm to be sufficiently accurate and fast for segmentation transverse processes in ultrasound for spinal curvature measurement. An extensive evaluation of the method is currently underway on images from a larger patient cohort and using multiple observers in producing ground truth segmentation.

  13. A new template matching method based on contour information

    NASA Astrophysics Data System (ADS)

    Cai, Huiying; Zhu, Feng; Wu, Qingxiao; Li, Sicong

    2014-11-01

    Template matching is a significant approach in machine vision due to its effectiveness and robustness. However, most of the template matching methods are so time consuming that they can't be used to many real time applications. The closed contour matching method is a popular kind of template matching methods. This paper presents a new closed contour template matching method which is suitable for two dimensional objects. Coarse-to-fine searching strategy is used to improve the matching efficiency and a partial computation elimination scheme is proposed to further speed up the searching process. The method consists of offline model construction and online matching. In the process of model construction, triples and distance image are obtained from the template image. A certain number of triples which are composed by three points are created from the contour information that is extracted from the template image. The rule to select the three points is that the template contour is divided equally into three parts by these points. The distance image is obtained here by distance transform. Each point on the distance image represents the nearest distance between current point and the points on the template contour. During the process of matching, triples of the searching image are created with the same rule as the triples of the model. Through the similarity that is invariant to rotation, translation and scaling between triangles, the triples corresponding to the triples of the model are found. Then we can obtain the initial RST (rotation, translation and scaling) parameters mapping the searching contour to the template contour. In order to speed up the searching process, the points on the searching contour are sampled to reduce the number of the triples. To verify the RST parameters, the searching contour is projected into the distance image, and the mean distance can be computed rapidly by simple operations of addition and multiplication. In the fine searching process, the initial RST parameters are discrete to obtain the final accurate pose of the object. Experimental results show that the proposed method is reasonable and efficient, and can be used in many real time applications.

  14. Switching non-local vector median filter

    NASA Astrophysics Data System (ADS)

    Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji

    2016-04-01

    This paper describes a novel image filtering method that removes random-valued impulse noise superimposed on a natural color image. In impulse noise removal, it is essential to employ a switching-type filtering method, as used in the well-known switching median filter, to preserve the detail of an original image with good quality. In color image filtering, it is generally preferable to deal with the red (R), green (G), and blue (B) components of each pixel of a color image as elements of a vectorized signal, as in the well-known vector median filter, rather than as component-wise signals to prevent a color shift after filtering. By taking these fundamentals into consideration, we propose a switching-type vector median filter with non-local processing that mainly consists of a noise detector and a noise removal filter. Concretely, we propose a noise detector that proactively detects noise-corrupted pixels by focusing attention on the isolation tendencies of pixels of interest not in an input image but in difference images between RGB components. Furthermore, as the noise removal filter, we propose an extended version of the non-local median filter, we proposed previously for grayscale image processing, named the non-local vector median filter, which is designed for color image processing. The proposed method realizes a superior balance between the preservation of detail and impulse noise removal by proactive noise detection and non-local switching vector median filtering, respectively. The effectiveness and validity of the proposed method are verified in a series of experiments using natural color images.

  15. A cost-effective line-based light-balancing technique using adaptive processing.

    PubMed

    Hsia, Shih-Chang; Chen, Ming-Huei; Chen, Yu-Min

    2006-09-01

    The camera imaging system has been widely used; however, the displaying image appears to have an unequal light distribution. This paper presents novel light-balancing techniques to compensate uneven illumination based on adaptive signal processing. For text image processing, first, we estimate the background level and then process each pixel with nonuniform gain. This algorithm can balance the light distribution while keeping a high contrast in the image. For graph image processing, the adaptive section control using piecewise nonlinear gain is proposed to equalize the histogram. Simulations show that the performance of light balance is better than the other methods. Moreover, we employ line-based processing to efficiently reduce the memory requirement and the computational cost to make it applicable in real-time systems.

  16. Wave field restoration using three-dimensional Fourier filtering method.

    PubMed

    Kawasaki, T; Takai, Y; Ikuta, T; Shimizu, R

    2001-11-01

    A wave field restoration method in transmission electron microscopy (TEM) was mathematically derived based on a three-dimensional (3D) image formation theory. Wave field restoration using this method together with spherical aberration correction was experimentally confirmed in through-focus images of amorphous tungsten thin film, and the resolution of the reconstructed phase image was successfully improved from the Scherzer resolution limit to the information limit. In an application of this method to a crystalline sample, the surface structure of Au(110) was observed in a profile-imaging mode. The processed phase image showed quantitatively the atomic relaxation of the topmost layer.

  17. Quality Improvement of Liver Ultrasound Images Using Fuzzy Techniques

    PubMed Central

    Bayani, Azadeh; Langarizadeh, Mostafa; Radmard, Amir Reza; Nejad, Ahmadreza Farzaneh

    2016-01-01

    Background: Liver ultrasound images are so common and are applied so often to diagnose diffuse liver diseases like fatty liver. However, the low quality of such images makes it difficult to analyze them and diagnose diseases. The purpose of this study, therefore, is to improve the contrast and quality of liver ultrasound images. Methods: In this study, a number of image contrast enhancement algorithms which are based on fuzzy logic were applied to liver ultrasound images - in which the view of kidney is observable - using Matlab2013b to improve the image contrast and quality which has a fuzzy definition; just like image contrast improvement algorithms using a fuzzy intensification operator, contrast improvement algorithms applying fuzzy image histogram hyperbolization, and contrast improvement algorithms by fuzzy IF-THEN rules. Results: With the measurement of Mean Squared Error and Peak Signal to Noise Ratio obtained from different images, fuzzy methods provided better results, and their implementation - compared with histogram equalization method - led both to the improvement of contrast and visual quality of images and to the improvement of liver segmentation algorithms results in images. Conclusion: Comparison of the four algorithms revealed the power of fuzzy logic in improving image contrast compared with traditional image processing algorithms. Moreover, contrast improvement algorithm based on a fuzzy intensification operator was selected as the strongest algorithm considering the measured indicators. This method can also be used in future studies on other ultrasound images for quality improvement and other image processing and analysis applications. PMID:28077898

  18. Fan beam image reconstruction with generalized Fourier slice theorem.

    PubMed

    Zhao, Shuangren; Yang, Kang; Yang, Kevin

    2014-01-01

    For parallel beam geometry the Fourier reconstruction works via the Fourier slice theorem (or central slice theorem, projection slice theorem). For fan beam situation, Fourier slice can be extended to a generalized Fourier slice theorem (GFST) for fan-beam image reconstruction. We have briefly introduced this method in a conference. This paper reintroduces the GFST method for fan beam geometry in details. The GFST method can be described as following: the Fourier plane is filled by adding up the contributions from all fanbeam projections individually; thereby the values in the Fourier plane are directly calculated for Cartesian coordinates such avoiding the interpolation from polar to Cartesian coordinates in the Fourier domain; inverse fast Fourier transform is applied to the image in Fourier plane and leads to a reconstructed image in spacial domain. The reconstructed image is compared between the result of the GFST method and the result from the filtered backprojection (FBP) method. The major differences of the GFST and the FBP methods are: (1) The interpolation process are at different data sets. The interpolation of the GFST method is at projection data. The interpolation of the FBP method is at filtered projection data. (2) The filtering process are done in different places. The filtering process of the GFST is at Fourier domain. The filtering process of the FBP method is the ramp filter which is done at projections. The resolution of ramp filter is variable with different location but the filter in the Fourier domain lead to resolution invariable with location. One advantage of the GFST method over the FBP method is in short scan situation, an exact solution can be obtained with the GFST method, but it can not be obtained with the FBP method. The calculation of both the GFST and the FBP methods are at O(N^3), where N is the number of pixel in one dimension.

  19. Calibration-free quantification of interior properties of porous media with x-ray computed tomography.

    PubMed

    Hussein, Esam M A; Agbogun, H M D; Al, Tom A

    2015-03-01

    A method is presented for interpreting the values of x-ray attenuation coefficients reconstructed in computed tomography of porous media, while overcoming the ambiguity caused by the multichromatic nature of x-rays, dilution by void, and material heterogeneity. The method enables determination of porosity without relying on calibration or image segmentation or thresholding to discriminate pores from solid material. It distinguishes between solution-accessible and inaccessible pores, and provides the spatial and frequency distributions of solid-matrix material in a heterogeneous medium. This is accomplished by matching an image of a sample saturated with a contrast solution with that saturated with a transparent solution. Voxels occupied with solid-material and inaccessible pores are identified by the fact that they maintain the same location and image attributes in both images, with voxels containing inaccessible pores appearing empty in both images. Fully porous and accessible voxels exhibit the maximum contrast, while the rest are porous voxels containing mixtures of pore solutions and solid. This matching process is performed with an image registration computer code, and image processing software that requires only simple subtraction and multiplication (scaling) processes. The process is demonstrated in dolomite (non-uniform void distribution, homogeneous solid matrix) and sandstone (nearly uniform void distribution, heterogeneous solid matrix) samples, and its overall performance is shown to compare favorably with a method based on calibration and thresholding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. An Improved Method of AGM for High Precision Geolocation of SAR Images

    NASA Astrophysics Data System (ADS)

    Zhou, G.; He, C.; Yue, T.; Huang, W.; Huang, Y.; Li, X.; Chen, Y.

    2018-05-01

    In order to take full advantage of SAR images, it is necessary to obtain the high precision location of the image. During the geometric correction process of images, to ensure the accuracy of image geometric correction and extract the effective mapping information from the images, precise image geolocation is important. This paper presents an improved analytical geolocation method (IAGM) that determine the high precision geolocation of each pixel in a digital SAR image. This method is based on analytical geolocation method (AGM) proposed by X. K. Yuan aiming at realizing the solution of RD model. Tests will be conducted using RADARSAT-2 SAR image. Comparing the predicted feature geolocation with the position as determined by high precision orthophoto, results indicate an accuracy of 50m is attainable with this method. Error sources will be analyzed and some recommendations about improving image location accuracy in future spaceborne SAR's will be given.

  1. Intensity-hue-saturation-based image fusion using iterative linear regression

    NASA Astrophysics Data System (ADS)

    Cetin, Mufit; Tepecik, Abdulkadir

    2016-10-01

    The image fusion process basically produces a high-resolution image by combining the superior features of a low-resolution spatial image and a high-resolution panchromatic image. Despite its common usage due to its fast computing capability and high sharpening ability, the intensity-hue-saturation (IHS) fusion method may cause some color distortions, especially when a large number of gray value differences exist among the images to be combined. This paper proposes a spatially adaptive IHS (SA-IHS) technique to avoid these distortions by automatically adjusting the exact spatial information to be injected into the multispectral image during the fusion process. The SA-IHS method essentially suppresses the effects of those pixels that cause the spectral distortions by assigning weaker weights to them and avoiding a large number of redundancies on the fused image. The experimental database consists of IKONOS images, and the experimental results both visually and statistically prove the enhancement of the proposed algorithm when compared with the several other IHS-like methods such as IHS, generalized IHS, fast IHS, and generalized adaptive IHS.

  2. Anomaly Detection in Nanofibrous Materials by CNN-Based Self-Similarity.

    PubMed

    Napoletano, Paolo; Piccoli, Flavio; Schettini, Raimondo

    2018-01-12

    Automatic detection and localization of anomalies in nanofibrous materials help to reduce the cost of the production process and the time of the post-production visual inspection process. Amongst all the monitoring methods, those exploiting Scanning Electron Microscope (SEM) imaging are the most effective. In this paper, we propose a region-based method for the detection and localization of anomalies in SEM images, based on Convolutional Neural Networks (CNNs) and self-similarity. The method evaluates the degree of abnormality of each subregion of an image under consideration by computing a CNN-based visual similarity with respect to a dictionary of anomaly-free subregions belonging to a training set. The proposed method outperforms the state of the art.

  3. Measurement of gas diffusion coefficient in liquid-saturated porous media using magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Song, Yongchen; Hao, Min; Zhao, Yuechao; Zhang, Liang

    2014-12-01

    In this study, the dual-chamber pressure decay method and magnetic resonance imaging (MRI) were used to dynamically visualize the gas diffusion process in liquid-saturated porous media, and the relationship of concentration-distance for gas diffusing into liquid-saturated porous media at different times were obtained by MR images quantitative analysis. A non-iterative finite volume method was successfully applied to calculate the local gas diffusion coefficient in liquid-saturated porous media. The results agreed very well with the conventional pressure decay method, thus it demonstrates that the method was feasible of determining the local diffusion coefficient of gas in liquid-saturated porous media at different times during diffusion process.

  4. Bubble structure evaluation method of sponge cake by using image morphology

    NASA Astrophysics Data System (ADS)

    Kato, Kunihito; Yamamoto, Kazuhiko; Nonaka, Masahiko; Katsuta, Yukiyo; Kasamatsu, Chinatsu

    2007-01-01

    Nowadays, many evaluation methods for food industry by using image processing are proposed. These methods are becoming new evaluation method besides the sensory test and the solid-state measurement that have been used for the quality evaluation recently. The goal of our research is structure evaluation of sponge cake by using the image processing. In this paper, we propose a feature extraction method of the bobble structure in the sponge cake. Analysis of the bubble structure is one of the important properties to understand characteristics of the cake from the image. In order to take the cake image, first we cut cakes and measured that's surface by using the CIS scanner, because the depth of field of this type scanner is very shallow. Therefore the bubble region of the surface has low gray scale value, and it has a feature that is blur. We extracted bubble regions from the surface images based on these features. The input image is binarized, and the feature of bubble is extracted by the morphology analysis. In order to evaluate the result of feature extraction, we compared correlation with "Size of the bubble" of the sensory test result. From a result, the bubble extraction by using morphology analysis gives good correlation. It is shown that our method is as well as the subjectivity evaluation.

  5. Methods of Hematoxylin and Erosin Image Information Acquisition and Optimization in Confocal Microscopy

    PubMed Central

    Yoon, Woong Bae; Kim, Hyunjin; Kim, Kwang Gi; Choi, Yongdoo; Chang, Hee Jin

    2016-01-01

    Objectives We produced hematoxylin and eosin (H&E) staining-like color images by using confocal laser scanning microscopy (CLSM), which can obtain the same or more information in comparison to conventional tissue staining. Methods We improved images by using several image converting techniques, including morphological methods, color space conversion methods, and segmentation methods. Results An image obtained after image processing showed coloring very similar to that in images produced by H&E staining, and it is advantageous to conduct analysis through fluorescent dye imaging and microscopy rather than analysis based on single microscopic imaging. Conclusions The colors used in CLSM are different from those seen in H&E staining, which is the method most widely used for pathologic diagnosis and is familiar to pathologists. Computer technology can facilitate the conversion of images by CLSM to be very similar to H&E staining images. We believe that the technique used in this study has great potential for application in clinical tissue analysis. PMID:27525165

  6. Haralick texture features from apparent diffusion coefficient (ADC) MRI images depend on imaging and pre-processing parameters.

    PubMed

    Brynolfsson, Patrik; Nilsson, David; Torheim, Turid; Asklund, Thomas; Karlsson, Camilla Thellenberg; Trygg, Johan; Nyholm, Tufve; Garpebring, Anders

    2017-06-22

    In recent years, texture analysis of medical images has become increasingly popular in studies investigating diagnosis, classification and treatment response assessment of cancerous disease. Despite numerous applications in oncology and medical imaging in general, there is no consensus regarding texture analysis workflow, or reporting of parameter settings crucial for replication of results. The aim of this study was to assess how sensitive Haralick texture features of apparent diffusion coefficient (ADC) MR images are to changes in five parameters related to image acquisition and pre-processing: noise, resolution, how the ADC map is constructed, the choice of quantization method, and the number of gray levels in the quantized image. We found that noise, resolution, choice of quantization method and the number of gray levels in the quantized images had a significant influence on most texture features, and that the effect size varied between different features. Different methods for constructing the ADC maps did not have an impact on any texture feature. Based on our results, we recommend using images with similar resolutions and noise levels, using one quantization method, and the same number of gray levels in all quantized images, to make meaningful comparisons of texture feature results between different subjects.

  7. EOS mapping accuracy study

    NASA Technical Reports Server (NTRS)

    Forrest, R. B.; Eppes, T. A.; Ouellette, R. J.

    1973-01-01

    Studies were performed to evaluate various image positioning methods for possible use in the earth observatory satellite (EOS) program and other earth resource imaging satellite programs. The primary goal is the generation of geometrically corrected and registered images, positioned with respect to the earth's surface. The EOS sensors which were considered were the thematic mapper, the return beam vidicon camera, and the high resolution pointable imager. The image positioning methods evaluated consisted of various combinations of satellite data and ground control points. It was concluded that EOS attitude control system design must be considered as a part of the image positioning problem for EOS, along with image sensor design and ground image processing system design. Study results show that, with suitable efficiency for ground control point selection and matching activities during data processing, extensive reliance should be placed on use of ground control points for positioning the images obtained from EOS and similar programs.

  8. A coloured oil level indicator detection method based on simple linear iterative clustering

    NASA Astrophysics Data System (ADS)

    Liu, Tianli; Li, Dongsong; Jiao, Zhiming; Liang, Tao; Zhou, Hao; Yang, Guoqing

    2017-12-01

    A detection method of coloured oil level indicator is put forward. The method is applied to inspection robot in substation, which realized the automatic inspection and recognition of oil level indicator. Firstly, the detected image of the oil level indicator is collected, and the detected image is clustered and segmented to obtain the label matrix of the image. Secondly, the detection image is processed by colour space transformation, and the feature matrix of the image is obtained. Finally, the label matrix and feature matrix are used to locate and segment the detected image, and the upper edge of the recognized region is obtained. If the upper limb line exceeds the preset oil level threshold, the alarm will alert the station staff. Through the above-mentioned image processing, the inspection robot can independently recognize the oil level of the oil level indicator, and instead of manual inspection. It embodies the automatic and intelligent level of unattended operation.

  9. Terahertz multistatic reflection imaging.

    PubMed

    Dorney, Timothy D; Symes, William W; Baraniuk, Richard G; Mittleman, Daniel M

    2002-07-01

    We describe a new imaging method using single-cycle pulses of terahertz (THz) radiation. This technique emulates the data collection and image processing procedures developed for geophysical prospecting and is made possible by the availability of fiber-coupled THz receiver antennas. We use a migration procedure to solve the inverse problem; this permits us to reconstruct the location, the shape, and the refractive index of targets. We show examples for both metallic and dielectric model targets, and we perform velocity analysis on dielectric targets to estimate the refractive indices of imaged components. These results broaden the capabilities of THz imaging systems and also demonstrate the viability of the THz system as a test bed for the exploration of new seismic processing methods.

  10. MOSAIC: Software for creating mosaics from collections of images

    NASA Technical Reports Server (NTRS)

    Varosi, F.; Gezari, D. Y.

    1992-01-01

    We have developed a powerful, versatile image processing and analysis software package called MOSAIC, designed specifically for the manipulation of digital astronomical image data obtained with (but not limited to) two-dimensional array detectors. The software package is implemented using the Interactive Data Language (IDL), and incorporates new methods for processing, calibration, analysis, and visualization of astronomical image data, stressing effective methods for the creation of mosaic images from collections of individual exposures, while at the same time preserving the photometric integrity of the original data. Since IDL is available on many computers, the MOSAIC software runs on most UNIX and VAX workstations with the X-Windows or Sun View graphics interface.

  11. Cerenkov luminescence imaging: physics principles and potential applications in biomedical sciences.

    PubMed

    Ciarrocchi, Esther; Belcari, Nicola

    2017-12-01

    Cerenkov luminescence imaging (CLI) is a novel imaging modality to study charged particles with optical methods by detecting the Cerenkov luminescence produced in tissue. This paper first describes the physical processes that govern the production and transport in tissue of Cerenkov luminescence. The detectors used for CLI and their most relevant specifications to optimize the acquisition of the Cerenkov signal are then presented, and CLI is compared with the other optical imaging modalities sharing the same data acquisition and processing methods. Finally, the scientific work related to CLI and the applications for which CLI has been proposed are reviewed. The paper ends with some considerations about further perspectives for this novel imaging modality.

  12. Development of a Post-Processing Algorithm for Accurate Human Skull Profile Extraction via Ultrasonic Phased Arrays

    NASA Astrophysics Data System (ADS)

    Al-Ansary, Mariam Luay Y.

    Ultrasound Imaging has been favored by clinicians for its safety, affordability, accessibility, and speed compared to other imaging modalities. However, the trade-offs to these benefits are a relatively lower image quality and interpretability, which can be addressed by, for example, post-processing methods. One particularly difficult imaging case is associated with the presence of a barrier, such as a human skull, with significantly different acoustical properties than the brain tissue as the target medium. Some methods were proposed in the literature to account for this structure if the skull's geometry is known. Measuring the skull's geometry is therefore an important task that requires attention. In this work, a new edge detection method for accurate human skull profile extraction via post-processing of ultrasonic A-Scans is introduced. This method, referred to as the Selective Echo Extraction algorithm, SEE, processes each A-Scan separately and determines the outermost and innermost boundaries of the skull by means of adaptive filtering. The method can also be used to determine the average attenuation coefficient of the skull. When applied to simulated B-Mode images of the skull profile, promising results were obtained. The profiles obtained from the proposed process in simulations were found to be within 0.15lambda +/- 0.11lambda or 0.09 +/- 0.07mm from the actual profiles. Experiments were also performed to test SEE on skull mimicking phantoms with major acoustical properties similar to those of the actual human skull. With experimental data, the profiles obtained with the proposed process were within 0.32lambda +/- 0.25lambda or 0.19 +/- 0.15mm from the actual profile.

  13. Rapid identification of salmonella serotypes with stereo and hyperspectral microscope imaging Methods

    USDA-ARS?s Scientific Manuscript database

    The hyperspectral microscope imaging (HMI) method can reduce detection time within 8 hours including incubation process. The early and rapid detection with this method in conjunction with the high throughput capabilities makes HMI method a prime candidate for implementation for the food industry. Th...

  14. Rapid Identification of Salmonella Serotypes with Stereo and Hyperspectral Microscope Imaging Methods

    USDA-ARS?s Scientific Manuscript database

    The hyperspectral microscope imaging (HMI) method can reduce detection time within 8 hours including incubation process. The early and rapid detection with this method in conjunction with the high throughput capabilities makes HMI method a prime candidate for implementation for the food industry. Th...

  15. A physiology-based parametric imaging method for FDG-PET data

    NASA Astrophysics Data System (ADS)

    Scussolini, Mara; Garbarino, Sara; Sambuceti, Gianmario; Caviglia, Giacomo; Piana, Michele

    2017-12-01

    Parametric imaging is a compartmental approach that processes nuclear imaging data to estimate the spatial distribution of the kinetic parameters governing tracer flow. The present paper proposes a novel and efficient computational method for parametric imaging which is potentially applicable to several compartmental models of diverse complexity and which is effective in the determination of the parametric maps of all kinetic coefficients. We consider applications to [18 F]-fluorodeoxyglucose positron emission tomography (FDG-PET) data and analyze the two-compartment catenary model describing the standard FDG metabolization by an homogeneous tissue and the three-compartment non-catenary model representing the renal physiology. We show uniqueness theorems for both models. The proposed imaging method starts from the reconstructed FDG-PET images of tracer concentration and preliminarily applies image processing algorithms for noise reduction and image segmentation. The optimization procedure solves pixel-wise the non-linear inverse problem of determining the kinetic parameters from dynamic concentration data through a regularized Gauss-Newton iterative algorithm. The reliability of the method is validated against synthetic data, for the two-compartment system, and experimental real data of murine models, for the renal three-compartment system.

  16. Noise removal using factor analysis of dynamic structures: application to cardiac gated studies.

    PubMed

    Bruyant, P P; Sau, J; Mallet, J J

    1999-10-01

    Factor analysis of dynamic structures (FADS) facilitates the extraction of relevant data, usually with physiologic meaning, from a dynamic set of images. The result of this process is a set of factor images and curves plus some residual activity. The set of factor images and curves can be used to retrieve the original data with reduced noise using an inverse factor analysis process (iFADS). This improvement in image quality is expected because the inverse process does not use the residual activity, assumed to be made of noise. The goal of this work is to quantitate and assess the efficiency of this method on gated cardiac images. A computer simulation of a planar cardiac gated study was performed. The simulated images were added with noise and processed by the FADS-iFADS program. The signal-to-noise ratios (SNRs) were compared between original and processed data. Planar gated cardiac studies from 10 patients were tested. The data processed by FADS-iFADS were subtracted to the original data. The result of the substraction was studied to evaluate its noisy nature. The SNR is about five times greater after the FADS-iFADS process. The difference between original and processed data is noise only, i.e., processed data equals original data minus some white noise. The FADS-iFADS process is successful in the removal of an important part of the noise and therefore is a tool to improve the image quality of cardiac images. This tool does not decrease the spatial resolution (compared with smoothing filters) and does not lose details (compared with frequential filters). Once the number of factors is chosen, this method is not operator dependent.

  17. Predictive images of postoperative levator resection outcome using image processing software

    PubMed Central

    Mawatari, Yuki; Fukushima, Mikiko

    2016-01-01

    Purpose This study aims to evaluate the efficacy of processed images to predict postoperative appearance following levator resection. Methods Analysis involved 109 eyes from 65 patients with blepharoptosis who underwent advancement of levator aponeurosis and Müller’s muscle complex (levator resection). Predictive images were prepared from preoperative photographs using the image processing software (Adobe Photoshop®). Images of selected eyes were digitally enlarged in an appropriate manner and shown to patients prior to surgery. Results Approximately 1 month postoperatively, we surveyed our patients using questionnaires. Fifty-six patients (89.2%) were satisfied with their postoperative appearances, and 55 patients (84.8%) positively responded to the usefulness of processed images to predict postoperative appearance. Conclusion Showing processed images that predict postoperative appearance to patients prior to blepharoptosis surgery can be useful for those patients concerned with their postoperative appearance. This approach may serve as a useful tool to simulate blepharoptosis surgery. PMID:27757008

  18. Analysis of full disc Ca II K spectroheliograms. I. Photometric calibration and centre-to-limb variation compensation

    NASA Astrophysics Data System (ADS)

    Chatzistergos, Theodosios; Ermolli, Ilaria; Solanki, Sami K.; Krivova, Natalie A.

    2018-01-01

    Context. Historical Ca II K spectroheliograms (SHG) are unique in representing long-term variations of the solar chromospheric magnetic field. They usually suffer from numerous problems and lack photometric calibration. Thus accurate processing of these data is required to get meaningful results from their analysis. Aims: In this paper we aim at developing an automatic processing and photometric calibration method that provides precise and consistent results when applied to historical SHG. Methods: The proposed method is based on the assumption that the centre-to-limb variation of the intensity in quiet Sun regions does not vary with time. We tested the accuracy of the proposed method on various sets of synthetic images that mimic problems encountered in historical observations. We also tested our approach on a large sample of images randomly extracted from seven different SHG archives. Results: The tests carried out on the synthetic data show that the maximum relative errors of the method are generally <6.5%, while the average error is <1%, even if rather poor quality observations are considered. In the absence of strong artefacts the method returns images that differ from the ideal ones by <2% in any pixel. The method gives consistent values for both plage and network areas. We also show that our method returns consistent results for images from different SHG archives. Conclusions: Our tests show that the proposed method is more accurate than other methods presented in the literature. Our method can also be applied to process images from photographic archives of solar observations at other wavelengths than Ca II K.

  19. GPU Accelerated Ultrasonic Tomography Using Propagation and Back Propagation Method

    DTIC Science & Technology

    2015-09-28

    the medical imaging field using GPUs has been done for many years. In [1], Copeland et al. used 2D images , obtained by X - ray projections, to...Index Terms— Medical Imaging , Ultrasonic Tomography, GPU, CUDA, Parallel Computing I. INTRODUCTION GRAPHIC Processing Units (GPUs) are computation... Imaging Algorithm The process of reconstructing images from ultrasonic infor- mation starts with the following acoustical wave equation: ∂2 ∂t2 u ( x

  20. Generalized Newton Method for Energy Formulation in Image Processing

    DTIC Science & Technology

    2008-04-01

    A. Brook, N. Sochen, and N. Kiryati. Deblurring of color images corrupted by impulsive noise . IEEE Transactions on Image Processing, 16(4):1101–1111...tive functionals: variational image deblurring and geodesic active contours for image segmentation. We show that in addition to the fast convergence...inner product, active contours, deblurring . AMS subject classifications. 35A15, 65K10, 90C53 1. Introduction. Optimization of a cost functional is a

  1. Unconscious neural processing differs with method used to render stimuli invisible

    PubMed Central

    Fogelson, Sergey V.; Kohler, Peter J.; Miller, Kevin J.; Granger, Richard; Tse, Peter U.

    2014-01-01

    Visual stimuli can be kept from awareness using various methods. The extent of processing that a given stimulus receives in the absence of awareness is typically used to make claims about the role of consciousness more generally. The neural processing elicited by a stimulus, however, may also depend on the method used to keep it from awareness, and not only on whether the stimulus reaches awareness. Here we report that the method used to render an image invisible has a dramatic effect on how category information about the unseen stimulus is encoded across the human brain. We collected fMRI data while subjects viewed images of faces and tools, that were rendered invisible using either continuous flash suppression (CFS) or chromatic flicker fusion (CFF). In a third condition, we presented the same images under normal fully visible viewing conditions. We found that category information about visible images could be extracted from patterns of fMRI responses throughout areas of neocortex known to be involved in face or tool processing. However, category information about stimuli kept from awareness using CFS could be recovered exclusively within occipital cortex, whereas information about stimuli kept from awareness using CFF was also decodable within temporal and frontal regions. We conclude that unconsciously presented objects are processed differently depending on how they are rendered subjectively invisible. Caution should therefore be used in making generalizations on the basis of any one method about the neural basis of consciousness or the extent of information processing without consciousness. PMID:24982647

  2. Unconscious neural processing differs with method used to render stimuli invisible.

    PubMed

    Fogelson, Sergey V; Kohler, Peter J; Miller, Kevin J; Granger, Richard; Tse, Peter U

    2014-01-01

    Visual stimuli can be kept from awareness using various methods. The extent of processing that a given stimulus receives in the absence of awareness is typically used to make claims about the role of consciousness more generally. The neural processing elicited by a stimulus, however, may also depend on the method used to keep it from awareness, and not only on whether the stimulus reaches awareness. Here we report that the method used to render an image invisible has a dramatic effect on how category information about the unseen stimulus is encoded across the human brain. We collected fMRI data while subjects viewed images of faces and tools, that were rendered invisible using either continuous flash suppression (CFS) or chromatic flicker fusion (CFF). In a third condition, we presented the same images under normal fully visible viewing conditions. We found that category information about visible images could be extracted from patterns of fMRI responses throughout areas of neocortex known to be involved in face or tool processing. However, category information about stimuli kept from awareness using CFS could be recovered exclusively within occipital cortex, whereas information about stimuli kept from awareness using CFF was also decodable within temporal and frontal regions. We conclude that unconsciously presented objects are processed differently depending on how they are rendered subjectively invisible. Caution should therefore be used in making generalizations on the basis of any one method about the neural basis of consciousness or the extent of information processing without consciousness.

  3. Dual-axis reflective continuous-wave terahertz confocal scanning polarization imaging and image fusion

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Li, Qi

    2017-01-01

    A dual-axis reflective continuous-wave terahertz (THz) confocal scanning polarization imaging system was adopted. THz polarization imaging experiments on gaps on film and metallic letters "BeLLE" were carried out. Imaging results indicate that the THz polarization imaging is sensitive to the tilted gap or wide flat gap, suggesting the THz polarization imaging is able to detect edges and stains. An image fusion method based on the digital image processing was proposed to ameliorate the imaging quality of metallic letters "BeLLE." Objective and subjective evaluation both prove that this method can improve the imaging quality.

  4. Image restoration for civil engineering structure monitoring using imaging system embedded on UAV

    NASA Astrophysics Data System (ADS)

    Vozel, Benoit; Dumoulin, Jean; Chehdi, Kacem

    2013-04-01

    Nowadays, civil engineering structures are periodically surveyed by qualified technicians (i.e. alpinist) operating visual inspection using heavy mechanical pods. This method is far to be safe, not only for civil engineering structures monitoring staff, but also for users. Due to the unceasing traffic increase, making diversions or closing lanes on bridge becomes more and more difficult. New inspection methods have to be found. One of the most promising technique is to develop inspection method using images acquired by a dedicated monitoring system operating around the civil engineering structures, without disturbing the traffic. In that context, the use of images acquired with an UAV, which fly around the structures is of particular interest. The UAV can be equipped with different vision system (digital camera, infrared sensor, video, etc.). Nonetheless, detection of small distresses on images (like cracks of 1 mm or less) depends on image quality, which is sensitive to internal parameters of the UAV (vibration modes, video exposure times, etc.) and to external parameters (turbulence, bad illumination of the scene, etc.). Though progresses were made at UAV level and at sensor level (i.e. optics), image deterioration is still an open problem. These deteriorations are mainly represented by motion blur that can be coupled with out-of-focus blur and observation noise on acquired images. In practice, deteriorations are unknown if no a priori information is available or dedicated additional instrumentation is set-up at UAV level. Image restoration processing is therefore required. This is a difficult problem [1-3] which has been intensively studied over last decades [4-12]. Image restoration can be addressed by following a blind approach or a myopic one. In both cases, it includes two processing steps that can be implemented in sequential or alternate mode. The first step carries out the identification of the blur impulse response and the second one makes use of this estimated blur kernel for performing the deconvolution of the acquired image. In the present work, different regularization methods, mainly based on the pseudo norm aforementioned Total Variation, are studied and analysed. The key point of their respective implementation, their properties and limits are investigated in this particular applicative context. References [1] J. Hadamard. Lectures on Cauchy's problem in linear partial differential equations. Yale University Press, 1923. [2] A. N. Tihonov. On the resolution of incorrectly posed problems and regularisation method (in Russian). Doklady A. N.SSSR, 151(3), 1963. [3] C. R. Vogel. Computational Methods for inverse problems, SIAM, 2002. [4] A. K. Katsaggelos, J. Biemond, R.W. Schafer, and R. M. Mersereau, "A regularized iterative image restoration algorithm," IEEE Transactions on Signal Processing, vol.39, no. 4, pp. 914-929, 1991. [5] J. Biemond, R. L. Lagendijk, and R. M. Mersereau, "Iterative methods for image deblurring," Proceedings of the IEEE, vol. 78, no. 5, pp. 856-883, 1990. [6] D. Kundur and D. Hatzinakos, "Blind image deconvolution," IEEE Signal Processing Magazine, vol. 13, no. 3, pp. 43-64, 1996. [7] Y. L. You and M. Kaveh, "A regularization approach to joint blur identification and image restoration," IEEE Transactions on Image Processing, vol. 5, no. 3, pp. 416-428, 1996. [8] T. F. Chan and C. K. Wong, "Total variation blind deconvolution," IEEE Transactions on Image Processing, vol. 7, no. 3, pp. 370-375, 1998. [9] S. Chardon, B. Vozel, and K. Chehdi. Parametric Blur Estimation Using the GCV Criterion and a Smoothness Constraint on the Image. Multidimensional Systems and Signal Processing Journal, Kluwer Ed., 10:395-414, 1999 [10] B. Vozel, K. Chehdi, and J. Dumoulin. Myopic image restoration for civil structures inspection using UAV (in French). In GRETSI, 2005. [11] L. Bar, N. Sochen, and N. Kiryati. Semi-blind image restoration via Mumford-Shah regularization. IEEE Transactions on Image Processing, 15(2), 2006. [12] J. H. Money and S. H. Kang, "Total variation minimizing blind deconvolution with shock filter reference," Image and Vision Computing, vol. 26, no. 2, pp. 302-314, 2008.

  5. A Review on Medical Image Registration as an Optimization Problem

    PubMed Central

    Song, Guoli; Han, Jianda; Zhao, Yiwen; Wang, Zheng; Du, Huibin

    2017-01-01

    Objective: In the course of clinical treatment, several medical media are required by a phy-sician in order to provide accurate and complete information about a patient. Medical image registra-tion techniques can provide a richer diagnosis and treatment information to doctors and to provide a comprehensive reference source for the researchers involved in image registration as an optimization problem. Methods: The essence of image registration is associating two or more different images spatial asso-ciation, and getting the translation of their spatial relationship. For medical image registration, its pro-cess is not absolute. Its core purpose is finding the conversion relationship between different images. Result: The major step of image registration includes the change of geometrical dimensions, and change of the image of the combination, image similarity measure, iterative optimization and interpo-lation process. Conclusion: The contribution of this review is sort of related image registration research methods, can provide a brief reference for researchers about image registration. PMID:28845149

  6. Dual-Tree Complex Wavelet Transform and Image Block Residual-Based Multi-Focus Image Fusion in Visual Sensor Networks

    PubMed Central

    Yang, Yong; Tong, Song; Huang, Shuying; Lin, Pan

    2014-01-01

    This paper presents a novel framework for the fusion of multi-focus images explicitly designed for visual sensor network (VSN) environments. Multi-scale based fusion methods can often obtain fused images with good visual effect. However, because of the defects of the fusion rules, it is almost impossible to completely avoid the loss of useful information in the thus obtained fused images. The proposed fusion scheme can be divided into two processes: initial fusion and final fusion. The initial fusion is based on a dual-tree complex wavelet transform (DTCWT). The Sum-Modified-Laplacian (SML)-based visual contrast and SML are employed to fuse the low- and high-frequency coefficients, respectively, and an initial composited image is obtained. In the final fusion process, the image block residuals technique and consistency verification are used to detect the focusing areas and then a decision map is obtained. The map is used to guide how to achieve the final fused image. The performance of the proposed method was extensively tested on a number of multi-focus images, including no-referenced images, referenced images, and images with different noise levels. The experimental results clearly indicate that the proposed method outperformed various state-of-the-art fusion methods, in terms of both subjective and objective evaluations, and is more suitable for VSNs. PMID:25587878

  7. Dual-tree complex wavelet transform and image block residual-based multi-focus image fusion in visual sensor networks.

    PubMed

    Yang, Yong; Tong, Song; Huang, Shuying; Lin, Pan

    2014-11-26

    This paper presents a novel framework for the fusion of multi-focus images explicitly designed for visual sensor network (VSN) environments. Multi-scale based fusion methods can often obtain fused images with good visual effect. However, because of the defects of the fusion rules, it is almost impossible to completely avoid the loss of useful information in the thus obtained fused images. The proposed fusion scheme can be divided into two processes: initial fusion and final fusion. The initial fusion is based on a dual-tree complex wavelet transform (DTCWT). The Sum-Modified-Laplacian (SML)-based visual contrast and SML are employed to fuse the low- and high-frequency coefficients, respectively, and an initial composited image is obtained. In the final fusion process, the image block residuals technique and consistency verification are used to detect the focusing areas and then a decision map is obtained. The map is used to guide how to achieve the final fused image. The performance of the proposed method was extensively tested on a number of multi-focus images, including no-referenced images, referenced images, and images with different noise levels. The experimental results clearly indicate that the proposed method outperformed various state-of-the-art fusion methods, in terms of both subjective and objective evaluations, and is more suitable for VSNs.

  8. PIZZARO: Forensic analysis and restoration of image and video data.

    PubMed

    Kamenicky, Jan; Bartos, Michal; Flusser, Jan; Mahdian, Babak; Kotera, Jan; Novozamsky, Adam; Saic, Stanislav; Sroubek, Filip; Sorel, Michal; Zita, Ales; Zitova, Barbara; Sima, Zdenek; Svarc, Petr; Horinek, Jan

    2016-07-01

    This paper introduces a set of methods for image and video forensic analysis. They were designed to help to assess image and video credibility and origin and to restore and increase image quality by diminishing unwanted blur, noise, and other possible artifacts. The motivation came from the best practices used in the criminal investigation utilizing images and/or videos. The determination of the image source, the verification of the image content, and image restoration were identified as the most important issues of which automation can facilitate criminalists work. Novel theoretical results complemented with existing approaches (LCD re-capture detection and denoising) were implemented in the PIZZARO software tool, which consists of the image processing functionality as well as of reporting and archiving functions to ensure the repeatability of image analysis procedures and thus fulfills formal aspects of the image/video analysis work. Comparison of new proposed methods with the state of the art approaches is shown. Real use cases are presented, which illustrate the functionality of the developed methods and demonstrate their applicability in different situations. The use cases as well as the method design were solved in tight cooperation of scientists from the Institute of Criminalistics, National Drug Headquarters of the Criminal Police and Investigation Service of the Police of the Czech Republic, and image processing experts from the Czech Academy of Sciences. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Deep learning methods to guide CT image reconstruction and reduce metal artifacts

    NASA Astrophysics Data System (ADS)

    Gjesteby, Lars; Yang, Qingsong; Xi, Yan; Zhou, Ye; Zhang, Junping; Wang, Ge

    2017-03-01

    The rapidly-rising field of machine learning, including deep learning, has inspired applications across many disciplines. In medical imaging, deep learning has been primarily used for image processing and analysis. In this paper, we integrate a convolutional neural network (CNN) into the computed tomography (CT) image reconstruction process. Our first task is to monitor the quality of CT images during iterative reconstruction and decide when to stop the process according to an intelligent numerical observer instead of using a traditional stopping rule, such as a fixed error threshold or a maximum number of iterations. After training on ground truth images, the CNN was successful in guiding an iterative reconstruction process to yield high-quality images. Our second task is to improve a sinogram to correct for artifacts caused by metal objects. A large number of interpolation and normalization-based schemes were introduced for metal artifact reduction (MAR) over the past four decades. The NMAR algorithm is considered a state-of-the-art method, although residual errors often remain in the reconstructed images, especially in cases of multiple metal objects. Here we merge NMAR with deep learning in the projection domain to achieve additional correction in critical image regions. Our results indicate that deep learning can be a viable tool to address CT reconstruction challenges.

  10. Arithmetic of five-part of leukocytes based on image process

    NASA Astrophysics Data System (ADS)

    Li, Yian; Wang, Guoyou; Liu, Jianguo

    2007-12-01

    This paper apply computer image processing and pattern recognizition methods to solve the problem of auto classification and counting of leukocytes (white blood cell) in peripheral blood. In this paper a new leukocyte arithmetic of five-part based on image process and pattern recognizition is presented, which relized auto classify of leukocyte. The first aim is detect the leukocytes . A major requirement of the whole system is to classify these leukocytes to 5 classes. This arithmetic bases on notability mechanism of eyes, process image by sequence, divides up leukocytes and pick up characters. Using the prior kwonledge of cells and image shape information, this arithmetic divides up the probable shape of Leukocyte first by a new method based on Chamfer and then gets the detail characters. It can reduce the mistake judge rate and the calculation greatly. It also has the learning fuction. This paper also presented a new measurement of karyon's shape which can provide more accurate information. This algorithm has great application value in clinical blood test .

  11. Super-Resolution for "Jilin-1" Satellite Video Imagery via a Convolutional Network.

    PubMed

    Xiao, Aoran; Wang, Zhongyuan; Wang, Lei; Ren, Yexian

    2018-04-13

    Super-resolution for satellite video attaches much significance to earth observation accuracy, and the special imaging and transmission conditions on the video satellite pose great challenges to this task. The existing deep convolutional neural-network-based methods require pre-processing or post-processing to be adapted to a high-resolution size or pixel format, leading to reduced performance and extra complexity. To this end, this paper proposes a five-layer end-to-end network structure without any pre-processing and post-processing, but imposes a reshape or deconvolution layer at the end of the network to retain the distribution of ground objects within the image. Meanwhile, we formulate a joint loss function by combining the output and high-dimensional features of a non-linear mapping network to precisely learn the desirable mapping relationship between low-resolution images and their high-resolution counterparts. Also, we use satellite video data itself as a training set, which favors consistency between training and testing images and promotes the method's practicality. Experimental results on "Jilin-1" satellite video imagery show that this method demonstrates a superior performance in terms of both visual effects and measure metrics over competing methods.

  12. Quantitative image analysis for evaluating the coating thickness and pore distribution in coated small particles.

    PubMed

    Laksmana, F L; Van Vliet, L J; Hartman Kok, P J A; Vromans, H; Frijlink, H W; Van der Voort Maarschalk, K

    2009-04-01

    This study aims to develop a characterization method for coating structure based on image analysis, which is particularly promising for the rational design of coated particles in the pharmaceutical industry. The method applies the MATLAB image processing toolbox to images of coated particles taken with Confocal Laser Scanning Microscopy (CSLM). The coating thicknesses have been determined along the particle perimeter, from which a statistical analysis could be performed to obtain relevant thickness properties, e.g. the minimum coating thickness and the span of the thickness distribution. The characterization of the pore structure involved a proper segmentation of pores from the coating and a granulometry operation. The presented method facilitates the quantification of porosity, thickness and pore size distribution of a coating. These parameters are considered the important coating properties, which are critical to coating functionality. Additionally, the effect of the coating process variations on coating quality can straight-forwardly be assessed. Enabling a good characterization of the coating qualities, the presented method can be used as a fast and effective tool to predict coating functionality. This approach also enables the influence of different process conditions on coating properties to be effectively monitored, which latterly leads to process tailoring.

  13. A novel image processing technique for 3D volumetric analysis of severely resorbed alveolar sockets with CBCT.

    PubMed

    Manavella, Valeria; Romano, Federica; Garrone, Federica; Terzini, Mara; Bignardi, Cristina; Aimetti, Mario

    2017-06-01

    The aim of this study was to present and validate a novel procedure for the quantitative volumetric assessment of extraction sockets that combines cone-beam computed tomography (CBCT) and image processing techniques. The CBCT dataset of 9 severely resorbed extraction sockets was analyzed by means of two image processing software, Image J and Mimics, using manual and automated segmentation techniques. They were also applied on 5-mm spherical aluminum markers of known volume and on a polyvinyl chloride model of one alveolar socket scanned with Micro-CT to test the accuracy. Statistical differences in alveolar socket volume were found between the different methods of volumetric analysis (P<0.0001). The automated segmentation using Mimics was the most reliable and accurate method with a relative error of 1.5%, considerably smaller than the error of 7% and of 10% introduced by the manual method using Mimics and by the automated method using ImageJ. The currently proposed automated segmentation protocol for the three-dimensional rendering of alveolar sockets showed more accurate results, excellent inter-observer similarity and increased user friendliness. The clinical application of this method enables a three-dimensional evaluation of extraction socket healing after the reconstructive procedures and during the follow-up visits.

  14. Reducing uncertainty in wind turbine blade health inspection with image processing techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Huiyi

    Structural health inspection has been widely applied in the operation of wind farms to find early cracks in wind turbine blades (WTBs). Increased numbers of turbines and expanded rotor diameters are driving up the workloads and safety risks for site employees. Therefore, it is important to automate the inspection process as well as minimize the uncertainties involved in routine blade health inspection. In addition, crack documentation and trending is vital to assess rotor blade and turbine reliability in the 20 year designed life span. A new crack recognition and classification algorithm is described that can support automated structural health inspection of the surface of large composite WTBs. The first part of the study investigated the feasibility of digital image processing in WTB health inspection and defined the capability of numerically detecting cracks as small as hairline thickness. The second part of the study identified and analyzed the uncertainty of the digital image processing method. A self-learning algorithm was proposed to recognize and classify cracks without comparing a blade image to a library of crack images. The last part of the research quantified the uncertainty in the field conditions and the image processing methods.

  15. Sequential Processes in Image Generation: An Objective Measure. Technical Report #6.

    ERIC Educational Resources Information Center

    Kosslyn, Stephen M.; And Others

    This paper investigates the processes by which visual mental images--the precept-like short-term memory representations--are created from information stored in long-term memory. It also presents a new method for studying image generation. Three experiments were conducted using college students as subjects. In the first experiment, a Podgorny and…

  16. Automated segmentation of three-dimensional MR brain images

    NASA Astrophysics Data System (ADS)

    Park, Jonggeun; Baek, Byungjun; Ahn, Choong-Il; Ku, Kyo Bum; Jeong, Dong Kyun; Lee, Chulhee

    2006-03-01

    Brain segmentation is a challenging problem due to the complexity of the brain. In this paper, we propose an automated brain segmentation method for 3D magnetic resonance (MR) brain images which are represented as a sequence of 2D brain images. The proposed method consists of three steps: pre-processing, removal of non-brain regions (e.g., the skull, meninges, other organs, etc), and spinal cord restoration. In pre-processing, we perform adaptive thresholding which takes into account variable intensities of MR brain images corresponding to various image acquisition conditions. In segmentation process, we iteratively apply 2D morphological operations and masking for the sequences of 2D sagittal, coronal, and axial planes in order to remove non-brain tissues. Next, final 3D brain regions are obtained by applying OR operation for segmentation results of three planes. Finally we reconstruct the spinal cord truncated during the previous processes. Experiments are performed with fifteen 3D MR brain image sets with 8-bit gray-scale. Experiment results show the proposed algorithm is fast, and provides robust and satisfactory results.

  17. Imaging model for the scintillator and its application to digital radiography image enhancement.

    PubMed

    Wang, Qian; Zhu, Yining; Li, Hongwei

    2015-12-28

    Digital Radiography (DR) images obtained by OCD-based (optical coupling detector) Micro-CT system usually suffer from low contrast. In this paper, a mathematical model is proposed to describe the image formation process in scintillator. By solving the correlative inverse problem, the quality of DR images is improved, i.e. higher contrast and spatial resolution. By analyzing the radiative transfer process of visible light in scintillator, scattering is recognized as the main factor leading to low contrast. Moreover, involved blurring effect is also concerned and described as point spread function (PSF). Based on these physical processes, the scintillator imaging model is then established. When solving the inverse problem, pre-correction to the intensity of x-rays, dark channel prior based haze removing technique, and an effective blind deblurring approach are employed. Experiments on a variety of DR images show that the proposed approach could improve the contrast of DR images dramatically as well as eliminate the blurring vision effectively. Compared with traditional contrast enhancement methods, such as CLAHE, our method could preserve the relative absorption values well.

  18. Maximizing Total QoS-Provisioning of Image Streams with Limited Energy Budget

    NASA Astrophysics Data System (ADS)

    Lee, Wan Yeon; Kim, Kyong Hoon; Ko, Young Woong

    To fully utilize the limited battery energy of mobile electronic devices, we propose an adaptive adjustment method of processing quality for multiple image stream tasks running with widely varying execution times. This adjustment method completes the worst-case executions of the tasks with a given budget of energy, and maximizes the total reward value of processing quality obtained during their executions by exploiting the probability distribution of task execution times. The proposed method derives the maximum reward value for the tasks being executable with arbitrary processing quality, and near maximum value for the tasks being executable with a finite number of processing qualities. Our evaluation on a prototype system shows that the proposed method achieves larger reward values, by up to 57%, than the previous method.

  19. Enhanced image capture through fusion

    NASA Technical Reports Server (NTRS)

    Burt, Peter J.; Hanna, Keith; Kolczynski, Raymond J.

    1993-01-01

    Image fusion may be used to combine images from different sensors, such as IR and visible cameras, to obtain a single composite with extended information content. Fusion may also be used to combine multiple images from a given sensor to form a composite image in which information of interest is enhanced. We present a general method for performing image fusion and show that this method is effective for diverse fusion applications. We suggest that fusion may provide a powerful tool for enhanced image capture with broad utility in image processing and computer vision.

  20. High-precision terahertz frequency modulated continuous wave imaging method using continuous wavelet transform

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Wang, Tianyi; Dai, Bing; Li, Wenjun; Wang, Wei; You, Chengwu; Wang, Kejia; Liu, Jinsong; Wang, Shenglie; Yang, Zhengang

    2018-02-01

    Inspired by the extensive application of terahertz (THz) imaging technologies in the field of aerospace, we exploit a THz frequency modulated continuous-wave imaging method with continuous wavelet transform (CWT) algorithm to detect a multilayer heat shield made of special materials. This method uses the frequency modulation continuous-wave system to catch the reflected THz signal and then process the image data by the CWT with different basis functions. By calculating the sizes of the defects area in the final images and then comparing the results with real samples, a practical high-precision THz imaging method is demonstrated. Our method can be an effective tool for the THz nondestructive testing of composites, drugs, and some cultural heritages.

  1. Rotation covariant image processing for biomedical applications.

    PubMed

    Skibbe, Henrik; Reisert, Marco

    2013-01-01

    With the advent of novel biomedical 3D image acquisition techniques, the efficient and reliable analysis of volumetric images has become more and more important. The amount of data is enormous and demands an automated processing. The applications are manifold, ranging from image enhancement, image reconstruction, and image description to object/feature detection and high-level contextual feature extraction. In most scenarios, it is expected that geometric transformations alter the output in a mathematically well-defined manner. In this paper we emphasis on 3D translations and rotations. Many algorithms rely on intensity or low-order tensorial-like descriptions to fulfill this demand. This paper proposes a general mathematical framework based on mathematical concepts and theories transferred from mathematical physics and harmonic analysis into the domain of image analysis and pattern recognition. Based on two basic operations, spherical tensor differentiation and spherical tensor multiplication, we show how to design a variety of 3D image processing methods in an efficient way. The framework has already been applied to several biomedical applications ranging from feature and object detection tasks to image enhancement and image restoration techniques. In this paper, the proposed methods are applied on a variety of different 3D data modalities stemming from medical and biological sciences.

  2. Review methods for image segmentation from computed tomography images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamat, Nurwahidah; Rahman, Wan Eny Zarina Wan Abdul; Soh, Shaharuddin Cik

    Image segmentation is a challenging process in order to get the accuracy of segmentation, automation and robustness especially in medical images. There exist many segmentation methods that can be implemented to medical images but not all methods are suitable. For the medical purposes, the aims of image segmentation are to study the anatomical structure, identify the region of interest, measure tissue volume to measure growth of tumor and help in treatment planning prior to radiation therapy. In this paper, we present a review method for segmentation purposes using Computed Tomography (CT) images. CT images has their own characteristics that affectmore » the ability to visualize anatomic structures and pathologic features such as blurring of the image and visual noise. The details about the methods, the goodness and the problem incurred in the methods will be defined and explained. It is necessary to know the suitable segmentation method in order to get accurate segmentation. This paper can be a guide to researcher to choose the suitable segmentation method especially in segmenting the images from CT scan.« less

  3. Improved Line Tracing Methods for Removal of Bad Streaks Noise in CCD Line Array Image—A Case Study with GF-1 Images

    PubMed Central

    Wang, Bo; Bao, Jianwei; Wang, Shikui; Wang, Houjun; Sheng, Qinghong

    2017-01-01

    Remote sensing images could provide us with tremendous quantities of large-scale information. Noise artifacts (stripes), however, made the images inappropriate for vitalization and batch process. An effective restoration method would make images ready for further analysis. In this paper, a new method is proposed to correct the stripes and bad abnormal pixels in charge-coupled device (CCD) linear array images. The method involved a line tracing method, limiting the location of noise to a rectangular region, and corrected abnormal pixels with the Lagrange polynomial algorithm. The proposed detection and restoration method were applied to Gaofen-1 satellite (GF-1) images, and the performance of this method was evaluated by omission ratio and false detection ratio, which reached 0.6% and 0%, respectively. This method saved 55.9% of the time, compared with traditional method. PMID:28441754

  4. Recursive search method for the image elements of functionally defined surfaces

    NASA Astrophysics Data System (ADS)

    Vyatkin, S. I.

    2017-05-01

    This paper touches upon the synthesis of high-quality images in real time and the technique for specifying three-dimensional objects on the basis of perturbation functions. The recursive search method for the image elements of functionally defined objects with the use of graphics processing units is proposed. The advantages of such an approach over the frame-buffer visualization method are shown.

  5. Current status on the application of image processing of digital intraoral radiographs amongst general dental practitioners.

    PubMed

    Tohidast, Parisa; Shi, Xie-Qi

    2016-01-01

    The objectives of this study were to present the subjective knowledge level and the use of image processing on digital intraoral radiographs amongst general dental practitioners at Distriktståndvrden AB, Stockholm. A questionnaire, consisting of12 questions, was sent to 12 dental prac- tices in Stockholm. Additionally, 2000 radiographs were randomly selected from these clinics for evaluation of applied image processing and its effect on image quality. Descriptive and analytical statistical methods were applied to present the current status of the use of image proces- sing alternatives for the dentists' daily clinical work. 50 out of 53 dentists participated in the survey.The survey showed that most of dentists in.this study had received education on image processing at some stage of their career. No correlations were found between application of image processing on one side and educa- tion received with regards to image processing, previous working experience, age and gender on the other. Image processing in terms of adjusting brightness and contrast was frequently used. Overall, in this study 24.5% of the 200 images were actually image processed in practice, in which 90% of the images were improved or maintained in image quality. According to our survey, image processing is experienced to be frequently used by the dentists at Distriktstandvåden AB for diagnosing anatomical and pathological changes using intraoral radiographs. 24.5% of the 200 images were actually image processed in terms of adjusting brightness and/or contrast. In the present study we did not found that the dentists' age, gender, previous working experience and education in image processing influence their viewpoint towards the application of image processing.

  6. Synthetic Aperture Radar (SAR) data processing

    NASA Technical Reports Server (NTRS)

    Beckner, F. L.; Ahr, H. A.; Ausherman, D. A.; Cutrona, L. J.; Francisco, S.; Harrison, R. E.; Heuser, J. S.; Jordan, R. L.; Justus, J.; Manning, B.

    1978-01-01

    The available and optimal methods for generating SAR imagery for NASA applications were identified. The SAR image quality and data processing requirements associated with these applications were studied. Mathematical operations and algorithms required to process sensor data into SAR imagery were defined. The architecture of SAR image formation processors was discussed, and technology necessary to implement the SAR data processors used in both general purpose and dedicated imaging systems was addressed.

  7. Brain's tumor image processing using shearlet transform

    NASA Astrophysics Data System (ADS)

    Cadena, Luis; Espinosa, Nikolai; Cadena, Franklin; Korneeva, Anna; Kruglyakov, Alexey; Legalov, Alexander; Romanenko, Alexey; Zotin, Alexander

    2017-09-01

    Brain tumor detection is well known research area for medical and computer scientists. In last decades there has been much research done on tumor detection, segmentation, and classification. Medical imaging plays a central role in the diagnosis of brain tumors and nowadays uses methods non-invasive, high-resolution techniques, especially magnetic resonance imaging and computed tomography scans. Edge detection is a fundamental tool in image processing, particularly in the areas of feature detection and feature extraction, which aim at identifying points in a digital image at which the image has discontinuities. Shearlets is the most successful frameworks for the efficient representation of multidimensional data, capturing edges and other anisotropic features which frequently dominate multidimensional phenomena. The paper proposes an improved brain tumor detection method by automatically detecting tumor location in MR images, its features are extracted by new shearlet transform.

  8. Research on registration algorithm for check seal verification

    NASA Astrophysics Data System (ADS)

    Wang, Shuang; Liu, Tiegen

    2008-03-01

    Nowadays seals play an important role in China. With the development of social economy, the traditional method of manual check seal identification can't meet the need s of banking transactions badly. This paper focus on pre-processing and registration algorithm for check seal verification using theory of image processing and pattern recognition. First of all, analyze the complex characteristics of check seals. To eliminate the difference of producing conditions and the disturbance caused by background and writing in check image, many methods are used in the pre-processing of check seal verification, such as color components transformation, linearity transform to gray-scale image, medium value filter, Otsu, close calculations and labeling algorithm of mathematical morphology. After the processes above, the good binary seal image can be obtained. On the basis of traditional registration algorithm, a double-level registration method including rough and precise registration method is proposed. The deflection angle of precise registration method can be precise to 0.1°. This paper introduces the concepts of difference inside and difference outside and use the percent of difference inside and difference outside to judge whether the seal is real or fake. The experimental results of a mass of check seals are satisfied. It shows that the methods and algorithmic presented have good robustness to noise sealing conditions and satisfactory tolerance of difference within class.

  9. A modified approach combining FNEA and watershed algorithms for segmenting remotely-sensed optical images

    NASA Astrophysics Data System (ADS)

    Liu, Likun

    2018-01-01

    In the field of remote sensing image processing, remote sensing image segmentation is a preliminary step for later analysis of remote sensing image processing and semi-auto human interpretation, fully-automatic machine recognition and learning. Since 2000, a technique of object-oriented remote sensing image processing method and its basic thought prevails. The core of the approach is Fractal Net Evolution Approach (FNEA) multi-scale segmentation algorithm. The paper is intent on the research and improvement of the algorithm, which analyzes present segmentation algorithms and selects optimum watershed algorithm as an initialization. Meanwhile, the algorithm is modified by modifying an area parameter, and then combining area parameter with a heterogeneous parameter further. After that, several experiments is carried on to prove the modified FNEA algorithm, compared with traditional pixel-based method (FCM algorithm based on neighborhood information) and combination of FNEA and watershed, has a better segmentation result.

  10. ID card number detection algorithm based on convolutional neural network

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Ma, Hanjie; Feng, Jie; Dai, Leiyan

    2018-04-01

    In this paper, a new detection algorithm based on Convolutional Neural Network is presented in order to realize the fast and convenient ID information extraction in multiple scenarios. The algorithm uses the mobile device equipped with Android operating system to locate and extract the ID number; Use the special color distribution of the ID card, select the appropriate channel component; Use the image threshold segmentation, noise processing and morphological processing to take the binary processing for image; At the same time, the image rotation and projection method are used for horizontal correction when image was tilting; Finally, the single character is extracted by the projection method, and recognized by using Convolutional Neural Network. Through test shows that, A single ID number image from the extraction to the identification time is about 80ms, the accuracy rate is about 99%, It can be applied to the actual production and living environment.

  11. An Effective Measured Data Preprocessing Method in Electrical Impedance Tomography

    PubMed Central

    Yu, Chenglong; Yue, Shihong; Wang, Jianpei; Wang, Huaxiang

    2014-01-01

    As an advanced process detection technology, electrical impedance tomography (EIT) has widely been paid attention to and studied in the industrial fields. But the EIT techniques are greatly limited to the low spatial resolutions. This problem may result from the incorrect preprocessing of measuring data and lack of general criterion to evaluate different preprocessing processes. In this paper, an EIT data preprocessing method is proposed by all rooting measured data and evaluated by two constructed indexes based on all rooted EIT measured data. By finding the optimums of the two indexes, the proposed method can be applied to improve the EIT imaging spatial resolutions. In terms of a theoretical model, the optimal rooting times of the two indexes range in [0.23, 0.33] and in [0.22, 0.35], respectively. Moreover, these factors that affect the correctness of the proposed method are generally analyzed. The measuring data preprocessing is necessary and helpful for any imaging process. Thus, the proposed method can be generally and widely used in any imaging process. Experimental results validate the two proposed indexes. PMID:25165735

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, T; Dong, X; Petrongolo, M

    Purpose: Dual energy CT (DECT) imaging plays an important role in advanced imaging applications due to its material decomposition capability. Direct decomposition via matrix inversion suffers from significant degradation of image signal-to-noise ratios, which reduces clinical value. Existing de-noising algorithms achieve suboptimal performance since they suppress image noise either before or after the decomposition and do not fully explore the noise statistical properties of the decomposition process. We propose an iterative image-domain decomposition method for noise suppression in DECT, using the full variance-covariance matrix of the decomposed images. Methods: The proposed algorithm is formulated in the form of least-square estimationmore » with smoothness regularization. It includes the inverse of the estimated variance-covariance matrix of the decomposed images as the penalty weight in the least-square term. Performance is evaluated using an evaluation phantom (Catphan 600) and an anthropomorphic head phantom. Results are compared to those generated using direct matrix inversion with no noise suppression, a de-noising method applied on the decomposed images, and an existing algorithm with similar formulation but with an edge-preserving regularization term. Results: On the Catphan phantom, our method retains the same spatial resolution as the CT images before decomposition while reducing the noise standard deviation of decomposed images by over 98%. The other methods either degrade spatial resolution or achieve less low-contrast detectability. Also, our method yields lower electron density measurement error than direct matrix inversion and reduces error variation by over 97%. On the head phantom, it reduces the noise standard deviation of decomposed images by over 97% without blurring the sinus structures. Conclusion: We propose an iterative image-domain decomposition method for DECT. The method combines noise suppression and material decomposition into an iterative process and achieves both goals simultaneously. The proposed algorithm shows superior performance on noise suppression with high image spatial resolution and low-contrast detectability. This work is supported by a Varian MRA grant.« less

  13. A Review of Algorithms for Segmentation of Optical Coherence Tomography from Retina

    PubMed Central

    Kafieh, Raheleh; Rabbani, Hossein; Kermani, Saeed

    2013-01-01

    Optical coherence tomography (OCT) is a recently established imaging technique to describe different information about the internal structures of an object and to image various aspects of biological tissues. OCT image segmentation is mostly introduced on retinal OCT to localize the intra-retinal boundaries. Here, we review some of the important image segmentation methods for processing retinal OCT images. We may classify the OCT segmentation approaches into five distinct groups according to the image domain subjected to the segmentation algorithm. Current researches in OCT segmentation are mostly based on improving the accuracy and precision, and on reducing the required processing time. There is no doubt that current 3-D imaging modalities are now moving the research projects toward volume segmentation along with 3-D rendering and visualization. It is also important to develop robust methods capable of dealing with pathologic cases in OCT imaging. PMID:24083137

  14. Dendritic tree extraction from noisy maximum intensity projection images in C. elegans.

    PubMed

    Greenblum, Ayala; Sznitman, Raphael; Fua, Pascal; Arratia, Paulo E; Oren, Meital; Podbilewicz, Benjamin; Sznitman, Josué

    2014-06-12

    Maximum Intensity Projections (MIP) of neuronal dendritic trees obtained from confocal microscopy are frequently used to study the relationship between tree morphology and mechanosensory function in the model organism C. elegans. Extracting dendritic trees from noisy images remains however a strenuous process that has traditionally relied on manual approaches. Here, we focus on automated and reliable 2D segmentations of dendritic trees following a statistical learning framework. Our dendritic tree extraction (DTE) method uses small amounts of labelled training data on MIPs to learn noise models of texture-based features from the responses of tree structures and image background. Our strategy lies in evaluating statistical models of noise that account for both the variability generated from the imaging process and from the aggregation of information in the MIP images. These noisy models are then used within a probabilistic, or Bayesian framework to provide a coarse 2D dendritic tree segmentation. Finally, some post-processing is applied to refine the segmentations and provide skeletonized trees using a morphological thinning process. Following a Leave-One-Out Cross Validation (LOOCV) method for an MIP databse with available "ground truth" images, we demonstrate that our approach provides significant improvements in tree-structure segmentations over traditional intensity-based methods. Improvements for MIPs under various imaging conditions are both qualitative and quantitative, as measured from Receiver Operator Characteristic (ROC) curves and the yield and error rates in the final segmentations. In a final step, we demonstrate our DTE approach on previously unseen MIP samples including the extraction of skeletonized structures, and compare our method to a state-of-the art dendritic tree tracing software. Overall, our DTE method allows for robust dendritic tree segmentations in noisy MIPs, outperforming traditional intensity-based methods. Such approach provides a useable segmentation framework, ultimately delivering a speed-up for dendritic tree identification on the user end and a reliable first step towards further morphological characterizations of tree arborization.

  15. A wavelet-based adaptive fusion algorithm of infrared polarization imaging

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Gu, Guohua; Chen, Qian; Zeng, Haifang

    2011-08-01

    The purpose of infrared polarization image is to highlight man-made target from a complex natural background. For the infrared polarization images can significantly distinguish target from background with different features, this paper presents a wavelet-based infrared polarization image fusion algorithm. The method is mainly for image processing of high-frequency signal portion, as for the low frequency signal, the original weighted average method has been applied. High-frequency part is processed as follows: first, the source image of the high frequency information has been extracted by way of wavelet transform, then signal strength of 3*3 window area has been calculated, making the regional signal intensity ration of source image as a matching measurement. Extraction method and decision mode of the details are determined by the decision making module. Image fusion effect is closely related to the setting threshold of decision making module. Compared to the commonly used experiment way, quadratic interpolation optimization algorithm is proposed in this paper to obtain threshold. Set the endpoints and midpoint of the threshold searching interval as initial interpolation nodes, and compute the minimum quadratic interpolation function. The best threshold can be obtained by comparing the minimum quadratic interpolation function. A series of image quality evaluation results show this method has got improvement in fusion effect; moreover, it is not only effective for some individual image, but also for a large number of images.

  16. Research for Key Techniques of Geophysical Recognition System of Hydrocarbon-induced Magnetic Anomalies Based on Hydrocarbon Seepage Theory

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Hao, T.; Zhao, B.

    2009-12-01

    Hydrocarbon seepage effects can cause magnetic alteration zones in near surface, and the magnetic anomalies induced by the alteration zones can thus be used to locate oil-gas potential regions. In order to reduce the inaccuracy and multi-resolution of the hydrocarbon anomalies recognized only by magnetic data, and to meet the requirement of integrated management and sythetic analysis of multi-source geoscientfic data, it is necessary to construct a recognition system that integrates the functions of data management, real-time processing, synthetic evaluation, and geologic mapping. In this paper research for the key techniques of the system is discussed. Image processing methods can be applied to potential field images so as to make it easier for visual interpretation and geological understanding. For gravity or magnetic images, the anomalies with identical frequency-domain characteristics but different spatial distribution will reflect differently in texture and relevant textural statistics. Texture is a description of structural arrangements and spatial variation of a dataset or an image, and has been applied in many research fields. Textural analysis is a procedure that extracts textural features by image processing methods and thus obtains a quantitative or qualitative description of texture. When the two kinds of anomalies have no distinct difference in amplitude or overlap in frequency spectrum, they may be distinguishable due to their texture, which can be considered as textural contrast. Therefore, for the recognition system we propose a new “magnetic spots” recognition method based on image processing techniques. The method can be divided into 3 major steps: firstly, separate local anomalies caused by shallow, relatively small sources from the total magnetic field, and then pre-process the local magnetic anomaly data by image processing methods such that magnetic anomalies can be expressed as points, lines and polygons with spatial correlation, which includes histogram-equalization based image display, object recognition and extraction; then, mine the spatial characteristics and correlations of the magnetic anomalies using textural statistics and analysis, and study the features of known anomalous objects (closures, hydrocarbon-bearing structures, igneous rocks, etc.) in the same research area; finally, classify the anomalies, cluster them according to their similarity, and predict hydrocarbon induced “magnetic spots” combined with geologic, drilling and rock core data. The system uses the ArcGIS as the secondary development platform, inherits the basic functions of the ArcGIS, and develops two main sepecial functional modules, the module for conventional potential-field data processing methods and the module for feature extraction and enhancement based on image processing and analysis techniques. The system can be applied to realize the geophysical detection and recognition of near-surface hydrocarbon seepage anomalies, provide technical support for locating oil-gas potential regions, and promote geophysical data processing and interpretation to advance more efficiently.

  17. Morphological rational operator for contrast enhancement.

    PubMed

    Peregrina-Barreto, Hayde; Herrera-Navarro, Ana M; Morales-Hernández, Luis A; Terol-Villalobos, Iván R

    2011-03-01

    Contrast enhancement is an important task in image processing that is commonly used as a preprocessing step to improve the images for other tasks such as segmentation. However, some methods for contrast improvement that work well in low-contrast regions affect good contrast regions as well. This occurs due to the fact that some elements may vanish. A method focused on images with different luminance conditions is introduced in the present work. The proposed method is based on morphological transformations by reconstruction and rational operations, which, altogether, allow a more accurate contrast enhancement resulting in regions that are in harmony with their environment. Furthermore, due to the properties of these morphological transformations, the creation of new elements on the image is avoided. The processing is carried out on luminance values in the u'v'Y color space, which avoids the creation of new colors. As a result of the previous considerations, the proposed method keeps the natural color appearance of the image.

  18. Quantum imaging with incoherently scattered light from a free-electron laser

    NASA Astrophysics Data System (ADS)

    Schneider, Raimund; Mehringer, Thomas; Mercurio, Giuseppe; Wenthaus, Lukas; Classen, Anton; Brenner, Günter; Gorobtsov, Oleg; Benz, Adrian; Bhatti, Daniel; Bocklage, Lars; Fischer, Birgit; Lazarev, Sergey; Obukhov, Yuri; Schlage, Kai; Skopintsev, Petr; Wagner, Jochen; Waldmann, Felix; Willing, Svenja; Zaluzhnyy, Ivan; Wurth, Wilfried; Vartanyants, Ivan A.; Röhlsberger, Ralf; von Zanthier, Joachim

    2018-02-01

    The advent of accelerator-driven free-electron lasers (FEL) has opened new avenues for high-resolution structure determination via diffraction methods that go far beyond conventional X-ray crystallography methods. These techniques rely on coherent scattering processes that require the maintenance of first-order coherence of the radiation field throughout the imaging procedure. Here we show that higher-order degrees of coherence, displayed in the intensity correlations of incoherently scattered X-rays from an FEL, can be used to image two-dimensional objects with a spatial resolution close to or even below the Abbe limit. This constitutes a new approach towards structure determination based on incoherent processes, including fluorescence emission or wavefront distortions, generally considered detrimental for imaging applications. Our method is an extension of the landmark intensity correlation measurements of Hanbury Brown and Twiss to higher than second order, paving the way towards determination of structure and dynamics of matter in regimes where coherent imaging methods have intrinsic limitations.

  19. Path Searching Based Crease Detection for Large Scale Scanned Document Images

    NASA Astrophysics Data System (ADS)

    Zhang, Jifu; Li, Yi; Li, Shutao; Sun, Bin; Sun, Jun

    2017-12-01

    Since the large size documents are usually folded for preservation, creases will occur in the scanned images. In this paper, a crease detection method is proposed to locate the crease pixels for further processing. According to the imaging process of contactless scanners, the shading on both sides of the crease usually varies a lot. Based on this observation, a convex hull based algorithm is adopted to extract the shading information of the scanned image. Then, the possible crease path can be achieved by applying the vertical filter and morphological operations on the shading image. Finally, the accurate crease is detected via Dijkstra path searching. Experimental results on the dataset of real scanned newspapers demonstrate that the proposed method can obtain accurate locations of the creases in the large size document images.

  20. Analyses of requirements for computer control and data processing experiment subsystems. Volume 1: ATM experiment S-056 image data processing system techniques development

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The solar imaging X-ray telescope experiment (designated the S-056 experiment) is described. It will photograph the sun in the far ultraviolet or soft X-ray region. Because of the imaging characteristics of this telescope and the necessity of using special techniques for capturing images on film at these wave lengths, methods were developed for computer processing of the photographs. The problems of image restoration were addressed to develop and test digital computer techniques for applying a deconvolution process to restore overall S-056 image quality. Additional techniques for reducing or eliminating the effects of noise and nonlinearity in S-056 photographs were developed.

  1. Infrared fix pattern noise reduction method based on Shearlet Transform

    NASA Astrophysics Data System (ADS)

    Rong, Shenghui; Zhou, Huixin; Zhao, Dong; Cheng, Kuanhong; Qian, Kun; Qin, Hanlin

    2018-06-01

    The non-uniformity correction (NUC) is an effective way to reduce fix pattern noise (FPN) and improve infrared image quality. The temporal high-pass NUC method is a kind of practical NUC method because of its simple implementation. However, traditional temporal high-pass NUC methods rely deeply on the scene motion and suffer image ghosting and blurring. Thus, this paper proposes an improved NUC method based on Shearlet Transform (ST). First, the raw infrared image is decomposed into multiscale and multi-orientation subbands by ST and the FPN component mainly exists in some certain high-frequency subbands. Then, high-frequency subbands are processed by the temporal filter to extract the FPN due to its low-frequency characteristics. Besides, each subband has a confidence parameter to determine the degree of FPN, which is estimated by the variance of subbands adaptively. At last, the process of NUC is achieved by subtracting the estimated FPN component from the original subbands and the corrected infrared image can be obtained by the inverse ST. The performance of the proposed method is evaluated with real and synthetic infrared image sequences thoroughly. Experimental results indicate that the proposed method can reduce heavily FPN with less roughness and RMSE.

  2. 3D deformable organ model based liver motion tracking in ultrasound videos

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Bae; Hwang, Youngkyoo; Oh, Young-Taek; Bang, Won-Chul; Lee, Heesae; Kim, James D. K.; Kim, Chang Yeong

    2013-03-01

    This paper presents a novel method of using 2D ultrasound (US) cine images during image-guided therapy to accurately track the 3D position of a tumor even when the organ of interest is in motion due to patient respiration. Tracking is possible thanks to a 3D deformable organ model we have developed. The method consists of three processes in succession. The first process is organ modeling where we generate a personalized 3D organ model from high quality 3D CT or MR data sets captured during three different respiratory phases. The model includes the organ surface, vessel and tumor, which can all deform and move in accord with patient respiration. The second process is registration of the organ model to 3D US images. From 133 respiratory phase candidates generated from the deformable organ model, we resolve the candidate that best matches the 3D US images according to vessel centerline and surface. As a result, we can determine the position of the US probe. The final process is real-time tracking using 2D US cine images captured by the US probe. We determine the respiratory phase by tracking the diaphragm on the image. The 3D model is then deformed according to respiration phase and is fitted to the image by considering the positions of the vessels. The tumor's 3D positions are then inferred based on respiration phase. Testing our method on real patient data, we have found the accuracy of 3D position is within 3.79mm and processing time is 5.4ms during tracking.

  3. A three-image algorithm for hard x-ray grating interferometry.

    PubMed

    Pelliccia, Daniele; Rigon, Luigi; Arfelli, Fulvia; Menk, Ralf-Hendrik; Bukreeva, Inna; Cedola, Alessia

    2013-08-12

    A three-image method to extract absorption, refraction and scattering information for hard x-ray grating interferometry is presented. The method comprises a post-processing approach alternative to the conventional phase stepping procedure and is inspired by a similar three-image technique developed for analyzer-based x-ray imaging. Results obtained with this algorithm are quantitatively comparable with phase-stepping. This method can be further extended to samples with negligible scattering, where only two images are needed to separate absorption and refraction signal. Thanks to the limited number of images required, this technique is a viable route to bio-compatible imaging with x-ray grating interferometer. In addition our method elucidates and strengthens the formal and practical analogies between grating interferometry and the (non-interferometric) diffraction enhanced imaging technique.

  4. Semi-automated Neuron Boundary Detection and Nonbranching Process Segmentation in Electron Microscopy Images

    PubMed Central

    Jurrus, Elizabeth; Watanabe, Shigeki; Giuly, Richard J.; Paiva, Antonio R. C.; Ellisman, Mark H.; Jorgensen, Erik M.; Tasdizen, Tolga

    2013-01-01

    Neuroscientists are developing new imaging techniques and generating large volumes of data in an effort to understand the complex structure of the nervous system. The complexity and size of this data makes human interpretation a labor-intensive task. To aid in the analysis, new segmentation techniques for identifying neurons in these feature rich datasets are required. This paper presents a method for neuron boundary detection and nonbranching process segmentation in electron microscopy images and visualizing them in three dimensions. It combines both automated segmentation techniques with a graphical user interface for correction of mistakes in the automated process. The automated process first uses machine learning and image processing techniques to identify neuron membranes that deliniate the cells in each two-dimensional section. To segment nonbranching processes, the cell regions in each two-dimensional section are connected in 3D using correlation of regions between sections. The combination of this method with a graphical user interface specially designed for this purpose, enables users to quickly segment cellular processes in large volumes. PMID:22644867

  5. Method for 3D noncontact measurements of cut trees package area

    NASA Astrophysics Data System (ADS)

    Knyaz, Vladimir A.; Vizilter, Yuri V.

    2001-02-01

    Progress in imaging sensors and computers create the background for numerous 3D imaging application for wide variety of manufacturing activity. Many demands for automated precise measurements are in wood branch of industry. One of them is the accurate volume definition for cut trees carried on the truck. The key point for volume estimation is determination of the front area of the cut tree package. To eliminate slow and inaccurate manual measurements being now in practice the experimental system for automated non-contact wood measurements is developed. The system includes two non-metric CCD video cameras, PC as central processing unit, frame grabbers and original software for image processing and 3D measurements. The proposed method of measurement is based on capturing the stereo pair of front of trees package and performing the image orthotranformation into the front plane. This technique allows to process transformed image for circle shapes recognition and calculating their area. The metric characteristics of the system are provided by special camera calibration procedure. The paper presents the developed method of 3D measurements, describes the hardware used for image acquisition and the software realized the developed algorithms, gives the productivity and precision characteristics of the system.

  6. Faxed document image restoration method based on local pixel patterns

    NASA Astrophysics Data System (ADS)

    Akiyama, Teruo; Miyamoto, Nobuo; Oguro, Masami; Ogura, Kenji

    1998-04-01

    A method for restoring degraded faxed document images using the patterns of pixels that construct small areas in a document is proposed. The method effectively restores faxed images that contain the halftone textures and/or density salt-and-pepper noise that degrade OCR system performance. The halftone image restoration process, white-centered 3 X 3 pixels, in which black-and-white pixels alternate, are identified first using the distribution of the pixel values as halftone textures, and then the white center pixels are inverted to black. To remove high-density salt- and-pepper noise, it is assumed that the degradation is caused by ill-balanced bias and inappropriate thresholding of the sensor output which results in the addition of random noise. Restored image can be estimated using an approximation that uses the inverse operation of the assumed original process. In order to process degraded faxed images, the algorithms mentioned above are combined. An experiment is conducted using 24 especially poor quality examples selected from data sets that exemplify what practical fax- based OCR systems cannot handle. The maximum recovery rate in terms of mean square error was 98.8 percent.

  7. Steganographic optical image encryption system based on reversible data hiding and double random phase encoding

    NASA Astrophysics Data System (ADS)

    Chuang, Cheng-Hung; Chen, Yen-Lin

    2013-02-01

    This study presents a steganographic optical image encryption system based on reversible data hiding and double random phase encoding (DRPE) techniques. Conventional optical image encryption systems can securely transmit valuable images using an encryption method for possible application in optical transmission systems. The steganographic optical image encryption system based on the DRPE technique has been investigated to hide secret data in encrypted images. However, the DRPE techniques vulnerable to attacks and many of the data hiding methods in the DRPE system can distort the decrypted images. The proposed system, based on reversible data hiding, uses a JBIG2 compression scheme to achieve lossless decrypted image quality and perform a prior encryption process. Thus, the DRPE technique enables a more secured optical encryption process. The proposed method extracts and compresses the bit planes of the original image using the lossless JBIG2 technique. The secret data are embedded in the remaining storage space. The RSA algorithm can cipher the compressed binary bits and secret data for advanced security. Experimental results show that the proposed system achieves a high data embedding capacity and lossless reconstruction of the original images.

  8. Focus measure method based on the modulus of the gradient of the color planes for digital microscopy

    NASA Astrophysics Data System (ADS)

    Hurtado-Pérez, Román; Toxqui-Quitl, Carina; Padilla-Vivanco, Alfonso; Aguilar-Valdez, J. Félix; Ortega-Mendoza, Gabriel

    2018-02-01

    The modulus of the gradient of the color planes (MGC) is implemented to transform multichannel information to a grayscale image. This digital technique is used in two applications: (a) focus measurements during autofocusing (AF) process and (b) extending the depth of field (EDoF) by means of multifocus image fusion. In the first case, the MGC procedure is based on an edge detection technique and is implemented in over 15 focus metrics that are typically handled in digital microscopy. The MGC approach is tested on color images of histological sections for the selection of in-focus images. An appealing attribute of all the AF metrics working in the MGC space is their monotonic behavior even up to a magnification of 100×. An advantage of the MGC method is its computational simplicity and inherent parallelism. In the second application, a multifocus image fusion algorithm based on the MGC approach has been implemented on graphics processing units (GPUs). The resulting fused images are evaluated using a nonreference image quality metric. The proposed fusion method reveals a high-quality image independently of faulty illumination during the image acquisition. Finally, the three-dimensional visualization of the in-focus image is shown.

  9. a Metadata Based Approach for Analyzing Uav Datasets for Photogrammetric Applications

    NASA Astrophysics Data System (ADS)

    Dhanda, A.; Remondino, F.; Santana Quintero, M.

    2018-05-01

    This paper proposes a methodology for pre-processing and analysing Unmanned Aerial Vehicle (UAV) datasets before photogrammetric processing. In cases where images are gathered without a detailed flight plan and at regular acquisition intervals the datasets can be quite large and be time consuming to process. This paper proposes a method to calculate the image overlap and filter out images to reduce large block sizes and speed up photogrammetric processing. The python-based algorithm that implements this methodology leverages the metadata in each image to determine the end and side overlap of grid-based UAV flights. Utilizing user input, the algorithm filters out images that are unneeded for photogrammetric processing. The result is an algorithm that can speed up photogrammetric processing and provide valuable information to the user about the flight path.

  10. A study of the x-ray image quality improvement in the examination of the respiratory system based on the new image processing technique

    NASA Astrophysics Data System (ADS)

    Nagai, Yuichi; Kitagawa, Mayumi; Torii, Jun; Iwase, Takumi; Aso, Tomohiko; Ihara, Kanyu; Fujikawa, Mari; Takeuchi, Yumiko; Suzuki, Katsumi; Ishiguro, Takashi; Hara, Akio

    2014-03-01

    Recently, the double contrast technique in a gastrointestinal examination and the transbronchial lung biopsy in an examination for the respiratory system [1-3] have made a remarkable progress. Especially in the transbronchial lung biopsy, better quality of x-ray fluoroscopic images is requested because this examination is performed under a guidance of x-ray fluoroscopic images. On the other hand, various image processing methods [4] for x-ray fluoroscopic images have been developed as an x-ray system with a flat panel detector [5-7] is widely used. A recursive filtering is an effective method to reduce a random noise in x-ray fluoroscopic images. However it has a limitation for its effectiveness of a noise reduction in case of a moving object exists in x-ray fluoroscopic images because the recursive filtering is a noise reduction method by adding last few images. After recursive filtering a residual signal was produced if a moving object existed in x-ray images, and this residual signal disturbed a smooth procedure of the examinations. To improve this situation, new noise reduction method has been developed. The Adaptive Noise Reduction [ANR] is the brand-new noise reduction technique which can be reduced only a noise regardless of the moving object in x-ray fluoroscopic images. Therefore the ANR is a very suitable noise reduction method for the transbronchial lung biopsy under a guidance of x-ray fluoroscopic images because the residual signal caused of the moving object in x-ray fluoroscopic images is never produced after the ANR. In this paper, we will explain an advantage of the ANR by comparing of a performance between the ANR images and the conventional recursive filtering images.

  11. Identification of the critical depth-of-cut through a 2D image of the cutting region resulting from taper cutting of brittle materials

    NASA Astrophysics Data System (ADS)

    Gu, Wen; Zhu, Zhiwei; Zhu, Wu-Le; Lu, Leyao; To, Suet; Xiao, Gaobo

    2018-05-01

    An automatic identification method for obtaining the critical depth-of-cut (DoC) of brittle materials with nanometric accuracy and sub-nanometric uncertainty is proposed in this paper. With this method, a two-dimensional (2D) microscopic image of the taper cutting region is captured and further processed by image analysis to extract the margin of generated micro-cracks in the imaging plane. Meanwhile, an analytical model is formulated to describe the theoretical curve of the projected cutting points on the imaging plane with respect to a specified DoC during the whole cutting process. By adopting differential evolution algorithm-based minimization, the critical DoC can be identified by minimizing the deviation between the extracted margin and the theoretical curve. The proposed method is demonstrated through both numerical simulation and experimental analysis. Compared with conventional 2D- and 3D-microscopic-image-based methods, determination of the critical DoC in this study uses the envelope profile rather than the onset point of the generated cracks, providing a more objective approach with smaller uncertainty.

  12. Sharpening spots: correcting for bleedover in cDNA array images.

    PubMed

    Therneau, Terry; Tschumper, Renee C; Jelinek, Diane

    2002-03-01

    For cDNA array methods that depend on imaging of a radiolabel, we show that bleedover of one spot onto another, due to the gap between the array and the imaging media, can be a major problem. The images can be sharpened, however, using a blind convolution method based on the EM algorithm. The sharpened images look like a set of donuts, which concurs with our knowledge of the spotting process. Oversharpened images are actually useful as well, in locating the centers of each spot.

  13. Recovery of chemical estimates by field inhomogeneity neighborhood error detection (REFINED): fat/water separation at 7 tesla.

    PubMed

    Narayan, Sreenath; Kalhan, Satish C; Wilson, David L

    2013-05-01

    To reduce swaps in fat-water separation methods, a particular issue on 7 Tesla (T) small animal scanners due to field inhomogeneity, using image postprocessing innovations that detect and correct errors in the B0 field map. Fat-water decompositions and B0 field maps were computed for images of mice acquired on a 7T Bruker BioSpec scanner, using a computationally efficient method for solving the Markov Random Field formulation of the multi-point Dixon model. The B0 field maps were processed with a novel hole-filling method, based on edge strength between regions, and a novel k-means method, based on field-map intensities, which were iteratively applied to automatically detect and reinitialize error regions in the B0 field maps. Errors were manually assessed in the B0 field maps and chemical parameter maps both before and after error correction. Partial swaps were found in 6% of images when processed with FLAWLESS. After REFINED correction, only 0.7% of images contained partial swaps, resulting in an 88% decrease in error rate. Complete swaps were not problematic. Ex post facto error correction is a viable supplement to a priori techniques for producing globally smooth B0 field maps, without partial swaps. With our processing pipeline, it is possible to process image volumes rapidly, robustly, and almost automatically. Copyright © 2012 Wiley Periodicals, Inc.

  14. A novel method for surface defect inspection of optic cable with short-wave infrared illuminance

    NASA Astrophysics Data System (ADS)

    Chen, Xiaohong; Liu, Ning; You, Bo; Xiao, Bin

    2016-07-01

    Intelligent on-line detection of cable quality is a crucial issue in optic cable factory, and defects on the surface of optic cable can dramatically depress cable grade. Manual inspection in optic cable quality cannot catch up with the development of optic cable industry due to its low detection efficiency and huge human cost. Therefore, real-time is highly demanded by industry in order to replace the subjective and repetitive process of manual inspection. For this reason, automatic cable defect inspection has been a trend. In this paper, a novel method for surface defect inspection of optic cable with short-wave infrared illuminance is presented. The special condition of short-wave infrared cannot only provide illumination compensation for the weak illumination environment, but also can avoid the problem of exposure when using visible light illuminance, which affects the accuracy of inspection algorithm. A series of image processing algorithms are set up to analyze cable image for the verification of real-time and veracity of the detection method. Unlike some existing detection algorithms which concentrate on the characteristics of defects with an active search way, the proposed method removes the non-defective areas of the image passively at the same time of image processing, which reduces a large amount of computation. OTSU algorithm is used to convert the gray image to the binary image. Furthermore, a threshold window is designed to eliminate the fake defects, and the threshold represents the considered minimum size of defects ε . Besides, a new regional suppression method is proposed to deal with the edge burrs of the cable, which shows the superior performance compared with that of Open-Close operation of mathematical morphological in the boundary processing. Experimental results of 10,000 samples show that the rates of miss detection and false detection are 2.35% and 0.78% respectively when ε equals to 0.5 mm, and the average processing period of one frame image is 2.39 ms. All the improvements have been verified in the paper to show the ability of our inspection method for optic cable.

  15. Processing and analysis of cardiac optical mapping data obtained with potentiometric dyes

    PubMed Central

    Laughner, Jacob I.; Ng, Fu Siong; Sulkin, Matthew S.; Arthur, R. Martin

    2012-01-01

    Optical mapping has become an increasingly important tool to study cardiac electrophysiology in the past 20 years. Multiple methods are used to process and analyze cardiac optical mapping data, and no consensus currently exists regarding the optimum methods. The specific methods chosen to process optical mapping data are important because inappropriate data processing can affect the content of the data and thus alter the conclusions of the studies. Details of the different steps in processing optical imaging data, including image segmentation, spatial filtering, temporal filtering, and baseline drift removal, are provided in this review. We also provide descriptions of the common analyses performed on data obtained from cardiac optical imaging, including activation mapping, action potential duration mapping, repolarization mapping, conduction velocity measurements, and optical action potential upstroke analysis. Optical mapping is often used to study complex arrhythmias, and we also discuss dominant frequency analysis and phase mapping techniques used for the analysis of cardiac fibrillation. PMID:22821993

  16. Testing an Alternative Method for Estimating the Length of Fungal Hyphae Using Photomicrography and Image Processing.

    PubMed

    Shen, Qinhua; Kirschbaum, Miko U F; Hedley, Mike J; Camps Arbestain, Marta

    2016-01-01

    This study aimed to develop and test an unbiased and rapid methodology to estimate the length of external arbuscular mycorrhizal fungal (AMF) hyphae in soil. The traditional visual gridline intersection (VGI) method, which consists in a direct visual examination of the intersections of hyphae with gridlines on a microscope eyepiece after aqueous extraction, membrane-filtration, and staining (e.g., with trypan blue), was refined. For this, (i) images of the stained hyphae were taken by using a digital photomicrography technique to avoid the use of the microscope and the method was referred to as "digital gridline intersection" (DGI) method; and (ii), the images taken in (i) were processed and the hyphal length was measured by using ImageJ software, referred to as the "photomicrography-ImageJ processing" (PIP) method. The DGI and PIP methods were tested using known grade lengths of possum fur. Then they were applied to measure the hyphal lengths in soils with contrasting phosphorus (P) fertility status. Linear regressions were obtained between the known lengths (Lknown) of possum fur and the values determined by using either the DGI (LDGI) (LDGI = 0.37 + 0.97 × Lknown, r2 = 0.86) or PIP (LPIP) methods (LPIP = 0.33 + 1.01 × Lknown, r2 = 0.98). There were no significant (P > 0.05) differences between the LDGI and LPIP values. While both methods provided accurate estimation (slope of regression being 1.0), the PIP method was more precise, as reflected by a higher value of r2 and lower coefficients of variation. The average hyphal lengths (6.5-19.4 m g-1) obtained by the use of these methods were in the range of those typically reported in the literature (3-30 m g-1). Roots growing in P-deficient soil developed 2.5 times as many hyphae as roots growing in P-rich soil (17.4 vs 7.2 m g-1). These tests confirmed that the use of digital photomicrography in conjunction with either the grid-line intersection principle or image processing is a suitable method for the measurement of AMF hyphal lengths in soils for comparative investigations.

  17. The Extraction of Terrace in the Loess Plateau Based on radial method

    NASA Astrophysics Data System (ADS)

    Liu, W.; Li, F.

    2016-12-01

    The terrace of Loess Plateau, as a typical kind of artificial landform and an important measure of soil and water conservation, its positioning and automatic extraction will simplify the work of land use investigation. The existing methods of terrace extraction mainly include visual interpretation and automatic extraction. The manual method is used in land use investigation, but it is time-consuming and laborious. Researchers put forward some automatic extraction methods. For example, Fourier transform method can recognize terrace and find accurate position from frequency domain image, but it is more affected by the linear objects in the same direction of terrace; Texture analysis method is simple and have a wide range application of image processing. The disadvantage of texture analysis method is unable to recognize terraces' edge; Object-oriented is a new method of image classification, but when introduce it to terrace extracting, fracture polygons will be the most serious problem and it is difficult to explain its geological meaning. In order to positioning the terraces, we use high- resolution remote sensing image to extract and analyze the gray value of the pixels which the radial went through. During the recognition process, we firstly use the DEM data analysis or by manual selecting, to roughly confirm the position of peak points; secondly, take each of the peak points as the center to make radials in all directions; finally, extracting the gray values of the pixels which the radials went through, and analyzing its changing characteristics to confirm whether the terrace exists. For the purpose of getting accurate position of terrace, terraces' discontinuity, extension direction, ridge width, image processing algorithm, remote sensing image illumination and other influence factors were fully considered when designing the algorithms.

  18. SU-G-IeP3-08: Image Reconstruction for Scanning Imaging System Based On Shape-Modulated Point Spreading Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ruixing; Yang, LV; Xu, Kele

    Purpose: Deconvolution is a widely used tool in the field of image reconstruction algorithm when the linear imaging system has been blurred by the imperfect system transfer function. However, due to the nature of Gaussian-liked distribution for point spread function (PSF), the components with coherent high frequency in the image are hard to restored in most of the previous scanning imaging system, even the relatively accurate PSF is acquired. We propose a novel method for deconvolution of images which are obtained by using shape-modulated PSF. Methods: We use two different types of PSF - Gaussian shape and donut shape -more » to convolute the original image in order to simulate the process of scanning imaging. By employing deconvolution of the two images with corresponding given priors, the image quality of the deblurred images are compared. Then we find the critical size of the donut shape compared with the Gaussian shape which has similar deconvolution results. Through calculation of tightened focusing process using radially polarized beam, such size of donut is achievable under same conditions. Results: The effects of different relative size of donut and Gaussian shapes are investigated. When the full width at half maximum (FWHM) ratio of donut and Gaussian shape is set about 1.83, similar resolution results are obtained through our deconvolution method. Decreasing the size of donut will favor the deconvolution method. A mask with both amplitude and phase modulation is used to create a donut-shaped PSF compared with the non-modulated Gaussian PSF. Donut with size smaller than our critical value is obtained. Conclusion: The utility of donutshaped PSF are proved useful and achievable in the imaging and deconvolution processing, which is expected to have potential practical applications in high resolution imaging for biological samples.« less

  19. Compact hybrid optoelectrical unit for image processing and recognition

    NASA Astrophysics Data System (ADS)

    Cheng, Gang; Jin, Guofan; Wu, Minxian; Liu, Haisong; He, Qingsheng; Yuan, ShiFu

    1998-07-01

    In this paper a compact opto-electric unit (CHOEU) for digital image processing and recognition is proposed. The central part of CHOEU is an incoherent optical correlator, which is realized with a SHARP QA-1200 8.4 inch active matrix TFT liquid crystal display panel which is used as two real-time spatial light modulators for both the input image and reference template. CHOEU can do two main processing works. One is digital filtering; the other is object matching. Using CHOEU an edge-detection operator is realized to extract the edges from the input images. Then the reprocessed images are sent into the object recognition unit for identifying the important targets. A novel template- matching method is proposed for gray-tome image recognition. A positive and negative cycle-encoding method is introduced to realize the absolute difference measurement pixel- matching on a correlator structure simply. The system has god fault-tolerance ability for rotation distortion, Gaussian noise disturbance or information losing. The experiments are given at the end of this paper.

  20. Adjacent slice prostate cancer prediction to inform MALDI imaging biomarker analysis

    NASA Astrophysics Data System (ADS)

    Chuang, Shao-Hui; Sun, Xiaoyan; Cazares, Lisa; Nyalwidhe, Julius; Troyer, Dean; Semmes, O. John; Li, Jiang; McKenzie, Frederic D.

    2010-03-01

    Prostate cancer is the second most common type of cancer among men in US [1]. Traditionally, prostate cancer diagnosis is made by the analysis of prostate-specific antigen (PSA) levels and histopathological images of biopsy samples under microscopes. Proteomic biomarkers can improve upon these methods. MALDI molecular spectra imaging is used to visualize protein/peptide concentrations across biopsy samples to search for biomarker candidates. Unfortunately, traditional processing methods require histopathological examination on one slice of a biopsy sample while the adjacent slice is subjected to the tissue destroying desorption and ionization processes of MALDI. The highest confidence tumor regions gained from the histopathological analysis are then mapped to the MALDI spectra data to estimate the regions for biomarker identification from the MALDI imaging. This paper describes a process to provide a significantly better estimate of the cancer tumor to be mapped onto the MALDI imaging spectra coordinates using the high confidence region to predict the true area of the tumor on the adjacent MALDI imaged slice.

  1. Evaluation and testing of image quality of the Space Solar Extreme Ultraviolet Telescope

    NASA Astrophysics Data System (ADS)

    Peng, Jilong; Yi, Zhong; Zhou, Shuhong; Yu, Qian; Hou, Yinlong; Wang, Shanshan

    2018-01-01

    For the space solar extreme ultraviolet telescope, the star point test can not be performed in the x-ray band (19.5nm band) as there is not light source of bright enough. In this paper, the point spread function of the optical system is calculated to evaluate the imaging performance of the telescope system. Combined with the actual processing surface error, such as small grinding head processing and magnetorheological processing, the optical design software Zemax and data analysis software Matlab are used to directly calculate the system point spread function of the space solar extreme ultraviolet telescope. Matlab codes are programmed to generate the required surface error grid data. These surface error data is loaded to the specified surface of the telescope system by using the communication technique of DDE (Dynamic Data Exchange), which is used to connect Zemax and Matlab. As the different processing methods will lead to surface error with different size, distribution and spatial frequency, the impact of imaging is also different. Therefore, the characteristics of the surface error of different machining methods are studied. Combining with its position in the optical system and simulation its influence on the image quality, it is of great significance to reasonably choose the processing technology. Additionally, we have also analyzed the relationship between the surface error and the image quality evaluation. In order to ensure the final processing of the mirror to meet the requirements of the image quality, we should choose one or several methods to evaluate the surface error according to the different spatial frequency characteristics of the surface error.

  2. Methods of Hematoxylin and Erosin Image Information Acquisition and Optimization in Confocal Microscopy.

    PubMed

    Yoon, Woong Bae; Kim, Hyunjin; Kim, Kwang Gi; Choi, Yongdoo; Chang, Hee Jin; Sohn, Dae Kyung

    2016-07-01

    We produced hematoxylin and eosin (H&E) staining-like color images by using confocal laser scanning microscopy (CLSM), which can obtain the same or more information in comparison to conventional tissue staining. We improved images by using several image converting techniques, including morphological methods, color space conversion methods, and segmentation methods. An image obtained after image processing showed coloring very similar to that in images produced by H&E staining, and it is advantageous to conduct analysis through fluorescent dye imaging and microscopy rather than analysis based on single microscopic imaging. The colors used in CLSM are different from those seen in H&E staining, which is the method most widely used for pathologic diagnosis and is familiar to pathologists. Computer technology can facilitate the conversion of images by CLSM to be very similar to H&E staining images. We believe that the technique used in this study has great potential for application in clinical tissue analysis.

  3. Single image super-resolution reconstruction algorithm based on eage selection

    NASA Astrophysics Data System (ADS)

    Zhang, Yaolan; Liu, Yijun

    2017-05-01

    Super-resolution (SR) has become more important, because it can generate high-quality high-resolution (HR) images from low-resolution (LR) input images. At present, there are a lot of work is concentrated on developing sophisticated image priors to improve the image quality, while taking much less attention to estimating and incorporating the blur model that can also impact the reconstruction results. We present a new reconstruction method based on eager selection. This method takes full account of the factors that affect the blur kernel estimation and accurately estimating the blur process. When comparing with the state-of-the-art methods, our method has comparable performance.

  4. Chemical imaging analysis of the brain with X-ray methods

    NASA Astrophysics Data System (ADS)

    Collingwood, Joanna F.; Adams, Freddy

    2017-04-01

    Cells employ various metal and metalloid ions to augment the structure and the function of proteins and to assist with vital biological processes. In the brain they mediate biochemical processes, and disrupted metabolism of metals may be a contributing factor in neurodegenerative disorders. In this tutorial review we will discuss the particular role of X-ray methods for elemental imaging analysis of accumulated metal species and metal-containing compounds in biological materials, in the context of post-mortem brain tissue. X-rays have the advantage that they have a short wavelength and can penetrate through a thick biological sample. Many of the X-ray microscopy techniques that provide the greatest sensitivity and specificity for trace metal concentrations in biological materials are emerging at synchrotron X-ray facilities. Here, the extremely high flux available across a wide range of soft and hard X-rays, combined with state-of-the-art focusing techniques and ultra-sensitive detectors, makes it viable to undertake direct imaging of a number of elements in brain tissue. The different methods for synchrotron imaging of metals in brain tissues at regional, cellular, and sub-cellular spatial resolution are discussed. Methods covered include X-ray fluorescence for elemental imaging, X-ray absorption spectrometry for speciation imaging, X-ray diffraction for structural imaging, phase contrast for enhanced contrast imaging and scanning transmission X-ray microscopy for spectromicroscopy. Two- and three-dimensional (confocal and tomographic) imaging methods are considered as well as the correlation of X-ray microscopy with other imaging tools.

  5. Peripleural lung disease detection based on multi-slice CT images

    NASA Astrophysics Data System (ADS)

    Matsuhiro, M.; Suzuki, H.; Kawata, Y.; Niki, N.; Nakano, Y.; Ohmatsu, H.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, M.

    2015-03-01

    With the development of multi-slice CT technology, obtaining accurate 3D images of lung field in a short time become possible. To support that, a lot of image processing methods need to be developed. Detection peripleural lung disease is difficult due to its existence out of lung region, because lung extraction is often performed based on threshold processing. The proposed method uses thoracic inner region extracted by inner cavity of bone as well as air region, covers peripleural lung diseased cases such as lung nodule, calcification, pleural effusion and pleural plaque. We applied this method to 50 cases including 39 peripleural lung diseased cases. This method was able to detect 39 peripleural lung disease with 2.9 false positive per case.

  6. Anomaly Detection in Nanofibrous Materials by CNN-Based Self-Similarity

    PubMed Central

    Schettini, Raimondo

    2018-01-01

    Automatic detection and localization of anomalies in nanofibrous materials help to reduce the cost of the production process and the time of the post-production visual inspection process. Amongst all the monitoring methods, those exploiting Scanning Electron Microscope (SEM) imaging are the most effective. In this paper, we propose a region-based method for the detection and localization of anomalies in SEM images, based on Convolutional Neural Networks (CNNs) and self-similarity. The method evaluates the degree of abnormality of each subregion of an image under consideration by computing a CNN-based visual similarity with respect to a dictionary of anomaly-free subregions belonging to a training set. The proposed method outperforms the state of the art. PMID:29329268

  7. Preliminary study of ultrasonic structural quality control of Swiss-type cheese.

    PubMed

    Eskelinen, J J; Alavuotunki, A P; Haeggström, E; Alatossava, T

    2007-09-01

    There is demand for a new nondestructive cheese-structure analysis method for Swiss-type cheese. Such a method would provide the cheese-making industry the means to enhance process control and quality assurance. This paper presents a feasibility study on ultrasonic monitoring of the structural quality of Swiss cheese by using a single-transducer 2-MHz longitudinal mode pulse-echo setup. A volumetric ultrasonic image of a cheese sample featuring gas holes (cheese-eyes) and defects (cracks) in the scan area is presented. The image is compared with an optical reference image constructed from dissection images of the same sample. The results show that the ultrasonic method is capable of monitoring the gas-solid structure of the cheese during the ripening process. Moreover, the method can be used to detect and to characterize cheese-eyes and cracks in ripened cheese. Industrial application demands were taken into account when conducting the measurements.

  8. Experiment research on inertia-aided adaptive electronic image stabilization of optical stable platform

    NASA Astrophysics Data System (ADS)

    Lu, Xiaodong; Wu, Tianze; Zhou, Jun; Zhao, Bin; Ma, Xiaoyuan; Tang, Xiucheng

    2016-03-01

    An electronic image stabilization method compounded with inertia information, which can compensate the coupling interference caused by the pitch-yaw movement of the optical stable platform system, has been proposed in this paper. Firstly the mechanisms of coning rotation and lever-arm translation of line of sight (LOS) are analyzed during the stabilization process under moving carriers, and the mathematical model which describes the relationship between LOS rotation angle and platform attitude angle are derived. Then the image spin angle caused by coning rotation is estimated by using inertia information. Furthermore, an adaptive block matching method, which based on image edge and angular point, is proposed to smooth the jitter created by the lever-arm translation. This method optimizes the matching process and strategies. Finally, the results of hardware-in-the-loop simulation verified the effectiveness and real-time performance of the proposed method.

  9. Blurred Star Image Processing for Star Sensors under Dynamic Conditions

    PubMed Central

    Zhang, Weina; Quan, Wei; Guo, Lei

    2012-01-01

    The precision of star point location is significant to identify the star map and to acquire the aircraft attitude for star sensors. Under dynamic conditions, star images are not only corrupted by various noises, but also blurred due to the angular rate of the star sensor. According to different angular rates under dynamic conditions, a novel method is proposed in this article, which includes a denoising method based on adaptive wavelet threshold and a restoration method based on the large angular rate. The adaptive threshold is adopted for denoising the star image when the angular rate is in the dynamic range. Then, the mathematical model of motion blur is deduced so as to restore the blurred star map due to large angular rate. Simulation results validate the effectiveness of the proposed method, which is suitable for blurred star image processing and practical for attitude determination of satellites under dynamic conditions. PMID:22778666

  10. 3D measurement by digital photogrammetry

    NASA Astrophysics Data System (ADS)

    Schneider, Carl T.

    1993-12-01

    Photogrammetry is well known in geodetic surveys as aerial photogrammetry or close range applications as architectural photogrammetry. The photogrammetric methods and algorithms combined with digital cameras and digital image processing methods are now introduced for industrial applications as automation and quality control. The presented paper will describe the photogrammetric and digital image processing algorithms and the calibration methods. These algorithms and methods were demonstrated with application examples. These applications are a digital photogrammetric workstation as a mobil multi purpose 3D measuring tool and a tube measuring system as an example for a single purpose tool.

  11. Physical Modeling for Processing Geosynchronous Imaging Fourier Transform Spectrometer-Indian Ocean METOC Imager (GIFTS-IOMI) Hyperspectral Data

    DTIC Science & Technology

    2002-09-30

    Physical Modeling for Processing Geosynchronous Imaging Fourier Transform Spectrometer-Indian Ocean METOC Imager ( GIFTS -IOMI) Hyperspectral Data...water quality assessment. OBJECTIVES The objective of this DoD research effort is to develop and demonstrate a fully functional GIFTS - IOMI...environment once GIFTS -IOMI is stationed over the Indian Ocean. The system will provide specialized methods for the characterization of the atmospheric

  12. Contrast Enhancement Algorithm Based on Gap Adjustment for Histogram Equalization

    PubMed Central

    Chiu, Chung-Cheng; Ting, Chih-Chung

    2016-01-01

    Image enhancement methods have been widely used to improve the visual effects of images. Owing to its simplicity and effectiveness histogram equalization (HE) is one of the methods used for enhancing image contrast. However, HE may result in over-enhancement and feature loss problems that lead to unnatural look and loss of details in the processed images. Researchers have proposed various HE-based methods to solve the over-enhancement problem; however, they have largely ignored the feature loss problem. Therefore, a contrast enhancement algorithm based on gap adjustment for histogram equalization (CegaHE) is proposed. It refers to a visual contrast enhancement algorithm based on histogram equalization (VCEA), which generates visually pleasing enhanced images, and improves the enhancement effects of VCEA. CegaHE adjusts the gaps between two gray values based on the adjustment equation, which takes the properties of human visual perception into consideration, to solve the over-enhancement problem. Besides, it also alleviates the feature loss problem and further enhances the textures in the dark regions of the images to improve the quality of the processed images for human visual perception. Experimental results demonstrate that CegaHE is a reliable method for contrast enhancement and that it significantly outperforms VCEA and other methods. PMID:27338412

  13. Smart light random memory sprays Retinex: a fast Retinex implementation for high-quality brightness adjustment and color correction.

    PubMed

    Banić, Nikola; Lončarić, Sven

    2015-11-01

    Removing the influence of illumination on image colors and adjusting the brightness across the scene are important image enhancement problems. This is achieved by applying adequate color constancy and brightness adjustment methods. One of the earliest models to deal with both of these problems was the Retinex theory. Some of the Retinex implementations tend to give high-quality results by performing local operations, but they are computationally relatively slow. One of the recent Retinex implementations is light random sprays Retinex (LRSR). In this paper, a new method is proposed for brightness adjustment and color correction that overcomes the main disadvantages of LRSR. There are three main contributions of this paper. First, a concept of memory sprays is proposed to reduce the number of LRSR's per-pixel operations to a constant regardless of the parameter values, thereby enabling a fast Retinex-based local image enhancement. Second, an effective remapping of image intensities is proposed that results in significantly higher quality. Third, the problem of LRSR's halo effect is significantly reduced by using an alternative illumination processing method. The proposed method enables a fast Retinex-based image enhancement by processing Retinex paths in a constant number of steps regardless of the path size. Due to the halo effect removal and remapping of the resulting intensities, the method outperforms many of the well-known image enhancement methods in terms of resulting image quality. The results are presented and discussed. It is shown that the proposed method outperforms most of the tested methods in terms of image brightness adjustment, color correction, and computational speed.

  14. Digital methods of recording color television images on film tape

    NASA Astrophysics Data System (ADS)

    Krivitskaya, R. Y.; Semenov, V. M.

    1985-04-01

    Three methods are now available for recording color television images on film tape, directly or after appropriate finish of signal processing. Conventional recording of images from the screens of three kinescopes with synthetic crystal face plates is still most effective for high fidelity. This method was improved by digital preprocessing of brightness color-difference signal. Frame-by-frame storage of these signals in the memory in digital form is followed by gamma and aperture correction and electronic correction of crossover distortions in the color layers of the film with fixing in accordance with specific emulsion procedures. The newer method of recording color television images with line arrays of light-emitting diodes involves dichromic superposing mirrors and a movable scanning mirror. This method allows the use of standard movie cameras, simplifies interlacing-to-linewise conversion and the mechanical equipment, and lengthens exposure time while it shortens recording time. The latest image transform method requires an audio-video recorder, a memory disk, a digital computer, and a decoder. The 9-step procedure includes preprocessing the total color television signal with reduction of noise level and time errors, followed by frame frequency conversion and setting the number of lines. The total signal is then resolved into its brightness and color-difference components and phase errors and image blurring are also reduced. After extraction of R,G,B signals and colorimetric matching of TV camera and film tape, the simultaneous R,B, B signals are converted from interlacing to sequential triades of color-quotient frames with linewise scanning at triple frequency. Color-quotient signals are recorded with an electron beam on a smoothly moving black-and-white film tape under vacuum. While digital techniques improve the signal quality and simplify the control of processes, not requiring stabilization of circuits, image processing is still analog.

  15. Application of Time-Frequency Domain Transform to Three-Dimensional Interpolation of Medical Images.

    PubMed

    Lv, Shengqing; Chen, Yimin; Li, Zeyu; Lu, Jiahui; Gao, Mingke; Lu, Rongrong

    2017-11-01

    Medical image three-dimensional (3D) interpolation is an important means to improve the image effect in 3D reconstruction. In image processing, the time-frequency domain transform is an efficient method. In this article, several time-frequency domain transform methods are applied and compared in 3D interpolation. And a Sobel edge detection and 3D matching interpolation method based on wavelet transform is proposed. We combine wavelet transform, traditional matching interpolation methods, and Sobel edge detection together in our algorithm. What is more, the characteristics of wavelet transform and Sobel operator are used. They deal with the sub-images of wavelet decomposition separately. Sobel edge detection 3D matching interpolation method is used in low-frequency sub-images under the circumstances of ensuring high frequency undistorted. Through wavelet reconstruction, it can get the target interpolation image. In this article, we make 3D interpolation of the real computed tomography (CT) images. Compared with other interpolation methods, our proposed method is verified to be effective and superior.

  16. Nonparametric Bayesian Dictionary Learning for Analysis of Noisy and Incomplete Images

    PubMed Central

    Zhou, Mingyuan; Chen, Haojun; Paisley, John; Ren, Lu; Li, Lingbo; Xing, Zhengming; Dunson, David; Sapiro, Guillermo; Carin, Lawrence

    2013-01-01

    Nonparametric Bayesian methods are considered for recovery of imagery based upon compressive, incomplete, and/or noisy measurements. A truncated beta-Bernoulli process is employed to infer an appropriate dictionary for the data under test and also for image recovery. In the context of compressive sensing, significant improvements in image recovery are manifested using learned dictionaries, relative to using standard orthonormal image expansions. The compressive-measurement projections are also optimized for the learned dictionary. Additionally, we consider simpler (incomplete) measurements, defined by measuring a subset of image pixels, uniformly selected at random. Spatial interrelationships within imagery are exploited through use of the Dirichlet and probit stick-breaking processes. Several example results are presented, with comparisons to other methods in the literature. PMID:21693421

  17. Image Restoration Using Functional and Anatomical Information Fusion with Application to SPECT-MRI Images

    PubMed Central

    Benameur, S.; Mignotte, M.; Meunier, J.; Soucy, J. -P.

    2009-01-01

    Image restoration is usually viewed as an ill-posed problem in image processing, since there is no unique solution associated with it. The quality of restored image closely depends on the constraints imposed of the characteristics of the solution. In this paper, we propose an original extension of the NAS-RIF restoration technique by using information fusion as prior information with application in SPECT medical imaging. That extension allows the restoration process to be constrained by efficiently incorporating, within the NAS-RIF method, a regularization term which stabilizes the inverse solution. Our restoration method is constrained by anatomical information extracted from a high resolution anatomical procedure such as magnetic resonance imaging (MRI). This structural anatomy-based regularization term uses the result of an unsupervised Markovian segmentation obtained after a preliminary registration step between the MRI and SPECT data volumes from each patient. This method was successfully tested on 30 pairs of brain MRI and SPECT acquisitions from different subjects and on Hoffman and Jaszczak SPECT phantoms. The experiments demonstrated that the method performs better, in terms of signal-to-noise ratio, than a classical supervised restoration approach using a Metz filter. PMID:19812704

  18. Image Processing for Educators in Global Hands-On Universe

    NASA Astrophysics Data System (ADS)

    Miller, J. P.; Pennypacker, C. R.; White, G. L.

    2006-08-01

    A method of image processing to find time-varying objects is being developed for the National Virtual Observatory as part of Global Hands-On Universe(tm) (Lawrence Hall of Science; University of California, Berkeley). Objects that vary in space or time are of prime importance in modern astronomy and astrophysics. Such objects include active galactic nuclei, variable stars, supernovae, or moving objects across a field of view such as an asteroid, comet, or extrasolar planet transiting its parent star. The search for these objects is undertaken by acquiring an image of the region of the sky where they occur followed by a second image taken at a later time. Ideally, both images are taken with the same telescope using the same filter and charge-coupled device. The two images are aligned and subtracted with the subtracted image revealing any changes in light during the time period between the two images. We have used a method of Christophe Alard using the image processing software IDL Version 6.2 (Research Systems, Inc.) with the exception of the background correction, which is done on the two images prior to the subtraction. Testing has been extensive, using images provided by a number of National Virtual Observatory and collaborating projects. They include the Supernovae Trace Cosmic Expansion (Cerro Tololo Inter-American Observatory), Supernovae/ Acceleration Program (Lawrence Berkeley National Laboratory), Lowell Observatory Near-Earth Object Search (Lowell Observatory), and the Centre National de la Recherche Scientifique (Paris, France). Further testing has been done with students, including a May 2006 two week program at the Lawrence Berkeley National Laboratory. Students from Hardin-Simmons University (Abilene, TX) and Jackson State University (Jackson, MS) used the subtraction method to analyze images from the Cerro Tololo Inter-American Observatory (CTIO) searching for new asteroids and Kuiper Belt objects. In October 2006 students from five U.S. high schools will use the subtraction method in an asteroid search campaign using CTIO images with 7-day follow-up images to be provided by the Las Cumbres Observatory (Santa Barbara, CA). During the Spring 2006 semester, students from Cape Fear High School used the method to search for near-Earth objects and supernovae. Using images from the Astronomical Research Institute (Charleston, IL) the method contributed to the original discovery of two supernovae, SN 2006al and SN 2006bi.

  19. Single-Transducer, Ultrasonic Imaging Method for High-Temperature Structural Materials Eliminates the Effect of Thickness Variation in the Image

    NASA Technical Reports Server (NTRS)

    Roth, Don J.

    1998-01-01

    NASA Lewis Research Center's Life Prediction Branch, in partnership with Sonix, Inc., and Cleveland State University, recently advanced the development of, refined, and commercialized an advanced nondestructive evaluation (NDE) inspection method entitled the Single Transducer Thickness-Independent Ultrasonic Imaging Method. Selected by R&D Magazine as one of the 100 most technologically significant new products of 1996, the method uses a single transducer to eliminate the superimposing effects of thickness variation in the ultrasonic images of materials. As a result, any variation seen in the image is due solely to microstructural variation. This nondestructive method precisely and accurately characterizes material gradients (pore fraction, density, or chemical) that affect the uniformity of a material's physical performance (mechanical, thermal, or electrical). Advantages of the method over conventional ultrasonic imaging include (1) elimination of machining costs (for precision thickness control) during the quality control stages of material processing and development and (2) elimination of labor costs and subjectivity involved in further image processing and image interpretation. At NASA Lewis, the method has been used primarily for accurate inspections of high temperature structural materials including monolithic ceramics, metal matrix composites, and polymer matrix composites. Data were published this year for platelike samples, and current research is focusing on applying the method to tubular components. The initial publicity regarding the development of the method generated 150 requests for further information from a wide variety of institutions and individuals including the Federal Bureau of Investigation (FBI), Lockheed Martin Corporation, Rockwell International, Hewlett Packard Company, and Procter & Gamble Company. In addition, NASA has been solicited by the 3M Company and Allison Abrasives to use this method to inspect composite materials that are manufactured by these companies.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, Shuai; Yu, Lifeng; Wang, Jia

    Purpose: Our purpose was to reduce image noise in spectral CT by exploiting data redundancies in the energy domain to allow flexible selection of the number, width, and location of the energy bins. Methods: Using a variety of spectral CT imaging methods, conventional filtered backprojection (FBP) reconstructions were performed and resulting images were compared to those processed using a Local HighlY constrained backPRojection Reconstruction (HYPR-LR) algorithm. The mean and standard deviation of CT numbers were measured within regions of interest (ROIs), and results were compared between FBP and HYPR-LR. For these comparisons, the following spectral CT imaging methods were used:(i)more » numerical simulations based on a photon-counting, detector-based CT system, (ii) a photon-counting, detector-based micro CT system using rubidium and potassium chloride solutions, (iii) a commercial CT system equipped with integrating detectors utilizing tube potentials of 80, 100, 120, and 140 kV, and (iv) a clinical dual-energy CT examination. The effects of tube energy and energy bin width were evaluated appropriate to each CT system. Results: The mean CT number in each ROI was unchanged between FBP and HYPR-LR images for each of the spectral CT imaging scenarios, irrespective of bin width or tube potential. However, image noise, as represented by the standard deviation of CT numbers in each ROI, was reduced by 36%-76%. In all scenarios, image noise after HYPR-LR algorithm was similar to that of composite images, which used all available photons. No difference in spatial resolution was observed between HYPR-LR processing and FBP. Dual energy patient data processed using HYPR-LR demonstrated reduced noise in the individual, low- and high-energy images, as well as in the material-specific basis images. Conclusions: Noise reduction can be accomplished for spectral CT by exploiting data redundancies in the energy domain. HYPR-LR is a robust method for reducing image noise in a variety of spectral CT imaging systems without losing spatial resolution or CT number accuracy. This method improves the flexibility to select energy bins in the manner that optimizes material identification and separation without paying the penalty of increased image noise or its corollary, increased patient dose.« less

  1. New deconvolution method for microscopic images based on the continuous Gaussian radial basis function interpolation model.

    PubMed

    Chen, Zhaoxue; Chen, Hao

    2014-01-01

    A deconvolution method based on the Gaussian radial basis function (GRBF) interpolation is proposed. Both the original image and Gaussian point spread function are expressed as the same continuous GRBF model, thus image degradation is simplified as convolution of two continuous Gaussian functions, and image deconvolution is converted to calculate the weighted coefficients of two-dimensional control points. Compared with Wiener filter and Lucy-Richardson algorithm, the GRBF method has an obvious advantage in the quality of restored images. In order to overcome such a defect of long-time computing, the method of graphic processing unit multithreading or increasing space interval of control points is adopted, respectively, to speed up the implementation of GRBF method. The experiments show that based on the continuous GRBF model, the image deconvolution can be efficiently implemented by the method, which also has a considerable reference value for the study of three-dimensional microscopic image deconvolution.

  2. Multispectral image fusion for target detection

    NASA Astrophysics Data System (ADS)

    Leviner, Marom; Maltz, Masha

    2009-09-01

    Various different methods to perform multi-spectral image fusion have been suggested, mostly on the pixel level. However, the jury is still out on the benefits of a fused image compared to its source images. We present here a new multi-spectral image fusion method, multi-spectral segmentation fusion (MSSF), which uses a feature level processing paradigm. To test our method, we compared human observer performance in an experiment using MSSF against two established methods: Averaging and Principle Components Analysis (PCA), and against its two source bands, visible and infrared. The task that we studied was: target detection in the cluttered environment. MSSF proved superior to the other fusion methods. Based on these findings, current speculation about the circumstances in which multi-spectral image fusion in general and specific fusion methods in particular would be superior to using the original image sources can be further addressed.

  3. Wavelet imaging cleaning method for atmospheric Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Lessard, R. W.; Cayón, L.; Sembroski, G. H.; Gaidos, J. A.

    2002-07-01

    We present a new method of image cleaning for imaging atmospheric Cherenkov telescopes. The method is based on the utilization of wavelets to identify noise pixels in images of gamma-ray and hadronic induced air showers. This method selects more signal pixels with Cherenkov photons than traditional image processing techniques. In addition, the method is equally efficient at rejecting pixels with noise alone. The inclusion of more signal pixels in an image of an air shower allows for a more accurate reconstruction, especially at lower gamma-ray energies that produce low levels of light. We present the results of Monte Carlo simulations of gamma-ray and hadronic air showers which show improved angular resolution using this cleaning procedure. Data from the Whipple Observatory's 10-m telescope are utilized to show the efficacy of the method for extracting a gamma-ray signal from the background of hadronic generated images.

  4. Quantitative assessment of the impact of biomedical image acquisition on the results obtained from image analysis and processing.

    PubMed

    Koprowski, Robert

    2014-07-04

    Dedicated, automatic algorithms for image analysis and processing are becoming more and more common in medical diagnosis. When creating dedicated algorithms, many factors must be taken into consideration. They are associated with selecting the appropriate algorithm parameters and taking into account the impact of data acquisition on the results obtained. An important feature of algorithms is the possibility of their use in other medical units by other operators. This problem, namely operator's (acquisition) impact on the results obtained from image analysis and processing, has been shown on a few examples. The analysed images were obtained from a variety of medical devices such as thermal imaging, tomography devices and those working in visible light. The objects of imaging were cellular elements, the anterior segment and fundus of the eye, postural defects and others. In total, almost 200'000 images coming from 8 different medical units were analysed. All image analysis algorithms were implemented in C and Matlab. For various algorithms and methods of medical imaging, the impact of image acquisition on the results obtained is different. There are different levels of algorithm sensitivity to changes in the parameters, for example: (1) for microscope settings and the brightness assessment of cellular elements there is a difference of 8%; (2) for the thyroid ultrasound images there is a difference in marking the thyroid lobe area which results in a brightness assessment difference of 2%. The method of image acquisition in image analysis and processing also affects: (3) the accuracy of determining the temperature in the characteristic areas on the patient's back for the thermal method - error of 31%; (4) the accuracy of finding characteristic points in photogrammetric images when evaluating postural defects - error of 11%; (5) the accuracy of performing ablative and non-ablative treatments in cosmetology - error of 18% for the nose, 10% for the cheeks, and 7% for the forehead. Similarly, when: (7) measuring the anterior eye chamber - there is an error of 20%; (8) measuring the tooth enamel thickness - error of 15%; (9) evaluating the mechanical properties of the cornea during pressure measurement - error of 47%. The paper presents vital, selected issues occurring when assessing the accuracy of designed automatic algorithms for image analysis and processing in bioengineering. The impact of acquisition of images on the problems arising in their analysis has been shown on selected examples. It has also been indicated to which elements of image analysis and processing special attention should be paid in their design.

  5. Some new classification methods for hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Du, Pei-jun; Chen, Yun-hao; Jones, Simon; Ferwerda, Jelle G.; Chen, Zhi-jun; Zhang, Hua-peng; Tan, Kun; Yin, Zuo-xia

    2006-10-01

    Hyperspectral Remote Sensing (HRS) is one of the most significant recent achievements of Earth Observation Technology. Classification is the most commonly employed processing methodology. In this paper three new hyperspectral RS image classification methods are analyzed. These methods are: Object-oriented FIRS image classification, HRS image classification based on information fusion and HSRS image classification by Back Propagation Neural Network (BPNN). OMIS FIRS image is used as the example data. Object-oriented techniques have gained popularity for RS image classification in recent years. In such method, image segmentation is used to extract the regions from the pixel information based on homogeneity criteria at first, and spectral parameters like mean vector, texture, NDVI and spatial/shape parameters like aspect ratio, convexity, solidity, roundness and orientation for each region are calculated, finally classification of the image using the region feature vectors and also using suitable classifiers such as artificial neural network (ANN). It proves that object-oriented methods can improve classification accuracy since they utilize information and features both from the point and the neighborhood, and the processing unit is a polygon (in which all pixels are homogeneous and belong to the class). HRS image classification based on information fusion, divides all bands of the image into different groups initially, and extracts features from every group according to the properties of each group. Three levels of information fusion: data level fusion, feature level fusion and decision level fusion are used to HRS image classification. Artificial Neural Network (ANN) can perform well in RS image classification. In order to promote the advances of ANN used for HIRS image classification, Back Propagation Neural Network (BPNN), the most commonly used neural network, is used to HRS image classification.

  6. On the possibility of producing true real-time retinal cross-sectional images using a graphics processing unit enhanced master-slave optical coherence tomography system.

    PubMed

    Bradu, Adrian; Kapinchev, Konstantin; Barnes, Frederick; Podoleanu, Adrian

    2015-07-01

    In a previous report, we demonstrated master-slave optical coherence tomography (MS-OCT), an OCT method that does not need resampling of data and can be used to deliver en face images from several depths simultaneously. In a separate report, we have also demonstrated MS-OCT's capability of producing cross-sectional images of a quality similar to those provided by the traditional Fourier domain (FD) OCT technique, but at a much slower rate. Here, we demonstrate that by taking advantage of the parallel processing capabilities offered by the MS-OCT method, cross-sectional OCT images of the human retina can be produced in real time. We analyze the conditions that ensure a true real-time B-scan imaging operation and demonstrate in vivo real-time images from human fovea and the optic nerve, with resolution and sensitivity comparable to those produced using the traditional FD-based method, however, without the need of data resampling.

  7. Post-processing of adaptive optics images based on frame selection and multi-frame blind deconvolution

    NASA Astrophysics Data System (ADS)

    Tian, Yu; Rao, Changhui; Wei, Kai

    2008-07-01

    The adaptive optics can only partially compensate the image blurred by atmospheric turbulence due to the observing condition and hardware restriction. A post-processing method based on frame selection and multi-frames blind deconvolution to improve images partially corrected by adaptive optics is proposed. The appropriate frames which are suitable for blind deconvolution from the recorded AO close-loop frames series are selected by the frame selection technique and then do the multi-frame blind deconvolution. There is no priori knowledge except for the positive constraint in blind deconvolution. It is benefit for the use of multi-frame images to improve the stability and convergence of the blind deconvolution algorithm. The method had been applied in the image restoration of celestial bodies which were observed by 1.2m telescope equipped with 61-element adaptive optical system at Yunnan Observatory. The results show that the method can effectively improve the images partially corrected by adaptive optics.

  8. Image acquisitions, processing and analysis in the process of obtaining characteristics of horse navicular bone

    NASA Astrophysics Data System (ADS)

    Zaborowicz, M.; Włodarek, J.; Przybylak, A.; Przybył, K.; Wojcieszak, D.; Czekała, W.; Ludwiczak, A.; Boniecki, P.; Koszela, K.; Przybył, J.; Skwarcz, J.

    2015-07-01

    The aim of this study was investigate the possibility of using methods of computer image analysis for the assessment and classification of morphological variability and the state of health of horse navicular bone. Assumption was that the classification based on information contained in the graphical form two-dimensional digital images of navicular bone and information of horse health. The first step in the research was define the classes of analyzed bones, and then using methods of computer image analysis for obtaining characteristics from these images. This characteristics were correlated with data concerning the animal, such as: side of hooves, number of navicular syndrome (scale 0-3), type, sex, age, weight, information about lace, information about heel. This paper shows the introduction to the study of use the neural image analysis in the diagnosis of navicular bone syndrome. Prepared method can provide an introduction to the study of non-invasive way to assess the condition of the horse navicular bone.

  9. Measurement of thermally ablated lesions in sonoelastographic images using level set methods

    NASA Astrophysics Data System (ADS)

    Castaneda, Benjamin; Tamez-Pena, Jose Gerardo; Zhang, Man; Hoyt, Kenneth; Bylund, Kevin; Christensen, Jared; Saad, Wael; Strang, John; Rubens, Deborah J.; Parker, Kevin J.

    2008-03-01

    The capability of sonoelastography to detect lesions based on elasticity contrast can be applied to monitor the creation of thermally ablated lesion. Currently, segmentation of lesions depicted in sonoelastographic images is performed manually which can be a time consuming process and prone to significant intra- and inter-observer variability. This work presents a semi-automated segmentation algorithm for sonoelastographic data. The user starts by planting a seed in the perceived center of the lesion. Fast marching methods use this information to create an initial estimate of the lesion. Subsequently, level set methods refine its final shape by attaching the segmented contour to edges in the image while maintaining smoothness. The algorithm is applied to in vivo sonoelastographic images from twenty five thermal ablated lesions created in porcine livers. The estimated area is compared to results from manual segmentation and gross pathology images. Results show that the algorithm outperforms manual segmentation in accuracy, inter- and intra-observer variability. The processing time per image is significantly reduced.

  10. Study on the Classification of GAOFEN-3 Polarimetric SAR Images Using Deep Neural Network

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Zhang, J.; Zhao, Z.

    2018-04-01

    Polarimetric Synthetic Aperture Radar (POLSAR) imaging principle determines that the image quality will be affected by speckle noise. So the recognition accuracy of traditional image classification methods will be reduced by the effect of this interference. Since the date of submission, Deep Convolutional Neural Network impacts on the traditional image processing methods and brings the field of computer vision to a new stage with the advantages of a strong ability to learn deep features and excellent ability to fit large datasets. Based on the basic characteristics of polarimetric SAR images, the paper studied the types of the surface cover by using the method of Deep Learning. We used the fully polarimetric SAR features of different scales to fuse RGB images to the GoogLeNet model based on convolution neural network Iterative training, and then use the trained model to test the classification of data validation.First of all, referring to the optical image, we mark the surface coverage type of GF-3 POLSAR image with 8m resolution, and then collect the samples according to different categories. To meet the GoogLeNet model requirements of 256 × 256 pixel image input and taking into account the lack of full-resolution SAR resolution, the original image should be pre-processed in the process of resampling. In this paper, POLSAR image slice samples of different scales with sampling intervals of 2 m and 1 m to be trained separately and validated by the verification dataset. Among them, the training accuracy of GoogLeNet model trained with resampled 2-m polarimetric SAR image is 94.89 %, and that of the trained SAR image with resampled 1 m is 92.65 %.

  11. Retinal status analysis method based on feature extraction and quantitative grading in OCT images.

    PubMed

    Fu, Dongmei; Tong, Hejun; Zheng, Shuang; Luo, Ling; Gao, Fulin; Minar, Jiri

    2016-07-22

    Optical coherence tomography (OCT) is widely used in ophthalmology for viewing the morphology of the retina, which is important for disease detection and assessing therapeutic effect. The diagnosis of retinal diseases is based primarily on the subjective analysis of OCT images by trained ophthalmologists. This paper describes an OCT images automatic analysis method for computer-aided disease diagnosis and it is a critical part of the eye fundus diagnosis. This study analyzed 300 OCT images acquired by Optovue Avanti RTVue XR (Optovue Corp., Fremont, CA). Firstly, the normal retinal reference model based on retinal boundaries was presented. Subsequently, two kinds of quantitative methods based on geometric features and morphological features were proposed. This paper put forward a retinal abnormal grading decision-making method which was used in actual analysis and evaluation of multiple OCT images. This paper showed detailed analysis process by four retinal OCT images with different abnormal degrees. The final grading results verified that the analysis method can distinguish abnormal severity and lesion regions. This paper presented the simulation of the 150 test images, where the results of analysis of retinal status showed that the sensitivity was 0.94 and specificity was 0.92.The proposed method can speed up diagnostic process and objectively evaluate the retinal status. This paper aims on studies of retinal status automatic analysis method based on feature extraction and quantitative grading in OCT images. The proposed method can obtain the parameters and the features that are associated with retinal morphology. Quantitative analysis and evaluation of these features are combined with reference model which can realize the target image abnormal judgment and provide a reference for disease diagnosis.

  12. Method for automatic localization of MR-visible markers using morphological image processing and conventional pulse sequences: feasibility for image-guided procedures.

    PubMed

    Busse, Harald; Trampel, Robert; Gründer, Wilfried; Moche, Michael; Kahn, Thomas

    2007-10-01

    To evaluate the feasibility and accuracy of an automated method to determine the 3D position of MR-visible markers. Inductively coupled RF coils were imaged in a whole-body 1.5T scanner using the body coil and two conventional gradient echo sequences (FLASH and TrueFISP) and large imaging volumes up to (300 mm(3)). To minimize background signals, a flip angle of approximately 1 degrees was used. Morphological 2D image processing in orthogonal scan planes was used to determine the 3D positions of a configuration of three fiducial markers (FMC). The accuracies of the marker positions and of the orientation of the plane defined by the FMC were evaluated at various distances r(M) from the isocenter. Fiducial marker detection with conventional equipment (pulse sequences, imaging coils) was very reliable and highly reproducible over a wide range of experimental conditions. For r(M)

  13. Effect of image quality on calcification detection in digital mammography

    PubMed Central

    Warren, Lucy M.; Mackenzie, Alistair; Cooke, Julie; Given-Wilson, Rosalind M.; Wallis, Matthew G.; Chakraborty, Dev P.; Dance, David R.; Bosmans, Hilde; Young, Kenneth C.

    2012-01-01

    Purpose: This study aims to investigate if microcalcification detection varies significantly when mammographic images are acquired using different image qualities, including: different detectors, dose levels, and different image processing algorithms. An additional aim was to determine how the standard European method of measuring image quality using threshold gold thickness measured with a CDMAM phantom and the associated limits in current EU guidelines relate to calcification detection. Methods: One hundred and sixty two normal breast images were acquired on an amorphous selenium direct digital (DR) system. Microcalcification clusters extracted from magnified images of slices of mastectomies were electronically inserted into half of the images. The calcification clusters had a subtle appearance. All images were adjusted using a validated mathematical method to simulate the appearance of images from a computed radiography (CR) imaging system at the same dose, from both systems at half this dose, and from the DR system at quarter this dose. The original 162 images were processed with both Hologic and Agfa (Musica-2) image processing. All other image qualities were processed with Agfa (Musica-2) image processing only. Seven experienced observers marked and rated any identified suspicious regions. Free response operating characteristic (FROC) and ROC analyses were performed on the data. The lesion sensitivity at a nonlesion localization fraction (NLF) of 0.1 was also calculated. Images of the CDMAM mammographic test phantom were acquired using the automatic setting on the DR system. These images were modified to the additional image qualities used in the observer study. The images were analyzed using automated software. In order to assess the relationship between threshold gold thickness and calcification detection a power law was fitted to the data. Results: There was a significant reduction in calcification detection using CR compared with DR: the alternative FROC (AFROC) area decreased from 0.84 to 0.63 and the ROC area decreased from 0.91 to 0.79 (p < 0.0001). This corresponded to a 30% drop in lesion sensitivity at a NLF equal to 0.1. Detection was also sensitive to the dose used. There was no significant difference in detection between the two image processing algorithms used (p > 0.05). It was additionally found that lower threshold gold thickness from CDMAM analysis implied better cluster detection. The measured threshold gold thickness passed the acceptable limit set in the EU standards for all image qualities except half dose CR. However, calcification detection varied significantly between image qualities. This suggests that the current EU guidelines may need revising. Conclusions: Microcalcification detection was found to be sensitive to detector and dose used. Standard measurements of image quality were a good predictor of microcalcification cluster detection. PMID:22755704

  14. A new hue capturing technique for the quantitative interpretation of liquid crystal images used in convective heat transfer studies

    NASA Technical Reports Server (NTRS)

    Camci, C.; Kim, K.; Hippensteele, S. A.

    1992-01-01

    A new image processing based color capturing technique for the quantitative interpretation of liquid crystal images used in convective heat transfer studies is presented. This method is highly applicable to the surfaces exposed to convective heating in gas turbine engines. It is shown that, in the single-crystal mode, many of the colors appearing on the heat transfer surface correlate strongly with the local temperature. A very accurate quantitative approach using an experimentally determined linear hue vs temperature relation is found to be possible. The new hue-capturing process is discussed in terms of the strength of the light source illuminating the heat transfer surface, the effect of the orientation of the illuminating source with respect to the surface, crystal layer uniformity, and the repeatability of the process. The present method is more advantageous than the multiple filter method because of its ability to generate many isotherms simultaneously from a single-crystal image at a high resolution in a very time-efficient manner.

  15. Image Processing of Porous Silicon Microarray in Refractive Index Change Detection.

    PubMed

    Guo, Zhiqing; Jia, Zhenhong; Yang, Jie; Kasabov, Nikola; Li, Chuanxi

    2017-06-08

    A new method for extracting the dots is proposed by the reflected light image of porous silicon (PSi) microarray utilization in this paper. The method consists of three parts: pretreatment, tilt correction and spot segmentation. First, based on the characteristics of different components in HSV (Hue, Saturation, Value) space, a special pretreatment is proposed for the reflected light image to obtain the contour edges of the array cells in the image. Second, through the geometric relationship of the target object between the initial external rectangle and the minimum bounding rectangle (MBR), a new tilt correction algorithm based on the MBR is proposed to adjust the image. Third, based on the specific requirements of the reflected light image segmentation, the array cells are segmented into dots as large as possible and the distance between the dots is equal in the corrected image. Experimental results show that the pretreatment part of this method can effectively avoid the influence of complex background and complete the binarization processing of the image. The tilt correction algorithm has a shorter computation time, which makes it highly suitable for tilt correction of reflected light images. The segmentation algorithm makes the dots in a regular arrangement, excludes the edges and the bright spots. This method could be utilized in the fast, accurate and automatic dots extraction of the PSi microarray reflected light image.

  16. Color image enhancement of medical images using alpha-rooting and zonal alpha-rooting methods on 2D QDFT

    NASA Astrophysics Data System (ADS)

    Grigoryan, Artyom M.; John, Aparna; Agaian, Sos S.

    2017-03-01

    2-D quaternion discrete Fourier transform (2-D QDFT) is the Fourier transform applied to color images when the color images are considered in the quaternion space. The quaternion numbers are four dimensional hyper-complex numbers. Quaternion representation of color image allows us to see the color of the image as a single unit. In quaternion approach of color image enhancement, each color is seen as a vector. This permits us to see the merging effect of the color due to the combination of the primary colors. The color images are used to be processed by applying the respective algorithm onto each channels separately, and then, composing the color image from the processed channels. In this article, the alpha-rooting and zonal alpha-rooting methods are used with the 2-D QDFT. In the alpha-rooting method, the alpha-root of the transformed frequency values of the 2-D QDFT are determined before taking the inverse transform. In the zonal alpha-rooting method, the frequency spectrum of the 2-D QDFT is divided by different zones and the alpha-rooting is applied with different alpha values for different zones. The optimization of the choice of alpha values is done with the genetic algorithm. The visual perception of 3-D medical images is increased by changing the reference gray line.

  17. Image Processing of Porous Silicon Microarray in Refractive Index Change Detection

    PubMed Central

    Guo, Zhiqing; Jia, Zhenhong; Yang, Jie; Kasabov, Nikola; Li, Chuanxi

    2017-01-01

    A new method for extracting the dots is proposed by the reflected light image of porous silicon (PSi) microarray utilization in this paper. The method consists of three parts: pretreatment, tilt correction and spot segmentation. First, based on the characteristics of different components in HSV (Hue, Saturation, Value) space, a special pretreatment is proposed for the reflected light image to obtain the contour edges of the array cells in the image. Second, through the geometric relationship of the target object between the initial external rectangle and the minimum bounding rectangle (MBR), a new tilt correction algorithm based on the MBR is proposed to adjust the image. Third, based on the specific requirements of the reflected light image segmentation, the array cells are segmented into dots as large as possible and the distance between the dots is equal in the corrected image. Experimental results show that the pretreatment part of this method can effectively avoid the influence of complex background and complete the binarization processing of the image. The tilt correction algorithm has a shorter computation time, which makes it highly suitable for tilt correction of reflected light images. The segmentation algorithm makes the dots in a regular arrangement, excludes the edges and the bright spots. This method could be utilized in the fast, accurate and automatic dots extraction of the PSi microarray reflected light image. PMID:28594383

  18. An incompressible fluid flow model with mutual information for MR image registration

    NASA Astrophysics Data System (ADS)

    Tsai, Leo; Chang, Herng-Hua

    2013-03-01

    Image registration is one of the fundamental and essential tasks within image processing. It is a process of determining the correspondence between structures in two images, which are called the template image and the reference image, respectively. The challenge of registration is to find an optimal geometric transformation between corresponding image data. This paper develops a new MR image registration algorithm that uses a closed incompressible viscous fluid model associated with mutual information. In our approach, we treat the image pixels as the fluid elements of a viscous fluid flow governed by the nonlinear Navier-Stokes partial differential equation (PDE). We replace the pressure term with the body force mainly used to guide the transformation with a weighting coefficient, which is expressed by the mutual information between the template and reference images. To solve this modified Navier-Stokes PDE, we adopted the fast numerical techniques proposed by Seibold1. The registration process of updating the body force, the velocity and deformation fields is repeated until the mutual information weight reaches a prescribed threshold. We applied our approach to the BrainWeb and real MR images. As consistent with the theory of the proposed fluid model, we found that our method accurately transformed the template images into the reference images based on the intensity flow. Experimental results indicate that our method is of potential in a wide variety of medical image registration applications.

  19. Improving the image discontinuous problem by using color temperature mapping method

    NASA Astrophysics Data System (ADS)

    Jeng, Wei-De; Mang, Ou-Yang; Lai, Chien-Cheng; Wu, Hsien-Ming

    2011-09-01

    This article mainly focuses on image processing of radial imaging capsule endoscope (RICE). First, it used the radial imaging capsule endoscope (RICE) to take the images, the experimental used a piggy to get the intestines and captured the images, but the images captured by RICE were blurred due to the RICE has aberration problems in the image center and lower light uniformity affect the image quality. To solve the problems, image processing can use to improve it. Therefore, the images captured by different time can use Person correlation coefficient algorithm to connect all the images, and using the color temperature mapping way to improve the discontinuous problem in the connection region.

  20. Fission gas bubble identification using MATLAB's image processing toolbox

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collette, R.

    Automated image processing routines have the potential to aid in the fuel performance evaluation process by eliminating bias in human judgment that may vary from person-to-person or sample-to-sample. This study presents several MATLAB based image analysis routines designed for fission gas void identification in post-irradiation examination of uranium molybdenum (U–Mo) monolithic-type plate fuels. Frequency domain filtration, enlisted as a pre-processing technique, can eliminate artifacts from the image without compromising the critical features of interest. This process is coupled with a bilateral filter, an edge-preserving noise removal technique aimed at preparing the image for optimal segmentation. Adaptive thresholding proved to bemore » the most consistent gray-level feature segmentation technique for U–Mo fuel microstructures. The Sauvola adaptive threshold technique segments the image based on histogram weighting factors in stable contrast regions and local statistics in variable contrast regions. Once all processing is complete, the algorithm outputs the total fission gas void count, the mean void size, and the average porosity. The final results demonstrate an ability to extract fission gas void morphological data faster, more consistently, and at least as accurately as manual segmentation methods. - Highlights: •Automated image processing can aid in the fuel qualification process. •Routines are developed to characterize fission gas bubbles in irradiated U–Mo fuel. •Frequency domain filtration effectively eliminates FIB curtaining artifacts. •Adaptive thresholding proved to be the most accurate segmentation method. •The techniques established are ready to be applied to large scale data extraction testing.« less

  1. An automatic segmentation method of a parameter-adaptive PCNN for medical images.

    PubMed

    Lian, Jing; Shi, Bin; Li, Mingcong; Nan, Ziwei; Ma, Yide

    2017-09-01

    Since pre-processing and initial segmentation steps in medical images directly affect the final segmentation results of the regions of interesting, an automatic segmentation method of a parameter-adaptive pulse-coupled neural network is proposed to integrate the above-mentioned two segmentation steps into one. This method has a low computational complexity for different kinds of medical images and has a high segmentation precision. The method comprises four steps. Firstly, an optimal histogram threshold is used to determine the parameter [Formula: see text] for different kinds of images. Secondly, we acquire the parameter [Formula: see text] according to a simplified pulse-coupled neural network (SPCNN). Thirdly, we redefine the parameter V of the SPCNN model by sub-intensity distribution range of firing pixels. Fourthly, we add an offset [Formula: see text] to improve initial segmentation precision. Compared with the state-of-the-art algorithms, the new method achieves a comparable performance by the experimental results from ultrasound images of the gallbladder and gallstones, magnetic resonance images of the left ventricle, and mammogram images of the left and the right breast, presenting the overall metric UM of 0.9845, CM of 0.8142, TM of 0.0726. The algorithm has a great potential to achieve the pre-processing and initial segmentation steps in various medical images. This is a premise for assisting physicians to detect and diagnose clinical cases.

  2. Image correlation method for DNA sequence alignment.

    PubMed

    Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván

    2012-01-01

    The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were "digitally" obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment.

  3. An algorithm for pavement crack detection based on multiscale space

    NASA Astrophysics Data System (ADS)

    Liu, Xiang-long; Li, Qing-quan

    2006-10-01

    Conventional human-visual and manual field pavement crack detection method and approaches are very costly, time-consuming, dangerous, labor-intensive and subjective. They possess various drawbacks such as having a high degree of variability of the measure results, being unable to provide meaningful quantitative information and almost always leading to inconsistencies in crack details over space and across evaluation, and with long-periodic measurement. With the development of the public transportation and the growth of the Material Flow System, the conventional method can far from meet the demands of it, thereby, the automatic pavement state data gathering and data analyzing system come to the focus of the vocation's attention, and developments in computer technology, digital image acquisition, image processing and multi-sensors technology made the system possible, but the complexity of the image processing always made the data processing and data analyzing come to the bottle-neck of the whole system. According to the above description, a robust and high-efficient parallel pavement crack detection algorithm based on Multi-Scale Space is proposed in this paper. The proposed method is based on the facts that: (1) the crack pixels in pavement images are darker than their surroundings and continuous; (2) the threshold values of gray-level pavement images are strongly related with the mean value and standard deviation of the pixel-grey intensities. The Multi-Scale Space method is used to improve the data processing speed and minimize the effectiveness caused by image noise. Experiment results demonstrate that the advantages are remarkable: (1) it can correctly discover tiny cracks, even from very noise pavement image; (2) the efficiency and accuracy of the proposed algorithm are superior; (3) its application-dependent nature can simplify the design of the entire system.

  4. How concept images affect students' interpretations of Newton's method

    NASA Astrophysics Data System (ADS)

    Engelke Infante, Nicole; Murphy, Kristen; Glenn, Celeste; Sealey, Vicki

    2018-07-01

    Knowing when students have the prerequisite knowledge to be able to read and understand a mathematical text is a perennial concern for instructors. Using text describing Newton's method and Vinner's notion of concept image, we exemplify how prerequisite knowledge influences understanding. Through clinical interviews with first-semester calculus students, we determined how evoked concept images of tangent lines and roots contributed to students' interpretation and application of Newton's method. Results show that some students' concept images of root and tangent line developed throughout the interview process, and most students were able to adequately interpret the text on Newton's method. However, students with insufficient concept images of tangent line and students who were unwilling or unable to modify their concept images of tangent line after reading the text were not successful in interpreting Newton's method.

  5. An automated and universal method for measuring mean grain size from a digital image of sediment

    USGS Publications Warehouse

    Buscombe, Daniel D.; Rubin, David M.; Warrick, Jonathan A.

    2010-01-01

    Existing methods for estimating mean grain size of sediment in an image require either complicated sequences of image processing (filtering, edge detection, segmentation, etc.) or statistical procedures involving calibration. We present a new approach which uses Fourier methods to calculate grain size directly from the image without requiring calibration. Based on analysis of over 450 images, we found the accuracy to be within approximately 16% across the full range from silt to pebbles. Accuracy is comparable to, or better than, existing digital methods. The new method, in conjunction with recent advances in technology for taking appropriate images of sediment in a range of natural environments, promises to revolutionize the logistics and speed at which grain-size data may be obtained from the field.

  6. Detecting stripe artifacts in ultrasound images.

    PubMed

    Maciak, Adam; Kier, Christian; Seidel, Günter; Meyer-Wiethe, Karsten; Hofmann, Ulrich G

    2009-10-01

    Brain perfusion diseases such as acute ischemic stroke are detectable through computed tomography (CT)-/magnetic resonance imaging (MRI)-based methods. An alternative approach makes use of ultrasound imaging. In this low-cost bedside method, noise and artifacts degrade the imaging process. Especially stripe artifacts show a similar signal behavior compared to acute stroke or brain perfusion diseases. This document describes how stripe artifacts can be detected and eliminated in ultrasound images obtained through harmonic imaging (HI). On the basis of this new method, both proper identification of areas with critically reduced brain tissue perfusion and classification between brain perfusion defects and ultrasound stripe artifacts are made possible.

  7. An Improved InSAR Image Co-Registration Method for Pairs with Relatively Big Distortions or Large Incoherent Areas

    PubMed Central

    Chen, Zhenwei; Zhang, Lei; Zhang, Guo

    2016-01-01

    Co-registration is one of the most important steps in interferometric synthetic aperture radar (InSAR) data processing. The standard offset-measurement method based on cross-correlating uniformly distributed patches takes no account of specific geometric transformation between images or characteristics of ground scatterers. Hence, it is inefficient and difficult to obtain satisfying co-registration results for image pairs with relatively big distortion or large incoherent areas. Given this, an improved co-registration strategy is proposed in this paper which takes both the geometric features and image content into consideration. Firstly, some geometric transformations including scale, flip, rotation, and shear between images were eliminated based on the geometrical information, and the initial co-registration polynomial was obtained. Then the registration points were automatically detected by integrating the signal-to-clutter-ratio (SCR) thresholds and the amplitude information, and a further co-registration process was performed to refine the polynomial. Several comparison experiments were carried out using 2 TerraSAR-X data from the Hong Kong airport and 21 PALSAR data from the Donghai Bridge. Experiment results demonstrate that the proposed method brings accuracy and efficiency improvements for co-registration and processing abilities in the cases of big distortion between images or large incoherent areas in the images. For most co-registrations, the proposed method can enhance the reliability and applicability of co-registration and thus promote the automation to a higher level. PMID:27649207

  8. An Improved InSAR Image Co-Registration Method for Pairs with Relatively Big Distortions or Large Incoherent Areas.

    PubMed

    Chen, Zhenwei; Zhang, Lei; Zhang, Guo

    2016-09-17

    Co-registration is one of the most important steps in interferometric synthetic aperture radar (InSAR) data processing. The standard offset-measurement method based on cross-correlating uniformly distributed patches takes no account of specific geometric transformation between images or characteristics of ground scatterers. Hence, it is inefficient and difficult to obtain satisfying co-registration results for image pairs with relatively big distortion or large incoherent areas. Given this, an improved co-registration strategy is proposed in this paper which takes both the geometric features and image content into consideration. Firstly, some geometric transformations including scale, flip, rotation, and shear between images were eliminated based on the geometrical information, and the initial co-registration polynomial was obtained. Then the registration points were automatically detected by integrating the signal-to-clutter-ratio (SCR) thresholds and the amplitude information, and a further co-registration process was performed to refine the polynomial. Several comparison experiments were carried out using 2 TerraSAR-X data from the Hong Kong airport and 21 PALSAR data from the Donghai Bridge. Experiment results demonstrate that the proposed method brings accuracy and efficiency improvements for co-registration and processing abilities in the cases of big distortion between images or large incoherent areas in the images. For most co-registrations, the proposed method can enhance the reliability and applicability of co-registration and thus promote the automation to a higher level.

  9. Surface defect detection in tiling Industries using digital image processing methods: analysis and evaluation.

    PubMed

    Karimi, Mohammad H; Asemani, Davud

    2014-05-01

    Ceramic and tile industries should indispensably include a grading stage to quantify the quality of products. Actually, human control systems are often used for grading purposes. An automatic grading system is essential to enhance the quality control and marketing of the products. Since there generally exist six different types of defects originating from various stages of tile manufacturing lines with distinct textures and morphologies, many image processing techniques have been proposed for defect detection. In this paper, a survey has been made on the pattern recognition and image processing algorithms which have been used to detect surface defects. Each method appears to be limited for detecting some subgroup of defects. The detection techniques may be divided into three main groups: statistical pattern recognition, feature vector extraction and texture/image classification. The methods such as wavelet transform, filtering, morphology and contourlet transform are more effective for pre-processing tasks. Others including statistical methods, neural networks and model-based algorithms can be applied to extract the surface defects. Although, statistical methods are often appropriate for identification of large defects such as Spots, but techniques such as wavelet processing provide an acceptable response for detection of small defects such as Pinhole. A thorough survey is made in this paper on the existing algorithms in each subgroup. Also, the evaluation parameters are discussed including supervised and unsupervised parameters. Using various performance parameters, different defect detection algorithms are compared and evaluated. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Using hyperspectral imaging technology to identify diseased tomato leaves

    NASA Astrophysics Data System (ADS)

    Li, Cuiling; Wang, Xiu; Zhao, Xueguan; Meng, Zhijun; Zou, Wei

    2016-11-01

    In the process of tomato plants growth, due to the effect of plants genetic factors, poor environment factors, or disoperation of parasites, there will generate a series of unusual symptoms on tomato plants from physiology, organization structure and external form, as a result, they cannot grow normally, and further to influence the tomato yield and economic benefits. Hyperspectral image usually has high spectral resolution, not only contains spectral information, but also contains the image information, so this study adopted hyperspectral imaging technology to identify diseased tomato leaves, and developed a simple hyperspectral imaging system, including a halogen lamp light source unit, a hyperspectral image acquisition unit and a data processing unit. Spectrometer detection wavelength ranged from 400nm to 1000nm. After hyperspectral images of tomato leaves being captured, it was needed to calibrate hyperspectral images. This research used spectrum angle matching method and spectral red edge parameters discriminant method respectively to identify diseased tomato leaves. Using spectral red edge parameters discriminant method produced higher recognition accuracy, the accuracy was higher than 90%. Research results have shown that using hyperspectral imaging technology to identify diseased tomato leaves is feasible, and provides the discriminant basis for subsequent disease control of tomato plants.

  11. Theory and applications of structured light single pixel imaging

    NASA Astrophysics Data System (ADS)

    Stokoe, Robert J.; Stockton, Patrick A.; Pezeshki, Ali; Bartels, Randy A.

    2018-02-01

    Many single-pixel imaging techniques have been developed in recent years. Though the methods of image acquisition vary considerably, the methods share unifying features that make general analysis possible. Furthermore, the methods developed thus far are based on intuitive processes that enable simple and physically-motivated reconstruction algorithms, however, this approach may not leverage the full potential of single-pixel imaging. We present a general theoretical framework of single-pixel imaging based on frame theory, which enables general, mathematically rigorous analysis. We apply our theoretical framework to existing single-pixel imaging techniques, as well as provide a foundation for developing more-advanced methods of image acquisition and reconstruction. The proposed frame theoretic framework for single-pixel imaging results in improved noise robustness, decrease in acquisition time, and can take advantage of special properties of the specimen under study. By building on this framework, new methods of imaging with a single element detector can be developed to realize the full potential associated with single-pixel imaging.

  12. Programmable Iterative Optical Image And Data Processing

    NASA Technical Reports Server (NTRS)

    Jackson, Deborah J.

    1995-01-01

    Proposed method of iterative optical image and data processing overcomes limitations imposed by loss of optical power after repeated passes through many optical elements - especially, beam splitters. Involves selective, timed combination of optical wavefront phase conjugation and amplification to regenerate images in real time to compensate for losses in optical iteration loops; timing such that amplification turned on to regenerate desired image, then turned off so as not to regenerate other, undesired images or spurious light propagating through loops from unwanted reflections.

  13. Architectures and algorithms for digital image processing; Proceedings of the Meeting, Cannes, France, December 5, 6, 1985

    NASA Technical Reports Server (NTRS)

    Duff, Michael J. B. (Editor); Siegel, Howard J. (Editor); Corbett, Francis J. (Editor)

    1986-01-01

    The conference presents papers on the architectures, algorithms, and applications of image processing. Particular attention is given to a very large scale integration system for image reconstruction from projections, a prebuffer algorithm for instant display of volume data, and an adaptive image sequence filtering scheme based on motion detection. Papers are also presented on a simple, direct practical method of sensing local motion and analyzing local optical flow, image matching techniques, and an automated biological dosimetry system.

  14. Full field study of strain distribution near the crack tip in the fracture of solid propellants via large strain digital image correlation and optical microscopy

    NASA Astrophysics Data System (ADS)

    Gonzalez, Javier

    A full field method for visualizing deformation around the crack tip in a fracture process with large strains is developed. A digital image correlation program (DIC) is used to incrementally compute strains and displacements between two consecutive images of a deformation process. Values of strain and displacements for consecutive deformations are added, this way solving convergence problems in the DIC algorithm when large deformations are investigated. The method developed is used to investigate the strain distribution within 1 mm of the crack tip in a particulate composite solid (propellant) using microscopic visualization of the deformation process.

  15. Nonlocal means-based speckle filtering for ultrasound images

    PubMed Central

    Coupé, Pierrick; Hellier, Pierre; Kervrann, Charles; Barillot, Christian

    2009-01-01

    In image processing, restoration is expected to improve the qualitative inspection of the image and the performance of quantitative image analysis techniques. In this paper, an adaptation of the Non Local (NL-) means filter is proposed for speckle reduction in ultrasound (US) images. Originally developed for additive white Gaussian noise, we propose to use a Bayesian framework to derive a NL-means filter adapted to a relevant ultrasound noise model. Quantitative results on synthetic data show the performances of the proposed method compared to well-established and state-of-the-art methods. Results on real images demonstrate that the proposed method is able to preserve accurately edges and structural details of the image. PMID:19482578

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Liping; Zhu, Fulong, E-mail: zhufulong@hust.edu.cn; Duan, Ke

    Ultrasonic waves are widely used, with applications including the medical, military, and chemical fields. However, there are currently no effective methods for ultrasonic power measurement. Previously, ultrasonic power measurement has been reliant on mechanical methods such as hydrophones and radiation force balances. This paper deals with ultrasonic power measurement based on an unconventional method: acousto-optic interaction. Compared with mechanical methods, the optical method has a greater ability to resist interference and also has reduced environmental requirements. Therefore, this paper begins with an experimental determination of the acoustic power in water contained in a glass tank using a set of opticalmore » devices. Because the light intensity of the diffraction image generated by acousto-optic interaction contains the required ultrasonic power information, specific software was written to extract the light intensity information from the image through a combination of filtering, binarization, contour extraction, and other image processing operations. The power value can then be obtained rapidly by processing the diffraction image using a computer. The results of this work show that the optical method offers advantages that include accuracy, speed, and a noncontact measurement method.« less

  17. Ultrasonic power measurement system based on acousto-optic interaction.

    PubMed

    He, Liping; Zhu, Fulong; Chen, Yanming; Duan, Ke; Lin, Xinxin; Pan, Yongjun; Tao, Jiaquan

    2016-05-01

    Ultrasonic waves are widely used, with applications including the medical, military, and chemical fields. However, there are currently no effective methods for ultrasonic power measurement. Previously, ultrasonic power measurement has been reliant on mechanical methods such as hydrophones and radiation force balances. This paper deals with ultrasonic power measurement based on an unconventional method: acousto-optic interaction. Compared with mechanical methods, the optical method has a greater ability to resist interference and also has reduced environmental requirements. Therefore, this paper begins with an experimental determination of the acoustic power in water contained in a glass tank using a set of optical devices. Because the light intensity of the diffraction image generated by acousto-optic interaction contains the required ultrasonic power information, specific software was written to extract the light intensity information from the image through a combination of filtering, binarization, contour extraction, and other image processing operations. The power value can then be obtained rapidly by processing the diffraction image using a computer. The results of this work show that the optical method offers advantages that include accuracy, speed, and a noncontact measurement method.

  18. Ultrasonic power measurement system based on acousto-optic interaction

    NASA Astrophysics Data System (ADS)

    He, Liping; Zhu, Fulong; Chen, Yanming; Duan, Ke; Lin, Xinxin; Pan, Yongjun; Tao, Jiaquan

    2016-05-01

    Ultrasonic waves are widely used, with applications including the medical, military, and chemical fields. However, there are currently no effective methods for ultrasonic power measurement. Previously, ultrasonic power measurement has been reliant on mechanical methods such as hydrophones and radiation force balances. This paper deals with ultrasonic power measurement based on an unconventional method: acousto-optic interaction. Compared with mechanical methods, the optical method has a greater ability to resist interference and also has reduced environmental requirements. Therefore, this paper begins with an experimental determination of the acoustic power in water contained in a glass tank using a set of optical devices. Because the light intensity of the diffraction image generated by acousto-optic interaction contains the required ultrasonic power information, specific software was written to extract the light intensity information from the image through a combination of filtering, binarization, contour extraction, and other image processing operations. The power value can then be obtained rapidly by processing the diffraction image using a computer. The results of this work show that the optical method offers advantages that include accuracy, speed, and a noncontact measurement method.

  19. Comparison of lifetime-based methods for 2D phosphor thermometry in high-temperature environment

    NASA Astrophysics Data System (ADS)

    Peng, Di; Liu, Yingzheng; Zhao, Xiaofeng; Kim, Kyung Chun

    2016-09-01

    This paper discusses the currently available techniques for 2D phosphor thermometry, and compares the performance of two lifetime-based methods: high-speed imaging and the dual-gate. High-speed imaging resolves luminescent decay with a fast frame rate, and has become a popular method for phosphor thermometry in recent years. But it has disadvantages such as high equipment cost and long data processing time, and it would fail at sufficiently high temperature due to a low signal-to-noise ratio and short lifetime. The dual-gate method only requires two images on the decay curve and therefore greatly reduces cost in hardware and processing time. A dual-gate method for phosphor thermometry has been developed and compared with the high-speed imaging method through both calibration and a jet impingement experiment. Measurement uncertainty has been evaluated for a temperature range of 473-833 K. The effects of several key factors on uncertainty have been discussed, including the luminescent signal level, the decay lifetime and temperature sensitivity. The results show that both methods are valid for 2D temperature sensing within the given range. The high-speed imaging method shows less uncertainty at low temperatures where the signal level and the lifetime are both sufficient, but its performance is degraded at higher temperatures due to a rapidly reduced signal and lifetime. For T  >  750 K, the dual-gate method outperforms the high-speed imaging method thanks to its superiority in signal-to-noise ratio and temperature sensitivity. The dual-gate method has great potential for applications in high-temperature environments where the high-speed imaging method is not applicable.

  20. Noise reduction techniques for Bayer-matrix images

    NASA Astrophysics Data System (ADS)

    Kalevo, Ossi; Rantanen, Henry

    2002-04-01

    In this paper, some arrangements to apply Noise Reduction (NR) techniques for images captured by a single sensor digital camera are studied. Usually, the NR filter processes full three-color component image data. This requires that raw Bayer-matrix image data, available from the image sensor, is first interpolated by using Color Filter Array Interpolation (CFAI) method. Another choice is that the raw Bayer-matrix image data is processed directly. The advantages and disadvantages of both processing orders, before (pre-) CFAI and after (post-) CFAI, are studied with linear, multi-stage median, multistage median hybrid and median-rational filters .The comparison is based on the quality of the output image, the processing power requirements and the amount of memory needed. Also the solution, which improves preservation of details in the NR filtering before the CFAI, is proposed.

  1. Method for growing a back surface contact on an imaging detector used in conjunction with back illumination

    NASA Technical Reports Server (NTRS)

    Blacksberg, Jordana (Inventor); Hoenk, Michael Eugene (Inventor); Nikzad, Shouleh (Inventor)

    2010-01-01

    A method is provided for growing a back surface contact on an imaging detector used in conjunction with back illumination. In operation, an imaging detector is provided. Additionally, a back surface contact (e.g. a delta-doped layer, etc.) is grown on the imaging detector utilizing a process that is performed at a temperature less than 450 degrees Celsius.

  2. Preclinical Biokinetic Modelling of Tc-99m Radiophamaceuticals Obtained from Semi-Automatic Image Processing.

    PubMed

    Cornejo-Aragón, Luz G; Santos-Cuevas, Clara L; Ocampo-García, Blanca E; Chairez-Oria, Isaac; Diaz-Nieto, Lorenza; García-Quiroz, Janice

    2017-01-01

    The aim of this study was to develop a semi automatic image processing algorithm (AIPA) based on the simultaneous information provided by X-ray and radioisotopic images to determine the biokinetic models of Tc-99m radiopharmaceuticals from quantification of image radiation activity in murine models. These radioisotopic images were obtained by a CCD (charge couple device) camera coupled to an ultrathin phosphorous screen in a preclinical multimodal imaging system (Xtreme, Bruker). The AIPA consisted of different image processing methods for background, scattering and attenuation correction on the activity quantification. A set of parametric identification algorithms was used to obtain the biokinetic models that characterize the interaction between different tissues and the radiopharmaceuticals considered in the study. The set of biokinetic models corresponded to the Tc-99m biodistribution observed in different ex vivo studies. This fact confirmed the contribution of the semi-automatic image processing technique developed in this study.

  3. Digital image processing: a primer for JVIR authors and readers: Part 3: Digital image editing.

    PubMed

    LaBerge, Jeanne M; Andriole, Katherine P

    2003-12-01

    This is the final installment of a three-part series on digital image processing intended to prepare authors for online submission of manuscripts. In the first two articles of the series, the fundamentals of digital image architecture were reviewed and methods of importing images to the computer desktop were described. In this article, techniques are presented for editing images in preparation for online submission. A step-by-step guide to basic editing with use of Adobe Photoshop is provided and the ethical implications of this activity are explored.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Lucy M.; Mackenzie, Alistair; Cooke, Julie

    Purpose: This study aims to investigate if microcalcification detection varies significantly when mammographic images are acquired using different image qualities, including: different detectors, dose levels, and different image processing algorithms. An additional aim was to determine how the standard European method of measuring image quality using threshold gold thickness measured with a CDMAM phantom and the associated limits in current EU guidelines relate to calcification detection. Methods: One hundred and sixty two normal breast images were acquired on an amorphous selenium direct digital (DR) system. Microcalcification clusters extracted from magnified images of slices of mastectomies were electronically inserted into halfmore » of the images. The calcification clusters had a subtle appearance. All images were adjusted using a validated mathematical method to simulate the appearance of images from a computed radiography (CR) imaging system at the same dose, from both systems at half this dose, and from the DR system at quarter this dose. The original 162 images were processed with both Hologic and Agfa (Musica-2) image processing. All other image qualities were processed with Agfa (Musica-2) image processing only. Seven experienced observers marked and rated any identified suspicious regions. Free response operating characteristic (FROC) and ROC analyses were performed on the data. The lesion sensitivity at a nonlesion localization fraction (NLF) of 0.1 was also calculated. Images of the CDMAM mammographic test phantom were acquired using the automatic setting on the DR system. These images were modified to the additional image qualities used in the observer study. The images were analyzed using automated software. In order to assess the relationship between threshold gold thickness and calcification detection a power law was fitted to the data. Results: There was a significant reduction in calcification detection using CR compared with DR: the alternative FROC (AFROC) area decreased from 0.84 to 0.63 and the ROC area decreased from 0.91 to 0.79 (p < 0.0001). This corresponded to a 30% drop in lesion sensitivity at a NLF equal to 0.1. Detection was also sensitive to the dose used. There was no significant difference in detection between the two image processing algorithms used (p > 0.05). It was additionally found that lower threshold gold thickness from CDMAM analysis implied better cluster detection. The measured threshold gold thickness passed the acceptable limit set in the EU standards for all image qualities except half dose CR. However, calcification detection varied significantly between image qualities. This suggests that the current EU guidelines may need revising. Conclusions: Microcalcification detection was found to be sensitive to detector and dose used. Standard measurements of image quality were a good predictor of microcalcification cluster detection.« less

  5. Research on Remote Sensing Image Classification Based on Feature Level Fusion

    NASA Astrophysics Data System (ADS)

    Yuan, L.; Zhu, G.

    2018-04-01

    Remote sensing image classification, as an important direction of remote sensing image processing and application, has been widely studied. However, in the process of existing classification algorithms, there still exists the phenomenon of misclassification and missing points, which leads to the final classification accuracy is not high. In this paper, we selected Sentinel-1A and Landsat8 OLI images as data sources, and propose a classification method based on feature level fusion. Compare three kind of feature level fusion algorithms (i.e., Gram-Schmidt spectral sharpening, Principal Component Analysis transform and Brovey transform), and then select the best fused image for the classification experimental. In the classification process, we choose four kinds of image classification algorithms (i.e. Minimum distance, Mahalanobis distance, Support Vector Machine and ISODATA) to do contrast experiment. We use overall classification precision and Kappa coefficient as the classification accuracy evaluation criteria, and the four classification results of fused image are analysed. The experimental results show that the fusion effect of Gram-Schmidt spectral sharpening is better than other methods. In four kinds of classification algorithms, the fused image has the best applicability to Support Vector Machine classification, the overall classification precision is 94.01 % and the Kappa coefficients is 0.91. The fused image with Sentinel-1A and Landsat8 OLI is not only have more spatial information and spectral texture characteristics, but also enhances the distinguishing features of the images. The proposed method is beneficial to improve the accuracy and stability of remote sensing image classification.

  6. A multiresolution processing method for contrast enhancement in portal imaging.

    PubMed

    Gonzalez-Lopez, Antonio

    2018-06-18

    Portal images have a unique feature among the imaging modalities used in radiotherapy: they provide direct visualization of the irradiated volumes. However, contrast and spatial resolution are strongly limited due to the high energy of the radiation sources. Because of this, imaging modalities using x-ray energy beams have gained importance in the verification of patient positioning, replacing portal imaging. The purpose of this work was to develop a method for the enhancement of local contrast in portal images. The method operates in the subbands of a wavelet decomposition of the image, re-scaling them in such a way that coefficients in the high and medium resolution subbands are amplified, an approach totally different of those operating on the image histogram, widely used nowadays. Portal images of an anthropomorphic phantom were acquired in an electronic portal imaging device (EPID). Then, different re-scaling strategies were investigated, studying the effects of the scaling parameters on the enhanced images. Also, the effect of using different types of transforms was studied. Finally, the implemented methods were combined with histogram equalization methods like the contrast limited adaptive histogram equalization (CLAHE), and these combinations were compared. Uniform amplification of the detail subbands shows the best results in contrast enhancement. On the other hand, linear re-escalation of the high resolution subbands increases the visibility of fine detail of the images, at the expense of an increase in noise levels. Also, since processing is applied only to detail subbands, not to the approximation, the mean gray level of the image is minimally modified and no further display adjustments are required. It is shown that re-escalation of the detail subbands of portal images can be used as an efficient method for the enhancement of both, the local contrast and the resolution of these images. © 2018 Institute of Physics and Engineering in Medicine.

  7. Phase retrieval using regularization method in intensity correlation imaging

    NASA Astrophysics Data System (ADS)

    Li, Xiyu; Gao, Xin; Tang, Jia; Lu, Changming; Wang, Jianli; Wang, Bin

    2014-11-01

    Intensity correlation imaging(ICI) method can obtain high resolution image with ground-based low precision mirrors, in the imaging process, phase retrieval algorithm should be used to reconstituted the object's image. But the algorithm now used(such as hybrid input-output algorithm) is sensitive to noise and easy to stagnate. However the signal-to-noise ratio of intensity interferometry is low especially in imaging astronomical objects. In this paper, we build the mathematical model of phase retrieval and simplified it into a constrained optimization problem of a multi-dimensional function. New error function was designed by noise distribution and prior information using regularization method. The simulation results show that the regularization method can improve the performance of phase retrieval algorithm and get better image especially in low SNR condition

  8. Methods for 2-D and 3-D Endobronchial Ultrasound Image Segmentation.

    PubMed

    Zang, Xiaonan; Bascom, Rebecca; Gilbert, Christopher; Toth, Jennifer; Higgins, William

    2016-07-01

    Endobronchial ultrasound (EBUS) is now commonly used for cancer-staging bronchoscopy. Unfortunately, EBUS is challenging to use and interpreting EBUS video sequences is difficult. Other ultrasound imaging domains, hampered by related difficulties, have benefited from computer-based image-segmentation methods. Yet, so far, no such methods have been proposed for EBUS. We propose image-segmentation methods for 2-D EBUS frames and 3-D EBUS sequences. Our 2-D method adapts the fast-marching level-set process, anisotropic diffusion, and region growing to the problem of segmenting 2-D EBUS frames. Our 3-D method builds upon the 2-D method while also incorporating the geodesic level-set process for segmenting EBUS sequences. Tests with lung-cancer patient data showed that the methods ran fully automatically for nearly 80% of test cases. For the remaining cases, the only user-interaction required was the selection of a seed point. When compared to ground-truth segmentations, the 2-D method achieved an overall Dice index = 90.0% ±4.9%, while the 3-D method achieved an overall Dice index = 83.9 ± 6.0%. In addition, the computation time (2-D, 0.070 s/frame; 3-D, 0.088 s/frame) was two orders of magnitude faster than interactive contour definition. Finally, we demonstrate the potential of the methods for EBUS localization in a multimodal image-guided bronchoscopy system.

  9. lop-DWI: A Novel Scheme for Pre-Processing of Diffusion-Weighted Images in the Gradient Direction Domain.

    PubMed

    Sepehrband, Farshid; Choupan, Jeiran; Caruyer, Emmanuel; Kurniawan, Nyoman D; Gal, Yaniv; Tieng, Quang M; McMahon, Katie L; Vegh, Viktor; Reutens, David C; Yang, Zhengyi

    2014-01-01

    We describe and evaluate a pre-processing method based on a periodic spiral sampling of diffusion-gradient directions for high angular resolution diffusion magnetic resonance imaging. Our pre-processing method incorporates prior knowledge about the acquired diffusion-weighted signal, facilitating noise reduction. Periodic spiral sampling of gradient direction encodings results in an acquired signal in each voxel that is pseudo-periodic with characteristics that allow separation of low-frequency signal from high frequency noise. Consequently, it enhances local reconstruction of the orientation distribution function used to define fiber tracks in the brain. Denoising with periodic spiral sampling was tested using synthetic data and in vivo human brain images. The level of improvement in signal-to-noise ratio and in the accuracy of local reconstruction of fiber tracks was significantly improved using our method.

  10. Wavelet Filter Banks for Super-Resolution SAR Imaging

    NASA Technical Reports Server (NTRS)

    Sheybani, Ehsan O.; Deshpande, Manohar; Memarsadeghi, Nargess

    2011-01-01

    This paper discusses Innovative wavelet-based filter banks designed to enhance the analysis of super resolution Synthetic Aperture Radar (SAR) images using parametric spectral methods and signal classification algorithms, SAR finds applications In many of NASA's earth science fields such as deformation, ecosystem structure, and dynamics of Ice, snow and cold land processes, and surface water and ocean topography. Traditionally, standard methods such as Fast-Fourier Transform (FFT) and Inverse Fast-Fourier Transform (IFFT) have been used to extract Images from SAR radar data, Due to non-parametric features of these methods and their resolution limitations and observation time dependence, use of spectral estimation and signal pre- and post-processing techniques based on wavelets to process SAR radar data has been proposed. Multi-resolution wavelet transforms and advanced spectral estimation techniques have proven to offer efficient solutions to this problem.

  11. Semi-Automated Neuron Boundary Detection and Nonbranching Process Segmentation in Electron Microscopy Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jurrus, Elizabeth R.; Watanabe, Shigeki; Giuly, Richard J.

    2013-01-01

    Neuroscientists are developing new imaging techniques and generating large volumes of data in an effort to understand the complex structure of the nervous system. The complexity and size of this data makes human interpretation a labor-intensive task. To aid in the analysis, new segmentation techniques for identifying neurons in these feature rich datasets are required. This paper presents a method for neuron boundary detection and nonbranching process segmentation in electron microscopy images and visualizing them in three dimensions. It combines both automated segmentation techniques with a graphical user interface for correction of mistakes in the automated process. The automated processmore » first uses machine learning and image processing techniques to identify neuron membranes that deliniate the cells in each two-dimensional section. To segment nonbranching processes, the cell regions in each two-dimensional section are connected in 3D using correlation of regions between sections. The combination of this method with a graphical user interface specially designed for this purpose, enables users to quickly segment cellular processes in large volumes.« less

  12. A Precise Visual Method for Narrow Butt Detection in Specular Reflection Workpiece Welding

    PubMed Central

    Zeng, Jinle; Chang, Baohua; Du, Dong; Hong, Yuxiang; Chang, Shuhe; Zou, Yirong

    2016-01-01

    During the complex path workpiece welding, it is important to keep the welding torch aligned with the groove center using a visual seam detection method, so that the deviation between the torch and the groove can be corrected automatically. However, when detecting the narrow butt of a specular reflection workpiece, the existing methods may fail because of the extremely small groove width and the poor imaging quality. This paper proposes a novel detection method to solve these issues. We design a uniform surface light source to get high signal-to-noise ratio images against the specular reflection effect, and a double-line laser light source is used to obtain the workpiece surface equation relative to the torch. Two light sources are switched on alternately and the camera is synchronized to capture images when each light is on; then the position and pose between the torch and the groove can be obtained nearly at the same time. Experimental results show that our method can detect the groove effectively and efficiently during the welding process. The image resolution is 12.5 μm and the processing time is less than 10 ms per frame. This indicates our method can be applied to real-time narrow butt detection during high-speed welding process. PMID:27649173

  13. A Precise Visual Method for Narrow Butt Detection in Specular Reflection Workpiece Welding.

    PubMed

    Zeng, Jinle; Chang, Baohua; Du, Dong; Hong, Yuxiang; Chang, Shuhe; Zou, Yirong

    2016-09-13

    During the complex path workpiece welding, it is important to keep the welding torch aligned with the groove center using a visual seam detection method, so that the deviation between the torch and the groove can be corrected automatically. However, when detecting the narrow butt of a specular reflection workpiece, the existing methods may fail because of the extremely small groove width and the poor imaging quality. This paper proposes a novel detection method to solve these issues. We design a uniform surface light source to get high signal-to-noise ratio images against the specular reflection effect, and a double-line laser light source is used to obtain the workpiece surface equation relative to the torch. Two light sources are switched on alternately and the camera is synchronized to capture images when each light is on; then the position and pose between the torch and the groove can be obtained nearly at the same time. Experimental results show that our method can detect the groove effectively and efficiently during the welding process. The image resolution is 12.5 μm and the processing time is less than 10 ms per frame. This indicates our method can be applied to real-time narrow butt detection during high-speed welding process.

  14. Topological visual mapping in robotics.

    PubMed

    Romero, Anna; Cazorla, Miguel

    2012-08-01

    A key problem in robotics is the construction of a map from its environment. This map could be used in different tasks, like localization, recognition, obstacle avoidance, etc. Besides, the simultaneous location and mapping (SLAM) problem has had a lot of interest in the robotics community. This paper presents a new method for visual mapping, using topological instead of metric information. For that purpose, we propose prior image segmentation into regions in order to group the extracted invariant features in a graph so that each graph defines a single region of the image. Although others methods have been proposed for visual SLAM, our method is complete, in the sense that it makes all the process: it presents a new method for image matching; it defines a way to build the topological map; and it also defines a matching criterion for loop-closing. The matching process will take into account visual features and their structure using the graph transformation matching (GTM) algorithm, which allows us to process the matching and to remove out the outliers. Then, using this image comparison method, we propose an algorithm for constructing topological maps. During the experimentation phase, we will test the robustness of the method and its ability constructing topological maps. We have also introduced new hysteresis behavior in order to solve some problems found building the graph.

  15. Multiframe super resolution reconstruction method based on light field angular images

    NASA Astrophysics Data System (ADS)

    Zhou, Shubo; Yuan, Yan; Su, Lijuan; Ding, Xiaomin; Wang, Jichao

    2017-12-01

    The plenoptic camera can directly obtain 4-dimensional light field information from a 2-dimensional sensor. However, based on the sampling theorem, the spatial resolution is greatly limited by the microlenses. In this paper, we present a method of reconstructing high-resolution images from the angular images. First, the ray tracing method is used to model the telecentric-based light field imaging process. Then, we analyze the subpixel shifts between the angular images extracted from the defocused light field data and the blur in the angular images. According to the analysis above, we construct the observation model from the ideal high-resolution image to the angular images. Applying the regularized super resolution method, we can obtain the super resolution result with a magnification ratio of 8. The results demonstrate the effectiveness of the proposed observation model.

  16. Pseudo-color coding method for high-dynamic single-polarization SAR images

    NASA Astrophysics Data System (ADS)

    Feng, Zicheng; Liu, Xiaolin; Pei, Bingzhi

    2018-04-01

    A raw synthetic aperture radar (SAR) image usually has a 16-bit or higher bit depth, which cannot be directly visualized on 8-bit displays. In this study, we propose a pseudo-color coding method for high-dynamic singlepolarization SAR images. The method considers the characteristics of both SAR images and human perception. In HSI (hue, saturation and intensity) color space, the method carries out high-dynamic range tone mapping and pseudo-color processing simultaneously in order to avoid loss of details and to improve object identifiability. It is a highly efficient global algorithm.

  17. Single image super-resolution via an iterative reproducing kernel Hilbert space method.

    PubMed

    Deng, Liang-Jian; Guo, Weihong; Huang, Ting-Zhu

    2016-11-01

    Image super-resolution, a process to enhance image resolution, has important applications in satellite imaging, high definition television, medical imaging, etc. Many existing approaches use multiple low-resolution images to recover one high-resolution image. In this paper, we present an iterative scheme to solve single image super-resolution problems. It recovers a high quality high-resolution image from solely one low-resolution image without using a training data set. We solve the problem from image intensity function estimation perspective and assume the image contains smooth and edge components. We model the smooth components of an image using a thin-plate reproducing kernel Hilbert space (RKHS) and the edges using approximated Heaviside functions. The proposed method is applied to image patches, aiming to reduce computation and storage. Visual and quantitative comparisons with some competitive approaches show the effectiveness of the proposed method.

  18. Classification of stroke disease using convolutional neural network

    NASA Astrophysics Data System (ADS)

    Marbun, J. T.; Seniman; Andayani, U.

    2018-03-01

    Stroke is a condition that occurs when the blood supply stop flowing to the brain because of a blockage or a broken blood vessel. A symptoms that happen when experiencing stroke, some of them is a dropped consciousness, disrupted vision and paralyzed body. The general examination is being done to get a picture of the brain part that have stroke using Computerized Tomography (CT) Scan. The image produced from CT will be manually checked and need a proper lighting by doctor to get a type of stroke. That is why it needs a method to classify stroke from CT image automatically. A method proposed in this research is Convolutional Neural Network. CT image of the brain is used as the input for image processing. The stage before classification are image processing (Grayscaling, Scaling, Contrast Limited Adaptive Histogram Equalization, then the image being classified with Convolutional Neural Network. The result then showed that the method significantly conducted was able to be used as a tool to classify stroke disease in order to distinguish the type of stroke from CT image.

  19. The Design and Development of Test Platform for Wheat Precision Seeding Based on Image Processing Techniques

    NASA Astrophysics Data System (ADS)

    Li, Qing; Lin, Haibo; Xiu, Yu-Feng; Wang, Ruixue; Yi, Chuijie

    The test platform of wheat precision seeding based on image processing techniques is designed to develop the wheat precision seed metering device with high efficiency and precision. Using image processing techniques, this platform gathers images of seeds (wheat) on the conveyer belt which are falling from seed metering device. Then these data are processed and analyzed to calculate the qualified rate, reseeding rate and leakage sowing rate, etc. This paper introduces the whole structure, design parameters of the platform and hardware & software of the image acquisition system were introduced, as well as the method of seed identification and seed-space measurement using image's threshold and counting the seed's center. By analyzing the experimental result, the measurement error is less than ± 1mm.

  20. Colour Based Image Processing Method for Recognizing Ribbed Smoked Sheet Grade

    NASA Astrophysics Data System (ADS)

    Fibriani, Ike; Sumardi; Bayu Satriya, Alfredo; Budi Utomo, Satryo

    2017-03-01

    This research proposes a colour based image processing technique to recognize the Ribbed Smoked Sheet (RSS) grade so that the RSS sorting process can be faster and more accurate than the traditional one. The RSS sheet image captured by the camera is transformed into grayscale image to simplify the recognition of rust and mould on the RSS sheet. Then the grayscale image is transformed into binary image using threshold value which is obtained from the RSS 1 reference colour. The grade recognition is determined by counting the white pixel percentage. The result shows that the system has 88% of accuracy. Most faults exist on RSS 2 recognition. This is due to the illumination distribution which is not equal over the RSS image.

Top