Sample records for image quality comparison

  1. Image quality scaling of electrophotographic prints

    NASA Astrophysics Data System (ADS)

    Johnson, Garrett M.; Patil, Rohit A.; Montag, Ethan D.; Fairchild, Mark D.

    2003-12-01

    Two psychophysical experiments were performed scaling overall image quality of black-and-white electrophotographic (EP) images. Six different printers were used to generate the images. There were six different scenes included in the experiment, representing photographs, business graphics, and test-targets. The two experiments were split into a paired-comparison experiment examining overall image quality, and a triad experiment judging overall similarity and dissimilarity of the printed images. The paired-comparison experiment was analyzed using Thurstone's Law, to generate an interval scale of quality, and with dual scaling, to determine the independent dimensions used for categorical scaling. The triad experiment was analyzed using multidimensional scaling to generate a psychological stimulus space. The psychophysical results indicated that the image quality was judged mainly along one dimension and that the relationships among the images can be described with a single dimension in most cases. Regression of various physical measurements of the images to the paired comparison results showed that a small number of physical attributes of the images could be correlated with the psychophysical scale of image quality. However, global image difference metrics did not correlate well with image quality.

  2. Process perspective on image quality evaluation

    NASA Astrophysics Data System (ADS)

    Leisti, Tuomas; Halonen, Raisa; Kokkonen, Anna; Weckman, Hanna; Mettänen, Marja; Lensu, Lasse; Ritala, Risto; Oittinen, Pirkko; Nyman, Göte

    2008-01-01

    The psychological complexity of multivariate image quality evaluation makes it difficult to develop general image quality metrics. Quality evaluation includes several mental processes and ignoring these processes and the use of a few test images can lead to biased results. By using a qualitative/quantitative (Interpretation Based Quality, IBQ) methodology, we examined the process of pair-wise comparison in a setting, where the quality of the images printed by laser printer on different paper grades was evaluated. Test image consisted of a picture of a table covered with several objects. Three other images were also used, photographs of a woman, cityscape and countryside. In addition to the pair-wise comparisons, observers (N=10) were interviewed about the subjective quality attributes they used in making their quality decisions. An examination of the individual pair-wise comparisons revealed serious inconsistencies in observers' evaluations on the test image content, but not on other contexts. The qualitative analysis showed that this inconsistency was due to the observers' focus of attention. The lack of easily recognizable context in the test image may have contributed to this inconsistency. To obtain reliable knowledge of the effect of image context or attention on subjective image quality, a qualitative methodology is needed.

  3. Standardizing Quality Assessment of Fused Remotely Sensed Images

    NASA Astrophysics Data System (ADS)

    Pohl, C.; Moellmann, J.; Fries, K.

    2017-09-01

    The multitude of available operational remote sensing satellites led to the development of many image fusion techniques to provide high spatial, spectral and temporal resolution images. The comparison of different techniques is necessary to obtain an optimized image for the different applications of remote sensing. There are two approaches in assessing image quality: 1. Quantitatively by visual interpretation and 2. Quantitatively using image quality indices. However an objective comparison is difficult due to the fact that a visual assessment is always subject and a quantitative assessment is done by different criteria. Depending on the criteria and indices the result varies. Therefore it is necessary to standardize both processes (qualitative and quantitative assessment) in order to allow an objective image fusion quality evaluation. Various studies have been conducted at the University of Osnabrueck (UOS) to establish a standardized process to objectively compare fused image quality. First established image fusion quality assessment protocols, i.e. Quality with No Reference (QNR) and Khan's protocol, were compared on varies fusion experiments. Second the process of visual quality assessment was structured and standardized with the aim to provide an evaluation protocol. This manuscript reports on the results of the comparison and provides recommendations for future research.

  4. Retinal Image Quality Assessment for Spaceflight-Induced Vision Impairment Study

    NASA Technical Reports Server (NTRS)

    Vu, Amanda Cadao; Raghunandan, Sneha; Vyas, Ruchi; Radhakrishnan, Krishnan; Taibbi, Giovanni; Vizzeri, Gianmarco; Grant, Maria; Chalam, Kakarla; Parsons-Wingerter, Patricia

    2015-01-01

    Long-term exposure to space microgravity poses significant risks for visual impairment. Evidence suggests such vision changes are linked to cephalad fluid shifts, prompting a need to directly quantify microgravity-induced retinal vascular changes. The quality of retinal images used for such vascular remodeling analysis, however, is dependent on imaging methodology. For our exploratory study, we hypothesized that retinal images captured using fluorescein imaging methodologies would be of higher quality in comparison to images captured without fluorescein. A semi-automated image quality assessment was developed using Vessel Generation Analysis (VESGEN) software and MATLAB® image analysis toolboxes. An analysis of ten images found that the fluorescein imaging modality provided a 36% increase in overall image quality (two-tailed p=0.089) in comparison to nonfluorescein imaging techniques.

  5. Image Quality Improvement in Adaptive Optics Scanning Laser Ophthalmoscopy Assisted Capillary Visualization Using B-spline-based Elastic Image Registration

    PubMed Central

    Uji, Akihito; Ooto, Sotaro; Hangai, Masanori; Arichika, Shigeta; Yoshimura, Nagahisa

    2013-01-01

    Purpose To investigate the effect of B-spline-based elastic image registration on adaptive optics scanning laser ophthalmoscopy (AO-SLO)-assisted capillary visualization. Methods AO-SLO videos were acquired from parafoveal areas in the eyes of healthy subjects and patients with various diseases. After nonlinear image registration, the image quality of capillary images constructed from AO-SLO videos using motion contrast enhancement was compared before and after B-spline-based elastic (nonlinear) image registration performed using ImageJ. For objective comparison of image quality, contrast-to-noise ratios (CNRS) for vessel images were calculated. For subjective comparison, experienced ophthalmologists ranked images on a 5-point scale. Results All AO-SLO videos were successfully stabilized by elastic image registration. CNR was significantly higher in capillary images stabilized by elastic image registration than in those stabilized without registration. The average ratio of CNR in images with elastic image registration to CNR in images without elastic image registration was 2.10 ± 1.73, with no significant difference in the ratio between patients and healthy subjects. Improvement of image quality was also supported by expert comparison. Conclusions Use of B-spline-based elastic image registration in AO-SLO-assisted capillary visualization was effective for enhancing image quality both objectively and subjectively. PMID:24265796

  6. Synthesized view comparison method for no-reference 3D image quality assessment

    NASA Astrophysics Data System (ADS)

    Luo, Fangzhou; Lin, Chaoyi; Gu, Xiaodong; Ma, Xiaojun

    2018-04-01

    We develop a no-reference image quality assessment metric to evaluate the quality of synthesized view rendered from the Multi-view Video plus Depth (MVD) format. Our metric is named Synthesized View Comparison (SVC), which is designed for real-time quality monitoring at the receiver side in a 3D-TV system. The metric utilizes the virtual views in the middle which are warped from left and right views by Depth-image-based rendering algorithm (DIBR), and compares the difference between the virtual views rendered from different cameras by Structural SIMilarity (SSIM), a popular 2D full-reference image quality assessment metric. The experimental results indicate that our no-reference quality assessment metric for the synthesized images has competitive prediction performance compared with some classic full-reference image quality assessment metrics.

  7. Readout-Segmented Echo-Planar Imaging in Diffusion-Weighted MR Imaging in Breast Cancer: Comparison with Single-Shot Echo-Planar Imaging in Image Quality

    PubMed Central

    Kim, Yun Ju; Kang, Bong Joo; Park, Chang Suk; Kim, Hyeon Sook; Son, Yo Han; Porter, David Andrew; Song, Byung Joo

    2014-01-01

    Objective The purpose of this study was to compare the image quality of standard single-shot echo-planar imaging (ss-EPI) and that of readout-segmented EPI (rs-EPI) in patients with breast cancer. Materials and Methods Seventy-one patients with 74 breast cancers underwent both ss-EPI and rs-EPI. For qualitative comparison of image quality, three readers independently assessed the two sets of diffusion-weighted (DW) images. To evaluate geometric distortion, a comparison was made between lesion lengths derived from contrast enhanced MR (CE-MR) images and those obtained from the corresponding DW images. For assessment of image parameters, signal-to-noise ratio (SNR), lesion contrast, and contrast-to-noise ratio (CNR) were calculated. Results The rs-EPI was superior to ss-EPI in most criteria regarding the qualitative image quality. Anatomical structure distinction, delineation of the lesion, ghosting artifact, and overall image quality were significantly better in rs-EPI. Regarding the geometric distortion, lesion length on ss-EPI was significantly different from that of CE-MR, whereas there were no significant differences between CE-MR and rs-EPI. The rs-EPI was superior to ss-EPI in SNR and CNR. Conclusion Readout-segmented EPI is superior to ss-EPI in the aspect of image quality in DW MR imaging of the breast. PMID:25053898

  8. Low-cost oblique illumination: an image quality assessment.

    PubMed

    Ruiz-Santaquiteria, Jesus; Espinosa-Aranda, Jose Luis; Deniz, Oscar; Sanchez, Carlos; Borrego-Ramos, Maria; Blanco, Saul; Cristobal, Gabriel; Bueno, Gloria

    2018-01-01

    We study the effectiveness of several low-cost oblique illumination filters to improve overall image quality, in comparison with standard bright field imaging. For this purpose, a dataset composed of 3360 diatom images belonging to 21 taxa was acquired. Subjective and objective image quality assessments were done. The subjective evaluation was performed by a group of diatom experts by psychophysical test where resolution, focus, and contrast were assessed. Moreover, some objective nonreference image quality metrics were applied to the same image dataset to complete the study, together with the calculation of several texture features to analyze the effect of these filters in terms of textural properties. Both image quality evaluation methods, subjective and objective, showed better results for images acquired using these illumination filters in comparison with the no filtered image. These promising results confirm that this kind of illumination filters can be a practical way to improve the image quality, thanks to the simple and low cost of the design and manufacturing process. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  9. Imaging in anatomy: a comparison of imaging techniques in embalmed human cadavers

    PubMed Central

    2013-01-01

    Background A large variety of imaging techniques is an integral part of modern medicine. Introducing radiological imaging techniques into the dissection course serves as a basis for improved learning of anatomy and multidisciplinary learning in pre-clinical medical education. Methods Four different imaging techniques (ultrasound, radiography, computed tomography, and magnetic resonance imaging) were performed in embalmed human body donors to analyse possibilities and limitations of the respective techniques in this peculiar setting. Results The quality of ultrasound and radiography images was poor, images of computed tomography and magnetic resonance imaging were of good quality. Conclusion Computed tomography and magnetic resonance imaging have a superior image quality in comparison to ultrasound and radiography and offer suitable methods for imaging embalmed human cadavers as a valuable addition to the dissection course. PMID:24156510

  10. Body image and college women's quality of life: The importance of being self-compassionate.

    PubMed

    Duarte, Cristiana; Ferreira, Cláudia; Trindade, Inês A; Pinto-Gouveia, José

    2015-06-01

    This study explored self-compassion as a mediator between body dissatisfaction, social comparison based on body image and quality of life in 662 female college students. Path analysis revealed that while controlling for body mass index, self-compassion mediated the impact of body dissatisfaction and unfavourable social comparisons on psychological quality of life. The path model accounted for 33 per cent of psychological quality of life variance. Findings highlight the importance of self-compassion as a mechanism that may operate on the association between negative body image evaluations and young women's quality of life. © The Author(s) 2015.

  11. JPEG vs. JPEG 2000: an objective comparison of image encoding quality

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Farzad; Chamik, Matthieu; Winkler, Stefan

    2004-11-01

    This paper describes an objective comparison of the image quality of different encoders. Our approach is based on estimating the visual impact of compression artifacts on perceived quality. We present a tool that measures these artifacts in an image and uses them to compute a prediction of the Mean Opinion Score (MOS) obtained in subjective experiments. We show that the MOS predictions by our proposed tool are a better indicator of perceived image quality than PSNR, especially for highly compressed images. For the encoder comparison, we compress a set of 29 test images with two JPEG encoders (Adobe Photoshop and IrfanView) and three JPEG2000 encoders (JasPer, Kakadu, and IrfanView) at various compression ratios. We compute blockiness, blur, and MOS predictions as well as PSNR of the compressed images. Our results show that the IrfanView JPEG encoder produces consistently better images than the Adobe Photoshop JPEG encoder at the same data rate. The differences between the JPEG2000 encoders in our test are less pronounced; JasPer comes out as the best codec, closely followed by IrfanView and Kakadu. Comparing the JPEG- and JPEG2000-encoding quality of IrfanView, we find that JPEG has a slight edge at low compression ratios, while JPEG2000 is the clear winner at medium and high compression ratios.

  12. The effect of image quality and forensic expertise in facial image comparisons.

    PubMed

    Norell, Kristin; Läthén, Klas Brorsson; Bergström, Peter; Rice, Allyson; Natu, Vaidehi; O'Toole, Alice

    2015-03-01

    Images of perpetrators in surveillance video footage are often used as evidence in court. In this study, identification accuracy was compared for forensic experts and untrained persons in facial image comparisons as well as the impact of image quality. Participants viewed thirty image pairs and were asked to rate the level of support garnered from their observations for concluding whether or not the two images showed the same person. Forensic experts reached their conclusions with significantly fewer errors than did untrained participants. They were also better than novices at determining when two high-quality images depicted the same person. Notably, lower image quality led to more careful conclusions by experts, but not for untrained participants. In summary, the untrained participants had more false negatives and false positives than experts, which in the latter case could lead to a higher risk of an innocent person being convicted for an untrained witness. © 2014 American Academy of Forensic Sciences.

  13. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities.

    PubMed

    Lechuga, Lawrence; Weidlich, Georg A

    2016-09-12

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities-fan beam and cone beam-was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient.

  14. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities

    PubMed Central

    Weidlich, Georg A.

    2016-01-01

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities—fan beam and cone beam—was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient. PMID:27752404

  15. [The dilemma of data flood - reducing costs and increasing quality control].

    PubMed

    Gassmann, B

    2012-09-05

    Digitization is found everywhere in sonography. Printing of ultrasound images using the videoprinter with special paper will be done in single cases. The documentation of sonography procedures is more and more done by saving image sequences instead of still frames. Echocardiography is routinely recorded in between with so called R-R-loops. Doing contrast enhanced ultrasound recording of sequences is necessary to get a deep impression of the vascular structure of interest. Working with this data flood in daily practice a specialized software is required. Comparison in follow up of stored and recent images/sequences is very helpful. Nevertheless quality control of the ultrasound system and the transducers is simple and safe - using a phantom for detail resolution and general image quality the stored images/sequences are comparable over the life cycle of the system. The comparison in follow up is showing decreased image quality and transducer defects immediately.

  16. MR imaging of the prostate at 3 Tesla: comparison of an external phased-array coil to imaging with an endorectal coil at 1.5 Tesla.

    PubMed

    Sosna, Jacob; Pedrosa, Ivan; Dewolf, William C; Mahallati, Houman; Lenkinski, Robert E; Rofsky, Neil M

    2004-08-01

    To qualitatively compare the image quality of torso phased-array 3-Tesla (3T) imaging of the prostate with that of endorectal 1.5-Tesla imaging. Twenty cases of torso phased-array prostate imaging performed at 3-Tesla with FSE T2 weighted images were evaluated by two readers independently for visualization of the posterior border (PB), seminal vesicles (SV), neurovascular bundles (NVB), and image quality rating (IQR). Studies were performed at large fields of view(FOV) (25 cm) (14 cases) (3TL) and smaller FOV (14 cm) (19 cases) (3TS). A comparison was made to 20 consecutive cases of 1.5-T endorectal evaluation performed during the same time period.Results. 3TL produced a significantly better image quality compared with the small FOV for PB (P = .0001), SV (P =.0001), and IQR (P = .0001). There was a marginally significant difference within the NVB category (P = .0535). 3TL produced an image of similar quality to image quality at 1.5 T for PB (P = .3893), SV (P = .8680), NB (P = .2684), and IQR (P = .8599). Prostate image quality at 3T with a torso phased-array coil can be comparable with that of endorectal 1.5-T imaging. These findings suggest that additional options are now available for magnetic resonance imaging of the prostate gland.

  17. High-field open versus short-bore magnetic resonance imaging of the spine: a randomized controlled comparison of image quality.

    PubMed

    Enders, Judith; Rief, Matthias; Zimmermann, Elke; Asbach, Patrick; Diederichs, Gerd; Wetz, Christoph; Siebert, Eberhard; Wagner, Moritz; Hamm, Bernd; Dewey, Marc

    2013-01-01

    The purpose of the present study was to compare the image quality of spinal magnetic resonance (MR) imaging performed on a high-field horizontal open versus a short-bore MR scanner in a randomized controlled study setup. Altogether, 93 (80% women, mean age 53) consecutive patients underwent spine imaging after random assignement to a 1-T horizontal open MR scanner with a vertical magnetic field or a 1.5-T short-bore MR scanner. This patient subset was part of a larger cohort. Image quality was assessed by determining qualitative parameters, signal-to-noise (SNR) and contrast-to-noise ratios (CNR), and quantitative contour sharpness. The image quality parameters were higher for short-bore MR imaging. Regarding all sequences, the relative differences were 39% for the mean overall qualitative image quality, 53% for the mean SNR values, and 34-37% for the quantitative contour sharpness (P<0.0001). The CNR values were also higher for images obtained with the short-bore MR scanner. No sequence was of very poor (nondiagnostic) image quality. Scanning times were significantly longer for examinations performed on the open MR scanner (mean: 32±22 min versus 20±9 min; P<0.0001). In this randomized controlled comparison of spinal MR imaging with an open versus a short-bore scanner, short-bore MR imaging revealed considerably higher image quality with shorter scanning times. ClinicalTrials.gov NCT00715806.

  18. High-Field Open versus Short-Bore Magnetic Resonance Imaging of the Spine: A Randomized Controlled Comparison of Image Quality

    PubMed Central

    Zimmermann, Elke; Asbach, Patrick; Diederichs, Gerd; Wetz, Christoph; Siebert, Eberhard; Wagner, Moritz; Hamm, Bernd; Dewey, Marc

    2013-01-01

    Background The purpose of the present study was to compare the image quality of spinal magnetic resonance (MR) imaging performed on a high-field horizontal open versus a short-bore MR scanner in a randomized controlled study setup. Methods Altogether, 93 (80% women, mean age 53) consecutive patients underwent spine imaging after random assignement to a 1-T horizontal open MR scanner with a vertical magnetic field or a 1.5-T short-bore MR scanner. This patient subset was part of a larger cohort. Image quality was assessed by determining qualitative parameters, signal-to-noise (SNR) and contrast-to-noise ratios (CNR), and quantitative contour sharpness. Results The image quality parameters were higher for short-bore MR imaging. Regarding all sequences, the relative differences were 39% for the mean overall qualitative image quality, 53% for the mean SNR values, and 34–37% for the quantitative contour sharpness (P<0.0001). The CNR values were also higher for images obtained with the short-bore MR scanner. No sequence was of very poor (nondiagnostic) image quality. Scanning times were significantly longer for examinations performed on the open MR scanner (mean: 32±22 min versus 20±9 min; P<0.0001). Conclusions In this randomized controlled comparison of spinal MR imaging with an open versus a short-bore scanner, short-bore MR imaging revealed considerably higher image quality with shorter scanning times. Trial Registration ClinicalTrials.gov NCT00715806 PMID:24391767

  19. Evaluation of the visual performance of image processing pipes: information value of subjective image attributes

    NASA Astrophysics Data System (ADS)

    Nyman, G.; Häkkinen, J.; Koivisto, E.-M.; Leisti, T.; Lindroos, P.; Orenius, O.; Virtanen, T.; Vuori, T.

    2010-01-01

    Subjective image quality data for 9 image processing pipes and 8 image contents (taken with mobile phone camera, 72 natural scene test images altogether) from 14 test subjects were collected. A triplet comparison setup and a hybrid qualitative/quantitative methodology were applied. MOS data and spontaneous, subjective image quality attributes to each test image were recorded. The use of positive and negative image quality attributes by the experimental subjects suggested a significant difference between the subjective spaces of low and high image quality. The robustness of the attribute data was shown by correlating DMOS data of the test images against their corresponding, average subjective attribute vector length data. The findings demonstrate the information value of spontaneous, subjective image quality attributes in evaluating image quality at variable quality levels. We discuss the implications of these findings for the development of sensitive performance measures and methods in profiling image processing systems and their components, especially at high image quality levels.

  20. Iterative reconstruction of simulated low count data: a comparison of post-filtering versus regularised OSEM

    NASA Astrophysics Data System (ADS)

    Karaoglanis, K.; Efthimiou, N.; Tsoumpas, C.

    2015-09-01

    Low count PET data is a challenge for medical image reconstruction. The statistics of a dataset is a key factor of the quality of the reconstructed images. Reconstruction algorithms which would be able to compensate for low count datasets could provide the means to reduce the patient injected doses and/or reduce the scan times. It has been shown that the use of priors improve the image quality in low count conditions. In this study we compared regularised versus post-filtered OSEM for their performance on challenging simulated low count datasets. Initial visual comparison demonstrated that both algorithms improve the image quality, although the use of regularization does not introduce the undesired blurring as post-filtering.

  1. Bayesian denoising in digital radiography: a comparison in the dental field.

    PubMed

    Frosio, I; Olivieri, C; Lucchese, M; Borghese, N A; Boccacci, P

    2013-01-01

    We compared two Bayesian denoising algorithms for digital radiographs, based on Total Variation regularization and wavelet decomposition. The comparison was performed on simulated radiographs with different photon counts and frequency content and on real dental radiographs. Four different quality indices were considered to quantify the quality of the filtered radiographs. The experimental results suggested that Total Variation is more suited to preserve fine anatomical details, whereas wavelets produce images of higher quality at global scale; they also highlighted the need for more reliable image quality indices. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. A comparison of defect size and film quality obtained from Film digitized image and digital image radiographs

    NASA Astrophysics Data System (ADS)

    Kamlangkeng, Poramate; Asa, Prateepasen; Mai, Noipitak

    2014-06-01

    Digital radiographic testing is an acceptable premature nondestructive examination technique. Its performance and limitation comparing to the old technique are still not widely well known. In this paper conducted the study on the comparison of the accuracy of the defect size measurement and film quality obtained from film and digital radiograph techniques by testing in specimens and known size sample defect. Initially, one specimen was built with three types of internal defect; which are longitudinal cracking, lack of fusion, and porosity. For the known size sample defect, it was machined various geometrical size for comparing the accuracy of the measuring defect size to the real size in both film and digital images. To compare the image quality by considering at smallest detectable wire and the three defect images. In this research used Image Quality Indicator (IQI) of wire type 10/16 FE EN BS EN-462-1-1994. The radiographic films were produced by X-ray and gamma ray using Kodak AA400 size 3.5x8 inches, while the digital images were produced by Fuji image plate type ST-VI with 100 micrometers resolution. During the tests, a radiator GE model MF3 was implemented. The applied energy is varied from 120 to 220 kV and the current from 1.2 to 3.0 mA. The intensity of Iridium 192 gamma ray is in the range of 24-25 Curie. Under the mentioned conditions, the results showed that the deviation of the defect size measurement comparing to the real size obtained from the digital image radiographs is below than that of the film digitized, whereas the quality of film digitizer radiographs is higher in comparison.

  3. A Comparison of Ultrasound Tomography Methods in Circular Geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leach, R R; Azevedo, S G; Berryman, J G

    2002-01-24

    Extremely high quality data was acquired using an experimental ultrasound scanner developed at Lawrence Livermore National Laboratory using a 2D ring geometry with up to 720 transmitter/receiver transducer positions. This unique geometry allows reflection and transmission modes and transmission imaging and quantification of a 3D volume using 2D slice data. Standard image reconstruction methods were applied to the data including straight-ray filtered back projection, reflection tomography, and diffraction tomography. Newer approaches were also tested such as full wave, full wave adjoint method, bent-ray filtered back projection, and full-aperture tomography. A variety of data sets were collected including a formalin-fixed humanmore » breast tissue sample, a commercial ultrasound complex breast phantom, and cylindrical objects with and without inclusions. The resulting reconstruction quality of the images ranges from poor to excellent. The method and results of this study are described including like-data reconstructions produced by different algorithms with side-by-side image comparisons. Comparisons to medical B-scan and x-ray CT scan images are also shown. Reconstruction methods with respect to image quality using resolution, noise, and quantitative accuracy, and computational efficiency metrics will also be discussed.« less

  4. Digital volume tomography in the diagnosis of periodontal defects: an in vitro study on native pig and human mandibles.

    PubMed

    Mengel, Reiner; Candir, Muhsin; Shiratori, Kiyoshi; Flores-de-Jacoby, Lavin

    2005-05-01

    The aim of this study of native pig and human mandibles was to investigate the accuracy and quality of the representation of periodontal defects by intraoral radiography (IR), panoramic radiography (PR), computed tomography (CT), and digital volume tomography (DVT) in comparison with histologic specimens. Following the standardized preparation of periodontal defects (14 dehiscences, fenestrations, 2- to 3-walled intrabony defects, respectively; Class I, II, and III furcation involvement) in six pig and seven human mandibles, IR, PR, CT, and DVT were performed. The histologic specimens were produced by cutting blocks with the individual defects out of the mandibles, embedding them in acrylic, and producing sagittal and axial microsections. The intrabony defects were measured using appropriate software on the digitized IR and PR images programs. The histologic sections were measured by reflecting stereomicroscopy. The statistical comparison between the measurements of the radiographic images and those of the histologic specimens was performed with Pearson's correlation coefficient. The quality of the radiographic images was determined through the subjective perception and detectability of the intrabony defects by five independent observers. All intrabony defects could be measured in three planes in the CT and DVT scans. Comparison with the histologic specimens yielded a mean deviation of 0.16 +/- 0.10 mm for the CT scans and 0.19 +/- 0.11 mm for the DVT scans. On the IR and PR images, the defects could be detected only in the mesio-distal and craniocaudal planes. In comparison with the histologic specimens, the IR images revealed a mean deviation of 0.33 +/- 0.18 mm and the PR images a mean deviation of 1.07 +/- 0.62 mm. The quality rating of the radiographic images was highest for the DVT scans. Overall, the CT and DVT scans displayed only a slight deviation in the extent of the periodontal defects in comparison with the histologic specimens. Both radiographic imaging techniques permitted imaging of anatomic osseous structures in three planes, true to scale, and without overlay or distortion. The DVT scans showed the best imaging quality.

  5. Image quality and radiation reduction of 320-row area detector CT coronary angiography with optimal tube voltage selection and an automatic exposure control system: comparison with body mass index-adapted protocol.

    PubMed

    Lim, Jiyeon; Park, Eun-Ah; Lee, Whal; Shim, Hackjoon; Chung, Jin Wook

    2015-06-01

    To assess the image quality and radiation exposure of 320-row area detector computed tomography (320-ADCT) coronary angiography with optimal tube voltage selection with the guidance of an automatic exposure control system in comparison with a body mass index (BMI)-adapted protocol. Twenty-two patients (study group) underwent 320-ADCT coronary angiography using an automatic exposure control system with the target standard deviation value of 33 as the image quality index and the lowest possible tube voltage. For comparison, a sex- and BMI-matched group (control group, n = 22) using a BMI-adapted protocol was established. Images of both groups were reconstructed by an iterative reconstruction algorithm. For objective evaluation of the image quality, image noise, vessel density, signal to noise ratio (SNR), and contrast to noise ratio (CNR) were measured. Two blinded readers then subjectively graded the image quality using a four-point scale (1: nondiagnostic to 4: excellent). Radiation exposure was also measured. Although the study group tended to show higher image noise (14.1 ± 3.6 vs. 9.3 ± 2.2 HU, P = 0.111) and higher vessel density (665.5 ± 161 vs. 498 ± 143 HU, P = 0.430) than the control group, the differences were not significant. There was no significant difference between the two groups for SNR (52.5 ± 19.2 vs. 60.6 ± 21.8, P = 0.729), CNR (57.0 ± 19.8 vs. 67.8 ± 23.3, P = 0.531), or subjective image quality scores (3.47 ± 0.55 vs. 3.59 ± 0.56, P = 0.960). However, radiation exposure was significantly reduced by 42 % in the study group (1.9 ± 0.8 vs. 3.6 ± 0.4 mSv, P = 0.003). Optimal tube voltage selection with the guidance of an automatic exposure control system in 320-ADCT coronary angiography allows substantial radiation reduction without significant impairment of image quality, compared to the results obtained using a BMI-based protocol.

  6. Body-image, quality of life and psychological distress: a comparison between kidney transplant patients and a matching healthy sample.

    PubMed

    Yagil, Yaron; Geller, Shulamit; Levy, Sigal; Sidi, Yael; Aharoni, Shiri

    2018-04-01

    The purpose of the current study was to assess the uniqueness of the condition of kidney transplant recipients in comparison to a sample of matching healthy peers in relation to body-image dissatisfaction and identification, quality of life and psychological distress. Participants were 45 kidney transplant recipients who were under follow-up care at a Transplant Unit of a major Medical Center, and a sample of 45 matching healthy peers. Measures were taken using self-report questionnaires [Body-Image Ideals Questionnaire (BIIQ), Body Identification Questionnaire (BIQ), Brief Symptoms Inventory (BSI), and the SF-12]. The major findings were the following: (i) kidney transplant recipients reported lower levels of quality of life and higher levels of PsD when compared to their healthy peers; (ii) no difference in body-image dissatisfaction was found between the two studied groups; (iii) significant correlations between body-image dissatisfaction quality of life and PsD were found only in the kidney transplant recipients. The kidney transplantation condition has a moderating effect in the association between body-image dissatisfaction PsD but not in the association between body-image dissatisfaction and quality of life; (iv) kidney transplant recipients experienced higher levels of body identification than did their healthy peers. Taken together, these findings highlight the unique condition of kidney transplant recipients, as well as the function that body-image plays within the self.

  7. No-reference image quality assessment for horizontal-path imaging scenarios

    NASA Astrophysics Data System (ADS)

    Rios, Carlos; Gladysz, Szymon

    2013-05-01

    There exist several image-enhancement algorithms and tasks associated with imaging through turbulence that depend on defining the quality of an image. Examples include: "lucky imaging", choosing the width of the inverse filter for image reconstruction, or stopping iterative deconvolution. We collected a number of image quality metrics found in the literature. Particularly interesting are the blind, "no-reference" metrics. We discuss ways of evaluating the usefulness of these metrics, even when a fully objective comparison is impossible because of the lack of a reference image. Metrics are tested on simulated and real data. Field data comes from experiments performed by the NATO SET 165 research group over a 7 km distance in Dayton, Ohio.

  8. High-pitch dual-source CT angiography without ECG-gating for imaging the whole aorta: intraindividual comparison with standard pitch single-source technique without ECG-gating

    PubMed Central

    Manna, Carmelinda; Silva, Mario; Cobelli, Rocco; Poggesi, Sara; Rossi, Cristina; Sverzellati, Nicola

    2017-01-01

    PURPOSE We aimed to perform intraindividual comparison of computed tomography (CT) parameters, image quality, and radiation exposure between standard CT angiography (CTA) and high-pitch dual source (DS)-CTA, in subjects undergoing serial CTA of thoracoabdominal aorta. METHODS Eighteen subjects with thoracoabdominal CTA by standard technique and high-pitch DS-CTA technique within 6 months of each other were retrieved for intraindividual comparison of image quality in thoracic and abdominal aorta. Quantitative analysis was performed by comparison of mean aortic attenuation, noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). Qualitative analysis was performed by visual assessment of motion artifacts and diagnostic confidence. Radiation exposure was quantified by effective dose. Image quality was apportioned to radiation exposure by means of figure of merit. RESULTS Mean aortic attenuation and noise were higher in high-pitch DS-CTA of thoracoabdominal aorta, whereas SNR and CNR were similar in thoracic aorta and significantly lower in high-pitch DS-CTA of abdominal aorta (P = 0.024 and P = 0.016). High-pitch DS-CTA was significantly better in the first segment of thoracic aorta. Effective dose was reduced by 72% in high-pitch DS-CTA. CONCLUSION High-pitch DS-CTA without electrocardiography-gating is an effective technique for imaging aorta with very low radiation exposure and with significant reduction of motion artifacts in ascending aorta; however, the overall quality of high-pitch DS-CTA in abdominal aorta is lower than standard CTA. PMID:28703104

  9. Image quality and radiation dose on digital chest imaging: comparison of amorphous silicon and amorphous selenium flat-panel systems.

    PubMed

    Bacher, Klaus; Smeets, Peter; Vereecken, Ludo; De Hauwere, An; Duyck, Philippe; De Man, Robert; Verstraete, Koenraad; Thierens, Hubert

    2006-09-01

    The aim of this study was to compare the image quality and radiation dose in chest imaging using an amorphous silicon flat-panel detector system and an amorphous selenium flat-panel detector system. In addition, the low-contrast performance of both systems with standard and low radiation doses was compared. In two groups of 100 patients each, digital chest radiographs were acquired with either an amorphous silicon or an amorphous selenium flat-panel system. The effective dose of the examination was measured using thermoluminescent dosimeters placed in an anthropomorphic Rando phantom. The image quality of the digital chest radiographs was assessed by five experienced radiologists using the European Guidelines on Quality Criteria for Diagnostic Radiographic Images. In addition, a contrast-detail phantom study was set up to assess the low-contrast performance of both systems at different radiation dose levels. Differences between the two groups were tested for significance using the two-tailed Mann-Whitney test. The amorphous silicon flat-panel system allowed an important and significant reduction in effective dose in comparison with the amorphous selenium flat-panel system (p < 0.0001) for both the posteroanterior and lateral views. In addition, clinical image quality analysis showed that the dose reduction was not detrimental to image quality. Compared with the amorphous selenium flat-panel detector system, the amorphous silicon flat-panel detector system performed significantly better in the low-contrast phantom study, with phantom entrance dose values of up to 135 muGy. Chest radiographs can be acquired with a significantly lower patient radiation dose using an amorphous silicon flat-panel system than using an amorphous selenium flat-panel system, thereby producing images that are equal or even superior in quality to those of the amorphous selenium flat-panel detector system.

  10. Image quality evaluation of eight complementary metal-oxide semiconductor intraoral digital X-ray sensors.

    PubMed

    Teich, Sorin; Al-Rawi, Wisam; Heima, Masahiro; Faddoul, Fady F; Goldzweig, Gil; Gutmacher, Zvi; Aizenbud, Dror

    2016-10-01

    To evaluate the image quality generated by eight commercially available intraoral sensors. Eighteen clinicians ranked the quality of a bitewing acquired from one subject using eight different intraoral sensors. Analytical methods used to evaluate clinical image quality included the Visual Grading Characteristics method, which helps to quantify subjective opinions to make them suitable for analysis. The Dexis sensor was ranked significantly better than Sirona and Carestream-Kodak sensors; and the image captured using the Carestream-Kodak sensor was ranked significantly worse than those captured using Dexis, Schick and Cyber Medical Imaging sensors. The Image Works sensor image was rated the lowest by all clinicians. Other comparisons resulted in non-significant results. None of the sensors was considered to generate images of significantly better quality than the other sensors tested. Further research should be directed towards determining the clinical significance of the differences in image quality reported in this study. © 2016 FDI World Dental Federation.

  11. Assessment of noise reduction potential and image quality improvement of a new generation adaptive statistical iterative reconstruction (ASIR-V) in chest CT.

    PubMed

    Tang, Hui; Yu, Nan; Jia, Yongjun; Yu, Yong; Duan, Haifeng; Han, Dong; Ma, Guangming; Ren, Chenglong; He, Taiping

    2018-01-01

    To evaluate the image quality improvement and noise reduction in routine dose, non-enhanced chest CT imaging by using a new generation adaptive statistical iterative reconstruction (ASIR-V) in comparison with ASIR algorithm. 30 patients who underwent routine dose, non-enhanced chest CT using GE Discovery CT750HU (GE Healthcare, Waukesha, WI) were included. The scan parameters included tube voltage of 120 kVp, automatic tube current modulation to obtain a noise index of 14HU, rotation speed of 0.6 s, pitch of 1.375:1 and slice thickness of 5 mm. After scanning, all scans were reconstructed with the recommended level of 40%ASIR for comparison purpose and different percentages of ASIR-V from 10% to 100% in a 10% increment. The CT attenuation values and SD of the subcutaneous fat, back muscle and descending aorta were measured at the level of tracheal carina of all reconstructed images. The signal-to-noise ratio (SNR) was calculated with SD representing image noise. The subjective image quality was independently evaluated by two experienced radiologists. For all ASIR-V images, the objective image noise (SD) of fat, muscle and aorta decreased and SNR increased along with increasing ASIR-V percentage. The SD of 30% ASIR-V to 100% ASIR-V was significantly lower than that of 40% ASIR (p < 0.05). In terms of subjective image evaluation, all ASIR-V reconstructions had good diagnostic acceptability. However, the 50% ASIR-V to 70% ASIR-V series showed significantly superior visibility of small structures when compared with the 40% ASIR and ASIR-V of other percentages (p < 0.05), and 60% ASIR-V was the best series of all ASIR-V images, with a highest subjective image quality. The image sharpness was significantly decreased in images reconstructed by 80% ASIR-V and higher. In routine dose, non-enhanced chest CT, ASIR-V shows greater potential in reducing image noise and artefacts and maintaining image sharpness when compared to the recommended level of 40%ASIR algorithm. Combining both the objective and subjective evaluation of images, non-enhanced chest CT images reconstructed with 60% ASIR-V have the highest image quality. Advances in knowledge: This is the first clinical study to evaluate the clinical value of ASIR-V in the same patients using the same CT scanner in the non-enhanced chest CT scans. It suggests that ASIR-V provides the better image quality and higher diagnostic confidence in comparison with ASIR algorithm.

  12. Image Quality Ranking Method for Microscopy

    PubMed Central

    Koho, Sami; Fazeli, Elnaz; Eriksson, John E.; Hänninen, Pekka E.

    2016-01-01

    Automated analysis of microscope images is necessitated by the increased need for high-resolution follow up of events in time. Manually finding the right images to be analyzed, or eliminated from data analysis are common day-to-day problems in microscopy research today, and the constantly growing size of image datasets does not help the matter. We propose a simple method and a software tool for sorting images within a dataset, according to their relative quality. We demonstrate the applicability of our method in finding good quality images in a STED microscope sample preparation optimization image dataset. The results are validated by comparisons to subjective opinion scores, as well as five state-of-the-art blind image quality assessment methods. We also show how our method can be applied to eliminate useless out-of-focus images in a High-Content-Screening experiment. We further evaluate the ability of our image quality ranking method to detect out-of-focus images, by extensive simulations, and by comparing its performance against previously published, well-established microscopy autofocus metrics. PMID:27364703

  13. Quality parameters analysis of optical imaging systems with enhanced focal depth using the Wigner distribution function

    PubMed

    Zalvidea; Colautti; Sicre

    2000-05-01

    An analysis of the Strehl ratio and the optical transfer function as imaging quality parameters of optical elements with enhanced focal length is carried out by employing the Wigner distribution function. To this end, we use four different pupil functions: a full circular aperture, a hyper-Gaussian aperture, a quartic phase plate, and a logarithmic phase mask. A comparison is performed between the quality parameters and test images formed by these pupil functions at different defocus distances.

  14. Clinical comparison of CR and screen film for imaging the critically ill neonate

    NASA Astrophysics Data System (ADS)

    Andriole, Katherine P.; Brasch, Robert C.; Gooding, Charles A.; Gould, Robert G.; Cohen, Pierre A.; Rencken, Ingo R.; Huang, H. K.

    1996-05-01

    A clinical comparison of computed radiography (CR) versus screen-film for imaging the critically-ill neonate is performed, utilizing a modified (hybrid) film cassette containing a CR (standard ST-V) imaging plate, a conventional screen and film, allowing simultaneous acquisition of perfectly matched CR and plain film images. For 100 portable neonatal chest and abdominal projection radiographs, plain film was subjectively compared to CR hardcopy. Three pediatric radiologists graded overall image quality on a scale of one (poor) to five (excellent), as well as visualization of various anatomic structures (i.e., lung parenchyma, pulmonary vasculature, tubes/lines) and pathological findings (i.e., pulmonary interstitial emphysema, pleural effusion, pneumothorax). Results analyzed using a combined kappa statistic of the differences between scores from each matched set, combined over the three readers showed no statistically significant difference in overall image quality between screen- film and CR (p equals 0.19). Similarly, no statistically significant difference was seen between screen-film and CR for anatomic structure visualization and for visualization of pathological findings. These results indicate that the image quality of CR is comparable to plain film, and that CR may be a suitable alternative to screen-film imaging for portable neonatal chest and abdominal examinations.

  15. Dose reduction in abdominal computed tomography: intraindividual comparison of image quality of full-dose standard and half-dose iterative reconstructions with dual-source computed tomography.

    PubMed

    May, Matthias S; Wüst, Wolfgang; Brand, Michael; Stahl, Christian; Allmendinger, Thomas; Schmidt, Bernhard; Uder, Michael; Lell, Michael M

    2011-07-01

    We sought to evaluate the image quality of iterative reconstruction in image space (IRIS) in half-dose (HD) datasets compared with full-dose (FD) and HD filtered back projection (FBP) reconstruction in abdominal computed tomography (CT). To acquire data with FD and HD simultaneously, contrast-enhanced abdominal CT was performed with a dual-source CT system, both tubes operating at 120 kV, 100 ref.mAs, and pitch 0.8. Three different image datasets were reconstructed from the raw data: Standard FD images applying FBP which served as reference, HD images applying FBP and HD images applying IRIS. For the HD data sets, only data from 1 tube detector-system was used. Quantitative image quality analysis was performed by measuring image noise in tissue and air. Qualitative image quality was evaluated according to the European Guidelines on Quality criteria for CT. Additional assessment of artifacts, lesion conspicuity, and edge sharpness was performed. : Image noise in soft tissue was substantially decreased in HD-IRIS (-3.4 HU, -22%) and increased in HD-FBP (+6.2 HU, +39%) images when compared with the reference (mean noise, 15.9 HU). No significant differences between the FD-FBP and HD-IRIS images were found for the visually sharp anatomic reproduction, overall diagnostic acceptability (P = 0.923), lesion conspicuity (P = 0.592), and edge sharpness (P = 0.589), while HD-FBP was rated inferior. Streak artifacts and beam hardening was significantly more prominent in HD-FBP while HD-IRIS images exhibited a slightly different noise pattern. Direct intrapatient comparison of standard FD body protocols and HD-IRIS reconstruction suggest that the latest iterative reconstruction algorithms allow for approximately 50% dose reduction without deterioration of the high image quality necessary for confident diagnosis.

  16. SU-E-J-06: A Time Dependence Analysis of CBCT Image Quality and Mechanical Stability.

    PubMed

    Oves, S; Stenbeck, J; Gebreamlak, W; Alkhatib, H

    2012-06-01

    To quantify the change, if any, in flexmap correction factors and image quality with the XVI system over a course of several years and from these results, assess their clinical impact. Flexmap, a calibration procedure which corrects for imperfect gantry rotation for cone-beam CT reconstruction, and image quality tests were performed on three Elekta Synergy linacs equipped with XVI. Data was collected per month over three years. U and V values, corresponding to lateral and longitudinal shifts respectively, were acquired through the XVI software. Image quality parameters were obtained through CT imaging of the Catphan 500®. For each reconstruction, pixel values for low density polyethylene (LDPE) and polystyrene materials were recorded. For all three linacs, analysis of the flexmap showed a significant change in the U factor for both month-to-month comparisons and comparisons between machines. The V correction factor exhibited a small variation month to month, and showed a slight, gradual increase over time (0.2 +/-0.08 mm). Image quality analysis showed a near consistent decrease (5-10%) in LDPE and polystyrene. Despite this decrease in pixel values, the ratio of the two pixel values remained constant, thus a similar decreasing trend in contrast was not observed. Analysis of monthly flexmap calibration showed the general monthly change in correction shifts and their general trend over several years. For image quality, our research exhibited roughly 0.5% per month decrease in pixel values of the Catphan®. Our results imply that CBCT images obtained from XVI are not appropriate for treatment planning and despite the decrease in panel response over time, image quality with respect to contrast will remain within acceptable clinical standards. Future studies may be carried out to assess any correlation between image quality and XVI source strength. © 2012 American Association of Physicists in Medicine.

  17. Comparison Between Prospectively Electrocardiogram-Gated High-Pitch Mode and Retrospectively Electrocardiogram-Gated Mode for Dual-Source CT Coronary Angiography.

    PubMed

    Koplay, Mustafa; Celik, Mahmut; Avcı, Ahmet; Erdogan, Hasan; Demir, Kenan; Sivri, Mesut; Nayman, Alaaddin

    2015-01-01

    We aimed to report the image quality, relationship between heart rate and image quality, amount of contrast agent given to the patients and radiation doses in coronary CT angiography (CTA) obtained by using high-pitch prospectively ECG-gated "Flash Spiral" technique (method A) or retrospectively ECG-gated technique (method B) using 128×2-slice dual-source CT. A total of 110 patients who were evaluated with method A and method B technique with a 128×2-detector dual-source CT device were included in the study. Patients were divided into three groups based on their heart rates during the procedure, and a relationship between heart rate and image quality were evaluated. The relationship between heart rate, gender and radiation dose received by the patients was compared. A total of 1760 segments were evaluated in terms of image quality. Comparison of the relationship between heart rate and image quality revealed a significant difference between heart rate <60 beats/min group and >75 beats/min group whereas <60 beats/min and 60-75 beats/min groups did not differ significantly. The average effective dose for coronary CTA was calculated as 1.11 mSv (0.47-2.01 mSv) for method A and 8.22 mSv (2.19-12.88 mSv) for method B. Method A provided high quality images with doses as low as <1 mSv in selected patients who have low heart rates with a high negative predictive value to rule out coronary artery disease. Although method B increases the amount of effective dose, it provides high diagnostic quality images for patients who have a high heart rate and arrhythmia which makes it is difficult to obtain images.

  18. Application of a novel metal artifact correction algorithm in flat-panel CT after coil embolization of brain aneurysms: intraindividual comparison.

    PubMed

    Buhk, J-H; Groth, M; Sehner, S; Fiehler, J; Schmidt, N O; Grzyska, U

    2013-09-01

    To evaluate a novel algorithm for correcting beam hardening artifacts caused by metal implants in computed tomography performed on a C-arm angiography system equipped with a flat panel (FP-CT). 16 datasets of cerebral FP-CT acquisitions after coil embolization of brain aneurysms in the context of acute subarachnoid hemorrhage have been reconstructed by applying a soft tissue kernel with and without a novel reconstruction filter for metal artifact correction. Image reading was performed in multiplanar reformations (MPR) in average mode on a dedicated radiological workplace in comparison to the preinterventional native multisection CT (MS-CT) scan serving as the anatomic gold standard. Two independent radiologists performed image scoring following a defined scale in direct comparison of the image data with and without artifact correction. For statistical analysis, a random intercept model was calculated. The inter-rater agreement was very high (ICC = 86.3 %). The soft tissue image quality and visualization of the CSF spaces at the level of the implants was substantially improved. The additional metal artifact correction algorithm did not induce impairment of the subjective image quality in any other brain regions. Adding metal artifact correction to FP-CT in an acute postinterventional setting helps to visualize the close vicinity of the aneurysm at a generally consistent image quality. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Image Quality and Radiation Exposure Comparison of a Double High-Pitch Acquisition for Coronary Computed Tomography Angiography Versus Standard Retrospective Spiral Acquisition in Patients With Atrial Fibrillation.

    PubMed

    Prazeres, Carlos Eduardo Elias Dos; Magalhães, Tiago Augusto; de Castro Carneiro, Adriano Camargo; Cury, Roberto Caldeira; de Melo Moreira, Valéria; Bello, Juliana Hiromi Silva Matsumoto; Rochitte, Carlos Eduardo

    The aim of this study was to compare image quality and radiation dose of coronary computed tomography (CT) angiography performed with dual-source CT scanner using 2 different protocols in patients with atrial fibrillation. Forty-seven patients with AF underwent 2 different acquisition protocols: double high-pitch (DHP) spiral acquisition and retrospective spiral acquisition. The image quality was ranked according to a qualitative score by 2 experts: 1, no evident motion; 2, minimal motion not influencing coronary artery luminal evaluation; and 3, motion with impaired luminal evaluation. A third expert solved any disagreement. A total of 732 segments were evaluated. The DHP group (24 patients, 374 segments) showed more segments classified as score 1 than the retrospective spiral acquisition group (71.3% vs 37.4%). Image quality evaluation agreement was high between observers (κ = 0.8). There was significantly lower radiation exposure for the DHP group (3.65 [1.29] vs 23.57 [10.32] mSv). In this original direct comparison, a DHP spiral protocol for coronary CT angiography acquisition in patients with atrial fibrillation resulted in lower radiation exposure and superior image quality compared with conventional spiral retrospective acquisition.

  20. Intra-individual diagnostic image quality and organ-specific-radiation dose comparison between spiral cCT with iterative image reconstruction and z-axis automated tube current modulation and sequential cCT.

    PubMed

    Wenz, Holger; Maros, Máté E; Meyer, Mathias; Gawlitza, Joshua; Förster, Alex; Haubenreisser, Holger; Kurth, Stefan; Schoenberg, Stefan O; Groden, Christoph; Henzler, Thomas

    2016-01-01

    To prospectively evaluate image quality and organ-specific-radiation dose of spiral cranial CT (cCT) combined with automated tube current modulation (ATCM) and iterative image reconstruction (IR) in comparison to sequential tilted cCT reconstructed with filtered back projection (FBP) without ATCM. 31 patients with a previous performed tilted non-contrast enhanced sequential cCT aquisition on a 4-slice CT system with only FBP reconstruction and no ATCM were prospectively enrolled in this study for a clinical indicated cCT scan. All spiral cCT examinations were performed on a 3rd generation dual-source CT system using ATCM in z-axis direction. Images were reconstructed using both, FBP and IR (level 1-5). A Monte-Carlo-simulation-based analysis was used to compare organ-specific-radiation dose. Subjective image quality for various anatomic structures was evaluated using a 4-point Likert-scale and objective image quality was evaluated by comparing signal-to-noise ratios (SNR). Spiral cCT led to a significantly lower (p < 0.05) organ-specific-radiation dose in all targets including eye lense. Subjective image quality of spiral cCT datasets with an IR reconstruction level 5 was rated significantly higher compared to the sequential cCT acquisitions (p < 0.0001). Consecutive mean SNR was significantly higher in all spiral datasets (FBP, IR 1-5) when compared to sequential cCT with a mean SNR improvement of 44.77% (p < 0.0001). Spiral cCT combined with ATCM and IR allows for significant-radiation dose reduction including a reduce eye lens organ-dose when compared to a tilted sequential cCT while improving subjective and objective image quality.

  1. Digitized hand-wrist radiographs: comparison of subjective and software-derived image quality at various compression ratios.

    PubMed

    McCord, Layne K; Scarfe, William C; Naylor, Rachel H; Scheetz, James P; Silveira, Anibal; Gillespie, Kevin R

    2007-05-01

    The objectives of this study were to compare the effect of JPEG 2000 compression of hand-wrist radiographs on observer image quality qualitative assessment and to compare with a software-derived quantitative image quality index. Fifteen hand-wrist radiographs were digitized and saved as TIFF and JPEG 2000 images at 4 levels of compression (20:1, 40:1, 60:1, and 80:1). The images, including rereads, were viewed by 13 orthodontic residents who determined the image quality rating on a scale of 1 to 5. A quantitative analysis was also performed by using a readily available software based on the human visual system (Image Quality Measure Computer Program, version 6.2, Mitre, Bedford, Mass). ANOVA was used to determine the optimal compression level (P < or =.05). When we compared subjective indexes, JPEG compression greater than 60:1 significantly reduced image quality. When we used quantitative indexes, the JPEG 2000 images had lower quality at all compression ratios compared with the original TIFF images. There was excellent correlation (R2 >0.92) between qualitative and quantitative indexes. Image Quality Measure indexes are more sensitive than subjective image quality assessments in quantifying image degradation with compression. There is potential for this software-based quantitative method in determining the optimal compression ratio for any image without the use of subjective raters.

  2. Full-reference quality assessment of stereoscopic images by learning binocular receptive field properties.

    PubMed

    Shao, Feng; Li, Kemeng; Lin, Weisi; Jiang, Gangyi; Yu, Mei; Dai, Qionghai

    2015-10-01

    Quality assessment of 3D images encounters more challenges than its 2D counterparts. Directly applying 2D image quality metrics is not the solution. In this paper, we propose a new full-reference quality assessment for stereoscopic images by learning binocular receptive field properties to be more in line with human visual perception. To be more specific, in the training phase, we learn a multiscale dictionary from the training database, so that the latent structure of images can be represented as a set of basis vectors. In the quality estimation phase, we compute sparse feature similarity index based on the estimated sparse coefficient vectors by considering their phase difference and amplitude difference, and compute global luminance similarity index by considering luminance changes. The final quality score is obtained by incorporating binocular combination based on sparse energy and sparse complexity. Experimental results on five public 3D image quality assessment databases demonstrate that in comparison with the most related existing methods, the devised algorithm achieves high consistency with subjective assessment.

  3. On pictures and stuff: image quality and material appearance

    NASA Astrophysics Data System (ADS)

    Ferwerda, James A.

    2014-02-01

    Realistic images are a puzzle because they serve as visual representations of objects while also being objects themselves. When we look at an image we are able to perceive both the properties of the image and the properties of the objects represented by the image. Research on image quality has typically focused improving image properties (resolution, dynamic range, frame rate, etc.) while ignoring the issue of whether images are serving their role as visual representations. In this paper we describe a series of experiments that investigate how well images of different quality convey information about the properties of the objects they represent. In the experiments we focus on the effects that two image properties (contrast and sharpness) have on the ability of images to represent the gloss of depicted objects. We found that different experimental methods produced differing results. Specifically, when the stimulus images were presented using simultaneous pair comparison, observers were influenced by the surface properties of the images and conflated changes in image contrast and sharpness with changes in object gloss. On the other hand, when the stimulus images were presented sequentially, observers were able to disregard the image plane properties and more accurately match the gloss of the objects represented by the different quality images. These findings suggest that in understanding image quality it is useful to distinguish between quality of the imaging medium and the quality of the visual information represented by that medium.

  4. Effect of automated tube voltage selection, integrated circuit detector and advanced iterative reconstruction on radiation dose and image quality of 3rd generation dual-source aortic CT angiography: An intra-individual comparison.

    PubMed

    Mangold, Stefanie; De Cecco, Carlo N; Wichmann, Julian L; Canstein, Christian; Varga-Szemes, Akos; Caruso, Damiano; Fuller, Stephen R; Bamberg, Fabian; Nikolaou, Konstantin; Schoepf, U Joseph

    2016-05-01

    To compare, on an intra-individual basis, the effect of automated tube voltage selection (ATVS), integrated circuit detector and advanced iterative reconstruction on radiation dose and image quality of aortic CTA studies using 2nd and 3rd generation dual-source CT (DSCT). We retrospectively evaluated 32 patients who had undergone CTA of the entire aorta with both 2nd generation DSCT at 120kV using filtered back projection (FBP) (protocol 1) and 3rd generation DSCT using ATVS, an integrated circuit detector and advanced iterative reconstruction (protocol 2). Contrast-to-noise ratio (CNR) was calculated. Image quality was subjectively evaluated using a five-point scale. Radiation dose parameters were recorded. All studies were considered of diagnostic image quality. CNR was significantly higher with protocol 2 (15.0±5.2 vs 11.0±4.2; p<.0001). Subjective image quality analysis revealed no significant differences for evaluation of attenuation (p=0.08501) but image noise was rated significantly lower with protocol 2 (p=0.0005). Mean tube voltage and effective dose were 94.7±14.1kV and 6.7±3.9mSv with protocol 2; 120±0kV and 11.5±5.2mSv with protocol 1 (p<0.0001, respectively). Aortic CTA performed with 3rd generation DSCT, ATVS, integrated circuit detector, and advanced iterative reconstruction allow a substantial reduction of radiation exposure while improving image quality in comparison to 120kV imaging with FBP. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Evaluation of imaging quality for flat-panel detector based low dose C-arm CT system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, Chang-Woo; Cha, Bo Kyung; Jeon, Sungchae

    The image quality associated with the extent of the angle of gantry rotation, the number of projection views, and the dose of X-ray radiation was investigated in flat-panel detector (FPD) based C-arm cone-beam computed tomography (CBCT) system for medical applications. A prototype CBCT system for the projection acquisition used the X-ray tube (A-132, Varian inc.) having rhenium-tungsten molybdenum target and flat panel a-Si X-ray detector (PaxScan 4030CB, Varian inc.) having a 397 x 298 mm active area with 388 μm pixel pitch and 1024 x 768 pixels in 2 by 2 binning mode. The performance comparison of X-ray imaging qualitymore » was carried out using the Feldkamp, Davis, and Kress (FDK) reconstruction algorithm between different conditions of projection acquisition. In this work, head-and-dental (75 kVp/20 mA) and chest (90 kVp/25 mA) phantoms were used to evaluate the image quality. The 361 (30 fps x 12 s) projection data during 360 deg. gantry rotation with 1 deg. interval for the 3D reconstruction were acquired. Parke weighting function were applied to handle redundant data and improve the reconstructed image quality in a mobile C-arm system with limited rotation angles. The reconstructed 3D images were investigated for comparison of qualitative image quality in terms of scan protocols (projection views, rotation angles and exposure dose). Furthermore, the performance evaluation in image quality will be investigated regarding X-ray dose and limited projection data for a FPD based mobile C-arm CBCT system. (authors)« less

  6. Magnetic resonance cinematography of the fingers: a 3.0 Tesla feasibility study with comparison of incremental and continuous dynamic protocols.

    PubMed

    Bayer, Thomas; Adler, Werner; Janka, Rolf; Uder, Michael; Roemer, Frank

    2017-12-01

    To study the feasibility of magnetic resonance cinematography of the fingers (MRCF) with comparison of image quality of different protocols for depicting the finger anatomy during motion. MRCF was performed during a full flexion and extension movement in 14 healthy volunteers using a finger-gating device. Three real-time sequences (frame rates 17-59 images/min) and one proton density (PD) sequence (3 images/min) were acquired during incremental and continuous motion. Analyses were performed independently by three readers. Qualitative image analysis included Likert-scale grading from 0 (useless) to 5 (excellent) and specific visual analog scale (VAS) grading from 0 (insufficient) to 100 (excellent). Signal-to-noise calculation was performed. Overall percentage agreement and mean absolute disagreement were calculated. Within the real-time sequences a high frame-rate true fast imaging with steady-state free precession (TRUFI) yielded the best image quality with Likert and overall VAS scores of 3.0 ± 0.2 and 60.4 ± 25.3, respectively. The best sequence regarding image quality was an incremental PD with mean values of 4.8 ± 0.2 and 91.2 ± 9.4, respectively. Overall percentage agreement and mean absolute disagreement were 47.9 and 0.7, respectively. No statistically significant SNR differences were found between continuous and incremental motion for the real-time protocols. MRCF is feasible with appropriate image quality during continuous motion using a finger-gating device. Almost perfect image quality is achievable with incremental PD imaging, which represents a compromise for MRCF with the drawback of prolonged scanning time.

  7. Heterogeneous sharpness for cross-spectral face recognition

    NASA Astrophysics Data System (ADS)

    Cao, Zhicheng; Schmid, Natalia A.

    2017-05-01

    Matching images acquired in different electromagnetic bands remains a challenging problem. An example of this type of comparison is matching active or passive infrared (IR) against a gallery of visible face images, known as cross-spectral face recognition. Among many unsolved issues is the one of quality disparity of the heterogeneous images. Images acquired in different spectral bands are of unequal image quality due to distinct imaging mechanism, standoff distances, or imaging environment, etc. To reduce the effect of quality disparity on the recognition performance, one can manipulate images to either improve the quality of poor-quality images or to degrade the high-quality images to the level of the quality of their heterogeneous counterparts. To estimate the level of discrepancy in quality of two heterogeneous images a quality metric such as image sharpness is needed. It provides a guidance in how much quality improvement or degradation is appropriate. In this work we consider sharpness as a relative measure of heterogeneous image quality. We propose a generalized definition of sharpness by first achieving image quality parity and then finding and building a relationship between the image quality of two heterogeneous images. Therefore, the new sharpness metric is named heterogeneous sharpness. Image quality parity is achieved by experimentally finding the optimal cross-spectral face recognition performance where quality of the heterogeneous images is varied using a Gaussian smoothing function with different standard deviation. This relationship is established using two models; one of them involves a regression model and the other involves a neural network. To train, test and validate the model, we use composite operators developed in our lab to extract features from heterogeneous face images and use the sharpness metric to evaluate the face image quality within each band. Images from three different spectral bands visible light, near infrared, and short-wave infrared are considered in this work. Both error of a regression model and validation error of a neural network are analyzed.

  8. Quality measures in applications of image restoration.

    PubMed

    Kriete, A; Naim, M; Schafer, L

    2001-01-01

    We describe a new method for the estimation of image quality in image restoration applications. We demonstrate this technique on a simulated data set of fluorescent beads, in comparison with restoration by three different deconvolution methods. Both the number of iterations and a regularisation factor are varied to enforce changes in the resulting image quality. First, the data sets are directly compared by an accuracy measure. These values serve to validate the image quality descriptor, which is developed on the basis of optical information theory. This most general measure takes into account the spectral energies and the noise, weighted in a logarithmic fashion. It is demonstrated that this method is particularly helpful as a user-oriented method to control the output of iterative image restorations and to eliminate the guesswork in choosing a suitable number of iterations.

  9. Reducing radiation dose without compromising image quality in preoperative perforator flap imaging with CTA using ASIR technology.

    PubMed

    Niumsawatt, Vachara; Debrotwir, Andrew N; Rozen, Warren Matthew

    2014-01-01

    Computed tomographic angiography (CTA) has become a mainstay in preoperative perforator flap planning in the modern era of reconstructive surgery. However, the increased use of CTA does raise the concern of radiation exposure to patients. Several techniques have been developed to decrease radiation dosage without compromising image quality, with varying results. The most recent advance is in the improvement of image reconstruction using an adaptive statistical iterative reconstruction (ASIR) algorithm. We sought to evaluate the image quality of ASIR in preoperative deep inferior epigastric perforator (DIEP) flap surgery, through a direct comparison with conventional filtered back projection (FBP) images. A prospective review of 60 consecutive ASIR and 60 consecutive FBP CTA images using similar protocol (except for radiation dosage) was undertaken, analyzed by 2 independent reviewers. In both groups, we were able to accurately identify axial arteries and their perforators. Subjective analysis of image quality demonstrated no statistically significant difference between techniques. ASIR can thus be used for preoperative imaging with similar image quality to FBP, but with a 60% reduction in radiation delivery to patients.

  10. A pseudo-discrete algebraic reconstruction technique (PDART) prior image-based suppression of high density artifacts in computed tomography

    NASA Astrophysics Data System (ADS)

    Pua, Rizza; Park, Miran; Wi, Sunhee; Cho, Seungryong

    2016-12-01

    We propose a hybrid metal artifact reduction (MAR) approach for computed tomography (CT) that is computationally more efficient than a fully iterative reconstruction method, but at the same time achieves superior image quality to the interpolation-based in-painting techniques. Our proposed MAR method, an image-based artifact subtraction approach, utilizes an intermediate prior image reconstructed via PDART to recover the background information underlying the high density objects. For comparison, prior images generated by total-variation minimization (TVM) algorithm, as a realization of fully iterative approach, were also utilized as intermediate images. From the simulation and real experimental results, it has been shown that PDART drastically accelerates the reconstruction to an acceptable quality of prior images. Incorporating PDART-reconstructed prior images in the proposed MAR scheme achieved higher quality images than those by a conventional in-painting method. Furthermore, the results were comparable to the fully iterative MAR that uses high-quality TVM prior images.

  11. The study of surgical image quality evaluation system by subjective quality factor method

    NASA Astrophysics Data System (ADS)

    Zhang, Jian J.; Xuan, Jason R.; Yang, Xirong; Yu, Honggang; Koullick, Edouard

    2016-03-01

    GreenLightTM procedure is an effective and economical way of treatment of benign prostate hyperplasia (BPH); there are almost a million of patients treated with GreenLightTM worldwide. During the surgical procedure, the surgeon or physician will rely on the monitoring video system to survey and confirm the surgical progress. There are a few obstructions that could greatly affect the image quality of the monitoring video, like laser glare by the tissue and body fluid, air bubbles and debris generated by tissue evaporation, and bleeding, just to name a few. In order to improve the physician's visual experience of a laser surgical procedure, the system performance parameter related to image quality needs to be well defined. However, since image quality is the integrated set of perceptions of the overall degree of excellence of an image, or in other words, image quality is the perceptually weighted combination of significant attributes (contrast, graininess …) of an image when considered in its marketplace or application, there is no standard definition on overall image or video quality especially for the no-reference case (without a standard chart as reference). In this study, Subjective Quality Factor (SQF) and acutance are used for no-reference image quality evaluation. Basic image quality parameters, like sharpness, color accuracy, size of obstruction and transmission of obstruction, are used as subparameter to define the rating scale for image quality evaluation or comparison. Sample image groups were evaluated by human observers according to the rating scale. Surveys of physician groups were also conducted with lab generated sample videos. The study shows that human subjective perception is a trustworthy way of image quality evaluation. More systematic investigation on the relationship between video quality and image quality of each frame will be conducted as a future study.

  12. Towards tracer dose reduction in PET studies: Simulation of dose reduction by retrospective randomized undersampling of list-mode data.

    PubMed

    Gatidis, Sergios; Würslin, Christian; Seith, Ferdinand; Schäfer, Jürgen F; la Fougère, Christian; Nikolaou, Konstantin; Schwenzer, Nina F; Schmidt, Holger

    2016-01-01

    Optimization of tracer dose regimes in positron emission tomography (PET) imaging is a trade-off between diagnostic image quality and radiation exposure. The challenge lies in defining minimal tracer doses that still result in sufficient diagnostic image quality. In order to find such minimal doses, it would be useful to simulate tracer dose reduction as this would enable to study the effects of tracer dose reduction on image quality in single patients without repeated injections of different amounts of tracer. The aim of our study was to introduce and validate a method for simulation of low-dose PET images enabling direct comparison of different tracer doses in single patients and under constant influencing factors. (18)F-fluoride PET data were acquired on a combined PET/magnetic resonance imaging (MRI) scanner. PET data were stored together with the temporal information of the occurrence of single events (list-mode format). A predefined proportion of PET events were then randomly deleted resulting in undersampled PET data. These data sets were subsequently reconstructed resulting in simulated low-dose PET images (retrospective undersampling of list-mode data). This approach was validated in phantom experiments by visual inspection and by comparison of PET quality metrics contrast recovery coefficient (CRC), background-variability (BV) and signal-to-noise ratio (SNR) of measured and simulated PET images for different activity concentrations. In addition, reduced-dose PET images of a clinical (18)F-FDG PET dataset were simulated using the proposed approach. (18)F-PET image quality degraded with decreasing activity concentrations with comparable visual image characteristics in measured and in corresponding simulated PET images. This result was confirmed by quantification of image quality metrics. CRC, SNR and BV showed concordant behavior with decreasing activity concentrations for measured and for corresponding simulated PET images. Simulation of dose-reduced datasets based on clinical (18)F-FDG PET data demonstrated the clinical applicability of the proposed data. Simulation of PET tracer dose reduction is possible with retrospective undersampling of list-mode data. Resulting simulated low-dose images have equivalent characteristics with PET images actually measured at lower doses and can be used to derive optimal tracer dose regimes.

  13. Exact monitoring of aortic diameters in Marfan patients without gadolinium contrast: intraindividual comparison of 2D SSFP imaging with 3D CE-MRA and echocardiography.

    PubMed

    Veldhoen, Simon; Behzadi, Cyrus; Derlin, Thorsten; Rybczinsky, Meike; von Kodolitsch, Yskert; Sheikhzadeh, Sara; Henes, Frank Oliver; Bley, Thorsten Alexander; Adam, Gerhard; Bannas, Peter

    2015-03-01

    To assess whether ECG-gated non-contrast 2D steady-state free precession (SSFP) imaging allows for exact monitoring of aortic diameters in Marfan syndrome (MFS) patients using non-ECG-gated contrast-enhanced 3D magnetic resonance angiography (CE-MRA) and echocardiography for intraindividual comparison. Non-ECG-gated CE-MRA and ECG-gated non-contrast SSFP at 1.5 T were prospectively performed in 50 patients. Two readers measured aortic diameters on para-sagittal images identically aligned with the aortic arch at the sinuses of Valsalva, sinotubular junction, ascending/descending aorta and aortic arch. Image quality was assessed on a three-point scale. Aortic root diameters acquired by echocardiography were used as reference. Intra- and interobserver variances were smaller for SSFP at the sinuses of Valsalva (p = 0.002; p = 0.002) and sinotubular junction (p = 0.014; p = 0.043). Image quality was better in SSFP than in CE-MRA at the sinuses of Valsalva (p < 0.0001), sinotubular junction (p < 0.0001) and ascending aorta (p = 0.02). CE-MRA yielded higher diameters than SSFP at the sinuses of Valsalva (mean bias, 2.5 mm; p < 0.0001), and comparison with echocardiography confirmed a higher bias for CE-MRA (7.2 ± 3.4 mm vs. SSFP, 4.7 ± 2.6 mm). ECG-gated non-contrast 2D SSFP imaging provides superior image quality with higher validity compared to non-ECG-gated contrast-enhanced 3D imaging. Since CE-MRA requires contrast agents with potential adverse effects, non-contrast SSFP imaging is an appropriate alternative for exact and riskless aortic monitoring of MFS patients.

  14. Lightweight, compact, and high-performance 3T MR system for imaging the brain and extremities.

    PubMed

    Foo, Thomas K F; Laskaris, Evangelos; Vermilyea, Mark; Xu, Minfeng; Thompson, Paul; Conte, Gene; Van Epps, Christopher; Immer, Christopher; Lee, Seung-Kyun; Tan, Ek T; Graziani, Dominic; Mathieu, Jean-Baptise; Hardy, Christopher J; Schenck, John F; Fiveland, Eric; Stautner, Wolfgang; Ricci, Justin; Piel, Joseph; Park, Keith; Hua, Yihe; Bai, Ye; Kagan, Alex; Stanley, David; Weavers, Paul T; Gray, Erin; Shu, Yunhong; Frick, Matthew A; Campeau, Norbert G; Trzasko, Joshua; Huston, John; Bernstein, Matt A

    2018-03-13

    To build and evaluate a small-footprint, lightweight, high-performance 3T MRI scanner for advanced brain imaging with image quality that is equal to or better than conventional whole-body clinical 3T MRI scanners, while achieving substantial reductions in installation costs. A conduction-cooled magnet was developed that uses less than 12 liters of liquid helium in a gas-charged sealed system, and standard NbTi wire, and weighs approximately 2000 kg. A 42-cm inner-diameter gradient coil with asymmetric transverse axes was developed to provide patient access for head and extremity exams, while minimizing magnet-gradient interactions that adversely affect image quality. The gradient coil was designed to achieve simultaneous operation of 80-mT/m peak gradient amplitude at a slew rate of 700 T/m/s on each gradient axis using readily available 1-MVA gradient drivers. In a comparison of anatomical imaging in 16 patients using T 2 -weighted 3D fluid-attenuated inversion recovery (FLAIR) between the compact 3T and whole-body 3T, image quality was assessed as equivalent to or better across several metrics. The ability to fully use a high slew rate of 700 T/m/s simultaneously with 80-mT/m maximum gradient amplitude resulted in improvements in image quality across EPI, DWI, and anatomical imaging of the brain. The compact 3T MRI system has been in continuous operation at the Mayo Clinic since March 2016. To date, over 200 patient studies have been completed, including 96 comparison studies with a clinical 3T whole-body MRI. The increased gradient performance has reliably resulted in consistently improved image quality. © 2018 International Society for Magnetic Resonance in Medicine.

  15. F-18 Choline PET angiography of the pelvic arteries: evaluation of image quality and comparison with contrast-enhanced CT.

    PubMed

    Freesmeyer, Martin; Drescher, Robert

    2015-01-01

    The purpose was to show the feasibility of F-18 choline positron emission tomography (PET) angiography for the evaluation of abdominal and iliac arteries. Thirty-five patients were examined and image quality was scored. Findings were correlated with contrast-enhanced computed tomography. Image quality was best in the aorta and common iliac arteries (100% and 93% of vessels). Negative predictive values of PET angiography were excellent (100%), and positive predictive values were impaired by disease overestimation. PET angiography is technically feasible and of good image quality in large arteries. In selected cases, it may become an alternative to established angiographic methods. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. SU-F-J-26: Performance of 2.5MV Portal Imaging in Comparison with KV X-Ray and 6MV and Flattening-Filter-Free 6MV Portal Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, J; Yang, Y; Faught, A

    Purpose: To assess image quality and imaging dose of 2.5MV electronic portal imaging in comparison to kV imaging and 6MV and Flattening-Filter-Free 6MV (6MVFFF) portal imaging using a DMI imager. Methods: Quantitative assessment of image quality was performed with Leeds and Las Vegas test phantoms in conjunction with qualitative evaluation of clinical patient images for kV imaging and 2.5MV, 6MV and 6MVFFF portal imaging. High and low contrast resolutions were evaluated and imaging doses were measured using these x-rays. Phantom test was performed both in air and in solid water. Clinical patient portal images were also reviewed and qualitatively assessedmore » for these three imaging MV energies. Results: Among the 28 objects in Las Vegas phantom, 16, 17 and 26 of them were resolved using Low Dose technique and 18, 22 and 26 were resolved using High Quality technique with 6MV, 6MVFFF and 2.5MV, respectively. The number of Leeds low contrast objects resolved by 6MV, 6MFFFF and 2.5MV was 6, 15 and 18 with Low Dose technique and 14, 17 and 18 with High Quality technique, respectively. When the test phantoms were embedded in 20cm thick solid water, the results were noticeably affected, but the performance of 2.5MV was still substantially better than 6MV and 6MVFFF. Imaging dose with 2.5MV measured at 10 cm depth was about half of that with 6MV or 6MVFFF. Clinical patient portal images were reviewed and qualitatively assessed for different sites including brain, head-and-neck, chest and pelvis. 2.5MV imaging provided more details and substantially higher contrast. Conclusion: While portal imaging with 6MVFFF provides noticeably better image quality than that with 6MV, the performance of 2.5MV portal imaging is substantially better than both 6MV and 6MVFFF in terms of high and low contrast resolutions as well as lower imaging dose. 2.5MV imaging provides near kV imaging quality.« less

  17. Learning Receptive Fields and Quality Lookups for Blind Quality Assessment of Stereoscopic Images.

    PubMed

    Shao, Feng; Lin, Weisi; Wang, Shanshan; Jiang, Gangyi; Yu, Mei; Dai, Qionghai

    2016-03-01

    Blind quality assessment of 3D images encounters more new challenges than its 2D counterparts. In this paper, we propose a blind quality assessment for stereoscopic images by learning the characteristics of receptive fields (RFs) from perspective of dictionary learning, and constructing quality lookups to replace human opinion scores without performance loss. The important feature of the proposed method is that we do not need a large set of samples of distorted stereoscopic images and the corresponding human opinion scores to learn a regression model. To be more specific, in the training phase, we learn local RFs (LRFs) and global RFs (GRFs) from the reference and distorted stereoscopic images, respectively, and construct their corresponding local quality lookups (LQLs) and global quality lookups (GQLs). In the testing phase, blind quality pooling can be easily achieved by searching optimal GRF and LRF indexes from the learnt LQLs and GQLs, and the quality score is obtained by combining the LRF and GRF indexes together. Experimental results on three publicly 3D image quality assessment databases demonstrate that in comparison with the existing methods, the devised algorithm achieves high consistent alignment with subjective assessment.

  18. Portal verification using the KODAK ACR 2000 RT storage phosphor plate system and EC films. A semiquantitative comparison.

    PubMed

    Geyer, Peter; Blank, Hilbert; Alheit, Horst

    2006-03-01

    The suitability of the storage phosphor plate system ACR 2000 RT (Eastman Kodak Corp., Rochester, MN, USA), that is destined for portal verification as well as for portal simulation imaging in radiotherapy, had to be proven by the comparison with a highly sensitive verification film. The comparison included portal verification images of different regions (head and neck, thorax, abdomen, and pelvis) irradiated with 6- and 15-MV photons and electrons. Each portal verification image was done at the storage screen and the EC film as well, using the EC-L cassettes (both: Eastman Kodak Corp., Rochester, MN, USA) for both systems. The soft-tissue and bony contrast and the brightness were evaluated and compared in a ranking of the two compared images. Different phantoms were irradiated to investigate the high- and low-contrast resolution. To account for quality assurance application, the short-time exposure of the unpacked and irradiated storage screen by green and red room lasers was also investigated. In general, the quality of the processed ACR images was slightly higher than that of the films, mostly due to cases of an insufficient exposure to the film. The storage screen was able to verify electron portals even for low electron energies with only minor photon contamination. The laser lines were sharply and clearly visible on the ACR images. The ACR system may replace the film without any noticeable decrease in image quality thereby reducing processing time and saving the costs of films and avoiding incorrect exposures.

  19. Qualitative evaluations and comparisons of six night-vision colorization methods

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Reese, Kristopher; Blasch, Erik; McManamon, Paul

    2013-05-01

    Current multispectral night vision (NV) colorization techniques can manipulate images to produce colorized images that closely resemble natural scenes. The colorized NV images can enhance human perception by improving observer object classification and reaction times especially for low light conditions. This paper focuses on the qualitative (subjective) evaluations and comparisons of six NV colorization methods. The multispectral images include visible (Red-Green- Blue), near infrared (NIR), and long wave infrared (LWIR) images. The six colorization methods are channel-based color fusion (CBCF), statistic matching (SM), histogram matching (HM), joint-histogram matching (JHM), statistic matching then joint-histogram matching (SM-JHM), and the lookup table (LUT). Four categries of quality measurements are used for the qualitative evaluations, which are contrast, detail, colorfulness, and overall quality. The score of each measurement is rated from 1 to 3 scale to represent low, average, and high quality, respectively. Specifically, high contrast (of rated score 3) means an adequate level of brightness and contrast. The high detail represents high clarity of detailed contents while maintaining low artifacts. The high colorfulness preserves more natural colors (i.e., closely resembles the daylight image). Overall quality is determined from the NV image compared to the reference image. Nine sets of multispectral NV images were used in our experiments. For each set, the six colorized NV images (produced from NIR and LWIR images) are concurrently presented to users along with the reference color (RGB) image (taken at daytime). A total of 67 subjects passed a screening test ("Ishihara Color Blindness Test") and were asked to evaluate the 9-set colorized images. The experimental results showed the quality order of colorization methods from the best to the worst: CBCF < SM < SM-JHM < LUT < JHM < HM. It is anticipated that this work will provide a benchmark for NV colorization and for quantitative evaluation using an objective metric such as objective evaluation index (OEI).

  20. LCD displays performance comparison by MTF measurement using the white noise stimulus method

    NASA Astrophysics Data System (ADS)

    Mitjà, Carles; Escofet, Jaume

    2011-01-01

    The amount of images produced to be viewed as soft copies on output displays are significantly increasing. This growing occurs at the expense of the images targeted to hard copy versions on paper or any other physical support. Even in the case of high quality hard copy production, people working in professional imaging uses different displays in selecting, editing, processing and showing images, from laptop screen to specialized high end displays. Then, the quality performance of these devices is crucial in the chain of decisions to be taken in image production. Metrics of this quality performance can help in the equipment acquisition. Different metrics and methods have been described to determine the quality performance of CRT and LCD computer displays in clinical area. One of most important metrics in this field is the device spatial frequency response obtained measuring the modulation transfer function (MTF). This work presents a comparison between the MTF of three different LCD displays, Apple MacBook Pro 15", Apple LED Cinema Display 24" and Apple iPhone4, measured by the white noise stimulus method, over vertical and horizontal directions. Additionally, different displays show particular pixels structure pattern. In order to identify this pixel structure, a set of high magnification images is taken from each display to be related with the respective vertical and horizontal MTF.

  1. Comparison of point intercept and image analysis for monitoring rangeland transects

    USDA-ARS?s Scientific Manuscript database

    Amidst increasing workloads and static or declining budgets, both public and private land management agencies face the need to adapt resource-monitoring techniques or risk falling behind on resource monitoring volume and quality with old techniques. Image analysis of nadir plot images, acquired with...

  2. Retinal image quality assessment based on image clarity and content

    NASA Astrophysics Data System (ADS)

    Abdel-Hamid, Lamiaa; El-Rafei, Ahmed; El-Ramly, Salwa; Michelson, Georg; Hornegger, Joachim

    2016-09-01

    Retinal image quality assessment (RIQA) is an essential step in automated screening systems to avoid misdiagnosis caused by processing poor quality retinal images. A no-reference transform-based RIQA algorithm is introduced that assesses images based on five clarity and content quality issues: sharpness, illumination, homogeneity, field definition, and content. Transform-based RIQA algorithms have the advantage of considering retinal structures while being computationally inexpensive. Wavelet-based features are proposed to evaluate the sharpness and overall illumination of the images. A retinal saturation channel is designed and used along with wavelet-based features for homogeneity assessment. The presented sharpness and illumination features are utilized to assure adequate field definition, whereas color information is used to exclude nonretinal images. Several publicly available datasets of varying quality grades are utilized to evaluate the feature sets resulting in area under the receiver operating characteristic curve above 0.99 for each of the individual feature sets. The overall quality is assessed by a classifier that uses the collective features as an input vector. The classification results show superior performance of the algorithm in comparison to other methods from literature. Moreover, the algorithm addresses efficiently and comprehensively various quality issues and is suitable for automatic screening systems.

  3. Assessment of SPOT-6 optical remote sensing data against GF-1 using NNDiffuse image fusion algorithm

    NASA Astrophysics Data System (ADS)

    Zhao, Jinling; Guo, Junjie; Cheng, Wenjie; Xu, Chao; Huang, Linsheng

    2017-07-01

    A cross-comparison method was used to assess the SPOT-6 optical satellite imagery against Chinese GF-1 imagery using three types of indicators: spectral and color quality, fusion effect and identification potential. More specifically, spectral response function (SRF) curves were used to compare the two imagery, showing that the SRF curve shape of SPOT-6 is more like a rectangle compared to GF-1 in blue, green, red and near-infrared bands. NNDiffuse image fusion algorithm was used to evaluate the capability of information conservation in comparison with wavelet transform (WT) and principal component (PC) algorithms. The results show that NNDiffuse fused image has extremely similar entropy vales than original image (1.849 versus 1.852) and better color quality. In addition, the object-oriented classification toolset (ENVI EX) was used to identify greenlands for comparing the effect of self-fusion image of SPOT-6 and inter-fusion image between SPOT-6 and GF-1 based on the NNDiffuse algorithm. The overall accuracy is 97.27% and 76.88%, respectively, showing that self-fused image of SPOT-6 has better identification capability.

  4. Evaluation of a metal artifact reduction algorithm applied to post-interventional flat detector CT in comparison to pre-treatment CT in patients with acute subarachnoid haemorrhage.

    PubMed

    Mennecke, Angelika; Svergun, Stanislav; Scholz, Bernhard; Royalty, Kevin; Dörfler, Arnd; Struffert, Tobias

    2017-01-01

    Metal artefacts can impair accurate diagnosis of haemorrhage using flat detector CT (FD-CT), especially after aneurysm coiling. Within this work we evaluate a prototype metal artefact reduction algorithm by comparison of the artefact-reduced and the non-artefact-reduced FD-CT images to pre-treatment FD-CT and multi-slice CT images. Twenty-five patients with acute aneurysmal subarachnoid haemorrhage (SAH) were selected retrospectively. FD-CT and multi-slice CT before endovascular treatment as well as FD-CT data sets after treatment were available for all patients. The algorithm was applied to post-treatment FD-CT. The effect of the algorithm was evaluated utilizing the pre-post concordance of a modified Fisher score, a subjective image quality assessment, the range of the Hounsfield units within three ROIs, and the pre-post slice-wise Pearson correlation. The pre-post concordance of the modified Fisher score, the subjective image quality, and the pre-post correlation of the ranges of the Hounsfield units were significantly higher for artefact-reduced than for non-artefact-reduced images. Within the metal-affected slices, the pre-post slice-wise Pearson correlation coefficient was higher for artefact-reduced than for non-artefact-reduced images. The overall diagnostic quality of the artefact-reduced images was improved and reached the level of the pre-interventional FD-CT images. The metal-unaffected parts of the image were not modified. • After coiling subarachnoid haemorrhage, metal artefacts seriously reduce FD-CT image quality. • This new metal artefact reduction algorithm is feasible for flat-detector CT. • After coiling, MAR is necessary for diagnostic quality of affected slices. • Slice-wise Pearson correlation is introduced to evaluate improvement of MAR in future studies. • Metal-unaffected parts of image are not modified by this MAR algorithm.

  5. A method for the evaluation of image quality according to the recognition effectiveness of objects in the optical remote sensing image using machine learning algorithm.

    PubMed

    Yuan, Tao; Zheng, Xinqi; Hu, Xuan; Zhou, Wei; Wang, Wei

    2014-01-01

    Objective and effective image quality assessment (IQA) is directly related to the application of optical remote sensing images (ORSI). In this study, a new IQA method of standardizing the target object recognition rate (ORR) is presented to reflect quality. First, several quality degradation treatments with high-resolution ORSIs are implemented to model the ORSIs obtained in different imaging conditions; then, a machine learning algorithm is adopted for recognition experiments on a chosen target object to obtain ORRs; finally, a comparison with commonly used IQA indicators was performed to reveal their applicability and limitations. The results showed that the ORR of the original ORSI was calculated to be up to 81.95%, whereas the ORR ratios of the quality-degraded images to the original images were 65.52%, 64.58%, 71.21%, and 73.11%. The results show that these data can more accurately reflect the advantages and disadvantages of different images in object identification and information extraction when compared with conventional digital image assessment indexes. By recognizing the difference in image quality from the application effect perspective, using a machine learning algorithm to extract regional gray scale features of typical objects in the image for analysis, and quantitatively assessing quality of ORSI according to the difference, this method provides a new approach for objective ORSI assessment.

  6. [Comparison of the image quality of conventional and digital radiography in lizards. Mammography technique versus digital detector system].

    PubMed

    Bochmann, Monika; Ludewig, E; Pees, M

    2011-01-01

    A conventional high-resolution screen-film system (Film Kodak MIN-R S, Kodak MIN-R 2000) was compared with an indirect digital detector system (Varian PaxScan 4030E) for use in radiography of lizards. A total of 20 bearded dragons (Pogona vitticeps ) with body masses between 123 g and 487 g were investigated by using conventional and digital image acquisition techniques. The digital image was taken with the same dose as well as half the dose of the conventional radiograph. The study was conducted semi-blinded as the x-ray images were encoded and randomised. Five veterinarians with clinical experience in reptile medicine served as observers. Exactly defined structures in three anatomical regions were assessed using a three-step scale. Furthermore, the overall quality of the respective region was evaluated using a five-step scale. Evaluation of the data was done by visual grading analysis. None of the structures examined was assessed to be of significantly inferior quality on the digital images in comparison to the conventional radiographs. The majority of the results demonstrated an equal quality of both systems. For assessment of the lung tissue and the pulmonary vessels as well as the overall assessment of the lung, the digital radiographs with full dose were rated to be significantly superior in comparison to the film-screen system. Furthermore, the joint contours of the shoulder and cubital joints and the overall assessments of the humerus and the caudal coelomic cavity were rated significantly better on digital images with full dose compared to those with reduced dose. The digital flat panel detector technique examined in this study is equal or superior to the conventional high-resolution screen-film system used. Nevertheless, the practicability of a dose reduction is limited in bearded dragons. Digital imaging systems are progressively being used in veterinary practice. The results of the study demonstrate the useful application of the digital detector systems in lizards.

  7. Guest Editorial Image Quality

    NASA Astrophysics Data System (ADS)

    Cheatham, Patrick S.

    1982-02-01

    The term image quality can, unfortunately, apply to anything from a public relations firm's discussion to a comparison between corner drugstores' film processing. If we narrow the discussion to optical systems, we clarify the problem somewhat, but only slightly. We are still faced with a multitude of image quality measures all different, and all couched in different terminology. Optical designers speak of MTF values, digital processors talk about summations of before and after image differences, pattern recognition engineers allude to correlation values, and radar imagers use side-lobe response values measured in decibels. Further complexity is introduced by terms such as information content, bandwidth, Strehl ratios, and, of course, limiting resolution. The problem is to compare these different yardsticks and try to establish some concrete ideas about evaluation of a final image. We need to establish the image attributes which are the most important to perception of the image in question and then begin to apply the different system parameters to those attributes.

  8. An Evaluation and Comparison of Several Measures of Image Quality for Television Displays

    DTIC Science & Technology

    1979-01-01

    vehicles, buildings, or faces , or they may be artificial much as trn-bar patterns, rectangles, or sine waves. The typical objective image quality assessment...Snyder (1974b) wac able to obtain very good correlations with reaction time and correct responses for a face recognition task. Display quality was varied...recognition versus log JUDA for the target recognition study of Chapter 4, 5) graph of angle oubtended by target at recognitio , versus log JNDA for the

  9. Impact of knowledge-based iterative model reconstruction on myocardial late iodine enhancement in computed tomography and comparison with cardiac magnetic resonance.

    PubMed

    Tanabe, Yuki; Kido, Teruhito; Kurata, Akira; Fukuyama, Naoki; Yokoi, Takahiro; Kido, Tomoyuki; Uetani, Teruyoshi; Vembar, Mani; Dhanantwari, Amar; Tokuyasu, Shinichi; Yamashita, Natsumi; Mochizuki, Teruhito

    2017-10-01

    We evaluated the image quality and diagnostic performance of late iodine enhancement computed tomography (LIE-CT) with knowledge-based iterative model reconstruction (IMR) for the detection of myocardial infarction (MI) in comparison with late gadolinium enhancement magnetic resonance imaging (LGE-MRI). The study investigated 35 patients who underwent a comprehensive cardiac CT protocol and LGE-MRI for the assessment of coronary artery disease. The CT protocol consisted of stress dynamic myocardial CT perfusion, coronary CT angiography (CTA) and LIE-CT using 256-slice CT. LIE-CT scans were acquired 5 min after CTA without additional contrast medium and reconstructed with filtered back projection (FBP), a hybrid iterative reconstruction (HIR), and IMR. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were assessed. Sensitivity and specificity of LIE-CT for detecting MI were assessed according to the 16-segment model. Image quality scores, and diagnostic performance were compared among LIE-CT with FBP, HIR and IMR. Among the 35 patients, 139 of 560 segments showed MI in LGE-MRI. On LIE-CT with FBP, HIR, and IMR, the median SNRs were 2.1, 2.9, and 6.1; and the median CNRs were 1.7, 2.2, and 4.7, respectively. Sensitivity and specificity were 56 and 93% for FBP, 62 and 91% for HIR, and 80 and 91% for IMR. LIE-CT with IMR showed the highest image quality and sensitivity (p < 0.05). The use of IMR enables significant improvement of image quality and diagnostic performance of LIE-CT for detecting MI in comparison with FBP and HIR.

  10. The Second National Ballistics Imaging Comparison (NBIC-2)

    PubMed Central

    Vorburger, TV; Yen, J; Song, JF; Thompson, RM; Renegar, TB; Zheng, A; Tong, M; Ols, M

    2014-01-01

    In response to the guidelines issued by the American Society of Crime Laboratory Directors/Laboratory Accreditation Board (ASCLD/LAB-International) to establish traceability and quality assurance in U.S. crime laboratories, NIST and the ATF initiated a joint project, entitled the National Ballistics Imaging Comparison (NBIC). The NBIC project aims to establish a national traceability and quality system for ballistics identifications in crime laboratories utilizing ATF’s National Integrated Ballistics Information Network (NIBIN). The original NBIC was completed in 2010. In the second NBIC, NIST Standard Reference Material (SRM) 2461 Cartridge Cases were used as reference standards, and 14 experts from 11 U.S. crime laboratories each performed 17 image acquisitions and correlations of the SRM cartridge cases over the course of about half a year. Resulting correlation scores were collected by NIST for statistical analyses, from which control charts and control limits were developed for the proposed quality system and for promoting future assessments and accreditations for firearm evidence in U.S. forensic laboratories in accordance with the ISO 17025 Standard. PMID:26601051

  11. The Second National Ballistics Imaging Comparison (NBIC-2).

    PubMed

    Vorburger, T V; Yen, J; Song, J F; Thompson, R M; Renegar, T B; Zheng, A; Tong, M; Ols, M

    2014-01-01

    In response to the guidelines issued by the American Society of Crime Laboratory Directors/Laboratory Accreditation Board (ASCLD/LAB-International) to establish traceability and quality assurance in U.S. crime laboratories, NIST and the ATF initiated a joint project, entitled the National Ballistics Imaging Comparison (NBIC). The NBIC project aims to establish a national traceability and quality system for ballistics identifications in crime laboratories utilizing ATF's National Integrated Ballistics Information Network (NIBIN). The original NBIC was completed in 2010. In the second NBIC, NIST Standard Reference Material (SRM) 2461 Cartridge Cases were used as reference standards, and 14 experts from 11 U.S. crime laboratories each performed 17 image acquisitions and correlations of the SRM cartridge cases over the course of about half a year. Resulting correlation scores were collected by NIST for statistical analyses, from which control charts and control limits were developed for the proposed quality system and for promoting future assessments and accreditations for firearm evidence in U.S. forensic laboratories in accordance with the ISO 17025 Standard.

  12. MTF evaluation of in-line phase contrast imaging system

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoran; Gao, Feng; Zhao, Huijuan; Zhang, Limin; Li, Jiao; Zhou, Zhongxing

    2017-02-01

    X-ray phase contrast imaging (XPCI) is a novel method that exploits the phase shift for the incident X-ray to form an image. Various XPCI methods have been proposed, among which, in-line phase contrast imaging (IL-PCI) is regarded as one of the most promising clinical methods. The contrast of the interface is enhanced due to the introduction of the boundary fringes in XPCI, thus it is generally used to evaluate the image quality of XPCI. But the contrast is a comprehensive index and it does not reflect the information of image quality in the frequency range. The modulation transfer function (MTF), which is the Fourier transform of the system point spread function, is recognized as the metric to characterize the spatial response of conventional X-ray imaging system. In this work, MTF is introduced into the image quality evaluation of the IL-PCI system. Numerous simulations based on Fresnel - Kirchhoff diffraction theory are performed with varying system settings and the corresponding MTFs were calculated for comparison. The results show that MTF can provide more comprehensive information of image quality comparing to contrast in IL-PCI.

  13. Quality Improvement of Liver Ultrasound Images Using Fuzzy Techniques.

    PubMed

    Bayani, Azadeh; Langarizadeh, Mostafa; Radmard, Amir Reza; Nejad, Ahmadreza Farzaneh

    2016-12-01

    Liver ultrasound images are so common and are applied so often to diagnose diffuse liver diseases like fatty liver. However, the low quality of such images makes it difficult to analyze them and diagnose diseases. The purpose of this study, therefore, is to improve the contrast and quality of liver ultrasound images. In this study, a number of image contrast enhancement algorithms which are based on fuzzy logic were applied to liver ultrasound images - in which the view of kidney is observable - using Matlab2013b to improve the image contrast and quality which has a fuzzy definition; just like image contrast improvement algorithms using a fuzzy intensification operator, contrast improvement algorithms applying fuzzy image histogram hyperbolization, and contrast improvement algorithms by fuzzy IF-THEN rules. With the measurement of Mean Squared Error and Peak Signal to Noise Ratio obtained from different images, fuzzy methods provided better results, and their implementation - compared with histogram equalization method - led both to the improvement of contrast and visual quality of images and to the improvement of liver segmentation algorithms results in images. Comparison of the four algorithms revealed the power of fuzzy logic in improving image contrast compared with traditional image processing algorithms. Moreover, contrast improvement algorithm based on a fuzzy intensification operator was selected as the strongest algorithm considering the measured indicators. This method can also be used in future studies on other ultrasound images for quality improvement and other image processing and analysis applications.

  14. Quality Improvement of Liver Ultrasound Images Using Fuzzy Techniques

    PubMed Central

    Bayani, Azadeh; Langarizadeh, Mostafa; Radmard, Amir Reza; Nejad, Ahmadreza Farzaneh

    2016-01-01

    Background: Liver ultrasound images are so common and are applied so often to diagnose diffuse liver diseases like fatty liver. However, the low quality of such images makes it difficult to analyze them and diagnose diseases. The purpose of this study, therefore, is to improve the contrast and quality of liver ultrasound images. Methods: In this study, a number of image contrast enhancement algorithms which are based on fuzzy logic were applied to liver ultrasound images - in which the view of kidney is observable - using Matlab2013b to improve the image contrast and quality which has a fuzzy definition; just like image contrast improvement algorithms using a fuzzy intensification operator, contrast improvement algorithms applying fuzzy image histogram hyperbolization, and contrast improvement algorithms by fuzzy IF-THEN rules. Results: With the measurement of Mean Squared Error and Peak Signal to Noise Ratio obtained from different images, fuzzy methods provided better results, and their implementation - compared with histogram equalization method - led both to the improvement of contrast and visual quality of images and to the improvement of liver segmentation algorithms results in images. Conclusion: Comparison of the four algorithms revealed the power of fuzzy logic in improving image contrast compared with traditional image processing algorithms. Moreover, contrast improvement algorithm based on a fuzzy intensification operator was selected as the strongest algorithm considering the measured indicators. This method can also be used in future studies on other ultrasound images for quality improvement and other image processing and analysis applications. PMID:28077898

  15. Comparison of quality control software tools for diffusion tensor imaging.

    PubMed

    Liu, Bilan; Zhu, Tong; Zhong, Jianhui

    2015-04-01

    Image quality of diffusion tensor imaging (DTI) is critical for image interpretation, diagnostic accuracy and efficiency. However, DTI is susceptible to numerous detrimental artifacts that may impair the reliability and validity of the obtained data. Although many quality control (QC) software tools are being developed and are widely used and each has its different tradeoffs, there is still no general agreement on an image quality control routine for DTIs, and the practical impact of these tradeoffs is not well studied. An objective comparison that identifies the pros and cons of each of the QC tools will be helpful for the users to make the best choice among tools for specific DTI applications. This study aims to quantitatively compare the effectiveness of three popular QC tools including DTI studio (Johns Hopkins University), DTIprep (University of North Carolina at Chapel Hill, University of Iowa and University of Utah) and TORTOISE (National Institute of Health). Both synthetic and in vivo human brain data were used to quantify adverse effects of major DTI artifacts to tensor calculation as well as the effectiveness of different QC tools in identifying and correcting these artifacts. The technical basis of each tool was discussed, and the ways in which particular techniques affect the output of each of the tools were analyzed. The different functions and I/O formats that three QC tools provide for building a general DTI processing pipeline and integration with other popular image processing tools were also discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Comparison between low (3:1) and high (6:1) pitch for routine abdominal/pelvic imaging with multislice computed tomography.

    PubMed

    Sahani, Dushyant; Saini, Sanjay; D'Souza, Roy V; O'Neill, Mary Jane; Prasad, Srinivasa R; Kalra, Mannudeep K; Halpern, Elkan F; Mueller, Peter

    2003-01-01

    The purpose of this study was to compare the performance of low helical pitch acquisition (3:1) and high helical pitch acquisition (6:1) for routine abdominal/pelvic imaging with multislice computed tomography (CT). Three hundred eighty-four patients referred for abdominal/pelvic CT were examined in a breath-hold on a multislice CT scanner (LightSpeed QX/I; General Electric Medical Systems, Milwaukee, WI). Patients were randomized and scanned with pitch of 3:1 or 6:1 using a constant 140 peak kV and 280-300 mA. Images were reconstructed at a 3.75-mm slice thickness. Direct comparison between the two pitches was possible in a subset of 40 patients who had a follow-up scan performed with the second pitch used in each patient. A comparison was also performed between standard dose CT using a pitch of 6:1 and 20% reduced radiation dose CT using a pitch of 3:1. Two readers performed a blind evaluation using a three-point scale for image quality, anatomic details, and motion artifacts. Statistical analysis was performed using a rank sum test and the Wilcoxon signed rank test. Overall image quality mean scores were 2.5 and 2.3 for a pitch of 3:1 and a pitch of 6:1, respectively (P = 0.134). Likewise, mean anatomic detail and motion artifact scores were 2.5 and 2.6 for a 3:1 pitch and 2.3 and 2.5 for a 6:1 pitch, respectively (P > 0.05). In patients with a direct comparison of the two pitches (with the standard radiation dose as well as with a 20% reduction in milliamperes), no statistically significant difference in the performance of the two pitches was observed (P > 0.05). Image quality with a high pitch (6:1) is acceptable for routine abdominal/pelvic CT.

  17. Methods for the analysis of ordinal response data in medical image quality assessment.

    PubMed

    Keeble, Claire; Baxter, Paul D; Gislason-Lee, Amber J; Treadgold, Laura A; Davies, Andrew G

    2016-07-01

    The assessment of image quality in medical imaging often requires observers to rate images for some metric or detectability task. These subjective results are used in optimization, radiation dose reduction or system comparison studies and may be compared to objective measures from a computer vision algorithm performing the same task. One popular scoring approach is to use a Likert scale, then assign consecutive numbers to the categories. The mean of these response values is then taken and used for comparison with the objective or second subjective response. Agreement is often assessed using correlation coefficients. We highlight a number of weaknesses in this common approach, including inappropriate analyses of ordinal data and the inability to properly account for correlations caused by repeated images or observers. We suggest alternative data collection and analysis techniques such as amendments to the scale and multilevel proportional odds models. We detail the suitability of each approach depending upon the data structure and demonstrate each method using a medical imaging example. Whilst others have raised some of these issues, we evaluated the entire study from data collection to analysis, suggested sources for software and further reading, and provided a checklist plus flowchart for use with any ordinal data. We hope that raised awareness of the limitations of the current approaches will encourage greater method consideration and the utilization of a more appropriate analysis. More accurate comparisons between measures in medical imaging will lead to a more robust contribution to the imaging literature and ultimately improved patient care.

  18. Comparison of FSE T2 W PROPELLER and 3D-FIESTA of 3 T MR for the internal auditory canal.

    PubMed

    Wu, Hai-Bo; Yuan, Hui-Shu; Ma, Furong; Zhao, Qiang

    The study compared the use of periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) technique fast spin echo (FSE) T2 W and the sequence of three-dimensional fast imaging employing steady-state acquisition (3D-FIESTA) technique in the MRI of the internal auditory canal for overall image quality improvement. One hundred thirty-two patients undergoing FSE T2 W PROPELLER and 3D-FIESTA examinations of the internal auditory canal were included. All examinations were performed at 3.0 T with comparison of a sagittal oblique FSE T2 W sequence with the PROPELLER technique to 3D-FIESTA in the same reconstructed orientation with PROPELLER. Image quality was evaluated by two radiologists using a 4-point scale. The Wilcoxon signed rank test was used to compare the data of the two techniques. The image quality of FSE T2 W PROPELLER was significantly improved compared to the reconstructed images of 3D-FIESTA. Observer 1: median FSE T2 W with PROPELLER, 4 [mean, 3.455] versus median reconstructed 3D-FIESTA, 3 [mean, 3.15], (P<.001); Observer 2: median FSE T2 W with PROPELLER, 4 [mean, 3.47] versus median reconstructed 3D-FIESTA, 3 [mean, 3.25], (P<.001). Interobserver agreement was good (k value, 0.73) for the rating of the overall image quality. The FSE T2 W PROPELLER technique for MRI of internal auditory canal reduced uncertainty caused by motion artifact and improved the quality of the image compared to the reconstructed 3D-FIESTA. It was affected by different parameters including the blade width, echo train length (ETL). This is explained by data oversampling at the center region of k-space, which requires additional imaging time over conventional MRI techniques. Increasing blade was expected to improve motion correction effects but also the signal-to-noise ratio. ETL increases the image sharpness and the overall image quality. Copyright © 2016. Published by Elsevier Inc.

  19. CT of the chest with model-based, fully iterative reconstruction: comparison with adaptive statistical iterative reconstruction.

    PubMed

    Ichikawa, Yasutaka; Kitagawa, Kakuya; Nagasawa, Naoki; Murashima, Shuichi; Sakuma, Hajime

    2013-08-09

    The recently developed model-based iterative reconstruction (MBIR) enables significant reduction of image noise and artifacts, compared with adaptive statistical iterative reconstruction (ASIR) and filtered back projection (FBP). The purpose of this study was to evaluate lesion detectability of low-dose chest computed tomography (CT) with MBIR in comparison with ASIR and FBP. Chest CT was acquired with 64-slice CT (Discovery CT750HD) with standard-dose (5.7 ± 2.3 mSv) and low-dose (1.6 ± 0.8 mSv) conditions in 55 patients (aged 72 ± 7 years) who were suspected of lung disease on chest radiograms. Low-dose CT images were reconstructed with MBIR, ASIR 50% and FBP, and standard-dose CT images were reconstructed with FBP, using a reconstructed slice thickness of 0.625 mm. Two observers evaluated the image quality of abnormal lung and mediastinal structures on a 5-point scale (Score 5 = excellent and score 1 = non-diagnostic). The objective image noise was also measured as the standard deviation of CT intensity in the descending aorta. The image quality score of enlarged mediastinal lymph nodes on low-dose MBIR CT (4.7 ± 0.5) was significantly improved in comparison with low-dose FBP and ASIR CT (3.0 ± 0.5, p = 0.004; 4.0 ± 0.5, p = 0.02, respectively), and was nearly identical to the score of standard-dose FBP image (4.8 ± 0.4, p = 0.66). Concerning decreased lung attenuation (bulla, emphysema, or cyst), the image quality score on low-dose MBIR CT (4.9 ± 0.2) was slightly better compared to low-dose FBP and ASIR CT (4.5 ± 0.6, p = 0.01; 4.6 ± 0.5, p = 0.01, respectively). There were no significant differences in image quality scores of visualization of consolidation or mass, ground-glass attenuation, or reticular opacity among low- and standard-dose CT series. Image noise with low-dose MBIR CT (11.6 ± 1.0 Hounsfield units (HU)) were significantly lower than with low-dose ASIR (21.1 ± 2.6 HU, p < 0.0005), low-dose FBP CT (30.9 ± 3.9 HU, p < 0.0005), and standard-dose FBP CT (16.6 ± 2.3 HU, p < 0.0005). MBIR shows greater potential than ASIR for providing diagnostically acceptable low-dose CT without compromising image quality. With radiation dose reduction of >70%, MBIR can provide equivalent lesion detectability of standard-dose FBP CT.

  20. Novel DOTA-based prochelator for divalent peptide vectorization: synthesis of dimeric bombesin analogues for multimodality tumor imaging and therapy.

    PubMed

    Abiraj, Keelara; Jaccard, Hugues; Kretzschmar, Martin; Helm, Lothar; Maecke, Helmut R

    2008-07-28

    Dimeric peptidic vectors, obtained by the divalent grafting of bombesin analogues on a newly synthesized DOTA-based prochelator, showed improved qualities as tumor targeted imaging probes in comparison to their monomeric analogues.

  1. Social image quality

    NASA Astrophysics Data System (ADS)

    Qiu, Guoping; Kheiri, Ahmed

    2011-01-01

    Current subjective image quality assessments have been developed in the laboratory environments, under controlledconditions, and are dependent on the participation of limited numbers of observers. In this research, with the help of Web 2.0 and social media technology, a new method for building a subjective image quality metric has been developed where the observers are the Internet users. A website with a simple user interface that enables Internet users from anywhere at any time to vote for a better quality version of a pair of the same image has been constructed. Users' votes are recorded and used to rank the images according to their perceived visual qualities. We have developed three rank aggregation algorithms to process the recorded pair comparison data, the first uses a naive approach, the second employs a Condorcet method, and the third uses the Dykstra's extension of Bradley-Terry method. The website has been collecting data for about three months and has accumulated over 10,000 votes at the time of writing this paper. Results show that the Internet and its allied technologies such as crowdsourcing offer a promising new paradigm for image and video quality assessment where hundreds of thousands of Internet users can contribute to building more robust image quality metrics. We have made Internet user generated social image quality (SIQ) data of a public image database available online (http://www.hdri.cs.nott.ac.uk/siq/) to provide the image quality research community with a new source of ground truth data. The website continues to collect votes and will include more public image databases and will also be extended to include videos to collect social video quality (SVQ) data. All data will be public available on the website in due course.

  2. Metallic artifacts from internal scaphoid fracture fixation screws: comparison between C-arm flat-panel, cone-beam, and multidetector computed tomography.

    PubMed

    Finkenstaedt, Tim; Morsbach, Fabian; Calcagni, Maurizio; Vich, Magdalena; Pfirrmann, Christian W A; Alkadhi, Hatem; Runge, Val M; Andreisek, Gustav; Guggenberger, Roman

    2014-08-01

    The aim of this study was to compare image quality and extent of artifacts from scaphoid fracture fixation screws using different computed tomography (CT) modalities and radiation dose protocols. Imaging of 6 cadaveric wrists with artificial scaphoid fractures and different fixation screws was performed in 2 screw positions (45° and 90° orientation in relation to the x/y-axis) using multidetector CT (MDCT) and 2 flat-panel CT modalities, C-arm flat-panel CT (FPCT) and cone-beam CT (CBCT), the latter 2 with low and standard radiation dose protocols. Mean cartilage attenuation and metal artifact-induced absolute Hounsfield unit changes (= artifact extent) were measured. Two independent radiologists evaluated different image quality criteria using a 5-point Likert-scale. Interreader agreements (Cohen κ) were calculated. Mean absolute Hounsfield unit changes and quality ratings were compared using Friedman and Wilcoxon signed-rank tests. Artifact extent was significantly smaller for MDCT and standard-dose FPCT compared with CBCT low- and standard-dose acquisitions (all P < 0.05). No significant differences in artifact extent among different screw types and scanning positions were noted (P > 0.05). Both MDCT and FPCT standard-dose protocols showed equal ratings for screw bone interface, fracture line, and trabecular bone evaluation (P = 0.06, 0.2, and 0.2, respectively) and performed significantly better than FPCT low- and CBCT low- and standard-dose acquisitions (all P < 0.05). Good interreader agreement was found for image quality comparisons (Cohen κ = 0.76-0.78). Both MDCT and FPCT standard-dose acquisition showed comparatively less metal-induced artifacts and better overall image quality compared with FPCT low-dose and both CBCT acquisitions. Flat-panel CT may provide sufficient image quality to serve as a versatile CT alternative for postoperative imaging of internally fixated wrist fractures.

  3. Digital volume tomography in the diagnosis of peri-implant defects: an in vitro study on native pig mandibles.

    PubMed

    Mengel, Reiner; Kruse, Björn; Flores-de-Jacoby, Lavin

    2006-07-01

    The aim of this study of native pig mandibles was to investigate the accuracy and quality of the representation of peri-implant defects by intraoral radiography (IR), panoramic radiography (PR), computer tomography (CT), and digital volume tomography (DVT). The examination was carried out on 19 native pig mandibles. In the toothless sections of the mandibles, one or two implants were inserted. Following the standardized preparation of peri-implant defects (11 each of dehiscences, fenestrations, and 2- to 3-walled intrabony defects), IR, PR, CT, and DVT were performed. The peri-implant defects were measured using appropriate software on the digitized IR and PR image programs. As a control method, the peri-implant bone defects were measured directly using a reflecting stereomicroscope with measuring ocular. The statistical comparison between the measurements of the radiographic scans and those of the direct readings of the peri-implant defects was performed with Pearson's correlation coefficient. The quality of the radiographic scans was determined through the subjective perception and detectability of the peri-implant defects by five independent observers. In the DVT and CT scans, it was possible to measure all the bone defects in three planes. Comparison with the direct peri-implant defect measurements yielded a mean deviation of 0.17+/-0.11 mm for the DVT scans and 0.18+/-0.12 mm for the CT scans. On the IR and PR images, the defects could be detected only in the mesio-distal and cranio-caudal planes. In comparison with the direct measurements of the peri-implant defects, the IR images revealed a mean deviation of 0.34+/-0.30 mm, and the PR images revealed a mean deviation of 0.41+/-0.35 mm. The quality rating of the radiographic images was highest for the DVT scans. Overall, the CT and DVT scans displayed only a slight deviation in the extent of the peri-implant defects. Both radiographic imaging techniques permitted imaging of peri-implant defects in three planes, true to scale, and without overlay or distortion. The DVT scans showed the best imaging quality.

  4. [The future of bedside chest radiography: Comparative study of mobile flat-panels and needle-image plate storage phosphor systems].

    PubMed

    Bremicker, K; Gosch, D; Kahn, T; Borte, G

    2015-11-01

    Chest radiography is the most common diagnostic modality in intensive care units with new mobile flat-panels gaining more attention and availability in addition to the already used storage phosphor plates. Comparison of the image quality of mobile flat-panels and needle-image plate storage phosphor system in terms of bedside chest radiography. Retrospective analysis of 84 bedside chest radiographs of 42 intensive care patients (20 women, 22 men, average age: 65 years). All images were acquired during daily routine. For each patient, two images were analyzed, one from each system mentioned above. Two blinded radiologists evaluated the image quality based on ten criteria (e.g., diaphragm, heart contour, tracheal bifurcation, thoracic spine, lung structure, consolidations, foreign material, and overall impression) using a 5-point visibility scale (1 = excellent, 5 = not usable). There was no significant difference between the image quality of the two systems (p < 0.05). Overall some anatomical structures such as the diaphragm, heart, pulmonary consolidations and foreign material were considered of higher diagnostic quality compared to others, e.g., tracheal bifurcation and thoracic spine. Mobile flat-panels achieve an image quality which is as good as those of needle-image plate storage phosphor systems. In addition, they allow immediate evaluation of the image quality but in return are much more expensive in terms of purchase and maintenance.

  5. A Perceptually Weighted Rank Correlation Indicator for Objective Image Quality Assessment

    NASA Astrophysics Data System (ADS)

    Wu, Qingbo; Li, Hongliang; Meng, Fanman; Ngan, King N.

    2018-05-01

    In the field of objective image quality assessment (IQA), the Spearman's $\\rho$ and Kendall's $\\tau$ are two most popular rank correlation indicators, which straightforwardly assign uniform weight to all quality levels and assume each pair of images are sortable. They are successful for measuring the average accuracy of an IQA metric in ranking multiple processed images. However, two important perceptual properties are ignored by them as well. Firstly, the sorting accuracy (SA) of high quality images are usually more important than the poor quality ones in many real world applications, where only the top-ranked images would be pushed to the users. Secondly, due to the subjective uncertainty in making judgement, two perceptually similar images are usually hardly sortable, whose ranks do not contribute to the evaluation of an IQA metric. To more accurately compare different IQA algorithms, we explore a perceptually weighted rank correlation indicator in this paper, which rewards the capability of correctly ranking high quality images, and suppresses the attention towards insensitive rank mistakes. More specifically, we focus on activating `valid' pairwise comparison towards image quality, whose difference exceeds a given sensory threshold (ST). Meanwhile, each image pair is assigned an unique weight, which is determined by both the quality level and rank deviation. By modifying the perception threshold, we can illustrate the sorting accuracy with a more sophisticated SA-ST curve, rather than a single rank correlation coefficient. The proposed indicator offers a new insight for interpreting visual perception behaviors. Furthermore, the applicability of our indicator is validated in recommending robust IQA metrics for both the degraded and enhanced image data.

  6. "3D fusion" echocardiography improves 3D left ventricular assessment: comparison with 2D contrast echocardiography.

    PubMed

    Augustine, Daniel; Yaqub, Mohammad; Szmigielski, Cezary; Lima, Eduardo; Petersen, Steffen E; Becher, Harald; Noble, J Alison; Leeson, Paul

    2015-02-01

    Three-dimensional fusion echocardiography (3DFE) is a novel postprocessing approach that utilizes imaging data acquired from multiple 3D acquisitions. We assessed image quality, endocardial border definition, and cardiac wall motion in patients using 3DFE compared to standard 3D images (3D) and results obtained with contrast echocardiography (2DC). Twenty-four patients (mean age 66.9 ± 13 years, 17 males, 7 females) undergoing 2DC had three, noncontrast, 3D apical volumes acquired at rest. Images were fused using an automated image fusion approach. Quality of the 3DFE was compared to both 3D and 2DC based on contrast-to-noise ratio (CNR) and endocardial border definition. We then compared clinical wall-motion score index (WMSI) calculated from 3DFE and 3D to those obtained from 2DC images. Fused 3D volumes had significantly improved CNR (8.92 ± 1.35 vs. 6.59 ± 1.19, P < 0.0005) and segmental image quality (2.42 ± 0.99 vs. 1.93 ± 1.18, P < 0.005) compared to unfused 3D acquisitions. Levels achieved were closer to scores for 2D contrast images (CNR: 9.04 ± 2.21, P = 0.6; segmental image quality: 2.91 ± 0.37, P < 0.005). WMSI calculated from fused 3D volumes did not differ significantly from those obtained from 2D contrast echocardiography (1.06 ± 0.09 vs. 1.07 ± 0.15, P = 0.69), whereas unfused images produced significantly more variable results (1.19 ± 0.30). This was confirmed by a better intraclass correlation coefficient (ICC 0.72; 95% CI 0.32-0.88) relative to comparisons with unfused images (ICC 0.56; 95% CI 0.02-0.81). 3DFE significantly improves left ventricular image quality compared to unfused 3D in a patient population and allows noncontrast assessment of wall motion that approaches that achieved with 2D contrast echocardiography. © 2014, Wiley Periodicals, Inc.

  7. Comparison of virtual unenhanced CT images of the abdomen under different iodine flow rates.

    PubMed

    Li, Yongrui; Li, Ye; Jackson, Alan; Li, Xiaodong; Huang, Ning; Guo, Chunjie; Zhang, Huimao

    2017-01-01

    To assess the effect of varying iodine flow rate (IFR) and iodine concentration on the quality of virtual unenhanced (VUE) images of the abdomen obtained with dual-energy CT. 94 subjects underwent unenhanced and triphasic contrast-enhanced CT scan of the abdomen, including arterial phase, portal venous phase, and delayed phase using dual-energy CT. Patients were randomized into 4 groups with different IFRs or iodine concentrations. VUE images were generated at 70 keV. The CT values, image noise, SNR and CNR of aorta, portal vein, liver, liver lesion, pancreatic parenchyma, spleen, erector spinae, and retroperitoneal fat were recorded. Dose-length product and effective dose for an examination with and without plain phase scan were calculated to assess the potential dose savings. Two radiologists independently assessed subjective image quality using a five-point scale. The Kolmogorov-Smirnov test was used first to test for normal distribution. Where data conformed to a normal distribution, analysis of variance was used to compare mean HU values, image noise, SNRs and CNRs for the 4 image sets. Where data distribution was not normal, a nonparametric test (Kruskal-Wallis test followed by stepwise step-down comparisons) was used. The significance level for all tests was 0.01 (two-sided) to allow for type 2 errors due to multiple testing. The CT numbers (HU) of VUE images showed no significant differences between the 4 groups (p > 0.05) or between different phases within the same group (p > 0.05). VUE images had equal or higher SNR and CNR than true unenhanced images. VUE images received equal or lower subjective image quality scores than unenhanced images but were of acceptable quality for diagnostic use. Calculated dose-length product and estimated dose showed that the use of VUE images in place of unenhanced images would be associated with a dose saving of 25%. VUE images can replace conventional unenhanced images. VUE images are not affected by varying iodine flow rates and iodine concentrations, and diagnostic examinations could be acquired with a potential dose saving of 25%.

  8. Feasibility study of computed vs measured high b-value (1400 s/mm²) diffusion-weighted MR images of the prostate

    PubMed Central

    Bittencourt, Leonardo K; Attenberger, Ulrike I; Lima, Daniel; Strecker, Ralph; de Oliveira, Andre; Schoenberg, Stefan O; Gasparetto, Emerson L; Hausmann, Daniel

    2014-01-01

    AIM: To evaluate the impact of computed b = 1400 s/mm2 (C-b1400) vs measured b = 1400 s/mm2 (M-b1400) diffusion-weighted images (DWI) on lesion detection rate, image quality and quality of lesion demarcation using a modern 3T-MR system based on a small-field-of-view sequence (sFOV). METHODS: Thirty patients (PSA: 9.5 ± 8.7 ng/mL; 68 ± 12 years) referred for magnetic resonance imaging (MRI) of the prostate were enrolled in this study. All measurements were performed on a 3T MR system. For DWI, a single-shot EPI diffusion sequence (b = 0, 100, 400, 800 s/mm²) was utilized. C-b1400 was calculated voxelwise from the ADC and diffusion images. Additionally, M-b1400 was acquired for evaluation and comparison. Lesion detection rate and maximum lesion diameters were obtained and compared. Image quality and quality of lesion demarcation were rated according to a 5-point Likert-type scale. Ratios of lesion-to-bladder as well as prostate-to-bladder signal intensity (SI) were calculated to estimate the signal-to-noise-ratio (SNR). RESULTS: Twenty-four lesions were detected on M-b1400 images and compared to C-b1400 images. C-b1400 detected three additional cancer suspicious lesions. Overall image quality was rated significantly better and SI ratios were significantly higher on C-b1400 (2.3 ± 0.8 vs 3.1 ± 1.0, P < 0.001; 5.6 ± 1.8 vs 2.8 ± 0.9, P < 0.001). Comparison of lesion size showed no significant differences between C- and M-b1400 (P = 0.22). CONCLUSION: Combination of a high b-value extrapolation and sFOV may contribute to increase diagnostic accuracy of DWI without an increase of acquisition time, which may be useful to guide targeted prostate biopsies and to improve quality of multiparametric MRI (mMRI) especially under economical aspects in a private practice setting. PMID:24976938

  9. Free-breathing echo-planar imaging based diffusion-weighted magnetic resonance imaging of the liver with prospective acquisition correction.

    PubMed

    Asbach, Patrick; Hein, Patrick A; Stemmer, Alto; Wagner, Moritz; Huppertz, Alexander; Hamm, Bernd; Taupitz, Matthias; Klessen, Christian

    2008-01-01

    To evaluate soft tissue contrast and image quality of a respiratory-triggered echo-planar imaging based diffusion-weighted sequence (EPI-DWI) with different b values for magnetic resonance imaging (MRI) of the liver. Forty patients were examined. Quantitative and qualitative evaluation of contrast was performed. Severity of artifacts and overall image quality in comparison with a T2w turbo spin-echo (T2-TSE) sequence were scored. The liver-spleen contrast was significantly higher (P < 0.05) for the EPI-DWI compared with the T2-TSE sequence (0.47 +/- 0.11 (b50); 0.48 +/- 0.13 (b300); 0.47 +/- 0.13 (b600) vs 0.38 +/- 0.11). Liver-lesion contrast strongly depends on the b value of the DWI sequence and decreased with higher b values (b50, 0.47 +/- 0.19; b300, 0.40 +/- 0.20; b600, 0.28 +/- 0.23). Severity of artifacts and overall image quality were comparable to the T2-TSE sequence when using a low b value (P > 0.05), artifacts increased and image quality decreased with higher b values (P < 0.05). Respiratory-triggered EPI-DWI of the liver is feasible because good image quality and favorable soft tissue contrast can be achieved.

  10. Why is quality estimation judgment fast? Comparison of gaze control strategies in quality and difference estimation tasks

    NASA Astrophysics Data System (ADS)

    Radun, Jenni; Leisti, Tuomas; Virtanen, Toni; Nyman, Göte; Häkkinen, Jukka

    2014-11-01

    To understand the viewing strategies employed in a quality estimation task, we compared two visual tasks-quality estimation and difference estimation. The estimation was done for a pair of natural images having small global changes in quality. Two groups of observers estimated the same set of images, but with different instructions. One group estimated the difference in quality and the other the difference between image pairs. The results demonstrated the use of different visual strategies in the tasks. The quality estimation was found to include more visual planning during the first fixation than the difference estimation, but afterward needed only a few long fixations on the semantically important areas of the image. The difference estimation used many short fixations. Salient image areas were mainly attended to when these areas were also semantically important. The results support the hypothesis that these tasks' general characteristics (evaluation time, number of fixations, area fixated on) show differences in processing, but also suggest that examining only single fixations when comparing tasks is too narrow a view. When planning a subjective experiment, one must remember that a small change in the instructions might lead to a noticeable change in viewing strategy.

  11. a Critical Review of Automated Photogrammetric Processing of Large Datasets

    NASA Astrophysics Data System (ADS)

    Remondino, F.; Nocerino, E.; Toschi, I.; Menna, F.

    2017-08-01

    The paper reports some comparisons between commercial software able to automatically process image datasets for 3D reconstruction purposes. The main aspects investigated in the work are the capability to correctly orient large sets of image of complex environments, the metric quality of the results, replicability and redundancy. Different datasets are employed, each one featuring a diverse number of images, GSDs at cm and mm resolutions, and ground truth information to perform statistical analyses of the 3D results. A summary of (photogrammetric) terms is also provided, in order to provide rigorous terms of reference for comparisons and critical analyses.

  12. A Novel Unsupervised Segmentation Quality Evaluation Method for Remote Sensing Images

    PubMed Central

    Tang, Yunwei; Jing, Linhai; Ding, Haifeng

    2017-01-01

    The segmentation of a high spatial resolution remote sensing image is a critical step in geographic object-based image analysis (GEOBIA). Evaluating the performance of segmentation without ground truth data, i.e., unsupervised evaluation, is important for the comparison of segmentation algorithms and the automatic selection of optimal parameters. This unsupervised strategy currently faces several challenges in practice, such as difficulties in designing effective indicators and limitations of the spectral values in the feature representation. This study proposes a novel unsupervised evaluation method to quantitatively measure the quality of segmentation results to overcome these problems. In this method, multiple spectral and spatial features of images are first extracted simultaneously and then integrated into a feature set to improve the quality of the feature representation of ground objects. The indicators designed for spatial stratified heterogeneity and spatial autocorrelation are included to estimate the properties of the segments in this integrated feature set. These two indicators are then combined into a global assessment metric as the final quality score. The trade-offs of the combined indicators are accounted for using a strategy based on the Mahalanobis distance, which can be exhibited geometrically. The method is tested on two segmentation algorithms and three testing images. The proposed method is compared with two existing unsupervised methods and a supervised method to confirm its capabilities. Through comparison and visual analysis, the results verified the effectiveness of the proposed method and demonstrated the reliability and improvements of this method with respect to other methods. PMID:29064416

  13. Submillisievert standard-pitch CT pulmonary angiography with ultra-low dose contrast media administration: A comparison to standard CT imaging.

    PubMed

    Suntharalingam, Saravanabavaan; Mikat, Christian; Stenzel, Elena; Erfanian, Youssef; Wetter, Axel; Schlosser, Thomas; Forsting, Michael; Nassenstein, Kai

    2017-01-01

    To evaluate the image quality and radiation dose of submillisievert standard-pitch CT pulmonary angiography (CTPA) with ultra-low dose contrast media administration in comparison to standard CTPA. Hundred patients (56 females, 44 males, mean age 69.6±15.4 years; median BMI: 26.6, IQR: 5.9) with suspected pulmonary embolism were examined with two different protocols (n = 50 each, group A: 80 kVp, ref. mAs 115, 25 ml of contrast medium; group B: 100 kVp, ref. mAs 150, 60 ml of contrast medium) using a dual-source CT equipped with automated exposure control. Objective and subjective image qualities, radiation exposure as well as the frequency of pulmonary embolism were evaluated. There was no significant difference in subjective image quality scores between two groups regarding pulmonary arteries (p = 0.776), whereby the interobserver agreement was excellent (group A: k = 0.9; group B k = 1.0). Objective image analysis revealed that signal intensities (SI), signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the pulmonary arteries were equal or significantly higher in group B. There was no significant difference in the frequency of pulmonary embolism (p = 0.65). Using the low dose and low contrast media protocol resulted in a radiation dose reduction by 71.8% (2.4 vs. 0.7 mSv; p<0.001). This 80 kVp standard pitch CTPA protocol with 25 ml contrast agent volume can obtain sufficient image quality to exclude or diagnose pulmonary emboli while reducing radiation dose by approximately 71%.

  14. A new full-field digital mammography system with and without the use of an advanced post-processing algorithm: comparison of image quality and diagnostic performance.

    PubMed

    Ahn, Hye Shin; Kim, Sun Mi; Jang, Mijung; Yun, Bo La; Kim, Bohyoung; Ko, Eun Sook; Han, Boo-Kyung; Chang, Jung Min; Yi, Ann; Cho, Nariya; Moon, Woo Kyung; Choi, Hye Young

    2014-01-01

    To compare new full-field digital mammography (FFDM) with and without use of an advanced post-processing algorithm to improve image quality, lesion detection, diagnostic performance, and priority rank. During a 22-month period, we prospectively enrolled 100 cases of specimen FFDM mammography (Brestige®), which was performed alone or in combination with a post-processing algorithm developed by the manufacturer: group A (SMA), specimen mammography without application of "Mammogram enhancement ver. 2.0"; group B (SMB), specimen mammography with application of "Mammogram enhancement ver. 2.0". Two sets of specimen mammographies were randomly reviewed by five experienced radiologists. Image quality, lesion detection, diagnostic performance, and priority rank with regard to image preference were evaluated. Three aspects of image quality (overall quality, contrast, and noise) of the SMB were significantly superior to those of SMA (p < 0.05). SMB was significantly superior to SMA for visualizing calcifications (p < 0.05). Diagnostic performance, as evaluated by cancer score, was similar between SMA and SMB. SMB was preferred to SMA by four of the five reviewers. The post-processing algorithm may improve image quality with better image preference in FFDM than without use of the software.

  15. Correlation of contrast-detail analysis and clinical image quality assessment in chest radiography with a human cadaver study.

    PubMed

    De Crop, An; Bacher, Klaus; Van Hoof, Tom; Smeets, Peter V; Smet, Barbara S; Vergauwen, Merel; Kiendys, Urszula; Duyck, Philippe; Verstraete, Koenraad; D'Herde, Katharina; Thierens, Hubert

    2012-01-01

    To determine the correlation between the clinical and physical image quality of chest images by using cadavers embalmed with the Thiel technique and a contrast-detail phantom. The use of human cadavers fulfilled the requirements of the institutional ethics committee. Clinical image quality was assessed by using three human cadavers embalmed with the Thiel technique, which results in excellent preservation of the flexibility and plasticity of organs and tissues. As a result, lungs can be inflated during image acquisition to simulate the pulmonary anatomy seen on a chest radiograph. Both contrast-detail phantom images and chest images of the Thiel-embalmed bodies were acquired with an amorphous silicon flat-panel detector. Tube voltage (70, 81, 90, 100, 113, 125 kVp), copper filtration (0.1, 0.2, 0.3 mm Cu), and exposure settings (200, 280, 400, 560, 800 speed class) were altered to simulate different quality levels. Four experienced radiologists assessed the image quality by using a visual grading analysis (VGA) technique based on European Quality Criteria for Chest Radiology. The phantom images were scored manually and automatically with use of dedicated software, both resulting in an inverse image quality figure (IQF). Spearman rank correlations between inverse IQFs and VGA scores were calculated. A statistically significant correlation (r = 0.80, P < .01) was observed between the VGA scores and the manually obtained inverse IQFs. Comparison of the VGA scores and the automated evaluated phantom images showed an even better correlation (r = 0.92, P < .001). The results support the value of contrast-detail phantom analysis for evaluating clinical image quality in chest radiography. © RSNA, 2011.

  16. COMPARISON OF ADAPTIVE STATISTICAL ITERATIVE RECONSTRUCTION (ASIR™) AND MODEL-BASED ITERATIVE RECONSTRUCTION (VEO™) FOR PAEDIATRIC ABDOMINAL CT EXAMINATIONS: AN OBSERVER PERFORMANCE STUDY OF DIAGNOSTIC IMAGE QUALITY.

    PubMed

    Hultenmo, Maria; Caisander, Håkan; Mack, Karsten; Thilander-Klang, Anne

    2016-06-01

    The diagnostic image quality of 75 paediatric abdominal computed tomography (CT) examinations reconstructed with two different iterative reconstruction (IR) algorithms-adaptive statistical IR (ASiR™) and model-based IR (Veo™)-was compared. Axial and coronal images were reconstructed with 70 % ASiR with the Soft™ convolution kernel and with the Veo algorithm. The thickness of the reconstructed images was 2.5 or 5 mm depending on the scanning protocol used. Four radiologists graded the delineation of six abdominal structures and the diagnostic usefulness of the image quality. The Veo reconstruction significantly improved the visibility of most of the structures compared with ASiR in all subgroups of images. For coronal images, the Veo reconstruction resulted in significantly improved ratings of the diagnostic use of the image quality compared with the ASiR reconstruction. This was not seen for the axial images. The greatest improvement using Veo reconstruction was observed for the 2.5 mm coronal slices. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Quantifying the quality of medical x-ray images: An evaluation based on normal anatomy for lumbar spine and chest radiography

    NASA Astrophysics Data System (ADS)

    Tingberg, Anders Martin

    Optimisation in diagnostic radiology requires accurate methods for determination of patient absorbed dose and clinical image quality. Simple methods for evaluation of clinical image quality are at present scarce and this project aims at developing such methods. Two methods are used and further developed; fulfillment of image criteria (IC) and visual grading analysis (VGA). Clinical image quality descriptors are defined based on these two methods: image criteria score (ICS) and visual grading analysis score (VGAS), respectively. For both methods the basis is the Image Criteria of the ``European Guidelines on Quality Criteria for Diagnostic Radiographic Images''. Both methods have proved to be useful for evaluation of clinical image quality. The two methods complement each other: IC is an absolute method, which means that the quality of images of different patients and produced with different radiographic techniques can be compared with each other. The separating power of IC is, however, weaker than that of VGA. VGA is the best method for comparing images produced with different radiographic techniques and has strong separating power, but the results are relative, since the quality of an image is compared to the quality of a reference image. The usefulness of the two methods has been verified by comparing the results from both of them with results from a generally accepted method for evaluation of clinical image quality, receiver operating characteristics (ROC). The results of the comparison between the two methods based on visibility of anatomical structures and the method based on detection of pathological structures (free-response forced error) indicate that the former two methods can be used for evaluation of clinical image quality as efficiently as the method based on ROC. More studies are, however, needed for us to be able to draw a general conclusion, including studies of other organs, using other radiographic techniques, etc. The results of the experimental evaluation of clinical image quality are compared with physical quantities calculated with a theoretical model based on a voxel phantom, and correlations are found. The results demonstrate that the computer model can be a useful toot in planning further experimental studies.

  18. Quantitative assessment on coronary computed tomography angiography (CCTA) image quality: comparisons between genders and different tube voltage settings.

    PubMed

    Chian, Teo Chee; Nassir, Norziana Mat; Ibrahim, Mohd Izuan; Yusof, Ahmad Khairuddin Md; Sabarudin, Akmal

    2017-02-01

    This study was carried out to quantify and compare the quantitative image quality of coronary computed tomography angiography (CCTA) between genders as well as between different tube voltages scan protocols. Fifty-five cases of CCTA were collected retrospectively and all images including reformatted axial images at systolic and diastolic phases as well as images with curved multi planar reformation (cMPR) were obtained. Quantitative image quality including signal intensity, image noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of right coronary artery (RCA), left anterior descending artery (LAD), left circumflex artery (LCx) and left main artery (LM) were quantified using Analyze 12.0 software. Six hundred and fifty-seven coronary arteries were evaluated. There were no significant differences in any quantitative image quality parameters between genders. 100 kilovoltage peak (kVp) scanning protocol produced images with significantly higher signal intensity compared to 120 kVp scanning protocol (P<0.001) in all coronary arteries in all types of images. Higher SNR was also observed in 100 kVp scan protocol in all coronary arteries except in LCx where 120 kVp showed better SNR than 100 kVp. There were no significant differences in image quality of CCTA between genders and different tube voltages. Lower tube voltage (100 kVp) scanning protocol is recommended in clinical practice to reduce the radiation dose to patient.

  19. The National Ballistics Imaging Comparison (NBIC) project.

    PubMed

    Song, J; Vorburger, T V; Ballou, S; Thompson, R M; Yen, J; Renegar, T B; Zheng, A; Silver, R M; Ols, M

    2012-03-10

    In response to the guidelines issued by the American Society of Crime Laboratory Directors/Laboratory Accreditation Board (ASCLD/LAB-International) to establish traceability and quality assurance in U.S. crime laboratories, a NIST/ATF joint project entitled National Ballistics Imaging Comparison (NBIC) was initialized in 2008. The NBIC project aims to establish a National Traceability and Quality System for ballistics identifications in crime laboratories within the National Integrated Ballistics Information Network (NIBIN) of the U.S. NIST Standard Reference Material (SRM) 2460 bullets and 2461 cartridge cases are used as reference standards. 19 ballistics examiners from 13 U.S. crime laboratories participated in this project. They each performed 24 periodic image acquisitions and correlations of the SRM bullets and cartridge cases over the course of a year, but one examiner only participated in Phase 1 tests of SRM cartridge case. The correlation scores were collected by NIST for statistical analyses, from which control charts and control limits were developed for the proposed Quality System and for promoting future assessments and accreditations for firearm evidence in U.S. forensic laboratories in accordance with the ISO 17025 Standard. Published by Elsevier Ireland Ltd.

  20. Roles of body image-related experiential avoidance and uncommitted living in the link between body image and women's quality of life.

    PubMed

    Trindade, Inês A; Ferreira, Cláudia; Pinto-Gouveia, José

    2018-01-01

    The current study aimed to test whether the associations of body mass index, body image discrepancy, and social comparison based on physical appearance with women's psychological quality of life (QoL) would be explained by the mechanisms of body image-related experiential avoidance and patterns of uncommitted living. The sample was collected from October 2014 to March 2015 and included 737 female college students (aged between 18 and 25 years) who completed validated self-report measures. Results demonstrated that the final path model explained 43% of psychological QoL and revealed an excellent fit. Body image-related experiential avoidance had a meditational role in the association between body image discrepancy and psychological QoL. Further, the link between social comparison based on physical appearance and psychological QoL was partially mediated by body image-related experiential avoidance and uncommitted living. These findings indicate that the key mechanisms of the relationship between body image and young women's QoL were those related to maladaptive emotion regulation. It thus seems that interventions aiming to promote mental health in this population should promote acceptance of internal experiences related to physical appearance (e.g., sensations, thoughts, or emotions) and the engagement in behaviors committed to life values.

  1. Diffusion-weighted imaging of the sellar region: a comparison study of BLADE and single-shot echo planar imaging sequences.

    PubMed

    Yiping, Lu; Hui, Liu; Kun, Zhou; Daoying, Geng; Bo, Yin

    2014-07-01

    The purpose of this study is to compare BLADE diffusion-weighted imaging (DWI) with single-shot echo planar imaging (EPI) DWI on the aspects of feasibility of imaging the sellar region and image quality. A total of 3 healthy volunteers and 52 patients with suspected lesions in the sellar region were included in this prospective intra-individual study. All exams were performed at 3.0T with a BLADE DWI sequence and a standard single-shot EP-DWI sequence. Phantom measurements were performed to measure the objective signal-to-noise ratio (SNR). Two radiologists rated the image quality according to the visualisation of the internal carotid arteries, optic chiasm, pituitary stalk, pituitary gland and lesion, and the overall image quality. One radiologist measured lesion sizes for detecting their relationship with the image score. The SNR in BLADE DWI sequence showed no significant difference from the single-shot EPI sequence (P>0.05). All of the assessed regions received higher scores in BLADE DWI images than single-shot EP-DWI. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. A no-reference image and video visual quality metric based on machine learning

    NASA Astrophysics Data System (ADS)

    Frantc, Vladimir; Voronin, Viacheslav; Semenishchev, Evgenii; Minkin, Maxim; Delov, Aliy

    2018-04-01

    The paper presents a novel visual quality metric for lossy compressed video quality assessment. High degree of correlation with subjective estimations of quality is due to using of a convolutional neural network trained on a large amount of pairs video sequence-subjective quality score. We demonstrate how our predicted no-reference quality metric correlates with qualitative opinion in a human observer study. Results are shown on the EVVQ dataset with comparison existing approaches.

  3. Image quality assessment of automatic three-segment MR attenuation correction vs. CT attenuation correction.

    PubMed

    Partovi, Sasan; Kohan, Andres; Gaeta, Chiara; Rubbert, Christian; Vercher-Conejero, Jose L; Jones, Robert S; O'Donnell, James K; Wojtylak, Patrick; Faulhaber, Peter

    2013-01-01

    The purpose of this study is to systematically evaluate the usefulness of Positron emission tomography/Magnetic resonance imaging (PET/MRI) images in a clinical setting by assessing the image quality of Positron emission tomography (PET) images using a three-segment MR attenuation correction (MRAC) versus the standard CT attenuation correction (CTAC). We prospectively studied 48 patients who had their clinically scheduled FDG-PET/CT followed by an FDG-PET/MRI. Three nuclear radiologists evaluated the image quality of CTAC vs. MRAC using a Likert scale (five-point scale). A two-sided, paired t-test was performed for comparison purposes. The image quality was further assessed by categorizing it as acceptable (equal to 4 and 5 on the five-point Likert scale) or unacceptable (equal to 1, 2, and 3 on the five-point Likert scale) quality using the McNemar test. When assessing the image quality using the Likert scale, one reader observed a significant difference between CTAC and MRAC (p=0.0015), whereas the other readers did not observe a difference (p=0.8924 and p=0.1880, respectively). When performing the grouping analysis, no significant difference was found between CTAC vs. MRAC for any of the readers (p=0.6137 for reader 1, p=1 for reader 2, and p=0.8137 for reader 3). All three readers more often reported artifacts on the MRAC images than on the CTAC images. There was no clinically significant difference in quality between PET images generated on a PET/MRI system and those from a Positron emission tomography/Computed tomography (PET/CT) system. PET images using the automatic three-segmented MR attenuation method provided diagnostic image quality. However, future research regarding the image quality obtained using different MR attenuation based methods is warranted before PET/MRI can be used clinically.

  4. Trans-Pacific tele-ultrasound image transmission of fetal central nervous system structures.

    PubMed

    Ferreira, Adilson Cunha; Araujo Júnior, Edward; Martins, Wellington P; Jordão, João Francisco; Oliani, Antônio Hélio; Meagher, Simon E; Da Silva Costa, Fabricio

    2015-01-01

    To assess the quality of images and video clips of fetal central nervous (CNS) structures obtained by ultrasound and transmitted via tele-ultrasound from Brazil to Australia. In this cross-sectional study, 15 normal singleton pregnant women between 20 and 26 weeks were selected. Fetal CNS structures were obtained by images and video clips. The exams were transmitted in real-time using a broadband internet and an inexpensive video streaming device. Four blinded examiners evaluated the quality of the exams using the Likert scale. We calculated the mean, standard deviation, mean difference, and p values were obtained from paired t tests. The quality of the original video clips was slightly better than that observed by the transmitted video clips; mean difference considering all observers = 0.23 points. In 47/60 comparisons (78.3%; 95% CI = 66.4-86.9%) the quality of the video clips were judged to be the same. In 182/240 still images (75.8%; 95% CI = 70.0-80.8%) the scores of transmitted image were considered the same as the original. We demonstrated that long distance tele-ultrasound transmission of fetal CNS structures using an inexpensive video streaming device provided images of subjective good quality.

  5. Quantitative metrics for assessment of chemical image quality and spatial resolution

    DOE PAGES

    Kertesz, Vilmos; Cahill, John F.; Van Berkel, Gary J.

    2016-02-28

    Rationale: Currently objective/quantitative descriptions of the quality and spatial resolution of mass spectrometry derived chemical images are not standardized. Development of these standardized metrics is required to objectively describe chemical imaging capabilities of existing and/or new mass spectrometry imaging technologies. Such metrics would allow unbiased judgment of intra-laboratory advancement and/or inter-laboratory comparison for these technologies if used together with standardized surfaces. Methods: We developed two image metrics, viz., chemical image contrast (ChemIC) based on signal-to-noise related statistical measures on chemical image pixels and corrected resolving power factor (cRPF) constructed from statistical analysis of mass-to-charge chronograms across features of interest inmore » an image. These metrics, quantifying chemical image quality and spatial resolution, respectively, were used to evaluate chemical images of a model photoresist patterned surface collected using a laser ablation/liquid vortex capture mass spectrometry imaging system under different instrument operational parameters. Results: The calculated ChemIC and cRPF metrics determined in an unbiased fashion the relative ranking of chemical image quality obtained with the laser ablation/liquid vortex capture mass spectrometry imaging system. These rankings were used to show that both chemical image contrast and spatial resolution deteriorated with increasing surface scan speed, increased lane spacing and decreasing size of surface features. Conclusions: ChemIC and cRPF, respectively, were developed and successfully applied for the objective description of chemical image quality and spatial resolution of chemical images collected from model surfaces using a laser ablation/liquid vortex capture mass spectrometry imaging system.« less

  6. Quantitative metrics for assessment of chemical image quality and spatial resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kertesz, Vilmos; Cahill, John F.; Van Berkel, Gary J.

    Rationale: Currently objective/quantitative descriptions of the quality and spatial resolution of mass spectrometry derived chemical images are not standardized. Development of these standardized metrics is required to objectively describe chemical imaging capabilities of existing and/or new mass spectrometry imaging technologies. Such metrics would allow unbiased judgment of intra-laboratory advancement and/or inter-laboratory comparison for these technologies if used together with standardized surfaces. Methods: We developed two image metrics, viz., chemical image contrast (ChemIC) based on signal-to-noise related statistical measures on chemical image pixels and corrected resolving power factor (cRPF) constructed from statistical analysis of mass-to-charge chronograms across features of interest inmore » an image. These metrics, quantifying chemical image quality and spatial resolution, respectively, were used to evaluate chemical images of a model photoresist patterned surface collected using a laser ablation/liquid vortex capture mass spectrometry imaging system under different instrument operational parameters. Results: The calculated ChemIC and cRPF metrics determined in an unbiased fashion the relative ranking of chemical image quality obtained with the laser ablation/liquid vortex capture mass spectrometry imaging system. These rankings were used to show that both chemical image contrast and spatial resolution deteriorated with increasing surface scan speed, increased lane spacing and decreasing size of surface features. Conclusions: ChemIC and cRPF, respectively, were developed and successfully applied for the objective description of chemical image quality and spatial resolution of chemical images collected from model surfaces using a laser ablation/liquid vortex capture mass spectrometry imaging system.« less

  7. Evaluation of image quality of a 32-channel versus a 12-channel head coil at 1.5T for MR imaging of the brain.

    PubMed

    Parikh, P T; Sandhu, G S; Blackham, K A; Coffey, M D; Hsu, D; Liu, K; Jesberger, J; Griswold, M; Sunshine, J L

    2011-02-01

    Multichannel phased-array head coils are undergoing exponential escalation of coil element numbers. While previous technical studies have found gains in SNR and spatial resolution with the addition of element coils, it remains to be determined how these gains affect clinical reading. The purpose of this clinical study was to determine if the SNR and spatial resolution characteristics of a 32-channel head coil result in improvements in perceived image quality and lesion evaluation. Twenty-one patients underwent MR imaging of the brain at 1.5T sequentially with both a 12-channel and a 32-channel receive-only phased-array head coil. Axial T2WIs, T1WIs, FLAIR images, and DWIs were acquired. Anonymized images were compared side-by-side and by sequence for image quality, lesion evaluation, and artifacts by 3 neuroradiologists. Results of the comparison were analyzed for the preference for a specific head coil. FLAIR and DWI images acquired with the 32-channel coil showed significant improvement in image quality in several parameters. T2WIs also improved significantly with acquisition by the 32-channel coil, while T1WIs improved in a limited number of parameters. While lesion evaluation also improved with acquisition of images by the 32-channel coil, there was no apparent improvement in diagnostic quality. There was no difference in artifacts between the 2 coils. Improvements in SNR and spatial resolution attributed to image acquisition with a 32-channel head coil are paralleled by perceived improvements in image quality.

  8. A Method to Prevent Protein Delocalization in Imaging Mass Spectrometry of Non-Adherent Tissues: Application to Small Vertebrate Lens Imaging

    PubMed Central

    Anderson, David M. G.; Floyd, Kyle A.; Barnes, Stephen; Clark, Judy M.; Clark, John I.; Mchaourab, Hassane; Schey, Kevin L.

    2015-01-01

    MALDI imaging requires careful sample preparation to obtain reliable, high quality images of small molecules, peptides, lipids, and proteins across tissue sections. Poor crystal formation, delocalization of analytes, and inadequate tissue adherence can affect the quality, reliability, and spatial resolution of MALDI images. We report a comparison of tissue mounting and washing methods that resulted in an optimized method using conductive carbon substrates that avoids thaw mounting or washing steps, minimizes protein delocalization, and prevents tissue detachment from the target surface. Application of this method to image ocular lens proteins of small vertebrate eyes demonstrates the improved methodology for imaging abundant crystallin protein products. This method was demonstrated for tissue sections from rat, mouse, and zebrafish lenses resulting in good quality MALDI images with little to no delocalization. The images indicate, for the first time in mouse and zebrafish, discrete localization of crystallin protein degradation products resulting in concentric rings of distinct protein contents that may be responsible for the refractive index gradient of vertebrate lenses. PMID:25665708

  9. Improved Image Quality in Head and Neck CT Using a 3D Iterative Approach to Reduce Metal Artifact.

    PubMed

    Wuest, W; May, M S; Brand, M; Bayerl, N; Krauss, A; Uder, M; Lell, M

    2015-10-01

    Metal artifacts from dental fillings and other devices degrade image quality and may compromise the detection and evaluation of lesions in the oral cavity and oropharynx by CT. The aim of this study was to evaluate the effect of iterative metal artifact reduction on CT of the oral cavity and oropharynx. Data from 50 consecutive patients with metal artifacts from dental hardware were reconstructed with standard filtered back-projection, linear interpolation metal artifact reduction (LIMAR), and iterative metal artifact reduction. The image quality of sections that contained metal was analyzed for the severity of artifacts and diagnostic value. A total of 455 sections (mean ± standard deviation, 9.1 ± 4.1 sections per patient) contained metal and were evaluated with each reconstruction method. Sections without metal were not affected by the algorithms and demonstrated image quality identical to each other. Of these sections, 38% were considered nondiagnostic with filtered back-projection, 31% with LIMAR, and only 7% with iterative metal artifact reduction. Thirty-three percent of the sections had poor image quality with filtered back-projection, 46% with LIMAR, and 10% with iterative metal artifact reduction. Thirteen percent of the sections with filtered back-projection, 17% with LIMAR, and 22% with iterative metal artifact reduction were of moderate image quality, 16% of the sections with filtered back-projection, 5% with LIMAR, and 30% with iterative metal artifact reduction were of good image quality, and 1% of the sections with LIMAR and 31% with iterative metal artifact reduction were of excellent image quality. Iterative metal artifact reduction yields the highest image quality in comparison with filtered back-projection and linear interpolation metal artifact reduction in patients with metal hardware in the head and neck area. © 2015 by American Journal of Neuroradiology.

  10. The Zernike expansion--an example of a merit function for 2D/3D registration based on orthogonal functions.

    PubMed

    Dong, Shuo; Kettenbach, Joachim; Hinterleitner, Isabella; Bergmann, Helmar; Birkfellner, Wolfgang

    2008-01-01

    Current merit functions for 2D/3D registration usually rely on comparing pixels or small regions of images using some sort of statistical measure. Problems connected to this paradigm the sometimes problematic behaviour of the method if noise or artefacts (for instance a guide wire) are present on the projective image. We present a merit function for 2D/3D registration which utilizes the decomposition of the X-ray and the DRR under comparison into orthogonal Zernike moments; the quality of the match is assessed by an iterative comparison of expansion coefficients. Results in a imaging study on a physical phantom show that--compared to standard cross--correlation the Zernike moment based merit function shows better robustness if histogram content in images under comparison is different, and that time expenses are comparable if the merit function is constructed out of a few significant moments only.

  11. Psychophysical evaluation of the image quality of a dynamic flat-panel digital x-ray image detector using the threshold contrast detail detectability (TCDD) technique

    NASA Astrophysics Data System (ADS)

    Davies, Andrew G.; Cowen, Arnold R.; Bruijns, Tom J. C.

    1999-05-01

    We are currently in an era of active development of the digital X-ray imaging detectors that will serve the radiological communities in the new millennium. The rigorous comparative physical evaluations of such devices are therefore becoming increasingly important from both the technical and clinical perspectives. The authors have been actively involved in the evaluation of a clinical demonstration version of a flat-panel dynamic digital X-ray image detector (or FDXD). Results of objective physical evaluation of this device have been presented elsewhere at this conference. The imaging performance of FDXD under radiographic exposure conditions have been previously reported, and in this paper a psychophysical evaluation of the FDXD detector operating under continuous fluoroscopic conditions is presented. The evaluation technique employed was the threshold contrast detail detectability (TCDD) technique, which enables image quality to be measured on devices operating in the clinical environment. This approach addresses image quality in the context of both the image acquisition and display processes, and uses human observers to measure performance. The Leeds test objects TO[10] and TO[10+] were used to obtain comparative measurements of performance on the FDXD and two digital spot fluorography (DSF) systems, one utilizing a Plumbicon camera and the other a state of the art CCD camera. Measurements were taken at a range of detector entrance exposure rates, namely 6, 12, 25 and 50 (mu) R/s. In order to facilitate comparisons between the systems, all fluoroscopic image processing such as noise reduction algorithms, were disabled during the experiments. At the highest dose rate FDXD significantly outperformed the DSF comparison systems in the TCDD comparisons. At 25 and 12 (mu) R/s all three-systems performed in an equivalent manner and at the lowest exposure rate FDXD was inferior to the two DSF systems. At standard fluoroscopic exposures, FDXD performed in an equivalent manner to the DSF systems for the TCDD comparisons. This would suggest that FDXD would therefore perform adequately in a clinical fluoroscopic environment and our initial clinical experiences support this. Noise reduction processing of the fluoroscopic data acquired on FDXD was also found to further improve TCDD performance for FDXD. FDXD therefore combines acceptable fluoroscopic performance with excellent radiographic (snap shot) imaging fidelity, allowing the possibility of a universal x-ray detector to be developed, based on FDXD's technology. It is also envisaged that fluoroscopic performance will be improved by the development of digital image enhancement techniques specifically tailored to the characteristics of the FDXD detector.

  12. Diffuse prior monotonic likelihood ratio test for evaluation of fused image quality measures.

    PubMed

    Wei, Chuanming; Kaplan, Lance M; Burks, Stephen D; Blum, Rick S

    2011-02-01

    This paper introduces a novel method to score how well proposed fused image quality measures (FIQMs) indicate the effectiveness of humans to detect targets in fused imagery. The human detection performance is measured via human perception experiments. A good FIQM should relate to perception results in a monotonic fashion. The method computes a new diffuse prior monotonic likelihood ratio (DPMLR) to facilitate the comparison of the H(1) hypothesis that the intrinsic human detection performance is related to the FIQM via a monotonic function against the null hypothesis that the detection and image quality relationship is random. The paper discusses many interesting properties of the DPMLR and demonstrates the effectiveness of the DPMLR test via Monte Carlo simulations. Finally, the DPMLR is used to score FIQMs with test cases considering over 35 scenes and various image fusion algorithms.

  13. MTF measurement of LCDs by a linear CCD imager: I. Monochrome case

    NASA Astrophysics Data System (ADS)

    Kim, Tae-hee; Choe, O. S.; Lee, Yun Woo; Cho, Hyun-Mo; Lee, In Won

    1997-11-01

    We construct the modulation transfer function (MTF) measurement system of a LCD using a linear charge-coupled device (CCD) imager. The MTF used in optical system can not describe in the effect of both resolution and contrast on the image quality of display. Thus we present the new measurement method based on the transmission property of a LCD. While controlling contrast and brightness levels, the MTF is measured. From the result, we show that the method is useful for describing of the image quality. A ne measurement method and its condition are described. To demonstrate validity, the method is applied for comparison of the performance of two different LCDs.

  14. Does body image perception relate to quality of life in middle-aged women?

    PubMed Central

    Medeiros de Morais, Maria Socorro; Vieira, Mariana Carmem Apolinário; Moreira, Mayle Andrade; da Câmara, Saionara Maria Aires; Campos Cavalcanti Maciel, Álvaro; Almeida, Maria das Graças

    2017-01-01

    Objective In Brazil, information about the influence of body image on the various life domains of women in menopausal transition is scarce. Thus, the objective of the study was to analyze the relationship between body image and quality of life in middle-aged Brazilian women. Methods This was a cross-sectional study of 250 women between 40 and 65 years old, living in Parnamirim/RN, Brazil, who were evaluated in relation to body image and quality of life. For body image, women were classified as: dissatisfied due to low weight, satisfied (with their body weight) and dissatisfied due to being overweight. Quality of life was assessed through a questionnaire in which higher values indicate higher quality of life. Multiple linear regression was performed to analyze the relationship between body image and quality of life, adjusted for covariates that presented p<0.20 in the bivariate analysis. Results The average age was 52.1 (± 5.6) years, 82% of the women reported being dissatisfied due to being overweight, and 4.4% were dissatisfied due to having low weight. After multiple linear regression analyzes, body image remained associated with health (p<0.001), emotional (p = 0.016), and sexual (p = 0.048) domains of quality of life, as well as total score of the questionnaire (p<0.001). Conclusion Women who reported being dissatisfied with their body image due to having low weight or overweight had worse quality of life in comparison to those who were satisfied (with their body weight). PMID:28926575

  15. Identification of optimal mask size parameter for noise filtering in 99mTc-methylene diphosphonate bone scintigraphy images.

    PubMed

    Pandey, Anil K; Bisht, Chandan S; Sharma, Param D; ArunRaj, Sreedharan Thankarajan; Taywade, Sameer; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh

    2017-11-01

    Tc-methylene diphosphonate (Tc-MDP) bone scintigraphy images have limited number of counts per pixel. A noise filtering method based on local statistics of the image produces better results than a linear filter. However, the mask size has a significant effect on image quality. In this study, we have identified the optimal mask size that yields a good smooth bone scan image. Forty four bone scan images were processed using mask sizes 3, 5, 7, 9, 11, 13, and 15 pixels. The input and processed images were reviewed in two steps. In the first step, the images were inspected and the mask sizes that produced images with significant loss of clinical details in comparison with the input image were excluded. In the second step, the image quality of the 40 sets of images (each set had input image, and its corresponding three processed images with 3, 5, and 7-pixel masks) was assessed by two nuclear medicine physicians. They selected one good smooth image from each set of images. The image quality was also assessed quantitatively with a line profile. Fisher's exact test was used to find statistically significant differences in image quality processed with 5 and 7-pixel mask at a 5% cut-off. A statistically significant difference was found between the image quality processed with 5 and 7-pixel mask at P=0.00528. The identified optimal mask size to produce a good smooth image was found to be 7 pixels. The best mask size for the John-Sen Lee filter was found to be 7×7 pixels, which yielded Tc-methylene diphosphonate bone scan images with the highest acceptable smoothness.

  16. An in vitro comparison of subjective image quality of panoramic views acquired via 2D or 3D imaging.

    PubMed

    Pittayapat, P; Galiti, D; Huang, Y; Dreesen, K; Schreurs, M; Souza, P Couto; Rubira-Bullen, I R F; Westphalen, F H; Pauwels, R; Kalema, G; Willems, G; Jacobs, R

    2013-01-01

    The objective of this study is to compare subjective image quality and diagnostic validity of cone-beam CT (CBCT) panoramic reformatting with digital panoramic radiographs. Four dry human skulls and two formalin-fixed human heads were scanned using nine different CBCTs, one multi-slice CT (MSCT) and one standard digital panoramic device. Panoramic views were generated from CBCTs in four slice thicknesses. Seven observers scored image quality and visibility of 14 anatomical structures. Four observers repeated the observation after 4 weeks. Digital panoramic radiographs showed significantly better visualization of anatomical structures except for the condyle. Statistical analysis of image quality showed that the 3D imaging modalities (CBCTs and MSCT) were 7.3 times more likely to receive poor scores than the 2D modality. Yet, image quality from NewTom VGi® and 3D Accuitomo 170® was almost equivalent to that of digital panoramic radiographs with respective odds ratio estimates of 1.2 and 1.6 at 95% Wald confidence limits. A substantial overall agreement amongst observers was found. Intra-observer agreement was moderate to substantial. While 2D-panoramic images are significantly better for subjective diagnosis, 2/3 of the 3D-reformatted panoramic images are moderate or good for diagnostic purposes. Panoramic reformattings from particular CBCTs are comparable to digital panoramic images concerning the overall image quality and visualization of anatomical structures. This clinically implies that a 3D-derived panoramic view can be generated for diagnosis with a recommended 20-mm slice thickness, if CBCT data is a priori available for other purposes.

  17. Assessment of image quality in soft tissue and bone visualization tasks for a dedicated extremity cone-beam CT system.

    PubMed

    Demehri, S; Muhit, A; Zbijewski, W; Stayman, J W; Yorkston, J; Packard, N; Senn, R; Yang, D; Foos, D; Thawait, G K; Fayad, L M; Chhabra, A; Carrino, J A; Siewerdsen, J H

    2015-06-01

    To assess visualization tasks using cone-beam CT (CBCT) compared to multi-detector CT (MDCT) for musculoskeletal extremity imaging. Ten cadaveric hands and ten knees were examined using a dedicated CBCT prototype and a clinical multi-detector CT using nominal protocols (80 kVp-108mAs for CBCT; 120 kVp- 300 mAs for MDCT). Soft tissue and bone visualization tasks were assessed by four radiologists using five-point satisfaction (for CBCT and MDCT individually) and five-point preference (side-by-side CBCT versus MDCT image quality comparison) rating tests. Ratings were analyzed using Kruskal-Wallis and Wilcoxon signed-rank tests, and observer agreement was assessed using the Kappa-statistic. Knee CBCT images were rated "excellent" or "good" (median scores 5 and 4) for "bone" and "soft tissue" visualization tasks. Hand CBCT images were rated "excellent" or "adequate" (median scores 5 and 3) for "bone" and "soft tissue" visualization tasks. Preference tests rated CBCT equivalent or superior to MDCT for bone visualization and favoured the MDCT for soft tissue visualization tasks. Intraobserver agreement for CBCT satisfaction tests was fair to almost perfect (κ ~ 0.26-0.92), and interobserver agreement was fair to moderate (κ ~ 0.27-0.54). CBCT provided excellent image quality for bone visualization and adequate image quality for soft tissue visualization tasks. • CBCT provided adequate image quality for diagnostic tasks in extremity imaging. • CBCT images were "excellent" for "bone" and "good/adequate" for "soft tissue" visualization tasks. • CBCT image quality was equivalent/superior to MDCT for bone visualization tasks.

  18. Dual-energy CT in patients with abdominal malignant lymphoma: impact of noise-optimised virtual monoenergetic imaging on objective and subjective image quality.

    PubMed

    Lenga, L; Czwikla, R; Wichmann, J L; Leithner, D; Albrecht, M H; D'Angelo, T; Arendt, C T; Booz, C; Hammerstingl, R; Vogl, T J; Martin, S S

    2018-06-05

    To investigate the impact of noise-optimised virtual monoenergetic imaging (VMI+) reconstructions on quantitative and qualitative image parameters in patients with malignant lymphoma at dual-energy computed tomography (DECT) examinations of the abdomen. Thirty-five consecutive patients (mean age, 53.8±18.6 years; range, 21-82 years) with histologically proven malignant lymphoma of the abdomen were included retrospectively. Images were post-processed with standard linear blending (M_0.6), traditional VMI, and VMI+ technique at energy levels ranging from 40 to 100 keV in 10 keV increments. Signal-to-noise (SNR) and contrast-to-noise ratios (CNR) were objectively measured in lymphoma lesions. Image quality, lesion delineation, and image noise were rated subjectively by three blinded observers using five-point Likert scales. Quantitative image quality parameters peaked at 40-keV VMI+ (SNR, 15.77±7.74; CNR, 18.27±8.04) with significant differences compared to standard linearly blended M_0.6 (SNR, 7.96±3.26; CNR, 13.55±3.47) and all traditional VMI series (p<0.001). Qualitative image quality assessment revealed significantly superior ratings for image quality at 60-keV VMI+ (median, 5) in comparison with all other image series (p<0.001). Assessment of lesion delineation showed the highest rating scores for 40-keV VMI+ series (median, 5), while lowest subjective image noise was found for 100-keV VMI+ reconstructions (median, 5). Low-keV VMI+ reconstructions led to improved image quality and lesion delineation of malignant lymphoma lesions compared to standard image reconstruction and traditional VMI at abdominal DECT examinations. Copyright © 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  19. Submillisievert standard-pitch CT pulmonary angiography with ultra-low dose contrast media administration: A comparison to standard CT imaging

    PubMed Central

    Mikat, Christian; Stenzel, Elena; Erfanian, Youssef; Wetter, Axel; Schlosser, Thomas; Forsting, Michael

    2017-01-01

    Objectives To evaluate the image quality and radiation dose of submillisievert standard-pitch CT pulmonary angiography (CTPA) with ultra-low dose contrast media administration in comparison to standard CTPA. Materials and methods Hundred patients (56 females, 44 males, mean age 69.6±15.4 years; median BMI: 26.6, IQR: 5.9) with suspected pulmonary embolism were examined with two different protocols (n = 50 each, group A: 80 kVp, ref. mAs 115, 25 ml of contrast medium; group B: 100 kVp, ref. mAs 150, 60 ml of contrast medium) using a dual-source CT equipped with automated exposure control. Objective and subjective image qualities, radiation exposure as well as the frequency of pulmonary embolism were evaluated. Results There was no significant difference in subjective image quality scores between two groups regarding pulmonary arteries (p = 0.776), whereby the interobserver agreement was excellent (group A: k = 0.9; group B k = 1.0). Objective image analysis revealed that signal intensities (SI), signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the pulmonary arteries were equal or significantly higher in group B. There was no significant difference in the frequency of pulmonary embolism (p = 0.65). Using the low dose and low contrast media protocol resulted in a radiation dose reduction by 71.8% (2.4 vs. 0.7 mSv; p<0.001). Conclusions This 80 kVp standard pitch CTPA protocol with 25 ml contrast agent volume can obtain sufficient image quality to exclude or diagnose pulmonary emboli while reducing radiation dose by approximately 71%. PMID:29045463

  20. An inter-laboratory comparison study of image quality of PET scanners using the NEMA NU 2-2001 procedure for assessment of image quality

    NASA Astrophysics Data System (ADS)

    Bergmann, Helmar; Dobrozemsky, Georg; Minear, Gregory; Nicoletti, Rudolf; Samal, Martin

    2005-05-01

    An inter-laboratory comparison study was conducted to assess the image quality of PET scanners in Austria. The survey included both dedicated PET scanners (D-PET, n = 8) and coincidence cameras (GC-PET, n = 7). Measurement of image quality was based on the NEMA (National Electrical Manufacturers Association) NU 2-2001 protocol and the IEC (International Electrotechnical Commission) body phantom. The latter contains six fillable spheres ranging in diameter from 37 mm down to 10 mm and a 'lung' insert. The two largest lesions L1-2 simulate cold lesions, the four smaller ones (L3-6) are filled with 18F and activity concentration ratios relative to background of 8:1 and 4:1, respectively. Acquisition and reconstruction in the study employed the participating institutes' standard oncological processing protocol. Calculation of contrast of the spheres was performed with a fully automated procedure. Contrast quality indices (CQIs) reflecting global performance were obtained by summing individual contrast values. Other image quality parameters calculated according to the NEMA protocol were background variability and relative error for correction of attenuation and scatter. Contrast values obtained were 61 ± 16 and 37 ± 14 for L1 (per cent contrast ± SD for D-PET and GC-PET, respectively), 57 ± 16 and 29 ± 16 for L2, 46 ± 10 and 26 ± 6.3 for L3, 37 ± 10 and 15 ± 4.3 for L4, 26 ± 11.5 and 6.1 ± 2.5 for L5, 14 ± 7.1 and 2.6 ± 2.6 for L6, with D-PET systems consistently being superior to GC-PET systems. CQIs permitted ranking of the scanners, also demonstrating a clear distinction between D-PET and GC-PET systems. Background variability was largest for GC-PET systems; the relative error of attenuation and scatter correction was significantly correlated with image quality for D-PET systems only. The study demonstrated considerable differences in image quality not only between GC-PET and D-PET systems but also between individual D-PET systems with possible consequences for clinical interpretation of images and measurement of quantitative indices such as the standardized uptake value. The study provided valuable feedback to the participants as well as baseline data for improving interchangeability of PET images and of quantitative indices between different laboratories.

  1. Quantitative assessment on coronary computed tomography angiography (CCTA) image quality: comparisons between genders and different tube voltage settings

    PubMed Central

    Chian, Teo Chee; Nassir, Norziana Mat; Ibrahim, Mohd Izuan; Yusof, Ahmad Khairuddin Md

    2017-01-01

    Background This study was carried out to quantify and compare the quantitative image quality of coronary computed tomography angiography (CCTA) between genders as well as between different tube voltages scan protocols. Methods Fifty-five cases of CCTA were collected retrospectively and all images including reformatted axial images at systolic and diastolic phases as well as images with curved multi planar reformation (cMPR) were obtained. Quantitative image quality including signal intensity, image noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of right coronary artery (RCA), left anterior descending artery (LAD), left circumflex artery (LCx) and left main artery (LM) were quantified using Analyze 12.0 software. Results Six hundred and fifty-seven coronary arteries were evaluated. There were no significant differences in any quantitative image quality parameters between genders. 100 kilovoltage peak (kVp) scanning protocol produced images with significantly higher signal intensity compared to 120 kVp scanning protocol (P<0.001) in all coronary arteries in all types of images. Higher SNR was also observed in 100 kVp scan protocol in all coronary arteries except in LCx where 120 kVp showed better SNR than 100 kVp. Conclusions There were no significant differences in image quality of CCTA between genders and different tube voltages. Lower tube voltage (100 kVp) scanning protocol is recommended in clinical practice to reduce the radiation dose to patient. PMID:28275559

  2. Reduced dose CT with model-based iterative reconstruction compared to standard dose CT of the chest, abdomen, and pelvis in oncology patients: intra-individual comparison study on image quality and lesion conspicuity.

    PubMed

    Morimoto, Linda Nayeli; Kamaya, Aya; Boulay-Coletta, Isabelle; Fleischmann, Dominik; Molvin, Lior; Tian, Lu; Fisher, George; Wang, Jia; Willmann, Jürgen K

    2017-09-01

    To compare image quality and lesion conspicuity of reduced dose (RD) CT with model-based iterative reconstruction (MBIR) compared to standard dose (SD) CT in patients undergoing oncological follow-up imaging. Forty-four cancer patients who had a staging SD CT within 12 months were prospectively included to undergo a weight-based RD CT with MBIR. Radiation dose was recorded and tissue attenuation and image noise of four tissue types were measured. Reproducibility of target lesion size measurements of up to 5 target lesions per patient were analyzed. Subjective image quality was evaluated for three readers independently utilizing 4- or 5-point Likert scales. Median radiation dose reduction was 46% using RD CT (P < 0.01). Median image noise across all measured tissue types was lower (P < 0.01) in RD CT. Subjective image quality for RD CT was higher (P < 0.01) in regard to image noise and overall image quality; however, there was no statistically significant difference regarding image sharpness (P = 0.59). There were subjectively more artifacts on RD CT (P < 0.01). Lesion conspicuity was subjectively better in RD CT (P < 0.01). Repeated target lesion size measurements were highly reproducible both on SD CT (ICC = 0.987) and RD CT (ICC = 0.97). RD CT imaging with MBIR provides diagnostic imaging quality and comparable lesion conspicuity on follow-up exams while allowing dose reduction by a median of 46% compared to SD CT imaging.

  3. Cassava flour slurry as a low-cost alternative to commercially available gel for obstetrical ultrasound: a blinded non-inferiority trial comparison of image quality.

    PubMed

    Aziz, A; Dar, P; Hughes, F; Solorzano, C; Muller, M M; Salmon, C; Salmon, M; Benfield, N

    2018-01-12

    To evaluate the quality of ultrasound images obtained with cassava flour slurry (CFS) compared with conventional gel in order to determine objectively whether CFS could be a true low-cost alternative. Blinded non-inferiority trial. Obstetrical ultrasound unit in an academic medical centre. Women with a singleton pregnancy, undergoing anatomy ultrasounds. Thirty pregnant women had standard biometry measures obtained with CFS and conventional gel. Images were compared side-by-side in random order by two blinded sonologists and rated for image resolution, detail and total image quality using a 10-cm visual analogue scale. Ratings were compared using paired t-tests. Participant and sonographer experience was measured using five-point Likert scales. Image resolution, detail, and total image quality. Participant experience of gel regarding irritation, messiness, and ease of removal. We found no significant difference between perceived image quality obtained with CFS (mean = 6.2, SD = 1.2) and commercial gel (mean = 6.4, SD = 1.2) [t (28) = -1.1; P = 0.3]. Images were not rated significantly differently for either reviewer in any measure, any standardized image or any view of a specific anatomic structure. All five sonographers rated CFS as easy to obtain clear images and easy for patient and machine cleanup. Only one participant reported itching with CFS. CFS produces comparable image quality to commercial ultrasound gel. The dissemination of these results and the simple CFS recipe could significantly increase access to ultrasound for screening, monitoring and diagnostic purposes in resource-limited settings. This study was internally funded by our department. Low-cost homemade cassava flour slurry creates images equal to commercial ultrasound gel, improving access. © 2018 Royal College of Obstetricians and Gynaecologists.

  4. Imaging and Scattering Measurements for Diesel Spray Combustion: Optical Development and Phenomenological Studies

    DTIC Science & Technology

    2012-09-30

    the CS2 was contained in a rectangular colorimeter cell with a custom built Teflon cap to alleviate the evaporation of the hazardous chemical...6: A comparison of the image quality between the older colorimeter cell (a) and the new containment cell (b). 2.5 Autocorrelation-Based Pulse Length

  5. Speckle reduction in optical coherence tomography by adaptive total variation method

    NASA Astrophysics Data System (ADS)

    Wu, Tong; Shi, Yaoyao; Liu, Youwen; He, Chongjun

    2015-12-01

    An adaptive total variation method based on the combination of speckle statistics and total variation restoration is proposed and developed for reducing speckle noise in optical coherence tomography (OCT) images. The statistical distribution of the speckle noise in OCT image is investigated and measured. With the measured parameters such as the mean value and variance of the speckle noise, the OCT image is restored by the adaptive total variation restoration method. The adaptive total variation restoration algorithm was applied to the OCT images of a volunteer's hand skin, which showed effective speckle noise reduction and image quality improvement. For image quality comparison, the commonly used median filtering method was also applied to the same images to reduce the speckle noise. The measured results demonstrate the superior performance of the adaptive total variation restoration method in terms of image signal-to-noise ratio, equivalent number of looks, contrast-to-noise ratio, and mean square error.

  6. Head CT: Image quality improvement of posterior fossa and radiation dose reduction with ASiR - comparative studies of CT head examinations.

    PubMed

    Guziński, Maciej; Waszczuk, Łukasz; Sąsiadek, Marek J

    2016-10-01

    To evaluate head CT protocol developed to improve visibility of the brainstem and cerebellum, lower bone-related artefacts in the posterior fossa and maintain patient radioprotection. A paired comparison of head CT performed without Adaptive Statistical Iterative Reconstruction (ASiR) and a clinically indicated follow-up with 40 % ASiR was acquired in one group of 55 patients. Patients were scanned in the axial mode with different scanner settings for the brain and the posterior fossa. Objective image quality analysis was performed with signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Subjective image quality analysis was based on brain structure visibility and evaluation of the artefacts. We achieved 19 % reduction of total DLP and significantly better image quality of posterior fossa structures. SNR for white and grey matter in the cerebellum were 34 % to 36 % higher, respectively, CNR was improved by 142 % and subjective analyses were better for images with ASiR. When imaging parameters are set independently for the brain and the posterior fossa imaging, ASiR has a great potential to improve CT performance: image quality of the brainstem and cerebellum is improved, and radiation dose for the brain as well as total radiation dose are reduced. •With ASiR it is possible to lower radiation dose or improve image quality •Sequentional imaging allows setting scan parameters for brain and posterior-fossa independently •We improved visibility of brainstem structures and decreased radiation dose •Total radiation dose (DLP) was decreased by 19.

  7. Comparison of Knowledge-based Iterative Model Reconstruction and Hybrid Reconstruction Techniques for Liver CT Evaluation of Hypervascular Hepatocellular Carcinoma.

    PubMed

    Park, Hyun Jeong; Lee, Jeong Min; Park, Sung Bin; Lee, Jong Beum; Jeong, Yoong Ki; Yoon, Jeong Hee

    The purpose of this work was to evaluate the image quality, lesion conspicuity, and dose reduction provided by knowledge-based iterative model reconstruction (IMR) in computed tomography (CT) of the liver compared with hybrid iterative reconstruction (IR) and filtered back projection (FBP) in patients with hepatocellular carcinoma (HCC). Fifty-six patients with 61 HCCs who underwent multiphasic reduced-dose CT (RDCT; n = 33) or standard-dose CT (SDCT; n = 28) were retrospectively evaluated. Reconstructed images with FBP, hybrid IR (iDose), IMR were evaluated for image quality using CT attenuation and image noise. Objective and subjective image quality of RDCT and SDCT sets were independently assessed by 2 observers in a blinded manner. Image quality and lesion conspicuity were better with IMR for both RDCT and SDCT than either FBP or IR (P < 0.001). Contrast-to-noise ratio of HCCs in IMR-RDCT was significantly higher on delayed phase (DP) (P < 0.001), and comparable on arterial phase, than with IR-SDCT (P = 0.501). Iterative model reconstruction RDCT was significantly superior to FBP-SDCT (P < 0.001). Compared with IR-SDCT, IMR-RDCT was comparable in image sharpness and tumor conspicuity on arterial phase, and superior in image quality, noise, and lesion conspicuity on DP. With the use of IMR, a 27% reduction of effective dose was achieved with RDCT (12.7 ± 0.6 mSv) compared with SDCT (17.4 ± 1.1 mSv) without loss of image quality (P < 0.001). Iterative model reconstruction provides better image quality and tumor conspicuity than FBP and IR with considerable noise reduction. In addition, more than comparable results were achieved with IMR-RDCT to IR-SDCT for the evaluation of HCCs.

  8. Comparison of image quality and radiation exposure from C-arm fluoroscopes when used for imaging the spine.

    PubMed

    Prasarn, Mark L; Coyne, Ellen; Schreck, Michael; Rodgers, Jamie D; Rechtine, Glenn R

    2013-07-15

    Cadaveric imaging study. We sought to compare the fluoroscopic images produced by 4 different fluoroscopes for image quality and radiation exposure when used for imaging the spine. There are no previous published studies comparing mobile C-arm machines commonly used in clinical practice for imaging the spine. Anterior-posterior and lateral images of the cervical, thoracic, and lumbar spine were obtained from a cadaver placed supine on a radiolucent table. The fluoroscopy units used for the study included (1) GE OEC 9900 Elite (2010 model; General Electric Healthcare, Waukesha, WI), (2) Philips BV Pulsera (2009 model; Philips Healthcare, Andover, MA), (3) Philips BV Pulsera (2010 model; Philips Healthcare, Andover, MA), and (4) Siemens Arcadis Avantic (2010 model; Siemens Medical Solutions, Malvern, PA). The images were then downloaded, placed into a randomizer program, and evaluated by a group of spine surgeons and neuroradiologists independently. The reviewers, who were blinded to the fluoroscope the images were from, ranked them from best to worst using a numeric system. In addition, the images were rated according to a quality scale from 1 to 5, with 1 representing the best image quality. The radiation exposure level for the fluoroscopy units was also compared and was based on energy emission. According to the mean values for rank, the following order of best to worst was observed: (1) GE OEC > (2) Philips 2010 > (3) Philips 2009 > (4) Siemans. The exact same order was found when examining the image quality ratings. When comparing the radiation exposure level difference, it was observed that the OEC was the lowest, and there was a minimum 30% decrease in energy emission from the OEC versus the other C-arms studied. This is the first time that the spine image quality and radiation exposure of commonly used C-arm machines have been compared. The OEC was ranked the best, produced the best quality images, and had the least amount of radiation.

  9. SU-F-P-06: Moving From Computed Radiography to Digital Radiography: A Collaborative Approach to Improve Image Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandoval, D; Mlady, G; Selwyn, R

    Purpose: To bring together radiologists, technologists, and physicists to utilize post-processing techniques in digital radiography (DR) in order to optimize image acquisition and improve image quality. Methods: Sub-optimal images acquired on a new General Electric (GE) DR system were flagged for follow-up by radiologists and reviewed by technologists and medical physicists. Various exam types from adult musculoskeletal (n=35), adult chest (n=4), and pediatric (n=7) were chosen for review. 673 total images were reviewed. These images were processed using five customized algorithms provided by GE. An image score sheet was created allowing the radiologist to assign a numeric score to eachmore » of the processed images, this allowed for objective comparison to the original images. Each image was scored based on seven properties: 1) overall image look, 2) soft tissue contrast, 3) high contrast, 4) latitude, 5) tissue equalization, 6) edge enhancement, 7) visualization of structures. Additional space allowed for additional comments not captured in scoring categories. Radiologists scored the images from 1 – 10 with 1 being non-diagnostic quality and 10 being superior diagnostic quality. Scores for each custom algorithm for each image set were summed. The algorithm with the highest score for each image set was then set as the default processing. Results: Images placed into the PACS “QC folder” for image processing reasons decreased. Feedback from radiologists was, overall, that image quality for these studies had improved. All default processing for these image types was changed to the new algorithm. Conclusion: This work is an example of the collaboration between radiologists, technologists, and physicists at the University of New Mexico to add value to the radiology department. The significant amount of work required to prepare the processing algorithms, reprocessing and scoring of the images was eagerly taken on by all team members in order to produce better quality images and improve patient care.« less

  10. Comparison of the Diagnostic Image Quality of the Canine Maxillary Dentoalveolar Structures Obtained by Cone Beam Computed Tomography and 64-Multidetector Row Computed Tomography.

    PubMed

    Soukup, Jason W; Drees, Randi; Koenig, Lisa J; Snyder, Christopher J; Hetzel, Scott; Miles, Chanda R; Schwarz, Tobias

    2015-01-01

    The objective of this blinded study was to validate the use of cone beam computed tomography (C) for imaging of the canine maxillary dentoalveolar structures by comparing its diagnostic image quality with that of 64-multidetector row CT Sagittal slices of a tooth-bearing segment of the maxilla of a commercially purchased dog skull embedded in methylmethacrylate were obtained along a line parallel with the dental arch using a commercial histology diamond saw. The slice of tooth-bearing bone that best depicted the dentoalveolar structures was chosen and photographed. The maxillary segment was imaged with cone beam CT and 64-multidetector row CT. Four blinded evaluators compared the cone beam CT and 64-multidetector row CT images and image quality was scored as it related to the anatomy of dentoalveolar structures. Trabecular bone, enamel, dentin, pulp cavity, periodontal ligament space, and lamina dura were scored In addition, a score depicting the evaluators overall impression of the image was recorded. Images acquired with cone beam CT were found to be significantly superior in image quality to images acquired with 64-multidetector row CT overall, and in all scored categories. In our study setting cone beam CT was found to be a valid and clinically superior imaging modality for the canine maxillary dentoalveolar structures when compared to 64-multidetector row CT.

  11. Comparison of the Diagnostic Image Quality of the Canine Maxillary Dentoalveolar Structures Obtained by Cone Beam Computed Tomography and 64-Multidetector Row Computed Tomography

    PubMed Central

    Soukup, Jason W.; Drees, Randi; Koenig, Lisa J.; Snyder, Christopher J.; Hetzel, Scott; Miles, Chanda R.; Schwarz, Tobias

    2016-01-01

    Summary The objective of this blinded study was to validate the use of cone beam computed tomography (CT) for imaging of the canine maxillary dentoalveolar structures by comparing its diagnostic image quality with that of 64-multidetector row CT. Sagittal slices of a tooth-bearing segment of the maxilla of a commercially purchased dog skull embedded in methyl methacrylate were obtained along a line parallel with the dental arch using a commercial histology diamond saw. The slice of tooth-bearing bone that best depicted the dentoalveolar structures was chosen and photographed. The maxilla segment was imaged with cone beam CT and 64-multidetector row CT. Four blinded evaluators compared the cone beam CT and 64-multidetector row CT images and image quality was scored as it related to the anatomy of dentoalveolar structures. Trabecular bone, enamel, dentin, pulp cavity, periodontal ligament space, and lamina dura were scored. In addition, a score depicting the evaluators overall impression of the image was recorded. Images acquired with cone beam CT were found to be significantly superior in image quality to images acquired with 64-multidetector row CT overall, and in all scored categories. In our study setting, cone beam CT was found to be a valid and clinically superior imaging modality for the canine maxillary dentoalveolar structures when compared to 64-multidetector row CT. PMID:26415384

  12. Development of Scintillators in Nuclear Medicine.

    PubMed

    Khoshakhlagh, Mohammad; Islamian, Jalil Pirayesh; Abedi, Seyed Mohammad; Mahmoudian, Babak

    2015-01-01

    High-quality image is necessary for accurate diagnosis in nuclear medicine. There are many factors in creating a good image and detector is the most important one. In recent years, several detectors are studied to get a better picture. The aim of this paper is comparison of some type of these detectors such as thallium activated sodium iodide bismuth germinate cesium activated yttrium aluminum garnet (YAG: Ce) YAP: Ce "lutetium aluminum garnet activated by cerium" CRY018 "CRY019" lanthanum bromide and cadmium zinc telluride. We studied different properties of these crystals including density, energy resolution and decay times that are more important factors affecting the image quality.

  13. Development of Scintillators in Nuclear Medicine

    PubMed Central

    Khoshakhlagh, Mohammad; Islamian, Jalil Pirayesh; Abedi, Seyed Mohammad; Mahmoudian, Babak

    2015-01-01

    High-quality image is necessary for accurate diagnosis in nuclear medicine. There are many factors in creating a good image and detector is the most important one. In recent years, several detectors are studied to get a better picture. The aim of this paper is comparison of some type of these detectors such as thallium activated sodium iodide bismuth germinate cesium activated yttrium aluminum garnet (YAG: Ce) YAP: Ce “lutetium aluminum garnet activated by cerium” CRY018 “CRY019” lanthanum bromide and cadmium zinc telluride. We studied different properties of these crystals including density, energy resolution and decay times that are more important factors affecting the image quality. PMID:26420984

  14. Geodetic glacier mass balances at the push of a button: application of Structure from Motion technology on aerial images in mountain regions

    NASA Astrophysics Data System (ADS)

    Bolch, T.; Mölg, N.

    2017-12-01

    The application of Structure-from-Motion (SfM) to generate digital terrain models (DTMs) derived out of images from various kinds of sources has strongly increased in recent years. The major reason for this is its easy-to-use handling in comparison to conventional photogrammetry. In glaciology, DTMs are intensely used, among others, to calculate the geodetic mass balances. Few studies investigated the application of SfM to aerial images in mountainous terrain and results look promising. We tested this technique in a demanding environment in the Swiss Alps including very steep slopes, snow and ice covered terrain. SfM (using the commercial software packages of Agisoft Photoscan and Pix4DMapper) and conventional photogrammetry (ERDAS Photogrammetry) were applied on archival aerial images for nine dates between 1946 and 2005 the results were compared regarding bundle adjustment and final DTM quality. The overall precision of the DTMs could be defined with the use of a modern, high-quality reference DTM by Swisstopo. Results suggest a high performance of SfM to produce DTMs of similar quality as conventional photogrammetry. A ground resolution of high quality (little noise and artefacts) can be up to 50% higher, with 3-6 times less user effort. However, the controls on the commercial SfM software packages are limited in comparison to ERDAS Photogrammetry. SfM performs less reliably when few images with little overlap are processed. Overall, the uncertainty of DTMs from the different software are comparable and mostly within the uncertainty range of the reference DTM, making them highly valuable for glaciological purposes. Even though SfM facilitates the largely automated production of high quality DTMs, the user is not exempt from a thorough quality check, at best with reference data where available.

  15. The comparison between SVD-DCT and SVD-DWT digital image watermarking

    NASA Astrophysics Data System (ADS)

    Wira Handito, Kurniawan; Fauzi, Zulfikar; Aminy Ma’ruf, Firda; Widyaningrum, Tanti; Muslim Lhaksmana, Kemas

    2018-03-01

    With internet, anyone can publish their creation into digital data simply, inexpensively, and absolutely easy to be accessed by everyone. However, the problem appears when anyone else claims that the creation is their property or modifies some part of that creation. It causes necessary protection of copyrights; one of the examples is with watermarking method in digital image. The application of watermarking technique on digital data, especially on image, enables total invisibility if inserted in carrier image. Carrier image will not undergo any decrease of quality and also the inserted image will not be affected by attack. In this paper, watermarking will be implemented on digital image using Singular Value Decomposition based on Discrete Wavelet Transform (DWT) and Discrete Cosine Transform (DCT) by expectation in good performance of watermarking result. In this case, trade-off happen between invisibility and robustness of image watermarking. In embedding process, image watermarking has a good quality for scaling factor < 0.1. The quality of image watermarking in decomposition level 3 is better than level 2 and level 1. Embedding watermark in low-frequency is robust to Gaussian blur attack, rescale, and JPEG compression, but in high-frequency is robust to Gaussian noise.

  16. MO-C-18A-01: Advances in Model-Based 3D Image Reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, G; Pan, X; Stayman, J

    2014-06-15

    Recent years have seen the emergence of CT image reconstruction techniques that exploit physical models of the imaging system, photon statistics, and even the patient to achieve improved 3D image quality and/or reduction of radiation dose. With numerous advantages in comparison to conventional 3D filtered backprojection, such techniques bring a variety of challenges as well, including: a demanding computational load associated with sophisticated forward models and iterative optimization methods; nonlinearity and nonstationarity in image quality characteristics; a complex dependency on multiple free parameters; and the need to understand how best to incorporate prior information (including patient-specific prior images) within themore » reconstruction process. The advantages, however, are even greater – for example: improved image quality; reduced dose; robustness to noise and artifacts; task-specific reconstruction protocols; suitability to novel CT imaging platforms and noncircular orbits; and incorporation of known characteristics of the imager and patient that are conventionally discarded. This symposium features experts in 3D image reconstruction, image quality assessment, and the translation of such methods to emerging clinical applications. Dr. Chen will address novel methods for the incorporation of prior information in 3D and 4D CT reconstruction techniques. Dr. Pan will show recent advances in optimization-based reconstruction that enable potential reduction of dose and sampling requirements. Dr. Stayman will describe a “task-based imaging” approach that leverages models of the imaging system and patient in combination with a specification of the imaging task to optimize both the acquisition and reconstruction process. Dr. Samei will describe the development of methods for image quality assessment in such nonlinear reconstruction techniques and the use of these methods to characterize and optimize image quality and dose in a spectrum of clinical applications. Learning Objectives: Learn the general methodologies associated with model-based 3D image reconstruction. Learn the potential advantages in image quality and dose associated with model-based image reconstruction. Learn the challenges associated with computational load and image quality assessment for such reconstruction methods. Learn how imaging task can be incorporated as a means to drive optimal image acquisition and reconstruction techniques. Learn how model-based reconstruction methods can incorporate prior information to improve image quality, ease sampling requirements, and reduce dose.« less

  17. Trigram-based algorithms for OCR result correction

    NASA Astrophysics Data System (ADS)

    Bulatov, Konstantin; Manzhikov, Temudzhin; Slavin, Oleg; Faradjev, Igor; Janiszewski, Igor

    2017-03-01

    In this paper we consider a task of improving optical character recognition (OCR) results of document fields on low-quality and average-quality images using N-gram models. Cyrillic fields of Russian Federation internal passport are analyzed as an example. Two approaches are presented: the first one is based on hypothesis of dependence of a symbol from two adjacent symbols and the second is based on calculation of marginal distributions and Bayesian networks computation. A comparison of the algorithms and experimental results within a real document OCR system are presented, it's showed that the document field OCR accuracy can be improved by more than 6% for low-quality images.

  18. Breast MRI at 7 Tesla with a bilateral coil and T1-weighted acquisition with robust fat suppression: image evaluation and comparison with 3 Tesla

    PubMed Central

    Brown, Ryan; Storey, Pippa; Geppert, Christian; McGorty, KellyAnne; Leite, Ana Paula Klautau; Babb, James; Sodickson, Daniel K.; Wiggins, Graham C.; Moy, Linda

    2014-01-01

    Objectives To evaluate the image quality of T1-weighted fat-suppressed breast MRI at 7 T, and to compare 7-T and 3-T images. Methods Seventeen subjects were imaged using a 7-T bilateral transmit-receive coil and adiabatic inversion-based fat suppression (FS). Images were graded on a five-point scale and quantitatively assessed through signal-to-noise ratio (SNR), fibroglandular/fat contrast and signal uniformity measurements. Results Image scores at 7 T and 3 T were similar on standard-resolution images (1.1× 1.1×1.1−1.6 mm3), indicating that high-quality breast imaging with clinical parameters can be performed at 7 T. The 7-T SNR advantage was underscored on 0.6-mm isotropic images, where image quality was significantly greater than at 3 T (4.2 versus 3.1, P≤0.0001). Fibroglandular/fat contrast was more than two times higher at 7 T over 3 T, owing to effective adiabatic inversion-based FS and the inherent 7 T signal advantage. Signal uniformity was comparable at 7 T and 3 T (P<0.05). Similar 7-T image quality was observed in all subjects, indicating robustness against anatomical variation. Conclusion The 7-T bilateral transmit-receive coil and adiabatic inversion-based FS technique mitigate the impact of high-field heterogeneity to produce image quality that is as good as or better than at 3 T PMID:23896763

  19. Time-resolved 3D pulmonary perfusion MRI: comparison of different k-space acquisition strategies at 1.5 and 3 T.

    PubMed

    Attenberger, Ulrike I; Ingrisch, Michael; Dietrich, Olaf; Herrmann, Karin; Nikolaou, Konstantin; Reiser, Maximilian F; Schönberg, Stefan O; Fink, Christian

    2009-09-01

    Time-resolved pulmonary perfusion MRI requires both high temporal and spatial resolution, which can be achieved by using several nonconventional k-space acquisition techniques. The aim of this study is to compare the image quality of time-resolved 3D pulmonary perfusion MRI with different k-space acquisition techniques in healthy volunteers at 1.5 and 3 T. Ten healthy volunteers underwent contrast-enhanced time-resolved 3D pulmonary MRI on 1.5 and 3 T using the following k-space acquisition techniques: (a) generalized autocalibrating partial parallel acquisition (GRAPPA) with an internal acquisition of reference lines (IRS), (b) GRAPPA with a single "external" acquisition of reference lines (ERS) before the measurement, and (c) a combination of GRAPPA with an internal acquisition of reference lines and view sharing (VS). The spatial resolution was kept constant at both field strengths to exclusively evaluate the influences of the temporal resolution achieved with the different k-space sampling techniques on image quality. The temporal resolutions were 2.11 seconds IRS, 1.31 seconds ERS, and 1.07 VS at 1.5 T and 2.04 seconds IRS, 1.30 seconds ERS, and 1.19 seconds VS at 3 T.Image quality was rated by 2 independent radiologists with regard to signal intensity, perfusion homogeneity, artifacts (eg, wrap around, noise), and visualization of pulmonary vessels using a 3 point scale (1 = nondiagnostic, 2 = moderate, 3 = good). Furthermore, the signal-to-noise ratio in the lungs was assessed. At 1.5 T the lowest image quality (sum score: 154) was observed for the ERS technique and the highest quality for the VS technique (sum score: 201). In contrast, at 3 T images acquired with VS were hampered by strong artifacts and image quality was rated significantly inferior (sum score: 137) compared with IRS (sum score: 180) and ERS (sum score: 174). Comparing 1.5 and 3 T, in particular the overall rating of the IRS technique (sum score: 180) was very similar at both field strengths. At 1.5 T the peak signal-to-noise ratio of the ERS was significantly lower in comparison to the IRS and the VS technique (14.6 vs. 26.7 and 39.6 respectively, P < 0.004). Using the IRS sampling algorithm comparable image quality and SNR can be achieved at 1.5 and 3 T. At 1.5 T VS offers the best possible solution for the conflicting requirements between a further increased temporal resolution and image quality. In consequence the gain of increased scanning efficiency from advanced k[r]-space sampling acquisition techniques can be exploited for a further improvement of image quality of pulmonary perfusion MRI.

  20. iPhone 4s and iPhone 5s Imaging of the Eye.

    PubMed

    Jalil, Maaz; Ferenczy, Sandor R; Shields, Carol L

    2017-01-01

    To evaluate the technical feasibility of a consumer-grade cellular iPhone camera as an ocular imaging device compared to existing ophthalmic imaging equipment for documentation purposes. A comparison of iPhone 4s and 5s images was made with external facial images (macrophotography) using Nikon cameras, slit-lamp images (microphotography) using Zeiss photo slit-lamp camera, and fundus images (fundus photography) using RetCam II. In an analysis of six consecutive patients with ophthalmic conditions, both iPhones achieved documentation of external findings (macrophotography) using standard camera modality, tap to focus, and built-in flash. Both iPhones achieved documentation of anterior segment findings (microphotography) during slit-lamp examination through oculars. Both iPhones achieved fundus imaging using standard video modality with continuous iPhone illumination through an ophthalmic lens. Comparison to standard ophthalmic cameras, macrophotography and microphotography were excellent. In comparison to RetCam fundus photography, iPhone fundus photography revealed smaller field and was technically more difficult to obtain, but the quality was nearly similar to RetCam. iPhone versions 4s and 5s can provide excellent ophthalmic macrophotography and microphotography and adequate fundus photography. We believe that iPhone imaging could be most useful in settings where expensive, complicated, and cumbersome imaging equipment is unavailable.

  1. Image quality comparison of two adaptive statistical iterative reconstruction (ASiR, ASiR-V) algorithms and filtered back projection in routine liver CT.

    PubMed

    Chen, Li-Hong; Jin, Chao; Li, Jian-Ying; Wang, Ge-Liang; Jia, Yong-Jun; Duan, Hai-Feng; Pan, Ning; Guo, Jianxin

    2018-06-06

    To compare image quality of two adaptive statistical iterative reconstruction (ASiR and ASiR-V) algorithms using objective and subjective metrics for routine liver CT, with the conventional filtered back projection (FBP) reconstructions as reference standards. This institutional review board-approved study included 52 patients with clinically suspected hepatic metastases. Patients were divided equally into ASiR and ASiR-V groups with same scan parameters. Images were reconstructed with ASiR and ASiR-V from 0 (FBP) to 100% blending percentages at 10% interval in its respective group. Mean and standard deviation of CT numbers for liver parenchyma were recorded. Two experienced radiologists reviewed all images for image quality blindly and independently. Data were statistically analyzed. There was no difference in CT dose index between ASiR and ASiR-V groups. As the percentage of ASiR and ASiR-V increased from 10 to 100% , image noise reduced by 8.6 -57.9% and 8.9-81.6%, respectively, compared with FBP. There was substantial interobserver agreement in image quality assessment for ASiR and ASiR-V images. Compared with FBP reconstruction, subjective image quality scores of ASiR and ASiR-V improved significantly as percentage increased from 10 to 80% for ASiR (peaked at 50% with 32.2% noise reduction) and from 10 to 90% (peaked at 60% with 51.5% noise reduction) for ASiR-V. Both ASiR and ASiR-V improved the objective and subjective image quality for routine liver CT compared with FBP. ASiR-V provided further image quality improvement with higher acceptable percentage than ASiR, and ASiR-V60% had the highest image quality score. Advances in knowledge: (1) Both ASiR and ASiR-V significantly reduce image noise compared with conventional FBP reconstruction. (2) ASiR-V with 60 blending percentage provides the highest image quality score in routine liver CT.

  2. The use of adaptive statistical iterative reconstruction (ASiR) technique in evaluation of patients with cervical spine trauma: impact on radiation dose reduction and image quality

    PubMed Central

    Sheikh, Adnan

    2016-01-01

    Objective: The aim of this study was to evaluate the impact of adaptive statistical iterative reconstruction (ASiR) technique on the image quality and radiation dose reduction. The comparison was made with the traditional filtered back projection (FBP) technique. Methods: We retrospectively reviewed 78 patients, who underwent cervical spine CT for blunt cervical trauma between 1 June 2010 and 30 November 2010. 48 patients were imaged using traditional FBP technique and the remaining 30 patients were imaged using the ASiR technique. The patient demographics, radiation dose, objective image signal and noise were recorded; while subjective noise, sharpness, diagnostic acceptability and artefacts were graded by two radiologists blinded to the techniques. Results: We found that the ASiR technique was able to reduce the volume CT dose index, dose–length product and effective dose by 36%, 36.5% and 36.5%, respectively, compared with the FBP technique. There was no significant difference in the image noise (p = 0.39), signal (p = 0.82) and signal-to-noise ratio (p = 0.56) between the groups. The subjective image quality was minimally better in the ASiR group but not statistically significant. There was excellent interobserver agreement on the subjective image quality and diagnostic acceptability for both groups. Conclusion: The use of ASiR technique allowed approximately 36% radiation dose reduction in the evaluation of cervical spine without degrading the image quality. Advances in knowledge: The present study highlights that the ASiR technique is extremely helpful in reducing the patient radiation exposure while maintaining the image quality. It is highly recommended to utilize this novel technique in CT imaging of different body regions. PMID:26882825

  3. The use of adaptive statistical iterative reconstruction (ASiR) technique in evaluation of patients with cervical spine trauma: impact on radiation dose reduction and image quality.

    PubMed

    Patro, Satya N; Chakraborty, Santanu; Sheikh, Adnan

    2016-01-01

    The aim of this study was to evaluate the impact of adaptive statistical iterative reconstruction (ASiR) technique on the image quality and radiation dose reduction. The comparison was made with the traditional filtered back projection (FBP) technique. We retrospectively reviewed 78 patients, who underwent cervical spine CT for blunt cervical trauma between 1 June 2010 and 30 November 2010. 48 patients were imaged using traditional FBP technique and the remaining 30 patients were imaged using the ASiR technique. The patient demographics, radiation dose, objective image signal and noise were recorded; while subjective noise, sharpness, diagnostic acceptability and artefacts were graded by two radiologists blinded to the techniques. We found that the ASiR technique was able to reduce the volume CT dose index, dose-length product and effective dose by 36%, 36.5% and 36.5%, respectively, compared with the FBP technique. There was no significant difference in the image noise (p = 0.39), signal (p = 0.82) and signal-to-noise ratio (p = 0.56) between the groups. The subjective image quality was minimally better in the ASiR group but not statistically significant. There was excellent interobserver agreement on the subjective image quality and diagnostic acceptability for both groups. The use of ASiR technique allowed approximately 36% radiation dose reduction in the evaluation of cervical spine without degrading the image quality. The present study highlights that the ASiR technique is extremely helpful in reducing the patient radiation exposure while maintaining the image quality. It is highly recommended to utilize this novel technique in CT imaging of different body regions.

  4. Comparison of pediatric radiation dose and vessel visibility on angiographic systems using piglets as a surrogate: antiscatter grid removal vs. lower detector air kerma settings with a grid — a preclinical investigation

    PubMed Central

    Racadio, John M.; Abruzzo, Todd A.; Johnson, Neil D.; Patel, Manish N.; Kukreja, Kamlesh U.; den Hartog, Mark. J. H.; Hoornaert, Bart P.A.; Nachabe, Rami A.

    2015-01-01

    The purpose of this study was to reduce pediatric doses while maintaining or improving image quality scores without removing the grid from X‐ray beam. This study was approved by the Institutional Animal Care and Use Committee. Three piglets (5, 14, and 20 kg) were imaged using six different selectable detector air kerma (Kair) per frame values (100%, 70%, 50%, 35%, 25%, 17.5%) with and without the grid. Number of distal branches visualized with diagnostic confidence relative to the injected vessel defined image quality score. Five pediatric interventional radiologists evaluated all images. Image quality score and piglet Kair were statistically compared using analysis of variance and receiver operating curve analysis to define the preferred dose setting and use of grid for a visibility of 2nd and 3rd order vessel branches. Grid removal reduced both dose to subject and imaging quality by 26%. Third order branches could only be visualized with the grid present; 100% detector Kair was required for smallest pig, while 70% detector Kair was adequate for the two larger pigs. Second order branches could be visualized with grid at 17.5% detector Kair for all three pig sizes. Without the grid, 50%, 35%, and 35% detector Kair were required for smallest to largest pig, respectively. Grid removal reduces both dose and image quality score. Image quality scores can be maintained with less dose to subject with the grid in the beam as opposed to removed. Smaller anatomy requires more dose to the detector to achieve the same image quality score. PACS numbers: 87.53.Bn, 87.57.N‐, 87.57.cj, 87.59.cf, 87.59.Dj PMID:26699297

  5. Initial clinical results with a new needle screen storage phosphor system in chest radiograms.

    PubMed

    Körner, M; Wirth, S; Treitl, M; Reiser, M; Pfeifer, K-J

    2005-11-01

    To evaluate image quality and anatomical detail depiction in dose-reduced digital plain chest radiograms using a new needle screen storage phosphor (NIP) in comparison to full dose conventional powder screen storage phosphor (PIP) images. 24 supine chest radiograms were obtained with PIP at standard dose and compared to follow-up studies of the same patients obtained with NIP with dose reduced to 50 % of the PIP dose (all imaging systems: AGFA-Gevaert, Mortsel, Belgium). In both systems identical versions of post-processing software supplied by the manufacturer were used with matched parameters. Six independent readers blinded to both modality and dose evaluated the images for depiction and differentiation of defined anatomical regions (peripheral lung parenchyma, central lung parenchyma, hilum, heart, diaphragm, upper mediastinum, and bone). All NIP images were compared to the corresponding PIP images using a five-point scale (- 2, clearly inferior to + 2, clearly superior). Overall image quality was rated for each PIP and NIP image separately (1, not usable to 5, excellent). PIP and dose reduced NIP images were rated equivalent. Mean image noise impression was only slightly higher on NIP images. Mean image quality for NIP showed no significant differences (p > 0.05, Mann-Whitney U test). With the use of the new needle structured storage phosphors in chest radiography, dose reduction of up to 50 % is possible without detracting from image quality or detail depiction. Especially in patients with multiple follow-up studies the overall dose can be decreased significantly.

  6. Towards a Systematic Screening Tool for Quality Assurance and Semiautomatic Fraud Detection for Images in the Life Sciences.

    PubMed

    Koppers, Lars; Wormer, Holger; Ickstadt, Katja

    2017-08-01

    The quality and authenticity of images is essential for data presentation, especially in the life sciences. Questionable images may often be a first indicator for questionable results, too. Therefore, a tool that uses mathematical methods to detect suspicious images in large image archives can be a helpful instrument to improve quality assurance in publications. As a first step towards a systematic screening tool, especially for journal editors and other staff members who are responsible for quality assurance, such as laboratory supervisors, we propose a basic classification of image manipulation. Based on this classification, we developed and explored some simple algorithms to detect copied areas in images. Using an artificial image and two examples of previously published modified images, we apply quantitative methods such as pixel-wise comparison, a nearest neighbor and a variance algorithm to detect copied-and-pasted areas or duplicated images. We show that our algorithms are able to detect some simple types of image alteration, such as copying and pasting background areas. The variance algorithm detects not only identical, but also very similar areas that differ only by brightness. Further types could, in principle, be implemented in a standardized scanning routine. We detected the copied areas in a proven case of image manipulation in Germany and showed the similarity of two images in a retracted paper from the Kato labs, which has been widely discussed on sites such as pubpeer and retraction watch.

  7. Experimental comparison of various techniques for spot size measurement of high-energy X-ray

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Li, Qin; Chen, Nan; Cheng, Jin-Ming; Li, Cheng-Gang; Li, Hong; Long, Quan-Hong; Shi, Jin-Shui; Deng, Jian-Jun

    2016-08-01

    In flash-radiography experiments, the quality of the acquired image strongly depends on the focal size of the X-ray source spot. A variety of techniques based on imaging of the pinhole, the slit and the rollbar are adopted to measure the focal spot size of the Dragon-I linear induction accelerator. The image of the pinhole provides a two-dimensional distribution of the X-ray spot, while those of the slit and the rollbar give a line-spread distribution and an edge-spread distribution, respectively. The spot size characterized by the full-width at half-maximum and that characterized by the LANL definition are calculated for comparison.

  8. Image quality assessment for teledermatology: from consumer devices to a dedicated medical device

    NASA Astrophysics Data System (ADS)

    Amouroux, Marine; Le Cunff, Sébastien; Haudrechy, Alexandre; Blondel, Walter

    2017-03-01

    Aging population as well as growing incidence of type 2 diabetes induce a growing incidence of chronic skin disorders. In the meantime, chronic shortage of dermatologists leaves some areas underserved. Remote triage and assistance to homecare nurses (known as "teledermatology") appear to be promising solutions to provide dermatological valuation in a decent time to patients wherever they live. Nowadays, teledermatology is often based on consumer devices (digital tablets, smartphones, webcams) whose photobiological and electrical safety levels do not match with medical devices' levels. The American Telemedicine Association (ATA) has published recommendations on quality standards for teledermatology. This "quick guide" does not address the issue of image quality which is critical in domestic environments where lighting is rarely reproducible. Standardized approaches of image quality would allow clinical trial comparison, calibration, manufacturing quality control and quality insurance during clinical use. Therefore, we defined several critical metrics using calibration charts (color and resolution charts) in order to assess image quality such as resolution, lighting uniformity, color repeatability and discrimination of key couples of colors. Using such metrics, we compared quality of images produced by several medical devices (handheld and video-dermoscopes) as well as by consumer devices (digital tablet and cameras) widely spread among dermatologists practice. Since diagnosis accuracy may be impaired by "low quality-images", this study highlights that, from an optical point of view, teledermatology should only be performed using medical devices. Furthermore, a dedicated medical device should probably be developed for the time follow-up of skin lesions often managed in teledermatology such as chronic wounds that require i) noncontact imaging of ii) large areas of skin surfaces, both criteria that cannot be matched using dermoscopes.

  9. Paediatric interventional cardiology: flat detector versus image intensifier using a test object

    NASA Astrophysics Data System (ADS)

    Vano, E.; Ubeda, C.; Martinez, L. C.; Leyton, F.; Miranda, P.

    2010-12-01

    Entrance surface air kerma (ESAK) values and image quality parameters were measured and compared for two biplane angiography x-ray systems dedicated to paediatric interventional cardiology, one equipped with image intensifiers (II) and the other one with dynamic flat detectors (FDs). Polymethyl methacrylate phantoms of different thicknesses, ranging from 8 to 16 cm, and a Leeds TOR 18-FG test object were used. The parameters of the image quality evaluated were noise, signal-difference-to-noise ratio (SdNR), high contrast spatial resolution (HCSR) and three figures of merit combining entrance doses and signal-to-noise ratios or HCSR. The comparisons showed a better behaviour of the II-based system in the low contrast region over the whole interval of thicknesses. The FD-based system showed a better performance in HCSR. The FD system evaluated would need around two times more dose than the II system evaluated to reach a given value of SdNR; moreover, a better spatial resolution was measured (and perceived in conventional monitors) for the system equipped with flat detectors. According to the results of this paper, the use of dynamic FD systems does not lead to an automatic reduction in ESAK or to an automatic improvement in image quality by comparison with II systems. Any improvement also depends on the setting of the x-ray systems and it should still be possible to refine these settings for some of the dynamic FDs used in paediatric cardiology.

  10. Flat-panel-detector chest radiography: effect of tube voltage on image quality.

    PubMed

    Uffmann, Martin; Neitzel, Ulrich; Prokop, Mathias; Kabalan, Nahla; Weber, Michael; Herold, Christian J; Schaefer-Prokop, Cornelia

    2005-05-01

    To compare the visibility of anatomic structures in direct-detector chest radiographs acquired with different tube voltages at equal effective doses to the patient. The study protocol was approved by the institutional internal review board, and written informed consent was obtained from all patients. Posteroanterior chest radiographs of 48 consecutively selected patients were obtained at 90, 121, and 150 kVp by using a flat-panel-detector unit that was based on cesium iodide technology and automated exposure control. Monte Carlo simulations were used to verify that the effective dose for all kilovoltage settings was equal. Five radiologists subjectively and independently rated the delineation of anatomic structures on hard-copy images by using a five-point scale. They also ranked image quality in a blinded side-by-side comparison. Average ranking scores were compared by using one-way analysis of variance with repeated measures. Data were analyzed for the entire patient group and for two patient subgroups that were formed according to body mass index (BMI). The visibility scores of most anatomic structures were significantly superior with the 90-kVp images (mean score, 3.11), followed by the 121-kVp (mean score, 2.95) and 150-kVp images (mean score, 2.80). Differences did not reach significance (P > .05) only for the delineation of the peripheral vessels, the heart contours, and the carina. This was also true for the subgroup of patients (n = 24) with a BMI greater than and the subgroup of patients (n = 24) with a BMI less than the mean BMI (26.9 kg/m(2)). At side-by-side comparison, the readers rated 90-kVp images as having superior image quality in the majority of image triplets; the percentage of 90-kVp images rated as "first choice" ranged from 60% (29 of 48 patients) to 90% (43 of 48 patients), with a median of 88% (42 of 48 patients), among the readers. Delineation of most anatomic structures and overall image quality were ranked superior in digital radiographs acquired with lower kilovoltage at a constant effective patient dose. (c) RSNA, 2005.

  11. Comparison of virtual monoenergetic and polyenergetic images reconstructed from dual-layer detector CT angiography of the head and neck.

    PubMed

    Neuhaus, Victor; Große Hokamp, Nils; Abdullayev, Nuran; Maus, Volker; Kabbasch, Christoph; Mpotsaris, Anastasios; Maintz, David; Borggrefe, Jan

    2018-03-01

    To compare the image quality of virtual monoenergetic images and polyenergetic images reconstructed from dual-layer detector CT angiography (DLCTA). Thirty patients who underwent DLCTA of the head and neck were retrospectively identified and polyenergetic as well as virtual monoenergetic images (40 to 120 keV) were reconstructed. Signals (± SD) of the cervical and cerebral vessels as well as lateral pterygoid muscle and the air surrounding the head were measured to calculate the CNR and SNR. In addition, subjective image quality was assessed using a 5-point Likert scale. Student's t-test and Wilcoxon test were used to determine statistical significance. Compared to polyenergetic images, although noise increased with lower keV, CNR (p < 0.02) and SNR (p > 0.05) of the cervical, petrous and intracranial vessels were improved in virtual monoenergetic images at 40 keV and virtual monoenergetic images at 45 keV were also rated superior regarding vascular contrast, assessment of arteries close to the skull base and small arterial branches (p < 0.0001 each). Compared to polyenergetic images, virtual monoenergetic images reconstructed from DLCTA at low keV ranging from 40 to 45 keV improve the objective and subjective image quality of extra- and intracranial vessels and facilitate assessment of vessels close to the skull base and of small arterial branches. • Virtual monoenergetic images greatly improve attenuation, while noise only slightly increases. • Virtual monoenergetic images show superior contrast-to-noise ratios compared to polyenergetic images. • Virtual monoenergetic images significantly improve image quality at low keV.

  12. Breast MRI at 7 Tesla with a bilateral coil and T1-weighted acquisition with robust fat suppression: image evaluation and comparison with 3 Tesla.

    PubMed

    Brown, Ryan; Storey, Pippa; Geppert, Christian; McGorty, KellyAnne; Leite, Ana Paula Klautau; Babb, James; Sodickson, Daniel K; Wiggins, Graham C; Moy, Linda

    2013-11-01

    To evaluate the image quality of T1-weighted fat-suppressed breast MRI at 7 T and to compare 7-T and 3-T images. Seventeen subjects were imaged using a 7-T bilateral transmit-receive coil and 3D gradient echo sequence with adiabatic inversion-based fat suppression (FS). Images were graded on a five-point scale and quantitatively assessed through signal-to-noise ratio (SNR), fibroglandular/fat contrast and signal uniformity measurements. Image scores at 7 and 3 T were similar on standard-resolution images (1.1 × 1.1 × 1.1-1.6 mm(3)), indicating that high-quality breast imaging with clinical parameters can be performed at 7 T. The 7-T SNR advantage was underscored on 0.6-mm isotropic images, where image quality was significantly greater than at 3 T (4.2 versus 3.1, P ≤ 0.0001). Fibroglandular/fat contrast was more than two times higher at 7 T than at 3 T, owing to effective adiabatic inversion-based FS and the inherent 7-T signal advantage. Signal uniformity was comparable at 7 and 3 T (P < 0.05). Similar 7-T image quality was observed in all subjects, indicating robustness against anatomical variation. The 7-T bilateral transmit-receive coil and adiabatic inversion-based FS technique produce image quality that is as good as or better than at 3 T. • High image quality bilateral breast MRI is achievable with clinical parameters at 7 T. • 7-T high-resolution imaging improves delineation of subtle soft tissue structures. • Adiabatic-based fat suppression provides excellent fibroglandular/fat contrast at 7 T. • 7- and 3-T 3D T1-weighted gradient-echo images have similar signal uniformity. • The 7-T dual solenoid coil enables bilateral imaging without compromising uniformity.

  13. Investigation into the use of photoanthropometry in facial image comparison.

    PubMed

    Moreton, Reuben; Morley, Johanna

    2011-10-10

    Photoanthropometry is a metric based facial image comparison technique. Measurements of the face are taken from an image using predetermined facial landmarks. Measurements are then converted to proportionality indices (PIs) and compared to PIs from another facial image. Photoanthropometry has been presented as a facial image comparison technique in UK courts for over 15 years. It is generally accepted that extrinsic factors (e.g. orientation of the head, camera angle and distance from the camera) can cause discrepancies in anthropometric measurements of the face from photographs. However there has been limited empirical research into quantifying the influence of such variables. The aim of this study was to determine the reliability of photoanthropometric measurements between different images of the same individual taken with different angulations of the camera. The study examined the facial measurements of 25 individuals from high resolution photographs, taken at different horizontal and vertical camera angles in a controlled environment. Results show that the degree of variability in facial measurements of the same individual due to variations in camera angle can be as great as the variability of facial measurements between different individuals. Results suggest that photoanthropometric facial comparison, as it is currently practiced, is unsuitable for elimination purposes. Preliminary investigations into the effects of distance from camera and image resolution in poor quality images suggest that such images are not an accurate representation of an individuals face, however further work is required. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Study of quality perception in medical images based on comparison of contrast enhancement techniques in mammographic images

    NASA Astrophysics Data System (ADS)

    Matheus, B.; Verçosa, L. B.; Barufaldi, B.; Schiabel, H.

    2014-03-01

    With the absolute prevalence of digital images in mammography several new tools became available for radiologist; such as CAD schemes, digital zoom and contrast alteration. This work focuses in contrast variation and how the radiologist reacts to these changes when asked to evaluated image quality. Three contrast enhancing techniques were used in this study: conventional equalization, CCB Correction [1] - a digitization correction - and value subtraction. A set of 100 images was used in tests from some available online mammographic databases. The tests consisted of the presentation of all four versions of an image (original plus the three contrast enhanced images) to the specialist, requested to rank each one from the best up to worst quality for diagnosis. Analysis of results has demonstrated that CCB Correction [1] produced better images in almost all cases. Equalization, which mathematically produces a better contrast, was considered the worst for mammography image quality enhancement in the majority of cases (69.7%). The value subtraction procedure produced images considered better than the original in 84% of cases. Tests indicate that, for the radiologist's perception, it seems more important to guaranty full visualization of nuances than a high contrast image. Another result observed is that the "ideal" scanner curve does not yield the best result for a mammographic image. The important contrast range is the middle of the histogram, where nodules and masses need to be seen and clearly distinguished.

  15. Effectiveness of Adaptive Statistical Iterative Reconstruction for 64-Slice Dual-Energy Computed Tomography Pulmonary Angiography in Patients With a Reduced Iodine Load: Comparison With Standard Computed Tomography Pulmonary Angiography.

    PubMed

    Lee, Ji Won; Lee, Geewon; Lee, Nam Kyung; Moon, Jin Il; Ju, Yun Hye; Suh, Young Ju; Jeong, Yeon Joo

    2016-01-01

    The aim of the study was to assess the effectiveness of the adaptive statistical iterative reconstruction (ASIR) for dual-energy computed tomography pulmonary angiography (DE-CTPA) with a reduced iodine load. One hundred forty patients referred for chest CT were randomly divided into a DE-CTPA group with a reduced iodine load or a standard CTPA group. Quantitative and qualitative image qualities of virtual monochromatic spectral (VMS) images with filtered back projection (VMS-FBP) and those with 50% ASIR (VMS-ASIR) in the DE-CTPA group were compared. Image qualities of VMS-ASIR images in the DE-CTPA group and ASIR images in the standard CTPA group were also compared. All quantitative and qualitative indices, except attenuation value of pulmonary artery in the VMS-ASIR subgroup, were superior to those in the VMS-FBP subgroup (all P < 0.001). Noise and signal-to-noise ratio of VMS-ASIR images were superior to those of ASIR images in the standard CTPA group (P < 0.001 and P = 0.007, respectively). Regarding qualitative indices, noise was significantly lower in VMS-ASIR images of the DE-CTPA group than in ASIR images of the standard CTPA group (P = 0.001). The ASIR technique tends to improve the image quality of VMS imaging. Dual-energy computed tomography pulmonary angiography with ASIR can reduce contrast medium volume and produce images of comparable quality with those of standard CTPA.

  16. Image Quality of 3rd Generation Spiral Cranial Dual-Source CT in Combination with an Advanced Model Iterative Reconstruction Technique: A Prospective Intra-Individual Comparison Study to Standard Sequential Cranial CT Using Identical Radiation Dose

    PubMed Central

    Wenz, Holger; Maros, Máté E.; Meyer, Mathias; Förster, Alex; Haubenreisser, Holger; Kurth, Stefan; Schoenberg, Stefan O.; Flohr, Thomas; Leidecker, Christianne; Groden, Christoph; Scharf, Johann; Henzler, Thomas

    2015-01-01

    Objectives To prospectively intra-individually compare image quality of a 3rd generation Dual-Source-CT (DSCT) spiral cranial CT (cCT) to a sequential 4-slice Multi-Slice-CT (MSCT) while maintaining identical intra-individual radiation dose levels. Methods 35 patients, who had a non-contrast enhanced sequential cCT examination on a 4-slice MDCT within the past 12 months, underwent a spiral cCT scan on a 3rd generation DSCT. CTDIvol identical to initial 4-slice MDCT was applied. Data was reconstructed using filtered backward projection (FBP) and 3rd-generation iterative reconstruction (IR) algorithm at 5 different IR strength levels. Two neuroradiologists independently evaluated subjective image quality using a 4-point Likert-scale and objective image quality was assessed in white matter and nucleus caudatus with signal-to-noise ratios (SNR) being subsequently calculated. Results Subjective image quality of all spiral cCT datasets was rated significantly higher compared to the 4-slice MDCT sequential acquisitions (p<0.05). Mean SNR was significantly higher in all spiral compared to sequential cCT datasets with mean SNR improvement of 61.65% (p*Bonferroni0.05<0.0024). Subjective image quality improved with increasing IR levels. Conclusion Combination of 3rd-generation DSCT spiral cCT with an advanced model IR technique significantly improves subjective and objective image quality compared to a standard sequential cCT acquisition acquired at identical dose levels. PMID:26288186

  17. Image Quality of 3rd Generation Spiral Cranial Dual-Source CT in Combination with an Advanced Model Iterative Reconstruction Technique: A Prospective Intra-Individual Comparison Study to Standard Sequential Cranial CT Using Identical Radiation Dose.

    PubMed

    Wenz, Holger; Maros, Máté E; Meyer, Mathias; Förster, Alex; Haubenreisser, Holger; Kurth, Stefan; Schoenberg, Stefan O; Flohr, Thomas; Leidecker, Christianne; Groden, Christoph; Scharf, Johann; Henzler, Thomas

    2015-01-01

    To prospectively intra-individually compare image quality of a 3rd generation Dual-Source-CT (DSCT) spiral cranial CT (cCT) to a sequential 4-slice Multi-Slice-CT (MSCT) while maintaining identical intra-individual radiation dose levels. 35 patients, who had a non-contrast enhanced sequential cCT examination on a 4-slice MDCT within the past 12 months, underwent a spiral cCT scan on a 3rd generation DSCT. CTDIvol identical to initial 4-slice MDCT was applied. Data was reconstructed using filtered backward projection (FBP) and 3rd-generation iterative reconstruction (IR) algorithm at 5 different IR strength levels. Two neuroradiologists independently evaluated subjective image quality using a 4-point Likert-scale and objective image quality was assessed in white matter and nucleus caudatus with signal-to-noise ratios (SNR) being subsequently calculated. Subjective image quality of all spiral cCT datasets was rated significantly higher compared to the 4-slice MDCT sequential acquisitions (p<0.05). Mean SNR was significantly higher in all spiral compared to sequential cCT datasets with mean SNR improvement of 61.65% (p*Bonferroni0.05<0.0024). Subjective image quality improved with increasing IR levels. Combination of 3rd-generation DSCT spiral cCT with an advanced model IR technique significantly improves subjective and objective image quality compared to a standard sequential cCT acquisition acquired at identical dose levels.

  18. A Comparison of Image Quality and Radiation Exposure Between the Mini C-Arm and the Standard C-Arm.

    PubMed

    van Rappard, Juliaan R M; Hummel, Willy A; de Jong, Tijmen; Mouës, Chantal M

    2018-04-01

    The use of intraoperative fluoroscopy has become mandatory in osseous hand surgery. Due to its overall practicality, the mini C-arm has gained popularity among hand surgeons over the standard C-arm. This study compares image quality and radiation exposure for patient and staff between the mini C-arm and the standard C-arm, both with flat panel technology. An observer-based subjective image quality study was performed using a contrast detail (CD) phantom. Five independent observers were asked to determine the smallest circles discernable to them. The results were plotted in a graph, forming a CD curve. From each curve, an image quality figure (IQF) was derived. A lower IQF equates to a better image quality. The patients' entrance skin dose was measured, and to obtain more information about the staff exposure dose, a perspex hand phantom was used. The scatter radiation was measured at various distances and angles relative to a central point on the detector. The IQF was significantly lower for the mini C-arm resulting in a better image quality. The patients' entrance dose was 10 times higher for the mini C-arm as compared with the standard C-arm, and the scatter radiation threefold. Due to its improved image quality and overall practicality, the mini C-arm is recommended for hand surgical procedures. To ensure that the surgeons' radiation exposure is not exceeding the safety limits, monitoring radiation exposure using mini C-arms with flat panel technology during surgery should be done in a future clinical study.

  19. Design and testing of the navigation model for three axis stabilized earth oriented satellites applied to the ATS-6 satellite image data base

    NASA Technical Reports Server (NTRS)

    Kuhlow, W. W.; Chatters, G. C.

    1977-01-01

    An earth edge methodology has been developed to account for the relative attitude changes between successive ATS-6 images which allows reasonable high quality wind sets to be produced. The method consists of measuring the displacements of the right and left infrared earth edges between successive ATS-6 images as a function of scan line; from these measurements the attitude changes can be deduced and used to correct the apparent cloud displacement measurements. The wind data sets generated from ATS-6 using the earth-edge methodology were compared with those derived from the SMS-1 images (and model) covering the same time period. Quantitative comparisons for low level trade cumuli were made at interpolated uniformly spaced grid points and for selected individual comparison clouds. Selected individual comparison clouds, the root-mean-square differences for the U and V components were 1.0 and 1.2 meters per second with a maximum wind direction difference of 15 deg.

  20. Imaging the Parasinus Region with a Third-Generation Dual-Source CT and the Effect of Tin Filtration on Image Quality and Radiation Dose.

    PubMed

    Lell, M M; May, M S; Brand, M; Eller, A; Buder, T; Hofmann, E; Uder, M; Wuest, W

    2015-07-01

    CT is the imaging technique of choice in the evaluation of midface trauma or inflammatory disease. We performed a systematic evaluation of scan protocols to optimize image quality and radiation exposure on third-generation dual-source CT. CT protocols with different tube voltage (70-150 kV), current (25-300 reference mAs), prefiltration, pitch value, and rotation time were systematically evaluated. All images were reconstructed with iterative reconstruction (Advanced Modeled Iterative Reconstruction, level 2). To individually compare results with otherwise identical factors, we obtained all scans on a frozen human head. Conebeam CT was performed for image quality and dose comparison with multidetector row CT. Delineation of important anatomic structures and incidental pathologic conditions in the cadaver head was evaluated. One hundred kilovolts with tin prefiltration demonstrated the best compromise between dose and image quality. The most dose-effective combination for trauma imaging was Sn100 kV/250 mAs (volume CT dose index, 2.02 mGy), and for preoperative sinus surgery planning, Sn100 kV/150 mAs (volume CT dose index, 1.22 mGy). "Sn" indicates an additional prefiltration of the x-ray beam with a tin filter to constrict the energy spectrum. Exclusion of sinonasal disease was possible with even a lower dose by using Sn100 kV/25 mAs (volume CT dose index, 0.2 mGy). High image quality at very low dose levels can be achieved by using a Sn100-kV protocol with iterative reconstruction. The effective dose is comparable with that of conventional radiography, and the high image quality at even lower radiation exposure favors multidetector row CT over conebeam CT. © 2015 by American Journal of Neuroradiology.

  1. Limited angle tomographic breast imaging: A comparison of parallel beam and pinhole collimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wessell, D.E.; Kadrmas, D.J.; Frey, E.C.

    1996-12-31

    Results from clinical trials have suggested no improvement in lesion detection with parallel hole SPECT scintimammography (SM) with Tc-99m over parallel hole planar SM. In this initial investigation, we have elucidated some of the unique requirements of SPECT SM. With these requirements in mind, we have begun to develop practical data acquisition and reconstruction strategies that can reduce image artifacts and improve image quality. In this paper we investigate limited angle orbits for both parallel hole and pinhole SPECT SM. Singular Value Decomposition (SVD) is used to analyze the artifacts associated with the limited angle orbits. Maximum likelihood expectation maximizationmore » (MLEM) reconstructions are then used to examine the effects of attenuation compensation on the quality of the reconstructed image. All simulations are performed using the 3D-MCAT breast phantom. The results of these simulation studies demonstrate that limited angle SPECT SM is feasible, that attenuation correction is needed for accurate reconstructions, and that pinhole SPECT SM may have an advantage over parallel hole SPECT SM in terms of improved image quality and reduced image artifacts.« less

  2. Benchmarking the performance of fixed-image receptor digital radiographic systems part 1: a novel method for image quality analysis.

    PubMed

    Lee, Kam L; Ireland, Timothy A; Bernardo, Michael

    2016-06-01

    This is the first part of a two-part study in benchmarking the performance of fixed digital radiographic general X-ray systems. This paper concentrates on reporting findings related to quantitative analysis techniques used to establish comparative image quality metrics. A systematic technical comparison of the evaluated systems is presented in part two of this study. A novel quantitative image quality analysis method is presented with technical considerations addressed for peer review. The novel method was applied to seven general radiographic systems with four different makes of radiographic image receptor (12 image receptors in total). For the System Modulation Transfer Function (sMTF), the use of grid was found to reduce veiling glare and decrease roll-off. The major contributor in sMTF degradation was found to be focal spot blurring. For the System Normalised Noise Power Spectrum (sNNPS), it was found that all systems examined had similar sNNPS responses. A mathematical model is presented to explain how the use of stationary grid may cause a difference between horizontal and vertical sNNPS responses.

  3. Megahertz ultra-wide-field swept-source retina optical coherence tomography compared to current existing imaging devices.

    PubMed

    Reznicek, Lukas; Klein, Thomas; Wieser, Wolfgang; Kernt, Marcus; Wolf, Armin; Haritoglou, Christos; Kampik, Anselm; Huber, Robert; Neubauer, Aljoscha S

    2014-06-01

    To investigate the image quality of wide-angle cross-sectional and reconstructed fundus images based on ultra-megahertz swept-source Fourier domain mode locking (FDML) OCT compared to current generation diagnostic devices. A 1,050 nm swept-source FDML OCT system was constructed running at 1.68 MHz A-scan rate covering approximately 70° field of view. Twelve normal eyes were imaged with the device applying an isotropically dense sampling protocol (1,900 × 1,900 A-scans) with a fill factor of 100 %. Obtained OCT scan image quality was compared with two commercial OCT systems (Heidelberg Spectralis and Stratus OCT) of the same 12 eyes. Reconstructed en-face fundus images from the same FDML-OCT data set were compared to color fundus, infrared and ultra-wide-field scanning laser images (SLO). Comparison of cross-sectional scans showed a high overall image quality of the 15× averaged FDML images at 1.68 MHz [overall quality grading score: 8.42 ± 0.52, range 0 (bad)-10 (excellent)] comparable to current spectral-domain OCTs (overall quality grading score: 8.83 ± 0.39, p = 0.731). On FDML OCT, a dense 3D data set was obtained covering also the central and mid-peripheral retina. The reconstructed FDML OCT en-face fundus images had high image quality comparable to scanning laser ophthalmoscope (SLO) as judged from retinal structures such as vessels and optic disc. Overall grading score was 8.36 ± 0.51 for FDML OCT vs 8.27 ± 0.65 for SLO (p = 0.717). Ultra-wide-field megahertz 3D FDML OCT at 1.68 MHz is feasible, and provides cross-sectional image quality comparable to current spectral-domain OCT devices. In addition, reconstructed en-face visualization of fundus images result in a wide-field view with high image quality as compared to currently available fundus imaging devices. The improvement of >30× in imaging speed over commercial spectral-domain OCT technology enables high-density scan protocols leading to a data set for high quality cross-sectional and en-face images of the posterior segment.

  4. Diagnosing common bile duct obstruction: comparison of image quality and diagnostic performance of three-dimensional magnetic resonance cholangiopancreatography with and without compressed sensing.

    PubMed

    Kwon, Heejin; Reid, Scott; Kim, Dongeun; Lee, Sangyun; Cho, Jinhan; Oh, Jongyeong

    2018-01-04

    This study aimed to evaluate image quality and diagnostic performance of a recently developed navigated three-dimensional magnetic resonance cholangiopancreatography (3D-MRCP) with compressed sensing (CS) based on parallel imaging (PI) and conventional 3D-MRCP with PI only in patients with abnormal bile duct dilatation. This institutional review board-approved study included 45 consecutive patients [non-malignant common bile duct lesions (n = 21) and malignant common bile duct lesions (n = 24)] who underwent MRCP of the abdomen to evaluate bile duct dilatation. All patients were imaged at 3T (MR 750, GE Healthcare, Waukesha, WI) including two kinds of 3D-MRCP using 352 × 288 matrices with and without CS based on PI. Two radiologists independently and blindly assessed randomized images. CS acceleration reduced the acquisition time on average 5 min and 6 s to a total of 2 min and 56 s. The all CS cine image quality was significantly higher than standard cine MR image for all quantitative measurements. Diagnostic accuracy for benign and malignant lesions is statistically different between standard and CS 3D-MRCP. Total image quality and diagnostic accuracy at biliary obstruction evaluation demonstrates that CS-accelerated 3D-MRCP sequences can provide superior quality of diagnostic information in 42.5% less time. This has the potential to reduce motion-related artifacts and improve diagnostic efficacy.

  5. A Novel Pairwise Comparison-Based Method to Determine Radiation Dose Reduction Potentials of Iterative Reconstruction Algorithms, Exemplified Through Circle of Willis Computed Tomography Angiography.

    PubMed

    Ellmann, Stephan; Kammerer, Ferdinand; Brand, Michael; Allmendinger, Thomas; May, Matthias S; Uder, Michael; Lell, Michael M; Kramer, Manuel

    2016-05-01

    The aim of this study was to determine the dose reduction potential of iterative reconstruction (IR) algorithms in computed tomography angiography (CTA) of the circle of Willis using a novel method of evaluating the quality of radiation dose-reduced images. This study relied on ReconCT, a proprietary reconstruction software that allows simulating CT scans acquired with reduced radiation dose based on the raw data of true scans. To evaluate the performance of ReconCT in this regard, a phantom study was performed to compare the image noise of true and simulated scans within simulated vessels of a head phantom. That followed, 10 patients scheduled for CTA of the circle of Willis were scanned according to our institute's standard protocol (100 kV, 145 reference mAs). Subsequently, CTA images of these patients were reconstructed as either a full-dose weighted filtered back projection or with radiation dose reductions down to 10% of the full-dose level and Sinogram-Affirmed Iterative Reconstruction (SAFIRE) with either strength 3 or 5. Images were marked with arrows pointing on vessels of different sizes, and image pairs were presented to observers. Five readers assessed image quality with 2-alternative forced choice comparisons. In the phantom study, no significant differences were observed between the noise levels of simulated and true scans in filtered back projection, SAFIRE 3, and SAFIRE 5 reconstructions.The dose reduction potential for patient scans showed a strong dependence on IR strength as well as on the size of the vessel of interest. Thus, the potential radiation dose reductions ranged from 84.4% for the evaluation of great vessels reconstructed with SAFIRE 5 to 40.9% for the evaluation of small vessels reconstructed with SAFIRE 3. This study provides a novel image quality evaluation method based on 2-alternative forced choice comparisons. In CTA of the circle of Willis, higher IR strengths and greater vessel sizes allowed higher degrees of radiation dose reduction.

  6. D City Transformations by Time Series of Aerial Images

    NASA Astrophysics Data System (ADS)

    Adami, A.

    2015-02-01

    Recent photogrammetric applications, based on dense image matching algorithms, allow to use not only images acquired by digital cameras, amateur or not, but also to recover the vast heritage of analogue photographs. This possibility opens up many possibilities in the use and enhancement of existing photos heritage. The research of the original figuration of old buildings, the virtual reconstruction of disappeared architectures and the study of urban development are some of the application areas that exploit the great cultural heritage of photography. Nevertheless there are some restrictions in the use of historical images for automatic reconstruction of buildings such as image quality, availability of camera parameters and ineffective geometry of image acquisition. These constrains are very hard to solve and it is difficult to discover good dataset in the case of terrestrial close range photogrammetry for the above reasons. Even the photographic archives of museums and superintendence, while retaining a wealth of documentation, have no dataset for a dense image matching approach. Compared to the vast collection of historical photos, the class of aerial photos meets both criteria stated above. In this paper historical aerial photographs are used with dense image matching algorithms to realize 3d models of a city in different years. The models can be used to study the urban development of the city and its changes through time. The application relates to the city centre of Verona, for which some time series of aerial photographs have been retrieved. The models obtained in this way allowed, right away, to observe the urban development of the city, the places of expansion and new urban areas. But a more interesting aspect emerged from the analytical comparison between models. The difference, as the Euclidean distance, between two models gives information about new buildings or demolitions. As considering accuracy it is necessary point out that the quality of final observations from model comparison depends on several aspects such as image quality, image scale and marker accuracy from cartography.

  7. Facilitation of receptive and productive foreign vocabulary learning using the keyword method: the role of image quality.

    PubMed

    Beaton, Alan A; Gruneberg, Michael M; Hyde, Christopher; Shufflebottom, Alex; Sykes, Robert N

    2005-07-01

    Ellis and Beaton (1993a) reported that the keyword method of learning enhanced memory of foreign vocabulary items when receptive learning was measured. However, for productive learning, rote repetition was superior to the keyword method. The first two experiments reported here show that, in comparison with rote repetition, both receptive and productive learning can be enhanced by the keyword method, provided that the quality of the keyword images is adequate. In a third experiment using a subset of words from Ellis and Beaton (1993a), the finding they reported, that for productive learning rote repetition was superior to the keyword method, was reversed. The quality of keyword images will vary from study to study and any generalisation regarding the efficacy of the keyword method must take this into account.

  8. Quality Assurance Assessment of Diagnostic and Radiation Therapy–Simulation CT Image Registration for Head and Neck Radiation Therapy: Anatomic Region of Interest–based Comparison of Rigid and Deformable Algorithms

    PubMed Central

    Mohamed, Abdallah S. R.; Ruangskul, Manee-Naad; Awan, Musaddiq J.; Baron, Charles A.; Kalpathy-Cramer, Jayashree; Castillo, Richard; Castillo, Edward; Guerrero, Thomas M.; Kocak-Uzel, Esengul; Yang, Jinzhong; Court, Laurence E.; Kantor, Michael E.; Gunn, G. Brandon; Colen, Rivka R.; Frank, Steven J.; Garden, Adam S.; Rosenthal, David I.

    2015-01-01

    Purpose To develop a quality assurance (QA) workflow by using a robust, curated, manually segmented anatomic region-of-interest (ROI) library as a benchmark for quantitative assessment of different image registration techniques used for head and neck radiation therapy–simulation computed tomography (CT) with diagnostic CT coregistration. Materials and Methods Radiation therapy–simulation CT images and diagnostic CT images in 20 patients with head and neck squamous cell carcinoma treated with curative-intent intensity-modulated radiation therapy between August 2011 and May 2012 were retrospectively retrieved with institutional review board approval. Sixty-eight reference anatomic ROIs with gross tumor and nodal targets were then manually contoured on images from each examination. Diagnostic CT images were registered with simulation CT images rigidly and by using four deformable image registration (DIR) algorithms: atlas based, B-spline, demons, and optical flow. The resultant deformed ROIs were compared with manually contoured reference ROIs by using similarity coefficient metrics (ie, Dice similarity coefficient) and surface distance metrics (ie, 95% maximum Hausdorff distance). The nonparametric Steel test with control was used to compare different DIR algorithms with rigid image registration (RIR) by using the post hoc Wilcoxon signed-rank test for stratified metric comparison. Results A total of 2720 anatomic and 50 tumor and nodal ROIs were delineated. All DIR algorithms showed improved performance over RIR for anatomic and target ROI conformance, as shown for most comparison metrics (Steel test, P < .008 after Bonferroni correction). The performance of different algorithms varied substantially with stratification by specific anatomic structures or category and simulation CT section thickness. Conclusion Development of a formal ROI-based QA workflow for registration assessment demonstrated improved performance with DIR techniques over RIR. After QA, DIR implementation should be the standard for head and neck diagnostic CT and simulation CT allineation, especially for target delineation. © RSNA, 2014 Online supplemental material is available for this article. PMID:25380454

  9. Evaluation of a cone beam computed tomography geometry for image guided small animal irradiation.

    PubMed

    Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Iordachita, Iulian; Siewerdsen, Jeffrey; Wong, John

    2015-07-07

    The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal ('tubular' geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal ('pancake' geometry). The small animal radiation research platform developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Not withstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e. pancake and tubular geometry, respectively.

  10. Can state-of-the-art HVS-based objective image quality criteria be used for image reconstruction techniques based on ROI analysis?

    NASA Astrophysics Data System (ADS)

    Dostal, P.; Krasula, L.; Klima, M.

    2012-06-01

    Various image processing techniques in multimedia technology are optimized using visual attention feature of the human visual system. Spatial non-uniformity causes that different locations in an image are of different importance in terms of perception of the image. In other words, the perceived image quality depends mainly on the quality of important locations known as regions of interest. The performance of such techniques is measured by subjective evaluation or objective image quality criteria. Many state-of-the-art objective metrics are based on HVS properties; SSIM, MS-SSIM based on image structural information, VIF based on the information that human brain can ideally gain from the reference image or FSIM utilizing the low-level features to assign the different importance to each location in the image. But still none of these objective metrics utilize the analysis of regions of interest. We solve the question if these objective metrics can be used for effective evaluation of images reconstructed by processing techniques based on ROI analysis utilizing high-level features. In this paper authors show that the state-of-the-art objective metrics do not correlate well with subjective evaluation while the demosaicing based on ROI analysis is used for reconstruction. The ROI were computed from "ground truth" visual attention data. The algorithm combining two known demosaicing techniques on the basis of ROI location is proposed to reconstruct the ROI in fine quality while the rest of image is reconstructed with low quality. The color image reconstructed by this ROI approach was compared with selected demosaicing techniques by objective criteria and subjective testing. The qualitative comparison of the objective and subjective results indicates that the state-of-the-art objective metrics are still not suitable for evaluation image processing techniques based on ROI analysis and new criteria is demanded.

  11. Evaluation of a Cone Beam Computed Tomography Geometry for Image Guided Small Animal Irradiation

    PubMed Central

    Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Iordachita, Iulian; Siewerdsen, Jeffrey; Wong, John

    2015-01-01

    The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal (“tubular” geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal (“pancake” geometry). The small animal radiation research platform (SARRP) developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Notwithstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e., pancake and tubular geometry, respectively. PMID:26083659

  12. Clinical comparison between a currently available single-loop and an investigational dual-channel endorectal receive coil for prostate magnetic resonance imaging: a feasibility study at 1.5 and 3 T.

    PubMed

    Vos, Eline K; Sambandamurthy, Sriram; Kamel, Maged; McKenney, Robert; van Uden, Mark J; Hoeks, Caroline M A; Yakar, Derya; Scheenen, Tom W J; Fütterer, Jurgen J

    2014-01-01

    The objectives of this study were to test the feasibility of an investigational dual-channel next-generation endorectal coil (NG-ERC) in vivo, to quantitatively assess signal-to-noise ratio (SNR), and to get an impression of image quality compared with the current clinically available single-loop endorectal coil (ERC) for prostate magnetic resonance imaging at both 1.5 and 3 T. The study was approved by the institutional review board, and written informed consent was obtained from all patients. In total, 8 consecutive patients with prostate cancer underwent a local staging magnetic resonance examination with the successive use of both coils in 1 session (4 patients at 1.5 T and 4 other patients at 3 T). Quantitative comparison of both coils was performed for the apex, mid-gland and base levels at both field strengths by calculating SNR profiles in the axial plane on an imaginary line in the anteroposterior direction perpendicular to the coil surface. Two radiologists independently assessed the image quality of the T2-weighted and apparent diffusion coefficient maps calculated from diffusion-weighted imaging using a 5-point scale. Improvement of geometric distortion on diffusion-weighted imaging with the use of parallel imaging was explored. Statistical analysis included a paired Wilcoxon signed rank test for SNR and image quality evaluation as well as κ statistics for interobserver agreement. No adverse events were reported. The SNR was higher for the NG-ERC compared with the ERC up to a distance of approximately 40 mm from the surface of the coil at 1.5 T (P < 0.0001 for the apex, the mid-gland, and the base) and approximately 17 mm (P = 0.015 at the apex level) and 30 mm at 3 T (P < 0.0001 for the mid-gland and base). Beyond this distance, the SNR profiles of both coils were comparable. Overall, T2-weighted image quality was considered better for NG-ERC at both field strengths. Quality of apparent diffusion coefficient maps with the use of parallel imaging was rated superior with the NG-ERC at 3 T. The investigational NG-ERC for prostate imaging outperforms the current clinically available ERC in terms of SNR and is feasible for continued development for future use as the next generation endorectal coil for prostate imaging in clinical practice.

  13. High-resolution MRI of cranial nerves in posterior fossa at 3.0 T.

    PubMed

    Guo, Zi-Yi; Chen, Jing; Liang, Qi-Zhou; Liao, Hai-Yan; Cheng, Qiong-Yue; Fu, Shui-Xi; Chen, Cai-Xiang; Yu, Dan

    2013-02-01

    To evaluate the influence of high-resolution imaging obtainable with the higher field strength of 3.0 T on the visualization of the brain nerves in the posterior fossa. In total, 20 nerves were investigated on MRI of 12 volunteers each and selected for comparison, respectively, with the FSE sequences with 5 mm and 2 mm section thicknesses and gradient recalled echo (GRE) sequences acquired with a 3.0-T scanner. The MR images were evaluated by three independent readers who rated image quality according to depiction of anatomic detail and contrast with use of a rating scale. In general, decrease of the slice thickness showed a significant increase in the detection of nerves as well as in the image quality characteristics. Comparing FSE and GRE imaging, the course of brain nerves and brainstem vessels was visualized best with use of the three-dimensional (3D) pulse sequence. The comparison revealed the clear advantage of a thin section. The increased resolution enabled immediate identification of all brainstem nerves. GRE sequence most distinctly and confidently depicted pertinent structures and enables 3D reconstruction to illustrate complex relations of the brainstem. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  14. Digital compression algorithms for HDTV transmission

    NASA Technical Reports Server (NTRS)

    Adkins, Kenneth C.; Shalkhauser, Mary JO; Bibyk, Steven B.

    1990-01-01

    Digital compression of video images is a possible avenue for high definition television (HDTV) transmission. Compression needs to be optimized while picture quality remains high. Two techniques for compression the digital images are explained and comparisons are drawn between the human vision system and artificial compression techniques. Suggestions for improving compression algorithms through the use of neural and analog circuitry are given.

  15. Value of monoenergetic dual-energy CT (DECT) for artefact reduction from metallic orthopedic implants in post-mortem studies.

    PubMed

    Filograna, Laura; Magarelli, Nicola; Leone, Antonio; Guggenberger, Roman; Winklhofer, Sebastian; Thali, Michael John; Bonomo, Lorenzo

    2015-09-01

    The aim of this ex vivo study was to assess the performance of monoenergetic dual-energy CT (DECT) reconstructions to reduce metal artefacts in bodies with orthopedic devices in comparison with standard single-energy CT (SECT) examinations in forensic imaging. Forensic and clinical impacts of this study are also discussed. Thirty metallic implants in 20 consecutive cadavers with metallic implants underwent both SECT and DECT with a clinically suitable scanning protocol. Extrapolated monoenergetic DECT images at 64, 69, 88, 105, 120, and 130 keV and individually adjusted monoenergy for optimized image quality (OPTkeV) were generated. Image quality of the seven monoenergetic images and of the corresponding SECT image was assessed qualitatively and quantitatively by visual rating and measurements of attenuation changes induced by streak artefact. Qualitative and quantitative analyses showed statistically significant differences between monoenergetic DECT extrapolated images and SECT, with improvements in diagnostic assessment in monoenergetic DECT at higher monoenergies. The mean value of OPTkeV was 137.6 ± 4.9 with a range of 130 to 148 keV. This study demonstrates that monoenergetic DECT images extrapolated at high energy levels significantly reduce metallic artefacts from orthopedic implants and improve image quality compared to SECT examination in forensic imaging.

  16. Evaluating the effect of increased pitch, iterative reconstruction and dual source CT on dose reduction and image quality.

    PubMed

    Gariani, Joanna; Martin, Steve P; Botsikas, Diomidis; Becker, Christoph D; Montet, Xavier

    2018-06-14

    To compare radiation dose and image quality of thoracoabdominal scans obtained with a high-pitch protocol (pitch 3.2) and iterative reconstruction (Sinogram Affirmed Iterative Reconstruction) in comparison to standard pitch reconstructed with filtered back projection (FBP) using dual source CT. 114 CT scans (Somatom Definition Flash, Siemens Healthineers, Erlangen, Germany), 39 thoracic scans, 54 thoracoabdominal scans and 21 abdominal scans were performed. Analysis of three protocols was undertaken; pitch of 1 reconstructed with FBP, pitch of 3.2 reconstructed with SAFIRE, pitch of 3.2 with stellar detectors reconstructed with SAFIRE. Objective and subjective image analysis were performed. Dose differences of the protocols used were compared. Dose was reduced when comparing scans with a pitch of 1 reconstructed with FBP to high-pitch scans with a pitch of 3.2 reconstructed with SAFIRE with a reduction of volume CT dose index of 75% for thoracic scans, 64% for thoracoabdominal scans and 67% for abdominal scans. There was a further reduction after the implementation of stellar detectors reflected in a reduction of 36% of the dose-length product for thoracic scans. This was not at the detriment of image quality, contrast-to-noise ratio, signal-to-noise ratio and the qualitative image analysis revealed a superior image quality in the high-pitch protocols. The combination of a high pitch protocol with iterative reconstruction allows significant dose reduction in routine chest and abdominal scans whilst maintaining or improving diagnostic image quality, with a further reduction in thoracic scans with stellar detectors. Advances in knowledge: High pitch imaging with iterative reconstruction is a tool that can be used to reduce dose without sacrificing image quality.

  17. Hexagonal undersampling for faster MRI near metallic implants.

    PubMed

    Sveinsson, Bragi; Worters, Pauline W; Gold, Garry E; Hargreaves, Brian A

    2015-02-01

    Slice encoding for metal artifact correction acquires a three-dimensional image of each excited slice with view-angle tilting to reduce slice and readout direction artifacts respectively, but requires additional imaging time. The purpose of this study was to provide a technique for faster imaging around metallic implants by undersampling k-space. Assuming that areas of slice distortion are localized, hexagonal sampling can reduce imaging time by 50% compared with conventional scans. This work demonstrates this technique by comparisons of fully sampled images with undersampled images, either from simulations from fully acquired data or from data actually undersampled during acquisition, in patients and phantoms. Hexagonal sampling is also shown to be compatible with parallel imaging and partial Fourier acquisitions. Image quality was evaluated using a structural similarity (SSIM) index. Images acquired with hexagonal undersampling had no visible difference in artifact suppression from fully sampled images. The SSIM index indicated high similarity to fully sampled images in all cases. The study demonstrates the ability to reduce scan time by undersampling without compromising image quality. © 2014 Wiley Periodicals, Inc.

  18. Comparison of a flexible versus a rigid breast compression paddle: pain experience, projected breast area, radiation dose and technical image quality.

    PubMed

    Broeders, Mireille J M; Ten Voorde, Marloes; Veldkamp, Wouter J H; van Engen, Ruben E; van Landsveld-Verhoeven, Cary; 't Jong-Gunneman, Machteld N L; de Win, Jos; Greve, Kitty Droogh-de; Paap, Ellen; den Heeten, Gerard J

    2015-03-01

    To compare pain, projected breast area, radiation dose and image quality between flexible (FP) and rigid (RP) breast compression paddles. The study was conducted in a Dutch mammographic screening unit (288 women). To compare both paddles one additional image with RP was made, consisting of either a mediolateral-oblique (MLO) or craniocaudal-view (CC). Pain experience was scored using the Numeric Rating Scale (NRS). Projected breast area was estimated using computer software. Radiation dose was estimated using the model by Dance. Image quality was reviewed by three radiologists and three radiographers. There was no difference in pain experience between both paddles (mean difference NRS: 0.08 ± 0.08, p = 0.32). Mean radiation dose was 4.5 % lower with FP (0.09 ± 0.01 p = 0.00). On MLO-images, the projected breast area was 0.79 % larger with FP. Paired evaluation of image quality indicated that FP removed fibroglandular tissue from the image area and reduced contrast in the clinically relevant retroglandular area at chest wall side. Although FP performed slightly better in the projected breast area, it moved breast tissue from the image area at chest wall side. RP showed better contrast, especially in the retroglandular area. We therefore recommend the use of RP for standard MLO and CC views.

  19. Stochastic performance modeling and evaluation of obstacle detectability with imaging range sensors

    NASA Technical Reports Server (NTRS)

    Matthies, Larry; Grandjean, Pierrick

    1993-01-01

    Statistical modeling and evaluation of the performance of obstacle detection systems for Unmanned Ground Vehicles (UGVs) is essential for the design, evaluation, and comparison of sensor systems. In this report, we address this issue for imaging range sensors by dividing the evaluation problem into two levels: quality of the range data itself and quality of the obstacle detection algorithms applied to the range data. We review existing models of the quality of range data from stereo vision and AM-CW LADAR, then use these to derive a new model for the quality of a simple obstacle detection algorithm. This model predicts the probability of detecting obstacles and the probability of false alarms, as a function of the size and distance of the obstacle, the resolution of the sensor, and the level of noise in the range data. We evaluate these models experimentally using range data from stereo image pairs of a gravel road with known obstacles at several distances. The results show that the approach is a promising tool for predicting and evaluating the performance of obstacle detection with imaging range sensors.

  20. Image quality comparison of two multifocal IOLs: influence of the pupil.

    PubMed

    García-Domene, Mari Carmen; Felipe, Adelina; Peris-Martínez, Cristina; Navea, Amparo; Artigas, Jose M; Pons, Álvaro M

    2015-04-01

    To evaluate the effect of pupil size on image quality of a sectorial multifocal intraocular lens (IOL), the Lentis Mplus (Oculentis GmbH, Berlin, Germany), and the Acri.LISA IOL (Carl Zeiss Meditec, Jena, Germany). The authors measured the MTFs of the Lentis Mplus LS-312 IOL and the Acri.LISA 366D IOL with three different sizes of pupil diameters: 3, 4, and 5 mm. The MTF was calculated from the cross-line spread function recorded with the OPAL Vector System (Image Science Ltd., Oxford, UK) by using fast Fourier-transform techniques. In distance focus, the image quality provided by the Lentis Mplus IOL was better than that of the Acri. LISA IOL with all pupil diameters. In near focus, the MTF of the Acri.LISA IOL was better with a 3-mm pupil, but poor with larger pupils. The aberration effect was equal in both IOLs in distance focus, but in near focus and with a 3-mm pupil, the Acri.LISA IOL was less affected by the aberration than the Lentis Mplus IOL. The Lentis Mplus IOL provides better distance image quality than the Acri.LISA IOL, whereas the near image quality of the Acri.LISA IOL is better with small-pupil diameter. The sectorial design makes this IOL more suitable for patients with a pupil diameter greater than 3 mm. Copyright 2015, SLACK Incorporated.

  1. An image quality comparison study between XVI and OBI CBCT systems.

    PubMed

    Kamath, Srijit; Song, William; Chvetsov, Alexei; Ozawa, Shuichi; Lu, Haibin; Samant, Sanjiv; Liu, Chihray; Li, Jonathan G; Palta, Jatinder R

    2011-02-04

    The purpose of this study is to evaluate and compare image quality characteristics for two commonly used and commercially available CBCT systems: the X-ray Volumetric Imager and the On-Board Imager. A commonly used CATPHAN image quality phantom was used to measure various image quality parameters, namely, pixel value stability and accuracy, noise, contrast to noise ratio (CNR), high-contrast resolution, low contrast resolution and image uniformity. For the XVI unit, we evaluated the image quality for four manufacturer-supplied protocols as a function of mAs. For the OBI unit, we did the same for the full-fan and half-fan scanning modes, which were respectively used with the full bow-tie and half bow-tie filters. For XVI, the mean pixel values of regions of interest were found to generally decrease with increasing mAs for all protocols, while they were relatively stable with mAs for OBI. Noise was slightly lower on XVI and was seen to decrease with increasing mAs, while CNR increased with mAs for both systems. For XVI and OBI, the high-contrast resolution was approximately limited by the pixel resolution of the reconstructed image. On OBI images, up to 6 and 5 discs of 1% and 0.5% contrast, respectively, were visible for a high mAs setting using the full-fan mode, while none of the discs were clearly visible on the XVI images for various mAs settings when the medium resolution reconstruction was used. In conclusion, image quality parameters for XVI and OBI have been quantified and compared for clinical protocols under various mAs settings. These results need to be viewed in the context of a recent study that reported the dose-mAs relationship for the two systems and found that OBI generally delivered higher imaging doses than XVI.

  2. Clinical comparative study with a large-area amorphous silicon flat-panel detector: image quality and visibility of anatomic structures on chest radiography.

    PubMed

    Fink, Christian; Hallscheidt, Peter J; Noeldge, Gerd; Kampschulte, Annette; Radeleff, Boris; Hosch, Waldemar P; Kauffmann, Günter W; Hansmann, Jochen

    2002-02-01

    The objective of this study was to compare clinical chest radiographs of a large-area, flat-panel digital radiography system and a conventional film-screen radiography system. The comparison was based on an observer preference study of image quality and visibility of anatomic structures. Routine follow-up chest radiographs were obtained from 100 consecutive oncology patients using a large-area, amorphous silicon flat-panel detector digital radiography system (dose equivalent to a 400-speed film system). Hard-copy images were compared with previous examinations of the same individuals taken on a conventional film-screen system (200-speed). Patients were excluded if changes in the chest anatomy were detected or if the time interval between the examinations exceeded 1 year. Observer preference was evaluated for the image quality and the visibility of 15 anatomic structures using a five-point scale. Dose measurements with a chest phantom showed a dose reduction of approximately 50% with the digital radiography system compared with the film-screen radiography system. The image quality and the visibility of all but one anatomic structure of the images obtained with the digital flat-panel detector system were rated significantly superior (p < or = 0.0003) to those obtained with the conventional film-screen radiography system. The image quality and visibility of anatomic structures on the images obtained by the flat-panel detector system were perceived as equal or superior to the images from conventional film-screen chest radiography. This was true even though the radiation dose was reduced approximately 50% with the digital flat-panel detector system.

  3. Comparison of the diagnostic quality of computed tomography images of normal ocular and orbital structures acquired with and without the use of general anesthesia in the cat.

    PubMed

    Collins, Sean P; Matheson, Jodi S; Hamor, Ralph E; Mitchell, Mark A; Labelle, Amber L; O'Brien, Robert T

    2013-09-01

    To compare the diagnostic quality of computed tomography (CT) images of normal ocular and orbital structures acquired with and without the use of general anesthesia in the cat. Eleven privately owned cats with nasal disease presenting to a single referral hospital. All cats received a complete ophthalmic examination. A 16 multislice helical CT system was utilized to acquire images of the skull and neck with and without the use of general anesthesia. Images were acquired before and after the administration of intravenous iodinated contrast. Images of normal ocular and orbital structures were evaluated via consensus by two board-certified radiologists. Visibility of ocular and orbital structures, degree of motion, and streak artifact were assessed and scored for each image set in the transverse, dorsal, and sagittal planes. The use of general anesthesia did not significantly affect the diagnostic quality of images. No motion artifact was observed in any CT image. Streak artifact was significantly increased in scans performed in the transverse orientation but not in the dorsal orientation or sagittal orientation and did not affect the diagnostic quality of the images. Contrast enhancement did not significantly enhance the visibility of any ocular or orbital structures. Diagnostic CT images of normal ocular and orbital structures can be acquired without the use of general anesthesia in the cat. © 2012 American College of Veterinary Ophthalmologists.

  4. iPhone 4s and iPhone 5s Imaging of the Eye

    PubMed Central

    Jalil, Maaz; Ferenczy, Sandor R.; Shields, Carol L.

    2017-01-01

    Background/Aims To evaluate the technical feasibility of a consumer-grade cellular iPhone camera as an ocular imaging device compared to existing ophthalmic imaging equipment for documentation purposes. Methods A comparison of iPhone 4s and 5s images was made with external facial images (macrophotography) using Nikon cameras, slit-lamp images (microphotography) using Zeiss photo slit-lamp camera, and fundus images (fundus photography) using RetCam II. Results In an analysis of six consecutive patients with ophthalmic conditions, both iPhones achieved documentation of external findings (macrophotography) using standard camera modality, tap to focus, and built-in flash. Both iPhones achieved documentation of anterior segment findings (microphotography) during slit-lamp examination through oculars. Both iPhones achieved fundus imaging using standard video modality with continuous iPhone illumination through an ophthalmic lens. Comparison to standard ophthalmic cameras, macrophotography and microphotography were excellent. In comparison to RetCam fundus photography, iPhone fundus photography revealed smaller field and was technically more difficult to obtain, but the quality was nearly similar to RetCam. Conclusions iPhone versions 4s and 5s can provide excellent ophthalmic macrophotography and microphotography and adequate fundus photography. We believe that iPhone imaging could be most useful in settings where expensive, complicated, and cumbersome imaging equipment is unavailable. PMID:28275604

  5. Autocorrelation techniques for soft photogrammetry

    NASA Astrophysics Data System (ADS)

    Yao, Wu

    In this thesis research is carried out on image processing, image matching searching strategies, feature type and image matching, and optimal window size in image matching. To make comparisons, the soft photogrammetry package SoftPlotter is used. Two aerial photographs from the Iowa State University campus high flight 94 are scanned into digital format. In order to create a stereo model from them, interior orientation, single photograph rectification and stereo rectification are done. Two new image matching methods, multi-method image matching (MMIM) and unsquare window image matching are developed and compared. MMIM is used to determine the optimal window size in image matching. Twenty four check points from four different types of ground features are used for checking the results from image matching. Comparison between these four types of ground feature shows that the methods developed here improve the speed and the precision of image matching. A process called direct transformation is described and compared with the multiple steps in image processing. The results from image processing are consistent with those from SoftPlotter. A modified LAN image header is developed and used to store the information about the stereo model and image matching. A comparison is also made between cross correlation image matching (CCIM), least difference image matching (LDIM) and least square image matching (LSIM). The quality of image matching in relation to ground features are compared using two methods developed in this study, the coefficient surface for CCIM and the difference surface for LDIM. To reduce the amount of computation in image matching, the best-track searching algorithm, developed in this research, is used instead of the whole range searching algorithm.

  6. Application of the quantum spin glass theory to image restoration.

    PubMed

    Inoue, J I

    2001-04-01

    Quantum fluctuation is introduced into the Markov random-field model for image restoration in the context of a Bayesian approach. We investigate the dependence of the quantum fluctuation on the quality of a black and white image restoration by making use of statistical mechanics. We find that the maximum posterior marginal (MPM) estimate based on the quantum fluctuation gives a fine restoration in comparison with the maximum a posteriori estimate or the thermal fluctuation based MPM estimate.

  7. Comparison and analysis of nonlinear algorithms for compressed sensing in MRI.

    PubMed

    Yu, Yeyang; Hong, Mingjian; Liu, Feng; Wang, Hua; Crozier, Stuart

    2010-01-01

    Compressed sensing (CS) theory has been recently applied in Magnetic Resonance Imaging (MRI) to accelerate the overall imaging process. In the CS implementation, various algorithms have been used to solve the nonlinear equation system for better image quality and reconstruction speed. However, there are no explicit criteria for an optimal CS algorithm selection in the practical MRI application. A systematic and comparative study of those commonly used algorithms is therefore essential for the implementation of CS in MRI. In this work, three typical algorithms, namely, the Gradient Projection For Sparse Reconstruction (GPSR) algorithm, Interior-point algorithm (l(1)_ls), and the Stagewise Orthogonal Matching Pursuit (StOMP) algorithm are compared and investigated in three different imaging scenarios, brain, angiogram and phantom imaging. The algorithms' performances are characterized in terms of image quality and reconstruction speed. The theoretical results show that the performance of the CS algorithms is case sensitive; overall, the StOMP algorithm offers the best solution in imaging quality, while the GPSR algorithm is the most efficient one among the three methods. In the next step, the algorithm performances and characteristics will be experimentally explored. It is hoped that this research will further support the applications of CS in MRI.

  8. Application of acid-modified Imperata cylindrica powder for latent fingerprint development.

    PubMed

    Low, Wei Zeng; Khoo, Bee Ee; Aziz, Zalina Binti Abdul; Low, Ling Wei; Teng, Tjoon Tow; bin Abdullah, Ahmad Fahmi Lim

    2015-09-01

    A novel powdering material that utilizes acid-modified Imperata cylindrica (IC) powder for the development of fingermarks was studied. Experiments were carried out to determine the suitability, adherence quality and sensitivity of the acid-modified IC powder. Fingermarks of different constituents (eccrine, sebaceous and natural fingermarks) on different types of surfaces were used. Acid-modified IC powder was also used to develop fingermarks of different ages as well as aged fingermarks recovered from the water. From the visual inspection, acid-modified IC powder was able to interact with different fingermark constituents and produced distinct ridge details on the examined surfaces. It was also able to develop aged fingermarks and fingermarks that were submerged in water. A statistical comparison was made against the Sirchie® Hi-Fi black powder in terms of the powders' sensitivity and quality of the developed natural fingermarks. The image quality was analyzed using MITRE's Image Quality of Fingerprint (IQF) software. From the experiments, acid-modified IC powder has the potential as a fingermark development powder, although natural fingermarks developed by Sirchie® black powder showed better quality and sensitivity based on the results of the statistical comparison. Copyright © 2015 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Applicability of common measures in multifocus image fusion comparison

    NASA Astrophysics Data System (ADS)

    Vajgl, Marek

    2017-11-01

    Image fusion is an image processing area aimed at fusion of multiple input images to achieve an output image somehow better then each of the input ones. In the case of "multifocus fusion", input images are capturing the same scene differing ina focus distance. The aim is to obtain an image, which is sharp in all its areas. The are several different approaches and methods used to solve this problem. However, it is common question which one is the best. This work describes a research covering the field of common measures with a question, if some of them can be used as a quality measure of the fusion result evaluation.

  10. Dedicated dental volumetric and total body multislice computed tomography: a comparison of image quality and radiation dose

    NASA Astrophysics Data System (ADS)

    Strocchi, Sabina; Colli, Vittoria; Novario, Raffaele; Carrafiello, Gianpaolo; Giorgianni, Andrea; Macchi, Aldo; Fugazzola, Carlo; Conte, Leopoldo

    2007-03-01

    Aim of this work is to compare the performances of a Xoran Technologies i-CAT Cone Beam CT for dental applications with those of a standard total body multislice CT (Toshiba Aquilion 64 multislice) used for dental examinations. Image quality and doses to patients have been compared for the three main i-CAT protocols, the Toshiba standard protocol and a Toshiba modified protocol. Images of two phantoms have been acquired: a standard CT quality control phantom and an Alderson Rando ® anthropomorphic phantom. Image noise, Signal to Noise Ratio (SNR), Contrast to Noise Ratio (CNR) and geometric accuracy have been considered. Clinical image quality was assessed. Effective dose and doses to main head and neck organs were evaluated by means of thermo-luminescent dosimeters (TLD-100) placed in the anthropomorphic phantom. A Quality Index (QI), defined as the ratio of squared CNR to effective dose, has been evaluated. The evaluated effective doses range from 0.06 mSv (i-CAT 10 s protocol) to 2.37 mSv (Toshiba standard protocol). The Toshiba modified protocol (halved tube current, higher pitch value) imparts lower effective dose (0.99 mSv). The conventional CT device provides lower image noise and better SNR, but clinical effectiveness similar to that of dedicated dental CT (comparable CNR and clinical judgment). Consequently, QI values are much higher for this second CT scanner. No geometric distortion has been observed with both devices. As a conclusion, dental volumetric CT supplies adequate image quality to clinical purposes, at doses that are really lower than those imparted by a conventional CT device.

  11. Quantitative comparison of OSEM and penalized likelihood image reconstruction using relative difference penalties for clinical PET

    NASA Astrophysics Data System (ADS)

    Ahn, Sangtae; Ross, Steven G.; Asma, Evren; Miao, Jun; Jin, Xiao; Cheng, Lishui; Wollenweber, Scott D.; Manjeshwar, Ravindra M.

    2015-08-01

    Ordered subset expectation maximization (OSEM) is the most widely used algorithm for clinical PET image reconstruction. OSEM is usually stopped early and post-filtered to control image noise and does not necessarily achieve optimal quantitation accuracy. As an alternative to OSEM, we have recently implemented a penalized likelihood (PL) image reconstruction algorithm for clinical PET using the relative difference penalty with the aim of improving quantitation accuracy without compromising visual image quality. Preliminary clinical studies have demonstrated visual image quality including lesion conspicuity in images reconstructed by the PL algorithm is better than or at least as good as that in OSEM images. In this paper we evaluate lesion quantitation accuracy of the PL algorithm with the relative difference penalty compared to OSEM by using various data sets including phantom data acquired with an anthropomorphic torso phantom, an extended oval phantom and the NEMA image quality phantom; clinical data; and hybrid clinical data generated by adding simulated lesion data to clinical data. We focus on mean standardized uptake values and compare them for PL and OSEM using both time-of-flight (TOF) and non-TOF data. The results demonstrate improvements of PL in lesion quantitation accuracy compared to OSEM with a particular improvement in cold background regions such as lungs.

  12. Feasibility study of utilizing ultraportable projectors for endoscopic video display (with videos).

    PubMed

    Tang, Shou-Jiang; Fehring, Amanda; Mclemore, Mac; Griswold, Michael; Wang, Wanmei; Paine, Elizabeth R; Wu, Ruonan; To, Filip

    2014-10-01

    Modern endoscopy requires video display. Recent miniaturized, ultraportable projectors are affordable, durable, and offer quality image display. Explore feasibility of using ultraportable projectors in endoscopy. Prospective bench-top comparison; clinical feasibility study. Masked comparison study of images displayed via 2 Samsung ultraportable light-emitting diode projectors (pocket-sized SP-HO3; pico projector SP-P410M) and 1 Microvision Showwx-II Laser pico projector. BENCH-TOP FEASIBILITY STUDY: Prerecorded endoscopic video was streamed via computer. CLINICAL COMPARISON STUDY: Live high-definition endoscopy video was simultaneously displayed through each processor onto a standard liquid crystal display monitor and projected onto a portable, pull-down projection screen. Endoscopists, endoscopy nurses, and technicians rated video images; ratings were analyzed by linear mixed-effects regression models with random intercepts. All projectors were easy to set up, adjust, focus, and operate, with no real-time lapse for any. Bench-top study outcomes: Samsung pico preferred to Laser pico, overall rating 1.5 units higher (95% confidence interval [CI] = 0.7-2.4), P < .001; Samsung pocket preferred to Laser pico, 3.3 units higher (95% CI = 2.4-4.1), P < .001; Samsung pocket preferred to Samsung pico, 1.7 units higher (95% CI = 0.9-2.5), P < .001. The clinical comparison study confirmed the Samsung pocket projector as best, with a higher overall rating of 2.3 units (95% CI = 1.6-3.0), P < .001, than Samsung pico. Low brightness currently limits pico projector use in clinical endoscopy. The pocket projector, with higher brightness levels (170 lumens), is clinically useful. Continued improvements to ultraportable projectors will supply a needed niche in endoscopy through portability, reduced cost, and equal or better image quality. © The Author(s) 2013.

  13. Comparison of Transesophageal and Transthoracic Contrast Echocardiography for Detection of a Patent Foramen Ovale

    NASA Technical Reports Server (NTRS)

    Siostrzonek, Peter; Zangeneh, Massoud; Gossinger, Heinz; Lang, Wilfried; Rosenmayr, Georg; Heinz, Gottfried; Stumpflen, Andreas; Zeiler, Karl; Schwarz, Martin; Mosslacher, Herbert

    1991-01-01

    Presence of a patent foramen ovale may indicate paradoxic embolism in patients with otherwise unexplained embolic disease. Transthoracic contrast echocardiography has been used as a simple technique for detecting patent foramen ovale. However, particularly in patients with poor transthoracic image quality, presence of a patent foramen ovale might be missed. Transesophageal contrast echocardiography provides superior visualization of the atrial septum and therefore is believed to improve diagnostic accuracy. The present study investigates the influence of image quality on the detection of a patent foramen ovale by both transthoracic and transesophageal contrast echocardiography.

  14. Less iodine injected for the same diagnostic performances: comparison of two low-osmolar contrast agents (iobitridol 350 and iopamidol 370) in coronary angiography and ventriculography: a randomized double-blind clinical study.

    PubMed

    Velázquez, Maríia Teresa; Albarrán, Agustín; Hernández, Felipe; García Tejada, Julio; Zueco, Javier; Andreu, Javier; De la Torre, Jose-María; Figueroa, Alvaro; Sainz, Fermin; Tascón, Juan

    2010-08-01

    Mild reductions in iodine concentration could reduce acute side effects after intraarterial contrast media administration without affecting the quality of coronary artery images. This study was designed to show the equivalence in terms of image quality of two nonionic low-osmolar monomers, iobitridol 350 and iopamidol 370, and to compare their clinical safety in coronary angiography and ventriculography. In this multicentre, double-blind clinical trial, 98 adult patients were randomized to receive either iobitridol 350 or iopamidol 370. The image quality (primary evaluation criterion) of the whole examination was assessed using a 5-point scale (poor, fair, moderate, good, excellent). Secondary endpoints were the image quality per territory, diagnostic efficacy, practical comfort (5-point scale: impossible to evaluate, not practical, moderately practical, practical, very practical to use) and clinical safety (adverse events and vital signs). The proportions of examinations presenting with good or excellent global image quality was similar with both contrast media: 87.8% with iobitridol 350 vs. 89.8% with iopamidol 370. Similar results were observed when considering the image quality specifically for each major coronary artery and left ventricle. No difference between groups was found with respect to other secondary criteria. Adverse events occurred in 7 patients with iobitridol 350 (14.3%) and in 10 patients with iopamidol 370 (20.4%). This study showed that, with regard to image quality and diagnostic efficacy and using a lower iodine concentration, iobitridol 350 was comparable to iopamidol 370 in adult patients requiring coronary angiography and ventriculography for diagnostic indications.

  15. The mobile image quality survey game

    NASA Astrophysics Data System (ADS)

    Rasmussen, D. René

    2012-01-01

    In this paper we discuss human assessment of the quality of photographic still images, that are degraded in various manners relative to an original, for example due to compression or noise. In particular, we examine and present results from a technique where observers view images on a mobile device, perform pairwise comparisons, identify defects in the images, and interact with the display to indicate the location of the defects. The technique measures the response time and accuracy of the responses. By posing the survey in a form similar to a game, providing performance feedback to the observer, the technique attempts to increase the engagement of the observers, and to avoid exhausting observers, a factor that is often a problem for subjective surveys. The results are compared with the known physical magnitudes of the defects and with results from similar web-based surveys. The strengths and weaknesses of the technique are discussed. Possible extensions of the technique to video quality assessment are also discussed.

  16. Non-enhanced MR imaging of cerebral aneurysms: 7 Tesla versus 1.5 Tesla.

    PubMed

    Wrede, Karsten H; Dammann, Philipp; Mönninghoff, Christoph; Johst, Sören; Maderwald, Stefan; Sandalcioglu, I Erol; Müller, Oliver; Özkan, Neriman; Ladd, Mark E; Forsting, Michael; Schlamann, Marc U; Sure, Ulrich; Umutlu, Lale

    2014-01-01

    To prospectively evaluate 7 Tesla time-of-flight (TOF) magnetic resonance angiography (MRA) in comparison to 1.5 Tesla TOF MRA and 7 Tesla non-contrast enhanced magnetization-prepared rapid acquisition gradient-echo (MPRAGE) for delineation of unruptured intracranial aneurysms (UIA). Sixteen neurosurgical patients (male n = 5, female n = 11) with single or multiple UIA were enrolled in this trial. All patients were accordingly examined at 7 Tesla and 1.5 Tesla MRI utilizing dedicated head coils. The following sequences were obtained: 7 Tesla TOF MRA, 1.5 Tesla TOF MRA and 7 Tesla non-contrast enhanced MPRAGE. Image analysis was performed by two radiologists with regard to delineation of aneurysm features (dome, neck, parent vessel), presence of artifacts, vessel-tissue-contrast and overall image quality. Interobserver accordance and intermethod comparisons were calculated by kappa coefficient and Lin's concordance correlation coefficient. A total of 20 intracranial aneurysms were detected in 16 patients, with two patients showing multiple aneurysms (n = 2, n = 4). Out of 20 intracranial aneurysms, 14 aneurysms were located in the anterior circulation and 6 aneurysms in the posterior circulation. 7 Tesla MPRAGE imaging was superior over 1.5 and 7 Tesla TOF MRA in the assessment of all considered aneurysm and image quality features (e.g. image quality: mean MPRAGE7T: 5.0; mean TOF7T: 4.3; mean TOF1.5T: 4.3). Ratings for 7 Tesla TOF MRA were equal or higher over 1.5 Tesla TOF MRA for all assessed features except for artifact delineation (mean TOF7T: 4.3; mean TOF1.5T 4.4). Interobserver accordance was good to excellent for most ratings. 7 Tesla MPRAGE imaging demonstrated its superiority in the detection and assessment of UIA as well as overall imaging features, offering excellent interobserver accordance and highest scores for all ratings. Hence, it may bear the potential to serve as a high-quality diagnostic tool for pretherapeutic assessment and follow-up of untreated UIA.

  17. Non-Enhanced MR Imaging of Cerebral Aneurysms: 7 Tesla versus 1.5 Tesla

    PubMed Central

    Wrede, Karsten H.; Dammann, Philipp; Mönninghoff, Christoph; Johst, Sören; Maderwald, Stefan; Sandalcioglu, I. Erol; Müller, Oliver; Özkan, Neriman; Ladd, Mark E.; Forsting, Michael; Schlamann, Marc U.; Sure, Ulrich; Umutlu, Lale

    2014-01-01

    Purpose To prospectively evaluate 7 Tesla time-of-flight (TOF) magnetic resonance angiography (MRA) in comparison to 1.5 Tesla TOF MRA and 7 Tesla non-contrast enhanced magnetization-prepared rapid acquisition gradient-echo (MPRAGE) for delineation of unruptured intracranial aneurysms (UIA). Material and Methods Sixteen neurosurgical patients (male n = 5, female n = 11) with single or multiple UIA were enrolled in this trial. All patients were accordingly examined at 7 Tesla and 1.5 Tesla MRI utilizing dedicated head coils. The following sequences were obtained: 7 Tesla TOF MRA, 1.5 Tesla TOF MRA and 7 Tesla non-contrast enhanced MPRAGE. Image analysis was performed by two radiologists with regard to delineation of aneurysm features (dome, neck, parent vessel), presence of artifacts, vessel-tissue-contrast and overall image quality. Interobserver accordance and intermethod comparisons were calculated by kappa coefficient and Lin's concordance correlation coefficient. Results A total of 20 intracranial aneurysms were detected in 16 patients, with two patients showing multiple aneurysms (n = 2, n = 4). Out of 20 intracranial aneurysms, 14 aneurysms were located in the anterior circulation and 6 aneurysms in the posterior circulation. 7 Tesla MPRAGE imaging was superior over 1.5 and 7 Tesla TOF MRA in the assessment of all considered aneurysm and image quality features (e.g. image quality: mean MPRAGE7T: 5.0; mean TOF7T: 4.3; mean TOF1.5T: 4.3). Ratings for 7 Tesla TOF MRA were equal or higher over 1.5 Tesla TOF MRA for all assessed features except for artifact delineation (mean TOF7T: 4.3; mean TOF1.5T 4.4). Interobserver accordance was good to excellent for most ratings. Conclusion 7 Tesla MPRAGE imaging demonstrated its superiority in the detection and assessment of UIA as well as overall imaging features, offering excellent interobserver accordance and highest scores for all ratings. Hence, it may bear the potential to serve as a high-quality diagnostic tool for pretherapeutic assessment and follow-up of untreated UIA. PMID:24400100

  18. Effects of dose reduction on multi-detector computed tomographic images in evaluating the maxilla and mandible for pre-surgical implant planning: a cadaveric study.

    PubMed

    Koizumi, Hiroshi; Sur, Jaideep; Seki, Kenji; Nakajima, Koh; Sano, Tsukasa; Okano, Tomohiro

    2010-08-01

    To assess effects of dose reduction on image quality in evaluating maxilla and mandible for pre-surgical implant planning using cadavers. Six cadavers were used for the study using multi-detector computed tomography (CT) operated at 120 kV and the variable tube current of 80, 40, 20 and 10 mA. A slice thickness of 0.625 mm and pitch 1 were used. Multi-planar images perpendicular and parallel to dentitions were created. The images were evaluated by five oral radiologists in terms of visibility of the anatomical landmarks including alveolar crest, mandibular canal, floors of the maxillary sinus and nasal cavity, contours/cortical layer of jaw bones and the details of trabecular bone. Observers were asked to determine the quality of the images in comparison with 80 mA images based on the criteria: excellent, good, fair or non-diagnostic. The average scores of all observers were calculated for each specimen in all exposure conditions. The 40 mA images could visualize such landmarks and were evaluated to be same or almost equivalent in quality to the 80 mA images. Even the 20 mA images could be accepted just for diagnostic purpose for implant with substantial deterioration of the image quality. The 10 mA images may not be accepted because of the obscured contour caused by image noise. Significant dose reduction by lowering mA can be utilized for pre-surgical implant planning in multi-detector CT.

  19. DSM Generation from ALSO/PRISM Images Using SAT-PP

    NASA Astrophysics Data System (ADS)

    Wolff, Kirsten; Gruen, Armin

    2008-11-01

    One of the most important products of ALOS/PRISM image data are accurate DSMs. To exploit the full potential of the full resolution of PRISM for DSM generation, a highly developed image matcher is needed. As a member of the validation and calibration team for PRISM we published earlier results of DSM generation using PRISM image triplets in combination with our software package SAT-PP. The overall accuracy across all object and image features for all tests lies between 1-5 pixels in matching, depending primarily on surface roughness, vegetation, image texture and image quality. Here we will discuss some new results. We focus on four different topics: the use of two different evaluation methods, the difference between a 5m and a 10m GSD for the final PRISM DSM, the influence of the level of initial information and the comparison of the quality of different combinations of the three different views forward, nadir and backward. All tests have been conducted with our testfield Bern/Thun, Switzerland.

  20. Assessment of illumination conditions in a single-pixel imaging configuration

    NASA Astrophysics Data System (ADS)

    Garoi, Florin; Udrea, Cristian; Damian, Cristian; Logofǎtu, Petre C.; Colţuc, Daniela

    2016-12-01

    Single-pixel imaging based on multiplexing is a promising technique, especially in applications where 2D detectors or raster scanning imaging are not readily applicable. With this method, Hadamard masks are projected on a spatial light modulator to encode an incident scene and a signal is recorded at the photodiode detector for each of these masks. Ultimately, the image is reconstructed on the computer by applying the inverse transform matrix. Thus, various algorithms were optimized and several spatial light modulators already characterized for such a task. This work analyses the imaging quality of such a single-pixel arrangement, when various illumination conditions are used. More precisely, the main comparison is made between coherent and incoherent ("white light") illumination and between two multiplexing methods, namely Hadamard and Scanning. The quality of the images is assessed by calculating their SNR, using two relations. The results show better images are obtained with "white light" illumination for the first method and coherent one for the second.

  1. Non-ECG-gated unenhanced MRA of the carotids: optimization and clinical feasibility.

    PubMed

    Raoult, H; Gauvrit, J Y; Schmitt, P; Le Couls, V; Bannier, E

    2013-11-01

    To optimise and assess the clinical feasibility of a carotid non-ECG-gated unenhanced MRA sequence. Sixteen healthy volunteers and 11 patients presenting with internal carotid artery (ICA) disease underwent large field-of-view balanced steady-state free precession (bSSFP) unenhanced MRA at 3T. Sampling schemes acquiring the k-space centre either early (kCE) or late (kCL) in the acquisition window were evaluated. Signal and image quality was scored in comparison to ECG-gated kCE unenhanced MRA and TOF. For patients, computed tomography angiography was used as the reference. In volunteers, kCE sampling yielded higher image quality than kCL and TOF, with fewer flow artefacts and improved signal homogeneity. kCE unenhanced MRA image quality was higher without ECG-gating. Arterial signal and artery/vein contrast were higher with both bSSFP sampling schemes than with TOF. The kCE sequence allowed correct quantification of ten significant stenoses, and it facilitated the identification of an infrapetrous dysplasia, which was outside of the TOF imaging coverage. Non-ECG-gated bSSFP carotid imaging offers high-quality images and is a promising sequence for carotid disease diagnosis in a short acquisition time with high spatial resolution and a large field of view. • Non-ECG-gated unenhanced bSSFP MRA offers high-quality imaging of the carotid arteries. • Sequences using early acquisition of the k-space centre achieve higher image quality. • Non-ECG-gated unenhanced bSSFP MRA allows quantification of significant carotid stenosis. • Short MR acquisition times and ungated sequences are helpful in clinical practice. • High 3D spatial resolution and a large field of view improve diagnostic performance.

  2. Optimization and Clinical Feasibility of Free-breathing Diffusion-weighted Imaging of the Liver: Comparison with Respiratory-Triggered Diffusion-weighted Imaging.

    PubMed

    Takayama, Yukihisa; Nishie, Akihiro; Asayama, Yoshiki; Ishigami, Kousei; Kakihara, Daisuke; Ushijima, Yasuhiro; Fujita, Nobuhiro; Yoshiura, Takashi; Takemura, Atsushi; Obara, Makoto; Takahara, Taro; Honda, Hiroshi

    2015-01-01

    We compared the image quality of free-breathing diffusion-weighted imaging (FB-DWI) to that of respiratory-triggered DWI (RT-DWI) after proper optimization. Three healthy subjects were scanned to optimize magnetic resonance (MR) parameters of FB-DWI to improve image quality, including spatial resolution, image noise, and chemical shift artifacts. After this optimization, we scanned 32 patients with liver disease to assess the clinical feasibility of the optimized FB-DWI. Of the 32 patients, 14 had a total of 28 hepatocellular carcinomas (HCCs), four had a total of 15 metastatic liver tumors, and the other 14 had no tumor. Qualitatively, we compared the image quality scores of FB-DWI with those of RT-DWI with the Wilcoxon signed-rank test. Quantitatively, we compared the signal-to-noise ratios (SNRs) of the liver parenchyma, lesion-to-nonlesion contrast-to-noise ratios (CNRs) and apparent diffusion coefficient (ADC) values of the liver parenchyma and liver tumor by the paired t-test. The average scores of image quality for sharpness of liver contour, image noise, and chemical shift artifacts were significantly higher for FB-DWI than RT-DWI (P < 0.05). SNRs, CNRs, and ADC values of the liver parenchyma and tumors did not differ significantly between the 2 DWI methods. Compared with RT-DWI, the optimized FB-DWI provided better spatial resolution, fewer artifacts, and comparable SNRs, lesion-to-nonlesion CNRs, and ADC values.

  3. Measurement Invariance of the Appearance Schemas Inventory-Revised and the Body Image Quality of Life Inventory across Age and Gender

    ERIC Educational Resources Information Center

    Rusticus, Shayna A.; Hubley, Anita M.; Zumbo, Bruno D.

    2008-01-01

    The majority of body image measures have largely been developed with younger female samples. Before these measures can be applied to men, and to middle-aged and older women, and used to make gender and age comparisons, they must exhibit adequate cross-group measurement invariance. This study examined the age and gender cross-group measurement…

  4. Memory preservation made prestigious but easy

    NASA Astrophysics Data System (ADS)

    Fageth, Reiner; Debus, Christina; Sandhaus, Philipp

    2011-01-01

    Preserving memories combined with story-telling using either photo books for multiple images or high quality products such as one or a few images printed on canvas or images mounted on acryl to create high-quality wall decorations are gradually becoming more popular than classical 4*6 prints and classical silver halide posters. Digital printing via electro photography and ink jet is increasingly replacing classical silver halide technology as the dominant production technology for these kinds of products. Maintaining a consistent and comparable quality of output is becoming more challenging than using silver halide paper for both, prints and posters. This paper describes a unique approach of combining both desktop based software to initiate a compelling project and the use of online capabilities in order to finalize and optimize that project in an online environment in a community process. A comparison of the consumer behavior between online and desktop based solutions for generating photo books will be presented.

  5. Single-energy pediatric chest computed tomography with spectral filtration at 100 kVp: effects on radiation parameters and image quality.

    PubMed

    Bodelle, Boris; Fischbach, Constanze; Booz, Christian; Yel, Ibrahim; Frellesen, Claudia; Kaup, Moritz; Beeres, Martin; Vogl, Thomas J; Scholtz, Jan-Erik

    2017-06-01

    Most of the applied radiation dose at CT is in the lower photon energy range, which is of limited diagnostic importance. To investigate image quality and effects on radiation parameters of 100-kVp spectral filtration single-energy chest CT using a tin-filter at third-generation dual-source CT in comparison to standard 100-kVp chest CT. Thirty-three children referred for a non-contrast chest CT performed on a third-generation dual-source CT scanner were examined at 100 kVp with a dedicated tin filter with a tube current-time product resulting in standard protocol dose. We compared resulting images with images from children examined using standard single-source chest CT at 100 kVp. We assessed objective and subjective image quality and compared radiation dose parameters. Radiation dose was comparable for children 5 years old and younger, and it was moderately decreased for older children when using spectral filtration (P=0.006). Effective tube current increased significantly (P=0.0001) with spectral filtration, up to a factor of 10. Signal-to-noise ratio and image noise were similar for both examination techniques (P≥0.06). Subjective image quality showed no significant differences (P≥0.2). Using 100-kVp spectral filtration chest CT in children by means of a tube-based tin-filter on a third-generation dual-source CT scanner increases effective tube current up to a factor of 10 to provide similar image quality at equivalent dose compared to standard single-source CT without spectral filtration.

  6. Contrast-detail phantom scoring methodology.

    PubMed

    Thomas, Jerry A; Chakrabarti, Kish; Kaczmarek, Richard; Romanyukha, Alexander

    2005-03-01

    Published results of medical imaging studies which make use of contrast detail mammography (CDMAM) phantom images for analysis are difficult to compare since data are often not analyzed in the same way. In order to address this situation, the concept of ideal contrast detail curves is suggested. The ideal contrast detail curves are constructed based on the requirement of having the same product of the diameter and contrast (disk thickness) of the minimal correctly determined object for every row of the CDMAM phantom image. A correlation and comparison of five different quality parameters of the CDMAM phantom image determined for obtained ideal contrast detail curves is performed. The image quality parameters compared include: (1) contrast detail curve--a graph correlation between "minimal correct reading" diameter and disk thickness; (2) correct observation ratio--the ratio of the number of correctly identified objects to the actual total number of objects multiplied by 100; (3) image quality figure--the sum of the product of the diameter of the smallest scored object and its relative contrast; (4) figure-of-merit--the zero disk diameter value obtained from extrapolation of the contrast detail curve to the origin (e.g., zero disk diameter); and (5) k-factor--the product of the thickness and the diameter of the smallest correctly identified disks. The analysis carried out showed the existence of a nonlinear relationship between the above parameters, which means that use of different parameters of CDMAM image quality potentially can cause different conclusions about changes in image quality. Construction of the ideal contrast detail curves for CDMAM phantom is an attempt to determine the quantitative limits of the CDMAM phantom as employed for image quality evaluation. These limits are determined by the relationship between certain parameters of a digital mammography system and the set of the gold disks sizes in the CDMAM phantom. Recommendations are made on selections of CDMAM phantom regions which should be used for scoring at different image quality and which scoring methodology may be most appropriate. Special attention is also paid to the use of the CDMAM phantom for image quality assessment of digital mammography systems particularly in the vicinity of the Nyquist frequency.

  7. Rocking curve imaging of high quality sapphire crystals in backscattering geometry

    DOE PAGES

    Jafari, A.; European Synchrotron Radiation Facility; Univ. of Liege,; ...

    2017-01-23

    Here, we report on the characterization of high quality sapphire single crystals suitable for high-resolution X-ray optics at high energy. Investigations using rocking curve imaging reveal the crystals to be of uniformly good quality at the level of ~10 -4 in lattice parameter variations, deltad/d. But, investigations using backscattering rocking curve imaging with lattice spacing resolution of deltad/d ~ 5.10 -8 shows very diverse quality maps for all crystals. Our results highlight nearly ideal areas with edge length of 0.2-0.5 mm in most crystals, but a comparison of the back re ection peak positions shows that even neighboring ideal areasmore » exhibit a relative difference in the lattice parameters on the order of deltad/d = 10-20.10 -8; this is several times larger than the rocking curve width. Furthermore, the stress-strain analysis suggests that an extremely stringent limit on the strain at a level of ~100 kPa in the growth process is required in order to produce crystals with large areas of the quality required for X-ray optics at high energy.« less

  8. A Simple Method for Reproducing Orbital Plots for Illustration Using Microsoft Paint and Microsoft Excel

    NASA Astrophysics Data System (ADS)

    Niebuhr, Cole

    2018-04-01

    Papers published in the astronomical community, particularly in the field of double star research, often contain plots that display the positions of the component stars relative to each other on a Cartesian coordinate plane. Due to the complexities of plotting a three-dimensional orbit into a two-dimensional image, it is often difficult to include an accurate reproduction of the orbit for comparison purposes. Methods to circumvent this obstacle do exist; however, many of these protocols result in low-quality blurred images or require specific and often expensive software. Here, a method is reported using Microsoft Paint and Microsoft Excel to produce high-quality images with an accurate reproduction of a partial orbit.

  9. [Comparative evaluation of six different body regions of the dog using analog and digital radiography].

    PubMed

    Meyer-Lindenberg, Andrea; Ebermaier, Christine; Wolvekamp, Pim; Tellhelm, Bernd; Meutstege, Freek J; Lang, Johann; Hartung, Klaus; Fehr, Michael; Nolte, Ingo

    2008-01-01

    In this study the quality of digital and analog radiography in dogs was compared. For this purpose, three conventional radiographs (varying in exposure) and three digital radiographs (varying in MUSI-contrast [MUSI = MUlti Scale Image Contrast], the main post-processing parameter) of six different body regions of the dog were evaluated (thorax, abdomen, skull, femur, hip joints, elbow). The quality of the radiographs was evaluated by eight veterinary specialists familiar with radiographic images using a questionnaire based on details of each body region significant in obtaining a radiographic diagnosis. In the first part of the study the overall quality of the radiographs was evaluated. Within one region, 89.5% (43/48) chose a digital radiograph as the best image. Divided into analog and digital groups, the digital image with the highest MUSI-contrast was most often considered the best, while the analog image considered the best varied between the one with the medium and the one with the longest exposure time. In the second part of the study, each image was rated for the visibility of specific, diagnostically important details. After summarisation of the scores for each criterion, divided into analog and digital imaging, the digital images were rated considerably superior to conventional images. The results of image comparison revealed that digital radiographs showed better image detail than radiographs taken with the analog technique in all six areas of the body.

  10. An analytical optimization model for infrared image enhancement via local context

    NASA Astrophysics Data System (ADS)

    Xu, Yongjian; Liang, Kun; Xiong, Yiru; Wang, Hui

    2017-12-01

    The requirement for high-quality infrared images is constantly increasing in both military and civilian areas, and it is always associated with little distortion and appropriate contrast, while infrared images commonly have some shortcomings such as low contrast. In this paper, we propose a novel infrared image histogram enhancement algorithm based on local context. By constraining the enhanced image to have high local contrast, a regularized analytical optimization model is proposed to enhance infrared images. The local contrast is determined by evaluating whether two intensities are neighbors and calculating their differences. The comparison on 8-bit images shows that the proposed method can enhance the infrared images with more details and lower noise.

  11. Simultaneous multislice diffusion-weighted MRI of the liver: Analysis of different breathing schemes in comparison to standard sequences.

    PubMed

    Taron, Jana; Martirosian, Petros; Erb, Michael; Kuestner, Thomas; Schwenzer, Nina F; Schmidt, Holger; Honndorf, Valerie S; Weiβ, Jakob; Notohamiprodjo, Mike; Nikolaou, Konstantin; Schraml, Christina

    2016-10-01

    To systematically evaluate image characteristics of simultaneous-multislice (SMS)-accelerated diffusion-weighted imaging (DWI) of the liver using different breathing schemes in comparison to standard sequences. DWI of the liver was performed in 10 healthy volunteers and 12 patients at 1.5T using an SMS-accelerated echo planar imaging sequence performed with respiratory-triggering and free breathing (SMS-RT, SMS-FB). Standard DWI sequences served as reference (STD-RT, STD-FB). Reduction of scan time by SMS-acceleration was measured. Image characteristics of SMS-DWI and STD-DWI with both breathing schemes were analyzed quantitatively (apparent diffusion coefficient [ADC], signal-to-noise ratio [SNR]) and qualitatively (5-point Likert scale, 5 = excellent). Qualitative and quantitative parameters were compared using Friedman test and Dunn-Bonferroni post-hoc method with P-values < 0.05 considered statistically significant. SMS-DWI provided diagnostic image quality in volunteers and patients both with RT and FB with a reduction of scan time of 70% (0:56 vs. 3:20 min in FB). Overall image quality did not significantly differ between FB and RT acquisition in both STD and SMS sequences (median STD-RT 5.0, STD-FB 4.5, SMS-RT: 4.75; SMS-FB: 4.5; P = 0.294). SNR in the right hepatic lobe was comparable between the four tested sequences. ADC values were significantly lower in SMS-DWI compared to STD-DWI irrespective of the breathing scheme (1.2 ± 0.2 × 10(-3) mm(2) /s vs. 1.0 ± 0.2 × 10(-3) mm(2) /s; P < 0.001). SMS-acceleration provides considerable scan time reduction for hepatic DWI with equivalent image quality compared to the STD technique both using RT and FB. Discrepancies in ADC between STD-DWI and SMS-DWI need to be considered when transferring the SMS technique to clinical routine reading. J. MAGN. RESON. IMAGING 2016;44:865-879. © 2016 International Society for Magnetic Resonance in Medicine.

  12. Conventional vs. reduced field of view diffusion weighted imaging of the prostate: Comparison of image quality, correlation with histology, and inter-reader agreement.

    PubMed

    Warndahl, Brent A; Borisch, Eric A; Kawashima, Akira; Riederer, Stephen J; Froemming, Adam T

    2018-04-01

    To evaluate if Field of view Optimized and Constrained Undistorted Single shot (FOCUS) (GE Healthcare, Waukesha, WI) diffusion weighted images (DWI) provide more reliable imaging than conventional DWI, with non-inferior quantitative apparent diffusion coefficient (ADC) results. IRB approval was obtained for this study of 43 patients (44 exams, one patient with two visits) that underwent multiparametric prostate MRI with two DWI sequences and subsequent radical prostatectomy with histology as the gold standard. Randomized DWI sequence images were graded independently by two blinded experienced prostate MRI radiologists with a period of memory extinction between the two separate reading sessions. Blinded images were also reviewed head to head in a later session for direct comparison. Multiple parameters were measured from a region of interest in a dominant lesion as well as two control areas. Patient characteristics were collected by chart review. There was good correlation between the mean ADC value for lesions obtained by conventional and FOCUS DWI (ρ=0.85), with no trend toward any systematic difference, and equivalent correlation between ADC measurements and Gleason score. Agreement between the two readers was significantly higher for lesion ROI analysis with the FOCUS DWI derived ADC values (CCC 0.839) compared with the conventional ADC values (CCC 0.618; difference 0.221, 95% CI 0.01-0.46). FOCUS showed significantly better image quality scores (separate review: mean 2.17±0.6, p<0.001) compared to the conventional sequence (mean 2.65±0.6, p<0.001). In 13 cases the image quality was improved from grade of 3+ with conventional DWI to <3 with FOCUS DWI, a clinically meaningful improvement. Head-to-head blinded review found 61 ratings showed strong to slight preference for FOCUS, 13 no preference, and 14 slight preference for the conventional sequence. There was also a strong and equivalent correlation between both sequences and PIRADS version 2 grading (ρ=-0.56 and -0.58 for FOCUS and conventional, respectively, p<0.001 for both). FOCUS DWI of the prostate shows significant improvement in inter-reader agreement and image quality. As opposed to previous conflicting smaller studies, we found equivalent ADC metrics compared with the conventional DWI sequence, and preserved correlation with Gleason score. In 52% of patients the improved image quality with FOCUS had the potential to salvage exams with otherwise limited to non-diagnostic DWI. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Optimization of image quality and dose for Varian aS500 electronic portal imaging devices (EPIDs).

    PubMed

    McGarry, C K; Grattan, M W D; Cosgrove, V P

    2007-12-07

    This study was carried out to investigate whether the electronic portal imaging (EPI) acquisition process could be optimized, and as a result tolerance and action levels be set for the PIPSPro QC-3V phantom image quality assessment. The aim of the optimization process was to reduce the dose delivered to the patient while maintaining a clinically acceptable image quality. This is of interest when images are acquired in addition to the planned patient treatment, rather than images being acquired using the treatment field during a patient's treatment. A series of phantoms were used to assess image quality for different acquisition settings relative to the baseline values obtained following acceptance testing. Eight Varian aS500 EPID systems on four matched Varian 600C/D linacs and four matched Varian 2100C/D linacs were compared for consistency of performance and images were acquired at the four main orthogonal gantry angles. Images were acquired using a 6 MV beam operating at 100 MU min(-1) and the low-dose acquisition mode. Doses used in the comparison were measured using a Farmer ionization chamber placed at d(max) in solid water. The results demonstrated that the number of reset frames did not have any influence on the image contrast, but the number of frame averages did. The expected increase in noise with corresponding decrease in contrast was also observed when reducing the number of frame averages. The optimal settings for the low-dose acquisition mode with respect to image quality and dose were found to be one reset frame and three frame averages. All patients at the Northern Ireland Cancer Centre are now imaged using one reset frame and three frame averages in the 6 MV 100 MU min(-1) low-dose acquisition mode. Routine EPID QC contrast tolerance (+/-10) and action (+/-20) levels using the PIPSPro phantom based around expected values of 190 (Varian 600C/D) and 225 (Varian 2100C/D) have been introduced. The dose at dmax from electronic portal imaging has been reduced by approximately 28%, and while the image quality has been reduced, the images produced are still clinically acceptable.

  14. Correlating objective and subjective evaluation of texture appearance with applications to camera phone imaging

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan B.; Coppola, Stephen M.; Jin, Elaine W.; Chen, Ying; Clark, James H.; Mauer, Timothy A.

    2009-01-01

    Texture appearance is an important component of photographic image quality as well as object recognition. Noise cleaning algorithms are used to decrease sensor noise of digital images, but can hinder texture elements in the process. The Camera Phone Image Quality (CPIQ) initiative of the International Imaging Industry Association (I3A) is developing metrics to quantify texture appearance. Objective and subjective experimental results of the texture metric development are presented in this paper. Eight levels of noise cleaning were applied to ten photographic scenes that included texture elements such as faces, landscapes, architecture, and foliage. Four companies (Aptina Imaging, LLC, Hewlett-Packard, Eastman Kodak Company, and Vista Point Technologies) have performed psychophysical evaluations of overall image quality using one of two methods of evaluation. Both methods presented paired comparisons of images on thin film transistor liquid crystal displays (TFT-LCD), but the display pixel pitch and viewing distance differed. CPIQ has also been developing objective texture metrics and targets that were used to analyze the same eight levels of noise cleaning. The correlation of the subjective and objective test results indicates that texture perception can be modeled with an objective metric. The two methods of psychophysical evaluation exhibited high correlation despite the differences in methodology.

  15. Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties

    PubMed Central

    Vogt, William C.; Jia, Congxian; Wear, Keith A.; Garra, Brian S.; Joshua Pfefer, T.

    2016-01-01

    Abstract. Established medical imaging technologies such as magnetic resonance imaging and computed tomography rely on well-validated tissue-simulating phantoms for standardized testing of device image quality. The availability of high-quality phantoms for optical-acoustic diagnostics such as photoacoustic tomography (PAT) will facilitate standardization and clinical translation of these emerging approaches. Materials used in prior PAT phantoms do not provide a suitable combination of long-term stability and realistic acoustic and optical properties. Therefore, we have investigated the use of custom polyvinyl chloride plastisol (PVCP) formulations for imaging phantoms and identified a dual-plasticizer approach that provides biologically relevant ranges of relevant properties. Speed of sound and acoustic attenuation were determined over a frequency range of 4 to 9 MHz and optical absorption and scattering over a wavelength range of 400 to 1100 nm. We present characterization of several PVCP formulations, including one designed to mimic breast tissue. This material is used to construct a phantom comprised of an array of cylindrical, hemoglobin-filled inclusions for evaluation of penetration depth. Measurements with a custom near-infrared PAT imager provide quantitative and qualitative comparisons of phantom and tissue images. Results indicate that our PVCP material is uniquely suitable for PAT system image quality evaluation and may provide a practical tool for device validation and intercomparison. PMID:26886681

  16. Optimization of image quality and acquisition time for lab-based X-ray microtomography using an iterative reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Lin, Qingyang; Andrew, Matthew; Thompson, William; Blunt, Martin J.; Bijeljic, Branko

    2018-05-01

    Non-invasive laboratory-based X-ray microtomography has been widely applied in many industrial and research disciplines. However, the main barrier to the use of laboratory systems compared to a synchrotron beamline is its much longer image acquisition time (hours per scan compared to seconds to minutes at a synchrotron), which results in limited application for dynamic in situ processes. Therefore, the majority of existing laboratory X-ray microtomography is limited to static imaging; relatively fast imaging (tens of minutes per scan) can only be achieved by sacrificing imaging quality, e.g. reducing exposure time or number of projections. To alleviate this barrier, we introduce an optimized implementation of a well-known iterative reconstruction algorithm that allows users to reconstruct tomographic images with reasonable image quality, but requires lower X-ray signal counts and fewer projections than conventional methods. Quantitative analysis and comparison between the iterative and the conventional filtered back-projection reconstruction algorithm was performed using a sandstone rock sample with and without liquid phases in the pore space. Overall, by implementing the iterative reconstruction algorithm, the required image acquisition time for samples such as this, with sparse object structure, can be reduced by a factor of up to 4 without measurable loss of sharpness or signal to noise ratio.

  17. Evaluation of a breast software model for 2D and 3D X-ray imaging studies of the breast.

    PubMed

    Baneva, Yanka; Bliznakova, Kristina; Cockmartin, Lesley; Marinov, Stoyko; Buliev, Ivan; Mettivier, Giovanni; Bosmans, Hilde; Russo, Paolo; Marshall, Nicholas; Bliznakov, Zhivko

    2017-09-01

    In X-ray imaging, test objects reproducing breast anatomy characteristics are realized to optimize issues such as image processing or reconstruction, lesion detection performance, image quality and radiation induced detriment. Recently, a physical phantom with a structured background has been introduced for both 2D mammography and breast tomosynthesis. A software version of this phantom and a few related versions are now available and a comparison between these 3D software phantoms and the physical phantom will be presented. The software breast phantom simulates a semi-cylindrical container filled with spherical beads of different diameters. Four computational breast phantoms were generated with a dedicated software application and for two of these, physical phantoms are also available and they are used for the side by side comparison. Planar projections in mammography and tomosynthesis were simulated under identical incident air kerma conditions. Tomosynthesis slices were reconstructed with an in-house developed reconstruction software. In addition to a visual comparison, parameters like fractal dimension, power law exponent β and second order statistics (skewness, kurtosis) of planar projections and tomosynthesis reconstructed images were compared. Visually, an excellent agreement between simulated and real planar and tomosynthesis images is observed. The comparison shows also an overall very good agreement between parameters evaluated from simulated and experimental images. The computational breast phantoms showed a close match with their physical versions. The detailed mathematical analysis of the images confirms the agreement between real and simulated 2D mammography and tomosynthesis images. The software phantom is ready for optimization purpose and extrapolation of the phantom to other breast imaging techniques. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. Measurement of brain perfusion in newborns: Pulsed arterial spin labeling (PASL) versus pseudo-continuous arterial spin labeling (pCASL)

    PubMed Central

    Boudes, Elodie; Gilbert, Guillaume; Leppert, Ilana Ruth; Tan, Xianming; Pike, G. Bruce; Saint-Martin, Christine; Wintermark, Pia

    2014-01-01

    Background Arterial spin labeling (ASL) perfusion-weighted imaging (PWI) by magnetic resonance imaging (MRI) has been shown to be useful for identifying asphyxiated newborns at risk of developing brain injury, whether or not therapeutic hypothermia was administered. However, this technique has been only rarely used in newborns until now, because of the challenges to obtain sufficient signal-to-noise ratio (SNR) and spatial resolution in newborns. Objective To compare two methods of ASL-PWI (i.e., single inversion-time pulsed arterial spin labeling [single TI PASL], and pseudo-continuous arterial spin labeling [pCASL]) to assess brain perfusion in asphyxiated newborns treated with therapeutic hypothermia and in healthy newborns. Design/methods We conducted a prospective cohort study of term asphyxiated newborns meeting the criteria for therapeutic hypothermia; four additional healthy term newborns were also included as controls. Each of the enrolled newborns was scanned at least once during the first month of life. Each MRI scan included conventional anatomical imaging, as well as PASL and pCASL PWI-MRI. Control and labeled images were registered separately to reduce the effect of motion artifacts. For each scan, the axial slice at the level of the basal ganglia was used for comparisons. Each scan was scored for its image quality. Quantification of whole-slice cerebral blood flow (CBF) was done afterwards using previously described formulas. Results A total number of 61 concomitant PASL and pCASL scans were obtained in nineteen asphyxiated newborns treated with therapeutic hypothermia and four healthy newborns. After discarding the scans with very poor image quality, 75% (46/61) remained for comparison between the two ASL methods. pCASL images presented a significantly superior image quality score compared to PASL images (p < 0.0001). Strong correlation was found between the CBF measured by PASL and pCASL (r = 0.61, p < 0.0001). Conclusion This study demonstrates that both ASL methods are feasible to assess brain perfusion in healthy and sick newborns. However, pCASL might be a better choice over PASL in newborns, as pCASL perfusion maps had a superior image quality that allowed a more detailed identification of the different brain structures. PMID:25379424

  19. Optically sectioned in vivo imaging with speckle illumination HiLo microscopy

    PubMed Central

    Lim, Daryl; Ford, Tim N.; Chu, Kengyeh K.; Mertz, Jerome

    2011-01-01

    We present a simple wide-field imaging technique, called HiLo microscopy, that is capable of producing optically sectioned images in real time, comparable in quality to confocal laser scanning microscopy. The technique is based on the fusion of two raw images, one acquired with speckle illumination and another with standard uniform illumination. The fusion can be numerically adjusted, using a single parameter, to produce optically sectioned images of varying thicknesses with the same raw data. Direct comparison between our HiLo microscope and a commercial confocal laser scanning microscope is made on the basis of sectioning strength and imaging performance. Specifically, we show that HiLo and confocal 3-D imaging of a GFP-labeled mouse brain hippocampus are comparable in quality. Moreover, HiLo microscopy is capable of faster, near video rate imaging over larger fields of view than attainable with standard confocal microscopes. The goal of this paper is to advertise the simplicity, robustness, and versatility of HiLo microscopy, which we highlight with in vivo imaging of common model organisms including planaria, C. elegans, and zebrafish. PMID:21280920

  20. Optically sectioned in vivo imaging with speckle illumination HiLo microscopy.

    PubMed

    Lim, Daryl; Ford, Tim N; Chu, Kengyeh K; Mertz, Jerome

    2011-01-01

    We present a simple wide-field imaging technique, called HiLo microscopy, that is capable of producing optically sectioned images in real time, comparable in quality to confocal laser scanning microscopy. The technique is based on the fusion of two raw images, one acquired with speckle illumination and another with standard uniform illumination. The fusion can be numerically adjusted, using a single parameter, to produce optically sectioned images of varying thicknesses with the same raw data. Direct comparison between our HiLo microscope and a commercial confocal laser scanning microscope is made on the basis of sectioning strength and imaging performance. Specifically, we show that HiLo and confocal 3-D imaging of a GFP-labeled mouse brain hippocampus are comparable in quality. Moreover, HiLo microscopy is capable of faster, near video rate imaging over larger fields of view than attainable with standard confocal microscopes. The goal of this paper is to advertise the simplicity, robustness, and versatility of HiLo microscopy, which we highlight with in vivo imaging of common model organisms including planaria, C. elegans, and zebrafish.

  1. Optically sectioned in vivo imaging with speckle illumination HiLo microscopy

    NASA Astrophysics Data System (ADS)

    Lim, Daryl; Ford, Tim N.; Chu, Kengyeh K.; Mertz, Jerome

    2011-01-01

    We present a simple wide-field imaging technique, called HiLo microscopy, that is capable of producing optically sectioned images in real time, comparable in quality to confocal laser scanning microscopy. The technique is based on the fusion of two raw images, one acquired with speckle illumination and another with standard uniform illumination. The fusion can be numerically adjusted, using a single parameter, to produce optically sectioned images of varying thicknesses with the same raw data. Direct comparison between our HiLo microscope and a commercial confocal laser scanning microscope is made on the basis of sectioning strength and imaging performance. Specifically, we show that HiLo and confocal 3-D imaging of a GFP-labeled mouse brain hippocampus are comparable in quality. Moreover, HiLo microscopy is capable of faster, near video rate imaging over larger fields of view than attainable with standard confocal microscopes. The goal of this paper is to advertise the simplicity, robustness, and versatility of HiLo microscopy, which we highlight with in vivo imaging of common model organisms including planaria, C. elegans, and zebrafish.

  2. Comparison of diagnostic quality of motion picture experts group-2 digital video with super VHS videotape for echocardiographic imaging.

    PubMed

    Harris, Kevin M; Schum, Kevin R; Knickelbine, Thomas; Hurrell, David G; Koehler, Jodi L; Longe, Terrence F

    2003-08-01

    Motion Picture Experts Group-2 (MPEG2) is a broadcast industry standard that allows high-level compression of echocardiographic data. Validation of MPEG2 digital images compared with super VHS videotape has not been previously reported. Simultaneous super VHS videotape and MPEG2 digital images were acquired. In all, 4 experienced echocardiographers completed detailed reporting forms evaluating chamber size, ventricular function, regional wall-motion abnormalities, and measures of valvular regurgitation and stenosis in a blinded fashion. Comparisons between the 2 interpretations were then performed and intraobserver concordance was calculated for the various categories. A total of 80 paired comparisons were made. The overall concordance rate was 93.6% with most of the discrepancies being minor (4.1%). Concordance was 92.4% for left ventricle, 93.2% for right ventricle, 95.2% for regional wall-motion abnormalities, and 97.8% for valve stenosis. The mean grade of valvular regurgitation was similar for the 2 techniques. MPEG2 digital imaging offers excellent concordance compared with super VHS videotape.

  3. Experimental design and analysis of JND test on coded image/video

    NASA Astrophysics Data System (ADS)

    Lin, Joe Yuchieh; Jin, Lina; Hu, Sudeng; Katsavounidis, Ioannis; Li, Zhi; Aaron, Anne; Kuo, C.-C. Jay

    2015-09-01

    The visual Just-Noticeable-Difference (JND) metric is characterized by the detectable minimum amount of two visual stimuli. Conducting the subjective JND test is a labor-intensive task. In this work, we present a novel interactive method in performing the visual JND test on compressed image/video. JND has been used to enhance perceptual visual quality in the context of image/video compression. Given a set of coding parameters, a JND test is designed to determine the distinguishable quality level against a reference image/video, which is called the anchor. The JND metric can be used to save coding bitrates by exploiting the special characteristics of the human visual system. The proposed JND test is conducted using a binary-forced choice, which is often adopted to discriminate the difference in perception in a psychophysical experiment. The assessors are asked to compare coded image/video pairs and determine whether they are of the same quality or not. A bisection procedure is designed to find the JND locations so as to reduce the required number of comparisons over a wide range of bitrates. We will demonstrate the efficiency of the proposed JND test, report experimental results on the image and video JND tests.

  4. In vitro comparison between the image obtained using PSP plates and Kodak E-speed films.

    PubMed

    Petel, R; Yaroslavsky, L; Kaffe, I

    2014-07-01

    The aim of this study was to compare the intra-oral radiographic images obtained by a PSP digital radiography system ("Orex", Israel) with that obtained using Kodak Ultra speed films in terms of image quality, radiation dosage and diagnostic value. The physical measurement of image quality was conducted with an aluminum step-wedge. Radiation dosage was measured with a dosimeter. Fog and base levels were measured by developing unexposed films and scanning unexposed PSP plates. The in vitro model included preparation and radiographic evaluation of approximal artificial lesions in premolars and molars in depths ranging from 0.25 mm to 1.00 mm. Radiographs were evaluated for the existence of a lesion and its size by 8 experienced clinicians. Relative contrast was similar in both methods. The resolving power of the digital system was lower than that of the E-speed film. As for the subjective evaluation of artificial lesions, there was no significant difference between the two methods excluding those tooth images without lesions, where the analog method was found to be more accurate. The PSP system ("Orex") provides good image quality and diagnostic information with reduced exposure when compared with E-speed film.

  5. Physics considerations in MV-CBCT multi-layer imager design.

    PubMed

    Hu, Yue-Houng; Fueglistaller, Rony; Myronakis, Marios E; Rottmann, Joerg; Wang, Adam; Shedlock, Daniel; Morf, Daniel; Baturin, Paul; Huber, Pascal; Star-Lack, Josh M; Berbeco, Ross I

    2018-05-30

    Megavoltage (MV) cone-beam computed tomography (CBCT) using an electronic portal imaging (EPID) offers advantageous features, including 3D mapping, treatment beam registration, high-z artifact suppression, and direct radiation dose calculation. Adoption has been slowed by image quality limitations and concerns about imaging dose. Developments in imager design, including pixelated scintillators, structured phosphors, inexpensive scintillation materials, and multi-layer imager (MLI) architecture have been explored to improve EPID image quality and reduce imaging dose. The present study employs a hybrid Monte Carlo and linear systems model to determine the effect of detector design elements, such as multi-layer architecture and scintillation materials. We follow metrics of image quality including modulation transfer function (MTF) and noise power spectrum (NPS) from projection images to 3D reconstructions to in-plane slices and apply a task based figure-of-merit, the ideal observer signal-to-noise ratio (d') to determine the effect of detector design on object detectability. Generally, detectability was limited by detector noise performance. Deploying an MLI imager with a single scintillation material for all layers yields improvement in noise performance and d' linear with the number of layers. In general, improving x-ray absorption using thicker scintillators results in improved DQE(0). However, if light yield is low, performance will be affected by electronic noise at relatively high doses, resulting in rapid image quality degradation. Maximizing image quality in a heterogenous MLI detector (i.e. multiple different scintillation materials) is most affected by limiting imager noise. However, while a second-order effect, maximizing total spatial resolution of the MLI detector is a balance between the intensity contribution of each layer against its individual MTF. So, while a thinner scintillator may yield a maximal individual-layer MTF, its quantum efficiency will be relatively low in comparison to a thicker scintillator and thus, intensity contribution may be insufficient to noticeably improve the total detector MTF. © 2018 Institute of Physics and Engineering in Medicine.

  6. A statistically harmonized alignment-classification in image space enables accurate and robust alignment of noisy images in single particle analysis.

    PubMed

    Kawata, Masaaki; Sato, Chikara

    2007-06-01

    In determining the three-dimensional (3D) structure of macromolecular assemblies in single particle analysis, a large representative dataset of two-dimensional (2D) average images from huge number of raw images is a key for high resolution. Because alignments prior to averaging are computationally intensive, currently available multireference alignment (MRA) software does not survey every possible alignment. This leads to misaligned images, creating blurred averages and reducing the quality of the final 3D reconstruction. We present a new method, in which multireference alignment is harmonized with classification (multireference multiple alignment: MRMA). This method enables a statistical comparison of multiple alignment peaks, reflecting the similarities between each raw image and a set of reference images. Among the selected alignment candidates for each raw image, misaligned images are statistically excluded, based on the principle that aligned raw images of similar projections have a dense distribution around the correctly aligned coordinates in image space. This newly developed method was examined for accuracy and speed using model image sets with various signal-to-noise ratios, and with electron microscope images of the Transient Receptor Potential C3 and the sodium channel. In every data set, the newly developed method outperformed conventional methods in robustness against noise and in speed, creating 2D average images of higher quality. This statistically harmonized alignment-classification combination should greatly improve the quality of single particle analysis.

  7. Comparison of turbulence mitigation algorithms

    NASA Astrophysics Data System (ADS)

    Kozacik, Stephen T.; Paolini, Aaron; Sherman, Ariel; Bonnett, James; Kelmelis, Eric

    2017-07-01

    When capturing imagery over long distances, atmospheric turbulence often degrades the data, especially when observation paths are close to the ground or in hot environments. These issues manifest as time-varying scintillation and warping effects that decrease the effective resolution of the sensor and reduce actionable intelligence. In recent years, several image processing approaches to turbulence mitigation have shown promise. Each of these algorithms has different computational requirements, usability demands, and degrees of independence from camera sensors. They also produce different degrees of enhancement when applied to turbulent imagery. Additionally, some of these algorithms are applicable to real-time operational scenarios while others may only be suitable for postprocessing workflows. EM Photonics has been developing image-processing-based turbulence mitigation technology since 2005. We will compare techniques from the literature with our commercially available, real-time, GPU-accelerated turbulence mitigation software. These comparisons will be made using real (not synthetic), experimentally obtained data for a variety of conditions, including varying optical hardware, imaging range, subjects, and turbulence conditions. Comparison metrics will include image quality, video latency, computational complexity, and potential for real-time operation. Additionally, we will present a technique for quantitatively comparing turbulence mitigation algorithms using real images of radial resolution targets.

  8. Comparison of PET/CT with Sequential PET/MRI Using an MR-Compatible Mobile PET System.

    PubMed

    Nakamoto, Ryusuke; Nakamoto, Yuji; Ishimori, Takayoshi; Fushimi, Yasutaka; Kido, Aki; Togashi, Kaori

    2018-05-01

    The current study tested a newly developed flexible PET (fxPET) scanner prototype. This fxPET system involves dual arc-shaped detectors based on silicon photomultipliers that are designed to fit existing MRI devices, allowing us to obtain fused PET and MR images by sequential PET and MR scanning. This prospective study sought to evaluate the image quality, lesion detection rate, and quantitative values of fxPET in comparison with conventional whole-body (WB) PET and to assess the accuracy of registration. Methods: Seventeen patients with suspected or known malignant tumors were analyzed. Approximately 1 h after intravenous injection of 18 F-FDG, WB PET/CT was performed, followed by fxPET and MRI. For reconstruction of fxPET images, MRI-based attenuation correction was applied. The quality of fxPET images was visually assessed, and the number of detected lesions was compared between the 2 imaging methods. SUV max and maximum average SUV within a 1 cm 3 spheric volume (SUV peak ) of lesions were also compared. In addition, the magnitude of misregistration between fxPET and MR images was evaluated. Results: The image quality of fxPET was acceptable for diagnosis of malignant tumors. There was no significant difference in detectability of malignant lesions between fxPET and WB PET ( P > 0.05). However, the fxPET system did not exhibit superior performance to the WB PET system. There were strong positive correlations between the 2 imaging modalities in SUV max (ρ = 0.88) and SUV peak (ρ = 0.81). SUV max and SUV peak measured with fxPET were approximately 1.1-fold greater than measured with WB PET. The average misregistration between fxPET and MR images was 5.5 ± 3.4 mm. Conclusion: Our preliminary data indicate that running an fxPET scanner near an existing MRI system provides visually and quantitatively acceptable fused PET/MR images for diagnosis of malignant lesions. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  9. Quiet PROPELLER MRI techniques match the quality of conventional PROPELLER brain imaging techniques.

    PubMed

    Corcuera-Solano, I; Doshi, A; Pawha, P S; Gui, D; Gaddipati, A; Tanenbaum, L

    2015-06-01

    Switching of magnetic field gradients is the primary source of acoustic noise in MR imaging. Sound pressure levels can run as high as 120 dB, capable of producing physical discomfort and at least temporary hearing loss, mandating hearing protection. New technology has made quieter techniques feasible, which range from as low as 80 dB to nearly silent. The purpose of this study was to evaluate the image quality of new commercially available quiet T2 and quiet FLAIR fast spin-echo PROPELLER acquisitions in comparison with equivalent conventional PROPELLER techniques in current day-to-day practice in imaging of the brain. Thirty-four consecutive patients were prospectively scanned with quiet T2 and quiet T2 FLAIR PROPELLER, in addition to spatial resolution-matched conventional T2 and T2 FLAIR PROPELLER imaging sequences on a clinical 1.5T MR imaging scanner. Measurement of sound pressure levels and qualitative evaluation of relative image quality was performed. Quiet T2 and quiet T2 FLAIR were comparable in image quality with conventional acquisitions, with sound levels of approximately 75 dB, a reduction in average sound pressure levels of up to 28.5 dB, with no significant trade-offs aside from longer scan times. Quiet FSE provides equivalent image quality at comfortable sound pressure levels at the cost of slightly longer scan times. The significant reduction in potentially injurious noise is particularly important in vulnerable populations such as children, the elderly, and the debilitated. Quiet techniques should be considered in these special situations for routine use in clinical practice. © 2015 by American Journal of Neuroradiology.

  10. Integration of prior CT into CBCT reconstruction for improved image quality via reconstruction of difference: first patient studies

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Gang, Grace J.; Lee, Junghoon; Wong, John; Stayman, J. Webster

    2017-03-01

    Purpose: There are many clinical situations where diagnostic CT is used for an initial diagnosis or treatment planning, followed by one or more CBCT scans that are part of an image-guided intervention. Because the high-quality diagnostic CT scan is a rich source of patient-specific anatomical knowledge, this provides an opportunity to incorporate the prior CT image into subsequent CBCT reconstruction for improved image quality. We propose a penalized-likelihood method called reconstruction of difference (RoD), to directly reconstruct differences between the CBCT scan and the CT prior. In this work, we demonstrate the efficacy of RoD with clinical patient datasets. Methods: We introduce a data processing workflow using the RoD framework to reconstruct anatomical changes between the prior CT and current CBCT. This workflow includes processing steps to account for non-anatomical differences between the two scans including 1) scatter correction for CBCT datasets due to increased scatter fractions in CBCT data; 2) histogram matching for attenuation variations between CT and CBCT; and 3) registration for different patient positioning. CBCT projection data and CT planning volumes for two radiotherapy patients - one abdominal study and one head-and-neck study - were investigated. Results: In comparisons between the proposed RoD framework and more traditional FDK and penalized-likelihood reconstructions, we find a significant improvement in image quality when prior CT information is incorporated into the reconstruction. RoD is able to provide additional low-contrast details while correctly incorporating actual physical changes in patient anatomy. Conclusions: The proposed framework provides an opportunity to either improve image quality or relax data fidelity constraints for CBCT imaging when prior CT studies of the same patient are available. Possible clinical targets include CBCT image-guided radiotherapy and CBCT image-guided surgeries.

  11. A COMPARISON OF CMAQ-BASED AEROSOL PROPERTIES WITH IMPROVE, MODIS, AND AERONET DATA

    EPA Science Inventory

    We compare select aerosol Properties derived from the Community Multiscale Air Quality (CMAQ) model-simulated aerosol mass concentrations with routine data from the National Aeronautics and Space Administration (NASA) satellite-borne Moderate Resolution Imaging Spectro-radiometer...

  12. Reduced Field-of-View Diffusion-Weighted Magnetic Resonance Imaging of the Prostate at 3 Tesla: Comparison With Standard Echo-Planar Imaging Technique for Image Quality and Tumor Assessment.

    PubMed

    Tamada, Tsutomu; Ream, Justin M; Doshi, Ankur M; Taneja, Samir S; Rosenkrantz, Andrew B

    The purpose of this study was to compare image quality and tumor assessment at prostate magnetic resonance imaging (MRI) between reduced field-of-view diffusion-weighted imaging (rFOV-DWI) and standard DWI (st-DWI). A total of 49 patients undergoing prostate MRI and MRI/ultrasound fusion-targeted biopsy were included. Examinations included st-DWI (field of view [FOV], 200 × 200 mm) and rFOV-DWI (FOV, 140 × 64 mm) using a 2-dimensional (2D) spatially-selective radiofrequency pulse and parallel transmission. Two readers performed qualitative assessments; a third reader performed quantitative evaluation. Overall image quality, anatomic distortion, visualization of capsule, and visualization of peripheral/transition zone edge were better for rFOV-DWI for reader 1 (P ≤ 0.002), although not for reader 2 (P ≥ 0.567). For both readers, sensitivity, specificity, and accuracy for tumor with a Gleason Score (GS) of 3 + 4 or higher were not different (P ≥ 0.289). Lesion clarity was higher for st-DWI for reader 2 (P = 0.008), although similar for reader 1 (P = 0.409). Diagnostic confidence was not different for either reader (P ≥ 0.052). Tumor-to-benign apparent diffusion coefficient ratio was not different (P = 0.675). Potentially improved image quality of rFOV-DWI did not yield improved tumor assessment. Continued optimization is warranted.

  13. A maximum entropy reconstruction technique for tomographic particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Bilsky, A. V.; Lozhkin, V. A.; Markovich, D. M.; Tokarev, M. P.

    2013-04-01

    This paper studies a novel approach for reducing tomographic PIV computational complexity. The proposed approach is an algebraic reconstruction technique, termed MENT (maximum entropy). This technique computes the three-dimensional light intensity distribution several times faster than SMART, using at least ten times less memory. Additionally, the reconstruction quality remains nearly the same as with SMART. This paper presents the theoretical computation performance comparison for MENT, SMART and MART, followed by validation using synthetic particle images. Both the theoretical assessment and validation of synthetic images demonstrate significant computational time reduction. The data processing accuracy of MENT was compared to that of SMART in a slot jet experiment. A comparison of the average velocity profiles shows a high level of agreement between the results obtained with MENT and those obtained with SMART.

  14. TL dosimetry for quality control of CR mammography imaging systems

    NASA Astrophysics Data System (ADS)

    Gaona, E.; Nieto, J. A.; Góngora, J. A. I. D.; Arreola, M.; Enríquez, J. G. F.

    The aim of this work is to estimate the average glandular dose with thermoluminescent (TL) dosimetry and comparison with quality imaging in computed radiography (CR) mammography. For a measuring dose, the Food and Drug Administration (FDA) and the American College of Radiology (ACR) use a phantom, so that dose and image quality are assessed with the same test object. The mammography is a radiological image to visualize early biological manifestations of breast cancer. Digital systems have two types of image-capturing devices, full field digital mammography (FFDM) and CR mammography. In Mexico, there are several CR mammography systems in clinical use, but only one system has been approved for use by the FDA. Mammography CR uses a photostimulable phosphor detector (PSP) system. Most CR plates are made of 85% BaFBr and 15% BaFI doped with europium (Eu) commonly called barium flourohalideE We carry out an exploratory survey of six CR mammography units from three different manufacturers and six dedicated X-ray mammography units with fully automatic exposure. The results show three CR mammography units (50%) have a dose greater than 3.0 mGy without demonstrating improved image quality. The differences between doses averages from TLD system and dosimeter with ionization chamber are less than 10%. TLD system is a good option for average glandular dose measurement for X-rays with a HVL (0.35-0.38 mmAl) and kVp (24-26) used in quality control procedures with ACR Mammography Accreditation Phantom.

  15. The Impact of Different Levels of Adaptive Iterative Dose Reduction 3D on Image Quality of 320-Row Coronary CT Angiography: A Clinical Trial

    PubMed Central

    Feger, Sarah; Rief, Matthias; Zimmermann, Elke; Martus, Peter; Schuijf, Joanne Désirée; Blobel, Jörg; Richter, Felicitas; Dewey, Marc

    2015-01-01

    Purpose The aim of this study was the systematic image quality evaluation of coronary CT angiography (CTA), reconstructed with the 3 different levels of adaptive iterative dose reduction (AIDR 3D) and compared to filtered back projection (FBP) with quantum denoising software (QDS). Methods Standard-dose CTA raw data of 30 patients with mean radiation dose of 3.2 ± 2.6 mSv were reconstructed using AIDR 3D mild, standard, strong and compared to FBP/QDS. Objective image quality comparison (signal, noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), contour sharpness) was performed using 21 measurement points per patient, including measurements in each coronary artery from proximal to distal. Results Objective image quality parameters improved with increasing levels of AIDR 3D. Noise was lowest in AIDR 3D strong (p≤0.001 at 20/21 measurement points; compared with FBP/QDS). Signal and contour sharpness analysis showed no significant difference between the reconstruction algorithms for most measurement points. Best coronary SNR and CNR were achieved with AIDR 3D strong. No loss of SNR or CNR in distal segments was seen with AIDR 3D as compared to FBP. Conclusions On standard-dose coronary CTA images, AIDR 3D strong showed higher objective image quality than FBP/QDS without reducing contour sharpness. Trial Registration Clinicaltrials.gov NCT00967876 PMID:25945924

  16. [Comparison between the quality of life and nutritional status of nutrition students and those of other university careers at the Santo Thomas University in Chile].

    PubMed

    Durán Agüero, S; Bazaez Díaz, G; Figueroa Velásquez, K; Berlanga Zúñiga, Ma del R; Encina Vega, C; Rodríguez Noel, M P

    2012-01-01

    To determine and compare the quality of life, nutritional status, and self-perceived body image between nutrition students and students from other careers from the University Santo Tomás-Viña del Mar. We evaluated 200 student volunteers (100 nutrition students and 100 students from other careers) with a quality of life survey, a nutritional evaluation, and a survey of body image perception. The group of nutritional students perceived a lower quality of life, consumed less tobacco, and was less sedentary. Women of the nutritional group had a lower BMI and showed a lower hip circumference. Men of the nutritional group also showed a lower hip circumference. The nutritional group consumed more milk, chicken, and fish in their diet. Both groups presented an elevated consumption of alcohol. The concordance between BMI and body image was low, 34% in the nutritional group and 38% in the other careers group (Kappa 0.04 and 0.02). With respect to perception of quality of life, students from other careers perceived a better quality of life, however students from the nutritional group presented better nutritional status and selection of food.

  17. Performance comparison between total variation (TV)-based compressed sensing and statistical iterative reconstruction algorithms.

    PubMed

    Tang, Jie; Nett, Brian E; Chen, Guang-Hong

    2009-10-07

    Of all available reconstruction methods, statistical iterative reconstruction algorithms appear particularly promising since they enable accurate physical noise modeling. The newly developed compressive sampling/compressed sensing (CS) algorithm has shown the potential to accurately reconstruct images from highly undersampled data. The CS algorithm can be implemented in the statistical reconstruction framework as well. In this study, we compared the performance of two standard statistical reconstruction algorithms (penalized weighted least squares and q-GGMRF) to the CS algorithm. In assessing the image quality using these iterative reconstructions, it is critical to utilize realistic background anatomy as the reconstruction results are object dependent. A cadaver head was scanned on a Varian Trilogy system at different dose levels. Several figures of merit including the relative root mean square error and a quality factor which accounts for the noise performance and the spatial resolution were introduced to objectively evaluate reconstruction performance. A comparison is presented between the three algorithms for a constant undersampling factor comparing different algorithms at several dose levels. To facilitate this comparison, the original CS method was formulated in the framework of the statistical image reconstruction algorithms. Important conclusions of the measurements from our studies are that (1) for realistic neuro-anatomy, over 100 projections are required to avoid streak artifacts in the reconstructed images even with CS reconstruction, (2) regardless of the algorithm employed, it is beneficial to distribute the total dose to more views as long as each view remains quantum noise limited and (3) the total variation-based CS method is not appropriate for very low dose levels because while it can mitigate streaking artifacts, the images exhibit patchy behavior, which is potentially harmful for medical diagnosis.

  18. Comparison of Free-Breathing With Navigator-Triggered Technique in Diffusion Weighted Imaging for Evaluation of Small Hepatocellular Carcinoma: Effect on Image Quality and Intravoxel Incoherent Motion Parameters.

    PubMed

    Shan, Yan; Zeng, Meng-su; Liu, Kai; Miao, Xi-Yin; Lin, Jiang; Fu, Cai xia; Xu, Peng-ju

    2015-01-01

    To evaluate the effect on image quality and intravoxel incoherent motion (IVIM) parameters of small hepatocellular carcinoma (HCC) from choice of either free-breathing (FB) or navigator-triggered (NT) diffusion-weighted (DW) imaging. Thirty patients with 37 small HCCs underwent IVIM DW imaging using 12 b values (0-800 s/mm) with 2 sequences: NT, FB. A biexponential analysis with the Bayesian method yielded true diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f) in small HCCs and liver parenchyma. Apparent diffusion coefficient (ADC) was also calculated. The acquisition time and image quality scores were assessed for 2 sequences. Independent sample t test was used to compare image quality, signal intensity ratio, IVIM parameters, and ADC values between the 2 sequences; reproducibility of IVIM parameters, and ADC values between 2 sequences was assessed with the Bland-Altman method (BA-LA). Image quality with NT sequence was superior to that with FB acquisition (P = 0.02). The mean acquisition time for FB scheme was shorter than that of NT sequence (6 minutes 14 seconds vs 10 minutes 21 seconds ± 10 seconds P < 0.01). The signal intensity ratio of small HCCs did not vary significantly between the 2 sequences. The ADC and IVIM parameters from the 2 sequences show no significant difference. Reproducibility of D*and f parameters in small HCC was poor (BA-LA: 95% confidence interval, -180.8% to 189.2% for D* and -133.8% to 174.9% for f). A moderate reproducibility of D and ADC parameters was observed (BA-LA: 95% confidence interval, -83.5% to 76.8% for D and -74.4% to 88.2% for ADC) between the 2 sequences. The NT DW imaging technique offers no advantage in IVIM parameters measurements of small HCC except better image quality, whereas FB technique offers greater confidence in fitted diffusion parameters for matched acquisition periods.

  19. Performance of unenhanced respiratory-gated 3D SSFP MRA to depict hepatic and visceral artery anatomy and variants.

    PubMed

    Puippe, Gilbert D; Alkadhi, Hatem; Hunziker, Roger; Nanz, Daniel; Pfammatter, Thomas; Baumueller, Stephan

    2012-08-01

    To prospectively evaluate the performance of unenhanced respiratory-gated magnetization-prepared 3D-SSFP inversion recovery MRA (unenhanced-MRA) to depict hepatic and visceral artery anatomy and variants in comparison to contrast-enhanced dynamic gradient-echo MRI (CE-MRI) and to digital subtraction angiography (DSA). Eighty-four patients (55.6±12.4 years) were imaged with CE-MRI (TR/TE 3.5/1.7ms, TI 1.7ms, flip-angle 15°) and unenhanced-MRA (TR/TE 4.4/2.2ms, TI 200ms, flip-angle 90°). Two independent readers assessed image quality of hepatic and visceral arteries on a 4-point-scale. Vessel contrast was measured by a third reader. In 28 patients arterial anatomy was compared to DSA. Interobserver agreement regarding image quality was good for CE-MRI (κ=0.77) and excellent for unenhanced-MRA (κ=0.83). Unenhanced-MRA yielded diagnostic image quality in 71.6% of all vessels, whereas CE-MRI provided diagnostic image quality in 90.6% (p<0.001). Vessel-based image quality was significantly superior for all vessels at CE-MRI compared to unenhanced-MRA (p<0.01). Vessel contrast was similar among both sequences (p=0.15). Compared to DSA, CE-MRI and unenhanced-MRA yielded equal accuracy of 92.9-96.4% for depiction of hepatic and visceral artery variants (p=0.93). Unenhanced-MRA provides diagnostic image quality in 72% of hepatic and visceral arteries with no significant difference in vessel contrast and similar accuracy to CE-MRI for depiction of hepatic and visceral anatomy. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Comparison of Image Quality and Radiation Dose of Coronary Computed Tomography Angiography Between Conventional Helical Scanning and a Strategy Incorporating Sequential Scanning

    PubMed Central

    Einstein, Andrew J.; Wolff, Steven D.; Manheimer, Eric D.; Thompson, James; Terry, Sylvia; Uretsky, Seth; Pilip, Adalbert; Peters, M. Robert

    2009-01-01

    Radiation dose from coronary computed tomography angiography may be reduced using a sequential scanning protocol rather than a conventional helical scanning protocol. Here we compare radiation dose and image quality from coronary computed tomography angiography in a single center between an initial period during which helical scanning with electrocardiographically-controlled tube current modulation was used for all patients (n=138) and after adoption of a strategy incorporating sequential scanning whenever appropriate (n=261). Using the sequential-if-appropriate strategy, sequential scanning was employed in 86.2% of patients. Compared to the helical-only strategy, this strategy was associated with a 65.1% dose reduction (mean dose-length product of 305.2 vs. 875.1 and mean effective dose of 14.9 mSv vs. 5.2 mSv, respectively), with no significant change in overall image quality, step artifacts, motion artifacts, or perceived image noise. For the 225 patients undergoing sequential scanning, the dose-length product was 201.9 ± 90.0 mGy·cm, while for patients undergoing helical scanning under either strategy, the dose-length product was 890.9 ± 293.3 mGy·cm (p<0.0001), corresponding to mean effective doses of 3.4 mSv and 15.1 mSv, respectively, a 77.5% reduction. Image quality was significantly greater for the sequential studies, reflecting the poorer image quality in patients undergoing helical scanning in the sequential-if-appropriate strategy. In conclusion, a sequential-if-appropriate diagnostic strategy reduces dose markedly compared to a helical-only strategy, with no significant difference in image quality. PMID:19892048

  1. Direct comparison between confocal and multiphoton microscopy for rapid histopathological evaluation of unfixed human breast tissue.

    PubMed

    Yoshitake, Tadayuki; Giacomelli, Michael G; Cahill, Lucas C; Schmolze, Daniel B; Vardeh, Hilde; Faulkner-Jones, Beverly E; Connolly, James L; Fujimoto, James G

    2016-12-01

    Rapid histopathological examination of surgical specimen margins using fluorescence microscopy during breast conservation therapy has the potential to reduce the rate of positive margins on postoperative histopathology and the need for repeat surgeries. To assess the suitability of imaging modalities, we perform a direct comparison between confocal fluorescence microscopy and multiphoton microscopy for imaging unfixed tissue and compare to paraffin-embedded histology. An imaging protocol including dual channel detection of two contrast agents to implement virtual hematoxylin and eosin images is introduced that provides high quality imaging under both one and two photon excitation. Corresponding images of unfixed human breast tissue show that both confocal and multiphoton microscopy can reproduce the appearance of conventional histology without the need for physical sectioning. We further compare normal breast tissue and invasive cancer specimens imaged at multiple magnifications, and assess the effects of photobleaching for both modalities using the staining protocol. The results demonstrate that confocal fluorescence microscopy is a promising and cost-effective alternative to multiphoton microscopy for rapid histopathological evaluation of ex vivo breast tissue.

  2. Direct comparison between confocal and multiphoton microscopy for rapid histopathological evaluation of unfixed human breast tissue

    PubMed Central

    Yoshitake, Tadayuki; Giacomelli, Michael G.; Cahill, Lucas C.; Schmolze, Daniel B.; Vardeh, Hilde; Faulkner-Jones, Beverly E.; Connolly, James L.; Fujimoto, James G.

    2016-01-01

    Abstract. Rapid histopathological examination of surgical specimen margins using fluorescence microscopy during breast conservation therapy has the potential to reduce the rate of positive margins on postoperative histopathology and the need for repeat surgeries. To assess the suitability of imaging modalities, we perform a direct comparison between confocal fluorescence microscopy and multiphoton microscopy for imaging unfixed tissue and compare to paraffin-embedded histology. An imaging protocol including dual channel detection of two contrast agents to implement virtual hematoxylin and eosin images is introduced that provides high quality imaging under both one and two photon excitation. Corresponding images of unfixed human breast tissue show that both confocal and multiphoton microscopy can reproduce the appearance of conventional histology without the need for physical sectioning. We further compare normal breast tissue and invasive cancer specimens imaged at multiple magnifications, and assess the effects of photobleaching for both modalities using the staining protocol. The results demonstrate that confocal fluorescence microscopy is a promising and cost-effective alternative to multiphoton microscopy for rapid histopathological evaluation of ex vivo breast tissue. PMID:28032121

  3. Direct comparison between confocal and multiphoton microscopy for rapid histopathological evaluation of unfixed human breast tissue

    NASA Astrophysics Data System (ADS)

    Yoshitake, Tadayuki; Giacomelli, Michael G.; Cahill, Lucas C.; Schmolze, Daniel B.; Vardeh, Hilde; Faulkner-Jones, Beverly E.; Connolly, James L.; Fujimoto, James G.

    2016-12-01

    Rapid histopathological examination of surgical specimen margins using fluorescence microscopy during breast conservation therapy has the potential to reduce the rate of positive margins on postoperative histopathology and the need for repeat surgeries. To assess the suitability of imaging modalities, we perform a direct comparison between confocal fluorescence microscopy and multiphoton microscopy for imaging unfixed tissue and compare to paraffin-embedded histology. An imaging protocol including dual channel detection of two contrast agents to implement virtual hematoxylin and eosin images is introduced that provides high quality imaging under both one and two photon excitation. Corresponding images of unfixed human breast tissue show that both confocal and multiphoton microscopy can reproduce the appearance of conventional histology without the need for physical sectioning. We further compare normal breast tissue and invasive cancer specimens imaged at multiple magnifications, and assess the effects of photobleaching for both modalities using the staining protocol. The results demonstrate that confocal fluorescence microscopy is a promising and cost-effective alternative to multiphoton microscopy for rapid histopathological evaluation of ex vivo breast tissue.

  4. Comparison Study of Regularizations in Spectral Computed Tomography Reconstruction

    NASA Astrophysics Data System (ADS)

    Salehjahromi, Morteza; Zhang, Yanbo; Yu, Hengyong

    2018-12-01

    The energy-resolving photon-counting detectors in spectral computed tomography (CT) can acquire projections of an object in different energy channels. In other words, they are able to reliably distinguish the received photon energies. These detectors lead to the emerging spectral CT, which is also called multi-energy CT, energy-selective CT, color CT, etc. Spectral CT can provide additional information in comparison with the conventional CT in which energy integrating detectors are used to acquire polychromatic projections of an object being investigated. The measurements obtained by X-ray CT detectors are noisy in reality, especially in spectral CT where the photon number is low in each energy channel. Therefore, some regularization should be applied to obtain a better image quality for this ill-posed problem in spectral CT image reconstruction. Quadratic-based regularizations are not often satisfactory as they blur the edges in the reconstructed images. As a result, different edge-preserving regularization methods have been adopted for reconstructing high quality images in the last decade. In this work, we numerically evaluate the performance of different regularizers in spectral CT, including total variation, non-local means and anisotropic diffusion. The goal is to provide some practical guidance to accurately reconstruct the attenuation distribution in each energy channel of the spectral CT data.

  5. Rotating single-shot acquisition (RoSA) with composite reconstruction for fast high-resolution diffusion imaging.

    PubMed

    Wen, Qiuting; Kodiweera, Chandana; Dale, Brian M; Shivraman, Giri; Wu, Yu-Chien

    2018-01-01

    To accelerate high-resolution diffusion imaging, rotating single-shot acquisition (RoSA) with composite reconstruction is proposed. Acceleration was achieved by acquiring only one rotating single-shot blade per diffusion direction, and high-resolution diffusion-weighted (DW) images were reconstructed by using similarities of neighboring DW images. A parallel imaging technique was implemented in RoSA to further improve the image quality and acquisition speed. RoSA performance was evaluated by simulation and human experiments. A brain tensor phantom was developed to determine an optimal blade size and rotation angle by considering similarity in DW images, off-resonance effects, and k-space coverage. With the optimal parameters, RoSA MR pulse sequence and reconstruction algorithm were developed to acquire human brain data. For comparison, multishot echo planar imaging (EPI) and conventional single-shot EPI sequences were performed with matched scan time, resolution, field of view, and diffusion directions. The simulation indicated an optimal blade size of 48 × 256 and a 30 ° rotation angle. For 1 × 1 mm 2 in-plane resolution, RoSA was 12 times faster than the multishot acquisition with comparable image quality. With the same acquisition time as SS-EPI, RoSA provided superior image quality and minimum geometric distortion. RoSA offers fast, high-quality, high-resolution diffusion images. The composite image reconstruction is model-free and compatible with various diffusion computation approaches including parametric and nonparametric analyses. Magn Reson Med 79:264-275, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  6. Non-Enhanced MR Imaging of Cerebral Arteriovenous Malformations at 7 Tesla.

    PubMed

    Wrede, Karsten H; Dammann, Philipp; Johst, Sören; Mönninghoff, Christoph; Schlamann, Marc; Maderwald, Stefan; Sandalcioglu, I Erol; Ladd, Mark E; Forsting, Michael; Sure, Ulrich; Umutlu, Lale

    2016-03-01

    To evaluate prospectively 7 Tesla time-of-flight (TOF) magnetic resonance angiography (MRA) and 7 Tesla non-contrast-enhanced magnetization-prepared rapid acquisition gradient-echo (MPRAGE) for delineation of intracerebral arteriovenous malformations (AVMs) in comparison to 1.5 Tesla TOF MRA and digital subtraction angiography (DSA). Twenty patients with single or multifocal AVMs were enrolled in this trial. The study protocol comprised 1.5 and 7 Tesla TOF MRA and 7 Tesla non-contrast-enhanced MPRAGE sequences. All patients underwent an additional four-vessel 3D DSA. Image analysis of the following five AVM features was performed individually by two radiologists on a five-point scale: nidus, feeder(s), draining vein(s), relationship to adjacent vessels, and overall image quality and presence of artefacts. A total of 21 intracerebral AVMs were detected. Both sequences at 7 Tesla were rated superior over 1.5 Tesla TOF MRA in the assessment of all considered AVM features. Image quality at 7 Tesla was comparable with DSA considering both sequences. Inter-observer accordance was good to excellent for the majority of ratings. This study demonstrates excellent image quality for depiction of intracerebral AVMs using non-contrast-enhanced 7 Tesla MRA, comparable with DSA. Assessment of untreated AVMs is a promising clinical application of ultra-high-field MRA. • Non-contrast-enhanced 7 Tesla MRA demonstrates excellent image quality for intracerebral AVM depiction. • Image quality at 7 Tesla was comparable with DSA considering both sequences. • Assessment of intracerebral AVMs is a promising clinical application of ultra-high-field MRA.

  7. An algorithm for encryption of secret images into meaningful images

    NASA Astrophysics Data System (ADS)

    Kanso, A.; Ghebleh, M.

    2017-03-01

    Image encryption algorithms typically transform a plain image into a noise-like cipher image, whose appearance is an indication of encrypted content. Bao and Zhou [Image encryption: Generating visually meaningful encrypted images, Information Sciences 324, 2015] propose encrypting the plain image into a visually meaningful cover image. This improves security by masking existence of encrypted content. Following their approach, we propose a lossless visually meaningful image encryption scheme which improves Bao and Zhou's algorithm by making the encrypted content, i.e. distortions to the cover image, more difficult to detect. Empirical results are presented to show high quality of the resulting images and high security of the proposed algorithm. Competence of the proposed scheme is further demonstrated by means of comparison with Bao and Zhou's scheme.

  8. QR images: optimized image embedding in QR codes.

    PubMed

    Garateguy, Gonzalo J; Arce, Gonzalo R; Lau, Daniel L; Villarreal, Ofelia P

    2014-07-01

    This paper introduces the concept of QR images, an automatic method to embed QR codes into color images with bounded probability of detection error. These embeddings are compatible with standard decoding applications and can be applied to any color image with full area coverage. The QR information bits are encoded into the luminance values of the image, taking advantage of the immunity of QR readers against local luminance disturbances. To mitigate the visual distortion of the QR image, the algorithm utilizes halftoning masks for the selection of modified pixels and nonlinear programming techniques to locally optimize luminance levels. A tractable model for the probability of error is developed and models of the human visual system are considered in the quality metric used to optimize the luminance levels of the QR image. To minimize the processing time, the optimization techniques proposed to consider the mechanics of a common binarization method and are designed to be amenable for parallel implementations. Experimental results show the graceful degradation of the decoding rate and the perceptual quality as a function the embedding parameters. A visual comparison between the proposed and existing methods is presented.

  9. Clinical Feasibility of Free-Breathing Dynamic T1-Weighted Imaging With Gadoxetic Acid-Enhanced Liver Magnetic Resonance Imaging Using a Combination of Variable Density Sampling and Compressed Sensing.

    PubMed

    Yoon, Jeong Hee; Yu, Mi Hye; Chang, Won; Park, Jin-Young; Nickel, Marcel Dominik; Son, Yohan; Kiefer, Berthold; Lee, Jeong Min

    2017-10-01

    The purpose of the study was to investigate the clinical feasibility of free-breathing dynamic T1-weighted imaging (T1WI) using Cartesian sampling, compressed sensing, and iterative reconstruction in gadoxetic acid-enhanced liver magnetic resonance imaging (MRI). This retrospective study was approved by our institutional review board, and the requirement for informed consent was waived. A total of 51 patients at high risk of breath-holding failure underwent dynamic T1WI in a free-breathing manner using volumetric interpolated breath-hold (BH) examination with compressed sensing reconstruction (CS-VIBE) and hard gating. Timing, motion artifacts, and image quality were evaluated by 4 radiologists on a 4-point scale. For patients with low image quality scores (<3) on the late arterial phase, respiratory motion-resolved (extradimension [XD]) reconstruction was additionally performed and reviewed in the same manner. In addition, in 68.6% (35/51) patients who had previously undergone liver MRI, image quality and motion artifacts on dynamic phases using CS-VIBE were compared with previous BH-T1WIs. In all patients, adequate arterial-phase timing was obtained at least once. Overall image quality of free-breathing T1WI was 3.30 ± 0.59 on precontrast and 2.68 ± 0.70, 2.93 ± 0.65, and 3.30 ± 0.49 on early arterial, late arterial, and portal venous phases, respectively. In 13 patients with lower than average image quality (<3) on the late arterial phase, motion-resolved reconstructed T1WI (XD-reconstructed CS-VIBE) significantly reduced motion artifacts (P < 0.002-0.021) and improved image quality (P < 0.0001-0.002). In comparison with previous BH-T1WI, CS-VIBE with hard gating or XD reconstruction showed less motion artifacts and better image quality on precontrast, arterial, and portal venous phases (P < 0.0001-0.013). Volumetric interpolated breath-hold examination with compressed sensing has the potential to provide consistent, motion-corrected free-breathing dynamic T1WI for liver MRI in patients at high risk of breath-holding failure.

  10. Comparison study of image quality and effective dose in dual energy chest digital tomosynthesis

    NASA Astrophysics Data System (ADS)

    Lee, Donghoon; Choi, Sunghoon; Lee, Haenghwa; Kim, Dohyeon; Choi, Seungyeon; Kim, Hee-Joung

    2018-07-01

    The present study aimed to introduce a recently developed digital tomosynthesis system for the chest and describe the procedure for acquiring dual energy bone decomposed tomosynthesis images. Various beam quality and reconstruction algorithms were evaluated for acquiring dual energy chest digital tomosynthesis (CDT) images and the effective dose was calculated with ion chamber and Monte Carlo simulations. The results demonstrated that dual energy CDT improved visualization of the lung field by eliminating the bony structures. In addition, qualitative and quantitative image quality of dual energy CDT using iterative reconstruction was better than that with filtered backprojection (FBP) algorithm. The contrast-to-noise ratio and figure of merit values of dual energy CDT acquired with iterative reconstruction were three times better than those acquired with FBP reconstruction. The difference in the image quality according to the acquisition conditions was not noticeable, but the effective dose was significantly affected by the acquisition condition. The high energy acquisition condition using 130 kVp recorded a relatively high effective dose. We conclude that dual energy CDT has the potential to compensate for major problems in CDT due to decomposed bony structures, which induce significant artifacts. Although there are many variables in the clinical practice, our results regarding reconstruction algorithms and acquisition conditions may be used as the basis for clinical use of dual energy CDT imaging.

  11. Studies of a Next-Generation Silicon-Photomultiplier-Based Time-of-Flight PET/CT System.

    PubMed

    Hsu, David F C; Ilan, Ezgi; Peterson, William T; Uribe, Jorge; Lubberink, Mark; Levin, Craig S

    2017-09-01

    This article presents system performance studies for the Discovery MI PET/CT system, a new time-of-flight system based on silicon photomultipliers. System performance and clinical imaging were compared between this next-generation system and other commercially available PET/CT and PET/MR systems, as well as between different reconstruction algorithms. Methods: Spatial resolution, sensitivity, noise-equivalent counting rate, scatter fraction, counting rate accuracy, and image quality were characterized with the National Electrical Manufacturers Association NU-2 2012 standards. Energy resolution and coincidence time resolution were measured. Tests were conducted independently on two Discovery MI scanners installed at Stanford University and Uppsala University, and the results were averaged. Back-to-back patient scans were also performed between the Discovery MI, Discovery 690 PET/CT, and SIGNA PET/MR systems. Clinical images were reconstructed using both ordered-subset expectation maximization and Q.Clear (block-sequential regularized expectation maximization with point-spread function modeling) and were examined qualitatively. Results: The averaged full widths at half maximum (FWHMs) of the radial/tangential/axial spatial resolution reconstructed with filtered backprojection at 1, 10, and 20 cm from the system center were, respectively, 4.10/4.19/4.48 mm, 5.47/4.49/6.01 mm, and 7.53/4.90/6.10 mm. The averaged sensitivity was 13.7 cps/kBq at the center of the field of view. The averaged peak noise-equivalent counting rate was 193.4 kcps at 21.9 kBq/mL, with a scatter fraction of 40.6%. The averaged contrast recovery coefficients for the image-quality phantom were 53.7, 64.0, 73.1, 82.7, 86.8, and 90.7 for the 10-, 13-, 17-, 22-, 28-, and 37-mm-diameter spheres, respectively. The average photopeak energy resolution was 9.40% FWHM, and the average coincidence time resolution was 375.4 ps FWHM. Clinical image comparisons between the PET/CT systems demonstrated the high quality of the Discovery MI. Comparisons between the Discovery MI and SIGNA showed a similar spatial resolution and overall imaging performance. Lastly, the results indicated significantly enhanced image quality and contrast-to-noise performance for Q.Clear, compared with ordered-subset expectation maximization. Conclusion: Excellent performance was achieved with the Discovery MI, including 375 ps FWHM coincidence time resolution and sensitivity of 14 cps/kBq. Comparisons between reconstruction algorithms and other multimodal silicon photomultiplier and non-silicon photomultiplier PET detector system designs indicated that performance can be substantially enhanced with this next-generation system. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  12. Image and Video Quality Assessment Using LCD: Comparisons with CRT Conditions

    NASA Astrophysics Data System (ADS)

    Tourancheau, Sylvain; Callet, Patrick Le; Barba, Dominique

    In this paper, the impact of display on quality assessment is addressed. Subjective quality assessment experiments have been performed on both LCD and CRT displays. Two sets of still images and two sets of moving pictures have been assessed using either an ACR or a SAMVIQ protocol. Altogether, eight experiments have been led. Results are presented and discussed, some differences are pointed out. Concerning moving pictures, these differences seem to be mainly due to LCD moving artefacts such as motion blur. LCD motion blur has been measured objectively and with psycho-physics experiments. A motion-blur metric based on the temporal characteristics of LCD can be defined. A prediction model have been then designed which predict the differences of perceived quality between CRT and LCD. This motion-blur-based model enables the estimation of perceived quality on LCD with respect to the perceived quality on CRT. Technical solutions to LCD motion blur can thus be evaluated on natural contents by this mean.

  13. A Voxel-by-Voxel Comparison of Deformable Vector Fields Obtained by Three Deformable Image Registration Algorithms Applied to 4DCT Lung Studies.

    PubMed

    Fatyga, Mirek; Dogan, Nesrin; Weiss, Elizabeth; Sleeman, William C; Zhang, Baoshe; Lehman, William J; Williamson, Jeffrey F; Wijesooriya, Krishni; Christensen, Gary E

    2015-01-01

    Commonly used methods of assessing the accuracy of deformable image registration (DIR) rely on image segmentation or landmark selection. These methods are very labor intensive and thus limited to relatively small number of image pairs. The direct voxel-by-voxel comparison can be automated to examine fluctuations in DIR quality on a long series of image pairs. A voxel-by-voxel comparison of three DIR algorithms applied to lung patients is presented. Registrations are compared by comparing volume histograms formed both with individual DIR maps and with a voxel-by-voxel subtraction of the two maps. When two DIR maps agree one concludes that both maps are interchangeable in treatment planning applications, though one cannot conclude that either one agrees with the ground truth. If two DIR maps significantly disagree one concludes that at least one of the maps deviates from the ground truth. We use the method to compare 3 DIR algorithms applied to peak inhale-peak exhale registrations of 4DFBCT data obtained from 13 patients. All three algorithms appear to be nearly equivalent when compared using DICE similarity coefficients. A comparison based on Jacobian volume histograms shows that all three algorithms measure changes in total volume of the lungs with reasonable accuracy, but show large differences in the variance of Jacobian distribution on contoured structures. Analysis of voxel-by-voxel subtraction of DIR maps shows differences between algorithms that exceed a centimeter for some registrations. Deformation maps produced by DIR algorithms must be treated as mathematical approximations of physical tissue deformation that are not self-consistent and may thus be useful only in applications for which they have been specifically validated. The three algorithms tested in this work perform fairly robustly for the task of contour propagation, but produce potentially unreliable results for the task of DVH accumulation or measurement of local volume change. Performance of DIR algorithms varies significantly from one image pair to the next hence validation efforts, which are exhaustive but performed on a small number of image pairs may not reflect the performance of the same algorithm in practical clinical situations. Such efforts should be supplemented by validation based on a longer series of images of clinical quality.

  14. Evaluation of Image Quality in Three-dimensional Fat-suppressed T1-weighted Images with Fast Acquisition Mode for Upper Abdomen.

    PubMed

    Saito, Shigeyoshi; Tanaka, Keiko; Tarewaki, Hiroyuki; Koyama, Yoshihiro; Hashido, Takashi

    2016-01-01

    We compared the uniformity of fat-suppression and image quality using three-dimensional fat-suppressed T 1 -weighted gradient-echo sequences that are liver acquisition with volume acceleration (LAVA) and Turbo-LAVA at 3.0T-MRI. The subjects were seven patients with liver disease (mean age, 66.7±8.2 years). The axial slices of two LAVA sequences were used for the comparison of the uniformity of fat-suppression and image quality at a region-of-interest (ROI) of the liver dome, the porta, and the renal hilum. To yield a quantitative measurement of the uniformity of fat suppression, the percentage standard deviation (%SD) was calculated by comparing two sequences. For image signal to noise ratio (SNR), the contrast between the liver and fat (C liver-fat ), and the liver and muscle (C liver-muscle ), the other ROIs were placed in the superficial fat, liver, spleen, pancreas, and muscle. The %SD in Turbo-LAVA (28.1±16.8%) was lower than that in LAVA (41.5±13.4%). The SNRs in Turbo-LAVA (17.8±4.1 [liver], 12.5±3.0 [pancreas], 14.7±1.6 [spleen], 8.2±3.5 [fat]) were lower than those in LAVA (20.9±6.1 [liver], 16.8±4.1 [pancreas], 17.4±2.4 [spleen], 12.0±4.5 [fat]). While, the C liver-fat in the Turbo-LAVA (0.72±0.06) was significantly higher than that in LAVA (0.59±0.07). Turbo-LAVA sequence offers superior and more homogenous fat-suppression in comparison to LAVA sequence.

  15. Adaptive image inversion of contrast 3D echocardiography for enabling automated analysis.

    PubMed

    Shaheen, Anjuman; Rajpoot, Kashif

    2015-08-01

    Contrast 3D echocardiography (C3DE) is commonly used to enhance the visual quality of ultrasound images in comparison with non-contrast 3D echocardiography (3DE). Although the image quality in C3DE is perceived to be improved for visual analysis, however it actually deteriorates for the purpose of automatic or semi-automatic analysis due to higher speckle noise and intensity inhomogeneity. Therefore, the LV endocardial feature extraction and segmentation from the C3DE images remains a challenging problem. To address this challenge, this work proposes an adaptive pre-processing method to invert the appearance of C3DE image. The image inversion is based on an image intensity threshold value which is automatically estimated through image histogram analysis. In the inverted appearance, the LV cavity appears dark while the myocardium appears bright thus making it similar in appearance to a 3DE image. Moreover, the resulting inverted image has high contrast and low noise appearance, yielding strong LV endocardium boundary and facilitating feature extraction for segmentation. Our results demonstrate that the inverse appearance of contrast image enables the subsequent LV segmentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Research of the effectiveness of parallel multithreaded realizations of interpolation methods for scaling raster images

    NASA Astrophysics Data System (ADS)

    Vnukov, A. A.; Shershnev, M. B.

    2018-01-01

    The aim of this work is the software implementation of three image scaling algorithms using parallel computations, as well as the development of an application with a graphical user interface for the Windows operating system to demonstrate the operation of algorithms and to study the relationship between system performance, algorithm execution time and the degree of parallelization of computations. Three methods of interpolation were studied, formalized and adapted to scale images. The result of the work is a program for scaling images by different methods. Comparison of the quality of scaling by different methods is given.

  17. High-frequency Total Focusing Method (TFM) imaging in strongly attenuating materials with the decomposition of the time reversal operator associated with orthogonal coded excitations

    NASA Astrophysics Data System (ADS)

    Villaverde, Eduardo Lopez; Robert, Sébastien; Prada, Claire

    2017-02-01

    In the present work, the Total Focusing Method (TFM) is used to image defects in a High Density Polyethylene (HDPE) pipe. The viscoelastic attenuation of this material corrupts the images with a high electronic noise. In order to improve the image quality, the Decomposition of the Time Reversal Operator (DORT) filtering is combined with spatial Walsh-Hadamard coded transmissions before calculating the images. Experiments on a complex HDPE joint demonstrate that this method improves the signal-to-noise ratio by more than 40 dB in comparison with the conventional TFM.

  18. First in vivo head-to-head comparison of high-definition versus standard-definition stent imaging with 64-slice computed tomography.

    PubMed

    Fuchs, Tobias A; Stehli, Julia; Fiechter, Michael; Dougoud, Svetlana; Sah, Bert-Ram; Gebhard, Cathérine; Bull, Sacha; Gaemperli, Oliver; Kaufmann, Philipp A

    2013-08-01

    The aim of this study was to compare image quality characteristics from 64-slice high definition (HDCT) versus 64-slice standard definition CT (SDCT) for coronary stent imaging. In twenty-five stents of 14 patients, undergoing contrast-enhanced CCTA both on 64-slice SDCT (LightSpeedVCT, GE Healthcare) and HDCT (Discovery HD750, GE Healthcare), radiation dose, contrast, noise and stent characteristics were assessed. Two blinded observers graded stent image quality (score 1 = no, 2 = mild, 3 = moderate, and 4 = severe artefacts). All scans were reconstructed with increasing contributions of adaptive statistical iterative reconstruction (ASIR) blending (0, 20, 40, 60, 80 and 100 %). Image quality was significantly superior in HDCT versus SDCT (score 1.7 ± 0.5 vs. 2.7 ± 0.7; p < 0.05). Image noise was significantly higher in HDCT compared to SDCT irrespective of ASIR contributions (p < 0.05). Addition of 40 % ASIR or more reduced image noise significantly in both HDCT and SDCT. In HDCT in-stent luminal attenuation was significantly lower and mean measured in-stent luminal diameter was significantly larger (1.2 ± 0.4 mm vs. 0.8 ± 0.4 mm; p < 0.05) compared to SDCT. Radiation dose from HDCT was comparable to SDCT (1.8 ± 0.7 mSv vs. 1.7 ± 0.7 mSv; p = ns). Use of HDCT for coronary stent imaging reduces partial volume artefacts from stents yielding improved image quality versus SDCT at a comparable radiation dose.

  19. Does the choice of mobile C-arms lead to a reduction of the intraoperative radiation dose?

    PubMed

    Richter, P H; Steinbrener, J; Schicho, A; Gebhard, F

    2016-08-01

    Mobile C-arm imaging is commonly used in operating rooms worldwide. Especially in orthopaedic surgery, intraoperative C-arms are used on a daily basis. Because of new minimally-invasive surgical procedures a development in intraoperative imaging is required. The purpose of this article is investigate if the choice of mobile C-arms with flat panel detector technology (Siemens Cios Alpha and Ziehm Vision RFD) influences image quality and dose using standard, commercially available test devices. For a total of four clinical application settings, two zoom formats, and all dose levels provided, the transmission dose was measured and representative images were recorded for each test device. The data was scored by four observers to assess low contrast and spatial resolution performance. The results were converted to a relative image quality figure allowing for a direct image quality and dose comparison of the two systems. For one test device, the Cios Alpha system achieved equivalent (within the inter-observer standard error) or better low contrast resolution scores at significantly lower dose levels, while the results of the other test device suggested that both systems achieved similar image quality at the same dose. The Cios Alpha system achieved equivalent or better spatial resolution at significantly lower dose for all application settings except for Cardiac, where a comparable spatial resolution was achieved at the same dose. The correct choice of a mobile C-arm is very important, because it can lead to a reduction of the intraoperative radiation dose without negative effects on image quality. This can be a big advantage to reduce intraoperative radiation not only for the patient but also for the entire OR-team. Copyright © 2016. Published by Elsevier Ltd.

  20. Comparison of image quality and radiation dose between fixed tube current and combined automatic tube current modulation in craniocervical CT angiography.

    PubMed

    Lee, E J; Lee, S K; Agid, R; Howard, P; Bae, J M; terBrugge, K

    2009-10-01

    The combined automatic tube current modulation (ATCM) technique adapts and modulates the x-ray tube current in the x-y-z axis according to the patient's individual anatomy. We compared image quality and radiation dose of the combined ATCM technique with those of a fixed tube current (FTC) technique in craniocervical CT angiography performed with a 64-section multidetector row CT (MDCT) system. A retrospective review of craniocervical CT angiograms (CTAs) by using combined ATCM (n = 25) and FTC techniques (n = 25) was performed. Other CTA parameters, such as kilovolt (peak), matrix size, FOV, section thickness, pitch, contrast agent, and contrast injection techniques, were held constant. We recorded objective image noise in the muscles at 2 anatomic levels: radiation exposure doses (CT dose index volume and dose-length product); and subjective image quality parameters, such as vascular delineation of various arterial vessels, visibility of small arterial detail, image artifacts, and certainty of diagnosis. The Mann-Whitney U test was used for statistical analysis. No significant difference was detected in subjective image quality parameters between the FTC and combined ATCM techniques. Most subjects in both study groups (49/50, 98%) had acceptable subjective artifacts. The objective image noise values at shoulder level did not show a significant difference, but the noise value at the upper neck was higher with the combined ATCM (P < .05) technique. Significant reduction in radiation dose (18% reduction) was noted with the combined ATCM technique (P < .05). The combined ATCM technique for craniocervical CTA performed at 64-section MDCT substantially reduced radiation exposure dose but maintained diagnostic image quality.

  1. Equilibrium-phase MR angiography: Comparison of unspecific extracellular and protein-binding gadolinium-based contrast media with respect to image quality.

    PubMed

    Erb-Eigner, Katharina; Taupitz, Matthias; Asbach, Patrick

    2016-01-01

    The purpose of this study was to compare contrast and image quality of whole-body equilibrium-phase high-spatial-resolution MR angiography using a non-protein-binding unspecific extracellular gadolinium-based contrast medium with that of two contrast media with different protein-binding properties. 45 patients were examined using either 15 mL of gadobutrol (non-protein-binding, n = 15), 32 mL of gadobenate dimeglumine (weakly protein binding, n = 15) or 11 mL gadofosveset trisodium (protein binding, n = 15) followed by equilibrium-phase high-spatial-resolution MR-angiography of four consecutive anatomic regions. The time elapsed between the contrast injection and the beginning of the equilibrium-phase image acquisition in the respective region was measured and was up to 21 min. Signal intensity was measured in two vessels per region and in muscle tissue. Relative contrast (RC) values were calculated. Vessel contrast, artifacts and image quality were rated by two radiologists in consensus on a five-point scale. Compared with gadobutrol, gadofosveset trisodium revealed significantly higher RC values only when acquired later than 15 min after bolus injection. Otherwise, no significant differences between the three contrast media were found regarding vascular contrast and image quality. Equilibrium-phase high-spatial-resolution MR-angiography using a weakly protein-binding or even non-protein-binding contrast medium is equivalent to using a stronger protein-binding contrast medium when image acquisition is within the first 15 min after contrast injection, and allows depiction of the vasculature with high contrast and image quality. The protein-binding contrast medium was superior for imaging only later than 15 min after contrast medium injection. Copyright © 2015 John Wiley & Sons, Ltd.

  2. A biomechanical modeling-guided simultaneous motion estimation and image reconstruction technique (SMEIR-Bio) for 4D-CBCT reconstruction

    NASA Astrophysics Data System (ADS)

    Huang, Xiaokun; Zhang, You; Wang, Jing

    2018-02-01

    Reconstructing four-dimensional cone-beam computed tomography (4D-CBCT) images directly from respiratory phase-sorted traditional 3D-CBCT projections can capture target motion trajectory, reduce motion artifacts, and reduce imaging dose and time. However, the limited numbers of projections in each phase after phase-sorting decreases CBCT image quality under traditional reconstruction techniques. To address this problem, we developed a simultaneous motion estimation and image reconstruction (SMEIR) algorithm, an iterative method that can reconstruct higher quality 4D-CBCT images from limited projections using an inter-phase intensity-driven motion model. However, the accuracy of the intensity-driven motion model is limited in regions with fine details whose quality is degraded due to insufficient projection number, which consequently degrades the reconstructed image quality in corresponding regions. In this study, we developed a new 4D-CBCT reconstruction algorithm by introducing biomechanical modeling into SMEIR (SMEIR-Bio) to boost the accuracy of the motion model in regions with small fine structures. The biomechanical modeling uses tetrahedral meshes to model organs of interest and solves internal organ motion using tissue elasticity parameters and mesh boundary conditions. This physics-driven approach enhances the accuracy of solved motion in the organ’s fine structures regions. This study used 11 lung patient cases to evaluate the performance of SMEIR-Bio, making both qualitative and quantitative comparisons between SMEIR-Bio, SMEIR, and the algebraic reconstruction technique with total variation regularization (ART-TV). The reconstruction results suggest that SMEIR-Bio improves the motion model’s accuracy in regions containing small fine details, which consequently enhances the accuracy and quality of the reconstructed 4D-CBCT images.

  3. Improve Image Quality of Transversal Relaxation Time PROPELLER and FLAIR on Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Rauf, N.; Alam, D. Y.; Jamaluddin, M.; Samad, B. A.

    2018-03-01

    The Magnetic Resonance Imaging (MRI) is a medical imaging technique that uses the interaction between the magnetic field and the nuclear spins. MRI can be used to show disparity of pathology by transversal relaxation time (T2) weighted images. Some techniques for producing T2-weighted images are Periodically Rotated Overlapping Parallel Lines with Enhanced Reconstruction (PROPELLER) and Fluid Attenuated Inversion Recovery (FLAIR). A comparison of T2 PROPELLER and T2 FLAIR parameters in MRI image has been conducted. And improve Image Quality the image by using RadiAnt DICOM Viewer and ENVI software with method of image segmentation and Region of Interest (ROI). Brain images were randomly selected. The result of research showed that Time Repetition (TR) and Time Echo (TE) values in all types of images were not influenced by age. T2 FLAIR images had longer TR value (9000 ms), meanwhile T2 PROPELLER images had longer TE value (100.75 - 102.1 ms). Furthermore, areas with low and medium signal intensity appeared clearer by using T2 PROPELLER images (average coefficients of variation for low and medium signal intensity were 0.0431 and 0.0705, respectively). As for areas with high signal intensity appeared clearer by using T2 FLAIR images (average coefficient of variation was 0.0637).

  4. SU-E-J-36: Comparison of CBCT Image Quality for Manufacturer Default Imaging Modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, G

    Purpose CBCT is being increasingly used in patient setup for radiotherapy. Often the manufacturer default scan modes are used for performing these CBCT scans with the assumption that they are the best options. To quantitatively assess the image quality of these scan modes, all of the scan modes were tested as well as options with the reconstruction algorithm. Methods A CatPhan 504 phantom was scanned on a TrueBeam Linear Accelerator using the manufacturer scan modes (FSRT Head, Head, Image Gently, Pelvis, Pelvis Obese, Spotlight, & Thorax). The Head mode scan was then reconstructed multiple times with all filter options (Smooth,more » Standard, Sharp, & Ultra Sharp) and all Ring Suppression options (Disabled, Weak, Medium, & Strong). An open source ImageJ tool was created for analyzing the CatPhan 504 images. Results The MTF curve was primarily dictated by the voxel size and the filter used in the reconstruction algorithm. The filters also impact the image noise. The CNR was worst for the Image Gently mode, followed by FSRT Head and Head. The sharper the filter, the worse the CNR. HU varied significantly between scan modes. Pelvis Obese had lower than expected HU values than most while the Image Gently mode had higher than expected HU values. If a therapist tried to use preset window and level settings, they would not show the desired tissue for some scan modes. Conclusion Knowing the image quality of the set scan modes, will enable users to better optimize their setup CBCT. Evaluation of the scan mode image quality could improve setup efficiency and lead to better treatment outcomes.« less

  5. The Detection of Focal Liver Lesions Using Abdominal CT: A Comparison of Image Quality Between Adaptive Statistical Iterative Reconstruction V and Adaptive Statistical Iterative Reconstruction.

    PubMed

    Lee, Sangyun; Kwon, Heejin; Cho, Jihan

    2016-12-01

    To investigate image quality characteristics of abdominal computed tomography (CT) scans reconstructed with adaptive statistical iterative reconstruction V (ASIR-V) vs currently using applied adaptive statistical iterative reconstruction (ASIR). This institutional review board-approved study included 35 consecutive patients who underwent CT of the abdomen. Among these 35 patients, 27 with focal liver lesions underwent abdomen CT with a 128-slice multidetector unit using the following parameters: fixed noise index of 30, 1.25 mm slice thickness, 120 kVp, and a gantry rotation time of 0.5 seconds. CT images were analyzed depending on the method of reconstruction: ASIR (30%, 50%, and 70%) vs ASIR-V (30%, 50%, and 70%). Three radiologists independently assessed randomized images in a blinded manner. Imaging sets were compared to focal lesion detection numbers, overall image quality, and objective noise with a paired sample t test. Interobserver agreement was assessed with the intraclass correlation coefficient. The detection of small focal liver lesions (<10 mm) was significantly higher when ASIR-V was used when compared to ASIR (P <0.001). Subjective image noise, artifact, and objective image noise in liver were generally significantly better for ASIR-V compared to ASIR, especially in 50% ASIR-V. Image sharpness and diagnostic acceptability were significantly worse in 70% ASIR-V compared to various levels of ASIR. Images analyzed using 50% ASIR-V were significantly better than three different series of ASIR or other ASIR-V conditions at providing diagnostically acceptable CT scans without compromising image quality and in the detection of focal liver lesions. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  6. Statistical analysis of subjective preferences for video enhancement

    NASA Astrophysics Data System (ADS)

    Woods, Russell L.; Satgunam, PremNandhini; Bronstad, P. Matthew; Peli, Eli

    2010-02-01

    Measuring preferences for moving video quality is harder than for static images due to the fleeting and variable nature of moving video. Subjective preferences for image quality can be tested by observers indicating their preference for one image over another. Such pairwise comparisons can be analyzed using Thurstone scaling (Farrell, 1999). Thurstone (1927) scaling is widely used in applied psychology, marketing, food tasting and advertising research. Thurstone analysis constructs an arbitrary perceptual scale for the items that are compared (e.g. enhancement levels). However, Thurstone scaling does not determine the statistical significance of the differences between items on that perceptual scale. Recent papers have provided inferential statistical methods that produce an outcome similar to Thurstone scaling (Lipovetsky and Conklin, 2004). Here, we demonstrate that binary logistic regression can analyze preferences for enhanced video.

  7. Image analysis for dental bone quality assessment using CBCT imaging

    NASA Astrophysics Data System (ADS)

    Suprijanto; Epsilawati, L.; Hajarini, M. S.; Juliastuti, E.; Susanti, H.

    2016-03-01

    Cone beam computerized tomography (CBCT) is one of X-ray imaging modalities that are applied in dentistry. Its modality can visualize the oral region in 3D and in a high resolution. CBCT jaw image has potential information for the assessment of bone quality that often used for pre-operative implant planning. We propose comparison method based on normalized histogram (NH) on the region of inter-dental septum and premolar teeth. Furthermore, the NH characteristic from normal and abnormal bone condition are compared and analyzed. Four test parameters are proposed, i.e. the difference between teeth and bone average intensity (s), the ratio between bone and teeth average intensity (n) of NH, the difference between teeth and bone peak value (Δp) of NH, and the ratio between teeth and bone of NH range (r). The results showed that n, s, and Δp have potential to be the classification parameters of dental calcium density.

  8. Performance Comparison of 1.5 T Endorectal Coil MRI with Non-Endorectal Coil 3.0 T MRI in Patients with Prostate Cancer

    PubMed Central

    Shah, Zarine K.; Elias, Saba N.; Abaza, Ronney; Zynger, Debra L.; DeRenne, Lawrence A.; Knopp, Michael V.; Guo, Beibei; Schurr, Ryan; Heymsfield, Steven B.; Jia, Guang

    2015-01-01

    Rationale and Objectives To compare prostate morphology, image quality, and diagnostic performance of 1.5 T endorectal coil MRI and 3.0 T non-endorectal coil MRI in patients with prostate cancer. Materials and Methods MR images obtained of 83 patients with prostate cancer using 1.5 T MRI systems with an endorectal coil were compared to images collected from 83 patients with a 3.0 T MRI system. Prostate diameters were measured and image quality was evaluated by one ABR-certified radiologist (Reader 1) and one ABR-certified diagnostic medical physicist (Reader 2). The likelihood of the peripheral zone cancer presence in each sextant and local extent were rated and compared with histopathologic findings. Results Prostate anterior-posterior diameter measured by both readers was significantly shorter with 1.5 T endorectal MRI than with 3.0 T MRI. The overall image quality score difference was significant only for Reader 1. Both readers found that the two MRI systems provided similar diagnostic accuracy in cancer localization, extraprostatic extension, and seminal vesicle involvement. Conclusion Non-endorectal coil 3.0 T MRI provides prostate images that are natural in shape and that have comparable image quality to those obtained at 1.5 T with an endorectal coil, but not superior diagnostic performance. These findings suggest an opportunity exists for improving technical aspects of 3.0 T prostate MRI. PMID:25579637

  9. Learning implicit brain MRI manifolds with deep learning

    NASA Astrophysics Data System (ADS)

    Bermudez, Camilo; Plassard, Andrew J.; Davis, Larry T.; Newton, Allen T.; Resnick, Susan M.; Landman, Bennett A.

    2018-03-01

    An important task in image processing and neuroimaging is to extract quantitative information from the acquired images in order to make observations about the presence of disease or markers of development in populations. Having a low-dimensional manifold of an image allows for easier statistical comparisons between groups and the synthesis of group representatives. Previous studies have sought to identify the best mapping of brain MRI to a low-dimensional manifold, but have been limited by assumptions of explicit similarity measures. In this work, we use deep learning techniques to investigate implicit manifolds of normal brains and generate new, high-quality images. We explore implicit manifolds by addressing the problems of image synthesis and image denoising as important tools in manifold learning. First, we propose the unsupervised synthesis of T1-weighted brain MRI using a Generative Adversarial Network (GAN) by learning from 528 examples of 2D axial slices of brain MRI. Synthesized images were first shown to be unique by performing a cross-correlation with the training set. Real and synthesized images were then assessed in a blinded manner by two imaging experts providing an image quality score of 1-5. The quality score of the synthetic image showed substantial overlap with that of the real images. Moreover, we use an autoencoder with skip connections for image denoising, showing that the proposed method results in higher PSNR than FSL SUSAN after denoising. This work shows the power of artificial networks to synthesize realistic imaging data, which can be used to improve image processing techniques and provide a quantitative framework to structural changes in the brain.

  10. Verification technology of remote sensing camera satellite imaging simulation based on ray tracing

    NASA Astrophysics Data System (ADS)

    Gu, Qiongqiong; Chen, Xiaomei; Yang, Deyun

    2017-08-01

    Remote sensing satellite camera imaging simulation technology is broadly used to evaluate the satellite imaging quality and to test the data application system. But the simulation precision is hard to examine. In this paper, we propose an experimental simulation verification method, which is based on the test parameter variation comparison. According to the simulation model based on ray-tracing, the experiment is to verify the model precision by changing the types of devices, which are corresponding the parameters of the model. The experimental results show that the similarity between the imaging model based on ray tracing and the experimental image is 91.4%, which can simulate the remote sensing satellite imaging system very well.

  11. A Comparison of the AVS-9 and the Panoramic Night Vision Goggle During Rotorcraft Hover and Landing

    NASA Technical Reports Server (NTRS)

    Szoboszlay, Zoltan; Haworth, Loran; Simpson, Carol; Rutkowski, Michael (Technical Monitor)

    2001-01-01

    The purpose of this flight test was to measure any differences in pilot-vehicle performance and pilot opinion between the use of the current generation AVS-9 Night Vision Goggle and one variant of the prototype Panoramic Night Vision Goggle (the PNV.GII). The PNVGII has more than double the horizontal field-of-view of the AVS-9, but reduced image quality. The flight path of the AH-1S helicopter was used as a measure of pilot-vehicle performance. Also recorded were subjective measures of flying qualities, physical reserves of the pilot, situational awareness, and display usability. Pilot comment and data indicate that the benefits of additional FOV with the PNVGIIs are to some extent negated by the reduced image quality of the PNVGIIs.

  12. The potential impact of contemporary transthoracic echocardiography on the management of patients with native valve endocarditis: a comparison with transesophageal echocardiography.

    PubMed

    Casella, Francesco; Rana, Bushra; Casazza, Giovanni; Bhan, Amit; Kapetanakis, Stam; Omigie, Joe; Reiken, Joseph; Monaghan, Mark J

    2009-09-01

    Between 1987 and 1994, several studies demostrated transthoracic echocardiography (TTE) to be less sensitive than transesophageal echocardiography (TEE) in detecting native valve endocarditis. Recent technologic advances, especially the introduction of harmonic imaging and digital processing and storage, have improved TTE image quality. The aim of this study was to determine the diagnostic accuracy of contemporary TTE. Between 2003 and 2007, 75 patients underwent both TTE and TEE for clinically suspected infective endocarditis. The diagnostic accuracy of TTE was assessed using transesophageal echocardiography as the gold standard for diagnosis of endocarditis. Of the 75 patients in this study, 33 were found to be positive by TEE. The sensitivity for detection of infective endocarditis by TTE was 81.8%. It provided good image quality in 81.5% of cases; in these patients sensitivity was even greater (89.3%). Contemporary TTE has improved the diagnostic accuracy of infective endocarditis by ameliorating image quality; it provides an accurate assessment of endocarditis and may reduce the need for TEE.

  13. MO-FG-204-02: Reference Image Selection in the Presence of Multiple Scan Realizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruan, D; Dou, T; Thomas, D

    Purpose: Fusing information from multiple correlated realizations (e.g., 4DCT) can improve image quality. This process often involves ill-conditioned and asymmetric nonlinear registration and the proper selection of a reference image is important. This work proposes to examine post-registration variation indirectly for such selection, and develops further insights to reduce the number of cross-registrations needed. Methods: We consider each individual scan as a noisy point in the vicinity of an image manifold, related by motion. Nonrigid registration “transports” a scan along the manifold to the reference neighborhood, and the residual is a surrogate for local variation. To test this conjecture, 10more » thoracic scans from the same session were reconstructed from a recently developed low-dose helical 4DCT protocol. Pairwise registration was repeated bi-directionally (81 times) and fusion was performed with each candidate reference. The fused image quality was assessed with SNR and CNR. Registration residuals in SSD, harmonic energy, and deformation Jacobian behavior were examined. The semi-symmetry is further utilized to reduce the number of registration needed. Results: The comparison of image quality between single image and fused ones identified reduction of local intensity variance as the major contributor of image quality, boosting SNR and CNR by 5 to 7 folds. This observation further suggests the criticality of good agreement across post-registration images. Triangle inequality on the SSD metric provides a proficient upper-bound and surrogate on such disagreement. Empirical observation also confirms that fused images with high residual SSD have lower SNR and CNR than the ones with low or intermediate SSDs. Registration SSD is structurally close enough to symmetry for reduced computation. Conclusion: Registration residual is shown to be a good predictor of post-fusion image quality and can be used to identify good reference centers. Semi-symmetry of the registration residual further reduces computation cost. Supported by in part by NIH R01 CA096679.« less

  14. Analysis of the impact of digital watermarking on computer-aided diagnosis in medical imaging.

    PubMed

    Garcia-Hernandez, Jose Juan; Gomez-Flores, Wilfrido; Rubio-Loyola, Javier

    2016-01-01

    Medical images (MI) are relevant sources of information for detecting and diagnosing a large number of illnesses and abnormalities. Due to their importance, this study is focused on breast ultrasound (BUS), which is the main adjunct for mammography to detect common breast lesions among women worldwide. On the other hand, aiming to enhance data security, image fidelity, authenticity, and content verification in e-health environments, MI watermarking has been widely used, whose main goal is to embed patient meta-data into MI so that the resulting image keeps its original quality. In this sense, this paper deals with the comparison of two watermarking approaches, namely spread spectrum based on the discrete cosine transform (SS-DCT) and the high-capacity data-hiding (HCDH) algorithm, so that the watermarked BUS images are guaranteed to be adequate for a computer-aided diagnosis (CADx) system, whose two principal outcomes are lesion segmentation and classification. Experimental results show that HCDH algorithm is highly recommended for watermarking medical images, maintaining the image quality and without introducing distortion into the output of CADx. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Dose and image quality for a cone-beam C-arm CT system.

    PubMed

    Fahrig, Rebecca; Dixon, Robert; Payne, Thomas; Morin, Richard L; Ganguly, Arundhuti; Strobel, Norbert

    2006-12-01

    We assess dose and image quality of a state-of-the-art angiographic C-arm system (Axiom Artis dTA, Siemens Medical Solutions, Forchheim, Germany) for three-dimensional neuro-imaging at various dose levels and tube voltages and an associated measurement method. Unlike conventional CT, the beam length covers the entire phantom, hence, the concept of computed tomography dose index (CTDI) is not the metric of choice, and one can revert to conventional dosimetry methods by directly measuring the dose at various points using a small ion chamber. This method allows us to define and compute a new dose metric that is appropriate for a direct comparison with the familiar CTDIw of conventional CT. A perception study involving the CATPHAN 600 indicates that one can expect to see at least the 9 mm inset with 0.5% nominal contrast at the recommended head-scan dose (60 mGy) when using tube voltages ranging from 70 kVp to 125 kVp. When analyzing the impact of tube voltage on image quality at a fixed dose, we found that lower tube voltages gave improved low contrast detectability for small-diameter objects. The relationships between kVp, image noise, dose, and contrast perception are discussed.

  16. Comparison null imaging ellipsometry using polarization rotator

    NASA Astrophysics Data System (ADS)

    Park, Sungmo; Kim, Eunsung; Kim, Jiwon; An, Ilsin

    2018-05-01

    In this study, two-reflection imaging ellipsometry is carried out to compare the changes in polarization states between two samples. By using a polarization rotator, the parallel and perpendicular components of polarization are easily switched between the two samples being compared. This leads to an intensity image consisting of null and off-null points depending on the difference in optical characteristics between the two samples. This technique does not require any movement of optical elements for nulling and can be used to detect defects or surface contamination for quality control of samples.

  17. The CT image standardization based on the verified PSF

    NASA Astrophysics Data System (ADS)

    Wada, Shinichi; Ohkubo, Masaki; Kunii, Masayuki; Matsumoto, Toru; Murao, Kohei; Awai, Kazuo; Ikeda, Mitsuru

    2007-03-01

    This study discusses a method of CT image quality standardization that uses a point-spread function (PSF) in MDCT. CT image I(x,y,z) is represented by the following formula: I(x,y,z) = O(x,y,z)***PSF(x,y,z). Standardization was performed by measuring the three-dimensional (3-D) PSFs of two CT images with different image qualities. The image conversion method was constructed and tested using the 3-D PSFs and CT images of the CT scanners of three different manufacturers. The CT scanners used were Lightspeed QX/i, Somatom Volume Zoom, and Brilliance-40. To obtain the PSF(x,y) of these CT scanners, the line spread functions of the respective reconstruction kernels were measured using a phantom described by J.M. Boone. The kernels for each scanner were: soft, standard, lung, bone, and bone plus (GE); B20f, B40f, B41f, B50f, and B60f (Siemens); and B, C, D, E, and L (Philips). Slice sensitivity profile (SSP) were measured using a micro-disk phantom (50 μm* φ1 mm) with 5 mm slice thickness and beam pitch of 1.5 (GE, Siemens) and 0.626 (Philips). 3-D PSF was verified using an MDCT QA phantom. Real chest CT images were converted to images with contrasting standard image quality. Comparison between the converted CT image and the original standard image showed good agreement. The usefulness of the image conversion method is discussed using clinical CT images acquired by CT scanners produced by different manufacturers.

  18. Comparison of Diffusion-Weighted Imaging in the Human Brain Using Readout-Segmented EPI and PROPELLER Turbo Spin Echo With Single-Shot EPI at 7 T MRI.

    PubMed

    Kida, Ikuhiro; Ueguchi, Takashi; Matsuoka, Yuichiro; Zhou, Kun; Stemmer, Alto; Porter, David

    2016-07-01

    The purpose of the present study was to compare periodically rotated overlapping parallel lines with enhanced reconstruction-type turbo spin echo diffusion-weighted imaging (pTSE-DWI) and readout-segmented echo planar imaging (rsEPI-DWI) with single-shot echo planar imaging (ssEPI-DWI) in a 7 T human MR system. We evaluated the signal-to-noise ratio (SNR), image distortion, and apparent diffusion coefficient values in the human brain. Six healthy volunteers were included in this study. The study protocol was approved by our institutional review board. All measurements were performed at 7 T using pTSE-DWI, rsEPI-DWI, and ssEPI-DWI sequences. The spatial resolution was 1.2 × 1.2 mm in-plane with a 3-mm slice thickness. Signal-to-noise ratio was measured using 2 scans. The ssEPI-DWI sequence showed significant image blurring, whereas pTSE-DWI and rsEPI-DWI sequences demonstrated high image quality with low geometrical distortion compared with reference T2-weighted, turbo spin echo images. Signal loss in ventral regions near the air-filled paranasal sinus/nasal cavity was found in ssEPI-DWI and rsEPI-DWI but not pTSE-DWI. The apparent diffusion coefficient values for ssEPI-DWI were 824 ± 17 × 10 and 749 ± 25 × 10 mm/s in the gray matter and white matter, respectively; the values obtained for pTSE-DWI were 798 ± 21 × 10 and 865 ± 40 × 10 mm/s; and the values obtained for rsEPI-DWI were 730 ± 12 × 10 and 722 ± 25 × 10 mm/s. The pTSE-DWI images showed no additional distortion comparison to the T2-weighted images, but had a lower SNR than ssEPI-DWI and rsEPI-DWI. The rsEPI-DWI sequence provided high-quality images with minor distortion and a similar SNR to ssEPI-DWI. Our results suggest that the benefits of the rsEPI-DWI and pTSE-DWI sequences, in terms of SNR, image quality, and image distortion, appear to outweigh those of ssEPI-DWI. Thus, pTSE-DWI and rsEPI-DWI at 7 T have great potential use for clinical diagnoses. However, it is noteworthy that both sequences are limited by the scan time required. In addition, pTSE-DWI has limitations on the number of slices due to specific absorption rate. Overall, rsEPI-DWI is a favorable imaging sequence, taking into account the SNR and image quality at 7 T.

  19. A comparative study of multi-focus image fusion validation metrics

    NASA Astrophysics Data System (ADS)

    Giansiracusa, Michael; Lutz, Adam; Messer, Neal; Ezekiel, Soundararajan; Alford, Mark; Blasch, Erik; Bubalo, Adnan; Manno, Michael

    2016-05-01

    Fusion of visual information from multiple sources is relevant for applications security, transportation, and safety applications. One way that image fusion can be particularly useful is when fusing imagery data from multiple levels of focus. Different focus levels can create different visual qualities for different regions in the imagery, which can provide much more visual information to analysts when fused. Multi-focus image fusion would benefit a user through automation, which requires the evaluation of the fused images to determine whether they have properly fused the focused regions of each image. Many no-reference metrics, such as information theory based, image feature based and structural similarity-based have been developed to accomplish comparisons. However, it is hard to scale an accurate assessment of visual quality which requires the validation of these metrics for different types of applications. In order to do this, human perception based validation methods have been developed, particularly dealing with the use of receiver operating characteristics (ROC) curves and the area under them (AUC). Our study uses these to analyze the effectiveness of no-reference image fusion metrics applied to multi-resolution fusion methods in order to determine which should be used when dealing with multi-focus data. Preliminary results show that the Tsallis, SF, and spatial frequency metrics are consistent with the image quality and peak signal to noise ratio (PSNR).

  20. Towards an Optimal Interest Point Detector for Measurements in Ultrasound Images

    NASA Astrophysics Data System (ADS)

    Zukal, Martin; Beneš, Radek; Číka, Petr; Říha, Kamil

    2013-12-01

    This paper focuses on the comparison of different interest point detectors and their utilization for measurements in ultrasound (US) images. Certain medical examinations are based on speckle tracking which strongly relies on features that can be reliably tracked frame to frame. Only significant features (interest points) resistant to noise and brightness changes within US images are suitable for accurate long-lasting tracking. We compare three interest point detectors - Harris-Laplace, Difference of Gaussian (DoG) and Fast Hessian - and identify the most suitable one for use in US images on the basis of an objective criterion. Repeatability rate is assumed to be an objective quality measure for comparison. We have measured repeatability in images corrupted by different types of noise (speckle noise, Gaussian noise) and for changes in brightness. The Harris-Laplace detector outperformed its competitors and seems to be a sound option when choosing a suitable interest point detector for US images. However, it has to be noted that Fast Hessian and DoG detectors achieved better results in terms of processing speed.

  1. Design and assessment of a novel SPECT system for desktop open-gantry imaging of small animals: A simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeraatkar, Navid; Farahani, Mohammad Hossein; Rahmim, Arman

    Purpose: Given increasing efforts in biomedical research utilizing molecular imaging methods, development of dedicated high-performance small-animal SPECT systems has been growing rapidly in the last decade. In the present work, we propose and assess an alternative concept for SPECT imaging enabling desktop open-gantry imaging of small animals. Methods: The system, PERSPECT, consists of an imaging desk, with a set of tilted detector and pinhole collimator placed beneath it. The object to be imaged is simply placed on the desk. Monte Carlo (MC) and analytical simulations were utilized to accurately model and evaluate the proposed concept and design. Furthermore, a dedicatedmore » image reconstruction algorithm, finite-aperture-based circular projections (FABCP), was developed and validated for the system, enabling more accurate modeling of the system and higher quality reconstructed images. Image quality was quantified as a function of different tilt angles in the acquisition and number of iterations in the reconstruction algorithm. Furthermore, more complex phantoms including Derenzo, Defrise, and mouse whole body were simulated and studied. Results: The sensitivity of the PERSPECT was 207 cps/MBq. It was quantitatively demonstrated that for a tilt angle of 30°, comparable image qualities were obtained in terms of normalized squared error, contrast, uniformity, noise, and spatial resolution measurements, the latter at ∼0.6 mm. Furthermore, quantitative analyses demonstrated that 3 iterations of FABCP image reconstruction (16 subsets/iteration) led to optimally reconstructed images. Conclusions: The PERSPECT, using a novel imaging protocol, can achieve comparable image quality performance in comparison with a conventional pinhole SPECT with the same configuration. The dedicated FABCP algorithm, which was developed for reconstruction of data from the PERSPECT system, can produce high quality images for small-animal imaging via accurate modeling of the system as incorporated in the forward- and back-projection steps. Meanwhile, the developed MC model and the analytical simulator of the system can be applied for further studies on development and evaluation of the system.« less

  2. Analysis of source data resolution on photogrammetric products quality of architectural object. (Polish Title: Analiza wpęywu rozdzielczości danych śródłowych na jakość produktów fotogrametrycznych obiektu architektury)

    NASA Astrophysics Data System (ADS)

    Markiewicz, J. S.; Kowalczyk, M.; Podlasiak, P.; Bakuła, K.; Zawieska, D.; Bujakiewicz, A.; Andrzejewska, E.

    2013-12-01

    Due to considerable development of the non - invasion measurement technologies, taking advantages from the distance measurement, the possibility of data acquisition increased and at the same time the measurement period has been reduced. This, by combination of close range laser scanning data and images, enabled the wider expansion of photogrammetric methods effectiveness in registration and analysis of cultural heritage objects. Mentioned integration allows acquisition of objects three - dimensional models and in addition digital image maps - true - ortho and vector products. The quality of photogrammetric products is defined by accuracy and the range of content, therefore by number and the minuteness of detail. That always depends on initial data geometrical resolution. The research results presented in the following paper concern the quality valuation of two products, image of true - ortho and vector data, created for selected parts of architectural object. Source data is represented by point collection i n cloud, acquired from close range laser scanning and photo images. Both data collections has been acquired with diversified resolutions. The exterior orientation of images and several versions of the true - ortho are based on numeric models of the object, acquired with specified resolutions. The comparison of these products gives the opportunity to rate the influence of initial data resolution on their quality (accuracy, information volume). Additional analysis will be performed on the base of vector product s comparison, acquired from monoplotting and true - ortho images. As a conclusion of experiment it was proved that geometric resolution has significant impact on the possibility of generation and on the accuracy of relative orientation TLS scans. If creation of high - resolution products is considered, scanning resolution of about 2 mm should be applied and in case of architecture details - 1 mm. It was also noted that scanning angle and object structure has significant influence on accuracy and completeness of the data. For creation of true - orthoimages for architecture purposes high - resolution ground - based images in geometry close to normal case are recommended to improve their quality. The use of grayscale true - orthoimages with values from scanner intensity is not advised. Presented research proved also that accuracy of manual and automated vectorisation results depend significantly on the resolution of the generated orthoimages (scans and images resolution) and mainly of blur effect and possible pixel size.

  3. Reduced Field of View Diffusion-Weighted Imaging in the Evaluation of Congenital Spine Malformations.

    PubMed

    Radhakrishnan, Rupa; Betts, Aaron M; Care, Marguerite M; Serai, Suraj; Zhang, Bin; Jones, Blaise V

    2016-05-01

    Reduced field of view diffusion-weighted imaging (rFOV DWI) is a more recently described technique in the evaluation of spine pathology. In adults, this technique has been shown to increase clinician confidence in identification of diffusion restricting lesions. In this study, we evaluate the image quality and diagnostic confidence of the rFOV DWI technique in pediatric spine MRI. We included patients with MRI of the lumbar spine for suspected congenital abnormalities who had conventional SS-EPI (single shot echo planar imaging) with full field of view (fFOV) and rFOV DWI performed. Images were graded for image quality and observer confidence for detection of lesions with reduced diffusion. Position of the conus and L3 vertebral body measurements were recorded. Comparisons were made between the fFOV and rFOV scores. Fifty children (30 girls, 20 boys) were included (median 3.6 years). Compared to the fFOV images, the rFOV images scored higher in image quality (P < 0.0001) and for confidence in detecting lesions with reduced diffusion (P < 0.0001). The average spread of identified conus position was smaller for in rFOV compared to fFOV (P = 0.0042). There was no significant difference in the L3 vertebral body measurements between the two methods. In rFOV, the anterior aspects of the vertebral bodies were excluded in a few studies due to narrow FOV. rFOV DWI of the lumbar spine in the pediatric population has qualitatively improved image quality and observer confidence for lesion detection when compared to conventional fFOV SS-EPI DWI. Copyright © 2015 by the American Society of Neuroimaging.

  4. A semi-blind logo watermarking scheme for color images by comparison and modification of DFT coefficients

    NASA Astrophysics Data System (ADS)

    Kusyk, Janusz; Eskicioglu, Ahmet M.

    2005-10-01

    Digital watermarking is considered to be a major technology for the protection of multimedia data. Some of the important applications are broadcast monitoring, copyright protection, and access control. In this paper, we present a semi-blind watermarking scheme for embedding a logo in color images using the DFT domain. After computing the DFT of the luminance layer of the cover image, the magnitudes of DFT coefficients are compared, and modified. A given watermark is embedded in three frequency bands: Low, middle, and high. Our experiments show that the watermarks extracted from the lower frequencies have the best visual quality for low pass filtering, adding Gaussian noise, JPEG compression, resizing, rotation, and scaling, and the watermarks extracted from the higher frequencies have the best visual quality for cropping, intensity adjustment, histogram equalization, and gamma correction. Extractions from the fragmented and translated image are identical to extractions from the unattacked watermarked image. The collusion and rewatermarking attacks do not provide the hacker with useful tools.

  5. Comparison of an adaptive local thresholding method on CBCT and µCT endodontic images

    NASA Astrophysics Data System (ADS)

    Michetti, Jérôme; Basarab, Adrian; Diemer, Franck; Kouame, Denis

    2018-01-01

    Root canal segmentation on cone beam computed tomography (CBCT) images is difficult because of the noise level, resolution limitations, beam hardening and dental morphological variations. An image processing framework, based on an adaptive local threshold method, was evaluated on CBCT images acquired on extracted teeth. A comparison with high quality segmented endodontic images on micro computed tomography (µCT) images acquired from the same teeth was carried out using a dedicated registration process. Each segmented tooth was evaluated according to volume and root canal sections through the area and the Feret’s diameter. The proposed method is shown to overcome the limitations of CBCT and to provide an automated and adaptive complete endodontic segmentation. Despite a slight underestimation (-4, 08%), the local threshold segmentation method based on edge-detection was shown to be fast and accurate. Strong correlations between CBCT and µCT segmentations were found both for the root canal area and diameter (respectively 0.98 and 0.88). Our findings suggest that combining CBCT imaging with this image processing framework may benefit experimental endodontology, teaching and could represent a first development step towards the clinical use of endodontic CBCT segmentation during pulp cavity treatment.

  6. Contour sensitive saliency and depth application in image retargeting

    NASA Astrophysics Data System (ADS)

    Lu, Hongju; Yue, Pengfei; Zhao, Yanhui; Liu, Rui; Fu, Yuanbin; Zheng, Yuanjie; Cui, Jia

    2018-04-01

    Image retargeting technique requires important information preservation and less edge distortion during increasing/decreasing image size. The major existed content-aware methods perform well. However, there are two problems should be improved: the slight distortion appeared at the object edges and the structure distortion in the nonsalient area. According to psychological theories, people evaluate image quality based on multi-level judgments and comparison between different areas, both image content and image structure. The paper proposes a new standard: the structure preserving in non-salient area. After observation and image analysis, blur (slight blur) is generally existed at the edge of objects. The blur feature is used to estimate the depth cue, named blur depth descriptor. It can be used in the process of saliency computation for balanced image retargeting result. In order to keep the structure information in nonsalient area, the salient edge map is presented in Seam Carving process, instead of field-based saliency computation. The derivative saliency from x- and y-direction can avoid the redundant energy seam around salient objects causing structure distortion. After the comparison experiments between classical approaches and ours, the feasibility of our algorithm is proved.

  7. NMF-Based Image Quality Assessment Using Extreme Learning Machine.

    PubMed

    Wang, Shuigen; Deng, Chenwei; Lin, Weisi; Huang, Guang-Bin; Zhao, Baojun

    2017-01-01

    Numerous state-of-the-art perceptual image quality assessment (IQA) algorithms share a common two-stage process: distortion description followed by distortion effects pooling. As for the first stage, the distortion descriptors or measurements are expected to be effective representatives of human visual variations, while the second stage should well express the relationship among quality descriptors and the perceptual visual quality. However, most of the existing quality descriptors (e.g., luminance, contrast, and gradient) do not seem to be consistent with human perception, and the effects pooling is often done in ad-hoc ways. In this paper, we propose a novel full-reference IQA metric. It applies non-negative matrix factorization (NMF) to measure image degradations by making use of the parts-based representation of NMF. On the other hand, a new machine learning technique [extreme learning machine (ELM)] is employed to address the limitations of the existing pooling techniques. Compared with neural networks and support vector regression, ELM can achieve higher learning accuracy with faster learning speed. Extensive experimental results demonstrate that the proposed metric has better performance and lower computational complexity in comparison with the relevant state-of-the-art approaches.

  8. A fast and efficient segmentation scheme for cell microscopic image.

    PubMed

    Lebrun, G; Charrier, C; Lezoray, O; Meurie, C; Cardot, H

    2007-04-27

    Microscopic cellular image segmentation schemes must be efficient for reliable analysis and fast to process huge quantity of images. Recent studies have focused on improving segmentation quality. Several segmentation schemes have good quality but processing time is too expensive to deal with a great number of images per day. For segmentation schemes based on pixel classification, the classifier design is crucial since it is the one which requires most of the processing time necessary to segment an image. The main contribution of this work is focused on how to reduce the complexity of decision functions produced by support vector machines (SVM) while preserving recognition rate. Vector quantization is used in order to reduce the inherent redundancy present in huge pixel databases (i.e. images with expert pixel segmentation). Hybrid color space design is also used in order to improve data set size reduction rate and recognition rate. A new decision function quality criterion is defined to select good trade-off between recognition rate and processing time of pixel decision function. The first results of this study show that fast and efficient pixel classification with SVM is possible. Moreover posterior class pixel probability estimation is easy to compute with Platt method. Then a new segmentation scheme using probabilistic pixel classification has been developed. This one has several free parameters and an automatic selection must dealt with, but criteria for evaluate segmentation quality are not well adapted for cell segmentation, especially when comparison with expert pixel segmentation must be achieved. Another important contribution in this paper is the definition of a new quality criterion for evaluation of cell segmentation. The results presented here show that the selection of free parameters of the segmentation scheme by optimisation of the new quality cell segmentation criterion produces efficient cell segmentation.

  9. A comparison of sequential and spiral scanning techniques in brain CT.

    PubMed

    Pace, Ivana; Zarb, Francis

    2015-01-01

    To evaluate and compare image quality and radiation dose of sequential computed tomography (CT) examinations of the brain and spiral CT examinations of the brain imaged on a GE HiSpeed NX/I Dual Slice 2CT scanner. A random sample of 40 patients referred for CT examination of the brain was selected and divided into 2 groups. Half of the patients were scanned using the sequential technique; the other half were scanned using the spiral technique. Radiation dose data—both the computed tomography dose index (CTDI) and the dose length product (DLP)—were recorded on a checklist at the end of each examination. Using the European Guidelines on Quality Criteria for Computed Tomography, 4 radiologists conducted a visual grading analysis and rated the level of visibility of 6 anatomical structures considered necessary to produce images of high quality. The mean CTDI(vol) and DLP values were statistically significantly higher (P <.05) with the sequential scans (CTDI(vol): 22.06 mGy; DLP: 304.60 mGy • cm) than with the spiral scans (CTDI(vol): 14.94 mGy; DLP: 229.10 mGy • cm). The mean image quality rating scores for all criteria of the sequential scanning technique were statistically significantly higher (P <.05) in the visual grading analysis than those of the spiral scanning technique. In this local study, the sequential technique was preferred over the spiral technique for both overall image quality and differentiation between gray and white matter in brain CT scans. Other similar studies counter this finding. The radiation dose seen with the sequential CT scanning technique was significantly higher than that seen with the spiral CT scanning technique. However, image quality with the sequential technique was statistically significantly superior (P <.05).

  10. Comparison of contrast media and low-molecular-weight dextran for frequency-domain optical coherence tomography.

    PubMed

    Ozaki, Yuichi; Kitabata, Hironori; Tsujioka, Hiroto; Hosokawa, Seiki; Kashiwagi, Manabu; Ishibashi, Kohei; Komukai, Kenichi; Tanimoto, Takashi; Ino, Yasushi; Takarada, Shigeho; Kubo, Takashi; Kimura, Keizo; Tanaka, Atsushi; Hirata, Kumiko; Mizukoshi, Masato; Imanishi, Toshio; Akasaka, Takashi

    2012-01-01

    Although an intracoronary frequency-domain optical coherence tomography (FD-OCT) system overcomes several limitations of the time-domain OCT (TD-OCT) system, the former requires injection of contrast media for image acquisition. The increased total amount of contrast media for FD-OCT image acquisition may lead to the impairment of renal function. The safety and usefulness of the non-occlusion method with low-molecular-weight dextran L (LMD-L) via a guiding catheter for TD-OCT image acquisition have been reported previously. The aim of the present study was to compare the image quality and quantitative measurements between contrast media and LMD-L for FD-OCT image acquisition in coronary stented lesions. Twenty-two patients with 25 coronary stented lesions were enrolled in this study. FD-OCT was performed with the continuous-flushing method via a guiding catheter. Both contrast media and LMD-L were infused at a rate of 4 ml/s by an autoinjector. With regard to image quality, the prevalence of clear image segments was comparable between contrast media and LMD-L (97.9% vs. 96.5%, P=0.90). Furthermore, excellent correlations were observed between both flushing solutions in terms of minimum lumen area, mean lumen area, and mean stent area. The total volumes of contrast media and of LMD-L needed for OCT image acquisition were similar. FD-OCT image acquisition with LMD-L has the potential to reduce the total amount of contrast media without loss of image quality.

  11. Mobile-based text recognition from water quality devices

    NASA Astrophysics Data System (ADS)

    Dhakal, Shanti; Rahnemoonfar, Maryam

    2015-03-01

    Measuring water quality of bays, estuaries, and gulfs is a complicated and time-consuming process. YSI Sonde is an instrument used to measure water quality parameters such as pH, temperature, salinity, and dissolved oxygen. This instrument is taken to water bodies in a boat trip and researchers note down different parameters displayed by the instrument's display monitor. In this project, a mobile application is developed for Android platform that allows a user to take a picture of the YSI Sonde monitor, extract text from the image and store it in a file on the phone. The image captured by the application is first processed to remove perspective distortion. Probabilistic Hough line transform is used to identify lines in the image and the corner of the image is then obtained by determining the intersection of the detected horizontal and vertical lines. The image is warped using the perspective transformation matrix, obtained from the corner points of the source image and the destination image, hence, removing the perspective distortion. Mathematical morphology operation, black-hat is used to correct the shading of the image. The image is binarized using Otsu's binarization technique and is then passed to the Optical Character Recognition (OCR) software for character recognition. The extracted information is stored in a file on the phone and can be retrieved later for analysis. The algorithm was tested on 60 different images of YSI Sonde with different perspective features and shading. Experimental results, in comparison to ground-truth results, demonstrate the effectiveness of the proposed method.

  12. Probabilistic sparse matching for robust 3D/3D fusion in minimally invasive surgery.

    PubMed

    Neumann, Dominik; Grbic, Sasa; John, Matthias; Navab, Nassir; Hornegger, Joachim; Ionasec, Razvan

    2015-01-01

    Classical surgery is being overtaken by minimally invasive and transcatheter procedures. As there is no direct view or access to the affected anatomy, advanced imaging techniques such as 3D C-arm computed tomography (CT) and C-arm fluoroscopy are routinely used in clinical practice for intraoperative guidance. However, due to constraints regarding acquisition time and device configuration, intraoperative modalities have limited soft tissue image quality and reliable assessment of the cardiac anatomy typically requires contrast agent, which is harmful to the patient and requires complex acquisition protocols. We propose a probabilistic sparse matching approach to fuse high-quality preoperative CT images and nongated, noncontrast intraoperative C-arm CT images by utilizing robust machine learning and numerical optimization techniques. Thus, high-quality patient-specific models can be extracted from the preoperative CT and mapped to the intraoperative imaging environment to guide minimally invasive procedures. Extensive quantitative experiments on 95 clinical datasets demonstrate that our model-based fusion approach has an average execution time of 1.56 s, while the accuracy of 5.48 mm between the anchor anatomy in both images lies within expert user confidence intervals. In direct comparison with image-to-image registration based on an open-source state-of-the-art medical imaging library and a recently proposed quasi-global, knowledge-driven multi-modal fusion approach for thoracic-abdominal images, our model-based method exhibits superior performance in terms of registration accuracy and robustness with respect to both target anatomy and anchor anatomy alignment errors.

  13. Implementation of a channelized Hotelling observer model to assess image quality of x-ray angiography systems.

    PubMed

    Favazza, Christopher P; Fetterly, Kenneth A; Hangiandreou, Nicholas J; Leng, Shuai; Schueler, Beth A

    2015-01-01

    Evaluation of flat-panel angiography equipment through conventional image quality metrics is limited by the scope of standard spatial-domain image quality metric(s), such as contrast-to-noise ratio and spatial resolution, or by restricted access to appropriate data to calculate Fourier domain measurements, such as modulation transfer function, noise power spectrum, and detective quantum efficiency. Observer models have been shown capable of overcoming these limitations and are able to comprehensively evaluate medical-imaging systems. We present a spatial domain-based channelized Hotelling observer model to calculate the detectability index (DI) of our different sized disks and compare the performance of different imaging conditions and angiography systems. When appropriate, changes in DIs were compared to expectations based on the classical Rose model of signal detection to assess linearity of the model with quantum signal-to-noise ratio (SNR) theory. For these experiments, the estimated uncertainty of the DIs was less than 3%, allowing for precise comparison of imaging systems or conditions. For most experimental variables, DI changes were linear with expectations based on quantum SNR theory. DIs calculated for the smallest objects demonstrated nonlinearity with quantum SNR theory due to system blur. Two angiography systems with different detector element sizes were shown to perform similarly across the majority of the detection tasks.

  14. The new grasper-integrated single use flexible cystoscope for double J stent removal: evaluation of image quality, flow and flexibility.

    PubMed

    Talso, M; Emiliani, E; Baghdadi, M; Orosa, A; Servian, P; Barreiro, A; Proietti, S; Traxer, O

    2017-08-01

    A new single use digital flexible cystoscope (FC) Isiris α from Coloplast ® with an incorporated grasper has been developed to perform double J stent removal. There is a lack of data regarding the comparison of image quality, flexibility and flow between classic cystoscopes and the new Isiris α. Five different FC were used to compare the image quality, the field of view, the loss of flow and the deflection loss. Two standardized grids, three stones of different composition and a ruler's image were filmed in four standardized different scenarios. These videos were shown to thirty subjects that had to evaluate them. Water outflow was measured in ml/sec in all devices with and without the grasper inside, instruments tip deflection was measured using a software. In the subjective analysis of the image quality Isiris α was the second FC best scored. At 3 cm of distance, the field view of Isiris α was the narrowest. Comparing the water flow in the different FCs, we observed a water flow decrease in all cystoscopes when the grasper was loaded in the working channel. Isiris α deflection and flow increase when the grasper is activated. In terms of quality of vision and water flow, the FC Isiris α is comparable to the other digital FC tested. Field of view is narrower. The results displayed a valid alternative to the standard procedure for DJ removal.

  15. Automatic motion correction of clinical shoulder MR images

    NASA Astrophysics Data System (ADS)

    Manduca, Armando; McGee, Kiaran P.; Welch, Edward B.; Felmlee, Joel P.; Ehman, Richard L.

    1999-05-01

    A technique for the automatic correction of motion artifacts in MR images was developed. The algorithm uses only the raw (complex) data from the MR scanner, and requires no knowledge of the patient motion during the acquisition. It operates by searching over the space of possible patient motions and determining the motion which, when used to correct the image, optimizes the image quality. The performance of this algorithm was tested in coronal images of the rotator cuff in a series of 144 patients. A four observer comparison of the autocorrelated images with the uncorrected images demonstrated that motion artifacts were significantly reduced in 48% of the cases. The improvements in image quality were similar to those achieved with a previously reported navigator echo-based adaptive motion correction. The results demonstrate that autocorrelation is a practical technique for retrospectively reducing motion artifacts in a demanding clinical MRI application. It achieves performance comparable to a navigator based correction technique, which is significant because autocorrection does not require an imaging sequence that has been modified to explicitly track motion during acquisition. The approach is flexible and should be readily extensible to other types of MR acquisitions that are corrupted by global motion.

  16. SU-C-209-07: Phantoms for Digital Breast Tomosynthesis Imaging System Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobson, D; Liu, Y

    2016-06-15

    Purpose: Digital Breast Tomosynthesis (DBT) is gaining importance in breast imaging. There is a need for phantoms that can be used for image evaluation and comparison. Existing commercially available phantoms for DBT are expensive and may lack clinically relevant test objects. The purpose of this study is to develop phantoms for DBT evaluation. Methods Four phantoms have been designed and constructed to assess the image quality (IQ) of two DBT systems. The first contains a spiral of 0.3 mm SiC beads in gelatin to measure the tomographic slice thickness profile and uniformity of coverage in a series of tomographic planes.more » The second contains simulated tumors inclined with respect to the phantom base to assess tomographic image quality. The third has a tilted array of discs with varying contrast and diameter. This phantom was imaged alone and in a stack of TE slabs giving 2 to 10 cm thickness. The fourth has a dual wedge of glandular and adipose simulating materials. One wedge contains discs with varying diameter and thickness; the other supports a mass with six simulated spicules of varying size and a cluster of simulated calcifications. The simulated glandular tissue material varies between 35 and 100% of the total thickness (5.5 cm). Results: All phantoms were scanned successfully. The best IQ comparison was achieved with the dual wedge phantom as demonstrated by the spiculated mass and calcifications. Images were evaluated by two radiologists and one physicist. The projection images and corresponding set of tomographic planes were comparable and the synthesized projection images were inferior to the projection images for both systems. Conclusion: Four phantoms were designed, constructed and imaged on two DBT systems. They successfully demonstrated performance differences between two systems, and between true and synthesized projection images. Future work will incorporate these designs into a single phantom.« less

  17. a Novel Ihs-Ga Fusion Method Based on Enhancement Vegetated Area

    NASA Astrophysics Data System (ADS)

    Niazi, S.; Mokhtarzade, M.; Saeedzadeh, F.

    2015-12-01

    Pan sharpening methods aim to produce a more informative image containing the positive aspects of both source images. However, the pan sharpening process usually introduces some spectral and spatial distortions in the resulting fused image. The amount of these distortions varies highly depending on the pan sharpening technique as well as the type of data. Among the existing pan sharpening methods, the Intensity-Hue-Saturation (IHS) technique is the most widely used for its efficiency and high spatial resolution. When the IHS method is used for IKONOS or QuickBird imagery, there is a significant color distortion which is mainly due to the wavelengths range of the panchromatic image. Regarding the fact that in the green vegetated regions panchromatic gray values are much larger than the gray values of intensity image. A novel method is proposed which spatially adjusts the intensity image in vegetated areas. To do so the normalized difference vegetation index (NDVI) is used to identify vegetation areas where the green band is enhanced according to the red and NIR bands. In this way an intensity image is obtained in which the gray values are comparable to the panchromatic image. Beside the genetic optimization algorithm is used to find the optimum weight parameters in order to gain the best intensity image. Visual and statistical analysis proved the efficiency of the proposed method as it significantly improved the fusion quality in comparison to conventional IHS technique. The accuracy of the proposed pan sharpening technique was also evaluated in terms of different spatial and spectral metrics. In this study, 7 metrics (Correlation Coefficient, ERGAS, RASE, RMSE, SAM, SID and Spatial Coefficient) have been used in order to determine the quality of the pan-sharpened images. Experiments were conducted on two different data sets obtained by two different imaging sensors, IKONOS and QuickBird. The result of this showed that the evaluation metrics are more promising for our fused image in comparison to other pan sharpening methods.

  18. [Study of Image Quality Comparison Based on the MTF Method Between Different Medical Rigid Endoscopes in an In Vitro Model].

    PubMed

    Wang, Yunlong; Ji, Jun; Jiang, Changsong; Huang, Zengyue

    2015-04-01

    This study was aimed to use the method of modulation transfer function (MTF) to compare image quality among three different Olympus medical rigid cystoscopes in an in vitro model. During the experimental processes, we firstly used three different types of cystoscopes (i. e. OLYMPUS cystourethroscopy with FOV of 12 degrees, OLYMPUS Germany A22003A and OLYMPUS A2013A) to collect raster images at different brightness with industrial camera and computer from the resolution target which is with different spatial frequency, and then we processed the collected images using MALAB software with the optical transfer function MTF to obtain the values of MTF at different brightness and different spatial frequency. We then did data mathematical statistics and compared imaging quality. The statistical data showed that all three MTF values were smaller than 1. MTF values with the spatial frequency gradually increasing would decrease approaching 0 at the same brightness. When the brightness enhanced in the same process at the same spatial frequency, MTF values showed a slowly increasing trend. The three endoscopes' MTF values were completely different. In some cases the MTF values had a large difference, and the maximum difference could reach 0.7. Conclusion can be derived from analysis of experimental data that three Olympus medical rigid cystoscopes have completely different imaging quality abilities. The No. 3 endoscope OLYMPUS A2013A has low resolution but high contrast. The No. 1 endoscope OLYMPUS cystourethroscopy with FOV of 12 degrees, on the contrary, had high resolution and lower contrast. The No. 2 endoscope OLYMPUS Germany A22003A had high contrast and high resolution, and its image quality was the best.

  19. Coronary CT angiography with single-source and dual-source CT: comparison of image quality and radiation dose between prospective ECG-triggered and retrospective ECG-gated protocols.

    PubMed

    Sabarudin, Akmal; Sun, Zhonghua; Yusof, Ahmad Khairuddin Md

    2013-09-30

    This study is conducted to investigate and compare image quality and radiation dose between prospective ECG-triggered and retrospective ECG-gated coronary CT angiography (CCTA) with the use of single-source CT (SSCT) and dual-source CT (DSCT). A total of 209 patients who underwent CCTA with suspected coronary artery disease scanned with SSCT (n=95) and DSCT (n=114) scanners using prospective ECG-triggered and retrospective ECG-gated protocols were recruited from two institutions. The image was assessed by two experienced observers, while quantitative assessment was performed by measuring the image noise, the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR). Effective dose was calculated using the latest published conversion coefficient factor. A total of 2087 out of 2880 coronary artery segments were assessable, with 98.0% classified as of sufficient and 2.0% as of insufficient image quality for clinical diagnosis. There was no significant difference in overall image quality between prospective ECG-triggered and retrospective gated protocols, whether it was performed with DSCT or SSCT scanners. Prospective ECG-triggered protocol was compared in terms of radiation dose calculation between DSCT (6.5 ± 2.9 mSv) and SSCT (6.2 ± 1.0 mSv) scanners and no significant difference was noted (p=0.99). However, the effective dose was significantly lower with DSCT (18.2 ± 8.3 mSv) than with SSCT (28.3 ± 7.0 mSv) in the retrospective gated protocol. Prospective ECG-triggered CCTA reduces radiation dose significantly compared to retrospective ECG-gated CCTA, while maintaining good image quality. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. WE-G-18A-01: JUNIOR INVESTIGATOR WINNER - Low-Dose C-Arm Cone-Beam CT with Model-Based Image Reconstruction for High-Quality Guidance of Neurosurgical Intervention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, A; Stayman, J; Otake, Y

    Purpose: To address the challenges of image quality, radiation dose, and reconstruction speed in intraoperative cone-beam CT (CBCT) for neurosurgery by combining model-based image reconstruction (MBIR) with accelerated algorithmic and computational methods. Methods: Preclinical studies involved a mobile C-arm for CBCT imaging of two anthropomorphic head phantoms that included simulated imaging targets (ventricles, soft-tissue structures/bleeds) and neurosurgical procedures (deep brain stimulation (DBS) electrode insertion) for assessment of image quality. The penalized likelihood (PL) framework was used for MBIR, incorporating a statistical model with image regularization via an edgepreserving penalty. To accelerate PL reconstruction, the ordered-subset, separable quadratic surrogates (OS-SQS) algorithmmore » was modified to incorporate Nesterov's method and implemented on a multi-GPU system. A fair comparison of image quality between PL and conventional filtered backprojection (FBP) was performed by selecting reconstruction parameters that provided matched low-contrast spatial resolution. Results: CBCT images of the head phantoms demonstrated that PL reconstruction improved image quality (∼28% higher CNR) even at half the radiation dose (3.3 mGy) compared to FBP. A combination of Nesterov's method and fast projectors yielded a PL reconstruction run-time of 251 sec (cf., 5729 sec for OS-SQS, 13 sec for FBP). Insertion of a DBS electrode resulted in severe metal artifact streaks in FBP reconstructions, whereas PL was intrinsically robust against metal artifact. The combination of noise and artifact was reduced from 32.2 HU in FBP to 9.5 HU in PL, thereby providing better assessment of device placement and potential complications. Conclusion: The methods can be applied to intraoperative CBCT for guidance and verification of neurosurgical procedures (DBS electrode insertion, biopsy, tumor resection) and detection of complications (intracranial hemorrhage). Significant improvement in image quality, dose reduction, and reconstruction time of ∼4 min will enable practical deployment of low-dose C-arm CBCT within the operating room. AAPM Research Seed Funding (2013-2014); NIH Fellowship F32EB017571; Siemens Healthcare (XP Division)« less

  1. Directional sinogram interpolation for motion weighted 4D cone-beam CT reconstruction

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Kruis, Matthijs; Sonke, Jan-Jakob

    2017-03-01

    The image quality of respiratory sorted four-dimensional (4D) cone-beam (CB) computed tomography (CT) is often limited by streak artifacts due to insufficient projections. A motion weighted reconstruction (MWR) method is proposed to decrease streak artifacts and improve image quality. Firstly, respiratory correlated CBCT projections were interpolated by directional sinogram interpolation (DSI) to generate additional CB projections for each phase and subsequently reconstructed. Secondly, local motion was estimated by deformable image registration of the interpolated 4D CBCT. Thirdly, a regular 3D FDK CBCT was reconstructed from the non-interpolated projections. Finally, weights were assigned to each voxel, based on the local motion, and then were used to combine the 3D FDK CBCT and interpolated 4D CBCT to generate the final 4D image. MWR method was compared with regular 4D CBCT scans as well as McKinnon and Bates (MKB) based reconstructions. Comparisons were made in terms of (1) comparing the steepness of an extracted profile from the boundary of the region-of-interest (ROI), (2) contrast-to-noise ratio (CNR) inside certain ROIs, and (3) the root-mean-square-error (RMSE) between the planning CT and CBCT inside a homogeneous moving region. Comparisons were made for both a phantom and four patient scans. In a 4D phantom, RMSE were reduced by 24.7% and 38.7% for MKB and MWR respectively, compared to conventional 4D CBCT. Meanwhile, interpolation induced blur was minimal in static regions for MWR based reconstructions. In regions with considerable respiratory motion, image blur using MWR is less than the MKB and 3D Feldkamp (FDK) methods. In the lung cancer patients, average CNRs of MKB, DSI and MWR improved by a factor 1.7, 2.8 and 3.5 respectively relative to 4D FDK. MWR effectively reduces RMSE in 4D cone-beam CT and improves the image quality in both the static and respiratory moving regions compared to 4D FDK and MKB methods.

  2. Directional sinogram interpolation for motion weighted 4D cone-beam CT reconstruction.

    PubMed

    Zhang, Hua; Kruis, Matthijs; Sonke, Jan-Jakob

    2017-03-21

    The image quality of respiratory sorted four-dimensional (4D) cone-beam (CB) computed tomography (CT) is often limited by streak artifacts due to insufficient projections. A motion weighted reconstruction (MWR) method is proposed to decrease streak artifacts and improve image quality. Firstly, respiratory correlated CBCT projections were interpolated by directional sinogram interpolation (DSI) to generate additional CB projections for each phase and subsequently reconstructed. Secondly, local motion was estimated by deformable image registration of the interpolated 4D CBCT. Thirdly, a regular 3D FDK CBCT was reconstructed from the non-interpolated projections. Finally, weights were assigned to each voxel, based on the local motion, and then were used to combine the 3D FDK CBCT and interpolated 4D CBCT to generate the final 4D image. MWR method was compared with regular 4D CBCT scans as well as McKinnon and Bates (MKB) based reconstructions. Comparisons were made in terms of (1) comparing the steepness of an extracted profile from the boundary of the region-of-interest (ROI), (2) contrast-to-noise ratio (CNR) inside certain ROIs, and (3) the root-mean-square-error (RMSE) between the planning CT and CBCT inside a homogeneous moving region. Comparisons were made for both a phantom and four patient scans. In a 4D phantom, RMSE were reduced by 24.7% and 38.7% for MKB and MWR respectively, compared to conventional 4D CBCT. Meanwhile, interpolation induced blur was minimal in static regions for MWR based reconstructions. In regions with considerable respiratory motion, image blur using MWR is less than the MKB and 3D Feldkamp (FDK) methods. In the lung cancer patients, average CNRs of MKB, DSI and MWR improved by a factor 1.7, 2.8 and 3.5 respectively relative to 4D FDK. MWR effectively reduces RMSE in 4D cone-beam CT and improves the image quality in both the static and respiratory moving regions compared to 4D FDK and MKB methods.

  3. Error simulation of paired-comparison-based scaling methods

    NASA Astrophysics Data System (ADS)

    Cui, Chengwu

    2000-12-01

    Subjective image quality measurement usually resorts to psycho physical scaling. However, it is difficult to evaluate the inherent precision of these scaling methods. Without knowing the potential errors of the measurement, subsequent use of the data can be misleading. In this paper, the errors on scaled values derived form paired comparison based scaling methods are simulated with randomly introduced proportion of choice errors that follow the binomial distribution. Simulation results are given for various combinations of the number of stimuli and the sampling size. The errors are presented in the form of average standard deviation of the scaled values and can be fitted reasonably well with an empirical equation that can be sued for scaling error estimation and measurement design. The simulation proves paired comparison based scaling methods can have large errors on the derived scaled values when the sampling size and the number of stimuli are small. Examples are also given to show the potential errors on actually scaled values of color image prints as measured by the method of paired comparison.

  4. Effect of exposure factors on image quality in screening mammography.

    PubMed

    Alkhalifah, K; Brindabhan, A; Alsaeed, R

    2017-11-01

    The aim of this research was to study the effect of exposure factors on image quality for digital screening mammography units in Kuwait which use Tungsten (W) targets with Rhodium (Rh) and Silver (Ag) as filters. Mammography Accreditation Phantom Model 015 was imaged using a Hologic Selenia Digital mammography unit with W targets and Rh and Ag filters. Four images, each at 26, 28, 30, and 32 kVp, were obtained using each target-filter combination (W/Rh and W/Ag). The images were evaluated by five senior technologists for the number of specks, fibers and masses visible on each image. Statistical analysis was carried out using non-parametric tests at p = 0.05 level. There were significant changes in the visibility of fibers and specks between different kVp values with W/Rh (p < 0.001). However, with W/Ag combination, significant differences were observed in the fibers only (p < 0.001). Among the kVp values used, 28 kV emerged as the optimal value. Comparison of images obtained with the two filter materials, led to significant differences in the visibility of fibers and specks (p < 0.008). At 32 kVp, there were significant differences in the visibility of specks only (p < 0.008). A W/Rh target-filter combination provides better image quality than that provided by W/Ag. In particular, 30 and 32 kVp X-ray beams produce higher quality images than the lower kV values. Copyright © 2017 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.

  5. Comparison of portable and conventional ultrasound imaging in spinal curvature measurement

    NASA Astrophysics Data System (ADS)

    Yan, Christina; Tabanfar, Reza; Kempston, Michael; Borschneck, Daniel; Ungi, Tamas; Fichtinger, Gabor

    2016-03-01

    PURPOSE: In scoliosis monitoring, tracked ultrasound has been explored as a safer imaging alternative to traditional radiography. The use of ultrasound in spinal curvature measurement requires identification of vertebral landmarks, but bones have reduced visibility in ultrasound imaging and high quality ultrasound machines are often expensive and not portable. In this work, we investigate the image quality and measurement accuracy of a low cost and portable ultrasound machine in comparison to a standard ultrasound machine in scoliosis monitoring. METHODS: Two different kinds of ultrasound machines were tested on three human subjects, using the same position tracker and software. Spinal curves were measured in the same reference coordinate system using both ultrasound machines. Lines were defined by connecting two symmetric landmarks identified on the left and right transverse process of the same vertebrae, and spinal curvature was defined as the transverse process angle between two such lines, projected on the coronal plane. RESULTS: Three healthy volunteers were scanned by both ultrasound configurations. Three experienced observers localized transverse processes as skeletal landmarks and obtained transverse process angles in images obtained from both ultrasounds. The mean difference per transverse process angle measured was 3.00 +/-2.1°. 94% of transverse processes visualized in the Sonix Touch were also visible in the Telemed. Inter-observer error in the Telemed was 4.5° and 4.3° in the Sonix Touch. CONCLUSION: Price, convenience and accessibility suggest the Telemed to be a viable alternative in scoliosis monitoring, however further improvements in measurement protocol and image noise reduction must be completed before implementing the Telemed in the clinical setting.

  6. Comparison of computation time and image quality between full-parallax 4G-pixels CGHs calculated by the point cloud and polygon-based method

    NASA Astrophysics Data System (ADS)

    Nakatsuji, Noriaki; Matsushima, Kyoji

    2017-03-01

    Full-parallax high-definition CGHs composed of more than billion pixels were so far created only by the polygon-based method because of its high performance. However, GPUs recently allow us to generate CGHs much faster by the point cloud. In this paper, we measure computation time of object fields for full-parallax high-definition CGHs, which are composed of 4 billion pixels and reconstruct the same scene, by using the point cloud with GPU and the polygon-based method with CPU. In addition, we compare the optical and simulated reconstructions between CGHs created by these techniques to verify the image quality.

  7. Single image super-resolution via an iterative reproducing kernel Hilbert space method.

    PubMed

    Deng, Liang-Jian; Guo, Weihong; Huang, Ting-Zhu

    2016-11-01

    Image super-resolution, a process to enhance image resolution, has important applications in satellite imaging, high definition television, medical imaging, etc. Many existing approaches use multiple low-resolution images to recover one high-resolution image. In this paper, we present an iterative scheme to solve single image super-resolution problems. It recovers a high quality high-resolution image from solely one low-resolution image without using a training data set. We solve the problem from image intensity function estimation perspective and assume the image contains smooth and edge components. We model the smooth components of an image using a thin-plate reproducing kernel Hilbert space (RKHS) and the edges using approximated Heaviside functions. The proposed method is applied to image patches, aiming to reduce computation and storage. Visual and quantitative comparisons with some competitive approaches show the effectiveness of the proposed method.

  8. A line scanned light-sheet microscope with phase shaped self-reconstructing beams.

    PubMed

    Fahrbach, Florian O; Rohrbach, Alexander

    2010-11-08

    We recently demonstrated that Microscopy with Self-Reconstructing Beams (MISERB) increases both image quality and penetration depth of illumination beams in strongly scattering media. Based on the concept of line scanned light-sheet microscopy, we present an add-on module to a standard inverted microscope using a scanned beam that is shaped in phase and amplitude by a spatial light modulator. We explain technical details of the setup as well as of the holograms for the creation, positioning and scaling of static light-sheets, Gaussian beams and Bessel beams. The comparison of images from identical sample areas illuminated by different beams allows a precise assessment of the interconnection between beam shape and image quality. The superior propagation ability of Bessel beams through inhomogeneous media is demonstrated by measurements on various scattering media.

  9. Optimized phase mask to realize retro-reflection reduction for optical systems

    NASA Astrophysics Data System (ADS)

    He, Sifeng; Gong, Mali

    2017-10-01

    Aiming at the threats to the active laser detection systems of electro-optical devices due to the cat-eye effect, a novel solution is put forward to realize retro-reflection reduction in this paper. According to the demands of both cat-eye effect reduction and the image quality maintenance of electro-optical devices, a symmetric phase mask is achieved from a stationary phase method and a fast Fourier transform algorithm. Then, based on a comparison of peak normalized cross-correlation (PNCC) between the different defocus parameters, the optimal imaging position can be obtained. After modification with the designed phase mask, the cat-eye effect peak intensity can be reduced by two orders of magnitude while maintaining good image quality and high modulation transfer function (MTF). Furthermore, a practical design example is introduced to demonstrate the feasibility of our proposed approach.

  10. Evaluation of a new motion correction algorithm in PET/CT: combining the entire acquired PET data to create a single three-dimensional motion-corrected PET/CT image.

    PubMed

    Minamimoto, Ryogo; Mitsumoto, Takuya; Miyata, Yoko; Sunaoka, Fumio; Morooka, Miyako; Okasaki, Momoko; Iagaru, Andrei; Kubota, Kazuo

    2016-02-01

    This study evaluated the potential of Q.Freeze algorithm for reducing motion artifacts, in comparison with ungated imaging (UG) and respiratory-gated imaging (RG). Twenty-nine patients with 53 lesions who had undergone RG F-FDG PET/CT were included in this study. Using PET list mode data, five series of PET images [UG, RG, and QF images with an acquisition duration of 3 min (QF3), 5 min (QF5), and 10 min (QF10)] were reconstructed retrospectively. The image quality was evaluated first. Next, quantitative metrics [maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), SD, metabolic tumor volume, signal to noise ratio, or lesion to background ratio] were calculated for the liver, background, and each lesion, and the results were compared across the series. QF10 and QF5 showed better image quality compared with all other images. SUVmax in the liver, background, and lesions was lower with QF10 and QF5 than with the others, but there were no statistically significant differences in SUVmean and the lesion to background ratios. The SD with UG and RG was significantly higher than that with QF5 and QF10. The metabolic tumor volume in QF3 and QF5 was significantly lower than that in UG. The Q.Freeze algorithm can improve the quality of PET imaging compared with RG and UG.

  11. Feasibility of 4D flow MR imaging of the brain with either Cartesian y-z radial sampling or k-t SENSE: comparison with 4D Flow MR imaging using SENSE.

    PubMed

    Sekine, Tetsuro; Amano, Yasuo; Takagi, Ryo; Matsumura, Yoshio; Murai, Yasuo; Kumita, Shinichiro

    2014-01-01

    A drawback of time-resolved 3-dimensional phase contrast magnetic resonance (4D Flow MR) imaging is its lengthy scan time for clinical application in the brain. We assessed the feasibility for flow measurement and visualization of 4D Flow MR imaging using Cartesian y-z radial sampling and that using k-t sensitivity encoding (k-t SENSE) by comparison with the standard scan using SENSE. Sixteen volunteers underwent 3 types of 4D Flow MR imaging of the brain using a 3.0-tesla scanner. As the standard scan, 4D Flow MR imaging with SENSE was performed first and then followed by 2 types of acceleration scan-with Cartesian y-z radial sampling and with k-t SENSE. We measured peak systolic velocity (PSV) and blood flow volume (BFV) in 9 arteries, and the percentage of particles arriving from the emitter plane at the target plane in 3 arteries, visually graded image quality in 9 arteries, and compared these quantitative and visual data between the standard scan and each acceleration scan. 4D Flow MR imaging examinations were completed in all but one volunteer, who did not undergo the last examination because of headache. Each acceleration scan reduced scan time by 50% compared with the standard scan. The k-t SENSE imaging underestimated PSV and BFV (P < 0.05). There were significant correlations for PSV and BFV between the standard scan and each acceleration scan (P < 0.01). The percentage of particles reaching the target plane did not differ between the standard scan and each acceleration scan. For visual assessment, y-z radial sampling deteriorated the image quality of the 3 arteries. Cartesian y-z radial sampling is feasible for measuring flow, and k-t SENSE offers sufficient flow visualization; both allow acquisition of 4D Flow MR imaging with shorter scan time.

  12. Fundamental limits of image registration performance: Effects of image noise and resolution in CT-guided interventions.

    PubMed

    Ketcha, M D; de Silva, T; Han, R; Uneri, A; Goerres, J; Jacobson, M; Vogt, S; Kleinszig, G; Siewerdsen, J H

    2017-02-11

    In image-guided procedures, image acquisition is often performed primarily for the task of geometrically registering information from another image dataset, rather than detection / visualization of a particular feature. While the ability to detect a particular feature in an image has been studied extensively with respect to image quality characteristics (noise, resolution) and is an ongoing, active area of research, comparatively little has been accomplished to relate such image quality characteristics to registration performance. To establish such a framework, we derived Cramer-Rao lower bounds (CRLB) for registration accuracy, revealing the underlying dependencies on image variance and gradient strength. The CRLB was analyzed as a function of image quality factors (in particular, dose) for various similarity metrics and compared to registration accuracy using CT images of an anthropomorphic head phantom at various simulated dose levels. Performance was evaluated in terms of root mean square error (RMSE) of the registration parameters. Analysis of the CRLB shows two primary dependencies: 1) noise variance (related to dose); and 2) sum of squared image gradients (related to spatial resolution and image content). Comparison of the measured RMSE to the CRLB showed that the best registration method, RMSE achieved the CRLB to within an efficiency factor of 0.21, and optimal estimators followed the predicted inverse proportionality between registration performance and radiation dose. Analysis of the CRLB for image registration is an important step toward understanding and evaluating an intraoperative imaging system with respect to a registration task. While the CRLB is optimistic in absolute performance, it reveals a basis for relating the performance of registration estimators as a function of noise content and may be used to guide acquisition parameter selection (e.g., dose) for purposes of intraoperative registration.

  13. Mutual information as a measure of image quality for 3D dynamic lung imaging with EIT

    PubMed Central

    Crabb, M G; Davidson, J L; Little, R; Wright, P; Morgan, A R; Miller, C A; Naish, J H; Parker, G J M; Kikinis, R; McCann, H; Lionheart, W R B

    2014-01-01

    We report on a pilot study of dynamic lung electrical impedance tomography (EIT) at the University of Manchester. Low-noise EIT data at 100 frames per second (fps) were obtained from healthy male subjects during controlled breathing, followed by magnetic resonance imaging (MRI) subsequently used for spatial validation of the EIT reconstruction. The torso surface in the MR image and electrode positions obtained using MRI fiducial markers informed the construction of a 3D finite element model extruded along the caudal-distal axis of the subject. Small changes in the boundary that occur during respiration were accounted for by incorporating the sensitivity with respect to boundary shape into a robust temporal difference reconstruction algorithm. EIT and MRI images were co-registered using the open source medical imaging software, 3D Slicer. A quantitative comparison of quality of different EIT reconstructions was achieved through calculation of the mutual information with a lung-segmented MR image. EIT reconstructions using a linear shape correction algorithm reduced boundary image artefacts, yielding better contrast of the lungs, and had 10% greater mutual information compared with a standard linear EIT reconstruction. PMID:24710978

  14. Mutual information as a measure of image quality for 3D dynamic lung imaging with EIT.

    PubMed

    Crabb, M G; Davidson, J L; Little, R; Wright, P; Morgan, A R; Miller, C A; Naish, J H; Parker, G J M; Kikinis, R; McCann, H; Lionheart, W R B

    2014-05-01

    We report on a pilot study of dynamic lung electrical impedance tomography (EIT) at the University of Manchester. Low-noise EIT data at 100 frames per second were obtained from healthy male subjects during controlled breathing, followed by magnetic resonance imaging (MRI) subsequently used for spatial validation of the EIT reconstruction. The torso surface in the MR image and electrode positions obtained using MRI fiducial markers informed the construction of a 3D finite element model extruded along the caudal-distal axis of the subject. Small changes in the boundary that occur during respiration were accounted for by incorporating the sensitivity with respect to boundary shape into a robust temporal difference reconstruction algorithm. EIT and MRI images were co-registered using the open source medical imaging software, 3D Slicer. A quantitative comparison of quality of different EIT reconstructions was achieved through calculation of the mutual information with a lung-segmented MR image. EIT reconstructions using a linear shape correction algorithm reduced boundary image artefacts, yielding better contrast of the lungs, and had 10% greater mutual information compared with a standard linear EIT reconstruction.

  15. Effects of pipette modulation and imaging distances on ion currents measured with scanning ion conductance microscopy (SICM).

    PubMed

    Chen, Chiao-Chen; Baker, Lane A

    2011-01-07

    Local conductance variations can be estimated by measuring ion current magnitudes with scanning ion conductance microscopy (SICM). Factors which influence image quality and quantitation of ion currents measured with SICM have been evaluated. Specifically, effects of probe-sample separation and pipette modulation have been systematically studied for the case of imaging conductance variations at pores in a polymer membrane under transmembrane concentration gradients. The influence of probe-sample separation on ion current images was evaluated using distance-modulated (ac) feedback. Approach curves obtained using non-modulated (dc) feedback were also recorded to determine the relative influence of pipette-generated convection by comparison of ion currents measured with both ac and dc feedback modes. To better interpret results obtained, comparison to a model based on a disk-shaped geometry for nanopores in the membrane, as well as relevant position-dependent parameters of the experiment is described. These results advance our current understanding of conductance measurements with SICM.

  16. Restoration of Static JPEG Images and RGB Video Frames by Means of Nonlinear Filtering in Conditions of Gaussian and Non-Gaussian Noise

    NASA Astrophysics Data System (ADS)

    Sokolov, R. I.; Abdullin, R. R.

    2017-11-01

    The use of nonlinear Markov process filtering makes it possible to restore both video stream frames and static photos at the stage of preprocessing. The present paper reflects the results of research in comparison of these types image filtering quality by means of special algorithm when Gaussian or non-Gaussian noises acting. Examples of filter operation at different values of signal-to-noise ratio are presented. A comparative analysis has been performed, and the best filtered kind of noise has been defined. It has been shown the quality of developed algorithm is much better than quality of adaptive one for RGB signal filtering at the same a priori information about the signal. Also, an advantage over median filter takes a place when both fluctuation and pulse noise filtering.

  17. Comparison of image quality, myocardial perfusion, and LV function between standard imaging and single-injection ultra-low-dose imaging using a high-efficiency SPECT camera: the MILLISIEVERT study

    PubMed Central

    Einstein, Andrew J.; Blankstein, Ron; Andrews, Howard; Fish, Mathews; Padgett, Richard; Hayes, Sean W.; Friedman, John D.; Qureshi, Mehreen; Rakotoarivelo, Harivony; Slomka, Piotr; Nakazato, Ryo; Bokhari, Sabahat; Di Carli, Marcello; Berman, Daniel S.

    2015-01-01

    SPECT myocardial perfusion imaging (MPI) plays a central role in coronary artery disease diagnosis; but concerns exist regarding its radiation burden. Compared to standard Anger-SPECT (A-SPECT) cameras, new high-efficiency (HE) cameras with specialized collimators and solid-state cadmium-zinc-telluride detectors offer potential to maintain image quality (IQ), while reducing administered activity and thus radiation dose to patients. No previous study has compared IQ, interpretation, total perfusion deficit (TPD), or ejection fraction (EF) in patients receiving both ultra-low-dose (ULD) imaging on a HE-SPECT camera and standard low-dose (SLD) A-SPECT imaging. Methods We compared ULD-HE-SPECT to SLD-A-SPECT imaging by dividing the rest dose in 101 patients at 3 sites scheduled to undergo clinical A-SPECT MPI using a same day rest/stress Tc-99m protocol. Patients received HE-SPECT imaging following an initial ~130 MBq (3.5mCi) dose, and SLD-A-SPECT imaging following the remainder of the planned dose. Images were scored visually by 2 blinded readers for IQ and summed rest score (SRS). TPD and EF were assessed quantitatively. Results Mean activity was 134 MBq (3.62 mCi) for ULD-HE-SPECT (effective dose 1.15 mSv) and 278 MBq (7.50 mCi, 2.39 mSv) for SLD-A-SPECT. Overall IQ was superior for ULD-HE-SPECT (p<0.0001), with twice as many studies graded excellent quality. Extracardiac activity and overall perfusion assessment were similar. Between-method correlations were high for SRS (r=0.87), TPD (r=0.91), and EF (r=0.88). Conclusion ULD-HE-SPECT rest imaging correlates highly with SLD-A-SPECT. It has improved image quality, comparable extracardiac activity, and achieves radiation dose reduction to 1 mSv for a single injection. PMID:24982439

  18. Image quality and absorbed dose comparison of single- and dual-source cone-beam computed tomography.

    PubMed

    Miura, Hideharu; Ozawa, Shuichi; Okazue, Toshiya; Kawakubo, Atsushi; Yamada, Kiyoshi; Nagata, Yasushi

    2018-05-01

    Dual-source cone-beam computed tomography (DCBCT) is currently available in the Vero4DRT image-guided radiotherapy system. We evaluated the image quality and absorbed dose for DCBCT and compared the values with those for single-source CBCT (SCBCT). Image uniformity, Hounsfield unit (HU) linearity, image contrast, and spatial resolution were evaluated using a Catphan phantom. The rotation angle for acquiring SCBCT and DCBCT images is 215° and 115°, respectively. The image uniformity was calculated using measurements obtained at the center and four peripheral positions. The HUs of seven materials inserted into the phantom were measured to evaluate HU linearity and image contrast. The Catphan phantom was scanned with a conventional CT scanner to measure the reference HU for each material. The spatial resolution was calculated using high-resolution pattern modules. Image quality was analyzed using ImageJ software ver. 1.49. The absorbed dose was measured using a 0.6-cm 3 ionization chamber with a 16-cm-diameter cylindrical phantom, at the center and four peripheral positions of the phantom, and calculated using weighted cone-beam CT dose index (CBCTDI w ). Compared with that of SCBCT, the image uniformity of DCBCT was slightly reduced. A strong linear correlation existed between the measured HU for DCBCT and the reference HU, although the linear regression slope was different from that of the reference HU. DCBCT had poorer image contrast than did SCBCT, particularly with a high-contrast material. There was no significant difference between the spatial resolutions of SCBCT and DCBCT. The absorbed dose for DCBCT was higher than that for SCBCT, because in DCBCT, the two x-ray projections overlap between 45° and 70°. We found that the image quality was poorer and the absorbed dose was higher for DCBCT than for SCBCT in the Vero4DRT. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  19. A study on mastectomy samples to evaluate breast imaging quality and potential clinical relevance of differential phase contrast mammography.

    PubMed

    Hauser, Nik; Wang, Zhentian; Kubik-Huch, Rahel A; Trippel, Mafalda; Singer, Gad; Hohl, Michael K; Roessl, Ewald; Köhler, Thomas; van Stevendaal, Udo; Wieberneit, Nataly; Stampanoni, Marco

    2014-03-01

    Differential phase contrast and scattering-based x-ray mammography has the potential to provide additional and complementary clinically relevant information compared with absorption-based mammography. The purpose of our study was to provide a first statistical evaluation of the imaging capabilities of the new technique compared with digital absorption mammography. We investigated non-fixed mastectomy samples of 33 patients with invasive breast cancer, using grating-based differential phase contrast mammography (mammoDPC) with a conventional, low-brilliance x-ray tube. We simultaneously recorded absorption, differential phase contrast, and small-angle scattering signals that were combined into novel high-frequency-enhanced images with a dedicated image fusion algorithm. Six international, expert breast radiologists evaluated clinical digital and experimental mammograms in a 2-part blinded, prospective independent reader study. The results were statistically analyzed in terms of image quality and clinical relevance. The results of the comparison of mammoDPC with clinical digital mammography revealed the general quality of the images to be significantly superior (P < 0.001); sharpness, lesion delineation, as well as the general visibility of calcifications to be significantly more assessable (P < 0.001); and delineation of anatomic components of the specimens (surface structures) to be significantly sharper (P < 0.001). Spiculations were significantly better identified, and the overall clinically relevant information provided by mammoDPC was judged to be superior (P < 0.001). Our results demonstrate that complementary information provided by phase and scattering enhanced mammograms obtained with the mammoDPC approach deliver images of generally superior quality. This technique has the potential to improve radiological breast diagnostics.

  20. Dual-layer DECT for multiphasic hepatic CT with 50 percent iodine load: a matched-pair comparison with a 120 kVp protocol.

    PubMed

    Nagayama, Yasunori; Nakaura, Takeshi; Oda, Seitaro; Utsunomiya, Daisuke; Funama, Yoshinori; Iyama, Yuji; Taguchi, Narumi; Namimoto, Tomohiro; Yuki, Hideaki; Kidoh, Masafumi; Hirata, Kenichiro; Nakagawa, Masataka; Yamashita, Yasuyuki

    2018-04-01

    To evaluate the image quality and lesion conspicuity of virtual-monochromatic-imaging (VMI) with dual-layer DECT (DL-DECT) for reduced-iodine-load multiphasic-hepatic CT. Forty-five adults with renal dysfunction who had undergone hepatic DL-DECT with 300-mgI/kg were included. VMI (40-70-keV, DL-DECT-VMI) was generated at each enhancement phase. As controls, 45 matched patients undergoing standard 120-kVp protocol (120-kVp, 600-mgI/kg, and iterative reconstruction) were included. We compared the size-specific dose estimate (SSDE), image noise, CT attenuation, and contrast-to-noise ratio (CNR) between protocols. Two radiologists scored the image quality and lesion conspicuity. SSDE was significantly lower in DL-DECT group (p < 0.01). Image noise of DL-DECT-VMI was almost constant at each keV (differences of ≤15%) and equivalent to or lower than of 120-kVp. As the energy decreased, CT attenuation and CNR gradually increased; the values of 55-60 keV images were almost equivalent to those of standard 120-kVp. The highest scores for overall quality and lesion conspicuity were assigned at 40-keV followed by 45 to 55-keV, all of which were similar to or better than of 120-kVp. For multiphasic-hepatic CT with 50% iodine-load, DL-DECT-VMI at 40- to 55-keV provides equivalent or better image quality and lesion conspicuity without increasing radiation dose compared with standard 120-kVp protocol. • 40-55-keV yields optimal image quality for half-iodine-load multiphasic-hepatic CT with DL-DECT. • DL-DECT protocol decreases radiation exposure compared with 120-kVp scans with iterative reconstruction. • 40-keV images maximise conspicuity of hepatocellular carcinoma especially at hepatic-arterial phase.

  1. Thoracic-abdominal imaging with a novel dual-layer spectral detector CT: intra-individual comparison of image quality and radiation dose with 128-row single-energy acquisition.

    PubMed

    Haneder, Stefan; Siedek, Florian; Doerner, Jonas; Pahn, Gregor; Grosse Hokamp, Nils; Maintz, David; Wybranski, Christian

    2018-01-01

    Background A novel, multi-energy, dual-layer spectral detector computed tomography (SDCT) is commercially available now with the vendor's claim that it yields the same or better quality of polychromatic, conventional CT images like modern single-energy CT scanners without any radiation dose penalty. Purpose To intra-individually compare the quality of conventional polychromatic CT images acquired with a dual-layer spectral detector (SDCT) and the latest generation 128-row single-energy-detector (CT128) from the same manufacturer. Material and Methods Fifty patients underwent portal-venous phase, thoracic-abdominal CT scans with the SDCT and prior CT128 imaging. The SDCT scanning protocol was adapted to yield a similar estimated dose length product (DLP) as the CT128. Patient dose optimization by automatic tube current modulation and CT image reconstruction with a state-of-the-art iterative algorithm were identical on both scanners. CT image contrast-to-noise ratio (CNR) was compared between the SDCT and CT128 in different anatomic structures. Image quality and noise were assessed independently by two readers with 5-point-Likert-scales. Volume CT dose index (CTDI vol ), and DLP were recorded and normalized to 68 cm acquisition length (DLP 68 ). Results The SDCT yielded higher mean CNR values of 30.0% ± 2.0% (26.4-32.5%) in all anatomic structures ( P < 0.001) and excellent scores for qualitative parameters surpassing the CT128 (all P < 0.0001) with substantial inter-rater agreement (κ ≥ 0.801). Despite adapted scan protocols the SDCT yielded lower values for CTDI vol (-10.1 ± 12.8%), DLP (-13.1 ± 13.9%), and DLP 68 (-15.3 ± 16.9%) than the CT128 (all P < 0.0001). Conclusion The SDCT scanner yielded better CT image quality compared to the CT128 and lower radiation dose parameters.

  2. An unusual method of forensic human identification: use of selfie photographs.

    PubMed

    Miranda, Geraldo Elias; Freitas, Sílvia Guzella de; Maia, Luiza Valéria de Abreu; Melani, Rodolfo Francisco Haltenhoff

    2016-06-01

    As with other methods of identification, in forensic odontology, antemortem data are compared with postmortem findings. In the absence of dental documentation, photographs of the smile play an important role in this comparison. As yet, there are no reports of the use of the selfie photograph for identification purposes. Owing to advancements in technology, electronic devices, and social networks, this type of photograph has become increasingly common. This paper describes a case in which selfie photographs were used to identify a carbonized body, by using the smile line and image superimposition. This low-cost, rapid, and easy to analyze technique provides highly reliable results. Nevertheless, there are disadvantages, such as the limited number of teeth that are visible in a photograph, low image quality, possibility of morphological changes in the teeth after the antemortem image was taken, and difficulty of making comparisons depending on the orientation of the photo. In forensic odontology, new methods of identification must be sought to accompany technological evolution, particularly when no traditional methods of comparison, such as clinical record charts or radiographs, are available. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Image Quality and Diagnostic Performance of a Digital PET Prototype in Patients with Oncologic Diseases: Initial Experience and Comparison with Analog PET.

    PubMed

    Nguyen, Nghi C; Vercher-Conejero, Jose L; Sattar, Abdus; Miller, Michael A; Maniawski, Piotr J; Jordan, David W; Muzic, Raymond F; Su, Kuan-Hao; O'Donnell, James K; Faulhaber, Peter F

    2015-09-01

    We report our initial clinical experience for image quality and diagnostic performance of a digital PET prototype scanner with time-of-flight (DigitalTF), compared with an analog PET scanner with time-of-flight (GeminiTF PET/CT). Twenty-one oncologic patients, mean age 58 y, first underwent clinical (18)F-FDG PET/CT on the GeminiTF. The scanner table was then withdrawn while the patient remained on the table, and the DigitalTF was inserted between the GeminiTF PET and CT scanner. The patients were scanned for a second time using the same PET field of view with CT from the GeminiTF for attenuation correction. Two interpreters reviewed the 2 sets of PET/CT images for overall image quality, lesion conspicuity, and sharpness. They counted the number of suggestive (18)F-FDG-avid lesions and provided the TNM staging for the 5 patients referred for initial staging. Standardized uptake values (SUVs) and SUV gradients as a measure of lesion sharpness were obtained. The DigitalTF showed better image quality than the GeminiTF. In a side-by-side comparison using a 5-point scale, lesion conspicuity (4.3 ± 0.6), lesion sharpness (4.3 ± 0.6), and diagnostic confidence (3.4 ± 0.7) were better with DigitalTF than with GeminiTF (P < 0.01). In 52 representative lesions, the lesion maximum SUV was 36% higher with DigitalTF than with GeminiTF, lesion-to-blood-pool SUV ratio was 59% higher, and SUV gradient was 51% higher, with good correlation between the 2 scanners. Lesions less than 1.5 cm showed a greater increase in SUV from GeminiTF to DigitalTF than those lesions 1.5 cm or greater. In 5 of 21 patients, DigitalTF showed an additional 8 suggestive lesions that were not seen using GeminiTF. In the 15 restaging patients, the true-negative rate was 100% and true-positive rate was 78% for both scanners. In the 5 patients for initial staging, DigitalTF led to upstaging in 2 patients and showed the same staging in the other 3 patients, compared with GeminiTF. DigitalTF provides better image quality, diagnostic confidence, and accuracy than GeminiTF. DigitalTF may be the most beneficial in detecting small tumor lesions and disease staging. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  4. Feasibility of imaging superficial palmar arch using micro-ultrasound, 7T and 3T magnetic resonance imaging.

    PubMed

    Pruzan, Alison N; Kaufman, Audrey E; Calcagno, Claudia; Zhou, Yu; Fayad, Zahi A; Mani, Venkatesh

    2017-02-28

    To demonstrate feasibility of vessel wall imaging of the superficial palmar arch using high frequency micro-ultrasound, 7T and 3T magnetic resonance imaging (MRI). Four subjects (ages 22-50 years) were scanned on a micro-ultrasound system with a 45-MHz transducer (Vevo 2100, VisualSonics). Subjects' hands were then imaged on a 3T clinical MR scanner (Siemens Biograph MMR) using an 8-channel special purpose phased array carotid coil. Lastly, subjects' hands were imaged on a 7T clinical MR scanner (Siemens Magnetom 7T Whole Body Scanner) using a custom built 8-channel transmit receive carotid coil. All three imaging modalities were subjectively analyzed for image quality and visualization of the vessel wall. Results of this very preliminary study indicated that vessel wall imaging of the superficial palmar arch was feasible with a whole body 7T and 3T MRI in comparison with micro-ultrasound. Subjective analysis of image quality (1-5 scale, 1: poorest, 5: best) from B mode, ultrasound, 3T SPACE MRI and 7T SPACE MRI indicated that the image quality obtained at 7T was superior to both 3T MRI and micro-ultrasound. The 3D SPACE sequence at both 7T and 3T MRI with isotropic voxels allowed for multi-planar reformatting of images and allowed for less operator dependent results as compared to high frequency micro-ultrasound imaging. Although quantitative analysis revealed that there was no significant difference between the three methods, the 7T Tesla trended to have better visibility of the vessel and its wall. Imaging of smaller arteries at the 7T is feasible for evaluating atherosclerosis burden and may be of clinical relevance in multiple diseases.

  5. Reciprocal effects among changes in weight, body image, and other psychological factors during behavioral obesity treatment: a mediation analysis.

    PubMed

    Palmeira, António L; Markland, David A; Silva, Marlene N; Branco, Teresa L; Martins, Sandra C; Minderico, Cláudia S; Vieira, Paulo N; Barata, José T; Serpa, Sidónio O; Sardinha, Luis B; Teixeira, Pedro J

    2009-02-09

    Changes in body image and subjective well-being variables (e.g. self-esteem) are often reported as outcomes of obesity treatment. However, they may, in turn, also influence behavioral adherence and success in weight loss. The present study examined associations among obesity treatment-related variables, i.e., change in weight, quality of life, body image, and subjective well-being, exploring their role as both mediators and outcomes, during a behavioral obesity treatment. Participants (BMI = 31.1 +/- 4.1 kg/m2; age = 38.4 +/- 6.7 y) were 144 women who attended a 12-month obesity treatment program and a comparison group (n = 49), who received a general health education program. The intervention included regular group meetings promoting lasting behavior changes in physical activity and dietary intake. Body image, quality of life, subjective well-being, and body weight were measured at baseline and treatment's end. Mediation was tested by multiple regression and a resampling approach to measure indirect effects. Treatment group assignment was the independent variable while changes in weight and in psychosocial variables were analyzed alternatively as mediators and as dependent variables. At 12 months, the intervention group had greater weight loss (-5.6 +/- 6.8% vs. -1.2 +/- 4.6%, p < .001) and larger decreases in body size dissatisfaction (effect size of 1.08 vs. .41, p < .001) than the comparison group. Significant improvements were observed in both groups for all other psychosocial variables (effect sizes ranging from .31-.75, p < .05). Mediation analysis showed that changes in body image and body weight were concurrently mediators and outcomes of treatment, suggesting reciprocal influences. Weight loss partially mediated the effect of treatment on quality of life and on self-esteem but the reciprocal effect was not observed. Changes in weight and body image may reciprocally affect each other during the course of behavioral obesity treatment. No evidence of reciprocal relationships was found for the other models under analysis; however, weight changes partially explained the effects of treatment on quality of life and self-esteem. Weight and psychosocial changes co-occur during treatment and will probably influence each other dynamically, in ways not yet adequately understood. Results from this study support the inclusion of intervention contents aimed at improving body image in weight management programs.

  6. Estimation of Noise Properties for TV-regularized Image Reconstruction in Computed Tomography

    PubMed Central

    Sánchez, Adrian A.

    2016-01-01

    A method for predicting the image covariance resulting from total-variation-penalized iterative image reconstruction (TV-penalized IIR) is presented and demonstrated in a variety of contexts. The method is validated against the sample covariance from statistical noise realizations for a small image using a variety of comparison metrics. Potential applications for the covariance approximation include investigation of image properties such as object- and signal-dependence of noise, and noise stationarity. These applications are demonstrated, along with the construction of image pixel variance maps for two-dimensional 128 × 128 pixel images. Methods for extending the proposed covariance approximation to larger images and improving computational efficiency are discussed. Future work will apply the developed methodology to the construction of task-based image quality metrics such as the Hotelling observer detectability for TV-based IIR. PMID:26308968

  7. Estimation of noise properties for TV-regularized image reconstruction in computed tomography.

    PubMed

    Sánchez, Adrian A

    2015-09-21

    A method for predicting the image covariance resulting from total-variation-penalized iterative image reconstruction (TV-penalized IIR) is presented and demonstrated in a variety of contexts. The method is validated against the sample covariance from statistical noise realizations for a small image using a variety of comparison metrics. Potential applications for the covariance approximation include investigation of image properties such as object- and signal-dependence of noise, and noise stationarity. These applications are demonstrated, along with the construction of image pixel variance maps for two-dimensional 128 × 128 pixel images. Methods for extending the proposed covariance approximation to larger images and improving computational efficiency are discussed. Future work will apply the developed methodology to the construction of task-based image quality metrics such as the Hotelling observer detectability for TV-based IIR.

  8. Estimation of noise properties for TV-regularized image reconstruction in computed tomography

    NASA Astrophysics Data System (ADS)

    Sánchez, Adrian A.

    2015-09-01

    A method for predicting the image covariance resulting from total-variation-penalized iterative image reconstruction (TV-penalized IIR) is presented and demonstrated in a variety of contexts. The method is validated against the sample covariance from statistical noise realizations for a small image using a variety of comparison metrics. Potential applications for the covariance approximation include investigation of image properties such as object- and signal-dependence of noise, and noise stationarity. These applications are demonstrated, along with the construction of image pixel variance maps for two-dimensional 128× 128 pixel images. Methods for extending the proposed covariance approximation to larger images and improving computational efficiency are discussed. Future work will apply the developed methodology to the construction of task-based image quality metrics such as the Hotelling observer detectability for TV-based IIR.

  9. Forensic comparison and matching of fingerprints: using quantitative image measures for estimating error rates through understanding and predicting difficulty.

    PubMed

    Kellman, Philip J; Mnookin, Jennifer L; Erlikhman, Gennady; Garrigan, Patrick; Ghose, Tandra; Mettler, Everett; Charlton, David; Dror, Itiel E

    2014-01-01

    Latent fingerprint examination is a complex task that, despite advances in image processing, still fundamentally depends on the visual judgments of highly trained human examiners. Fingerprints collected from crime scenes typically contain less information than fingerprints collected under controlled conditions. Specifically, they are often noisy and distorted and may contain only a portion of the total fingerprint area. Expertise in fingerprint comparison, like other forms of perceptual expertise, such as face recognition or aircraft identification, depends on perceptual learning processes that lead to the discovery of features and relations that matter in comparing prints. Relatively little is known about the perceptual processes involved in making comparisons, and even less is known about what characteristics of fingerprint pairs make particular comparisons easy or difficult. We measured expert examiner performance and judgments of difficulty and confidence on a new fingerprint database. We developed a number of quantitative measures of image characteristics and used multiple regression techniques to discover objective predictors of error as well as perceived difficulty and confidence. A number of useful predictors emerged, and these included variables related to image quality metrics, such as intensity and contrast information, as well as measures of information quantity, such as the total fingerprint area. Also included were configural features that fingerprint experts have noted, such as the presence and clarity of global features and fingerprint ridges. Within the constraints of the overall low error rates of experts, a regression model incorporating the derived predictors demonstrated reasonable success in predicting objective difficulty for print pairs, as shown both in goodness of fit measures to the original data set and in a cross validation test. The results indicate the plausibility of using objective image metrics to predict expert performance and subjective assessment of difficulty in fingerprint comparisons.

  10. A BMI-adjusted ultra-low-dose CT angiography protocol for the peripheral arteries-Image quality, diagnostic accuracy and radiation exposure.

    PubMed

    Schreiner, Markus M; Platzgummer, Hannes; Unterhumer, Sylvia; Weber, Michael; Mistelbauer, Gabriel; Loewe, Christian; Schernthaner, Ruediger E

    2017-08-01

    To investigate radiation exposure, objective image quality, and the diagnostic accuracy of a BMI-adjusted ultra-low-dose CT angiography (CTA) protocol for the assessment of peripheral arterial disease (PAD), with digital subtraction angiography (DSA) as the standard of reference. In this prospective, IRB-approved study, 40 PAD patients (30 male, mean age 72 years) underwent CTA on a dual-source CT scanner at 80kV tube voltage. The reference amplitude for tube current modulation was personalized based on the body mass index (BMI) with 120 mAs for [BMI≤25] or 150 mAs for [2570%) was assessed by two readers independently and compared to subsequent DSA. Radiation exposure was assessed with the computed tomography dose index (CTDIvol) and the dosis-length product (DLP). Objective image quality was assessed via contrast- and signal-to-noise ratio (CNR and SNR) measurements. Radiation exposure and image quality were compared between the BMI groups and between the BMI-adjusted ultra-low-dose protocol and the low-dose institutional standard protocol (ISP). The BMI-adjusted ultra-low-dose protocol reached high diagnostic accuracy values of 94% for Reader 1 and 93% for Reader 2. Moreover, in comparison to the ISP, it showed significantly (p<0.001) lower CTDIvol (1.97±0.55mGy vs. 4.18±0.62 mGy) and DLP (256±81mGy x cm vs. 544±83mGy x cm) but similar image quality (p=0.37 for CNR). Furthermore, image quality was similar between BMI groups (p=0.86 for CNR). A CT protocol that incorporates low kV settings with a personalized (BMI-adjusted) reference amplitude for tube current modulation and iterative reconstruction enables very low radiation exposure CTA, while maintaining good image quality and high diagnostic accuracy in the assessment of PAD. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A new watermarking approach based on combination of reversible watermarking and CDMA in spatial and DWT domain

    NASA Astrophysics Data System (ADS)

    Bekkouche, S.; Chouarfia, A.

    2011-06-01

    Image watermarking can be defined as a technique that allows insertion of imperceptible and indelible digital data into an image. In addition to its initial application which is the copyright, watermarking can be used in other fields, particularly in the medical field in order to contribute to secure images shared on the network for telemedicine applications. In this report we study some watermarking methods and the comparison result of their combination, the first one is based on the CDMA (Code Division Multiple Access) in DWT and spatial domain and its aim is to verify the image authenticity whereas the second one is the reversible watermarking (the least significant bits LSB and cryptography tools) and the reversible contrast mapping RCM its objective is to check the integrity of the image and to keep the Confidentiality of the patient data. A new scheme of watermarking is the combination of the reversible watermarking method based on LSB and cryptography tools and the method of CDMA in spatial and DWT domain to verify the three security properties Integrity, Authenticity and confidentiality of medical data and patient information .In the end ,we made a comparison between these methods within the parameters of quality of medical images. Initially, an in-depth study on the characteristics of medical images would contribute to improve these methods to mitigate their limits and to optimize the results. Tests were done on IRM kind of medical images and the quality measurements have been done on the watermarked image to verify that this technique does not lead to a wrong diagnostic. The robustness of the watermarked images against attacks has been verified on the parameters of PSNR, SNR, MSE and MAE which the experimental result demonstrated that the proposed algorithm is good and robust in DWT than in spatial domain.

  12. Objective evaluation of acute adverse events and image quality of gadolinium-based contrast agents (gadobutrol and gadobenate dimeglumine) by blinded evaluation. Pilot study.

    PubMed

    Semelka, Richard C; Hernandes, Mateus de A; Stallings, Clifton G; Castillo, Mauricio

    2013-01-01

    The purpose was to objectively evaluate a recently FDA-approved gadolinium-based contrast agent (GBCA) in comparison to our standard GBCA for acute adverse events and image quality by blinded evaluation. Evaluation was made of a recently FDA-approved GBCA, gadobutrol (Gadavist; Bayer), in comparison to our standard GBCA, gadobenate dimeglumine (MultiHance; Bracco), in an IRB- and HIPAA-compliant study. Both the imaging technologist and patient were not aware of the brand of the GBCA used. A total of 59 magnetic resonance studies were evaluated (59 patients, 31 men, 28 women, age range of 5-85 years, mean age of 52 years). Twenty-nine studies were performed with gadobutrol (22 abdominal and 7 brain studies), and 30 studies were performed with gadobenate dimeglumine (22 abdominal and 8 brain studies). Assessment was made of acute adverse events focusing on objective observations of vomiting, hives, and moderate and severe reactions. Adequacy of enhancement was rated as poor, fair and good by one of two experienced radiologists who were blinded to the type of agent evaluated. No patient experienced acute adverse events with either agent. The target minor adverse events of vomiting or hives, and moderate and severe reactions were not observed in any patient. Adequacy of enhancement was rated as good for both agents in all patients. Objective, blinded evaluation is feasible and readily performable for the evaluation of GBCAs. This proof-of-concept study showed that both GBCAs evaluated exhibited consistent good image quality and no noteworthy adverse events. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Pectus excavatum and pectus carinatum patients suffer from lower quality of life and impaired body image: a control group comparison of psychological characteristics prior to surgical correction.

    PubMed

    Steinmann, Cornelia; Krille, Stefanie; Mueller, Astrid; Weber, Peter; Reingruber, Bertram; Martin, Alexandra

    2011-11-01

    The aim of this study was to evaluate the effects of anterior chest-wall deformities on disease-specific and health-related quality of life, body image, and psychiatric comorbidity prior to surgical correction. A total of 90 patients (71 with pectus excavatum, 19 with pectus carinatum) presenting themselves for pectus repair and 82 control subjects were recruited for this study. The objective severity of the deformity was determined through the funnel-chest index by Hümmer and the Haller index. Disease-specific quality of life was measured with the Nuss Questionnaire modified for Adults (NQ-mA) and health-related quality of life was determined by the Short-Form-36 Health Survey (SF-36). Body image was assessed via the Body Image Questionnaire (FKB-20), the Dysmorphic Concern Questionnaire (DCQ), and a self-evaluation of the subjective impairment of the appearance. The Diagnostic Interview for Mental Disorders - Short Version (Mini-DIPS), the General Depression Scale (Allgemeine Depressionsskala, ADS), and a self-rating of self-esteem were used to evaluate general psychological impairment. Compared with control group results, physical quality of life was reduced in patients with pectus excavatum, while mental quality of life was decreased in patients with pectus carinatum (p<0.05). Body image was highly disturbed in all the patients and differed significantly from the control group (p<0.01). Patients with pectus carinatum appeared to be less satisfied with their appearance than those with pectus excavatum (p=0.07). Body image distress was multivariately associated with both reduced mental quality of life and low self-esteem (p<0.001). Body image did not influence physical quality of life. Patients displayed no elevated rates of mental disorders according to Diagnostic and Statistical Manual of Mental Disorders, fourth edition (DSM-IV) criteria. Since self-perception is a major contributor to therapeutic decision making, a systematic evaluation of body image should be included in the assessment of patients with chest deformities. Body image concerns may be even more relevant to the decision-making process than physical restrictions. Exaggerated dysmorphic concerns should be prospectively investigated in their ability to influence the extent of satisfaction with the surgical outcome. Copyright © 2011 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.

  14. Echocardiography Comparison Between Two and Three Dimensional Echocardiograms

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Echocardiography uses sound waves to image the heart and other organs. Developing a compact version of the latest technology improved the ease of monitoring crew member health, a critical task during long space flights. NASA researchers plan to adapt the three-dimensional (3-D) echocardiogram for space flight. The two-dimensional (2-D) echocardiogram utilized in orbit on the International Space Station (ISS) was effective, but difficult to use with precision. A heart image from a 2-D echocardiogram (left) is of a better quality than that from a 3-D device (right), but the 3-D imaging procedure is more user-friendly.

  15. Radiation dose reduction in parasinus CT by spectral shaping.

    PubMed

    May, Matthias S; Brand, Michael; Lell, Michael M; Sedlmair, Martin; Allmendinger, Thomas; Uder, Michael; Wuest, Wolfgang

    2017-02-01

    Spectral shaping aims to narrow the X-ray spectrum of clinical CT. The aim of this study was to determine the image quality and the extent of radiation dose reduction that can be achieved by tin prefiltration for parasinus CT. All scans were performed with a third generation dual-source CT scanner. A study protocol was designed using 100 kV tube voltage with tin prefiltration (200 mAs) that provides image noise levels comparable to a low-dose reference protocol using 100 kV without spectral shaping (25 mAs). One hundred consecutive patients were prospectively enrolled and randomly assigned to the study or control group. All patients signed written informed consent. The study protocol was approved by the local Institutional Review Board and applies to the HIPAA. Subjective and objective image quality (attenuation values, image noise, and contrast-to-noise ratio (CNR)) were assessed. Radiation exposure was assessed as volumetric CT dose index, and effective dose was estimated. Mann-Whitney U test was performed for radiation exposure and for image noise comparison. All scans were of diagnostic image quality. Image noise in air, in the retrobulbar fat, and in the eye globe was comparable between both groups (all p > 0.05). CNR eye globe/air did not differ significantly between both groups (p = 0.7). Radiation exposure (1.7 vs. 2.1 mGy, p < 0.01) and effective dose (0.055 vs. 0.066 mSv, p < 0.01) were significantly reduced in the study group. Radiation dose can be further reduced by 17% for low-dose parasinus CT by tin prefiltration maintaining diagnostic image quality.

  16. Single-Breath-Hold Whole-heart Unenhanced Coronary MRA Using Multi-shot Gradient Echo EPI at 3T: Comparison with Free-breathing Turbo-field-echo Coronary MRA on Healthy Volunteers.

    PubMed

    Iyama, Yuji; Nakaura, Takeshi; Nagayama, Yasunori; Oda, Seitaro; Utsunomiya, Daisuke; Kidoh, Masafumi; Yuki, Hideaki; Hirata, Kenichiro; Namimoto, Tomohiro; Kitajima, Mika; Morita, Kosuke; Funama, Yoshinori; Takemura, Atsushi; Okuaki, Tomoyuki; Yamashita, Yasuyuki

    2018-04-10

    We investigated the feasibility of single breath hold unenhanced coronary MRA using multi-shot gradient echo planar imaging (MSG-EPI) on a 3T-scanner. Fourteen volunteers underwent single breath hold coronary MRA with a MSG-EPI and free-breathing turbo field echo (TFE) coronary MRA at 3T. The acquisition time, signal to noise ratio (SNR), and the contrast of the sequences were compared with the paired t-test. Readers evaluated the image contrast, noise, sharpness, artifacts, and the overall image quality. The acquisition time was 88.1% shorter for MSG-EPI than TFE (24.7 ± 2.5 vs 206.4 ± 23.1 sec, P < 0.01). The SNR was significantly higher on MSG-EPI than TFE scans (P < 0.01). There was no significant difference in the contrast on MSG-EPI and TFE scans (1.8 ± 0.3 vs 1.9 ± 0.3, P = 0.24). There was no significant difference in image contrast, image sharpness, and overall image quality between two scan techniques. The score of image noise and artifact were significantly higher on MSG-EPI than TFE scans (P < 0.05). The single breath hold MSG-EPI sequence is a promising technique for shortening the scan time and for preserving the image quality of unenhanced whole heart coronary MRA on a 3T scanner.

  17. Leaf vein length per unit area is not intrinsically dependent on image magnification: avoiding measurement artifacts for accuracy and precision.

    PubMed

    Sack, Lawren; Caringella, Marissa; Scoffoni, Christine; Mason, Chase; Rawls, Michael; Markesteijn, Lars; Poorter, Lourens

    2014-10-01

    Leaf vein length per unit leaf area (VLA; also known as vein density) is an important determinant of water and sugar transport, photosynthetic function, and biomechanical support. A range of software methods are in use to visualize and measure vein systems in cleared leaf images; typically, users locate veins by digital tracing, but recent articles introduced software by which users can locate veins using thresholding (i.e. based on the contrasting of veins in the image). Based on the use of this method, a recent study argued against the existence of a fixed VLA value for a given leaf, proposing instead that VLA increases with the magnification of the image due to intrinsic properties of the vein system, and recommended that future measurements use a common, low image magnification for measurements. We tested these claims with new measurements using the software LEAFGUI in comparison with digital tracing using ImageJ software. We found that the apparent increase of VLA with magnification was an artifact of (1) using low-quality and low-magnification images and (2) errors in the algorithms of LEAFGUI. Given the use of images of sufficient magnification and quality, and analysis with error-free software, the VLA can be measured precisely and accurately. These findings point to important principles for improving the quantity and quality of important information gathered from leaf vein systems. © 2014 American Society of Plant Biologists. All Rights Reserved.

  18. Review of Image Quality Measures for Solar Imaging

    NASA Astrophysics Data System (ADS)

    Popowicz, Adam; Radlak, Krystian; Bernacki, Krzysztof; Orlov, Valeri

    2017-12-01

    Observations of the solar photosphere from the ground encounter significant problems caused by Earth's turbulent atmosphere. Before image reconstruction techniques can be applied, the frames obtained in the most favorable atmospheric conditions (the so-called lucky frames) have to be carefully selected. However, estimating the quality of images containing complex photospheric structures is not a trivial task, and the standard routines applied in nighttime lucky imaging observations are not applicable. In this paper we evaluate 36 methods dedicated to the assessment of image quality, which were presented in the literature over the past 40 years. We compare their effectiveness on simulated solar observations of both active regions and granulation patches, using reference data obtained by the Solar Optical Telescope on the Hinode satellite. To create images that are affected by a known degree of atmospheric degradation, we employed the random wave vector method, which faithfully models all the seeing characteristics. The results provide useful information about the method performances, depending on the average seeing conditions expressed by the ratio of the telescope's aperture to the Fried parameter, D/r0. The comparison identifies three methods for consideration by observers: Helmli and Scherer's mean, the median filter gradient similarity, and the discrete cosine transform energy ratio. While the first method requires less computational effort and can be used effectively in virtually any atmospheric conditions, the second method shows its superiority at good seeing (D/r0<4). The third method should mainly be considered for the post-processing of strongly blurred images.

  19. Optimising diffusion-weighted imaging in the abdomen and pelvis: comparison of image quality between monopolar and bipolar single-shot spin-echo echo-planar sequences.

    PubMed

    Kyriazi, Stavroula; Blackledge, Matthew; Collins, David J; Desouza, Nandita M

    2010-10-01

    To compare geometric distortion, signal-to-noise ratio (SNR), apparent diffusion coefficient (ADC), efficacy of fat suppression and presence of artefact between monopolar (Stejskal and Tanner) and bipolar (twice-refocused, eddy-current-compensating) diffusion-weighted imaging (DWI) sequences in the abdomen and pelvis. A semiquantitative distortion index (DI) was derived from the subtraction images with b = 0 and 1,000 s/mm(2) in a phantom and compared between the two sequences. Seven subjects were imaged with both sequences using four b values (0, 600, 900 and 1,050 s/mm(2)) and SNR, ADC for different organs and fat-to-muscle signal ratio (FMR) were compared. Image quality was evaluated by two radiologists on a 5-point scale. DI was improved in the bipolar sequence, indicating less geometric distortion. SNR was significantly lower for all tissues and b values in the bipolar images compared with the monopolar (p < 0.05), whereas FMR was not statistically different. ADC in liver, kidney and sacrum was higher in the bipolar scheme compared to the monopolar (p < 0.03), whereas in muscle it was lower (p = 0.018). Image quality scores were higher for the bipolar sequence (p ≤ 0.025). Artefact reduction makes the bipolar DWI sequence preferable in abdominopelvic applications, although the trade-off in SNR may compromise ADC measurements in muscle.

  20. Photon Counting Computed Tomography With Dedicated Sharp Convolution Kernels: Tapping the Potential of a New Technology for Stent Imaging.

    PubMed

    von Spiczak, Jochen; Mannil, Manoj; Peters, Benjamin; Hickethier, Tilman; Baer, Matthias; Henning, André; Schmidt, Bernhard; Flohr, Thomas; Manka, Robert; Maintz, David; Alkadhi, Hatem

    2018-05-23

    The aims of this study were to assess the value of a dedicated sharp convolution kernel for photon counting detector (PCD) computed tomography (CT) for coronary stent imaging and to evaluate to which extent iterative reconstructions can compensate for potential increases in image noise. For this in vitro study, a phantom simulating coronary artery stenting was prepared. Eighteen different coronary stents were expanded in plastic tubes of 3 mm diameter. Tubes were filled with diluted contrast agent, sealed, and immersed in oil calibrated to an attenuation of -100 HU simulating epicardial fat. The phantom was scanned in a modified second generation 128-slice dual-source CT scanner (SOMATOM Definition Flash, Siemens Healthcare, Erlangen, Germany) equipped with both a conventional energy integrating detector and PCD. Image data were acquired using the PCD part of the scanner with 48 × 0.25 mm slices, a tube voltage of 100 kVp, and tube current-time product of 100 mAs. Images were reconstructed using a conventional convolution kernel for stent imaging with filtered back-projection (B46) and with sinogram-affirmed iterative reconstruction (SAFIRE) at level 3 (I463). For comparison, a dedicated sharp convolution kernel with filtered back-projection (D70) and SAFIRE level 3 (Q703) and level 5 (Q705) was used. The D70 and Q70 kernels were specifically designed for coronary stent imaging with PCD CT by optimizing the image modulation transfer function and the separation of contrast edges. Two independent, blinded readers evaluated subjective image quality (Likert scale 0-3, where 3 = excellent), in-stent diameter difference, in-stent attenuation difference, mathematically defined image sharpness, and noise of each reconstruction. Interreader reliability was calculated using Goodman and Kruskal's γ and intraclass correlation coefficients (ICCs). Differences in image quality were evaluated using a Wilcoxon signed-rank test. Differences in in-stent diameter difference, in-stent attenuation difference, image sharpness, and image noise were tested using a paired-sample t test corrected for multiple comparisons. Interreader and intrareader reliability were excellent (γ = 0.953, ICCs = 0.891-0.999, and γ = 0.996, ICCs = 0.918-0.999, respectively). Reconstructions using the dedicated sharp convolution kernel yielded significantly better results regarding image quality (B46: 0.4 ± 0.5 vs D70: 2.9 ± 0.3; P < 0.001), in-stent diameter difference (1.5 ± 0.3 vs 1.0 ± 0.3 mm; P < 0.001), and image sharpness (728 ± 246 vs 2069 ± 411 CT numbers/voxel; P < 0.001). Regarding in-stent attenuation difference, no significant difference was observed between the 2 kernels (151 ± 76 vs 158 ± 92 CT numbers; P = 0.627). Noise was significantly higher in all sharp convolution kernel images but was reduced by 41% and 59% by applying SAFIRE levels 3 and 5, respectively (B46: 16 ± 1, D70: 111 ± 3, Q703: 65 ± 2, Q705: 46 ± 2 CT numbers; P < 0.001 for all comparisons). A dedicated sharp convolution kernel for PCD CT imaging of coronary stents yields superior qualitative and quantitative image characteristics compared with conventional reconstruction kernels. Resulting higher noise levels in sharp kernel PCD imaging can be partially compensated with iterative image reconstruction techniques.

  1. Toward standardized quantitative image quality (IQ) assessment in computed tomography (CT): A comprehensive framework for automated and comparative IQ analysis based on ICRU Report 87.

    PubMed

    Pahn, Gregor; Skornitzke, Stephan; Schlemmer, Hans-Peter; Kauczor, Hans-Ulrich; Stiller, Wolfram

    2016-01-01

    Based on the guidelines from "Report 87: Radiation Dose and Image-quality Assessment in Computed Tomography" of the International Commission on Radiation Units and Measurements (ICRU), a software framework for automated quantitative image quality analysis was developed and its usability for a variety of scientific questions demonstrated. The extendable framework currently implements the calculation of the recommended Fourier image quality (IQ) metrics modulation transfer function (MTF) and noise-power spectrum (NPS), and additional IQ quantities such as noise magnitude, CT number accuracy, uniformity across the field-of-view, contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) of simulated lesions for a commercially available cone-beam phantom. Sample image data were acquired with different scan and reconstruction settings on CT systems from different manufacturers. Spatial resolution is analyzed in terms of edge-spread function, line-spread-function, and MTF. 3D NPS is calculated according to ICRU Report 87, and condensed to 2D and radially averaged 1D representations. Noise magnitude, CT numbers, and uniformity of these quantities are assessed on large samples of ROIs. Low-contrast resolution (CNR, SNR) is quantitatively evaluated as a function of lesion contrast and diameter. Simultaneous automated processing of several image datasets allows for straightforward comparative assessment. The presented framework enables systematic, reproducible, automated and time-efficient quantitative IQ analysis. Consistent application of the ICRU guidelines facilitates standardization of quantitative assessment not only for routine quality assurance, but for a number of research questions, e.g. the comparison of different scanner models or acquisition protocols, and the evaluation of new technology or reconstruction methods. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  2. The comparison of high and standard definition computed tomography techniques regarding coronary artery imaging.

    PubMed

    Aykut, Aktas; Bumin, Degirmenci; Omer, Yilmaz; Mustafa, Kayan; Meltem, Cetin; Orhan, Celik; Nisa, Unlu; Hikmet, Orhan; Hakan, Demirtas; Mert, Koroglu

    2015-09-01

    The aim was to compare coronary high-definition CT (HDCT) with standard-definition CT (SDCT) angiography as to radiation dose, image quality and accuracy. 28 patients with history of coronary artery disease scanned by HDCT (Discovery CT750 HD) and SDCT (Somatom Definition AS). The scan modes were both axial prospective ECG-triggered. The vessel diameters and vessel attenuation values of totally 280 measurements from 140 coronary arteries were analyzed by two experienced radiologists. All data was analyzed by intraclass correlation test. Image quality graded by motion and stair step artifacts (grade 1, poor, to grade 4, excellent), accuracy of vessel inner and outer diameters were compared between the two CT units using the independent samples t-test and Mann-Whitney U test. The intraclass correlation coefficient (ICC) of measured vessel attenuation values in SDCT between the two radiologists was exceedingly good. The ICC was higher in HDCT. The radiation dose of HDCT was higher than that of SDCT. The mean tube current was 180 (mA) in HDCT and 147(mA) in SDCT with the same tube voltage (kVp). There was no significant difference between image quality. HDCT has a higher radiation dose but has much more atenuation and the spatial resolution which improve measurement accuracy for imaging coronary arteries.

  3. Comparison of image quality and radiation dose between split-filter dual-energy images and single-energy images in single-source abdominal CT.

    PubMed

    Euler, André; Obmann, Markus M; Szucs-Farkas, Zsolt; Mileto, Achille; Zaehringer, Caroline; Falkowski, Anna L; Winkel, David J; Marin, Daniele; Stieltjes, Bram; Krauss, Bernhard; Schindera, Sebastian T

    2018-02-19

    To compare image quality and radiation dose of abdominal split-filter dual-energy CT (SF-DECT) combined with monoenergetic imaging to single-energy CT (SECT) with automatic tube voltage selection (ATVS). Two-hundred single-source abdominal CT scans were performed as SECT with ATVS (n = 100) and SF-DECT (n = 100). SF-DECT scans were reconstructed and subdivided into composed images (SF-CI) and monoenergetic images at 55 keV (SF-MI). Objective and subjective image quality were compared among single-energy images (SEI), SF-CI and SF-MI. CNR and FOM were separately calculated for the liver (e.g. CNR liv ) and the portal vein (CNR pv ). Radiation dose was compared using size-specific dose estimate (SSDE). Results of the three groups were compared using non-parametric tests. Image noise of SF-CI was 18% lower compared to SEI and 48% lower compared to SF-MI (p < 0.001). Composed images yielded higher CNR liv over single-energy images (23.4 vs. 20.9; p < 0.001), whereas CNR pv was significantly lower (3.5 vs. 5.2; p < 0.001). Monoenergetic images overcame this inferiority in CNR pv and achieved similar results compared to single-energy images (5.1 vs. 5.2; p > 0.628). Subjective sharpness was equal between single-energy and monoenergetic images and diagnostic confidence was equal between single-energy and composed images. FOM liv was highest for SF-CI. FOM pv was equal for SEI and SF-MI (p = 0.78). SSDE was significant lower for SF-DECT compared to SECT (p < 0.022). The combined use of split-filter dual-energy CT images provides comparable objective and subjective image quality at lower radiation dose compared to single-energy CT with ATVS. • Split-filter dual-energy results in 18% lower noise compared to single-energy with ATVS. • Split-filter dual-energy results in 11% lower SSDE compared to single-energy with ATVS. • Spectral shaping of split-filter dual-energy leads to an increased dose-efficiency.

  4. Quantification of histochemical stains using whole slide imaging: development of a method and demonstration of its usefulness in laboratory quality control.

    PubMed

    Gray, Allan; Wright, Alex; Jackson, Pete; Hale, Mike; Treanor, Darren

    2015-03-01

    Histochemical staining of tissue is a fundamental technique in tissue diagnosis and research, but it suffers from significant variability. Efforts to address this include laboratory quality controls and quality assurance schemes, but these rely on subjective interpretation of stain quality, are laborious and have low reproducibility. We aimed (1) to develop a method for histochemical stain quantification using whole slide imaging and image analysis and (2) to demonstrate its usefulness in measuring staining variation. A method to quantify the individual stain components of histochemical stains on virtual slides was developed. It was evaluated for repeatability and reproducibility, then applied to control sections of an appendix to quantify H&E staining (H/E intensities and H:E ratio) between automated staining machines and to measure differences between six regional diagnostic laboratories. The method was validated with <0.5% variation in H:E ratio measurement when using the same scanner for a batch of slides (ie, it was repeatable) but was not highly reproducible between scanners or over time, where variation of 7% was found. Application of the method showed H:E ratios between three staining machines varied from 0.69 to 0.93, H:E ratio variation over time was observed. Interlaboratory comparison demonstrated differences in H:E ratio between regional laboratories from 0.57 to 0.89. A simple method using whole slide imaging can be used to quantify and compare histochemical staining. This method could be deployed in routine quality assurance and quality control. Work is needed on whole slide imaging devices to improve reproducibility. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. [Ecological environmental quality assessment of Hangzhou urban area based on RS and GIS].

    PubMed

    Xu, Pengwei; Zhao, Duo

    2006-06-01

    In allusion to the shortage of traditional ecological environmental quality assessment, this paper studied the spatial distribution of assessing factors at a mid-small scale, and the conversion of integer character to girding assessing cells. The main assessing factors including natural environmental condition, environmental quality, natural landscape and urbanization pressure, which were classified into four types with about eleven assessing factors, were selected from RS images and GIS-spatial analyzing environmental quality vector graph. Based on GIS, a comprehensive assessment model for the ecological environmental quality in Hangzhou urban area was established. In comparison with observed urban heat island effects, the assessment results were in good agreement with the ecological environmental quality in the urban area of Hangzhou.

  6. Comparison of Fundus Autofluorescence Between Fundus Camera and Confocal Scanning Laser Ophthalmoscope–based Systems

    PubMed Central

    Park, Sung Pyo; Siringo, Frank S.; Pensec, Noelle; Hong, In Hwan; Sparrow, Janet; Barile, Gaetano; Tsang, Stephen H.; Chang, Stanley

    2015-01-01

    BACKGROUND AND OBJECTIVE To compare fundus autofluorescence (FAF) imaging via fundus camera (FC) and confocal scanning laser ophthalmoscope (cSLO). PATIENTS AND METHODS FAF images were obtained with a digital FC (530 to 580 nm excitation) and a cSLO (488 nm excitation). Two authors evaluated correlation of autofluorescence pattern, atrophic lesion size, and image quality between the two devices. RESULTS In 120 eyes, the autofluorescence pattern correlated in 86% of lesions. By lesion subtype, correlation rates were 100% in hemorrhage, 97% in geographic atrophy, 82% in flecks, 75% in drusen, 70% in exudates, 67% in pigment epithelial detachment, 50% in fibrous scars, and 33% in macular hole. The mean lesion size in geographic atrophy was 4.57 ± 2.3 mm2 via cSLO and 3.81 ± 1.94 mm2 via FC (P < .0001). Image quality favored cSLO in 71 eyes. CONCLUSION FAF images were highly correlated between the FC and cSLO. Differences between the two devices revealed contrasts. Multiple image capture and confocal optics yielded higher image contrast with the cSLO, although acquisition and exposure time was longer. PMID:24221461

  7. Non-destructive evaluation of teeth restored with different composite resins using synchrotron based micro-imaging.

    PubMed

    Fatima, A; Kulkarni, V K; Banda, N R; Agrawal, A K; Singh, B; Sarkar, P S; Tripathi, S; Shripathi, T; Kashyap, Y; Sinha, A

    2016-01-01

    Application of high resolution synchrotron micro-imaging in microdefects studies of restored dental samples. The purpose of this study was to identify and compare the defects in restorations done by two different resin systems on teeth samples using synchrotron based micro-imaging techniques namely Phase Contrast Imaging (PCI) and micro-computed tomography (MCT). With this aim acquired image quality was also compared with routinely used RVG (Radiovisiograph). Crowns of human teeth samples were fractured mechanically involving only enamel and dentin, without exposure of pulp chamber and were divided into two groups depending on the restorative composite materials used. Group A samples were restored using a submicron Hybrid composite material and Group B samples were restored using a Nano-Hybrid restorative composite material. Synchrotron based PCI and MCT was performed with the aim of visualization of tooth structure, composite resin and their interface. The quantitative and qualitative comparison of phase contrast and absorption contrast images along with MCT on the restored teeth samples shows comparatively large number of voids in Group A samples. Quality assessment of dental restorations using synchrotron based micro-imaging suggests Nano-Hybrid resin restorations (Group B) are better than Group A.

  8. Comparison of different phantoms used in digital diagnostic imaging

    NASA Astrophysics Data System (ADS)

    Bor, Dogan; Unal, Elif; Uslu, Anil

    2015-09-01

    The organs of extremity, chest, skull and lumbar were physically simulated using uniform PMMA slabs with different thicknesses alone and using these slabs together with aluminum plates and air gaps (ANSI Phantoms). The variation of entrance surface air kerma and scatter fraction with X-ray beam qualities was investigated for these phantoms and the results were compared with those measured from anthropomorphic phantoms. A flat panel digital radiographic system was used for all the experiments. Considerable variations of entrance surface air kermas were found for the same organs of different designs, and highest doses were measured for the PMMA slabs. A low contrast test tool and a contrast detail test object (CDRAD) were used together with each organ simulation of PMMA slabs and ANSI phantoms in order to test the clinical image qualities. Digital images of these phantom combinations and anthropomorphic phantoms were acquired in raw and clinically processed formats. Variation of image quality with kVp and post processing was evaluated using the numerical metrics of these test tools and measured contrast values from the anthropomorphic phantoms. Our results indicated that design of some phantoms may not be efficient enough to reveal the expected performance of the post processing algorithms.

  9. Edge guided image reconstruction in linear scan CT by weighted alternating direction TV minimization.

    PubMed

    Cai, Ailong; Wang, Linyuan; Zhang, Hanming; Yan, Bin; Li, Lei; Xi, Xiaoqi; Li, Jianxin

    2014-01-01

    Linear scan computed tomography (CT) is a promising imaging configuration with high scanning efficiency while the data set is under-sampled and angularly limited for which high quality image reconstruction is challenging. In this work, an edge guided total variation minimization reconstruction (EGTVM) algorithm is developed in dealing with this problem. The proposed method is modeled on the combination of total variation (TV) regularization and iterative edge detection strategy. In the proposed method, the edge weights of intermediate reconstructions are incorporated into the TV objective function. The optimization is efficiently solved by applying alternating direction method of multipliers. A prudential and conservative edge detection strategy proposed in this paper can obtain the true edges while restricting the errors within an acceptable degree. Based on the comparison on both simulation studies and real CT data set reconstructions, EGTVM provides comparable or even better quality compared to the non-edge guided reconstruction and adaptive steepest descent-projection onto convex sets method. With the utilization of weighted alternating direction TV minimization and edge detection, EGTVM achieves fast and robust convergence and reconstructs high quality image when applied in linear scan CT with under-sampled data set.

  10. Imaging of the interaction of low frequency electric fields with biological tissues by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Peña, Adrian F.; Devine, Jack; Doronin, Alexander; Meglinski, Igor

    2014-03-01

    We report the use of conventional Optical Coherence Tomography (OCT) for visualization of propagation of low frequency electric field in soft biological tissues ex vivo. To increase the overall quality of the experimental images an adaptive Wiener filtering technique has been employed. Fourier domain correlation has been subsequently applied to enhance spatial resolution of images of biological tissues influenced by low frequency electric field. Image processing has been performed on Graphics Processing Units (GPUs) utilizing Compute Unified Device Architecture (CUDA) framework in the frequencydomain. The results show that variation in voltage and frequency of the applied electric field relates exponentially to the magnitude of its influence on biological tissue. The magnitude of influence is about twice more for fresh tissue samples in comparison to non-fresh ones. The obtained results suggest that OCT can be used for observation and quantitative evaluation of the electro-kinetic changes in biological tissues under different physiological conditions, functional electrical stimulation, and potentially can be used non-invasively for food quality control.

  11. Adaptive correction procedure for TVL1 image deblurring under impulse noise

    NASA Astrophysics Data System (ADS)

    Bai, Minru; Zhang, Xiongjun; Shao, Qianqian

    2016-08-01

    For the problem of image restoration of observed images corrupted by blur and impulse noise, the widely used TVL1 model may deviate from both the data-acquisition model and the prior model, especially for high noise levels. In order to seek a solution of high recovery quality beyond the reach of the TVL1 model, we propose an adaptive correction procedure for TVL1 image deblurring under impulse noise. Then, a proximal alternating direction method of multipliers (ADMM) is presented to solve the corrected TVL1 model and its convergence is also established under very mild conditions. It is verified by numerical experiments that our proposed approach outperforms the TVL1 model in terms of signal-to-noise ratio (SNR) values and visual quality, especially for high noise levels: it can handle salt-and-pepper noise as high as 90% and random-valued noise as high as 70%. In addition, a comparison with a state-of-the-art method, the two-phase method, demonstrates the superiority of the proposed approach.

  12. A comparison of visual statistics for the image enhancement of FORESITE aerial images with those of major image classes

    NASA Astrophysics Data System (ADS)

    Jobson, Daniel J.; Rahman, Zia-ur; Woodell, Glenn A.; Hines, Glenn D.

    2006-05-01

    Aerial images from the Follow-On Radar, Enhanced and Synthetic Vision Systems Integration Technology Evaluation (FORESITE) flight tests with the NASA Langley Research Center's research Boeing 757 were acquired during severe haze and haze/mixed clouds visibility conditions. These images were enhanced using the Visual Servo (VS) process that makes use of the Multiscale Retinex. The images were then quantified with visual quality metrics used internally within the VS. One of these metrics, the Visual Contrast Measure, has been computed for hundreds of FORESITE images, and for major classes of imaging-terrestrial (consumer), orbital Earth observations, orbital Mars surface imaging, NOAA aerial photographs, and underwater imaging. The metric quantifies both the degree of visual impairment of the original, un-enhanced images as well as the degree of visibility improvement achieved by the enhancement process. The large aggregate data exhibits trends relating to degree of atmospheric visibility attenuation, and its impact on the limits of enhancement performance for the various image classes. Overall results support the idea that in most cases that do not involve extreme reduction in visibility, large gains in visual contrast are routinely achieved by VS processing. Additionally, for very poor visibility imaging, lesser, but still substantial, gains in visual contrast are also routinely achieved. Further, the data suggest that these visual quality metrics can be used as external standalone metrics for establishing performance parameters.

  13. A Comparison of Visual Statistics for the Image Enhancement of FORESITE Aerial Images with Those of Major Image Classes

    NASA Technical Reports Server (NTRS)

    Johnson, Daniel J.; Rahman, Zia-ur; Woodell, Glenn A.; Hines, Glenn D.

    2006-01-01

    Aerial images from the Follow-On Radar, Enhanced and Synthetic Vision Systems Integration Technology Evaluation (FORESITE) flight tests with the NASA Langley Research Center's research Boeing 757 were acquired during severe haze and haze/mixed clouds visibility conditions. These images were enhanced using the Visual Servo (VS) process that makes use of the Multiscale Retinex. The images were then quantified with visual quality metrics used internally with the VS. One of these metrics, the Visual Contrast Measure, has been computed for hundreds of FORESITE images, and for major classes of imaging--terrestrial (consumer), orbital Earth observations, orbital Mars surface imaging, NOAA aerial photographs, and underwater imaging. The metric quantifies both the degree of visual impairment of the original, un-enhanced images as well as the degree of visibility improvement achieved by the enhancement process. The large aggregate data exhibits trends relating to degree of atmospheric visibility attenuation, and its impact on limits of enhancement performance for the various image classes. Overall results support the idea that in most cases that do not involve extreme reduction in visibility, large gains in visual contrast are routinely achieved by VS processing. Additionally, for very poor visibility imaging, lesser, but still substantial, gains in visual contrast are also routinely achieved. Further, the data suggest that these visual quality metrics can be used as external standalone metrics for establishing performance parameters.

  14. VizieR Online Data Catalog: NGC 4038/4039 broad and /narrow band photometry (Mengel+, 2005)

    NASA Astrophysics Data System (ADS)

    Mengel, S.; Lehnert, M. D.; Thatte, N.; Genzel, R.

    2005-06-01

    The Ks-band image which was used for the 3{sigma}-detection was obtained with ISAAC on VLT-ANTU as part of programme 65.N-0577, and has a FWHM of ~0.38". 1072 point-like objects were detected. For the multi-band photometry, we also used the HST archival images obtained by Whitmore et al. (see Whitmore et al., 1999AJ....118.1551W), which we rebinned to the same pixel size as the ISAAC image (0.1484"/pix). The CO narrow band image was also obtained with ISAAC, while the Br{gamma} image was obtained with SOFI at the NTT (programme number 63.N-0528). The Br{gamma} image had a lower image quality than the other two images (FWHM=0.7"). The photometry data were used to simultaneously fit age and extinction for each individual cluster in comparison to an evolutionary synthesis model. Where possible, the visual extinction was determined from an average of the extinction from the broadband fit and from the Hydrogen recombination line ratios (in comparison to the expected Case B line ratio). The age estimate from the fit was, where possible, averaged with the aged determined from equivalent widths and CO index. (1 data file).

  15. Comparison of the performance of intraoral X-ray sensors using objective image quality assessment.

    PubMed

    Hellén-Halme, Kristina; Johansson, Curt; Nilsson, Mats

    2016-05-01

    The main aim of this study was to evaluate the performance of 10 individual sensors of the same make, using objective measures of key image quality parameters. A further aim was to compare 8 brands of sensors. Ten new sensors of 8 different models from 6 manufacturers (i.e., 80 sensors) were included in the study. All sensors were exposed in a standardized way using an X-ray tube voltage of 60 kVp and different exposure times. Sensor response, noise, low-contrast resolution, spatial resolution and uniformity were measured. Individual differences between sensors of the same brand were surprisingly large in some cases. There were clear differences in the characteristics of the different brands of sensors. The largest variations were found for individual sensor response for some of the brands studied. Also, noise level and low contrast resolution showed large variations between brands. Sensors, even of the same brand, vary significantly in their quality. It is thus valuable to establish action levels for the acceptance of newly delivered sensors and to use objective image quality control for commissioning purposes and periodic checks to ensure high performance of individual digital sensors. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. k-t SENSE-accelerated Myocardial Perfusion MR Imaging at 3.0 Tesla - comparison with 1.5 Tesla

    PubMed Central

    Plein, Sven; Schwitter, Juerg; Suerder, Daniel; Greenwood, John P.; Boesiger, Peter; Kozerke, Sebastian

    2008-01-01

    Purpose To determine the feasibility and diagnostic accuracy of high spatial resolution myocardial perfusion MR at 3.0 Tesla using k-space and time domain undersampling with sensitivity encoding (k-t SENSE). Materials and Methods The study was reviewed and approved by the local ethic review board. k-t SENSE perfusion MR was performed at 1.5 Tesla and 3.0 Tesla (saturation recovery gradient echo pulse sequence, repetition time/echo time 3.0ms/1.0ms, flip angle 15°, 5x k-t SENSE acceleration, spatial resolution 1.3×1.3×10mm3). Fourteen volunteers were studied at rest and 37 patients during adenosine stress. In volunteers, comparison was also made with standard-resolution (2.5×2.5×10mm3) 2x SENSE perfusion MR at 3.0 Tesla. Image quality, artifact scores, signal-to-noise ratios (SNR) and contrast-enhancement ratios (CER) were derived. In patients, diagnostic accuracy of visual analysis to detect >50% diameter stenosis on quantitative coronary angiography was determined by receiver-operator-characteristics (ROC). Results In volunteers, image quality and artifact scores were similar for 3.0 Tesla and 1.5 Tesla, while SNR was higher (11.6 vs. 5.6) and CER lower (1.1 vs. 1.5, p=0.012) at 3.0 Tesla. Compared with standard-resolution perfusion MR, image quality was higher for k-t SENSE (3.6 vs. 3.1, p=0.04), endocardial dark rim artifacts were reduced (artifact thickness 1.6mm vs. 2.4mm, p<0.001) and CER similar. In patients, area under the ROC curve for detection of coronary stenosis was 0.89 and 0.80, p=0.21 for 3.0 Tesla and 1.5 Tesla, respectively. Conclusions k-t SENSE accelerated high-resolution perfusion MR at 3.0 Tesla is feasible with similar artifacts and diagnostic accuracy as at 1.5 Tesla. Compared with standard-resolution perfusion MR, image quality is improved and artifacts are reduced. PMID:18936311

  17. Comparison of lossless compression techniques for prepress color images

    NASA Astrophysics Data System (ADS)

    Van Assche, Steven; Denecker, Koen N.; Philips, Wilfried R.; Lemahieu, Ignace L.

    1998-12-01

    In the pre-press industry color images have both a high spatial and a high color resolution. Such images require a considerable amount of storage space and impose long transmission times. Data compression is desired to reduce these storage and transmission problems. Because of the high quality requirements in the pre-press industry only lossless compression is acceptable. Most existing lossless compression schemes operate on gray-scale images. In this case the color components of color images must be compressed independently. However, higher compression ratios can be achieved by exploiting inter-color redundancies. In this paper we present a comparison of three state-of-the-art lossless compression techniques which exploit such color redundancies: IEP (Inter- color Error Prediction) and a KLT-based technique, which are both linear color decorrelation techniques, and Interframe CALIC, which uses a non-linear approach to color decorrelation. It is shown that these techniques are able to exploit color redundancies and that color decorrelation can be done effectively and efficiently. The linear color decorrelators provide a considerable coding gain (about 2 bpp) on some typical prepress images. The non-linear interframe CALIC predictor does not yield better results, but the full interframe CALIC technique does.

  18. Comparison of amplitude-decorrelation, speckle-variance and phase-variance OCT angiography methods for imaging the human retina and choroid

    PubMed Central

    Gorczynska, Iwona; Migacz, Justin V.; Zawadzki, Robert J.; Capps, Arlie G.; Werner, John S.

    2016-01-01

    We compared the performance of three OCT angiography (OCTA) methods: speckle variance, amplitude decorrelation and phase variance for imaging of the human retina and choroid. Two averaging methods, split spectrum and volume averaging, were compared to assess the quality of the OCTA vascular images. All data were acquired using a swept-source OCT system at 1040 nm central wavelength, operating at 100,000 A-scans/s. We performed a quantitative comparison using a contrast-to-noise (CNR) metric to assess the capability of the three methods to visualize the choriocapillaris layer. For evaluation of the static tissue noise suppression in OCTA images we proposed to calculate CNR between the photoreceptor/RPE complex and the choriocapillaris layer. Finally, we demonstrated that implementation of intensity-based OCT imaging and OCT angiography methods allows for visualization of retinal and choroidal vascular layers known from anatomic studies in retinal preparations. OCT projection imaging of data flattened to selected retinal layers was implemented to visualize retinal and choroidal vasculature. User guided vessel tracing was applied to segment the retinal vasculature. The results were visualized in a form of a skeletonized 3D model. PMID:27231598

  19. Contrast-enhanced time-resolved 4D MRA of congenital heart and vessel anomalies: image quality and diagnostic value compared with 3D MRA.

    PubMed

    Vogt, Florian M; Theysohn, Jens M; Michna, Dariusz; Hunold, Peter; Neudorf, Ulrich; Kinner, Sonja; Barkhausen, Jörg; Quick, Harald H

    2013-09-01

    To evaluate time-resolved interleaved stochastic trajectories (TWIST) contrast-enhanced 4D magnetic resonance angiography (MRA) and compare it with 3D FLASH MRA in patients with congenital heart and vessel anomalies. Twenty-six patients with congenital heart and vessel anomalies underwent contrast-enhanced MRA with both 3D FLASH and 4D TWIST MRA. Images were subjectively evaluated regarding total image quality, artefacts, diagnostic value and added diagnostic value of 4D dynamic imaging. Quantitative comparison included signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and vessel sharpness measurements. Three-dimensional FLASH MRA was judged to be significantly better in terms of image quality (4.0 ± 0.6 vs 3.4 ± 0.6, P < 0.05) and artefacts (3.8 ± 0.4 vs 3.3 ± 0.5, P < 0.05); no difference in diagnostic value was found (4.2 ± 0.4 vs 4.0 ± 0.4); important additional functional information was found in 21/26 patients. SNR and CNR were higher in the pulmonary trunk in 4D TWIST, but slightly higher in the systemic arteries in 3D FLASH. No difference in vessel sharpness delineation was found. Although image quality was inferior compared with 3D FLASH MRA, 4D TWIST MRA yields robust images and added diagnostic value through dynamic acquisition was found. Thus, 4D TWIST MRA is an attractive alternative to 3D FLASH MRA. • New magnetic resonance angiography (MRA) techniques are increasingly introduced for congenital cardiovascular problems. • Time-resolved angiography with interleaved stochastic trajectories (TWIST) is an example. • Four-dimensional TWIST MRA provided inferior image quality compared to 3D FLASH MRA but without significant difference in vessel sharpness. • Four-dimensional TWIST MRA gave added diagnostic value.

  20. Multi-vendor, multicentre comparison of contrast-enhanced SSFP and T2-STIR CMR for determining myocardium at risk in ST-elevation myocardial infarction

    PubMed Central

    Nordlund, David; Klug, Gert; Heiberg, Einar; Koul, Sasha; Larsen, Terje H.; Hoffmann, Pavel; Metzler, Bernhard; Erlinge, David; Atar, Dan; Aletras, Anthony H.; Carlsson, Marcus; Engblom, Henrik; Arheden, Håkan

    2016-01-01

    Aims Myocardial salvage, determined by cardiac magnetic resonance imaging (CMR), is used as end point in cardioprotection trials. To calculate myocardial salvage, infarct size is related to myocardium at risk (MaR), which can be assessed by T2-short tau inversion recovery (T2-STIR) and contrast-enhanced steady-state free precession magnetic resonance imaging (CE-SSFP). We aimed to determine how T2-STIR and CE-SSFP perform in determining MaR when applied in multicentre, multi-vendor settings. Methods and results A total of 215 patients from 17 centres were included after percutaneous coronary intervention (PCI) for ST-elevation myocardial infarction. CMR was performed within 1–8 days. These patients participated in the MITOCARE or CHILL-MI cardioprotection trials. Additionally, 8 patients from a previous study, imaged 1 day post-CMR, were included. Late gadolinium enhancement, T2-STIR, and CE-SSFP images were acquired on 1.5T MR scanners (Philips, Siemens, or GE). In 65% of the patients, T2-STIR was of diagnostic quality compared with 97% for CE-SSFP. In diagnostic quality images, there was no difference in MaR by T2-STIR and CE-SSFP (bias: 0.02 ± 6%, P = 0.96, r2 = 0.71, P < 0.001), or between treatment and control arms. No change in size or quality of MaR nor ability to identify culprit artery was seen over the first week after the acute event (P = 0.44). Conclusion In diagnostic quality images, T2-STIR and CE-SSFP provide similar estimates of MaR, were constant over the first week, and were not affected by treatment. CE-SSFP had a higher degree of diagnostic quality images compared with T2 imaging for sequences from two out of three vendors. Therefore, CE-SSFP is currently more suitable for implementation in multicentre, multi-vendor clinical trials. PMID:27002140

  1. Computed Tomography of the Head and Neck Region for Tumor Staging-Comparison of Dual-Source, Dual-Energy and Low-Kilovolt, Single-Energy Acquisitions.

    PubMed

    May, Matthias Stefan; Bruegel, Joscha; Brand, Michael; Wiesmueller, Marco; Krauss, Bernhard; Allmendinger, Thomas; Uder, Michael; Wuest, Wolfgang

    2017-09-01

    The aim of this study was to intra-individually compare the image quality obtained by dual-source, dual-energy (DSDE) computed tomography (CT) examinations and different virtual monoenergetic reconstructions to a low single-energy (SE) scan. Third-generation DSDE-CT was performed in 49 patients with histologically proven malignant disease of the head and neck region. Weighted average images (WAIs) and virtual monoenergetic images (VMIs) for low (40 and 60 keV) and high (120 and 190 keV) energies were reconstructed. A second scan aligned to the jaw, covering the oral cavity, was performed for every patient to reduce artifacts caused by dental hardware using a SE-CT protocol with 70-kV tube voltages and matching radiation dose settings. Objective image quality was evaluated by calculating contrast-to-noise ratios. Subjective image quality was evaluated by experienced radiologists. Highest contrast-to-noise ratios for vessel and tumor attenuation were obtained in 40-keV VMI (all P < 0.05). Comparable objective results were found in 60-keV VMI, WAI, and the 70-kV SE examinations. Overall subjective image quality was also highest for 40-keV, but differences to 60-keV VMI, WAI, and 70-kV SE were nonsignificant (all P > 0.05). High kiloelectron volt VMIs reduce metal artifacts with only limited diagnostic impact because of insufficiency in case of severe dental hardware. CTDIvol did not differ significantly between both examination protocols (DSDE: 18.6 mGy; 70-kV SE: 19.4 mGy; P = 0.10). High overall image quality for tumor delineation in head and neck imaging were obtained with 40-keV VMI. However, 70-kV SE examinations are an alternative and modified projections aligned to the jaw are recommended in case of severe artifacts caused by dental hardware.

  2. Effect of Matrix Size on the Image Quality of Ultra-high-resolution CT of the Lung: Comparison of 512 × 512, 1024 × 1024, and 2048 × 2048.

    PubMed

    Hata, Akinori; Yanagawa, Masahiro; Honda, Osamu; Kikuchi, Noriko; Miyata, Tomo; Tsukagoshi, Shinsuke; Uranishi, Ayumi; Tomiyama, Noriyuki

    2018-01-16

    This study aimed to assess the effect of matrix size on the spatial resolution and image quality of ultra-high-resolution computed tomography (U-HRCT). Slit phantoms and 11 cadaveric lungs were scanned on U-HRCT. Slit phantom scans were reconstructed using a 20-mm field of view (FOV) with 1024 matrix size and a 320-mm FOV with 512, 1024, and 2048 matrix sizes. Cadaveric lung scans were reconstructed using 512, 1024, and 2048 matrix sizes. Three observers subjectively scored the images on a three-point scale (1 = worst, 3 = best), in terms of overall image quality, noise, streak artifact, vessel, bronchi, and image findings. The median score of the three observers was evaluated by Wilcoxon signed-rank test with Bonferroni correction. Noise was measured quantitatively and evaluated with the Tukey test. A P value of <.05 was considered significant. The maximum spatial resolution was 0.14 mm; among the 320-mm FOV images, the 2048 matrix had the highest resolution and was significantly better than the 1024 matrix in terms of overall quality, solid nodule, ground-glass opacity, emphysema, intralobular reticulation, honeycombing, and clarity of vessels (P < .05). Both the 2048 and 1024 matrices performed significantly better than the 512 matrix (P < .001), except for noise and streak artifact. The visual and quantitative noise decreased significantly in the order of 512, 1024, and 2048 (P < .001). In U-HRCT scans, a large matrix size maintained the spatial resolution and improved the image quality and assessment of lung diseases, despite an increase in image noise, when compared to a 512 matrix size. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  3. A comparison of select image-compression algorithms for an electronic still camera

    NASA Technical Reports Server (NTRS)

    Nerheim, Rosalee

    1989-01-01

    This effort is a study of image-compression algorithms for an electronic still camera. An electronic still camera can record and transmit high-quality images without the use of film, because images are stored digitally in computer memory. However, high-resolution images contain an enormous amount of information, and will strain the camera's data-storage system. Image compression will allow more images to be stored in the camera's memory. For the electronic still camera, a compression algorithm that produces a reconstructed image of high fidelity is most important. Efficiency of the algorithm is the second priority. High fidelity and efficiency are more important than a high compression ratio. Several algorithms were chosen for this study and judged on fidelity, efficiency and compression ratio. The transform method appears to be the best choice. At present, the method is compressing images to a ratio of 5.3:1 and producing high-fidelity reconstructed images.

  4. Implementation of a channelized Hotelling observer model to assess image quality of x-ray angiography systems

    PubMed Central

    Favazza, Christopher P.; Fetterly, Kenneth A.; Hangiandreou, Nicholas J.; Leng, Shuai; Schueler, Beth A.

    2015-01-01

    Abstract. Evaluation of flat-panel angiography equipment through conventional image quality metrics is limited by the scope of standard spatial-domain image quality metric(s), such as contrast-to-noise ratio and spatial resolution, or by restricted access to appropriate data to calculate Fourier domain measurements, such as modulation transfer function, noise power spectrum, and detective quantum efficiency. Observer models have been shown capable of overcoming these limitations and are able to comprehensively evaluate medical-imaging systems. We present a spatial domain-based channelized Hotelling observer model to calculate the detectability index (DI) of our different sized disks and compare the performance of different imaging conditions and angiography systems. When appropriate, changes in DIs were compared to expectations based on the classical Rose model of signal detection to assess linearity of the model with quantum signal-to-noise ratio (SNR) theory. For these experiments, the estimated uncertainty of the DIs was less than 3%, allowing for precise comparison of imaging systems or conditions. For most experimental variables, DI changes were linear with expectations based on quantum SNR theory. DIs calculated for the smallest objects demonstrated nonlinearity with quantum SNR theory due to system blur. Two angiography systems with different detector element sizes were shown to perform similarly across the majority of the detection tasks. PMID:26158086

  5. IDEAL 3D spoiled gradient echo of the articular cartilage of the knee on 3.0 T MRI: a comparison with conventional 3.0 T fast spin-echo T2 fat saturation image.

    PubMed

    Han, Chul Hee; Park, Hee Jin; Lee, So Yeon; Chung, Eun Chul; Choi, Seon Hyeong; Yun, Ji Sup; Rho, Myung Ho

    2015-12-01

    Many two-dimensional (2D) morphologic cartilage imaging sequences have disadvantages such as long acquisition time, inadequate spatial resolution, suboptimal tissue contrast, and image degradation secondary to artifacts. IDEAL imaging can overcome these disadvantages. To compare sound-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and quality of two different methods of imaging that include IDEAL 3D SPGR and 3.0-T FSE T2 fat saturation (FS) imaging and to evaluate the utility of IDEAL 3D SPGR for knee joint imaging. SNR and CNR of the patellar and femoral cartilages were measured and calculated. Two radiologists performed subjective scoring of all images for three measures: general image quality, FS, and cartilage evaluation. SNR and CNR values were compared by paired Student's t-tests. Mean SNRs of patellar and femoral cartilages were 90% and 66% higher, respectively, for IDEAL 3D SPGR. CNRs of patellar cartilages and joint fluids were 2.4 times higher for FSE T2 FS, and CNR between the femoral cartilage and joint fluid was 2.2 times higher for FSE T2 FS. General image quality and FS were superior using FSE T2 FS compared to those of IDEAL 3D SPGR imaging according to both readers, while cartilage evaluation was superior using IDEAL 3D SPGR. Additionally, cartilage injuries were more prominent in IDEAL 3D SPGR than in FSE T2FS according to both readers. IDEAL 3D SPGR images show excellent visualization of patellar and femoral cartilages in 3.0 T and can compensate for the weaknesses of FSE T2 FS in the evaluation of cartilage injuries. © The Foundation Acta Radiologica 2014.

  6. Iterative reconstruction in single source dual-energy CT pulmonary angiography: Is it sufficient to achieve a radiation dose as low as state-of-the-art single-energy CTPA?

    PubMed

    Ohana, M; Labani, A; Jeung, M Y; El Ghannudi, S; Gaertner, S; Roy, C

    2015-11-01

    Dual-energy (DE) brings numerous significant improvements in pulmonary CT angiography (CTPA), but is associated with a 15-50% increase in radiation dose that prevents its widespread use. We hypothesize that thanks to iterative reconstruction (IR), single source DE-CTPA acquired at the same radiation dose that a single-energy examination will maintain an equivalent quantitative and qualitative image quality, allowing a more extensive use of the DE technique in the clinical routine. Fifty patients (58% men, mean age 64.8yo ± 16.2, mean BMI 25.6 ± 4.5) were prospectively included and underwent single source DE-CTPA with acquisition parameters (275 mA fixed tube current, 50% IR) tweaked to target a radiation dose similar to a 100 kV single-energy CTPA (SE-CTPA), i.e., a DLP of 260 mGy cm. Thirty patients (47% men, 64.4yo ± 18.6, BMI 26.2 ± 4.6) from a previous prospective study on DE-CTPA (375 mA fixed tube current, reconstruction with filtered-back projection) were used as the reference group. Thirty-five consecutive patients (57% men, 65.8yo ± 15.5, BMI 25.7 ± 4.4) who underwent SE-CTPA on the same scanner (automated tube current modulation, 50% IR) served as a comparison. Subjective image quality was scored by two radiologists using a 5-level scale and compared with a Kruskal-Wallis nonparametric test. Density measurements on the 65 keV monochromatic reconstructions were used to calculate signal-to-noise (SNR) and contrast-to-noise (CNR) ratios that were compared using a Student's t test. Correlations between image quality, SNR, CNR and BMI were sought using a Pearson's test. p<0.05 was considered significant. All examinations were of diagnostic quality (score ≥ 3). In comparison with the reference DE-CTPA and the SE-CTPA protocols, the DE-IR group exhibited a non-inferior image quality (p=0.95 and p=0.21, respectively) and a significantly lower mean image noise (p<0.01 and p=0.01) thus slightly improving the SNR (p=0.09 and p=0.47) and the CNR (p=0.12 and p=0.51). There was a strong negative relationship between BMI and SNR/CNR (ρ=-0.59 and -0.55 respectively), but only a moderate negative relationship between BMI and image quality (ρ=-0.27). With iterative reconstruction, objective and subjective image quality of single source DE-CTPA are preserved even though the radiation dose is lowered to that of a single-energy examination, overcoming a major limitation of the DE technique and allowing a widespread use in the clinical routine. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Towards a new tool for the evaluation of the quality of ultrasound compressed images.

    PubMed

    Delgorge, Cécile; Rosenberger, Christophe; Poisson, Gérard; Vieyres, Pierre

    2006-11-01

    This paper presents a new tool for the evaluation of ultrasound image compression. The goal is to measure the image quality as easily as with a statistical criterion, and with the same reliability as the one provided by the medical assessment. An initial experiment is proposed to medical experts and represents our reference value for the comparison of evaluation criteria. Twenty-one statistical criteria are selected from the literature. A cumulative absolute similarity measure is defined as a distance between the criterion to evaluate and the reference value. A first fusion method based on a linear combination of criteria is proposed to improve the results obtained by each of them separately. The second proposed approach combines different statistical criteria and uses the medical assessment in a training phase with a support vector machine. Some experimental results are given and show the benefit of fusion.

  8. Redundancy Analysis of Capacitance Data of a Coplanar Electrode Array for Fast and Stable Imaging Processing

    PubMed Central

    Wen, Yintang; Zhang, Zhenda; Zhang, Yuyan; Sun, Dongtao

    2017-01-01

    A coplanar electrode array sensor is established for the imaging of composite-material adhesive-layer defect detection. The sensor is based on the capacitive edge effect, which leads to capacitance data being considerably weak and susceptible to environmental noise. The inverse problem of coplanar array electrical capacitance tomography (C-ECT) is ill-conditioning, in which a small error of capacitance data can seriously affect the quality of reconstructed images. In order to achieve a stable image reconstruction process, a redundancy analysis method for capacitance data is proposed. The proposed method is based on contribution rate and anti-interference capability. According to the redundancy analysis, the capacitance data are divided into valid and invalid data. When the image is reconstructed by valid data, the sensitivity matrix needs to be changed accordingly. In order to evaluate the effectiveness of the sensitivity map, singular value decomposition (SVD) is used. Finally, the two-dimensional (2D) and three-dimensional (3D) images are reconstructed by the Tikhonov regularization method. Through comparison of the reconstructed images of raw capacitance data, the stability of the image reconstruction process can be improved, and the quality of reconstructed images is not degraded. As a result, much invalid data are not collected, and the data acquisition time can also be reduced. PMID:29295537

  9. Open source database of images DEIMOS: extension for large-scale subjective image quality assessment

    NASA Astrophysics Data System (ADS)

    Vítek, Stanislav

    2014-09-01

    DEIMOS (Database of Images: Open Source) is an open-source database of images and video sequences for testing, verification and comparison of various image and/or video processing techniques such as compression, reconstruction and enhancement. This paper deals with extension of the database allowing performing large-scale web-based subjective image quality assessment. Extension implements both administrative and client interface. The proposed system is aimed mainly at mobile communication devices, taking into account advantages of HTML5 technology; it means that participants don't need to install any application and assessment could be performed using web browser. The assessment campaign administrator can select images from the large database and then apply rules defined by various test procedure recommendations. The standard test procedures may be fully customized and saved as a template. Alternatively the administrator can define a custom test, using images from the pool and other components, such as evaluating forms and ongoing questionnaires. Image sequence is delivered to the online client, e.g. smartphone or tablet, as a fully automated assessment sequence or viewer can decide on timing of the assessment if required. Environmental data and viewing conditions (e.g. illumination, vibrations, GPS coordinates, etc.), may be collected and subsequently analyzed.

  10. Comparison of Flexible Ureterorenoscope Quality of Vision: An In Vitro Study.

    PubMed

    Talso, Michele; Proietti, Silvia; Emiliani, Esteban; Gallioli, Andrea; Dragos, Laurian; Orosa, Andrea; Servian, Pol; Barreiro, Aaron; Giusti, Guido; Montanari, Emanuele; Somani, Bhaskar; Traxer, Olivier

    2018-06-01

    Flexible ureterorenoscopy (fURS) is one of the best solutions for treatment of renal calculi <2 cm and for upper urinary tract urothelial carcinoma conservative treatment. An adequate quality of vision is mandatory to help surgeon get better outcomes. No studies have been done, to our knowledge, about what fURS in the market has the best quality of vision. Seven different fURS were used to compare the image quality (Lithovue, Olympus V, Olympus V2, Storz Flex XC-in White Light and in Clara+Chroma mode-Wolf Cobra Vision, Olympus P6, and Storx Flex X2). Two standardized grids to evaluate contrast and image definition and three stones of different composition were filmed in four standardized different scenarios. These videos were shown to 103 subjects (51 urologists and 52 nonurologists) who had to evaluate them with a rating scale from 1 (very bad) to 5 (very good). No difference in terms of scores was observed for sex of the participants. Digital (D) ureterorenoscopes were rated better than fiber optics (FOs) ureterorenoscopes. Overall, Flex XC White Light and XC Clara+Chroma image quality resulted steadily better than other fURS (p < 0.0001). Olympus V generally provided a vision better than Lithovue. Cobra Vision and Olympus V2 had superimposable values that were significantly lower than Lithovue's ones. Olympus P6 and Storz X2 offered a low quality of vision compared to the others. In the medium simulating bleeding, Olympus V and V2 significantly improved their scores of 12% and 8.1%, contrary to rest of the ureterorenoscopes. D ureterorenoscopes have a better image quality than FO ones. The only disposable ureterorenoscope tested was comparable to the majority of other D ureterorenoscopes. The best image quality was provided by Storz D ureterorenoscopes, being Clara Chroma the favorite Spies Mode, according to literature.

  11. A comparison of digital multi-spectral imagery versus conventional photography for mapping seagrass in Indian River Lagoon, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virnstein, R.; Tepera, M.; Beazley, L.

    1997-06-01

    A pilot study is very briefly summarized in the article. The study tested the potential of multi-spectral digital imagery for discrimination of seagrass densities and species, algae, and bottom types. Imagery was obtained with the Compact Airborne Spectral Imager (casi) and two flight lines flown with hyper-spectral mode. The photogrammetric method used allowed interpretation of the highest quality product, eliminating limitations caused by outdated or poor quality base maps and the errors associated with transfer of polygons. Initial image analysis indicates that the multi-spectral imagery has several advantages, including sophisticated spectral signature recognition and classification, ease of geo-referencing, and rapidmore » mosaicking.« less

  12. Effects of developer depletion on image quality of Kodak Insight and Ektaspeed Plus films.

    PubMed

    Casanova, M S; Casanova, M L S; Haiter-Neto, F

    2004-03-01

    To evaluate the effect of processing solution depletion on the image quality of F-speed dental X-ray film (Insight), compared with Ektaspeed Plus. The films were exposed with a phantom and developed in manual and automatic conditions, in fresh and progressively depleted solutions. The comparison was based on densitometric analysis and subjective appraisal. The processing solution depletion presented a different behaviour depending on whether manual or automatic technique was used. The films were distinctly affected by depleted processing solutions. The developer depletion was faster in automatic than manual conditions. Insight film was more resistant than Ektaspeed Plus to the effects of processing solution depletion. In the present study there was agreement between the objective and subjective appraisals.

  13. A Comparison of the AVS-9 and the Panoramic Night Vision Goggles During Rotorcraft Hover and Landing

    NASA Technical Reports Server (NTRS)

    Szoboszlay, Zoltan; Haworth, Loran; Simpson, Carol

    2000-01-01

    A flight test was conducted to assess any differences in pilot-vehicle performance and pilot opinion between the use of a current generation night vision goggle (the AVS-9) and one variant of the prototype panoramic night vision goggle (the PNVGII). The panoramic goggle has more than double the horizontal field-of-view of the AVS-9, but reduced image quality. Overall the panoramic goggles compared well to the AVS-9 goggles. However, pilot comment and data are consistent with the assertion that some of the benefits of additional field-of-view with the panoramic goggles were negated by the reduced image quality of the particular variant of the panoramic goggles tested.

  14. Comparison of Photoluminescence Imaging on Starting Multi-Crystalline Silicon Wafers to Finished Cell Performance: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, S.; Yan, F.; Dorn, D.

    2012-06-01

    Photoluminescence (PL) imaging techniques can be applied to multicrystalline silicon wafers throughout the manufacturing process. Both band-to-band PL and defect-band emissions, which are longer-wavelength emissions from sub-bandgap transitions, are used to characterize wafer quality and defect content on starting multicrystalline silicon wafers and neighboring wafers processed at each step through completion of finished cells. Both PL imaging techniques spatially highlight defect regions that represent dislocations and defect clusters. The relative intensities of these imaged defect regions change with processing. Band-to-band PL on wafers in the later steps of processing shows good correlation to cell quality and performance. The defect bandmore » images show regions that change relative intensity through processing, and better correlation to cell efficiency and reverse-bias breakdown is more evident at the starting wafer stage as opposed to later process steps. We show that thermal processing in the 200 degrees - 400 degrees C range causes impurities to diffuse to different defect regions, changing their relative defect band emissions.« less

  15. Forward and backward tone mapping of high dynamic range images based on subband architecture

    NASA Astrophysics Data System (ADS)

    Bouzidi, Ines; Ouled Zaid, Azza

    2015-01-01

    This paper presents a novel High Dynamic Range (HDR) tone mapping (TM) system based on sub-band architecture. Standard wavelet filters of Daubechies, Symlets, Coiflets and Biorthogonal were used to estimate the proposed system performance in terms of Low Dynamic Range (LDR) image quality and reconstructed HDR image fidelity. During TM stage, the HDR image is firstly decomposed in sub-bands using symmetrical analysis-synthesis filter bank. The transform coefficients are then rescaled using a predefined gain map. The inverse Tone Mapping (iTM) stage is straightforward. Indeed, the LDR image passes through the same sub-band architecture. But, instead of reducing the dynamic range, the LDR content is boosted to an HDR representation. Moreover, in our TM sheme, we included an optimization module to select the gain map components that minimize the reconstruction error, and consequently resulting in high fidelity HDR content. Comparisons with recent state-of-the-art methods have shown that our method provides better results in terms of visual quality and HDR reconstruction fidelity using objective and subjective evaluations.

  16. A new system for port films.

    PubMed

    Sephton, R; Green, M; Fitzpatrick, C

    1989-01-01

    A novel system for port films is described which incorporates a high-quality fluorescent screen lying behind a flat, heavy-metal screen or filter and the film pressed between them is not an X ray type but a single-emulsion, very high contrast graphics or line-type film. In experimental comparisons using 4 MV, 6 MV, and 25 MV photon beams, the new Peter MacCallum Cancer Institute (PMCI) system produced clearer images, about X2 higher in contrast yet lower in relative noise levels, than did the conventional commercially-available systems which use x-ray film between heavy-metal screens. Direct clinical comparisons, chiefly using 6 MV accelerators, confirmed that anatomical details were correspondingly better visualized and in general, the PMCI port film could be matched against the simulator radiograph with greater confidence. Routine use for greater than 2 yr in this Institute (4000 new patients per yr, 20 cassettes made for use with four 6 MV accelerators) has shown the PMCI system to be an economical and practical device, giving reproducibly high quality images in all the common port film applications.

  17. Performance comparison between 8 and 14 bit-depth imaging in polarization-sensitive swept-source optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lu, Zenghai; Kasaragoda, Deepa K.; Matcher, Stephen J.

    2011-03-01

    We compare true 8 and 14 bit-depth imaging of SS-OCT and polarization-sensitive SS-OCT (PS-SS-OCT) at 1.3μm wavelength by using two hardware-synchronized high-speed data acquisition (DAQ) boards. The two DAQ boards read exactly the same imaging data for comparison. The measured system sensitivity at 8-bit depth is comparable to that for 14-bit acquisition when using the more sensitive of the available full analog input voltage ranges of the ADC. Ex-vivo structural and birefringence images of an equine tendon sample indicate no significant differences between images acquired by the two DAQ boards suggesting that 8-bit DAQ boards can be employed to increase imaging speeds and reduce storage in clinical SS-OCT/PS-SS-OCT systems. We also compare the resulting image quality when the image data sampled with the 14-bit DAQ from human finger skin is artificially bit-reduced during post-processing. However, in agreement with the results reported previously, we also observe that in our system that real-world 8-bit image shows more artifacts than the image acquired by numerically truncating to 8-bits from the raw 14-bit image data, especially in low intensity image area. This is due to the higher noise floor and reduced dynamic range of the 8-bit DAQ. One possible disadvantage is a reduced imaging dynamic range which can manifest itself as an increase in image artefacts due to strong Fresnel reflection.

  18. Comparison of technetium-99m-HMPAO and technetium-99m-ECD cerebral SPECT images in Alzheimer`s disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyck, C.H. van; Lin, C.H.; Smith, E.O.

    1996-11-01

    SPECT has shown increasing promise as a diagnostic tool in Alzheimer`s disease (AD). Recently, a new SPECT brain perfusion agent, {sup 99m}Tc-ethyl cysteinate dimer ({sup 99m}Tc-ECD) has emerged with purported advantages in image quality over the established tracer, {sup 99m}Tc-hexamethylpropyleneamine oxime ({sup 99m}Tc-HMPAO). This research aimed to compare cerebral images for ({sup 99m}Tc-HMPAO). This research aimed to compare cerebral images for {sup 99}mTc-HMPAO and {sup 99m}Tc-ECD in discriminating patients with AD form control subjects. 51 refs., 5 figs., 3 tabs.

  19. Scale Control and Quality Management of Printed Image Parameters

    NASA Astrophysics Data System (ADS)

    Novoselskaya, O. A.; Kolesnikov, V. L.; Solov'eva, T. V.; Nagornova, I. V.; Babluyk, E. B.; Trapeznikova, O. V.

    2017-06-01

    The article provides a comparison of the main valuation techniques for a regulated parameter of printability of the offset paper by current standards GOST 24356 and ISO 3783: 2006. The results of development and implementation of a complex test scale for management and control the quality of printed production are represented. The estimation scale is introduced. It includes normalized parameters of print optical density, print uniformity, picking out speed, the value of dot gain, print contrast with the added criteria of minimizing microtexts, a paper slip, resolution threshold and effusing ability of paper surface. The results of analysis allow directionally form surface properties of the substrate to facilitate achieving the required quality of the printed image parameters, i. e. optical density of a print at a predetermined level not less than 1.3, the print uniformity with minimal deviation of dot gain about the order of 10 per cents.

  20. QuickEval: a web application for psychometric scaling experiments

    NASA Astrophysics Data System (ADS)

    Van Ngo, Khai; Storvik, Jehans J.; Dokkeberg, Christopher A.; Farup, Ivar; Pedersen, Marius

    2015-01-01

    QuickEval is a web application for carrying out psychometric scaling experiments. It offers the possibility of running controlled experiments in a laboratory, or large scale experiment over the web for people all over the world. It is a unique one of a kind web application, and it is a software needed in the image quality field. It is also, to the best of knowledge, the first software that supports the three most common scaling methods; paired comparison, rank order, and category judgement. It is also the first software to support rank order. Hopefully, a side effect of this newly created software is that it will lower the threshold to perform psychometric experiments, improve the quality of the experiments being carried out, make it easier to reproduce experiments, and increase research on image quality both in academia and industry. The web application is available at www.colourlab.no/quickeval.

  1. LANDSAT-4 image data quality analysis

    NASA Technical Reports Server (NTRS)

    Anuta, P. E. (Principal Investigator)

    1982-01-01

    Work done on evaluating the geometric and radiometric quality of early LANDSAT-4 sensor data is described. Band to band and channel to channel registration evaluations were carried out using a line correlator. Visual blink comparisons were run on an image display to observe band to band registration over 512 x 512 pixel blocks. The results indicate a .5 pixel line misregistration between the 1.55 to 1.75, 2.08 to 2.35 micrometer bands and the first four bands. Also a four 30M line and column misregistration of the thermal IR band was observed. Radiometric evaluation included mean and variance analysis of individual detectors and principal components analysis. Results indicate that detector bias for all bands is very close or within tolerance. Bright spots were observed in the thermal IR band on an 18 line by 128 pixel grid. No explanation for this was pursued. The general overall quality of the TM was judged to be very high.

  2. Surface radiation dose comparison of a dedicated extremity cone beam computed tomography (CBCT) device and a multidetector computed tomography (MDCT) machine in pediatric ankle and wrist phantoms

    PubMed Central

    Nagy, Eszter; Apfaltrer, Georg; Riccabona, Michael; Singer, Georg; Stücklschweiger, Georg; Guss, Helmuth; Sorantin, Erich

    2017-01-01

    Objectives To evaluate and compare surface doses of a cone beam computed tomography (CBCT) and a multidetector computed tomography (MDCT) device in pediatric ankle and wrist phantoms. Methods Thermoluminescent dosimeters (TLD) were used to measure and compare surface doses between CBCT and MDCT in a left ankle and a right wrist pediatric phantom. In both modalities adapted pediatric dose protocols were utilized to achieve realistic imaging conditions. All measurements were repeated three times to prove test-retest reliability. Additionally, objective and subjective image quality parameters were assessed. Results Average surface doses were 3.8 ±2.1 mGy for the ankle, and 2.2 ±1.3 mGy for the wrist in CBCT. The corresponding surface doses in optimized MDCT were 4.5 ±1.3 mGy for the ankle, and 3.4 ±0.7 mGy for the wrist. Overall, mean surface dose was significantly lower in CBCT (3.0 ±1.9 mGy vs. 3.9 ±1.2 mGy, p<0.001). Subjectively rated general image quality was not significantly different between the study protocols (p = 0.421), whereas objectively measured image quality parameters were in favor of CBCT (p<0.001). Conclusions Adapted extremity CBCT imaging protocols have the potential to fall below optimized pediatric ankle and wrist MDCT doses at comparable image qualities. These possible dose savings warrant further development and research in pediatric extremity CBCT applications. PMID:28570626

  3. Experimental verification of beam quality in high-contrast imaging with orthogonal bremsstrahlung photon beams.

    PubMed

    Sarfehnia, Arman; Jabbari, Keyvan; Seuntjens, Jan; Podgorsak, Ervin B

    2007-07-01

    Since taken with megavoltage, forward-directed bremsstrahlung beams, the image quality of current portal images is inferior to that of diagnostic quality images produced by kilovoltage beams. In this paper, the beam quality of orthogonal bremsstrahlung beams defined as the 90 degrees component of the bremsstrahlung distribution produced from megavoltage electron pencil beams striking various targets is presented, and the suitability of their use for improved radiotherapy imaging is evaluated. A 10 MeV electron beam emerging through the research port of a Varian Clinac-18 linac was made to strike targets of carbon, aluminum, and copper. PDD and attenuation measurements of both the forward and orthogonal beams were carried out, and the results were also used to estimate the effective and mean energy of the beams. The mean energy of a spectrum produced by a carbon target dropped by 83% from 1296 keV in the forward direction to 217 keV in the orthogonal direction, while for an aluminum target it dropped by 77% to 412 keV, and for a copper target by 65% to 793 keV. An in-depth Monte Carlo study of photon yield and electron contamination was also performed. Photon yield and effective energy are lower for orthogonal beams than for forward beams, and the differences are more pronounced for targets of lower atomic number. Using their relatively low effective energy, orthogonal bremsstrahlung beams produced by megavoltage electrons striking low atomic number targets yield images with a higher contrast in comparison with forward bremsstrahlung beams.

  4. T2- and diffusion-weighted magnetic resonance imaging at 3T for the detection of prostate cancer with and without endorectal coil: An intraindividual comparison of image quality and diagnostic performance.

    PubMed

    Baur, Alexander D J; Daqqaq, Tareef; Wagner, Moritz; Maxeiner, Andreas; Huppertz, Alexander; Renz, Diane; Hamm, Bernd; Fischer, Thomas; Durmus, Tahir

    2016-06-01

    To intraindividually compare image quality and diagnostic performance of multiparametric MRI (mpMRI) at 3T for the detection of prostate cancer (PCa) using a pelvic phased-array coil (PAC) and a combined endorectal and pelvic phased-array coil (ERC-PAC). Forty-five patients were prospectively included and received mpMRI of the prostate using a PAC and an ERC-PAC during one imaging session. Two radiologists evaluated image quality and the most suspicious lesion according to the PI-RADS scoring system. Results of MRI-TRUS-fusion biopsy of the prostate served as reference standard. Patient comfort and acceptance were assessed using a standardized questionnaire. Overall image quality for T2WI was rated significantly better with an ERC-PAC compared to a PAC (p=0.0038). The weighted kappa for PI-RADS scores for T2WI and DWI with a PAC and an ERC-PAC was 0.70 and 0.73, respectively. For a PI-RADS sum score including T2WI and DWI the area under the curve with a PAC and an ERC-PAC were 0.95-0.99 and 0.93-0.97, respectively (p=0.1395). For T2WI and DWI performed at 3T index PCa lesion identification and evaluation did not differ significantly with both coil setups. Patients preferred MRI without an ERC. Therefore, the use of an ERC may be omitted in a prostate cancer detection setting. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. SU-E-P-11: Comparison of Image Quality and Radiation Dose Between Different Scanner System in Routine Abdomen CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, S; Wang, Y; Weng, H

    Purpose To evaluate image quality and radiation dose of routine abdomen computed tomography exam with the automatic current modulation technique (ATCM) performed in two different brand 64-slice CT scanners in our site. Materials and Methods A retrospective review of routine abdomen CT exam performed with two scanners; scanner A and scanner B in our site. To calculate standard deviation of the portal hepatic level with a region of interest of 12.5 mm x 12.5mm represented to the image noise. The radiation dose was obtained from CT DICOM image information. Using Computed tomography dose index volume (CTDIv) to represented CT radiationmore » dose. The patient data in this study were with normal weight (about 65–75 Kg). Results The standard deviation of Scanner A was smaller than scanner B, the scanner A might with better image quality than scanner B. On the other hand, the radiation dose of scanner A was higher than scanner B(about higher 50–60%) with ATCM. Both of them, the radiation dose was under diagnostic reference level. Conclusion The ATCM systems in modern CT scanners can contribute a significant reduction in radiation dose to the patient. But the reduction by ATCM systems from different CT scanner manufacturers has slightly variation. Whatever CT scanner we use, it is necessary to find the acceptable threshold of image quality with the minimum possible radiation exposure to the patient in agreement with the ALARA principle.« less

  6. Computed tomographic venography for varicose veins of the lower extremities: prospective comparison of 80-kVp and conventional 120-kVp protocols.

    PubMed

    Cho, Eun-Suk; Kim, Joo Hee; Kim, Sungjun; Yu, Jeong-Sik; Chung, Jae-Joon; Yoon, Choon-Sik; Lee, Hyeon-Kyeong; Lee, Kyung Hee

    2012-01-01

    To prospectively investigate the feasibility of an 80-kilovolt (peak) (kVp) protocol in computed tomographic venography for varicose veins of the lower extremities by comparison with conventional 120-kVp protocol. Attenuation values and signal-to-noise ratio of iodine contrast medium (CM) were determined in a water phantom for 2 tube voltages (80 kVp and 120 kVp). Among 100 patients, 50 patients were scanned with 120 kVp and 150 effective milliampere second (mAs(eff)), and the other 50 patients were scanned with 80 kVp and 390 mAs(eff) after the administration of 1.7-mL/kg CM (370 mg of iodine per milliliter). The 2 groups were compared for venous attenuation, contrast-to-noise ratio, and subjective degree of venous enhancement, image noise, and overall diagnostic image quality. In the phantom, the attenuation value and signal-to-noise ratio value for iodine CM at 80 kVp were 63.8% and 33.0% higher, respectively, than those obtained at 120 kVp. The mean attenuation of the measured veins of the lower extremities was 148.3 Hounsfield units (HU) for the 80-kVp protocol and 94.8 HU for the 120-kVp protocol. Contrast-to-noise ratio was also significantly higher with the 80-kVp protocol. The overall diagnostic image quality of the 3-dimensional volume-rendered images was good with both protocols. The subjective score for venous enhancement was higher at the 80-kVp protocol. The mean volume computed tomography dose index of the 80-kVp (5.6 mGy) protocol was 23.3% lower than that of the 120-kVp (7.3 mGy) protocol. The use of the 80-kVp protocol improved overall venous attenuation, especially in perforating vein, and provided similarly high diagnostic image quality with a lower radiation dose when compared to the conventional 120-kVp protocol.

  7. Ultrafast 3D balanced steady-state free precession MRI of the lung: Assessment of anatomic details in comparison to low-dose CT.

    PubMed

    Heye, Tobias; Sommer, Gregor; Miedinger, David; Bremerich, Jens; Bieri, Oliver

    2015-09-01

    To evaluate the anatomical details offered by a new single breath-hold ultrafast 3D balanced steady-state free precession (uf-bSSFP) sequence in comparison to low-dose chest computed tomography (CT). This was an Institutional Review Board (IRB)-approved, Health Insurance Portability and Accountability Act (HIPAA)-compliant prospective study. A total of 20 consecutive patients enrolled in a lung cancer screening trial underwent same-day low-dose chest CT and 1.5T MRI. The presence of pulmonary nodules and anatomical details on 1.9 mm isotropic uf-bSSFP images was compared to 2 mm lung window reconstructions by two readers. The number of branching points on six predefined pulmonary arteries and the distance between the most peripheral visible vessel segment to the pleural surface on thin slices and 50 mm maximum intensity projections (MIP) were assessed. Image quality and sharpness of the pulmonary vasculature were rated on a 5-point scale. The uf-bSSFP detection rate of pulmonary nodules (32 nodules visible on CT and MRI, median diameter 3.9 mm) was 45.5% with 21 false-positive findings (pooled data of both readers). Uf-bSSFP detected 71.2% of branching points visible on CT data. The mean distance between peripheral vasculature and pleural surface was 13.0 ± 4.2 mm (MRI) versus 8.5 ± 3.3 mm (CT) on thin slices and 8.6 ± 3.9 mm (MRI) versus 4.6 ± 2.5 mm (CT) on MIPs. Median image quality and sharpness were rated 4 each. Although CT is superior to MRI, uf-bSSFP imaging provides good anatomical details with sufficient image quality and sharpness obtainable in a single breath-hold covering the entire chest. © 2014 Wiley Periodicals, Inc.

  8. Highly accelerated single breath-hold noncontrast thoracic MRA: evaluation in a clinical population.

    PubMed

    Lim, Ruth P; Winchester, Priscilla A; Bruno, Mary T; Xu, Jian; Storey, Pippa; McGorty, Kellyanne; Sodickson, Daniel K; Srichai, Monvadi B

    2013-03-01

    The objective of this study was to evaluate the performance of a highly accelerated breath-hold 3-dimensional noncontrast-enhanced steady-state free precession thoracic magnetic resonance angiography (NC-MRA) technique in a clinical population, including assessment of image quality, aortic dimensions, and aortic pathology, compared with electrocardiographically gated gadolinium-enhanced MRA (Gd-MRA). After approval from the institution board and informed consent were obtained, 30 patients (22 men; mean age, 53.4 years) with known or suspected aortic pathology were imaged with NC-MRA followed by Gd-MRA at a single examination at 1.5 T. Images were made anonymous and reviewed by 2 readers for aortic pathology and diagnostic confidence on a 5-point scale (1, worst; 5, best) on a patient basis. Image quality and artifacts were also evaluated in 10 vascular segments: aortic annulus, sinuses of Valsalva, sinotubular junction, ascending aorta, aortic arch, descending aorta, diaphragmatic aorta, great vessel origins, and the left main and right coronary artery origins. Finally, aortic dimensions were measured in each of the 7 aortic segments. The Wilcoxon signed rank test was used to compare diagnostic confidence, image quality, and artifact scores between NC-MRA and Gd-MRA. The paired Student t test and Bland-Altman analysis were used for comparison of aortic dimensions. All patients completed NC-MRA and Gd-MRA successfully. Vascular pathologic findings were concordant with Gd-MRA in 29 of 30 (96.7%) patients and 28 of 30 (93.3%) patients for readers 1 and 2, respectively, with high diagnostic confidence (mean [SD], 4.35 [0.77]) not significantly different from Gd-MRA (4.38 [0.64]; P = 0.74). The image quality and artifact scores were comparable with Gd-MRA in most vascular segments. Notable differences were observed at the ascending aorta, where Gd-MRA had superior image quality (4.13 [0.73]) compared with NC-MRA (3.80 [0.88]; P = 0.028), and at the coronary artery origins where NC-MRA was considered superior (NC-MRA vs Gd-MRA, 3.38 [1.47] vs 2.78 [1.21] for the left main artery and NC-MRA vs Gd-MRA, 3.55 [1.40] vs 2.32 [1.16] for the right coronary artery; P < 0.05, both comparisons). The aortic dimensions were comparable, with the only significant difference observed at the ascending aorta, where NC-MRA dimension (4.05 [0.76]) was less than 1 mm smaller than that of Gd-MRA (4.12 [0.7]; P = 0.043). Breath-hold NC-MRA of the thoracic aorta yields good image quality, comparable to Gd-MRA, with high accuracy for aortic dimension and pathology. It can be considered as an alternative to Gd-MRA in patients with relative contraindications to gadolinium contrast or problems with intravenous access.

  9. A suite of phantom-based test methods for assessing image quality of photoacoustic tomography systems

    NASA Astrophysics Data System (ADS)

    Vogt, William C.; Jia, Congxian; Wear, Keith A.; Garra, Brian S.; Pfefer, T. Joshua

    2017-03-01

    As Photoacoustic Tomography (PAT) matures and undergoes clinical translation, objective performance test methods are needed to facilitate device development, regulatory clearance and clinical quality assurance. For mature medical imaging modalities such as CT, MRI, and ultrasound, tissue-mimicking phantoms are frequently incorporated into consensus standards for performance testing. A well-validated set of phantom-based test methods is needed for evaluating performance characteristics of PAT systems. To this end, we have constructed phantoms using a custom tissue-mimicking material based on PVC plastisol with tunable, biologically-relevant optical and acoustic properties. Each phantom is designed to enable quantitative assessment of one or more image quality characteristics including 3D spatial resolution, spatial measurement accuracy, ultrasound/PAT co-registration, uniformity, penetration depth, geometric distortion, sensitivity, and linearity. Phantoms contained targets including high-intensity point source targets and dye-filled tubes. This suite of phantoms was used to measure the dependence of performance of a custom PAT system (equipped with four interchangeable linear array transducers of varying design) on design parameters (e.g., center frequency, bandwidth, element geometry). Phantoms also allowed comparison of image artifacts, including surface-generated clutter and bandlimited sensing artifacts. Results showed that transducer design parameters create strong variations in performance including a trade-off between resolution and penetration depth, which could be quantified with our method. This study demonstrates the utility of phantom-based image quality testing in device performance assessment, which may guide development of consensus standards for PAT systems.

  10. Optimal Non-Invasive Fault Classification Model for Packaged Ceramic Tile Quality Monitoring Using MMW Imaging

    NASA Astrophysics Data System (ADS)

    Agarwal, Smriti; Singh, Dharmendra

    2016-04-01

    Millimeter wave (MMW) frequency has emerged as an efficient tool for different stand-off imaging applications. In this paper, we have dealt with a novel MMW imaging application, i.e., non-invasive packaged goods quality estimation for industrial quality monitoring applications. An active MMW imaging radar operating at 60 GHz has been ingeniously designed for concealed fault estimation. Ceramic tiles covered with commonly used packaging cardboard were used as concealed targets for undercover fault classification. A comparison of computer vision-based state-of-the-art feature extraction techniques, viz, discrete Fourier transform (DFT), wavelet transform (WT), principal component analysis (PCA), gray level co-occurrence texture (GLCM), and histogram of oriented gradient (HOG) has been done with respect to their efficient and differentiable feature vector generation capability for undercover target fault classification. An extensive number of experiments were performed with different ceramic tile fault configurations, viz., vertical crack, horizontal crack, random crack, diagonal crack along with the non-faulty tiles. Further, an independent algorithm validation was done demonstrating classification accuracy: 80, 86.67, 73.33, and 93.33 % for DFT, WT, PCA, GLCM, and HOG feature-based artificial neural network (ANN) classifier models, respectively. Classification results show good capability for HOG feature extraction technique towards non-destructive quality inspection with appreciably low false alarm as compared to other techniques. Thereby, a robust and optimal image feature-based neural network classification model has been proposed for non-invasive, automatic fault monitoring for a financially and commercially competent industrial growth.

  11. Comparison between thaw-mounting and use of conductive tape for sample preparation in ToF-SIMS imaging of lipids in Drosophila microRNA-14 model.

    PubMed

    Le, Minh Uyen Thi; Son, Jin Gyeong; Shon, Hyun Kyoung; Park, Jeong Hyang; Lee, Sung Bae; Lee, Tae Geol

    2018-03-30

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging elucidates molecular distributions in tissue sections, providing useful information about the metabolic pathways linked to diseases. However, delocalization of the analytes and inadequate tissue adherence during sample preparation are among some of the unfortunate phenomena associated with this technique due to their role in the reduction of the quality, reliability, and spatial resolution of the ToF-SIMS images. For these reasons, ToF-SIMS imaging requires a more rigorous sample preparation method in order to preserve the natural state of the tissues. The traditional thaw-mounting method is particularly vulnerable to altered distributions of the analytes due to thermal effects, as well as to tissue shrinkage. In the present study, the authors made comparisons of different tissue mounting methods, including the thaw-mounting method. The authors used conductive tape as the tissue-mounting material on the substrate because it does not require heat from the finger for the tissue section to adhere to the substrate and can reduce charge accumulation during data acquisition. With the conductive-tape sampling method, they were able to acquire reproducible tissue sections and high-quality images without redistribution of the molecules. Also, the authors were successful in preserving the natural states and chemical distributions of the different components of fat metabolites such as diacylglycerol and fatty acids by using the tape-supported sampling in microRNA-14 (miR-14) deleted Drosophila models. The method highlighted here shows an improvement in the accuracy of mass spectrometric imaging of tissue samples.

  12. Assessing agreement between preclinical magnetic resonance imaging and histology: An evaluation of their image qualities and quantitative results

    PubMed Central

    Elschner, Cindy; Korn, Paula; Hauptstock, Maria; Schulz, Matthias C.; Range, Ursula; Jünger, Diana; Scheler, Ulrich

    2017-01-01

    One consequence of demographic change is the increasing demand for biocompatible materials for use in implants and prostheses. This is accompanied by a growing number of experimental animals because the interactions between new biomaterials and its host tissue have to be investigated. To evaluate novel materials and engineered tissues the use of non-destructive imaging modalities have been identified as a strategic priority. This provides the opportunity for studying interactions repeatedly with individual animals, along with the advantages of reduced biological variability and decreased number of laboratory animals. However, histological techniques are still the golden standard in preclinical biomaterial research. The present article demonstrates a detailed method comparison between histology and magnetic resonance imaging. This includes the presentation of their image qualities as well as the detailed statistical analysis for assessing agreement between quantitative measures. Exemplarily, the bony ingrowth of tissue engineered bone substitutes for treatment of a cleft-like maxillary bone defect has been evaluated. By using a graphical concordance analysis the mean difference between MRI results and histomorphometrical measures has been examined. The analysis revealed a slightly but significant bias in the case of the bone volume (biasHisto−MRI:Bone volume=2.40 %, p<0.005) and a clearly significant deviation for the remaining defect width (biasHisto−MRI:Defect width=−6.73 %, p≪0.005). But the study although showed a considerable effect of the analyzed section position to the quantitative result. It could be proven, that the bias of the data sets was less originated due to the imaging modalities, but mainly on the evaluation of different slice positions. The article demonstrated that method comparisons not always need the use of an independent animal study, additionally. PMID:28666026

  13. Image quality comparison between single energy and dual energy CT protocols for hepatic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Yuan, E-mail: yuanyao@stanford.edu; Pelc, Nor

    Purpose: Multi-detector computed tomography (MDCT) enables volumetric scans in a single breath hold and is clinically useful for hepatic imaging. For simple tasks, conventional single energy (SE) computed tomography (CT) images acquired at the optimal tube potential are known to have better quality than dual energy (DE) blended images. However, liver imaging is complex and often requires imaging of both structures containing iodinated contrast media, where atomic number differences are the primary contrast mechanism, and other structures, where density differences are the primary contrast mechanism. Hence it is conceivable that the broad spectrum used in a dual energy acquisition maymore » be an advantage. In this work we are interested in comparing these two imaging strategies at equal-dose and more complex settings. Methods: We developed numerical anthropomorphic phantoms to mimic realistic clinical CT scans for medium size and large size patients. MDCT images based on the defined phantoms were simulated using various SE and DE protocols at pre- and post-contrast stages. For SE CT, images from 60 kVp through 140 with 10 kVp steps were considered; for DE CT, both 80/140 and 100/140 kVp scans were simulated and linearly blended at the optimal weights. To make a fair comparison, the mAs of each scan was adjusted to match the reference radiation dose (120 kVp, 200 mAs for medium size patients and 140 kVp, 400 mAs for large size patients). Contrast-to-noise ratio (CNR) of liver against other soft tissues was used to evaluate and compare the SE and DE protocols, and multiple pre- and post-contrasted liver-tissue pairs were used to define a composite CNR. To help validate the simulation results, we conducted a small clinical study. Eighty-five 120 kVp images and 81 blended 80/140 kVp images were collected and compared through both quantitative image quality analysis and an observer study. Results: In the simulation study, we found that the CNR of pre-contrast SE image mostly increased with increasing kVp while for post-contrast imaging 90 kVp or lower yielded higher CNR images, depending on the differential iodine concentration of each tissue. Similar trends were seen in DE blended CNR and those from SE protocols. In the presence of differential iodine concentration (i.e., post-contrast), the CNR curves maximize at lower kVps (80–120), with the peak shifted rightward for larger patients. The combined pre- and post-contrast composite CNR study demonstrated that an optimal SE protocol has better performance than blended DE images, and the optimal tube potential for SE scan is around 90 kVp for a medium size patients and between 90 and 120 kVp for large size patients (although low kVp imaging requires high x-ray tube power to avoid photon starvation). Also, a tin filter added to the high kVp beam is not only beneficial for material decomposition but it improves the CNR of the DE blended images as well. The dose adjusted CNR of the clinical images also showed the same trend and radiologists favored the SE scans over blended DE images. Conclusions: Our simulation showed that an optimized SE protocol produces up to 5% higher CNR for a range of clinical tasks. The clinical study also suggested 120 kVp SE scans have better image quality than blended DE images. Hence, blended DE images do not have a fundamental CNR advantage over optimized SE images.« less

  14. Application of shift-and-add algorithms for imaging objects within biological media

    NASA Astrophysics Data System (ADS)

    Aizert, Avishai; Moshe, Tomer; Abookasis, David

    2017-01-01

    The Shift-and-Add (SAA) technique is a simple mathematical operation developed to reconstruct, at high spatial resolution, atmospherically degraded solar images obtained from stellar speckle interferometry systems. This method shifts and assembles individual degraded short-exposure images into a single average image with significantly improved contrast and detail. Since the inhomogeneous refractive indices of biological tissue causes light scattering similar to that induced by optical turbulence in the atmospheric layers, we assume that SAA methods can be successfully implemented to reconstruct the image of an object within a scattering biological medium. To test this hypothesis, five SAA algorithms were evaluated for reconstructing images acquired from multiple viewpoints. After successfully retrieving the hidden object's shape, quantitative image quality metrics were derived, enabling comparison of imaging error across a spectrum of layer thicknesses, demonstrating the relative efficacy of each SAA algorithm for biological imaging.

  15. Half-unit weighted bilinear algorithm for image contrast enhancement in capsule endoscopy

    NASA Astrophysics Data System (ADS)

    Rukundo, Olivier

    2018-04-01

    This paper proposes a novel enhancement method based exclusively on the bilinear interpolation algorithm for capsule endoscopy images. The proposed method does not convert the original RBG image components to HSV or any other color space or model; instead, it processes directly RGB components. In each component, a group of four adjacent pixels and half-unit weight in the bilinear weighting function are used to calculate the average pixel value, identical for each pixel in that particular group. After calculations, groups of identical pixels are overlapped successively in horizontal and vertical directions to achieve a preliminary-enhanced image. The final-enhanced image is achieved by halving the sum of the original and preliminary-enhanced image pixels. Quantitative and qualitative experiments were conducted focusing on pairwise comparisons between original and enhanced images. Final-enhanced images have generally the best diagnostic quality and gave more details about the visibility of vessels and structures in capsule endoscopy images.

  16. Comparison of myocardial perfusion imaging between the new high-speed gamma camera and the standard anger camera.

    PubMed

    Tanaka, Hirokazu; Chikamori, Taishiro; Hida, Satoshi; Uchida, Kenji; Igarashi, Yuko; Yokoyama, Tsuyoshi; Takahashi, Masaki; Shiba, Chie; Yoshimura, Mana; Tokuuye, Koichi; Yamashina, Akira

    2013-01-01

    Cadmium-zinc-telluride (CZT) solid-state detectors have been recently introduced into the field of myocardial perfusion imaging. The aim of this study was to prospectively compare the diagnostic performance of the CZT high-speed gamma camera (Discovery NM 530c) with that of the standard 3-head gamma camera in the same group of patients. The study group consisted of 150 consecutive patients who underwent a 1-day stress-rest (99m)Tc-sestamibi or tetrofosmin imaging protocol. Image acquisition was performed first on a standard gamma camera with a 15-min scan time each for stress and for rest. All scans were immediately repeated on a CZT camera with a 5-min scan time for stress and a 3-min scan time for rest, using list mode. The correlations between the CZT camera and the standard camera for perfusion and function analyses were strong within narrow Bland-Altman limits of agreement. Using list mode analysis, image quality for stress was rated as good or excellent in 97% of the 3-min scans, and in 100% of the ≥4-min scans. For CZT scans at rest, similarly, image quality was rated as good or excellent in 94% of the 1-min scans, and in 100% of the ≥2-min scans. The novel CZT camera provides excellent image quality, which is equivalent to standard myocardial single-photon emission computed tomography, despite a short scan time of less than half of the standard time.

  17. Sentinel-2B image quality commissioning phase results and Sentinel2 constellation performances

    NASA Astrophysics Data System (ADS)

    Languille, F.; Gaudel, A.; Vidal, B.; Binet, R.; Poulain, V.; Trémas, T.

    2017-09-01

    In the frame of the Copernicus program of the European Commission, Sentinel-2 is a constellation of 2 satellites on a polar sun-synchronous orbit with a revisit time of 5 days (with both satellites), a high field of view - 290km, 13 spectral bands in visible and shortwave infrared, and high spatial resolution - 10m, 20m and 60m. The Sentinel-2 mission offers a global coverage over terrestrial surfaces. The satellites acquire systematically terrestrial surfaces under the same viewing conditions in order to have temporal images stacks. The first satellite was launched in June 2015 and the second in March 2017. In cooperation with the European Space Agency (ESA), the French space agency (CNES) is in charge of the image quality of the project, and so ensured the CAL/VAL commissioning phase during the months following the launch. This cooperation is also extended to routine phase as CNES supports European Space Research Institute (ESRIN) and the Sentinel-2 Mission performance Centre (MPC) for validation in geometric and radiometric image quality aspects, and in Sentinel-2 Global Reference Image (GRI) geolocation performance assessment. This paper points on geometric image quality on Sentinel-2B commissioning phase. It relates to the methods and the performances obtained, as well as the comparison between S2A and S2B. This deals with geolocation and multispectral registration. A small focus is also done on the Sentinel-2 GRI which is a set of S2A images at 10m resolution covering the whole world with a good and consistent geolocation. This ground reference leads to ensure an accurate multi-temporal registration -on refined Sentinel-2 products over GRI- which is also presented in this paper.

  18. Image quality of CT angiography in young children with congenital heart disease: a comparison between the sinogram-affirmed iterative reconstruction (SAFIRE) and advanced modelled iterative reconstruction (ADMIRE) algorithms.

    PubMed

    Nam, S B; Jeong, D W; Choo, K S; Nam, K J; Hwang, J-Y; Lee, J W; Kim, J Y; Lim, S J

    2017-12-01

    To compare the image quality of computed tomography angiography (CTA) reconstructed by sinogram-affirmed iterative reconstruction (SAFIRE) with that of advanced modelled iterative reconstruction (ADMIRE) in children with congenital heart disease (CHD). Thirty-one children (8.23±13.92 months) with CHD who underwent CTA were enrolled. Images were reconstructed using SAFIRE (strength 5) and ADMIRE (strength 5). Objective image qualities (attenuation, noise) were measured in the great vessels and heart chambers. Two radiologists independently calculated the contrast-to-noise ratio (CNR) by measuring the intensity and noise of the myocardial walls. Subjective noise, diagnostic confidence, and sharpness at the level prior to the first branch of the main pulmonary artery were also graded by the two radiologists independently. The objective image noise of ADMIRE was significantly lower than that of SAFIRE in the right atrium, right ventricle, and myocardial wall (p<0.05); however, there were no significant differences observed in the attenuations among the four chambers and great vessels, except in the pulmonary arteries (p>0.05). The mean CNR values were 21.56±10.80 for ADMIRE and 18.21±6.98 for SAFIRE, which were significantly different (p<0.05). In addition, the diagnostic confidence of ADMIRE was significantly lower than that of SAFIRE (p<0.05), while the subjective image noise and sharpness of ADMIRE were not significantly different (p>0.05). CTA using ADMIRE was superior to SAFIRE when comparing the objective and subjective image quality in children with CHD. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  19. Study on efficiency of time computation in x-ray imaging simulation base on Monte Carlo algorithm using graphics processing unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setiani, Tia Dwi, E-mail: tiadwisetiani@gmail.com; Suprijadi; Nuclear Physics and Biophysics Reaserch Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jalan Ganesha 10 Bandung, 40132

    Monte Carlo (MC) is one of the powerful techniques for simulation in x-ray imaging. MC method can simulate the radiation transport within matter with high accuracy and provides a natural way to simulate radiation transport in complex systems. One of the codes based on MC algorithm that are widely used for radiographic images simulation is MC-GPU, a codes developed by Andrea Basal. This study was aimed to investigate the time computation of x-ray imaging simulation in GPU (Graphics Processing Unit) compared to a standard CPU (Central Processing Unit). Furthermore, the effect of physical parameters to the quality of radiographic imagesmore » and the comparison of image quality resulted from simulation in the GPU and CPU are evaluated in this paper. The simulations were run in CPU which was simulated in serial condition, and in two GPU with 384 cores and 2304 cores. In simulation using GPU, each cores calculates one photon, so, a large number of photon were calculated simultaneously. Results show that the time simulations on GPU were significantly accelerated compared to CPU. The simulations on the 2304 core of GPU were performed about 64 -114 times faster than on CPU, while the simulation on the 384 core of GPU were performed about 20 – 31 times faster than in a single core of CPU. Another result shows that optimum quality of images from the simulation was gained at the history start from 10{sup 8} and the energy from 60 Kev to 90 Kev. Analyzed by statistical approach, the quality of GPU and CPU images are relatively the same.« less

  20. Dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Hasegawa, Bruce; Tang, H. Roger; Da Silva, Angela J.; Wong, Kenneth H.; Iwata, Koji; Wu, Max C.

    2001-09-01

    In comparison to conventional medical imaging techniques, dual-modality imaging offers the advantage of correlating anatomical information from X-ray computed tomography (CT) with functional measurements from single-photon emission computed tomography (SPECT) or with positron emission tomography (PET). The combined X-ray/radionuclide images from dual-modality imaging can help the clinician to differentiate disease from normal uptake of radiopharmaceuticals, and to improve diagnosis and staging of disease. In addition, phantom and animal studies have demonstrated that a priori structural information from CT can be used to improve quantification of tissue uptake and organ function by correcting the radionuclide data for errors due to photon attenuation, partial volume effects, scatter radiation, and other physical effects. Dual-modality imaging therefore is emerging as a method of improving the visual quality and the quantitative accuracy of radionuclide imaging for diagnosis of patients with cancer and heart disease.

  1. Noise reduction techniques for Bayer-matrix images

    NASA Astrophysics Data System (ADS)

    Kalevo, Ossi; Rantanen, Henry

    2002-04-01

    In this paper, some arrangements to apply Noise Reduction (NR) techniques for images captured by a single sensor digital camera are studied. Usually, the NR filter processes full three-color component image data. This requires that raw Bayer-matrix image data, available from the image sensor, is first interpolated by using Color Filter Array Interpolation (CFAI) method. Another choice is that the raw Bayer-matrix image data is processed directly. The advantages and disadvantages of both processing orders, before (pre-) CFAI and after (post-) CFAI, are studied with linear, multi-stage median, multistage median hybrid and median-rational filters .The comparison is based on the quality of the output image, the processing power requirements and the amount of memory needed. Also the solution, which improves preservation of details in the NR filtering before the CFAI, is proposed.

  2. Measurement accuracy and perceived quality of imaging systems for the evaluation of periodontal structures.

    PubMed

    Baksi, B Güniz

    2008-07-01

    The aim of this study was to compare the subjective diagnostic quality of F-speed film images and original and enhanced storage phosphor plate (SPP) digital images for the visualization of periodontal ligament space (PLS) and periapical (PB) and alveolar crestal bone (CB) and to assess the accuracy of these image modalities for the measurement of alveolar bone levels. Standardized images of six dried mandibles were obtained with film and Digora SPPs. Six evaluators rated the visibility of anatomical structures using a three-point scale. Alveolar bone levels were measured from the coronal-most tip of the marginal bone to a reference point. Results were compared by using Friedman and Wilcoxon signed-ranks tests. The kappa (kappa) statistic was used to measure agreement among observers. The measurements were compared using repeated measures analysis of variance and Bonferroni tests (P = 0.05). A paired t test was used for comparison with true bone levels (P = 0.05). Enhanced SPP images were rated superior, followed by film and then the original SPP images, for the evaluation of anatomical structures. The value of kappa rose from fair to substantial after the enhancement of the SPP images. Film and enhanced SPP images provided alveolar bone lengths close to the true bone lengths. Enhancement of digital images provided better visibility and resulted in comparable accuracy to film images for the evaluation of periodontal structures.

  3. Verification of quality parameters for portal images in radiotherapy.

    PubMed

    Pesznyák, Csilla; Polgár, István; Weisz, Csaba; Király, Réka; Zaránd, Pál

    2011-03-01

    The purpose of the study was to verify different values of quality parameters of portal images in radiotherapy. We investigated image qualities of different field verification systems. Four EPIDs (Siemens OptiVue500aSi(®), Siemens BeamView Plus(®), Elekta iView(®) and Varian PortalVision™) were investigated with the PTW EPID QC PHANTOM(®) and compared with two portal film systems (Kodak X-OMAT(®) cassette with Kodak X-OMAT V(®) film and Kodak EC-L Lightweight(®) cassette with Kodak Portal Localisation ReadyPack(®) film). A comparison of the f50 and f25 values of the modulation transfer functions (MTFs) belonging to each of the systems revealed that the amorphous silicon EPIDs provided a slightly better high contrast resolution than the Kodak Portal Localisation ReadyPack(®) film with the EC-L Lightweight(®) cassette. The Kodak X-OMAT V(®) film gave a poor low contrast resolution: from the existing 27 holes only 9 were detectable. On the base of physical characteristics, measured in this work, the authors suggest the use of amorphous-silicon EPIDs producing the best image quality. Parameters of the EPIDs with scanning liquid ionisation chamber (SLIC) were very stable. The disadvantage of older versions of EPIDs like SLIC and VEPID is a poor DICOM implementation, and the modulation transfer function (MTF) values (f50 and f25) are less than that of aSi detectors.

  4. [Improving apple fruit quality predictions by effective correction of Vis-NIR laser diffuse reflecting images].

    PubMed

    Qing, Zhao-shen; Ji, Bao-ping; Shi, Bo-lin; Zhu, Da-zhou; Tu, Zhen-hua; Zude, Manuela

    2008-06-01

    In the present study, improved laser-induced light backscattering imaging was studied regarding its potential for analyzing apple SSC and fruit flesh firmness. Images of the diffuse reflection of light on the fruit surface were obtained from Fuji apples using laser diodes emitting at five wavelength bands (680, 780, 880, 940 and 980 nm). Image processing algorithms were tested to correct for dissimilar equator and shape of fruit, and partial least squares (PLS) regression analysis was applied to calibrate on the fruit quality parameter. In comparison to the calibration based on corrected frequency with the models built by raw data, the former improved r from 0. 78 to 0.80 and from 0.87 to 0.89 for predicting SSC and firmness, respectively. Comparing models based on mean value of intensities with results obtained by frequency of intensities, the latter gave higher performance for predicting Fuji SSC and firmness. Comparing calibration for predicting SSC based on the corrected frequency of intensities and the results obtained from raw data set, the former improved root mean of standard error of prediction (RMSEP) from 1.28 degrees to 0.84 degrees Brix. On the other hand, in comparison to models for analyzing flesh firmness built by means of corrected frequency of intensities with the calibrations based on raw data, the former gave the improvement in RMSEP from 8.23 to 6.17 N x cm(-2).

  5. Comparison of effects of dose on image quality in digital breast tomosynthesis across multiple vendors

    NASA Astrophysics Data System (ADS)

    Zhao, Amy; Santana, Maira; Samei, Ehsan; Lo, Joseph

    2017-03-01

    In traditional radiography and computed tomography (CT), contrast is an important measure of image quality that, in theory, does not vary with dose. While increasing dose may increase the overall contrast-to-noise ratio (CNR), the contrast in an image should be primarily dependent on variation in tissue density and attenuation. We investigated the behavior of all three currently FDA-approved vendors' 3D DBT systems (Siemens, Hologic, and General Electric (GE)) using the Computerized Imaging Reference Systems (CIRS) Model 011A Breast Phantom and found that for both Siemens and Hologic systems, contrast increased with dose across multiple repeated trials. For these two systems, experimental CNR also appeared to increase above the expected CNR, which suggests that these systems seem to have introduced post-processing by manipulation of contrast, and thus DBT data cannot be used to reliably quantify tissue characteristics. Additional experimentation with both 2D mammography and 3D DBT systems from GE in addition to the previously mentioned vendors, however, suggested that this relationship is not true for all systems. An initial comparison of contrast vs. dose showed no relationship between contrast and dose for 2D mammography, with the contrast remaining relatively constant in the dose range of 33% of the automatic exposure control setting (AEC) to 300% AEC for all three vendors. The GE DBT system also did not exhibit increased contrast with increased dose, suggesting that the behavior of 3D DBT systems is vendor-specific.

  6. A CAD system and quality assurance protocol for bone age assessment utilizing digital hand atlas

    NASA Astrophysics Data System (ADS)

    Gertych, Arakadiusz; Zhang, Aifeng; Ferrara, Benjamin; Liu, Brent J.

    2007-03-01

    Determination of bone age assessment (BAA) in pediatric radiology is a task based on detailed analysis of patient's left hand X-ray. The current standard utilized in clinical practice relies on a subjective comparison of the hand with patterns in the book atlas. The computerized approach to BAA (CBAA) utilizes automatic analysis of the regions of interest in the hand image. This procedure is followed by extraction of quantitative features sensitive to skeletal development that are further converted to a bone age value utilizing knowledge from the digital hand atlas (DHA). This also allows providing BAA results resembling current clinical approach. All developed methodologies have been combined into one CAD module with a graphical user interface (GUI). CBAA can also improve the statistical and analytical accuracy based on a clinical work-flow analysis. For this purpose a quality assurance protocol (QAP) has been developed. Implementation of the QAP helped to make the CAD more robust and find images that cannot meet conditions required by DHA standards. Moreover, the entire CAD-DHA system may gain further benefits if clinical acquisition protocol is modified. The goal of this study is to present the performance improvement of the overall CAD-DHA system with QAP and the comparison of the CAD results with chronological age of 1390 normal subjects from the DHA. The CAD workstation can process images from local image database or from a PACS server.

  7. Body image and quality of life in patients with and without body contouring surgery following bariatric surgery: a comparison of pre- and post-surgery groups

    PubMed Central

    de Zwaan, Martina; Georgiadou, Ekaterini; Stroh, Christine E.; Teufel, Martin; Köhler, Hinrich; Tengler, Maxi; Müller, Astrid

    2014-01-01

    Background: Massive weight loss (MWL) following bariatric surgery frequently results in an excess of overstretched skin causing physical discomfort and negatively affecting quality of life, self-esteem, body image, and physical functioning. Methods: In this cross-sectional study 3 groups were compared: (1) patients prior to bariatric surgery (n = 79), (2) patients after bariatric surgery who had not undergone body contouring surgery (BCS) (n = 252), and (3) patients after bariatric surgery who underwent subsequent BCS (n = 62). All participants completed self-report questionnaires assessing body image (Multidimensional Body-Self Relations Questionnaire, MBSRQ), quality of life (IWQOL-Lite), symptoms of depression (PHQ-9), and anxiety (GAD-7). Results: Overall, 62 patients (19.2%) reported having undergone a total of 90 BCS procedures. The most common were abdominoplasties (88.7%), thigh lifts (24.2%), and breast lifts (16.1%). Post-bariatric surgery patients differed significantly in most variables from pre-bariatric surgery patients. Although there were fewer differences between patients with and without BCS, patients after BCS reported better appearance evaluation (AE), body area satisfaction (BAS), and physical functioning, even after controlling for excess weight loss and time since surgery. No differences were found for symptoms of depression and anxiety, and most other quality of life and body image domains. Discussion: Our results support the results of longitudinal studies demonstrating significant improvements in different aspects of body image, quality of life, and general psychopathology after bariatric surgery. Also, we found better AE and physical functioning in patients after BCS following bariatric surgery compared to patients with MWL after bariatric surgery who did not undergo BCS. Overall, there appears to be an effect of BCS on certain aspects of body image and quality of life but not on psychological aspects on the whole. PMID:25477839

  8. 1.5 versus 3 versus 7 Tesla in abdominal MRI: A comparative study.

    PubMed

    Laader, Anja; Beiderwellen, Karsten; Kraff, Oliver; Maderwald, Stefan; Wrede, Karsten; Ladd, Mark E; Lauenstein, Thomas C; Forsting, Michael; Quick, Harald H; Nassenstein, Kai; Umutlu, Lale

    2017-01-01

    The aim of this study was to investigate and compare the feasibility as well as potential impact of altered magnetic field properties on image quality and potential artifacts of 1.5 Tesla, 3 Tesla and 7 Tesla non-enhanced abdominal MRI. Magnetic Resonance (MR) imaging of the upper abdomen was performed in 10 healthy volunteers on a 1.5 Tesla, a 3 Tesla and a 7 Tesla MR system. The study protocol comprised a (1) T1-weighted fat-saturated spoiled gradient-echo sequence (2D FLASH), (2) T1-weighted fat-saturated volumetric interpolated breath hold examination sequence (3D VIBE), (3) T1-weighted 2D in and opposed phase sequence, (4) True fast imaging with steady-state precession sequence (TrueFISP) and (5) T2-weighted turbo spin-echo (TSE) sequence. For comparison reasons field of view and acquisition times were kept comparable for each correlating sequence at all three field strengths, while trying to achieve the highest possible spatial resolution. Qualitative and quantitative analyses were tested for significant differences. While 1.5 and 3 Tesla MRI revealed comparable results in all assessed features and sequences, 7 Tesla MRI yielded considerable differences in T1 and T2 weighted imaging. Benefits of 7 Tesla MRI encompassed an increased higher spatial resolution and a non-enhanced hyperintense vessel signal at 7 Tesla, potentially offering a more accurate diagnosis of abdominal parenchymatous and vasculature disease. 7 Tesla MRI was also shown to be more impaired by artifacts, including residual B1 inhomogeneities, susceptibility and chemical shift artifacts, resulting in reduced overall image quality and overall image impairment ratings. While 1.5 and 3 Tesla T2w imaging showed equivalently high image quality, 7 Tesla revealed strong impairments in its diagnostic value. Our results demonstrate the feasibility and overall comparable imaging ability of T1-weighted 7 Tesla abdominal MRI towards 3 Tesla and 1.5 Tesla MRI, yielding a promising diagnostic potential for non-enhanced Magnetic Resonance Angiography (MRA). 1.5 Tesla and 3 Tesla offer comparably high-quality T2w imaging, showing superior diagnostic quality over 7 Tesla MRI.

  9. 1.5 versus 3 versus 7 Tesla in abdominal MRI: A comparative study

    PubMed Central

    Beiderwellen, Karsten; Kraff, Oliver; Maderwald, Stefan; Wrede, Karsten; Ladd, Mark E.; Lauenstein, Thomas C.; Forsting, Michael; Quick, Harald H.; Nassenstein, Kai; Umutlu, Lale

    2017-01-01

    Objectives The aim of this study was to investigate and compare the feasibility as well as potential impact of altered magnetic field properties on image quality and potential artifacts of 1.5 Tesla, 3 Tesla and 7 Tesla non-enhanced abdominal MRI. Materials and methods Magnetic Resonance (MR) imaging of the upper abdomen was performed in 10 healthy volunteers on a 1.5 Tesla, a 3 Tesla and a 7 Tesla MR system. The study protocol comprised a (1) T1-weighted fat-saturated spoiled gradient-echo sequence (2D FLASH), (2) T1-weighted fat-saturated volumetric interpolated breath hold examination sequence (3D VIBE), (3) T1-weighted 2D in and opposed phase sequence, (4) True fast imaging with steady-state precession sequence (TrueFISP) and (5) T2-weighted turbo spin-echo (TSE) sequence. For comparison reasons field of view and acquisition times were kept comparable for each correlating sequence at all three field strengths, while trying to achieve the highest possible spatial resolution. Qualitative and quantitative analyses were tested for significant differences. Results While 1.5 and 3 Tesla MRI revealed comparable results in all assessed features and sequences, 7 Tesla MRI yielded considerable differences in T1 and T2 weighted imaging. Benefits of 7 Tesla MRI encompassed an increased higher spatial resolution and a non-enhanced hyperintense vessel signal at 7 Tesla, potentially offering a more accurate diagnosis of abdominal parenchymatous and vasculature disease. 7 Tesla MRI was also shown to be more impaired by artifacts, including residual B1 inhomogeneities, susceptibility and chemical shift artifacts, resulting in reduced overall image quality and overall image impairment ratings. While 1.5 and 3 Tesla T2w imaging showed equivalently high image quality, 7 Tesla revealed strong impairments in its diagnostic value. Conclusions Our results demonstrate the feasibility and overall comparable imaging ability of T1-weighted 7 Tesla abdominal MRI towards 3 Tesla and 1.5 Tesla MRI, yielding a promising diagnostic potential for non-enhanced Magnetic Resonance Angiography (MRA). 1.5 Tesla and 3 Tesla offer comparably high-quality T2w imaging, showing superior diagnostic quality over 7 Tesla MRI. PMID:29125850

  10. Improving the quality of child anthropometry: Manual anthropometry in the Body Imaging for Nutritional Assessment Study (BINA).

    PubMed

    Conkle, Joel; Ramakrishnan, Usha; Flores-Ayala, Rafael; Suchdev, Parminder S; Martorell, Reynaldo

    2017-01-01

    Anthropometric data collected in clinics and surveys are often inaccurate and unreliable due to measurement error. The Body Imaging for Nutritional Assessment Study (BINA) evaluated the ability of 3D imaging to correctly measure stature, head circumference (HC) and arm circumference (MUAC) for children under five years of age. This paper describes the protocol for and the quality of manual anthropometric measurements in BINA, a study conducted in 2016-17 in Atlanta, USA. Quality was evaluated by examining digit preference, biological plausibility of z-scores, z-score standard deviations, and reliability. We calculated z-scores and analyzed plausibility based on the 2006 WHO Child Growth Standards (CGS). For reliability, we calculated intra- and inter-observer Technical Error of Measurement (TEM) and Intraclass Correlation Coefficient (ICC). We found low digit preference; 99.6% of z-scores were biologically plausible, with z-score standard deviations ranging from 0.92 to 1.07. Total TEM was 0.40 for stature, 0.28 for HC, and 0.25 for MUAC in centimeters. ICC ranged from 0.99 to 1.00. The quality of manual measurements in BINA was high and similar to that of the anthropometric data used to develop the WHO CGS. We attributed high quality to vigorous training, motivated and competent field staff, reduction of non-measurement error through the use of technology, and reduction of measurement error through adequate monitoring and supervision. Our anthropometry measurement protocol, which builds on and improves upon the protocol used for the WHO CGS, can be used to improve anthropometric data quality. The discussion illustrates the need to standardize anthropometric data quality assessment, and we conclude that BINA can provide a valuable evaluation of 3D imaging for child anthropometry because there is comparison to gold-standard, manual measurements.

  11. Dose assessment of digital tomosynthesis in pediatric imaging

    NASA Astrophysics Data System (ADS)

    Gislason, Amber; Elbakri, Idris A.; Reed, Martin

    2009-02-01

    We investigated the potential for digital tomosynthesis (DT) to reduce pediatric x-ray dose while maintaining image quality. We utilized the DT feature (VolumeRadTM) on the GE DefiniumTM 8000 flat panel system installed in the Winnipeg Children's Hospital. Facial bones, cervical spine, thoracic spine, and knee of children aged 5, 10, and 15 years were represented by acrylic phantoms for DT dose measurements. Effective dose was estimated for DT and for corresponding digital radiography (DR) and computed tomography (CT) patient image sets. Anthropomorphic phantoms of selected body parts were imaged by DR, DT, and CT. Pediatric radiologists rated visualization of selected anatomic features in these images. Dose and image quality comparisons between DR, DT, and CT determined the usefulness of tomosynthesis for pediatric imaging. CT effective dose was highest; total DR effective dose was not always lowest - depending how many projections were in the DR image set. For the cervical spine, DT dose was close to and occasionally lower than DR dose. Expert radiologists rated visibility of the central facial complex in a skull phantom as better than DR and comparable to CT. Digital tomosynthesis has a significantly lower dose than CT. This study has demonstrated DT shows promise to replace CT for some facial bones and spinal diagnoses. Other clinical applications will be evaluated in the future.

  12. Penetration of pyrotechnic effects with SWIR laser gated viewing in comparison to VIS and thermal IR bands

    NASA Astrophysics Data System (ADS)

    Göhler, Benjamin; Lutzmann, Peter

    2016-10-01

    In this paper, the potential capability of short-wavelength infrared laser gated-viewing for penetrating the pyrotechnic effects smoke and light/heat has been investigated by evaluating data from conducted field trials. The potential of thermal infrared cameras for this purpose has also been considered and the results have been compared to conventional visible cameras as benchmark. The application area is the use in soccer stadiums where pyrotechnics are illegally burned in dense crowds of people obstructing visibility of stadium safety staff and police forces into the involved section of the stadium. Quantitative analyses have been carried out to identify sensor performances. Further, qualitative image comparisons have been presented to give impressions of image quality during the disruptive effects of burning pyrotechnics.

  13. Comparison of Power Versus Manual Injection in Bolus Shape and Image Quality on Contrast-Enhanced Magnetic Resonance Angiography: An Experimental Study in a Swine Model.

    PubMed

    Tsuboyama, Takahiro; Jost, Gregor; Pietsch, Hubertus; Tomiyama, Noriyuki

    2017-09-01

    The aim of this study was to compare power versus manual injection in bolus shape and image quality on contrast-enhanced magnetic resonance angiography (CE-MRA). Three types of CE-MRA (head-neck 3-dimensional [3D] MRA with a test-bolus technique, thoracic-abdominal 3D MRA with a bolus-tracking technique, and thoracic-abdominal time-resolved 4-dimensional [4D] MRA) were performed after power and manual injection of gadobutrol (0.1 mmol/kg) at 2 mL/s in 12 pigs (6 sets of power and manual injections for each type of CE-MRA). For the quantitative analysis, the signal-to-noise ratio was measured on ascending aorta, descending aorta, brachiocephalic trunk, common carotid artery, and external carotid artery on the 6 sets of head-neck 3D MRA, and on ascending aorta, descending aorta, brachiocephalic trunk, abdominal aorta, celiac trunk, and renal artery on the 6 sets of thoracic-abdominal 3D MRA. Bolus shapes were evaluated on the 6 sets each of test-bolus scans and 4D MRA. For the qualitative analysis, arterial enhancement, superimposition of nontargeted enhancement, and overall image quality were evaluated on 3D MRA. Visibility of bolus transition was assessed on 4D MRA. Intraindividual comparison between power and manual injection was made by paired t test, Wilcoxon rank sum test, and analysis of variance by ranks. Signal-to-noise ratio on 3D MRA was statistically higher with power injection than with manual injection (P < 0.001). Bolus shapes (test-bolus, 4D MRA) were represented by a characteristic standard bolus curve (sharp first-pass peak followed by a gentle recirculation peak) in all the 12 scans with power injection, but only in 1 of the 12 scans with manual injection. Standard deviations of time-to-peak enhancement were smaller in power injection than in manual injection. Qualitatively, although both injection methods achieved diagnostic quality on 3D MRA, power injection exhibited significantly higher image quality than manual injection (P = 0.001) due to significantly higher arterial enhancement (P = 0.031) and less superimposition of nontargeted enhancement (P = 0.001). Visibility of bolus transition on 4D MRA was significantly better with power injection than with manual injection (P = 0.031). Compared with manual injection, power injection provides more standardized bolus shapes and higher image quality due to higher arterial enhancement and less superimposition of nontargeted vessels.

  14. Global Contrast Based Salient Region Detection.

    PubMed

    Cheng, Ming-Ming; Mitra, Niloy J; Huang, Xiaolei; Torr, Philip H S; Hu, Shi-Min

    2015-03-01

    Automatic estimation of salient object regions across images, without any prior assumption or knowledge of the contents of the corresponding scenes, enhances many computer vision and computer graphics applications. We introduce a regional contrast based salient object detection algorithm, which simultaneously evaluates global contrast differences and spatial weighted coherence scores. The proposed algorithm is simple, efficient, naturally multi-scale, and produces full-resolution, high-quality saliency maps. These saliency maps are further used to initialize a novel iterative version of GrabCut, namely SaliencyCut, for high quality unsupervised salient object segmentation. We extensively evaluated our algorithm using traditional salient object detection datasets, as well as a more challenging Internet image dataset. Our experimental results demonstrate that our algorithm consistently outperforms 15 existing salient object detection and segmentation methods, yielding higher precision and better recall rates. We also show that our algorithm can be used to efficiently extract salient object masks from Internet images, enabling effective sketch-based image retrieval (SBIR) via simple shape comparisons. Despite such noisy internet images, where the saliency regions are ambiguous, our saliency guided image retrieval achieves a superior retrieval rate compared with state-of-the-art SBIR methods, and additionally provides important target object region information.

  15. Standard and reduced radiation dose liver CT images: adaptive statistical iterative reconstruction versus model-based iterative reconstruction-comparison of findings and image quality.

    PubMed

    Shuman, William P; Chan, Keith T; Busey, Janet M; Mitsumori, Lee M; Choi, Eunice; Koprowicz, Kent M; Kanal, Kalpana M

    2014-12-01

    To investigate whether reduced radiation dose liver computed tomography (CT) images reconstructed with model-based iterative reconstruction ( MBIR model-based iterative reconstruction ) might compromise depiction of clinically relevant findings or might have decreased image quality when compared with clinical standard radiation dose CT images reconstructed with adaptive statistical iterative reconstruction ( ASIR adaptive statistical iterative reconstruction ). With institutional review board approval, informed consent, and HIPAA compliance, 50 patients (39 men, 11 women) were prospectively included who underwent liver CT. After a portal venous pass with ASIR adaptive statistical iterative reconstruction images, a 60% reduced radiation dose pass was added with MBIR model-based iterative reconstruction images. One reviewer scored ASIR adaptive statistical iterative reconstruction image quality and marked findings. Two additional independent reviewers noted whether marked findings were present on MBIR model-based iterative reconstruction images and assigned scores for relative conspicuity, spatial resolution, image noise, and image quality. Liver and aorta Hounsfield units and image noise were measured. Volume CT dose index and size-specific dose estimate ( SSDE size-specific dose estimate ) were recorded. Qualitative reviewer scores were summarized. Formal statistical inference for signal-to-noise ratio ( SNR signal-to-noise ratio ), contrast-to-noise ratio ( CNR contrast-to-noise ratio ), volume CT dose index, and SSDE size-specific dose estimate was made (paired t tests), with Bonferroni adjustment. Two independent reviewers identified all 136 ASIR adaptive statistical iterative reconstruction image findings (n = 272) on MBIR model-based iterative reconstruction images, scoring them as equal or better for conspicuity, spatial resolution, and image noise in 94.1% (256 of 272), 96.7% (263 of 272), and 99.3% (270 of 272), respectively. In 50 image sets, two reviewers (n = 100) scored overall image quality as sufficient or good with MBIR model-based iterative reconstruction in 99% (99 of 100). Liver SNR signal-to-noise ratio was significantly greater for MBIR model-based iterative reconstruction (10.8 ± 2.5 [standard deviation] vs 7.7 ± 1.4, P < .001); there was no difference for CNR contrast-to-noise ratio (2.5 ± 1.4 vs 2.4 ± 1.4, P = .45). For ASIR adaptive statistical iterative reconstruction and MBIR model-based iterative reconstruction , respectively, volume CT dose index was 15.2 mGy ± 7.6 versus 6.2 mGy ± 3.6; SSDE size-specific dose estimate was 16.4 mGy ± 6.6 versus 6.7 mGy ± 3.1 (P < .001). Liver CT images reconstructed with MBIR model-based iterative reconstruction may allow up to 59% radiation dose reduction compared with the dose with ASIR adaptive statistical iterative reconstruction , without compromising depiction of findings or image quality. © RSNA, 2014.

  16. ESO imaging survey: optical deep public survey

    NASA Astrophysics Data System (ADS)

    Mignano, A.; Miralles, J.-M.; da Costa, L.; Olsen, L. F.; Prandoni, I.; Arnouts, S.; Benoist, C.; Madejsky, R.; Slijkhuis, R.; Zaggia, S.

    2007-02-01

    This paper presents new five passbands (UBVRI) optical wide-field imaging data accumulated as part of the DEEP Public Survey (DPS) carried out as a public survey by the ESO Imaging Survey (EIS) project. Out of the 3 square degrees originally proposed, the survey covers 2.75 square degrees, in at least one band (normally R), and 1.00 square degrees in five passbands. The median seeing, as measured in the final stacked images, is 0.97 arcsec, ranging from 0.75 arcsec to 2.0 arcsec. The median limiting magnitudes (AB system, 2´´ aperture, 5σ detection limit) are UAB=25.65, BAB=25.54, VAB=25.18, RAB = 24.8 and IAB =24.12 mag, consistent with those proposed in the original survey design. The paper describes the observations and data reduction using the EIS Data Reduction System and its associated EIS/MVM library. The quality of the individual images were inspected, bad images discarded and the remaining used to produce final image stacks in each passband, from which sources have been extracted. Finally, the scientific quality of these final images and associated catalogs was assessed qualitatively by visual inspection and quantitatively by comparison of statistical measures derived from these data with those of other authors as well as model predictions, and from direct comparison with the results obtained from the reduction of the same dataset using an independent (hands-on) software system. Finally to illustrate one application of this survey, the results of a preliminary effort to identify sub-mJy radio sources are reported. To the limiting magnitude reached in the R and I passbands the success rate ranges from 66 to 81% (depending on the fields). These data are publicly available at CDS. Based on observations carried out at the European Southern Observatory, La Silla, Chile under program Nos. 164.O-0561, 169.A-0725, and 267.A-5729. Appendices A, B and C are only available in electronic form at http://www.aanda.org

  17. LEDs as light source: examining quality of acquired images

    NASA Astrophysics Data System (ADS)

    Bachnak, Rafic; Funtanilla, Jeng; Hernandez, Jose

    2004-05-01

    Recent advances in technology have made light emitting diodes (LEDs) viable in a number of applications, including vehicle stoplights, traffic lights, machine-vision-inspection, illumination, and street signs. This paper presents the results of comparing images taken by a videoscope using two different light sources. One of the sources is the internal metal halide lamp and the other is a LED placed at the tip of the insertion tube. Images acquired using these two light sources were quantitatively compared using their histogram, intensity profile along a line segment, and edge detection. Also, images were qualitatively compared using image registration and transformation. The gray-level histogram, edge detection, image profile and image registration do not offer conclusive results. The LED light source, however, produces good images for visual inspection by an operator. The paper will present the results and discuss the usefulness and shortcomings of various comparison methods.

  18. Feasibility of self-gated isotropic radial late-phase MR imaging of the liver.

    PubMed

    Weiss, Jakob; Taron, Jana; Othman, Ahmed E; Grimm, Robert; Kuendel, Matthias; Martirosian, Petros; Ruff, Christer; Schraml, Christina; Nikolaou, Konstantin; Notohamiprodjo, Mike

    2017-03-01

    To evaluate feasibility of a 3D-isotropic self-gated radial volumetric interpolated breath-hold examination (VIBE) for late-phase MRI of the liver. 70 patients were included and underwent liver MRI at 1.5 T. Depending on the diagnosis, either Gd-EOB-DTPA (35 patients) or gadobutrol (35 patients) were administered. During late (gadobutrol) or hepatocyte-specific phase (Gd-EOB-DTPA), a radial prototype sequence was acquired and reconstructed using (1) self-gating with 40 % acceptance (rVIBE 40 ); (2) with 100 % acceptance of the data (rVIBE 100 ) and compared to Cartesian VIBE (cVIBE). Images were assessed qualitatively (image quality, lesion conspicuity, artefacts; 5-point Likert-scale: 5 = excellent; two independent readers) and quantitatively (coefficient-of-variation (CV); contrast-ratio) in axial and coronal reformations. In eight cases only rVIBE provided diagnostic image quality. Image quality of rVIBE 40 was rated significantly superior (p < 0.05) in Gd-EOB-DTPA-enhanced and coronal reformatted examinations as compared to cVIBE. Lesion conspicuity was significantly improved (p < 0.05) in coronal reformatted Gd-EOB-DTPA-enhanced rVIBE 40 in comparison to cVIBE. CV was higher in rVIBE 40 as compared to rVIBE 100 /cVIBE (p < 0.01). Gadobutrol-enhanced rVIBE 40 and cVIBE showed higher contrast-ratios than rVIBE 100 (p < 0.001), whereas no differences were found in Gd-EOB-DTPA-enhanced examinations. Self-gated 3D-isotropic rVIBE provides significantly superior image quality compared to cVIBE, especially in multiplanar reformatted and Gd-EOB-DTPA-enhanced examinations. • Radial VIBE acquisition reduces motion artefacts. • Gd-EOB-DTPA-enhanced scans provide improved image quality. • Non-diagnostic liver MRI examinations may be reduced by radial k-spaces sampling.

  19. Iterative metal artefact reduction (MAR) in postsurgical chest CT: comparison of three iMAR-algorithms.

    PubMed

    Aissa, Joel; Boos, Johannes; Sawicki, Lino Morris; Heinzler, Niklas; Krzymyk, Karl; Sedlmair, Martin; Kröpil, Patric; Antoch, Gerald; Thomas, Christoph

    2017-11-01

    The purpose of this study was to evaluate the impact of three novel iterative metal artefact (iMAR) algorithms on image quality and artefact degree in chest CT of patients with a variety of thoracic metallic implants. 27 postsurgical patients with thoracic implants who underwent clinical chest CT between March and May 2015 in clinical routine were retrospectively included. Images were retrospectively reconstructed with standard weighted filtered back projection (WFBP) and with three iMAR algorithms (iMAR-Algo1 = Cardiac algorithm, iMAR-Algo2 = Pacemaker algorithm and iMAR-Algo3 = ThoracicCoils algorithm). The subjective and objective image quality was assessed. Averaged over all artefacts, artefact degree was significantly lower for the iMAR-Algo1 (58.9 ± 48.5 HU), iMAR-Algo2 (52.7 ± 46.8 HU) and the iMAR-Algo3 (51.9 ± 46.1 HU) compared with WFBP (91.6 ± 81.6 HU, p < 0.01 for all). All iMAR reconstructed images showed significantly lower artefacts (p < 0.01) compared with the WFPB while there was no significant difference between the iMAR algorithms, respectively. iMAR-Algo2 and iMAR-Algo3 reconstructions decreased mild and moderate artefacts compared with WFBP and iMAR-Algo1 (p < 0.01). All three iMAR algorithms led to a significant reduction of metal artefacts and increase in overall image quality compared with WFBP in chest CT of patients with metallic implants in subjective and objective analysis. The iMARAlgo2 and iMARAlgo3 were best for mild artefacts. IMARAlgo1 was superior for severe artefacts. Advances in knowledge: Iterative MAR led to significant artefact reduction and increase image-quality compared with WFBP in CT after implementation of thoracic devices. Adjusting iMAR-algorithms to patients' metallic implants can help to improve image quality in CT.

  20. Simultaneous Multislice Accelerated Free-Breathing Diffusion-Weighted Imaging of the Liver at 3T.

    PubMed

    Obele, Chika C; Glielmi, Christopher; Ream, Justin; Doshi, Ankur; Campbell, Naomi; Zhang, Hoi Cheung; Babb, James; Bhat, Himanshu; Chandarana, Hersh

    2015-10-01

    To perform image quality comparison between accelerated multiband diffusion acquisition (mb2-DWI) and conventional diffusion acquisition (c-DWI) in patients undergoing clinically indicated liver MRI. In this prospective study 22 consecutive patients undergoing clinically indicated liver MRI on a 3-T scanner equipped to perform multiband diffusion-weighed imaging (mb-DWI) were included. DWI was performed with single-shot spin-echo echo-planar technique with fat-suppression in free breathing with matching parameters when possible using c-DWI, mb-DWI, and multiband DWI with a twofold acceleration (mb2-DWI). These diffusion sequences were compared with respect to various parameters of image quality, lesion detectability, and liver ADC measurements. Accelerated mb2-DWI was 40.9% faster than c-DWI (88 vs. 149 s). Various image quality parameter scores were similar or higher on mb2-DWI when compared to c-DWI. The overall image quality score (averaged over the three readers) was significantly higher for mb-2 compared to c-DWI for b = 0 s/mm(2) (3.48 ± 0.52 vs. 3.21 ± 0.54; p = 0.001) and for b = 800 s/mm(2) (3.24 ± 0.76 vs. 3.06 ± 0.86; p = 0.010). Total of 25 hepatic lesions were visible on mb2-DWI and c-DWI, with identical lesion detectability. There was no significant difference in liver ADC between mb2-DWI and c-DWI (p = 0.12). Bland-Altman plot demonstrates lower mean liver ADC with mb2-DWI compared to c-DWI (by 0.043 × 10(-3) mm(2)/s or 3.7% of the average ADC). Multiband technique can be used to increase acquisition speed nearly twofold for free-breathing DWI of the liver with similar or improved overall image quality and similar lesion detectability compared to conventional DWI.

  1. Split Bregman multicoil accelerated reconstruction technique: A new framework for rapid reconstruction of cardiac perfusion MRI

    PubMed Central

    Kamesh Iyer, Srikant; Tasdizen, Tolga; Likhite, Devavrat; DiBella, Edward

    2016-01-01

    Purpose: Rapid reconstruction of undersampled multicoil MRI data with iterative constrained reconstruction method is a challenge. The authors sought to develop a new substitution based variable splitting algorithm for faster reconstruction of multicoil cardiac perfusion MRI data. Methods: The new method, split Bregman multicoil accelerated reconstruction technique (SMART), uses a combination of split Bregman based variable splitting and iterative reweighting techniques to achieve fast convergence. Total variation constraints are used along the spatial and temporal dimensions. The method is tested on nine ECG-gated dog perfusion datasets, acquired with a 30-ray golden ratio radial sampling pattern and ten ungated human perfusion datasets, acquired with a 24-ray golden ratio radial sampling pattern. Image quality and reconstruction speed are evaluated and compared to a gradient descent (GD) implementation and to multicoil k-t SLR, a reconstruction technique that uses a combination of sparsity and low rank constraints. Results: Comparisons based on blur metric and visual inspection showed that SMART images had lower blur and better texture as compared to the GD implementation. On average, the GD based images had an ∼18% higher blur metric as compared to SMART images. Reconstruction of dynamic contrast enhanced (DCE) cardiac perfusion images using the SMART method was ∼6 times faster than standard gradient descent methods. k-t SLR and SMART produced images with comparable image quality, though SMART was ∼6.8 times faster than k-t SLR. Conclusions: The SMART method is a promising approach to reconstruct good quality multicoil images from undersampled DCE cardiac perfusion data rapidly. PMID:27036592

  2. Analysis of Particle Image Velocimetry (PIV) Data for Acoustic Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Blackshire, James L.

    1997-01-01

    Acoustic velocity measurements were taken using Particle Image Velocimetry (PIV) in a Normal Incidence Tube configuration at various frequency, phase, and amplitude levels. This report presents the results of the PIV analysis and data reduction portions of the test and details the processing that was done. Estimates of lower measurement sensitivity levels were determined based on PIV image quality, correlation, and noise level parameters used in the test. Comparison of measurements with linear acoustic theory are presented. The onset of nonlinear, harmonic frequency acoustic levels were also studied for various decibel and frequency levels ranging from 90 to 132 dB and 500 to 3000 Hz, respectively.

  3. Performance evaluation of stereo endoscopic imaging system incorporating TFT-LCD.

    PubMed

    Song, C-G; Park, S-K

    2005-01-01

    This paper presents a 3D endoscopic video system designed to improve visualization and enhance the ability of the surgeon to perform delicate endoscopic surgery. In a comparison of the polarized and electric shutter-type stereo imaging systems, the former was found to be superior in terms of both accuracy and speed for knot-tying and for the loop pass test. The results of our experiments show that the proposed 3D endoscopic system has a sufficiently wide viewing angle and zone for multi-viewing, and that it provides better image quality and more stable optical performance compared with the electric shutter-type.

  4. High-dose MVCT image guidance for stereotactic body radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westerly, David C.; Schefter, Tracey E.; Kavanagh, Brian D.

    Purpose: Stereotactic body radiation therapy (SBRT) is a potent treatment for early stage primary and limited metastatic disease. Accurate tumor localization is essential to administer SBRT safely and effectively. Tomotherapy combines helical IMRT with onboard megavoltage CT (MVCT) imaging and is well suited for SBRT; however, MVCT results in reduced soft tissue contrast and increased image noise compared with kilovoltage CT. The goal of this work was to investigate the use of increased imaging doses on a clinical tomotherapy machine to improve image quality for SBRT image guidance. Methods: Two nonstandard, high-dose imaging modes were created on a tomotherapy machinemore » by increasing the linear accelerator (LINAC) pulse rate from the nominal setting of 80 Hz, to 160 Hz and 300 Hz, respectively. Weighted CT dose indexes (wCTDIs) were measured for the standard, medium, and high-dose modes in a 30 cm solid water phantom using a calibrated A1SL ion chamber. Image quality was assessed from scans of a customized image quality phantom. Metrics evaluated include: contrast-to-noise ratios (CNRs), high-contrast spatial resolution, image uniformity, and percent image noise. In addition, two patients receiving SBRT were localized using high-dose MVCT scans. Raw detector data collected after each scan were used to reconstruct standard-dose images for comparison. Results: MVCT scans acquired using a pitch of 1.0 resulted in wCTDI values of 2.2, 4.7, and 8.5 cGy for the standard, medium, and high-dose modes respectively. CNR values for both low and high-contrast materials were found to increase with the square root of dose. Axial high-contrast spatial resolution was comparable for all imaging modes at 0.5 lp/mm. Image uniformity was improved and percent noise decreased as the imaging dose increased. Similar improvements in image quality were observed in patient images, with decreases in image noise being the most notable. Conclusions: High-dose imaging modes are made possible on a clinical tomotherapy machine by increasing the LINAC pulse rate. Increasing the imaging dose results in increased CNRs; making it easier to distinguish the boundaries of low contrast objects. The imaging dose levels observed in this work are considered acceptable at our institution for SBRT treatments delivered in 3-5 fractions.« less

  5. High-dose MVCT image guidance for stereotactic body radiation therapy.

    PubMed

    Westerly, David C; Schefter, Tracey E; Kavanagh, Brian D; Chao, Edward; Lucas, Dan; Flynn, Ryan T; Miften, Moyed

    2012-08-01

    Stereotactic body radiation therapy (SBRT) is a potent treatment for early stage primary and limited metastatic disease. Accurate tumor localization is essential to administer SBRT safely and effectively. Tomotherapy combines helical IMRT with onboard megavoltage CT (MVCT) imaging and is well suited for SBRT; however, MVCT results in reduced soft tissue contrast and increased image noise compared with kilovoltage CT. The goal of this work was to investigate the use of increased imaging doses on a clinical tomotherapy machine to improve image quality for SBRT image guidance. Two nonstandard, high-dose imaging modes were created on a tomotherapy machine by increasing the linear accelerator (LINAC) pulse rate from the nominal setting of 80 Hz, to 160 Hz and 300 Hz, respectively. Weighted CT dose indexes (wCTDIs) were measured for the standard, medium, and high-dose modes in a 30 cm solid water phantom using a calibrated A1SL ion chamber. Image quality was assessed from scans of a customized image quality phantom. Metrics evaluated include: contrast-to-noise ratios (CNRs), high-contrast spatial resolution, image uniformity, and percent image noise. In addition, two patients receiving SBRT were localized using high-dose MVCT scans. Raw detector data collected after each scan were used to reconstruct standard-dose images for comparison. MVCT scans acquired using a pitch of 1.0 resulted in wCTDI values of 2.2, 4.7, and 8.5 cGy for the standard, medium, and high-dose modes respectively. CNR values for both low and high-contrast materials were found to increase with the square root of dose. Axial high-contrast spatial resolution was comparable for all imaging modes at 0.5 lp∕mm. Image uniformity was improved and percent noise decreased as the imaging dose increased. Similar improvements in image quality were observed in patient images, with decreases in image noise being the most notable. High-dose imaging modes are made possible on a clinical tomotherapy machine by increasing the LINAC pulse rate. Increasing the imaging dose results in increased CNRs; making it easier to distinguish the boundaries of low contrast objects. The imaging dose levels observed in this work are considered acceptable at our institution for SBRT treatments delivered in 3-5 fractions.

  6. Nonenhanced ECG-gated quiescent-interval single shot MRA: image quality and stenosis assessment at 3 tesla compared with contrast-enhanced MRA and digital subtraction angiography.

    PubMed

    Hansmann, Jan; Morelli, John N; Michaely, Henrik J; Riester, Thomas; Budjan, Johannes; Schoenberg, Stefan O; Attenberger, Ulrike I

    2014-06-01

    To evaluate the diagnostic accuracy of a nonenhanced electrocardiograph-gated quiescent-interval single shot MR-angiography (QISS-MRA) at 3 Tesla with contrast-enhanced MRA (CE-MRA) and digital subtraction angiography (DSA) serving as reference standard. Following institutional review board approval, 16 consecutive patients with peripheral arterial disease underwent a combined peripheral MRA protocol consisting of a large field-of-view QISS-MRA, continuous table movement MRA, and an additional time-resolved MRA of the calves. DSA correlation was available in eight patients. Image quality and degree of stenosis was assessed. Sensitivity and specificity of QISS-MRA was evaluated with CE-MRA and DSA serving as the standards of reference and compared using the Fisher exact test. With the exception of the calf station, image quality with QISS-MRA was rated statistically significantly less than that of CE-MRA (P < 0.05, P = 0.17, and P = 0.6, respectively). A greater percentage of segments were not accessible with QISS-MRA (19.5-20.1%) in comparison to CE-MRA (10.9%). Relative to DSA, sensitivity for QISS-MRA was high (100% versus 91.2% for CE-MRA, P = 0.24) in the evaluated segments; however, specificity (76.5%) was substantially less than that of CE-MRA (94.6%, P = 0.003). Overall image quality and specificity of QISS-MRA at 3T are diminished relative to CE-MRA. However, when image quality is adequate, QISS-MRA has high sensitivity and, thus, has potential use in patients with contraindications to gadolinium. Copyright © 2013 Wiley Periodicals, Inc.

  7. [Comparison of radiation dose reduction of prospective ECG-gated one beat scan using 320 area detector CT coronary angiography and prospective ECG-gated helical scan with high helical pitch (FlashScan) using 64 multidetector-row CT coronary angiography].

    PubMed

    Matsutani, Hideyuki; Sano, Tomonari; Kondo, Takeshi; Fujimoto, Shinichiro; Sekine, Takako; Arai, Takehiro; Morita, Hitomi; Takase, Shinichi

    2010-12-20

    A high radiation dose associated with 64 multidetector-row computed tomography (64-MDCT) is a major concern for physicians and patients alike. A new 320 row area detector computed tomography (ADCT) can obtain a view of the entire heart with one rotation (0.35 s) without requiring the helical method. As such, ADCT is expected to reduce the radiation dose. We studied image quality and radiation dose of ADCT compared to that of 64-MDCT in patients with a low heart rate (HR≤60). Three hundred eighty-five consecutive patients underwent 64-MDCT and 379 patients, ADCT. Patients with an arrhythmia were excluded. Prospective ECG-gated helical scan with high HP (FlashScan) in 64 was used for MDCT and prospective ECG-gated conventional one beat scan, for 320-ADCT. Image quality was visually evaluated by an image quality score. Radiation dose was estimated by DLP (mGy・cm) for 64-MDCT and DLP.e (mGy・cm) for 320-ADCT. Radiation dose of 320-ADCT (208±48 mGy・cm) was significantly (P<0.0001) lower than that of 64-MDCT (484±112 mGy・cm), and image quality score of 320-ADCT (3.0±0.2) was significantly (P=0.0011) higher than that of 64-MDCT (2.9±0.4). Scan time of 320-ADCT (1.4±0.1 s) was also significantly (P<0.0001) shorter than that of 64-MDCT (6.8±0.6 s). 320-ADCT can achieve not only a reduction in radiation dose but also a superior image quality and shortening of scan time compared to 64-MDCT.

  8. Preclinical Testing of a New MR Imaging Approach to Distinguish Aggressive from Indolent Disease

    DTIC Science & Technology

    2014-06-01

    Litwin , M. S. (2004) Predicting quality of life after radical prostatectomy: results from CaPSURE. J Urol 171, 703-7; discussion 707-8. 4. Wei...J. T., Dunn, R. L., Sandler, H. M., McLaughlin, P. W., Montie, J. E., Litwin , M. S., Nyquist, L., & Sanda, M. G. (2002) Comprehensive comparison of

  9. SU-D-204-06: Dose and Image Quality Evaluation of a Low-Dose Slot-Scanning X-Ray System for Pediatric Orthopedic Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Z; Hoerner, M; Lamoureux, R

    Purpose: Children in early teens with scoliosis require repeated radiographic exams over a number of years. The EOS (EOS imaging S.A., Paris, France) is a novel low-dose slot-scanning digital radiographic system designed to produce full-spine images of a free-standing patient. The radiation dose and image quality characteristics of the EOS were evaluated relative to those of a Computed Radiography (CR) system for scoliosis imaging. Methods: For dose evaluation, a full-torso anthropomorphic phantom was scanned five times using the default standard clinical protocols for both the EOS and a CR system, which include both posteroanterior and lateral full-spine views. Optically stimulatedmore » luminescent dosimeters (OSLDs), also known as nanoDots™ (Landauer, Inc., Glenwood, IL), were placed on the phantom’s surface to measure entrance skin dose. To assess image quality, MTF curves were generated from sampling the noise levels within the high-contrast regions of a line-pair phantom. Vertical and horizontal distortions were measured for the square line-pair phantom with the EOS system to evaluate the effects of geometric magnification and misalignment with the indicated imaging plane. Results: The entrance skin dose was measured to be 0.4 to 1.1 mGy for the EOS, and 0.7 to 3.6 mGy for the CR study. MTF comparison shows that CR greatly outperforms the EOS, despite both systems having a limiting resolution at 1.8 line-pairs per mm. Vertical distortion was unaffected by phantom positioning, because of the EOS slot-scanning geometry. Horizontal distortion increased linearly with miscentering distance. Conclusion: The EOS system resulted in approximately 70% lower radiation dose than CR for full-spine images. Image quality was found to be inferior to CR. Further investigation is required to see if EOS system is an acceptable modality for performing clinically diagnostic scoliosis examinations.« less

  10. Increased Speed and Image Quality for Pelvic Single-Shot Fast Spin-Echo Imaging with Variable Refocusing Flip Angles and Full-Fourier Acquisition

    PubMed Central

    Litwiller, Daniel V.; Saranathan, Manojkumar; Vasanawala, Shreyas S.

    2017-01-01

    Purpose To assess image quality and speed improvements for single-shot fast spin-echo (SSFSE) with variable refocusing flip angles and full-Fourier acquisition (vrfSSFSE) pelvic imaging via a prospective trial performed in the context of uterine leiomyoma evaluation. Materials and Methods Institutional review board approval and informed consent were obtained. vrfSSFSE and conventional SSFSE sagittal and coronal oblique acquisitions were performed in 54 consecutive female patients referred for 3-T magnetic resonance (MR) evaluation of known or suspected uterine leiomyomas. Two radiologists who were blinded to the image acquisition technique semiquantitatively scored images on a scale from −2 to 2 for noise, image contrast, sharpness, artifacts, and perceived ability to evaluate uterine, ovarian, and musculoskeletal structures. The null hypothesis of no significant difference between pulse sequences was assessed with a Wilcoxon signed rank test by using a Holm-Bonferroni correction for multiple comparisons. Results Because of reductions in specific absorption rate, vrfSSFSE imaging demonstrated significantly increased speed (more than twofold, P < .0001), with mean repetition times compared with conventional SSFSE imaging decreasing from 1358 to 613 msec for sagittal acquisitions and from 1494 to 621 msec for coronal oblique acquisitions. Almost all assessed image quality and perceived diagnostic capability parameters were significantly improved with vrfSSFSE imaging. These improvements included noise, sharpness, and ability to evaluate the junctional zone, myometrium, and musculoskeletal structures for both sagittal acquisitions (mean values of 0.56, 0.63, 0.42, 0.56, and 0.80, respectively; all P values < .0001) and coronal oblique acquisitions (mean values of 0.81, 1.09, 0.65, 0.93, and 1.12, respectively; all P values < .0001). For evaluation of artifacts, there was an insufficient number of cases with differences to allow statistical testing. Conclusion Compared with conventional SSFSE acquisition, vrfSSFSE acquisition increases 3-T imaging speed via reduced specific absorption rate and leads to significant improvements in perceived image quality and perceived diagnostic capability when evaluating pelvic structures. © RSNA, 2016 Online supplemental material is available for this article. PMID:27564132

  11. Light Field Imaging Based Accurate Image Specular Highlight Removal

    PubMed Central

    Wang, Haoqian; Xu, Chenxue; Wang, Xingzheng; Zhang, Yongbing; Peng, Bo

    2016-01-01

    Specular reflection removal is indispensable to many computer vision tasks. However, most existing methods fail or degrade in complex real scenarios for their individual drawbacks. Benefiting from the light field imaging technology, this paper proposes a novel and accurate approach to remove specularity and improve image quality. We first capture images with specularity by the light field camera (Lytro ILLUM). After accurately estimating the image depth, a simple and concise threshold strategy is adopted to cluster the specular pixels into “unsaturated” and “saturated” category. Finally, a color variance analysis of multiple views and a local color refinement are individually conducted on the two categories to recover diffuse color information. Experimental evaluation by comparison with existed methods based on our light field dataset together with Stanford light field archive verifies the effectiveness of our proposed algorithm. PMID:27253083

  12. Non-contrast-enhanced MR portography and hepatic venography with time-spatial labeling inversion pulses: comparison of imaging with the short tau inversion recovery method and the chemical shift selective method.

    PubMed

    Shimizu, Hironori; Isoda, Hiroyoshi; Ohno, Tsuyoshi; Yamashita, Rikiya; Kawahara, Seiya; Furuta, Akihiro; Fujimoto, Koji; Kido, Aki; Kusahara, Hiroshi; Togashi, Kaori

    2015-01-01

    To compare and evaluate images of non-contrast enhanced magnetic resonance (MR) portography and hepatic venography acquired with two different fat suppression methods, the chemical shift selective (CHESS) method and short tau inversion recovery (STIR) method. Twenty-two healthy volunteers were examined using respiratory-triggered three-dimensional true steady-state free-precession with two time-spatial labeling inversion pulses. The CHESS or STIR methods were used for fat suppression. The relative signal-to-noise ratio and contrast-to-noise ratio (CNR) were quantified, and the quality of visualization was scored. Image acquisition was successfully conducted in all volunteers. The STIR method significantly improved the CNRs of MR portography and hepatic venography. The image quality scores of main portal vein and right portal vein were higher with the STIR method, but there were no significant differences. The image quality scores of right hepatic vein, middle hepatic vein, and left hepatic vein (LHV) were all higher, and the visualization of LHV was significantly better (p<0.05). The STIR method contributes to further suppression of the background signal and improves visualization of the portal and hepatic veins. The results support using non-contrast-enhanced MR portography and hepatic venography in clinical practice. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Repeatability and Reproducibility of Decisions by Latent Fingerprint Examiners

    PubMed Central

    Ulery, Bradford T.; Hicklin, R. Austin; Buscaglia, JoAnn; Roberts, Maria Antonia

    2012-01-01

    The interpretation of forensic fingerprint evidence relies on the expertise of latent print examiners. We tested latent print examiners on the extent to which they reached consistent decisions. This study assessed intra-examiner repeatability by retesting 72 examiners on comparisons of latent and exemplar fingerprints, after an interval of approximately seven months; each examiner was reassigned 25 image pairs for comparison, out of total pool of 744 image pairs. We compare these repeatability results with reproducibility (inter-examiner) results derived from our previous study. Examiners repeated 89.1% of their individualization decisions, and 90.1% of their exclusion decisions; most of the changed decisions resulted in inconclusive decisions. Repeatability of comparison decisions (individualization, exclusion, inconclusive) was 90.0% for mated pairs, and 85.9% for nonmated pairs. Repeatability and reproducibility were notably lower for comparisons assessed by the examiners as “difficult” than for “easy” or “moderate” comparisons, indicating that examiners' assessments of difficulty may be useful for quality assurance. No false positive errors were repeated (n = 4); 30% of false negative errors were repeated. One percent of latent value decisions were completely reversed (no value even for exclusion vs. of value for individualization). Most of the inter- and intra-examiner variability concerned whether the examiners considered the information available to be sufficient to reach a conclusion; this variability was concentrated on specific image pairs such that repeatability and reproducibility were very high on some comparisons and very low on others. Much of the variability appears to be due to making categorical decisions in borderline cases. PMID:22427888

  14. Normalizing Heterogeneous Medical Imaging Data to Measure the Impact of Radiation Dose.

    PubMed

    Silva, Luís A Bastião; Ribeiro, Luís S; Santos, Milton; Neves, Nuno; Francisco, Dulce; Costa, Carlos; Oliveira, José Luis

    2015-12-01

    The production of medical imaging is a continuing trend in healthcare institutions. Quality assurance for planned radiation exposure situations (e.g. X-ray, computer tomography) requires examination-specific set-ups according to several parameters, such as patient's age and weight, body region and clinical indication. These data are normally stored in several formats and with different nomenclatures, which hinder the continuous and automatic monitoring of these indicators and the comparison between several institutions and equipment. This article proposes a framework that aggregates, normalizes and provides different views over collected indicators. The developed tool can be used to improve the quality of radiologic procedures and also for benchmarking and auditing purposes. Finally, a case study and several experimental results related to radiation exposure and productivity are presented and discussed.

  15. Image quality comparisons of X-Omat RP, L and B films.

    PubMed

    Van Dis, M L; Beck, F M

    1991-08-01

    The Eastman Kodak Company has recently developed a new film, X-Omat B (XB), designed to be interchangeable with X-Omat RP (XRP) film. The manufacturer claims the new film can be manually developed in half the time of other X-Omat films while automatic processing is unchanged. Three X-Omat film types were processed manually or automatically and the image qualities were evaluated. The XRP film had greater contrast than the XB and X-Omat L (XL) films when manually processed, and the XL film showed less contrast than the XB and XRP films when processed automatically. There was no difference in the subjective evaluation of the various film types and processing methods, and the XB film could be interchanged with XRP film in a simulated clinical situation.

  16. Optimising μCT imaging of the middle and inner cat ear.

    PubMed

    Seifert, H; Röher, U; Staszyk, C; Angrisani, N; Dziuba, D; Meyer-Lindenberg, A

    2012-04-01

    This study's aim was to determine the optimal scan parameters for imaging the middle and inner ear of the cat with micro-computertomography (μCT). Besides, the study set out to assess whether adequate image quality can be obtained to use μCT in diagnostics and research on cat ears. For optimisation, μCT imaging of two cat skull preparations was performed using 36 different scanning protocols. The μCT-scans were evaluated by four experienced experts with regard to the image quality and detail detectability. By compiling a ranking of the results, the best possible scan parameters could be determined. From a third cat's skull, a μCT-scan, using these optimised scan parameters, and a comparative clinical CT-scan were acquired. Afterwards, histological specimens of the ears were produced which were compared to the μCT-images. The comparison shows that the osseous structures are depicted in detail. Although soft tissues cannot be differentiated, the osseous structures serve as valuable spatial orientation of relevant nerves and muscles. Clinical CT can depict many anatomical structures which can also be seen on μCT-images, but these appear a lot less sharp and also less detailed than with μCT. © 2011 Blackwell Verlag GmbH.

  17. Dental MRI using wireless intraoral coils

    NASA Astrophysics Data System (ADS)

    Ludwig, Ute; Eisenbeiss, Anne-Katrin; Scheifele, Christian; Nelson, Katja; Bock, Michael; Hennig, Jürgen; von Elverfeldt, Dominik; Herdt, Olga; Flügge, Tabea; Hövener, Jan-Bernd

    2016-03-01

    Currently, the gold standard for dental imaging is projection radiography or cone-beam computed tomography (CBCT). These methods are fast and cost-efficient, but exhibit poor soft tissue contrast and expose the patient to ionizing radiation (X-rays). The need for an alternative imaging modality e.g. for soft tissue management has stimulated a rising interest in dental magnetic resonance imaging (MRI) which provides superior soft tissue contrast. Compared to X-ray imaging, however, so far the spatial resolution of MRI is lower and the scan time is longer. In this contribution, we describe wireless, inductively-coupled intraoral coils whose local sensitivity enables high resolution MRI of dental soft tissue. In comparison to CBCT, a similar image quality with complementary contrast was obtained ex vivo. In-vivo, a voxel size of the order of 250•250•500 μm3 was achieved in 4 min only. Compared to dental MRI acquired with clinical equipment, the quality of the images was superior in the sensitive volume of the coils and is expected to improve the planning of interventions and monitoring thereafter. This method may enable a more accurate dental diagnosis and avoid unnecessary interventions, improving patient welfare and bringing MRI a step closer to becoming a radiation-free alternative for dental imaging.

  18. A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy.

    PubMed

    Verveer, P. J; Gemkow, M. J; Jovin, T. M

    1999-01-01

    We have compared different image restoration approaches for fluorescence microscopy. The most widely used algorithms were classified with a Bayesian theory according to the assumed noise model and the type of regularization imposed. We considered both Gaussian and Poisson models for the noise in combination with Tikhonov regularization, entropy regularization, Good's roughness and without regularization (maximum likelihood estimation). Simulations of fluorescence confocal imaging were used to examine the different noise models and regularization approaches using the mean squared error criterion. The assumption of a Gaussian noise model yielded only slightly higher errors than the Poisson model. Good's roughness was the best choice for the regularization. Furthermore, we compared simulated confocal and wide-field data. In general, restored confocal data are superior to restored wide-field data, but given sufficient higher signal level for the wide-field data the restoration result may rival confocal data in quality. Finally, a visual comparison of experimental confocal and wide-field data is presented.

  19. In-vitro tomography and non-destructive imaging at depth of pharmaceutical solid dosage forms.

    PubMed

    Zeitler, J Axel; Gladden, Lynn F

    2009-01-01

    Tomographic imaging techniques offer new prospects for a better understanding of the quality, performance and release mechanisms of pharmaceutical solid dosage forms. It is only over the last fifteen years that tomography has been applied for the in-vitro characterisation of dosage forms. This review aims to introduce the concept of tomography in a pharmaceutical context, and describes the current state-of-the-art of the four most promising techniques: X-ray computed microtomography, magnetic resonance imaging, terahertz imaging and optical coherence tomography. The basic working principles of the techniques are introduced and the current pharmaceutical applications of the technologies are discussed, together with a comparison of their specific strengths and weaknesses. Possible future developments in these fields are also discussed.

  20. Green light may improve diagnostic accuracy of nailfold capillaroscopy with a simple digital videomicroscope.

    PubMed

    Weekenstroo, Harm H A; Cornelissen, Bart M W; Bernelot Moens, Hein J

    2015-06-01

    Nailfold capillaroscopy is a non-invasive and safe technique for the analysis of microangiopathologies. Imaging quality of widely used simple videomicroscopes is poor. The use of green illumination instead of the commonly used white light may improve contrast. The aim of the study was to compare the effect of green illumination with white illumination, regarding capillary density, the number of microangiopathologies, and sensitivity and specificity for systemic sclerosis. Five rheumatologists have evaluated 80 images; 40 images acquired with green light, and 40 images acquired with white light. A larger number of microangiopathologies were found in images acquired with green light than in images acquired with white light. This results in slightly higher sensitivity with green light in comparison with white light, without reducing the specificity. These findings suggest that green instead of white illumination may facilitate evaluation of capillaroscopic images obtained with a low-cost digital videomicroscope.

  1. Ultrafast Brain MRI: Clinical Deployment and Comparison to Conventional Brain MRI at 3T.

    PubMed

    Prakkamakul, Supada; Witzel, Thomas; Huang, Susie; Boulter, Daniel; Borja, Maria J; Schaefer, Pamela; Rosen, Bruce; Heberlein, Keith; Ratai, Eva; Gonzalez, Gilberto; Rapalino, Otto

    2016-09-01

    To compare an ultrafast brain magnetic resonance imaging (MRI) protocol to the conventional protocol in motion-prone inpatient clinical settings. This retrospective study was HIPAA compliant and approved by the Institutional Review Board with waived inform consent. Fifty-nine inpatients (30 males, 29 females; mean age 55.1, range 23-93 years)who underwent 3-Tesla brain MRI using ultrafast and conventional protocols, both including five sequences, were included in the study. The total scan time for five ultrafast sequences was 4 minutes 59 seconds. The ideal conventional acquisition time was 10 minutes 32 seconds but the actual acquisition took 15-20 minutes. The average scan times for ultrafast localizers, T1-weighted, T2-weighted, fluid-attenuated inversion recovery (FLAIR), diffusion-weighted, T2*-weighted sequences were 14, 41, 62, 96, 80, 6 seconds, respectively. Two blinded neuroradiologists independently assessed three aspects: (1) image quality, (2) gray-white matter (GM-WM) differentiation, and (3) diagnostic concordance for the detection of six clinically relevant imaging findings. Wilcoxon signed-rank test was used to compare image quality and GM-WM scores. Interobserver reproducibility was calculated. The ultrafast T1-weighted sequence demonstrated significantly better image quality (P = .005) and GM-WM differentiation (P < .001) compared to the conventional sequence. There was high agreement (>85%) between both protocols for the detection of mass-like lesion, hemorrhage, diffusion restriction, WM FLAIR hyperintensities, subarachnoid FLAIR hyperintensities, and hydrocephalus. The ultrafast protocol achieved at least comparable image quality and high diagnostic concordance compared to the conventional protocol. This fast protocol can be a viable option to replace the conventional protocol in motion-prone inpatient clinical settings. Copyright © 2016 by the American Society of Neuroimaging.

  2. Unenhanced third-generation dual-source chest CT using a tin filter for spectral shaping at 100kVp.

    PubMed

    Haubenreisser, Holger; Meyer, Mathias; Sudarski, Sonja; Allmendinger, Thomas; Schoenberg, Stefan O; Henzler, Thomas

    2015-08-01

    To prospectively investigate image quality and radiation dose of 100kVp spectral shaping chest CT using a dedicated tin filter on a 3rd generation dual-source CT (DSCT) in comparison to standard 100kVp chest CT. Sixty patients referred for a non-contrast chest on a 3rd generation DSCT were prospectively included and examined at 100kVp with a dedicated tin filter. These patients were retrospectively matched with patients that were examined on a 2nd generation DSCT at 100kVp without tin filter. Objective and subjective image quality was assessed in various anatomic regions and radiation dose was compared. Radiation dose was decreased by 90% using the tin filter (3.0 vs 0.32mSv). Soft tissue attenuation and image noise was not statistically different for both examination techniques (p>0.05), however image noise was found to be significantly higher in the trachea when using the additional tin filter (p=0.002). SNR was found to be statistically similar in pulmonary tissue, significantly lower when measured in air and significantly higher in the aorta for the scans on the 3rd generation DSCT. Subjective image quality with regard to overall quality and image noise and sharpness was not statistically significantly different (p>0.05). 100kVp spectral shaping chest CT by means of a tube-based tin-filter on a 3rd generation DSCT allows 90% dose reduction when compared to 100kVp chest CT on a 2nd generation DSCT without spectral shaping. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Detection and characterization of Budd-Chiari syndrome with inferior vena cava obstruction: Comparison of fixed and flexible delayed scan time of computed tomography venography.

    PubMed

    Zhou, Peng-Li; Wu, Gang; Han, Xin-Wei; Bi, Yong-Hua; Zhang, Wen-Guang; Wu, Zheng-Yang

    2017-06-01

    To compare the results of computed tomography venography (CTV) with a fixed and a flexible delayed scan time for Budd-Chiari syndrome (BCS) with inferior vena cava (IVC) obstruction. A total of 209 consecutive BCS patients with IVC obstruction underwent either a CTV with a fixed delayed scan time of 180s (n=87) or a flexible delayed scan time for good image quality according to IVC blood flow in color Doppler ultrasonography (n=122). The IVC blood flow velocity was measured using a color Doppler ultrasound prior to CT scan. Image quality was classified as either good, moderate, or poor. Image quality, surrounding structures and the morphology of the IVC obstruction were compared between the two groups using a χ 2 -test or paired or unpaired t-tests as appropriate. Inter-observer agreement was assessed using Kappa statistics. There was no significant difference in IVC blood flow velocity between the two groups. Overall image quality, surrounding structures and IVC obstruction morphology delineation on the flexible delayed scan time of CTV images were rated better relative to those obtained by fixed delayed scan time of CTV images (p<0.001). Evaluation of CTV data sets was significantly facilitated with flexible delayed scan time of CTV. There were no significant differences in Kappa statistics between Group A and Group B. The flexible delayed scan time of CTV was associated with better detection and more reliable characterization of BCS with IVC obstruction compared to a fixed delayed scan time. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Technical Note: Comparison of first- and second-generation photon-counting slit-scanning tomosynthesis systems.

    PubMed

    Berggren, Karl; Cederström, Björn; Lundqvist, Mats; Fredenberg, Erik

    2018-02-01

    Digital breast tomosynthesis (DBT) is an emerging tool for breast-cancer screening and diagnostics. The purpose of this study is to present a second-generation photon-counting slit-scanning DBT system and compare it to the first-generation system in terms of geometry and image quality. The study presents the first image-quality measurements on the second-generation system. The geometry of the new system is based on a combined rotational and linear motion, in contrast to a purely rotational scan motion in the first generation. In addition, the calibration routines have been updated. Image quality was measured in the center of the image field in terms of in-slice modulation transfer function (MTF), artifact spread function (ASF), and in-slice detective quantum efficiency (DQE). Images were acquired using a W/Al 29 kVp spectrum at 13 mAs with 2 mm Al additional filtration and reconstructed using simple back-projection. The in-slice 50% MTF was improved in the chest-mammilla direction, going from 3.2 to 3.5 lp/mm, and the zero-frequency DQE increased from 0.71 to 0.77. The MTF and ASF were otherwise found to be on par for the two systems. The new system has reduced in-slice variation of the tomographic angle. The new geometry is less curved, which reduces in-slice tomographic-angle variation, and increases the maximum compression height, making the system accessible for a larger population. The improvements in MTF and DQE were attributed to the updated calibration procedures. We conclude that the second-generation system maintains the key features of the photon-counting system while maintaining or improving image quality and improving the maximum compression height. © 2017 American Association of Physicists in Medicine.

  5. Comparison and evaluation on image fusion methods for GaoFen-1 imagery

    NASA Astrophysics Data System (ADS)

    Zhang, Ningyu; Zhao, Junqing; Zhang, Ling

    2016-10-01

    Currently, there are many research works focusing on the best fusion method suitable for satellite images of SPOT, QuickBird, Landsat and so on, but only a few of them discuss the application of GaoFen-1 satellite images. This paper proposes a novel idea by using four fusion methods, such as principal component analysis transform, Brovey transform, hue-saturation-value transform, and Gram-Schmidt transform, from the perspective of keeping the original image spectral information. The experimental results showed that the transformed images by the four fusion methods not only retain high spatial resolution on panchromatic band but also have the abundant spectral information. Through comparison and evaluation, the integration of Brovey transform is better, but the color fidelity is not the premium. The brightness and color distortion in hue saturation-value transformed image is the largest. Principal component analysis transform did a good job in color fidelity, but its clarity still need improvement. Gram-Schmidt transform works best in color fidelity, and the edge of the vegetation is the most obvious, the fused image sharpness is higher than that of principal component analysis. Brovey transform, is suitable for distinguishing the Gram-Schmidt transform, and the most appropriate for GaoFen-1 satellite image in vegetation and non-vegetation area. In brief, different fusion methods have different advantages in image quality and class extraction, and should be used according to the actual application information and image fusion algorithm.

  6. Stereotactic radiation treatment planning and follow-up studies involving fused multimodality imaging.

    PubMed

    Hamm, Klaus D; Surber, Gunnar; Schmücking, Michael; Wurm, Reinhard E; Aschenbach, Rene; Kleinert, Gabriele; Niesen, A; Baum, Richard P

    2004-11-01

    Innovative new software solutions may enable image fusion to produce the desired data superposition for precise target definition and follow-up studies in radiosurgery/stereotactic radiotherapy in patients with intracranial lesions. The aim is to integrate the anatomical and functional information completely into the radiation treatment planning and to achieve an exact comparison for follow-up examinations. Special conditions and advantages of BrainLAB's fully automatic image fusion system are evaluated and described for this purpose. In 458 patients, the radiation treatment planning and some follow-up studies were performed using an automatic image fusion technique involving the use of different imaging modalities. Each fusion was visually checked and corrected as necessary. The computerized tomography (CT) scans for radiation treatment planning (slice thickness 1.25 mm), as well as stereotactic angiography for arteriovenous malformations, were acquired using head fixation with stereotactic arc or, in the case of stereotactic radiotherapy, with a relocatable stereotactic mask. Different magnetic resonance (MR) imaging sequences (T1, T2, and fluid-attenuated inversion-recovery images) and positron emission tomography (PET) scans were obtained without head fixation. Fusion results and the effects on radiation treatment planning and follow-up studies were analyzed. The precision level of the results of the automatic fusion depended primarily on the image quality, especially the slice thickness and the field homogeneity when using MR images, as well as on patient movement during data acquisition. Fully automated image fusion of different MR, CT, and PET studies was performed for each patient. Only in a few cases was it necessary to correct the fusion manually after visual evaluation. These corrections were minor and did not materially affect treatment planning. High-quality fusion of thin slices of a region of interest with a complete head data set could be performed easily. The target volume for radiation treatment planning could be accurately delineated using multimodal information provided by CT, MR, angiography, and PET studies. The fusion of follow-up image data sets yielded results that could be successfully compared and quantitatively evaluated. Depending on the quality of the originally acquired image, automated image fusion can be a very valuable tool, allowing for fast (approximately 1-2 minute) and precise fusion of all relevant data sets. Fused multimodality imaging improves the target volume definition for radiation treatment planning. High-quality follow-up image data sets should be acquired for image fusion to provide exactly comparable slices and volumetric results that will contribute to quality contol.

  7. Low Dose PET Image Reconstruction with Total Variation Using Alternating Direction Method.

    PubMed

    Yu, Xingjian; Wang, Chenye; Hu, Hongjie; Liu, Huafeng

    2016-01-01

    In this paper, a total variation (TV) minimization strategy is proposed to overcome the problem of sparse spatial resolution and large amounts of noise in low dose positron emission tomography (PET) imaging reconstruction. Two types of objective function were established based on two statistical models of measured PET data, least-square (LS) TV for the Gaussian distribution and Poisson-TV for the Poisson distribution. To efficiently obtain high quality reconstructed images, the alternating direction method (ADM) is used to solve these objective functions. As compared with the iterative shrinkage/thresholding (IST) based algorithms, the proposed ADM can make full use of the TV constraint and its convergence rate is faster. The performance of the proposed approach is validated through comparisons with the expectation-maximization (EM) method using synthetic and experimental biological data. In the comparisons, the results of both LS-TV and Poisson-TV are taken into consideration to find which models are more suitable for PET imaging, in particular low-dose PET. To evaluate the results quantitatively, we computed bias, variance, and the contrast recovery coefficient (CRC) and drew profiles of the reconstructed images produced by the different methods. The results show that both Poisson-TV and LS-TV can provide a high visual quality at a low dose level. The bias and variance of the proposed LS-TV and Poisson-TV methods are 20% to 74% less at all counting levels than those of the EM method. Poisson-TV gives the best performance in terms of high-accuracy reconstruction with the lowest bias and variance as compared to the ground truth (14.3% less bias and 21.9% less variance). In contrast, LS-TV gives the best performance in terms of the high contrast of the reconstruction with the highest CRC.

  8. Low Dose PET Image Reconstruction with Total Variation Using Alternating Direction Method

    PubMed Central

    Yu, Xingjian; Wang, Chenye; Hu, Hongjie; Liu, Huafeng

    2016-01-01

    In this paper, a total variation (TV) minimization strategy is proposed to overcome the problem of sparse spatial resolution and large amounts of noise in low dose positron emission tomography (PET) imaging reconstruction. Two types of objective function were established based on two statistical models of measured PET data, least-square (LS) TV for the Gaussian distribution and Poisson-TV for the Poisson distribution. To efficiently obtain high quality reconstructed images, the alternating direction method (ADM) is used to solve these objective functions. As compared with the iterative shrinkage/thresholding (IST) based algorithms, the proposed ADM can make full use of the TV constraint and its convergence rate is faster. The performance of the proposed approach is validated through comparisons with the expectation-maximization (EM) method using synthetic and experimental biological data. In the comparisons, the results of both LS-TV and Poisson-TV are taken into consideration to find which models are more suitable for PET imaging, in particular low-dose PET. To evaluate the results quantitatively, we computed bias, variance, and the contrast recovery coefficient (CRC) and drew profiles of the reconstructed images produced by the different methods. The results show that both Poisson-TV and LS-TV can provide a high visual quality at a low dose level. The bias and variance of the proposed LS-TV and Poisson-TV methods are 20% to 74% less at all counting levels than those of the EM method. Poisson-TV gives the best performance in terms of high-accuracy reconstruction with the lowest bias and variance as compared to the ground truth (14.3% less bias and 21.9% less variance). In contrast, LS-TV gives the best performance in terms of the high contrast of the reconstruction with the highest CRC. PMID:28005929

  9. Explicit area-based accuracy assessment for mangrove tree crown delineation using Geographic Object-Based Image Analysis (GEOBIA)

    NASA Astrophysics Data System (ADS)

    Kamal, Muhammad; Johansen, Kasper

    2017-10-01

    Effective mangrove management requires spatially explicit information of mangrove tree crown map as a basis for ecosystem diversity study and health assessment. Accuracy assessment is an integral part of any mapping activities to measure the effectiveness of the classification approach. In geographic object-based image analysis (GEOBIA) the assessment of the geometric accuracy (shape, symmetry and location) of the created image objects from image segmentation is required. In this study we used an explicit area-based accuracy assessment to measure the degree of similarity between the results of the classification and reference data from different aspects, including overall quality (OQ), user's accuracy (UA), producer's accuracy (PA) and overall accuracy (OA). We developed a rule set to delineate the mangrove tree crown using WorldView-2 pan-sharpened image. The reference map was obtained by visual delineation of the mangrove tree crowns boundaries form a very high-spatial resolution aerial photograph (7.5cm pixel size). Ten random points with a 10 m radius circular buffer were created to calculate the area-based accuracy assessment. The resulting circular polygons were used to clip both the classified image objects and reference map for area comparisons. In this case, the area-based accuracy assessment resulted 64% and 68% for the OQ and OA, respectively. The overall quality of the calculation results shows the class-related area accuracy; which is the area of correctly classified as tree crowns was 64% out of the total area of tree crowns. On the other hand, the overall accuracy of 68% was calculated as the percentage of all correctly classified classes (tree crowns and canopy gaps) in comparison to the total class area (an entire image). Overall, the area-based accuracy assessment was simple to implement and easy to interpret. It also shows explicitly the omission and commission error variations of object boundary delineation with colour coded polygons.

  10. Dose reduction with adaptive statistical iterative reconstruction for paediatric CT: phantom study and clinical experience on chest and abdomen CT.

    PubMed

    Gay, F; Pavia, Y; Pierrat, N; Lasalle, S; Neuenschwander, S; Brisse, H J

    2014-01-01

    To assess the benefit and limits of iterative reconstruction of paediatric chest and abdominal computed tomography (CT). The study compared adaptive statistical iterative reconstruction (ASIR) with filtered back projection (FBP) on 64-channel MDCT. A phantom study was first performed using variable tube potential, tube current and ASIR settings. The assessed image quality indices were the signal-to-noise ratio (SNR), the noise power spectrum, low contrast detectability (LCD) and spatial resolution. A clinical retrospective study of 26 children (M:F = 14/12, mean age: 4 years, range: 1-9 years) was secondarily performed allowing comparison of 18 chest and 14 abdominal CT pairs, one with a routine CT dose and FBP reconstruction, and the other with 30 % lower dose and 40 % ASIR reconstruction. Two radiologists independently compared the images for overall image quality, noise, sharpness and artefacts, and measured image noise. The phantom study demonstrated a significant increase in SNR without impairment of the LCD or spatial resolution, except for tube current values below 30-50 mA. On clinical images, no significant difference was observed between FBP and reduced dose ASIR images. Iterative reconstruction allows at least 30 % dose reduction in paediatric chest and abdominal CT, without impairment of image quality. • Iterative reconstruction helps lower radiation exposure levels in children undergoing CT. • Adaptive statistical iterative reconstruction (ASIR) significantly increases SNR without impairing spatial resolution. • For abdomen and chest CT, ASIR allows at least a 30 % dose reduction.

  11. Cervical soft tissue imaging using a mobile CBCT scanner with a flat panel detector in comparison with corresponding CT and MRI data sets.

    PubMed

    Heiland, Max; Pohlenz, Philipp; Blessmann, Marco; Habermann, Christian R; Oesterhelweg, Lars; Begemann, Philipp C; Schmidgunst, Christian; Blake, Felix A S; Püschel, Klaus; Schmelzle, Rainer; Schulze, Dirk

    2007-12-01

    The aim of this study was to evaluate soft tissue image quality of a mobile cone-beam computed tomography (CBCT) scanner with an integrated flat-panel detector. Eight fresh human cadavers were used in this study. For evaluation of soft tissue visualization, CBCT data sets and corresponding computed tomography (CT) and magnetic resonance imaging (MRI) data sets were acquired. Evaluation was performed with the help of 10 defined cervical anatomical structures. The statistical analysis of the scoring results of 3 examiners revealed the CBCT images to be of inferior quality regarding the visualization of most of the predefined structures. Visualization without a significant difference was found regarding the demarcation of the vertebral bodies and the pyramidal cartilages, the arteriosclerosis of the carotids (compared with CT), and the laryngeal skeleton (compared with MRI). Regarding arteriosclerosis of the carotids compared with MRI, CBCT proved to be superior. The integration of a flat-panel detector improves soft tissue visualization using a mobile CBCT scanner.

  12. Image formation simulation for computer-aided inspection planning of machine vision systems

    NASA Astrophysics Data System (ADS)

    Irgenfried, Stephan; Bergmann, Stephan; Mohammadikaji, Mahsa; Beyerer, Jürgen; Dachsbacher, Carsten; Wörn, Heinz

    2017-06-01

    In this work, a simulation toolset for Computer Aided Inspection Planning (CAIP) of systems for automated optical inspection (AOI) is presented along with a versatile two-robot-setup for verification of simulation and system planning results. The toolset helps to narrow down the large design space of optical inspection systems in interaction with a system expert. The image formation taking place in optical inspection systems is simulated using GPU-based real time graphics and high quality off-line-rendering. The simulation pipeline allows a stepwise optimization of the system, from fast evaluation of surface patch visibility based on real time graphics up to evaluation of image processing results based on off-line global illumination calculation. A focus of this work is on the dependency of simulation quality on measuring, modeling and parameterizing the optical surface properties of the object to be inspected. The applicability to real world problems is demonstrated by taking the example of planning a 3D laser scanner application. Qualitative and quantitative comparison results of synthetic and real images are presented.

  13. MR imaging of meniscal tears: comparison of intermediate-weighted FRFSE imaging with intermediate-weighted FSE imaging.

    PubMed

    Tokuda, Osamu; Harada, Yuko; Ueda, Takaaki; Iida, Etsushi; Shiraishi, Gen; Motomura, Tetsuhisa; Fukuda, Kouji; Matsunaga, Naofumi

    2012-11-01

    We compared intermediate-weighted fast spin-echo (IW-FSE) images with intermediate-weighted fast-recovery FSE (IW-FRFSE) images in the diagnosis of meniscal tears. First, 64 patients were recruited, and the arthroscopic findings (n = 40) and image analysis (n = 19) identified 59 torn menisci with 36 patients. Both the diagnostic performance and image quality in assessing meniscal tears was evaluated for IW-FSE and IW-FRFSE images using a four-point scale. Signal-to-noise ratio (SNR) calculation was performed for both sets of images. IW-FRFSE image specificity (100 %) for diagnosing the posterior horn of the medial meniscus (MM) tear with reader 1 was significantly higher than that of IW-FSE images (90 %). Mean ratings of the contrast between the lesion and normal signal intensity within the meniscus were significantly higher for the IW-FRFSE image ratings than the IW-FSE images in most meniscal tears. Mean SNRs were significantly higher for IW-FSE images than for IW-FRFSE images (P < 0.05). IW-FRFSE imaging can be used as an alternative to the IW-FSE imaging to evaluate meniscal tears.

  14. Forensic Comparison and Matching of Fingerprints: Using Quantitative Image Measures for Estimating Error Rates through Understanding and Predicting Difficulty

    PubMed Central

    Kellman, Philip J.; Mnookin, Jennifer L.; Erlikhman, Gennady; Garrigan, Patrick; Ghose, Tandra; Mettler, Everett; Charlton, David; Dror, Itiel E.

    2014-01-01

    Latent fingerprint examination is a complex task that, despite advances in image processing, still fundamentally depends on the visual judgments of highly trained human examiners. Fingerprints collected from crime scenes typically contain less information than fingerprints collected under controlled conditions. Specifically, they are often noisy and distorted and may contain only a portion of the total fingerprint area. Expertise in fingerprint comparison, like other forms of perceptual expertise, such as face recognition or aircraft identification, depends on perceptual learning processes that lead to the discovery of features and relations that matter in comparing prints. Relatively little is known about the perceptual processes involved in making comparisons, and even less is known about what characteristics of fingerprint pairs make particular comparisons easy or difficult. We measured expert examiner performance and judgments of difficulty and confidence on a new fingerprint database. We developed a number of quantitative measures of image characteristics and used multiple regression techniques to discover objective predictors of error as well as perceived difficulty and confidence. A number of useful predictors emerged, and these included variables related to image quality metrics, such as intensity and contrast information, as well as measures of information quantity, such as the total fingerprint area. Also included were configural features that fingerprint experts have noted, such as the presence and clarity of global features and fingerprint ridges. Within the constraints of the overall low error rates of experts, a regression model incorporating the derived predictors demonstrated reasonable success in predicting objective difficulty for print pairs, as shown both in goodness of fit measures to the original data set and in a cross validation test. The results indicate the plausibility of using objective image metrics to predict expert performance and subjective assessment of difficulty in fingerprint comparisons. PMID:24788812

  15. Comparison among Reconstruction Algorithms for Quantitative Analysis of 11C-Acetate Cardiac PET Imaging.

    PubMed

    Shi, Ximin; Li, Nan; Ding, Haiyan; Dang, Yonghong; Hu, Guilan; Liu, Shuai; Cui, Jie; Zhang, Yue; Li, Fang; Zhang, Hui; Huo, Li

    2018-01-01

    Kinetic modeling of dynamic 11 C-acetate PET imaging provides quantitative information for myocardium assessment. The quality and quantitation of PET images are known to be dependent on PET reconstruction methods. This study aims to investigate the impacts of reconstruction algorithms on the quantitative analysis of dynamic 11 C-acetate cardiac PET imaging. Suspected alcoholic cardiomyopathy patients ( N = 24) underwent 11 C-acetate dynamic PET imaging after low dose CT scan. PET images were reconstructed using four algorithms: filtered backprojection (FBP), ordered subsets expectation maximization (OSEM), OSEM with time-of-flight (TOF), and OSEM with both time-of-flight and point-spread-function (TPSF). Standardized uptake values (SUVs) at different time points were compared among images reconstructed using the four algorithms. Time-activity curves (TACs) in myocardium and blood pools of ventricles were generated from the dynamic image series. Kinetic parameters K 1 and k 2 were derived using a 1-tissue-compartment model for kinetic modeling of cardiac flow from 11 C-acetate PET images. Significant image quality improvement was found in the images reconstructed using iterative OSEM-type algorithms (OSME, TOF, and TPSF) compared with FBP. However, no statistical differences in SUVs were observed among the four reconstruction methods at the selected time points. Kinetic parameters K 1 and k 2 also exhibited no statistical difference among the four reconstruction algorithms in terms of mean value and standard deviation. However, for the correlation analysis, OSEM reconstruction presented relatively higher residual in correlation with FBP reconstruction compared with TOF and TPSF reconstruction, and TOF and TPSF reconstruction were highly correlated with each other. All the tested reconstruction algorithms performed similarly for quantitative analysis of 11 C-acetate cardiac PET imaging. TOF and TPSF yielded highly consistent kinetic parameter results with superior image quality compared with FBP. OSEM was relatively less reliable. Both TOF and TPSF were recommended for cardiac 11 C-acetate kinetic analysis.

  16. Diffusion Tensor Imaging of Lumbar Nerve Roots: Comparison Between Fast Readout-Segmented and Selective-Excitation Acquisitions.

    PubMed

    Manoliu, Andrei; Ho, Michael; Nanz, Daniel; Piccirelli, Marco; Dappa, Evelyn; Klarhöfer, Markus; Del Grande, Filippo; Kuhn, Felix Pierre

    2016-08-01

    The aim of this study was to compare the quality of recently emerged advanced diffusion tensor imaging (DTI) techniques with conventional single-shot echo-planar imaging (EPI) in a functional assessment of lumbar nerve roots. The institutional review board approved the study including 12 healthy volunteers. Diffusion tensor imaging was performed at 3 T (MAGNETOM Skyra; Siemens Healthcare) with b-values of 0 and 700 s/mm and an isotropic spatial resolution for subsequent multiplanar reformatting. The nerve roots L2 to S1 were imaged in coronal orientation with readout-segmented EPI (rs-DTI) and selective-excitation EPI (sTX-DTI) with an acquisition time of 5 minutes each, and in axial orientation with single-shot EPI (ss-DTI) with an acquisition time of 12 minutes (scan parameters as in recent literature). Two independent readers qualitatively and quantitatively assessed image quality. The interobserver reliability ranged from "substantial" to "almost perfect" for all examined parameter and all 3 sequences (κ = 0.70-0.94). Overall image quality was rated higher, and artifact levels were scored lower for rs-DTI and sTX-DTI than for ss-DTI (P = 0.007-0.027), while fractional anisotropy and signal-to-noise ratio values were similar for all sequences (P ≥ 0.306 and P ≥ 0.100, respectively). Contrast-to-noise ratios were significantly higher for rs-DTI and ss-DTI than for sTX-DTI (P = 0.004-0.013). Despite shorter acquisition times, rs-DTI and sTX-DTI produced images of higher quality with smaller geometrical distortions than the current standard of reference, ss-DTI. Thus, DTI acquisitions in the coronal plane, requiring fewer slices for full coverage of exiting nerve roots, may allow for functional neurography in scan times suitable for routine clinical practice.

  17. Optimising diffusion-weighted MR imaging for demonstrating pancreatic cancer: a comparison of respiratory-triggered, free-breathing and breath-hold techniques.

    PubMed

    Kartalis, Nikolaos; Loizou, Louiza; Edsborg, Nick; Segersvärd, Ralf; Albiin, Nils

    2012-10-01

    To compare respiratory-triggered, free-breathing, and breath-hold DWI techniques regarding (1) image quality, and (2) signal intensity (SI) and ADC measurements in pancreatic ductal adenocarcinoma (PDAC). Fifteen patients with histopathologically proven PDAC underwent DWI prospectively at 1.5 T (b = 0, 50, 300, 600 and 1,000 s/mm(2)) with the three techniques. Two radiologists, independently and blindly, assigned total image quality scores [sum of rating diffusion images (lesion detection, anatomy, presence of artefacts) and ADC maps (lesion characterisation, overall image quality)] per technique and ranked them. The lesion SI, signal-to-noise ratio, mean ADC and coefficient of variation (CV) were compared. Total image quality scores for respiratory-triggered, free-breathing and breath-hold techniques were 17.9, 16.5 and 17.1 respectively (respiratory-triggered was significantly higher than free-breathing but not breath-hold). The respiratory-triggered technique had a significantly higher ranking. Lesion SI on all b-values and signal-to-noise ratio on b300 and b600 were significantly higher for the respiratory-triggered technique. For respiratory-triggered, free-breathing and breath-hold techniques the mean ADCs were 1.201, 1.132 and 1.253 × 10(-3) mm(2)/s, and mean CVs were 8.9, 10.8 and 14.1 % respectively (respiratory-triggered and free-breathing techniques had a significantly lower mean CV than the breath-hold technique). In both analyses, respiratory-triggered DWI showed superiority and seems the optimal DWI technique for demonstrating PDAC. • Diffusion-weighted magnetic resonance imaging is increasingly used to detect pancreatic cancer • Images are acquired using various breathing techniques and multiple b-values • Breathing techniques used: respiratory-triggering, free-breathing and breath-hold • Respiratory-triggering seems the optimal breathing technique for demonstrating pancreatic cancer.

  18. The combination of a reduction in contrast agent dose with low tube voltage and an adaptive statistical iterative reconstruction algorithm in CT enterography: Effects on image quality and radiation dose.

    PubMed

    Feng, Cui; Zhu, Di; Zou, Xianlun; Li, Anqin; Hu, Xuemei; Li, Zhen; Hu, Daoyu

    2018-03-01

    To investigate the subjective and quantitative image quality and radiation exposure of CT enterography (CTE) examination performed at low tube voltage and low concentration of contrast agent with adaptive statistical iterative reconstruction (ASIR) algorithm, compared with conventional CTE.One hundred thirty-seven patients with suspected or proved gastrointestinal diseases underwent contrast enhanced CTE in a multidetector computed tomography (MDCT) scanner. All cases were assigned to 2 groups. Group A (n = 79) underwent CT with low tube voltage based on patient body mass index (BMI) (BMI < 23 kg/m, 80 kVp; BMI ≥ 23 kg/m, 100 kVp) and low concentration of contrast agent (270 mg I/mL), the images were reconstructed with standard filtered back projection (FBP) algorithm and 50% ASIR algorithm. Group B (n = 58) underwent conventional CTE with 120 kVp and 350 mg I/mL contrast agent, the images were reconstructed with FBP algorithm. The computed tomography dose index volume (CTDIvol), dose length product (DLP), effective dose (ED), and total iodine dosage were calculated and compared. The CT values, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR) of the normal bowel wall, gastrointestinal lesions, and mesenteric vessels were assessed and compared. The subjective image quality was assessed independently and blindly by 2 radiologists using a 5-point Likert scale.The differences of values for CTDIvol (8.64 ± 2.72 vs 11.55 ± 3.95, P < .001), ED (6.34 ± 2.24 vs 8.52 ± 3.02, P < .001), and DLP (422.6 ± 149.40 vs 568.30 ± 213.90, P < .001) were significant between group A and group B, with a reduction of 25.2%, 25.7%, and 25.7% in group A, respectively. The total iodine dosage in group A was reduced by 26.1%. The subjective image quality did not differ between the 2 groups (P > .05) and all image quality scores were greater than or equal to 3 (moderate). Fifty percent ASIR-A group images provided lower image noise, but similar or higher quantitative image quality in comparison with FBP-B group images.Compared with the conventional protocol, CTE performed at low tube voltage, low concentration of contrast agent with 50% ASIR algorithm produce a diagnostically acceptable image quality with a mean ED of 6.34 mSv and a total iodine dose reduction of 26.1%.

  19. Two-step superresolution approach for surveillance face image through radial basis function-partial least squares regression and locality-induced sparse representation

    NASA Astrophysics Data System (ADS)

    Jiang, Junjun; Hu, Ruimin; Han, Zhen; Wang, Zhongyuan; Chen, Jun

    2013-10-01

    Face superresolution (SR), or face hallucination, refers to the technique of generating a high-resolution (HR) face image from a low-resolution (LR) one with the help of a set of training examples. It aims at transcending the limitations of electronic imaging systems. Applications of face SR include video surveillance, in which the individual of interest is often far from cameras. A two-step method is proposed to infer a high-quality and HR face image from a low-quality and LR observation. First, we establish the nonlinear relationship between LR face images and HR ones, according to radial basis function and partial least squares (RBF-PLS) regression, to transform the LR face into the global face space. Then, a locality-induced sparse representation (LiSR) approach is presented to enhance the local facial details once all the global faces for each LR training face are constructed. A comparison of some state-of-the-art SR methods shows the superiority of the proposed two-step approach, RBF-PLS global face regression followed by LiSR-based local patch reconstruction. Experiments also demonstrate the effectiveness under both simulation conditions and some real conditions.

  20. A review of consensus test methods for established medical imaging modalities and their implications for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Pfefer, Joshua; Agrawal, Anant

    2012-03-01

    In recent years there has been increasing interest in development of consensus, tissue-phantom-based approaches for assessment of biophotonic imaging systems, with the primary goal of facilitating clinical translation of novel optical technologies. Well-characterized test methods based on tissue phantoms can provide useful tools for performance assessment, thus enabling standardization and device inter-comparison during preclinical development as well as quality assurance and re-calibration in the clinical setting. In this review, we study the role of phantom-based test methods as described in consensus documents such as international standards for established imaging modalities including X-ray CT, MRI and ultrasound. Specifically, we focus on three image quality characteristics - spatial resolution, spatial measurement accuracy and image uniformity - and summarize the terminology, metrics, phantom design/construction approaches and measurement/analysis procedures used to assess these characteristics. Phantom approaches described are those in routine clinical use and tend to have simplified morphology and biologically-relevant physical parameters. Finally, we discuss the potential for applying knowledge gained from existing consensus documents in the development of standardized, phantom-based test methods for optical coherence tomography.

  1. Sub-band denoising and spline curve fitting method for hemodynamic measurement in perfusion MRI

    NASA Astrophysics Data System (ADS)

    Lin, Hong-Dun; Huang, Hsiao-Ling; Hsu, Yuan-Yu; Chen, Chi-Chen; Chen, Ing-Yi; Wu, Liang-Chi; Liu, Ren-Shyan; Lin, Kang-Ping

    2003-05-01

    In clinical research, non-invasive MR perfusion imaging is capable of investigating brain perfusion phenomenon via various hemodynamic measurements, such as cerebral blood volume (CBV), cerebral blood flow (CBF), and mean trasnit time (MTT). These hemodynamic parameters are useful in diagnosing brain disorders such as stroke, infarction and periinfarct ischemia by further semi-quantitative analysis. However, the accuracy of quantitative analysis is usually affected by poor signal-to-noise ratio image quality. In this paper, we propose a hemodynamic measurement method based upon sub-band denoising and spline curve fitting processes to improve image quality for better hemodynamic quantitative analysis results. Ten sets of perfusion MRI data and corresponding PET images were used to validate the performance. For quantitative comparison, we evaluate gray/white matter CBF ratio. As a result, the hemodynamic semi-quantitative analysis result of mean gray to white matter CBF ratio is 2.10 +/- 0.34. The evaluated ratio of brain tissues in perfusion MRI is comparable to PET technique is less than 1-% difference in average. Furthermore, the method features excellent noise reduction and boundary preserving in image processing, and short hemodynamic measurement time.

  2. Inverse scattering pre-stack depth imaging and it's comparison to some depth migration methods for imaging rich fault complex structure

    NASA Astrophysics Data System (ADS)

    Nurhandoko, Bagus Endar B.; Sukmana, Indriani; Mubarok, Syahrul; Deny, Agus; Widowati, Sri; Kurniadi, Rizal

    2012-06-01

    Migration is important issue for seismic imaging in complex structure. In this decade, depth imaging becomes important tools for producing accurate image in depth imaging instead of time domain imaging. The challenge of depth migration method, however, is in revealing the complex structure of subsurface. There are many methods of depth migration with their advantages and weaknesses. In this paper, we show our propose method of pre-stack depth migration based on time domain inverse scattering wave equation. Hopefully this method can be as solution for imaging complex structure in Indonesia, especially in rich thrusting fault zones. In this research, we develop a recent advance wave equation migration based on time domain inverse scattering wave which use more natural wave propagation using scattering wave. This wave equation pre-stack depth migration use time domain inverse scattering wave equation based on Helmholtz equation. To provide true amplitude recovery, an inverse of divergence procedure and recovering transmission loss are considered of pre-stack migration. Benchmarking the propose inverse scattering pre-stack depth migration with the other migration methods are also presented, i.e.: wave equation pre-stack depth migration, waveequation depth migration, and pre-stack time migration method. This inverse scattering pre-stack depth migration could image successfully the rich fault zone which consist extremely dip and resulting superior quality of seismic image. The image quality of inverse scattering migration is much better than the others migration methods.

  3. Clinical evaluation of JPEG2000 compression for digital mammography

    NASA Astrophysics Data System (ADS)

    Sung, Min-Mo; Kim, Hee-Joung; Kim, Eun-Kyung; Kwak, Jin-Young; Yoo, Jae-Kyung; Yoo, Hyung-Sik

    2002-06-01

    Medical images, such as computed radiography (CR), and digital mammographic images will require large storage facilities and long transmission times for picture archiving and communications system (PACS) implementation. American College of Radiology and National Equipment Manufacturers Association (ACR/NEMA) group is planning to adopt a JPEG2000 compression algorithm in digital imaging and communications in medicine (DICOM) standard to better utilize medical images. The purpose of the study was to evaluate the compression ratios of JPEG2000 for digital mammographic images using peak signal-to-noise ratio (PSNR), receiver operating characteristic (ROC) analysis, and the t-test. The traditional statistical quality measures such as PSNR, which is a commonly used measure for the evaluation of reconstructed images, measures how the reconstructed image differs from the original by making pixel-by-pixel comparisons. The ability to accurately discriminate diseased cases from normal cases is evaluated using ROC curve analysis. ROC curves can be used to compare the diagnostic performance of two or more reconstructed images. The t test can be also used to evaluate the subjective image quality of reconstructed images. The results of the t test suggested that the possible compression ratios using JPEG2000 for digital mammographic images may be as much as 15:1 without visual loss or with preserving significant medical information at a confidence level of 99%, although both PSNR and ROC analyses suggest as much as 80:1 compression ratio can be achieved without affecting clinical diagnostic performance.

  4. The adaptive statistical iterative reconstruction-V technique for radiation dose reduction in abdominal CT: comparison with the adaptive statistical iterative reconstruction technique.

    PubMed

    Kwon, Heejin; Cho, Jinhan; Oh, Jongyeong; Kim, Dongwon; Cho, Junghyun; Kim, Sanghyun; Lee, Sangyun; Lee, Jihyun

    2015-10-01

    To investigate whether reduced radiation dose abdominal CT images reconstructed with adaptive statistical iterative reconstruction V (ASIR-V) compromise the depiction of clinically competent features when compared with the currently used routine radiation dose CT images reconstructed with ASIR. 27 consecutive patients (mean body mass index: 23.55 kg m(-2) underwent CT of the abdomen at two time points. At the first time point, abdominal CT was scanned at 21.45 noise index levels of automatic current modulation at 120 kV. Images were reconstructed with 40% ASIR, the routine protocol of Dong-A University Hospital. At the second time point, follow-up scans were performed at 30 noise index levels. Images were reconstructed with filtered back projection (FBP), 40% ASIR, 30% ASIR-V, 50% ASIR-V and 70% ASIR-V for the reduced radiation dose. Both quantitative and qualitative analyses of image quality were conducted. The CT dose index was also recorded. At the follow-up study, the mean dose reduction relative to the currently used common radiation dose was 35.37% (range: 19-49%). The overall subjective image quality and diagnostic acceptability of the 50% ASIR-V scores at the reduced radiation dose were nearly identical to those recorded when using the initial routine-dose CT with 40% ASIR. Subjective ratings of the qualitative analysis revealed that of all reduced radiation dose CT series reconstructed, 30% ASIR-V and 50% ASIR-V were associated with higher image quality with lower noise and artefacts as well as good sharpness when compared with 40% ASIR and FBP. However, the sharpness score at 70% ASIR-V was considered to be worse than that at 40% ASIR. Objective image noise for 50% ASIR-V was 34.24% and 46.34% which was lower than 40% ASIR and FBP. Abdominal CT images reconstructed with ASIR-V facilitate radiation dose reductions of to 35% when compared with the ASIR. This study represents the first clinical research experiment to use ASIR-V, the newest version of iterative reconstruction. Use of the ASIR-V algorithm decreased image noise and increased image quality when compared with the ASIR and FBP methods. These results suggest that high-quality low-dose CT may represent a new clinical option.

  5. The adaptive statistical iterative reconstruction-V technique for radiation dose reduction in abdominal CT: comparison with the adaptive statistical iterative reconstruction technique

    PubMed Central

    Cho, Jinhan; Oh, Jongyeong; Kim, Dongwon; Cho, Junghyun; Kim, Sanghyun; Lee, Sangyun; Lee, Jihyun

    2015-01-01

    Objective: To investigate whether reduced radiation dose abdominal CT images reconstructed with adaptive statistical iterative reconstruction V (ASIR-V) compromise the depiction of clinically competent features when compared with the currently used routine radiation dose CT images reconstructed with ASIR. Methods: 27 consecutive patients (mean body mass index: 23.55 kg m−2 underwent CT of the abdomen at two time points. At the first time point, abdominal CT was scanned at 21.45 noise index levels of automatic current modulation at 120 kV. Images were reconstructed with 40% ASIR, the routine protocol of Dong-A University Hospital. At the second time point, follow-up scans were performed at 30 noise index levels. Images were reconstructed with filtered back projection (FBP), 40% ASIR, 30% ASIR-V, 50% ASIR-V and 70% ASIR-V for the reduced radiation dose. Both quantitative and qualitative analyses of image quality were conducted. The CT dose index was also recorded. Results: At the follow-up study, the mean dose reduction relative to the currently used common radiation dose was 35.37% (range: 19–49%). The overall subjective image quality and diagnostic acceptability of the 50% ASIR-V scores at the reduced radiation dose were nearly identical to those recorded when using the initial routine-dose CT with 40% ASIR. Subjective ratings of the qualitative analysis revealed that of all reduced radiation dose CT series reconstructed, 30% ASIR-V and 50% ASIR-V were associated with higher image quality with lower noise and artefacts as well as good sharpness when compared with 40% ASIR and FBP. However, the sharpness score at 70% ASIR-V was considered to be worse than that at 40% ASIR. Objective image noise for 50% ASIR-V was 34.24% and 46.34% which was lower than 40% ASIR and FBP. Conclusion: Abdominal CT images reconstructed with ASIR-V facilitate radiation dose reductions of to 35% when compared with the ASIR. Advances in knowledge: This study represents the first clinical research experiment to use ASIR-V, the newest version of iterative reconstruction. Use of the ASIR-V algorithm decreased image noise and increased image quality when compared with the ASIR and FBP methods. These results suggest that high-quality low-dose CT may represent a new clinical option. PMID:26234823

  6. Single-source chest-abdomen-pelvis cancer staging on a third generation dual-source CT system: comparison of automated tube potential selection to second generation dual-source CT.

    PubMed

    Park, Clara; Gruber-Rouh, Tatjana; Leithner, Doris; Zierden, Amelie; Albrecht, Mortiz H; Wichmann, Julian L; Bodelle, Boris; Elsabaie, Mohamed; Scholtz, Jan-Erik; Kaup, Moritz; Vogl, Thomas J; Beeres, Martin

    2016-10-10

    Evaluation of latest generation automated attenuation-based tube potential selection (ATPS) impact on image quality and radiation dose in contrast-enhanced chest-abdomen-pelvis computed tomography examinations for gynaecologic cancer staging. This IRB approved single-centre, observer-blinded retrospective study with a waiver for informed consent included a total of 100 patients with contrast-enhanced chest-abdomen-pelvis CT for gynaecologic cancer staging. All patients were examined with activated ATPS for adaption of tube voltage to body habitus. 50 patients were scanned on a third-generation dual-source CT (DSCT), and another 50 patients on a second-generation DSCT. Predefined image quality setting remained stable between both groups at 120 kV and a current of 210 Reference mAs. Subjective image quality assessment was performed by two blinded readers independently. Attenuation and image noise were measured in several anatomic structures. Signal-to-noise ratio (SNR) was calculated. For the evaluation of radiation exposure, CT dose index (CTDI vol ) values were compared. Diagnostic image quality was obtained in all patients. The median CTDI vol (6.1 mGy, range 3.9-22 mGy) was 40 % lower when using the algorithm compared with the previous ATCM protocol (median 10.2 mGy · cm, range 5.8-22.8 mGy). A reduction in potential to 90 kV occurred in 19 cases, a reduction to 100 kV in 23 patients and a reduction to 110 kV in 3 patients of our experimental cohort. These patients received significantly lower radiation exposure compared to the former used protocol. Latest generation automated ATPS on third-generation DSCT provides good diagnostic image quality in chest-abdomen-pelvis CT while average radiation dose is reduced by 40 % compared to former ATPS protocol on second-generation DSCT.

  7. Comparison of the quality of different magnetic resonance image sequences of multiple myeloma.

    PubMed

    Sun, Zhao-yong; Zhang, Hai-bo; Li, Shuo; Wang, Yun; Xue, Hua-dan; Jin, Zheng-yu

    2015-02-01

    To compare the image quality of T1WI fat phase,T1WI water phase, short time inversion recovery (STIR) sequence, and diffusion weighted imaging (DWI) sequence in the evaluation of multiple myeloma (MM). Totally 20MM patients were enrolled in this study. All patients underwent scanning at coronal T1WI fat phase, coronal T1WI water phase, coronal STIR sequence, and axial DWI sequence. The image quality of the four different sequences was evaluated. The image was divided into seven sections(head and neck, chest, abdomen, pelvis, thigh, leg, and foot), and the signal-to-noise ratio (SNR) of each section was measured at 7 segments (skull, spine, pelvis, humerus, femur, tibia and fibula and ribs) were measured. In addition, 20 active MM lesions were selected, and the contrast-to-noise ratio (CNR) of each scan sequence was calculated. The average image quality scores of T1WI fat phase,T1WI water phase, STIR sequence, and DWI sequence were 4.19 ± 0.70,4.16 ± 0.73,3.89 ± 0.70, and 3.76 ± 0.68, respectively. The image quality at T1-fat phase and T1-water phase were significantly higher than those at STIR (P=0.000 and P=0.001) and DWI sequence (both P=0.000); however, there was no significant difference between T1-fat and T1-water phase (P=0.723)and between STIR and DWI sequence (P=0.167). The SNR of T1WI fat phase was significantly higher than those of the other three sequences (all P=0.000), and there was no significant difference among the other three sequences (all P>0.05). Although the CNR of DWI sequences was slightly higher than those of the other three sequences,there was no significant difference among all of them (all P>0.05). Imaging at T1WI fat phase,T1WI water phase, STIR sequence, and DWI sequence has certain advantages,and they should be combined in the diagnosis of MM.

  8. A framework for directional and higher-order reconstruction in photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Boink, Yoeri E.; Lagerwerf, Marinus J.; Steenbergen, Wiendelt; van Gils, Stephan A.; Manohar, Srirang; Brune, Christoph

    2018-02-01

    Photoacoustic tomography is a hybrid imaging technique that combines high optical tissue contrast with high ultrasound resolution. Direct reconstruction methods such as filtered back-projection, time reversal and least squares suffer from curved line artefacts and blurring, especially in the case of limited angles or strong noise. In recent years, there has been great interest in regularised iterative methods. These methods employ prior knowledge of the image to provide higher quality reconstructions. However, easy comparisons between regularisers and their properties are limited, since many tomography implementations heavily rely on the specific regulariser chosen. To overcome this bottleneck, we present a modular reconstruction framework for photoacoustic tomography, which enables easy comparisons between regularisers with different properties, e.g. nonlinear, higher-order or directional. We solve the underlying minimisation problem with an efficient first-order primal-dual algorithm. Convergence rates are optimised by choosing an operator-dependent preconditioning strategy. A variety of reconstruction methods are tested on challenging 2D synthetic and experimental data sets. They outperform direct reconstruction approaches for strong noise levels and limited angle measurements, offering immediate benefits in terms of acquisition time and quality. This work provides a basic platform for the investigation of future advanced regularisation methods in photoacoustic tomography.

  9. Motion‐related artifacts in structural brain images revealed with independent estimates of in‐scanner head motion

    PubMed Central

    Savalia, Neil K.; Agres, Phillip F.; Chan, Micaela Y.; Feczko, Eric J.; Kennedy, Kristen M.

    2016-01-01

    Abstract Motion‐contaminated T1‐weighted (T1w) magnetic resonance imaging (MRI) results in misestimates of brain structure. Because conventional T1w scans are not collected with direct measures of head motion, a practical alternative is needed to identify potential motion‐induced bias in measures of brain anatomy. Head movements during functional MRI (fMRI) scanning of 266 healthy adults (20–89 years) were analyzed to reveal stable features of in‐scanner head motion. The magnitude of head motion increased with age and exhibited within‐participant stability across different fMRI scans. fMRI head motion was then related to measurements of both quality control (QC) and brain anatomy derived from a T1w structural image from the same scan session. A procedure was adopted to “flag” individuals exhibiting excessive head movement during fMRI or poor T1w quality rating. The flagging procedure reliably reduced the influence of head motion on estimates of gray matter thickness across the cortical surface. Moreover, T1w images from flagged participants exhibited reduced estimates of gray matter thickness and volume in comparison to age‐ and gender‐matched samples, resulting in inflated effect sizes in the relationships between regional anatomical measures and age. Gray matter thickness differences were noted in numerous regions previously reported to undergo prominent atrophy with age. Recommendations are provided for mitigating this potential confound, and highlight how the procedure may lead to more accurate measurement and comparison of anatomical features. Hum Brain Mapp 38:472–492, 2017. © 2016 Wiley Periodicals, Inc. PMID:27634551

  10. Single element ultrasonic imaging of limb geometry: an in-vivo study with comparison to MRI

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Fincke, Jonathan R.; Anthony, Brian W.

    2016-04-01

    Despite advancements in medical imaging, current prosthetic fitting methods remain subjective, operator dependent, and non-repeatable. The standard plaster casting method relies on prosthetist experience and tactile feel of the limb to design the prosthetic socket. Often times, many fitting iterations are required to achieve an acceptable fit. Use of improper socket fittings can lead to painful pathologies including neuromas, inflammation, soft tissue calcification, and pressure sores, often forcing the wearer to into a wheelchair and reducing mobility and quality of life. Computer software along with MRI/CT imaging has already been explored to aid the socket design process. In this paper, we explore the use of ultrasound instead of MRI/CT to accurately obtain the underlying limb geometry to assist the prosthetic socket design process. Using a single element ultrasound system, multiple subjects' proximal limbs were imaged using 1, 2.25, and 5 MHz single element transducers. Each ultrasound transducer was calibrated to ensure acoustic exposure within the limits defined by the FDA. To validate image quality, each patient was also imaged in an MRI. Fiducial markers visible in both MRI and ultrasound were used to compare the same limb cross-sectional image for each patient. After applying a migration algorithm, B-mode ultrasound cross-sections showed sufficiently high image resolution to characterize the skin and bone boundaries along with the underlying tissue structures.

  11. Model-based iterative reconstruction for reduction of radiation dose in abdominopelvic CT: comparison to adaptive statistical iterative reconstruction.

    PubMed

    Yasaka, Koichiro; Katsura, Masaki; Akahane, Masaaki; Sato, Jiro; Matsuda, Izuru; Ohtomo, Kuni

    2013-12-01

    To evaluate dose reduction and image quality of abdominopelvic computed tomography (CT) reconstructed with model-based iterative reconstruction (MBIR) compared to adaptive statistical iterative reconstruction (ASIR). In this prospective study, 85 patients underwent referential-, low-, and ultralow-dose unenhanced abdominopelvic CT. Images were reconstructed with ASIR for low-dose (L-ASIR) and ultralow-dose CT (UL-ASIR), and with MBIR for ultralow-dose CT (UL-MBIR). Image noise was measured in the abdominal aorta and iliopsoas muscle. Subjective image analyses and a lesion detection study (adrenal nodules) were conducted by two blinded radiologists. A reference standard was established by a consensus panel of two different radiologists using referential-dose CT reconstructed with filtered back projection. Compared to low-dose CT, there was a 63% decrease in dose-length product with ultralow-dose CT. UL-MBIR had significantly lower image noise than L-ASIR and UL-ASIR (all p<0.01). UL-MBIR was significantly better for subjective image noise and streak artifacts than L-ASIR and UL-ASIR (all p<0.01). There were no significant differences between UL-MBIR and L-ASIR in diagnostic acceptability (p>0.65), or diagnostic performance for adrenal nodules (p>0.87). MBIR significantly improves image noise and streak artifacts compared to ASIR, and can achieve radiation dose reduction without severely compromising image quality.

  12. Molecular breast imaging using a dedicated high-performance instrument

    NASA Astrophysics Data System (ADS)

    O'Connor, Michael K.; Wagenaar, Douglas; Hruska, Carrie B.; Phillips, Stephen; Caravaglia, Gina; Rhodes, Deborah

    2006-08-01

    In women with radiographically dense breasts, the sensitivity of mammography is less than 50%. With the increase in the percent of women with dense breasts, it is important to look at alternative screening techniques for this population. This article reviews the strengths and weaknesses of current imaging techniques and focuses on recent developments in semiconductor-based gamma camera systems that offer significant improvements in image quality over that achievable with single-crystal sodium iodide systems. We have developed a technique known as Molecular Breast Imaging (MBI) using small field of view Cadmium Zinc Telluride (CZT) gamma cameras that permits the breast to be imaged in a similar manner to mammography, using light pain-free compression. Computer simulations and experimental studies have shown that use of low-energy high sensitivity collimation coupled with the excellent energy resolution and intrinsic spatial resolution of CZT detectors provides optimum image quality for the detection of small breast lesions. Preliminary clinical studies with a prototype dual-detector system have demonstrated that Molecular Breast Imaging has a sensitivity of ~90% for the detection of breast tumors less than 10 mm in diameter. By comparison, conventional scintimammography only achieves a sensitivity of 50% in the detection of lesions < 10 mm. Because Molecular Breast Imaging is not affected by breast density, this technique may offer an important adjunct to mammography in the evaluation of women with dense breast parenchyma.

  13. Enhancement of Satellite Image Compression Using a Hybrid (DWT-DCT) Algorithm

    NASA Astrophysics Data System (ADS)

    Shihab, Halah Saadoon; Shafie, Suhaidi; Ramli, Abdul Rahman; Ahmad, Fauzan

    2017-12-01

    Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) image compression techniques have been utilized in most of the earth observation satellites launched during the last few decades. However, these techniques have some issues that should be addressed. The DWT method has proven to be more efficient than DCT for several reasons. Nevertheless, the DCT can be exploited to improve the high-resolution satellite image compression when combined with the DWT technique. Hence, a proposed hybrid (DWT-DCT) method was developed and implemented in the current work, simulating an image compression system on-board on a small remote sensing satellite, with the aim of achieving a higher compression ratio to decrease the onboard data storage and the downlink bandwidth, while avoiding further complex levels of DWT. This method also succeeded in maintaining the reconstructed satellite image quality through replacing the standard forward DWT thresholding and quantization processes with an alternative process that employed the zero-padding technique, which also helped to reduce the processing time of DWT compression. The DCT, DWT and the proposed hybrid methods were implemented individually, for comparison, on three LANDSAT 8 images, using the MATLAB software package. A comparison was also made between the proposed method and three other previously published hybrid methods. The evaluation of all the objective and subjective results indicated the feasibility of using the proposed hybrid (DWT-DCT) method to enhance the image compression process on-board satellites.

  14. Unenhanced 320-row multidetector computed tomography of the brain in children: comparison of image quality and radiation dose among wide-volume, one-shot volume, and helical scan modes.

    PubMed

    Jeon, Sun Kyung; Choi, Young Hun; Cheon, Jung-Eun; Kim, Woo Sun; Cho, Yeon Jin; Ha, Ji Young; Lee, Seung Hyun; Hyun, Hyejin; Kim, In-One

    2018-04-01

    The 320-row multidetector computed tomography (CT) scanner has multiple scan modes, including volumetric modes. To compare the image quality and radiation dose of 320-row CT in three acquisition modes - helical, one-shot volume, and wide-volume scan - at pediatric brain imaging. Fifty-seven children underwent unenhanced brain CT using one of three scan modes (helical scan, n=21; one-shot volume scan, n=17; wide-volume scan, n=19). For qualitative analysis, two reviewers evaluated overall image quality and image noise using a 5-point grading system. For quantitative analysis, signal-to-noise ratio, image noise and posterior fossa artifact index were calculated. To measure the radiation dose, adjusted CT dose index per unit volume (CTDI adj ) and dose length product (DLP) were compared. Qualitatively, the wide-volume scan showed significantly less image noise than the helical scan (P=0.009), and less streak artifact than the one-shot volume scan (P=0.001). The helical mode showed significantly lower signal-to-noise ratio, with a higher image noise level compared with the one-shot volume and wide-volume modes (all P<0.05). The CTDI adj and DLP were significantly lower in the one-shot volume and wide-volume modes compared with those in the helical scan mode (all P<0.05). For pediatric unenhanced brain CT, both the wide-volume and one-shot volume scans reduced radiation dose compared to the helical scan mode, while the wide-volume scan mode showed fewer streak artifacts in the skull vertex and posterior fossa than the one-shot volume scan.

  15. Quantitative Analysis Tools and Digital Phantoms for Deformable Image Registration Quality Assurance.

    PubMed

    Kim, Haksoo; Park, Samuel B; Monroe, James I; Traughber, Bryan J; Zheng, Yiran; Lo, Simon S; Yao, Min; Mansur, David; Ellis, Rodney; Machtay, Mitchell; Sohn, Jason W

    2015-08-01

    This article proposes quantitative analysis tools and digital phantoms to quantify intrinsic errors of deformable image registration (DIR) systems and establish quality assurance (QA) procedures for clinical use of DIR systems utilizing local and global error analysis methods with clinically realistic digital image phantoms. Landmark-based image registration verifications are suitable only for images with significant feature points. To address this shortfall, we adapted a deformation vector field (DVF) comparison approach with new analysis techniques to quantify the results. Digital image phantoms are derived from data sets of actual patient images (a reference image set, R, a test image set, T). Image sets from the same patient taken at different times are registered with deformable methods producing a reference DVFref. Applying DVFref to the original reference image deforms T into a new image R'. The data set, R', T, and DVFref, is from a realistic truth set and therefore can be used to analyze any DIR system and expose intrinsic errors by comparing DVFref and DVFtest. For quantitative error analysis, calculating and delineating differences between DVFs, 2 methods were used, (1) a local error analysis tool that displays deformation error magnitudes with color mapping on each image slice and (2) a global error analysis tool that calculates a deformation error histogram, which describes a cumulative probability function of errors for each anatomical structure. Three digital image phantoms were generated from three patients with a head and neck, a lung and a liver cancer. The DIR QA was evaluated using the case with head and neck. © The Author(s) 2014.

  16. Multi-institutional MicroCT image comparison of image-guided small animal irradiators

    NASA Astrophysics Data System (ADS)

    Johnstone, Chris D.; Lindsay, Patricia; E Graves, Edward; Wong, Eugene; Perez, Jessica R.; Poirier, Yannick; Ben-Bouchta, Youssef; Kanesalingam, Thilakshan; Chen, Haijian; E Rubinstein, Ashley; Sheng, Ke; Bazalova-Carter, Magdalena

    2017-07-01

    To recommend imaging protocols and establish tolerance levels for microCT image quality assurance (QA) performed on conformal image-guided small animal irradiators. A fully automated QA software SAPA (small animal phantom analyzer) for image analysis of the commercial Shelley micro-CT MCTP 610 phantom was developed, in which quantitative analyses of CT number linearity, signal-to-noise ratio (SNR), uniformity and noise, geometric accuracy, spatial resolution by means of modulation transfer function (MTF), and CT contrast were performed. Phantom microCT scans from eleven institutions acquired with four image-guided small animal irradiator units (including the commercial PXi X-RAD SmART and Xstrahl SARRP systems) with varying parameters used for routine small animal imaging were analyzed. Multi-institutional data sets were compared using SAPA, based on which tolerance levels for each QA test were established and imaging protocols for QA were recommended. By analyzing microCT data from 11 institutions, we established image QA tolerance levels for all image quality tests. CT number linearity set to R 2  >  0.990 was acceptable in microCT data acquired at all but three institutions. Acceptable SNR  >  36 and noise levels  <55 HU were obtained at five of the eleven institutions, where failing scans were acquired with current-exposure time of less than 120 mAs. Acceptable spatial resolution (>1.5 lp mm-1 for MTF  =  0.2) was obtained at all but four institutions due to their large image voxel size used (>0.275 mm). Ten of the eleven institutions passed the set QA tolerance for geometric accuracy (<1.5%) and nine of the eleven institutions passed the QA tolerance for contrast (>2000 HU for 30 mgI ml-1). We recommend performing imaging QA with 70 kVp, 1.5 mA, 120 s imaging time, 0.20 mm voxel size, and a frame rate of 5 fps for the PXi X-RAD SmART. For the Xstrahl SARRP, we recommend using 60 kVp, 1.0 mA, 240 s imaging time, 0.20 mm voxel size, and 6 fps. These imaging protocols should result in high quality images that pass the set tolerance levels on all systems. Average SAPA computation time for complete QA analysis for a 0.20 mm voxel, 400 slice Shelley phantom microCT data set was less than 20 s. We present image quality assurance recommendations for image-guided small animal radiotherapy systems that can aid researchers in maintaining high image quality, allowing for spatially precise conformal dose delivery to small animals.

  17. Preliminary Comparison of Multi-scale and Multi-model Direct Inversion Algorithms for 3T MR Elastography.

    PubMed

    Yoshimitsu, Kengo; Shinagawa, Yoshinobu; Mitsufuji, Toshimichi; Mutoh, Emi; Urakawa, Hiroshi; Sakamoto, Keiko; Fujimitsu, Ritsuko; Takano, Koichi

    2017-01-10

    To elucidate whether any differences are present in the stiffness map obtained with a multiscale direct inversion algorithm (MSDI) vs that with a multimodel direct inversion algorithm (MMDI), both qualitatively and quantitatively. The MR elastography (MRE) data of 37 consecutive patients who underwent liver MR elastography between September and October 2014 were retrospectively analyzed by using both MSDI and MMDI. Two radiologists qualitatively assessed the stiffness maps for the image quality in consensus, and the measured liver stiffness and measurable areas were quantitatively compared between MSDI and MMDI. MMDI provided a stiffness map of better image quality, with comparable or slightly less artifacts. Measurable areas by MMDI (43.7 ± 17.8 cm 2 ) was larger than that by MSDI (37.5 ± 14.7 cm 2 ) (P < 0.05). Liver stiffness measured by MMDI (4.51 ± 2.32 kPa) was slightly (7%), but significantly less than that by MSDI (4.86 ± 2.44 kPa) (P < 0.05). MMDI can provide stiffness map of better image quality, and slightly lower stiffness values as compared to MSDI at 3T MRE, which radiologists should be aware of.

  18. Comparison of information about the quality of apparel in three retail formats.

    PubMed

    Bye, Elizabeth K; Reiley, Kathryn

    2003-06-01

    Multiple options are available for selection and purchase of apparel including in-store, catalogue, and Internet. The present purpose was to compare information about quality available to consumers in three retail formats. Students studying quality of apparel selected a product which could be purchased in each of the three formats, completed an evaluation from both a consumer's and preprofessional perspective, and made recommendations for improving information on quality. A total of 413 recommendations were categorized and tested for independence. Students had similar expectations for cues of quality across Internet, catalogue, and in-store formats including fiber content, country of origin, 3-dimensional information about fit, color accuracy, size charts, and strong customer service. Students expected a uniform array of information on quality regardless of the shopping format. Merchandisers must be aware of the total image across formats and be prepared to explore methods for improving communication of information on quality in each.

  19. Comparison of SeaWinds Backscatter Imaging Algorithms

    PubMed Central

    Long, David G.

    2017-01-01

    This paper compares the performance and tradeoffs of various backscatter imaging algorithms for the SeaWinds scatterometer when multiple passes over a target are available. Reconstruction methods are compared with conventional gridding algorithms. In particular, the performance and tradeoffs in conventional ‘drop in the bucket’ (DIB) gridding at the intrinsic sensor resolution are compared to high-spatial-resolution imaging algorithms such as fine-resolution DIB and the scatterometer image reconstruction (SIR) that generate enhanced-resolution backscatter images. Various options for each algorithm are explored, including considering both linear and dB computation. The effects of sampling density and reconstruction quality versus time are explored. Both simulated and actual data results are considered. The results demonstrate the effectiveness of high-resolution reconstruction using SIR as well as its limitations and the limitations of DIB and fDIB. PMID:28828143

  20. Comparison of two freely available software packages for mass spectrometry imaging data analysis using brains from morphine addicted rats.

    PubMed

    Bodzon-Kulakowska, Anna; Marszalek-Grabska, Marta; Antolak, Anna; Drabik, Anna; Kotlinska, Jolanta H; Suder, Piotr

    Data analysis from mass spectrometry imaging (MSI) imaging experiments is a very complex task. Most of the software packages devoted to this purpose are designed by the mass spectrometer manufacturers and, thus, are not freely available. Laboratories developing their own MS-imaging sources usually do not have access to the commercial software, and they must rely on the freely available programs. The most recognized ones are BioMap, developed by Novartis under Interactive Data Language (IDL), and Datacube, developed by the Dutch Foundation for Fundamental Research of Matter (FOM-Amolf). These two systems were used here for the analysis of images received from rat brain tissues subjected to morphine influence and their capabilities were compared in terms of ease of use and the quality of obtained results.

  1. High Dynamic Range Imaging Using Multiple Exposures

    NASA Astrophysics Data System (ADS)

    Hou, Xinglin; Luo, Haibo; Zhou, Peipei; Zhou, Wei

    2017-06-01

    It is challenging to capture a high-dynamic range (HDR) scene using a low-dynamic range (LDR) camera. This paper presents an approach for improving the dynamic range of cameras by using multiple exposure images of same scene taken under different exposure times. First, the camera response function (CRF) is recovered by solving a high-order polynomial in which only the ratios of the exposures are used. Then, the HDR radiance image is reconstructed by weighted summation of the each radiance maps. After that, a novel local tone mapping (TM) operator is proposed for the display of the HDR radiance image. By solving the high-order polynomial, the CRF can be recovered quickly and easily. Taken the local image feature and characteristic of histogram statics into consideration, the proposed TM operator could preserve the local details efficiently. Experimental result demonstrates the effectiveness of our method. By comparison, the method outperforms other methods in terms of imaging quality.

  2. SU-F-I-73: Surface Dose from KV Diagnostic Beams From An On-Board Imager On a Linac Machine Using Different Imaging Techniques and Filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, I; Hossain, S; Syzek, E

    Purpose: To quantitatively investigate the surface dose deposited in patients imaged with a kV on-board-imager mounted on a radiotherapy machine using different clinical imaging techniques and filters. Methods: A high sensitivity photon diode is used to measure the surface dose on central-axis and at an off-axis-point which is mounted on the top of a phantom setup. The dose is measured for different imaging techniques that include: AP-Pelvis, AP-Head, AP-Abdomen, AP-Thorax, and Extremity. The dose measurements from these imaging techniques are combined with various filtering techniques that include: no-filter (open-field), half-fan bowtie (HF), full-fan bowtie (FF) and Cu-plate filters. The relativemore » surface dose for different imaging and filtering techniques is evaluated quantiatively by the ratio of the dose relative to the Cu-plate filter. Results: The lowest surface dose is deposited with the Cu-plate filter. The highest surface dose deposited results from open fields without filter and it is nearly a factor of 8–30 larger than the corresponding imaging technique with the Cu-plate filter. The AP-Abdomen technique delivers the largest surface dose that is nearly 2.7 times larger than the AP-Head technique. The smallest surface dose is obtained from the Extremity imaging technique. Imaging with bowtie filters decreases the surface dose by nearly 33% in comparison with the open field. The surface doses deposited with the HF or FF-bowtie filters are within few percentages. Image-quality of the radiographic images obtained from the different filtering techniques is similar because the Cu-plate eliminates low-energy photons. The HF- and FF-bowtie filters generate intensity-gradients in the radiographs which affects image-quality in the different imaging technique. Conclusion: Surface dose from kV-imaging decreases significantly with the Cu-plate and bowtie-filters compared to imaging without filters using open-field beams. The use of Cu-plate filter does not affect image-quality and may be used as the default in the different imaging techniques.« less

  3. Kilovoltage energy imaging with a radiotherapy linac with a continuously variable energy range.

    PubMed

    Roberts, D A; Hansen, V N; Thompson, M G; Poludniowski, G; Niven, A; Seco, J; Evans, P M

    2012-03-01

    In this paper, the effect on image quality of significantly reducing the primary electron energy of a radiotherapy accelerator is investigated using a novel waveguide test piece. The waveguide contains a novel variable coupling device (rotovane), allowing for a wide continuously variable energy range of between 1.4 and 9 MeV suitable for both imaging and therapy. Imaging at linac accelerating potentials close to 1 MV was investigated experimentally and via Monte Carlo simulations. An imaging beam line was designed, and planar and cone beam computed tomography images were obtained to enable qualitative and quantitative comparisons with kilovoltage and megavoltage imaging systems. The imaging beam had an electron energy of 1.4 MeV, which was incident on a water cooled electron window consisting of stainless steel, a 5 mm carbon electron absorber and 2.5 mm aluminium filtration. Images were acquired with an amorphous silicon detector sensitive to diagnostic x-ray energies. The x-ray beam had an average energy of 220 keV and half value layer of 5.9 mm of copper. Cone beam CT images with the same contrast to noise ratio as a gantry mounted kilovoltage imaging system were obtained with doses as low as 2 cGy. This dose is equivalent to a single 6 MV portal image. While 12 times higher than a 100 kVp CBCT system (Elekta XVI), this dose is 140 times lower than a 6 MV cone beam imaging system and 6 times lower than previously published LowZ imaging beams operating at higher (4-5 MeV) energies. The novel coupling device provides for a wide range of electron energies that are suitable for kilovoltage quality imaging and therapy. The imaging system provides high contrast images from the therapy portal at low dose, approaching that of gantry mounted kilovoltage x-ray systems. Additionally, the system provides low dose imaging directly from the therapy portal, potentially allowing for target tracking during radiotherapy treatment. There is the scope with such a tuneable system for further energy reduction and subsequent improvement in image quality.

  4. The commercialization of robotic surgery: unsubstantiated marketing of gynecologic surgery by hospitals.

    PubMed

    Schiavone, Maria B; Kuo, Eugenia C; Naumann, R Wendel; Burke, William M; Lewin, Sharyn N; Neugut, Alfred I; Hershman, Dawn L; Herzog, Thomas J; Wright, Jason D

    2012-09-01

    We analyzed the content, quality, and accuracy of information provided on hospital web sites about robotic gynecologic surgery. An analysis of hospitals with more than 200 beds from a selection of states was performed. Hospital web sites were analyzed for the content and quality of data regarding robotic-assisted surgery. Among 432 hospitals, the web sites of 192 (44.4%) contained marketing for robotic gynecologic surgery. Stock images (64.1%) and text (24.0%) derived from the robot manufacturer were frequent. Although most sites reported improved perioperative outcomes, limitations of robotics including cost, complications, and operative time were discussed only 3.7%, 1.6%, and 3.7% of the time, respectively. Only 47.9% of the web sites described a comparison group. Marketing of robotic gynecologic surgery is widespread. Much of the content is not based on high-quality data, fails to present alternative procedures, and relies on stock text and images. Copyright © 2012 Mosby, Inc. All rights reserved.

  5. Fast Neutron Tomography of Low-Z Object in High-Z Material Shielding

    NASA Astrophysics Data System (ADS)

    Babai, Ruth Weiss; Sabo-Napadensky, Iris; Bar, Doron; Mor, Ilan; Tamim, Noam; Dangendorf, Volker; Tittelmeier, Kai; Bromberger, Benjamin; Weierganz, Mathias

    The technique and first results of Fast Neutron Tomography (FNCT) experiments are presented which are performed at the accelerator facility of PTB, Germany. A high-intensity neutron beam of broad spectral distribution with an average energy of 5.5 MeV, was produced by 11.5 MeV deuterons impinging upon a thick beryllium target. The capability of FNCT for high contrast imaging of low-Z materials embedded in thick high-Z shielding materials is demonstrated, which is superior to more conventional high-energy X-ray imaging techniques. For demonstrating the method special test objects were prepared: One consisted of an assembled polyethylene cylinder with holes of various diameters and directions drilled in its surface and inner parts. The plastic phantom was inserted into lead cylinders of different thicknesses. The detector system consisted of a plastic scintillator along with a dedicated optics, image-intensifier and a CCD camera. Two scintillator screens were compared: a bulk plastic scintillator screen and a fibres optical scintillator screen. The tomographic scans were taken in two geometrical configurations: cone beam and semi-fan beam configuration. The image quality favours the semi-fan beam configuration which on the other hand is more time consuming The obtained tomographic images and a comparison of the imaging quality between the different experimental conditions will be presented.

  6. Increasing spatial resolution and comparison of MR imaging sequences for the inner ear

    NASA Astrophysics Data System (ADS)

    Snyder, Carl J.; Bolinger, Lizann; Rubinstein, Jay T.; Wang, Ge

    2002-04-01

    The size and location of the cochlea and cochlear nerve are needed to assess the feasibility of cochlea implantation, provide information for surgical planning, and aid in construction of cochlear models. Models of implant stimulation incorporating anatomical and physiological information are likely to provide a better understanding of the biophysics of information transferred with cochlear implants and aid in electrode design and arrangement on cochlear implants. Until recently MR did not provide the necessary image resolution and suffered from long acquisition times. The purpose of this study was to optimize both Fast Spin Echo (FSE) and Steady State Free Precession (FIESTA) imaging scan parameters for the inner ear and comparatively examine both for improved image quality and increased spatial resolution. Image quality was determined by two primary measurements, signal to noise ratio (SNR), and image sharpness. Optimized parameters for FSE were 120ms, 3000ms, 64, and 32.25kHz for the TE, TR, echo train length, and bandwidth, respectively. FIESTA parameters were optimized to 2.7, 5.5ms, 70 degree(s), and 62.5kHz, for TE, TR, flip angle, and bandwidth, respectively. While both had the same in-plane spatial resolution, 0.625mm, FIESTA data shows higher SNR per acquisition time and better edge sharpness.

  7. On the performance of SART and ART algorithms for microwave imaging

    NASA Astrophysics Data System (ADS)

    Aprilliyani, Ria; Prabowo, Rian Gilang; Basari

    2018-02-01

    The development of advanced technology leads to the change of human lifestyle in current society. One of the disadvantage impact is arising the degenerative diseases such as cancers and tumors, not just common infectious diseases. Every year, victims of cancers and tumors grow significantly leading to one of the death causes in the world. In early stage, cancer/tumor does not have definite symptoms, but it will grow abnormally as tissue cells and damage normal tissue. Hence, early cancer detection is required. Some common diagnostics modalities such as MRI, CT and PET are quite difficult to be operated in home or mobile environment such as ambulance. Those modalities are also high cost, unpleasant, complex, less safety and harder to move. Hence, this paper proposes a microwave imaging system due to its portability and low cost. In current study, we address on the performance of simultaneous algebraic reconstruction technique (SART) algorithm that was applied in microwave imaging. In addition, SART algorithm performance compared with our previous work on algebraic reconstruction technique (ART), in order to have performance comparison, especially in the case of reconstructed image quality. The result showed that by applying SART algorithm on microwave imaging, suspicious cancer/tumor can be detected with better image quality.

  8. Comparison of methods for quantitative evaluation of endoscopic distortion

    NASA Astrophysics Data System (ADS)

    Wang, Quanzeng; Castro, Kurt; Desai, Viraj N.; Cheng, Wei-Chung; Pfefer, Joshua

    2015-03-01

    Endoscopy is a well-established paradigm in medical imaging, and emerging endoscopic technologies such as high resolution, capsule and disposable endoscopes promise significant improvements in effectiveness, as well as patient safety and acceptance of endoscopy. However, the field lacks practical standardized test methods to evaluate key optical performance characteristics (OPCs), in particular the geometric distortion caused by fisheye lens effects in clinical endoscopic systems. As a result, it has been difficult to evaluate an endoscope's image quality or assess its changes over time. The goal of this work was to identify optimal techniques for objective, quantitative characterization of distortion that are effective and not burdensome. Specifically, distortion measurements from a commercially available distortion evaluation/correction software package were compared with a custom algorithm based on a local magnification (ML) approach. Measurements were performed using a clinical gastroscope to image square grid targets. Recorded images were analyzed with the ML approach and the commercial software where the results were used to obtain corrected images. Corrected images based on the ML approach and the software were compared. The study showed that the ML method could assess distortion patterns more accurately than the commercial software. Overall, the development of standardized test methods for characterizing distortion and other OPCs will facilitate development, clinical translation, manufacturing quality and assurance of performance during clinical use of endoscopic technologies.

  9. Quantitative image reconstruction for total-body PET imaging using the 2-meter long EXPLORER scanner

    NASA Astrophysics Data System (ADS)

    Zhang, Xuezhu; Zhou, Jian; Cherry, Simon R.; Badawi, Ramsey D.; Qi, Jinyi

    2017-03-01

    The EXPLORER project aims to build a 2 meter long total-body PET scanner, which will provide extremely high sensitivity for imaging the entire human body. It will possess a range of capabilities currently unavailable to state-of-the-art clinical PET scanners with a limited axial field-of-view. The huge number of lines-of-response (LORs) of the EXPLORER poses a challenge to the data handling and image reconstruction. The objective of this study is to develop a quantitative image reconstruction method for the EXPLORER and compare its performance with current whole-body scanners. Fully 3D image reconstruction was performed using time-of-flight list-mode data with parallel computation. To recover the resolution loss caused by the parallax error between crystal pairs at a large axial ring difference or transaxial radial offset, we applied an image domain resolution model estimated from point source data. To evaluate the image quality, we conducted computer simulations using the SimSET Monte-Carlo toolkit and XCAT 2.0 anthropomorphic phantom to mimic a 20 min whole-body PET scan with an injection of 25 MBq 18F-FDG. We compare the performance of the EXPLORER with a current clinical scanner that has an axial FOV of 22 cm. The comparison results demonstrated superior image quality from the EXPLORER with a 6.9-fold reduction in noise standard deviation comparing with multi-bed imaging using the clinical scanner.

  10. Quantitative Image Reconstruction for Total-Body PET Imaging Using the 2-meter Long EXPLORER Scanner

    PubMed Central

    Zhang, Xuezhu; Zhou, Jian; Cherry, Simon R.; Badawi, Ramsey D.

    2017-01-01

    The EXPLORER project aims to build a 2-meter long total-body PET scanner, which will provide extremely high sensitivity for imaging the entire human body. It will possess a range of capabilities currently unavailable to state-of-the-art clinical PET scanners with a limited axial field-of-view. The huge number of lines-of-response (LORs) of the EXPLORER poses a challenge to the data handling and image reconstruction. The objective of this study is to develop a quantitative image reconstruction method for the EXPLORER and compare its performance with current whole-body scanners. Fully 3D image reconstruction was performed using time-of-flight list-mode data with parallel computation. To recover the resolution loss caused by the parallax error between crystal pairs at a large axial ring difference or transaxial radial offset, we applied an image domain resolution model estimated from point source data. To evaluate the image quality, we conducted computer simulations using the SimSET Monte-Carlo toolkit and XCAT 2.0 anthropomorphic phantom to mimic a 20-minute whole-body PET scan with an injection of 25 MBq 18F-FDG. We compare the performance of the EXPLORER with a current clinical scanner that has an axial FOV of 22 cm. The comparison results demonstrated superior image quality from the EXPLORER with a 6.9-fold reduction in noise standard deviation comparing with multi-bed imaging using the clinical scanner. PMID:28240215

  11. Geometric facial comparisons in speed-check photographs.

    PubMed

    Buck, Ursula; Naether, Silvio; Kreutz, Kerstin; Thali, Michael

    2011-11-01

    In many cases, it is not possible to call the motorists to account for their considerable excess in speeding, because they deny being the driver on the speed-check photograph. An anthropological comparison of facial features using a photo-to-photo comparison can be very difficult depending on the quality of the photographs. One difficulty of that analysis method is that the comparison photographs of the presumed driver are taken with a different camera or camera lens and from a different angle than for the speed-check photo. To take a comparison photograph with exactly the same camera setup is almost impossible. Therefore, only an imprecise comparison of the individual facial features is possible. The geometry and position of each facial feature, for example the distances between the eyes or the positions of the ears, etc., cannot be taken into consideration. We applied a new method using 3D laser scanning, optical surface digitalization, and photogrammetric calculation of the speed-check photo, which enables a geometric comparison. Thus, the influence of the focal length and the distortion of the objective lens are eliminated and the precise position and the viewing direction of the speed-check camera are calculated. Even in cases of low-quality images or when the face of the driver is partly hidden, good results are delivered using this method. This new method, Geometric Comparison, is evaluated and validated in a prepared study which is described in this article.

  12. Measurement of effective detective quantum efficiency for a photon counting scanning mammography system and comparison with two flat panel full-field digital mammography systems

    NASA Astrophysics Data System (ADS)

    Wood, Tim J.; Moore, Craig S.; Saunderson, John R.; Beavis, Andrew W.

    2018-01-01

    Effective detective quantum efficiency (eDQE) describes the resolution and noise properties of an imaging system along with scatter and primary transmission, all measured under clinically appropriate conditions. Effective dose efficiency (eDE) is the eDQE normalised to mean glandular dose and has been proposed as a useful metric for the optimisation of clinical imaging systems. The aim of this study was to develop a methodology for measuring eDQE and eDE on a Philips microdose mammography (MDM) L30 photon counting scanning system, and to compare performance with two conventional flat panel systems. A custom made lead-blocker was manufactured to enable the accurate determination of dose measurements, and modulation transfer functions were determined free-in-air at heights of 2, 4 and 6 cm above the breast support platform. eDQE were calculated for a Philips MDM L30, Hologic Dimensions and Siemens Inspiration digital mammography system for 2, 4 and 6 cm thick poly(methyl methacrylate) (PMMA). The beam qualities (target/filter and kilovoltage) assessed were those selected by the automatic exposure control, and anti-scatter grids were used where available. Measurements of eDQE demonstrate significant differences in performance between the slit- and scan-directions for the photon counting imaging system. MTF has been shown to be the limiting factor in the scan-direction, which results in a rapid fall in eDQE at mid-to-high spatial frequencies. A comparison with two flat panel mammography systems demonstrates that this may limit image quality for small details, such as micro-calcifications, which correlates with a more conventional image quality assessment with the CDMAM phantom. eDE has shown the scanning photon counting system offers superior performance for low spatial frequencies, which will be important for the detection of large low contrast masses. Both eDQE and eDE are proposed as useful metrics that should enable optimisation of the Philips MDM L30.

  13. Subjective and objective comparisons of image quality between ultra-high-resolution CT and conventional area detector CT in phantoms and cadaveric human lungs.

    PubMed

    Yanagawa, Masahiro; Hata, Akinori; Honda, Osamu; Kikuchi, Noriko; Miyata, Tomo; Uranishi, Ayumi; Tsukagoshi, Shinsuke; Tomiyama, Noriyuki

    2018-05-29

    To compare the image quality of the lungs between ultra-high-resolution CT (U-HRCT) and conventional area detector CT (AD-CT) images. Image data of slit phantoms (0.35, 0.30, and 0.15 mm) and 11 cadaveric human lungs were acquired by both U-HRCT and AD-CT devices. U-HRCT images were obtained with three acquisition modes: normal mode (U-HRCT N : 896 channels, 0.5 mm × 80 rows; 512 matrix), super-high-resolution mode (U-HRCT SHR : 1792 channels, 0.25 mm × 160 rows; 1024 matrix), and volume mode (U-HRCT SHR-VOL : non-helical acquisition with U-HRCT SHR ). AD-CT images were obtained with the same conditions as U-HRCT N . Three independent observers scored normal anatomical structures (vessels and bronchi), abnormal CT findings (faint nodules, solid nodules, ground-glass opacity, consolidation, emphysema, interlobular septal thickening, intralobular reticular opacities, bronchovascular bundle thickening, bronchiectasis, and honeycombing), noise, artifacts, and overall image quality on a 3-point scale (1 = worst, 2 = equal, 3 = best) compared with U-HRCT N . Noise values were calculated quantitatively. U-HRCT could depict a 0.15-mm slit. Both U-HRCT SHR and U-HRCT SHR-VOL significantly improved visualization of normal anatomical structures and abnormal CT findings, except for intralobular reticular opacities and reduced artifacts, compared with AD-CT (p < 0.014). Visually, U-HRCT SHR-VOL has less noise than U-HRCT SHR and AD-CT (p < 0.00001). Quantitative noise values were significantly higher in the following order: U-HRCT SHR (mean, 30.41), U-HRCT SHR-VOL (26.84), AD-CT (16.03), and U-HRCT N (15.14) (p < 0.0001). U-HRCT SHR and U-HRCT SHR-VOL resulted in significantly higher overall image quality than AD-CT and were almost equal to U-HRCT N (p < 0.0001). Both U-HRCT SHR and U-HRCT SHR-VOL can provide higher image quality than AD-CT, while U-HRCT SHR-VOL was less noisy than U-HRCT SHR . • Ultra-high-resolution CT (U-HRCT) can improve spatial resolution. • U-HRCT can reduce streak and dark band artifacts. • U-HRCT can provide higher image quality than conventional area detector CT. • In U-HRCT, the volume mode is less noisy than the super-high-resolution mode. • U-HRCT may provide more detailed information about the lung anatomy and pathology.

  14. Detection of coliform bacteria and Escherichia coli by multiplex polymerase chain reaction: comparison with defined substrate and plating methods for water quality monitoring.

    PubMed Central

    Bej, A K; McCarty, S C; Atlas, R M

    1991-01-01

    Multiplex polymerase chain reaction (PCR) and gene probe detection of target lacZ and uidA genes were used to detect total coliform bacteria and Escherichia coli, respectively, for determining water quality. In tests of environmental water samples, the lacZ PCR method gave results statistically equivalent to those of the plate count and defined substrate methods accepted by the U.S. Environmental Protection Agency for water quality monitoring and the uidA PCR method was more sensitive than 4-methylumbelliferyl-beta-D-glucuronide-based defined substrate tests for specific detection of E. coli. Images PMID:1768116

  15. Imaging quality of (44)Sc in comparison with five other PET radionuclides using Derenzo phantoms and preclinical PET.

    PubMed

    Bunka, Maruta; Müller, Cristina; Vermeulen, Christiaan; Haller, Stephanie; Türler, Andreas; Schibli, Roger; van der Meulen, Nicholas P

    2016-04-01

    PET is the favored nuclear imaging technique because of the high sensitivity and resolution it provides, as well as the possibility for quantification of accumulated radioactivity. (44)Sc (T1/2=3.97h, Eβ(+)=632keV) was recently proposed as a potentially interesting radionuclide for PET. The aim of this study was to investigate the image quality, which can be obtained with (44)Sc, and compare it with five other, frequently employed PET nuclides using Derenzo phantoms and a small-animal PET scanner. The radionuclides were produced at the medical cyclotron at CRS, ETH Zurich ((11)C, (18)F), at the Injector II research cyclotron at CRS, PSI ((64)Cu, (89)Zr, (44)Sc), as well as via a generator system ((68)Ga). Derenzo phantoms, containing solutions of each of these radionuclides, were scanned using a GE Healthcare eXplore VISTA small-animal PET scanner. The image resolution was determined for each nuclide by analysis of the intensity signal using the reconstructed PET data of a hole diameter of 1.3mm. The image quality of (44)Sc was compared to five frequently-used PET radionuclides. In agreement with the positron range, an increasing relative resolution was determined in the sequence of (68)Ga<(44)Sc<(89)Zr<(11)C<(64)Cu<(18)F. The performance of (44)Sc was in agreement with the theoretical expectations based on the energy of the emitted positrons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Simultaneous whole-body time-of-flight 18F-FDG PET/MRI: a pilot study comparing SUVmax with PET/CT and assessment of MR image quality.

    PubMed

    Iagaru, Andrei; Mittra, Erik; Minamimoto, Ryogo; Jamali, Mehran; Levin, Craig; Quon, Andrew; Gold, Garry; Herfkens, Robert; Vasanawala, Shreyas; Gambhir, Sanjiv Sam; Zaharchuk, Greg

    2015-01-01

    The recent introduction of hybrid PET/MRI scanners in clinical practice has shown promising initial results for several clinical scenarios. However, the first generation of combined PET/MRI lacks time-of-flight (TOF) technology. Here we report the results of the first patients to be scanned on a completely novel fully integrated PET/MRI scanner with TOF. We analyzed data from patients who underwent a clinically indicated F FDG PET/CT, followed by PET/MRI. Maximum standardized uptake values (SUVmax) were measured from F FDG PET/MRI and F FDG PET/CT for lesions, cerebellum, salivary glands, lungs, aortic arch, liver, spleen, skeletal muscle, and fat. Two experienced radiologists independently reviewed the MR data for image quality. Thirty-six patients (19 men, 17 women, mean [±standard deviation] age of 61 ± 14 years [range: 27-86 years]) with a total of 69 discrete lesions met the inclusion criteria. PET/CT images were acquired at a mean (±standard deviation) of 74 ± 14 minutes (range: 49-100 minutes) after injection of 10 ± 1 mCi (range: 8-12 mCi) of F FDG. PET/MRI scans started at 161 ± 29 minutes (range: 117 - 286 minutes) after the F FDG injection. All lesions identified on PET from PET/CT were also seen on PET from PET/MRI. The mean SUVmax values were higher from PET/MRI than PET/CT for all lesions. No degradation of MR image quality was observed. The data obtained so far using this investigational PET/MR system have shown that the TOF PET system is capable of excellent performance during simultaneous PET/MR with routine pulse sequences. MR imaging was not compromised. Comparison of the PET images from PET/CT and PET/MRI show no loss of image quality for the latter. These results support further investigation of this novel fully integrated TOF PET/MRI instrument.

  17. An advanced software suite for the processing and analysis of silicon luminescence images

    NASA Astrophysics Data System (ADS)

    Payne, D. N. R.; Vargas, C.; Hameiri, Z.; Wenham, S. R.; Bagnall, D. M.

    2017-06-01

    Luminescence imaging is a versatile characterisation technique used for a broad range of research and industrial applications, particularly for the field of photovoltaics where photoluminescence and electroluminescence imaging is routinely carried out for materials analysis and quality control. Luminescence imaging can reveal a wealth of material information, as detailed in extensive literature, yet these techniques are often only used qualitatively instead of being utilised to their full potential. Part of the reason for this is the time and effort required for image processing and analysis in order to convert image data to more meaningful results. In this work, a custom built, Matlab based software suite is presented which aims to dramatically simplify luminescence image processing and analysis. The suite includes four individual programs which can be used in isolation or in conjunction to achieve a broad array of functionality, including but not limited to, point spread function determination and deconvolution, automated sample extraction, image alignment and comparison, minority carrier lifetime calibration and iron impurity concentration mapping.

  18. Information-Theoretic Assessment of Sample Imaging Systems

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O.; Alter-Gartenberg, Rachel; Park, Stephen K.; Rahman, Zia-ur

    1999-01-01

    By rigorously extending modern communication theory to the assessment of sampled imaging systems, we develop the formulations that are required to optimize the performance of these systems within the critical constraints of image gathering, data transmission, and image display. The goal of this optimization is to produce images with the best possible visual quality for the wide range of statistical properties of the radiance field of natural scenes that one normally encounters. Extensive computational results are presented to assess the performance of sampled imaging systems in terms of information rate, theoretical minimum data rate, and fidelity. Comparisons of this assessment with perceptual and measurable performance demonstrate that (1) the information rate that a sampled imaging system conveys from the captured radiance field to the observer is closely correlated with the fidelity, sharpness and clarity with which the observed images can be restored and (2) the associated theoretical minimum data rate is closely correlated with the lowest data rate with which the acquired signal can be encoded for efficient transmission.

  19. NEMA NU 4-2008 comparison of preclinical PET imaging systems.

    PubMed

    Goertzen, Andrew L; Bao, Qinan; Bergeron, Mélanie; Blankemeyer, Eric; Blinder, Stephan; Cañadas, Mario; Chatziioannou, Arion F; Dinelle, Katherine; Elhami, Esmat; Jans, Hans-Sonke; Lage, Eduardo; Lecomte, Roger; Sossi, Vesna; Surti, Suleman; Tai, Yuan-Chuan; Vaquero, Juan José; Vicente, Esther; Williams, Darin A; Laforest, Richard

    2012-08-01

    The National Electrical Manufacturers Association (NEMA) standard NU 4-2008 for performance measurements of small-animal tomographs was recently published. Before this standard, there were no standard testing procedures for preclinical PET systems, and manufacturers could not provide clear specifications similar to those available for clinical systems under NEMA NU 2-1994 and 2-2001. Consequently, performance evaluation papers used methods that were modified ad hoc from the clinical PET NEMA standard, thus making comparisons between systems difficult. We acquired NEMA NU 4-2008 performance data for a collection of commercial animal PET systems manufactured since 2000: microPET P4, microPET R4, microPET Focus 120, microPET Focus 220, Inveon, ClearPET, Mosaic HP, Argus (formerly eXplore Vista), VrPET, LabPET 8, and LabPET 12. The data included spatial resolution, counting-rate performance, scatter fraction, sensitivity, and image quality and were acquired using settings for routine PET. The data showed a steady improvement in system performance for newer systems as compared with first-generation systems, with notable improvements in spatial resolution and sensitivity. Variation in system design makes direct comparisons between systems from different vendors difficult. When considering the results from NEMA testing, one must also consider the suitability of the PET system for the specific imaging task at hand.

  20. Measuring Total and Germinable Spore Populations

    NASA Technical Reports Server (NTRS)

    Noell, A.C.; Yung, P.T.; Yang, W.; Lee, C.; Ponce, A.

    2011-01-01

    It has been shown that bacterial endospores can be enumerated using a microscopy based assay that images the luminescent halos from terbium ions bound to dipicolinic acid, a spore specific chemical marker released upon spore germination. Further development of the instrument has simplified it towards automation while at the same time improving image quality. Enumeration of total spore populations has also been developed allowing measurement of the percentage of viable spores in any population by comparing the germinable/culturable spores to the total. Percentage viability will allow a more quantitative comparison of the ability of spores to survive across a wide range of extreme environments.

Top