Sample records for image quality image

  1. Image quality and dose differences caused by vendor-specific image processing of neonatal radiographs.

    PubMed

    Sensakovic, William F; O'Dell, M Cody; Letter, Haley; Kohler, Nathan; Rop, Baiywo; Cook, Jane; Logsdon, Gregory; Varich, Laura

    2016-10-01

    Image processing plays an important role in optimizing image quality and radiation dose in projection radiography. Unfortunately commercial algorithms are black boxes that are often left at or near vendor default settings rather than being optimized. We hypothesize that different commercial image-processing systems, when left at or near default settings, create significant differences in image quality. We further hypothesize that image-quality differences can be exploited to produce images of equivalent quality but lower radiation dose. We used a portable radiography system to acquire images on a neonatal chest phantom and recorded the entrance surface air kerma (ESAK). We applied two image-processing systems (Optima XR220amx, by GE Healthcare, Waukesha, WI; and MUSICA(2) by Agfa HealthCare, Mortsel, Belgium) to the images. Seven observers (attending pediatric radiologists and radiology residents) independently assessed image quality using two methods: rating and matching. Image-quality ratings were independently assessed by each observer on a 10-point scale. Matching consisted of each observer matching GE-processed images and Agfa-processed images with equivalent image quality. A total of 210 rating tasks and 42 matching tasks were performed and effective dose was estimated. Median Agfa-processed image-quality ratings were higher than GE-processed ratings. Non-diagnostic ratings were seen over a wider range of doses for GE-processed images than for Agfa-processed images. During matching tasks, observers matched image quality between GE-processed images and Agfa-processed images acquired at a lower effective dose (11 ± 9 μSv; P < 0.0001). Image-processing methods significantly impact perceived image quality. These image-quality differences can be exploited to alter protocols and produce images of equivalent image quality but lower doses. Those purchasing projection radiography systems or third-party image-processing software should be aware that image processing can significantly impact image quality when settings are left near default values.

  2. Remote Sensing Image Quality Assessment Experiment with Post-Processing

    NASA Astrophysics Data System (ADS)

    Jiang, W.; Chen, S.; Wang, X.; Huang, Q.; Shi, H.; Man, Y.

    2018-04-01

    This paper briefly describes the post-processing influence assessment experiment, the experiment includes three steps: the physical simulation, image processing, and image quality assessment. The physical simulation models sampled imaging system in laboratory, the imaging system parameters are tested, the digital image serving as image processing input are produced by this imaging system with the same imaging system parameters. The gathered optical sampled images with the tested imaging parameters are processed by 3 digital image processes, including calibration pre-processing, lossy compression with different compression ratio and image post-processing with different core. Image quality assessment method used is just noticeable difference (JND) subject assessment based on ISO20462, through subject assessment of the gathered and processing images, the influence of different imaging parameters and post-processing to image quality can be found. The six JND subject assessment experimental data can be validated each other. Main conclusions include: image post-processing can improve image quality; image post-processing can improve image quality even with lossy compression, image quality with higher compression ratio improves less than lower ratio; with our image post-processing method, image quality is better, when camera MTF being within a small range.

  3. Naturalness and interestingness of test images for visual quality evaluation

    NASA Astrophysics Data System (ADS)

    Halonen, Raisa; Westman, Stina; Oittinen, Pirkko

    2011-01-01

    Balanced and representative test images are needed to study perceived visual quality in various application domains. This study investigates naturalness and interestingness as image quality attributes in the context of test images. Taking a top-down approach we aim to find the dimensions which constitute naturalness and interestingness in test images and the relationship between these high-level quality attributes. We compare existing collections of test images (e.g. Sony sRGB images, ISO 12640 images, Kodak images, Nokia images and test images developed within our group) in an experiment combining quality sorting and structured interviews. Based on the data gathered we analyze the viewer-supplied criteria for naturalness and interestingness across image types, quality levels and judges. This study advances our understanding of subjective image quality criteria and enables the validation of current test images, furthering their development.

  4. Evaluation of the visual performance of image processing pipes: information value of subjective image attributes

    NASA Astrophysics Data System (ADS)

    Nyman, G.; Häkkinen, J.; Koivisto, E.-M.; Leisti, T.; Lindroos, P.; Orenius, O.; Virtanen, T.; Vuori, T.

    2010-01-01

    Subjective image quality data for 9 image processing pipes and 8 image contents (taken with mobile phone camera, 72 natural scene test images altogether) from 14 test subjects were collected. A triplet comparison setup and a hybrid qualitative/quantitative methodology were applied. MOS data and spontaneous, subjective image quality attributes to each test image were recorded. The use of positive and negative image quality attributes by the experimental subjects suggested a significant difference between the subjective spaces of low and high image quality. The robustness of the attribute data was shown by correlating DMOS data of the test images against their corresponding, average subjective attribute vector length data. The findings demonstrate the information value of spontaneous, subjective image quality attributes in evaluating image quality at variable quality levels. We discuss the implications of these findings for the development of sensitive performance measures and methods in profiling image processing systems and their components, especially at high image quality levels.

  5. Heterogeneous sharpness for cross-spectral face recognition

    NASA Astrophysics Data System (ADS)

    Cao, Zhicheng; Schmid, Natalia A.

    2017-05-01

    Matching images acquired in different electromagnetic bands remains a challenging problem. An example of this type of comparison is matching active or passive infrared (IR) against a gallery of visible face images, known as cross-spectral face recognition. Among many unsolved issues is the one of quality disparity of the heterogeneous images. Images acquired in different spectral bands are of unequal image quality due to distinct imaging mechanism, standoff distances, or imaging environment, etc. To reduce the effect of quality disparity on the recognition performance, one can manipulate images to either improve the quality of poor-quality images or to degrade the high-quality images to the level of the quality of their heterogeneous counterparts. To estimate the level of discrepancy in quality of two heterogeneous images a quality metric such as image sharpness is needed. It provides a guidance in how much quality improvement or degradation is appropriate. In this work we consider sharpness as a relative measure of heterogeneous image quality. We propose a generalized definition of sharpness by first achieving image quality parity and then finding and building a relationship between the image quality of two heterogeneous images. Therefore, the new sharpness metric is named heterogeneous sharpness. Image quality parity is achieved by experimentally finding the optimal cross-spectral face recognition performance where quality of the heterogeneous images is varied using a Gaussian smoothing function with different standard deviation. This relationship is established using two models; one of them involves a regression model and the other involves a neural network. To train, test and validate the model, we use composite operators developed in our lab to extract features from heterogeneous face images and use the sharpness metric to evaluate the face image quality within each band. Images from three different spectral bands visible light, near infrared, and short-wave infrared are considered in this work. Both error of a regression model and validation error of a neural network are analyzed.

  6. Automatic retinal interest evaluation system (ARIES).

    PubMed

    Yin, Fengshou; Wong, Damon Wing Kee; Yow, Ai Ping; Lee, Beng Hai; Quan, Ying; Zhang, Zhuo; Gopalakrishnan, Kavitha; Li, Ruoying; Liu, Jiang

    2014-01-01

    In recent years, there has been increasing interest in the use of automatic computer-based systems for the detection of eye diseases such as glaucoma, age-related macular degeneration and diabetic retinopathy. However, in practice, retinal image quality is a big concern as automatic systems without consideration of degraded image quality will likely generate unreliable results. In this paper, an automatic retinal image quality assessment system (ARIES) is introduced to assess both image quality of the whole image and focal regions of interest. ARIES achieves 99.54% accuracy in distinguishing fundus images from other types of images through a retinal image identification step in a dataset of 35342 images. The system employs high level image quality measures (HIQM) to perform image quality assessment, and achieves areas under curve (AUCs) of 0.958 and 0.987 for whole image and optic disk region respectively in a testing dataset of 370 images. ARIES acts as a form of automatic quality control which ensures good quality images are used for processing, and can also be used to alert operators of poor quality images at the time of acquisition.

  7. The effect of image sharpness on quantitative eye movement data and on image quality evaluation while viewing natural images

    NASA Astrophysics Data System (ADS)

    Vuori, Tero; Olkkonen, Maria

    2006-01-01

    The aim of the study is to test both customer image quality rating (subjective image quality) and physical measurement of user behavior (eye movements tracking) to find customer satisfaction differences in imaging technologies. Methodological aim is to find out whether eye movements could be quantitatively used in image quality preference studies. In general, we want to map objective or physically measurable image quality to subjective evaluations and eye movement data. We conducted a series of image quality tests, in which the test subjects evaluated image quality while we recorded their eye movements. Results show that eye movement parameters consistently change according to the instructions given to the user, and according to physical image quality, e.g. saccade duration increased with increasing blur. Results indicate that eye movement tracking could be used to differentiate image quality evaluation strategies that the users have. Results also show that eye movements would help mapping between technological and subjective image quality. Furthermore, these results give some empirical emphasis to top-down perception processes in image quality perception and evaluation by showing differences between perceptual processes in situations when cognitive task varies.

  8. Noise Estimation and Quality Assessment of Gaussian Noise Corrupted Images

    NASA Astrophysics Data System (ADS)

    Kamble, V. M.; Bhurchandi, K.

    2018-03-01

    Evaluating the exact quantity of noise present in an image and quality of an image in the absence of reference image is a challenging task. We propose a near perfect noise estimation method and a no reference image quality assessment method for images corrupted by Gaussian noise. The proposed methods obtain initial estimate of noise standard deviation present in an image using the median of wavelet transform coefficients and then obtains a near to exact estimate using curve fitting. The proposed noise estimation method provides the estimate of noise within average error of +/-4%. For quality assessment, this noise estimate is mapped to fit the Differential Mean Opinion Score (DMOS) using a nonlinear function. The proposed methods require minimum training and yields the noise estimate and image quality score. Images from Laboratory for image and Video Processing (LIVE) database and Computational Perception and Image Quality (CSIQ) database are used for validation of the proposed quality assessment method. Experimental results show that the performance of proposed quality assessment method is at par with the existing no reference image quality assessment metric for Gaussian noise corrupted images.

  9. Clinical image quality evaluation for panoramic radiography in Korean dental clinics

    PubMed Central

    Choi, Bo-Ram; Choi, Da-Hye; Huh, Kyung-Hoe; Yi, Won-Jin; Heo, Min-Suk; Choi, Soon-Chul; Bae, Kwang-Hak

    2012-01-01

    Purpose The purpose of this study was to investigate the level of clinical image quality of panoramic radiographs and to analyze the parameters that influence the overall image quality. Materials and Methods Korean dental clinics were asked to provide three randomly selected panoramic radiographs. An oral and maxillofacial radiology specialist evaluated those images using our self-developed Clinical Image Quality Evaluation Chart. Three evaluators classified the overall image quality of the panoramic radiographs and evaluated the causes of imaging errors. Results A total of 297 panoramic radiographs were collected from 99 dental hospitals and clinics. The mean of the scores according to the Clinical Image Quality Evaluation Chart was 79.9. In the classification of the overall image quality, 17 images were deemed 'optimal for obtaining diagnostic information,' 153 were 'adequate for diagnosis,' 109 were 'poor but diagnosable,' and nine were 'unrecognizable and too poor for diagnosis'. The results of the analysis of the causes of the errors in all the images are as follows: 139 errors in the positioning, 135 in the processing, 50 from the radiographic unit, and 13 due to anatomic abnormality. Conclusion Panoramic radiographs taken at local dental clinics generally have a normal or higher-level image quality. Principal factors affecting image quality were positioning of the patient and image density, sharpness, and contrast. Therefore, when images are taken, the patient position should be adjusted with great care. Also, standardizing objective criteria of image density, sharpness, and contrast is required to evaluate image quality effectively. PMID:23071969

  10. TH-A-16A-01: Image Quality for the Radiation Oncology Physicist: Review of the Fundamentals and Implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seibert, J; Imbergamo, P

    The expansion and integration of diagnostic imaging technologies such as On Board Imaging (OBI) and Cone Beam Computed Tomography (CBCT) into radiation oncology has required radiation oncology physicists to be responsible for and become familiar with assessing image quality. Unfortunately many radiation oncology physicists have had little or no training or experience in measuring and assessing image quality. Many physicists have turned to automated QA analysis software without having a fundamental understanding of image quality measures. This session will review the basic image quality measures of imaging technologies used in the radiation oncology clinic, such as low contrast resolution, highmore » contrast resolution, uniformity, noise, and contrast scale, and how to measure and assess them in a meaningful way. Additionally a discussion of the implementation of an image quality assurance program in compliance with Task Group recommendations will be presented along with the advantages and disadvantages of automated analysis methods. Learning Objectives: Review and understanding of the fundamentals of image quality. Review and understanding of the basic image quality measures of imaging modalities used in the radiation oncology clinic. Understand how to implement an image quality assurance program and to assess basic image quality measures in a meaningful way.« less

  11. No-reference multiscale blur detection tool for content based image retrieval

    NASA Astrophysics Data System (ADS)

    Ezekiel, Soundararajan; Stocker, Russell; Harrity, Kyle; Alford, Mark; Ferris, David; Blasch, Erik; Gorniak, Mark

    2014-06-01

    In recent years, digital cameras have been widely used for image capturing. These devices are equipped in cell phones, laptops, tablets, webcams, etc. Image quality is an important component of digital image analysis. To assess image quality for these mobile products, a standard image is required as a reference image. In this case, Root Mean Square Error and Peak Signal to Noise Ratio can be used to measure the quality of the images. However, these methods are not possible if there is no reference image. In our approach, a discrete-wavelet transformation is applied to the blurred image, which decomposes into the approximate image and three detail sub-images, namely horizontal, vertical, and diagonal images. We then focus on noise-measuring the detail images and blur-measuring the approximate image to assess the image quality. We then compute noise mean and noise ratio from the detail images, and blur mean and blur ratio from the approximate image. The Multi-scale Blur Detection (MBD) metric provides both an assessment of the noise and blur content. These values are weighted based on a linear regression against full-reference y values. From these statistics, we can compare to normal useful image statistics for image quality without needing a reference image. We then test the validity of our obtained weights by R2 analysis as well as using them to estimate image quality of an image with a known quality measure. The result shows that our method provides acceptable results for images containing low to mid noise levels and blur content.

  12. On pictures and stuff: image quality and material appearance

    NASA Astrophysics Data System (ADS)

    Ferwerda, James A.

    2014-02-01

    Realistic images are a puzzle because they serve as visual representations of objects while also being objects themselves. When we look at an image we are able to perceive both the properties of the image and the properties of the objects represented by the image. Research on image quality has typically focused improving image properties (resolution, dynamic range, frame rate, etc.) while ignoring the issue of whether images are serving their role as visual representations. In this paper we describe a series of experiments that investigate how well images of different quality convey information about the properties of the objects they represent. In the experiments we focus on the effects that two image properties (contrast and sharpness) have on the ability of images to represent the gloss of depicted objects. We found that different experimental methods produced differing results. Specifically, when the stimulus images were presented using simultaneous pair comparison, observers were influenced by the surface properties of the images and conflated changes in image contrast and sharpness with changes in object gloss. On the other hand, when the stimulus images were presented sequentially, observers were able to disregard the image plane properties and more accurately match the gloss of the objects represented by the different quality images. These findings suggest that in understanding image quality it is useful to distinguish between quality of the imaging medium and the quality of the visual information represented by that medium.

  13. Retinal Image Quality Assessment for Spaceflight-Induced Vision Impairment Study

    NASA Technical Reports Server (NTRS)

    Vu, Amanda Cadao; Raghunandan, Sneha; Vyas, Ruchi; Radhakrishnan, Krishnan; Taibbi, Giovanni; Vizzeri, Gianmarco; Grant, Maria; Chalam, Kakarla; Parsons-Wingerter, Patricia

    2015-01-01

    Long-term exposure to space microgravity poses significant risks for visual impairment. Evidence suggests such vision changes are linked to cephalad fluid shifts, prompting a need to directly quantify microgravity-induced retinal vascular changes. The quality of retinal images used for such vascular remodeling analysis, however, is dependent on imaging methodology. For our exploratory study, we hypothesized that retinal images captured using fluorescein imaging methodologies would be of higher quality in comparison to images captured without fluorescein. A semi-automated image quality assessment was developed using Vessel Generation Analysis (VESGEN) software and MATLAB® image analysis toolboxes. An analysis of ten images found that the fluorescein imaging modality provided a 36% increase in overall image quality (two-tailed p=0.089) in comparison to nonfluorescein imaging techniques.

  14. Blind image quality assessment without training on human opinion scores

    NASA Astrophysics Data System (ADS)

    Mittal, Anish; Soundararajan, Rajiv; Muralidhar, Gautam S.; Bovik, Alan C.; Ghosh, Joydeep

    2013-03-01

    We propose a family of image quality assessment (IQA) models based on natural scene statistics (NSS), that can predict the subjective quality of a distorted image without reference to a corresponding distortionless image, and without any training results on human opinion scores of distorted images. These `completely blind' models compete well with standard non-blind image quality indices in terms of subjective predictive performance when tested on the large publicly available `LIVE' Image Quality database.

  15. JPEG2000 still image coding quality.

    PubMed

    Chen, Tzong-Jer; Lin, Sheng-Chieh; Lin, You-Chen; Cheng, Ren-Gui; Lin, Li-Hui; Wu, Wei

    2013-10-01

    This work demonstrates the image qualities between two popular JPEG2000 programs. Two medical image compression algorithms are both coded using JPEG2000, but they are different regarding the interface, convenience, speed of computation, and their characteristic options influenced by the encoder, quantization, tiling, etc. The differences in image quality and compression ratio are also affected by the modality and compression algorithm implementation. Do they provide the same quality? The qualities of compressed medical images from two image compression programs named Apollo and JJ2000 were evaluated extensively using objective metrics. These algorithms were applied to three medical image modalities at various compression ratios ranging from 10:1 to 100:1. Following that, the quality of the reconstructed images was evaluated using five objective metrics. The Spearman rank correlation coefficients were measured under every metric in the two programs. We found that JJ2000 and Apollo exhibited indistinguishable image quality for all images evaluated using the above five metrics (r > 0.98, p < 0.001). It can be concluded that the image quality of the JJ2000 and Apollo algorithms is statistically equivalent for medical image compression.

  16. Achieving quality in cardiovascular imaging: proceedings from the American College of Cardiology-Duke University Medical Center Think Tank on Quality in Cardiovascular Imaging.

    PubMed

    Douglas, Pamela; Iskandrian, Ami E; Krumholz, Harlan M; Gillam, Linda; Hendel, Robert; Jollis, James; Peterson, Eric; Chen, Jersey; Masoudi, Frederick; Mohler, Emile; McNamara, Robert L; Patel, Manesh R; Spertus, John

    2006-11-21

    Cardiovascular imaging has enjoyed both rapid technological advances and sustained growth, yet less attention has been focused on quality than in other areas of cardiovascular medicine. To address this deficit, representatives from cardiovascular imaging societies, private payers, government agencies, the medical imaging industry, and experts in quality measurement met, and this report provides an overview of the discussions. A consensus definition of quality in imaging and a convergence of opinion on quality measures across imaging modalities was achieved and are intended to be the start of a process culminating in the development, dissemination, and adoption of quality measures for all cardiovascular imaging modalities.

  17. Image quality scaling of electrophotographic prints

    NASA Astrophysics Data System (ADS)

    Johnson, Garrett M.; Patil, Rohit A.; Montag, Ethan D.; Fairchild, Mark D.

    2003-12-01

    Two psychophysical experiments were performed scaling overall image quality of black-and-white electrophotographic (EP) images. Six different printers were used to generate the images. There were six different scenes included in the experiment, representing photographs, business graphics, and test-targets. The two experiments were split into a paired-comparison experiment examining overall image quality, and a triad experiment judging overall similarity and dissimilarity of the printed images. The paired-comparison experiment was analyzed using Thurstone's Law, to generate an interval scale of quality, and with dual scaling, to determine the independent dimensions used for categorical scaling. The triad experiment was analyzed using multidimensional scaling to generate a psychological stimulus space. The psychophysical results indicated that the image quality was judged mainly along one dimension and that the relationships among the images can be described with a single dimension in most cases. Regression of various physical measurements of the images to the paired comparison results showed that a small number of physical attributes of the images could be correlated with the psychophysical scale of image quality. However, global image difference metrics did not correlate well with image quality.

  18. Can image enhancement allow radiation dose to be reduced whilst maintaining the perceived diagnostic image quality required for coronary angiography?

    PubMed Central

    Joshi, Anuja; Gislason-Lee, Amber J; Keeble, Claire; Sivananthan, Uduvil M

    2017-01-01

    Objective: The aim of this research was to quantify the reduction in radiation dose facilitated by image processing alone for percutaneous coronary intervention (PCI) patient angiograms, without reducing the perceived image quality required to confidently make a diagnosis. Methods: Incremental amounts of image noise were added to five PCI angiograms, simulating the angiogram as having been acquired at corresponding lower dose levels (10–89% dose reduction). 16 observers with relevant experience scored the image quality of these angiograms in 3 states—with no image processing and with 2 different modern image processing algorithms applied. These algorithms are used on state-of-the-art and previous generation cardiac interventional X-ray systems. Ordinal regression allowing for random effects and the delta method were used to quantify the dose reduction possible by the processing algorithms, for equivalent image quality scores. Results: Observers rated the quality of the images processed with the state-of-the-art and previous generation image processing with a 24.9% and 15.6% dose reduction, respectively, as equivalent in quality to the unenhanced images. The dose reduction facilitated by the state-of-the-art image processing relative to previous generation processing was 10.3%. Conclusion: Results demonstrate that statistically significant dose reduction can be facilitated with no loss in perceived image quality using modern image enhancement; the most recent processing algorithm was more effective in preserving image quality at lower doses. Advances in knowledge: Image enhancement was shown to maintain perceived image quality in coronary angiography at a reduced level of radiation dose using computer software to produce synthetic images from real angiograms simulating a reduction in dose. PMID:28124572

  19. Importance of methodology on (99m)technetium dimercapto-succinic acid scintigraphic image quality: imaging pilot study for RIVUR (Randomized Intervention for Children With Vesicoureteral Reflux) multicenter investigation.

    PubMed

    Ziessman, Harvey A; Majd, Massoud

    2009-07-01

    We reviewed our experience with (99m)technetium dimercapto-succinic acid scintigraphy obtained during an imaging pilot study for a multicenter investigation (Randomized Intervention for Children With Vesicoureteral Reflux) of the effectiveness of daily antimicrobial prophylaxis for preventing recurrent urinary tract infection and renal scarring. We analyzed imaging methodology and its relation to diagnostic image quality. (99m)Technetium dimercapto-succinic acid imaging guidelines were provided to participating sites. High-resolution planar imaging with parallel hole or pinhole collimation was required. Two core reviewers evaluated all submitted images. Analysis included appropriate views, presence or lack of patient motion, adequate magnification, sufficient counts and diagnostic image quality. Inter-reader agreement was evaluated. We evaluated 70, (99m)technetium dimercapto-succinic acid studies from 14 institutions. Variability was noted in methodology and image quality. Correlation (r value) between dose administered and patient age was 0.780. For parallel hole collimator imaging good correlation was noted between activity administered and counts (r = 0.800). For pinhole imaging the correlation was poor (r = 0.110). A total of 10 studies (17%) were rejected for quality issues of motion, kidney overlap, inadequate magnification, inadequate counts and poor quality images. The submitting institution was informed and provided with recommendations for improving quality, and resubmission of another study was required. Only 4 studies (6%) were judged differently by the 2 reviewers, and the differences were minor. Methodology and image quality for (99m)technetium dimercapto-succinic acid scintigraphy varied more than expected between institutions. The most common reason for poor image quality was inadequate count acquisition with insufficient attention to the tradeoff between administered dose, length of image acquisition, start time of imaging and resulting image quality. Inter-observer core reader agreement was high. The pilot study ensured good diagnostic quality standardized images for the Randomized Intervention for Children With Vesicoureteral Reflux investigation.

  20. Digital radiography: optimization of image quality and dose using multi-frequency software.

    PubMed

    Precht, H; Gerke, O; Rosendahl, K; Tingberg, A; Waaler, D

    2012-09-01

    New developments in processing of digital radiographs (DR), including multi-frequency processing (MFP), allow optimization of image quality and radiation dose. This is particularly promising in children as they are believed to be more sensitive to ionizing radiation than adults. To examine whether the use of MFP software reduces the radiation dose without compromising quality at DR of the femur in 5-year-old-equivalent anthropomorphic and technical phantoms. A total of 110 images of an anthropomorphic phantom were imaged on a DR system (Canon DR with CXDI-50 C detector and MLT[S] software) and analyzed by three pediatric radiologists using Visual Grading Analysis. In addition, 3,500 images taken of a technical contrast-detail phantom (CDRAD 2.0) provide an objective image-quality assessment. Optimal image-quality was maintained at a dose reduction of 61% with MLT(S) optimized images. Even for images of diagnostic quality, MLT(S) provided a dose reduction of 88% as compared to the reference image. Software impact on image quality was found significant for dose (mAs), dynamic range dark region and frequency band. By optimizing image processing parameters, a significant dose reduction is possible without significant loss of image quality.

  1. Correlation of the clinical and physical image quality in chest radiography for average adults with a computed radiography imaging system.

    PubMed

    Moore, C S; Wood, T J; Beavis, A W; Saunderson, J R

    2013-07-01

    The purpose of this study was to examine the correlation between the quality of visually graded patient (clinical) chest images and a quantitative assessment of chest phantom (physical) images acquired with a computed radiography (CR) imaging system. The results of a previously published study, in which four experienced image evaluators graded computer-simulated postero-anterior chest images using a visual grading analysis scoring (VGAS) scheme, were used for the clinical image quality measurement. Contrast-to-noise ratio (CNR) and effective dose efficiency (eDE) were used as physical image quality metrics measured in a uniform chest phantom. Although optimal values of these physical metrics for chest radiography were not derived in this work, their correlation with VGAS in images acquired without an antiscatter grid across the diagnostic range of X-ray tube voltages was determined using Pearson's correlation coefficient. Clinical and physical image quality metrics increased with decreasing tube voltage. Statistically significant correlations between VGAS and CNR (R=0.87, p<0.033) and eDE (R=0.77, p<0.008) were observed. Medical physics experts may use the physical image quality metrics described here in quality assurance programmes and optimisation studies with a degree of confidence that they reflect the clinical image quality in chest CR images acquired without an antiscatter grid. A statistically significant correlation has been found between the clinical and physical image quality in CR chest imaging. The results support the value of using CNR and eDE in the evaluation of quality in clinical thorax radiography.

  2. Evaluation of image quality of digital photo documentation of female genital injuries following sexual assault.

    PubMed

    Ernst, E J; Speck, Patricia M; Fitzpatrick, Joyce J

    2011-12-01

    With the patient's consent, physical injuries sustained in a sexual assault are evaluated and treated by the sexual assault nurse examiner (SANE) and documented on preprinted traumagrams and with photographs. Digital imaging is now available to the SANE for documentation of sexual assault injuries, but studies of the image quality of forensic digital imaging of female genital injuries after sexual assault were not found in the literature. The Photo Documentation Image Quality Scoring System (PDIQSS) was developed to rate the image quality of digital photo documentation of female genital injuries after sexual assault. Three expert observers performed evaluations on 30 separate images at two points in time. An image quality score, the sum of eight integral technical and anatomical attributes on the PDIQSS, was obtained for each image. Individual image quality ratings, defined by rating image quality for each of the data, were also determined. The results demonstrated a high level of image quality and agreement when measured in all dimensions. For the SANE in clinical practice, the results of this study indicate that a high degree of agreement exists between expert observers when using the PDIQSS to rate image quality of individual digital photographs of female genital injuries after sexual assault. © 2011 International Association of Forensic Nurses.

  3. The study of surgical image quality evaluation system by subjective quality factor method

    NASA Astrophysics Data System (ADS)

    Zhang, Jian J.; Xuan, Jason R.; Yang, Xirong; Yu, Honggang; Koullick, Edouard

    2016-03-01

    GreenLightTM procedure is an effective and economical way of treatment of benign prostate hyperplasia (BPH); there are almost a million of patients treated with GreenLightTM worldwide. During the surgical procedure, the surgeon or physician will rely on the monitoring video system to survey and confirm the surgical progress. There are a few obstructions that could greatly affect the image quality of the monitoring video, like laser glare by the tissue and body fluid, air bubbles and debris generated by tissue evaporation, and bleeding, just to name a few. In order to improve the physician's visual experience of a laser surgical procedure, the system performance parameter related to image quality needs to be well defined. However, since image quality is the integrated set of perceptions of the overall degree of excellence of an image, or in other words, image quality is the perceptually weighted combination of significant attributes (contrast, graininess …) of an image when considered in its marketplace or application, there is no standard definition on overall image or video quality especially for the no-reference case (without a standard chart as reference). In this study, Subjective Quality Factor (SQF) and acutance are used for no-reference image quality evaluation. Basic image quality parameters, like sharpness, color accuracy, size of obstruction and transmission of obstruction, are used as subparameter to define the rating scale for image quality evaluation or comparison. Sample image groups were evaluated by human observers according to the rating scale. Surveys of physician groups were also conducted with lab generated sample videos. The study shows that human subjective perception is a trustworthy way of image quality evaluation. More systematic investigation on the relationship between video quality and image quality of each frame will be conducted as a future study.

  4. Digital processing of radiographic images from PACS to publishing.

    PubMed

    Christian, M E; Davidson, H C; Wiggins, R H; Berges, G; Cannon, G; Jackson, G; Chapman, B; Harnsberger, H R

    2001-03-01

    Several studies have addressed the implications of filmless radiologic imaging on telemedicine, diagnostic ability, and electronic teaching files. However, many publishers still require authors to submit hard-copy images for publication of articles and textbooks. This study compares the quality digital images directly exported from picture archive and communications systems (PACS) to images digitized from radiographic film. The authors evaluated the quality of publication-grade glossy photographs produced from digital radiographic images using 3 different methods: (1) film images digitized using a desktop scanner and then printed, (2) digital images obtained directly from PACS then printed, and (3) digital images obtained from PACS and processed to improve sharpness prior to printing. Twenty images were printed using each of the 3 different methods and rated for quality by 7 radiologists. The results were analyzed for statistically significant differences among the image sets. Subjective evaluations of the filmless images found them to be of equal or better quality than the digitized images. Direct electronic transfer of PACS images reduces the number of steps involved in creating publication-quality images as well as providing the means to produce high-quality radiographic images in a digital environment.

  5. Image Quality Assessment of High-Resolution Satellite Images with Mtf-Based Fuzzy Comprehensive Evaluation Method

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Luo, Z.; Zhang, Y.; Guo, F.; He, L.

    2018-04-01

    A Modulation Transfer Function (MTF)-based fuzzy comprehensive evaluation method was proposed in this paper for the purpose of evaluating high-resolution satellite image quality. To establish the factor set, two MTF features and seven radiant features were extracted from the knife-edge region of image patch, which included Nyquist, MTF0.5, entropy, peak signal to noise ratio (PSNR), average difference, edge intensity, average gradient, contrast and ground spatial distance (GSD). After analyzing the statistical distribution of above features, a fuzzy evaluation threshold table and fuzzy evaluation membership functions was established. The experiments for comprehensive quality assessment of different natural and artificial objects was done with GF2 image patches. The results showed that the calibration field image has the highest quality scores. The water image has closest image quality to the calibration field, quality of building image is a little poor than water image, but much higher than farmland image. In order to test the influence of different features on quality evaluation, the experiment with different weights were tested on GF2 and SPOT7 images. The results showed that different weights correspond different evaluating effectiveness. In the case of setting up the weights of edge features and GSD, the image quality of GF2 is better than SPOT7. However, when setting MTF and PSNR as main factor, the image quality of SPOT7 is better than GF2.

  6. Digitized hand-wrist radiographs: comparison of subjective and software-derived image quality at various compression ratios.

    PubMed

    McCord, Layne K; Scarfe, William C; Naylor, Rachel H; Scheetz, James P; Silveira, Anibal; Gillespie, Kevin R

    2007-05-01

    The objectives of this study were to compare the effect of JPEG 2000 compression of hand-wrist radiographs on observer image quality qualitative assessment and to compare with a software-derived quantitative image quality index. Fifteen hand-wrist radiographs were digitized and saved as TIFF and JPEG 2000 images at 4 levels of compression (20:1, 40:1, 60:1, and 80:1). The images, including rereads, were viewed by 13 orthodontic residents who determined the image quality rating on a scale of 1 to 5. A quantitative analysis was also performed by using a readily available software based on the human visual system (Image Quality Measure Computer Program, version 6.2, Mitre, Bedford, Mass). ANOVA was used to determine the optimal compression level (P < or =.05). When we compared subjective indexes, JPEG compression greater than 60:1 significantly reduced image quality. When we used quantitative indexes, the JPEG 2000 images had lower quality at all compression ratios compared with the original TIFF images. There was excellent correlation (R2 >0.92) between qualitative and quantitative indexes. Image Quality Measure indexes are more sensitive than subjective image quality assessments in quantifying image degradation with compression. There is potential for this software-based quantitative method in determining the optimal compression ratio for any image without the use of subjective raters.

  7. Blind image quality assessment based on aesthetic and statistical quality-aware features

    NASA Astrophysics Data System (ADS)

    Jenadeleh, Mohsen; Masaeli, Mohammad Masood; Moghaddam, Mohsen Ebrahimi

    2017-07-01

    The main goal of image quality assessment (IQA) methods is the emulation of human perceptual image quality judgments. Therefore, the correlation between objective scores of these methods with human perceptual scores is considered as their performance metric. Human judgment of the image quality implicitly includes many factors when assessing perceptual image qualities such as aesthetics, semantics, context, and various types of visual distortions. The main idea of this paper is to use a host of features that are commonly employed in image aesthetics assessment in order to improve blind image quality assessment (BIQA) methods accuracy. We propose an approach that enriches the features of BIQA methods by integrating a host of aesthetics image features with the features of natural image statistics derived from multiple domains. The proposed features have been used for augmenting five different state-of-the-art BIQA methods, which use statistical natural scene statistics features. Experiments were performed on seven benchmark image quality databases. The experimental results showed significant improvement of the accuracy of the methods.

  8. Comparative Analysis of Reconstructed Image Quality in a Simulated Chromotomographic Imager

    DTIC Science & Technology

    2014-03-01

    quality . This example uses five basic images a backlit bar chart with random intensity, 100 nm separation. A total of 54 initial target...compared for a variety of scenes. Reconstructed image quality is highly dependent on the initial target hypercube so a total of 54 initial target...COMPARATIVE ANALYSIS OF RECONSTRUCTED IMAGE QUALITY IN A SIMULATED CHROMOTOMOGRAPHIC IMAGER THESIS

  9. Modified-BRISQUE as no reference image quality assessment for structural MR images.

    PubMed

    Chow, Li Sze; Rajagopal, Heshalini

    2017-11-01

    An effective and practical Image Quality Assessment (IQA) model is needed to assess the image quality produced from any new hardware or software in MRI. A highly competitive No Reference - IQA (NR - IQA) model called Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) initially designed for natural images were modified to evaluate structural MR images. The BRISQUE model measures the image quality by using the locally normalized luminance coefficients, which were used to calculate the image features. The modified-BRISQUE model trained a new regression model using MR image features and Difference Mean Opinion Score (DMOS) from 775 MR images. Two types of benchmarks: objective and subjective assessments were used as performance evaluators for both original and modified-BRISQUE models. There was a high correlation between the modified-BRISQUE with both benchmarks, and they were higher than those for the original BRISQUE. There was a significant percentage improvement in their correlation values. The modified-BRISQUE was statistically better than the original BRISQUE. The modified-BRISQUE model can accurately measure the image quality of MR images. It is a practical NR-IQA model for MR images without using reference images. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Correlation of the clinical and physical image quality in chest radiography for average adults with a computed radiography imaging system

    PubMed Central

    Wood, T J; Beavis, A W; Saunderson, J R

    2013-01-01

    Objective: The purpose of this study was to examine the correlation between the quality of visually graded patient (clinical) chest images and a quantitative assessment of chest phantom (physical) images acquired with a computed radiography (CR) imaging system. Methods: The results of a previously published study, in which four experienced image evaluators graded computer-simulated postero-anterior chest images using a visual grading analysis scoring (VGAS) scheme, were used for the clinical image quality measurement. Contrast-to-noise ratio (CNR) and effective dose efficiency (eDE) were used as physical image quality metrics measured in a uniform chest phantom. Although optimal values of these physical metrics for chest radiography were not derived in this work, their correlation with VGAS in images acquired without an antiscatter grid across the diagnostic range of X-ray tube voltages was determined using Pearson’s correlation coefficient. Results: Clinical and physical image quality metrics increased with decreasing tube voltage. Statistically significant correlations between VGAS and CNR (R=0.87, p<0.033) and eDE (R=0.77, p<0.008) were observed. Conclusion: Medical physics experts may use the physical image quality metrics described here in quality assurance programmes and optimisation studies with a degree of confidence that they reflect the clinical image quality in chest CR images acquired without an antiscatter grid. Advances in knowledge: A statistically significant correlation has been found between the clinical and physical image quality in CR chest imaging. The results support the value of using CNR and eDE in the evaluation of quality in clinical thorax radiography. PMID:23568362

  11. Image Quality Improvement in Adaptive Optics Scanning Laser Ophthalmoscopy Assisted Capillary Visualization Using B-spline-based Elastic Image Registration

    PubMed Central

    Uji, Akihito; Ooto, Sotaro; Hangai, Masanori; Arichika, Shigeta; Yoshimura, Nagahisa

    2013-01-01

    Purpose To investigate the effect of B-spline-based elastic image registration on adaptive optics scanning laser ophthalmoscopy (AO-SLO)-assisted capillary visualization. Methods AO-SLO videos were acquired from parafoveal areas in the eyes of healthy subjects and patients with various diseases. After nonlinear image registration, the image quality of capillary images constructed from AO-SLO videos using motion contrast enhancement was compared before and after B-spline-based elastic (nonlinear) image registration performed using ImageJ. For objective comparison of image quality, contrast-to-noise ratios (CNRS) for vessel images were calculated. For subjective comparison, experienced ophthalmologists ranked images on a 5-point scale. Results All AO-SLO videos were successfully stabilized by elastic image registration. CNR was significantly higher in capillary images stabilized by elastic image registration than in those stabilized without registration. The average ratio of CNR in images with elastic image registration to CNR in images without elastic image registration was 2.10 ± 1.73, with no significant difference in the ratio between patients and healthy subjects. Improvement of image quality was also supported by expert comparison. Conclusions Use of B-spline-based elastic image registration in AO-SLO-assisted capillary visualization was effective for enhancing image quality both objectively and subjectively. PMID:24265796

  12. Research on assessment and improvement method of remote sensing image reconstruction

    NASA Astrophysics Data System (ADS)

    Sun, Li; Hua, Nian; Yu, Yanbo; Zhao, Zhanping

    2018-01-01

    Remote sensing image quality assessment and improvement is an important part of image processing. Generally, the use of compressive sampling theory in remote sensing imaging system can compress images while sampling which can improve efficiency. A method of two-dimensional principal component analysis (2DPCA) is proposed to reconstruct the remote sensing image to improve the quality of the compressed image in this paper, which contain the useful information of image and can restrain the noise. Then, remote sensing image quality influence factors are analyzed, and the evaluation parameters for quantitative evaluation are introduced. On this basis, the quality of the reconstructed images is evaluated and the different factors influence on the reconstruction is analyzed, providing meaningful referential data for enhancing the quality of remote sensing images. The experiment results show that evaluation results fit human visual feature, and the method proposed have good application value in the field of remote sensing image processing.

  13. Process perspective on image quality evaluation

    NASA Astrophysics Data System (ADS)

    Leisti, Tuomas; Halonen, Raisa; Kokkonen, Anna; Weckman, Hanna; Mettänen, Marja; Lensu, Lasse; Ritala, Risto; Oittinen, Pirkko; Nyman, Göte

    2008-01-01

    The psychological complexity of multivariate image quality evaluation makes it difficult to develop general image quality metrics. Quality evaluation includes several mental processes and ignoring these processes and the use of a few test images can lead to biased results. By using a qualitative/quantitative (Interpretation Based Quality, IBQ) methodology, we examined the process of pair-wise comparison in a setting, where the quality of the images printed by laser printer on different paper grades was evaluated. Test image consisted of a picture of a table covered with several objects. Three other images were also used, photographs of a woman, cityscape and countryside. In addition to the pair-wise comparisons, observers (N=10) were interviewed about the subjective quality attributes they used in making their quality decisions. An examination of the individual pair-wise comparisons revealed serious inconsistencies in observers' evaluations on the test image content, but not on other contexts. The qualitative analysis showed that this inconsistency was due to the observers' focus of attention. The lack of easily recognizable context in the test image may have contributed to this inconsistency. To obtain reliable knowledge of the effect of image context or attention on subjective image quality, a qualitative methodology is needed.

  14. The effect of image quality, repeated study, and assessment method on anatomy learning.

    PubMed

    Fenesi, Barbara; Mackinnon, Chelsea; Cheng, Lucia; Kim, Joseph A; Wainman, Bruce C

    2017-06-01

    The use of two-dimensional (2D) images is consistently used to prepare anatomy students for handling real specimen. This study examined whether the quality of 2D images is a critical component in anatomy learning. The visual clarity and consistency of 2D anatomical images was systematically manipulated to produce low-quality and high-quality images of the human hand and human eye. On day 0, participants learned about each anatomical specimen from paper booklets using either low-quality or high-quality images, and then completed a comprehension test using either 2D images or three-dimensional (3D) cadaveric specimens. On day 1, participants relearned each booklet, and on day 2 participants completed a final comprehension test using either 2D images or 3D cadaveric specimens. The effect of image quality on learning varied according to anatomical content, with high-quality images having a greater effect on improving learning of hand anatomy than eye anatomy (high-quality vs. low-quality for hand anatomy P = 0.018; high-quality vs. low-quality for eye anatomy P = 0.247). Also, the benefit of high-quality images on hand anatomy learning was restricted to performance on short-answer (SA) questions immediately after learning (high-quality vs. low-quality on SA questions P = 0.018), but did not apply to performance on multiple-choice (MC) questions (high-quality vs. low-quality on MC questions P = 0.109) or after participants had an additional learning opportunity (24 hours later) with anatomy content (high vs. low on SA questions P = 0.643). This study underscores the limited impact of image quality on anatomy learning, and questions whether investment in enhancing image quality of learning aids significantly promotes knowledge development. Anat Sci Educ 10: 249-261. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.

  15. Coupled dictionary learning for joint MR image restoration and segmentation

    NASA Astrophysics Data System (ADS)

    Yang, Xuesong; Fan, Yong

    2018-03-01

    To achieve better segmentation of MR images, image restoration is typically used as a preprocessing step, especially for low-quality MR images. Recent studies have demonstrated that dictionary learning methods could achieve promising performance for both image restoration and image segmentation. These methods typically learn paired dictionaries of image patches from different sources and use a common sparse representation to characterize paired image patches, such as low-quality image patches and their corresponding high quality counterparts for the image restoration, and image patches and their corresponding segmentation labels for the image segmentation. Since learning these dictionaries jointly in a unified framework may improve the image restoration and segmentation simultaneously, we propose a coupled dictionary learning method to concurrently learn dictionaries for joint image restoration and image segmentation based on sparse representations in a multi-atlas image segmentation framework. Particularly, three dictionaries, including a dictionary of low quality image patches, a dictionary of high quality image patches, and a dictionary of segmentation label patches, are learned in a unified framework so that the learned dictionaries of image restoration and segmentation can benefit each other. Our method has been evaluated for segmenting the hippocampus in MR T1 images collected with scanners of different magnetic field strengths. The experimental results have demonstrated that our method achieved better image restoration and segmentation performance than state of the art dictionary learning and sparse representation based image restoration and image segmentation methods.

  16. Automated daily quality control analysis for mammography in a multi-unit imaging center.

    PubMed

    Sundell, Veli-Matti; Mäkelä, Teemu; Meaney, Alexander; Kaasalainen, Touko; Savolainen, Sauli

    2018-01-01

    Background The high requirements for mammography image quality necessitate a systematic quality assurance process. Digital imaging allows automation of the image quality analysis, which can potentially improve repeatability and objectivity compared to a visual evaluation made by the users. Purpose To develop an automatic image quality analysis software for daily mammography quality control in a multi-unit imaging center. Material and Methods An automated image quality analysis software using the discrete wavelet transform and multiresolution analysis was developed for the American College of Radiology accreditation phantom. The software was validated by analyzing 60 randomly selected phantom images from six mammography systems and 20 phantom images with different dose levels from one mammography system. The results were compared to a visual analysis made by four reviewers. Additionally, long-term image quality trends of a full-field digital mammography system and a computed radiography mammography system were investigated. Results The automated software produced feature detection levels comparable to visual analysis. The agreement was good in the case of fibers, while the software detected somewhat more microcalcifications and characteristic masses. Long-term follow-up via a quality assurance web portal demonstrated the feasibility of using the software for monitoring the performance of mammography systems in a multi-unit imaging center. Conclusion Automated image quality analysis enables monitoring the performance of digital mammography systems in an efficient, centralized manner.

  17. Image quality assessment metric for frame accumulated image

    NASA Astrophysics Data System (ADS)

    Yu, Jianping; Li, Gang; Wang, Shaohui; Lin, Ling

    2018-01-01

    The medical image quality determines the accuracy of diagnosis, and the gray-scale resolution is an important parameter to measure image quality. But current objective metrics are not very suitable for assessing medical images obtained by frame accumulation technology. Little attention was paid to the gray-scale resolution, basically based on spatial resolution and limited to the 256 level gray scale of the existing display device. Thus, this paper proposes a metric, "mean signal-to-noise ratio" (MSNR) based on signal-to-noise in order to be more reasonable to evaluate frame accumulated medical image quality. We demonstrate its potential application through a series of images under a constant illumination signal. Here, the mean image of enough images was regarded as the reference image. Several groups of images by different frame accumulation and their MSNR were calculated. The results of the experiment show that, compared with other quality assessment methods, the metric is simpler, more effective, and more suitable for assessing frame accumulated images that surpass the gray scale and precision of the original image.

  18. Automatic spectral imaging protocol selection and iterative reconstruction in abdominal CT with reduced contrast agent dose: initial experience.

    PubMed

    Lv, Peijie; Liu, Jie; Chai, Yaru; Yan, Xiaopeng; Gao, Jianbo; Dong, Junqiang

    2017-01-01

    To evaluate the feasibility, image quality, and radiation dose of automatic spectral imaging protocol selection (ASIS) and adaptive statistical iterative reconstruction (ASIR) with reduced contrast agent dose in abdominal multiphase CT. One hundred and sixty patients were randomly divided into two scan protocols (n = 80 each; protocol A, 120 kVp/450 mgI/kg, filtered back projection algorithm (FBP); protocol B, spectral CT imaging with ASIS and 40 to 70 keV monochromatic images generated per 300 mgI/kg, ASIR algorithm. Quantitative parameters (image noise and contrast-to-noise ratios [CNRs]) and qualitative visual parameters (image noise, small structures, organ enhancement, and overall image quality) were compared. Monochromatic images at 50 keV and 60 keV provided similar or lower image noise, but higher contrast and overall image quality as compared with 120-kVp images. Despite the higher image noise, 40-keV images showed similar overall image quality compared to 120-kVp images. Radiation dose did not differ between the two protocols, while contrast agent dose in protocol B was reduced by 33 %. Application of ASIR and ASIS to monochromatic imaging from 40 to 60 keV allowed contrast agent dose reduction with adequate image quality and without increasing radiation dose compared to 120 kVp with FBP. • Automatic spectral imaging protocol selection provides appropriate scan protocols. • Abdominal CT is feasible using spectral imaging and 300 mgI/kg contrast agent. • 50-keV monochromatic images with 50 % ASIR provide optimal image quality.

  19. Low-cost oblique illumination: an image quality assessment.

    PubMed

    Ruiz-Santaquiteria, Jesus; Espinosa-Aranda, Jose Luis; Deniz, Oscar; Sanchez, Carlos; Borrego-Ramos, Maria; Blanco, Saul; Cristobal, Gabriel; Bueno, Gloria

    2018-01-01

    We study the effectiveness of several low-cost oblique illumination filters to improve overall image quality, in comparison with standard bright field imaging. For this purpose, a dataset composed of 3360 diatom images belonging to 21 taxa was acquired. Subjective and objective image quality assessments were done. The subjective evaluation was performed by a group of diatom experts by psychophysical test where resolution, focus, and contrast were assessed. Moreover, some objective nonreference image quality metrics were applied to the same image dataset to complete the study, together with the calculation of several texture features to analyze the effect of these filters in terms of textural properties. Both image quality evaluation methods, subjective and objective, showed better results for images acquired using these illumination filters in comparison with the no filtered image. These promising results confirm that this kind of illumination filters can be a practical way to improve the image quality, thanks to the simple and low cost of the design and manufacturing process. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  20. A whole-heart motion-correction algorithm: Effects on CT image quality and diagnostic accuracy of mechanical valve prosthesis abnormalities.

    PubMed

    Suh, Young Joo; Kim, Young Jin; Kim, Jin Young; Chang, Suyon; Im, Dong Jin; Hong, Yoo Jin; Choi, Byoung Wook

    2017-11-01

    We aimed to determine the effect of a whole-heart motion-correction algorithm (new-generation snapshot freeze, NG SSF) on the image quality of cardiac computed tomography (CT) images in patients with mechanical valve prostheses compared to standard images without motion correction and to compare the diagnostic accuracy of NG SSF and standard CT image sets for the detection of prosthetic valve abnormalities. A total of 20 patients with 32 mechanical valves who underwent wide-coverage detector cardiac CT with single-heartbeat acquisition were included. The CT image quality for subvalvular (below the prosthesis) and valvular regions (valve leaflets) of mechanical valves was assessed by two observers on a four-point scale (1 = poor, 2 = fair, 3 = good, and 4 = excellent). Paired t-tests or Wilcoxon signed rank tests were used to compare image quality scores and the number of diagnostic phases (image quality score≥3) between the standard image sets and NG SSF image sets. Diagnostic performance for detection of prosthetic valve abnormalities was compared between two image sets with the final diagnosis set by re-operation or clinical findings as the standard reference. NG SSF image sets had better image quality scores than standard image sets for both valvular and subvalvular regions (P < 0.05 for both). The number of phases that were of diagnostic image quality per patient was significantly greater in the NG SSF image set than standard image set for both valvular and subvalvular regions (P < 0.0001). Diagnostic performance of NG SSF image sets for the detection of prosthetic abnormalities (20 pannus and two paravalvular leaks) was greater than that of standard image sets (P < 0.05). Application of NG SSF can improve CT image quality and diagnostic accuracy in patients with mechanical valves compared to standard images. Copyright © 2017 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  1. No-reference quality assessment based on visual perception

    NASA Astrophysics Data System (ADS)

    Li, Junshan; Yang, Yawei; Hu, Shuangyan; Zhang, Jiao

    2014-11-01

    The visual quality assessment of images/videos is an ongoing hot research topic, which has become more and more important for numerous image and video processing applications with the rapid development of digital imaging and communication technologies. The goal of image quality assessment (IQA) algorithms is to automatically assess the quality of images/videos in agreement with human quality judgments. Up to now, two kinds of models have been used for IQA, namely full-reference (FR) and no-reference (NR) models. For FR models, IQA algorithms interpret image quality as fidelity or similarity with a perfect image in some perceptual space. However, the reference image is not available in many practical applications, and a NR IQA approach is desired. Considering natural vision as optimized by the millions of years of evolutionary pressure, many methods attempt to achieve consistency in quality prediction by modeling salient physiological and psychological features of the human visual system (HVS). To reach this goal, researchers try to simulate HVS with image sparsity coding and supervised machine learning, which are two main features of HVS. A typical HVS captures the scenes by sparsity coding, and uses experienced knowledge to apperceive objects. In this paper, we propose a novel IQA approach based on visual perception. Firstly, a standard model of HVS is studied and analyzed, and the sparse representation of image is accomplished with the model; and then, the mapping correlation between sparse codes and subjective quality scores is trained with the regression technique of least squaresupport vector machine (LS-SVM), which gains the regressor that can predict the image quality; the visual metric of image is predicted with the trained regressor at last. We validate the performance of proposed approach on Laboratory for Image and Video Engineering (LIVE) database, the specific contents of the type of distortions present in the database are: 227 images of JPEG2000, 233 images of JPEG, 174 images of White Noise, 174 images of Gaussian Blur, 174 images of Fast Fading. The database includes subjective differential mean opinion score (DMOS) for each image. The experimental results show that the proposed approach not only can assess many kinds of distorted images quality, but also exhibits a superior accuracy and monotonicity.

  2. Image aesthetic quality evaluation using convolution neural network embedded learning

    NASA Astrophysics Data System (ADS)

    Li, Yu-xin; Pu, Yuan-yuan; Xu, Dan; Qian, Wen-hua; Wang, Li-peng

    2017-11-01

    A way of embedded learning convolution neural network (ELCNN) based on the image content is proposed to evaluate the image aesthetic quality in this paper. Our approach can not only solve the problem of small-scale data but also score the image aesthetic quality. First, we chose Alexnet and VGG_S to compare for confirming which is more suitable for this image aesthetic quality evaluation task. Second, to further boost the image aesthetic quality classification performance, we employ the image content to train aesthetic quality classification models. But the training samples become smaller and only using once fine-tuning cannot make full use of the small-scale data set. Third, to solve the problem in second step, a way of using twice fine-tuning continually based on the aesthetic quality label and content label respective is proposed, the classification probability of the trained CNN models is used to evaluate the image aesthetic quality. The experiments are carried on the small-scale data set of Photo Quality. The experiment results show that the classification accuracy rates of our approach are higher than the existing image aesthetic quality evaluation approaches.

  3. Task-based measures of image quality and their relation to radiation dose and patient risk

    PubMed Central

    Barrett, Harrison H.; Myers, Kyle J.; Hoeschen, Christoph; Kupinski, Matthew A.; Little, Mark P.

    2015-01-01

    The theory of task-based assessment of image quality is reviewed in the context of imaging with ionizing radiation, and objective figures of merit (FOMs) for image quality are summarized. The variation of the FOMs with the task, the observer and especially with the mean number of photons recorded in the image is discussed. Then various standard methods for specifying radiation dose are reviewed and related to the mean number of photons in the image and hence to image quality. Current knowledge of the relation between local radiation dose and the risk of various adverse effects is summarized, and some graphical depictions of the tradeoffs between image quality and risk are introduced. Then various dose-reduction strategies are discussed in terms of their effect on task-based measures of image quality. PMID:25564960

  4. Assessing product image quality for online shopping

    NASA Astrophysics Data System (ADS)

    Goswami, Anjan; Chung, Sung H.; Chittar, Naren; Islam, Atiq

    2012-01-01

    Assessing product-image quality is important in the context of online shopping. A high quality image that conveys more information about a product can boost the buyer's confidence and can get more attention. However, the notion of image quality for product-images is not the same as that in other domains. The perception of quality of product-images depends not only on various photographic quality features but also on various high level features such as clarity of the foreground or goodness of the background etc. In this paper, we define a notion of product-image quality based on various such features. We conduct a crowd-sourced experiment to collect user judgments on thousands of eBay's images. We formulate a multi-class classification problem for modeling image quality by classifying images into good, fair and poor quality based on the guided perceptual notions from the judges. We also conduct experiments with regression using average crowd-sourced human judgments as target. We compute a pseudo-regression score with expected average of predicted classes and also compute a score from the regression technique. We design many experiments with various sampling and voting schemes with crowd-sourced data and construct various experimental image quality models. Most of our models have reasonable accuracies (greater or equal to 70%) on test data set. We observe that our computed image quality score has a high (0.66) rank correlation with average votes from the crowd sourced human judgments.

  5. Impact of B-Scan Averaging on Spectralis Optical Coherence Tomography Image Quality before and after Cataract Surgery

    PubMed Central

    Podkowinski, Dominika; Sharian Varnousfaderani, Ehsan; Simader, Christian; Bogunovic, Hrvoje; Philip, Ana-Maria; Gerendas, Bianca S.

    2017-01-01

    Background and Objective To determine optimal image averaging settings for Spectralis optical coherence tomography (OCT) in patients with and without cataract. Study Design/Material and Methods In a prospective study, the eyes were imaged before and after cataract surgery using seven different image averaging settings. Image quality was quantitatively evaluated using signal-to-noise ratio, distinction between retinal layer image intensity distributions, and retinal layer segmentation performance. Measures were compared pre- and postoperatively across different degrees of averaging. Results 13 eyes of 13 patients were included and 1092 layer boundaries analyzed. Preoperatively, increasing image averaging led to a logarithmic growth in all image quality measures up to 96 frames. Postoperatively, increasing averaging beyond 16 images resulted in a plateau without further benefits to image quality. Averaging 16 frames postoperatively provided comparable image quality to 96 frames preoperatively. Conclusion In patients with clear media, averaging 16 images provided optimal signal quality. A further increase in averaging was only beneficial in the eyes with senile cataract. However, prolonged acquisition time and possible loss of details have to be taken into account. PMID:28630764

  6. Image quality assessment using deep convolutional networks

    NASA Astrophysics Data System (ADS)

    Li, Yezhou; Ye, Xiang; Li, Yong

    2017-12-01

    This paper proposes a method of accurately assessing image quality without a reference image by using a deep convolutional neural network. Existing training based methods usually utilize a compact set of linear filters for learning features of images captured by different sensors to assess their quality. These methods may not be able to learn the semantic features that are intimately related with the features used in human subject assessment. Observing this drawback, this work proposes training a deep convolutional neural network (CNN) with labelled images for image quality assessment. The ReLU in the CNN allows non-linear transformations for extracting high-level image features, providing a more reliable assessment of image quality than linear filters. To enable the neural network to take images of any arbitrary size as input, the spatial pyramid pooling (SPP) is introduced connecting the top convolutional layer and the fully-connected layer. In addition, the SPP makes the CNN robust to object deformations to a certain extent. The proposed method taking an image as input carries out an end-to-end learning process, and outputs the quality of the image. It is tested on public datasets. Experimental results show that it outperforms existing methods by a large margin and can accurately assess the image quality on images taken by different sensors of varying sizes.

  7. Perceptual quality prediction on authentically distorted images using a bag of features approach

    PubMed Central

    Ghadiyaram, Deepti; Bovik, Alan C.

    2017-01-01

    Current top-performing blind perceptual image quality prediction models are generally trained on legacy databases of human quality opinion scores on synthetically distorted images. Therefore, they learn image features that effectively predict human visual quality judgments of inauthentic and usually isolated (single) distortions. However, real-world images usually contain complex composite mixtures of multiple distortions. We study the perceptually relevant natural scene statistics of such authentically distorted images in different color spaces and transform domains. We propose a “bag of feature maps” approach that avoids assumptions about the type of distortion(s) contained in an image and instead focuses on capturing consistencies—or departures therefrom—of the statistics of real-world images. Using a large database of authentically distorted images, human opinions of them, and bags of features computed on them, we train a regressor to conduct image quality prediction. We demonstrate the competence of the features toward improving automatic perceptual quality prediction by testing a learned algorithm using them on a benchmark legacy database as well as on a newly introduced distortion-realistic resource called the LIVE In the Wild Image Quality Challenge Database. We extensively evaluate the perceptual quality prediction model and algorithm and show that it is able to achieve good-quality prediction power that is better than other leading models. PMID:28129417

  8. Blind CT image quality assessment via deep learning strategy: initial study

    NASA Astrophysics Data System (ADS)

    Li, Sui; He, Ji; Wang, Yongbo; Liao, Yuting; Zeng, Dong; Bian, Zhaoying; Ma, Jianhua

    2018-03-01

    Computed Tomography (CT) is one of the most important medical imaging modality. CT images can be used to assist in the detection and diagnosis of lesions and to facilitate follow-up treatment. However, CT images are vulnerable to noise. Actually, there are two major source intrinsically causing the CT data noise, i.e., the X-ray photo statistics and the electronic noise background. Therefore, it is necessary to doing image quality assessment (IQA) in CT imaging before diagnosis and treatment. Most of existing CT images IQA methods are based on human observer study. However, these methods are impractical in clinical for their complex and time-consuming. In this paper, we presented a blind CT image quality assessment via deep learning strategy. A database of 1500 CT images is constructed, containing 300 high-quality images and 1200 corresponding noisy images. Specifically, the high-quality images were used to simulate the corresponding noisy images at four different doses. Then, the images are scored by the experienced radiologists by the following attributes: image noise, artifacts, edge and structure, overall image quality, and tumor size and boundary estimation with five-point scale. We trained a network for learning the non-liner map from CT images to subjective evaluation scores. Then, we load the pre-trained model to yield predicted score from the test image. To demonstrate the performance of the deep learning network in IQA, correlation coefficients: Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) are utilized. And the experimental result demonstrate that the presented deep learning based IQA strategy can be used in the CT image quality assessment.

  9. Backward Registration Based Aspect Ratio Similarity (ARS) for Image Retargeting Quality Assessment.

    PubMed

    Zhang, Yabin; Fang, Yuming; Lin, Weisi; Zhang, Xinfeng; Li, Leida

    2016-06-28

    During the past few years, there have been various kinds of content-aware image retargeting operators proposed for image resizing. However, the lack of effective objective retargeting quality assessment metrics limits the further development of image retargeting techniques. Different from traditional Image Quality Assessment (IQA) metrics, the quality degradation during image retargeting is caused by artificial retargeting modifications, and the difficulty for Image Retargeting Quality Assessment (IRQA) lies in the alternation of the image resolution and content, which makes it impossible to directly evaluate the quality degradation like traditional IQA. In this paper, we interpret the image retargeting in a unified framework of resampling grid generation and forward resampling. We show that the geometric change estimation is an efficient way to clarify the relationship between the images. We formulate the geometric change estimation as a Backward Registration problem with Markov Random Field (MRF) and provide an effective solution. The geometric change aims to provide the evidence about how the original image is resized into the target image. Under the guidance of the geometric change, we develop a novel Aspect Ratio Similarity metric (ARS) to evaluate the visual quality of retargeted images by exploiting the local block changes with a visual importance pooling strategy. Experimental results on the publicly available MIT RetargetMe and CUHK datasets demonstrate that the proposed ARS can predict more accurate visual quality of retargeted images compared with state-of-the-art IRQA metrics.

  10. The influence of body mass index, age, implants, and dental restorations on image quality of cone beam computed tomography.

    PubMed

    Ritter, Lutz; Mischkowski, Robert A; Neugebauer, Jörg; Dreiseidler, Timo; Scheer, Martin; Keeve, Erwin; Zöller, Joachim E

    2009-09-01

    The aim was to determine the influence of patient age, gender, body mass index (BMI), amount of dental restorations, and implants on image quality of cone-beam computerized tomography (CBCT). Fifty CBCT scans of a preretail version of Galileos (Sirona, Germany) were investigated retrospectively by 4 observers regarding image quality of 6 anatomic structures, pathologic findings detection, subjective exposure quality, and artifacts. Patient age, BMI, gender, amount of dental restorations, and implants were recorded and statistically tested for correlations to image quality. A negative effect on image quality was found statistically significantly correlated with age and the amount of dental restorations. None of the investigated image features were garbled by any of the investigated influence factors. Age and the amount of dental restorations appear to have a negative impact on CBCT image quality, whereas gender and BMI do not. Image quality of mental foramen, mandibular canal, and nasal floor are affected negatively by age but not by the amount of dental restorations. Further studies are required to elucidate influence factors on CBCT image quality.

  11. Information retrieval based on single-pixel optical imaging with quick-response code

    NASA Astrophysics Data System (ADS)

    Xiao, Yin; Chen, Wen

    2018-04-01

    Quick-response (QR) code technique is combined with ghost imaging (GI) to recover original information with high quality. An image is first transformed into a QR code. Then the QR code is treated as an input image in the input plane of a ghost imaging setup. After measurements, traditional correlation algorithm of ghost imaging is utilized to reconstruct an image (QR code form) with low quality. With this low-quality image as an initial guess, a Gerchberg-Saxton-like algorithm is used to improve its contrast, which is actually a post processing. Taking advantage of high error correction capability of QR code, original information can be recovered with high quality. Compared to the previous method, our method can obtain a high-quality image with comparatively fewer measurements, which means that the time-consuming postprocessing procedure can be avoided to some extent. In addition, for conventional ghost imaging, the larger the image size is, the more measurements are needed. However, for our method, images with different sizes can be converted into QR code with the same small size by using a QR generator. Hence, for the larger-size images, the time required to recover original information with high quality will be dramatically reduced. Our method makes it easy to recover a color image in a ghost imaging setup, because it is not necessary to divide the color image into three channels and respectively recover them.

  12. Comprehensive model for predicting perceptual image quality of smart mobile devices.

    PubMed

    Gong, Rui; Xu, Haisong; Luo, M R; Li, Haifeng

    2015-01-01

    An image quality model for smart mobile devices was proposed based on visual assessments of several image quality attributes. A series of psychophysical experiments were carried out on two kinds of smart mobile devices, i.e., smart phones and tablet computers, in which naturalness, colorfulness, brightness, contrast, sharpness, clearness, and overall image quality were visually evaluated under three lighting environments via categorical judgment method for various application types of test images. On the basis of Pearson correlation coefficients and factor analysis, the overall image quality could first be predicted by its two constituent attributes with multiple linear regression functions for different types of images, respectively, and then the mathematical expressions were built to link the constituent image quality attributes with the physical parameters of smart mobile devices and image appearance factors. The procedure and algorithms were applicable to various smart mobile devices, different lighting conditions, and multiple types of images, and performance was verified by the visual data.

  13. The use of the general image quality equation in the design and evaluation of imaging systems

    NASA Astrophysics Data System (ADS)

    Cota, Steve A.; Florio, Christopher J.; Duvall, David J.; Leon, Michael A.

    2009-08-01

    The design of any modern imaging system is the end result of many trade studies, each seeking to optimize image quality within real world constraints such as cost, schedule and overall risk. The National Imagery Interpretability Rating Scale (NIIRS) is a useful measure of image quality, because, by characterizing the overall interpretability of an image, it combines into one metric those contributors to image quality to which a human interpreter is most sensitive. The main drawback to using a NIIRS rating as a measure of image quality in engineering trade studies is the fact that it is tied to the human observer and cannot be predicted from physical principles and engineering parameters alone. The General Image Quality Equation (GIQE) of Leachtenauer et al. 1997 [Appl. Opt. 36, 8322-8328 (1997)] is a regression of actual image analyst NIIRS ratings vs. readily calculable engineering metrics, and provides a mechanism for using the expected NIIRS rating of an imaging system in the design and evaluation process. In this paper, we will discuss how we use the GIQE in conjunction with The Aerospace Corporation's Parameterized Image Chain Analysis & Simulation SOftware (PICASSO) to evaluate imager designs, taking a hypothetical high resolution commercial imaging system as an example.

  14. Objective quality assessment for multiexposure multifocus image fusion.

    PubMed

    Hassen, Rania; Wang, Zhou; Salama, Magdy M A

    2015-09-01

    There has been a growing interest in image fusion technologies, but how to objectively evaluate the quality of fused images has not been fully understood. Here, we propose a method for objective quality assessment of multiexposure multifocus image fusion based on the evaluation of three key factors of fused image quality: 1) contrast preservation; 2) sharpness; and 3) structure preservation. Subjective experiments are conducted to create an image fusion database, based on which, performance evaluation shows that the proposed fusion quality index correlates well with subjective scores, and gives a significant improvement over the existing fusion quality measures.

  15. Determinants of image quality of rotational angiography for on-line assessment of frame geometry after transcatheter aortic valve implantation.

    PubMed

    Rodríguez-Olivares, Ramón; El Faquir, Nahid; Rahhab, Zouhair; Maugenest, Anne-Marie; Van Mieghem, Nicolas M; Schultz, Carl; Lauritsch, Guenter; de Jaegere, Peter P T

    2016-07-01

    To study the determinants of image quality of rotational angiography using dedicated research prototype software for motion compensation without rapid ventricular pacing after the implantation of four commercially available catheter-based valves. Prospective observational study including 179 consecutive patients who underwent transcatheter aortic valve implantation (TAVI) with either the Medtronic CoreValve (MCS), Edward-SAPIEN Valve (ESV), Boston Sadra Lotus (BSL) or Saint-Jude Portico Valve (SJP) in whom rotational angiography (R-angio) with motion compensation 3D image reconstruction was performed. Image quality was evaluated from grade 1 (excellent image quality) to grade 5 (strongly degraded). Distinction was made between good (grades 1, 2) and poor image quality (grades 3-5). Clinical (gender, body mass index, Agatston score, heart rate and rhythm, artifacts), procedural (valve type) and technical variables (isocentricity) were related with the image quality assessment. Image quality was good in 128 (72 %) and poor in 51 (28 %) patients. By univariable analysis only valve type (BSL) and the presence of an artefact negatively affected image quality. By multivariate analysis (in which BMI was forced into the model) BSL valve (Odds 3.5, 95 % CI [1.3-9.6], p = 0.02), presence of an artifact (Odds 2.5, 95 % CI [1.2-5.4], p = 0.02) and BMI (Odds 1.1, 95 % CI [1.0-1.2], p = 0.04) were independent predictors of poor image quality. Rotational angiography with motion compensation 3D image reconstruction using a dedicated research prototype software offers good image quality for the evaluation of frame geometry after TAVI in the majority of patients. Valve type, presence of artifacts and higher BMI negatively affect image quality.

  16. Human visual system consistent quality assessment for remote sensing image fusion

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Huang, Junyi; Liu, Shuguang; Li, Huali; Zhou, Qiming; Liu, Junchen

    2015-07-01

    Quality assessment for image fusion is essential for remote sensing application. Generally used indices require a high spatial resolution multispectral (MS) image for reference, which is not always readily available. Meanwhile, the fusion quality assessments using these indices may not be consistent with the Human Visual System (HVS). As an attempt to overcome this requirement and inconsistency, this paper proposes an HVS-consistent image fusion quality assessment index at the highest resolution without a reference MS image using Gaussian Scale Space (GSS) technology that could simulate the HVS. The spatial details and spectral information of original and fused images are first separated in GSS, and the qualities are evaluated using the proposed spatial and spectral quality index respectively. The overall quality is determined without a reference MS image by a combination of the proposed two indices. Experimental results on various remote sensing images indicate that the proposed index is more consistent with HVS evaluation compared with other widely used indices that may or may not require reference images.

  17. Antero-posterior (AP) pelvis x-ray imaging on a trolley: Impact of trolley design, mattress design and radiographer practice on image quality and radiation dose.

    PubMed

    Tugwell, J R; England, A; Hogg, P

    2017-08-01

    Physical and technical differences exist between imaging on an x-ray tabletop and imaging on a trolley. This study evaluates how trolley imaging impacts image quality and radiation dose for an antero-posterior (AP) pelvis projection whilst subsequently exploring means of optimising this imaging examination. An anthropomorphic pelvis phantom was imaged on a commercially available trolley under various conditions. Variables explored included two mattresses, two image receptor holder positions, three source to image distances (SIDs) and four mAs values. Image quality was evaluated using relative visual grading analysis with the reference image acquired on the x-ray tabletop. Contrast to noise ratio (CNR) was calculated. Effective dose was established using Monte Carlo simulation. Optimisation scores were derived as a figure of merit by dividing effective dose with visual image quality scores. Visual image quality reduced significantly (p < 0.05) whilst effective dose increased significantly (p < 0.05) for images acquired on the trolley using identical acquisition parameters to the reference image. The trolley image with the highest optimisation score was acquired using 130 cm SID, 20 mAs, the standard mattress and platform not elevated. A difference of 12.8 mm was found between the image with the lowest and highest magnification factor (18%). The acquisition parameters used for AP pelvis on the x-ray tabletop are not transferable to trolley imaging and should be modified accordingly to compensate for the differences that exist. Exposure charts should be developed for trolley imaging to ensure optimal image quality at lowest possible dose. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  18. Quantifying the quality of medical x-ray images: An evaluation based on normal anatomy for lumbar spine and chest radiography

    NASA Astrophysics Data System (ADS)

    Tingberg, Anders Martin

    Optimisation in diagnostic radiology requires accurate methods for determination of patient absorbed dose and clinical image quality. Simple methods for evaluation of clinical image quality are at present scarce and this project aims at developing such methods. Two methods are used and further developed; fulfillment of image criteria (IC) and visual grading analysis (VGA). Clinical image quality descriptors are defined based on these two methods: image criteria score (ICS) and visual grading analysis score (VGAS), respectively. For both methods the basis is the Image Criteria of the ``European Guidelines on Quality Criteria for Diagnostic Radiographic Images''. Both methods have proved to be useful for evaluation of clinical image quality. The two methods complement each other: IC is an absolute method, which means that the quality of images of different patients and produced with different radiographic techniques can be compared with each other. The separating power of IC is, however, weaker than that of VGA. VGA is the best method for comparing images produced with different radiographic techniques and has strong separating power, but the results are relative, since the quality of an image is compared to the quality of a reference image. The usefulness of the two methods has been verified by comparing the results from both of them with results from a generally accepted method for evaluation of clinical image quality, receiver operating characteristics (ROC). The results of the comparison between the two methods based on visibility of anatomical structures and the method based on detection of pathological structures (free-response forced error) indicate that the former two methods can be used for evaluation of clinical image quality as efficiently as the method based on ROC. More studies are, however, needed for us to be able to draw a general conclusion, including studies of other organs, using other radiographic techniques, etc. The results of the experimental evaluation of clinical image quality are compared with physical quantities calculated with a theoretical model based on a voxel phantom, and correlations are found. The results demonstrate that the computer model can be a useful toot in planning further experimental studies.

  19. Use of focus measure operators for characterization of flood illumination adaptive optics ophthalmoscopy image quality

    PubMed Central

    Alonso-Caneiro, David; Sampson, Danuta M.; Chew, Avenell L.; Collins, Michael J.; Chen, Fred K.

    2018-01-01

    Adaptive optics flood illumination ophthalmoscopy (AO-FIO) allows imaging of the cone photoreceptor in the living human retina. However, clinical interpretation of the AO-FIO image remains challenging due to suboptimal quality arising from residual uncorrected wavefront aberrations and rapid eye motion. An objective method of assessing image quality is necessary to determine whether an AO-FIO image is suitable for grading and diagnostic purpose. In this work, we explore the use of focus measure operators as a surrogate measure of AO-FIO image quality. A set of operators are tested on data sets acquired at different focal depths and different retinal locations from healthy volunteers. Our results demonstrate differences in focus measure operator performance in quantifying AO-FIO image quality. Further, we discuss the potential application of the selected focus operators in (i) selection of the best quality AO-FIO image from a series of images collected at the same retinal location and (ii) assessment of longitudinal changes in the diseased retina. Focus function could be incorporated into real-time AO-FIO image processing and provide an initial automated quality assessment during image acquisition or reading center grading. PMID:29552404

  20. Gradient Magnitude Similarity Deviation: A Highly Efficient Perceptual Image Quality Index.

    PubMed

    Xue, Wufeng; Zhang, Lei; Mou, Xuanqin; Bovik, Alan C

    2014-02-01

    It is an important task to faithfully evaluate the perceptual quality of output images in many applications, such as image compression, image restoration, and multimedia streaming. A good image quality assessment (IQA) model should not only deliver high quality prediction accuracy, but also be computationally efficient. The efficiency of IQA metrics is becoming particularly important due to the increasing proliferation of high-volume visual data in high-speed networks. We present a new effective and efficient IQA model, called gradient magnitude similarity deviation (GMSD). The image gradients are sensitive to image distortions, while different local structures in a distorted image suffer different degrees of degradations. This motivates us to explore the use of global variation of gradient based local quality map for overall image quality prediction. We find that the pixel-wise gradient magnitude similarity (GMS) between the reference and distorted images combined with a novel pooling strategy-the standard deviation of the GMS map-can predict accurately perceptual image quality. The resulting GMSD algorithm is much faster than most state-of-the-art IQA methods, and delivers highly competitive prediction accuracy. MATLAB source code of GMSD can be downloaded at http://www4.comp.polyu.edu.hk/~cslzhang/IQA/GMSD/GMSD.htm.

  1. Use of focus measure operators for characterization of flood illumination adaptive optics ophthalmoscopy image quality.

    PubMed

    Alonso-Caneiro, David; Sampson, Danuta M; Chew, Avenell L; Collins, Michael J; Chen, Fred K

    2018-02-01

    Adaptive optics flood illumination ophthalmoscopy (AO-FIO) allows imaging of the cone photoreceptor in the living human retina. However, clinical interpretation of the AO-FIO image remains challenging due to suboptimal quality arising from residual uncorrected wavefront aberrations and rapid eye motion. An objective method of assessing image quality is necessary to determine whether an AO-FIO image is suitable for grading and diagnostic purpose. In this work, we explore the use of focus measure operators as a surrogate measure of AO-FIO image quality. A set of operators are tested on data sets acquired at different focal depths and different retinal locations from healthy volunteers. Our results demonstrate differences in focus measure operator performance in quantifying AO-FIO image quality. Further, we discuss the potential application of the selected focus operators in (i) selection of the best quality AO-FIO image from a series of images collected at the same retinal location and (ii) assessment of longitudinal changes in the diseased retina. Focus function could be incorporated into real-time AO-FIO image processing and provide an initial automated quality assessment during image acquisition or reading center grading.

  2. Antiscatter grid use in pediatric digital tomosynthesis imaging†

    PubMed Central

    King, Jenna M.; Reed, Martin

    2011-01-01

    The objective of this study was to assess the effect of antiscatter grid use on tomosynthesis image quality. We performed an observer study that rated the image quality of digital tomosynthesis scout radiographs and slice images of a Leeds TO.20 contrast‐detail test object embedded in acrylic with and without a grid. We considered 10, 15, 20 and 25 cm of acrylic to represent the wide range of patient thicknesses encountered in pediatric imaging. We also acquired and rated images without a grid at an increased patient dose. The readers counted the total number of visible details in each image as a measure of relative image quality. We observed that the antiscatter grid improves tomosynthesis image quality compared to the grid‐out case, which received image quality scores similar to grid‐in radiography. Our results suggest that, in order to achieve the best image quality in exchange for the increase in patient dose, it may often be appropriate to include an antiscatter grid for pediatric tomosynthesis imaging, particularly if the patient thickness is greater than 10 cm. PACS number: 87.57.‐s PMID:22089021

  3. Enhancement of digital radiography image quality using a convolutional neural network.

    PubMed

    Sun, Yuewen; Li, Litao; Cong, Peng; Wang, Zhentao; Guo, Xiaojing

    2017-01-01

    Digital radiography system is widely used for noninvasive security check and medical imaging examination. However, the system has a limitation of lower image quality in spatial resolution and signal to noise ratio. In this study, we explored whether the image quality acquired by the digital radiography system can be improved with a modified convolutional neural network to generate high-resolution images with reduced noise from the original low-quality images. The experiment evaluated on a test dataset, which contains 5 X-ray images, showed that the proposed method outperformed the traditional methods (i.e., bicubic interpolation and 3D block-matching approach) as measured by peak signal to noise ratio (PSNR) about 1.3 dB while kept highly efficient processing time within one second. Experimental results demonstrated that a residual to residual (RTR) convolutional neural network remarkably improved the image quality of object structural details by increasing the image resolution and reducing image noise. Thus, this study indicated that applying this RTR convolutional neural network system was useful to improve image quality acquired by the digital radiography system.

  4. Defining Quality in Cardiovascular Imaging: A Scientific Statement From the American Heart Association.

    PubMed

    Shaw, Leslee J; Blankstein, Ron; Jacobs, Jill E; Leipsic, Jonathon A; Kwong, Raymond Y; Taqueti, Viviany R; Beanlands, Rob S B; Mieres, Jennifer H; Flamm, Scott D; Gerber, Thomas C; Spertus, John; Di Carli, Marcelo F

    2017-12-01

    The aims of the current statement are to refine the definition of quality in cardiovascular imaging and to propose novel methodological approaches to inform the demonstration of quality in imaging in future clinical trials and registries. We propose defining quality in cardiovascular imaging using an analytical framework put forth by the Institute of Medicine whereby quality was defined as testing being safe, effective, patient-centered, timely, equitable, and efficient. The implications of each of these components of quality health care are as essential for cardiovascular imaging as they are for other areas within health care. Our proposed statement may serve as the foundation for integrating these quality indicators into establishing designations of quality laboratory practices and developing standards for value-based payment reform for imaging services. We also include recommendations for future clinical research to fulfill quality aims within cardiovascular imaging, including clinical hypotheses of improving patient outcomes, the importance of health status as an end point, and deferred testing options. Future research should evolve to define novel methods optimized for the role of cardiovascular imaging for detecting disease and guiding treatment and to demonstrate the role of cardiovascular imaging in facilitating healthcare quality. © 2017 American Heart Association, Inc.

  5. Multiscale image processing and antiscatter grids in digital radiography.

    PubMed

    Lo, Winnie Y; Hornof, William J; Zwingenberger, Allison L; Robertson, Ian D

    2009-01-01

    Scatter radiation is a source of noise and results in decreased signal-to-noise ratio and thus decreased image quality in digital radiography. We determined subjectively whether a digitally processed image made without a grid would be of similar quality to an image made with a grid but without image processing. Additionally the effects of exposure dose and of a using a grid with digital radiography on overall image quality were studied. Thoracic and abdominal radiographs of five dogs of various sizes were made. Four acquisition techniques were included (1) with a grid, standard exposure dose, digital image processing; (2) without a grid, standard exposure dose, digital image processing; (3) without a grid, half the exposure dose, digital image processing; and (4) with a grid, standard exposure dose, no digital image processing (to mimic a film-screen radiograph). Full-size radiographs as well as magnified images of specific anatomic regions were generated. Nine reviewers rated the overall image quality subjectively using a five-point scale. All digitally processed radiographs had higher overall scores than nondigitally processed radiographs regardless of patient size, exposure dose, or use of a grid. The images made at half the exposure dose had a slightly lower quality than those made at full dose, but this was only statistically significant in magnified images. Using a grid with digital image processing led to a slight but statistically significant increase in overall quality when compared with digitally processed images made without a grid but whether this increase in quality is clinically significant is unknown.

  6. Viewing zones in three-dimensional imaging systems based on lenticular, parallax-barrier, and microlens-array plates.

    PubMed

    Son, Jung-Young; Saveljev, Vladmir V; Kim, Jae-Soon; Kim, Sung-Sik; Javidi, Bahram

    2004-09-10

    The viewing zone of autostereoscopic imaging systems that use lenticular, parallax-barrier, and microlens-array plates as the viewing-zone-forming optics is analyzed in order to verify the image-quality differences between different locations of the zone. The viewing zone consists of many subzones. The images seen at most of these subzones are composed of at least one image strip selected from the total number of different view images displayed. These different view images are not mixed but patched to form a complete image. This image patching deteriorates the quality of the image seen at different subzones. We attempt to quantify the quality of the image seen at these viewing subzones by taking the inverse of the number of different view images patched together at different subzones. Although the combined viewing zone can be extended to almost all of the front space of the imaging system, in reality it is limited mainly by the image quality.

  7. Readout-Segmented Echo-Planar Imaging in Diffusion-Weighted MR Imaging in Breast Cancer: Comparison with Single-Shot Echo-Planar Imaging in Image Quality

    PubMed Central

    Kim, Yun Ju; Kang, Bong Joo; Park, Chang Suk; Kim, Hyeon Sook; Son, Yo Han; Porter, David Andrew; Song, Byung Joo

    2014-01-01

    Objective The purpose of this study was to compare the image quality of standard single-shot echo-planar imaging (ss-EPI) and that of readout-segmented EPI (rs-EPI) in patients with breast cancer. Materials and Methods Seventy-one patients with 74 breast cancers underwent both ss-EPI and rs-EPI. For qualitative comparison of image quality, three readers independently assessed the two sets of diffusion-weighted (DW) images. To evaluate geometric distortion, a comparison was made between lesion lengths derived from contrast enhanced MR (CE-MR) images and those obtained from the corresponding DW images. For assessment of image parameters, signal-to-noise ratio (SNR), lesion contrast, and contrast-to-noise ratio (CNR) were calculated. Results The rs-EPI was superior to ss-EPI in most criteria regarding the qualitative image quality. Anatomical structure distinction, delineation of the lesion, ghosting artifact, and overall image quality were significantly better in rs-EPI. Regarding the geometric distortion, lesion length on ss-EPI was significantly different from that of CE-MR, whereas there were no significant differences between CE-MR and rs-EPI. The rs-EPI was superior to ss-EPI in SNR and CNR. Conclusion Readout-segmented EPI is superior to ss-EPI in the aspect of image quality in DW MR imaging of the breast. PMID:25053898

  8. Effect of metal artifact reduction software on image quality of C-arm cone-beam computed tomography during intracranial aneurysm treatment.

    PubMed

    Enomoto, Yukiko; Yamauchi, Keita; Asano, Takahiko; Otani, Katharina; Iwama, Toru

    2018-01-01

    Background and purpose C-arm cone-beam computed tomography (CBCT) has the drawback that image quality is degraded by artifacts caused by implanted metal objects. We evaluated whether metal artifact reduction (MAR) prototype software can improve the subjective image quality of CBCT images of patients with intracranial aneurysms treated with coils or clips. Materials and methods Forty-four patients with intracranial aneurysms implanted with coils (40 patients) or clips (four patients) underwent one CBCT scan from which uncorrected and MAR-corrected CBCT image datasets were reconstructed. Three blinded readers evaluated the image quality of the image sets using a four-point scale (1: Excellent, 2: Good, 3: Poor, 4: Bad). The median scores of the three readers of uncorrected and MAR-corrected images were compared with the paired Wilcoxon signed-rank and inter-reader agreement of change scores was assessed by weighted kappa statistics. The readers also recorded new clinical findings, such as intracranial hemorrhage, air, or surrounding anatomical structures on MAR-corrected images. Results The image quality of MAR-corrected CBCT images was significantly improved compared with the uncorrected CBCT image ( p < 0.001). Additional clinical findings were seen on CBCT images of 70.4% of patients after MAR correction. Conclusion MAR software improved image quality of CBCT images degraded by metal artifacts.

  9. MO-C-18A-01: Advances in Model-Based 3D Image Reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, G; Pan, X; Stayman, J

    2014-06-15

    Recent years have seen the emergence of CT image reconstruction techniques that exploit physical models of the imaging system, photon statistics, and even the patient to achieve improved 3D image quality and/or reduction of radiation dose. With numerous advantages in comparison to conventional 3D filtered backprojection, such techniques bring a variety of challenges as well, including: a demanding computational load associated with sophisticated forward models and iterative optimization methods; nonlinearity and nonstationarity in image quality characteristics; a complex dependency on multiple free parameters; and the need to understand how best to incorporate prior information (including patient-specific prior images) within themore » reconstruction process. The advantages, however, are even greater – for example: improved image quality; reduced dose; robustness to noise and artifacts; task-specific reconstruction protocols; suitability to novel CT imaging platforms and noncircular orbits; and incorporation of known characteristics of the imager and patient that are conventionally discarded. This symposium features experts in 3D image reconstruction, image quality assessment, and the translation of such methods to emerging clinical applications. Dr. Chen will address novel methods for the incorporation of prior information in 3D and 4D CT reconstruction techniques. Dr. Pan will show recent advances in optimization-based reconstruction that enable potential reduction of dose and sampling requirements. Dr. Stayman will describe a “task-based imaging” approach that leverages models of the imaging system and patient in combination with a specification of the imaging task to optimize both the acquisition and reconstruction process. Dr. Samei will describe the development of methods for image quality assessment in such nonlinear reconstruction techniques and the use of these methods to characterize and optimize image quality and dose in a spectrum of clinical applications. Learning Objectives: Learn the general methodologies associated with model-based 3D image reconstruction. Learn the potential advantages in image quality and dose associated with model-based image reconstruction. Learn the challenges associated with computational load and image quality assessment for such reconstruction methods. Learn how imaging task can be incorporated as a means to drive optimal image acquisition and reconstruction techniques. Learn how model-based reconstruction methods can incorporate prior information to improve image quality, ease sampling requirements, and reduce dose.« less

  10. PICASSO: an end-to-end image simulation tool for space and airborne imaging systems

    NASA Astrophysics Data System (ADS)

    Cota, Steve A.; Bell, Jabin T.; Boucher, Richard H.; Dutton, Tracy E.; Florio, Chris J.; Franz, Geoffrey A.; Grycewicz, Thomas J.; Kalman, Linda S.; Keller, Robert A.; Lomheim, Terrence S.; Paulson, Diane B.; Willkinson, Timothy S.

    2008-08-01

    The design of any modern imaging system is the end result of many trade studies, each seeking to optimize image quality within real world constraints such as cost, schedule and overall risk. Image chain analysis - the prediction of image quality from fundamental design parameters - is an important part of this design process. At The Aerospace Corporation we have been using a variety of image chain analysis tools for many years, the Parameterized Image Chain Analysis & Simulation SOftware (PICASSO) among them. In this paper we describe our PICASSO tool, showing how, starting with a high quality input image and hypothetical design descriptions representative of the current state of the art in commercial imaging satellites, PICASSO can generate standard metrics of image quality in support of the decision processes of designers and program managers alike.

  11. PICASSO: an end-to-end image simulation tool for space and airborne imaging systems

    NASA Astrophysics Data System (ADS)

    Cota, Stephen A.; Bell, Jabin T.; Boucher, Richard H.; Dutton, Tracy E.; Florio, Christopher J.; Franz, Geoffrey A.; Grycewicz, Thomas J.; Kalman, Linda S.; Keller, Robert A.; Lomheim, Terrence S.; Paulson, Diane B.; Wilkinson, Timothy S.

    2010-06-01

    The design of any modern imaging system is the end result of many trade studies, each seeking to optimize image quality within real world constraints such as cost, schedule and overall risk. Image chain analysis - the prediction of image quality from fundamental design parameters - is an important part of this design process. At The Aerospace Corporation we have been using a variety of image chain analysis tools for many years, the Parameterized Image Chain Analysis & Simulation SOftware (PICASSO) among them. In this paper we describe our PICASSO tool, showing how, starting with a high quality input image and hypothetical design descriptions representative of the current state of the art in commercial imaging satellites, PICASSO can generate standard metrics of image quality in support of the decision processes of designers and program managers alike.

  12. An Underwater Color Image Quality Evaluation Metric.

    PubMed

    Yang, Miao; Sowmya, Arcot

    2015-12-01

    Quality evaluation of underwater images is a key goal of underwater video image retrieval and intelligent processing. To date, no metric has been proposed for underwater color image quality evaluation (UCIQE). The special absorption and scattering characteristics of the water medium do not allow direct application of natural color image quality metrics especially to different underwater environments. In this paper, subjective testing for underwater image quality has been organized. The statistical distribution of the underwater image pixels in the CIELab color space related to subjective evaluation indicates the sharpness and colorful factors correlate well with subjective image quality perception. Based on these, a new UCIQE metric, which is a linear combination of chroma, saturation, and contrast, is proposed to quantify the non-uniform color cast, blurring, and low-contrast that characterize underwater engineering and monitoring images. Experiments are conducted to illustrate the performance of the proposed UCIQE metric and its capability to measure the underwater image enhancement results. They show that the proposed metric has comparable performance to the leading natural color image quality metrics and the underwater grayscale image quality metrics available in the literature, and can predict with higher accuracy the relative amount of degradation with similar image content in underwater environments. Importantly, UCIQE is a simple and fast solution for real-time underwater video processing. The effectiveness of the presented measure is also demonstrated by subjective evaluation. The results show better correlation between the UCIQE and the subjective mean opinion score.

  13. Learning to rank for blind image quality assessment.

    PubMed

    Gao, Fei; Tao, Dacheng; Gao, Xinbo; Li, Xuelong

    2015-10-01

    Blind image quality assessment (BIQA) aims to predict perceptual image quality scores without access to reference images. State-of-the-art BIQA methods typically require subjects to score a large number of images to train a robust model. However, subjective quality scores are imprecise, biased, and inconsistent, and it is challenging to obtain a large-scale database, or to extend existing databases, because of the inconvenience of collecting images, training the subjects, conducting subjective experiments, and realigning human quality evaluations. To combat these limitations, this paper explores and exploits preference image pairs (PIPs) such as the quality of image Ia is better than that of image Ib for training a robust BIQA model. The preference label, representing the relative quality of two images, is generally precise and consistent, and is not sensitive to image content, distortion type, or subject identity; such PIPs can be generated at a very low cost. The proposed BIQA method is one of learning to rank. We first formulate the problem of learning the mapping from the image features to the preference label as one of classification. In particular, we investigate the utilization of a multiple kernel learning algorithm based on group lasso to provide a solution. A simple but effective strategy to estimate perceptual image quality scores is then presented. Experiments show that the proposed BIQA method is highly effective and achieves a performance comparable with that of state-of-the-art BIQA algorithms. Moreover, the proposed method can be easily extended to new distortion categories.

  14. Image Quality Ranking Method for Microscopy

    PubMed Central

    Koho, Sami; Fazeli, Elnaz; Eriksson, John E.; Hänninen, Pekka E.

    2016-01-01

    Automated analysis of microscope images is necessitated by the increased need for high-resolution follow up of events in time. Manually finding the right images to be analyzed, or eliminated from data analysis are common day-to-day problems in microscopy research today, and the constantly growing size of image datasets does not help the matter. We propose a simple method and a software tool for sorting images within a dataset, according to their relative quality. We demonstrate the applicability of our method in finding good quality images in a STED microscope sample preparation optimization image dataset. The results are validated by comparisons to subjective opinion scores, as well as five state-of-the-art blind image quality assessment methods. We also show how our method can be applied to eliminate useless out-of-focus images in a High-Content-Screening experiment. We further evaluate the ability of our image quality ranking method to detect out-of-focus images, by extensive simulations, and by comparing its performance against previously published, well-established microscopy autofocus metrics. PMID:27364703

  15. Feature maps driven no-reference image quality prediction of authentically distorted images

    NASA Astrophysics Data System (ADS)

    Ghadiyaram, Deepti; Bovik, Alan C.

    2015-03-01

    Current blind image quality prediction models rely on benchmark databases comprised of singly and synthetically distorted images, thereby learning image features that are only adequate to predict human perceived visual quality on such inauthentic distortions. However, real world images often contain complex mixtures of multiple distortions. Rather than a) discounting the effect of these mixtures of distortions on an image's perceptual quality and considering only the dominant distortion or b) using features that are only proven to be efficient for singly distorted images, we deeply study the natural scene statistics of authentically distorted images, in different color spaces and transform domains. We propose a feature-maps-driven statistical approach which avoids any latent assumptions about the type of distortion(s) contained in an image, and focuses instead on modeling the remarkable consistencies in the scene statistics of real world images in the absence of distortions. We design a deep belief network that takes model-based statistical image features derived from a very large database of authentically distorted images as input and discovers good feature representations by generalizing over different distortion types, mixtures, and severities, which are later used to learn a regressor for quality prediction. We demonstrate the remarkable competence of our features for improving automatic perceptual quality prediction on a benchmark database and on the newly designed LIVE Authentic Image Quality Challenge Database and show that our approach of combining robust statistical features and the deep belief network dramatically outperforms the state-of-the-art.

  16. High-field open versus short-bore magnetic resonance imaging of the spine: a randomized controlled comparison of image quality.

    PubMed

    Enders, Judith; Rief, Matthias; Zimmermann, Elke; Asbach, Patrick; Diederichs, Gerd; Wetz, Christoph; Siebert, Eberhard; Wagner, Moritz; Hamm, Bernd; Dewey, Marc

    2013-01-01

    The purpose of the present study was to compare the image quality of spinal magnetic resonance (MR) imaging performed on a high-field horizontal open versus a short-bore MR scanner in a randomized controlled study setup. Altogether, 93 (80% women, mean age 53) consecutive patients underwent spine imaging after random assignement to a 1-T horizontal open MR scanner with a vertical magnetic field or a 1.5-T short-bore MR scanner. This patient subset was part of a larger cohort. Image quality was assessed by determining qualitative parameters, signal-to-noise (SNR) and contrast-to-noise ratios (CNR), and quantitative contour sharpness. The image quality parameters were higher for short-bore MR imaging. Regarding all sequences, the relative differences were 39% for the mean overall qualitative image quality, 53% for the mean SNR values, and 34-37% for the quantitative contour sharpness (P<0.0001). The CNR values were also higher for images obtained with the short-bore MR scanner. No sequence was of very poor (nondiagnostic) image quality. Scanning times were significantly longer for examinations performed on the open MR scanner (mean: 32±22 min versus 20±9 min; P<0.0001). In this randomized controlled comparison of spinal MR imaging with an open versus a short-bore scanner, short-bore MR imaging revealed considerably higher image quality with shorter scanning times. ClinicalTrials.gov NCT00715806.

  17. High-Field Open versus Short-Bore Magnetic Resonance Imaging of the Spine: A Randomized Controlled Comparison of Image Quality

    PubMed Central

    Zimmermann, Elke; Asbach, Patrick; Diederichs, Gerd; Wetz, Christoph; Siebert, Eberhard; Wagner, Moritz; Hamm, Bernd; Dewey, Marc

    2013-01-01

    Background The purpose of the present study was to compare the image quality of spinal magnetic resonance (MR) imaging performed on a high-field horizontal open versus a short-bore MR scanner in a randomized controlled study setup. Methods Altogether, 93 (80% women, mean age 53) consecutive patients underwent spine imaging after random assignement to a 1-T horizontal open MR scanner with a vertical magnetic field or a 1.5-T short-bore MR scanner. This patient subset was part of a larger cohort. Image quality was assessed by determining qualitative parameters, signal-to-noise (SNR) and contrast-to-noise ratios (CNR), and quantitative contour sharpness. Results The image quality parameters were higher for short-bore MR imaging. Regarding all sequences, the relative differences were 39% for the mean overall qualitative image quality, 53% for the mean SNR values, and 34–37% for the quantitative contour sharpness (P<0.0001). The CNR values were also higher for images obtained with the short-bore MR scanner. No sequence was of very poor (nondiagnostic) image quality. Scanning times were significantly longer for examinations performed on the open MR scanner (mean: 32±22 min versus 20±9 min; P<0.0001). Conclusions In this randomized controlled comparison of spinal MR imaging with an open versus a short-bore scanner, short-bore MR imaging revealed considerably higher image quality with shorter scanning times. Trial Registration ClinicalTrials.gov NCT00715806 PMID:24391767

  18. Learning a No-Reference Quality Assessment Model of Enhanced Images With Big Data.

    PubMed

    Gu, Ke; Tao, Dacheng; Qiao, Jun-Fei; Lin, Weisi

    2018-04-01

    In this paper, we investigate into the problem of image quality assessment (IQA) and enhancement via machine learning. This issue has long attracted a wide range of attention in computational intelligence and image processing communities, since, for many practical applications, e.g., object detection and recognition, raw images are usually needed to be appropriately enhanced to raise the visual quality (e.g., visibility and contrast). In fact, proper enhancement can noticeably improve the quality of input images, even better than originally captured images, which are generally thought to be of the best quality. In this paper, we present two most important contributions. The first contribution is to develop a new no-reference (NR) IQA model. Given an image, our quality measure first extracts 17 features through analysis of contrast, sharpness, brightness and more, and then yields a measure of visual quality using a regression module, which is learned with big-data training samples that are much bigger than the size of relevant image data sets. The results of experiments on nine data sets validate the superiority and efficiency of our blind metric compared with typical state-of-the-art full-reference, reduced-reference and NA IQA methods. The second contribution is that a robust image enhancement framework is established based on quality optimization. For an input image, by the guidance of the proposed NR-IQA measure, we conduct histogram modification to successively rectify image brightness and contrast to a proper level. Thorough tests demonstrate that our framework can well enhance natural images, low-contrast images, low-light images, and dehazed images. The source code will be released at https://sites.google.com/site/guke198701/publications.

  19. Quality Improvement of Liver Ultrasound Images Using Fuzzy Techniques.

    PubMed

    Bayani, Azadeh; Langarizadeh, Mostafa; Radmard, Amir Reza; Nejad, Ahmadreza Farzaneh

    2016-12-01

    Liver ultrasound images are so common and are applied so often to diagnose diffuse liver diseases like fatty liver. However, the low quality of such images makes it difficult to analyze them and diagnose diseases. The purpose of this study, therefore, is to improve the contrast and quality of liver ultrasound images. In this study, a number of image contrast enhancement algorithms which are based on fuzzy logic were applied to liver ultrasound images - in which the view of kidney is observable - using Matlab2013b to improve the image contrast and quality which has a fuzzy definition; just like image contrast improvement algorithms using a fuzzy intensification operator, contrast improvement algorithms applying fuzzy image histogram hyperbolization, and contrast improvement algorithms by fuzzy IF-THEN rules. With the measurement of Mean Squared Error and Peak Signal to Noise Ratio obtained from different images, fuzzy methods provided better results, and their implementation - compared with histogram equalization method - led both to the improvement of contrast and visual quality of images and to the improvement of liver segmentation algorithms results in images. Comparison of the four algorithms revealed the power of fuzzy logic in improving image contrast compared with traditional image processing algorithms. Moreover, contrast improvement algorithm based on a fuzzy intensification operator was selected as the strongest algorithm considering the measured indicators. This method can also be used in future studies on other ultrasound images for quality improvement and other image processing and analysis applications.

  20. Quality Improvement of Liver Ultrasound Images Using Fuzzy Techniques

    PubMed Central

    Bayani, Azadeh; Langarizadeh, Mostafa; Radmard, Amir Reza; Nejad, Ahmadreza Farzaneh

    2016-01-01

    Background: Liver ultrasound images are so common and are applied so often to diagnose diffuse liver diseases like fatty liver. However, the low quality of such images makes it difficult to analyze them and diagnose diseases. The purpose of this study, therefore, is to improve the contrast and quality of liver ultrasound images. Methods: In this study, a number of image contrast enhancement algorithms which are based on fuzzy logic were applied to liver ultrasound images - in which the view of kidney is observable - using Matlab2013b to improve the image contrast and quality which has a fuzzy definition; just like image contrast improvement algorithms using a fuzzy intensification operator, contrast improvement algorithms applying fuzzy image histogram hyperbolization, and contrast improvement algorithms by fuzzy IF-THEN rules. Results: With the measurement of Mean Squared Error and Peak Signal to Noise Ratio obtained from different images, fuzzy methods provided better results, and their implementation - compared with histogram equalization method - led both to the improvement of contrast and visual quality of images and to the improvement of liver segmentation algorithms results in images. Conclusion: Comparison of the four algorithms revealed the power of fuzzy logic in improving image contrast compared with traditional image processing algorithms. Moreover, contrast improvement algorithm based on a fuzzy intensification operator was selected as the strongest algorithm considering the measured indicators. This method can also be used in future studies on other ultrasound images for quality improvement and other image processing and analysis applications. PMID:28077898

  1. Guidance for Efficient Small Animal Imaging Quality Control.

    PubMed

    Osborne, Dustin R; Kuntner, Claudia; Berr, Stuart; Stout, David

    2017-08-01

    Routine quality control is a critical aspect of properly maintaining high-performance small animal imaging instrumentation. A robust quality control program helps produce more reliable data both for academic purposes and as proof of system performance for contract imaging work. For preclinical imaging laboratories, the combination of costs and available resources often limits their ability to produce efficient and effective quality control programs. This work presents a series of simplified quality control procedures that are accessible to a wide range of preclinical imaging laboratories. Our intent is to provide minimum guidelines for routine quality control that can assist preclinical imaging specialists in setting up an appropriate quality control program for their facility.

  2. Does clinical pretest probability influence image quality and diagnostic accuracy in dual-source coronary CT angiography?

    PubMed

    Thomas, Christoph; Brodoefel, Harald; Tsiflikas, Ilias; Bruckner, Friederike; Reimann, Anja; Ketelsen, Dominik; Drosch, Tanja; Claussen, Claus D; Kopp, Andreas; Heuschmid, Martin; Burgstahler, Christof

    2010-02-01

    To prospectively evaluate the influence of the clinical pretest probability assessed by the Morise score onto image quality and diagnostic accuracy in coronary dual-source computed tomography angiography (DSCTA). In 61 patients, DSCTA and invasive coronary angiography were performed. Subjective image quality and accuracy for stenosis detection (>50%) of DSCTA with invasive coronary angiography as gold standard were evaluated. The influence of pretest probability onto image quality and accuracy was assessed by logistic regression and chi-square testing. Correlations of image quality and accuracy with the Morise score were determined using linear regression. Thirty-eight patients were categorized into the high, 21 into the intermediate, and 2 into the low probability group. Accuracies for the detection of significant stenoses were 0.94, 0.97, and 1.00, respectively. Logistic regressions and chi-square tests showed statistically significant correlations between Morise score and image quality (P < .0001 and P < .001) and accuracy (P = .0049 and P = .027). Linear regression revealed a cutoff Morise score for a good image quality of 16 and a cutoff for a barely diagnostic image quality beyond the upper Morise scale. Pretest probability is a weak predictor of image quality and diagnostic accuracy in coronary DSCTA. A sufficient image quality for diagnostic images can be reached with all pretest probabilities. Therefore, coronary DSCTA might be suitable also for patients with a high pretest probability. Copyright 2010 AUR. Published by Elsevier Inc. All rights reserved.

  3. Applications of emerging imaging techniques for meat quality and safety detection and evaluation: A review.

    PubMed

    Xiong, Zhenjie; Sun, Da-Wen; Pu, Hongbin; Gao, Wenhong; Dai, Qiong

    2017-03-04

    With improvement in people's living standards, many people nowadays pay more attention to quality and safety of meat. However, traditional methods for meat quality and safety detection and evaluation, such as manual inspection, mechanical methods, and chemical methods, are tedious, time-consuming, and destructive, which cannot meet the requirements of modern meat industry. Therefore, seeking out rapid, non-destructive, and accurate inspection techniques is important for the meat industry. In recent years, a number of novel and noninvasive imaging techniques, such as optical imaging, ultrasound imaging, tomographic imaging, thermal imaging, and odor imaging, have emerged and shown great potential in quality and safety assessment. In this paper, a detailed overview of advanced applications of these emerging imaging techniques for quality and safety assessment of different types of meat (pork, beef, lamb, chicken, and fish) is presented. In addition, advantages and disadvantages of each imaging technique are also summarized. Finally, future trends for these emerging imaging techniques are discussed, including integration of multiple imaging techniques, cost reduction, and developing powerful image-processing algorithms.

  4. “Lucky Averaging”: Quality improvement on Adaptive Optics Scanning Laser Ophthalmoscope Images

    PubMed Central

    Huang, Gang; Zhong, Zhangyi; Zou, Weiyao; Burns, Stephen A.

    2012-01-01

    Adaptive optics(AO) has greatly improved retinal image resolution. However, even with AO, temporal and spatial variations in image quality still occur due to wavefront fluctuations, intra-frame focus shifts and other factors. As a result, aligning and averaging images can produce a mean image that has lower resolution or contrast than the best images within a sequence. To address this, we propose an image post-processing scheme called “lucky averaging”, analogous to lucky imaging (Fried, 1978) based on computing the best local contrast over time. Results from eye data demonstrate improvements in image quality. PMID:21964097

  5. Evaluating imaging quality between different ghost imaging systems based on the coherent-mode representation

    NASA Astrophysics Data System (ADS)

    Shen, Qian; Bai, Yanfeng; Shi, Xiaohui; Nan, Suqin; Qu, Lijie; Li, Hengxing; Fu, Xiquan

    2017-07-01

    The difference in imaging quality between different ghost imaging schemes is studied by using coherent-mode representation of partially coherent fields. It is shown that the difference mainly relies on the distribution changes of the decomposition coefficients of the object imaged when the light source is fixed. For a new-designed imaging scheme, we only need to give the distribution of the decomposition coefficients and compare them with that of the existing imaging system, thus one can predict imaging quality. By choosing several typical ghost imaging systems, we theoretically and experimentally verify our results.

  6. Quantitative image quality evaluation of MR images using perceptual difference models

    PubMed Central

    Miao, Jun; Huo, Donglai; Wilson, David L.

    2008-01-01

    The authors are using a perceptual difference model (Case-PDM) to quantitatively evaluate image quality of the thousands of test images which can be created when optimizing fast magnetic resonance (MR) imaging strategies and reconstruction techniques. In this validation study, they compared human evaluation of MR images from multiple organs and from multiple image reconstruction algorithms to Case-PDM and similar models. The authors found that Case-PDM compared very favorably to human observers in double-stimulus continuous-quality scale and functional measurement theory studies over a large range of image quality. The Case-PDM threshold for nonperceptible differences in a 2-alternative forced choice study varied with the type of image under study, but was ≈1.1 for diffuse image effects, providing a rule of thumb. Ordering the image quality evaluation models, we found in overall Case-PDM ≈ IDM (Sarnoff Corporation) ≈ SSIM [Wang et al. IEEE Trans. Image Process. 13, 600–612 (2004)] > mean squared error ≈ NR [Wang et al. (2004) (unpublished)] > DCTune (NASA) > IQM (MITRE Corporation). The authors conclude that Case-PDM is very useful in MR image evaluation but that one should probably restrict studies to similar images and similar processing, normally not a limitation in image reconstruction studies. PMID:18649487

  7. MR imaging of the prostate at 3 Tesla: comparison of an external phased-array coil to imaging with an endorectal coil at 1.5 Tesla.

    PubMed

    Sosna, Jacob; Pedrosa, Ivan; Dewolf, William C; Mahallati, Houman; Lenkinski, Robert E; Rofsky, Neil M

    2004-08-01

    To qualitatively compare the image quality of torso phased-array 3-Tesla (3T) imaging of the prostate with that of endorectal 1.5-Tesla imaging. Twenty cases of torso phased-array prostate imaging performed at 3-Tesla with FSE T2 weighted images were evaluated by two readers independently for visualization of the posterior border (PB), seminal vesicles (SV), neurovascular bundles (NVB), and image quality rating (IQR). Studies were performed at large fields of view(FOV) (25 cm) (14 cases) (3TL) and smaller FOV (14 cm) (19 cases) (3TS). A comparison was made to 20 consecutive cases of 1.5-T endorectal evaluation performed during the same time period.Results. 3TL produced a significantly better image quality compared with the small FOV for PB (P = .0001), SV (P =.0001), and IQR (P = .0001). There was a marginally significant difference within the NVB category (P = .0535). 3TL produced an image of similar quality to image quality at 1.5 T for PB (P = .3893), SV (P = .8680), NB (P = .2684), and IQR (P = .8599). Prostate image quality at 3T with a torso phased-array coil can be comparable with that of endorectal 1.5-T imaging. These findings suggest that additional options are now available for magnetic resonance imaging of the prostate gland.

  8. Improving lateral resolution and image quality of optical coherence tomography by the multi-frame superresolution technique for 3D tissue imaging.

    PubMed

    Shen, Kai; Lu, Hui; Baig, Sarfaraz; Wang, Michael R

    2017-11-01

    The multi-frame superresolution technique is introduced to significantly improve the lateral resolution and image quality of spectral domain optical coherence tomography (SD-OCT). Using several sets of low resolution C-scan 3D images with lateral sub-spot-spacing shifts on different sets, the multi-frame superresolution processing of these sets at each depth layer reconstructs a higher resolution and quality lateral image. Layer by layer processing yields an overall high lateral resolution and quality 3D image. In theory, the superresolution processing including deconvolution can solve the diffraction limit, lateral scan density and background noise problems together. In experiment, the improved lateral resolution by ~3 times reaching 7.81 µm and 2.19 µm using sample arm optics of 0.015 and 0.05 numerical aperture respectively as well as doubling the image quality has been confirmed by imaging a known resolution test target. Improved lateral resolution on in vitro skin C-scan images has been demonstrated. For in vivo 3D SD-OCT imaging of human skin, fingerprint and retina layer, we used the multi-modal volume registration method to effectively estimate the lateral image shifts among different C-scans due to random minor unintended live body motion. Further processing of these images generated high lateral resolution 3D images as well as high quality B-scan images of these in vivo tissues.

  9. Image Quality Performance Measurement of the microPET Focus 120

    NASA Astrophysics Data System (ADS)

    Ballado, Fernando Trejo; López, Nayelli Ortega; Flores, Rafael Ojeda; Ávila-Rodríguez, Miguel A.

    2010-12-01

    The aim of this work is to evaluate the characteristics involved in the image reconstruction of the microPET Focus 120. For this evaluation were used two different phantoms; a miniature hot-rod Derenzo phantom and a National Electrical Manufacturers Association (NEMA) NU4-2008 image quality (IQ) phantom. The best image quality was obtained when using OSEM3D as the reconstruction method reaching a spatial resolution of 1.5 mm with the Derenzo phantom filled with 18F. Image quality test results indicate a superior image quality for the Focus 120 when compared to previous microPET models.

  10. Image quality evaluation of eight complementary metal-oxide semiconductor intraoral digital X-ray sensors.

    PubMed

    Teich, Sorin; Al-Rawi, Wisam; Heima, Masahiro; Faddoul, Fady F; Goldzweig, Gil; Gutmacher, Zvi; Aizenbud, Dror

    2016-10-01

    To evaluate the image quality generated by eight commercially available intraoral sensors. Eighteen clinicians ranked the quality of a bitewing acquired from one subject using eight different intraoral sensors. Analytical methods used to evaluate clinical image quality included the Visual Grading Characteristics method, which helps to quantify subjective opinions to make them suitable for analysis. The Dexis sensor was ranked significantly better than Sirona and Carestream-Kodak sensors; and the image captured using the Carestream-Kodak sensor was ranked significantly worse than those captured using Dexis, Schick and Cyber Medical Imaging sensors. The Image Works sensor image was rated the lowest by all clinicians. Other comparisons resulted in non-significant results. None of the sensors was considered to generate images of significantly better quality than the other sensors tested. Further research should be directed towards determining the clinical significance of the differences in image quality reported in this study. © 2016 FDI World Dental Federation.

  11. Image quality classification for DR screening using deep learning.

    PubMed

    FengLi Yu; Jing Sun; Annan Li; Jun Cheng; Cheng Wan; Jiang Liu

    2017-07-01

    The quality of input images significantly affects the outcome of automated diabetic retinopathy (DR) screening systems. Unlike the previous methods that only consider simple low-level features such as hand-crafted geometric and structural features, in this paper we propose a novel method for retinal image quality classification (IQC) that performs computational algorithms imitating the working of the human visual system. The proposed algorithm combines unsupervised features from saliency map and supervised features coming from convolutional neural networks (CNN), which are fed to an SVM to automatically detect high quality vs poor quality retinal fundus images. We demonstrate the superior performance of our proposed algorithm on a large retinal fundus image dataset and the method could achieve higher accuracy than other methods. Although retinal images are used in this study, the methodology is applicable to the image quality assessment and enhancement of other types of medical images.

  12. Relationships among muscle dysmorphia characteristics, body image quality of life, and coping in males.

    PubMed

    Tod, D; Edwards, C

    2015-09-01

    The purpose of this study was to examine relationships among bodybuilding dependence, muscle satisfaction, body image-related quality of life and body image-related coping strategies, and test the hypothesis that muscle dysmorphia characteristics may predict quality of life via coping strategies. Participants (294 males, Mage=20.5 years, SD=3.1) participated in a cross-sectional survey. Participants completed questionnaires assessing muscle satisfaction, bodybuilding dependence, body image-related quality of life and body image-related coping. Quality of life was correlated positively with muscle satisfaction and bodybuilding dependence but negatively with body image coping (P<0.05). Body image coping was correlated positively with bodybuilding dependence and negatively with muscle satisfaction (P<0.05). Mediation analysis found that bodybuilding dependence and muscle satisfaction predicted quality of life both directly and indirectly via body image coping strategies (as evidenced by the bias corrected and accelerated bootstrapped confidence intervals). These results provide preliminary evidence regarding the ways that muscularity concerns might influence body image-related quality of life. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  13. Computer-aided diagnosis based on enhancement of degraded fundus photographs.

    PubMed

    Jin, Kai; Zhou, Mei; Wang, Shaoze; Lou, Lixia; Xu, Yufeng; Ye, Juan; Qian, Dahong

    2018-05-01

    Retinal imaging is an important and effective tool for detecting retinal diseases. However, degraded images caused by the aberrations of the eye can disguise lesions, so that a diseased eye can be mistakenly diagnosed as normal. In this work, we propose a new image enhancement method to improve the quality of degraded images. A new method is used to enhance degraded-quality fundus images. In this method, the image is converted from the input RGB colour space to LAB colour space and then each normalized component is enhanced using contrast-limited adaptive histogram equalization. Human visual system (HVS)-based fundus image quality assessment, combined with diagnosis by experts, is used to evaluate the enhancement. The study included 191 degraded-quality fundus photographs of 143 subjects with optic media opacity. Objective quality assessment of image enhancement (range: 0-1) indicated that our method improved colour retinal image quality from an average of 0.0773 (variance 0.0801) to an average of 0.3973 (variance 0.0756). Following enhancement, area under curves (AUC) were 0.996 for the glaucoma classifier, 0.989 for the diabetic retinopathy (DR) classifier, 0.975 for the age-related macular degeneration (AMD) classifier and 0.979 for the other retinal diseases classifier. The relatively simple method for enhancing degraded-quality fundus images achieves superior image enhancement, as demonstrated in a qualitative HVS-based image quality assessment. This retinal image enhancement may, therefore, be employed to assist ophthalmologists in more efficient screening of retinal diseases and the development of computer-aided diagnosis. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  14. Examples of subjective image quality enhancement in multimedia

    NASA Astrophysics Data System (ADS)

    Klíma, Miloš; Pazderák, Jiří; Fliegel, Karel

    2007-09-01

    The subjective image quality is an important issue in all multimedia imaging systems with a significant impact onto QoS (Quality of Service). For long time the image fidelity criterion was widely applied in technical systems esp. in both television and image source compression fields but the optimization of subjective perception quality and fidelity approach (such as the minimum of MSE) are very different. The paper presents an experimental testing of three different digital techniques for the subjective image quality enhancement - color saturation, edge enhancement, denoising operators and noise addition - well known from both the digital photography and video. The evaluation has been done for extensive operator parameterization and the results are summarized and discussed. It has been demonstrated that there are relevant types of image corrections improving to some extent the subjective perception of the image. The above mentioned techniques have been tested for five image tests with significantly different image characteristics (fine details, large saturated color areas, high color contrast, easy-to-remember colors etc.). The experimental results show the way to optimized use of image enhancing operators. Finally the concept of impressiveness as a new possible expression of subjective quality improvement is presented and discussed.

  15. Spatially-controlled illumination with rescan confocal microscopy enhances image quality, resolution and reduces photodamage

    NASA Astrophysics Data System (ADS)

    Krishnaswami, Venkataraman; De Luca, Giulia M. R.; Breedijk, Ronald M. P.; Van Noorden, Cornelis J. F.; Manders, Erik M. M.; Hoebe, Ron A.

    2017-02-01

    Fluorescence microscopy is an important tool in biomedical imaging. An inherent trade-off lies between image quality and photodamage. Recently, we have introduced rescan confocal microscopy (RCM) that improves the lateral resolution of a confocal microscope down to 170 nm. Previously, we have demonstrated that with controlled-light exposure microscopy, spatial control of illumination reduces photodamage without compromising image quality. Here, we show that the combination of these two techniques leads to high resolution imaging with reduced photodamage without compromising image quality. Implementation of spatially-controlled illumination was carried out in RCM using a line scanning-based approach. Illumination is spatially-controlled for every line during imaging with the help of a prediction algorithm that estimates the spatial profile of the fluorescent specimen. The estimation is based on the information available from previously acquired line images. As a proof-of-principle, we show images of N1E-115 neuroblastoma cells, obtained by this new setup with reduced illumination dose, improved resolution and without compromising image quality.

  16. 2D XD-GRASP provides better image quality than conventional 2D cardiac cine MRI for patients who cannot suspend respiration

    PubMed Central

    Piekarski, Eve; Chitiboi, Teodora; Ramb, Rebecca; Latson, Larry A; Bhatla, Puneet; Feng, Li; Axel, Leon

    2017-01-01

    Object Residual respiratory motion degrades image quality in conventional cardiac cine MRI (CCMR). We evaluated whether a free-breathing (FB) radial imaging CCMR sequence with compressed sensing reconstruction (eXtra-Dimension (e.g. cardiac and respiratory phases) Golden-angle RAdial Sparse Parallel, or XD-GRASP) could provide better image quality than a conventional Cartesian breath-held (BH) sequence, in an unselected population of patients undergoing clinical CCMR. Material and Methods 101 patients who underwent BH and FB imaging in a mid-ventricular short-axis plane at a matching location were included. Visual and quantitative image analysis was performed by two blinded experienced readers, using a 5-point qualitative scale to score overall image quality and visual signal-to-noise ratio (SNR) grade, with measures of noise and sharpness. End-diastole (ED) and end-systole (ES) left-ventricular areas were also measured and compared for both BH and FB images. Results Image quality was generally better with the BH cines (overall quality grade BH vs FB: 4 vs 2.9, p<0.001; noise 0.06 vs 0.08 p< 0.001; SNR grade: 4.1 vs 3, p<0.001), except for sharpness (p=0.48). There were no significant differences between BH and FB images regarding ED or ES areas (p=0.35 and 0.12). 18 of the 101 patients had impaired BH image quality (grades 1 or 2). In this subgroup, image quality of the FB images was better (p=0.0032), as was the SNR grade (p=0.003), but there were no significant differences regarding noise and sharpness (p=0.45, p=0.47). Conclusion Although FB XD-GRASP CCMR was visually inferior to conventional BH cardiac cine in general, it provided improved image quality in the subgroup of patients presenting respiratory motion-induced artifacts on breath-held images. PMID:29067539

  17. Two-dimensional XD-GRASP provides better image quality than conventional 2D cardiac cine MRI for patients who cannot suspend respiration.

    PubMed

    Piekarski, Eve; Chitiboi, Teodora; Ramb, Rebecca; Latson, Larry A; Bhatla, Puneet; Feng, Li; Axel, Leon

    2018-02-01

    Residual respiratory motion degrades image quality in conventional cardiac cine MRI (CCMRI). We evaluated whether a free-breathing (FB) radial imaging CCMRI sequence with compressed sensing reconstruction [extradimensional (e.g. cardiac and respiratory phases) golden-angle radial sparse parallel, or XD-GRASP] could provide better image quality than a conventional Cartesian breath-held (BH) sequence in an unselected population of patients undergoing clinical CCMRI. One hundred one patients who underwent BH and FB imaging in a midventricular short-axis plane at a matching location were included. Visual and quantitative image analysis was performed by two blinded experienced readers, using a five-point qualitative scale to score overall image quality and visual signal-to-noise ratio (SNR) grade, with measures of noise and sharpness. End-diastolic and end-systolic left ventricular areas were also measured and compared for both BH and FB images. Image quality was generally better with the BH cines (overall quality grade for BH vs FB images 4 vs 2.9, p < 0.001; noise 0.06 vs 0.08 p < 0.001; SNR grade 4.1 vs 3, p < 0.001), except for sharpness (p = 0.48). There were no significant differences between BH and FB images regarding end-diastolic or end-systolic areas (p = 0.35 and p = 0.12). Eighteen of the 101 patients had poor BH image quality (grade 1 or 2). In this subgroup, the quality of the FB images was better (p = 0.0032), as was the SNR grade (p = 0.003), but there were no significant differences regarding noise and sharpness (p = 0.45 and p = 0.47). Although FB XD-GRASP CCMRI was visually inferior to conventional BH CCMRI in general, it provided improved image quality in the subgroup of patients with respiratory-motion-induced artifacts on BH images.

  18. Recognizable or Not: Towards Image Semantic Quality Assessment for Compression

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Wang, Dandan; Li, Houqiang

    2017-12-01

    Traditionally, image compression was optimized for the pixel-wise fidelity or the perceptual quality of the compressed images given a bit-rate budget. But recently, compressed images are more and more utilized for automatic semantic analysis tasks such as recognition and retrieval. For these tasks, we argue that the optimization target of compression is no longer perceptual quality, but the utility of the compressed images in the given automatic semantic analysis task. Accordingly, we propose to evaluate the quality of the compressed images neither at pixel level nor at perceptual level, but at semantic level. In this paper, we make preliminary efforts towards image semantic quality assessment (ISQA), focusing on the task of optical character recognition (OCR) from compressed images. We propose a full-reference ISQA measure by comparing the features extracted from text regions of original and compressed images. We then propose to integrate the ISQA measure into an image compression scheme. Experimental results show that our proposed ISQA measure is much better than PSNR and SSIM in evaluating the semantic quality of compressed images; accordingly, adopting our ISQA measure to optimize compression for OCR leads to significant bit-rate saving compared to using PSNR or SSIM. Moreover, we perform subjective test about text recognition from compressed images, and observe that our ISQA measure has high consistency with subjective recognizability. Our work explores new dimensions in image quality assessment, and demonstrates promising direction to achieve higher compression ratio for specific semantic analysis tasks.

  19. Deep supervised dictionary learning for no-reference image quality assessment

    NASA Astrophysics Data System (ADS)

    Huang, Yuge; Liu, Xuesong; Tian, Xiang; Zhou, Fan; Chen, Yaowu; Jiang, Rongxin

    2018-03-01

    We propose a deep convolutional neural network (CNN) for general no-reference image quality assessment (NR-IQA), i.e., accurate prediction of image quality without a reference image. The proposed model consists of three components such as a local feature extractor that is a fully CNN, an encoding module with an inherent dictionary that aggregates local features to output a fixed-length global quality-aware image representation, and a regression module that maps the representation to an image quality score. Our model can be trained in an end-to-end manner, and all of the parameters, including the weights of the convolutional layers, the dictionary, and the regression weights, are simultaneously learned from the loss function. In addition, the model can predict quality scores for input images of arbitrary sizes in a single step. We tested our method on commonly used image quality databases and showed that its performance is comparable with that of state-of-the-art general-purpose NR-IQA algorithms.

  20. Standardizing Quality Assessment of Fused Remotely Sensed Images

    NASA Astrophysics Data System (ADS)

    Pohl, C.; Moellmann, J.; Fries, K.

    2017-09-01

    The multitude of available operational remote sensing satellites led to the development of many image fusion techniques to provide high spatial, spectral and temporal resolution images. The comparison of different techniques is necessary to obtain an optimized image for the different applications of remote sensing. There are two approaches in assessing image quality: 1. Quantitatively by visual interpretation and 2. Quantitatively using image quality indices. However an objective comparison is difficult due to the fact that a visual assessment is always subject and a quantitative assessment is done by different criteria. Depending on the criteria and indices the result varies. Therefore it is necessary to standardize both processes (qualitative and quantitative assessment) in order to allow an objective image fusion quality evaluation. Various studies have been conducted at the University of Osnabrueck (UOS) to establish a standardized process to objectively compare fused image quality. First established image fusion quality assessment protocols, i.e. Quality with No Reference (QNR) and Khan's protocol, were compared on varies fusion experiments. Second the process of visual quality assessment was structured and standardized with the aim to provide an evaluation protocol. This manuscript reports on the results of the comparison and provides recommendations for future research.

  1. SU-E-I-43: Pediatric CT Dose and Image Quality Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, G; Singh, R

    2014-06-01

    Purpose: To design an approach to optimize radiation dose and image quality for pediatric CT imaging, and to evaluate expected performance. Methods: A methodology was designed to quantify relative image quality as a function of CT image acquisition parameters. Image contrast and image noise were used to indicate expected conspicuity of objects, and a wide-cone system was used to minimize scan time for motion avoidance. A decision framework was designed to select acquisition parameters as a weighted combination of image quality and dose. Phantom tests were used to acquire images at multiple techniques to demonstrate expected contrast, noise and dose.more » Anthropomorphic phantoms with contrast inserts were imaged on a 160mm CT system with tube voltage capabilities as low as 70kVp. Previously acquired clinical images were used in conjunction with simulation tools to emulate images at different tube voltages and currents to assess human observer preferences. Results: Examination of image contrast, noise, dose and tube/generator capabilities indicates a clinical task and object-size dependent optimization. Phantom experiments confirm that system modeling can be used to achieve the desired image quality and noise performance. Observer studies indicate that clinical utilization of this optimization requires a modified approach to achieve the desired performance. Conclusion: This work indicates the potential to optimize radiation dose and image quality for pediatric CT imaging. In addition, the methodology can be used in an automated parameter selection feature that can suggest techniques given a limited number of user inputs. G Stevens and R Singh are employees of GE Healthcare.« less

  2. Imaging in anatomy: a comparison of imaging techniques in embalmed human cadavers

    PubMed Central

    2013-01-01

    Background A large variety of imaging techniques is an integral part of modern medicine. Introducing radiological imaging techniques into the dissection course serves as a basis for improved learning of anatomy and multidisciplinary learning in pre-clinical medical education. Methods Four different imaging techniques (ultrasound, radiography, computed tomography, and magnetic resonance imaging) were performed in embalmed human body donors to analyse possibilities and limitations of the respective techniques in this peculiar setting. Results The quality of ultrasound and radiography images was poor, images of computed tomography and magnetic resonance imaging were of good quality. Conclusion Computed tomography and magnetic resonance imaging have a superior image quality in comparison to ultrasound and radiography and offer suitable methods for imaging embalmed human cadavers as a valuable addition to the dissection course. PMID:24156510

  3. Real-time image-processing algorithm for markerless tumour tracking using X-ray fluoroscopic imaging.

    PubMed

    Mori, S

    2014-05-01

    To ensure accuracy in respiratory-gating treatment, X-ray fluoroscopic imaging is used to detect tumour position in real time. Detection accuracy is strongly dependent on image quality, particularly positional differences between the patient and treatment couch. We developed a new algorithm to improve the quality of images obtained in X-ray fluoroscopic imaging and report the preliminary results. Two oblique X-ray fluoroscopic images were acquired using a dynamic flat panel detector (DFPD) for two patients with lung cancer. The weighting factor was applied to the DFPD image in respective columns, because most anatomical structures, as well as the treatment couch and port cover edge, were aligned in the superior-inferior direction when the patient lay on the treatment couch. The weighting factors for the respective columns were varied until the standard deviation of the pixel values within the image region was minimized. Once the weighting factors were calculated, the quality of the DFPD image was improved by applying the factors to multiframe images. Applying the image-processing algorithm produced substantial improvement in the quality of images, and the image contrast was increased. The treatment couch and irradiation port edge, which were not related to a patient's position, were removed. The average image-processing time was 1.1 ms, showing that this fast image processing can be applied to real-time tumour-tracking systems. These findings indicate that this image-processing algorithm improves the image quality in patients with lung cancer and successfully removes objects not related to the patient. Our image-processing algorithm might be useful in improving gated-treatment accuracy.

  4. Identification of optimal mask size parameter for noise filtering in 99mTc-methylene diphosphonate bone scintigraphy images.

    PubMed

    Pandey, Anil K; Bisht, Chandan S; Sharma, Param D; ArunRaj, Sreedharan Thankarajan; Taywade, Sameer; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh

    2017-11-01

    Tc-methylene diphosphonate (Tc-MDP) bone scintigraphy images have limited number of counts per pixel. A noise filtering method based on local statistics of the image produces better results than a linear filter. However, the mask size has a significant effect on image quality. In this study, we have identified the optimal mask size that yields a good smooth bone scan image. Forty four bone scan images were processed using mask sizes 3, 5, 7, 9, 11, 13, and 15 pixels. The input and processed images were reviewed in two steps. In the first step, the images were inspected and the mask sizes that produced images with significant loss of clinical details in comparison with the input image were excluded. In the second step, the image quality of the 40 sets of images (each set had input image, and its corresponding three processed images with 3, 5, and 7-pixel masks) was assessed by two nuclear medicine physicians. They selected one good smooth image from each set of images. The image quality was also assessed quantitatively with a line profile. Fisher's exact test was used to find statistically significant differences in image quality processed with 5 and 7-pixel mask at a 5% cut-off. A statistically significant difference was found between the image quality processed with 5 and 7-pixel mask at P=0.00528. The identified optimal mask size to produce a good smooth image was found to be 7 pixels. The best mask size for the John-Sen Lee filter was found to be 7×7 pixels, which yielded Tc-methylene diphosphonate bone scan images with the highest acceptable smoothness.

  5. Bayesian framework inspired no-reference region-of-interest quality measure for brain MRI images

    PubMed Central

    Osadebey, Michael; Pedersen, Marius; Arnold, Douglas; Wendel-Mitoraj, Katrina

    2017-01-01

    Abstract. We describe a postacquisition, attribute-based quality assessment method for brain magnetic resonance imaging (MRI) images. It is based on the application of Bayes theory to the relationship between entropy and image quality attributes. The entropy feature image of a slice is segmented into low- and high-entropy regions. For each entropy region, there are three separate observations of contrast, standard deviation, and sharpness quality attributes. A quality index for a quality attribute is the posterior probability of an entropy region given any corresponding region in a feature image where quality attribute is observed. Prior belief in each entropy region is determined from normalized total clique potential (TCP) energy of the slice. For TCP below the predefined threshold, the prior probability for a region is determined by deviation of its percentage composition in the slice from a standard normal distribution built from 250 MRI volume data provided by Alzheimer’s Disease Neuroimaging Initiative. For TCP above the threshold, the prior is computed using a mathematical model that describes the TCP–noise level relationship in brain MRI images. Our proposed method assesses the image quality of each entropy region and the global image. Experimental results demonstrate good correlation with subjective opinions of radiologists for different types and levels of quality distortions. PMID:28630885

  6. Improving lateral resolution and image quality of optical coherence tomography by the multi-frame superresolution technique for 3D tissue imaging

    PubMed Central

    Shen, Kai; Lu, Hui; Baig, Sarfaraz; Wang, Michael R.

    2017-01-01

    The multi-frame superresolution technique is introduced to significantly improve the lateral resolution and image quality of spectral domain optical coherence tomography (SD-OCT). Using several sets of low resolution C-scan 3D images with lateral sub-spot-spacing shifts on different sets, the multi-frame superresolution processing of these sets at each depth layer reconstructs a higher resolution and quality lateral image. Layer by layer processing yields an overall high lateral resolution and quality 3D image. In theory, the superresolution processing including deconvolution can solve the diffraction limit, lateral scan density and background noise problems together. In experiment, the improved lateral resolution by ~3 times reaching 7.81 µm and 2.19 µm using sample arm optics of 0.015 and 0.05 numerical aperture respectively as well as doubling the image quality has been confirmed by imaging a known resolution test target. Improved lateral resolution on in vitro skin C-scan images has been demonstrated. For in vivo 3D SD-OCT imaging of human skin, fingerprint and retina layer, we used the multi-modal volume registration method to effectively estimate the lateral image shifts among different C-scans due to random minor unintended live body motion. Further processing of these images generated high lateral resolution 3D images as well as high quality B-scan images of these in vivo tissues. PMID:29188089

  7. High-quality JPEG compression history detection for fake uncompressed images

    NASA Astrophysics Data System (ADS)

    Zhang, Rong; Wang, Rang-Ding; Guo, Li-Jun; Jiang, Bao-Chuan

    2017-05-01

    Authenticity is one of the most important evaluation factors of images for photography competitions or journalism. Unusual compression history of an image often implies the illicit intent of its author. Our work aims at distinguishing real uncompressed images from fake uncompressed images that are saved in uncompressed formats but have been previously compressed. To detect the potential image JPEG compression, we analyze the JPEG compression artifacts based on the tetrolet covering, which corresponds to the local image geometrical structure. Since the compression can alter the structure information, the tetrolet covering indexes may be changed if a compression is performed on the test image. Such changes can provide valuable clues about the image compression history. To be specific, the test image is first compressed with different quality factors to generate a set of temporary images. Then, the test image is compared with each temporary image block-by-block to investigate whether the tetrolet covering index of each 4×4 block is different between them. The percentages of the changed tetrolet covering indexes corresponding to the quality factors (from low to high) are computed and used to form the p-curve, the local minimum of which may indicate the potential compression. Our experimental results demonstrate the advantage of our method to detect JPEG compressions of high quality, even the highest quality factors such as 98, 99, or 100 of the standard JPEG compression, from uncompressed-format images. At the same time, our detection algorithm can accurately identify the corresponding compression quality factor.

  8. Fully Convolutional Architecture for Low-Dose CT Image Noise Reduction

    NASA Astrophysics Data System (ADS)

    Badretale, S.; Shaker, F.; Babyn, P.; Alirezaie, J.

    2017-10-01

    One of the critical topics in medical low-dose Computed Tomography (CT) imaging is how best to maintain image quality. As the quality of images decreases with lowering the X-ray radiation dose, improving image quality is extremely important and challenging. We have proposed a novel approach to denoise low-dose CT images. Our algorithm learns directly from an end-to-end mapping from the low-dose Computed Tomography images for denoising the normal-dose CT images. Our method is based on a deep convolutional neural network with rectified linear units. By learning various low-level to high-level features from a low-dose image the proposed algorithm is capable of creating a high-quality denoised image. We demonstrate the superiority of our technique by comparing the results with two other state-of-the-art methods in terms of the peak signal to noise ratio, root mean square error, and a structural similarity index.

  9. Digital mammography--DQE versus optimized image quality in clinical environment: an on site study

    NASA Astrophysics Data System (ADS)

    Oberhofer, Nadia; Fracchetti, Alessandro; Springeth, Margareth; Moroder, Ehrenfried

    2010-04-01

    The intrinsic quality of the detection system of 7 different digital mammography units (5 direct radiography DR; 2 computed radiography CR), expressed by DQE, has been compared with their image quality/dose performances in clinical use. DQE measurements followed IEC 62220-1-2 using a tungsten test object for MTF determination. For image quality assessment two different methods have been applied: 1) measurement of contrast to noise ratio (CNR) according to the European guidelines and 2) contrast-detail (CD) evaluation. The latter was carried out with the phantom CDMAM ver. 3.4 and the commercial software CDMAM Analyser ver. 1.1 (both Artinis) for automated image analysis. The overall image quality index IQFinv proposed by the software has been validated. Correspondence between the two methods has been shown figuring out a linear correlation between CNR and IQFinv. All systems were optimized with respect to image quality and average glandular dose (AGD) within the constraints of automatic exposure control (AEC). For each equipment, a good image quality level was defined by means of CD analysis, and the corresponding CNR value considered as target value. The goal was to achieve for different PMMA-phantom thicknesses constant image quality, that means the CNR target value, at minimum dose. All DR systems exhibited higher DQE and significantly better image quality compared to CR systems. Generally switching, where available, to a target/filter combination with an x-ray spectrum of higher mean energy permitted dose savings at equal image quality. However, several systems did not allow to modify the AEC in order to apply optimal radiographic technique in clinical use. The best ratio image quality/dose was achieved by a unit with a-Se detector and W anode only recently available on the market.

  10. SU-F-P-06: Moving From Computed Radiography to Digital Radiography: A Collaborative Approach to Improve Image Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandoval, D; Mlady, G; Selwyn, R

    Purpose: To bring together radiologists, technologists, and physicists to utilize post-processing techniques in digital radiography (DR) in order to optimize image acquisition and improve image quality. Methods: Sub-optimal images acquired on a new General Electric (GE) DR system were flagged for follow-up by radiologists and reviewed by technologists and medical physicists. Various exam types from adult musculoskeletal (n=35), adult chest (n=4), and pediatric (n=7) were chosen for review. 673 total images were reviewed. These images were processed using five customized algorithms provided by GE. An image score sheet was created allowing the radiologist to assign a numeric score to eachmore » of the processed images, this allowed for objective comparison to the original images. Each image was scored based on seven properties: 1) overall image look, 2) soft tissue contrast, 3) high contrast, 4) latitude, 5) tissue equalization, 6) edge enhancement, 7) visualization of structures. Additional space allowed for additional comments not captured in scoring categories. Radiologists scored the images from 1 – 10 with 1 being non-diagnostic quality and 10 being superior diagnostic quality. Scores for each custom algorithm for each image set were summed. The algorithm with the highest score for each image set was then set as the default processing. Results: Images placed into the PACS “QC folder” for image processing reasons decreased. Feedback from radiologists was, overall, that image quality for these studies had improved. All default processing for these image types was changed to the new algorithm. Conclusion: This work is an example of the collaboration between radiologists, technologists, and physicists at the University of New Mexico to add value to the radiology department. The significant amount of work required to prepare the processing algorithms, reprocessing and scoring of the images was eagerly taken on by all team members in order to produce better quality images and improve patient care.« less

  11. Information recovery through image sequence fusion under wavelet transformation

    NASA Astrophysics Data System (ADS)

    He, Qiang

    2010-04-01

    Remote sensing is widely applied to provide information of areas with limited ground access with applications such as to assess the destruction from natural disasters and to plan relief and recovery operations. However, the data collection of aerial digital images is constrained by bad weather, atmospheric conditions, and unstable camera or camcorder. Therefore, how to recover the information from the low-quality remote sensing images and how to enhance the image quality becomes very important for many visual understanding tasks, such like feature detection, object segmentation, and object recognition. The quality of remote sensing imagery can be improved through meaningful combination of the employed images captured from different sensors or from different conditions through information fusion. Here we particularly address information fusion to remote sensing images under multi-resolution analysis in the employed image sequences. The image fusion is to recover complete information by integrating multiple images captured from the same scene. Through image fusion, a new image with high-resolution or more perceptive for human and machine is created from a time series of low-quality images based on image registration between different video frames.

  12. SU-E-J-45: The Correlation Between CBCT Flat Panel Misalignment and 3D Image Guidance Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenton, O; Valdes, G; Yin, L

    Purpose To simulate the impact of CBCT flat panel misalignment on the image quality, the calculated correction vectors in 3D image guided proton therapy and to determine if these calibration errors can be caught in our QA process. Methods The X-ray source and detector geometrical calibration (flexmap) file of the CBCT system in the AdaPTinsight software (IBA proton therapy) was edited to induce known changes in the rotational and translational calibrations of the imaging panel. Translations of up to ±10 mm in the x, y and z directions (see supplemental) and rotational errors of up to ±3° were induced. Themore » calibration files were then used to reconstruct the CBCT image of a pancreatic patient and CatPhan phantom. Correction vectors were calculated for the patient using the software’s auto match system and compared to baseline values. The CatPhan CBCT images were used for quantitative evaluation of image quality for each type of induced error. Results Translations of 1 to 3 mm in the x and y calibration resulted in corresponding correction vector errors of equal magnitude. Similar 10mm shifts were seen in the y-direction; however, in the x-direction, the image quality was too degraded for a match. These translational errors can be identified through differences in isocenter from orthogonal kV images taken during routine QA. Errors in the z-direction had no effect on the correction vector and image quality.Rotations of the imaging panel calibration resulted in corresponding correction vector rotations of the patient images. These rotations also resulted in degraded image quality which can be identified through quantitative image quality metrics. Conclusion Misalignment of CBCT geometry can lead to incorrect translational and rotational patient correction vectors. These errors can be identified through QA of the imaging isocenter as compared to orthogonal images combined with monitoring of CBCT image quality.« less

  13. Image quality assessment of automatic three-segment MR attenuation correction vs. CT attenuation correction.

    PubMed

    Partovi, Sasan; Kohan, Andres; Gaeta, Chiara; Rubbert, Christian; Vercher-Conejero, Jose L; Jones, Robert S; O'Donnell, James K; Wojtylak, Patrick; Faulhaber, Peter

    2013-01-01

    The purpose of this study is to systematically evaluate the usefulness of Positron emission tomography/Magnetic resonance imaging (PET/MRI) images in a clinical setting by assessing the image quality of Positron emission tomography (PET) images using a three-segment MR attenuation correction (MRAC) versus the standard CT attenuation correction (CTAC). We prospectively studied 48 patients who had their clinically scheduled FDG-PET/CT followed by an FDG-PET/MRI. Three nuclear radiologists evaluated the image quality of CTAC vs. MRAC using a Likert scale (five-point scale). A two-sided, paired t-test was performed for comparison purposes. The image quality was further assessed by categorizing it as acceptable (equal to 4 and 5 on the five-point Likert scale) or unacceptable (equal to 1, 2, and 3 on the five-point Likert scale) quality using the McNemar test. When assessing the image quality using the Likert scale, one reader observed a significant difference between CTAC and MRAC (p=0.0015), whereas the other readers did not observe a difference (p=0.8924 and p=0.1880, respectively). When performing the grouping analysis, no significant difference was found between CTAC vs. MRAC for any of the readers (p=0.6137 for reader 1, p=1 for reader 2, and p=0.8137 for reader 3). All three readers more often reported artifacts on the MRAC images than on the CTAC images. There was no clinically significant difference in quality between PET images generated on a PET/MRI system and those from a Positron emission tomography/Computed tomography (PET/CT) system. PET images using the automatic three-segmented MR attenuation method provided diagnostic image quality. However, future research regarding the image quality obtained using different MR attenuation based methods is warranted before PET/MRI can be used clinically.

  14. Quantitative analysis of image quality for acceptance and commissioning of an MRI simulator with a semiautomatic method.

    PubMed

    Chen, Xinyuan; Dai, Jianrong

    2018-05-01

    Magnetic Resonance Imaging (MRI) simulation differs from diagnostic MRI in purpose, technical requirements, and implementation. We propose a semiautomatic method for image acceptance and commissioning for the scanner, the radiofrequency (RF) coils, and pulse sequences for an MRI simulator. The ACR MRI accreditation large phantom was used for image quality analysis with seven parameters. Standard ACR sequences with a split head coil were adopted to examine the scanner's basic performance. The performance of simulation RF coils were measured and compared using the standard sequence with different clinical diagnostic coils. We used simulation sequences with simulation coils to test the quality of image and advanced performance of the scanner. Codes and procedures were developed for semiautomatic image quality analysis. When using standard ACR sequences with a split head coil, image quality passed all ACR recommended criteria. The image intensity uniformity with a simulation RF coil decreased about 34% compared with the eight-channel diagnostic head coil, while the other six image quality parameters were acceptable. Those two image quality parameters could be improved to more than 85% by built-in intensity calibration methods. In the simulation sequences test, the contrast resolution was sensitive to the FOV and matrix settings. The geometric distortion of simulation sequences such as T1-weighted and T2-weighted images was well-controlled in the isocenter and 10 cm off-center within a range of ±1% (2 mm). We developed a semiautomatic image quality analysis method for quantitative evaluation of images and commissioning of an MRI simulator. The baseline performances of simulation RF coils and pulse sequences have been established for routine QA. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  15. Quality assessment of color images based on the measure of just noticeable color difference

    NASA Astrophysics Data System (ADS)

    Chou, Chun-Hsien; Hsu, Yun-Hsiang

    2014-01-01

    Accurate assessment on the quality of color images is an important step to many image processing systems that convey visual information of the reproduced images. An accurate objective image quality assessment (IQA) method is expected to give the assessment result highly agreeing with the subjective assessment. To assess the quality of color images, many approaches simply apply the metric for assessing the quality of gray scale images to each of three color channels of the color image, neglecting the correlation among three color channels. In this paper, a metric for assessing color images' quality is proposed, in which the model of variable just-noticeable color difference (VJNCD) is employed to estimate the visibility thresholds of distortion inherent in each color pixel. With the estimated visibility thresholds of distortion, the proposed metric measures the average perceptible distortion in terms of the quantized distortion according to the perceptual error map similar to that defined by National Bureau of Standards (NBS) for converting the color difference enumerated by CIEDE2000 to the objective score of perceptual quality assessment. The perceptual error map in this case is designed for each pixel according to the visibility threshold estimated by the VJNCD model. The performance of the proposed metric is verified by assessing the test images in the LIVE database, and is compared with those of many well-know IQA metrics. Experimental results indicate that the proposed metric is an effective IQA method that can accurately predict the image quality of color images in terms of the correlation between objective scores and subjective evaluation.

  16. A method for the evaluation of image quality according to the recognition effectiveness of objects in the optical remote sensing image using machine learning algorithm.

    PubMed

    Yuan, Tao; Zheng, Xinqi; Hu, Xuan; Zhou, Wei; Wang, Wei

    2014-01-01

    Objective and effective image quality assessment (IQA) is directly related to the application of optical remote sensing images (ORSI). In this study, a new IQA method of standardizing the target object recognition rate (ORR) is presented to reflect quality. First, several quality degradation treatments with high-resolution ORSIs are implemented to model the ORSIs obtained in different imaging conditions; then, a machine learning algorithm is adopted for recognition experiments on a chosen target object to obtain ORRs; finally, a comparison with commonly used IQA indicators was performed to reveal their applicability and limitations. The results showed that the ORR of the original ORSI was calculated to be up to 81.95%, whereas the ORR ratios of the quality-degraded images to the original images were 65.52%, 64.58%, 71.21%, and 73.11%. The results show that these data can more accurately reflect the advantages and disadvantages of different images in object identification and information extraction when compared with conventional digital image assessment indexes. By recognizing the difference in image quality from the application effect perspective, using a machine learning algorithm to extract regional gray scale features of typical objects in the image for analysis, and quantitatively assessing quality of ORSI according to the difference, this method provides a new approach for objective ORSI assessment.

  17. Radiation dose optimization in pediatric temporal bone computed tomography: influence of tube tension on image contrast and image quality.

    PubMed

    Nauer, Claude Bertrand; Zubler, Christoph; Weisstanner, Christian; Stieger, Christof; Senn, Pascal; Arnold, Andreas

    2012-03-01

    The purpose of this experimental study was to investigate the effect of tube tension reduction on image contrast and image quality in pediatric temporal bone computed tomography (CT). Seven lamb heads with infant-equivalent sizes were scanned repeatedly, using four tube tensions from 140 to 80 kV while the CT-Dose Index (CTDI) was held constant. Scanning was repeated with four CTDI values from 30 to 3 mGy. Image contrast was calculated for the middle ear as the Hounsfield unit (HU) difference between bone and air and for the inner ear as the HU difference between bone and fluid. The influence of tube tension on high-contrast detail delineation was evaluated using a phantom. The subjective image quality of eight middle and inner ear structures was assessed using a 4-point scale (scores 1-2 = insufficient; scores 3-4 = sufficient). Middle and inner ear contrast showed a near linear increase with tube tension reduction (r = -0.94/-0.88) and was highest at 80 kV. Tube tension had no influence on spatial resolution. Subjective image quality analysis showed significantly better scoring at lower tube tensions, with highest image quality at 80 kV. However, image quality improvement was most relevant for low-dose scans. Image contrast in the temporal bone is significantly higher at low tube tensions, leading to a better subjective image quality. Highest contrast and best quality were found at 80 kV. This image quality improvement might be utilized to further reduce the radiation dose in pediatric low-dose CT protocols.

  18. Improving high resolution retinal image quality using speckle illumination HiLo imaging

    PubMed Central

    Zhou, Xiaolin; Bedggood, Phillip; Metha, Andrew

    2014-01-01

    Retinal image quality from flood illumination adaptive optics (AO) ophthalmoscopes is adversely affected by out-of-focus light scatter due to the lack of confocality. This effect is more pronounced in small eyes, such as that of rodents, because the requisite high optical power confers a large dioptric thickness to the retina. A recently-developed structured illumination microscopy (SIM) technique called HiLo imaging has been shown to reduce the effect of out-of-focus light scatter in flood illumination microscopes and produce pseudo-confocal images with significantly improved image quality. In this work, we adopted the HiLo technique to a flood AO ophthalmoscope and performed AO imaging in both (physical) model and live rat eyes. The improvement in image quality from HiLo imaging is shown both qualitatively and quantitatively by using spatial spectral analysis. PMID:25136486

  19. Improving high resolution retinal image quality using speckle illumination HiLo imaging.

    PubMed

    Zhou, Xiaolin; Bedggood, Phillip; Metha, Andrew

    2014-08-01

    Retinal image quality from flood illumination adaptive optics (AO) ophthalmoscopes is adversely affected by out-of-focus light scatter due to the lack of confocality. This effect is more pronounced in small eyes, such as that of rodents, because the requisite high optical power confers a large dioptric thickness to the retina. A recently-developed structured illumination microscopy (SIM) technique called HiLo imaging has been shown to reduce the effect of out-of-focus light scatter in flood illumination microscopes and produce pseudo-confocal images with significantly improved image quality. In this work, we adopted the HiLo technique to a flood AO ophthalmoscope and performed AO imaging in both (physical) model and live rat eyes. The improvement in image quality from HiLo imaging is shown both qualitatively and quantitatively by using spatial spectral analysis.

  20. Synthesized view comparison method for no-reference 3D image quality assessment

    NASA Astrophysics Data System (ADS)

    Luo, Fangzhou; Lin, Chaoyi; Gu, Xiaodong; Ma, Xiaojun

    2018-04-01

    We develop a no-reference image quality assessment metric to evaluate the quality of synthesized view rendered from the Multi-view Video plus Depth (MVD) format. Our metric is named Synthesized View Comparison (SVC), which is designed for real-time quality monitoring at the receiver side in a 3D-TV system. The metric utilizes the virtual views in the middle which are warped from left and right views by Depth-image-based rendering algorithm (DIBR), and compares the difference between the virtual views rendered from different cameras by Structural SIMilarity (SSIM), a popular 2D full-reference image quality assessment metric. The experimental results indicate that our no-reference quality assessment metric for the synthesized images has competitive prediction performance compared with some classic full-reference image quality assessment metrics.

  1. Color Retinal Image Enhancement Based on Luminosity and Contrast Adjustment.

    PubMed

    Zhou, Mei; Jin, Kai; Wang, Shaoze; Ye, Juan; Qian, Dahong

    2018-03-01

    Many common eye diseases and cardiovascular diseases can be diagnosed through retinal imaging. However, due to uneven illumination, image blurring, and low contrast, retinal images with poor quality are not useful for diagnosis, especially in automated image analyzing systems. Here, we propose a new image enhancement method to improve color retinal image luminosity and contrast. A luminance gain matrix, which is obtained by gamma correction of the value channel in the HSV (hue, saturation, and value) color space, is used to enhance the R, G, and B (red, green and blue) channels, respectively. Contrast is then enhanced in the luminosity channel of L * a * b * color space by CLAHE (contrast-limited adaptive histogram equalization). Image enhancement by the proposed method is compared to other methods by evaluating quality scores of the enhanced images. The performance of the method is mainly validated on a dataset of 961 poor-quality retinal images. Quality assessment (range 0-1) of image enhancement of this poor dataset indicated that our method improved color retinal image quality from an average of 0.0404 (standard deviation 0.0291) up to an average of 0.4565 (standard deviation 0.1000). The proposed method is shown to achieve superior image enhancement compared to contrast enhancement in other color spaces or by other related methods, while simultaneously preserving image naturalness. This method of color retinal image enhancement may be employed to assist ophthalmologists in more efficient screening of retinal diseases and in development of improved automated image analysis for clinical diagnosis.

  2. Examination of the dental cone-beam CT equipped with flat-panel-detector (FPD)

    NASA Astrophysics Data System (ADS)

    Ito, Rieko; Fujita, Naotoshi; Kodera, Yoshie

    2011-03-01

    In dentistry, computed tomography (CT) is essential for diagnosis. Recently, cone-beam CT has come into use. We used an "Alphard 3030" cone-beam CT equipped with an FPD system. This system can obtain fluoroscopic and CT images. Moreover, the Alphard has 4 exposure modes for CT, and each mode has a different field of view (FOV) and voxel size. We examined the image quality of kinetic and CT images obtained using the cone-beam CT system. To evaluate kinetic image quality, we calculated the Wiener spectrum (WS) and modulation transfer function (MTF). We then analyzed the lag images and exposed a phantom. To evaluate CT image quality, we calculated WS and MTF at various places in the FOV and examined the influence of extension of the cone beam X-ray on voxel size. Furthermore, we compared the WS and MTF values of cone-beam CT to those of another CT system. Evaluation of the kinetic images showed that cone-beam CT is sufficient for clinical diagnosis and provides better image quality than the other system tested. However, during exposure of a CT image, the distance from the center influences image quality (especially MTF). Further, differences in voxel size affect image quality. It is therefore necessary to carefully position the region of interest and select an appropriate mode.

  3. dipIQ: Blind Image Quality Assessment by Learning-to-Rank Discriminable Image Pairs.

    PubMed

    Ma, Kede; Liu, Wentao; Liu, Tongliang; Wang, Zhou; Tao, Dacheng

    2017-05-26

    Objective assessment of image quality is fundamentally important in many image processing tasks. In this work, we focus on learning blind image quality assessment (BIQA) models which predict the quality of a digital image with no access to its original pristine-quality counterpart as reference. One of the biggest challenges in learning BIQA models is the conflict between the gigantic image space (which is in the dimension of the number of image pixels) and the extremely limited reliable ground truth data for training. Such data are typically collected via subjective testing, which is cumbersome, slow, and expensive. Here we first show that a vast amount of reliable training data in the form of quality-discriminable image pairs (DIP) can be obtained automatically at low cost by exploiting largescale databases with diverse image content. We then learn an opinion-unaware BIQA (OU-BIQA, meaning that no subjective opinions are used for training) model using RankNet, a pairwise learning-to-rank (L2R) algorithm, from millions of DIPs, each associated with a perceptual uncertainty level, leading to a DIP inferred quality (dipIQ) index. Extensive experiments on four benchmark IQA databases demonstrate that dipIQ outperforms state-of-the-art OU-BIQA models. The robustness of dipIQ is also significantly improved as confirmed by the group MAximum Differentiation (gMAD) competition method. Furthermore, we extend the proposed framework by learning models with ListNet (a listwise L2R algorithm) on quality-discriminable image lists (DIL). The resulting DIL Inferred Quality (dilIQ) index achieves an additional performance gain.

  4. An evaluation of the use of oral contrast media in abdominopelvic CT.

    PubMed

    Buttigieg, Erica Lauren; Grima, Karen Borg; Cortis, Kelvin; Soler, Sandro Galea; Zarb, Francis

    2014-11-01

    To evaluate the diagnostic efficacy of different oral contrast media (OCM) for abdominopelvic CT examinations performed for follow-up general oncological indications. The objectives were to establish anatomical image quality criteria for abdominopelvic CT; use these criteria to evaluate and compare image quality using positive OCM, neutral OCM and no OCM; and evaluate possible benefits for the medical imaging department. Forty-six adult patients attending a follow-up abdominopelvic CT for general oncological indications and who had a previous abdominopelvic CT with positive OCM (n = 46) were recruited and prospectively placed into either the water (n = 25) or no OCM (n = 21) group. Three radiologists performed absolute visual grading analysis (VGA) to assess image quality by grading the fulfilment of 24 anatomical image quality criteria. Visual grading characteristics (VGC) analysis of the data showed comparable image quality with regards to reproduction of abdominal structures, bowel discrimination, presence of artefacts, and visualization of the amount of intra-abdominal fat for the three OCM protocols. All three OCM protocols provided similar image quality for follow-up abdominopelvic CT for general oncological indications. • Positive oral contrast media are routinely used for abdominopelvic multidetector computed tomography • Experimental study comparing image quality using three different oral contrast materials • Three different oral contrast materials result in comparable CT image quality • Benefits for patients and medical imaging department.

  5. Predicting perceptual quality of images in realistic scenario using deep filter banks

    NASA Astrophysics Data System (ADS)

    Zhang, Weixia; Yan, Jia; Hu, Shiyong; Ma, Yang; Deng, Dexiang

    2018-03-01

    Classical image perceptual quality assessment models usually resort to natural scene statistic methods, which are based on an assumption that certain reliable statistical regularities hold on undistorted images and will be corrupted by introduced distortions. However, these models usually fail to accurately predict degradation severity of images in realistic scenarios since complex, multiple, and interactive authentic distortions usually appear on them. We propose a quality prediction model based on convolutional neural network. Quality-aware features extracted from filter banks of multiple convolutional layers are aggregated into the image representation. Furthermore, an easy-to-implement and effective feature selection strategy is used to further refine the image representation and finally a linear support vector regression model is trained to map image representation into images' subjective perceptual quality scores. The experimental results on benchmark databases present the effectiveness and generalizability of the proposed model.

  6. Parameter Search Algorithms for Microwave Radar-Based Breast Imaging: Focal Quality Metrics as Fitness Functions.

    PubMed

    O'Loughlin, Declan; Oliveira, Bárbara L; Elahi, Muhammad Adnan; Glavin, Martin; Jones, Edward; Popović, Milica; O'Halloran, Martin

    2017-12-06

    Inaccurate estimation of average dielectric properties can have a tangible impact on microwave radar-based breast images. Despite this, recent patient imaging studies have used a fixed estimate although this is known to vary from patient to patient. Parameter search algorithms are a promising technique for estimating the average dielectric properties from the reconstructed microwave images themselves without additional hardware. In this work, qualities of accurately reconstructed images are identified from point spread functions. As the qualities of accurately reconstructed microwave images are similar to the qualities of focused microscopic and photographic images, this work proposes the use of focal quality metrics for average dielectric property estimation. The robustness of the parameter search is evaluated using experimental dielectrically heterogeneous phantoms on the three-dimensional volumetric image. Based on a very broad initial estimate of the average dielectric properties, this paper shows how these metrics can be used as suitable fitness functions in parameter search algorithms to reconstruct clear and focused microwave radar images.

  7. Enhancement of low light level images using color-plus-mono dual camera.

    PubMed

    Jung, Yong Ju

    2017-05-15

    In digital photography, the improvement of imaging quality in low light shooting is one of the users' needs. Unfortunately, conventional smartphone cameras that use a single, small image sensor cannot provide satisfactory quality in low light level images. A color-plus-mono dual camera that consists of two horizontally separate image sensors, which simultaneously captures both a color and mono image pair of the same scene, could be useful for improving the quality of low light level images. However, an incorrect image fusion between the color and mono image pair could also have negative effects, such as the introduction of severe visual artifacts in the fused images. This paper proposes a selective image fusion technique that applies an adaptive guided filter-based denoising and selective detail transfer to only those pixels deemed reliable with respect to binocular image fusion. We employ a dissimilarity measure and binocular just-noticeable-difference (BJND) analysis to identify unreliable pixels that are likely to cause visual artifacts during image fusion via joint color image denoising and detail transfer from the mono image. By constructing an experimental system of color-plus-mono camera, we demonstrate that the BJND-aware denoising and selective detail transfer is helpful in improving the image quality during low light shooting.

  8. Healthcare reform for imagers: finding a way forward now.

    PubMed

    Douglas, Pamela S; Picard, Michael H

    2013-03-01

    The changing healthcare environment presents many challenges to cardiovascular imagers. This perspective paper uses current trends to propose strategies that cardiovascular imagers can follow to lead in managing change and developing the imaging laboratory of the future. In the area of quality, imagers are encouraged to follow guidelines and standards, implement structured reporting and laboratory databases, adopt ongoing quality improvement programs, and use benchmarks to confirm imaging quality. In the area of access, imagers are encouraged to enhance availability of testing, focus on patient and referring physician value and satisfaction, collaboratively implement new technologies and uses of imaging, integrate health information technology in the laboratory, and work toward the appropriate inclusion of imaging in new healthcare delivery models. In the area of cost, imagers are encouraged to minimize laboratory operating expenses without compromising quality, and to take an active role in care redesign initiatives to ensure that imaging is utilized appropriately and at proper time intervals. Imagers are also encouraged to learn leadership and management skills, undertake strategic planning exercises, and build strong, collaborative teams. Although it is difficult to predict the future of cardiovascular imaging delivery, a reasonable sense of the likely direction of many changes and careful attention to the fundamentals of good health care (quality, access, and cost) can help imagers to thrive now and in the future. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  9. Acquisition performance of LAPAN-A3/IPB multispectral imager in real-time mode of operation

    NASA Astrophysics Data System (ADS)

    Hakim, P. R.; Permala, R.; Jayani, A. P. S.

    2018-05-01

    LAPAN-A3/IPB satellite was launched in June 2016 and its multispectral imager has been producing Indonesian coverage images. In order to improve its support for remote sensing application, the imager should produce images with high quality and quantity. To improve the quantity of LAPAN-A3/IPB multispectral image captured, image acquisition could be executed in real-time mode from LAPAN ground station in Bogor when the satellite passes west Indonesia region. This research analyses the performance of LAPAN-A3/IPB multispectral imager acquisition in real-time mode, in terms of image quality and quantity, under assumption of several on-board and ground segment limitations. Results show that with real-time operation mode, LAPAN-A3/IPB multispectral imager could produce twice as much as image coverage compare to recorded mode. However, the images produced in real-time mode will have slightly degraded quality due to image compression process involved. Based on several analyses that have been done in this research, it is recommended to use real-time acquisition mode whenever it possible, unless for some circumstances that strictly not allow any quality degradation of the images produced.

  10. No-reference image quality assessment for horizontal-path imaging scenarios

    NASA Astrophysics Data System (ADS)

    Rios, Carlos; Gladysz, Szymon

    2013-05-01

    There exist several image-enhancement algorithms and tasks associated with imaging through turbulence that depend on defining the quality of an image. Examples include: "lucky imaging", choosing the width of the inverse filter for image reconstruction, or stopping iterative deconvolution. We collected a number of image quality metrics found in the literature. Particularly interesting are the blind, "no-reference" metrics. We discuss ways of evaluating the usefulness of these metrics, even when a fully objective comparison is impossible because of the lack of a reference image. Metrics are tested on simulated and real data. Field data comes from experiments performed by the NATO SET 165 research group over a 7 km distance in Dayton, Ohio.

  11. CLINICAL AUDIT OF IMAGE QUALITY IN RADIOLOGY USING VISUAL GRADING CHARACTERISTICS ANALYSIS.

    PubMed

    Tesselaar, Erik; Dahlström, Nils; Sandborg, Michael

    2016-06-01

    The aim of this work was to assess whether an audit of clinical image quality could be efficiently implemented within a limited time frame using visual grading characteristics (VGC) analysis. Lumbar spine radiography, bedside chest radiography and abdominal CT were selected. For each examination, images were acquired or reconstructed in two ways. Twenty images per examination were assessed by 40 radiology residents using visual grading of image criteria. The results were analysed using VGC. Inter-observer reliability was assessed. The results of the visual grading analysis were consistent with expected outcomes. The inter-observer reliability was moderate to good and correlated with perceived image quality (r(2) = 0.47). The median observation time per image or image series was within 2 min. These results suggest that the use of visual grading of image criteria to assess the quality of radiographs provides a rapid method for performing an image quality audit in a clinical environment. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Reducing radiation dose without compromising image quality in preoperative perforator flap imaging with CTA using ASIR technology.

    PubMed

    Niumsawatt, Vachara; Debrotwir, Andrew N; Rozen, Warren Matthew

    2014-01-01

    Computed tomographic angiography (CTA) has become a mainstay in preoperative perforator flap planning in the modern era of reconstructive surgery. However, the increased use of CTA does raise the concern of radiation exposure to patients. Several techniques have been developed to decrease radiation dosage without compromising image quality, with varying results. The most recent advance is in the improvement of image reconstruction using an adaptive statistical iterative reconstruction (ASIR) algorithm. We sought to evaluate the image quality of ASIR in preoperative deep inferior epigastric perforator (DIEP) flap surgery, through a direct comparison with conventional filtered back projection (FBP) images. A prospective review of 60 consecutive ASIR and 60 consecutive FBP CTA images using similar protocol (except for radiation dosage) was undertaken, analyzed by 2 independent reviewers. In both groups, we were able to accurately identify axial arteries and their perforators. Subjective analysis of image quality demonstrated no statistically significant difference between techniques. ASIR can thus be used for preoperative imaging with similar image quality to FBP, but with a 60% reduction in radiation delivery to patients.

  13. Social image quality

    NASA Astrophysics Data System (ADS)

    Qiu, Guoping; Kheiri, Ahmed

    2011-01-01

    Current subjective image quality assessments have been developed in the laboratory environments, under controlledconditions, and are dependent on the participation of limited numbers of observers. In this research, with the help of Web 2.0 and social media technology, a new method for building a subjective image quality metric has been developed where the observers are the Internet users. A website with a simple user interface that enables Internet users from anywhere at any time to vote for a better quality version of a pair of the same image has been constructed. Users' votes are recorded and used to rank the images according to their perceived visual qualities. We have developed three rank aggregation algorithms to process the recorded pair comparison data, the first uses a naive approach, the second employs a Condorcet method, and the third uses the Dykstra's extension of Bradley-Terry method. The website has been collecting data for about three months and has accumulated over 10,000 votes at the time of writing this paper. Results show that the Internet and its allied technologies such as crowdsourcing offer a promising new paradigm for image and video quality assessment where hundreds of thousands of Internet users can contribute to building more robust image quality metrics. We have made Internet user generated social image quality (SIQ) data of a public image database available online (http://www.hdri.cs.nott.ac.uk/siq/) to provide the image quality research community with a new source of ground truth data. The website continues to collect votes and will include more public image databases and will also be extended to include videos to collect social video quality (SVQ) data. All data will be public available on the website in due course.

  14. New patient-controlled abdominal compression method in radiography: radiation dose and image quality.

    PubMed

    Piippo-Huotari, Oili; Norrman, Eva; Anderzén-Carlsson, Agneta; Geijer, Håkan

    2018-05-01

    The radiation dose for patients can be reduced with many methods and one way is to use abdominal compression. In this study, the radiation dose and image quality for a new patient-controlled compression device were compared with conventional compression and compression in the prone position . To compare radiation dose and image quality of patient-controlled compression compared with conventional and prone compression in general radiography. An experimental design with quantitative approach. After obtaining the approval of the ethics committee, a consecutive sample of 48 patients was examined with the standard clinical urography protocol. The radiation doses were measured as dose-area product and analyzed with a paired t-test. The image quality was evaluated by visual grading analysis. Four radiologists evaluated each image individually by scoring nine criteria modified from the European quality criteria for diagnostic radiographic images. There was no significant difference in radiation dose or image quality between conventional and patient-controlled compression. Prone position resulted in both higher dose and inferior image quality. Patient-controlled compression gave similar dose levels as conventional compression and lower than prone compression. Image quality was similar with both patient-controlled and conventional compression and was judged to be better than in the prone position.

  15. Parameter-based estimation of CT dose index and image quality using an in-house android™-based software

    NASA Astrophysics Data System (ADS)

    Mubarok, S.; Lubis, L. E.; Pawiro, S. A.

    2016-03-01

    Compromise between radiation dose and image quality is essential in the use of CT imaging. CT dose index (CTDI) is currently the primary dosimetric formalisms in CT scan, while the low and high contrast resolutions are aspects indicating the image quality. This study was aimed to estimate CTDIvol and image quality measures through a range of exposure parameters variation. CTDI measurements were performed using PMMA (polymethyl methacrylate) phantom of 16 cm diameter, while the image quality test was conducted by using catphan ® 600. CTDI measurements were carried out according to IAEA TRS 457 protocol using axial scan mode, under varied parameters of tube voltage, collimation or slice thickness, and tube current. Image quality test was conducted accordingly under the same exposure parameters with CTDI measurements. An Android™ based software was also result of this study. The software was designed to estimate the value of CTDIvol with maximum difference compared to actual CTDIvol measurement of 8.97%. Image quality can also be estimated through CNR parameter with maximum difference to actual CNR measurement of 21.65%.

  16. Quantitative metrics for assessment of chemical image quality and spatial resolution

    DOE PAGES

    Kertesz, Vilmos; Cahill, John F.; Van Berkel, Gary J.

    2016-02-28

    Rationale: Currently objective/quantitative descriptions of the quality and spatial resolution of mass spectrometry derived chemical images are not standardized. Development of these standardized metrics is required to objectively describe chemical imaging capabilities of existing and/or new mass spectrometry imaging technologies. Such metrics would allow unbiased judgment of intra-laboratory advancement and/or inter-laboratory comparison for these technologies if used together with standardized surfaces. Methods: We developed two image metrics, viz., chemical image contrast (ChemIC) based on signal-to-noise related statistical measures on chemical image pixels and corrected resolving power factor (cRPF) constructed from statistical analysis of mass-to-charge chronograms across features of interest inmore » an image. These metrics, quantifying chemical image quality and spatial resolution, respectively, were used to evaluate chemical images of a model photoresist patterned surface collected using a laser ablation/liquid vortex capture mass spectrometry imaging system under different instrument operational parameters. Results: The calculated ChemIC and cRPF metrics determined in an unbiased fashion the relative ranking of chemical image quality obtained with the laser ablation/liquid vortex capture mass spectrometry imaging system. These rankings were used to show that both chemical image contrast and spatial resolution deteriorated with increasing surface scan speed, increased lane spacing and decreasing size of surface features. Conclusions: ChemIC and cRPF, respectively, were developed and successfully applied for the objective description of chemical image quality and spatial resolution of chemical images collected from model surfaces using a laser ablation/liquid vortex capture mass spectrometry imaging system.« less

  17. Investigating the Role of Global Histogram Equalization Technique for 99mTechnetium-Methylene diphosphonate Bone Scan Image Enhancement.

    PubMed

    Pandey, Anil Kumar; Sharma, Param Dev; Dheer, Pankaj; Parida, Girish Kumar; Goyal, Harish; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh

    2017-01-01

    99m Technetium-methylene diphosphonate ( 99m Tc-MDP) bone scan images have limited number of counts per pixel, and hence, they have inferior image quality compared to X-rays. Theoretically, global histogram equalization (GHE) technique can improve the contrast of a given image though practical benefits of doing so have only limited acceptance. In this study, we have investigated the effect of GHE technique for 99m Tc-MDP-bone scan images. A set of 89 low contrast 99m Tc-MDP whole-body bone scan images were included in this study. These images were acquired with parallel hole collimation on Symbia E gamma camera. The images were then processed with histogram equalization technique. The image quality of input and processed images were reviewed by two nuclear medicine physicians on a 5-point scale where score of 1 is for very poor and 5 is for the best image quality. A statistical test was applied to find the significance of difference between the mean scores assigned to input and processed images. This technique improves the contrast of the images; however, oversaturation was noticed in the processed images. Student's t -test was applied, and a statistically significant difference in the input and processed image quality was found at P < 0.001 (with α = 0.05). However, further improvement in image quality is needed as per requirements of nuclear medicine physicians. GHE techniques can be used on low contrast bone scan images. In some of the cases, a histogram equalization technique in combination with some other postprocessing technique is useful.

  18. Automated Quality Assessment of Colour Fundus Images for Diabetic Retinopathy Screening in Telemedicine.

    PubMed

    Saha, Sajib Kumar; Fernando, Basura; Cuadros, Jorge; Xiao, Di; Kanagasingam, Yogesan

    2018-04-27

    Fundus images obtained in a telemedicine program are acquired at different sites that are captured by people who have varying levels of experience. These result in a relatively high percentage of images which are later marked as unreadable by graders. Unreadable images require a recapture which is time and cost intensive. An automated method that determines the image quality during acquisition is an effective alternative. To determine the image quality during acquisition, we describe here an automated method for the assessment of image quality in the context of diabetic retinopathy. The method explicitly applies machine learning techniques to access the image and to determine 'accept' and 'reject' categories. 'Reject' category image requires a recapture. A deep convolution neural network is trained to grade the images automatically. A large representative set of 7000 colour fundus images was used for the experiment which was obtained from the EyePACS that were made available by the California Healthcare Foundation. Three retinal image analysis experts were employed to categorise these images into 'accept' and 'reject' classes based on the precise definition of image quality in the context of DR. The network was trained using 3428 images. The method shows an accuracy of 100% to successfully categorise 'accept' and 'reject' images, which is about 2% higher than the traditional machine learning method. On a clinical trial, the proposed method shows 97% agreement with human grader. The method can be easily incorporated with the fundus image capturing system in the acquisition centre and can guide the photographer whether a recapture is necessary or not.

  19. Quantitative metrics for assessment of chemical image quality and spatial resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kertesz, Vilmos; Cahill, John F.; Van Berkel, Gary J.

    Rationale: Currently objective/quantitative descriptions of the quality and spatial resolution of mass spectrometry derived chemical images are not standardized. Development of these standardized metrics is required to objectively describe chemical imaging capabilities of existing and/or new mass spectrometry imaging technologies. Such metrics would allow unbiased judgment of intra-laboratory advancement and/or inter-laboratory comparison for these technologies if used together with standardized surfaces. Methods: We developed two image metrics, viz., chemical image contrast (ChemIC) based on signal-to-noise related statistical measures on chemical image pixels and corrected resolving power factor (cRPF) constructed from statistical analysis of mass-to-charge chronograms across features of interest inmore » an image. These metrics, quantifying chemical image quality and spatial resolution, respectively, were used to evaluate chemical images of a model photoresist patterned surface collected using a laser ablation/liquid vortex capture mass spectrometry imaging system under different instrument operational parameters. Results: The calculated ChemIC and cRPF metrics determined in an unbiased fashion the relative ranking of chemical image quality obtained with the laser ablation/liquid vortex capture mass spectrometry imaging system. These rankings were used to show that both chemical image contrast and spatial resolution deteriorated with increasing surface scan speed, increased lane spacing and decreasing size of surface features. Conclusions: ChemIC and cRPF, respectively, were developed and successfully applied for the objective description of chemical image quality and spatial resolution of chemical images collected from model surfaces using a laser ablation/liquid vortex capture mass spectrometry imaging system.« less

  20. Despeckle filtering software toolbox for ultrasound imaging of the common carotid artery.

    PubMed

    Loizou, Christos P; Theofanous, Charoula; Pantziaris, Marios; Kasparis, Takis

    2014-04-01

    Ultrasound imaging of the common carotid artery (CCA) is a non-invasive tool used in medicine to assess the severity of atherosclerosis and monitor its progression through time. It is also used in border detection and texture characterization of the atherosclerotic carotid plaque in the CCA, the identification and measurement of the intima-media thickness (IMT) and the lumen diameter that all are very important in the assessment of cardiovascular disease (CVD). Visual perception, however, is hindered by speckle, a multiplicative noise, that degrades the quality of ultrasound B-mode imaging. Noise reduction is therefore essential for improving the visual observation quality or as a pre-processing step for further automated analysis, such as image segmentation of the IMT and the atherosclerotic carotid plaque in ultrasound images. In order to facilitate this preprocessing step, we have developed in MATLAB(®) a unified toolbox that integrates image despeckle filtering (IDF), texture analysis and image quality evaluation techniques to automate the pre-processing and complement the disease evaluation in ultrasound CCA images. The proposed software, is based on a graphical user interface (GUI) and incorporates image normalization, 10 different despeckle filtering techniques (DsFlsmv, DsFwiener, DsFlsminsc, DsFkuwahara, DsFgf, DsFmedian, DsFhmedian, DsFad, DsFnldif, DsFsrad), image intensity normalization, 65 texture features, 15 quantitative image quality metrics and objective image quality evaluation. The software is publicly available in an executable form, which can be downloaded from http://www.cs.ucy.ac.cy/medinfo/. It was validated on 100 ultrasound images of the CCA, by comparing its results with quantitative visual analysis performed by a medical expert. It was observed that the despeckle filters DsFlsmv, and DsFhmedian improved image quality perception (based on the expert's assessment and the image texture and quality metrics). It is anticipated that the system could help the physician in the assessment of cardiovascular image analysis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Optimized protocols for cardiac magnetic resonance imaging in patients with thoracic metallic implants.

    PubMed

    Olivieri, Laura J; Cross, Russell R; O'Brien, Kendall E; Ratnayaka, Kanishka; Hansen, Michael S

    2015-09-01

    Cardiac magnetic resonance (MR) imaging is a valuable tool in congenital heart disease; however patients frequently have metal devices in the chest from the treatment of their disease that complicate imaging. Methods are needed to improve imaging around metal implants near the heart. Basic sequence parameter manipulations have the potential to minimize artifact while limiting effects on image resolution and quality. Our objective was to design cine and static cardiac imaging sequences to minimize metal artifact while maintaining image quality. Using systematic variation of standard imaging parameters on a fluid-filled phantom containing commonly used metal cardiac devices, we developed optimized sequences for steady-state free precession (SSFP), gradient recalled echo (GRE) cine imaging, and turbo spin-echo (TSE) black-blood imaging. We imaged 17 consecutive patients undergoing routine cardiac MR with 25 metal implants of various origins using both standard and optimized imaging protocols for a given slice position. We rated images for quality and metal artifact size by measuring metal artifact in two orthogonal planes within the image. All metal artifacts were reduced with optimized imaging. The average metal artifact reduction for the optimized SSFP cine was 1.5+/-1.8 mm, and for the optimized GRE cine the reduction was 4.6+/-4.5 mm (P < 0.05). Quality ratings favored the optimized GRE cine. Similarly, the average metal artifact reduction for the optimized TSE images was 1.6+/-1.7 mm (P < 0.05), and quality ratings favored the optimized TSE imaging. Imaging sequences tailored to minimize metal artifact are easily created by modifying basic sequence parameters, and images are superior to standard imaging sequences in both quality and artifact size. Specifically, for optimized cine imaging a GRE sequence should be used with settings that favor short echo time, i.e. flow compensation off, weak asymmetrical echo and a relatively high receiver bandwidth. For static black-blood imaging, a TSE sequence should be used with fat saturation turned off and high receiver bandwidth.

  2. Automated image quality assessment for chest CT scans.

    PubMed

    Reeves, Anthony P; Xie, Yiting; Liu, Shuang

    2018-02-01

    Medical image quality needs to be maintained at standards sufficient for effective clinical reading. Automated computer analytic methods may be applied to medical images for quality assessment. For chest CT scans in a lung cancer screening context, an automated quality assessment method is presented that characterizes image noise and image intensity calibration. This is achieved by image measurements in three automatically segmented homogeneous regions of the scan: external air, trachea lumen air, and descending aorta blood. Profiles of CT scanner behavior are also computed. The method has been evaluated on both phantom and real low-dose chest CT scans and results show that repeatable noise and calibration measures may be realized by automated computer algorithms. Noise and calibration profiles show relevant differences between different scanners and protocols. Automated image quality assessment may be useful for quality control for lung cancer screening and may enable performance improvements to automated computer analysis methods. © 2017 American Association of Physicists in Medicine.

  3. Testing the quality of images for permanent magnet desktop MRI systems using specially designed phantoms.

    PubMed

    Qiu, Jianfeng; Wang, Guozhu; Min, Jiao; Wang, Xiaoyan; Wang, Pengcheng

    2013-12-21

    Our aim was to measure the performance of desktop magnetic resonance imaging (MRI) systems using specially designed phantoms, by testing imaging parameters and analysing the imaging quality. We designed multifunction phantoms with diameters of 18 and 60 mm for desktop MRI scanners in accordance with the American Association of Physicists in Medicine (AAPM) report no. 28. We scanned the phantoms with three permanent magnet 0.5 T desktop MRI systems, measured the MRI image parameters, and analysed imaging quality by comparing the data with the AAPM criteria and Chinese national standards. Image parameters included: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, signal-to-noise ratio (SNR), and image uniformity. The image parameters of three desktop MRI machines could be measured using our specially designed phantoms, and most parameters were in line with MRI quality control criterion, including: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, image uniformity and slice position accuracy. However, SNR was significantly lower than in some references. The imaging test and quality control are necessary for desktop MRI systems, and should be performed with the applicable phantom and corresponding standards.

  4. Beam Characterization at the Neutron Radiography Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarah Morgan; Jeffrey King

    The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam’s effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam’s effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured themore » beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model’s energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.« less

  5. Automatic quality assessment of planetary images

    NASA Astrophysics Data System (ADS)

    Sidiropoulos, P.; Muller, J.-P.

    2015-10-01

    A significant fraction of planetary images are corrupted beyond the point that much scientific meaning can be extracted. For example, transmission errors result in missing data which is unrecoverable. The available planetary image datasets include many such "bad data", which both occupy valuable scientific storage resources and create false impressions about planetary image availability for specific planetary objects or target areas. In this work, we demonstrate a pipeline that we have developed to automatically assess the quality of planetary images. Additionally, this method discriminates between different types of image degradation, such as low-quality originating from camera flaws or low-quality triggered by atmospheric conditions, etc. Examples of quality assessment results for Viking Orbiter imagery will be also presented.

  6. Dose and diagnostic image quality in digital tomosynthesis imaging of facial bones in pediatrics

    NASA Astrophysics Data System (ADS)

    King, J. M.; Hickling, S.; Elbakri, I. A.; Reed, M.; Wrogemann, J.

    2011-03-01

    The purpose of this study was to evaluate the use of digital tomosynthesis (DT) for pediatric facial bone imaging. We compared the eye lens dose and diagnostic image quality of DT facial bone exams relative to digital radiography (DR) and computed tomography (CT), and investigated whether we could modify our current DT imaging protocol to reduce patient dose while maintaining sufficient diagnostic image quality. We measured the dose to the eye lens for all three modalities using high-sensitivity thermoluminescent dosimeters (TLDs) and an anthropomorphic skull phantom. To assess the diagnostic image quality of DT compared to the corresponding DR and CT images, we performed an observer study where the visibility of anatomical structures in the DT phantom images were rated on a four-point scale. We then acquired DT images at lower doses and had radiologists indicate whether the visibility of each structure was adequate for diagnostic purposes. For typical facial bone exams, we measured eye lens doses of 0.1-0.4 mGy for DR, 0.3-3.7 mGy for DT, and 26 mGy for CT. In general, facial bone structures were visualized better with DT then DR, and the majority of structures were visualized well enough to avoid the need for CT. DT imaging provides high quality diagnostic images of the facial bones while delivering significantly lower doses to the lens of the eye compared to CT. In addition, we found that by adjusting the imaging parameters, the DT effective dose can be reduced by up to 50% while maintaining sufficient image quality.

  7. Influence of study design on digital pathology image quality evaluation: the need to define a clinical task

    PubMed Central

    Platiša, Ljiljana; Brantegem, Leen Van; Kumcu, Asli; Ducatelle, Richard; Philips, Wilfried

    2017-01-01

    Abstract. Despite the current rapid advance in technologies for whole slide imaging, there is still no scientific consensus on the recommended methodology for image quality assessment of digital pathology slides. For medical images in general, it has been recommended to assess image quality in terms of doctors’ success rates in performing a specific clinical task while using the images (clinical image quality, cIQ). However, digital pathology is a new modality, and already identifying the appropriate task is difficult. In an alternative common approach, humans are asked to do a simpler task such as rating overall image quality (perceived image quality, pIQ), but that involves the risk of nonclinically relevant findings due to an unknown relationship between the pIQ and cIQ. In this study, we explored three different experimental protocols: (1) conducting a clinical task (detecting inclusion bodies), (2) rating image similarity and preference, and (3) rating the overall image quality. Additionally, within protocol 1, overall quality ratings were also collected (task-aware pIQ). The experiments were done by diagnostic veterinary pathologists in the context of evaluating the quality of hematoxylin and eosin-stained digital pathology slides of animal tissue samples under several common image alterations: additive noise, blurring, change in gamma, change in color saturation, and JPG compression. While the size of our experiments was small and prevents drawing strong conclusions, the results suggest the need to define a clinical task. Importantly, the pIQ data collected under protocols 2 and 3 did not always rank the image alterations the same as their cIQ from protocol 1, warning against using conventional pIQ to predict cIQ. At the same time, there was a correlation between the cIQ and task-aware pIQ ratings from protocol 1, suggesting that the clinical experiment context (set by specifying the clinical task) may affect human visual attention and bring focus to their criteria of image quality. Further research is needed to assess whether and for which purposes (e.g., preclinical testing) task-aware pIQ ratings could substitute cIQ for a given clinical task. PMID:28653011

  8. Influence of study design on digital pathology image quality evaluation: the need to define a clinical task.

    PubMed

    Platiša, Ljiljana; Brantegem, Leen Van; Kumcu, Asli; Ducatelle, Richard; Philips, Wilfried

    2017-04-01

    Despite the current rapid advance in technologies for whole slide imaging, there is still no scientific consensus on the recommended methodology for image quality assessment of digital pathology slides. For medical images in general, it has been recommended to assess image quality in terms of doctors' success rates in performing a specific clinical task while using the images (clinical image quality, cIQ). However, digital pathology is a new modality, and already identifying the appropriate task is difficult. In an alternative common approach, humans are asked to do a simpler task such as rating overall image quality (perceived image quality, pIQ), but that involves the risk of nonclinically relevant findings due to an unknown relationship between the pIQ and cIQ. In this study, we explored three different experimental protocols: (1) conducting a clinical task (detecting inclusion bodies), (2) rating image similarity and preference, and (3) rating the overall image quality. Additionally, within protocol 1, overall quality ratings were also collected (task-aware pIQ). The experiments were done by diagnostic veterinary pathologists in the context of evaluating the quality of hematoxylin and eosin-stained digital pathology slides of animal tissue samples under several common image alterations: additive noise, blurring, change in gamma, change in color saturation, and JPG compression. While the size of our experiments was small and prevents drawing strong conclusions, the results suggest the need to define a clinical task. Importantly, the pIQ data collected under protocols 2 and 3 did not always rank the image alterations the same as their cIQ from protocol 1, warning against using conventional pIQ to predict cIQ. At the same time, there was a correlation between the cIQ and task-aware pIQ ratings from protocol 1, suggesting that the clinical experiment context (set by specifying the clinical task) may affect human visual attention and bring focus to their criteria of image quality. Further research is needed to assess whether and for which purposes (e.g., preclinical testing) task-aware pIQ ratings could substitute cIQ for a given clinical task.

  9. Assessing image quality of low-cost laparoscopic box trainers: options for residents training at home.

    PubMed

    Kiely, Daniel J; Stephanson, Kirk; Ross, Sue

    2011-10-01

    Low-cost laparoscopic box trainers built using home computers and webcams may provide residents with a useful tool for practice at home. This study set out to evaluate the image quality of low-cost laparoscopic box trainers compared with a commercially available model. Five low-cost laparoscopic box trainers including the components listed were compared in random order to one commercially available box trainer: A (high-definition USB 2.0 webcam, PC laptop), B (Firewire webcam, Mac laptop), C (high-definition USB 2.0 webcam, Mac laptop), D (standard USB webcam, PC desktop), E (Firewire webcam, PC desktop), and F (the TRLCD03 3-DMEd Standard Minimally Invasive Training System). Participants observed still image quality and performed a peg transfer task using each box trainer. Participants rated still image quality, image quality with motion, and whether the box trainer had sufficient image quality to be useful for training. Sixteen residents in obstetrics and gynecology took part in the study. The box trainers showing no statistically significant difference from the commercially available model were A, B, C, D, and E for still image quality; A for image quality with motion; and A and B for usefulness of the simulator based on image quality. The cost of the box trainers A-E is approximately $100 to $160 each, not including a computer or laparoscopic instruments. Laparoscopic box trainers built from a high-definition USB 2.0 webcam with a PC (box trainer A) or from a Firewire webcam with a Mac (box trainer B) provide image quality comparable with a commercial standard.

  10. Hybrid ECG-gated versus non-gated 512-slice CT angiography of the aorta and coronary artery: image quality and effect of a motion correction algorithm.

    PubMed

    Lee, Ji Won; Kim, Chang Won; Lee, Geewon; Lee, Han Cheol; Kim, Sang-Pil; Choi, Bum Sung; Jeong, Yeon Joo

    2018-02-01

    Background Using the hybrid electrocardiogram (ECG)-gated computed tomography (CT) technique, assessment of entire aorta, coronary arteries, and aortic valve can be possible using single-bolus contrast administration within a single acquisition. Purpose To compare the image quality of hybrid ECG-gated and non-gated CT angiography of the aorta and evaluate the effect of a motion correction algorithm (MCA) on coronary artery image quality in a hybrid ECG-gated aorta CT group. Material and Methods In total, 104 patients (76 men; mean age = 65.8 years) prospectively randomized into two groups (Group 1 = hybrid ECG-gated CT; Group 2 = non-gated CT) underwent wide-detector array aorta CT. Image quality, assessed using a four-point scale, was compared between the groups. Coronary artery image quality was compared between the conventional reconstruction and motion correction reconstruction subgroups in Group 1. Results Group 1 showed significant advantages over Group 2 in aortic wall, cardiac chamber, aortic valve, coronary ostia, and main coronary arteries image quality (all P < 0.001). All Group 1 patients had diagnostic image quality of the aortic wall and left ostium. The MCA significantly improved the image quality of the three main coronary arteries ( P < 0.05). Moreover, per-vessel interpretability improved from 92.3% to 97.1% with the MCA ( P = 0.013). Conclusion Hybrid ECG-gated CT significantly improved the heart and aortic wall image quality and the MCA can further improve the image quality and interpretability of coronary arteries.

  11. Megahertz ultra-wide-field swept-source retina optical coherence tomography compared to current existing imaging devices.

    PubMed

    Reznicek, Lukas; Klein, Thomas; Wieser, Wolfgang; Kernt, Marcus; Wolf, Armin; Haritoglou, Christos; Kampik, Anselm; Huber, Robert; Neubauer, Aljoscha S

    2014-06-01

    To investigate the image quality of wide-angle cross-sectional and reconstructed fundus images based on ultra-megahertz swept-source Fourier domain mode locking (FDML) OCT compared to current generation diagnostic devices. A 1,050 nm swept-source FDML OCT system was constructed running at 1.68 MHz A-scan rate covering approximately 70° field of view. Twelve normal eyes were imaged with the device applying an isotropically dense sampling protocol (1,900 × 1,900 A-scans) with a fill factor of 100 %. Obtained OCT scan image quality was compared with two commercial OCT systems (Heidelberg Spectralis and Stratus OCT) of the same 12 eyes. Reconstructed en-face fundus images from the same FDML-OCT data set were compared to color fundus, infrared and ultra-wide-field scanning laser images (SLO). Comparison of cross-sectional scans showed a high overall image quality of the 15× averaged FDML images at 1.68 MHz [overall quality grading score: 8.42 ± 0.52, range 0 (bad)-10 (excellent)] comparable to current spectral-domain OCTs (overall quality grading score: 8.83 ± 0.39, p = 0.731). On FDML OCT, a dense 3D data set was obtained covering also the central and mid-peripheral retina. The reconstructed FDML OCT en-face fundus images had high image quality comparable to scanning laser ophthalmoscope (SLO) as judged from retinal structures such as vessels and optic disc. Overall grading score was 8.36 ± 0.51 for FDML OCT vs 8.27 ± 0.65 for SLO (p = 0.717). Ultra-wide-field megahertz 3D FDML OCT at 1.68 MHz is feasible, and provides cross-sectional image quality comparable to current spectral-domain OCT devices. In addition, reconstructed en-face visualization of fundus images result in a wide-field view with high image quality as compared to currently available fundus imaging devices. The improvement of >30× in imaging speed over commercial spectral-domain OCT technology enables high-density scan protocols leading to a data set for high quality cross-sectional and en-face images of the posterior segment.

  12. Medical image enhancement using resolution synthesis

    NASA Astrophysics Data System (ADS)

    Wong, Tak-Shing; Bouman, Charles A.; Thibault, Jean-Baptiste; Sauer, Ken D.

    2011-03-01

    We introduce a post-processing approach to improve the quality of CT reconstructed images. The scheme is adapted from the resolution-synthesis (RS)1 interpolation algorithm. In this approach, we consider the input image, scanned at a particular dose level, as a degraded version of a high quality image scanned at a high dose level. Image enhancement is achieved by predicting the high quality image by classification based linear regression. To improve the robustness of our scheme, we also apply the minimum description length principle to determine the optimal number of predictors to use in the scheme, and the ridge regression to regularize the design of the predictors. Experimental results show that our scheme is effective in reducing the noise in images reconstructed from filtered back projection without significant loss of image details. Alternatively, our scheme can also be applied to reduce dose while maintaining image quality at an acceptable level.

  13. Validation of no-reference image quality index for the assessment of digital mammographic images

    NASA Astrophysics Data System (ADS)

    de Oliveira, Helder C. R.; Barufaldi, Bruno; Borges, Lucas R.; Gabarda, Salvador; Bakic, Predrag R.; Maidment, Andrew D. A.; Schiabel, Homero; Vieira, Marcelo A. C.

    2016-03-01

    To ensure optimal clinical performance of digital mammography, it is necessary to obtain images with high spatial resolution and low noise, keeping radiation exposure as low as possible. These requirements directly affect the interpretation of radiologists. The quality of a digital image should be assessed using objective measurements. In general, these methods measure the similarity between a degraded image and an ideal image without degradation (ground-truth), used as a reference. These methods are called Full-Reference Image Quality Assessment (FR-IQA). However, for digital mammography, an image without degradation is not available in clinical practice; thus, an objective method to assess the quality of mammograms must be performed without reference. The purpose of this study is to present a Normalized Anisotropic Quality Index (NAQI), based on the Rényi entropy in the pseudo-Wigner domain, to assess mammography images in terms of spatial resolution and noise without any reference. The method was validated using synthetic images acquired through an anthropomorphic breast software phantom, and the clinical exposures on anthropomorphic breast physical phantoms and patient's mammograms. The results reported by this noreference index follow the same behavior as other well-established full-reference metrics, e.g., the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). Reductions of 50% on the radiation dose in phantom images were translated as a decrease of 4dB on the PSNR, 25% on the SSIM and 33% on the NAQI, evidencing that the proposed metric is sensitive to the noise resulted from dose reduction. The clinical results showed that images reduced to 53% and 30% of the standard radiation dose reported reductions of 15% and 25% on the NAQI, respectively. Thus, this index may be used in clinical practice as an image quality indicator to improve the quality assurance programs in mammography; hence, the proposed method reduces the subjectivity inter-observers in the reporting of image quality assessment.

  14. Implementation of dictionary pair learning algorithm for image quality improvement

    NASA Astrophysics Data System (ADS)

    Vimala, C.; Aruna Priya, P.

    2018-04-01

    This paper proposes an image denoising on dictionary pair learning algorithm. Visual information is transmitted in the form of digital images is becoming a major method of communication in the modern age, but the image obtained after transmissions is often corrupted with noise. The received image needs processing before it can be used in applications. Image denoising involves the manipulation of the image data to produce a visually high quality image.

  15. Identification of suitable fundus images using automated quality assessment methods.

    PubMed

    Şevik, Uğur; Köse, Cemal; Berber, Tolga; Erdöl, Hidayet

    2014-04-01

    Retinal image quality assessment (IQA) is a crucial process for automated retinal image analysis systems to obtain an accurate and successful diagnosis of retinal diseases. Consequently, the first step in a good retinal image analysis system is measuring the quality of the input image. We present an approach for finding medically suitable retinal images for retinal diagnosis. We used a three-class grading system that consists of good, bad, and outlier classes. We created a retinal image quality dataset with a total of 216 consecutive images called the Diabetic Retinopathy Image Database. We identified the suitable images within the good images for automatic retinal image analysis systems using a novel method. Subsequently, we evaluated our retinal image suitability approach using the Digital Retinal Images for Vessel Extraction and Standard Diabetic Retinopathy Database Calibration level 1 public datasets. The results were measured through the F1 metric, which is a harmonic mean of precision and recall metrics. The highest F1 scores of the IQA tests were 99.60%, 96.50%, and 85.00% for good, bad, and outlier classes, respectively. Additionally, the accuracy of our suitable image detection approach was 98.08%. Our approach can be integrated into any automatic retinal analysis system with sufficient performance scores.

  16. Correlation of contrast-detail analysis and clinical image quality assessment in chest radiography with a human cadaver study.

    PubMed

    De Crop, An; Bacher, Klaus; Van Hoof, Tom; Smeets, Peter V; Smet, Barbara S; Vergauwen, Merel; Kiendys, Urszula; Duyck, Philippe; Verstraete, Koenraad; D'Herde, Katharina; Thierens, Hubert

    2012-01-01

    To determine the correlation between the clinical and physical image quality of chest images by using cadavers embalmed with the Thiel technique and a contrast-detail phantom. The use of human cadavers fulfilled the requirements of the institutional ethics committee. Clinical image quality was assessed by using three human cadavers embalmed with the Thiel technique, which results in excellent preservation of the flexibility and plasticity of organs and tissues. As a result, lungs can be inflated during image acquisition to simulate the pulmonary anatomy seen on a chest radiograph. Both contrast-detail phantom images and chest images of the Thiel-embalmed bodies were acquired with an amorphous silicon flat-panel detector. Tube voltage (70, 81, 90, 100, 113, 125 kVp), copper filtration (0.1, 0.2, 0.3 mm Cu), and exposure settings (200, 280, 400, 560, 800 speed class) were altered to simulate different quality levels. Four experienced radiologists assessed the image quality by using a visual grading analysis (VGA) technique based on European Quality Criteria for Chest Radiology. The phantom images were scored manually and automatically with use of dedicated software, both resulting in an inverse image quality figure (IQF). Spearman rank correlations between inverse IQFs and VGA scores were calculated. A statistically significant correlation (r = 0.80, P < .01) was observed between the VGA scores and the manually obtained inverse IQFs. Comparison of the VGA scores and the automated evaluated phantom images showed an even better correlation (r = 0.92, P < .001). The results support the value of contrast-detail phantom analysis for evaluating clinical image quality in chest radiography. © RSNA, 2011.

  17. Effects of image processing on the detective quantum efficiency

    NASA Astrophysics Data System (ADS)

    Park, Hye-Suk; Kim, Hee-Joung; Cho, Hyo-Min; Lee, Chang-Lae; Lee, Seung-Wan; Choi, Yu-Na

    2010-04-01

    Digital radiography has gained popularity in many areas of clinical practice. This transition brings interest in advancing the methodologies for image quality characterization. However, as the methodologies for such characterizations have not been standardized, the results of these studies cannot be directly compared. The primary objective of this study was to standardize methodologies for image quality characterization. The secondary objective was to evaluate affected factors to Modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) according to image processing algorithm. Image performance parameters such as MTF, NPS, and DQE were evaluated using the international electro-technical commission (IEC 62220-1)-defined RQA5 radiographic techniques. Computed radiography (CR) images of hand posterior-anterior (PA) for measuring signal to noise ratio (SNR), slit image for measuring MTF, white image for measuring NPS were obtained and various Multi-Scale Image Contrast Amplification (MUSICA) parameters were applied to each of acquired images. In results, all of modified images were considerably influence on evaluating SNR, MTF, NPS, and DQE. Modified images by the post-processing had higher DQE than the MUSICA=0 image. This suggests that MUSICA values, as a post-processing, have an affect on the image when it is evaluating for image quality. In conclusion, the control parameters of image processing could be accounted for evaluating characterization of image quality in same way. The results of this study could be guided as a baseline to evaluate imaging systems and their imaging characteristics by measuring MTF, NPS, and DQE.

  18. Simulation analysis of space remote sensing image quality degradation induced by satellite platform vibration

    NASA Astrophysics Data System (ADS)

    Yang, Feng; Zhang, Xiaofang; Huang, Yu; Hao, Weiwei; Guo, Baiwei

    2012-11-01

    Satellite platform vibration causes the image quality to be degraded, it is necessary to study its influence on image quality. The forms of Satellite platform vibration consist of linear vibration, sinusoidal vibration and random vibration. Based on Matlab & Zemax, the simulation system has been developed for simulating impact caused by satellite platform vibration on image quality. Dynamic Data Exchange is used for the communication between Matlab and Zemax. The data of sinusoidal vibration are produced by sinusoidal curve with specific amplitude and frequency. The data of random vibration are obtained by combining sinusoidal signals with 10Hz, 100Hz and 200Hz's frequency, 100, 12, 1.9's amplitude and white noise with zero mean value. Satellite platform vibration data which produced by Matlab are added to the optical system, and its point spread function can be obtained by Zemax. Blurred image can be gained by making the convolution of PSF and the original image. The definition of the original image and the blurred image are evaluated by using average gradient values of image gray. The impact caused by the sine and random vibration of six DOFs on the image quality are respectively simulated. The simulation result reveal that the decenter of X-, Y-, Z- direction and the tilt of Z-direction have a little effect on image quality, while the tilt of X-, Y- direction make image quality seriously degraded. Thus, it can be concluded that correcting the error of satellite platform vibration by FSM is a viable and effective way.

  19. A database for assessment of effect of lossy compression on digital mammograms

    NASA Astrophysics Data System (ADS)

    Wang, Jiheng; Sahiner, Berkman; Petrick, Nicholas; Pezeshk, Aria

    2018-03-01

    With widespread use of screening digital mammography, efficient storage of the vast amounts of data has become a challenge. While lossless image compression causes no risk to the interpretation of the data, it does not allow for high compression rates. Lossy compression and the associated higher compression ratios are therefore more desirable. The U.S. Food and Drug Administration (FDA) currently interprets the Mammography Quality Standards Act as prohibiting lossy compression of digital mammograms for primary image interpretation, image retention, or transfer to the patient or her designated recipient. Previous work has used reader studies to determine proper usage criteria for evaluating lossy image compression in mammography, and utilized different measures and metrics to characterize medical image quality. The drawback of such studies is that they rely on a threshold on compression ratio as the fundamental criterion for preserving the quality of images. However, compression ratio is not a useful indicator of image quality. On the other hand, many objective image quality metrics (IQMs) have shown excellent performance for natural image content for consumer electronic applications. In this paper, we create a new synthetic mammogram database with several unique features. We compare and characterize the impact of image compression on several clinically relevant image attributes such as perceived contrast and mass appearance for different kinds of masses. We plan to use this database to develop a new objective IQM for measuring the quality of compressed mammographic images to help determine the allowed maximum compression for different kinds of breasts and masses in terms of visual and diagnostic quality.

  20. A Perceptually Weighted Rank Correlation Indicator for Objective Image Quality Assessment

    NASA Astrophysics Data System (ADS)

    Wu, Qingbo; Li, Hongliang; Meng, Fanman; Ngan, King N.

    2018-05-01

    In the field of objective image quality assessment (IQA), the Spearman's $\\rho$ and Kendall's $\\tau$ are two most popular rank correlation indicators, which straightforwardly assign uniform weight to all quality levels and assume each pair of images are sortable. They are successful for measuring the average accuracy of an IQA metric in ranking multiple processed images. However, two important perceptual properties are ignored by them as well. Firstly, the sorting accuracy (SA) of high quality images are usually more important than the poor quality ones in many real world applications, where only the top-ranked images would be pushed to the users. Secondly, due to the subjective uncertainty in making judgement, two perceptually similar images are usually hardly sortable, whose ranks do not contribute to the evaluation of an IQA metric. To more accurately compare different IQA algorithms, we explore a perceptually weighted rank correlation indicator in this paper, which rewards the capability of correctly ranking high quality images, and suppresses the attention towards insensitive rank mistakes. More specifically, we focus on activating `valid' pairwise comparison towards image quality, whose difference exceeds a given sensory threshold (ST). Meanwhile, each image pair is assigned an unique weight, which is determined by both the quality level and rank deviation. By modifying the perception threshold, we can illustrate the sorting accuracy with a more sophisticated SA-ST curve, rather than a single rank correlation coefficient. The proposed indicator offers a new insight for interpreting visual perception behaviors. Furthermore, the applicability of our indicator is validated in recommending robust IQA metrics for both the degraded and enhanced image data.

  1. Image quality of multiplanar reconstruction of pulmonary CT scans using adaptive statistical iterative reconstruction.

    PubMed

    Honda, O; Yanagawa, M; Inoue, A; Kikuyama, A; Yoshida, S; Sumikawa, H; Tobino, K; Koyama, M; Tomiyama, N

    2011-04-01

    We investigated the image quality of multiplanar reconstruction (MPR) using adaptive statistical iterative reconstruction (ASIR). Inflated and fixed lungs were scanned with a garnet detector CT in high-resolution mode (HR mode) or non-high-resolution (HR) mode, and MPR images were then reconstructed. Observers compared 15 MPR images of ASIR (40%) and ASIR (80%) with those of ASIR (0%), and assessed image quality using a visual five-point scale (1, definitely inferior; 5, definitely superior), with particular emphasis on normal pulmonary structures, artefacts, noise and overall image quality. The mean overall image quality scores in HR mode were 3.67 with ASIR (40%) and 4.97 with ASIR (80%). Those in non-HR mode were 3.27 with ASIR (40%) and 3.90 with ASIR (80%). The mean artefact scores in HR mode were 3.13 with ASIR (40%) and 3.63 with ASIR (80%), but those in non-HR mode were 2.87 with ASIR (40%) and 2.53 with ASIR (80%). The mean scores of the other parameters were greater than 3, whereas those in HR mode were higher than those in non-HR mode. There were significant differences between ASIR (40%) and ASIR (80%) in overall image quality (p<0.01). Contrast medium in the injection syringe was scanned to analyse image quality; ASIR did not suppress the severe artefacts of contrast medium. In general, MPR image quality with ASIR (80%) was superior to that with ASIR (40%). However, there was an increased incidence of artefacts by ASIR when CT images were obtained in non-HR mode.

  2. Fusion and quality analysis for remote sensing images using contourlet transform

    NASA Astrophysics Data System (ADS)

    Choi, Yoonsuk; Sharifahmadian, Ershad; Latifi, Shahram

    2013-05-01

    Recent developments in remote sensing technologies have provided various images with high spatial and spectral resolutions. However, multispectral images have low spatial resolution and panchromatic images have low spectral resolution. Therefore, image fusion techniques are necessary to improve the spatial resolution of spectral images by injecting spatial details of high-resolution panchromatic images. The objective of image fusion is to provide useful information by improving the spatial resolution and the spectral information of the original images. The fusion results can be utilized in various applications, such as military, medical imaging, and remote sensing. This paper addresses two issues in image fusion: i) image fusion method and ii) quality analysis of fusion results. First, a new contourlet-based image fusion method is presented, which is an improvement over the wavelet-based fusion. This fusion method is then applied to a case study to demonstrate its fusion performance. Fusion framework and scheme used in the study are discussed in detail. Second, quality analysis for the fusion results is discussed. We employed various quality metrics in order to analyze the fusion results both spatially and spectrally. Our results indicate that the proposed contourlet-based fusion method performs better than the conventional wavelet-based fusion methods.

  3. General equations for optimal selection of diagnostic image acquisition parameters in clinical X-ray imaging.

    PubMed

    Zheng, Xiaoming

    2017-12-01

    The purpose of this work was to examine the effects of relationship functions between diagnostic image quality and radiation dose on the governing equations for image acquisition parameter variations in X-ray imaging. Various equations were derived for the optimal selection of peak kilovoltage (kVp) and exposure parameter (milliAmpere second, mAs) in computed tomography (CT), computed radiography (CR), and direct digital radiography. Logistic, logarithmic, and linear functions were employed to establish the relationship between radiation dose and diagnostic image quality. The radiation dose to the patient, as a function of image acquisition parameters (kVp, mAs) and patient size (d), was used in radiation dose and image quality optimization. Both logistic and logarithmic functions resulted in the same governing equation for optimal selection of image acquisition parameters using a dose efficiency index. For image quality as a linear function of radiation dose, the same governing equation was derived from the linear relationship. The general equations should be used in guiding clinical X-ray imaging through optimal selection of image acquisition parameters. The radiation dose to the patient could be reduced from current levels in medical X-ray imaging.

  4. Combined Use of Automatic Tube Voltage Selection and Current Modulation with Iterative Reconstruction for CT Evaluation of Small Hypervascular Hepatocellular Carcinomas: Effect on Lesion Conspicuity and Image Quality

    PubMed Central

    Lv, Peijie; Liu, Jie; Zhang, Rui; Jia, Yan

    2015-01-01

    Objective To assess the lesion conspicuity and image quality in CT evaluation of small (≤ 3 cm) hepatocellular carcinomas (HCCs) using automatic tube voltage selection (ATVS) and automatic tube current modulation (ATCM) with or without iterative reconstruction. Materials and Methods One hundred and five patients with 123 HCC lesions were included. Fifty-seven patients were scanned using both ATVS and ATCM and images were reconstructed using either filtered back-projection (FBP) (group A1) or sinogram-affirmed iterative reconstruction (SAFIRE) (group A2). Forty-eight patients were imaged using only ATCM, with a fixed tube potential of 120 kVp and FBP reconstruction (group B). Quantitative parameters (image noise in Hounsfield unit and contrast-to-noise ratio of the aorta, the liver, and the hepatic tumors) and qualitative visual parameters (image noise, overall image quality, and lesion conspicuity as graded on a 5-point scale) were compared among the groups. Results Group A2 scanned with the automatically chosen 80 kVp and 100 kVp tube voltages ranked the best in lesion conspicuity and subjective and objective image quality (p values ranging from < 0.001 to 0.004) among the three groups, except for overall image quality between group A2 and group B (p = 0.022). Group A1 showed higher image noise (p = 0.005) but similar lesion conspicuity and overall image quality as compared with group B. The radiation dose in group A was 19% lower than that in group B (p = 0.022). Conclusion CT scanning with combined use of ATVS and ATCM and image reconstruction with SAFIRE algorithm provides higher lesion conspicuity and better image quality for evaluating small hepatic HCCs with radiation dose reduction. PMID:25995682

  5. A method to incorporate the effect of beam quality on image noise in a digitally reconstructed radiograph (DRR) based computer simulation for optimisation of digital radiography

    NASA Astrophysics Data System (ADS)

    Moore, Craig S.; Wood, Tim J.; Saunderson, John R.; Beavis, Andrew W.

    2017-09-01

    The use of computer simulated digital x-radiographs for optimisation purposes has become widespread in recent years. To make these optimisation investigations effective, it is vital simulated radiographs contain accurate anatomical and system noise. Computer algorithms that simulate radiographs based solely on the incident detector x-ray intensity (‘dose’) have been reported extensively in the literature. However, while it has been established for digital mammography that x-ray beam quality is an important factor when modelling noise in simulated images there are no such studies for diagnostic imaging of the chest, abdomen and pelvis. This study investigates the influence of beam quality on image noise in a digital radiography (DR) imaging system, and incorporates these effects into a digitally reconstructed radiograph (DRR) computer simulator. Image noise was measured on a real DR imaging system as a function of dose (absorbed energy) over a range of clinically relevant beam qualities. Simulated ‘absorbed energy’ and ‘beam quality’ DRRs were then created for each patient and tube voltage under investigation. Simulated noise images, corrected for dose and beam quality, were subsequently produced from the absorbed energy and beam quality DRRs, using the measured noise, absorbed energy and beam quality relationships. The noise images were superimposed onto the noiseless absorbed energy DRRs to create the final images. Signal-to-noise measurements in simulated chest, abdomen and spine images were within 10% of the corresponding measurements in real images. This compares favourably to our previous algorithm where images corrected for dose only were all within 20%.

  6. Influence of the quality of intraoperative fluoroscopic images on the spatial positioning accuracy of a CAOS system.

    PubMed

    Wang, Junqiang; Wang, Yu; Zhu, Gang; Chen, Xiangqian; Zhao, Xiangrui; Qiao, Huiting; Fan, Yubo

    2018-06-01

    Spatial positioning accuracy is a key issue in a computer-assisted orthopaedic surgery (CAOS) system. Since intraoperative fluoroscopic images are one of the most important input data to the CAOS system, the quality of these images should have a significant influence on the accuracy of the CAOS system. But the regularities and mechanism of the influence of the quality of intraoperative images on the accuracy of a CAOS system have yet to be studied. Two typical spatial positioning methods - a C-arm calibration-based method and a bi-planar positioning method - are used to study the influence of different image quality parameters, such as resolution, distortion, contrast and signal-to-noise ratio, on positioning accuracy. The error propagation rules of image error in different spatial positioning methods are analyzed by the Monte Carlo method. Correlation analysis showed that resolution and distortion had a significant influence on spatial positioning accuracy. In addition the C-arm calibration-based method was more sensitive to image distortion, while the bi-planar positioning method was more susceptible to image resolution. The image contrast and signal-to-noise ratio have no significant influence on the spatial positioning accuracy. The result of Monte Carlo analysis proved that generally the bi-planar positioning method was more sensitive to image quality than the C-arm calibration-based method. The quality of intraoperative fluoroscopic images is a key issue in the spatial positioning accuracy of a CAOS system. Although the 2 typical positioning methods have very similar mathematical principles, they showed different sensitivities to different image quality parameters. The result of this research may help to create a realistic standard for intraoperative fluoroscopic images for CAOS systems. Copyright © 2018 John Wiley & Sons, Ltd.

  7. Optimisation of radiation dose and image quality in mobile neonatal chest radiography.

    PubMed

    Hinojos-Armendáriz, V I; Mejía-Rosales, S J; Franco-Cabrera, M C

    2018-05-01

    To optimise the radiation dose and image quality for chest radiography in the neonatal intensive care unit (NICU) by increasing the mean beam energy. Two techniques for the acquisition of NICU AP chest X-ray images were compared for image quality and radiation dose. 73 images were acquired using a standard technique (56 kV, 3.2 mAs and no additional filtration) and 90 images with a new technique (62 kV, 2 mAs and 2 mm Al filtration). The entrance surface air kerma (ESAK) was measured using a phantom and compared between the techniques and against established diagnostic reference levels (DRL). Images were evaluated using seven image quality criteria independently by three radiologists. Images quality and radiation dose were compared statistically between the standard and new techniques. The maximum ESAK for the new technique was 40.20 μGy, 43.7% of the ESAK of the standard technique. Statistical evaluation demonstrated no significant differences in image quality between the two acquisition techniques. Based on the techniques and acquisition factors investigated within this study, it is possible to lower the radiation dose without any significant effects on image quality by adding filtration (2 mm Al) and increasing the tube potential. Such steps are relatively simple to undertake and as such, other departments should consider testing and implementing this dose reduction strategy within clinical practice where appropriate. Copyright © 2017 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.

  8. Image quality characteristics of a novel colour scanning digital ophthalmoscope (SDO) compared with fundus photography.

    PubMed

    Strauss, Rupert W; Krieglstein, Tina R; Priglinger, Siegfried G; Reis, Werner; Ulbig, Michael W; Kampik, Anselm; Neubauer, Aljoscha S

    2007-11-01

    To establish a set of quality parameters for grading image quality and apply those to evaluate the fundus image quality obtained by a new scanning digital ophthalmoscope (SDO) compared with standard slide photography. On visual analogue scales a total of eight image characteristics were defined: overall quality, contrast, colour brilliance, focus (sharpness), resolution and details, noise, artefacts and validity of clinical assessment. Grading was repeated after 4 months to assess repeatability. Fundus images of 23 patients imaged digitally by SDO and by Zeiss 450FF fundus camera using Kodak film were graded side-by-side by three graders. Lens opacity was quantified with the Interzeag Lens Opacity Meter 701. For all of the eight scales of image quality, good repeatability within the graders (mean Kendall's W 0.69) was obtained after 4 months. Inter-grader agreement ranged between 0.31 and 0.66. Despite the SDO's limited nominal image resolution of 720 x 576 pixels, the Zeiss FF 450 camera performed better in only two of the subscales - noise (p = 0.001) and artefacts (p = 0.01). Lens opacities significantly influenced only the two subscales 'resolution' and 'details', which deteriorated with increasing media opacities for both imaging systems. Distinct scales to grade image characteristics of different origin were developed and validated. Overall SDO digital imaging was found to provide fundus pictures of a similarly high level of quality as expert photography on slides.

  9. Development and validation of a visual grading scale for assessing image quality of AP pelvis radiographic images.

    PubMed

    Mraity, Hussien A A B; England, Andrew; Cassidy, Simon; Eachus, Peter; Dominguez, Alejandro; Hogg, Peter

    2016-01-01

    The aim of this article was to apply psychometric theory to develop and validate a visual grading scale for assessing the visual perception of digital image quality anteroposterior (AP) pelvis. Psychometric theory was used to guide scale development. Seven phantom and seven cadaver images of visually and objectively predetermined quality were used to help assess scale reliability and validity. 151 volunteers scored phantom images, and 184 volunteers scored cadaver images. Factor analysis and Cronbach's alpha were used to assess scale validity and reliability. A 24-item scale was produced. Aggregated mean volunteer scores for each image correlated with the rank order of the visually and objectively predetermined image qualities. Scale items had good interitem correlation (≥0.2) and high factor loadings (≥0.3). Cronbach's alpha (reliability) revealed that the scale has acceptable levels of internal reliability for both phantom and cadaver images (α = 0.8 and 0.9, respectively). Factor analysis suggested that the scale is multidimensional (assessing multiple quality themes). This study represents the first full development and validation of a visual image quality scale using psychometric theory. It is likely that this scale will have clinical, training and research applications. This article presents data to create and validate visual grading scales for radiographic examinations. The visual grading scale, for AP pelvis examinations, can act as a validated tool for future research, teaching and clinical evaluations of image quality.

  10. A Dynamic Image Quality Evaluation of Videofluoroscopy Images: Considerations for Telepractice Applications.

    PubMed

    Burns, Clare L; Keir, Benjamin; Ward, Elizabeth C; Hill, Anne J; Farrell, Anna; Phillips, Nick; Porter, Linda

    2015-08-01

    High-quality fluoroscopy images are required for accurate interpretation of videofluoroscopic swallow studies (VFSS) by speech pathologists and radiologists. Consequently, integral to developing any system to conduct VFSS remotely via telepractice is ensuring that the quality of the VFSS images transferred via the telepractice system is optimized. This study evaluates the extent of change observed in image quality when videofluoroscopic images are transmitted from a digital fluoroscopy system to (a) current clinical equipment (KayPentax Digital Swallowing Workstation, and b) four different telepractice system configurations. The telepractice system configurations consisted of either a local C20 or C60 Cisco TelePresence System (codec unit) connected to the digital fluoroscopy system and linked to a second remote C20 or C60 Cisco TelePresence System via a network running at speeds of either 2, 4 or 6 megabits per second (Mbit/s). Image quality was tested using the NEMA XR 21 Phantom, and results demonstrated some loss in spatial resolution, low contrast detectability and temporal resolution for all transferred images when compared to the fluoroscopy source. When using higher capacity codec units and/or the highest bandwidths to support data transmission, image quality transmitted through the telepractice system was found to be comparable if not better than the current clinical system. This study confirms that telepractice systems can be designed to support fluoroscopy image transfer and highlights important considerations when developing telepractice systems for VFSS analysis to ensure high-quality radiological image reproduction.

  11. Development and validation of a visual grading scale for assessing image quality of AP pelvis radiographic images

    PubMed Central

    England, Andrew; Cassidy, Simon; Eachus, Peter; Dominguez, Alejandro; Hogg, Peter

    2016-01-01

    Objective: The aim of this article was to apply psychometric theory to develop and validate a visual grading scale for assessing the visual perception of digital image quality anteroposterior (AP) pelvis. Methods: Psychometric theory was used to guide scale development. Seven phantom and seven cadaver images of visually and objectively predetermined quality were used to help assess scale reliability and validity. 151 volunteers scored phantom images, and 184 volunteers scored cadaver images. Factor analysis and Cronbach's alpha were used to assess scale validity and reliability. Results: A 24-item scale was produced. Aggregated mean volunteer scores for each image correlated with the rank order of the visually and objectively predetermined image qualities. Scale items had good interitem correlation (≥0.2) and high factor loadings (≥0.3). Cronbach's alpha (reliability) revealed that the scale has acceptable levels of internal reliability for both phantom and cadaver images (α = 0.8 and 0.9, respectively). Factor analysis suggested that the scale is multidimensional (assessing multiple quality themes). Conclusion: This study represents the first full development and validation of a visual image quality scale using psychometric theory. It is likely that this scale will have clinical, training and research applications. Advances in knowledge: This article presents data to create and validate visual grading scales for radiographic examinations. The visual grading scale, for AP pelvis examinations, can act as a validated tool for future research, teaching and clinical evaluations of image quality. PMID:26943836

  12. Evaluation of Effective Parameters on Quality of Magnetic Resonance Imaging-computed Tomography Image Fusion in Head and Neck Tumors for Application in Treatment Planning.

    PubMed

    Shirvani, Atefeh; Jabbari, Keyvan; Amouheidari, Alireza

    2017-01-01

    In radiation therapy, computed tomography (CT) simulation is used for treatment planning to define the location of tumor. Magnetic resonance imaging (MRI)-CT image fusion leads to more efficient tumor contouring. This work tried to identify the practical issues for the combination of CT and MRI images in real clinical cases. The effect of various factors is evaluated on image fusion quality. In this study, the data of thirty patients with brain tumors were used for image fusion. The effect of several parameters on possibility and quality of image fusion was evaluated. These parameters include angles of the patient's head on the bed, slices thickness, slice gap, and height of the patient's head. According to the results, the first dominating factor on quality of image fusion was the difference slice gap between CT and MRI images (cor = 0.86, P < 0.005) and second factor was the angle between CT and MRI slice in the sagittal plane (cor = 0.75, P < 0.005). In 20% of patients, this angle was more than 28° and image fusion was not efficient. In 17% of patients, difference slice gap in CT and MRI was >4 cm and image fusion quality was <25%. The most important problem in image fusion is that MRI images are taken without regard to their use in treatment planning. In general, parameters related to the patient position during MRI imaging should be chosen to be consistent with CT images of the patient in terms of location and angle.

  13. Investigation into image quality difference between total variation and nonlinear sparsifying transform based compressed sensing

    NASA Astrophysics Data System (ADS)

    Dong, Jian; Kudo, Hiroyuki

    2017-03-01

    Compressed sensing (CS) is attracting growing concerns in sparse-view computed tomography (CT) image reconstruction. The most standard approach of CS is total variation (TV) minimization. However, images reconstructed by TV usually suffer from distortions, especially in reconstruction of practical CT images, in forms of patchy artifacts, improper serrate edges and loss of image textures. Most existing CS approaches including TV achieve image quality improvement by applying linear transforms to object image, but linear transforms usually fail to take discontinuities into account, such as edges and image textures, which is considered to be the key reason for image distortions. Actually, discussions on nonlinear filter based image processing has a long history, leading us to clarify that the nonlinear filters yield better results compared to linear filters in image processing task such as denoising. Median root prior was first utilized by Alenius as nonlinear transform in CT image reconstruction, with significant gains obtained. Subsequently, Zhang developed the application of nonlocal means-based CS. A fact is gradually becoming clear that the nonlinear transform based CS has superiority in improving image quality compared with the linear transform based CS. However, it has not been clearly concluded in any previous paper within the scope of our knowledge. In this work, we investigated the image quality differences between the conventional TV minimization and nonlinear sparsifying transform based CS, as well as image quality differences among different nonlinear sparisying transform based CSs in sparse-view CT image reconstruction. Additionally, we accelerated the implementation of nonlinear sparsifying transform based CS algorithm.

  14. Reduced reference image quality assessment via sub-image similarity based redundancy measurement

    NASA Astrophysics Data System (ADS)

    Mou, Xuanqin; Xue, Wufeng; Zhang, Lei

    2012-03-01

    The reduced reference (RR) image quality assessment (IQA) has been attracting much attention from researchers for its loyalty to human perception and flexibility in practice. A promising RR metric should be able to predict the perceptual quality of an image accurately while using as few features as possible. In this paper, a novel RR metric is presented, whose novelty lies in two aspects. Firstly, it measures the image redundancy by calculating the so-called Sub-image Similarity (SIS), and the image quality is measured by comparing the SIS between the reference image and the test image. Secondly, the SIS is computed by the ratios of NSE (Non-shift Edge) between pairs of sub-images. Experiments on two IQA databases (i.e. LIVE and CSIQ databases) show that by using only 6 features, the proposed metric can work very well with high correlations between the subjective and objective scores. In particular, it works consistently well across all the distortion types.

  15. A pseudo-discrete algebraic reconstruction technique (PDART) prior image-based suppression of high density artifacts in computed tomography

    NASA Astrophysics Data System (ADS)

    Pua, Rizza; Park, Miran; Wi, Sunhee; Cho, Seungryong

    2016-12-01

    We propose a hybrid metal artifact reduction (MAR) approach for computed tomography (CT) that is computationally more efficient than a fully iterative reconstruction method, but at the same time achieves superior image quality to the interpolation-based in-painting techniques. Our proposed MAR method, an image-based artifact subtraction approach, utilizes an intermediate prior image reconstructed via PDART to recover the background information underlying the high density objects. For comparison, prior images generated by total-variation minimization (TVM) algorithm, as a realization of fully iterative approach, were also utilized as intermediate images. From the simulation and real experimental results, it has been shown that PDART drastically accelerates the reconstruction to an acceptable quality of prior images. Incorporating PDART-reconstructed prior images in the proposed MAR scheme achieved higher quality images than those by a conventional in-painting method. Furthermore, the results were comparable to the fully iterative MAR that uses high-quality TVM prior images.

  16. MRI artifact reduction and quality improvement in the upper abdomen with PROPELLER and prospective acquisition correction (PACE) technique.

    PubMed

    Hirokawa, Yuusuke; Isoda, Hiroyoshi; Maetani, Yoji S; Arizono, Shigeki; Shimada, Kotaro; Togashi, Kaori

    2008-10-01

    The purpose of this study was to evaluate the effectiveness of the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER [BLADE in the MR systems from Siemens Medical Solutions]) with a respiratory compensation technique for motion correction, image noise reduction, improved sharpness of liver edge, and image quality of the upper abdomen. Twenty healthy adult volunteers with a mean age of 28 years (age range, 23-42 years) underwent upper abdominal MRI with a 1.5-T scanner. For each subject, fat-saturated T2-weighted turbo spin-echo (TSE) sequences with respiratory compensation (prospective acquisition correction [PACE]) were performed with and without the BLADE technique. Ghosting artifact, artifacts except ghosting artifact such as respiratory motion and bowel movement, sharpness of liver edge, image noise, and overall image quality were evaluated visually by three radiologists using a 5-point scale for qualitative analysis. The Wilcoxon's signed rank test was used to determine whether a significant difference existed between images with and without BLADE. A p value less than 0.05 was considered to be statistically significant. In the BLADE images, image artifacts, sharpness of liver edge, image noise, and overall image quality were significantly improved (p < 0.001). With the BLADE technique, T2-weighted TSE images of the upper abdomen could provide reduced image artifacts including ghosting artifact and image noise and provide better image quality.

  17. Image quality assessment for CT used on small animals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cisneros, Isabela Paredes, E-mail: iparedesc@unal.edu.co; Agulles-Pedrós, Luis, E-mail: lagullesp@unal.edu.co

    Image acquisition on a CT scanner is nowadays necessary in almost any kind of medical study. Its purpose, to produce anatomical images with the best achievable quality, implies the highest diagnostic radiation exposure to patients. Image quality can be measured quantitatively based on parameters such as noise, uniformity and resolution. This measure allows the determination of optimal parameters of operation for the scanner in order to get the best diagnostic image. A human Phillips CT scanner is the first one minded for veterinary-use exclusively in Colombia. The aim of this study was to measure the CT image quality parameters usingmore » an acrylic phantom and then, using the computational tool MATLAB, determine these parameters as a function of current value and window of visualization, in order to reduce dose delivery by keeping the appropriate image quality.« less

  18. Image quality assessment for CT used on small animals

    NASA Astrophysics Data System (ADS)

    Cisneros, Isabela Paredes; Agulles-Pedrós, Luis

    2016-07-01

    Image acquisition on a CT scanner is nowadays necessary in almost any kind of medical study. Its purpose, to produce anatomical images with the best achievable quality, implies the highest diagnostic radiation exposure to patients. Image quality can be measured quantitatively based on parameters such as noise, uniformity and resolution. This measure allows the determination of optimal parameters of operation for the scanner in order to get the best diagnostic image. A human Phillips CT scanner is the first one minded for veterinary-use exclusively in Colombia. The aim of this study was to measure the CT image quality parameters using an acrylic phantom and then, using the computational tool MatLab, determine these parameters as a function of current value and window of visualization, in order to reduce dose delivery by keeping the appropriate image quality.

  19. A comprehensive study on the relationship between the image quality and imaging dose in low-dose cone beam CT

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Cervino, Laura; Jia, Xun; Jiang, Steve B.

    2012-04-01

    While compressed sensing (CS)-based algorithms have been developed for the low-dose cone beam CT (CBCT) reconstruction, a clear understanding of the relationship between the image quality and imaging dose at low-dose levels is needed. In this paper, we qualitatively investigate this subject in a comprehensive manner with extensive experimental and simulation studies. The basic idea is to plot both the image quality and imaging dose together as functions of the number of projections and mAs per projection over the whole clinically relevant range. On this basis, a clear understanding of the tradeoff between the image quality and imaging dose can be achieved and optimal low-dose CBCT scan protocols can be developed to maximize the dose reduction while minimizing the image quality loss for various imaging tasks in image-guided radiation therapy (IGRT). Main findings of this work include (1) under the CS-based reconstruction framework, image quality has little degradation over a large range of dose variation. Image quality degradation becomes evident when the imaging dose (approximated with the x-ray tube load) is decreased below 100 total mAs. An imaging dose lower than 40 total mAs leads to a dramatic image degradation, and thus should be used cautiously. Optimal low-dose CBCT scan protocols likely fall in the dose range of 40-100 total mAs, depending on the specific IGRT applications. (2) Among different scan protocols at a constant low-dose level, the super sparse-view reconstruction with the projection number less than 50 is the most challenging case, even with strong regularization. Better image quality can be acquired with low mAs protocols. (3) The optimal scan protocol is the combination of a medium number of projections and a medium level of mAs/view. This is more evident when the dose is around 72.8 total mAs or below and when the ROI is a low-contrast or high-resolution object. Based on our results, the optimal number of projections is around 90 to 120. (4) The clinically acceptable lowest imaging dose level is task dependent. In our study, 72.8 mAs is a safe dose level for visualizing low-contrast objects, while 12.2 total mAs is sufficient for detecting high-contrast objects of diameter greater than 3 mm.

  20. Comparison of image quality and radiation exposure from C-arm fluoroscopes when used for imaging the spine.

    PubMed

    Prasarn, Mark L; Coyne, Ellen; Schreck, Michael; Rodgers, Jamie D; Rechtine, Glenn R

    2013-07-15

    Cadaveric imaging study. We sought to compare the fluoroscopic images produced by 4 different fluoroscopes for image quality and radiation exposure when used for imaging the spine. There are no previous published studies comparing mobile C-arm machines commonly used in clinical practice for imaging the spine. Anterior-posterior and lateral images of the cervical, thoracic, and lumbar spine were obtained from a cadaver placed supine on a radiolucent table. The fluoroscopy units used for the study included (1) GE OEC 9900 Elite (2010 model; General Electric Healthcare, Waukesha, WI), (2) Philips BV Pulsera (2009 model; Philips Healthcare, Andover, MA), (3) Philips BV Pulsera (2010 model; Philips Healthcare, Andover, MA), and (4) Siemens Arcadis Avantic (2010 model; Siemens Medical Solutions, Malvern, PA). The images were then downloaded, placed into a randomizer program, and evaluated by a group of spine surgeons and neuroradiologists independently. The reviewers, who were blinded to the fluoroscope the images were from, ranked them from best to worst using a numeric system. In addition, the images were rated according to a quality scale from 1 to 5, with 1 representing the best image quality. The radiation exposure level for the fluoroscopy units was also compared and was based on energy emission. According to the mean values for rank, the following order of best to worst was observed: (1) GE OEC > (2) Philips 2010 > (3) Philips 2009 > (4) Siemans. The exact same order was found when examining the image quality ratings. When comparing the radiation exposure level difference, it was observed that the OEC was the lowest, and there was a minimum 30% decrease in energy emission from the OEC versus the other C-arms studied. This is the first time that the spine image quality and radiation exposure of commonly used C-arm machines have been compared. The OEC was ranked the best, produced the best quality images, and had the least amount of radiation.

  1. High-resolution T2-weighted abdominal magnetic resonance imaging using respiratory triggering: impact of butylscopolamine on image quality.

    PubMed

    Wagner, M; Klessen, C; Rief, M; Elgeti, T; Taupitz, M; Hamm, B; Asbach, P

    2008-05-01

    Respiratory triggering allows the acquisition of high-resolution magnetic resonance (MR) images of the upper abdomen. However, the depiction of organs close to the gastrointestinal tract can be considerably impaired by ghosting artifacts and blurring caused by bowel peristalsis. To evaluate the effect of gastrointestinal motion suppression by intramuscular butylscopolamine administration on the image quality of a respiratory-triggered T2-weighted turbo spin-echo (T2w TSE) sequence of the upper abdomen. Images of 46 patients were retrospectively analyzed. Twenty-four patients had received intramuscular injection of 40 mg butylscopolamine immediately before MR imaging. Fourteen of the 24 patients in the butylscopolamine group underwent repeat imaging after a mean of 29 min. Quantitative analysis of the ghosting artifacts was done by measuring signal intensities in regions of interest placed in air anterior to the patient. In addition, image quality was assessed qualitatively by two radiologists by consensus. Spasmolytic medication with butylscopolamine reduced ghosting artifacts and significantly improved image quality of the respiratory-triggered T2w TSE sequence. The most pronounced effect of butylscopolamine administration on image quality was found for the pancreas and the left hepatic lobe. The rate of examinations with excellent or good depiction of the pancreas and the left hepatic lobe in the group without premedication and in the butylscopolamine group was 55% vs. 96% (pancreatic head), 35% vs. 88% (pancreatic body), 43% vs. 96% (pancreatic tail), and 45% vs. 83% (left hepatic lobe), respectively. Regarding the duration of the effect of intramuscular butylscopolamine, repeat imaging after a mean of 29 min did not result in a significant deterioration of image quality. Intramuscular butylscopolamine administration significantly improves image quality of respiratory-triggered T2-weighted abdominal MR imaging by persistent reduction of peristaltic artifacts. MR imaging of the liver and pancreas in particular benefits from the suppression of gastrointestinal peristalsis by butylscopolamine.

  2. SU-F-J-26: Performance of 2.5MV Portal Imaging in Comparison with KV X-Ray and 6MV and Flattening-Filter-Free 6MV Portal Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, J; Yang, Y; Faught, A

    Purpose: To assess image quality and imaging dose of 2.5MV electronic portal imaging in comparison to kV imaging and 6MV and Flattening-Filter-Free 6MV (6MVFFF) portal imaging using a DMI imager. Methods: Quantitative assessment of image quality was performed with Leeds and Las Vegas test phantoms in conjunction with qualitative evaluation of clinical patient images for kV imaging and 2.5MV, 6MV and 6MVFFF portal imaging. High and low contrast resolutions were evaluated and imaging doses were measured using these x-rays. Phantom test was performed both in air and in solid water. Clinical patient portal images were also reviewed and qualitatively assessedmore » for these three imaging MV energies. Results: Among the 28 objects in Las Vegas phantom, 16, 17 and 26 of them were resolved using Low Dose technique and 18, 22 and 26 were resolved using High Quality technique with 6MV, 6MVFFF and 2.5MV, respectively. The number of Leeds low contrast objects resolved by 6MV, 6MFFFF and 2.5MV was 6, 15 and 18 with Low Dose technique and 14, 17 and 18 with High Quality technique, respectively. When the test phantoms were embedded in 20cm thick solid water, the results were noticeably affected, but the performance of 2.5MV was still substantially better than 6MV and 6MVFFF. Imaging dose with 2.5MV measured at 10 cm depth was about half of that with 6MV or 6MVFFF. Clinical patient portal images were reviewed and qualitatively assessed for different sites including brain, head-and-neck, chest and pelvis. 2.5MV imaging provided more details and substantially higher contrast. Conclusion: While portal imaging with 6MVFFF provides noticeably better image quality than that with 6MV, the performance of 2.5MV portal imaging is substantially better than both 6MV and 6MVFFF in terms of high and low contrast resolutions as well as lower imaging dose. 2.5MV imaging provides near kV imaging quality.« less

  3. Dual-axis reflective continuous-wave terahertz confocal scanning polarization imaging and image fusion

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Li, Qi

    2017-01-01

    A dual-axis reflective continuous-wave terahertz (THz) confocal scanning polarization imaging system was adopted. THz polarization imaging experiments on gaps on film and metallic letters "BeLLE" were carried out. Imaging results indicate that the THz polarization imaging is sensitive to the tilted gap or wide flat gap, suggesting the THz polarization imaging is able to detect edges and stains. An image fusion method based on the digital image processing was proposed to ameliorate the imaging quality of metallic letters "BeLLE." Objective and subjective evaluation both prove that this method can improve the imaging quality.

  4. Application-Driven No-Reference Quality Assessment for Dermoscopy Images With Multiple Distortions.

    PubMed

    Xie, Fengying; Lu, Yanan; Bovik, Alan C; Jiang, Zhiguo; Meng, Rusong

    2016-06-01

    Dermoscopy images often suffer from blur and uneven illumination distortions that occur during acquisition, which can adversely influence consequent automatic image analysis results on potential lesion objects. The purpose of this paper is to deploy an algorithm that can automatically assess the quality of dermoscopy images. Such an algorithm could be used to direct image recapture or correction. We describe an application-driven no-reference image quality assessment (IQA) model for dermoscopy images affected by possibly multiple distortions. For this purpose, we created a multiple distortion dataset of dermoscopy images impaired by varying degrees of blur and uneven illumination. The basis of this model is two single distortion IQA metrics that are sensitive to blur and uneven illumination, respectively. The outputs of these two metrics are combined to predict the quality of multiply distorted dermoscopy images using a fuzzy neural network. Unlike traditional IQA algorithms, which use human subjective score as ground truth, here ground truth is driven by the application, and generated according to the degree of influence of the distortions on lesion analysis. The experimental results reveal that the proposed model delivers accurate and stable quality prediction results for dermoscopy images impaired by multiple distortions. The proposed model is effective for quality assessment of multiple distorted dermoscopy images. An application-driven concept for IQA is introduced, and at the same time, a solution framework for the IQA of multiple distortions is proposed.

  5. Dynamic intensity-weighted region of interest imaging for conebeam CT

    PubMed Central

    Pearson, Erik; Pan, Xiaochuan; Pelizzari, Charles

    2017-01-01

    BACKGROUND Patient dose from image guidance in radiotherapy is small compared to the treatment dose. However, the imaging beam is untargeted and deposits dose equally in tumor and healthy tissues. It is desirable to minimize imaging dose while maintaining efficacy. OBJECTIVE Image guidance typically does not require full image quality throughout the patient. Dynamic filtration of the kV beam allows local control of CT image noise for high quality around the target volume and lower quality elsewhere, with substantial dose sparing and reduced scatter fluence on the detector. METHODS The dynamic Intensity-Weighted Region of Interest (dIWROI) technique spatially varies beam intensity during acquisition with copper filter collimation. Fluence is reduced by 95% under the filters with the aperture conformed dynamically to the ROI during cone-beam CT scanning. Preprocessing to account for physical effects of the collimator before reconstruction is described. RESULTS Reconstructions show image quality comparable to a standard scan in the ROI, with higher noise and streak artifacts in the outer region but still adequate quality for patient localization. Monte Carlo modeling shows dose reduction by 10–15% in the ROI due to reduced scatter, and up to 75% outside. CONCLUSIONS The presented technique offers a method to reduce imaging dose by accepting increased image noise outside the ROI, while maintaining full image quality inside the ROI. PMID:27257875

  6. Effect of image quality on calcification detection in digital mammography

    PubMed Central

    Warren, Lucy M.; Mackenzie, Alistair; Cooke, Julie; Given-Wilson, Rosalind M.; Wallis, Matthew G.; Chakraborty, Dev P.; Dance, David R.; Bosmans, Hilde; Young, Kenneth C.

    2012-01-01

    Purpose: This study aims to investigate if microcalcification detection varies significantly when mammographic images are acquired using different image qualities, including: different detectors, dose levels, and different image processing algorithms. An additional aim was to determine how the standard European method of measuring image quality using threshold gold thickness measured with a CDMAM phantom and the associated limits in current EU guidelines relate to calcification detection. Methods: One hundred and sixty two normal breast images were acquired on an amorphous selenium direct digital (DR) system. Microcalcification clusters extracted from magnified images of slices of mastectomies were electronically inserted into half of the images. The calcification clusters had a subtle appearance. All images were adjusted using a validated mathematical method to simulate the appearance of images from a computed radiography (CR) imaging system at the same dose, from both systems at half this dose, and from the DR system at quarter this dose. The original 162 images were processed with both Hologic and Agfa (Musica-2) image processing. All other image qualities were processed with Agfa (Musica-2) image processing only. Seven experienced observers marked and rated any identified suspicious regions. Free response operating characteristic (FROC) and ROC analyses were performed on the data. The lesion sensitivity at a nonlesion localization fraction (NLF) of 0.1 was also calculated. Images of the CDMAM mammographic test phantom were acquired using the automatic setting on the DR system. These images were modified to the additional image qualities used in the observer study. The images were analyzed using automated software. In order to assess the relationship between threshold gold thickness and calcification detection a power law was fitted to the data. Results: There was a significant reduction in calcification detection using CR compared with DR: the alternative FROC (AFROC) area decreased from 0.84 to 0.63 and the ROC area decreased from 0.91 to 0.79 (p < 0.0001). This corresponded to a 30% drop in lesion sensitivity at a NLF equal to 0.1. Detection was also sensitive to the dose used. There was no significant difference in detection between the two image processing algorithms used (p > 0.05). It was additionally found that lower threshold gold thickness from CDMAM analysis implied better cluster detection. The measured threshold gold thickness passed the acceptable limit set in the EU standards for all image qualities except half dose CR. However, calcification detection varied significantly between image qualities. This suggests that the current EU guidelines may need revising. Conclusions: Microcalcification detection was found to be sensitive to detector and dose used. Standard measurements of image quality were a good predictor of microcalcification cluster detection. PMID:22755704

  7. Effect of image quality on calcification detection in digital mammography.

    PubMed

    Warren, Lucy M; Mackenzie, Alistair; Cooke, Julie; Given-Wilson, Rosalind M; Wallis, Matthew G; Chakraborty, Dev P; Dance, David R; Bosmans, Hilde; Young, Kenneth C

    2012-06-01

    This study aims to investigate if microcalcification detection varies significantly when mammographic images are acquired using different image qualities, including: different detectors, dose levels, and different image processing algorithms. An additional aim was to determine how the standard European method of measuring image quality using threshold gold thickness measured with a CDMAM phantom and the associated limits in current EU guidelines relate to calcification detection. One hundred and sixty two normal breast images were acquired on an amorphous selenium direct digital (DR) system. Microcalcification clusters extracted from magnified images of slices of mastectomies were electronically inserted into half of the images. The calcification clusters had a subtle appearance. All images were adjusted using a validated mathematical method to simulate the appearance of images from a computed radiography (CR) imaging system at the same dose, from both systems at half this dose, and from the DR system at quarter this dose. The original 162 images were processed with both Hologic and Agfa (Musica-2) image processing. All other image qualities were processed with Agfa (Musica-2) image processing only. Seven experienced observers marked and rated any identified suspicious regions. Free response operating characteristic (FROC) and ROC analyses were performed on the data. The lesion sensitivity at a nonlesion localization fraction (NLF) of 0.1 was also calculated. Images of the CDMAM mammographic test phantom were acquired using the automatic setting on the DR system. These images were modified to the additional image qualities used in the observer study. The images were analyzed using automated software. In order to assess the relationship between threshold gold thickness and calcification detection a power law was fitted to the data. There was a significant reduction in calcification detection using CR compared with DR: the alternative FROC (AFROC) area decreased from 0.84 to 0.63 and the ROC area decreased from 0.91 to 0.79 (p < 0.0001). This corresponded to a 30% drop in lesion sensitivity at a NLF equal to 0.1. Detection was also sensitive to the dose used. There was no significant difference in detection between the two image processing algorithms used (p > 0.05). It was additionally found that lower threshold gold thickness from CDMAM analysis implied better cluster detection. The measured threshold gold thickness passed the acceptable limit set in the EU standards for all image qualities except half dose CR. However, calcification detection varied significantly between image qualities. This suggests that the current EU guidelines may need revising. Microcalcification detection was found to be sensitive to detector and dose used. Standard measurements of image quality were a good predictor of microcalcification cluster detection. © 2012 American Association of Physicists in Medicine.

  8. The use of vision-based image quality metrics to predict low-light performance of camera phones

    NASA Astrophysics Data System (ADS)

    Hultgren, B.; Hertel, D.

    2010-01-01

    Small digital camera modules such as those in mobile phones have become ubiquitous. Their low-light performance is of utmost importance since a high percentage of images are made under low lighting conditions where image quality failure may occur due to blur, noise, and/or underexposure. These modes of image degradation are not mutually exclusive: they share common roots in the physics of the imager, the constraints of image processing, and the general trade-off situations in camera design. A comprehensive analysis of failure modes is needed in order to understand how their interactions affect overall image quality. Low-light performance is reported for DSLR, point-and-shoot, and mobile phone cameras. The measurements target blur, noise, and exposure error. Image sharpness is evaluated from three different physical measurements: static spatial frequency response, handheld motion blur, and statistical information loss due to image processing. Visual metrics for sharpness, graininess, and brightness are calculated from the physical measurements, and displayed as orthogonal image quality metrics to illustrate the relative magnitude of image quality degradation as a function of subject illumination. The impact of each of the three sharpness measurements on overall sharpness quality is displayed for different light levels. The power spectrum of the statistical information target is a good representation of natural scenes, thus providing a defined input signal for the measurement of power-spectrum based signal-to-noise ratio to characterize overall imaging performance.

  9. Combined use of iterative reconstruction and monochromatic imaging in spinal fusion CT images.

    PubMed

    Wang, Fengdan; Zhang, Yan; Xue, Huadan; Han, Wei; Yang, Xianda; Jin, Zhengyu; Zwar, Richard

    2017-01-01

    Spinal fusion surgery is an important procedure for treating spinal diseases and computed tomography (CT) is a critical tool for postoperative evaluation. However, CT image quality is considerably impaired by metal artifacts and image noise. To explore whether metal artifacts and image noise can be reduced by combining two technologies, adaptive statistical iterative reconstruction (ASIR) and monochromatic imaging generated by gemstone spectral imaging (GSI) dual-energy CT. A total of 51 patients with 318 spinal pedicle screws were prospectively scanned by dual-energy CT using fast kV-switching GSI between 80 and 140 kVp. Monochromatic GSI images at 110 keV were reconstructed either without or with various levels of ASIR (30%, 50%, 70%, and 100%). The quality of five sets of images was objectively and subjectively assessed. With objective image quality assessment, metal artifacts decreased when increasing levels of ASIR were applied (P < 0.001). Moreover, adding ASIR to GSI also decreased image noise (P < 0.001) and improved the signal-to-noise ratio (P < 0.001). The subjective image quality analysis showed good inter-reader concordance, with intra-class correlation coefficients between 0.89 and 0.99. The visualization of peri-implant soft tissue was improved at higher ASIR levels (P < 0.001). Combined use of ASIR and GSI decreased image noise and improved image quality in post-spinal fusion CT scans. Optimal results were achieved with ASIR levels ≥70%. © The Foundation Acta Radiologica 2016.

  10. Progressive cone beam CT dose control in image-guided radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan Hao; Cervino, Laura; Jiang, Steve B.

    2013-06-15

    Purpose: Cone beam CT (CBCT) in image-guided radiotherapy (IGRT) offers a tremendous advantage for treatment guidance. The associated imaging dose is a clinical concern. One unique feature of CBCT-based IGRT is that the same patient is repeatedly scanned during a treatment course, and the contents of CBCT images at different fractions are similar. The authors propose a progressive dose control (PDC) scheme to utilize this temporal correlation for imaging dose reduction. Methods: A dynamic CBCT scan protocol, as opposed to the static one in the current clinical practice, is proposed to gradually reduce the imaging dose in each treatment fraction.more » The CBCT image from each fraction is processed by a prior-image based nonlocal means (PINLM) module to enhance its quality. The increasing amount of prior information from previous CBCT images prevents degradation of image quality due to the reduced imaging dose. Two proof-of-principle experiments have been conducted using measured phantom data and Monte Carlo simulated patient data with deformation. Results: In the measured phantom case, utilizing a prior image acquired at 0.4 mAs, PINLM is able to improve the image quality of a CBCT acquired at 0.2 mAs by reducing the noise level from 34.95 to 12.45 HU. In the synthetic patient case, acceptable image quality is maintained at four consecutive fractions with gradually decreasing exposure levels of 0.4, 0.1, 0.07, and 0.05 mAs. When compared with the standard low-dose protocol of 0.4 mAs for each fraction, an overall imaging dose reduction of more than 60% is achieved. Conclusions: PINLM-PDC is able to reduce CBCT imaging dose in IGRT utilizing the temporal correlations among the sequence of CBCT images while maintaining the quality.« less

  11. Multi-view 3D echocardiography compounding based on feature consistency

    NASA Astrophysics Data System (ADS)

    Yao, Cheng; Simpson, John M.; Schaeffter, Tobias; Penney, Graeme P.

    2011-09-01

    Echocardiography (echo) is a widely available method to obtain images of the heart; however, echo can suffer due to the presence of artefacts, high noise and a restricted field of view. One method to overcome these limitations is to use multiple images, using the 'best' parts from each image to produce a higher quality 'compounded' image. This paper describes our compounding algorithm which specifically aims to reduce the effect of echo artefacts as well as improving the signal-to-noise ratio, contrast and extending the field of view. Our method weights image information based on a local feature coherence/consistency between all the overlapping images. Validation has been carried out using phantom, volunteer and patient datasets consisting of up to ten multi-view 3D images. Multiple sets of phantom images were acquired, some directly from the phantom surface, and others by imaging through hard and soft tissue mimicking material to degrade the image quality. Our compounding method is compared to the original, uncompounded echocardiography images, and to two basic statistical compounding methods (mean and maximum). Results show that our method is able to take a set of ten images, degraded by soft and hard tissue artefacts, and produce a compounded image of equivalent quality to images acquired directly from the phantom. Our method on phantom, volunteer and patient data achieves almost the same signal-to-noise improvement as the mean method, while simultaneously almost achieving the same contrast improvement as the maximum method. We show a statistically significant improvement in image quality by using an increased number of images (ten compared to five), and visual inspection studies by three clinicians showed very strong preference for our compounded volumes in terms of overall high image quality, large field of view, high endocardial border definition and low cavity noise.

  12. Investigating the Role of Global Histogram Equalization Technique for 99mTechnetium-Methylene diphosphonate Bone Scan Image Enhancement

    PubMed Central

    Pandey, Anil Kumar; Sharma, Param Dev; Dheer, Pankaj; Parida, Girish Kumar; Goyal, Harish; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh

    2017-01-01

    Purpose of the Study: 99mTechnetium-methylene diphosphonate (99mTc-MDP) bone scan images have limited number of counts per pixel, and hence, they have inferior image quality compared to X-rays. Theoretically, global histogram equalization (GHE) technique can improve the contrast of a given image though practical benefits of doing so have only limited acceptance. In this study, we have investigated the effect of GHE technique for 99mTc-MDP-bone scan images. Materials and Methods: A set of 89 low contrast 99mTc-MDP whole-body bone scan images were included in this study. These images were acquired with parallel hole collimation on Symbia E gamma camera. The images were then processed with histogram equalization technique. The image quality of input and processed images were reviewed by two nuclear medicine physicians on a 5-point scale where score of 1 is for very poor and 5 is for the best image quality. A statistical test was applied to find the significance of difference between the mean scores assigned to input and processed images. Results: This technique improves the contrast of the images; however, oversaturation was noticed in the processed images. Student's t-test was applied, and a statistically significant difference in the input and processed image quality was found at P < 0.001 (with α = 0.05). However, further improvement in image quality is needed as per requirements of nuclear medicine physicians. Conclusion: GHE techniques can be used on low contrast bone scan images. In some of the cases, a histogram equalization technique in combination with some other postprocessing technique is useful. PMID:29142344

  13. High Contrast Ultrafast Imaging of the Human Heart

    PubMed Central

    Papadacci, Clement; Pernot, Mathieu; Couade, Mathieu; Fink, Mathias; Tanter, Mickael

    2014-01-01

    Non-invasive ultrafast imaging for human cardiac applications is a big challenge to image intrinsic waves such as electromechanical waves or remotely induced shear waves in elastography imaging techniques. In this paper we propose to perform ultrafast imaging of the heart with adapted sector size by using diverging waves emitted from a classical transthoracic cardiac phased array probe. As in ultrafast imaging with plane wave coherent compounding, diverging waves can be summed coherently to obtain high-quality images of the entire heart at high frame rate in a full field-of-view. To image shear waves propagation at high SNR, the field-of-view can be adapted by changing the angular aperture of the transmitted wave. Backscattered echoes from successive circular wave acquisitions are coherently summed at every location in the image to improve the image quality while maintaining very high frame rates. The transmitted diverging waves, angular apertures and subapertures size are tested in simulation and ultrafast coherent compounding is implemented on a commercial scanner. The improvement of the imaging quality is quantified in phantom and in vivo on human heart. Imaging shear wave propagation at 2500 frame/s using 5 diverging waves provides a strong increase of the Signal to noise ratio of the tissue velocity estimates while maintaining a high frame rate. Finally, ultrafast imaging with a 1 to 5 diverging waves is used to image the human heart at a frame rate of 900 frames/s over an entire cardiac cycle. Thanks to spatial coherent compounding, a strong improvement of imaging quality is obtained with a small number of transmitted diverging waves and a high frame rate, which allows imaging the propagation of electromechanical and shear waves with good image quality. PMID:24474135

  14. Super-resolution convolutional neural network for the improvement of the image quality of magnified images in chest radiographs

    NASA Astrophysics Data System (ADS)

    Umehara, Kensuke; Ota, Junko; Ishimaru, Naoki; Ohno, Shunsuke; Okamoto, Kentaro; Suzuki, Takanori; Shirai, Naoki; Ishida, Takayuki

    2017-02-01

    Single image super-resolution (SR) method can generate a high-resolution (HR) image from a low-resolution (LR) image by enhancing image resolution. In medical imaging, HR images are expected to have a potential to provide a more accurate diagnosis with the practical application of HR displays. In recent years, the super-resolution convolutional neural network (SRCNN), which is one of the state-of-the-art deep learning based SR methods, has proposed in computer vision. In this study, we applied and evaluated the SRCNN scheme to improve the image quality of magnified images in chest radiographs. For evaluation, a total of 247 chest X-rays were sampled from the JSRT database. The 247 chest X-rays were divided into 93 training cases with non-nodules and 152 test cases with lung nodules. The SRCNN was trained using the training dataset. With the trained SRCNN, the HR image was reconstructed from the LR one. We compared the image quality of the SRCNN and conventional image interpolation methods, nearest neighbor, bilinear and bicubic interpolations. For quantitative evaluation, we measured two image quality metrics, peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). In the SRCNN scheme, PSNR and SSIM were significantly higher than those of three interpolation methods (p<0.001). Visual assessment confirmed that the SRCNN produced much sharper edge than conventional interpolation methods without any obvious artifacts. These preliminary results indicate that the SRCNN scheme significantly outperforms conventional interpolation algorithms for enhancing image resolution and that the use of the SRCNN can yield substantial improvement of the image quality of magnified images in chest radiographs.

  15. Emerging Techniques for Dose Optimization in Abdominal CT

    PubMed Central

    Platt, Joel F.; Goodsitt, Mitchell M.; Al-Hawary, Mahmoud M.; Maturen, Katherine E.; Wasnik, Ashish P.; Pandya, Amit

    2014-01-01

    Recent advances in computed tomographic (CT) scanning technique such as automated tube current modulation (ATCM), optimized x-ray tube voltage, and better use of iterative image reconstruction have allowed maintenance of good CT image quality with reduced radiation dose. ATCM varies the tube current during scanning to account for differences in patient attenuation, ensuring a more homogeneous image quality, although selection of the appropriate image quality parameter is essential for achieving optimal dose reduction. Reducing the x-ray tube voltage is best suited for evaluating iodinated structures, since the effective energy of the x-ray beam will be closer to the k-edge of iodine, resulting in a higher attenuation for the iodine. The optimal kilovoltage for a CT study should be chosen on the basis of imaging task and patient habitus. The aim of iterative image reconstruction is to identify factors that contribute to noise on CT images with use of statistical models of noise (statistical iterative reconstruction) and selective removal of noise to improve image quality. The degree of noise suppression achieved with statistical iterative reconstruction can be customized to minimize the effect of altered image quality on CT images. Unlike with statistical iterative reconstruction, model-based iterative reconstruction algorithms model both the statistical noise and the physical acquisition process, allowing CT to be performed with further reduction in radiation dose without an increase in image noise or loss of spatial resolution. Understanding these recently developed scanning techniques is essential for optimization of imaging protocols designed to achieve the desired image quality with a reduced dose. © RSNA, 2014 PMID:24428277

  16. Histogram-based normalization technique on human brain magnetic resonance images from different acquisitions.

    PubMed

    Sun, Xiaofei; Shi, Lin; Luo, Yishan; Yang, Wei; Li, Hongpeng; Liang, Peipeng; Li, Kuncheng; Mok, Vincent C T; Chu, Winnie C W; Wang, Defeng

    2015-07-28

    Intensity normalization is an important preprocessing step in brain magnetic resonance image (MRI) analysis. During MR image acquisition, different scanners or parameters would be used for scanning different subjects or the same subject at a different time, which may result in large intensity variations. This intensity variation will greatly undermine the performance of subsequent MRI processing and population analysis, such as image registration, segmentation, and tissue volume measurement. In this work, we proposed a new histogram normalization method to reduce the intensity variation between MRIs obtained from different acquisitions. In our experiment, we scanned each subject twice on two different scanners using different imaging parameters. With noise estimation, the image with lower noise level was determined and treated as the high-quality reference image. Then the histogram of the low-quality image was normalized to the histogram of the high-quality image. The normalization algorithm includes two main steps: (1) intensity scaling (IS), where, for the high-quality reference image, the intensities of the image are first rescaled to a range between the low intensity region (LIR) value and the high intensity region (HIR) value; and (2) histogram normalization (HN),where the histogram of low-quality image as input image is stretched to match the histogram of the reference image, so that the intensity range in the normalized image will also lie between LIR and HIR. We performed three sets of experiments to evaluate the proposed method, i.e., image registration, segmentation, and tissue volume measurement, and compared this with the existing intensity normalization method. It is then possible to validate that our histogram normalization framework can achieve better results in all the experiments. It is also demonstrated that the brain template with normalization preprocessing is of higher quality than the template with no normalization processing. We have proposed a histogram-based MRI intensity normalization method. The method can normalize scans which were acquired on different MRI units. We have validated that the method can greatly improve the image analysis performance. Furthermore, it is demonstrated that with the help of our normalization method, we can create a higher quality Chinese brain template.

  17. Image quality comparison of two adaptive statistical iterative reconstruction (ASiR, ASiR-V) algorithms and filtered back projection in routine liver CT.

    PubMed

    Chen, Li-Hong; Jin, Chao; Li, Jian-Ying; Wang, Ge-Liang; Jia, Yong-Jun; Duan, Hai-Feng; Pan, Ning; Guo, Jianxin

    2018-06-06

    To compare image quality of two adaptive statistical iterative reconstruction (ASiR and ASiR-V) algorithms using objective and subjective metrics for routine liver CT, with the conventional filtered back projection (FBP) reconstructions as reference standards. This institutional review board-approved study included 52 patients with clinically suspected hepatic metastases. Patients were divided equally into ASiR and ASiR-V groups with same scan parameters. Images were reconstructed with ASiR and ASiR-V from 0 (FBP) to 100% blending percentages at 10% interval in its respective group. Mean and standard deviation of CT numbers for liver parenchyma were recorded. Two experienced radiologists reviewed all images for image quality blindly and independently. Data were statistically analyzed. There was no difference in CT dose index between ASiR and ASiR-V groups. As the percentage of ASiR and ASiR-V increased from 10 to 100% , image noise reduced by 8.6 -57.9% and 8.9-81.6%, respectively, compared with FBP. There was substantial interobserver agreement in image quality assessment for ASiR and ASiR-V images. Compared with FBP reconstruction, subjective image quality scores of ASiR and ASiR-V improved significantly as percentage increased from 10 to 80% for ASiR (peaked at 50% with 32.2% noise reduction) and from 10 to 90% (peaked at 60% with 51.5% noise reduction) for ASiR-V. Both ASiR and ASiR-V improved the objective and subjective image quality for routine liver CT compared with FBP. ASiR-V provided further image quality improvement with higher acceptable percentage than ASiR, and ASiR-V60% had the highest image quality score. Advances in knowledge: (1) Both ASiR and ASiR-V significantly reduce image noise compared with conventional FBP reconstruction. (2) ASiR-V with 60 blending percentage provides the highest image quality score in routine liver CT.

  18. Deblurring adaptive optics retinal images using deep convolutional neural networks.

    PubMed

    Fei, Xiao; Zhao, Junlei; Zhao, Haoxin; Yun, Dai; Zhang, Yudong

    2017-12-01

    The adaptive optics (AO) can be used to compensate for ocular aberrations to achieve near diffraction limited high-resolution retinal images. However, many factors such as the limited aberration measurement and correction accuracy with AO, intraocular scatter, imaging noise and so on will degrade the quality of retinal images. Image post processing is an indispensable and economical method to make up for the limitation of AO retinal imaging procedure. In this paper, we proposed a deep learning method to restore the degraded retinal images for the first time. The method directly learned an end-to-end mapping between the blurred and restored retinal images. The mapping was represented as a deep convolutional neural network that was trained to output high-quality images directly from blurry inputs without any preprocessing. This network was validated on synthetically generated retinal images as well as real AO retinal images. The assessment of the restored retinal images demonstrated that the image quality had been significantly improved.

  19. Deblurring adaptive optics retinal images using deep convolutional neural networks

    PubMed Central

    Fei, Xiao; Zhao, Junlei; Zhao, Haoxin; Yun, Dai; Zhang, Yudong

    2017-01-01

    The adaptive optics (AO) can be used to compensate for ocular aberrations to achieve near diffraction limited high-resolution retinal images. However, many factors such as the limited aberration measurement and correction accuracy with AO, intraocular scatter, imaging noise and so on will degrade the quality of retinal images. Image post processing is an indispensable and economical method to make up for the limitation of AO retinal imaging procedure. In this paper, we proposed a deep learning method to restore the degraded retinal images for the first time. The method directly learned an end-to-end mapping between the blurred and restored retinal images. The mapping was represented as a deep convolutional neural network that was trained to output high-quality images directly from blurry inputs without any preprocessing. This network was validated on synthetically generated retinal images as well as real AO retinal images. The assessment of the restored retinal images demonstrated that the image quality had been significantly improved. PMID:29296496

  20. Image quality improvement in cone-beam CT using the super-resolution technique.

    PubMed

    Oyama, Asuka; Kumagai, Shinobu; Arai, Norikazu; Takata, Takeshi; Saikawa, Yusuke; Shiraishi, Kenshiro; Kobayashi, Takenori; Kotoku, Jun'ichi

    2018-04-05

    This study was conducted to improve cone-beam computed tomography (CBCT) image quality using the super-resolution technique, a method of inferring a high-resolution image from a low-resolution image. This technique is used with two matrices, so-called dictionaries, constructed respectively from high-resolution and low-resolution image bases. For this study, a CBCT image, as a low-resolution image, is represented as a linear combination of atoms, the image bases in the low-resolution dictionary. The corresponding super-resolution image was inferred by multiplying the coefficients and the high-resolution dictionary atoms extracted from planning CT images. To evaluate the proposed method, we computed the root mean square error (RMSE) and structural similarity (SSIM). The resulting RMSE and SSIM between the super-resolution images and the planning CT images were, respectively, as much as 0.81 and 1.29 times better than those obtained without using the super-resolution technique. We used super-resolution technique to improve the CBCT image quality.

  1. Impact of image quality on OCT angiography based quantitative measurements.

    PubMed

    Al-Sheikh, Mayss; Ghasemi Falavarjani, Khalil; Akil, Handan; Sadda, SriniVas R

    2017-01-01

    To study the impact of image quality on quantitative measurements and the frequency of segmentation error with optical coherence tomography angiography (OCTA). Seventeen eyes of 10 healthy individuals were included in this study. OCTA was performed using a swept-source device (Triton, Topcon). Each subject underwent three scanning sessions 1-2 min apart; the first two scans were obtained under standard conditions and for the third session, the image quality index was reduced using application of a topical ointment. En face OCTA images of the retinal vasculature were generated using the default segmentation for the superficial and deep retinal layer (SRL, DRL). Intraclass correlation coefficient (ICC) was used as a measure for repeatability. The frequency of segmentation error, motion artifact, banding artifact and projection artifact was also compared among the three sessions. The frequency of segmentation error, and motion artifact was statistically similar between high and low image quality sessions (P = 0.707, and P = 1 respectively). However, the frequency of projection and banding artifact was higher with a lower image quality. The vessel density in the SRL was highly repeatable in the high image quality sessions (ICC = 0.8), however, the repeatability was low, comparing the high and low image quality measurements (ICC = 0.3). In the DRL, the repeatability of the vessel density measurements was fair in the high quality sessions (ICC = 0.6 and ICC = 0.5, with and without automatic artifact removal, respectively) and poor comparing high and low image quality sessions (ICC = 0.3 and ICC = 0.06, with and without automatic artifact removal, respectively). The frequency of artifacts is higher and the repeatability of the measurements is lower with lower image quality. The impact of image quality index should be always considered in OCTA based quantitative measurements.

  2. Can sinogram-affirmed iterative (SAFIRE) reconstruction improve imaging quality on low-dose lung CT screening compared with traditional filtered back projection (FBP) reconstruction?

    PubMed

    Yang, Wen Jie; Yan, Fu Hua; Liu, Bo; Pang, Li Fang; Hou, Liang; Zhang, Huan; Pan, Zi Lai; Chen, Ke Min

    2013-01-01

    To evaluate the performance of sinogram-affirmed iterative (SAFIRE) reconstruction on image quality of low-dose lung computed tomographic (CT) screening compared with filtered back projection (FBP). Three hundred four patients for annual low-dose lung CT screening were examined by a dual-source CT system at 120 kilovolt (peak) with reference tube current of 40 mA·s. Six image serials were reconstructed, including one data set of FBP and 5 data sets of SAFIRE with different reconstruction strengths from 1 to 5. Image noise was recorded; and subjective scores of image noise, images artifacts, and the overall image quality were also assessed by 2 radiologists. The mean ± SD weight for all patients was 66.3 ± 12.8 kg, and the body mass index was 23.4 ± 3.2. The mean ± SD dose-length product was 95.2 ± 30.6 mGy cm, and the mean ± SD effective dose was 1.6 ± 0.5 mSv. The observation agreements for image noise grade, artifact grade, and the overall image quality were 0.785, 0.595 and 0.512, respectively. Among the overall 6 data sets, both the measured mean objective image noise and the subjective image noise of FBP was the highest, and the image noise decreased with the increasing of SAFIRE reconstruction strength. The data sets of S3 obtained the best image quality scores. Sinogram-affirmed iterative reconstruction can significantly improve image quality of low-dose lung CT screening compared with FBP, and SAFIRE with reconstruction strength 3 was a pertinent choice for low-dose lung CT.

  3. Dual-energy CT in patients with abdominal malignant lymphoma: impact of noise-optimised virtual monoenergetic imaging on objective and subjective image quality.

    PubMed

    Lenga, L; Czwikla, R; Wichmann, J L; Leithner, D; Albrecht, M H; D'Angelo, T; Arendt, C T; Booz, C; Hammerstingl, R; Vogl, T J; Martin, S S

    2018-06-05

    To investigate the impact of noise-optimised virtual monoenergetic imaging (VMI+) reconstructions on quantitative and qualitative image parameters in patients with malignant lymphoma at dual-energy computed tomography (DECT) examinations of the abdomen. Thirty-five consecutive patients (mean age, 53.8±18.6 years; range, 21-82 years) with histologically proven malignant lymphoma of the abdomen were included retrospectively. Images were post-processed with standard linear blending (M_0.6), traditional VMI, and VMI+ technique at energy levels ranging from 40 to 100 keV in 10 keV increments. Signal-to-noise (SNR) and contrast-to-noise ratios (CNR) were objectively measured in lymphoma lesions. Image quality, lesion delineation, and image noise were rated subjectively by three blinded observers using five-point Likert scales. Quantitative image quality parameters peaked at 40-keV VMI+ (SNR, 15.77±7.74; CNR, 18.27±8.04) with significant differences compared to standard linearly blended M_0.6 (SNR, 7.96±3.26; CNR, 13.55±3.47) and all traditional VMI series (p<0.001). Qualitative image quality assessment revealed significantly superior ratings for image quality at 60-keV VMI+ (median, 5) in comparison with all other image series (p<0.001). Assessment of lesion delineation showed the highest rating scores for 40-keV VMI+ series (median, 5), while lowest subjective image noise was found for 100-keV VMI+ reconstructions (median, 5). Low-keV VMI+ reconstructions led to improved image quality and lesion delineation of malignant lymphoma lesions compared to standard image reconstruction and traditional VMI at abdominal DECT examinations. Copyright © 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  4. Objective quality assessment of tone-mapped images.

    PubMed

    Yeganeh, Hojatollah; Wang, Zhou

    2013-02-01

    Tone-mapping operators (TMOs) that convert high dynamic range (HDR) to low dynamic range (LDR) images provide practically useful tools for the visualization of HDR images on standard LDR displays. Different TMOs create different tone-mapped images, and a natural question is which one has the best quality. Without an appropriate quality measure, different TMOs cannot be compared, and further improvement is directionless. Subjective rating may be a reliable evaluation method, but it is expensive and time consuming, and more importantly, is difficult to be embedded into optimization frameworks. Here we propose an objective quality assessment algorithm for tone-mapped images by combining: 1) a multiscale signal fidelity measure on the basis of a modified structural similarity index and 2) a naturalness measure on the basis of intensity statistics of natural images. Validations using independent subject-rated image databases show good correlations between subjective ranking score and the proposed tone-mapped image quality index (TMQI). Furthermore, we demonstrate the extended applications of TMQI using two examples-parameter tuning for TMOs and adaptive fusion of multiple tone-mapped images.

  5. Data Quality Evaluation and Application Potential Analysis of TIANGONG-2 Wide-Band Imaging Spectrometer

    NASA Astrophysics Data System (ADS)

    Qin, B.; Li, L.; Li, S.

    2018-04-01

    Tiangong-2 is the first space laboratory in China, which launched in September 15, 2016. Wide-band Imaging Spectrometer is a medium resolution multispectral imager on Tiangong-2. In this paper, the authors introduced the indexes and parameters of Wideband Imaging Spectrometer, and made an objective evaluation about the data quality of Wide-band Imaging Spectrometer in radiation quality, image sharpness and information content, and compared the data quality evaluation results with that of Landsat-8. Although the data quality of Wide-band Imager Spectrometer has a certain disparity with Landsat-8 OLI data in terms of signal to noise ratio, clarity and entropy. Compared with OLI, Wide-band Imager Spectrometer has more bands, narrower bandwidth and wider swath, which make it a useful remote sensing data source in classification and identification of large and medium scale ground objects. In the future, Wide-band Imaging Spectrometer data will be widely applied in land cover classification, ecological environment assessment, marine and coastal zone monitoring, crop identification and classification, and other related areas.

  6. Quality assessment for color reproduction using a blind metric

    NASA Astrophysics Data System (ADS)

    Bringier, B.; Quintard, L.; Larabi, M.-C.

    2007-01-01

    This paper deals with image quality assessment. This field plays nowadays an important role in various image processing applications. Number of objective image quality metrics, that correlate or not, with the subjective quality have been developed during the last decade. Two categories of metrics can be distinguished, the first with full-reference and the second with no-reference. Full-reference metric tries to evaluate the distortion introduced to an image with regards to the reference. No-reference approach attempts to model the judgment of image quality in a blind way. Unfortunately, the universal image quality model is not on the horizon and empirical models established on psychophysical experimentation are generally used. In this paper, we focus only on the second category to evaluate the quality of color reproduction where a blind metric, based on human visual system modeling is introduced. The objective results are validated by single-media and cross-media subjective tests.

  7. Image quality evaluation of full reference algorithm

    NASA Astrophysics Data System (ADS)

    He, Nannan; Xie, Kai; Li, Tong; Ye, Yushan

    2018-03-01

    Image quality evaluation is a classic research topic, the goal is to design the algorithm, given the subjective feelings consistent with the evaluation value. This paper mainly introduces several typical reference methods of Mean Squared Error(MSE), Peak Signal to Noise Rate(PSNR), Structural Similarity Image Metric(SSIM) and feature similarity(FSIM) of objective evaluation methods. The different evaluation methods are tested by Matlab, and the advantages and disadvantages of these methods are obtained by analyzing and comparing them.MSE and PSNR are simple, but they are not considered to introduce HVS characteristics into image quality evaluation. The evaluation result is not ideal. SSIM has a good correlation and simple calculation ,because it is considered to the human visual effect into image quality evaluation,However the SSIM method is based on a hypothesis,The evaluation result is limited. The FSIM method can be used for test of gray image and color image test, and the result is better. Experimental results show that the new image quality evaluation algorithm based on FSIM is more accurate.

  8. Image gathering and restoration - Information and visual quality

    NASA Technical Reports Server (NTRS)

    Mccormick, Judith A.; Alter-Gartenberg, Rachel; Huck, Friedrich O.

    1989-01-01

    A method is investigated for optimizing the end-to-end performance of image gathering and restoration for visual quality. To achieve this objective, one must inevitably confront the problems that the visual quality of restored images depends on perceptual rather than mathematical considerations and that these considerations vary with the target, the application, and the observer. The method adopted in this paper is to optimize image gathering informationally and to restore images interactively to obtain the visually preferred trade-off among fidelity resolution, sharpness, and clarity. The results demonstrate that this method leads to significant improvements in the visual quality obtained by the traditional digital processing methods. These traditional methods allow a significant loss of visual quality to occur because they treat the design of the image-gathering system and the formulation of the image-restoration algorithm as two separate tasks and fail to account for the transformations between the continuous and the discrete representations in image gathering and reconstruction.

  9. How much image noise can be added in cardiac x-ray imaging without loss in perceived image quality?

    NASA Astrophysics Data System (ADS)

    Gislason-Lee, Amber J.; Kumcu, Asli; Kengyelics, Stephen M.; Rhodes, Laura A.; Davies, Andrew G.

    2015-03-01

    Dynamic X-ray imaging systems are used for interventional cardiac procedures to treat coronary heart disease. X-ray settings are controlled automatically by specially-designed X-ray dose control mechanisms whose role is to ensure an adequate level of image quality is maintained with an acceptable radiation dose to the patient. Current commonplace dose control designs quantify image quality by performing a simple technical measurement directly from the image. However, the utility of cardiac X-ray images is in their interpretation by a cardiologist during an interventional procedure, rather than in a technical measurement. With the long term goal of devising a clinically-relevant image quality metric for an intelligent dose control system, we aim to investigate the relationship of image noise with clinical professionals' perception of dynamic image sequences. Computer-generated noise was added, in incremental amounts, to angiograms of five different patients selected to represent the range of adult cardiac patient sizes. A two alternative forced choice staircase experiment was used to determine the amount of noise which can be added to a patient image sequences without changing image quality as perceived by clinical professionals. Twenty-five viewing sessions (five for each patient) were completed by thirteen observers. Results demonstrated scope to increase the noise of cardiac X-ray images by up to 21% +/- 8% before it is noticeable by clinical professionals. This indicates a potential for 21% radiation dose reduction since X-ray image noise and radiation dose are directly related; this would be beneficial to both patients and personnel.

  10. 21 CFR 900.4 - Standards for accreditation bodies.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... image quality, or upon request by FDA, the accreditation body shall review a facility's clinical images... review by the accreditation body demonstrates that a problem does exist with respect to image quality or... program shall: (i) Include requirements for clinical image review and phantom image review; (ii) Ensure...

  11. 21 CFR 900.4 - Standards for accreditation bodies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... image quality, or upon request by FDA, the accreditation body shall review a facility's clinical images... review by the accreditation body demonstrates that a problem does exist with respect to image quality or... program shall: (i) Include requirements for clinical image review and phantom image review; (ii) Ensure...

  12. 21 CFR 900.4 - Standards for accreditation bodies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... image quality, or upon request by FDA, the accreditation body shall review a facility's clinical images... review by the accreditation body demonstrates that a problem does exist with respect to image quality or... program shall: (i) Include requirements for clinical image review and phantom image review; (ii) Ensure...

  13. 21 CFR 900.4 - Standards for accreditation bodies.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... image quality, or upon request by FDA, the accreditation body shall review a facility's clinical images... review by the accreditation body demonstrates that a problem does exist with respect to image quality or... program shall: (i) Include requirements for clinical image review and phantom image review; (ii) Ensure...

  14. FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS): Experimental Investigation of Quality of Lensless Ghost Imaging with Pseudo-Thermal Light

    NASA Astrophysics Data System (ADS)

    Shen, Xia; Bai, Yan-Feng; Qin, Tao; Han, Shen-Sheng

    2008-11-01

    Factors influencing the quality of lensless ghost imaging are investigated. According to the experimental results, we find that the imaging quality is determined by the number of independent sub light sources on the imaging plane of the reference arm. A qualitative picture based on advanced wave optics is presented to explain the physics behind the experimental phenomena. The present results will be helpful to provide a basis for improving the quality of ghost imaging systems in future works.

  15. Light-leaking region segmentation of FOG fiber based on quality evaluation of infrared image

    NASA Astrophysics Data System (ADS)

    Liu, Haoting; Wang, Wei; Gao, Feng; Shan, Lianjie; Ma, Yuzhou; Ge, Wenqian

    2014-07-01

    To improve the assembly reliability of Fiber Optic Gyroscope (FOG), a light leakage detection system and method is developed. First, an agile movement control platform is designed to implement the pose control of FOG optical path component in 6 Degrees of Freedom (DOF). Second, an infrared camera is employed to capture the working state images of corresponding fibers in optical path component after the manual assembly of FOG; therefore the entire light transmission process of key sections in light-path can be recorded. Third, an image quality evaluation based region segmentation method is developed for the light leakage images. In contrast to the traditional methods, the image quality metrics, including the region contrast, the edge blur, and the image noise level, are firstly considered to distinguish the image characters of infrared image; then the robust segmentation algorithms, including graph cut and flood fill, are all developed for region segmentation according to the specific image quality. Finally, after the image segmentation of light leakage region, the typical light-leaking type, such as the point defect, the wedge defect, and the surface defect can be identified. By using the image quality based method, the applicability of our proposed system can be improved dramatically. Many experiment results have proved the validity and effectiveness of this method.

  16. Compressed-Sensing Multi-Spectral Imaging of the Post-Operative Spine

    PubMed Central

    Worters, Pauline W.; Sung, Kyunghyun; Stevens, Kathryn J.; Koch, Kevin M.; Hargreaves, Brian A.

    2012-01-01

    Purpose To apply compressed sensing (CS) to in vivo multi-spectral imaging (MSI), which uses additional encoding to avoid MRI artifacts near metal, and demonstrate the feasibility of CS-MSI in post-operative spinal imaging. Materials and Methods Thirteen subjects referred for spinal MRI were examined using T2-weighted MSI. A CS undersampling factor was first determined using a structural similarity index as a metric for image quality. Next, these fully sampled datasets were retrospectively undersampled using a variable-density random sampling scheme and reconstructed using an iterative soft-thresholding method. The fully- and under-sampled images were compared by using a 5-point scale. Prospectively undersampled CS-MSI data were also acquired from two subjects to ensure that the prospective random sampling did not affect the image quality. Results A two-fold outer reduction factor was deemed feasible for the spinal datasets. CS-MSI images were shown to be equivalent or better than the original MSI images in all categories: nerve visualization: p = 0.00018; image artifact: p = 0.00031; image quality: p = 0.0030. No alteration of image quality and T2 contrast was observed from prospectively undersampled CS-MSI. Conclusion This study shows that the inherently sparse nature of MSI data allows modest undersampling followed by CS reconstruction with no loss of diagnostic quality. PMID:22791572

  17. Enhanced Imaging of Building Interior for Portable MIMO Through-the-wall Radar

    NASA Astrophysics Data System (ADS)

    Song, Yongping; Zhu, Jiahua; Hu, Jun; Jin, Tian; Zhou, Zhimin

    2018-01-01

    Portable multi-input multi-output (MIMO) radar system is able to imaging the building interior through aperture synthesis. However, significant grating lobes are invoked in the directly imaging results, which may deteriorate the imaging quality of other targets and influence the detail information extraction of imaging scene. In this paper, a two-stage coherence factor (CF) weighting method is proposed to enhance the imaging quality. After obtaining the sub-imaging results of each spatial sampling position using conventional CF approach, a window function is employed to calculate the proposed “enhanced CF” adaptive to the spatial variety effect behind the wall for the combination of these sub-images. The real data experiment illustrates the better performance of proposed method on grating lobes suppression and imaging quality enhancement compare to the traditional radar imaging approach.

  18. A Distributed Compressive Sensing Scheme for Event Capture in Wireless Visual Sensor Networks

    NASA Astrophysics Data System (ADS)

    Hou, Meng; Xu, Sen; Wu, Weiling; Lin, Fei

    2018-01-01

    Image signals which acquired by wireless visual sensor network can be used for specific event capture. This event capture is realized by image processing at the sink node. A distributed compressive sensing scheme is used for the transmission of these image signals from the camera nodes to the sink node. A measurement and joint reconstruction algorithm for these image signals are proposed in this paper. Make advantage of spatial correlation between images within a sensing area, the cluster head node which as the image decoder can accurately co-reconstruct these image signals. The subjective visual quality and the reconstruction error rate are used for the evaluation of reconstructed image quality. Simulation results show that the joint reconstruction algorithm achieves higher image quality at the same image compressive rate than the independent reconstruction algorithm.

  19. Application of Sensor Fusion to Improve Uav Image Classification

    NASA Astrophysics Data System (ADS)

    Jabari, S.; Fathollahi, F.; Zhang, Y.

    2017-08-01

    Image classification is one of the most important tasks of remote sensing projects including the ones that are based on using UAV images. Improving the quality of UAV images directly affects the classification results and can save a huge amount of time and effort in this area. In this study, we show that sensor fusion can improve image quality which results in increasing the accuracy of image classification. Here, we tested two sensor fusion configurations by using a Panchromatic (Pan) camera along with either a colour camera or a four-band multi-spectral (MS) camera. We use the Pan camera to benefit from its higher sensitivity and the colour or MS camera to benefit from its spectral properties. The resulting images are then compared to the ones acquired by a high resolution single Bayer-pattern colour camera (here referred to as HRC). We assessed the quality of the output images by performing image classification tests. The outputs prove that the proposed sensor fusion configurations can achieve higher accuracies compared to the images of the single Bayer-pattern colour camera. Therefore, incorporating a Pan camera on-board in the UAV missions and performing image fusion can help achieving higher quality images and accordingly higher accuracy classification results.

  20. Fat suppression in magnetic resonance imaging of the head and neck region: is the two-point DIXON technique superior to spectral fat suppression?

    PubMed

    Wendl, Christina M; Eiglsperger, Johannes; Dendl, Lena-Marie; Brodoefel, Harald; Schebesch, Karl-Michael; Stroszczynski, Christian; Fellner, Claudia

    2018-05-01

    The aim of our study was to systematically compare two-point Dixon fat suppression (FS) and spectral FS techniques in contrast enhanced imaging of the head and neck region. Three independent readers analysed coronal T 1 weighted images recorded after contrast medium injection with Dixon and spectral FS techniques with regard to FS homogeneity, motion artefacts, lesion contrast, image sharpness and overall image quality. 85 patients were prospectively enrolled in the study. Images generated with Dixon-FS technique were of higher overall image quality and had a more homogenous FS over the whole field of view compared with the standard spectral fat-suppressed images (p < 0.001). Concerning motion artefacts, flow artefacts, lesion contrast and image sharpness no statistically significant difference was observed. The Dixon-FS technique is superior to the spectral technique due to improved homogeneity of FS and overall image quality while maintaining lesion contrast. Advances in knowledge: T 1 with Dixon FS technique offers, compared to spectral FS, significantly improved FS homogeneity and over all image quality in imaging of the head and neck region.

  1. Is there a preference for linearity when viewing natural images?

    NASA Astrophysics Data System (ADS)

    Kane, David; Bertamío, Marcelo

    2015-01-01

    The system gamma of the imaging pipeline, defined as the product of the encoding and decoding gammas, is typically greater than one and is stronger for images viewed with a dark background (e.g. cinema) than those viewed in lighter conditions (e.g. office displays).1-3 However, for high dynamic range (HDR) images reproduced on a low dynamic range (LDR) monitor, subjects often prefer a system gamma of less than one,4 presumably reflecting the greater need for histogram equalization in HDR images. In this study we ask subjects to rate the perceived quality of images presented on a LDR monitor using various levels of system gamma. We reveal that the optimal system gamma is below one for images with a HDR and approaches or exceeds one for images with a LDR. Additionally, the highest quality scores occur for images where a system gamma of one is optimal, suggesting a preference for linearity (where possible). We find that subjective image quality scores can be predicted by computing the degree of histogram equalization of the lightness distribution. Accordingly, an optimal, image dependent system gamma can be computed that maximizes perceived image quality.

  2. Recent Developments in Hyperspectral Imaging for Assessment of Food Quality and Safety

    PubMed Central

    Huang, Hui; Liu, Li; Ngadi, Michael O.

    2014-01-01

    Hyperspectral imaging which combines imaging and spectroscopic technology is rapidly gaining ground as a non-destructive, real-time detection tool for food quality and safety assessment. Hyperspectral imaging could be used to simultaneously obtain large amounts of spatial and spectral information on the objects being studied. This paper provides a comprehensive review on the recent development of hyperspectral imaging applications in food and food products. The potential and future work of hyperspectral imaging for food quality and safety control is also discussed. PMID:24759119

  3. Evaluation of image quality of MRI data for brain tumor surgery

    NASA Astrophysics Data System (ADS)

    Heckel, Frank; Arlt, Felix; Geisler, Benjamin; Zidowitz, Stephan; Neumuth, Thomas

    2016-03-01

    3D medical images are important components of modern medicine. Their usefulness for the physician depends on their quality, though. Only high-quality images allow accurate and reproducible diagnosis and appropriate support during treatment. We have analyzed 202 MRI images for brain tumor surgery in a retrospective study. Both an experienced neurosurgeon and an experienced neuroradiologist rated each available image with respect to its role in the clinical workflow, its suitability for this specific role, various image quality characteristics, and imaging artifacts. Our results show that MRI data acquired for brain tumor surgery does not always fulfill the required quality standards and that there is a significant disagreement between the surgeon and the radiologist, with the surgeon being more critical. Noise, resolution, as well as the coverage of anatomical structures were the most important criteria for the surgeon, while the radiologist was mainly disturbed by motion artifacts.

  4. A novel imaging technique for fusion of high-quality immobilised MR images of the head and neck with CT scans for radiotherapy target delineation.

    PubMed

    Webster, G J; Kilgallon, J E; Ho, K F; Rowbottom, C G; Slevin, N J; Mackay, R I

    2009-06-01

    Uncertainty and inconsistency are observed in target volume delineation in the head and neck for radiotherapy treatment planning based only on CT imaging. Alternative modalities such as MRI have previously been incorporated into the delineation process to provide additional anatomical information. This work aims to improve on previous studies by combining good image quality with precise patient immobilisation in order to maintain patient position between scans. MR images were acquired using quadrature coils placed over the head and neck while the patient was immobilised in the treatment position using a five-point thermoplastic shell. The MR image and CT images were automatically fused in the Pinnacle treatment planning system using Syntegra software. Image quality, distortion and accuracy of the image registration using patient anatomy were evaluated. Image quality was found to be superior to that acquired using the body coil, while distortion was < 1.0 mm to a radius of 8.7 cm from the scan centre. Image registration accuracy was found to be 2.2 mm (+/- 0.9 mm) and < 3.0 degrees (n = 6). A novel MRI technique that combines good image quality with patient immobilization has been developed and is now in clinical use. The scan duration of approximately 15 min has been well tolerated by all patients.

  5. Breast MRI at 7 Tesla with a bilateral coil and T1-weighted acquisition with robust fat suppression: image evaluation and comparison with 3 Tesla.

    PubMed

    Brown, Ryan; Storey, Pippa; Geppert, Christian; McGorty, KellyAnne; Leite, Ana Paula Klautau; Babb, James; Sodickson, Daniel K; Wiggins, Graham C; Moy, Linda

    2013-11-01

    To evaluate the image quality of T1-weighted fat-suppressed breast MRI at 7 T and to compare 7-T and 3-T images. Seventeen subjects were imaged using a 7-T bilateral transmit-receive coil and 3D gradient echo sequence with adiabatic inversion-based fat suppression (FS). Images were graded on a five-point scale and quantitatively assessed through signal-to-noise ratio (SNR), fibroglandular/fat contrast and signal uniformity measurements. Image scores at 7 and 3 T were similar on standard-resolution images (1.1 × 1.1 × 1.1-1.6 mm(3)), indicating that high-quality breast imaging with clinical parameters can be performed at 7 T. The 7-T SNR advantage was underscored on 0.6-mm isotropic images, where image quality was significantly greater than at 3 T (4.2 versus 3.1, P ≤ 0.0001). Fibroglandular/fat contrast was more than two times higher at 7 T than at 3 T, owing to effective adiabatic inversion-based FS and the inherent 7-T signal advantage. Signal uniformity was comparable at 7 and 3 T (P < 0.05). Similar 7-T image quality was observed in all subjects, indicating robustness against anatomical variation. The 7-T bilateral transmit-receive coil and adiabatic inversion-based FS technique produce image quality that is as good as or better than at 3 T. • High image quality bilateral breast MRI is achievable with clinical parameters at 7 T. • 7-T high-resolution imaging improves delineation of subtle soft tissue structures. • Adiabatic-based fat suppression provides excellent fibroglandular/fat contrast at 7 T. • 7- and 3-T 3D T1-weighted gradient-echo images have similar signal uniformity. • The 7-T dual solenoid coil enables bilateral imaging without compromising uniformity.

  6. PROPELLER technique to improve image quality of MRI of the shoulder.

    PubMed

    Dietrich, Tobias J; Ulbrich, Erika J; Zanetti, Marco; Fucentese, Sandro F; Pfirrmann, Christian W A

    2011-12-01

    The purpose of this article is to evaluate the use of the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) technique for artifact reduction and overall image quality improvement for intermediate-weighted and T2-weighted MRI of the shoulder. One hundred eleven patients undergoing MR arthrography of the shoulder were included. A coronal oblique intermediate-weighted turbo spin-echo (TSE) sequence with fat suppression and a sagittal oblique T2-weighted TSE sequence with fat suppression were obtained without (standard) and with the PROPELLER technique. Scanning time increased from 3 minutes 17 seconds to 4 minutes 17 seconds (coronal oblique plane) and from 2 minutes 52 seconds to 4 minutes 10 seconds (sagittal oblique) using PROPELLER. Two radiologists graded image artifacts, overall image quality, and delineation of several anatomic structures on a 5-point scale (5, no artifact, optimal diagnostic quality; and 1, severe artifacts, diagnostically not usable). The Wilcoxon signed rank test was used to compare the data of the standard and PROPELLER images. Motion artifacts were significantly reduced in PROPELLER images (p < 0.001). Observer 1 rated motion artifacts with diagnostic impairment in one patient on coronal oblique PROPELLER images compared with 33 patients on standard images. Ratings for the sequences with PROPELLER were significantly better for overall image quality (p < 0.001). Observer 1 noted an overall image quality with diagnostic impairment in nine patients on sagittal oblique PROPELLER images compared with 23 patients on standard MRI. The PROPELLER technique for MRI of the shoulder reduces the number of sequences with diagnostic impairment as a result of motion artifacts and increases image quality compared with standard TSE sequences. PROPELLER sequences increase the acquisition time.

  7. Evaluation of the sparse coding super-resolution method for improving image quality of up-sampled images in computed tomography

    NASA Astrophysics Data System (ADS)

    Ota, Junko; Umehara, Kensuke; Ishimaru, Naoki; Ohno, Shunsuke; Okamoto, Kentaro; Suzuki, Takanori; Shirai, Naoki; Ishida, Takayuki

    2017-02-01

    As the capability of high-resolution displays grows, high-resolution images are often required in Computed Tomography (CT). However, acquiring high-resolution images takes a higher radiation dose and a longer scanning time. In this study, we applied the Sparse-coding-based Super-Resolution (ScSR) method to generate high-resolution images without increasing the radiation dose. We prepared the over-complete dictionary learned the mapping between low- and highresolution patches and seek a sparse representation of each patch of the low-resolution input. These coefficients were used to generate the high-resolution output. For evaluation, 44 CT cases were used as the test dataset. We up-sampled images up to 2 or 4 times and compared the image quality of the ScSR scheme and bilinear and bicubic interpolations, which are the traditional interpolation schemes. We also compared the image quality of three learning datasets. A total of 45 CT images, 91 non-medical images, and 93 chest radiographs were used for dictionary preparation respectively. The image quality was evaluated by measuring peak signal-to-noise ratio (PSNR) and structure similarity (SSIM). The differences of PSNRs and SSIMs between the ScSR method and interpolation methods were statistically significant. Visual assessment confirmed that the ScSR method generated a high-resolution image with sharpness, whereas conventional interpolation methods generated over-smoothed images. To compare three different training datasets, there were no significance between the CT, the CXR and non-medical datasets. These results suggest that the ScSR provides a robust approach for application of up-sampling CT images and yields substantial high image quality of extended images in CT.

  8. Evaluation of Effective Parameters on Quality of Magnetic Resonance Imaging-computed Tomography Image Fusion in Head and Neck Tumors for Application in Treatment Planning

    PubMed Central

    Shirvani, Atefeh; Jabbari, Keyvan; Amouheidari, Alireza

    2017-01-01

    Background: In radiation therapy, computed tomography (CT) simulation is used for treatment planning to define the location of tumor. Magnetic resonance imaging (MRI)-CT image fusion leads to more efficient tumor contouring. This work tried to identify the practical issues for the combination of CT and MRI images in real clinical cases. The effect of various factors is evaluated on image fusion quality. Materials and Methods: In this study, the data of thirty patients with brain tumors were used for image fusion. The effect of several parameters on possibility and quality of image fusion was evaluated. These parameters include angles of the patient's head on the bed, slices thickness, slice gap, and height of the patient's head. Results: According to the results, the first dominating factor on quality of image fusion was the difference slice gap between CT and MRI images (cor = 0.86, P < 0.005) and second factor was the angle between CT and MRI slice in the sagittal plane (cor = 0.75, P < 0.005). In 20% of patients, this angle was more than 28° and image fusion was not efficient. In 17% of patients, difference slice gap in CT and MRI was >4 cm and image fusion quality was <25%. Conclusion: The most important problem in image fusion is that MRI images are taken without regard to their use in treatment planning. In general, parameters related to the patient position during MRI imaging should be chosen to be consistent with CT images of the patient in terms of location and angle. PMID:29387672

  9. Impact of image quality on reliability of the measurements of left ventricular systolic function and global longitudinal strain in 2D echocardiography

    PubMed Central

    Nagata, Yasufumi; Kado, Yuichiro; Onoue, Takeshi; Otani, Kyoko; Nakazono, Akemi; Otsuji, Yutaka; Takeuchi, Masaaki

    2018-01-01

    Background Left ventricular ejection fraction (LVEF) and global longitudinal strain (GLS) play important roles in diagnosis and management of cardiac diseases. However, the issue of the accuracy and reliability of LVEF and GLS remains to be solved. Image quality is one of the most important factors affecting measurement variability. The aim of this study was to investigate whether improved image quality could reduce observer variability. Methods Two sets of three apical images were acquired using relatively old- and new-generation ultrasound imaging systems (Vivid 7 and Vivid E95) in 308 subjects. Image quality was assessed by endocardial border delineation index (EBDI) using a 3-point scoring system. Three observers measured the LVEF and GLS, and these values and inter-observer variability were investigated. Results Image quality was significantly better with Vivid E95 (EBDI: 26.8 ± 5.9) than that with Vivid 7 (22.8 ± 6.3, P < 0.0001). Regarding the inter-observer variability of LVEF, the r-value, bias, 95% limit of agreement and intra-class correlation coefficient for Vivid 7 were comparable to those for Vivid E95. The % variabilities were significantly lower for Vivid E95 (5.3–6.5%) than those for Vivid 7 (6.5–7.5%). Regarding GLS, all observer variability parameters were better for Vivid E95 than for Vivid 7. Improvements in image quality yielded benefits to both LVEF and GLS measurement reliability. Multivariate analysis showed that image quality was indeed an important factor of observer variability in the measurement of LVEF and GLS. Conclusions The new-generation ultrasound imaging system offers improved image quality and reduces inter-observer variability in the measurement of LVEF and GLS. PMID:29432198

  10. Can use of adaptive statistical iterative reconstruction reduce radiation dose in unenhanced head CT? An analysis of qualitative and quantitative image quality

    PubMed Central

    Heggen, Kristin Livelten; Pedersen, Hans Kristian; Andersen, Hilde Kjernlie; Martinsen, Anne Catrine T

    2016-01-01

    Background Iterative reconstruction can reduce image noise and thereby facilitate dose reduction. Purpose To evaluate qualitative and quantitative image quality for full dose and dose reduced head computed tomography (CT) protocols reconstructed using filtered back projection (FBP) and adaptive statistical iterative reconstruction (ASIR). Material and Methods Fourteen patients undergoing follow-up head CT were included. All patients underwent full dose (FD) exam and subsequent 15% dose reduced (DR) exam, reconstructed using FBP and 30% ASIR. Qualitative image quality was assessed using visual grading characteristics. Quantitative image quality was assessed using ROI measurements in cerebrospinal fluid (CSF), white matter, peripheral and central gray matter. Additionally, quantitative image quality was measured in Catphan and vendor’s water phantom. Results There was no significant difference in qualitative image quality between FD FBP and DR ASIR. Comparing same scan FBP versus ASIR, a noise reduction of 28.6% in CSF and between −3.7 and 3.5% in brain parenchyma was observed. Comparing FD FBP versus DR ASIR, a noise reduction of 25.7% in CSF, and −7.5 and 6.3% in brain parenchyma was observed. Image contrast increased in ASIR reconstructions. Contrast-to-noise ratio was improved in DR ASIR compared to FD FBP. In phantoms, noise reduction was in the range of 3 to 28% with image content. Conclusion There was no significant difference in qualitative image quality between full dose FBP and dose reduced ASIR. CNR improved in DR ASIR compared to FD FBP mostly due to increased contrast, not reduced noise. Therefore, we recommend using caution if reducing dose and applying ASIR to maintain image quality. PMID:27583169

  11. Can use of adaptive statistical iterative reconstruction reduce radiation dose in unenhanced head CT? An analysis of qualitative and quantitative image quality.

    PubMed

    Østerås, Bjørn Helge; Heggen, Kristin Livelten; Pedersen, Hans Kristian; Andersen, Hilde Kjernlie; Martinsen, Anne Catrine T

    2016-08-01

    Iterative reconstruction can reduce image noise and thereby facilitate dose reduction. To evaluate qualitative and quantitative image quality for full dose and dose reduced head computed tomography (CT) protocols reconstructed using filtered back projection (FBP) and adaptive statistical iterative reconstruction (ASIR). Fourteen patients undergoing follow-up head CT were included. All patients underwent full dose (FD) exam and subsequent 15% dose reduced (DR) exam, reconstructed using FBP and 30% ASIR. Qualitative image quality was assessed using visual grading characteristics. Quantitative image quality was assessed using ROI measurements in cerebrospinal fluid (CSF), white matter, peripheral and central gray matter. Additionally, quantitative image quality was measured in Catphan and vendor's water phantom. There was no significant difference in qualitative image quality between FD FBP and DR ASIR. Comparing same scan FBP versus ASIR, a noise reduction of 28.6% in CSF and between -3.7 and 3.5% in brain parenchyma was observed. Comparing FD FBP versus DR ASIR, a noise reduction of 25.7% in CSF, and -7.5 and 6.3% in brain parenchyma was observed. Image contrast increased in ASIR reconstructions. Contrast-to-noise ratio was improved in DR ASIR compared to FD FBP. In phantoms, noise reduction was in the range of 3 to 28% with image content. There was no significant difference in qualitative image quality between full dose FBP and dose reduced ASIR. CNR improved in DR ASIR compared to FD FBP mostly due to increased contrast, not reduced noise. Therefore, we recommend using caution if reducing dose and applying ASIR to maintain image quality.

  12. Image quality of multiplanar reconstruction of pulmonary CT scans using adaptive statistical iterative reconstruction

    PubMed Central

    Honda, O; Yanagawa, M; Inoue, A; Kikuyama, A; Yoshida, S; Sumikawa, H; Tobino, K; Koyama, M; Tomiyama, N

    2011-01-01

    Objective We investigated the image quality of multiplanar reconstruction (MPR) using adaptive statistical iterative reconstruction (ASIR). Methods Inflated and fixed lungs were scanned with a garnet detector CT in high-resolution mode (HR mode) or non-high-resolution (HR) mode, and MPR images were then reconstructed. Observers compared 15 MPR images of ASIR (40%) and ASIR (80%) with those of ASIR (0%), and assessed image quality using a visual five-point scale (1, definitely inferior; 5, definitely superior), with particular emphasis on normal pulmonary structures, artefacts, noise and overall image quality. Results The mean overall image quality scores in HR mode were 3.67 with ASIR (40%) and 4.97 with ASIR (80%). Those in non-HR mode were 3.27 with ASIR (40%) and 3.90 with ASIR (80%). The mean artefact scores in HR mode were 3.13 with ASIR (40%) and 3.63 with ASIR (80%), but those in non-HR mode were 2.87 with ASIR (40%) and 2.53 with ASIR (80%). The mean scores of the other parameters were greater than 3, whereas those in HR mode were higher than those in non-HR mode. There were significant differences between ASIR (40%) and ASIR (80%) in overall image quality (p<0.01). Contrast medium in the injection syringe was scanned to analyse image quality; ASIR did not suppress the severe artefacts of contrast medium. Conclusion In general, MPR image quality with ASIR (80%) was superior to that with ASIR (40%). However, there was an increased incidence of artefacts by ASIR when CT images were obtained in non-HR mode. PMID:21081572

  13. Impact of image quality on reliability of the measurements of left ventricular systolic function and global longitudinal strain in 2D echocardiography.

    PubMed

    Nagata, Yasufumi; Kado, Yuichiro; Onoue, Takeshi; Otani, Kyoko; Nakazono, Akemi; Otsuji, Yutaka; Takeuchi, Masaaki

    2018-03-01

    Left ventricular ejection fraction (LVEF) and global longitudinal strain (GLS) play important roles in diagnosis and management of cardiac diseases. However, the issue of the accuracy and reliability of LVEF and GLS remains to be solved. Image quality is one of the most important factors affecting measurement variability. The aim of this study was to investigate whether improved image quality could reduce observer variability. Two sets of three apical images were acquired using relatively old- and new-generation ultrasound imaging systems (Vivid 7 and Vivid E95) in 308 subjects. Image quality was assessed by endocardial border delineation index (EBDI) using a 3-point scoring system. Three observers measured the LVEF and GLS, and these values and inter-observer variability were investigated. Image quality was significantly better with Vivid E95 (EBDI: 26.8 ± 5.9) than that with Vivid 7 (22.8 ± 6.3, P  < 0.0001). Regarding the inter-observer variability of LVEF, the r -value, bias, 95% limit of agreement and intra-class correlation coefficient for Vivid 7 were comparable to those for Vivid E95. The % variabilities were significantly lower for Vivid E95 (5.3-6.5%) than those for Vivid 7 (6.5-7.5%). Regarding GLS, all observer variability parameters were better for Vivid E95 than for Vivid 7. Improvements in image quality yielded benefits to both LVEF and GLS measurement reliability. Multivariate analysis showed that image quality was indeed an important factor of observer variability in the measurement of LVEF and GLS. The new-generation ultrasound imaging system offers improved image quality and reduces inter-observer variability in the measurement of LVEF and GLS. © 2018 The authors.

  14. Relationships between body image, sexual satisfaction, and relationship quality in romantic couples.

    PubMed

    van den Brink, Femke; Vollmann, Manja; Smeets, Monique A M; Hessen, David J; Woertman, Liesbeth

    2018-03-08

    Previous studies found important associations between body image, sexual satisfaction, and perceived romantic relationship quality, but mainly focused on one individual's perceptions rather than both partners. To take the interdependency of romantic partners into account, the present study examined these associations in romantic couples with a dyadic approach. In a cross-sectional design, 151 Dutch heterosexual couples completed an online survey measuring body image, sexual satisfaction, and perceived relationship quality. Hypotheses were tested using the actor-partner interdependence model (APIM) and an APIM extended with a mediator (APIMeM), with couple members' body image as predictors, couple members' sexual satisfaction as mediators, and couple members' relationship quality as outcomes. Results indicated that within individuals, a more positive body image was linked to higher perceived romantic relationship quality through greater sexual satisfaction. No gender differences were found, implying that body image and sexual satisfaction are equally strongly associated with perceived relationship quality in women and men. Results revealed no associations of an individual's body image and sexual satisfaction with the partner's perceived relationship quality. These findings implicate that interventions focusing on developing and maintaining a positive body image may be helpful in building on a more satisfying sex life and higher perceived relationship quality. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  15. Assessment of automatic exposure control performance in digital mammography using a no-reference anisotropic quality index

    NASA Astrophysics Data System (ADS)

    Barufaldi, Bruno; Borges, Lucas R.; Bakic, Predrag R.; Vieira, Marcelo A. C.; Schiabel, Homero; Maidment, Andrew D. A.

    2017-03-01

    Automatic exposure control (AEC) is used in mammography to obtain acceptable radiation dose and adequate image quality regardless of breast thickness and composition. Although there are physics methods for assessing the AEC, it is not clear whether mammography systems operate with optimal dose and image quality in clinical practice. In this work, we propose the use of a normalized anisotropic quality index (NAQI), validated in previous studies, to evaluate the quality of mammograms acquired using AEC. The authors used a clinical dataset that consists of 561 patients and 1,046 mammograms (craniocaudal breast views). The results show that image quality is often maintained, even at various radiation levels (mean NAQI = 0.14 +/- 0.02). However, a more careful analysis of NAQI reveals that the average image quality decreases as breast thickness increases. The NAQI is reduced by 32% on average, when the breast thickness increases from 31 to 71 mm. NAQI also decreases with lower breast density. The variation in breast parenchyma alone cannot fully account for the decrease of NAQI with thickness. Examination of images shows that images of large, fatty breasts are often inadequately processed. This work shows that NAQI can be applied in clinical mammograms to assess mammographic image quality, and highlights the limitations of the automatic exposure control for some images.

  16. Body Image and Quality of Life in Adolescents With Craniofacial Conditions

    PubMed Central

    Crerand, Canice E.; Sarwer, David B.; Kazak, Anne E.; Clarke, Alexandra; DPsych; Rumsey, Nichola

    2017-01-01

    Objective To evaluate body image in adolescents with and without craniofacial conditions; and to examine relationships between body image and quality of life. Design Case-control design. Setting A pediatric hospital’s craniofacial center and primary care practices. Participants 70 adolescents with visible craniofacial conditions and a demographically-matched sample of 42 adolescents without craniofacial conditions. Main Outcome Measure Adolescents completed measures of quality of life and body image including satisfaction with weight, facial and overall appearance; investment in appearance (importance of appearance to self-worth); and body image disturbance (appearance-related distress and impairment in functioning). Results Adolescents with craniofacial conditions reported lower appearance investment (p < 0.001) and were more likely to report concerns about facial features (p < 0.02) compared to non-affected youth. Females in both groups reported greater investment in appearance, greater body image disturbance, and lower weight satisfaction compared to males (p < 0.01). Within both groups, greater body image disturbance was associated with lower quality of life (p <0.01). The two groups did not differ significantly on measures of quality of life, body image disturbance, or satisfaction with appearance. Conclusions Body image and quality of life in adolescents with craniofacial conditions are similar to non-affected youth. Relationships between body image and quality of life emphasize that appearance perceptions are important to adolescents’ well-being regardless of whether they have a facial disfigurement. Investment in one’s appearance may explain variations in body image satisfaction and serve as an intervention target particularly for females. PMID:26751907

  17. Quality evaluation of no-reference MR images using multidirectional filters and image statistics.

    PubMed

    Jang, Jinseong; Bang, Kihun; Jang, Hanbyol; Hwang, Dosik

    2018-09-01

    This study aimed to develop a fully automatic, no-reference image-quality assessment (IQA) method for MR images. New quality-aware features were obtained by applying multidirectional filters to MR images and examining the feature statistics. A histogram of these features was then fitted to a generalized Gaussian distribution function for which the shape parameters yielded different values depending on the type of distortion in the MR image. Standard feature statistics were established through a training process based on high-quality MR images without distortion. Subsequently, the feature statistics of a test MR image were calculated and compared with the standards. The quality score was calculated as the difference between the shape parameters of the test image and the undistorted standard images. The proposed IQA method showed a >0.99 correlation with the conventional full-reference assessment methods; accordingly, this proposed method yielded the best performance among no-reference IQA methods for images containing six types of synthetic, MR-specific distortions. In addition, for authentically distorted images, the proposed method yielded the highest correlation with subjective assessments by human observers, thus demonstrating its superior performance over other no-reference IQAs. Our proposed IQA was designed to consider MR-specific features and outperformed other no-reference IQAs designed mainly for photographic images. Magn Reson Med 80:914-924, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  18. How do we watch images? A case of change detection and quality estimation

    NASA Astrophysics Data System (ADS)

    Radun, Jenni; Leisti, Tuomas; Virtanen, Toni; Nyman, Göte

    2012-01-01

    The most common tasks in subjective image estimation are change detection (a detection task) and image quality estimation (a preference task). We examined how the task influences the gaze behavior when comparing detection and preference tasks. The eye movements of 16 naïve observers were recorded with 8 observers in both tasks. The setting was a flicker paradigm, where the observers see a non-manipulated image, a manipulated version of the image and again the non-manipulated image and estimate the difference they perceived in them. The material was photographic material with different image distortions and contents. To examine the spatial distribution of fixations, we defined the regions of interest using a memory task and calculated information entropy to estimate how concentrated the fixations were on the image plane. The quality task was faster and needed fewer fixations and the first eight fixations were more concentrated on certain image areas than the change detection task. The bottom-up influences of the image also caused more variation to the gaze behavior in the quality estimation task than in the change detection task The results show that the quality estimation is faster and the regions of interest are emphasized more on certain images compared with the change detection task that is a scan task where the whole image is always thoroughly examined. In conclusion, in subjective image estimation studies it is important to think about the task.

  19. Retinal Image Quality During Accommodation

    PubMed Central

    López-Gil, N.; Martin, J.; Liu, T.; Bradley, A.; Díaz-Muñoz, D.; Thibos, L.

    2013-01-01

    Purpose We asked if retinal image quality is maximum during accommodation, or sub-optimal due to accommodative error, when subjects perform an acuity task. Methods Subjects viewed a monochromatic (552nm), high-contrast letter target placed at various viewing distances. Wavefront aberrations of the accommodating eye were measured near the endpoint of an acuity staircase paradigm. Refractive state, defined as the optimum target vergence for maximising retinal image quality, was computed by through-focus wavefront analysis to find the power of the virtual correcting lens that maximizes visual Strehl ratio. Results Despite changes in ocular aberrations and pupil size during binocular viewing, retinal image quality and visual acuity typically remain high for all target vergences. When accommodative errors lead to sub-optimal retinal image quality, acuity and measured image quality both decline. However, the effect of accommodation errors of on visual acuity are mitigated by pupillary constriction associated with accommodation and binocular convergence and also to binocular summation of dissimilar retinal image blur. Under monocular viewing conditions some subjects displayed significant accommodative lag that reduced visual performance, an effect that was exacerbated by pharmacological dilation of the pupil. Conclusions Spurious measurement of accommodative error can be avoided when the image quality metric used to determine refractive state is compatible with the focusing criteria used by the visual system to control accommodation. Real focusing errors of the accommodating eye do not necessarily produce a reliably measurable loss of image quality or clinically significant loss of visual performance, probably because of increased depth-of-focus due to pupil constriction. When retinal image quality is close to maximum achievable (given the eye’s higher-order aberrations), acuity is also near maximum. A combination of accommodative lag, reduced image quality, and reduced visual function may be a useful sign for diagnosing functionally-significant accommodative errors indicating the need for therapeutic intervention. PMID:23786386

  20. Retinal image quality during accommodation.

    PubMed

    López-Gil, Norberto; Martin, Jesson; Liu, Tao; Bradley, Arthur; Díaz-Muñoz, David; Thibos, Larry N

    2013-07-01

    We asked if retinal image quality is maximum during accommodation, or sub-optimal due to accommodative error, when subjects perform an acuity task. Subjects viewed a monochromatic (552 nm), high-contrast letter target placed at various viewing distances. Wavefront aberrations of the accommodating eye were measured near the endpoint of an acuity staircase paradigm. Refractive state, defined as the optimum target vergence for maximising retinal image quality, was computed by through-focus wavefront analysis to find the power of the virtual correcting lens that maximizes visual Strehl ratio. Despite changes in ocular aberrations and pupil size during binocular viewing, retinal image quality and visual acuity typically remain high for all target vergences. When accommodative errors lead to sub-optimal retinal image quality, acuity and measured image quality both decline. However, the effect of accommodation errors of on visual acuity are mitigated by pupillary constriction associated with accommodation and binocular convergence and also to binocular summation of dissimilar retinal image blur. Under monocular viewing conditions some subjects displayed significant accommodative lag that reduced visual performance, an effect that was exacerbated by pharmacological dilation of the pupil. Spurious measurement of accommodative error can be avoided when the image quality metric used to determine refractive state is compatible with the focusing criteria used by the visual system to control accommodation. Real focusing errors of the accommodating eye do not necessarily produce a reliably measurable loss of image quality or clinically significant loss of visual performance, probably because of increased depth-of-focus due to pupil constriction. When retinal image quality is close to maximum achievable (given the eye's higher-order aberrations), acuity is also near maximum. A combination of accommodative lag, reduced image quality, and reduced visual function may be a useful sign for diagnosing functionally-significant accommodative errors indicating the need for therapeutic intervention. © 2013 The Authors Ophthalmic & Physiological Optics © 2013 The College of Optometrists.

  1. The effect of image quality and forensic expertise in facial image comparisons.

    PubMed

    Norell, Kristin; Läthén, Klas Brorsson; Bergström, Peter; Rice, Allyson; Natu, Vaidehi; O'Toole, Alice

    2015-03-01

    Images of perpetrators in surveillance video footage are often used as evidence in court. In this study, identification accuracy was compared for forensic experts and untrained persons in facial image comparisons as well as the impact of image quality. Participants viewed thirty image pairs and were asked to rate the level of support garnered from their observations for concluding whether or not the two images showed the same person. Forensic experts reached their conclusions with significantly fewer errors than did untrained participants. They were also better than novices at determining when two high-quality images depicted the same person. Notably, lower image quality led to more careful conclusions by experts, but not for untrained participants. In summary, the untrained participants had more false negatives and false positives than experts, which in the latter case could lead to a higher risk of an innocent person being convicted for an untrained witness. © 2014 American Academy of Forensic Sciences.

  2. The medium and the message: a revisionist view of image quality

    NASA Astrophysics Data System (ADS)

    Ferwerda, James A.

    2010-02-01

    In his book "Understanding Media" social theorist Marshall McLuhan declared: "The medium is the message." The thesis of this paper is that with respect to image quality, imaging system developers have taken McLuhan's dictum too much to heart. Efforts focus on improving the technical specifications of the media (e.g. dynamic range, color gamut, resolution, temporal response) with little regard for the visual messages the media will be used to communicate. We present a series of psychophysical studies that investigate the visual system's ability to "see through" the limitations of imaging media to perceive the messages (object and scene properties) the images represent. The purpose of these studies is to understand the relationships between the signal characteristics of an image and the fidelity of the visual information the image conveys. The results of these studies provide a new perspective on image quality that shows that images that may be very different in "quality", can be visually equivalent as realistic representations of objects and scenes.

  3. Restoration of color in a remote sensing image and its quality evaluation

    NASA Astrophysics Data System (ADS)

    Zhang, Zuxun; Li, Zhijiang; Zhang, Jianqing; Wang, Zhihe

    2003-09-01

    This paper is focused on the restoration of color remote sensing (including airborne photo). A complete approach is recommended. It propose that two main aspects should be concerned in restoring a remote sensing image, that are restoration of space information, restoration of photometric information. In this proposal, the restoration of space information can be performed by making the modulation transfer function (MTF) as degradation function, in which the MTF is obtained by measuring the edge curve of origin image. The restoration of photometric information can be performed by improved local maximum entropy algorithm. What's more, a valid approach in processing color remote sensing image is recommended. That is splits the color remote sensing image into three monochromatic images which corresponding three visible light bands and synthesizes the three images after being processed separately with psychological color vision restriction. Finally, three novel evaluation variables are obtained based on image restoration to evaluate the image restoration quality in space restoration quality and photometric restoration quality. An evaluation is provided at last.

  4. Effects of spatial resolution ratio in image fusion

    USGS Publications Warehouse

    Ling, Y.; Ehlers, M.; Usery, E.L.; Madden, M.

    2008-01-01

    In image fusion, the spatial resolution ratio can be defined as the ratio between the spatial resolution of the high-resolution panchromatic image and that of the low-resolution multispectral image. This paper attempts to assess the effects of the spatial resolution ratio of the input images on the quality of the fused image. Experimental results indicate that a spatial resolution ratio of 1:10 or higher is desired for optimal multisensor image fusion provided the input panchromatic image is not downsampled to a coarser resolution. Due to the synthetic pixels generated from resampling, the quality of the fused image decreases as the spatial resolution ratio decreases (e.g. from 1:10 to 1:30). However, even with a spatial resolution ratio as small as 1:30, the quality of the fused image is still better than the original multispectral image alone for feature interpretation. In cases where the spatial resolution ratio is too small (e.g. 1:30), to obtain better spectral integrity of the fused image, one may downsample the input high-resolution panchromatic image to a slightly lower resolution before fusing it with the multispectral image.

  5. Mammogram image quality as a potential contributor to disparities in breast cancer stage at diagnosis: an observational study

    PubMed Central

    2013-01-01

    Background In an ongoing study of racial/ethnic disparities in breast cancer stage at diagnosis, we consented patients to allow us to review their mammogram images, in order to examine the potential role of mammogram image quality on this disparity. Methods In a population-based study of urban breast cancer patients, a single breast imaging specialist (EC) performed a blinded review of the index mammogram that prompted diagnostic follow-up, as well as recent prior mammograms performed approximately one or two years prior to the index mammogram. Seven indicators of image quality were assessed on a five-point Likert scale, where 4 and 5 represented good and excellent quality. These included 3 technologist-associated image quality (TAIQ) indicators (positioning, compression, sharpness), and 4 machine associated image quality (MAIQ) indicators (contrast, exposure, noise and artifacts). Results are based on 494 images examined for 268 patients, including 225 prior images. Results Whereas MAIQ was generally high, TAIQ was more variable. In multivariable models of sociodemographic predictors of TAIQ, less income was associated with lower TAIQ (p < 0.05). Among prior mammograms, lower TAIQ was subsequently associated with later stage at diagnosis, even after adjusting for multiple patient and practice factors (OR = 0.80, 95% CI: 0.65, 0.99). Conclusions Considerable gains could be made in terms of increasing image quality through better positioning, compression and sharpness, gains that could impact subsequent stage at diagnosis. PMID:23621946

  6. Validation of a digital mammographic unit model for an objective and highly automated clinical image quality assessment.

    PubMed

    Perez-Ponce, Hector; Daul, Christian; Wolf, Didier; Noel, Alain

    2013-08-01

    In mammography, image quality assessment has to be directly related to breast cancer indicator (e.g. microcalcifications) detectability. Recently, we proposed an X-ray source/digital detector (XRS/DD) model leading to such an assessment. This model simulates very realistic contrast-detail phantom (CDMAM) images leading to gold disc (representing microcalcifications) detectability thresholds that are very close to those of real images taken under the simulated acquisition conditions. The detection step was performed with a mathematical observer. The aim of this contribution is to include human observers into the disc detection process in real and virtual images to validate the simulation framework based on the XRS/DD model. Mathematical criteria (contrast-detail curves, image quality factor, etc.) are used to assess and to compare, from the statistical point of view, the cancer indicator detectability in real and virtual images. The quantitative results given in this paper show that the images simulated by the XRS/DD model are useful for image quality assessment in the case of all studied exposure conditions using either human or automated scoring. Also, this paper confirms that with the XRS/DD model the image quality assessment can be automated and the whole time of the procedure can be drastically reduced. Compared to standard quality assessment methods, the number of images to be acquired is divided by a factor of eight. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. How does signal fade on photo-stimulable storage phosphor imaging plates when scanned with a delay and what is the effect on image quality?

    PubMed

    Ang, Dan B; Angelopoulos, Christos; Katz, Jerald O

    2006-11-01

    The goals of this in vitro study were to determine the effect of signal fading of DenOptix photo-stimulable storage phosphor imaging plates scanned with a delay and to determine the effect on the diagnostic quality of the image. In addition, we sought to correlate signal fading with image spatial resolution and average pixel intensity values. Forty-eight images were obtained of a test specimen apparatus and scanned at 6 delayed time intervals: immediately scanned, 1 hour, 8 hours, 24 hours, 72 hours, and 168 hours. Six general dentists using Vixwin2000 software performed a measuring task to determine the location of an endodontic file tip and root apex. One-way ANOVA with repeated measures was used to determine the effect of signal fading (delayed scan time) on diagnostic image quality and average pixel intensity value. There was no statistically significant difference in diagnostic image quality resulting from signal fading. No difference was observed in spatial resolution of the images. There was a statistically significant difference in the pixel intensity analysis of an 8-step aluminum wedge between immediate scanning and 24-hour delayed scan time. There was an effect of delayed scanning on the average pixel intensity value. However, there was no effect on image quality and raters' ability to perform a clinical identification task. Proprietary software of the DenOptix digital imaging system demonstrates an excellent ability to process a delayed scan time signal and create an image of diagnostic quality.

  8. Evaluation of image quality of a 32-channel versus a 12-channel head coil at 1.5T for MR imaging of the brain.

    PubMed

    Parikh, P T; Sandhu, G S; Blackham, K A; Coffey, M D; Hsu, D; Liu, K; Jesberger, J; Griswold, M; Sunshine, J L

    2011-02-01

    Multichannel phased-array head coils are undergoing exponential escalation of coil element numbers. While previous technical studies have found gains in SNR and spatial resolution with the addition of element coils, it remains to be determined how these gains affect clinical reading. The purpose of this clinical study was to determine if the SNR and spatial resolution characteristics of a 32-channel head coil result in improvements in perceived image quality and lesion evaluation. Twenty-one patients underwent MR imaging of the brain at 1.5T sequentially with both a 12-channel and a 32-channel receive-only phased-array head coil. Axial T2WIs, T1WIs, FLAIR images, and DWIs were acquired. Anonymized images were compared side-by-side and by sequence for image quality, lesion evaluation, and artifacts by 3 neuroradiologists. Results of the comparison were analyzed for the preference for a specific head coil. FLAIR and DWI images acquired with the 32-channel coil showed significant improvement in image quality in several parameters. T2WIs also improved significantly with acquisition by the 32-channel coil, while T1WIs improved in a limited number of parameters. While lesion evaluation also improved with acquisition of images by the 32-channel coil, there was no apparent improvement in diagnostic quality. There was no difference in artifacts between the 2 coils. Improvements in SNR and spatial resolution attributed to image acquisition with a 32-channel head coil are paralleled by perceived improvements in image quality.

  9. Viewing experience and naturalness of 3D images

    NASA Astrophysics Data System (ADS)

    Seuntiëns, Pieter J.; Heynderickx, Ingrid E.; IJsselsteijn, Wijnand A.; van den Avoort, Paul M. J.; Berentsen, Jelle; Dalm, Iwan J.; Lambooij, Marc T.; Oosting, Willem

    2005-11-01

    The term 'image quality' is often used to measure the performance of an imaging system. Recent research showed however that image quality may not be the most appropriate term to capture the evaluative processes associated with experiencing 3D images. The added value of depth in 3D images is clearly recognized when viewers judge image quality of unimpaired 3D images against their 2D counterparts. However, when viewers are asked to rate image quality of impaired 2D and 3D images, the image quality results for both 2D and 3D images are mainly determined by the introduced artefacts, and the addition of depth in the 3D images is hardly accounted for. In this experiment we applied and tested the more general evaluative concepts of 'naturalness' and 'viewing experience'. It was hypothesized that these concepts would better reflect the added value of depth in 3D images. Four scenes were used varying in dimension (2D and 3D) and noise level (6 levels of white gaussian noise). Results showed that both viewing experience and naturalness were rated higher in 3D than in 2D when the same noise level was applied. Thus, the added value of depth is clearly demonstrated when the concepts of viewing experience and naturalness are being evaluated. The added value of 3D over 2D, expressed in noise level, was 2 dB for viewing experience and 4 dB for naturalness, indicating that naturalness appears the more sensitive evaluative concept for demonstrating the psychological impact of 3D displays.

  10. Image Quality Assessment Using the Joint Spatial/Spatial-Frequency Representation

    NASA Astrophysics Data System (ADS)

    Beghdadi, Azeddine; Iordache, Răzvan

    2006-12-01

    This paper demonstrates the usefulness of spatial/spatial-frequency representations in image quality assessment by introducing a new image dissimilarity measure based on 2D Wigner-Ville distribution (WVD). The properties of 2D WVD are shortly reviewed, and the important issue of choosing the analytic image is emphasized. The WVD-based measure is shown to be correlated with subjective human evaluation, which is the premise towards an image quality assessor developed on this principle.

  11. Reduced dose CT with model-based iterative reconstruction compared to standard dose CT of the chest, abdomen, and pelvis in oncology patients: intra-individual comparison study on image quality and lesion conspicuity.

    PubMed

    Morimoto, Linda Nayeli; Kamaya, Aya; Boulay-Coletta, Isabelle; Fleischmann, Dominik; Molvin, Lior; Tian, Lu; Fisher, George; Wang, Jia; Willmann, Jürgen K

    2017-09-01

    To compare image quality and lesion conspicuity of reduced dose (RD) CT with model-based iterative reconstruction (MBIR) compared to standard dose (SD) CT in patients undergoing oncological follow-up imaging. Forty-four cancer patients who had a staging SD CT within 12 months were prospectively included to undergo a weight-based RD CT with MBIR. Radiation dose was recorded and tissue attenuation and image noise of four tissue types were measured. Reproducibility of target lesion size measurements of up to 5 target lesions per patient were analyzed. Subjective image quality was evaluated for three readers independently utilizing 4- or 5-point Likert scales. Median radiation dose reduction was 46% using RD CT (P < 0.01). Median image noise across all measured tissue types was lower (P < 0.01) in RD CT. Subjective image quality for RD CT was higher (P < 0.01) in regard to image noise and overall image quality; however, there was no statistically significant difference regarding image sharpness (P = 0.59). There were subjectively more artifacts on RD CT (P < 0.01). Lesion conspicuity was subjectively better in RD CT (P < 0.01). Repeated target lesion size measurements were highly reproducible both on SD CT (ICC = 0.987) and RD CT (ICC = 0.97). RD CT imaging with MBIR provides diagnostic imaging quality and comparable lesion conspicuity on follow-up exams while allowing dose reduction by a median of 46% compared to SD CT imaging.

  12. Virtual non-contrast dual-energy CT compared to single-energy CT of the urinary tract: a prospective study.

    PubMed

    Lundin, Margareta; Lidén, Mats; Magnuson, Anders; Mohammed, Ahmed Abdulilah; Geijer, Håkan; Andersson, Torbjörn; Persson, Anders

    2012-07-01

    Dual-energy computed tomography (DECT) has been shown to be useful for subtracting bone or calcium in CT angiography and gives an opportunity to produce a virtual non-contrast-enhanced (VNC) image from a series where contrast agents have been given intravenously. High noise levels and low resolution have previously limited the diagnostic value of the VNC images created with the first generation of DECT. With the recent introduction of a second generation of DECT, there is a possibility of obtaining VNC images with better image quality at hopefully lower radiation dose compared to the previous generation. To compare the image quality of the single-energy series to a VNC series obtained with a two generations of DECT scanners. CT of the urinary tract was used as a model. Thirty patients referred for evaluation of hematuria were examined with an older system (Somatom Definition) and another 30 patients with a new generation (Somatom Definition Flash). One single-energy series was obtained before and one dual-energy series after administration of intravenous contrast media. We created a VNC series from the contrast-enhanced images. Images were assessed concerning image quality with a visual grading scale evaluation of the VNC series with the single-energy series as gold standard. The image quality of the VNC images was rated inferior to the single-energy variant for both scanners, OR 11.5-67.3 for the Definition and OR 2.1-2.8 for the Definition Flash. Visual noise and overall quality were regarded as better with Flash than Definition. Image quality of VNC images obtained with the new generation of DECT is still slightly inferior compared to native images. However, the difference is smaller with the new compared to the older system.

  13. Cassava flour slurry as a low-cost alternative to commercially available gel for obstetrical ultrasound: a blinded non-inferiority trial comparison of image quality.

    PubMed

    Aziz, A; Dar, P; Hughes, F; Solorzano, C; Muller, M M; Salmon, C; Salmon, M; Benfield, N

    2018-01-12

    To evaluate the quality of ultrasound images obtained with cassava flour slurry (CFS) compared with conventional gel in order to determine objectively whether CFS could be a true low-cost alternative. Blinded non-inferiority trial. Obstetrical ultrasound unit in an academic medical centre. Women with a singleton pregnancy, undergoing anatomy ultrasounds. Thirty pregnant women had standard biometry measures obtained with CFS and conventional gel. Images were compared side-by-side in random order by two blinded sonologists and rated for image resolution, detail and total image quality using a 10-cm visual analogue scale. Ratings were compared using paired t-tests. Participant and sonographer experience was measured using five-point Likert scales. Image resolution, detail, and total image quality. Participant experience of gel regarding irritation, messiness, and ease of removal. We found no significant difference between perceived image quality obtained with CFS (mean = 6.2, SD = 1.2) and commercial gel (mean = 6.4, SD = 1.2) [t (28) = -1.1; P = 0.3]. Images were not rated significantly differently for either reviewer in any measure, any standardized image or any view of a specific anatomic structure. All five sonographers rated CFS as easy to obtain clear images and easy for patient and machine cleanup. Only one participant reported itching with CFS. CFS produces comparable image quality to commercial ultrasound gel. The dissemination of these results and the simple CFS recipe could significantly increase access to ultrasound for screening, monitoring and diagnostic purposes in resource-limited settings. This study was internally funded by our department. Low-cost homemade cassava flour slurry creates images equal to commercial ultrasound gel, improving access. © 2018 Royal College of Obstetricians and Gynaecologists.

  14. Matching rendered and real world images by digital image processing

    NASA Astrophysics Data System (ADS)

    Mitjà, Carles; Bover, Toni; Bigas, Miquel; Escofet, Jaume

    2010-05-01

    Recent advances in computer-generated images (CGI) have been used in commercial and industrial photography providing a broad scope in product advertising. Mixing real world images with those rendered from virtual space software shows a more or less visible mismatching between corresponding image quality performance. Rendered images are produced by software which quality performance is only limited by the resolution output. Real world images are taken with cameras with some amount of image degradation factors as lens residual aberrations, diffraction, sensor low pass anti aliasing filters, color pattern demosaicing, etc. The effect of all those image quality degradation factors can be characterized by the system Point Spread Function (PSF). Because the image is the convolution of the object by the system PSF, its characterization shows the amount of image degradation added to any taken picture. This work explores the use of image processing to degrade the rendered images following the parameters indicated by the real system PSF, attempting to match both virtual and real world image qualities. The system MTF is determined by the slanted edge method both in laboratory conditions and in the real picture environment in order to compare the influence of the working conditions on the device performance; an approximation to the system PSF is derived from the two measurements. The rendered images are filtered through a Gaussian filter obtained from the taking system PSF. Results with and without filtering are shown and compared measuring the contrast achieved in different final image regions.

  15. [The future of bedside chest radiography: Comparative study of mobile flat-panels and needle-image plate storage phosphor systems].

    PubMed

    Bremicker, K; Gosch, D; Kahn, T; Borte, G

    2015-11-01

    Chest radiography is the most common diagnostic modality in intensive care units with new mobile flat-panels gaining more attention and availability in addition to the already used storage phosphor plates. Comparison of the image quality of mobile flat-panels and needle-image plate storage phosphor system in terms of bedside chest radiography. Retrospective analysis of 84 bedside chest radiographs of 42 intensive care patients (20 women, 22 men, average age: 65 years). All images were acquired during daily routine. For each patient, two images were analyzed, one from each system mentioned above. Two blinded radiologists evaluated the image quality based on ten criteria (e.g., diaphragm, heart contour, tracheal bifurcation, thoracic spine, lung structure, consolidations, foreign material, and overall impression) using a 5-point visibility scale (1 = excellent, 5 = not usable). There was no significant difference between the image quality of the two systems (p < 0.05). Overall some anatomical structures such as the diaphragm, heart, pulmonary consolidations and foreign material were considered of higher diagnostic quality compared to others, e.g., tracheal bifurcation and thoracic spine. Mobile flat-panels achieve an image quality which is as good as those of needle-image plate storage phosphor systems. In addition, they allow immediate evaluation of the image quality but in return are much more expensive in terms of purchase and maintenance.

  16. Quality Control of Structural MRI Images Applied Using FreeSurfer—A Hands-On Workflow to Rate Motion Artifacts

    PubMed Central

    Backhausen, Lea L.; Herting, Megan M.; Buse, Judith; Roessner, Veit; Smolka, Michael N.; Vetter, Nora C.

    2016-01-01

    In structural magnetic resonance imaging motion artifacts are common, especially when not scanning healthy young adults. It has been shown that motion affects the analysis with automated image-processing techniques (e.g., FreeSurfer). This can bias results. Several developmental and adult studies have found reduced volume and thickness of gray matter due to motion artifacts. Thus, quality control is necessary in order to ensure an acceptable level of quality and to define exclusion criteria of images (i.e., determine participants with most severe artifacts). However, information about the quality control workflow and image exclusion procedure is largely lacking in the current literature and the existing rating systems differ. Here, we propose a stringent workflow of quality control steps during and after acquisition of T1-weighted images, which enables researchers dealing with populations that are typically affected by motion artifacts to enhance data quality and maximize sample sizes. As an underlying aim we established a thorough quality control rating system for T1-weighted images and applied it to the analysis of developmental clinical data using the automated processing pipeline FreeSurfer. This hands-on workflow and quality control rating system will aid researchers in minimizing motion artifacts in the final data set, and therefore enhance the quality of structural magnetic resonance imaging studies. PMID:27999528

  17. Assessing microscope image focus quality with deep learning.

    PubMed

    Yang, Samuel J; Berndl, Marc; Michael Ando, D; Barch, Mariya; Narayanaswamy, Arunachalam; Christiansen, Eric; Hoyer, Stephan; Roat, Chris; Hung, Jane; Rueden, Curtis T; Shankar, Asim; Finkbeiner, Steven; Nelson, Philip

    2018-03-15

    Large image datasets acquired on automated microscopes typically have some fraction of low quality, out-of-focus images, despite the use of hardware autofocus systems. Identification of these images using automated image analysis with high accuracy is important for obtaining a clean, unbiased image dataset. Complicating this task is the fact that image focus quality is only well-defined in foreground regions of images, and as a result, most previous approaches only enable a computation of the relative difference in quality between two or more images, rather than an absolute measure of quality. We present a deep neural network model capable of predicting an absolute measure of image focus on a single image in isolation, without any user-specified parameters. The model operates at the image-patch level, and also outputs a measure of prediction certainty, enabling interpretable predictions. The model was trained on only 384 in-focus Hoechst (nuclei) stain images of U2OS cells, which were synthetically defocused to one of 11 absolute defocus levels during training. The trained model can generalize on previously unseen real Hoechst stain images, identifying the absolute image focus to within one defocus level (approximately 3 pixel blur diameter difference) with 95% accuracy. On a simpler binary in/out-of-focus classification task, the trained model outperforms previous approaches on both Hoechst and Phalloidin (actin) stain images (F-scores of 0.89 and 0.86, respectively over 0.84 and 0.83), despite only having been presented Hoechst stain images during training. Lastly, we observe qualitatively that the model generalizes to two additional stains, Hoechst and Tubulin, of an unseen cell type (Human MCF-7) acquired on a different instrument. Our deep neural network enables classification of out-of-focus microscope images with both higher accuracy and greater precision than previous approaches via interpretable patch-level focus and certainty predictions. The use of synthetically defocused images precludes the need for a manually annotated training dataset. The model also generalizes to different image and cell types. The framework for model training and image prediction is available as a free software library and the pre-trained model is available for immediate use in Fiji (ImageJ) and CellProfiler.

  18. Assessment of CT image quality using a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Reginatto, M.; Anton, M.; Elster, C.

    2017-08-01

    One of the most promising approaches for evaluating CT image quality is task-specific quality assessment. This involves a simplified version of a clinical task, e.g. deciding whether an image belongs to the class of images that contain the signature of a lesion or not. Task-specific quality assessment can be done by model observers, which are mathematical procedures that carry out the classification task. The most widely used figure of merit for CT image quality is the area under the ROC curve (AUC), a quantity which characterizes the performance of a given model observer. In order to estimate AUC from a finite sample of images, different approaches from classical statistics have been suggested. The goal of this paper is to introduce task-specific quality assessment of CT images to metrology and to propose a novel Bayesian estimation of AUC for the channelized Hotelling observer (CHO) applied to the task of detecting a lesion at a known image location. It is assumed that signal-present and signal-absent images follow multivariate normal distributions with the same covariance matrix. The Bayesian approach results in a posterior distribution for the AUC of the CHO which provides in addition a complete characterization of the uncertainty of this figure of merit. The approach is illustrated by its application to both simulated and experimental data.

  19. Radiation dose reduction in abdominal computed tomography during the late hepatic arterial phase using a model-based iterative reconstruction algorithm: how low can we go?

    PubMed

    Husarik, Daniela B; Marin, Daniele; Samei, Ehsan; Richard, Samuel; Chen, Baiyu; Jaffe, Tracy A; Bashir, Mustafa R; Nelson, Rendon C

    2012-08-01

    The aim of this study was to compare the image quality of abdominal computed tomography scans in an anthropomorphic phantom acquired at different radiation dose levels where each raw data set is reconstructed with both a standard convolution filtered back projection (FBP) and a full model-based iterative reconstruction (MBIR) algorithm. An anthropomorphic phantom in 3 sizes was used with a custom-built liver insert simulating late hepatic arterial enhancement and containing hypervascular liver lesions of various sizes. Imaging was performed on a 64-section multidetector-row computed tomography scanner (Discovery CT750 HD; GE Healthcare, Waukesha, WI) at 3 different tube voltages for each patient size and 5 incrementally decreasing tube current-time products for each tube voltage. Quantitative analysis consisted of contrast-to-noise ratio calculations and image noise assessment. Qualitative image analysis was performed by 3 independent radiologists rating subjective image quality and lesion conspicuity. Contrast-to-noise ratio was significantly higher and mean image noise was significantly lower on MBIR images than on FBP images in all patient sizes, at all tube voltage settings, and all radiation dose levels (P < 0.05). Overall image quality and lesion conspicuity were rated higher for MBIR images compared with FBP images at all radiation dose levels. Image quality and lesion conspicuity on 25% to 50% dose MBIR images were rated equal to full-dose FBP images. This phantom study suggests that depending on patient size, clinically acceptable image quality of the liver in the late hepatic arterial phase can be achieved with MBIR at approximately 50% lower radiation dose compared with FBP.

  20. Application of Oversampling to obtain the MTF of Digital Radiology Equipment.

    NASA Astrophysics Data System (ADS)

    Narváez, M.; Graffigna, J. P.; Gómez, M. E.; Romo, R.

    2016-04-01

    Within the objectives of theproject Medical Image Processing for QualityAssessment ofX Ray Imaging, the present research work is aimed at developinga phantomX ray image and itsassociated processing algorithms in order to evaluatethe image quality rendered by digital X ray equipment. These tools are used to measure various image parameters, among which spatial resolution shows afundamental property that can be characterized by the Modulation Transfer Function (MTF)of an imaging system [1]. After performing a thorough literature surveyon imaging quality control in digital X film in Argentine and international publications, it was decided to adopt for this work the Norm IEC 62220 1:2003 that recommends using an image edge as a testingmethod. In order to obtain the characterizing MTF, a protocol was designedfor unifying the conditions under which the images are acquired for later evaluation. The protocol implied acquiring a radiography image by means of a specific referential technique, i.e. referred either to voltage, current, time, distance focus plate (/film?) distance, or other referential parameter, and to interpret the image through a system of computed radiology or direct digital radiology. The contribution of the work stems from the fact that, even though the traditional way of evaluating an X film image quality has relied mostly on subjective methods, this work presents an objective evaluative toolfor the images obtained with a givenequipment, followed by a contrastive analysis with the renderings from other X filmimaging sets.Once the images were obtained, specific calculations were carried out. Though there exist some methods based on the subjective evaluation of the quality of image, this work offers an objective evaluation of the equipment under study. Finally, we present the results obtained on different equipment.

  1. Cardiac cine imaging at 3 Tesla: initial experience with a 32-element body-array coil.

    PubMed

    Fenchel, Michael; Deshpande, Vibhas S; Nael, Kambiz; Finn, J Paul; Miller, Stephan; Ruehm, Stefan; Laub, Gerhard

    2006-08-01

    We sought to assess the feasibility of cardiac cine imaging and evaluate image quality at 3 T using a body-array coil with 32 coil elements. Eight healthy volunteers (3 men; median age 29 years) were examined on a 3-T magnetic resonance scanner (Magnetom Trio, Siemens Medical Solutions) using a 32-element phased-array coil (prototype from In vivo Corp.). Gradient-recalled-echo (GRE) cine (GRAPPAx3), GRE cine with tagging lines, steady-state-free-precession (SSFP) cine (GRAPPAx3 and x4), and SSFP cine(TSENSEx4 andx6) images were acquired in short-axis and 4-chamber view. Reference images with identical scan parameters were acquired using the total-imaging-matrix (Tim) coil system with a total of 12 coil elements. Images were assessed by 2 observers in a consensus reading with regard to image quality, noise and presence of artifacts. Furthermore, signal-to-noise values were determined in phantom measurements. In phantom measurements signal-to-noise values were increased by 115-155% for the various cine sequences using the 32-element coil. Scoring of image quality yielded statistically significant increased image quality with the SSFP-GRAPPAx4, SSFP-TSENSEx4, and SSFP-TSENSEx6 sequence using the 32-element coil (P < 0.05). Similarly, scoring of image noise yielded a statistically significant lower noise rating with the SSFP-GRAPPAx4, GRE-GRAPPAx3, SSFP-TSENSEx4, and SSFP-TSENSEx6 sequence using the 32-element coil (P < 0.05). This study shows that cardiac cine imaging at 3 T using a 32-element body-array coil is feasible in healthy volunteers. Using a large number of coil elements with a favorable sensitivity profile supports faster image acquisition, with high diagnostic image quality even for high parallel imaging factors.

  2. Dose reduction in abdominal computed tomography: intraindividual comparison of image quality of full-dose standard and half-dose iterative reconstructions with dual-source computed tomography.

    PubMed

    May, Matthias S; Wüst, Wolfgang; Brand, Michael; Stahl, Christian; Allmendinger, Thomas; Schmidt, Bernhard; Uder, Michael; Lell, Michael M

    2011-07-01

    We sought to evaluate the image quality of iterative reconstruction in image space (IRIS) in half-dose (HD) datasets compared with full-dose (FD) and HD filtered back projection (FBP) reconstruction in abdominal computed tomography (CT). To acquire data with FD and HD simultaneously, contrast-enhanced abdominal CT was performed with a dual-source CT system, both tubes operating at 120 kV, 100 ref.mAs, and pitch 0.8. Three different image datasets were reconstructed from the raw data: Standard FD images applying FBP which served as reference, HD images applying FBP and HD images applying IRIS. For the HD data sets, only data from 1 tube detector-system was used. Quantitative image quality analysis was performed by measuring image noise in tissue and air. Qualitative image quality was evaluated according to the European Guidelines on Quality criteria for CT. Additional assessment of artifacts, lesion conspicuity, and edge sharpness was performed. : Image noise in soft tissue was substantially decreased in HD-IRIS (-3.4 HU, -22%) and increased in HD-FBP (+6.2 HU, +39%) images when compared with the reference (mean noise, 15.9 HU). No significant differences between the FD-FBP and HD-IRIS images were found for the visually sharp anatomic reproduction, overall diagnostic acceptability (P = 0.923), lesion conspicuity (P = 0.592), and edge sharpness (P = 0.589), while HD-FBP was rated inferior. Streak artifacts and beam hardening was significantly more prominent in HD-FBP while HD-IRIS images exhibited a slightly different noise pattern. Direct intrapatient comparison of standard FD body protocols and HD-IRIS reconstruction suggest that the latest iterative reconstruction algorithms allow for approximately 50% dose reduction without deterioration of the high image quality necessary for confident diagnosis.

  3. Prior Image Constrained Compressed Sensing Metal Artifact Reduction (PICCS-MAR): 2D and 3D Image Quality Improvement with Hip Prostheses at CT Colonography.

    PubMed

    Bannas, Peter; Li, Yinsheng; Motosugi, Utaroh; Li, Ke; Lubner, Meghan; Chen, Guang-Hong; Pickhardt, Perry J

    2016-07-01

    To assess the effect of the prior-image-constrained-compressed-sensing-based metal-artefact-reduction (PICCS-MAR) algorithm on streak artefact reduction and 2D and 3D-image quality improvement in patients with total hip arthroplasty (THA) undergoing CT colonography (CTC). PICCS-MAR was applied to filtered-back-projection (FBP)-reconstructed DICOM CTC-images in 52 patients with THA (unilateral, n = 30; bilateral, n = 22). For FBP and PICCS-MAR series, ROI-measurements of CT-numbers were obtained at predefined levels for fat, muscle, air, and the most severe artefact. Two radiologists independently reviewed 2D and 3D CTC-images and graded artefacts and image quality using a five-point-scale (1 = severe streak/no-diagnostic confidence, 5 = no streak/excellent image-quality, high-confidence). Results were compared using paired and unpaired t-tests and Wilcoxon signed-rank and Mann-Whitney-tests. Streak artefacts and image quality scores for FBP versus PICCS-MAR 2D-images (median: 1 vs. 3 and 2 vs. 3, respectively) and 3D images (median: 2 vs. 4 and 3 vs. 4, respectively) showed significant improvement after PICCS-MAR (all P < 0.001). PICCS-MAR significantly improved the accuracy of mean CT numbers for fat, muscle and the area with the most severe artefact (all P < 0.001). PICCS-MAR substantially reduces streak artefacts related to THA on DICOM images, thereby enhancing visualization of anatomy on 2D and 3D CTC images and increasing diagnostic confidence. • PICCS-MAR significantly reduces streak artefacts associated with total hip arthroplasty on 2D and 3D CTC. • PICCS-MAR significantly improves 2D and 3D CTC image quality and diagnostic confidence. • PICCS-MAR can be applied retrospectively to DICOM images from single-kVp CT.

  4. Image Quality Assessment of JPEG Compressed Mars Science Laboratory Mastcam Images using Convolutional Neural Networks

    NASA Astrophysics Data System (ADS)

    Kerner, H. R.; Bell, J. F., III; Ben Amor, H.

    2017-12-01

    The Mastcam color imaging system on the Mars Science Laboratory Curiosity rover acquires images within Gale crater for a variety of geologic and atmospheric studies. Images are often JPEG compressed before being downlinked to Earth. While critical for transmitting images on a low-bandwidth connection, this compression can result in image artifacts most noticeable as anomalous brightness or color changes within or near JPEG compression block boundaries. In images with significant high-frequency detail (e.g., in regions showing fine layering or lamination in sedimentary rocks), the image might need to be re-transmitted losslessly to enable accurate scientific interpretation of the data. The process of identifying which images have been adversely affected by compression artifacts is performed manually by the Mastcam science team, costing significant expert human time. To streamline the tedious process of identifying which images might need to be re-transmitted, we present an input-efficient neural network solution for predicting the perceived quality of a compressed Mastcam image. Most neural network solutions require large amounts of hand-labeled training data for the model to learn the target mapping between input (e.g. distorted images) and output (e.g. quality assessment). We propose an automatic labeling method using joint entropy between a compressed and uncompressed image to avoid the need for domain experts to label thousands of training examples by hand. We use automatically labeled data to train a convolutional neural network to estimate the probability that a Mastcam user would find the quality of a given compressed image acceptable for science analysis. We tested our model on a variety of Mastcam images and found that the proposed method correlates well with image quality perception by science team members. When assisted by our proposed method, we estimate that a Mastcam investigator could reduce the time spent reviewing images by a minimum of 70%.

  5. The Importance of Quality in Ventilation-Perfusion Imaging.

    PubMed

    Mann, April; DiDea, Mario; Fournier, France; Tempesta, Daniel; Williams, Jessica; LaFrance, Norman

    2018-06-01

    As the health care environment continues to change and morph into a system focusing on increased quality and evidence-based outcomes, nuclear medicine technologists must be reminded that they play a critical role in achieving high-quality, interpretable images used to drive patient care, treatment, and best possible outcomes. A survey performed by the Quality Committee of the Society of Nuclear Medicine and Molecular Imaging Technologist Section demonstrated that a clear knowledge gap exists among technologists regarding their understanding of quality, how it is measured, and how it should be achieved by all practicing technologists regardless of role and education level. Understanding of these areas within health care, in conjunction with the growing emphasis on evidence-based outcomes, quality measures, and patient satisfaction, will ultimately elevate the role of nuclear medicine technologists today and into the future. The nuclear medicine role now requires technologists to demonstrate patient assessment skills, practice safety procedures with regard to staff and patients, provide patient education and instruction, and provide physicians with information to assist with the interpretation and outcome of the study. In addition, the technologist must be able to evaluate images by performing technical analysis, knowing the demonstrated anatomy and pathophysiology, and assessing overall quality. Technologists must also be able to triage and understand the disease processes being evaluated and how nuclear medicine diagnostic studies may drive care and treatment. Therefore, it is imperative that nuclear medicine technologists understand their role in the achievement of a high-quality, interpretable study by applying quality principles and understanding and using imaging techniques beyond just basic protocols for every type of disease or system being imaged. This article focuses on quality considerations related to ventilation-perfusion imaging. It provides insight on appropriate imaging techniques and protocols, true imaging variants and tracer distributions versus artifacts that may result in a lower-quality or misinterpreted study, and the use of SPECT and SPECT/CT as an alternative providing a high-quality, interpretable study with better diagnostic accuracy and fewer nondiagnostic procedures than historical planar imaging. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  6. An evaluation of image quality and accuracy of eye bank measurement of donor cornea endothelial cell density in the Specular Microscopy Ancillary Study.

    PubMed

    Lass, Jonathan H; Gal, Robin L; Ruedy, Katrina J; Benetz, Beth Ann; Beck, Roy W; Baratz, Keith H; Holland, Edward J; Kalajian, Andrea; Kollman, Craig; Manning, Francis J; Mannis, Mark J; McCoy, Kristen; Montoya, Monty; Stulting, Doyle; Xing, Dongyuan

    2005-03-01

    The Specular Microscopy Ancillary Study was designed to examine donor corneal endothelial specular image quality, compare the central endothelial cell density determined by eye banks with the endothelial cell density determined by a central specular microscopy reading center, and evaluate donor factors that may have an impact on specular image quality and endothelial cell density accuracy. Nonrandomized comparative trial. Endothelial specular images of donor corneas assigned in the Cornea Donor Study. Certified readers assessed donor image quality (analyzable from fair to excellent vs. unanalyzable) and determined the central endothelial cell density. Independent adjudication was performed if there was a difference in the quality of grading or if the endothelial cell density varied by > or =5.0% between readers. Average reading center-determined endothelial cell density was compared with the endothelial cell density determined by each eye bank. Evaluation of image quality and accuracy of endothelial cell density. Of 688 donor endothelial images submitted by 23 eye banks, 663 (96%) were analyzable (excellent, 40 [6%]; good, 302 [44%]; fair, 321 [47%]), and 25 (4%) were unanalyzable by reading center standards. In situ retrieval and greater epithelial exposure correlated with a higher image quality grading. The eye bank-determined endothelial cell density of 434 of the 663 (65%) analyzable images were within 10% of the endothelial cell density determined by the reading center, whereas 185 (28%) were more than 10% higher and 44 (7%) were more than 10% lower. Greater variation in endothelial cell density between the eye banks and the reading center was observed with shorter time of death to preservation, presence of an epithelial defect, folds in Descemet's membrane, lower image quality, and the use of fixed-frame or center method endothelial cell density analysis. Overall, donor endothelial specular image quality and accuracy of endothelial cell density determination were good. However, the data suggest that factors that may affect image quality and contribute to variation in interpretation of the endothelial cell density should be addressed, because the donor endothelial cell density is an important parameter for assessing long-term corneal graft survival.

  7. INCITS W1.1 development update: appearance-based image quality standards for printers

    NASA Astrophysics Data System (ADS)

    Zeise, Eric K.; Rasmussen, D. René; Ng, Yee S.; Dalal, Edul; McCarthy, Ann; Williams, Don

    2008-01-01

    In September 2000, INCITS W1 (the U.S. representative of ISO/IEC JTC1/SC28, the standardization committee for office equipment) was chartered to develop an appearance-based image quality standard. (1),(2) The resulting W1.1 project is based on a proposal (3) that perceived image quality can be described by a small set of broad-based attributes. There are currently six ad hoc teams, each working towards the development of standards for evaluation of perceptual image quality of color printers for one or more of these image quality attributes. This paper summarizes the work in progress of the teams addressing the attributes of Macro-Uniformity, Colour Rendition, Gloss & Gloss Uniformity, Text & Line Quality and Effective Resolution.

  8. Clinical evaluation of watermarked medical images.

    PubMed

    Zain, Jasni M; Fauzi, Abdul M; Aziz, Azian A

    2006-01-01

    Digital watermarking medical images provides security to the images. The purpose of this study was to see whether digitally watermarked images changed clinical diagnoses when assessed by radiologists. We embedded 256 bits watermark to various medical images in the region of non-interest (RONI) and 480K bits in both region of interest (ROI) and RONI. Our results showed that watermarking medical images did not alter clinical diagnoses. In addition, there was no difference in image quality when visually assessed by the medical radiologists. We therefore concluded that digital watermarking medical images were safe in terms of preserving image quality for clinical purposes.

  9. Real-time computer treatment of THz passive device images with the high image quality

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.

    2012-06-01

    We demonstrate real-time computer code improving significantly the quality of images captured by the passive THz imaging system. The code is not only designed for a THz passive device: it can be applied to any kind of such devices and active THz imaging systems as well. We applied our code for computer processing of images captured by four passive THz imaging devices manufactured by different companies. It should be stressed that computer processing of images produced by different companies requires using the different spatial filters usually. The performance of current version of the computer code is greater than one image per second for a THz image having more than 5000 pixels and 24 bit number representation. Processing of THz single image produces about 20 images simultaneously corresponding to various spatial filters. The computer code allows increasing the number of pixels for processed images without noticeable reduction of image quality. The performance of the computer code can be increased many times using parallel algorithms for processing the image. We develop original spatial filters which allow one to see objects with sizes less than 2 cm. The imagery is produced by passive THz imaging devices which captured the images of objects hidden under opaque clothes. For images with high noise we develop an approach which results in suppression of the noise after using the computer processing and we obtain the good quality image. With the aim of illustrating the efficiency of the developed approach we demonstrate the detection of the liquid explosive, ordinary explosive, knife, pistol, metal plate, CD, ceramics, chocolate and other objects hidden under opaque clothes. The results demonstrate the high efficiency of our approach for the detection of hidden objects and they are a very promising solution for the security problem.

  10. JPEG and wavelet compression of ophthalmic images

    NASA Astrophysics Data System (ADS)

    Eikelboom, Robert H.; Yogesan, Kanagasingam; Constable, Ian J.; Barry, Christopher J.

    1999-05-01

    This study was designed to determine the degree and methods of digital image compression to produce ophthalmic imags of sufficient quality for transmission and diagnosis. The photographs of 15 subjects, which inclined eyes with normal, subtle and distinct pathologies, were digitized to produce 1.54MB images and compressed to five different methods: (i) objectively by calculating the RMS error between the uncompressed and compressed images, (ii) semi-subjectively by assessing the visibility of blood vessels, and (iii) subjectively by asking a number of experienced observers to assess the images for quality and clinical interpretation. Results showed that as a function of compressed image size, wavelet compressed images produced less RMS error than JPEG compressed images. Blood vessel branching could be observed to a greater extent after Wavelet compression compared to JPEG compression produced better images then a JPEG compression for a given image size. Overall, it was shown that images had to be compressed to below 2.5 percent for JPEG and 1.7 percent for Wavelet compression before fine detail was lost, or when image quality was too poor to make a reliable diagnosis.

  11. Comparison of virtual monoenergetic and polyenergetic images reconstructed from dual-layer detector CT angiography of the head and neck.

    PubMed

    Neuhaus, Victor; Große Hokamp, Nils; Abdullayev, Nuran; Maus, Volker; Kabbasch, Christoph; Mpotsaris, Anastasios; Maintz, David; Borggrefe, Jan

    2018-03-01

    To compare the image quality of virtual monoenergetic images and polyenergetic images reconstructed from dual-layer detector CT angiography (DLCTA). Thirty patients who underwent DLCTA of the head and neck were retrospectively identified and polyenergetic as well as virtual monoenergetic images (40 to 120 keV) were reconstructed. Signals (± SD) of the cervical and cerebral vessels as well as lateral pterygoid muscle and the air surrounding the head were measured to calculate the CNR and SNR. In addition, subjective image quality was assessed using a 5-point Likert scale. Student's t-test and Wilcoxon test were used to determine statistical significance. Compared to polyenergetic images, although noise increased with lower keV, CNR (p < 0.02) and SNR (p > 0.05) of the cervical, petrous and intracranial vessels were improved in virtual monoenergetic images at 40 keV and virtual monoenergetic images at 45 keV were also rated superior regarding vascular contrast, assessment of arteries close to the skull base and small arterial branches (p < 0.0001 each). Compared to polyenergetic images, virtual monoenergetic images reconstructed from DLCTA at low keV ranging from 40 to 45 keV improve the objective and subjective image quality of extra- and intracranial vessels and facilitate assessment of vessels close to the skull base and of small arterial branches. • Virtual monoenergetic images greatly improve attenuation, while noise only slightly increases. • Virtual monoenergetic images show superior contrast-to-noise ratios compared to polyenergetic images. • Virtual monoenergetic images significantly improve image quality at low keV.

  12. The National Library of Medicine Pill Image Recognition Challenge: An Initial Report.

    PubMed

    Yaniv, Ziv; Faruque, Jessica; Howe, Sally; Dunn, Kathel; Sharlip, David; Bond, Andrew; Perillan, Pablo; Bodenreider, Olivier; Ackerman, Michael J; Yoo, Terry S

    2016-10-01

    In January 2016 the U.S. National Library of Medicine announced a challenge competition calling for the development and discovery of high-quality algorithms and software that rank how well consumer images of prescription pills match reference images of pills in its authoritative RxIMAGE collection. This challenge was motivated by the need to easily identify unknown prescription pills both by healthcare personnel and the general public. Potential benefits of this capability include confirmation of the pill in settings where the documentation and medication have been separated, such as in a disaster or emergency; and confirmation of a pill when the prescribed medication changes from brand to generic, or for any other reason the shape and color of the pill change. The data for the competition consisted of two types of images, high quality macro photographs, reference images, and consumer quality photographs of the quality we expect users of a proposed application to acquire. A training dataset consisting of 2000 reference images and 5000 corresponding consumer quality images acquired from 1000 pills was provided to challenge participants. A second dataset acquired from 1000 pills with similar distributions of shape and color was reserved as a segregated testing set. Challenge submissions were required to produce a ranking of the reference images, given a consumer quality image as input. Determination of the winning teams was done using the mean average precision quality metric, with the three winners obtaining mean average precision scores of 0.27, 0.09, and 0.08. In the retrieval results, the correct image was amongst the top five ranked images 43%, 12%, and 11% of the time, out of 5000 query/consumer images. This is an initial promising step towards development of an NLM software system and application-programming interface facilitating pill identification. The training dataset will continue to be freely available online at: http://pir.nlm.nih.gov/challenge/submission.html.

  13. Computational ghost imaging using deep learning

    NASA Astrophysics Data System (ADS)

    Shimobaba, Tomoyoshi; Endo, Yutaka; Nishitsuji, Takashi; Takahashi, Takayuki; Nagahama, Yuki; Hasegawa, Satoki; Sano, Marie; Hirayama, Ryuji; Kakue, Takashi; Shiraki, Atsushi; Ito, Tomoyoshi

    2018-04-01

    Computational ghost imaging (CGI) is a single-pixel imaging technique that exploits the correlation between known random patterns and the measured intensity of light transmitted (or reflected) by an object. Although CGI can obtain two- or three-dimensional images with a single or a few bucket detectors, the quality of the reconstructed images is reduced by noise due to the reconstruction of images from random patterns. In this study, we improve the quality of CGI images using deep learning. A deep neural network is used to automatically learn the features of noise-contaminated CGI images. After training, the network is able to predict low-noise images from new noise-contaminated CGI images.

  14. Image reconstruction: an overview for clinicians.

    PubMed

    Hansen, Michael S; Kellman, Peter

    2015-03-01

    Image reconstruction plays a critical role in the clinical use of magnetic resonance imaging (MRI). The MRI raw data is not acquired in image space and the role of the image reconstruction process is to transform the acquired raw data into images that can be interpreted clinically. This process involves multiple signal processing steps that each have an impact on the image quality. This review explains the basic terminology used for describing and quantifying image quality in terms of signal-to-noise ratio and point spread function. In this context, several commonly used image reconstruction components are discussed. The image reconstruction components covered include noise prewhitening for phased array data acquisition, interpolation needed to reconstruct square pixels, raw data filtering for reducing Gibbs ringing artifacts, Fourier transforms connecting the raw data with image space, and phased array coil combination. The treatment of phased array coils includes a general explanation of parallel imaging as a coil combination technique. The review is aimed at readers with no signal processing experience and should enable them to understand what role basic image reconstruction steps play in the formation of clinical images and how the resulting image quality is described. © 2014 Wiley Periodicals, Inc.

  15. The Effect of Image Quality, Repeated Study, and Assessment Method on Anatomy Learning

    ERIC Educational Resources Information Center

    Fenesi, Barbara; Mackinnon, Chelsea; Cheng, Lucia; Kim, Joseph A.; Wainman, Bruce C.

    2017-01-01

    The use of two-dimensional (2D) images is consistently used to prepare anatomy students for handling real specimen. This study examined whether the quality of 2D images is a critical component in anatomy learning. The visual clarity and consistency of 2D anatomical images was systematically manipulated to produce low-quality and high-quality…

  16. The influence of familiar characters and other appealing images on young children's preference for low-quality objects.

    PubMed

    Danovitch, Judith H; Mills, Candice M

    2017-09-01

    This study examines the factors underlying young children's preference for products bearing a familiar character's image. Three-year-olds (N = 92) chose between low-quality objects with images on or near the objects and high-quality objects without images. Children showed stronger preferences for damaged objects bearing images of a preferred familiar character than for objects bearing images of a preferred colour star, and they showed weak preferences for damaged objects with the character near, but not on, the object. The results suggest that children's preference for low-quality products bearing character images is driven by prior exposure to characters, and not only by the act of identifying a favourite. Statement of contribution What is already known on this subject? Children are exposed to characters in the media and on products such as clothing and school supplies. Products featuring familiar characters appeal to preschool children, even if they are of low quality. What does this study add? Three-year-olds prefer damaged objects with an image of a favourite character over plain undamaged objects. Children's preference is not solely a function of having identified a favourite image or of attentional cues. © 2017 The British Psychological Society.

  17. Quantitative assessment on coronary computed tomography angiography (CCTA) image quality: comparisons between genders and different tube voltage settings.

    PubMed

    Chian, Teo Chee; Nassir, Norziana Mat; Ibrahim, Mohd Izuan; Yusof, Ahmad Khairuddin Md; Sabarudin, Akmal

    2017-02-01

    This study was carried out to quantify and compare the quantitative image quality of coronary computed tomography angiography (CCTA) between genders as well as between different tube voltages scan protocols. Fifty-five cases of CCTA were collected retrospectively and all images including reformatted axial images at systolic and diastolic phases as well as images with curved multi planar reformation (cMPR) were obtained. Quantitative image quality including signal intensity, image noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of right coronary artery (RCA), left anterior descending artery (LAD), left circumflex artery (LCx) and left main artery (LM) were quantified using Analyze 12.0 software. Six hundred and fifty-seven coronary arteries were evaluated. There were no significant differences in any quantitative image quality parameters between genders. 100 kilovoltage peak (kVp) scanning protocol produced images with significantly higher signal intensity compared to 120 kVp scanning protocol (P<0.001) in all coronary arteries in all types of images. Higher SNR was also observed in 100 kVp scan protocol in all coronary arteries except in LCx where 120 kVp showed better SNR than 100 kVp. There were no significant differences in image quality of CCTA between genders and different tube voltages. Lower tube voltage (100 kVp) scanning protocol is recommended in clinical practice to reduce the radiation dose to patient.

  18. A consistency evaluation of signal-to-noise ratio in the quality assessment of human brain magnetic resonance images.

    PubMed

    Yu, Shaode; Dai, Guangzhe; Wang, Zhaoyang; Li, Leida; Wei, Xinhua; Xie, Yaoqin

    2018-05-16

    Quality assessment of medical images is highly related to the quality assurance, image interpretation and decision making. As to magnetic resonance (MR) images, signal-to-noise ratio (SNR) is routinely used as a quality indicator, while little knowledge is known of its consistency regarding different observers. In total, 192, 88, 76 and 55 brain images are acquired using T 2 * , T 1 , T 2 and contrast-enhanced T 1 (T 1 C) weighted MR imaging sequences, respectively. To each imaging protocol, the consistency of SNR measurement is verified between and within two observers, and white matter (WM) and cerebral spinal fluid (CSF) are alternately used as the tissue region of interest (TOI) for SNR measurement. The procedure is repeated on another day within 30 days. At first, overlapped voxels in TOIs are quantified with Dice index. Then, test-retest reliability is assessed in terms of intra-class correlation coefficient (ICC). After that, four models (BIQI, BLIINDS-II, BRISQUE and NIQE) primarily used for the quality assessment of natural images are borrowed to predict the quality of MR images. And in the end, the correlation between SNR values and predicted results is analyzed. To the same TOI in each MR imaging sequence, less than 6% voxels are overlapped between manual delineations. In the quality estimation of MR images, statistical analysis indicates no significant difference between observers (Wilcoxon rank sum test, p w  ≥ 0.11; paired-sample t test, p p  ≥ 0.26), and good to very good intra- and inter-observer reliability are found (ICC, p icc  ≥ 0.74). Furthermore, Pearson correlation coefficient (r p ) suggests that SNR wm correlates strongly with BIQI, BLIINDS-II and BRISQUE in T 2 * (r p  ≥ 0.78), BRISQUE and NIQE in T 1 (r p  ≥ 0.77), BLIINDS-II in T 2 (r p  ≥ 0.68) and BRISQUE and NIQE in T 1 C (r p  ≥ 0.62) weighted MR images, while SNR csf correlates strongly with BLIINDS-II in T 2 * (r p  ≥ 0.63) and in T 2 (r p  ≥ 0.64) weighted MR images. The consistency of SNR measurement is validated regarding various observers and MR imaging protocols. When SNR measurement performs as the quality indicator of MR images, BRISQUE and BLIINDS-II can be conditionally used for the automated quality estimation of human brain MR images.

  19. Image quality prediction - An aid to the Viking lander imaging investigation on Mars

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Wall, S. D.

    1976-01-01

    Image quality criteria and image quality predictions are formulated for the multispectral panoramic cameras carried by the Viking Mars landers. Image quality predictions are based on expected camera performance, Mars surface radiance, and lighting and viewing geometry (fields of view, Mars lander shadows, solar day-night alternation), and are needed in diagnosis of camera performance, in arriving at a preflight imaging strategy, and revision of that strategy should the need arise. Landing considerations, camera control instructions, camera control logic, aspects of the imaging process (spectral response, spatial response, sensitivity), and likely problems are discussed. Major concerns include: degradation of camera response by isotope radiation, uncertainties in lighting and viewing geometry and in landing site local topography, contamination of camera window by dust abrasion, and initial errors in assigning camera dynamic ranges (gains and offsets).

  20. An image compression algorithm for a high-resolution digital still camera

    NASA Technical Reports Server (NTRS)

    Nerheim, Rosalee

    1989-01-01

    The Electronic Still Camera (ESC) project will provide for the capture and transmission of high-quality images without the use of film. The image quality will be superior to video and will approach the quality of 35mm film. The camera, which will have the same general shape and handling as a 35mm camera, will be able to send images to earth in near real-time. Images will be stored in computer memory (RAM) in removable cartridges readable by a computer. To save storage space, the image will be compressed and reconstructed at the time of viewing. Both lossless and loss-y image compression algorithms are studied, described, and compared.

  1. Effective deep learning training for single-image super-resolution in endomicroscopy exploiting video-registration-based reconstruction.

    PubMed

    Ravì, Daniele; Szczotka, Agnieszka Barbara; Shakir, Dzhoshkun Ismail; Pereira, Stephen P; Vercauteren, Tom

    2018-06-01

    Probe-based confocal laser endomicroscopy (pCLE) is a recent imaging modality that allows performing in vivo optical biopsies. The design of pCLE hardware, and its reliance on an optical fibre bundle, fundamentally limits the image quality with a few tens of thousands fibres, each acting as the equivalent of a single-pixel detector, assembled into a single fibre bundle. Video registration techniques can be used to estimate high-resolution (HR) images by exploiting the temporal information contained in a sequence of low-resolution (LR) images. However, the alignment of LR frames, required for the fusion, is computationally demanding and prone to artefacts. In this work, we propose a novel synthetic data generation approach to train exemplar-based Deep Neural Networks (DNNs). HR pCLE images with enhanced quality are recovered by the models trained on pairs of estimated HR images (generated by the video registration algorithm) and realistic synthetic LR images. Performance of three different state-of-the-art DNNs techniques were analysed on a Smart Atlas database of 8806 images from 238 pCLE video sequences. The results were validated through an extensive image quality assessment that takes into account different quality scores, including a Mean Opinion Score (MOS). Results indicate that the proposed solution produces an effective improvement in the quality of the obtained reconstructed image. The proposed training strategy and associated DNNs allows us to perform convincing super-resolution of pCLE images.

  2. Performance evaluation of no-reference image quality metrics for face biometric images

    NASA Astrophysics Data System (ADS)

    Liu, Xinwei; Pedersen, Marius; Charrier, Christophe; Bours, Patrick

    2018-03-01

    The accuracy of face recognition systems is significantly affected by the quality of face sample images. The recent established standardization proposed several important aspects for the assessment of face sample quality. There are many existing no-reference image quality metrics (IQMs) that are able to assess natural image quality by taking into account similar image-based quality attributes as introduced in the standardization. However, whether such metrics can assess face sample quality is rarely considered. We evaluate the performance of 13 selected no-reference IQMs on face biometrics. The experimental results show that several of them can assess face sample quality according to the system performance. We also analyze the strengths and weaknesses of different IQMs as well as why some of them failed to assess face sample quality. Retraining an original IQM by using face database can improve the performance of such a metric. In addition, the contribution of this paper can be used for the evaluation of IQMs on other biometric modalities; furthermore, it can be used for the development of multimodality biometric IQMs.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Lucy M.; Mackenzie, Alistair; Cooke, Julie

    Purpose: This study aims to investigate if microcalcification detection varies significantly when mammographic images are acquired using different image qualities, including: different detectors, dose levels, and different image processing algorithms. An additional aim was to determine how the standard European method of measuring image quality using threshold gold thickness measured with a CDMAM phantom and the associated limits in current EU guidelines relate to calcification detection. Methods: One hundred and sixty two normal breast images were acquired on an amorphous selenium direct digital (DR) system. Microcalcification clusters extracted from magnified images of slices of mastectomies were electronically inserted into halfmore » of the images. The calcification clusters had a subtle appearance. All images were adjusted using a validated mathematical method to simulate the appearance of images from a computed radiography (CR) imaging system at the same dose, from both systems at half this dose, and from the DR system at quarter this dose. The original 162 images were processed with both Hologic and Agfa (Musica-2) image processing. All other image qualities were processed with Agfa (Musica-2) image processing only. Seven experienced observers marked and rated any identified suspicious regions. Free response operating characteristic (FROC) and ROC analyses were performed on the data. The lesion sensitivity at a nonlesion localization fraction (NLF) of 0.1 was also calculated. Images of the CDMAM mammographic test phantom were acquired using the automatic setting on the DR system. These images were modified to the additional image qualities used in the observer study. The images were analyzed using automated software. In order to assess the relationship between threshold gold thickness and calcification detection a power law was fitted to the data. Results: There was a significant reduction in calcification detection using CR compared with DR: the alternative FROC (AFROC) area decreased from 0.84 to 0.63 and the ROC area decreased from 0.91 to 0.79 (p < 0.0001). This corresponded to a 30% drop in lesion sensitivity at a NLF equal to 0.1. Detection was also sensitive to the dose used. There was no significant difference in detection between the two image processing algorithms used (p > 0.05). It was additionally found that lower threshold gold thickness from CDMAM analysis implied better cluster detection. The measured threshold gold thickness passed the acceptable limit set in the EU standards for all image qualities except half dose CR. However, calcification detection varied significantly between image qualities. This suggests that the current EU guidelines may need revising. Conclusions: Microcalcification detection was found to be sensitive to detector and dose used. Standard measurements of image quality were a good predictor of microcalcification cluster detection.« less

  4. Full-reference quality assessment of stereoscopic images by learning binocular receptive field properties.

    PubMed

    Shao, Feng; Li, Kemeng; Lin, Weisi; Jiang, Gangyi; Yu, Mei; Dai, Qionghai

    2015-10-01

    Quality assessment of 3D images encounters more challenges than its 2D counterparts. Directly applying 2D image quality metrics is not the solution. In this paper, we propose a new full-reference quality assessment for stereoscopic images by learning binocular receptive field properties to be more in line with human visual perception. To be more specific, in the training phase, we learn a multiscale dictionary from the training database, so that the latent structure of images can be represented as a set of basis vectors. In the quality estimation phase, we compute sparse feature similarity index based on the estimated sparse coefficient vectors by considering their phase difference and amplitude difference, and compute global luminance similarity index by considering luminance changes. The final quality score is obtained by incorporating binocular combination based on sparse energy and sparse complexity. Experimental results on five public 3D image quality assessment databases demonstrate that in comparison with the most related existing methods, the devised algorithm achieves high consistency with subjective assessment.

  5. Dosimetry and image quality assessment in a direct radiography system

    PubMed Central

    Oliveira, Bruno Beraldo; de Oliveira, Marcio Alves; Paixão, Lucas; Teixeira, Maria Helena Araújo; Nogueira, Maria do Socorro

    2014-01-01

    Objective To evaluate the mean glandular dose with a solid state detector and the image quality in a direct radiography system, utilizing phantoms. Materials and Methods Irradiations were performed with automatic exposure control and polymethyl methacrylate slabs with different thicknesses to calculate glandular dose values. The image quality was evaluated by means of the structures visualized on the images of the phantoms. Results Considering the uncertainty of the measurements, the mean glandular dose results are in agreement with the values provided by the equipment and with internationally adopted reference levels. Results obtained from images of the phantoms were in agreement with the reference values. Conclusion The present study contributes to verify the equipment conformity as regards dose values and image quality. PMID:25741119

  6. A study of image quality for radar image processing. [synthetic aperture radar imagery

    NASA Technical Reports Server (NTRS)

    King, R. W.; Kaupp, V. H.; Waite, W. P.; Macdonald, H. C.

    1982-01-01

    Methods developed for image quality metrics are reviewed with focus on basic interpretation or recognition elements including: tone or color; shape; pattern; size; shadow; texture; site; association or context; and resolution. Seven metrics are believed to show promise as a way of characterizing the quality of an image: (1) the dynamic range of intensities in the displayed image; (2) the system signal-to-noise ratio; (3) the system spatial bandwidth or bandpass; (4) the system resolution or acutance; (5) the normalized-mean-square-error as a measure of geometric fidelity; (6) the perceptual mean square error; and (7) the radar threshold quality factor. Selective levels of degradation are being applied to simulated synthetic radar images to test the validity of these metrics.

  7. Influence of the motion correction algorithm on the quality and interpretability of images of single-source 64-detector coronary CT angiography among patients grouped by heart rate.

    PubMed

    Machida, Haruhiko; Lin, Xiao-Zhu; Fukui, Rika; Shen, Yun; Suzuki, Shigeru; Tanaka, Isao; Ishikawa, Takuya; Tate, Etsuko; Ueno, Eiko

    2015-02-01

    We retrospectively investigated the effect of the motion correction algorithm (MCA) on image quality and interpretability by heart rate (HR) in coronary CT angiography (CCTA). For 105 patients (6 HR groups) undergoing CCTA, 2 readers independently graded the image quality of the 4 major coronary arteries reconstructed with and without MCA at diastole with HR ≤64 bpm and at systole and diastole ≥65 bpm using a 5-point scale. For each HR group and cardiac phase, we compared per-vessel and per-segment image quality using Wilcoxon signed rank test and percentages of interpretable image quality (scores 3-5) among without MCA at diastole with HR ≤64 bpm, as a reference, with MCA at diastole ≤69 bpm and at systole 70-79 bpm using the chi-square test. The motion correction algorithm reconstruction provided similar or better image quality and interpretability in all groups, with 96-100 % per-vessel (P = 0.008 for the right coronary artery; otherwise, P > 0.05) and 99 % per-segment interpretable image quality (P = 0.0002) at diastole with HR ≤69 bpm and at systole 70-79 bpm compared to the reference (88-100 and 97 %, respectively). MCA reconstruction preserved image quality and interpretability of CCTA with HR ≤79 bpm.

  8. The role of imaging specialists as authors of systematic reviews on diagnostic and interventional imaging and its impact on scientific quality: report from the EuroAIM Evidence-based Radiology Working Group.

    PubMed

    Sardanelli, Francesco; Bashir, Humayun; Berzaczy, Dominik; Cannella, Guglielmo; Espeland, Ansgar; Flor, Nicola; Helbich, Thomas; Hunink, Myriam; Malone, Dermot E; Mann, Ritse; Muzzupappa, Claudia; Petersen, Lars J; Riklund, Katrine; Sconfienza, Luca M; Serafin, Zbigniew; Spronk, Sandra; Stoker, Jaap; van Beek, Edwin J R; Vorwerk, Dierk; Di Leo, Giovanni

    2014-08-01

    To evaluate the inclusion of radiologists or nuclear medicine physicians (imaging specialists) as authors of systematic reviews (SRs) on imaging and imaging-guided diagnostic procedures and to determine the impact of imaging specialists' presence as authors on the overall quality of the reviews. A MEDLINE and EMBASE search was performed for SRs of diagnostic and interventional image-guided procedures that were published from January 2001 to December 2010. SRs about procedures primarily performed by nonimaging specialists were excluded. The inclusion of imaging specialists among the SR authors and the frequency of publication in imaging journals were evaluated. The quality of a subset of 200 SRs (100 most recent SRs with imaging specialists as authors and 100 most recent SRs without imaging specialists as authors) was rated by using a 12-item modified assessment of multiple SRs (AMSTAR) evaluation tool. Spearman, χ(2), and Mann-Whitney statistics were used. From among 3258 retrieved citations, 867 SRs were included in the study. Neuroimaging had the largest number of SRs (28% [241 of 867]), 41% (354 of 867) of SRs concerned diagnostic performance, and 26% (228 of 867) of SRs were published in imaging journals. Imaging specialists were authors (in any position) in 330 (38%) of 867 SRs; they were first authors of 176 SRs and last authors of 161 SRs. SRs with imaging specialists as authors were more often published in imaging journals than in nonimaging journals (54% [179 of 330] vs 9% [49 of 537]; P < .001). The median number of modified AMSTAR quality indicators was nine in SRs with imaging specialists as authors, while that in SRs without imaging specialists as authors was seven (P = .003). Only 38% (330 of 867) of SRs on radiology or nuclear medicine-related imaging published from January 2001 to December 2010 included imaging specialists as authors. However, the inclusion of imaging specialists as authors was associated with a significant increase in the scientific quality (as judged by using a modified AMSTAR scale) of the SR.

  9. Fast segmentation and high-quality three-dimensional volume mesh creation from medical images for diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Jermyn, Michael; Ghadyani, Hamid; Mastanduno, Michael A.; Turner, Wes; Davis, Scott C.; Dehghani, Hamid; Pogue, Brian W.

    2013-08-01

    Multimodal approaches that combine near-infrared (NIR) and conventional imaging modalities have been shown to improve optical parameter estimation dramatically and thus represent a prevailing trend in NIR imaging. These approaches typically involve applying anatomical templates from magnetic resonance imaging/computed tomography/ultrasound images to guide the recovery of optical parameters. However, merging these data sets using current technology requires multiple software packages, substantial expertise, significant time-commitment, and often results in unacceptably poor mesh quality for optical image reconstruction, a reality that represents a significant roadblock for translational research of multimodal NIR imaging. This work addresses these challenges directly by introducing automated digital imaging and communications in medicine image stack segmentation and a new one-click three-dimensional mesh generator optimized for multimodal NIR imaging, and combining these capabilities into a single software package (available for free download) with a streamlined workflow. Image processing time and mesh quality benchmarks were examined for four common multimodal NIR use-cases (breast, brain, pancreas, and small animal) and were compared to a commercial image processing package. Applying these tools resulted in a fivefold decrease in image processing time and 62% improvement in minimum mesh quality, in the absence of extra mesh postprocessing. These capabilities represent a significant step toward enabling translational multimodal NIR research for both expert and nonexpert users in an open-source platform.

  10. Influence of reconstruction algorithms on image quality in SPECT myocardial perfusion imaging.

    PubMed

    Davidsson, Anette; Olsson, Eva; Engvall, Jan; Gustafsson, Agnetha

    2017-11-01

    We investigated if image- and diagnostic quality in SPECT MPI could be maintained despite a reduced acquisition time adding Depth Dependent Resolution Recovery (DDRR) for image reconstruction. Images were compared with filtered back projection (FBP) and iterative reconstruction using Ordered Subsets Expectation Maximization with (IRAC) and without (IRNC) attenuation correction (AC). Stress- and rest imaging for 15 min was performed on 21 subjects with a dual head gamma camera (Infinia Hawkeye; GE Healthcare), ECG-gating with 8 frames/cardiac cycle and a low-dose CT-scan. A 9 min acquisition was generated using five instead of eight gated frames and was reconstructed with DDRR, with (IRACRR) and without AC (IRNCRR) as well as with FBP. Three experienced nuclear medicine specialists visually assessed anonymized images according to eight criteria on a four point scale, three related to image quality and five to diagnostic confidence. Statistical analysis was performed using Visual Grading Regression (VGR). Observer confidence in statements on image quality was highest for the images that were reconstructed using DDRR (P<0·01 compared to FBP). Iterative reconstruction without DDRR was not superior to FBP. Interobserver variability was significant for statements on image quality (P<0·05) but lower in the diagnostic statements on ischemia and scar. The confidence in assessing ischemia and scar was not different between the reconstruction techniques (P = n.s.). SPECT MPI collected in 9 min, reconstructed with DDRR and AC, produced better image quality than the standard procedure. The observers expressed the highest diagnostic confidence in the DDRR reconstruction. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  11. Megapixel mythology and photospace: estimating photospace for camera phones from large image sets

    NASA Astrophysics Data System (ADS)

    Hultgren, Bror O.; Hertel, Dirk W.

    2008-01-01

    It is a myth that more pixels alone result in better images. The marketing of camera phones in particular has focused on their pixel numbers. However, their performance varies considerably according to the conditions of image capture. Camera phones are often used in low-light situations where the lack of a flash and limited exposure time will produce underexposed, noisy and blurred images. Camera utilization can be quantitatively described by photospace distributions, a statistical description of the frequency of pictures taken at varying light levels and camera-subject distances. If the photospace distribution is known, the user-experienced distribution of quality can be determined either directly by direct measurement of subjective quality, or by photospace-weighting of objective attributes. The population of a photospace distribution requires examining large numbers of images taken under typical camera phone usage conditions. ImagePhi was developed as a user-friendly software tool to interactively estimate the primary photospace variables, subject illumination and subject distance, from individual images. Additionally, subjective evaluations of image quality and failure modes for low quality images can be entered into ImagePhi. ImagePhi has been applied to sets of images taken by typical users with a selection of popular camera phones varying in resolution. The estimated photospace distribution of camera phone usage has been correlated with the distributions of failure modes. The subjective and objective data show that photospace conditions have a much bigger impact on image quality of a camera phone than the pixel count of its imager. The 'megapixel myth' is thus seen to be less a myth than an ill framed conditional assertion, whose conditions are to a large extent specified by the camera's operational state in photospace.

  12. Survey of the prevalence and methodology of quality assurance for B-mode ultrasound image quality among veterinary sonographers.

    PubMed

    Hoscheit, Larry P; Heng, Hock Gan; Lim, Chee Kin; Weng, Hsin-Yi

    2018-05-01

    Image quality in B-mode ultrasound is important as it reflects the diagnostic accuracy and diagnostic information provided during clinical scanning. Quality assurance programs for B-mode ultrasound systems/components are comprised of initial quality acceptance testing and subsequent regularly scheduled quality control testing. The importance of quality assurance programs for B-mode ultrasound image quality using ultrasound phantoms is well documented in the human medical and medical physics literature. The purpose of this prospective, cross-sectional, survey study was to determine the prevalence and methodology of quality acceptance testing and quality control testing of image quality for ultrasound system/components among veterinary sonographers. An online electronic survey was sent to 1497 members of veterinary imaging organizations: the American College of Veterinary Radiology, the Veterinary Ultrasound Society, and the European Association of Veterinary Diagnostic Imaging, and a total of 167 responses were received. The results showed that the percentages of veterinary sonographers performing quality acceptance testing and quality control testing are 42% (64/151; 95% confidence interval 34-52%) and 26% (40/156: 95% confidence interval 19-33%) respectively. Of the respondents who claimed to have quality acceptance testing or quality control testing of image quality in place for their ultrasound system/components, 0% have performed quality acceptance testing or quality control testing correctly (quality acceptance testing 95% confidence interval: 0-6%, quality control testing 95% confidence interval: 0-11%). Further education and guidelines are recommended for veterinary sonographers in the area of quality acceptance testing and quality control testing for B-mode ultrasound equipment/components. © 2018 American College of Veterinary Radiology.

  13. Improved image quality and diagnostic potential using ultra-high-resolution computed tomography of the lung with small scan FOV: A prospective study

    PubMed Central

    Wang, Yali; Hamal, Preeti; You, Xiaofang; Mao, Haixia; Li, Fei; Sun, Xiwen

    2017-01-01

    The aim of this study was to assess whether CT imaging using an ultra-high-resolution CT (UHRCT) scan with a small scan field of view (FOV) provides higher image quality and helps to reduce the follow-up period compared with a conventional high-resolution CT (CHRCT) scan. We identified patients with at least one pulmonary nodule at our hospital from July 2015 to November 2015. CHRCT and UHRCT scans were conducted in all enrolled patients. Three experienced radiologists evaluated the image quality using a 5-point score and made diagnoses. The paired images were displayed side by side in a random manner and annotations of scan information were removed. The following parameters including image quality, diagnostic confidence of radiologists, follow-up recommendations and diagnostic accuracy were assessed. A total of 52 patients (62 nodules) were included in this study. UHRCT scan provides a better image quality regarding the margin of nodules and solid internal component compared to that of CHRCT (P < 0.05). Readers have higher diagnostic confidence based on the UHRCT images than of CHRCT images (P<0.05). The follow-up recommendations were significantly different between UHRCT and CHRCT images (P<0.05). Compared with the surgical pathological findings, UHRCT had a relative higher diagnostic accuracy than CHRCT (P > 0.05). These findings suggest that the UHRCT prototype scanner provides a better image quality of subsolid nodules compared to CHRCT and contributes significantly to reduce the patients' follow-up period. PMID:28231320

  14. A simple method for low-contrast detectability, image quality and dose optimisation with CT iterative reconstruction algorithms and model observers.

    PubMed

    Bellesi, Luca; Wyttenbach, Rolf; Gaudino, Diego; Colleoni, Paolo; Pupillo, Francesco; Carrara, Mauro; Braghetti, Antonio; Puligheddu, Carla; Presilla, Stefano

    2017-01-01

    The aim of this work was to evaluate detection of low-contrast objects and image quality in computed tomography (CT) phantom images acquired at different tube loadings (i.e. mAs) and reconstructed with different algorithms, in order to find appropriate settings to reduce the dose to the patient without any image detriment. Images of supraslice low-contrast objects of a CT phantom were acquired using different mAs values. Images were reconstructed using filtered back projection (FBP), hybrid and iterative model-based methods. Image quality parameters were evaluated in terms of modulation transfer function; noise, and uniformity using two software resources. For the definition of low-contrast detectability, studies based on both human (i.e. four-alternative forced-choice test) and model observers were performed across the various images. Compared to FBP, image quality parameters were improved by using iterative reconstruction (IR) algorithms. In particular, IR model-based methods provided a 60% noise reduction and a 70% dose reduction, preserving image quality and low-contrast detectability for human radiological evaluation. According to the model observer, the diameters of the minimum detectable detail were around 2 mm (up to 100 mAs). Below 100 mAs, the model observer was unable to provide a result. IR methods improve CT protocol quality, providing a potential dose reduction while maintaining a good image detectability. Model observer can in principle be useful to assist human performance in CT low-contrast detection tasks and in dose optimisation.

  15. Analysis of metal artifact reduction tools for dental hardware in CT scans of the oral cavity: kVp, iterative reconstruction, dual-energy CT, metal artifact reduction software: does it make a difference?

    PubMed

    De Crop, An; Casselman, Jan; Van Hoof, Tom; Dierens, Melissa; Vereecke, Elke; Bossu, Nicolas; Pamplona, Jaime; D'Herde, Katharina; Thierens, Hubert; Bacher, Klaus

    2015-08-01

    Metal artifacts may negatively affect radiologic assessment in the oral cavity. The aim of this study was to evaluate different metal artifact reduction techniques for metal artifacts induced by dental hardware in CT scans of the oral cavity. Clinical image quality was assessed using a Thiel-embalmed cadaver. A Catphan phantom and a polymethylmethacrylate (PMMA) phantom were used to evaluate physical-technical image quality parameters such as artifact area, artifact index (AI), and contrast detail (IQFinv). Metal cylinders were inserted in each phantom to create metal artifacts. CT images of both phantoms and the Thiel-embalmed cadaver were acquired on a multislice CT scanner using 80, 100, 120, and 140 kVp; model-based iterative reconstruction (Veo); and synthesized monochromatic keV images with and without metal artifact reduction software (MARs). Four radiologists assessed the clinical image quality, using an image criteria score (ICS). Significant influence of increasing kVp and the use of Veo was found on clinical image quality (p = 0.007 and p = 0.014, respectively). Application of MARs resulted in a smaller artifact area (p < 0.05). However, MARs reconstructed images resulted in lower ICS. Of all investigated techniques, Veo shows to be most promising, with a significant improvement of both the clinical and physical-technical image quality without adversely affecting contrast detail. MARs reconstruction in CT images of the oral cavity to reduce dental hardware metallic artifacts is not sufficient and may even adversely influence the image quality.

  16. An in vitro comparison of subjective image quality of panoramic views acquired via 2D or 3D imaging.

    PubMed

    Pittayapat, P; Galiti, D; Huang, Y; Dreesen, K; Schreurs, M; Souza, P Couto; Rubira-Bullen, I R F; Westphalen, F H; Pauwels, R; Kalema, G; Willems, G; Jacobs, R

    2013-01-01

    The objective of this study is to compare subjective image quality and diagnostic validity of cone-beam CT (CBCT) panoramic reformatting with digital panoramic radiographs. Four dry human skulls and two formalin-fixed human heads were scanned using nine different CBCTs, one multi-slice CT (MSCT) and one standard digital panoramic device. Panoramic views were generated from CBCTs in four slice thicknesses. Seven observers scored image quality and visibility of 14 anatomical structures. Four observers repeated the observation after 4 weeks. Digital panoramic radiographs showed significantly better visualization of anatomical structures except for the condyle. Statistical analysis of image quality showed that the 3D imaging modalities (CBCTs and MSCT) were 7.3 times more likely to receive poor scores than the 2D modality. Yet, image quality from NewTom VGi® and 3D Accuitomo 170® was almost equivalent to that of digital panoramic radiographs with respective odds ratio estimates of 1.2 and 1.6 at 95% Wald confidence limits. A substantial overall agreement amongst observers was found. Intra-observer agreement was moderate to substantial. While 2D-panoramic images are significantly better for subjective diagnosis, 2/3 of the 3D-reformatted panoramic images are moderate or good for diagnostic purposes. Panoramic reformattings from particular CBCTs are comparable to digital panoramic images concerning the overall image quality and visualization of anatomical structures. This clinically implies that a 3D-derived panoramic view can be generated for diagnosis with a recommended 20-mm slice thickness, if CBCT data is a priori available for other purposes.

  17. Assessment of image quality in soft tissue and bone visualization tasks for a dedicated extremity cone-beam CT system.

    PubMed

    Demehri, S; Muhit, A; Zbijewski, W; Stayman, J W; Yorkston, J; Packard, N; Senn, R; Yang, D; Foos, D; Thawait, G K; Fayad, L M; Chhabra, A; Carrino, J A; Siewerdsen, J H

    2015-06-01

    To assess visualization tasks using cone-beam CT (CBCT) compared to multi-detector CT (MDCT) for musculoskeletal extremity imaging. Ten cadaveric hands and ten knees were examined using a dedicated CBCT prototype and a clinical multi-detector CT using nominal protocols (80 kVp-108mAs for CBCT; 120 kVp- 300 mAs for MDCT). Soft tissue and bone visualization tasks were assessed by four radiologists using five-point satisfaction (for CBCT and MDCT individually) and five-point preference (side-by-side CBCT versus MDCT image quality comparison) rating tests. Ratings were analyzed using Kruskal-Wallis and Wilcoxon signed-rank tests, and observer agreement was assessed using the Kappa-statistic. Knee CBCT images were rated "excellent" or "good" (median scores 5 and 4) for "bone" and "soft tissue" visualization tasks. Hand CBCT images were rated "excellent" or "adequate" (median scores 5 and 3) for "bone" and "soft tissue" visualization tasks. Preference tests rated CBCT equivalent or superior to MDCT for bone visualization and favoured the MDCT for soft tissue visualization tasks. Intraobserver agreement for CBCT satisfaction tests was fair to almost perfect (κ ~ 0.26-0.92), and interobserver agreement was fair to moderate (κ ~ 0.27-0.54). CBCT provided excellent image quality for bone visualization and adequate image quality for soft tissue visualization tasks. • CBCT provided adequate image quality for diagnostic tasks in extremity imaging. • CBCT images were "excellent" for "bone" and "good/adequate" for "soft tissue" visualization tasks. • CBCT image quality was equivalent/superior to MDCT for bone visualization tasks.

  18. Evaluation of a cone beam computed tomography geometry for image guided small animal irradiation.

    PubMed

    Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Iordachita, Iulian; Siewerdsen, Jeffrey; Wong, John

    2015-07-07

    The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal ('tubular' geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal ('pancake' geometry). The small animal radiation research platform developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Not withstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e. pancake and tubular geometry, respectively.

  19. Can state-of-the-art HVS-based objective image quality criteria be used for image reconstruction techniques based on ROI analysis?

    NASA Astrophysics Data System (ADS)

    Dostal, P.; Krasula, L.; Klima, M.

    2012-06-01

    Various image processing techniques in multimedia technology are optimized using visual attention feature of the human visual system. Spatial non-uniformity causes that different locations in an image are of different importance in terms of perception of the image. In other words, the perceived image quality depends mainly on the quality of important locations known as regions of interest. The performance of such techniques is measured by subjective evaluation or objective image quality criteria. Many state-of-the-art objective metrics are based on HVS properties; SSIM, MS-SSIM based on image structural information, VIF based on the information that human brain can ideally gain from the reference image or FSIM utilizing the low-level features to assign the different importance to each location in the image. But still none of these objective metrics utilize the analysis of regions of interest. We solve the question if these objective metrics can be used for effective evaluation of images reconstructed by processing techniques based on ROI analysis utilizing high-level features. In this paper authors show that the state-of-the-art objective metrics do not correlate well with subjective evaluation while the demosaicing based on ROI analysis is used for reconstruction. The ROI were computed from "ground truth" visual attention data. The algorithm combining two known demosaicing techniques on the basis of ROI location is proposed to reconstruct the ROI in fine quality while the rest of image is reconstructed with low quality. The color image reconstructed by this ROI approach was compared with selected demosaicing techniques by objective criteria and subjective testing. The qualitative comparison of the objective and subjective results indicates that the state-of-the-art objective metrics are still not suitable for evaluation image processing techniques based on ROI analysis and new criteria is demanded.

  20. Evaluation of a Cone Beam Computed Tomography Geometry for Image Guided Small Animal Irradiation

    PubMed Central

    Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Iordachita, Iulian; Siewerdsen, Jeffrey; Wong, John

    2015-01-01

    The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal (“tubular” geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal (“pancake” geometry). The small animal radiation research platform (SARRP) developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Notwithstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e., pancake and tubular geometry, respectively. PMID:26083659

  1. SU-F-J-178: A Computer Simulation Model Observer for Task-Based Image Quality Assessment in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolly, S; Mutic, S; Anastasio, M

    Purpose: Traditionally, image quality in radiation therapy is assessed subjectively or by utilizing physically-based metrics. Some model observers exist for task-based medical image quality assessment, but almost exclusively for diagnostic imaging tasks. As opposed to disease diagnosis, the task for image observers in radiation therapy is to utilize the available images to design and deliver a radiation dose which maximizes patient disease control while minimizing normal tissue damage. The purpose of this study was to design and implement a new computer simulation model observer to enable task-based image quality assessment in radiation therapy. Methods: A modular computer simulation framework wasmore » developed to resemble the radiotherapy observer by simulating an end-to-end radiation therapy treatment. Given images and the ground-truth organ boundaries from a numerical phantom as inputs, the framework simulates an external beam radiation therapy treatment and quantifies patient treatment outcomes using the previously defined therapeutic operating characteristic (TOC) curve. As a preliminary demonstration, TOC curves were calculated for various CT acquisition and reconstruction parameters, with the goal of assessing and optimizing simulation CT image quality for radiation therapy. Sources of randomness and bias within the system were analyzed. Results: The relationship between CT imaging dose and patient treatment outcome was objectively quantified in terms of a singular value, the area under the TOC (AUTOC) curve. The AUTOC decreases more rapidly for low-dose imaging protocols. AUTOC variation introduced by the dose optimization algorithm was approximately 0.02%, at the 95% confidence interval. Conclusion: A model observer has been developed and implemented to assess image quality based on radiation therapy treatment efficacy. It enables objective determination of appropriate imaging parameter values (e.g. imaging dose). Framework flexibility allows for incorporation of additional modules to include any aspect of the treatment process, and therefore has great potential for both assessment and optimization within radiation therapy.« less

  2. Prostate seed implant quality assessment using MR and CT image fusion.

    PubMed

    Amdur, R J; Gladstone, D; Leopold, K A; Harris, R D

    1999-01-01

    After a seed implant of the prostate, computerized tomography (CT) is ideal for determining seed distribution but soft tissue anatomy is frequently not well visualized. Magnetic resonance (MR) images soft tissue anatomy well but seed visualization is problematic. We describe a method of fusing CT and MR images to exploit the advantages of both of these modalities when assessing the quality of a prostate seed implant. Eleven consecutive prostate seed implant patients were imaged with axial MR and CT scans. MR and CT images were fused in three dimensions using the Pinnacle 3.0 version of the ADAC treatment planning system. The urethra and bladder base were used to "line up" MR and CT image sets during image fusion. Alignment was accomplished using translation and rotation in the three ortho-normal planes. Accuracy of image fusion was evaluated by calculating the maximum deviation in millimeters between the center of the urethra on axial MR versus CT images. Implant quality was determined by comparing dosimetric results to previously set parameters. Image fusion was performed with a high degree of accuracy. When lining up the urethra and base of bladder, the maximum difference in axial position of the urethra between MR and CT averaged 2.5 mm (range 1.3-4.0 mm, SD 0.9 mm). By projecting CT-derived dose distributions over MR images of soft tissue structures, qualitative and quantitative evaluation of implant quality is straightforward. The image-fusion process we describe provides a sophisticated way of assessing the quality of a prostate seed implant. Commercial software makes the process time-efficient and available to any clinical practice with a high-quality treatment planning system. While we use MR to image soft tissue structures, the process could be used with any imaging modality that is able to visualize the prostatic urethra (e.g., ultrasound).

  3. The Database Business: Managing Today--Planning for Tomorrow. Quality Assurance of Text and Image Databases at the U.S. Patent and Trademark Office.

    ERIC Educational Resources Information Center

    Grooms, David W.

    1988-01-01

    Discusses the quality controls imposed on text and image data that is currently being converted from paper to digital images by the Patent and Trademark Office. The methods of inspection used on text and on images are described, and the quality of the data delivered thus far is discussed. (CLB)

  4. Softcopy quality ruler method: implementation and validation

    NASA Astrophysics Data System (ADS)

    Jin, Elaine W.; Keelan, Brian W.; Chen, Junqing; Phillips, Jonathan B.; Chen, Ying

    2009-01-01

    A softcopy quality ruler method was implemented for the International Imaging Industry Association (I3A) Camera Phone Image Quality (CPIQ) Initiative. This work extends ISO 20462 Part 3 by virtue of creating reference digital images of known subjective image quality, complimenting the hardcopy Standard Reference Stimuli (SRS). The softcopy ruler method was developed using images from a Canon EOS 1Ds Mark II D-SLR digital still camera (DSC) and a Kodak P880 point-and-shoot DSC. Images were viewed on an Apple 30in Cinema Display at a viewing distance of 34 inches. Ruler images were made for 16 scenes. Thirty ruler images were generated for each scene, representing ISO 20462 Standard Quality Scale (SQS) values of approximately 2 to 31 at an increment of one just noticeable difference (JND) by adjusting the system modulation transfer function (MTF). A Matlab GUI was developed to display the ruler and test images side-by-side with a user-adjustable ruler level controlled by a slider. A validation study was performed at Kodak, Vista Point Technology, and Aptina Imaging in which all three companies set up a similar viewing lab to run the softcopy ruler method. The results show that the three sets of data are in reasonable agreement with each other, with the differences within the range expected from observer variability. Compared to previous implementations of the quality ruler, the slider-based user interface allows approximately 2x faster assessments with 21.6% better precision.

  5. SU-F-I-71: Fetal Protection During Fluoroscopy: To Shield Or Not to Shield?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, S; Vanderhoek, M

    Purpose: Lead aprons are routinely used to shield the fetus from radiation during fluoroscopically guided interventions (FGI) involving pregnant patients. When placed in the primary beam, lead aprons often reduce image quality and increase fluoroscopic radiation output, which can adversely affect fetal dose. The purpose of this work is to identify an effective and practical method to reduce fetal dose without affecting image quality. Methods: A pregnant patient equivalent abdominal phantom is set on the table along with an image quality test object (CIRS model 903) representing patient anatomy of interest. An ion chamber is positioned at the x-ray beammore » entrance to the phantom, which is used to estimate the relative fetal dose. For three protective methods, image quality and fetal dose measurements are compared to baseline (no protection):1. Lead apron shielding the entire abdomen; 2. Lead apron shielding part of the abdomen, including the fetus; 3. Narrow collimation such that fetus is excluded from the primary beam. Results: With lead shielding the entire abdomen, the dose is reduced by 80% relative to baseline along with a drastic deterioration of image quality. With lead shielding only the fetus, the dose is reduced by 65% along with complete preservation of image quality, since the image quality test object is not shielded. However, narrow collimation results in 90% dose reduction and a slight improvement of image quality relative to baseline. Conclusion: The use of narrow collimation to protect the fetus during FGI is a simple and highly effective method that simultaneously reduces fetal dose and maintains sufficient image quality. Lead aprons are not as effective at fetal dose reduction, and if placed improperly, they can severely degrade image quality. Future work aims to investigate a wider variety of fluoroscopy systems to confirm these results across many different system geometries.« less

  6. Image registration assessment in radiotherapy image guidance based on control chart monitoring.

    PubMed

    Xia, Wenyao; Breen, Stephen L

    2018-04-01

    Image guidance with cone beam computed tomography in radiotherapy can guarantee the precision and accuracy of patient positioning prior to treatment delivery. During the image guidance process, operators need to take great effort to evaluate the image guidance quality before correcting a patient's position. This work proposes an image registration assessment method based on control chart monitoring to reduce the effort taken by the operator. According to the control chart plotted by daily registration scores of each patient, the proposed method can quickly detect both alignment errors and image quality inconsistency. Therefore, the proposed method can provide a clear guideline for the operators to identify unacceptable image quality and unacceptable image registration with minimal effort. Experimental results demonstrate that by using control charts from a clinical database of 10 patients undergoing prostate radiotherapy, the proposed method can quickly identify out-of-control signals and find special cause of out-of-control registration events.

  7. Perceived assessment metrics for visible and infrared color fused image quality without reference image

    NASA Astrophysics Data System (ADS)

    Yu, Xuelian; Chen, Qian; Gu, Guohua; Ren, Jianle; Sui, Xiubao

    2015-02-01

    Designing objective quality assessment of color-fused image is a very demanding and challenging task. We propose four no-reference metrics based on human visual system characteristics for objectively evaluating the quality of false color fusion image. The perceived edge metric (PEM) is defined based on visual perception model and color image gradient similarity between the fused image and the source images. The perceptual contrast metric (PCM) is established associating multi-scale contrast and varying contrast sensitivity filter (CSF) with color components. The linear combination of the standard deviation and mean value over the fused image construct the image colorfulness metric (ICM). The color comfort metric (CCM) is designed by the average saturation and the ratio of pixels with high and low saturation. The qualitative and quantitative experimental results demonstrate that the proposed metrics have a good agreement with subjective perception.

  8. Cross-layer Energy Optimization Under Image Quality Constraints for Wireless Image Transmissions.

    PubMed

    Yang, Na; Demirkol, Ilker; Heinzelman, Wendi

    2012-01-01

    Wireless image transmission is critical in many applications, such as surveillance and environment monitoring. In order to make the best use of the limited energy of the battery-operated cameras, while satisfying the application-level image quality constraints, cross-layer design is critical. In this paper, we develop an image transmission model that allows the application layer (e.g., the user) to specify an image quality constraint, and optimizes the lower layer parameters of transmit power and packet length, to minimize the energy dissipation in image transmission over a given distance. The effectiveness of this approach is evaluated by applying the proposed energy optimization to a reference ZigBee system and a WiFi system, and also by comparing to an energy optimization study that does not consider any image quality constraint. Evaluations show that our scheme outperforms the default settings of the investigated commercial devices and saves a significant amount of energy at middle-to-large transmission distances.

  9. Energy Efficient Image/Video Data Transmission on Commercial Multi-Core Processors

    PubMed Central

    Lee, Sungju; Kim, Heegon; Chung, Yongwha; Park, Daihee

    2012-01-01

    In transmitting image/video data over Video Sensor Networks (VSNs), energy consumption must be minimized while maintaining high image/video quality. Although image/video compression is well known for its efficiency and usefulness in VSNs, the excessive costs associated with encoding computation and complexity still hinder its adoption for practical use. However, it is anticipated that high-performance handheld multi-core devices will be used as VSN processing nodes in the near future. In this paper, we propose a way to improve the energy efficiency of image and video compression with multi-core processors while maintaining the image/video quality. We improve the compression efficiency at the algorithmic level or derive the optimal parameters for the combination of a machine and compression based on the tradeoff between the energy consumption and the image/video quality. Based on experimental results, we confirm that the proposed approach can improve the energy efficiency of the straightforward approach by a factor of 2∼5 without compromising image/video quality. PMID:23202181

  10. High-quality and small-capacity e-learning video featuring lecturer-superimposing PC screen images

    NASA Astrophysics Data System (ADS)

    Nomura, Yoshihiko; Murakami, Michinobu; Sakamoto, Ryota; Sugiura, Tokuhiro; Matsui, Hirokazu; Kato, Norihiko

    2006-10-01

    Information processing and communication technology are progressing quickly, and are prevailing throughout various technological fields. Therefore, the development of such technology should respond to the needs for improvement of quality in the e-learning education system. The authors propose a new video-image compression processing system that ingeniously employs the features of the lecturing scene. While dynamic lecturing scene is shot by a digital video camera, screen images are electronically stored by a PC screen image capturing software in relatively long period at a practical class. Then, a lecturer and a lecture stick are extracted from the digital video images by pattern recognition techniques, and the extracted images are superimposed on the appropriate PC screen images by off-line processing. Thus, we have succeeded to create a high-quality and small-capacity (HQ/SC) video-on-demand educational content featuring the advantages: the high quality of image sharpness, the small electronic file capacity, and the realistic lecturer motion.

  11. Imaging and Data Acquisition in Clinical Trials for Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FitzGerald, Thomas J., E-mail: Thomas.Fitzgerald@umassmed.edu; Bishop-Jodoin, Maryann; Followill, David S.

    2016-02-01

    Cancer treatment evolves through oncology clinical trials. Cancer trials are multimodal and complex. Assuring high-quality data are available to answer not only study objectives but also questions not anticipated at study initiation is the role of quality assurance. The National Cancer Institute reorganized its cancer clinical trials program in 2014. The National Clinical Trials Network (NCTN) was formed and within it was established a Diagnostic Imaging and Radiation Therapy Quality Assurance Organization. This organization is Imaging and Radiation Oncology Core, the Imaging and Radiation Oncology Core Group, consisting of 6 quality assurance centers that provide imaging and radiation therapy qualitymore » assurance for the NCTN. Sophisticated imaging is used for cancer diagnosis, treatment, and management as well as for image-driven technologies to plan and execute radiation treatment. Integration of imaging and radiation oncology data acquisition, review, management, and archive strategies are essential for trial compliance and future research. Lessons learned from previous trials are and provide evidence to support diagnostic imaging and radiation therapy data acquisition in NCTN trials.« less

  12. MTF evaluation of in-line phase contrast imaging system

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoran; Gao, Feng; Zhao, Huijuan; Zhang, Limin; Li, Jiao; Zhou, Zhongxing

    2017-02-01

    X-ray phase contrast imaging (XPCI) is a novel method that exploits the phase shift for the incident X-ray to form an image. Various XPCI methods have been proposed, among which, in-line phase contrast imaging (IL-PCI) is regarded as one of the most promising clinical methods. The contrast of the interface is enhanced due to the introduction of the boundary fringes in XPCI, thus it is generally used to evaluate the image quality of XPCI. But the contrast is a comprehensive index and it does not reflect the information of image quality in the frequency range. The modulation transfer function (MTF), which is the Fourier transform of the system point spread function, is recognized as the metric to characterize the spatial response of conventional X-ray imaging system. In this work, MTF is introduced into the image quality evaluation of the IL-PCI system. Numerous simulations based on Fresnel - Kirchhoff diffraction theory are performed with varying system settings and the corresponding MTFs were calculated for comparison. The results show that MTF can provide more comprehensive information of image quality comparing to contrast in IL-PCI.

  13. Retinal image quality assessment based on image clarity and content

    NASA Astrophysics Data System (ADS)

    Abdel-Hamid, Lamiaa; El-Rafei, Ahmed; El-Ramly, Salwa; Michelson, Georg; Hornegger, Joachim

    2016-09-01

    Retinal image quality assessment (RIQA) is an essential step in automated screening systems to avoid misdiagnosis caused by processing poor quality retinal images. A no-reference transform-based RIQA algorithm is introduced that assesses images based on five clarity and content quality issues: sharpness, illumination, homogeneity, field definition, and content. Transform-based RIQA algorithms have the advantage of considering retinal structures while being computationally inexpensive. Wavelet-based features are proposed to evaluate the sharpness and overall illumination of the images. A retinal saturation channel is designed and used along with wavelet-based features for homogeneity assessment. The presented sharpness and illumination features are utilized to assure adequate field definition, whereas color information is used to exclude nonretinal images. Several publicly available datasets of varying quality grades are utilized to evaluate the feature sets resulting in area under the receiver operating characteristic curve above 0.99 for each of the individual feature sets. The overall quality is assessed by a classifier that uses the collective features as an input vector. The classification results show superior performance of the algorithm in comparison to other methods from literature. Moreover, the algorithm addresses efficiently and comprehensively various quality issues and is suitable for automatic screening systems.

  14. Towards tracer dose reduction in PET studies: Simulation of dose reduction by retrospective randomized undersampling of list-mode data.

    PubMed

    Gatidis, Sergios; Würslin, Christian; Seith, Ferdinand; Schäfer, Jürgen F; la Fougère, Christian; Nikolaou, Konstantin; Schwenzer, Nina F; Schmidt, Holger

    2016-01-01

    Optimization of tracer dose regimes in positron emission tomography (PET) imaging is a trade-off between diagnostic image quality and radiation exposure. The challenge lies in defining minimal tracer doses that still result in sufficient diagnostic image quality. In order to find such minimal doses, it would be useful to simulate tracer dose reduction as this would enable to study the effects of tracer dose reduction on image quality in single patients without repeated injections of different amounts of tracer. The aim of our study was to introduce and validate a method for simulation of low-dose PET images enabling direct comparison of different tracer doses in single patients and under constant influencing factors. (18)F-fluoride PET data were acquired on a combined PET/magnetic resonance imaging (MRI) scanner. PET data were stored together with the temporal information of the occurrence of single events (list-mode format). A predefined proportion of PET events were then randomly deleted resulting in undersampled PET data. These data sets were subsequently reconstructed resulting in simulated low-dose PET images (retrospective undersampling of list-mode data). This approach was validated in phantom experiments by visual inspection and by comparison of PET quality metrics contrast recovery coefficient (CRC), background-variability (BV) and signal-to-noise ratio (SNR) of measured and simulated PET images for different activity concentrations. In addition, reduced-dose PET images of a clinical (18)F-FDG PET dataset were simulated using the proposed approach. (18)F-PET image quality degraded with decreasing activity concentrations with comparable visual image characteristics in measured and in corresponding simulated PET images. This result was confirmed by quantification of image quality metrics. CRC, SNR and BV showed concordant behavior with decreasing activity concentrations for measured and for corresponding simulated PET images. Simulation of dose-reduced datasets based on clinical (18)F-FDG PET data demonstrated the clinical applicability of the proposed data. Simulation of PET tracer dose reduction is possible with retrospective undersampling of list-mode data. Resulting simulated low-dose images have equivalent characteristics with PET images actually measured at lower doses and can be used to derive optimal tracer dose regimes.

  15. Optimization of image quality and dose for Varian aS500 electronic portal imaging devices (EPIDs).

    PubMed

    McGarry, C K; Grattan, M W D; Cosgrove, V P

    2007-12-07

    This study was carried out to investigate whether the electronic portal imaging (EPI) acquisition process could be optimized, and as a result tolerance and action levels be set for the PIPSPro QC-3V phantom image quality assessment. The aim of the optimization process was to reduce the dose delivered to the patient while maintaining a clinically acceptable image quality. This is of interest when images are acquired in addition to the planned patient treatment, rather than images being acquired using the treatment field during a patient's treatment. A series of phantoms were used to assess image quality for different acquisition settings relative to the baseline values obtained following acceptance testing. Eight Varian aS500 EPID systems on four matched Varian 600C/D linacs and four matched Varian 2100C/D linacs were compared for consistency of performance and images were acquired at the four main orthogonal gantry angles. Images were acquired using a 6 MV beam operating at 100 MU min(-1) and the low-dose acquisition mode. Doses used in the comparison were measured using a Farmer ionization chamber placed at d(max) in solid water. The results demonstrated that the number of reset frames did not have any influence on the image contrast, but the number of frame averages did. The expected increase in noise with corresponding decrease in contrast was also observed when reducing the number of frame averages. The optimal settings for the low-dose acquisition mode with respect to image quality and dose were found to be one reset frame and three frame averages. All patients at the Northern Ireland Cancer Centre are now imaged using one reset frame and three frame averages in the 6 MV 100 MU min(-1) low-dose acquisition mode. Routine EPID QC contrast tolerance (+/-10) and action (+/-20) levels using the PIPSPro phantom based around expected values of 190 (Varian 600C/D) and 225 (Varian 2100C/D) have been introduced. The dose at dmax from electronic portal imaging has been reduced by approximately 28%, and while the image quality has been reduced, the images produced are still clinically acceptable.

  16. Influence of image compression on the interpretation of spectral-domain optical coherence tomography in exudative age-related macular degeneration

    PubMed Central

    Kim, J H; Kang, S W; Kim, J-r; Chang, Y S

    2014-01-01

    Purpose To evaluate the effect of image compression of spectral-domain optical coherence tomography (OCT) images in the examination of eyes with exudative age-related macular degeneration (AMD). Methods Thirty eyes from 30 patients who were diagnosed with exudative AMD were included in this retrospective observational case series. The horizontal OCT scans centered at the center of the fovea were conducted using spectral-domain OCT. The images were exported to Tag Image File Format (TIFF) and 100, 75, 50, 25 and 10% quality of Joint Photographic Experts Group (JPEG) format. OCT images were taken before and after intravitreal ranibizumab injections, and after relapse. The prevalence of subretinal and intraretinal fluids was determined. Differences in choroidal thickness between the TIFF and JPEG images were compared with the intra-observer variability. Results The prevalence of subretinal and intraretinal fluids was comparable regardless of the degree of compression. However, the chorio–scleral interface was not clearly identified in many images with a high degree of compression. In images with 25 and 10% quality of JPEG, the difference in choroidal thickness between the TIFF images and the respective JPEG images was significantly greater than the intra-observer variability of the TIFF images (P=0.029 and P=0.024, respectively). Conclusions In OCT images of eyes with AMD, 50% of the quality of the JPEG format would be an optimal degree of compression for efficient data storage and transfer without sacrificing image quality. PMID:24788012

  17. Ultrafast Harmonic Coherent Compound (UHCC) imaging for high frame rate echocardiography and Shear Wave Elastography

    PubMed Central

    Correia, Mafalda; Provost, Jean; Chatelin, Simon; Villemain, Olivier; Tanter, Mickael; Pernot, Mathieu

    2016-01-01

    Transthoracic shear wave elastography of the myocardium remains very challenging due to the poor quality of transthoracic ultrafast imaging and the presence of clutter noise, jitter, phase aberration, and ultrasound reverberation. Several approaches, such as, e.g., diverging-wave coherent compounding or focused harmonic imaging have been proposed to improve the imaging quality. In this study, we introduce ultrafast harmonic coherent compounding (UHCC), in which pulse-inverted diverging-waves are emitted and coherently compounded, and show that such an approach can be used to enhance both Shear Wave Elastography (SWE) and high frame rate B-mode Imaging. UHCC SWE was first tested in phantoms containing an aberrating layer and was compared against pulse-inversion harmonic imaging and against ultrafast coherent compounding (UCC) imaging at the fundamental frequency. In-vivo feasibility of the technique was then evaluated in six healthy volunteers by measuring myocardial stiffness during diastole in transthoracic imaging. We also demonstrated that improvements in imaging quality could be achieved using UHCC B-mode imaging in healthy volunteers. The quality of transthoracic images of the heart was found to be improved with the number of pulse-inverted diverging waves with reduction of the imaging mean clutter level up to 13.8-dB when compared against UCC at the fundamental frequency. These results demonstrated that UHCC B-mode imaging is promising for imaging deep tissues exposed to aberration sources with a high frame-rate. PMID:26890730

  18. A sparsity-based iterative algorithm for reconstruction of micro-CT images from highly undersampled projection datasets obtained with a synchrotron X-ray source

    NASA Astrophysics Data System (ADS)

    Melli, S. Ali; Wahid, Khan A.; Babyn, Paul; Cooper, David M. L.; Gopi, Varun P.

    2016-12-01

    Synchrotron X-ray Micro Computed Tomography (Micro-CT) is an imaging technique which is increasingly used for non-invasive in vivo preclinical imaging. However, it often requires a large number of projections from many different angles to reconstruct high-quality images leading to significantly high radiation doses and long scan times. To utilize this imaging technique further for in vivo imaging, we need to design reconstruction algorithms that reduce the radiation dose and scan time without reduction of reconstructed image quality. This research is focused on using a combination of gradient-based Douglas-Rachford splitting and discrete wavelet packet shrinkage image denoising methods to design an algorithm for reconstruction of large-scale reduced-view synchrotron Micro-CT images with acceptable quality metrics. These quality metrics are computed by comparing the reconstructed images with a high-dose reference image reconstructed from 1800 equally spaced projections spanning 180°. Visual and quantitative-based performance assessment of a synthetic head phantom and a femoral cortical bone sample imaged in the biomedical imaging and therapy bending magnet beamline at the Canadian Light Source demonstrates that the proposed algorithm is superior to the existing reconstruction algorithms. Using the proposed reconstruction algorithm to reduce the number of projections in synchrotron Micro-CT is an effective way to reduce the overall radiation dose and scan time which improves in vivo imaging protocols.

  19. The evaluation of single-view and multi-view fusion 3D echocardiography using image-driven segmentation and tracking.

    PubMed

    Rajpoot, Kashif; Grau, Vicente; Noble, J Alison; Becher, Harald; Szmigielski, Cezary

    2011-08-01

    Real-time 3D echocardiography (RT3DE) promises a more objective and complete cardiac functional analysis by dynamic 3D image acquisition. Despite several efforts towards automation of left ventricle (LV) segmentation and tracking, these remain challenging research problems due to the poor-quality nature of acquired images usually containing missing anatomical information, speckle noise, and limited field-of-view (FOV). Recently, multi-view fusion 3D echocardiography has been introduced as acquiring multiple conventional single-view RT3DE images with small probe movements and fusing them together after alignment. This concept of multi-view fusion helps to improve image quality and anatomical information and extends the FOV. We now take this work further by comparing single-view and multi-view fused images in a systematic study. In order to better illustrate the differences, this work evaluates image quality and information content of single-view and multi-view fused images using image-driven LV endocardial segmentation and tracking. The image-driven methods were utilized to fully exploit image quality and anatomical information present in the image, thus purposely not including any high-level constraints like prior shape or motion knowledge in the analysis approaches. Experiments show that multi-view fused images are better suited for LV segmentation and tracking, while relatively more failures and errors were observed on single-view images. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Brain Atlas Fusion from High-Thickness Diagnostic Magnetic Resonance Images by Learning-Based Super-Resolution

    PubMed Central

    Zhang, Jinpeng; Zhang, Lichi; Xiang, Lei; Shao, Yeqin; Wu, Guorong; Zhou, Xiaodong; Shen, Dinggang; Wang, Qian

    2017-01-01

    It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of atlas fusion has not been addressed yet. In this paper, we intend to fuse the brain atlas from the high-thickness diagnostic MR images that are prevalent for clinical routines. The main idea of our works is to extend the conventional groupwise registration by incorporating a novel super-resolution strategy. The contribution of the proposed super-resolution framework is two-fold. First, each high-thickness subject image is reconstructed to be isotropic by the patch-based sparsity learning. Then, the reconstructed isotropic image is enhanced for better quality through the random-forest-based regression model. In this way, the images obtained by the super-resolution strategy can be fused together by applying the groupwise registration method to construct the required atlas. Our experiments have shown that the proposed framework can effectively solve the problem of atlas fusion from the low-quality brain MR images. PMID:29062159

  1. Effects of task and image properties on visual-attention deployment in image-quality assessment

    NASA Astrophysics Data System (ADS)

    Alers, Hani; Redi, Judith; Liu, Hantao; Heynderickx, Ingrid

    2015-03-01

    It is important to understand how humans view images and how their behavior is affected by changes in the properties of the viewed images and the task they are given, particularly the task of scoring the image quality (IQ). This is a complex behavior that holds great importance for the field of image-quality research. This work builds upon 4 years of research work spanning three databases studying image-viewing behavior. Using eye-tracking equipment, it was possible to collect information on human viewing behavior of different kinds of stimuli and under different experimental settings. This work performs a cross-analysis on the results from all these databases using state-of-the-art similarity measures. The results strongly show that asking the viewers to score the IQ significantly changes their viewing behavior. Also muting the color saturation seems to affect the saliency of the images. However, a change in IQ was not consistently found to modify visual attention deployment, neither under free looking nor during scoring. These results are helpful in gaining a better understanding of image viewing behavior under different conditions. They also have important implications on work that collects subjective image-quality scores from human observers.

  2. Brain Atlas Fusion from High-Thickness Diagnostic Magnetic Resonance Images by Learning-Based Super-Resolution.

    PubMed

    Zhang, Jinpeng; Zhang, Lichi; Xiang, Lei; Shao, Yeqin; Wu, Guorong; Zhou, Xiaodong; Shen, Dinggang; Wang, Qian

    2017-03-01

    It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of atlas fusion has not been addressed yet. In this paper, we intend to fuse the brain atlas from the high-thickness diagnostic MR images that are prevalent for clinical routines. The main idea of our works is to extend the conventional groupwise registration by incorporating a novel super-resolution strategy. The contribution of the proposed super-resolution framework is two-fold. First, each high-thickness subject image is reconstructed to be isotropic by the patch-based sparsity learning. Then, the reconstructed isotropic image is enhanced for better quality through the random-forest-based regression model. In this way, the images obtained by the super-resolution strategy can be fused together by applying the groupwise registration method to construct the required atlas. Our experiments have shown that the proposed framework can effectively solve the problem of atlas fusion from the low-quality brain MR images.

  3. Diagnostic value and cost-effectiveness of good quality digital images accompanying electronic referrals for suspected skin malignancies.

    PubMed

    Ng, Michael F Y; Stevenson, J Howard

    2011-04-01

    The aim of this study was to investigate the outcome and cost-effectiveness of good and poor quality photographs accompanying the electronic referrals for suspected skin malignancies. A retrospective study of 100 patients, divided into 2 groups, 50 with good quality photographs and 50 with poor quality photographs. Patients with no digital images, or who failed to attend, or patients with incomplete notes were excluded from the study. The treatment pathway, waiting times, and estimated cost between the 2 groups were compared. Good photographs were more likely to be treated at the 1-Stop Clinic (P = 0.05). Good images had a better positive predictive value than poor quality images (62.55% vs. 42.86%). Good quality images are more accurate than poor quality images in triaging of patients, and thus more effective in facilitating the treatment of malignant lesions timely. Good quality photographs allow a delayed appropriate treatment of benign lesions. This increases the safety for patients in a queue in a rationed health care system, and improves patient flow.

  4. Speeding up image quality improvement in random phase-free holograms using ringing artifact characteristics.

    PubMed

    Nagahama, Yuki; Shimobaba, Tomoyoshi; Kakue, Takashi; Masuda, Nobuyuki; Ito, Tomoyoshi

    2017-05-01

    A holographic projector utilizes holography techniques. However, there are several barriers to realizing holographic projections. One is deterioration of hologram image quality caused by speckle noise and ringing artifacts. The combination of the random phase-free method and the Gerchberg-Saxton (GS) algorithm has improved the image quality of holograms. However, the GS algorithm requires significant computation time. We propose faster methods for image quality improvement of random phase-free holograms using the characteristics of ringing artifacts.

  5. Learning Receptive Fields and Quality Lookups for Blind Quality Assessment of Stereoscopic Images.

    PubMed

    Shao, Feng; Lin, Weisi; Wang, Shanshan; Jiang, Gangyi; Yu, Mei; Dai, Qionghai

    2016-03-01

    Blind quality assessment of 3D images encounters more new challenges than its 2D counterparts. In this paper, we propose a blind quality assessment for stereoscopic images by learning the characteristics of receptive fields (RFs) from perspective of dictionary learning, and constructing quality lookups to replace human opinion scores without performance loss. The important feature of the proposed method is that we do not need a large set of samples of distorted stereoscopic images and the corresponding human opinion scores to learn a regression model. To be more specific, in the training phase, we learn local RFs (LRFs) and global RFs (GRFs) from the reference and distorted stereoscopic images, respectively, and construct their corresponding local quality lookups (LQLs) and global quality lookups (GQLs). In the testing phase, blind quality pooling can be easily achieved by searching optimal GRF and LRF indexes from the learnt LQLs and GQLs, and the quality score is obtained by combining the LRF and GRF indexes together. Experimental results on three publicly 3D image quality assessment databases demonstrate that in comparison with the existing methods, the devised algorithm achieves high consistent alignment with subjective assessment.

  6. Image Quality in High-resolution and High-cadence Solar Imaging

    NASA Astrophysics Data System (ADS)

    Denker, C.; Dineva, E.; Balthasar, H.; Verma, M.; Kuckein, C.; Diercke, A.; González Manrique, S. J.

    2018-03-01

    Broad-band imaging and even imaging with a moderate bandpass (about 1 nm) provides a photon-rich environment, where frame selection (lucky imaging) becomes a helpful tool in image restoration, allowing us to perform a cost-benefit analysis on how to design observing sequences for imaging with high spatial resolution in combination with real-time correction provided by an adaptive optics (AO) system. This study presents high-cadence (160 Hz) G-band and blue continuum image sequences obtained with the High-resolution Fast Imager (HiFI) at the 1.5-meter GREGOR solar telescope, where the speckle-masking technique is used to restore images with nearly diffraction-limited resolution. The HiFI employs two synchronized large-format and high-cadence sCMOS detectors. The median filter gradient similarity (MFGS) image-quality metric is applied, among others, to AO-corrected image sequences of a pore and a small sunspot observed on 2017 June 4 and 5. A small region of interest, which was selected for fast-imaging performance, covered these contrast-rich features and their neighborhood, which were part of Active Region NOAA 12661. Modifications of the MFGS algorithm uncover the field- and structure-dependency of this image-quality metric. However, MFGS still remains a good choice for determining image quality without a priori knowledge, which is an important characteristic when classifying the huge number of high-resolution images contained in data archives. In addition, this investigation demonstrates that a fast cadence and millisecond exposure times are still insufficient to reach the coherence time of daytime seeing. Nonetheless, the analysis shows that data acquisition rates exceeding 50 Hz are required to capture a substantial fraction of the best seeing moments, significantly boosting the performance of post-facto image restoration.

  7. A technique for magnetic resonance imaging of equine cadaver specimens.

    PubMed

    Widmer, W R; Buckwalter, K A; Hill, M A; Fessler, J F; Ivancevich, S

    1999-01-01

    We tested an adaptation of a technique for performing magnetic resonance (MR) imaging of human cadaver limbs in the horse. The forelimbs from a normal horse were collected, frozen, and sealed with a paraffin-polymer combination prior to imaging with either a high- or midfield magnetic resonance scanner. Each forelimb was defrosted, scanned, and refrozen on two separate occasions. A five-point scale was used to evaluate the quality of each set of sagittal and transverse, T1-weighted images of each digit. There was no difference in image quality between first and second scans of either specimen (p > 0.05). We conclude that this technique allows investigators to bank tissue specimens for future magnetic resonance imaging without significant loss of image quality.

  8. Content dependent selection of image enhancement parameters for mobile displays

    NASA Astrophysics Data System (ADS)

    Lee, Yoon-Gyoo; Kang, Yoo-Jin; Kim, Han-Eol; Kim, Ka-Hee; Kim, Choon-Woo

    2011-01-01

    Mobile devices such as cellular phones and portable multimedia player with capability of playing terrestrial digital multimedia broadcasting (T-DMB) contents have been introduced into consumer market. In this paper, content dependent image quality enhancement method for sharpness and colorfulness and noise reduction is presented to improve perceived image quality on mobile displays. Human visual experiments are performed to analyze viewers' preference. Relationship between the objective measures and the optimal values of image control parameters are modeled by simple lookup tables based on the results of human visual experiments. Content dependent values of image control parameters are determined based on the calculated measures and predetermined lookup tables. Experimental results indicate that dynamic selection of image control parameters yields better image quality.

  9. Toward a perceptual image quality assessment of color quantized images

    NASA Astrophysics Data System (ADS)

    Frackiewicz, Mariusz; Palus, Henryk

    2018-04-01

    Color image quantization is an important operation in the field of color image processing. In this paper, we consider new perceptual image quality metrics for assessment of quantized images. These types of metrics, e.g. DSCSI, MDSIs, MDSIm and HPSI achieve the highest correlation coefficients with MOS during tests on the six publicly available image databases. Research was limited to images distorted by two types of compression: JPG and JPG2K. Statistical analysis of correlation coefficients based on the Friedman test and post-hoc procedures showed that the differences between the four new perceptual metrics are not statistically significant.

  10. Imaging quality analysis of multi-channel scanning radiometer

    NASA Astrophysics Data System (ADS)

    Fan, Hong; Xu, Wujun; Wang, Chengliang

    2008-03-01

    Multi-channel scanning radiometer, on boarding FY-2 geostationary meteorological satellite, plays a key role in remote sensing because of its wide field of view and continuous multi-spectral images acquirements. It is significant to evaluate image quality after performance parameters of the imaging system are validated. Several methods of evaluating imaging quality are discussed. Of these methods, the most fundamental is the MTF. The MTF of photoelectric scanning remote instrument, in the scanning direction, is the multiplication of optics transfer function (OTF), detector transfer function (DTF) and electronics transfer function (ETF). For image motion compensation, moving speed of scanning mirror should be considered. The optical MTF measurement is performed in both the EAST/WEST and NORTH/SOUTH direction, whose values are used for alignment purposes and are used to determine the general health of the instrument during integration and testing. Imaging systems cannot perfectly reproduce what they see and end up "blurring" the image. Many parts of the imaging system can cause blurring. Among these are the optical elements, the sampling of the detector itself, post-processing, or the earth's atmosphere for systems that image through it. Through theory calculation and actual measurement, it is proved that DTF and ETF are the main factors of system MTF and the imaging quality can satisfy the requirement of instrument design.

  11. Improved Image Quality in Head and Neck CT Using a 3D Iterative Approach to Reduce Metal Artifact.

    PubMed

    Wuest, W; May, M S; Brand, M; Bayerl, N; Krauss, A; Uder, M; Lell, M

    2015-10-01

    Metal artifacts from dental fillings and other devices degrade image quality and may compromise the detection and evaluation of lesions in the oral cavity and oropharynx by CT. The aim of this study was to evaluate the effect of iterative metal artifact reduction on CT of the oral cavity and oropharynx. Data from 50 consecutive patients with metal artifacts from dental hardware were reconstructed with standard filtered back-projection, linear interpolation metal artifact reduction (LIMAR), and iterative metal artifact reduction. The image quality of sections that contained metal was analyzed for the severity of artifacts and diagnostic value. A total of 455 sections (mean ± standard deviation, 9.1 ± 4.1 sections per patient) contained metal and were evaluated with each reconstruction method. Sections without metal were not affected by the algorithms and demonstrated image quality identical to each other. Of these sections, 38% were considered nondiagnostic with filtered back-projection, 31% with LIMAR, and only 7% with iterative metal artifact reduction. Thirty-three percent of the sections had poor image quality with filtered back-projection, 46% with LIMAR, and 10% with iterative metal artifact reduction. Thirteen percent of the sections with filtered back-projection, 17% with LIMAR, and 22% with iterative metal artifact reduction were of moderate image quality, 16% of the sections with filtered back-projection, 5% with LIMAR, and 30% with iterative metal artifact reduction were of good image quality, and 1% of the sections with LIMAR and 31% with iterative metal artifact reduction were of excellent image quality. Iterative metal artifact reduction yields the highest image quality in comparison with filtered back-projection and linear interpolation metal artifact reduction in patients with metal hardware in the head and neck area. © 2015 by American Journal of Neuroradiology.

  12. No-reference image quality assessment based on statistics of convolution feature maps

    NASA Astrophysics Data System (ADS)

    Lv, Xiaoxin; Qin, Min; Chen, Xiaohui; Wei, Guo

    2018-04-01

    We propose a Convolutional Feature Maps (CFM) driven approach to accurately predict image quality. Our motivation bases on the finding that the Nature Scene Statistic (NSS) features on convolution feature maps are significantly sensitive to distortion degree of an image. In our method, a Convolutional Neural Network (CNN) is trained to obtain kernels for generating CFM. We design a forward NSS layer which performs on CFM to better extract NSS features. The quality aware features derived from the output of NSS layer is effective to describe the distortion type and degree an image suffered. Finally, a Support Vector Regression (SVR) is employed in our No-Reference Image Quality Assessment (NR-IQA) model to predict a subjective quality score of a distorted image. Experiments conducted on two public databases demonstrate the promising performance of the proposed method is competitive to state of the art NR-IQA methods.

  13. Comparing hardcopy and softcopy results in the study of the impact of workflow on perceived reproduction quality of fine art images

    NASA Astrophysics Data System (ADS)

    Farnand, Susan; Jiang, Jun; Frey, Franziska

    2011-01-01

    A project, supported by the Andrew W. Mellon Foundation, is currently underway to evaluate current practices in fine art image reproduction, determine the image quality generally achievable, and establish a suggested framework for art image interchange. To determine the image quality currently being achieved, experimentation has been conducted in which a set of objective targets and pieces of artwork in various media were imaged by participating museums and other cultural heritage institutions. Prints and images for display made from the delivered image files at the Rochester Institute of Technology were used as stimuli in psychometric testing in which observers were asked to evaluate the prints as reproductions of the original artwork and as stand alone images. The results indicated that there were limited differences between assessments made using displayed images relative to printed reproductions. Further, the differences between rankings made with and without the original artwork present were much smaller than expected.

  14. Image Fusion Algorithms Using Human Visual System in Transform Domain

    NASA Astrophysics Data System (ADS)

    Vadhi, Radhika; Swamy Kilari, Veera; Samayamantula, Srinivas Kumar

    2017-08-01

    The endeavor of digital image fusion is to combine the important visual parts from various sources to advance the visibility eminence of the image. The fused image has a more visual quality than any source images. In this paper, the Human Visual System (HVS) weights are used in the transform domain to select appropriate information from various source images and then to attain a fused image. In this process, mainly two steps are involved. First, apply the DWT to the registered source images. Later, identify qualitative sub-bands using HVS weights. Hence, qualitative sub-bands are selected from different sources to form high quality HVS based fused image. The quality of the HVS based fused image is evaluated with general fusion metrics. The results show the superiority among the state-of-the art resolution Transforms (MRT) such as Discrete Wavelet Transform (DWT), Stationary Wavelet Transform (SWT), Contourlet Transform (CT), and Non Sub Sampled Contourlet Transform (NSCT) using maximum selection fusion rule.

  15. Pre-processing, registration and selection of adaptive optics corrected retinal images.

    PubMed

    Ramaswamy, Gomathy; Devaney, Nicholas

    2013-07-01

    In this paper, the aim is to demonstrate enhanced processing of sequences of fundus images obtained using a commercial AO flood illumination system. The purpose of the work is to (1) correct for uneven illumination at the retina (2) automatically select the best quality images and (3) precisely register the best images. Adaptive optics corrected retinal images are pre-processed to correct uneven illumination using different methods; subtracting or dividing by the average filtered image, homomorphic filtering and a wavelet based approach. These images are evaluated to measure the image quality using various parameters, including sharpness, variance, power spectrum kurtosis and contrast. We have carried out the registration in two stages; a coarse stage using cross-correlation followed by fine registration using two approaches; parabolic interpolation on the peak of the cross-correlation and maximum-likelihood estimation. The angle of rotation of the images is measured using a combination of peak tracking and Procrustes transformation. We have found that a wavelet approach (Daubechies 4 wavelet at 6th level decomposition) provides good illumination correction with clear improvement in image sharpness and contrast. The assessment of image quality using a 'Designer metric' works well when compared to visual evaluation, although it is highly correlated with other metrics. In image registration, sub-pixel translation measured using parabolic interpolation on the peak of the cross-correlation function and maximum-likelihood estimation are found to give very similar results (RMS difference 0.047 pixels). We have confirmed that correcting rotation of the images provides a significant improvement, especially at the edges of the image. We observed that selecting the better quality frames (e.g. best 75% images) for image registration gives improved resolution, at the expense of poorer signal-to-noise. The sharpness map of the registered and de-rotated images shows increased sharpness over most of the field of view. Adaptive optics assisted images of the cone photoreceptors can be better pre-processed using a wavelet approach. These images can be assessed for image quality using a 'Designer Metric'. Two-stage image registration including correcting for rotation significantly improves the final image contrast and sharpness. © 2013 The Authors Ophthalmic & Physiological Optics © 2013 The College of Optometrists.

  16. Dose Optimization of the Administered Activity in Pediatric Bone Scintigraphy: Validation of the North American Consensus Guidelines.

    PubMed

    Ayres, Karen L; Spottswood, Stephanie E; Delbeke, Dominique; Price, Ronald; Hodges, Pamela K; Wang, Li; Martin, William H

    2015-09-01

    The 2010 North American Consensus Guidelines (NACG) for pediatric administered doses and the European Association of Nuclear Medicine (EANM) Dosage Card guidelines recommend lower activities than those administered at our institution. We compared the quality of the lower-activity images with the higher-activity images to determine whether the reduction in counts affects overall image quality. Twenty patients presenting to our pediatric radiology department for bone scintigraphy were evaluated. Their mean weight was 20 kg. The patients were referred for oncologic (n = 10), infectious/inflammatory (n = 5), and pain (n = 5) evaluation. Dynamic anterior and posterior images were acquired for 5 min for each patient. Data were subsampled to represent different administered activities corresponding to the activities recommended by the NACG and the EANM Dosage Card. Images were evaluated twice, first for diagnostic quality and then for acceptability for daily clinical use. There was no statistically significant difference in the diagnostic quality of the images from any of the 3 protocols. Pathologic uptake was correctly identified independent of the administered activity, although there was a single false-positive result for an EANM image. When images were subjectively evaluated as acceptable for daily clinical use, there was a slight preference for the higher-activity images over the NACG (P = 0.04). The recommended administered activities of the NACG produce images of diagnostic quality while reducing patient radiation exposure. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  17. Quantitative assessment on coronary computed tomography angiography (CCTA) image quality: comparisons between genders and different tube voltage settings

    PubMed Central

    Chian, Teo Chee; Nassir, Norziana Mat; Ibrahim, Mohd Izuan; Yusof, Ahmad Khairuddin Md

    2017-01-01

    Background This study was carried out to quantify and compare the quantitative image quality of coronary computed tomography angiography (CCTA) between genders as well as between different tube voltages scan protocols. Methods Fifty-five cases of CCTA were collected retrospectively and all images including reformatted axial images at systolic and diastolic phases as well as images with curved multi planar reformation (cMPR) were obtained. Quantitative image quality including signal intensity, image noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of right coronary artery (RCA), left anterior descending artery (LAD), left circumflex artery (LCx) and left main artery (LM) were quantified using Analyze 12.0 software. Results Six hundred and fifty-seven coronary arteries were evaluated. There were no significant differences in any quantitative image quality parameters between genders. 100 kilovoltage peak (kVp) scanning protocol produced images with significantly higher signal intensity compared to 120 kVp scanning protocol (P<0.001) in all coronary arteries in all types of images. Higher SNR was also observed in 100 kVp scan protocol in all coronary arteries except in LCx where 120 kVp showed better SNR than 100 kVp. Conclusions There were no significant differences in image quality of CCTA between genders and different tube voltages. Lower tube voltage (100 kVp) scanning protocol is recommended in clinical practice to reduce the radiation dose to patient. PMID:28275559

  18. Image quality in thoracic 4D cone-beam CT: A sensitivity analysis of respiratory signal, binning method, reconstruction algorithm, and projection angular spacing

    PubMed Central

    Shieh, Chun-Chien; Kipritidis, John; O’Brien, Ricky T.; Kuncic, Zdenka; Keall, Paul J.

    2014-01-01

    Purpose: Respiratory signal, binning method, and reconstruction algorithm are three major controllable factors affecting image quality in thoracic 4D cone-beam CT (4D-CBCT), which is widely used in image guided radiotherapy (IGRT). Previous studies have investigated each of these factors individually, but no integrated sensitivity analysis has been performed. In addition, projection angular spacing is also a key factor in reconstruction, but how it affects image quality is not obvious. An investigation of the impacts of these four factors on image quality can help determine the most effective strategy in improving 4D-CBCT for IGRT. Methods: Fourteen 4D-CBCT patient projection datasets with various respiratory motion features were reconstructed with the following controllable factors: (i) respiratory signal (real-time position management, projection image intensity analysis, or fiducial marker tracking), (ii) binning method (phase, displacement, or equal-projection-density displacement binning), and (iii) reconstruction algorithm [Feldkamp–Davis–Kress (FDK), McKinnon–Bates (MKB), or adaptive-steepest-descent projection-onto-convex-sets (ASD-POCS)]. The image quality was quantified using signal-to-noise ratio (SNR), contrast-to-noise ratio, and edge-response width in order to assess noise/streaking and blur. The SNR values were also analyzed with respect to the maximum, mean, and root-mean-squared-error (RMSE) projection angular spacing to investigate how projection angular spacing affects image quality. Results: The choice of respiratory signals was found to have no significant impact on image quality. Displacement-based binning was found to be less prone to motion artifacts compared to phase binning in more than half of the cases, but was shown to suffer from large interbin image quality variation and large projection angular gaps. Both MKB and ASD-POCS resulted in noticeably improved image quality almost 100% of the time relative to FDK. In addition, SNR values were found to increase with decreasing RMSE values of projection angular gaps with strong correlations (r ≈ −0.7) regardless of the reconstruction algorithm used. Conclusions: Based on the authors’ results, displacement-based binning methods, better reconstruction algorithms, and the acquisition of even projection angular views are the most important factors to consider for improving thoracic 4D-CBCT image quality. In view of the practical issues with displacement-based binning and the fact that projection angular spacing is not currently directly controllable, development of better reconstruction algorithms represents the most effective strategy for improving image quality in thoracic 4D-CBCT for IGRT applications at the current stage. PMID:24694143

  19. Pediatric chest HRCT using the iDose4 Hybrid Iterative Reconstruction Algorithm: Which iDose level to choose?

    NASA Astrophysics Data System (ADS)

    Smarda, M.; Alexopoulou, E.; Mazioti, A.; Kordolaimi, S.; Ploussi, A.; Priftis, K.; Efstathopoulos, E.

    2015-09-01

    Purpose of the study is to determine the appropriate iterative reconstruction (IR) algorithm level that combines image quality and diagnostic confidence, for pediatric patients undergoing high-resolution computed tomography (HRCT). During the last 2 years, a total number of 20 children up to 10 years old with a clinical presentation of chronic bronchitis underwent HRCT in our department's 64-detector row CT scanner using the iDose IR algorithm, with almost similar image settings (80kVp, 40-50 mAs). CT images were reconstructed with all iDose levels (level 1 to 7) as well as with filtered-back projection (FBP) algorithm. Subjective image quality was evaluated by 2 experienced radiologists in terms of image noise, sharpness, contrast and diagnostic acceptability using a 5-point scale (1=excellent image, 5=non-acceptable image). Artifacts existance was also pointed out. All mean scores from both radiologists corresponded to satisfactory image quality (score ≤3), even with the FBP algorithm use. Almost excellent (score <2) overall image quality was achieved with iDose levels 5 to 7, but oversmoothing artifacts appearing with iDose levels 6 and 7 affected the diagnostic confidence. In conclusion, the use of iDose level 5 enables almost excellent image quality without considerable artifacts affecting the diagnosis. Further evaluation is needed in order to draw more precise conclusions.

  20. Scanning electron microscope image signal-to-noise ratio monitoring for micro-nanomanipulation.

    PubMed

    Marturi, Naresh; Dembélé, Sounkalo; Piat, Nadine

    2014-01-01

    As an imaging system, scanning electron microscope (SEM) performs an important role in autonomous micro-nanomanipulation applications. When it comes to the sub micrometer range and at high scanning speeds, the images produced by the SEM are noisy and need to be evaluated or corrected beforehand. In this article, the quality of images produced by a tungsten gun SEM has been evaluated by quantifying the level of image signal-to-noise ratio (SNR). In order to determine the SNR, an efficient and online monitoring method is developed based on the nonlinear filtering using a single image. Using this method, the quality of images produced by a tungsten gun SEM is monitored at different experimental conditions. The derived results demonstrate the developed method's efficiency in SNR quantification and illustrate the imaging quality evolution in SEM. © 2014 Wiley Periodicals, Inc.

  1. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities.

    PubMed

    Lechuga, Lawrence; Weidlich, Georg A

    2016-09-12

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities-fan beam and cone beam-was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient.

  2. Cone Beam CT vs. Fan Beam CT: A Comparison of Image Quality and Dose Delivered Between Two Differing CT Imaging Modalities

    PubMed Central

    Weidlich, Georg A.

    2016-01-01

    A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities—fan beam and cone beam—was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient. PMID:27752404

  3. Breast MRI at 7 Tesla with a bilateral coil and T1-weighted acquisition with robust fat suppression: image evaluation and comparison with 3 Tesla

    PubMed Central

    Brown, Ryan; Storey, Pippa; Geppert, Christian; McGorty, KellyAnne; Leite, Ana Paula Klautau; Babb, James; Sodickson, Daniel K.; Wiggins, Graham C.; Moy, Linda

    2014-01-01

    Objectives To evaluate the image quality of T1-weighted fat-suppressed breast MRI at 7 T, and to compare 7-T and 3-T images. Methods Seventeen subjects were imaged using a 7-T bilateral transmit-receive coil and adiabatic inversion-based fat suppression (FS). Images were graded on a five-point scale and quantitatively assessed through signal-to-noise ratio (SNR), fibroglandular/fat contrast and signal uniformity measurements. Results Image scores at 7 T and 3 T were similar on standard-resolution images (1.1× 1.1×1.1−1.6 mm3), indicating that high-quality breast imaging with clinical parameters can be performed at 7 T. The 7-T SNR advantage was underscored on 0.6-mm isotropic images, where image quality was significantly greater than at 3 T (4.2 versus 3.1, P≤0.0001). Fibroglandular/fat contrast was more than two times higher at 7 T over 3 T, owing to effective adiabatic inversion-based FS and the inherent 7 T signal advantage. Signal uniformity was comparable at 7 T and 3 T (P<0.05). Similar 7-T image quality was observed in all subjects, indicating robustness against anatomical variation. Conclusion The 7-T bilateral transmit-receive coil and adiabatic inversion-based FS technique mitigate the impact of high-field heterogeneity to produce image quality that is as good as or better than at 3 T PMID:23896763

  4. Application of phase consistency to improve time efficiency and image quality in dual echo black-blood carotid angiography.

    PubMed

    Kholmovski, Eugene G; Parker, Dennis L

    2005-07-01

    There is a considerable similarity between proton density-weighted (PDw) and T2-weighted (T2w) images acquired by dual echo fast spin-echo (FSE) sequences. The similarity manifests itself not only in image space as correspondence between intensities of PDw and T2w images, but also in phase space as consistency between phases of PDw and T2w images. Methods for improving the imaging efficiency and image quality of dual echo FSE sequences based on this feature have been developed. The total scan time of dual echo FSE acquisition may be reduced by as much as 25% by incorporating an estimate of the image phase from a fully sampled PDw image when reconstructing partially sampled T2w images. The quality of T2w images acquired using phased array coils may be significantly improved by using the developed noise reduction reconstruction scheme, which is based on the correspondence between the PDw and T2w image intensities and the consistency between the PDw and T2w image phases. Studies of phantom and human subject MRI data were performed to evaluate the effectiveness of the techniques.

  5. Synthetic aperture ultrasound imaging with a ring transducer array: preliminary ex vivo results.

    PubMed

    Qu, Xiaolei; Azuma, Takashi; Yogi, Takeshi; Azuma, Shiho; Takeuchi, Hideki; Tamano, Satoshi; Takagi, Shu

    2016-10-01

    The conventional medical ultrasound imaging has a low lateral spatial resolution, and the image quality depends on the depth of the imaging location. To overcome these problems, this study presents a synthetic aperture (SA) ultrasound imaging method using a ring transducer array. An experimental ring transducer array imaging system was constructed. The array was composed of 2048 transducer elements, and had a diameter of 200 mm and an inter-element pitch of 0.325 mm. The imaging object was placed in the center of the ring transducer array, which was immersed in water. SA ultrasound imaging was then employed to scan the object and reconstruct the reflection image. Both wire phantom and ex vivo experiments were conducted. The proposed method was found to be capable of producing isotropic high-resolution images of the wire phantom. In addition, preliminary ex vivo experiments using porcine organs demonstrated the ability of the method to reconstruct high-quality images without any depth dependence. The proposed ring transducer array and SA ultrasound imaging method were shown to be capable of producing isotropic high-resolution images whose quality was independent of depth.

  6. Free-breathing echo-planar imaging based diffusion-weighted magnetic resonance imaging of the liver with prospective acquisition correction.

    PubMed

    Asbach, Patrick; Hein, Patrick A; Stemmer, Alto; Wagner, Moritz; Huppertz, Alexander; Hamm, Bernd; Taupitz, Matthias; Klessen, Christian

    2008-01-01

    To evaluate soft tissue contrast and image quality of a respiratory-triggered echo-planar imaging based diffusion-weighted sequence (EPI-DWI) with different b values for magnetic resonance imaging (MRI) of the liver. Forty patients were examined. Quantitative and qualitative evaluation of contrast was performed. Severity of artifacts and overall image quality in comparison with a T2w turbo spin-echo (T2-TSE) sequence were scored. The liver-spleen contrast was significantly higher (P < 0.05) for the EPI-DWI compared with the T2-TSE sequence (0.47 +/- 0.11 (b50); 0.48 +/- 0.13 (b300); 0.47 +/- 0.13 (b600) vs 0.38 +/- 0.11). Liver-lesion contrast strongly depends on the b value of the DWI sequence and decreased with higher b values (b50, 0.47 +/- 0.19; b300, 0.40 +/- 0.20; b600, 0.28 +/- 0.23). Severity of artifacts and overall image quality were comparable to the T2-TSE sequence when using a low b value (P > 0.05), artifacts increased and image quality decreased with higher b values (P < 0.05). Respiratory-triggered EPI-DWI of the liver is feasible because good image quality and favorable soft tissue contrast can be achieved.

  7. Model-Based Referenceless Quality Metric of 3D Synthesized Images Using Local Image Description.

    PubMed

    Gu, Ke; Jakhetiya, Vinit; Qiao, Jun-Fei; Li, Xiaoli; Lin, Weisi; Thalmann, Daniel

    2017-07-28

    New challenges have been brought out along with the emerging of 3D-related technologies such as virtual reality (VR), augmented reality (AR), and mixed reality (MR). Free viewpoint video (FVV), due to its applications in remote surveillance, remote education, etc, based on the flexible selection of direction and viewpoint, has been perceived as the development direction of next-generation video technologies and has drawn a wide range of researchers' attention. Since FVV images are synthesized via a depth image-based rendering (DIBR) procedure in the "blind" environment (without reference images), a reliable real-time blind quality evaluation and monitoring system is urgently required. But existing assessment metrics do not render human judgments faithfully mainly because geometric distortions are generated by DIBR. To this end, this paper proposes a novel referenceless quality metric of DIBR-synthesized images using the autoregression (AR)-based local image description. It was found that, after the AR prediction, the reconstructed error between a DIBR-synthesized image and its AR-predicted image can accurately capture the geometry distortion. The visual saliency is then leveraged to modify the proposed blind quality metric to a sizable margin. Experiments validate the superiority of our no-reference quality method as compared with prevailing full-, reduced- and no-reference models.

  8. Effect of masking phase-only holograms on the quality of reconstructed images.

    PubMed

    Deng, Yuanbo; Chu, Daping

    2016-04-20

    A phase-only hologram modulates the phase of the incident light and diffracts it efficiently with low energy loss because of the minimum absorption. Much research attention has been focused on how to generate phase-only holograms, and little work has been done to understand the effect and limitation of their partial implementation, possibly due to physical defects and constraints, in particular as in the practical situations where a phase-only hologram is confined or needs to be sliced or tiled. The present study simulates the effect of masking phase-only holograms on the quality of reconstructed images in three different scenarios with different filling factors, filling positions, and illumination intensity profiles. Quantitative analysis confirms that the width of the image point spread function becomes wider and the image quality decreases, as expected, when the filling factor decreases, and the image quality remains the same for different filling positions as well. The width of the image point spread function as derived from different filling factors shows a consistent behavior to that as measured directly from the reconstructed image, especially as the filling factor becomes small. Finally, mask profiles of different shapes and intensity distributions are shown to have more complicated effects on the image point spread function, which in turn affects the quality and textures of the reconstructed image.

  9. Applying image quality in cell phone cameras: lens distortion

    NASA Astrophysics Data System (ADS)

    Baxter, Donald; Goma, Sergio R.; Aleksic, Milivoje

    2009-01-01

    This paper describes the framework used in one of the pilot studies run under the I3A CPIQ initiative to quantify overall image quality in cell-phone cameras. The framework is based on a multivariate formalism which tries to predict overall image quality from individual image quality attributes and was validated in a CPIQ pilot program. The pilot study focuses on image quality distortions introduced in the optical path of a cell-phone camera, which may or may not be corrected in the image processing path. The assumption is that the captured image used is JPEG compressed and the cellphone camera is set to 'auto' mode. As the used framework requires that the individual attributes to be relatively perceptually orthogonal, in the pilot study, the attributes used are lens geometric distortion (LGD) and lateral chromatic aberrations (LCA). The goal of this paper is to present the framework of this pilot project starting with the definition of the individual attributes, up to their quantification in JNDs of quality, a requirement of the multivariate formalism, therefore both objective and subjective evaluations were used. A major distinction in the objective part from the 'DSC imaging world' is that the LCA/LGD distortions found in cell-phone cameras, rarely exhibit radial behavior, therefore a radial mapping/modeling cannot be used in this case.

  10. TU-AB-207A-03: Image Quality, Dose, and Clinical Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, F.

    Practicing medical physicists are often time charged with the tasks of evaluating and troubleshooting complex image quality issues related to CT scanners. This course will equip them with a solid and practical understanding of common CT imaging chain and its major components with emphasis on acquisition physics and hardware, reconstruction, artifacts, image quality, dose, and advanced clinical applications. The core objective is to explain the effects of these major system components on the image quality. This course will not focus on the rapid-changing advanced technologies given the two-hour time limit, but the fundamental principles discussed in this course may facilitatemore » better understanding of those more complicated technologies. The course will begin with an overview of CT acquisition physics and geometry. X-ray tube and CT detector are important acquisition hardware critical to the overall image quality. Each of these two subsystems consists of several major components. An in-depth description of the function and failure modes of these components will be provided. Examples of artifacts related to these failure modes will be presented: off-focal radiation, tube arcing, heel effect, oil bubble, offset drift effect, cross-talk effect, and bad pixels. The fundamentals of CT image reconstruction will first be discussed on an intuitive level. Approaches that do not require rigorous derivation of mathematical formulations will be presented. This is followed by a detailed derivation of the Fourier slice theorem: the foundation of the FBP algorithm. FBP for parallel-beam, fan-beam, and cone-beam geometries will be discussed. To address the issue of radiation dose related to x-ray CT, recent advances in iterative reconstruction, their advantages, and clinical applications will also be described. Because of the nature of fundamental physics and mathematics, limitations in data acquisition, and non-ideal conditions of major system components, image artifact often arise in the reconstructed images. Because of the limited scope of this course, only major imaging artifacts, their appearance, and possible mitigation and corrections will be discussed. Assessment of the performance of a CT scanner is a complicated subject. Procedures to measure common image quality metrics such as high contrast spatial resolution, low contrast detectability, and slice profile will be described. The reason why these metrics used for FBP may not be sufficient for statistical iterative reconstruction will be explained. Optimizing radiation dose requires comprehension of CT dose metrics. This course will briefly describe various dose metrics, and interaction with acquisition parameters and patient habitus. CT is among the most frequently used imaging tools due to its superior image quality, easy to operate, and a broad range of applications. This course will present several interesting CT applications such as a mobile CT unit on an ambulance for stroke patients, low dose lung cancer screening, and single heartbeat cardiac CT. Learning Objectives: Understand the function and impact of major components of X-ray tube on the image quality. Understand the function and impact of major components of CT detector on the image quality. Be familiar with the basic procedure of CT image reconstruction. Understand the effect of image reconstruction on CT image quality and artifacts. Understand the root causes of common CT image artifacts. Be familiar with image quality metrics especially high and low contrast resolution, noise power spectrum, slice sensitivity profile, etc. Understand why basic image quality metrics used for FBP may not be sufficient to characterize the performance of advanced iterative reconstruction. Be familiar with various CT dose metrics and their interaction with acquisition parameters. New development in advanced CT clinical applications. JH: Employee of GE Healthcare. FD: No disclosure.; J. Hsieh, Jiang Hsieh is an employee of GE Healthcare.« less

  11. An image quality comparison study between XVI and OBI CBCT systems.

    PubMed

    Kamath, Srijit; Song, William; Chvetsov, Alexei; Ozawa, Shuichi; Lu, Haibin; Samant, Sanjiv; Liu, Chihray; Li, Jonathan G; Palta, Jatinder R

    2011-02-04

    The purpose of this study is to evaluate and compare image quality characteristics for two commonly used and commercially available CBCT systems: the X-ray Volumetric Imager and the On-Board Imager. A commonly used CATPHAN image quality phantom was used to measure various image quality parameters, namely, pixel value stability and accuracy, noise, contrast to noise ratio (CNR), high-contrast resolution, low contrast resolution and image uniformity. For the XVI unit, we evaluated the image quality for four manufacturer-supplied protocols as a function of mAs. For the OBI unit, we did the same for the full-fan and half-fan scanning modes, which were respectively used with the full bow-tie and half bow-tie filters. For XVI, the mean pixel values of regions of interest were found to generally decrease with increasing mAs for all protocols, while they were relatively stable with mAs for OBI. Noise was slightly lower on XVI and was seen to decrease with increasing mAs, while CNR increased with mAs for both systems. For XVI and OBI, the high-contrast resolution was approximately limited by the pixel resolution of the reconstructed image. On OBI images, up to 6 and 5 discs of 1% and 0.5% contrast, respectively, were visible for a high mAs setting using the full-fan mode, while none of the discs were clearly visible on the XVI images for various mAs settings when the medium resolution reconstruction was used. In conclusion, image quality parameters for XVI and OBI have been quantified and compared for clinical protocols under various mAs settings. These results need to be viewed in the context of a recent study that reported the dose-mAs relationship for the two systems and found that OBI generally delivered higher imaging doses than XVI.

  12. Characteristics of a New X-Ray Imaging System for Interventional Procedures: Improved Image Quality and Reduced Radiation Dose.

    PubMed

    Schernthaner, Ruediger E; Haroun, Reham R; Nguyen, Sonny; Duran, Rafael; Sohn, Jae Ho; Sahu, Sonia; Chapiro, Julius; Zhao, Yan; Radaelli, Alessandro; van der Bom, Imramsjah M; Mauti, Maria; Hong, Kelvin; Geschwind, Jean-François H; Lin, MingDe

    2018-03-01

    To compare image quality and radiation exposure between a new angiographic imaging system and the preceding generation system during uterine artery embolization (UAE). In this retrospective, IRB-approved two-arm study, 54 patients with symptomatic uterine fibroids were treated with UAE on two different angiographic imaging systems. The new system includes optimized acquisition parameters and real-time image processing algorithms. Air kerma (AK), dose area product (DAP) and acquisition time for digital fluoroscopy (DF) and digital subtraction angiography (DSA) were recorded. Body mass index was noted as well. DF image quality was assessed objectively by image noise measurements. DSA image quality was rated by two blinded, independent readers on a four-rank scale. Statistical differences were assessed with unpaired t tests and Wilcoxon rank-sum tests. There was no significant difference between the patients treated on the new (n = 36) and the old system (n = 18) regarding age (p = 0.10), BMI (p = 0.18), DF time (p = 0.35) and DSA time (p = 0.17). The new system significantly reduced the cumulative AK and DAP by 64 and 72%, respectively (median 0.58 Gy and 145.9 Gy*cm 2 vs. 1.62 Gy and 526.8 Gy*cm 2 , p < 0.01 for both). Specifically, DAP for DF and DSA decreased by 59% (75.3 vs. 181.9 Gy*cm 2 , p < 0.01) and 78% (67.6 vs. 312.2 Gy*cm 2 , p < 0.01), respectively. The new system achieved a significant decrease in DF image noise (p < 0.01) and a significantly better DSA image quality (p < 0.01). The new angiographic imaging system significantly improved image quality and reduced radiation exposure during UAE procedures.

  13. Comparison of Knowledge-based Iterative Model Reconstruction and Hybrid Reconstruction Techniques for Liver CT Evaluation of Hypervascular Hepatocellular Carcinoma.

    PubMed

    Park, Hyun Jeong; Lee, Jeong Min; Park, Sung Bin; Lee, Jong Beum; Jeong, Yoong Ki; Yoon, Jeong Hee

    The purpose of this work was to evaluate the image quality, lesion conspicuity, and dose reduction provided by knowledge-based iterative model reconstruction (IMR) in computed tomography (CT) of the liver compared with hybrid iterative reconstruction (IR) and filtered back projection (FBP) in patients with hepatocellular carcinoma (HCC). Fifty-six patients with 61 HCCs who underwent multiphasic reduced-dose CT (RDCT; n = 33) or standard-dose CT (SDCT; n = 28) were retrospectively evaluated. Reconstructed images with FBP, hybrid IR (iDose), IMR were evaluated for image quality using CT attenuation and image noise. Objective and subjective image quality of RDCT and SDCT sets were independently assessed by 2 observers in a blinded manner. Image quality and lesion conspicuity were better with IMR for both RDCT and SDCT than either FBP or IR (P < 0.001). Contrast-to-noise ratio of HCCs in IMR-RDCT was significantly higher on delayed phase (DP) (P < 0.001), and comparable on arterial phase, than with IR-SDCT (P = 0.501). Iterative model reconstruction RDCT was significantly superior to FBP-SDCT (P < 0.001). Compared with IR-SDCT, IMR-RDCT was comparable in image sharpness and tumor conspicuity on arterial phase, and superior in image quality, noise, and lesion conspicuity on DP. With the use of IMR, a 27% reduction of effective dose was achieved with RDCT (12.7 ± 0.6 mSv) compared with SDCT (17.4 ± 1.1 mSv) without loss of image quality (P < 0.001). Iterative model reconstruction provides better image quality and tumor conspicuity than FBP and IR with considerable noise reduction. In addition, more than comparable results were achieved with IMR-RDCT to IR-SDCT for the evaluation of HCCs.

  14. Digital fundus image grading with the non-mydriatic Visucam(PRO NM) versus the FF450(plus) camera in diabetic retinopathy.

    PubMed

    Neubauer, Aljoscha S; Rothschuh, Antje; Ulbig, Michael W; Blum, Marcus

    2008-03-01

    Grading diabetic retinopathy in clinical trials is frequently based on 7-field stereo photography of the fundus in diagnostic mydriasis. In terms of image quality, the FF450(plus) camera (Carl Zeiss Meditec AG, Jena, Germany) defines a high-quality reference. The aim of the study was to investigate if the fully digital fundus camera Visucam(PRO NM) could serve as an alternative in clinical trials requiring 7-field stereo photography. A total of 128 eyes of diabetes patients were enrolled in the randomized, controlled, prospective trial. Seven-field stereo photography was performed with the Visucam(PRO NM) and the FF450(plus) camera, in random order, both in diagnostic mydriasis. The resulting 256 image sets from the two camera systems were graded for retinopathy levels and image quality (on a scale of 1-5); both were anonymized and blinded to the image source. On FF450(plus) stereoscopic imaging, 20% of the patients had no or mild diabetic retinopathy (ETDRS level < or = 20) and 29% had no macular oedema. No patient had to be excluded as a result of image quality. Retinopathy level did not influence the quality of grading or of images. Excellent overall correspondence was obtained between the two fundus cameras regarding retinopathy levels (kappa 0.87) and macular oedema (kappa 0.80). In diagnostic mydriasis the image quality of the Visucam was graded slightly as better than that of the FF450(plus) (2.20 versus 2.41; p < 0.001), especially for pupils < 7 mm in mydriasis. The non-mydriatic Visucam(PRO NM) offers good image quality and is suitable as a more cost-efficient and easy-to-operate camera for applications and clinical trials requiring 7-field stereo photography.

  15. Adaptive Statistical Iterative Reconstruction-V Versus Adaptive Statistical Iterative Reconstruction: Impact on Dose Reduction and Image Quality in Body Computed Tomography.

    PubMed

    Gatti, Marco; Marchisio, Filippo; Fronda, Marco; Rampado, Osvaldo; Faletti, Riccardo; Bergamasco, Laura; Ropolo, Roberto; Fonio, Paolo

    The aim of this study was to evaluate the impact on dose reduction and image quality of the new iterative reconstruction technique: adaptive statistical iterative reconstruction (ASIR-V). Fifty consecutive oncologic patients acted as case controls undergoing during their follow-up a computed tomography scan both with ASIR and ASIR-V. Each study was analyzed in a double-blinded fashion by 2 radiologists. Both quantitative and qualitative analyses of image quality were conducted. Computed tomography scanner radiation output was 38% (29%-45%) lower (P < 0.0001) for the ASIR-V examinations than for the ASIR ones. The quantitative image noise was significantly lower (P < 0.0001) for ASIR-V. Adaptive statistical iterative reconstruction-V had a higher performance for the subjective image noise (P = 0.01 for 5 mm and P = 0.009 for 1.25 mm), the other parameters (image sharpness, diagnostic acceptability, and overall image quality) being similar (P > 0.05). Adaptive statistical iterative reconstruction-V is a new iterative reconstruction technique that has the potential to provide image quality equal to or greater than ASIR, with a dose reduction around 40%.

  16. Objective Quality Assessment for Color-to-Gray Image Conversion.

    PubMed

    Ma, Kede; Zhao, Tiesong; Zeng, Kai; Wang, Zhou

    2015-12-01

    Color-to-gray (C2G) image conversion is the process of transforming a color image into a grayscale one. Despite its wide usage in real-world applications, little work has been dedicated to compare the performance of C2G conversion algorithms. Subjective evaluation is reliable but is also inconvenient and time consuming. Here, we make one of the first attempts to develop an objective quality model that automatically predicts the perceived quality of C2G converted images. Inspired by the philosophy of the structural similarity index, we propose a C2G structural similarity (C2G-SSIM) index, which evaluates the luminance, contrast, and structure similarities between the reference color image and the C2G converted image. The three components are then combined depending on image type to yield an overall quality measure. Experimental results show that the proposed C2G-SSIM index has close agreement with subjective rankings and significantly outperforms existing objective quality metrics for C2G conversion. To explore the potentials of C2G-SSIM, we further demonstrate its use in two applications: 1) automatic parameter tuning for C2G conversion algorithms and 2) adaptive fusion of C2G converted images.

  17. An approach to integrate the human vision psychology and perception knowledge into image enhancement

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Huang, Xifeng; Ping, Jiang

    2009-07-01

    Image enhancement is very important image preprocessing technology especially when the image is captured in the poor imaging condition or dealing with the high bits image. The benefactor of image enhancement either may be a human observer or a computer vision process performing some kind of higher-level image analysis, such as target detection or scene understanding. One of the main objects of the image enhancement is getting a high dynamic range image and a high contrast degree image for human perception or interpretation. So, it is very necessary to integrate either empirical or statistical human vision psychology and perception knowledge into image enhancement. The human vision psychology and perception claims that humans' perception and response to the intensity fluctuation δu of visual signals are weighted by the background stimulus u, instead of being plainly uniform. There are three main laws: Weber's law, Weber- Fechner's law and Stevens's Law that describe this phenomenon in the psychology and psychophysics. This paper will integrate these three laws of the human vision psychology and perception into a very popular image enhancement algorithm named Adaptive Plateau Equalization (APE). The experiments were done on the high bits star image captured in night scene and the infrared-red image both the static image and the video stream. For the jitter problem in the video stream, this algorithm reduces this problem using the difference between the current frame's plateau value and the previous frame's plateau value to correct the current frame's plateau value. Considering the random noise impacts, the pixel value mapping process is not only depending on the current pixel but the pixels in the window surround the current pixel. The window size is usually 3×3. The process results of this improved algorithms is evaluated by the entropy analysis and visual perception analysis. The experiments' result showed the improved APE algorithms improved the quality of the image, the target and the surrounding assistant targets could be identified easily, and the noise was not amplified much. For the low quality image, these improved algorithms augment the information entropy and improve the image and the video stream aesthetic quality, while for the high quality image they will not debase the quality of the image.

  18. The influence of software filtering in digital mammography image quality

    NASA Astrophysics Data System (ADS)

    Michail, C.; Spyropoulou, V.; Kalyvas, N.; Valais, I.; Dimitropoulos, N.; Fountos, G.; Kandarakis, I.; Panayiotakis, G.

    2009-05-01

    Breast cancer is one of the most frequently diagnosed cancers among women. Several techniques have been developed to help in the early detection of breast cancer such as conventional and digital x-ray mammography, positron and single-photon emission mammography, etc. A key advantage in digital mammography is that images can be manipulated as simple computer image files. Thus non-dedicated commercially available image manipulation software can be employed to process and store the images. The image processing tools of the Photoshop (CS 2) software usually incorporate digital filters which may be used to reduce image noise, enhance contrast and increase spatial resolution. However, improving an image quality parameter may result in degradation of another. The aim of this work was to investigate the influence of three sharpening filters, named hereafter sharpen, sharpen more and sharpen edges on image resolution and noise. Image resolution was assessed by means of the Modulation Transfer Function (MTF).In conclusion it was found that the correct use of commercial non-dedicated software on digital mammograms may improve some aspects of image quality.

  19. Initial clinical results with a new needle screen storage phosphor system in chest radiograms.

    PubMed

    Körner, M; Wirth, S; Treitl, M; Reiser, M; Pfeifer, K-J

    2005-11-01

    To evaluate image quality and anatomical detail depiction in dose-reduced digital plain chest radiograms using a new needle screen storage phosphor (NIP) in comparison to full dose conventional powder screen storage phosphor (PIP) images. 24 supine chest radiograms were obtained with PIP at standard dose and compared to follow-up studies of the same patients obtained with NIP with dose reduced to 50 % of the PIP dose (all imaging systems: AGFA-Gevaert, Mortsel, Belgium). In both systems identical versions of post-processing software supplied by the manufacturer were used with matched parameters. Six independent readers blinded to both modality and dose evaluated the images for depiction and differentiation of defined anatomical regions (peripheral lung parenchyma, central lung parenchyma, hilum, heart, diaphragm, upper mediastinum, and bone). All NIP images were compared to the corresponding PIP images using a five-point scale (- 2, clearly inferior to + 2, clearly superior). Overall image quality was rated for each PIP and NIP image separately (1, not usable to 5, excellent). PIP and dose reduced NIP images were rated equivalent. Mean image noise impression was only slightly higher on NIP images. Mean image quality for NIP showed no significant differences (p > 0.05, Mann-Whitney U test). With the use of the new needle structured storage phosphors in chest radiography, dose reduction of up to 50 % is possible without detracting from image quality or detail depiction. Especially in patients with multiple follow-up studies the overall dose can be decreased significantly.

  20. Towards a Systematic Screening Tool for Quality Assurance and Semiautomatic Fraud Detection for Images in the Life Sciences.

    PubMed

    Koppers, Lars; Wormer, Holger; Ickstadt, Katja

    2017-08-01

    The quality and authenticity of images is essential for data presentation, especially in the life sciences. Questionable images may often be a first indicator for questionable results, too. Therefore, a tool that uses mathematical methods to detect suspicious images in large image archives can be a helpful instrument to improve quality assurance in publications. As a first step towards a systematic screening tool, especially for journal editors and other staff members who are responsible for quality assurance, such as laboratory supervisors, we propose a basic classification of image manipulation. Based on this classification, we developed and explored some simple algorithms to detect copied areas in images. Using an artificial image and two examples of previously published modified images, we apply quantitative methods such as pixel-wise comparison, a nearest neighbor and a variance algorithm to detect copied-and-pasted areas or duplicated images. We show that our algorithms are able to detect some simple types of image alteration, such as copying and pasting background areas. The variance algorithm detects not only identical, but also very similar areas that differ only by brightness. Further types could, in principle, be implemented in a standardized scanning routine. We detected the copied areas in a proven case of image manipulation in Germany and showed the similarity of two images in a retracted paper from the Kato labs, which has been widely discussed on sites such as pubpeer and retraction watch.

  1. The use of adaptive statistical iterative reconstruction (ASiR) technique in evaluation of patients with cervical spine trauma: impact on radiation dose reduction and image quality

    PubMed Central

    Sheikh, Adnan

    2016-01-01

    Objective: The aim of this study was to evaluate the impact of adaptive statistical iterative reconstruction (ASiR) technique on the image quality and radiation dose reduction. The comparison was made with the traditional filtered back projection (FBP) technique. Methods: We retrospectively reviewed 78 patients, who underwent cervical spine CT for blunt cervical trauma between 1 June 2010 and 30 November 2010. 48 patients were imaged using traditional FBP technique and the remaining 30 patients were imaged using the ASiR technique. The patient demographics, radiation dose, objective image signal and noise were recorded; while subjective noise, sharpness, diagnostic acceptability and artefacts were graded by two radiologists blinded to the techniques. Results: We found that the ASiR technique was able to reduce the volume CT dose index, dose–length product and effective dose by 36%, 36.5% and 36.5%, respectively, compared with the FBP technique. There was no significant difference in the image noise (p = 0.39), signal (p = 0.82) and signal-to-noise ratio (p = 0.56) between the groups. The subjective image quality was minimally better in the ASiR group but not statistically significant. There was excellent interobserver agreement on the subjective image quality and diagnostic acceptability for both groups. Conclusion: The use of ASiR technique allowed approximately 36% radiation dose reduction in the evaluation of cervical spine without degrading the image quality. Advances in knowledge: The present study highlights that the ASiR technique is extremely helpful in reducing the patient radiation exposure while maintaining the image quality. It is highly recommended to utilize this novel technique in CT imaging of different body regions. PMID:26882825

  2. The use of adaptive statistical iterative reconstruction (ASiR) technique in evaluation of patients with cervical spine trauma: impact on radiation dose reduction and image quality.

    PubMed

    Patro, Satya N; Chakraborty, Santanu; Sheikh, Adnan

    2016-01-01

    The aim of this study was to evaluate the impact of adaptive statistical iterative reconstruction (ASiR) technique on the image quality and radiation dose reduction. The comparison was made with the traditional filtered back projection (FBP) technique. We retrospectively reviewed 78 patients, who underwent cervical spine CT for blunt cervical trauma between 1 June 2010 and 30 November 2010. 48 patients were imaged using traditional FBP technique and the remaining 30 patients were imaged using the ASiR technique. The patient demographics, radiation dose, objective image signal and noise were recorded; while subjective noise, sharpness, diagnostic acceptability and artefacts were graded by two radiologists blinded to the techniques. We found that the ASiR technique was able to reduce the volume CT dose index, dose-length product and effective dose by 36%, 36.5% and 36.5%, respectively, compared with the FBP technique. There was no significant difference in the image noise (p = 0.39), signal (p = 0.82) and signal-to-noise ratio (p = 0.56) between the groups. The subjective image quality was minimally better in the ASiR group but not statistically significant. There was excellent interobserver agreement on the subjective image quality and diagnostic acceptability for both groups. The use of ASiR technique allowed approximately 36% radiation dose reduction in the evaluation of cervical spine without degrading the image quality. The present study highlights that the ASiR technique is extremely helpful in reducing the patient radiation exposure while maintaining the image quality. It is highly recommended to utilize this novel technique in CT imaging of different body regions.

  3. Evaluation of an iterative model-based reconstruction of pediatric abdominal CT with regard to image quality and radiation dose.

    PubMed

    Aurumskjöld, Marie-Louise; Söderberg, Marcus; Stålhammar, Fredrik; von Steyern, Kristina Vult; Tingberg, Anders; Ydström, Kristina

    2018-06-01

    Background In pediatric patients, computed tomography (CT) is important in the medical chain of diagnosing and monitoring various diseases. Because children are more radiosensitive than adults, they require minimal radiation exposure. One way to achieve this goal is to implement new technical solutions, like iterative reconstruction. Purpose To evaluate the potential of a new, iterative, model-based method for reconstructing (IMR) pediatric abdominal CT at a low radiation dose and determine whether it maintains or improves image quality, compared to the current reconstruction method. Material and Methods Forty pediatric patients underwent abdominal CT. Twenty patients were examined with the standard dose settings and 20 patients were examined with a 32% lower radiation dose. Images from the standard examination were reconstructed with a hybrid iterative reconstruction method (iDose 4 ), and images from the low-dose examinations were reconstructed with both iDose 4 and IMR. Image quality was evaluated subjectively by three observers, according to modified EU image quality criteria, and evaluated objectively based on the noise observed in liver images. Results Visual grading characteristics analyses showed no difference in image quality between the standard dose examination reconstructed with iDose 4 and the low dose examination reconstructed with IMR. IMR showed lower image noise in the liver compared to iDose 4 images. Inter- and intra-observer variance was low: the intraclass coefficient was 0.66 (95% confidence interval = 0.60-0.71) for the three observers. Conclusion IMR provided image quality equivalent or superior to the standard iDose 4 method for evaluating pediatric abdominal CT, even with a 32% dose reduction.

  4. A novel smartphone ophthalmic imaging adapter: User feasibility studies in Hyderabad, India

    PubMed Central

    Ludwig, Cassie A; Murthy, Somasheila I; Pappuru, Rajeev R; Jais, Alexandre; Myung, David J; Chang, Robert T

    2016-01-01

    Aim of Study: To evaluate the ability of ancillary health staff to use a novel smartphone imaging adapter system (EyeGo, now known as Paxos Scope) to capture images of sufficient quality to exclude emergent eye findings. Secondary aims were to assess user and patient experiences during image acquisition, interuser reproducibility, and subjective image quality. Materials and Methods: The system captures images using a macro lens and an indirect ophthalmoscopy lens coupled with an iPhone 5S. We conducted a prospective cohort study of 229 consecutive patients presenting to L. V. Prasad Eye Institute, Hyderabad, India. Primary outcome measure was mean photographic quality (FOTO-ED study 1–5 scale, 5 best). 210 patients and eight users completed surveys assessing comfort and ease of use. For 46 patients, two users imaged the same patient's eyes sequentially. For 182 patients, photos taken with the EyeGo system were compared to images taken by existing clinic cameras: a BX 900 slit-lamp with a Canon EOS 40D Digital Camera and an FF 450 plus Fundus Camera with VISUPAC™ Digital Imaging System. Images were graded post hoc by a reviewer blinded to diagnosis. Results: Nine users acquired 719 useable images and 253 videos of 229 patients. Mean image quality was ≥ 4.0/5.0 (able to exclude subtle findings) for all users. 8/8 users and 189/210 patients surveyed were comfortable with the EyeGo device on a 5-point Likert scale. For 21 patients imaged with the anterior adapter by two users, a weighted κ of 0.597 (95% confidence interval: 0.389–0.806) indicated moderate reproducibility. High level of agreement between EyeGo and existing clinic cameras (92.6% anterior, 84.4% posterior) was found. Conclusion: The novel, ophthalmic imaging system is easily learned by ancillary eye care providers, well tolerated by patients, and captures high-quality images of eye findings. PMID:27146928

  5. SU-F-J-16: Planar KV Imaging Dose Reduction Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gershkevitsh, E; Zolotuhhin, D

    Purpose: IGRT has become an indispensable tool in modern radiotherapy with kV imaging used in many departments due to superior image quality and lower dose when compared to MV imaging. Many departments use manufacturer supplied protocols for imaging which are not always optimised between image quality and radiation dose (ALARA). Methods: Whole body phantom PBU-50 (Kyoto Kagaku ltd., Japan) for imaging in radiology has been imaged on Varian iX accelerator (Varian Medical Systems, USA) with OBI 1.5 system. Manufacturer’s default protocols were adapted by modifying kV and mAs values when imaging different anatomical regions of the phantom (head, thorax, abdomen,more » pelvis, extremities). Images with different settings were independently reviewed by two persons and their suitability for IGRT set-up correction protocols were evaluated. The suitable images with the lowest mAs were then selected. The entrance surface dose (ESD) for manufacturer’s default protocols and modified protocols were measured with RTI Black Piranha (RTI Group, Sweden) and compared. Image quality was also measured with kVQC phantom (Standard Imaging, USA) for different protocols. The modified protocols have been applied for clinical work. Results: For most cases optimized protocols reduced the ESD on average by a factor of 3(range 0.9–8.5). Further reduction in ESD has been observed by applying bow-tie filter designed for CBCT. The largest reduction in dose (12.2 times) was observed for Thorax lateral protocol. The dose was slightly increased (by 10%) for large pelvis AP protocol. Conclusion: Manufacturer’s default IGRT protocols could be optimised to reduce the ESD to the patient without losing the necessary image quality for patient set-up correction. For patient set-up with planar kV imaging the bony anatomy is mostly used and optimization should focus on this aspect. Therefore, the current approach with anthropomorphic phantom is more advantageous in optimization over standard kV quality control phantoms and SNR metrics.« less

  6. Real-time transmission of full-motion echocardiography over a high-speed data network: impact of data rate and network quality of service.

    PubMed

    Main, M L; Foltz, D; Firstenberg, M S; Bobinsky, E; Bailey, D; Frantz, B; Pleva, D; Baldizzi, M; Meyers, D P; Jones, K; Spence, M C; Freeman, K; Morehead, A; Thomas, J D

    2000-08-01

    With high-resolution network transmission required for telemedicine, education, and guided-image acquisition, the impact of errors and transmission rates on image quality needs evaluation. We transmitted clinical echocardiograms from 2 National Aeronautics and Space Administration (NASA) research centers with the use of Motion Picture Expert Group-2 (MPEG-2) encoding and asynchronous transmission mode (ATM) network protocol over the NASA Research and Education Network. Data rates and network quality (cell losses [CLR], errors [CER], and delay variability [CVD]) were altered and image quality was judged. At speeds of 3 to 5 megabits per second (Mbps), digital images were superior to those on videotape; at 2 Mbps, images were equivalent. Increasing CLR caused occasional, brief pauses. Extreme CER and CDV increases still yielded high-quality images. Real-time echocardiographic acquisition, guidance, and transmission is feasible with the use of MPEG-2 and ATM with broadcast quality seen above 3 Mbps, even with severe network quality degradation. These techniques can be applied to telemedicine and used for planned echocardiography aboard the International Space Station.

  7. Real-time transmission of full-motion echocardiography over a high-speed data network: impact of data rate and network quality of service

    NASA Technical Reports Server (NTRS)

    Main, M. L.; Foltz, D.; Firstenberg, M. S.; Bobinsky, E.; Bailey, D.; Frantz, B.; Pleva, D.; Baldizzi, M.; Meyers, D. P.; Jones, K.; hide

    2000-01-01

    With high-resolution network transmission required for telemedicine, education, and guided-image acquisition, the impact of errors and transmission rates on image quality needs evaluation. METHODS: We transmitted clinical echocardiograms from 2 National Aeronautics and Space Administration (NASA) research centers with the use of Motion Picture Expert Group-2 (MPEG-2) encoding and asynchronous transmission mode (ATM) network protocol over the NASA Research and Education Network. Data rates and network quality (cell losses [CLR], errors [CER], and delay variability [CVD]) were altered and image quality was judged. RESULTS: At speeds of 3 to 5 megabits per second (Mbps), digital images were superior to those on videotape; at 2 Mbps, images were equivalent. Increasing CLR caused occasional, brief pauses. Extreme CER and CDV increases still yielded high-quality images. CONCLUSIONS: Real-time echocardiographic acquisition, guidance, and transmission is feasible with the use of MPEG-2 and ATM with broadcast quality seen above 3 Mbps, even with severe network quality degradation. These techniques can be applied to telemedicine and used for planned echocardiography aboard the International Space Station.

  8. Assessing the quality of restored images in optical long-baseline interferometry

    NASA Astrophysics Data System (ADS)

    Gomes, Nuno; Garcia, Paulo J. V.; Thiébaut, Éric

    2017-03-01

    Assessing the quality of aperture synthesis maps is relevant for benchmarking image reconstruction algorithms, for the scientific exploitation of data from optical long-baseline interferometers, and for the design/upgrade of new/existing interferometric imaging facilities. Although metrics have been proposed in these contexts, no systematic study has been conducted on the selection of a robust metric for quality assessment. This article addresses the question: what is the best metric to assess the quality of a reconstructed image? It starts by considering several metrics and selecting a few based on general properties. Then, a variety of image reconstruction cases are considered. The observational scenarios are phase closure and phase referencing at the Very Large Telescope Interferometer (VLTI), for a combination of two, three, four and six telescopes. End-to-end image reconstruction is accomplished with the MIRA software, and several merit functions are put to test. It is found that convolution by an effective point spread function is required for proper image quality assessment. The effective angular resolution of the images is superior to naive expectation based on the maximum frequency sampled by the array. This is due to the prior information used in the aperture synthesis algorithm and to the nature of the objects considered. The ℓ1-norm is the most robust of all considered metrics, because being linear it is less sensitive to image smoothing by high regularization levels. For the cases considered, this metric allows the implementation of automatic quality assessment of reconstructed images, with a performance similar to human selection.

  9. Head CT: Image quality improvement of posterior fossa and radiation dose reduction with ASiR - comparative studies of CT head examinations.

    PubMed

    Guziński, Maciej; Waszczuk, Łukasz; Sąsiadek, Marek J

    2016-10-01

    To evaluate head CT protocol developed to improve visibility of the brainstem and cerebellum, lower bone-related artefacts in the posterior fossa and maintain patient radioprotection. A paired comparison of head CT performed without Adaptive Statistical Iterative Reconstruction (ASiR) and a clinically indicated follow-up with 40 % ASiR was acquired in one group of 55 patients. Patients were scanned in the axial mode with different scanner settings for the brain and the posterior fossa. Objective image quality analysis was performed with signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Subjective image quality analysis was based on brain structure visibility and evaluation of the artefacts. We achieved 19 % reduction of total DLP and significantly better image quality of posterior fossa structures. SNR for white and grey matter in the cerebellum were 34 % to 36 % higher, respectively, CNR was improved by 142 % and subjective analyses were better for images with ASiR. When imaging parameters are set independently for the brain and the posterior fossa imaging, ASiR has a great potential to improve CT performance: image quality of the brainstem and cerebellum is improved, and radiation dose for the brain as well as total radiation dose are reduced. •With ASiR it is possible to lower radiation dose or improve image quality •Sequentional imaging allows setting scan parameters for brain and posterior-fossa independently •We improved visibility of brainstem structures and decreased radiation dose •Total radiation dose (DLP) was decreased by 19.

  10. WE-G-204-09: Medical Physics 2.0 in Practice: Automated QC Assessment of Clinical Chest Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, C; Willis, C; Nishino, T

    2015-06-15

    Purpose: To determine whether a proposed suite of objective image quality metrics for digital chest radiographs is useful for monitoring image quality in our clinical operation. Methods: Seventeen gridless AP Chest radiographs from a GE Optima portable digital radiography (DR) unit (Group 1), seventeen (routine) PA Chest radiographs from a GE Discovery DR unit (Group 2), and sixteen gridless (non-routine) PA Chest radiographs from the same Discovery DR unit (Group 3) were chosen for analysis. Groups were selected to represent “sub-standard” (Group 1), “standard-of-care” (Group 2), and images with a gross technical error (Group 3). Group 1 images were acquiredmore » with lower kVp (90 vs. 125), shorter source-to-image distance (127cm vs 183cm) and were expected to have lower quality than images in Group 2. Group 3 was expected to have degraded contrast versus Group 2.This evaluation was approved by the institutional Quality Improvement Assurance Board (QIAB). Images were anonymized and securely transferred to the Duke University Clinical Imaging Physics Group for analysis using software previously described{sup 1} and validated{sup 2}. Image quality for individual images was reported in terms of lung grey level(Lgl); lung noise(Ln); rib-lung contrast(RLc); rib sharpness(Rs); mediastinum detail(Md), noise(Mn), and alignment(Ma); subdiaphragm-lung contrast(SLc); and subdiaphragm area(Sa). Metrics were compared across groups. Results: Metrics agreed with published Quality Consistency Ranges with three exceptions: higher Lgl, lower RLc, and SDc. Higher bit depth (16 vs 12) accounted for higher Lgl values in our images. Values were most internally consistent for Group 2. The most sensitive metric for distinguishing between groups was Mn followed closely by Ln. The least sensitive metrics were Md and RLc. Conclusion: The software appears promising for objectively and automatically identifying substandard images in our operation. The results can be used to establish local quality consistency ranges and action limits per facility preferences.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, Kalpagam; Liu, Jeff; Kohli, Kirpal

    Purpose: Fusion of electrical impedance tomography (EIT) with computed tomography (CT) can be useful as a clinical tool for providing additional physiological information about tissues, but requires suitable fusion algorithms and validation procedures. This work explores the feasibility of fusing EIT and CT images using an algorithm for coregistration. The imaging performance is validated through feature space assessment on phantom contrast targets. Methods: EIT data were acquired by scanning a phantom using a circuit, configured for injecting current through 16 electrodes, placed around the phantom. A conductivity image of the phantom was obtained from the data using electrical impedance andmore » diffuse optical tomography reconstruction software (EIDORS). A CT image of the phantom was also acquired. The EIT and CT images were fused using a region of interest (ROI) coregistration fusion algorithm. Phantom imaging experiments were carried out on objects of different contrasts, sizes, and positions. The conductive medium of the phantoms was made of a tissue-mimicking bolus material that is routinely used in clinical radiation therapy settings. To validate the imaging performance in detecting different contrasts, the ROI of the phantom was filled with distilled water and normal saline. Spatially separated cylindrical objects of different sizes were used for validating the imaging performance in multiple target detection. Analyses of the CT, EIT and the EIT/CT phantom images were carried out based on the variations of contrast, correlation, energy, and homogeneity, using a gray level co-occurrence matrix (GLCM). A reference image of the phantom was simulated using EIDORS, and the performances of the CT and EIT imaging systems were evaluated and compared against the performance of the EIT/CT system using various feature metrics, detectability, and structural similarity index measures. Results: In detecting distilled and normal saline water in bolus medium, EIT as a stand-alone imaging system showed contrast discrimination of 47%, while the CT imaging system showed a discrimination of only 1.5%. The structural similarity index measure showed a drop of 24% with EIT imaging compared to CT imaging. The average detectability measure for CT imaging was found to be 2.375 ± 0.19 before fusion. After complementing with EIT information, the detectability measure increased to 11.06 ± 2.04. Based on the feature metrics, the functional imaging quality of CT and EIT were found to be 2.29% and 86%, respectively, before fusion. Structural imaging quality was found to be 66% for CT and 16% for EIT. After fusion, functional imaging quality improved in CT imaging from 2.29% to 42% and the structural imaging quality of EIT imaging changed from 16% to 66%. The improvement in image quality was also observed in detecting objects of different sizes. Conclusions: The authors found a significant improvement in the contrast detectability performance of CT imaging when complemented with functional imaging information from EIT. Along with the feature assessment metrics, the concept of complementing CT with EIT imaging can lead to an EIT/CT imaging modality which might fully utilize the functional imaging abilities of EIT imaging, thereby enhancing the quality of care in the areas of cancer diagnosis and radiotherapy treatment planning.« less

  12. Panoramic cone beam computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang Jenghwa; Zhou Lili; Wang Song

    2012-05-15

    Purpose: Cone-beam computed tomography (CBCT) is the main imaging tool for image-guided radiotherapy but its functionality is limited by a small imaging volume and restricted image position (imaged at the central instead of the treatment position for peripheral lesions to avoid collisions). In this paper, the authors present the concept of ''panoramic CBCT,'' which can image patients at the treatment position with an imaging volume as large as practically needed. Methods: In this novel panoramic CBCT technique, the target is scanned sequentially from multiple view angles. For each view angle, a half scan (180 deg. + {theta}{sub cone} where {theta}{submore » cone} is the cone angle) is performed with the imaging panel positioned in any location along the beam path. The panoramic projection images of all views for the same gantry angle are then stitched together with the direct image stitching method (i.e., according to the reported imaging position) and full-fan, half-scan CBCT reconstruction is performed using the stitched projection images. To validate this imaging technique, the authors simulated cone-beam projection images of the Mathematical Cardiac Torso (MCAT) thorax phantom for three panoramic views. Gaps, repeated/missing columns, and different exposure levels were introduced between adjacent views to simulate imperfect image stitching due to uncertainties in imaging position or output fluctuation. A modified simultaneous algebraic reconstruction technique (modified SART) was developed to reconstruct CBCT images directly from the stitched projection images. As a gold standard, full-fan, full-scan (360 deg. gantry rotation) CBCT reconstructions were also performed using projection images of one imaging panel large enough to encompass the target. Contrast-to-noise ratio (CNR) and geometric distortion were evaluated to quantify the quality of reconstructed images. Monte Carlo simulations were performed to evaluate the effect of scattering on the image quality and imaging dose for both standard and panoramic CBCT. Results: Truncated images with artifacts were observed for the CBCT reconstruction using projection images of the central view only. When the image stitching was perfect, complete reconstruction was obtained for the panoramic CBCT using the modified SART with the image quality similar to the gold standard (full-scan, full-fan CBCT using one large imaging panel). Imperfect image stitching, on the other hand, lead to (streak, line, or ring) reconstruction artifacts, reduced CNR, and/or distorted geometry. Results from Monte Carlo simulations showed that, for identical imaging quality, the imaging dose was lower for the panoramic CBCT than that acquired with one large imaging panel. For the same imaging dose, the CNR of the three-view panoramic CBCT was 50% higher than that of the regular CBCT using one big panel. Conclusions: The authors have developed a panoramic CBCT technique and demonstrated with simulation data that it can image tumors of any location for patients of any size at the treatment position with comparable or less imaging dose and time. However, the image quality of this CBCT technique is sensitive to the reconstruction artifacts caused by imperfect image stitching. Better algorithms are therefore needed to improve the accuracy of image stitching for panoramic CBCT.« less

  13. Ghost microscope imaging system from the perspective of coherent-mode representation

    NASA Astrophysics Data System (ADS)

    Shen, Qian; Bai, Yanfeng; Shi, Xiaohui; Nan, Suqin; Qu, Lijie; Li, Hengxing; Fu, Xiquan

    2018-03-01

    The coherent-mode representation theory of partially coherent fields is firstly used to analyze a two-arm ghost microscope imaging system. It is shown that imaging quality of the generated images depend crucially on the distribution of the decomposition coefficients of the object imaged when the light source is fixed. This theory is also suitable for demonstrating the effects from the distance the object is moved away from the original plane on imaging quality. Our results are verified theoretically and experimentally.

  14. The quantitative control and matching of an optical false color composite imaging system

    NASA Astrophysics Data System (ADS)

    Zhou, Chengxian; Dai, Zixin; Pan, Xizhe; Li, Yinxi

    1993-10-01

    Design of an imaging system for optical false color composite (OFCC) capable of high-precision density-exposure time control and color balance is presented. The system provides high quality FCC image data that can be analyzed using a quantitative calculation method. The quality requirement to each part of the image generation system is defined, and the distribution of satellite remote sensing image information is analyzed. The proposed technology makes it possible to present the remote sensing image data more effectively and accurately.

  15. Simulation Study of Effects of the Blind Deconvolution on Ultrasound Image

    NASA Astrophysics Data System (ADS)

    He, Xingwu; You, Junchen

    2018-03-01

    Ultrasonic image restoration is an essential subject in Medical Ultrasound Imaging. However, without enough and precise system knowledge, some traditional image restoration methods based on the system prior knowledge often fail to improve the image quality. In this paper, we use the simulated ultrasound image to find the effectiveness of the blind deconvolution method for ultrasound image restoration. Experimental results demonstrate that the blind deconvolution method can be applied to the ultrasound image restoration and achieve the satisfactory restoration results without the precise prior knowledge, compared with the traditional image restoration method. And with the inaccurate small initial PSF, the results shows blind deconvolution could improve the overall image quality of ultrasound images, like much better SNR and image resolution, and also show the time consumption of these methods. it has no significant increasing on GPU platform.

  16. Study of a water quality imager for coastal zone missions

    NASA Technical Reports Server (NTRS)

    Staylor, W. F.; Harrison, E. F.; Wessel, V. W.

    1975-01-01

    The present work surveys water quality user requirements and then determines the general characteristics of an orbiting imager (the Applications Explorer, or AE) dedicated to the measurement of water quality, which could be used as a low-cost means of testing advanced imager concepts and assessing the ability of imager techniques to meet the goals of a comprehensive water quality monitoring program. The proposed imager has four spectral bands, a spatial resolution of 25 meters, and swath width of 36 km with a pointing capability of 330 km. Silicon photodetector arrays, pointing systems, and several optical features are included. A nominal orbit of 500 km altitude at an inclination of 50 deg is recommended.

  17. Towards a five-minute comprehensive cardiac MR examination using highly accelerated parallel imaging with a 32-element coil array: feasibility and initial comparative evaluation.

    PubMed

    Xu, Jian; Kim, Daniel; Otazo, Ricardo; Srichai, Monvadi B; Lim, Ruth P; Axel, Leon; Mcgorty, Kelly Anne; Niendorf, Thoralf; Sodickson, Daniel K

    2013-07-01

    To evaluate the feasibility and perform initial comparative evaluations of a 5-minute comprehensive whole-heart magnetic resonance imaging (MRI) protocol with four image acquisition types: perfusion (PERF), function (CINE), coronary artery imaging (CAI), and late gadolinium enhancement (LGE). This study protocol was Health Insurance Portability and Accountability Act (HIPAA)-compliant and Institutional Review Board-approved. A 5-minute comprehensive whole-heart MRI examination protocol (Accelerated) using 6-8-fold-accelerated volumetric parallel imaging was incorporated into and compared with a standard 2D clinical routine protocol (Standard). Following informed consent, 20 patients were imaged with both protocols. Datasets were reviewed for image quality using a 5-point Likert scale (0 = non-diagnostic, 4 = excellent) in blinded fashion by two readers. Good image quality with full whole-heart coverage was achieved using the accelerated protocol, particularly for CAI, although significant degradations in quality, as compared with traditional lengthy examinations, were observed for the other image types. Mean total scan time was significantly lower for the Accelerated as compared to Standard protocols (28.99 ± 4.59 min vs. 1.82 ± 0.05 min, P < 0.05). Overall image quality for the Standard vs. Accelerated protocol was 3.67 ± 0.29 vs. 1.5 ± 0.51 (P < 0.005) for PERF, 3.48 ± 0.64 vs. 2.6 ± 0.68 (P < 0.005) for CINE, 2.35 ± 1.01 vs. 2.48 ± 0.68 (P = 0.75) for CAI, and 3.67 ± 0.42 vs. 2.67 ± 0.84 (P < 0.005) for LGE. Diagnostic image quality for Standard vs. Accelerated protocols was 20/20 (100%) vs. 10/20 (50%) for PERF, 20/20 (100%) vs. 18/20 (90%) for CINE, 18/20 (90%) vs. 18/20 (90%) for CAI, and 20/20 (100%) vs. 18/20 (90%) for LGE. This study demonstrates the technical feasibility and promising image quality of 5-minute comprehensive whole-heart cardiac examinations, with simplified scan prescription and high spatial and temporal resolution enabled by highly parallel imaging technology. The study also highlights technical hurdles that remain to be addressed. Although image quality remained diagnostic for most scan types, the reduced image quality of PERF, CINE, and LGE scans in the Accelerated protocol remain a concern. Copyright © 2012 Wiley Periodicals, Inc.

  18. Low-Dose CT of the Paranasal Sinuses: Minimizing X-Ray Exposure with Spectral Shaping.

    PubMed

    Wuest, Wolfgang; May, Matthias; Saake, Marc; Brand, Michael; Uder, Michael; Lell, Michael

    2016-11-01

    Shaping the energy spectrum of the X-ray beam has been shown to be beneficial in low-dose CT. This study's aim was to investigate dose and image quality of tin filtration at 100 kV for pre-operative planning in low-dose paranasal CT imaging in a large patient cohort. In a prospective trial, 129 patients were included. 64 patients were randomly assigned to the study protocol (100 kV with additional tin filtration, 150mAs, 192x0.6-mm slice collimation) and 65 patients to the standard low-dose protocol (100 kV, 50mAs, 128 × 0.6-mm slice collimation). To assess the image quality, subjective parameters were evaluated using a five-point scale. This scale was applied on overall image quality and contour delineation of critical anatomical structures. All scans were of diagnostic image quality. Bony structures were of good diagnostic image quality in both groups, soft tissues were of sufficient diagnostic image quality in the study group because of a high level of noise. Radiation exposure was very low in both groups, but significantly lower in the study group (CTDI vol 1.2 mGy vs. 4.4 mGy, p < 0.001). Spectral optimization (tin filtration at 100 kV) allows for visualization of the paranasal sinus with sufficient image quality at a very low radiation exposure. • Spectral optimization (tin filtration) is beneficial to low-dose parasinus CT • Tin filtration at 100 kV yields sufficient image quality for pre-operative planning • Diagnostic parasinus CT can be performed with an effective dose <0.05 mSv.

  19. [Could we perform quality second trimester ultrasound among obese pregnant women?].

    PubMed

    Fuchs, F; Voulgaropoulos, A; Houllier, M; Senat, M-V

    2013-05-01

    To compare the quality of second trimester ultrasound images and their anatomical quality scores among obese women and those with a normal body mass index (BMI). This prospective study, which took place from 2009 to 2011, included every obese pregnant woman (prepregnancy BMI greater than 30 kg/m(2)) who had an ultrasound examination at 20 to 24 weeks in our hospital and a control group with a normal BMI (20-24.9kg/m(2)) who had the same examination. A single operator evaluated the quality of all images, reviewing the standardized ultrasound planes - three biometric and six anatomical - required by French guidelines and scoring the quality of the six anatomical images. Each image was assessed according to 4-6 criteria, each worth one point. We sought excellent quality, defined as the frequency of maximum points for a given image. The obese group included 223 women and the control group 60. The completion rate for each image was at least 95 % in the control group and 90 % in the obese group, except for diaphragm and right outflow tract images. Overall, the excellence rate varied from 35 % to 92 % in the normal BMI group and 18 % to 58 % in the obese group and was significantly lower in the latter for all images except abdominal circumference (P=0.26) and the spine (P=0.06). Anatomical quality scores were also significantly lower in the obese group (22.3 vs. 27.2 ; P=0.001). Image quality and global anatomical scores in second trimester ultrasound scans were significantly lower among obese than normal-weight women. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  20. Body Image, Self-esteem, and Quality of Life in Patients with Psoriasis.

    PubMed

    Nazik, Hulya; Nazik, Selcuk; Gul, Feride C

    2017-01-01

    Psoriasis is a chronic inflammatory disease of the skin that may affect the visible areas of body. Hence, the quality of life, self-esteem, and body image can be affected in psoriasis patients. We aimed in the present study to assess the effects of psoriasis on the quality of life, self-esteem, and body image. The study included 92 patients with psoriasis, along with 98 control participants. The sociodemographic characteristics of the patients were assessed, their Psoriasis Area Severity Index (PASI) scores were calculated to determine the clinical severity of the psoriasis, and the values were recorded. In addition, Dermatology Life Quality Index (DLQI), Body Image Scale, and Rosenberg Self-Esteem Scale results were evaluated. When the control and psoriasis groups were evaluated regarding the DLQI, self-esteem, and body image, quality of life was found to be more negatively affected in the psoriasis group than the controls, which was statistically significant ( P < 0.001), and self-esteem ( P < 0.001) and body image ( P < 0.001) were found to be significantly lower. Educational status significantly affected self-esteem ( P < 0.001) and body image ( P = 0.021), however, quality of life was not significantly affected by this parameter ( P = 0.345). PASI was positively correlated with the quality of life ( r = 0.703) and self-esteem ( r = 0.448), however, it was negatively correlated with the body image ( r = -0.423). Psoriasis may negatively affect quality of life, self-esteem, and body image, and may also cause psychosocial problems. An assessment of new approaches on this issue may contribute to developments in the treatment of and rehabilitation from this disease.

  1. Influence of the internal wall thickness of electrical capacitance tomography sensors on image quality

    NASA Astrophysics Data System (ADS)

    Liang, Shiguo; Ye, Jiamin; Wang, Haigang; Wu, Meng; Yang, Wuqiang

    2018-03-01

    In the design of electrical capacitance tomography (ECT) sensors, the internal wall thickness can vary with specific applications, and it is a key factor that influences the sensitivity distribution and image quality. This paper will discuss the effect of the wall thickness of ECT sensors on image quality. Three flow patterns are simulated for wall thicknesses of 2.5 mm to 15 mm on eight-electrode ECT sensors. The sensitivity distributions and potential distributions are compared for different wall thicknesses. Linear back-projection and Landweber iteration algorithms are used for image reconstruction. Relative image error and correlation coefficients are used for image evaluation using both simulation and experimental data.

  2. Face detection on distorted images using perceptual quality-aware features

    NASA Astrophysics Data System (ADS)

    Gunasekar, Suriya; Ghosh, Joydeep; Bovik, Alan C.

    2014-02-01

    We quantify the degradation in performance of a popular and effective face detector when human-perceived image quality is degraded by distortions due to additive white gaussian noise, gaussian blur or JPEG compression. It is observed that, within a certain range of perceived image quality, a modest increase in image quality can drastically improve face detection performance. These results can be used to guide resource or bandwidth allocation in a communication/delivery system that is associated with face detection tasks. A new face detector based on QualHOG features is also proposed that augments face-indicative HOG features with perceptual quality-aware spatial Natural Scene Statistics (NSS) features, yielding improved tolerance against image distortions. The new detector provides statistically significant improvements over a strong baseline on a large database of face images representing a wide range of distortions. To facilitate this study, we created a new Distorted Face Database, containing face and non-face patches from images impaired by a variety of common distortion types and levels. This new dataset is available for download and further experimentation at www.ideal.ece.utexas.edu/˜suriya/DFD/.

  3. Cone beam computed tomography in veterinary dentistry.

    PubMed

    Van Thielen, Bert; Siguenza, Francis; Hassan, Bassam

    2012-01-01

    The purpose of this study was to assess the feasibility of cone beam computed tomography (CBCT) in imaging dogs and cats for diagnostic dental veterinary applications. CBCT scans of heads of six dogs and two cats were made. Dental panoramic and multi-planar reformatted (MPR) para-sagittal reconstructions were created using specialized software. Image quality and visibility of anatomical landmarks were subjectively assessed by two observers. Good image quality was obtained for the MPR para-sagittal reconstructions through multiple teeth. The image quality of the panoramic reconstructions of dogs was moderate while the panoramic reconstructions of cats were poor since the images were associated with an increased noise level. Segmental panoramic reconstructions of the mouth seem to be useful for studying the dental anatomy especially in dogs. The results of this study using human dental CBCT technology demonstrate the potential of this scanning technology in veterinary medicine. Unfortunately, the moderate image quality obtained with the CBCT technique reported here seems to be inferior to the diagnostic image quality obtained from 2-dimensional dental radiographs. Further research is required to optimize scanning and reconstruction protocols for veterinary applications.

  4. Guest Editorial Image Quality

    NASA Astrophysics Data System (ADS)

    Cheatham, Patrick S.

    1982-02-01

    The term image quality can, unfortunately, apply to anything from a public relations firm's discussion to a comparison between corner drugstores' film processing. If we narrow the discussion to optical systems, we clarify the problem somewhat, but only slightly. We are still faced with a multitude of image quality measures all different, and all couched in different terminology. Optical designers speak of MTF values, digital processors talk about summations of before and after image differences, pattern recognition engineers allude to correlation values, and radar imagers use side-lobe response values measured in decibels. Further complexity is introduced by terms such as information content, bandwidth, Strehl ratios, and, of course, limiting resolution. The problem is to compare these different yardsticks and try to establish some concrete ideas about evaluation of a final image. We need to establish the image attributes which are the most important to perception of the image in question and then begin to apply the different system parameters to those attributes.

  5. Cartographic quality of ERTS-1 images

    NASA Technical Reports Server (NTRS)

    Welch, R. I.

    1973-01-01

    Analyses of simulated and operational ERTS images have provided initial estimates of resolution, ground resolution, detectability thresholds and other measures of image quality of interest to earth scientists and cartographers. Based on these values, including an approximate ground resolution of 250 meters for both RBV and MSS systems, the ERTS-1 images appear suited to the production and/or revision of planimetric and photo maps of 1:500,000 scale and smaller for which map accuracy standards are compatible with the imaged detail. Thematic mapping, although less constrained by map accuracy standards, will be influenced by measurement thresholds and errors which have yet to be accurately determined for ERTS images. This study also indicates the desirability of establishing a quantitative relationship between image quality values and map products which will permit both engineers and cartographers/earth scientists to contribute to the design requirements of future satellite imaging systems.

  6. Automatized image processing of bovine blastocysts produced in vitro for quantitative variable determination

    NASA Astrophysics Data System (ADS)

    Rocha, José Celso; Passalia, Felipe José; Matos, Felipe Delestro; Takahashi, Maria Beatriz; Maserati, Marc Peter, Jr.; Alves, Mayra Fernanda; de Almeida, Tamie Guibu; Cardoso, Bruna Lopes; Basso, Andrea Cristina; Nogueira, Marcelo Fábio Gouveia

    2017-12-01

    There is currently no objective, real-time and non-invasive method for evaluating the quality of mammalian embryos. In this study, we processed images of in vitro produced bovine blastocysts to obtain a deeper comprehension of the embryonic morphological aspects that are related to the standard evaluation of blastocysts. Information was extracted from 482 digital images of blastocysts. The resulting imaging data were individually evaluated by three experienced embryologists who graded their quality. To avoid evaluation bias, each image was related to the modal value of the evaluations. Automated image processing produced 36 quantitative variables for each image. The images, the modal and individual quality grades, and the variables extracted could potentially be used in the development of artificial intelligence techniques (e.g., evolutionary algorithms and artificial neural networks), multivariate modelling and the study of defined structures of the whole blastocyst.

  7. X-ray imaging with amorphous silicon active matrix flat-panel imagers (AMFPIs)

    NASA Astrophysics Data System (ADS)

    El-Mohri, Youcef; Antonuk, Larry E.; Jee, Kyung-Wook; Maolinbay, Manat; Rong, Xiujiang; Siewerdsen, Jeffrey H.; Verma, Manav; Zhao, Qihua

    1997-07-01

    Recent advances in thin-film electronics technology have opened the way for the use of flat-panel imagers in a number of medical imaging applications. These novel imagers offer real time digital readout capabilities (˜30 frames per second), radiation hardness (>106cGy), large area (30×40 cm2) and compactness (˜1 cm). Such qualities make them strong candidates for the replacement of conventional x-ray imaging technologies such as film-screen and image intensifier systems. In this report, qualities and potential of amorphous silicon based active matrix flat-panel imagers are outlined for various applications such as radiation therapy, radiography, fluoroscopy and mammography.

  8. Improved image decompression for reduced transform coding artifacts

    NASA Technical Reports Server (NTRS)

    Orourke, Thomas P.; Stevenson, Robert L.

    1994-01-01

    The perceived quality of images reconstructed from low bit rate compression is severely degraded by the appearance of transform coding artifacts. This paper proposes a method for producing higher quality reconstructed images based on a stochastic model for the image data. Quantization (scalar or vector) partitions the transform coefficient space and maps all points in a partition cell to a representative reconstruction point, usually taken as the centroid of the cell. The proposed image estimation technique selects the reconstruction point within the quantization partition cell which results in a reconstructed image which best fits a non-Gaussian Markov random field (MRF) image model. This approach results in a convex constrained optimization problem which can be solved iteratively. At each iteration, the gradient projection method is used to update the estimate based on the image model. In the transform domain, the resulting coefficient reconstruction points are projected to the particular quantization partition cells defined by the compressed image. Experimental results will be shown for images compressed using scalar quantization of block DCT and using vector quantization of subband wavelet transform. The proposed image decompression provides a reconstructed image with reduced visibility of transform coding artifacts and superior perceived quality.

  9. Analyser-based mammography using single-image reconstruction.

    PubMed

    Briedis, Dahliyani; Siu, Karen K W; Paganin, David M; Pavlov, Konstantin M; Lewis, Rob A

    2005-08-07

    We implement an algorithm that is able to decode a single analyser-based x-ray phase-contrast image of a sample, converting it into an equivalent conventional absorption-contrast radiograph. The algorithm assumes the projection approximation for x-ray propagation in a single-material object embedded in a substrate of approximately uniform thickness. Unlike the phase-contrast images, which have both directional bias and a bias towards edges present in the sample, the reconstructed images are directly interpretable in terms of the projected absorption coefficient of the sample. The technique was applied to a Leeds TOR[MAM] phantom, which is designed to test mammogram quality by the inclusion of simulated microcalcifications, filaments and circular discs. This phantom was imaged at varying doses using three modalities: analyser-based synchrotron phase-contrast images converted to equivalent absorption radiographs using our algorithm, slot-scanned synchrotron imaging and imaging using a conventional mammography unit. Features in the resulting images were then assigned a quality score by volunteers. The single-image reconstruction method achieved higher scores at equivalent and lower doses than the conventional mammography images, but no improvement of visualization of the simulated microcalcifications, and some degradation in image quality at reduced doses for filament features.

  10. Assessment of noise reduction potential and image quality improvement of a new generation adaptive statistical iterative reconstruction (ASIR-V) in chest CT.

    PubMed

    Tang, Hui; Yu, Nan; Jia, Yongjun; Yu, Yong; Duan, Haifeng; Han, Dong; Ma, Guangming; Ren, Chenglong; He, Taiping

    2018-01-01

    To evaluate the image quality improvement and noise reduction in routine dose, non-enhanced chest CT imaging by using a new generation adaptive statistical iterative reconstruction (ASIR-V) in comparison with ASIR algorithm. 30 patients who underwent routine dose, non-enhanced chest CT using GE Discovery CT750HU (GE Healthcare, Waukesha, WI) were included. The scan parameters included tube voltage of 120 kVp, automatic tube current modulation to obtain a noise index of 14HU, rotation speed of 0.6 s, pitch of 1.375:1 and slice thickness of 5 mm. After scanning, all scans were reconstructed with the recommended level of 40%ASIR for comparison purpose and different percentages of ASIR-V from 10% to 100% in a 10% increment. The CT attenuation values and SD of the subcutaneous fat, back muscle and descending aorta were measured at the level of tracheal carina of all reconstructed images. The signal-to-noise ratio (SNR) was calculated with SD representing image noise. The subjective image quality was independently evaluated by two experienced radiologists. For all ASIR-V images, the objective image noise (SD) of fat, muscle and aorta decreased and SNR increased along with increasing ASIR-V percentage. The SD of 30% ASIR-V to 100% ASIR-V was significantly lower than that of 40% ASIR (p < 0.05). In terms of subjective image evaluation, all ASIR-V reconstructions had good diagnostic acceptability. However, the 50% ASIR-V to 70% ASIR-V series showed significantly superior visibility of small structures when compared with the 40% ASIR and ASIR-V of other percentages (p < 0.05), and 60% ASIR-V was the best series of all ASIR-V images, with a highest subjective image quality. The image sharpness was significantly decreased in images reconstructed by 80% ASIR-V and higher. In routine dose, non-enhanced chest CT, ASIR-V shows greater potential in reducing image noise and artefacts and maintaining image sharpness when compared to the recommended level of 40%ASIR algorithm. Combining both the objective and subjective evaluation of images, non-enhanced chest CT images reconstructed with 60% ASIR-V have the highest image quality. Advances in knowledge: This is the first clinical study to evaluate the clinical value of ASIR-V in the same patients using the same CT scanner in the non-enhanced chest CT scans. It suggests that ASIR-V provides the better image quality and higher diagnostic confidence in comparison with ASIR algorithm.

  11. Deep architecture neural network-based real-time image processing for image-guided radiotherapy.

    PubMed

    Mori, Shinichiro

    2017-08-01

    To develop real-time image processing for image-guided radiotherapy, we evaluated several neural network models for use with different imaging modalities, including X-ray fluoroscopic image denoising. Setup images of prostate cancer patients were acquired with two oblique X-ray fluoroscopic units. Two types of residual network were designed: a convolutional autoencoder (rCAE) and a convolutional neural network (rCNN). We changed the convolutional kernel size and number of convolutional layers for both networks, and the number of pooling and upsampling layers for rCAE. The ground-truth image was applied to the contrast-limited adaptive histogram equalization (CLAHE) method of image processing. Network models were trained to keep the quality of the output image close to that of the ground-truth image from the input image without image processing. For image denoising evaluation, noisy input images were used for the training. More than 6 convolutional layers with convolutional kernels >5×5 improved image quality. However, this did not allow real-time imaging. After applying a pair of pooling and upsampling layers to both networks, rCAEs with >3 convolutions each and rCNNs with >12 convolutions with a pair of pooling and upsampling layers achieved real-time processing at 30 frames per second (fps) with acceptable image quality. Use of our suggested network achieved real-time image processing for contrast enhancement and image denoising by the use of a conventional modern personal computer. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  12. Image quality improvement using model-based iterative reconstruction in low dose chest CT for children with necrotizing pneumonia.

    PubMed

    Sun, Jihang; Yu, Tong; Liu, Jinrong; Duan, Xiaomin; Hu, Di; Liu, Yong; Peng, Yun

    2017-03-16

    Model-based iterative reconstruction (MBIR) is a promising reconstruction method which could improve CT image quality with low radiation dose. The purpose of this study was to demonstrate the advantage of using MBIR for noise reduction and image quality improvement in low dose chest CT for children with necrotizing pneumonia, over the adaptive statistical iterative reconstruction (ASIR) and conventional filtered back-projection (FBP) technique. Twenty-six children with necrotizing pneumonia (aged 2 months to 11 years) who underwent standard of care low dose CT scans were included. Thinner-slice (0.625 mm) images were retrospectively reconstructed using MBIR, ASIR and conventional FBP techniques. Image noise and signal-to-noise ratio (SNR) for these thin-slice images were measured and statistically analyzed using ANOVA. Two radiologists independently analyzed the image quality for detecting necrotic lesions, and results were compared using a Friedman's test. Radiation dose for the overall patient population was 0.59 mSv. There was a significant improvement in the high-density and low-contrast resolution of the MBIR reconstruction resulting in more detection and better identification of necrotic lesions (38 lesions in 0.625 mm MBIR images vs. 29 lesions in 0.625 mm FBP images). The subjective display scores (mean ± standard deviation) for the detection of necrotic lesions were 5.0 ± 0.0, 2.8 ± 0.4 and 2.5 ± 0.5 with MBIR, ASIR and FBP reconstruction, respectively, and the respective objective image noise was 13.9 ± 4.0HU, 24.9 ± 6.6HU and 33.8 ± 8.7HU. The image noise decreased by 58.9 and 26.3% in MBIR images as compared to FBP and ASIR images. Additionally, the SNR of MBIR images was significantly higher than FBP images and ASIR images. The quality of chest CT images obtained by MBIR in children with necrotizing pneumonia was significantly improved by the MBIR technique as compared to the ASIR and FBP reconstruction, to provide a more confident and accurate diagnosis for necrotizing pneumonia.

  13. Accelerated acquisition of tagged MRI for cardiac motion correction in simultaneous PET-MR: Phantom and patient studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Chuan, E-mail: chuan.huang@stonybrookmedicine.edu; Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115; Departments of Radiology, Psychiatry, Stony Brook Medicine, Stony Brook, New York 11794

    2015-02-15

    Purpose: Degradation of image quality caused by cardiac and respiratory motions hampers the diagnostic quality of cardiac PET. It has been shown that improved diagnostic accuracy of myocardial defect can be achieved by tagged MR (tMR) based PET motion correction using simultaneous PET-MR. However, one major hurdle for the adoption of tMR-based PET motion correction in the PET-MR routine is the long acquisition time needed for the collection of fully sampled tMR data. In this work, the authors propose an accelerated tMR acquisition strategy using parallel imaging and/or compressed sensing and assess the impact on the tMR-based motion corrected PETmore » using phantom and patient data. Methods: Fully sampled tMR data were acquired simultaneously with PET list-mode data on two simultaneous PET-MR scanners for a cardiac phantom and a patient. Parallel imaging and compressed sensing were retrospectively performed by GRAPPA and kt-FOCUSS algorithms with various acceleration factors. Motion fields were estimated using nonrigid B-spline image registration from both the accelerated and fully sampled tMR images. The motion fields were incorporated into a motion corrected ordered subset expectation maximization reconstruction algorithm with motion-dependent attenuation correction. Results: Although tMR acceleration introduced image artifacts into the tMR images for both phantom and patient data, motion corrected PET images yielded similar image quality as those obtained using the fully sampled tMR images for low to moderate acceleration factors (<4). Quantitative analysis of myocardial defect contrast over ten independent noise realizations showed similar results. It was further observed that although the image quality of the motion corrected PET images deteriorates for high acceleration factors, the images were still superior to the images reconstructed without motion correction. Conclusions: Accelerated tMR images obtained with more than 4 times acceleration can still provide relatively accurate motion fields and yield tMR-based motion corrected PET images with similar image quality as those reconstructed using fully sampled tMR data. The reduction of tMR acquisition time makes it more compatible with routine clinical cardiac PET-MR studies.« less

  14. Radiologists' confidence in detecting abnormalities on chest images and their subjective judgments of image quality

    NASA Astrophysics Data System (ADS)

    King, Jill L.; Gur, David; Rockette, Howard E.; Curtin, Hugh D.; Obuchowski, Nancy A.; Thaete, F. Leland; Britton, Cynthia A.; Metz, Charles E.

    1991-07-01

    The relationship between subjective judgments of image quality for the performance of specific detection tasks and radiologists' confidence level in arriving at correct diagnoses was investigated in two studies in which 12 readers, using a total of three different display environments, interpreted a series of 300 PA chest images. The modalities used were conventional films, laser-printed films, and high-resolution CRT display of digitized images. For the detection of interstitial disease, nodules, and pneumothoraces, there was no statistically significant correlation (Spearman rho) between subjective ratings of quality and radiologists' confidence in detecting these abnormalities. However, in each study, for all modalities and all readers but one, a small but statistically significant correlation was found between the radiologists' ability to correctly and confidently rule out interstitial disease and their subjective ratings of image quality.

  15. The role of Imaging and Radiation Oncology Core for precision medicine era of clinical trial

    PubMed Central

    Rosen, Mark

    2017-01-01

    Imaging and Radiation Oncology Core (IROC) services have been established for the quality assurance (QA) of imaging and radiotherapy (RT) for NCI’s Clinical Trial Network (NCTN) for any trials that contain imaging or RT. The randomized clinical trial is the gold standard for evidence-based medicine. QA ensures data quality, preventing noise from inferior treatments obscuring clinical trial outcome. QA is also found to be cost-effective. IROC has made great progress in multi-institution standardization and is expected to lead QA standardization, QA science in imaging and RT and to advance quality data analysis with big data in the future. The QA in the era of precision medicine is of paramount importance, when individualized decision making may depend on the quality and accuracy of RT and imaging. PMID:29218265

  16. Quality measures in applications of image restoration.

    PubMed

    Kriete, A; Naim, M; Schafer, L

    2001-01-01

    We describe a new method for the estimation of image quality in image restoration applications. We demonstrate this technique on a simulated data set of fluorescent beads, in comparison with restoration by three different deconvolution methods. Both the number of iterations and a regularisation factor are varied to enforce changes in the resulting image quality. First, the data sets are directly compared by an accuracy measure. These values serve to validate the image quality descriptor, which is developed on the basis of optical information theory. This most general measure takes into account the spectral energies and the noise, weighted in a logarithmic fashion. It is demonstrated that this method is particularly helpful as a user-oriented method to control the output of iterative image restorations and to eliminate the guesswork in choosing a suitable number of iterations.

  17. COMPARISON OF ADAPTIVE STATISTICAL ITERATIVE RECONSTRUCTION (ASIR™) AND MODEL-BASED ITERATIVE RECONSTRUCTION (VEO™) FOR PAEDIATRIC ABDOMINAL CT EXAMINATIONS: AN OBSERVER PERFORMANCE STUDY OF DIAGNOSTIC IMAGE QUALITY.

    PubMed

    Hultenmo, Maria; Caisander, Håkan; Mack, Karsten; Thilander-Klang, Anne

    2016-06-01

    The diagnostic image quality of 75 paediatric abdominal computed tomography (CT) examinations reconstructed with two different iterative reconstruction (IR) algorithms-adaptive statistical IR (ASiR™) and model-based IR (Veo™)-was compared. Axial and coronal images were reconstructed with 70 % ASiR with the Soft™ convolution kernel and with the Veo algorithm. The thickness of the reconstructed images was 2.5 or 5 mm depending on the scanning protocol used. Four radiologists graded the delineation of six abdominal structures and the diagnostic usefulness of the image quality. The Veo reconstruction significantly improved the visibility of most of the structures compared with ASiR in all subgroups of images. For coronal images, the Veo reconstruction resulted in significantly improved ratings of the diagnostic use of the image quality compared with the ASiR reconstruction. This was not seen for the axial images. The greatest improvement using Veo reconstruction was observed for the 2.5 mm coronal slices. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Halftoning and Image Processing Algorithms

    DTIC Science & Technology

    1999-02-01

    screening techniques with the quality advantages of error diffusion in the half toning of color maps, and on color image enhancement for halftone ...image quality. Our goals in this research were to advance the understanding in image science for our new halftone algorithm and to contribute to...image retrieval and noise theory for such imagery. In the field of color halftone printing, research was conducted on deriving a theoretical model of our

  19. Quality assessment of remote sensing image fusion using feature-based fourth-order correlation coefficient

    NASA Astrophysics Data System (ADS)

    Ma, Dan; Liu, Jun; Chen, Kai; Li, Huali; Liu, Ping; Chen, Huijuan; Qian, Jing

    2016-04-01

    In remote sensing fusion, the spatial details of a panchromatic (PAN) image and the spectrum information of multispectral (MS) images will be transferred into fused images according to the characteristics of the human visual system. Thus, a remote sensing image fusion quality assessment called feature-based fourth-order correlation coefficient (FFOCC) is proposed. FFOCC is based on the feature-based coefficient concept. Spatial features related to spatial details of the PAN image and spectral features related to the spectrum information of MS images are first extracted from the fused image. Then, the fourth-order correlation coefficient between the spatial and spectral features is calculated and treated as the assessment result. FFOCC was then compared with existing widely used indices, such as Erreur Relative Globale Adimensionnelle de Synthese, and quality assessed with no reference. Results of the fusion and distortion experiments indicate that the FFOCC is consistent with subjective evaluation. FFOCC significantly outperforms the other indices in evaluating fusion images that are produced by different fusion methods and that are distorted in spatial and spectral features by blurring, adding noise, and changing intensity. All the findings indicate that the proposed method is an objective and effective quality assessment for remote sensing image fusion.

  20. Whole-body CT in polytrauma patients: The effect of arm position on abdominal image quality when using a human phantom

    NASA Astrophysics Data System (ADS)

    Jeon, Pil-Hyun; Kim, Hee-Joung; Lee, Chang-Lae; Kim, Dae-Hong; Lee, Won-Hyung; Jeon, Sung-Su

    2012-06-01

    For a considerable number of emergency computed tomography (CT) scans, patients are unable to position their arms above their head due to traumatic injuries. The arms-down position has been shown to reduce image quality with beam-hardening artifacts in the dorsal regions of the liver, spleen, and kidneys, rendering these images non-diagnostic. The purpose of this study was to evaluate the effect of arm position on the image quality in patients undergoing whole-body CT. We acquired CT scans with various acquisition parameters at voltages of 80, 120, and 140 kVp and an increasing tube current from 200 to 400 mAs in 50 mAs increments. The image noise and the contrast assessment were considered for quantitative analyses of the CT images. The image noise (IN), the contrast-to-noise ratio (CNR), the signal-to-noise ratio (SNR), and the coefficient of variation (COV) were evaluated. Quantitative analyses of the experiments were performed with CT scans representative of five different arm positions. Results of the CT scans acquired at 120 kVp and 250 mAs showed high image quality in patients with both arms raised above the head (SNR: 12.4, CNR: 10.9, and COV: 8.1) and both arms flexed at the elbows on the chest (SNR: 11.5, CNR: 10.2, and COV: 8.8) while the image quality significantly decreased with both arms in the down position (SNR: 9.1, CNR: 7.6, and COV: 11). Both arms raised, one arm raised, and both arms flexed improved the image quality compared to arms in the down position by reducing beam-hardening and streak artifacts caused by the arms being at the side of body. This study provides optimal methods for achieving higher image quality and lower noise in abdominal CT for trauma patients.

  1. Tradeoff between noise reduction and inartificial visualization in a model-based iterative reconstruction algorithm on coronary computed tomography angiography.

    PubMed

    Hirata, Kenichiro; Utsunomiya, Daisuke; Kidoh, Masafumi; Funama, Yoshinori; Oda, Seitaro; Yuki, Hideaki; Nagayama, Yasunori; Iyama, Yuji; Nakaura, Takeshi; Sakabe, Daisuke; Tsujita, Kenichi; Yamashita, Yasuyuki

    2018-05-01

    We aimed to evaluate the image quality performance of coronary CT angiography (CTA) under the different settings of forward-projected model-based iterative reconstruction solutions (FIRST).Thirty patients undergoing coronary CTA were included. Each image was reconstructed using filtered back projection (FBP), adaptive iterative dose reduction 3D (AIDR-3D), and 2 model-based iterative reconstructions including FIRST-body and FIRST-cardiac sharp (CS). CT number and noise were measured in the coronary vessels and plaque. Subjective image-quality scores were obtained for noise and structure visibility.In the objective image analysis, FIRST-body produced the significantly highest contrast-to-noise ratio. Regarding subjective image quality, FIRST-CS had the highest score for structure visibility, although the image noise score was inferior to that of FIRST-body.In conclusion, FIRST provides significant improvements in objective and subjective image quality compared with FBP and AIDR-3D. FIRST-body effectively reduces image noise, but the structure visibility with FIRST-CS was superior to FIRST-body.

  2. Image Quality Analysis of Various Gastrointestinal Endoscopes: Why Image Quality Is a Prerequisite for Proper Diagnostic and Therapeutic Endoscopy

    PubMed Central

    Ko, Weon Jin; An, Pyeong; Ko, Kwang Hyun; Hahm, Ki Baik; Hong, Sung Pyo

    2015-01-01

    Arising from human curiosity in terms of the desire to look within the human body, endoscopy has undergone significant advances in modern medicine. Direct visualization of the gastrointestinal (GI) tract by traditional endoscopy was first introduced over 50 years ago, after which fairly rapid advancement from rigid esophagogastric scopes to flexible scopes and high definition videoscopes has occurred. In an effort towards early detection of precancerous lesions in the GI tract, several high-technology imaging scopes have been developed, including narrow band imaging, autofocus imaging, magnified endoscopy, and confocal microendoscopy. However, these modern developments have resulted in fundamental imaging technology being skewed towards red-green-blue and this technology has obscured the advantages of other endoscope techniques. In this review article, we have described the importance of image quality analysis using a survey to consider the diversity of endoscope system selection in order to better achieve diagnostic and therapeutic goals. The ultimate aims can be achieved through the adoption of modern endoscopy systems that obtain high image quality. PMID:26473119

  3. Imaging quality evaluation method of pixel coupled electro-optical imaging system

    NASA Astrophysics Data System (ADS)

    He, Xu; Yuan, Li; Jin, Chunqi; Zhang, Xiaohui

    2017-09-01

    With advancements in high-resolution imaging optical fiber bundle fabrication technology, traditional photoelectric imaging system have become ;flexible; with greatly reduced volume and weight. However, traditional image quality evaluation models are limited by the coupling discrete sampling effect of fiber-optic image bundles and charge-coupled device (CCD) pixels. This limitation substantially complicates the design, optimization, assembly, and evaluation image quality of the coupled discrete sampling imaging system. Based on the transfer process of grayscale cosine distribution optical signal in the fiber-optic image bundle and CCD, a mathematical model of coupled modulation transfer function (coupled-MTF) is established. This model can be used as a basis for following studies on the convergence and periodically oscillating characteristics of the function. We also propose the concept of the average coupled-MTF, which is consistent with the definition of traditional MTF. Based on this concept, the relationships among core distance, core layer radius, and average coupled-MTF are investigated.

  4. Spatially adapted second-order total generalized variational image deblurring model under impulse noise

    NASA Astrophysics Data System (ADS)

    Zhong, Qiu-Xiang; Wu, Chuan-Sheng; Shu, Qiao-Ling; Liu, Ryan Wen

    2018-04-01

    Image deblurring under impulse noise is a typical ill-posed problem which requires regularization methods to guarantee high-quality imaging. L1-norm data-fidelity term and total variation (TV) regularizer have been combined to contribute the popular regularization method. However, the TV-regularized variational image deblurring model often suffers from the staircase-like artifacts leading to image quality degradation. To enhance image quality, the detailpreserving total generalized variation (TGV) was introduced to replace TV to eliminate the undesirable artifacts. The resulting nonconvex optimization problem was effectively solved using the alternating direction method of multipliers (ADMM). In addition, an automatic method for selecting spatially adapted regularization parameters was proposed to further improve deblurring performance. Our proposed image deblurring framework is able to remove blurring and impulse noise effects while maintaining the image edge details. Comprehensive experiments have been conducted to demonstrate the superior performance of our proposed method over several state-of-the-art image deblurring methods.

  5. High Density Aerial Image Matching: State-Of and Future Prospects

    NASA Astrophysics Data System (ADS)

    Haala, N.; Cavegn, S.

    2016-06-01

    Ongoing innovations in matching algorithms are continuously improving the quality of geometric surface representations generated automatically from aerial images. This development motivated the launch of the joint ISPRS/EuroSDR project "Benchmark on High Density Aerial Image Matching", which aims on the evaluation of photogrammetric 3D data capture in view of the current developments in dense multi-view stereo-image matching. Originally, the test aimed on image based DSM computation from conventional aerial image flights for different landuse and image block configurations. The second phase then put an additional focus on high quality, high resolution 3D geometric data capture in complex urban areas. This includes both the extension of the test scenario to oblique aerial image flights as well as the generation of filtered point clouds as additional output of the respective multi-view reconstruction. The paper uses the preliminary outcomes of the benchmark to demonstrate the state-of-the-art in airborne image matching with a special focus of high quality geometric data capture in urban scenarios.

  6. Evaluation of low-energy contrast-enhanced spectral mammography images by comparing them to full-field digital mammography using EUREF image quality criteria.

    PubMed

    Lalji, U C; Jeukens, C R L P N; Houben, I; Nelemans, P J; van Engen, R E; van Wylick, E; Beets-Tan, R G H; Wildberger, J E; Paulis, L E; Lobbes, M B I

    2015-10-01

    Contrast-enhanced spectral mammography (CESM) examination results in a low-energy (LE) and contrast-enhanced image. The LE appears similar to a full-field digital mammogram (FFDM). Our aim was to evaluate LE CESM image quality by comparing it to FFDM using criteria defined by the European Reference Organization for Quality Assured Breast Screening and Diagnostic Services (EUREF). A total of 147 cases with both FFDM and LE images were independently scored by two experienced radiologists using these (20) EUREF criteria. Contrast detail measurements were performed using a dedicated phantom. Differences in image quality scores, average glandular dose, and contrast detail measurements between LE and FFDM were tested for statistical significance. No significant differences in image quality scores were observed between LE and FFDM images for 17 out of 20 criteria. LE scored significantly lower on one criterion regarding the sharpness of the pectoral muscle (p < 0.001), and significantly better on two criteria on the visualization of micro-calcifications (p = 0.02 and p = 0.034). Dose and contrast detail measurements did not reveal any physical explanation for these observed differences. Low-energy CESM images are non-inferior to FFDM images. From this perspective FFDM can be omitted in patients with an indication for CESM. • Low-energy CESM images are non-inferior to FFDM images. • Micro-calcifications are significantly more visible on LE CESM than on FFDM. • There is no physical explanation for this improved visibility of micro-calcifications. • There is no need for an extra FFDM when CESM is indicated.

  7. Face Recognition for Access Control Systems Combining Image-Difference Features Based on a Probabilistic Model

    NASA Astrophysics Data System (ADS)

    Miwa, Shotaro; Kage, Hiroshi; Hirai, Takashi; Sumi, Kazuhiko

    We propose a probabilistic face recognition algorithm for Access Control System(ACS)s. Comparing with existing ACSs using low cost IC-cards, face recognition has advantages in usability and security that it doesn't require people to hold cards over scanners and doesn't accept imposters with authorized cards. Therefore face recognition attracts more interests in security markets than IC-cards. But in security markets where low cost ACSs exist, price competition is important, and there is a limitation on the quality of available cameras and image control. Therefore ACSs using face recognition are required to handle much lower quality images, such as defocused and poor gain-controlled images than high security systems, such as immigration control. To tackle with such image quality problems we developed a face recognition algorithm based on a probabilistic model which combines a variety of image-difference features trained by Real AdaBoost with their prior probability distributions. It enables to evaluate and utilize only reliable features among trained ones during each authentication, and achieve high recognition performance rates. The field evaluation using a pseudo Access Control System installed in our office shows that the proposed system achieves a constant high recognition performance rate independent on face image qualities, that is about four times lower EER (Equal Error Rate) under a variety of image conditions than one without any prior probability distributions. On the other hand using image difference features without any prior probabilities are sensitive to image qualities. We also evaluated PCA, and it has worse, but constant performance rates because of its general optimization on overall data. Comparing with PCA, Real AdaBoost without any prior distribution performs twice better under good image conditions, but degrades to a performance as good as PCA under poor image conditions.

  8. Three-dimensional volume rendering of the ankle based on magnetic resonance images enables the generation of images comparable to real anatomy.

    PubMed

    Anastasi, Giuseppe; Cutroneo, Giuseppina; Bruschetta, Daniele; Trimarchi, Fabio; Ielitro, Giuseppe; Cammaroto, Simona; Duca, Antonio; Bramanti, Placido; Favaloro, Angelo; Vaccarino, Gianluigi; Milardi, Demetrio

    2009-11-01

    We have applied high-quality medical imaging techniques to study the structure of the human ankle. Direct volume rendering, using specific algorithms, transforms conventional two-dimensional (2D) magnetic resonance image (MRI) series into 3D volume datasets. This tool allows high-definition visualization of single or multiple structures for diagnostic, research, and teaching purposes. No other image reformatting technique so accurately highlights each anatomic relationship and preserves soft tissue definition. Here, we used this method to study the structure of the human ankle to analyze tendon-bone-muscle relationships. We compared ankle MRI and computerized tomography (CT) images from 17 healthy volunteers, aged 18-30 years (mean 23 years). An additional subject had a partial rupture of the Achilles tendon. The MRI images demonstrated superiority in overall quality of detail compared to the CT images. The MRI series accurately rendered soft tissue and bone in simultaneous image acquisition, whereas CT required several window-reformatting algorithms, with loss of image data quality. We obtained high-quality digital images of the human ankle that were sufficiently accurate for surgical and clinical intervention planning, as well as for teaching human anatomy. Our approach demonstrates that complex anatomical structures such as the ankle, which is rich in articular facets and ligaments, can be easily studied non-invasively using MRI data.

  9. Three-dimensional volume rendering of the ankle based on magnetic resonance images enables the generation of images comparable to real anatomy

    PubMed Central

    Anastasi, Giuseppe; Cutroneo, Giuseppina; Bruschetta, Daniele; Trimarchi, Fabio; Ielitro, Giuseppe; Cammaroto, Simona; Duca, Antonio; Bramanti, Placido; Favaloro, Angelo; Vaccarino, Gianluigi; Milardi, Demetrio

    2009-01-01

    We have applied high-quality medical imaging techniques to study the structure of the human ankle. Direct volume rendering, using specific algorithms, transforms conventional two-dimensional (2D) magnetic resonance image (MRI) series into 3D volume datasets. This tool allows high-definition visualization of single or multiple structures for diagnostic, research, and teaching purposes. No other image reformatting technique so accurately highlights each anatomic relationship and preserves soft tissue definition. Here, we used this method to study the structure of the human ankle to analyze tendon–bone–muscle relationships. We compared ankle MRI and computerized tomography (CT) images from 17 healthy volunteers, aged 18–30 years (mean 23 years). An additional subject had a partial rupture of the Achilles tendon. The MRI images demonstrated superiority in overall quality of detail compared to the CT images. The MRI series accurately rendered soft tissue and bone in simultaneous image acquisition, whereas CT required several window-reformatting algorithms, with loss of image data quality. We obtained high-quality digital images of the human ankle that were sufficiently accurate for surgical and clinical intervention planning, as well as for teaching human anatomy. Our approach demonstrates that complex anatomical structures such as the ankle, which is rich in articular facets and ligaments, can be easily studied non-invasively using MRI data. PMID:19678857

  10. Comparison of the Diagnostic Image Quality of the Canine Maxillary Dentoalveolar Structures Obtained by Cone Beam Computed Tomography and 64-Multidetector Row Computed Tomography.

    PubMed

    Soukup, Jason W; Drees, Randi; Koenig, Lisa J; Snyder, Christopher J; Hetzel, Scott; Miles, Chanda R; Schwarz, Tobias

    2015-01-01

    The objective of this blinded study was to validate the use of cone beam computed tomography (C) for imaging of the canine maxillary dentoalveolar structures by comparing its diagnostic image quality with that of 64-multidetector row CT Sagittal slices of a tooth-bearing segment of the maxilla of a commercially purchased dog skull embedded in methylmethacrylate were obtained along a line parallel with the dental arch using a commercial histology diamond saw. The slice of tooth-bearing bone that best depicted the dentoalveolar structures was chosen and photographed. The maxillary segment was imaged with cone beam CT and 64-multidetector row CT. Four blinded evaluators compared the cone beam CT and 64-multidetector row CT images and image quality was scored as it related to the anatomy of dentoalveolar structures. Trabecular bone, enamel, dentin, pulp cavity, periodontal ligament space, and lamina dura were scored In addition, a score depicting the evaluators overall impression of the image was recorded. Images acquired with cone beam CT were found to be significantly superior in image quality to images acquired with 64-multidetector row CT overall, and in all scored categories. In our study setting cone beam CT was found to be a valid and clinically superior imaging modality for the canine maxillary dentoalveolar structures when compared to 64-multidetector row CT.

  11. Comparison of the Diagnostic Image Quality of the Canine Maxillary Dentoalveolar Structures Obtained by Cone Beam Computed Tomography and 64-Multidetector Row Computed Tomography

    PubMed Central

    Soukup, Jason W.; Drees, Randi; Koenig, Lisa J.; Snyder, Christopher J.; Hetzel, Scott; Miles, Chanda R.; Schwarz, Tobias

    2016-01-01

    Summary The objective of this blinded study was to validate the use of cone beam computed tomography (CT) for imaging of the canine maxillary dentoalveolar structures by comparing its diagnostic image quality with that of 64-multidetector row CT. Sagittal slices of a tooth-bearing segment of the maxilla of a commercially purchased dog skull embedded in methyl methacrylate were obtained along a line parallel with the dental arch using a commercial histology diamond saw. The slice of tooth-bearing bone that best depicted the dentoalveolar structures was chosen and photographed. The maxilla segment was imaged with cone beam CT and 64-multidetector row CT. Four blinded evaluators compared the cone beam CT and 64-multidetector row CT images and image quality was scored as it related to the anatomy of dentoalveolar structures. Trabecular bone, enamel, dentin, pulp cavity, periodontal ligament space, and lamina dura were scored. In addition, a score depicting the evaluators overall impression of the image was recorded. Images acquired with cone beam CT were found to be significantly superior in image quality to images acquired with 64-multidetector row CT overall, and in all scored categories. In our study setting, cone beam CT was found to be a valid and clinically superior imaging modality for the canine maxillary dentoalveolar structures when compared to 64-multidetector row CT. PMID:26415384

  12. Development of ultrasound/endoscopy PACS (picture archiving and communication system) and investigation of compression method for cine images

    NASA Astrophysics Data System (ADS)

    Osada, Masakazu; Tsukui, Hideki

    2002-09-01

    ABSTRACT Picture Archiving and Communication System (PACS) is a system which connects imaging modalities, image archives, and image workstations to reduce film handling cost and improve hospital workflow. Handling diagnostic ultrasound and endoscopy images is challenging, because it produces large amount of data such as motion (cine) images of 30 frames per second, 640 x 480 in resolution, with 24-bit color. Also, it requires enough image quality for clinical review. We have developed PACS which is able to manage ultrasound and endoscopy cine images with above resolution and frame rate, and investigate suitable compression method and compression rate for clinical image review. Results show that clinicians require capability for frame-by-frame forward and backward review of cine images because they carefully look through motion images to find certain color patterns which may appear in one frame. In order to satisfy this quality, we have chosen motion JPEG, installed and confirmed that we could capture this specific pattern. As for acceptable image compression rate, we have performed subjective evaluation. No subjects could tell the difference between original non-compressed images and 1:10 lossy compressed JPEG images. One subject could tell the difference between original and 1:20 lossy compressed JPEG images although it is acceptable. Thus, ratios of 1:10 to 1:20 are acceptable to reduce data amount and cost while maintaining quality for clinical review.

  13. Efficacy of model-based iterative reconstruction technique in non-enhanced CT of the renal tracts for ureteric calculi.

    PubMed

    Tan, T J; Lau, Kenneth K; Jackson, Dana; Ardley, Nicholas; Borasu, Adina

    2017-04-01

    The purpose of this study was to assess the efficacy of model-based iterative reconstruction (MBIR), statistical iterative reconstruction (SIR), and filtered back projection (FBP) image reconstruction algorithms in the delineation of ureters and overall image quality on non-enhanced computed tomography of the renal tracts (NECT-KUB). This was a prospective study of 40 adult patients who underwent NECT-KUB for investigation of ureteric colic. Images were reconstructed using FBP, SIR, and MBIR techniques and individually and randomly assessed by two blinded radiologists. Parameters measured were overall image quality, presence of ureteric calculus, presence of hydronephrosis or hydroureters, image quality of each ureteric segment, total length of ureters unable to be visualized, attenuation values of image noise, and retroperitoneal fat content for each patient. There were no diagnostic discrepancies between image reconstruction modalities for urolithiasis. Overall image qualities and for each ureteric segment were superior using MBIR (67.5 % rated as 'Good to Excellent' vs. 25 % in SIR and 2.5 % in FBP). The lengths of non-visualized ureteric segments were shortest using MBIR (55.0 % measured 'less than 5 cm' vs. ASIR 33.8 % and FBP 10 %). MBIR was able to reduce overall image noise by up to 49.36 % over SIR and 71.02 % over FBP. MBIR technique improves overall image quality and visualization of ureters over FBP and SIR.

  14. Performance evaluation of algebraic reconstruction technique (ART) for prototype chest digital tomosynthesis (CDT) system

    NASA Astrophysics Data System (ADS)

    Lee, Haenghwa; Choi, Sunghoon; Jo, Byungdu; Kim, Hyemi; Lee, Donghoon; Kim, Dohyeon; Choi, Seungyeon; Lee, Youngjin; Kim, Hee-Joung

    2017-03-01

    Chest digital tomosynthesis (CDT) is a new 3D imaging technique that can be expected to improve the detection of subtle lung disease over conventional chest radiography. Algorithm development for CDT system is challenging in that a limited number of low-dose projections are acquired over a limited angular range. To confirm the feasibility of algebraic reconstruction technique (ART) method under variations in key imaging parameters, quality metrics were conducted using LUNGMAN phantom included grand-glass opacity (GGO) tumor. Reconstructed images were acquired from the total 41 projection images over a total angular range of +/-20°. We evaluated contrast-to-noise ratio (CNR) and artifacts spread function (ASF) to investigate the effect of reconstruction parameters such as number of iterations, relaxation parameter and initial guess on image quality. We found that proper value of ART relaxation parameter could improve image quality from the same projection. In this study, proper value of relaxation parameters for zero-image (ZI) and back-projection (BP) initial guesses were 0.4 and 0.6, respectively. Also, the maximum CNR values and the minimum full width at half maximum (FWHM) of ASF were acquired in the reconstructed images after 20 iterations and 3 iterations, respectively. According to the results, BP initial guess for ART method could provide better image quality than ZI initial guess. In conclusion, ART method with proper reconstruction parameters could improve image quality due to the limited angular range in CDT system.

  15. Optimized OFDM Transmission of Encrypted Image Over Fading Channel

    NASA Astrophysics Data System (ADS)

    Eldin, Salwa M. Serag

    2014-11-01

    This paper compares the quality of diffusion-based and permutation-based encrypted image transmission using orthogonal frequency division multiplexing (OFDM) over wireless fading channel. Sensitivity to carrier frequency offsets (CFOs) is one of the limitations in OFDM transmission that was compensated here. Different OFDM diffusions are investigated to study encrypted image transmission optimization. Peak signal-to-noise ratio between the original image and the decrypted image is used to evaluate the received image quality. Chaotic encrypted image modulated with CFOs compensated FFT-OFDM was found to give outstanding performance against other encryption and modulation techniques.

  16. A novel quality assurance method in a university teaching paediatric radiology department.

    PubMed

    Gallet, J M; Reed, M H; Hlady, J

    2000-08-01

    Primary diagnostic equipment in a paediatric radiology department must perform at optimal levels at all times. The Children's Hospital Radiology Department in Winnipeg, Canada, has developed an impartial means of reporting radiographic image quality. The main objectives of this study programme were two-fold. First, to monitor diagnostic X-ray equipment performance, and second, to improve the resultant image quality as a means of implementing the fundamental concepts of continuous quality improvement. Reading radiologists completed a quality assurance (QA) card when they identified a radiographic image quality problem. The cards were subsequently collected by the clinical instructor who then informed, in confidence, the radiographers of the written comments or concerns. QA cards have been conspicuously installed in the paediatric radiology reading room since the middle of 1993. Since its inception, equipment malfunction has been monitored and indicators for improving image quality developed. This component of the QA programme has shown itself to be a successful means of communicating with radiographers in maintaining superior image quality.

  17. SU-E-J-06: A Time Dependence Analysis of CBCT Image Quality and Mechanical Stability.

    PubMed

    Oves, S; Stenbeck, J; Gebreamlak, W; Alkhatib, H

    2012-06-01

    To quantify the change, if any, in flexmap correction factors and image quality with the XVI system over a course of several years and from these results, assess their clinical impact. Flexmap, a calibration procedure which corrects for imperfect gantry rotation for cone-beam CT reconstruction, and image quality tests were performed on three Elekta Synergy linacs equipped with XVI. Data was collected per month over three years. U and V values, corresponding to lateral and longitudinal shifts respectively, were acquired through the XVI software. Image quality parameters were obtained through CT imaging of the Catphan 500®. For each reconstruction, pixel values for low density polyethylene (LDPE) and polystyrene materials were recorded. For all three linacs, analysis of the flexmap showed a significant change in the U factor for both month-to-month comparisons and comparisons between machines. The V correction factor exhibited a small variation month to month, and showed a slight, gradual increase over time (0.2 +/-0.08 mm). Image quality analysis showed a near consistent decrease (5-10%) in LDPE and polystyrene. Despite this decrease in pixel values, the ratio of the two pixel values remained constant, thus a similar decreasing trend in contrast was not observed. Analysis of monthly flexmap calibration showed the general monthly change in correction shifts and their general trend over several years. For image quality, our research exhibited roughly 0.5% per month decrease in pixel values of the Catphan®. Our results imply that CBCT images obtained from XVI are not appropriate for treatment planning and despite the decrease in panel response over time, image quality with respect to contrast will remain within acceptable clinical standards. Future studies may be carried out to assess any correlation between image quality and XVI source strength. © 2012 American Association of Physicists in Medicine.

  18. MO-D-213-06: Quantitative Image Quality Metrics Are for Physicists, Not Radiologists: How to Communicate to Your Radiologists Using Their Language

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szczykutowicz, T; Rubert, N; Ranallo, F

    Purpose: A framework for explaining differences in image quality to non-technical audiences in medial imaging is needed. Currently, this task is something that is learned “on the job.” The lack of a formal methodology for communicating optimal acquisition parameters into the clinic effectively mitigates many technological advances. As a community, medical physicists need to be held responsible for not only advancing image science, but also for ensuring its proper use in the clinic. This work outlines a framework that bridges the gap between the results from quantitative image quality metrics like detectability, MTF, and NPS and their effect on specificmore » anatomical structures present in diagnostic imaging tasks. Methods: Specific structures of clinical importance were identified for a body, an extremity, a chest, and a temporal bone protocol. Using these structures, quantitative metrics were used to identify the parameter space that should yield optimal image quality constrained within the confines of clinical logistics and dose considerations. The reading room workflow for presenting the proposed changes for imaging each of these structures is presented. The workflow consists of displaying images for physician review consisting of different combinations of acquisition parameters guided by quantitative metrics. Examples of using detectability index, MTF, NPS, noise and noise non-uniformity are provided. During review, the physician was forced to judge the image quality solely on those features they need for diagnosis, not on the overall “look” of the image. Results: We found that in many cases, use of this framework settled mis-agreements between physicians. Once forced to judge images on the ability to detect specific structures inter reader agreement was obtained. Conclusion: This framework will provide consulting, research/industrial, or in-house physicists with clinically relevant imaging tasks to guide reading room image review. This framework avoids use of the overall “look” or “feel” to dictate acquisition parameter selection. Equipment grants GE Healthcare.« less

  19. Physics considerations in MV-CBCT multi-layer imager design.

    PubMed

    Hu, Yue-Houng; Fueglistaller, Rony; Myronakis, Marios E; Rottmann, Joerg; Wang, Adam; Shedlock, Daniel; Morf, Daniel; Baturin, Paul; Huber, Pascal; Star-Lack, Josh M; Berbeco, Ross I

    2018-05-30

    Megavoltage (MV) cone-beam computed tomography (CBCT) using an electronic portal imaging (EPID) offers advantageous features, including 3D mapping, treatment beam registration, high-z artifact suppression, and direct radiation dose calculation. Adoption has been slowed by image quality limitations and concerns about imaging dose. Developments in imager design, including pixelated scintillators, structured phosphors, inexpensive scintillation materials, and multi-layer imager (MLI) architecture have been explored to improve EPID image quality and reduce imaging dose. The present study employs a hybrid Monte Carlo and linear systems model to determine the effect of detector design elements, such as multi-layer architecture and scintillation materials. We follow metrics of image quality including modulation transfer function (MTF) and noise power spectrum (NPS) from projection images to 3D reconstructions to in-plane slices and apply a task based figure-of-merit, the ideal observer signal-to-noise ratio (d') to determine the effect of detector design on object detectability. Generally, detectability was limited by detector noise performance. Deploying an MLI imager with a single scintillation material for all layers yields improvement in noise performance and d' linear with the number of layers. In general, improving x-ray absorption using thicker scintillators results in improved DQE(0). However, if light yield is low, performance will be affected by electronic noise at relatively high doses, resulting in rapid image quality degradation. Maximizing image quality in a heterogenous MLI detector (i.e. multiple different scintillation materials) is most affected by limiting imager noise. However, while a second-order effect, maximizing total spatial resolution of the MLI detector is a balance between the intensity contribution of each layer against its individual MTF. So, while a thinner scintillator may yield a maximal individual-layer MTF, its quantum efficiency will be relatively low in comparison to a thicker scintillator and thus, intensity contribution may be insufficient to noticeably improve the total detector MTF. © 2018 Institute of Physics and Engineering in Medicine.

  20. SU-F-J-214: Dose Reduction by Spatially Optimized Image Quality Via Fluence Modulated Proton CT (FMpCT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Angelis, L; Landry, G; Dedes, G

    Purpose: Proton CT (pCT) is a promising imaging modality for reducing range uncertainty in image-guided proton therapy. Range uncertainties partially originate from X-ray CT number conversion to stopping power ratio (SPR) and are limiting the exploitation of the full potential of proton therapy. In this study we explore the concept of spatially dependent fluence modulated proton CT (FMpCT), for achieving optimal image quality in a clinical region of interest (ROI), while reducing significantly the imaging dose to the patient. Methods: The study was based on simulated ideal pCT using pencil beam (PB) scanning. A set of 250 MeV protons PBsmore » was used to create 360 projections of a cylindrical water phantom and a head and neck cancer patient. The tomographic images were reconstructed using a filtered backprojection (FBP) as well as an iterative algorithm (ITR). Different fluence modulation levels were investigated and their impact on the image was quantified in terms of SPR accuracy as well as noise within and outside selected ROIs, as a function of imaging dose. The unmodulated image served as reference. Results: Both FBP reconstruction and ITR without total variation (TV) yielded image quality in the ROIs similar to the reference images, for modulation down to 0.1 of the full proton fluence. The average dose was reduced by 75% for the water phantom and by 40% for the patient. FMpCT does not improve the noise for ITR with TV and modulation 0.1. Conclusion: This is the first work proposing and investigating FMpCT for producing optimal image quality for treatment planning and image guidance, while simultaneously reducing imaging dose. Future work will address spatial resolution effects and the impact of FMpCT on the quality of proton treatment plans for a prototype pCT scanner capable of list mode data acquisition. Acknowledgement: DFG-MAP DFG - Munich-Centre for Advanced Photonics (MAP)« less

  1. Impact of orthodontic appliances on the quality of craniofacial anatomical magnetic resonance imaging and real-time speech imaging.

    PubMed

    Wylezinska, Marzena; Pinkstone, Marie; Hay, Norman; Scott, Andrew D; Birch, Malcolm J; Miquel, Marc E

    2015-12-01

    The aim of this work was to investigate the effects of commonly used orthodontic appliances on the magnetic resonance (MR) image quality of the craniofacial region, with special interest in the soft palate and velopharyngeal wall using real-time speech imaging sequences and anatomical imaging of the temporomandibular joints (TMJ) and pituitaries. Common orthodontic appliances were studied on 1.5 T scanner using standard spin and gradient echo sequences (based on the American Society for Testing and Materials standard test method) and sequences previously applied for high-resolution anatomical and dynamic real-time imaging during speech. Images were evaluated for the presence and size of artefacts. Metallic orthodontic appliances had different effects on image quality. The most extensive individual effects were associated with the presence of stainless steel archwire, particularly if combined with stainless steel brackets and stainless steel molar bands. With those appliances, diagnostic quality of magnetic resonance imaging speech and palate images will be most likely severely degraded, or speech imaging and imaging of pituitaries and TMJ will be not possible. All non-metallic, non-metallic with Ni/Cr reinforcement or Ni/Ti alloys appliances were of little concern. The results in the study are only valid at 1.5 T and for the sequences and devices used and cannot necessarily be extrapolated to all sequences and devices. Furthermore, both geometry and size of some appliances are subject dependent, and consequently, the effects on the image quality can vary between subjects. Therefore, the results presented in this article should be treated as a guide when assessing the risks of image quality degradation rather than an absolute evaluation of possible artefacts. Appliances manufactured from stainless steel cause extensive artefacts, which may render image non-diagnostic. The presence and type of orthodontic appliances should be always included in the patient's screening, so the risks of artefacts can be assessed prior to imaging. Although the risks to patients with fixed orthodontic appliances at 1.5 T MR scanners are low, their secure attachment should be confirmed prior to the examination. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Effect of contact lens on optical coherence tomography imaging of rodent retina.

    PubMed

    Liu, Xiaojing; Wang, Chia-Hao; Dai, Cuixia; Camesa, Adam; Zhang, Hao F; Jiao, Shuliang

    2013-12-01

    To evaluate the effect of powerless contact lens on improving the quality of optical coherence tomography imaging of rodent retina. A spectral-domain optical coherence tomography (SD-OCT) system was built for in vivo imaging of rodent retina. The calibrated depth resolution of the system was 3 µm in tissue. A commercial powerless contact lens for rat eye was tested in the experiments. For each rat eye, the retina was imaged in vivo sequentially first without wearing contact lens and then with wearing contact lens. The lateral resolution and signal-to-noise ratio of the OCT images with and without contact lens were compared to evaluate the improvement of image quality. The fundus images generated from the measured 3D OCT datasets with contact lens showed sharper retinal blood vessels than those without contact lens. The contrast of the retinal blood vessels was also significantly enhanced in the OCT fundus images with contact lens. As high as 10 dB improvements in SNR was observed for OCT images with contact lens compared to the images of the same retinal area without contact lens. We have demonstrated that the use of powerless contact lens on rat eye can significantly improve OCT image quality of rodent retina, which is a benefit in addition to preventing cataract formation. We believe the improvement in image quality is the result of partial compensation of the optical aberrations of the rodent eye by the contact lens.

  3. Study of quality perception in medical images based on comparison of contrast enhancement techniques in mammographic images

    NASA Astrophysics Data System (ADS)

    Matheus, B.; Verçosa, L. B.; Barufaldi, B.; Schiabel, H.

    2014-03-01

    With the absolute prevalence of digital images in mammography several new tools became available for radiologist; such as CAD schemes, digital zoom and contrast alteration. This work focuses in contrast variation and how the radiologist reacts to these changes when asked to evaluated image quality. Three contrast enhancing techniques were used in this study: conventional equalization, CCB Correction [1] - a digitization correction - and value subtraction. A set of 100 images was used in tests from some available online mammographic databases. The tests consisted of the presentation of all four versions of an image (original plus the three contrast enhanced images) to the specialist, requested to rank each one from the best up to worst quality for diagnosis. Analysis of results has demonstrated that CCB Correction [1] produced better images in almost all cases. Equalization, which mathematically produces a better contrast, was considered the worst for mammography image quality enhancement in the majority of cases (69.7%). The value subtraction procedure produced images considered better than the original in 84% of cases. Tests indicate that, for the radiologist's perception, it seems more important to guaranty full visualization of nuances than a high contrast image. Another result observed is that the "ideal" scanner curve does not yield the best result for a mammographic image. The important contrast range is the middle of the histogram, where nodules and masses need to be seen and clearly distinguished.

  4. Effectiveness of Adaptive Statistical Iterative Reconstruction for 64-Slice Dual-Energy Computed Tomography Pulmonary Angiography in Patients With a Reduced Iodine Load: Comparison With Standard Computed Tomography Pulmonary Angiography.

    PubMed

    Lee, Ji Won; Lee, Geewon; Lee, Nam Kyung; Moon, Jin Il; Ju, Yun Hye; Suh, Young Ju; Jeong, Yeon Joo

    2016-01-01

    The aim of the study was to assess the effectiveness of the adaptive statistical iterative reconstruction (ASIR) for dual-energy computed tomography pulmonary angiography (DE-CTPA) with a reduced iodine load. One hundred forty patients referred for chest CT were randomly divided into a DE-CTPA group with a reduced iodine load or a standard CTPA group. Quantitative and qualitative image qualities of virtual monochromatic spectral (VMS) images with filtered back projection (VMS-FBP) and those with 50% ASIR (VMS-ASIR) in the DE-CTPA group were compared. Image qualities of VMS-ASIR images in the DE-CTPA group and ASIR images in the standard CTPA group were also compared. All quantitative and qualitative indices, except attenuation value of pulmonary artery in the VMS-ASIR subgroup, were superior to those in the VMS-FBP subgroup (all P < 0.001). Noise and signal-to-noise ratio of VMS-ASIR images were superior to those of ASIR images in the standard CTPA group (P < 0.001 and P = 0.007, respectively). Regarding qualitative indices, noise was significantly lower in VMS-ASIR images of the DE-CTPA group than in ASIR images of the standard CTPA group (P = 0.001). The ASIR technique tends to improve the image quality of VMS imaging. Dual-energy computed tomography pulmonary angiography with ASIR can reduce contrast medium volume and produce images of comparable quality with those of standard CTPA.

  5. Dose reduction and image quality optimizations in CT of pediatric and adult patients: phantom studies

    NASA Astrophysics Data System (ADS)

    Jeon, P.-H.; Lee, C.-L.; Kim, D.-H.; Lee, Y.-J.; Jeon, S.-S.; Kim, H.-J.

    2014-03-01

    Multi-detector computed tomography (MDCT) can be used to easily and rapidly perform numerous acquisitions, possibly leading to a marked increase in the radiation dose to individual patients. Technical options dedicated to automatically adjusting the acquisition parameters according to the patient's size are of specific interest in pediatric radiology. A constant tube potential reduction can be achieved for adults and children, while maintaining a constant detector energy fluence. To evaluate radiation dose, the weighted CT dose index (CTDIw) was calculated based on the CT dose index (CTDI) measured using an ion chamber, and image noise and image contrast were measured from a scanned image to evaluate image quality. The dose-weighted contrast-to-noise ratio (CNRD) was calculated from the radiation dose, image noise, and image contrast measured from a scanned image. The noise derivative (ND) is a quality index for dose efficiency. X-ray spectra with tube voltages ranging from 80 to 140 kVp were used to compute the average photon energy. Image contrast and the corresponding contrast-to-noise ratio (CNR) were determined for lesions of soft tissue, muscle, bone, and iodine relative to a uniform water background, as the iodine contrast increases at lower energy (i.e., k-edge of iodine is 33 keV closer to the beam energy) using mixed water-iodine contrast normalization (water 0, iodine 25, 100, 200, and 1000 HU, respectively). The proposed values correspond to high quality images and can be reduced if only high-contrast organs are assessed. The potential benefit of lowering the tube voltage is an improved CNRD, resulting in a lower radiation dose and optimization of image quality. Adjusting the tube potential in abdominal CT would be useful in current pediatric radiography, where the choice of X-ray techniques generally takes into account the size of the patient as well as the need to balance the conflicting requirements of diagnostic image quality and radiation dose optimization.

  6. Near-infrared hyperspectral imaging for quality analysis of agricultural and food products

    NASA Astrophysics Data System (ADS)

    Singh, C. B.; Jayas, D. S.; Paliwal, J.; White, N. D. G.

    2010-04-01

    Agricultural and food processing industries are always looking to implement real-time quality monitoring techniques as a part of good manufacturing practices (GMPs) to ensure high-quality and safety of their products. Near-infrared (NIR) hyperspectral imaging is gaining popularity as a powerful non-destructive tool for quality analysis of several agricultural and food products. This technique has the ability to analyse spectral data in a spatially resolved manner (i.e., each pixel in the image has its own spectrum) by applying both conventional image processing and chemometric tools used in spectral analyses. Hyperspectral imaging technique has demonstrated potential in detecting defects and contaminants in meats, fruits, cereals, and processed food products. This paper discusses the methodology of hyperspectral imaging in terms of hardware, software, calibration, data acquisition and compression, and development of prediction and classification algorithms and it presents a thorough review of the current applications of hyperspectral imaging in the analyses of agricultural and food products.

  7. Diffusion-weighted imaging of the sellar region: a comparison study of BLADE and single-shot echo planar imaging sequences.

    PubMed

    Yiping, Lu; Hui, Liu; Kun, Zhou; Daoying, Geng; Bo, Yin

    2014-07-01

    The purpose of this study is to compare BLADE diffusion-weighted imaging (DWI) with single-shot echo planar imaging (EPI) DWI on the aspects of feasibility of imaging the sellar region and image quality. A total of 3 healthy volunteers and 52 patients with suspected lesions in the sellar region were included in this prospective intra-individual study. All exams were performed at 3.0T with a BLADE DWI sequence and a standard single-shot EP-DWI sequence. Phantom measurements were performed to measure the objective signal-to-noise ratio (SNR). Two radiologists rated the image quality according to the visualisation of the internal carotid arteries, optic chiasm, pituitary stalk, pituitary gland and lesion, and the overall image quality. One radiologist measured lesion sizes for detecting their relationship with the image score. The SNR in BLADE DWI sequence showed no significant difference from the single-shot EPI sequence (P>0.05). All of the assessed regions received higher scores in BLADE DWI images than single-shot EP-DWI. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Multiresolution generalized N dimension PCA for ultrasound image denoising

    PubMed Central

    2014-01-01

    Background Ultrasound images are usually affected by speckle noise, which is a type of random multiplicative noise. Thus, reducing speckle and improving image visual quality are vital to obtaining better diagnosis. Method In this paper, a novel noise reduction method for medical ultrasound images, called multiresolution generalized N dimension PCA (MR-GND-PCA), is presented. In this method, the Gaussian pyramid and multiscale image stacks on each level are built first. GND-PCA as a multilinear subspace learning method is used for denoising. Each level is combined to achieve the final denoised image based on Laplacian pyramids. Results The proposed method is tested with synthetically speckled and real ultrasound images, and quality evaluation metrics, including MSE, SNR and PSNR, are used to evaluate its performance. Conclusion Experimental results show that the proposed method achieved the lowest noise interference and improved image quality by reducing noise and preserving the structure. Our method is also robust for the image with a much higher level of speckle noise. For clinical images, the results show that MR-GND-PCA can reduce speckle and preserve resolvable details. PMID:25096917

  9. Comprehensive assessment of patient image quality and radiation dose in latest generation cardiac x-ray equipment for percutaneous coronary interventions

    PubMed Central

    Gislason-Lee, Amber J.; Keeble, Claire; Egleston, Daniel; Bexon, Josephine; Kengyelics, Stephen M.; Davies, Andrew G.

    2017-01-01

    Abstract. This study aimed to determine whether a reduction in radiation dose was found for percutaneous coronary interventional (PCI) patients using a cardiac interventional x-ray system with state-of-the-art image enhancement and x-ray optimization, compared to the current generation x-ray system, and to determine the corresponding impact on clinical image quality. Patient procedure dose area product (DAP) and fluoroscopy duration of 131 PCI patient cases from each x-ray system were compared using a Wilcoxon test on median values. Significant reductions in patient dose (p≪0.001) were found for the new system with no significant change in fluoroscopy duration (p=0.2); procedure DAP reduced by 64%, fluoroscopy DAP by 51%, and “cine” acquisition DAP by 76%. The image quality of 15 patient angiograms from each x-ray system (30 total) was scored by 75 clinical professionals on a continuous scale for the ability to determine the presence and severity of stenotic lesions; image quality scores were analyzed using a two-sample t-test. Image quality was reduced by 9% (p≪0.01) for the new x-ray system. This demonstrates a substantial reduction in patient dose, from acquisition more than fluoroscopy imaging, with slightly reduced image quality, for the new x-ray system compared to the current generation system. PMID:28491907

  10. Enhanced Gender Recognition System Using an Improved Histogram of Oriented Gradient (HOG) Feature from Quality Assessment of Visible Light and Thermal Images of the Human Body.

    PubMed

    Nguyen, Dat Tien; Park, Kang Ryoung

    2016-07-21

    With higher demand from users, surveillance systems are currently being designed to provide more information about the observed scene, such as the appearance of objects, types of objects, and other information extracted from detected objects. Although the recognition of gender of an observed human can be easily performed using human perception, it remains a difficult task when using computer vision system images. In this paper, we propose a new human gender recognition method that can be applied to surveillance systems based on quality assessment of human areas in visible light and thermal camera images. Our research is novel in the following two ways: First, we utilize the combination of visible light and thermal images of the human body for a recognition task based on quality assessment. We propose a quality measurement method to assess the quality of image regions so as to remove the effects of background regions in the recognition system. Second, by combining the features extracted using the histogram of oriented gradient (HOG) method and the measured qualities of image regions, we form a new image features, called the weighted HOG (wHOG), which is used for efficient gender recognition. Experimental results show that our method produces more accurate estimation results than the state-of-the-art recognition method that uses human body images.

  11. Enhanced Gender Recognition System Using an Improved Histogram of Oriented Gradient (HOG) Feature from Quality Assessment of Visible Light and Thermal Images of the Human Body

    PubMed Central

    Nguyen, Dat Tien; Park, Kang Ryoung

    2016-01-01

    With higher demand from users, surveillance systems are currently being designed to provide more information about the observed scene, such as the appearance of objects, types of objects, and other information extracted from detected objects. Although the recognition of gender of an observed human can be easily performed using human perception, it remains a difficult task when using computer vision system images. In this paper, we propose a new human gender recognition method that can be applied to surveillance systems based on quality assessment of human areas in visible light and thermal camera images. Our research is novel in the following two ways: First, we utilize the combination of visible light and thermal images of the human body for a recognition task based on quality assessment. We propose a quality measurement method to assess the quality of image regions so as to remove the effects of background regions in the recognition system. Second, by combining the features extracted using the histogram of oriented gradient (HOG) method and the measured qualities of image regions, we form a new image features, called the weighted HOG (wHOG), which is used for efficient gender recognition. Experimental results show that our method produces more accurate estimation results than the state-of-the-art recognition method that uses human body images. PMID:27455264

  12. Sliding window adaptive histogram equalization of intraoral radiographs: effect on image quality.

    PubMed

    Sund, T; Møystad, A

    2006-05-01

    To investigate whether contrast enhancement by non-interactive, sliding window adaptive histogram equalization (SWAHE) can enhance the image quality of intraoral radiographs in the dental clinic. Three dentists read 22 periapical and 12 bitewing storage phosphor (SP) radiographs. For the periapical readings they graded the quality of the examination with regard to visually locating the root apex. For the bitewing readings they registered all occurrences of approximal caries on a confidence scale. Each reading was first done on an unprocessed radiograph ("single-view"), and then re-done with the image processed with SWAHE displayed beside the unprocessed version ("twin-view"). The processing parameters for SWAHE were the same for all the images. For the periapical examinations, twin-view was judged to raise the image quality for 52% of those cases where the single-view quality was below the maximum. For the bitewing radiographs, there was a change of caries classification (both positive and negative) with twin-view in 19% of the cases, but with only a 3% net increase in the total number of caries registrations. For both examinations interobserver variance was unaffected. Non-interactive SWAHE applied to dental SP radiographs produces a supplemental contrast enhanced image which in twin-view reading improves the image quality of periapical examinations. SWAHE also affects caries diagnosis of bitewing images, and further study using a gold standard is warranted.

  13. Quality evaluation of pansharpened hyperspectral images generated using multispectral images

    NASA Astrophysics Data System (ADS)

    Matsuoka, Masayuki; Yoshioka, Hiroki

    2012-11-01

    Hyperspectral remote sensing can provide a smooth spectral curve of a target by using a set of higher spectral resolution detectors. The spatial resolution of the hyperspectral images, however, is generally much lower than that of multispectral images due to the lower energy of incident radiation. Pansharpening is an image-fusion technique that generates higher spatial resolution multispectral images by combining lower resolution multispectral images with higher resolution panchromatic images. In this study, higher resolution hyperspectral images were generated by pansharpening of simulated lower hyperspectral and higher multispectral data. Spectral and spatial qualities of pansharpened images, then, were accessed in relation to the spectral bands of multispectral images. Airborne hyperspectral data of AVIRIS was used in this study, and it was pansharpened using six methods. Quantitative evaluations of pansharpened image are achieved using two frequently used indices, ERGAS, and the Q index.

  14. Study of Image Quality From CT Scanner Multi-Detector by using Americans College of Radiology (ACR) Phantom

    NASA Astrophysics Data System (ADS)

    Mulyadin; Dewang, Syamsir; Abdullah, Bualkar; Tahir, Dahlang

    2018-03-01

    In this study, the image quality of CT scan using phantom American College of Radiology (ACR) was determined. Scanning multidetector CT is used to know the image quality parameters by using a solid phantom containing four modules and primarily from materials that are equivalent to water. Each module is 4 cm in diameter and 20 cm in diameter. There is white alignment marks painted white to reflect the alignment laser and there are also “HEAD”, “FOOT”, and “TOP” marks on the phantom to help align. This test obtains CT images of each module according to the routine inspection protocol of the head. Acceptance of image quality obtained for determination: CT Number Accuracy (CTN), CT Number Uniformity and Noise, Linearity CT Number, Slice Technique, Low Contrast Resolution and High Contrast Resolution represent image quality parameters. In testing CT Number Accuracy (CTN), CT Uniform number and Noise are in the range of tolerable values allowed. In the test, Linearity CT Number obtained correlation value above 0.99 is the relationship between electron density and CT Number. In a low contrast resolution test, the smallest contrast groups are visible. In contrast, the high resolution is seen up to 7 lp/cm. The quality of GE CT Scan is very high, as all the image quality tests obtained are within the tolerance brackets of values permitted by the Nuclear Power Control Agency (BAPETEN). Image quality test is a way to get very important information about the accuracy of snoring result by using phantom ACR.

  15. Does body image perception relate to quality of life in middle-aged women?

    PubMed Central

    Medeiros de Morais, Maria Socorro; Vieira, Mariana Carmem Apolinário; Moreira, Mayle Andrade; da Câmara, Saionara Maria Aires; Campos Cavalcanti Maciel, Álvaro; Almeida, Maria das Graças

    2017-01-01

    Objective In Brazil, information about the influence of body image on the various life domains of women in menopausal transition is scarce. Thus, the objective of the study was to analyze the relationship between body image and quality of life in middle-aged Brazilian women. Methods This was a cross-sectional study of 250 women between 40 and 65 years old, living in Parnamirim/RN, Brazil, who were evaluated in relation to body image and quality of life. For body image, women were classified as: dissatisfied due to low weight, satisfied (with their body weight) and dissatisfied due to being overweight. Quality of life was assessed through a questionnaire in which higher values indicate higher quality of life. Multiple linear regression was performed to analyze the relationship between body image and quality of life, adjusted for covariates that presented p<0.20 in the bivariate analysis. Results The average age was 52.1 (± 5.6) years, 82% of the women reported being dissatisfied due to being overweight, and 4.4% were dissatisfied due to having low weight. After multiple linear regression analyzes, body image remained associated with health (p<0.001), emotional (p = 0.016), and sexual (p = 0.048) domains of quality of life, as well as total score of the questionnaire (p<0.001). Conclusion Women who reported being dissatisfied with their body image due to having low weight or overweight had worse quality of life in comparison to those who were satisfied (with their body weight). PMID:28926575

  16. Evaluation of magnetic nanoparticle samples made from biocompatible ferucarbotran by time-correlation magnetic particle imaging reconstruction method

    PubMed Central

    2013-01-01

    Background Molecular imaging using magnetic nanoparticles (MNPs)—magnetic particle imaging (MPI)—has attracted interest for the early diagnosis of cancer and cardiovascular disease. However, because a steep local magnetic field distribution is required to obtain a defined image, sophisticated hardware is required. Therefore, it is desirable to realize excellent image quality even with low-performance hardware. In this study, the spatial resolution of MPI was evaluated using an image reconstruction method based on the correlation information of the magnetization signal in a time domain and by applying MNP samples made from biocompatible ferucarbotran that have adjusted particle diameters. Methods The magnetization characteristics and particle diameters of four types of MNP samples made from ferucarbotran were evaluated. A numerical analysis based on our proposed method that calculates the image intensity from correlation information between the magnetization signal generated from MNPs and the system function was attempted, and the obtained image quality was compared with that using the prototype in terms of image resolution and image artifacts. Results MNP samples obtained by adjusting ferucarbotran showed superior properties to conventional ferucarbotran samples, and numerical analysis showed that the same image quality could be obtained using a gradient magnetic field generator with 0.6 times the performance. However, because image blurring was included theoretically by the proposed method, an algorithm will be required to improve performance. Conclusions MNP samples obtained by adjusting ferucarbotran showed magnetizing properties superior to conventional ferucarbotran samples, and by using such samples, comparable image quality (spatial resolution) could be obtained with a lower gradient magnetic field intensity. PMID:23734917

  17. Quality assurance in ultrasound screening for hepatocellular carcinoma using a standardized phantom and standard clinical images: a 3-year national investigation in Korea.

    PubMed

    Choi, Joon-Il; Jung, Seung Eun; Kim, Pyo Nyun; Cha, Sang Hoon; Jun, Jae Kwan; Lee, Hoo-Yeon; Park, Eun-Cheol

    2014-06-01

    The purpose of this study was to investigate the quality of ultrasound (US) imaging for hepatocellular carcinoma screening. The investigation was performed at all medical institutes participating in the National Cancer Screening Program in Korea. For assessment of personnel, we inquired who was performing the US screenings. For phantom image evaluation, the dead zone, vertical and horizontal measurements, axial and lateral resolution, sensitivity, and gray scale/dynamic range were evaluated. For clinical image evaluation, US images of patients were evaluated in terms of the standard images, technical information, overall image quality, appropriateness of depth, foci, annotations, and the presence of any artifacts. Failure rates for phantom and clinical image evaluations at general hospitals, smaller hospitals, and private clinics were 20.9%, 24.5%, 24.1% and 5.5%, and 14.8% and 9.5%, respectively. No statistically significant difference was observed in the failure rates for the phantom images among groups of different years of manufacture. For the clinical image evaluation, the results of radiologists were significantly better than those of other professional groups (P = .0001 and .0004 versus nonradiology physicians and nonphysicians, respectively). The failure rate was also higher when the storage format was analog versus digital (P < .001). Approximately 20% of US scanners failed the phantom image evaluation. The year of scanner manufacture was not significantly associated with the results of the phantom image evaluation. The quality of the clinical images obtained by radiologists was the best. © 2014 by the American Institute of Ultrasound in Medicine.

  18. Image quality in thoracic 4D cone-beam CT: A sensitivity analysis of respiratory signal, binning method, reconstruction algorithm, and projection angular spacing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shieh, Chun-Chien; Kipritidis, John; O’Brien, Ricky T.

    Purpose: Respiratory signal, binning method, and reconstruction algorithm are three major controllable factors affecting image quality in thoracic 4D cone-beam CT (4D-CBCT), which is widely used in image guided radiotherapy (IGRT). Previous studies have investigated each of these factors individually, but no integrated sensitivity analysis has been performed. In addition, projection angular spacing is also a key factor in reconstruction, but how it affects image quality is not obvious. An investigation of the impacts of these four factors on image quality can help determine the most effective strategy in improving 4D-CBCT for IGRT. Methods: Fourteen 4D-CBCT patient projection datasets withmore » various respiratory motion features were reconstructed with the following controllable factors: (i) respiratory signal (real-time position management, projection image intensity analysis, or fiducial marker tracking), (ii) binning method (phase, displacement, or equal-projection-density displacement binning), and (iii) reconstruction algorithm [Feldkamp–Davis–Kress (FDK), McKinnon–Bates (MKB), or adaptive-steepest-descent projection-onto-convex-sets (ASD-POCS)]. The image quality was quantified using signal-to-noise ratio (SNR), contrast-to-noise ratio, and edge-response width in order to assess noise/streaking and blur. The SNR values were also analyzed with respect to the maximum, mean, and root-mean-squared-error (RMSE) projection angular spacing to investigate how projection angular spacing affects image quality. Results: The choice of respiratory signals was found to have no significant impact on image quality. Displacement-based binning was found to be less prone to motion artifacts compared to phase binning in more than half of the cases, but was shown to suffer from large interbin image quality variation and large projection angular gaps. Both MKB and ASD-POCS resulted in noticeably improved image quality almost 100% of the time relative to FDK. In addition, SNR values were found to increase with decreasing RMSE values of projection angular gaps with strong correlations (r ≈ −0.7) regardless of the reconstruction algorithm used. Conclusions: Based on the authors’ results, displacement-based binning methods, better reconstruction algorithms, and the acquisition of even projection angular views are the most important factors to consider for improving thoracic 4D-CBCT image quality. In view of the practical issues with displacement-based binning and the fact that projection angular spacing is not currently directly controllable, development of better reconstruction algorithms represents the most effective strategy for improving image quality in thoracic 4D-CBCT for IGRT applications at the current stage.« less

  19. Design and assessment of a novel SPECT system for desktop open-gantry imaging of small animals: A simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeraatkar, Navid; Farahani, Mohammad Hossein; Rahmim, Arman

    Purpose: Given increasing efforts in biomedical research utilizing molecular imaging methods, development of dedicated high-performance small-animal SPECT systems has been growing rapidly in the last decade. In the present work, we propose and assess an alternative concept for SPECT imaging enabling desktop open-gantry imaging of small animals. Methods: The system, PERSPECT, consists of an imaging desk, with a set of tilted detector and pinhole collimator placed beneath it. The object to be imaged is simply placed on the desk. Monte Carlo (MC) and analytical simulations were utilized to accurately model and evaluate the proposed concept and design. Furthermore, a dedicatedmore » image reconstruction algorithm, finite-aperture-based circular projections (FABCP), was developed and validated for the system, enabling more accurate modeling of the system and higher quality reconstructed images. Image quality was quantified as a function of different tilt angles in the acquisition and number of iterations in the reconstruction algorithm. Furthermore, more complex phantoms including Derenzo, Defrise, and mouse whole body were simulated and studied. Results: The sensitivity of the PERSPECT was 207 cps/MBq. It was quantitatively demonstrated that for a tilt angle of 30°, comparable image qualities were obtained in terms of normalized squared error, contrast, uniformity, noise, and spatial resolution measurements, the latter at ∼0.6 mm. Furthermore, quantitative analyses demonstrated that 3 iterations of FABCP image reconstruction (16 subsets/iteration) led to optimally reconstructed images. Conclusions: The PERSPECT, using a novel imaging protocol, can achieve comparable image quality performance in comparison with a conventional pinhole SPECT with the same configuration. The dedicated FABCP algorithm, which was developed for reconstruction of data from the PERSPECT system, can produce high quality images for small-animal imaging via accurate modeling of the system as incorporated in the forward- and back-projection steps. Meanwhile, the developed MC model and the analytical simulator of the system can be applied for further studies on development and evaluation of the system.« less

  20. Topological image texture analysis for quality assessment

    NASA Astrophysics Data System (ADS)

    Asaad, Aras T.; Rashid, Rasber Dh.; Jassim, Sabah A.

    2017-05-01

    Image quality is a major factor influencing pattern recognition accuracy and help detect image tampering for forensics. We are concerned with investigating topological image texture analysis techniques to assess different type of degradation. We use Local Binary Pattern (LBP) as a texture feature descriptor. For any image construct simplicial complexes for selected groups of uniform LBP bins and calculate persistent homology invariants (e.g. number of connected components). We investigated image quality discriminating characteristics of these simplicial complexes by computing these models for a large dataset of face images that are affected by the presence of shadows as a result of variation in illumination conditions. Our tests demonstrate that for specific uniform LBP patterns, the number of connected component not only distinguish between different levels of shadow effects but also help detect the infected regions as well.

  1. Reducing Error Rates for Iris Image using higher Contrast in Normalization process

    NASA Astrophysics Data System (ADS)

    Aminu Ghali, Abdulrahman; Jamel, Sapiee; Abubakar Pindar, Zahraddeen; Hasssan Disina, Abdulkadir; Mat Daris, Mustafa

    2017-08-01

    Iris recognition system is the most secured, and faster means of identification and authentication. However, iris recognition system suffers a setback from blurring, low contrast and illumination due to low quality image which compromises the accuracy of the system. The acceptance or rejection rates of verified user depend solely on the quality of the image. In many cases, iris recognition system with low image contrast could falsely accept or reject user. Therefore this paper adopts Histogram Equalization Technique to address the problem of False Rejection Rate (FRR) and False Acceptance Rate (FAR) by enhancing the contrast of the iris image. A histogram equalization technique enhances the image quality and neutralizes the low contrast of the image at normalization stage. The experimental result shows that Histogram Equalization Technique has reduced FRR and FAR compared to the existing techniques.

  2. Characteristic image quality of a third generation dual-source MDCT scanner: Noise, resolution, and detectability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, Justin, E-mail: justin.solomon@duke.edu; Wilson, Joshua; Samei, Ehsan

    2015-08-15

    Purpose: The purpose of this work was to assess the inherent image quality characteristics of a new multidetector computed tomography system in terms of noise, resolution, and detectability index as a function of image acquisition and reconstruction for a range of clinically relevant settings. Methods: A multisized image quality phantom (37, 30, 23, 18.5, and 12 cm physical diameter) was imaged on a SOMATOM Force scanner (Siemens Medical Solutions) under variable dose, kVp, and tube current modulation settings. Images were reconstructed with filtered back projection (FBP) and with advanced modeled iterative reconstruction (ADMIRE) with iterative strengths of 3, 4, andmore » 5. Image quality was assessed in terms of the noise power spectrum (NPS), task transfer function (TTF), and detectability index for a range of detection tasks (contrasts of approximately 45, 90, 300, −900, and 1000 HU, and 2–20 mm diameter) based on a non-prewhitening matched filter model observer with eye filter. Results: Image noise magnitude decreased with decreasing phantom size, increasing dose, and increasing ADMIRE strength, offering up to 64% noise reduction relative to FBP. Noise texture in terms of the NPS was similar between FBP and ADMIRE (<5% shift in peak frequency). The resolution, based on the TTF, improved with increased ADMIRE strength by an average of 15% in the TTF 50% frequency for ADMIRE-5. The detectability index increased with increasing dose and ADMIRE strength by an average of 55%, 90%, and 163% for ADMIRE 3, 4, and 5, respectively. Assessing the impact of mA modulation for a fixed average dose over the length of the phantom, detectability was up to 49% lower in smaller phantom sections and up to 26% higher in larger phantom sections for the modulated scan compared to a fixed tube current scan. Overall, the detectability exhibited less variability with phantom size for modulated scans compared to fixed tube current scans. Conclusions: Image quality increased with increasing dose and decreasing phantom size. The CT system exhibited nonlinear noise and resolution properties, especially at very low-doses, large phantom sizes, and for low-contrast objects. Objective image quality metrics generally increased with increasing dose and ADMIRE strength, and with decreasing phantom size. The ADMIRE algorithm could offer comparable image quality at reduced doses or improved image quality at the same dose. The use of tube current modulation resulted in more consistent image quality with changing phantom size.« less

  3. Benefits of utilizing CellProfiler as a characterization tool for U–10Mo nuclear fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collette, R.; Douglas, J.; Patterson, L.

    2015-07-15

    Automated image processing techniques have the potential to aid in the performance evaluation of nuclear fuels by eliminating judgment calls that may vary from person-to-person or sample-to-sample. Analysis of in-core fuel performance is required for design and safety evaluations related to almost every aspect of the nuclear fuel cycle. This study presents a methodology for assessing the quality of uranium–molybdenum fuel images and describes image analysis routines designed for the characterization of several important microstructural properties. The analyses are performed in CellProfiler, an open-source program designed to enable biologists without training in computer vision or programming to automatically extract cellularmore » measurements from large image sets. The quality metric scores an image based on three parameters: the illumination gradient across the image, the overall focus of the image, and the fraction of the image that contains scratches. The metric presents the user with the ability to ‘pass’ or ‘fail’ an image based on a reproducible quality score. Passable images may then be characterized through a separate CellProfiler pipeline, which enlists a variety of common image analysis techniques. The results demonstrate the ability to reliably pass or fail images based on the illumination, focus, and scratch fraction of the image, followed by automatic extraction of morphological data with respect to fission gas voids, interaction layers, and grain boundaries. - Graphical abstract: Display Omitted - Highlights: • A technique is developed to score U–10Mo FIB-SEM image quality using CellProfiler. • The pass/fail metric is based on image illumination, focus, and area scratched. • Automated image analysis is performed in pipeline fashion to characterize images. • Fission gas void, interaction layer, and grain boundary coverage data is extracted. • Preliminary characterization results demonstrate consistency of the algorithm.« less

  4. Quantitative Image Quality and Histogram-Based Evaluations of an Iterative Reconstruction Algorithm at Low-to-Ultralow Radiation Dose Levels: A Phantom Study in Chest CT

    PubMed Central

    Lee, Ki Baek

    2018-01-01

    Objective To describe the quantitative image quality and histogram-based evaluation of an iterative reconstruction (IR) algorithm in chest computed tomography (CT) scans at low-to-ultralow CT radiation dose levels. Materials and Methods In an adult anthropomorphic phantom, chest CT scans were performed with 128-section dual-source CT at 70, 80, 100, 120, and 140 kVp, and the reference (3.4 mGy in volume CT Dose Index [CTDIvol]), 30%-, 60%-, and 90%-reduced radiation dose levels (2.4, 1.4, and 0.3 mGy). The CT images were reconstructed by using filtered back projection (FBP) algorithms and IR algorithm with strengths 1, 3, and 5. Image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were statistically compared between different dose levels, tube voltages, and reconstruction algorithms. Moreover, histograms of subtraction images before and after standardization in x- and y-axes were visually compared. Results Compared with FBP images, IR images with strengths 1, 3, and 5 demonstrated image noise reduction up to 49.1%, SNR increase up to 100.7%, and CNR increase up to 67.3%. Noteworthy image quality degradations on IR images including a 184.9% increase in image noise, 63.0% decrease in SNR, and 51.3% decrease in CNR, and were shown between 60% and 90% reduced levels of radiation dose (p < 0.0001). Subtraction histograms between FBP and IR images showed progressively increased dispersion with increased IR strength and increased dose reduction. After standardization, the histograms appeared deviated and ragged between FBP images and IR images with strength 3 or 5, but almost normally-distributed between FBP images and IR images with strength 1. Conclusion The IR algorithm may be used to save radiation doses without substantial image quality degradation in chest CT scanning of the adult anthropomorphic phantom, down to approximately 1.4 mGy in CTDIvol (60% reduced dose). PMID:29354008

  5. Are Disposable and Standard Gonioscopy Lenses Comparable?

    PubMed

    Lee, Bonny; Szirth, Bernard C; Fechtner, Robert D; Khouri, Albert S

    2017-04-01

    Gonioscopy is important in the evaluation and treatment of glaucoma. With increased scrutiny of acceptable sterilization processes for health care instruments, disposable gonioscopy lenses have recently been introduced. Single-time use lenses are theorized to decrease infection risk and eliminate the issue of wear and tear seen on standard, reusable lenses. However, patient care would be compromised if the quality of images produced by the disposable lens were inferior to those produced by the reusable lens. The purpose of this study was to compare the quality of images produced by disposable versus standard gonioscopy lenses. A disposable single mirror lens (Sensor Medical Technology) and a standard Volk G-1 gonioscopy lens were used to image 21 volunteers who were prospectively recruited for the study. Images of the inferior and temporal angles of each subject's left eye were acquired using a slit-lamp camera through the disposable and standard gonioscopy lens. In total, 74 images were graded using the Spaeth gonioscopic system and for clarity and quality. Clarity was scored as 1 or 2 and defined as either (1) all structures perceived or (2) all structures not perceived. Quality was scored as 1, 2, or 3, and defined as (1) all angle landmarks clear and well focused, (2) some angle landmarks clear, others blurred, or (3) angle landmarks could not be ascertained. The 74 images were divided into images taken with the disposable single mirror lens and images taken with the standard Volk G-1 gonioscopy lens. The clarity and quality scores for each of these 2 image groups were averaged and P-values were calculated. Average quality of images produced with the standard lens was 1.46±0.56 compared with 1.54±0.61 for those produced with the disposable lens (P=0.55). Average clarity of images produced with the standard lens was 1.47±0.51 compared with 1.49±0.51 (P=0.90) with the disposable lens. We conclude that there is no significant difference in quality of images produced with standard versus disposable gonioscopy lenses. Disposable gonioscopy lenses may be an acceptable alternative to standard reusable lenses, especially in conditions where sterilization is difficult.

  6. Imaging the Parasinus Region with a Third-Generation Dual-Source CT and the Effect of Tin Filtration on Image Quality and Radiation Dose.

    PubMed

    Lell, M M; May, M S; Brand, M; Eller, A; Buder, T; Hofmann, E; Uder, M; Wuest, W

    2015-07-01

    CT is the imaging technique of choice in the evaluation of midface trauma or inflammatory disease. We performed a systematic evaluation of scan protocols to optimize image quality and radiation exposure on third-generation dual-source CT. CT protocols with different tube voltage (70-150 kV), current (25-300 reference mAs), prefiltration, pitch value, and rotation time were systematically evaluated. All images were reconstructed with iterative reconstruction (Advanced Modeled Iterative Reconstruction, level 2). To individually compare results with otherwise identical factors, we obtained all scans on a frozen human head. Conebeam CT was performed for image quality and dose comparison with multidetector row CT. Delineation of important anatomic structures and incidental pathologic conditions in the cadaver head was evaluated. One hundred kilovolts with tin prefiltration demonstrated the best compromise between dose and image quality. The most dose-effective combination for trauma imaging was Sn100 kV/250 mAs (volume CT dose index, 2.02 mGy), and for preoperative sinus surgery planning, Sn100 kV/150 mAs (volume CT dose index, 1.22 mGy). "Sn" indicates an additional prefiltration of the x-ray beam with a tin filter to constrict the energy spectrum. Exclusion of sinonasal disease was possible with even a lower dose by using Sn100 kV/25 mAs (volume CT dose index, 0.2 mGy). High image quality at very low dose levels can be achieved by using a Sn100-kV protocol with iterative reconstruction. The effective dose is comparable with that of conventional radiography, and the high image quality at even lower radiation exposure favors multidetector row CT over conebeam CT. © 2015 by American Journal of Neuroradiology.

  7. Radiation dose and image quality of X-ray volume imaging systems: cone-beam computed tomography, digital subtraction angiography and digital fluoroscopy.

    PubMed

    Paul, Jijo; Jacobi, Volkmar; Farhang, Mohammad; Bazrafshan, Babak; Vogl, Thomas J; Mbalisike, Emmanuel C

    2013-06-01

    Radiation dose and image quality estimation of three X-ray volume imaging (XVI) systems. A total of 126 patients were examined using three XVI systems (groups 1-3) and their data were retrospectively analysed from 2007 to 2012. Each group consisted of 42 patients and each patient was examined using cone-beam computed tomography (CBCT), digital subtraction angiography (DSA) and digital fluoroscopy (DF). Dose parameters such as dose-area product (DAP), skin entry dose (SED) and image quality parameters such as Hounsfield unit (HU), noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were estimated and compared using appropriate statistical tests. Mean DAP and SED were lower in recent XVI than its previous counterparts in CBCT, DSA and DF. HU of all measured locations was non-significant between the groups except the hepatic artery. Noise showed significant difference among groups (P < 0.05). Regarding CNR and SNR, the recent XVI showed a higher and significant difference compared to its previous versions. Qualitatively, CBCT showed significance between versions unlike the DSA and DF which showed non-significance. A reduction of radiation dose was obtained for the recent-generation XVI system in CBCT, DSA and DF. Image noise was significantly lower; SNR and CNR were higher than in previous versions. The technological advancements and the reduction in the number of frames led to a significant dose reduction and improved image quality with the recent-generation XVI system. • X-ray volume imaging (XVI) systems are increasingly used for interventional radiological procedures. • More modern XVI systems use lower radiation doses compared with earlier counterparts. • Furthermore more modern XVI systems provide higher image quality. • Technological advances reduce radiation dose and improve image quality.

  8. A visual grading study for different administered activity levels in bone scintigraphy.

    PubMed

    Gustafsson, Agnetha; Karlsson, Henrik; Nilsson, Kerstin A; Geijer, Håkan; Olsson, Anna

    2015-05-01

    The aim of the study is to assess the administered activity levels versus visual-based image quality using visual grading regression (VGR) including an assessment of the newly stated image criteria for whole-body bone scintigraphy. A total of 90 patients was included and grouped in three levels of administered activity: 400, 500 and 600 MBq. Six clinical image criteria regarding image quality was formulated by experienced nuclear medicine physicians. Visual grading was performed in all images, where three physicians rated the fulfilment of the image criteria on a four-step ordinal scale. The results were analysed using VGR. A count analysis was also made where the total number of counts in both views was registered. The administered activity of 600 MBq gives significantly better image quality than 400 MBq in five of six criteria (P<0·05). Comparing the administered activity of 600 MBq to 500 MBq, four criteria of six show significantly better image quality (P<0·05). The administered activity of 500 MBq gives no significantly better image quality than 400 Mbq (P<0·05). The count analysis shows that none of the three levels of administrated activity fulfil the recommendations by the EANM. There was a significant improvement in perceived image quality using an activity level of 600 MBq compared to lower activity levels in whole-body bone scintigraphy for the gamma camera equipment end set-up used in this study. This type of visual-based grading study seems to be a valuable tool and easy to implement in the clinical environment. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  9. An enhanced approach for biomedical image restoration using image fusion techniques

    NASA Astrophysics Data System (ADS)

    Karam, Ghada Sabah; Abbas, Fatma Ismail; Abood, Ziad M.; Kadhim, Kadhim K.; Karam, Nada S.

    2018-05-01

    Biomedical image is generally noisy and little blur due to the physical mechanisms of the acquisition process, so one of the common degradations in biomedical image is their noise and poor contrast. The idea of biomedical image enhancement is to improve the quality of the image for early diagnosis. In this paper we are using Wavelet Transformation to remove the Gaussian noise from biomedical images: Positron Emission Tomography (PET) image and Radiography (Radio) image, in different color spaces (RGB, HSV, YCbCr), and we perform the fusion of the denoised images resulting from the above denoising techniques using add image method. Then some quantive performance metrics such as signal -to -noise ratio (SNR), peak signal-to-noise ratio (PSNR), and Mean Square Error (MSE), etc. are computed. Since this statistical measurement helps in the assessment of fidelity and image quality. The results showed that our approach can be applied of Image types of color spaces for biomedical images.

  10. A novel imaging technique based on the spatial coherence of backscattered waves: demonstration in the presence of acoustical clutter

    NASA Astrophysics Data System (ADS)

    Dahl, Jeremy J.; Pinton, Gianmarco F.; Lediju, Muyinatu; Trahey, Gregg E.

    2011-03-01

    In the last 20 years, the number of suboptimal and inadequate ultrasound exams has increased. This trend has been linked to the increasing population of overweight and obese individuals. The primary causes of image degradation in these individuals are often attributed to phase aberration and clutter. Phase aberration degrades image quality by distorting the transmitted and received pressure waves, while clutter degrades image quality by introducing incoherent acoustical interference into the received pressure wavefront. Although significant research efforts have pursued the correction of image degradation due to phase aberration, few efforts have characterized or corrected image degradation due to clutter. We have developed a novel imaging technique that is capable of differentiating ultrasonic signals corrupted by acoustical interference. The technique, named short-lag spatial coherence (SLSC) imaging, is based on the spatial coherence of the received ultrasonic wavefront at small spatial distances across the transducer aperture. We demonstrate comparative B-mode and SLSC images using full-wave simulations that include the effects of clutter and show that SLSC imaging generates contrast-to-noise ratios (CNR) and signal-to-noise ratios (SNR) that are significantly better than B-mode imaging under noise-free conditions. In the presence of noise, SLSC imaging significantly outperforms conventional B-mode imaging in all image quality metrics. We demonstrate the use of SLSC imaging in vivo and compare B-mode and SLSC images of human thyroid and liver.

  11. JPEG vs. JPEG 2000: an objective comparison of image encoding quality

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Farzad; Chamik, Matthieu; Winkler, Stefan

    2004-11-01

    This paper describes an objective comparison of the image quality of different encoders. Our approach is based on estimating the visual impact of compression artifacts on perceived quality. We present a tool that measures these artifacts in an image and uses them to compute a prediction of the Mean Opinion Score (MOS) obtained in subjective experiments. We show that the MOS predictions by our proposed tool are a better indicator of perceived image quality than PSNR, especially for highly compressed images. For the encoder comparison, we compress a set of 29 test images with two JPEG encoders (Adobe Photoshop and IrfanView) and three JPEG2000 encoders (JasPer, Kakadu, and IrfanView) at various compression ratios. We compute blockiness, blur, and MOS predictions as well as PSNR of the compressed images. Our results show that the IrfanView JPEG encoder produces consistently better images than the Adobe Photoshop JPEG encoder at the same data rate. The differences between the JPEG2000 encoders in our test are less pronounced; JasPer comes out as the best codec, closely followed by IrfanView and Kakadu. Comparing the JPEG- and JPEG2000-encoding quality of IrfanView, we find that JPEG has a slight edge at low compression ratios, while JPEG2000 is the clear winner at medium and high compression ratios.

  12. Contrast-detail phantom scoring methodology.

    PubMed

    Thomas, Jerry A; Chakrabarti, Kish; Kaczmarek, Richard; Romanyukha, Alexander

    2005-03-01

    Published results of medical imaging studies which make use of contrast detail mammography (CDMAM) phantom images for analysis are difficult to compare since data are often not analyzed in the same way. In order to address this situation, the concept of ideal contrast detail curves is suggested. The ideal contrast detail curves are constructed based on the requirement of having the same product of the diameter and contrast (disk thickness) of the minimal correctly determined object for every row of the CDMAM phantom image. A correlation and comparison of five different quality parameters of the CDMAM phantom image determined for obtained ideal contrast detail curves is performed. The image quality parameters compared include: (1) contrast detail curve--a graph correlation between "minimal correct reading" diameter and disk thickness; (2) correct observation ratio--the ratio of the number of correctly identified objects to the actual total number of objects multiplied by 100; (3) image quality figure--the sum of the product of the diameter of the smallest scored object and its relative contrast; (4) figure-of-merit--the zero disk diameter value obtained from extrapolation of the contrast detail curve to the origin (e.g., zero disk diameter); and (5) k-factor--the product of the thickness and the diameter of the smallest correctly identified disks. The analysis carried out showed the existence of a nonlinear relationship between the above parameters, which means that use of different parameters of CDMAM image quality potentially can cause different conclusions about changes in image quality. Construction of the ideal contrast detail curves for CDMAM phantom is an attempt to determine the quantitative limits of the CDMAM phantom as employed for image quality evaluation. These limits are determined by the relationship between certain parameters of a digital mammography system and the set of the gold disks sizes in the CDMAM phantom. Recommendations are made on selections of CDMAM phantom regions which should be used for scoring at different image quality and which scoring methodology may be most appropriate. Special attention is also paid to the use of the CDMAM phantom for image quality assessment of digital mammography systems particularly in the vicinity of the Nyquist frequency.

  13. Multiple enface image averaging for enhanced optical coherence tomography angiography imaging.

    PubMed

    Uji, Akihito; Balasubramanian, Siva; Lei, Jianqin; Baghdasaryan, Elmira; Al-Sheikh, Mayss; Borrelli, Enrico; Sadda, SriniVas R

    2018-05-31

    To investigate the effect of multiple enface image averaging on image quality of the optical coherence tomography angiography (OCTA). Twenty-one normal volunteers were enrolled in this study. For each subject, one eye was imaged with 3 × 3 mm scan protocol, and another eye was imaged with the 6 × 6 mm scan protocol centred on the fovea using the ZEISS Angioplex™ spectral-domain OCTA device. Eyes were repeatedly imaged to obtain nine OCTA cube scan sets, and nine superficial capillary plexus (SCP) and deep capillary plexus (DCP) were individually averaged after registration. Eighteen eyes with a 3 × 3 mm scan field and 14 eyes with a 6 × 6 mm scan field were studied. Averaged images showed more continuous vessels and less background noise in both the SCP and the DCP as the number of frames used for averaging increased, with both 3 × 3 and 6 × 6 mm scan protocols. The intensity histogram of the vessels dramatically changed after averaging. Contrast-to-noise ratio (CNR) and subjectively assessed image quality scores also increased as the number of frames used for averaging increased in all image types. However, the additional benefit in quality diminished when averaging more than five frames. Averaging only three frames achieved significant improvement in CNR and the score assigned by certified grades. Use of multiple image averaging in OCTA enface images was found to be both objectively and subjectively effective for enhancing image quality. These findings may of value for developing optimal OCTA imaging protocols for future studies. © 2018 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  14. Impact of 4D image quality on the accuracy of target definition.

    PubMed

    Nielsen, Tine Bjørn; Hansen, Christian Rønn; Westberg, Jonas; Hansen, Olfred; Brink, Carsten

    2016-03-01

    Delineation accuracy of target shape and position depends on the image quality. This study investigates whether the image quality on standard 4D systems has an influence comparable to the overall delineation uncertainty. A moving lung target was imaged using a dynamic thorax phantom on three different 4D computed tomography (CT) systems and a 4D cone beam CT (CBCT) system using pre-defined clinical scanning protocols. Peak-to-peak motion and target volume were registered using rigid registration and automatic delineation, respectively. A spatial distribution of the imaging uncertainty was calculated as the distance deviation between the imaged target and the true target shape. The measured motions were smaller than actual motions. There were volume differences of the imaged target between respiration phases. Imaging uncertainties of >0.4 cm were measured in the motion direction which showed that there was a large distortion of the imaged target shape. Imaging uncertainties of standard 4D systems are of similar size as typical GTV-CTV expansions (0.5-1 cm) and contribute considerably to the target definition uncertainty. Optimising and validating 4D systems is recommended in order to obtain the most optimal imaged target shape.

  15. Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography

    PubMed Central

    Wang, Kun; Su, Richard; Oraevsky, Alexander A; Anastasio, Mark A

    2012-01-01

    Iterative image reconstruction algorithms for optoacoustic tomography (OAT), also known as photoacoustic tomography, have the ability to improve image quality over analytic algorithms due to their ability to incorporate accurate models of the imaging physics, instrument response, and measurement noise. However, to date, there have been few reported attempts to employ advanced iterative image reconstruction algorithms for improving image quality in three-dimensional (3D) OAT. In this work, we implement and investigate two iterative image reconstruction methods for use with a 3D OAT small animal imager: namely, a penalized least-squares (PLS) method employing a quadratic smoothness penalty and a PLS method employing a total variation norm penalty. The reconstruction algorithms employ accurate models of the ultrasonic transducer impulse responses. Experimental data sets are employed to compare the performances of the iterative reconstruction algorithms to that of a 3D filtered backprojection (FBP) algorithm. By use of quantitative measures of image quality, we demonstrate that the iterative reconstruction algorithms can mitigate image artifacts and preserve spatial resolution more effectively than FBP algorithms. These features suggest that the use of advanced image reconstruction algorithms can improve the effectiveness of 3D OAT while reducing the amount of data required for biomedical applications. PMID:22864062

  16. Subjective matters: from image quality to image psychology

    NASA Astrophysics Data System (ADS)

    Fedorovskaya, Elena A.; De Ridder, Huib

    2013-03-01

    From the advent of digital imaging through several decades of studies, the human vision research community systematically focused on perceived image quality and digital artifacts due to resolution, compression, gamma, dynamic range, capture and reproduction noise, blur, etc., to help overcome existing technological challenges and shortcomings. Technological advances made digital images and digital multimedia nearly flawless in quality, and ubiquitous and pervasive in usage, provide us with the exciting but at the same time demanding possibility to turn to the domain of human experience including higher psychological functions, such as cognition, emotion, awareness, social interaction, consciousness and Self. In this paper we will outline the evolution of human centered multidisciplinary studies related to imaging and propose steps and potential foci of future research.

  17. Oriented modulation for watermarking in direct binary search halftone images.

    PubMed

    Guo, Jing-Ming; Su, Chang-Cheng; Liu, Yun-Fu; Lee, Hua; Lee, Jiann-Der

    2012-09-01

    In this paper, a halftoning-based watermarking method is presented. This method enables high pixel-depth watermark embedding, while maintaining high image quality. This technique is capable of embedding watermarks with pixel depths up to 3 bits without causing prominent degradation to the image quality. To achieve high image quality, the parallel oriented high-efficient direct binary search (DBS) halftoning is selected to be integrated with the proposed orientation modulation (OM) method. The OM method utilizes different halftone texture orientations to carry different watermark data. In the decoder, the least-mean-square-trained filters are applied for feature extraction from watermarked images in the frequency domain, and the naïve Bayes classifier is used to analyze the extracted features and ultimately to decode the watermark data. Experimental results show that the DBS-based OM encoding method maintains a high degree of image quality and realizes the processing efficiency and robustness to be adapted in printing applications.

  18. [The dilemma of data flood - reducing costs and increasing quality control].

    PubMed

    Gassmann, B

    2012-09-05

    Digitization is found everywhere in sonography. Printing of ultrasound images using the videoprinter with special paper will be done in single cases. The documentation of sonography procedures is more and more done by saving image sequences instead of still frames. Echocardiography is routinely recorded in between with so called R-R-loops. Doing contrast enhanced ultrasound recording of sequences is necessary to get a deep impression of the vascular structure of interest. Working with this data flood in daily practice a specialized software is required. Comparison in follow up of stored and recent images/sequences is very helpful. Nevertheless quality control of the ultrasound system and the transducers is simple and safe - using a phantom for detail resolution and general image quality the stored images/sequences are comparable over the life cycle of the system. The comparison in follow up is showing decreased image quality and transducer defects immediately.

  19. Image-Processing Techniques for the Creation of Presentation-Quality Astronomical Images

    NASA Astrophysics Data System (ADS)

    Rector, Travis A.; Levay, Zoltan G.; Frattare, Lisa M.; English, Jayanne; Pu'uohau-Pummill, Kirk

    2007-02-01

    The quality of modern astronomical data and the agility of current image-processing software enable the visualization of data in a way that exceeds the traditional definition of an astronomical image. Two developments in particular have led to a fundamental change in how astronomical images can be assembled. First, the availability of high-quality multiwavelength and narrowband data allow for images that do not correspond to the wavelength sensitivity of the human eye, thereby introducing ambiguity in the usage and interpretation of color. Second, many image-processing software packages now use a layering metaphor that allows for any number of astronomical data sets to be combined into a color image. With this technique, images with as many as eight data sets have been produced. Each data set is intensity-scaled and colorized independently, creating an immense parameter space that can be used to assemble the image. Since such images are intended for data visualization, scaling and color schemes must be chosen that best illustrate the science. A practical guide is presented on how to use the layering metaphor to generate publication-ready astronomical images from as many data sets as desired. A methodology is also given on how to use intensity scaling, color, and composition to create contrasts in an image that highlight the scientific detail. Examples of image creation are discussed.

  20. Image quality metrics for volumetric laser displays

    NASA Astrophysics Data System (ADS)

    Williams, Rodney D.; Donohoo, Daniel

    1991-08-01

    This paper addresses the extensions to the image quality metrics and related human factors research that are needed to establish the baseline standards for emerging volume display technologies. The existing and recently developed technologies for multiplanar volume displays are reviewed with an emphasis on basic human visual issues. Human factors image quality metrics and guidelines are needed to firmly establish this technology in the marketplace. The human visual requirements and the display design tradeoffs for these prototype laser-based volume displays are addressed and several critical image quality issues identified for further research. The American National Standard for Human Factors Engineering of Visual Display Terminal Workstations (ANSIHFS-100) and other international standards (ISO, DIN) can serve as a starting point, but this research base must be extended to provide new image quality metrics for this new technology for volume displays.

  1. The Potential Role of Grid-Like Software in Bedside Chest Radiography in Improving Image Quality and Dose Reduction: An Observer Preference Study.

    PubMed

    Ahn, Su Yeon; Chae, Kum Ju; Goo, Jin Mo

    2018-01-01

    To compare the observer preference of image quality and radiation dose between non-grid, grid-like, and grid images. Each of the 38 patients underwent bedside chest radiography with and without a grid. A grid-like image was generated from a non-grid image using SimGrid software (Samsung Electronics Co. Ltd.) employing deep-learning-based scatter correction technology. Two readers recorded the preference for 10 anatomic landmarks and the overall appearance on a five-point scale for a pair of non-grid and grid-like images, and a pair of grid-like and grid images, respectively, which were randomly presented. The dose area product (DAP) was also recorded. Wilcoxon's rank sum test was used to assess the significance of preference. Both readers preferred grid-like images to non-grid images significantly ( p < 0.001); with a significant difference in terms of the preference for grid images to grid-like images ( p = 0.317, 0.034, respectively). In terms of anatomic landmarks, both readers preferred grid-like images to non-grid images ( p < 0.05). No significant differences existed between grid-like and grid images except for the preference for grid images in proximal airways by two readers, and in retrocardiac lung and thoracic spine by one reader. The median DAP were 1.48 (range, 1.37-2.17) dGy * cm 2 in grid images and 1.22 (range, 1.11-1.78) dGy * cm 2 in grid-like images with a significant difference ( p < 0.001). The SimGrid software significantly improved the image quality of non-grid images to a level comparable to that of grid images with a relatively lower level of radiation exposure.

  2. Improvements to image quality using hybrid and model-based iterative reconstructions: a phantom study.

    PubMed

    Aurumskjöld, Marie-Louise; Ydström, Kristina; Tingberg, Anders; Söderberg, Marcus

    2017-01-01

    The number of computed tomography (CT) examinations is increasing and leading to an increase in total patient exposure. It is therefore important to optimize CT scan imaging conditions in order to reduce the radiation dose. The introduction of iterative reconstruction methods has enabled an improvement in image quality and a reduction in radiation dose. To investigate how image quality depends on reconstruction method and to discuss patient dose reduction resulting from the use of hybrid and model-based iterative reconstruction. An image quality phantom (Catphan® 600) and an anthropomorphic torso phantom were examined on a Philips Brilliance iCT. The image quality was evaluated in terms of CT numbers, noise, noise power spectra (NPS), contrast-to-noise ratio (CNR), low-contrast resolution, and spatial resolution for different scan parameters and dose levels. The images were reconstructed using filtered back projection (FBP) and different settings of hybrid (iDose 4 ) and model-based (IMR) iterative reconstruction methods. iDose 4 decreased the noise by 15-45% compared with FBP depending on the level of iDose 4 . The IMR reduced the noise even further, by 60-75% compared to FBP. The results are independent of dose. The NPS showed changes in the noise distribution for different reconstruction methods. The low-contrast resolution and CNR were improved with iDose 4 , and the improvement was even greater with IMR. There is great potential to reduce noise and thereby improve image quality by using hybrid or, in particular, model-based iterative reconstruction methods, or to lower radiation dose and maintain image quality. © The Foundation Acta Radiologica 2016.

  3. Image quality and radiation dose on digital chest imaging: comparison of amorphous silicon and amorphous selenium flat-panel systems.

    PubMed

    Bacher, Klaus; Smeets, Peter; Vereecken, Ludo; De Hauwere, An; Duyck, Philippe; De Man, Robert; Verstraete, Koenraad; Thierens, Hubert

    2006-09-01

    The aim of this study was to compare the image quality and radiation dose in chest imaging using an amorphous silicon flat-panel detector system and an amorphous selenium flat-panel detector system. In addition, the low-contrast performance of both systems with standard and low radiation doses was compared. In two groups of 100 patients each, digital chest radiographs were acquired with either an amorphous silicon or an amorphous selenium flat-panel system. The effective dose of the examination was measured using thermoluminescent dosimeters placed in an anthropomorphic Rando phantom. The image quality of the digital chest radiographs was assessed by five experienced radiologists using the European Guidelines on Quality Criteria for Diagnostic Radiographic Images. In addition, a contrast-detail phantom study was set up to assess the low-contrast performance of both systems at different radiation dose levels. Differences between the two groups were tested for significance using the two-tailed Mann-Whitney test. The amorphous silicon flat-panel system allowed an important and significant reduction in effective dose in comparison with the amorphous selenium flat-panel system (p < 0.0001) for both the posteroanterior and lateral views. In addition, clinical image quality analysis showed that the dose reduction was not detrimental to image quality. Compared with the amorphous selenium flat-panel detector system, the amorphous silicon flat-panel detector system performed significantly better in the low-contrast phantom study, with phantom entrance dose values of up to 135 muGy. Chest radiographs can be acquired with a significantly lower patient radiation dose using an amorphous silicon flat-panel system than using an amorphous selenium flat-panel system, thereby producing images that are equal or even superior in quality to those of the amorphous selenium flat-panel detector system.

  4. Comparison of pediatric radiation dose and vessel visibility on angiographic systems using piglets as a surrogate: antiscatter grid removal vs. lower detector air kerma settings with a grid — a preclinical investigation

    PubMed Central

    Racadio, John M.; Abruzzo, Todd A.; Johnson, Neil D.; Patel, Manish N.; Kukreja, Kamlesh U.; den Hartog, Mark. J. H.; Hoornaert, Bart P.A.; Nachabe, Rami A.

    2015-01-01

    The purpose of this study was to reduce pediatric doses while maintaining or improving image quality scores without removing the grid from X‐ray beam. This study was approved by the Institutional Animal Care and Use Committee. Three piglets (5, 14, and 20 kg) were imaged using six different selectable detector air kerma (Kair) per frame values (100%, 70%, 50%, 35%, 25%, 17.5%) with and without the grid. Number of distal branches visualized with diagnostic confidence relative to the injected vessel defined image quality score. Five pediatric interventional radiologists evaluated all images. Image quality score and piglet Kair were statistically compared using analysis of variance and receiver operating curve analysis to define the preferred dose setting and use of grid for a visibility of 2nd and 3rd order vessel branches. Grid removal reduced both dose to subject and imaging quality by 26%. Third order branches could only be visualized with the grid present; 100% detector Kair was required for smallest pig, while 70% detector Kair was adequate for the two larger pigs. Second order branches could be visualized with grid at 17.5% detector Kair for all three pig sizes. Without the grid, 50%, 35%, and 35% detector Kair were required for smallest to largest pig, respectively. Grid removal reduces both dose and image quality score. Image quality scores can be maintained with less dose to subject with the grid in the beam as opposed to removed. Smaller anatomy requires more dose to the detector to achieve the same image quality score. PACS numbers: 87.53.Bn, 87.57.N‐, 87.57.cj, 87.59.cf, 87.59.Dj PMID:26699297

  5. The Quality of In Vivo Upconversion Fluorescence Signals Inside Different Anatomic Structures.

    PubMed

    Wang, Lijiang; Draz, Mohamed Shehata; Wang, Wei; Liao, Guodong; Xu, Yuhong

    2015-02-01

    Fluorescence imaging is a broadly interesting and rapidly growing strategy for non-invasive clinical applications. However, because of interference from light scattering, absorbance, and tissue autofluorescence, the images can exhibit low sensitivity and poor quality. Upconversion fluorescence imaging, which is based on the use of near-infrared (NIR) light for excitation, has recently been introduced as an improved approach to minimize the effects of light scattering and tissue autofluorescence. This strategy is promising for ultrasensitive and deep tissue imaging applications. However, the emitted upconversion fluorescence signals are primarily in the visible range and are likely to be absorbed and scattered by tissues. Therefore, different anatomic structures could impose various effects on the quality of the images. In this study, we used upconversion-core/silica-shell nanoprobes to evaluate the quality of upconversion fluorescence at different anatomic locations in athymic nude mice. The nanoprobe contained an upconversion core, which was green (β-NaYF4:Yb3+/Ho3+) or red (β-NaYF4:Yb3+/Er3+), and a nonporous silica shell to allow for multicolor imaging. High-quality upconversion fluorescence signals were detected with signal-to-noise ratios of up to 170 at tissue depths of up to - 1.0 cm when a 980 nm laser excitation source and a bandpass emission filter were used. The presence of dense tissue structures along the imaging path reduced the signal intensity and imaging quality, and nanoprobes with longer-wavelength emission spectra were therefore preferable. This study offers a detailed analysis of the quality of upconversion signals in vivo inside different anatomic structures. Such information could be essential for the analysis of upconversion fluorescence images in any in vivo biodiagnostic and microbial tracking applications.

  6. Effect of an oral anxiolytic medication and heart rate variability on image quality of 64-slice MDCT coronary angiography.

    PubMed

    Cubuk, R; Tasali, N; Yilmazer, S; Gokalp, P; Celik, L; Dagdeviren, B; Guney, S

    2011-02-01

    The aim of the study was to investigate the relationship between image quality in 64-slice multidetector computed tomography (MDCT) and patients' preimaging anxiety status and heart rate variability (HRV), and to evaluate the efficacy of an orally administered anxiolytic medication on HRV and image quality. Sixty patients [14 women, 46 men; mean age 52.53 ± 10.55 (SD), range 33-78 years] were studied. Anxiety levels were assessed with the State-Trait Anxiety Inventory 60 min before the procedure. The participating patients were randomly assigned to one of the two study groups: a control group (no medication administered for anxiety reduction) and an anxiolytic medication group, with 30 patients in each group. The presence of motion artefacts and image quality for each coronary artery segment were evaluated using a four-point grading system. To estimate HRV, the duration of each heartbeat during MDCT data acquisition was measured in each patient. A moderate correlation was found between HRV during MDCT scanning and the mean image quality for all coronary segments (r=0.47, p<0.01). There was an association between HRV and state anxiety scores in all cases (r=0.370, p<0.01). HRV in the patients who received alprazolam was statistically significantly lower than in controls (p<0.05). The average image quality in patients who used alprazolam was also statistically significantly higher than in controls (p<0.05). The most important finding in our study is that oral premedication to reduce anxiety is also effective in decreasing HRV and improves image quality. Therefore, we suggest that using alprazolam in addition to a β-blocker may improve image quality in patients undergoing MDCT coronary angiography (MDCT-CA). Anxiolytic usage may improve image quality by lowering the HRV in selected cases where administration of a β-blocker is contraindicated. We also suggest that further studies in larger series are required to validate this finding.

  7. Improved quality of intrafraction kilovoltage images by triggered readout of unexposed frames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poulsen, Per Rugaard, E-mail: per.poulsen@rm.dk; Jonassen, Johnny; Jensen, Carsten

    2015-11-15

    Purpose: The gantry-mounted kilovoltage (kV) imager of modern linear accelerators can be used for real-time tumor localization during radiation treatment delivery. However, the kV image quality often suffers from cross-scatter from the megavoltage (MV) treatment beam. This study investigates readout of unexposed kV frames as a means to improve the kV image quality in a series of experiments and a theoretical model of the observed image quality improvements. Methods: A series of fluoroscopic images were acquired of a solid water phantom with an embedded gold marker and an air cavity with and without simultaneous radiation of the phantom with amore » 6 MV beam delivered perpendicular to the kV beam with 300 and 600 monitor units per minute (MU/min). An in-house built device triggered readout of zero, one, or multiple unexposed frames between the kV exposures. The unexposed frames contained part of the MV scatter, consequently reducing the amount of MV scatter accumulated in the exposed frames. The image quality with and without unexposed frame readout was quantified as the contrast-to-noise ratio (CNR) of the gold marker and air cavity for a range of imaging frequencies from 1 to 15 Hz. To gain more insight into the observed CNR changes, the image lag of the kV imager was measured and used as input in a simple model that describes the CNR with unexposed frame readout in terms of the contrast, kV noise, and MV noise measured without readout of unexposed frames. Results: Without readout of unexposed kV frames, the quality of intratreatment kV images decreased dramatically with reduced kV frequencies due to MV scatter. The gold marker was only visible for imaging frequencies ≥3 Hz at 300 MU/min and ≥5 Hz for 600 MU/min. Visibility of the air cavity required even higher imaging frequencies. Readout of multiple unexposed frames ensured visibility of both structures at all imaging frequencies and a CNR that was independent of the kV frame rate. The image lag was 12.2%, 2.2%, and 0.9% in the first, second, and third frame after an exposure. The CNR model predicted the CNR with triggered image readout with a mean absolute error of 2.0% for the gold marker. Conclusions: A device that triggers readout of unexposed frames during kV fluoroscopy was built and shown to greatly improve the quality of intratreatment kV images. A simple theoretical model successfully described the CNR improvements with the device.« less

  8. Image quality assessment by preprocessing and full reference model combination

    NASA Astrophysics Data System (ADS)

    Bianco, S.; Ciocca, G.; Marini, F.; Schettini, R.

    2009-01-01

    This paper focuses on full-reference image quality assessment and presents different computational strategies aimed to improve the robustness and accuracy of some well known and widely used state of the art models, namely the Structural Similarity approach (SSIM) by Wang and Bovik and the S-CIELAB spatial-color model by Zhang and Wandell. We investigate the hypothesis that combining error images with a visual attention model could allow a better fit of the psycho-visual data of the LIVE Image Quality assessment Database Release 2. We show that the proposed quality assessment metric better correlates with the experimental data.

  9. "One-Stop Shop": Free-Breathing Dynamic Contrast-Enhanced Magnetic Resonance Imaging of the Kidney Using Iterative Reconstruction and Continuous Golden-Angle Radial Sampling.

    PubMed

    Riffel, Philipp; Zoellner, Frank G; Budjan, Johannes; Grimm, Robert; Block, Tobias K; Schoenberg, Stefan O; Hausmann, Daniel

    2016-11-01

    The purpose of the present study was to evaluate a recently introduced technique for free-breathing dynamic contrast-enhanced renal magnetic resonance imaging (MRI) applying a combination of radial k-space sampling, parallel imaging, and compressed sensing. The technique allows retrospective reconstruction of 2 motion-suppressed sets of images from the same acquisition: one with lower temporal resolution but improved image quality for subjective image analysis, and one with high temporal resolution for quantitative perfusion analysis. In this study, 25 patients underwent a kidney examination, including a prototypical fat-suppressed, golden-angle radial stack-of-stars T1-weighted 3-dimensional spoiled gradient-echo examination (GRASP) performed after contrast agent administration during free breathing. Images were reconstructed at temporal resolutions of 55 spokes per frame (6.2 seconds) and 13 spokes per frame (1.5 seconds). The GRASP images were evaluated by 2 blinded radiologists. First, the reconstructions with low temporal resolution underwent subjective image analysis: the radiologists assessed the best arterial phase and the best renal phase and rated image quality score for each patient on a 5-point Likert-type scale.In addition, the diagnostic confidence was rated according to a 3-point Likert-type scale. Similarly, respiratory motion artifacts and streak artifacts were rated according to a 3-point Likert-type scale.Then, the reconstructions with high temporal resolution were analyzed with a voxel-by-voxel deconvolution approach to determine the renal plasma flow, and the results were compared with values reported in previous literature. Reader 1 and reader 2 rated the overall image quality score for the best arterial phase and the best renal phase with a median image quality score of 4 (good image quality) for both phases, respectively. A high diagnostic confidence (median score of 3) was observed. There were no respiratory motion artifacts in any of the patients. Streak artifacts were present in all of the patients, but did not compromise diagnostic image quality.The estimated renal plasma flow was slightly higher (295 ± 78 mL/100 mL per minute) than reported in previous MRI-based studies, but also closer to the physiologically expected value. Dynamic, motion-suppressed contrast-enhanced renal MRI can be performed in high diagnostic quality during free breathing using a combination of golden-angle radial sampling, parallel imaging, and compressed sensing. Both morphologic and quantitative functional information can be acquired within a single acquisition.

  10. A new full-field digital mammography system with and without the use of an advanced post-processing algorithm: comparison of image quality and diagnostic performance.

    PubMed

    Ahn, Hye Shin; Kim, Sun Mi; Jang, Mijung; Yun, Bo La; Kim, Bohyoung; Ko, Eun Sook; Han, Boo-Kyung; Chang, Jung Min; Yi, Ann; Cho, Nariya; Moon, Woo Kyung; Choi, Hye Young

    2014-01-01

    To compare new full-field digital mammography (FFDM) with and without use of an advanced post-processing algorithm to improve image quality, lesion detection, diagnostic performance, and priority rank. During a 22-month period, we prospectively enrolled 100 cases of specimen FFDM mammography (Brestige®), which was performed alone or in combination with a post-processing algorithm developed by the manufacturer: group A (SMA), specimen mammography without application of "Mammogram enhancement ver. 2.0"; group B (SMB), specimen mammography with application of "Mammogram enhancement ver. 2.0". Two sets of specimen mammographies were randomly reviewed by five experienced radiologists. Image quality, lesion detection, diagnostic performance, and priority rank with regard to image preference were evaluated. Three aspects of image quality (overall quality, contrast, and noise) of the SMB were significantly superior to those of SMA (p < 0.05). SMB was significantly superior to SMA for visualizing calcifications (p < 0.05). Diagnostic performance, as evaluated by cancer score, was similar between SMA and SMB. SMB was preferred to SMA by four of the five reviewers. The post-processing algorithm may improve image quality with better image preference in FFDM than without use of the software.

  11. Automatic detection of retina disease: robustness to image quality and localization of anatomy structure.

    PubMed

    Karnowski, T P; Aykac, D; Giancardo, L; Li, Y; Nichols, T; Tobin, K W; Chaum, E

    2011-01-01

    The automated detection of diabetic retinopathy and other eye diseases in images of the retina has great promise as a low-cost method for broad-based screening. Many systems in the literature which perform automated detection include a quality estimation step and physiological feature detection, including the vascular tree and the optic nerve / macula location. In this work, we study the robustness of an automated disease detection method with respect to the accuracy of the optic nerve location and the quality of the images obtained as judged by a quality estimation algorithm. The detection algorithm features microaneurysm and exudate detection followed by feature extraction on the detected population to describe the overall retina image. Labeled images of retinas ground-truthed to disease states are used to train a supervised learning algorithm to identify the disease state of the retina image and exam set. Under the restrictions of high confidence optic nerve detections and good quality imagery, the system achieves a sensitivity and specificity of 94.8% and 78.7% with area-under-curve of 95.3%. Analysis of the effect of constraining quality and the distinction between mild non-proliferative diabetic retinopathy, normal retina images, and more severe disease states is included.

  12. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose.

    PubMed

    Wang, Yan; Yu, Biting; Wang, Lei; Zu, Chen; Lalush, David S; Lin, Weili; Wu, Xi; Zhou, Jiliu; Shen, Dinggang; Zhou, Luping

    2018-07-01

    Positron emission tomography (PET) is a widely used imaging modality, providing insight into both the biochemical and physiological processes of human body. Usually, a full dose radioactive tracer is required to obtain high-quality PET images for clinical needs. This inevitably raises concerns about potential health hazards. On the other hand, dose reduction may cause the increased noise in the reconstructed PET images, which impacts the image quality to a certain extent. In this paper, in order to reduce the radiation exposure while maintaining the high quality of PET images, we propose a novel method based on 3D conditional generative adversarial networks (3D c-GANs) to estimate the high-quality full-dose PET images from low-dose ones. Generative adversarial networks (GANs) include a generator network and a discriminator network which are trained simultaneously with the goal of one beating the other. Similar to GANs, in the proposed 3D c-GANs, we condition the model on an input low-dose PET image and generate a corresponding output full-dose PET image. Specifically, to render the same underlying information between the low-dose and full-dose PET images, a 3D U-net-like deep architecture which can combine hierarchical features by using skip connection is designed as the generator network to synthesize the full-dose image. In order to guarantee the synthesized PET image to be close to the real one, we take into account of the estimation error loss in addition to the discriminator feedback to train the generator network. Furthermore, a concatenated 3D c-GANs based progressive refinement scheme is also proposed to further improve the quality of estimated images. Validation was done on a real human brain dataset including both the normal subjects and the subjects diagnosed as mild cognitive impairment (MCI). Experimental results show that our proposed 3D c-GANs method outperforms the benchmark methods and achieves much better performance than the state-of-the-art methods in both qualitative and quantitative measures. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Automated characterization of perceptual quality of clinical chest radiographs: Validation and calibration to observer preference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samei, Ehsan, E-mail: samei@duke.edu; Lin, Yuan; Choudhury, Kingshuk R.

    Purpose: The authors previously proposed an image-based technique [Y. Lin et al. Med. Phys. 39, 7019–7031 (2012)] to assess the perceptual quality of clinical chest radiographs. In this study, an observer study was designed and conducted to validate the output of the program against rankings by expert radiologists and to establish the ranges of the output values that reflect the acceptable image appearance so the program output can be used for image quality optimization and tracking. Methods: Using an IRB-approved protocol, 2500 clinical chest radiographs (PA/AP) were collected from our clinical operation. The images were processed through our perceptual qualitymore » assessment program to measure their appearance in terms of ten metrics of perceptual image quality: lung gray level, lung detail, lung noise, rib–lung contrast, rib sharpness, mediastinum detail, mediastinum noise, mediastinum alignment, subdiaphragm–lung contrast, and subdiaphragm area. From the results, for each targeted appearance attribute/metric, 18 images were selected such that the images presented a relatively constant appearance with respect to all metrics except the targeted one. The images were then incorporated into a graphical user interface, which displayed them into three panels of six in a random order. Using a DICOM calibrated diagnostic display workstation and under low ambient lighting conditions, each of five participating attending chest radiologists was tasked to spatially order the images based only on the targeted appearance attribute regardless of the other qualities. Once ordered, the observer also indicated the range of image appearances that he/she considered clinically acceptable. The observer data were analyzed in terms of the correlations between the observer and algorithmic rankings and interobserver variability. An observer-averaged acceptable image appearance was also statistically derived for each quality attribute based on the collected individual acceptable ranges. Results: The observer study indicated that, for each image quality attribute, the averaged observer ranking strongly correlated with the algorithmic ranking (linear correlation coefficient R > 0.92), with highest correlation (R = 1) for lung gray level and the lowest (R = 0.92) for mediastinum noise. There was a strong concordance between the observers in terms of their rankings (i.e., Kendall’s tau agreement > 0.84). The observers also generally indicated similar tolerance and preference levels in terms of acceptable ranges, as 85% of the values were close to the overall tolerance or preference levels and the differences were smaller than 0.15. Conclusions: The observer study indicates that the previously proposed technique provides a robust reflection of the perceptual image quality in clinical images. The results established the range of algorithmic outputs for each metric that can be used to quantitatively assess and qualify the appearance quality of clinical chest radiographs.« less

  14. Reevaluation of JPEG image compression to digitalized gastrointestinal endoscopic color images: a pilot study

    NASA Astrophysics Data System (ADS)

    Kim, Christopher Y.

    1999-05-01

    Endoscopic images p lay an important role in describing many gastrointestinal (GI) disorders. The field of radiology has been on the leading edge of creating, archiving and transmitting digital images. With the advent of digital videoendoscopy, endoscopists now have the ability to generate images for storage and transmission. X-rays can be compressed 30-40X without appreciable decline in quality. We reported results of a pilot study using JPEG compression of 24-bit color endoscopic images. For that study, the result indicated that adequate compression ratios vary according to the lesion and that images could be compressed to between 31- and 99-fold smaller than the original size without an appreciable decline in quality. The purpose of this study was to expand upon the methodology of the previous sty with an eye towards application for the WWW, a medium which would expand both clinical and educational purposes of color medical imags. The results indicate that endoscopists are able to tolerate very significant compression of endoscopic images without loss of clinical image quality. This finding suggests that even 1 MB color images can be compressed to well under 30KB, which is considered a maximal tolerable image size for downloading on the WWW.

  15. Qualitative evaluations and comparisons of six night-vision colorization methods

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Reese, Kristopher; Blasch, Erik; McManamon, Paul

    2013-05-01

    Current multispectral night vision (NV) colorization techniques can manipulate images to produce colorized images that closely resemble natural scenes. The colorized NV images can enhance human perception by improving observer object classification and reaction times especially for low light conditions. This paper focuses on the qualitative (subjective) evaluations and comparisons of six NV colorization methods. The multispectral images include visible (Red-Green- Blue), near infrared (NIR), and long wave infrared (LWIR) images. The six colorization methods are channel-based color fusion (CBCF), statistic matching (SM), histogram matching (HM), joint-histogram matching (JHM), statistic matching then joint-histogram matching (SM-JHM), and the lookup table (LUT). Four categries of quality measurements are used for the qualitative evaluations, which are contrast, detail, colorfulness, and overall quality. The score of each measurement is rated from 1 to 3 scale to represent low, average, and high quality, respectively. Specifically, high contrast (of rated score 3) means an adequate level of brightness and contrast. The high detail represents high clarity of detailed contents while maintaining low artifacts. The high colorfulness preserves more natural colors (i.e., closely resembles the daylight image). Overall quality is determined from the NV image compared to the reference image. Nine sets of multispectral NV images were used in our experiments. For each set, the six colorized NV images (produced from NIR and LWIR images) are concurrently presented to users along with the reference color (RGB) image (taken at daytime). A total of 67 subjects passed a screening test ("Ishihara Color Blindness Test") and were asked to evaluate the 9-set colorized images. The experimental results showed the quality order of colorization methods from the best to the worst: CBCF < SM < SM-JHM < LUT < JHM < HM. It is anticipated that this work will provide a benchmark for NV colorization and for quantitative evaluation using an objective metric such as objective evaluation index (OEI).

  16. Hyperspectral venous image quality assessment for optimum illumination range selection based on skin tone characteristics

    PubMed Central

    2014-01-01

    Background Subcutaneous veins localization is usually performed manually by medical staff to find suitable vein to insert catheter for medication delivery or blood sample function. The rule of thumb is to find large and straight enough vein for the medication to flow inside of the selected blood vessel without any obstruction. The problem of peripheral difficult venous access arises when patient’s veins are not visible due to any reason like dark skin tone, presence of hair, high body fat or dehydrated condition, etc. Methods To enhance the visibility of veins, near infrared imaging systems is used to assist medical staff in veins localization process. Optimum illumination is crucial to obtain a better image contrast and quality, taking into consideration the limited power and space on portable imaging systems. In this work a hyperspectral image quality assessment is done to get the optimum range of illumination for venous imaging system. A database of hyperspectral images from 80 subjects has been created and subjects were divided in to four different classes on the basis of their skin tone. In this paper the results of hyper spectral image analyses are presented in function of the skin tone of patients. For each patient, four mean images were constructed by taking mean with a spectral span of 50 nm within near infrared range, i.e. 750–950 nm. Statistical quality measures were used to analyse these images. Conclusion It is concluded that the wavelength range of 800 to 850 nm serve as the optimum illumination range to get best near infrared venous image quality for each type of skin tone. PMID:25087016

  17. Digital subtraction angiography during transjugular intrahepatic portosystemic shunt creation or revision: data on radiation exposure and image quality obtained using a standard and a low-dose acquisition protocol in a flat-panel detector-based system.

    PubMed

    Miraglia, Roberto; Maruzzelli, Luigi; Cortis, Kelvin; Tafaro, Corrado; Gerasia, Roberta; Parisi, Carmelo; Luca, Angelo

    2015-08-01

    To determine whether the use of a low-dose acquisition protocol (LDP) in digital subtraction angiography during transjugular intrahepatic portosystemic shunt (TIPS) creation/revision results in significant reduction of patient radiation exposure and adequate image quality, as compared to a default reference standard-dose acquisition protocol (SDP). Two angiographic runs were performed during TIPS creation/revision: the first following catheterization of the portal venous system and the second after stent deployment/angioplasty. Constant field of view, object to image-detector distance, and source to image-receptor distance were maintained in each patient during the two angiographic runs. 17 consecutive adult patients who underwent TIPS creation (n = 11) or TIPS revision (n = 6) from December 2013 to March 2014 were considered eligible for this single centre prospective study. In each patient, the LDP and the SDP were used in a random order for the two runs, with each patient serving as his/her own control. The dose-area product (DAP) was calculated for each image and compared. Image quality was graded by two interventional radiologists other than the operator. In all runs acquired with the LDP, image quality was considered adequate for a successful procedural outcome. The DAP per image of the LDP was numerically inferior as compared to the DAP per image of the SDP in all patients. The mean reduction in DAP per image was 75.24% ± 5.7% (p < 0. 001). Radiation exposure during TIPS creation/revision was significantly reduced by selecting a LDP in our flat-panel detector-based system, while maintaining adequate image quality.

  18. Multispectral UV imaging for fast and non-destructive quality control of chemical and physical tablet attributes.

    PubMed

    Klukkert, Marten; Wu, Jian X; Rantanen, Jukka; Carstensen, Jens M; Rades, Thomas; Leopold, Claudia S

    2016-07-30

    Monitoring of tablet quality attributes in direct vicinity of the production process requires analytical techniques that allow fast, non-destructive, and accurate tablet characterization. The overall objective of this study was to investigate the applicability of multispectral UV imaging as a reliable, rapid technique for estimation of the tablet API content and tablet hardness, as well as determination of tablet intactness and the tablet surface density profile. One of the aims was to establish an image analysis approach based on multivariate image analysis and pattern recognition to evaluate the potential of UV imaging for automatized quality control of tablets with respect to their intactness and surface density profile. Various tablets of different composition and different quality regarding their API content, radial tensile strength, intactness, and surface density profile were prepared using an eccentric as well as a rotary tablet press at compression pressures from 20MPa up to 410MPa. It was found, that UV imaging can provide both, relevant information on chemical and physical tablet attributes. The tablet API content and radial tensile strength could be estimated by UV imaging combined with partial least squares analysis. Furthermore, an image analysis routine was developed and successfully applied to the UV images that provided qualitative information on physical tablet surface properties such as intactness and surface density profiles, as well as quantitative information on variations in the surface density. In conclusion, this study demonstrates that UV imaging combined with image analysis is an effective and non-destructive method to determine chemical and physical quality attributes of tablets and is a promising approach for (near) real-time monitoring of the tablet compaction process and formulation optimization purposes. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Full field image reconstruction is suitable for high-pitch dual-source computed tomography.

    PubMed

    Mahnken, Andreas H; Allmendinger, Thomas; Sedlmair, Martin; Tamm, Miriam; Reinartz, Sebastian D; Flohr, Thomas

    2012-11-01

    The field of view (FOV) in high-pitch dual-source computed tomography (DSCT) is limited by the size of the second detector. The goal of this study was to develop and evaluate a full FOV image reconstruction technique for high-pitch DSCT. For reconstruction beyond the FOV of the second detector, raw data of the second system were extended to the full dimensions of the first system, using the partly existing data of the first system in combination with a very smooth transition weight function. During the weighted filtered backprojection, the data of the second system were applied with an additional weighting factor. This method was tested for different pitch values from 1.5 to 3.5 on a simulated phantom and on 25 high-pitch DSCT data sets acquired at pitch values of 1.6, 2.0, 2.5, 2.8, and 3.0. Images were reconstructed with FOV sizes of 260 × 260 and 500 × 500 mm. Image quality was assessed by 2 radiologists using a 5-point Likert scale and analyzed with repeated-measure analysis of variance. In phantom and patient data, full FOV image quality depended on pitch. Where complete projection data from both tube-detector systems were available, image quality was unaffected by pitch changes. Full FOV image quality was not compromised at pitch values of 1.6 and remained fully diagnostic up to a pitch of 2.0. At higher pitch values, there was an increasing difference in image quality between limited and full FOV images (P = 0.0097). With this new image reconstruction technique, full FOV image reconstruction can be used up to a pitch of 2.0.

  20. The effect of input data transformations on object-based image analysis

    PubMed Central

    LIPPITT, CHRISTOPHER D.; COULTER, LLOYD L.; FREEMAN, MARY; LAMANTIA-BISHOP, JEFFREY; PANG, WYSON; STOW, DOUGLAS A.

    2011-01-01

    The effect of using spectral transform images as input data on segmentation quality and its potential effect on products generated by object-based image analysis are explored in the context of land cover classification in Accra, Ghana. Five image data transformations are compared to untransformed spectral bands in terms of their effect on segmentation quality and final product accuracy. The relationship between segmentation quality and product accuracy is also briefly explored. Results suggest that input data transformations can aid in the delineation of landscape objects by image segmentation, but the effect is idiosyncratic to the transformation and object of interest. PMID:21673829

  1. Technologist-Directed Repeat Musculoskeletal and Chest Radiographs: How Often Do They Impact Diagnosis?

    PubMed

    Rosenkrantz, Andrew B; Jacobs, Jill E; Jain, Nidhi; Brusca-Augello, Geraldine; Mechlin, Michael; Parente, Marc; Recht, Michael P

    2017-12-01

    Radiologic technologists may repeat images within a radiographic examination because of perceived suboptimal image quality, excluding these original images from submission to a PACS. This study assesses the appropriateness of technologists' decisions to repeat musculoskeletal and chest radiographs as well as the utility of repeat radiographs in addressing examinations' clinical indication. We included 95 musculoskeletal and 87 chest radiographic examinations in which the technologist repeated one or more images because of perceived image quality issues, rejecting original images from PACS submission. Rejected images were retrieved from the radiograph unit and uploaded for viewing on a dedicated server. Musculoskeletal and chest radiologists reviewed rejected and repeat images in their timed sequence, in addition to the studies' remaining images. Radiologists answered questions regarding the added value of repeat images. The reviewing radiologist agreed with the reason for rejection for 64.2% of musculoskeletal and 60.9% of chest radiographs. For 77.9% and 93.1% of rejected radiographs, the clinical inquiry could have been satisfied without repeating the image. For 75.8% and 64.4%, the repeated images showed improved image quality. Only 28.4% and 3.4% of repeated images were considered to provide additional information that was helpful in addressing the clinical question. Most repeated radiographs (chest more so than musculoskeletal radiographs) did not add significant clinical information or alter diagnosis, although they did increase radiation exposure. The decision to repeat images should be made after viewing the questionable image in context with all images in a study and might best be made by a radiologist rather than the performing technologist.

  2. Automated retinal image quality assessment on the UK Biobank dataset for epidemiological studies.

    PubMed

    Welikala, R A; Fraz, M M; Foster, P J; Whincup, P H; Rudnicka, A R; Owen, C G; Strachan, D P; Barman, S A

    2016-04-01

    Morphological changes in the retinal vascular network are associated with future risk of many systemic and vascular diseases. However, uncertainty over the presence and nature of some of these associations exists. Analysis of data from large population based studies will help to resolve these uncertainties. The QUARTZ (QUantitative Analysis of Retinal vessel Topology and siZe) retinal image analysis system allows automated processing of large numbers of retinal images. However, an image quality assessment module is needed to achieve full automation. In this paper, we propose such an algorithm, which uses the segmented vessel map to determine the suitability of retinal images for use in the creation of vessel morphometric data suitable for epidemiological studies. This includes an effective 3-dimensional feature set and support vector machine classification. A random subset of 800 retinal images from UK Biobank (a large prospective study of 500,000 middle aged adults; where 68,151 underwent retinal imaging) was used to examine the performance of the image quality algorithm. The algorithm achieved a sensitivity of 95.33% and a specificity of 91.13% for the detection of inadequate images. The strong performance of this image quality algorithm will make rapid automated analysis of vascular morphometry feasible on the entire UK Biobank dataset (and other large retinal datasets), with minimal operator involvement, and at low cost. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Method of radiometric quality assessment of NIR images acquired with a custom sensor mounted on an unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Wierzbicki, Damian; Fryskowska, Anna; Kedzierski, Michal; Wojtkowska, Michalina; Delis, Paulina

    2018-01-01

    Unmanned aerial vehicles are suited to various photogrammetry and remote sensing missions. Such platforms are equipped with various optoelectronic sensors imaging in the visible and infrared spectral ranges and also thermal sensors. Nowadays, near-infrared (NIR) images acquired from low altitudes are often used for producing orthophoto maps for precision agriculture among other things. One major problem results from the application of low-cost custom and compact NIR cameras with wide-angle lenses introducing vignetting. In numerous cases, such cameras acquire low radiometric quality images depending on the lighting conditions. The paper presents a method of radiometric quality assessment of low-altitude NIR imagery data from a custom sensor. The method utilizes statistical analysis of NIR images. The data used for the analyses were acquired from various altitudes in various weather and lighting conditions. An objective NIR imagery quality index was determined as a result of the research. The results obtained using this index enabled the classification of images into three categories: good, medium, and low radiometric quality. The classification makes it possible to determine the a priori error of the acquired images and assess whether a rerun of the photogrammetric flight is necessary.

  4. Image Gallery

    MedlinePlus

    ... R S T U V W X Y Z Image Gallery Share: The Image Gallery contains high-quality digital photographs available from ... Select a category below to view additional thumbnail images. Images are available for direct download in 2 ...

  5. Improving best-phase image quality in cardiac CT by motion correction with MAM optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohkohl, Christopher; Bruder, Herbert; Stierstorfer, Karl

    2013-03-15

    Purpose: Research in image reconstruction for cardiac CT aims at using motion correction algorithms to improve the image quality of the coronary arteries. The key to those algorithms is motion estimation, which is currently based on 3-D/3-D registration to align the structures of interest in images acquired in multiple heart phases. The need for an extended scan data range covering several heart phases is critical in terms of radiation dose to the patient and limits the clinical potential of the method. Furthermore, literature reports only slight quality improvements of the motion corrected images when compared to the most quiet phasemore » (best-phase) that was actually used for motion estimation. In this paper a motion estimation algorithm is proposed which does not require an extended scan range but works with a short scan data interval, and which markedly improves the best-phase image quality. Methods: Motion estimation is based on the definition of motion artifact metrics (MAM) to quantify motion artifacts in a 3-D reconstructed image volume. The authors use two different MAMs, entropy, and positivity. By adjusting the motion field parameters, the MAM of the resulting motion-compensated reconstruction is optimized using a gradient descent procedure. In this way motion artifacts are minimized. For a fast and practical implementation, only analytical methods are used for motion estimation and compensation. Both the MAM-optimization and a 3-D/3-D registration-based motion estimation algorithm were investigated by means of a computer-simulated vessel with a cardiac motion profile. Image quality was evaluated using normalized cross-correlation (NCC) with the ground truth template and root-mean-square deviation (RMSD). Four coronary CT angiography patient cases were reconstructed to evaluate the clinical performance of the proposed method. Results: For the MAM-approach, the best-phase image quality could be improved for all investigated heart phases, with a maximum improvement of the NCC value by 100% and of the RMSD value by 81%. The corresponding maximum improvements for the registration-based approach were 20% and 40%. In phases with very rapid motion the registration-based algorithm obtained better image quality, while the image quality of the MAM algorithm was superior in phases with less motion. The image quality improvement of the MAM optimization was visually confirmed for the different clinical cases. Conclusions: The proposed method allows a software-based best-phase image quality improvement in coronary CT angiography. A short scan data interval at the target heart phase is sufficient, no additional scan data in other cardiac phases are required. The algorithm is therefore directly applicable to any standard cardiac CT acquisition protocol.« less

  6. Study of the performance of image restoration under different wavefront aberrations

    NASA Astrophysics Data System (ADS)

    Wang, Xinqiu; Hu, Xinqi

    2016-10-01

    Image restoration is an effective way to improve the quality of images degraded by wave-front aberrations. If the wave-front aberration is too large, the performance of the image restoration will not be good. In this paper, the relationship between the performance of image restoration and the degree of wave-front aberrations is studied. A set of different wave-front aberrations is constructed by Zernike polynomials, and the corresponding PSF under white-light illumination is calculated. A set of blurred images is then obtained through convolution methods. Next we recover the images with the regularized Richardson-Lucy algorithm and use the RMS of the original image and the homologous deblurred image to evaluate the quality of restoration. Consequently, we determine the range of wave-front errors in which the recovered images are acceptable.

  7. Warped document image correction method based on heterogeneous registration strategies

    NASA Astrophysics Data System (ADS)

    Tong, Lijing; Zhan, Guoliang; Peng, Quanyao; Li, Yang; Li, Yifan

    2013-03-01

    With the popularity of digital camera and the application requirement of digitalized document images, using digital cameras to digitalize document images has become an irresistible trend. However, the warping of the document surface impacts on the quality of the Optical Character Recognition (OCR) system seriously. To improve the warped document image's vision quality and the OCR rate, this paper proposed a warped document image correction method based on heterogeneous registration strategies. This method mosaics two warped images of the same document from different viewpoints. Firstly, two feature points are selected from one image. Then the two feature points are registered in the other image base on heterogeneous registration strategies. At last, image mosaics are done for the two images, and the best mosaiced image is selected by OCR recognition results. As a result, for the best mosaiced image, the distortions are mostly removed and the OCR results are improved markedly. Experimental results show that the proposed method can resolve the issue of warped document image correction more effectively.

  8. Imaging with a small number of photons

    PubMed Central

    Morris, Peter A.; Aspden, Reuben S.; Bell, Jessica E. C.; Boyd, Robert W.; Padgett, Miles J.

    2015-01-01

    Low-light-level imaging techniques have application in many diverse fields, ranging from biological sciences to security. A high-quality digital camera based on a multi-megapixel array will typically record an image by collecting of order 105 photons per pixel, but by how much could this photon flux be reduced? In this work we demonstrate a single-photon imaging system based on a time-gated intensified camera from which the image of an object can be inferred from very few detected photons. We show that a ghost-imaging configuration, where the image is obtained from photons that have never interacted with the object, is a useful approach for obtaining images with high signal-to-noise ratios. The use of heralded single photons ensures that the background counts can be virtually eliminated from the recorded images. By applying principles of image compression and associated image reconstruction, we obtain high-quality images of objects from raw data formed from an average of fewer than one detected photon per image pixel. PMID:25557090

  9. How Many Bits Are Enough?

    NASA Technical Reports Server (NTRS)

    Larimer, James; Gille, Jennifer; Luszcz, Jeff; Hindson, William S. (Technical Monitor)

    1997-01-01

    Carlson and Cohen suggest that 'the perfect image is one that looks like a piece of the world viewed through a picture frame.' They propose that the metric for the perfect image be the discriminability of the reconstructed image from the ideal image the reconstruction is meant to represent. If these two images, the ideal and the reconstruction are noticeably different, then the reconstruction is less than perfect. If they cannot be discriminated then the reconstructed image is perfect. This definition has the advantage that it can be used to define 'good enough' image quality. An image that fully satisfies a task's image quality requirements for example text legibility, is selected to be the standard. Rendered images are then compared to the standard. Rendered images that are indiscriminable from the standard are good enough. Test patterns and test image sets serve as standards for many tasks and are commonplace to the image communications and display industries, so this is not a new nor novel idea.

  10. Selection and quality assessment of Landsat data for the North American forest dynamics forest history maps of the US

    USGS Publications Warehouse

    Schleeweis, Karen; Goward, Samuel N.; Huang, Chengquan; Dwyer, John L.; Dungan, Jennifer L.; Lindsey, Mary A.; Michaelis, Andrew; Rishmawi, Khaldoun; Masek, Jeffery G.

    2016-01-01

    Using the NASA Earth Exchange platform, the North American Forest Dynamics (NAFD) project mapped forest history wall-to-wall, annually for the contiguous US (1986–2010) using the Vegetation Change Tracker algorithm. As with any effort to identify real changes in remotely sensed time-series, data gaps, shifts in seasonality, misregistration, inconsistent radiometry and cloud contamination can be sources of error. We discuss the NAFD image selection and processing stream (NISPS) that was designed to minimize these sources of error. The NISPS image quality assessments highlighted issues with the Landsat archive and metadata including inadequate georegistration, unreliability of the pre-2009 L5 cloud cover assessments algorithm, missing growing-season imagery and paucity of clear views. Assessment maps of Landsat 5–7 image quantities and qualities are presented that offer novel perspectives on the growing-season archive considered for this study. Over 150,000+ Landsat images were considered for the NAFD project. Optimally, one high quality cloud-free image in each year or a total of 12,152 images would be used. However, to accommodate data gaps and cloud/shadow contamination 23,338 images were needed. In 220 specific path-row image years no acceptable images were found resulting in data gaps in the annual national map products.

  11. Half radiofrequency pulse excitation with a dedicated prescan to correct eddy current effect and gradient delay.

    PubMed

    Abe, Takayuki

    2013-03-01

    To improve the slice profile of the half radiofrequency (RF) pulse excitation and image quality of ultrashort echo time (UTE) imaging by compensating for an eddy current effect. The dedicated prescan has been developed to measure the phase accumulation due to eddy currents induced by the slice-selective gradient. The prescan measures two one-dimensional excitation k-space profiles, which can be acquired with a readout gradient in the slice-selection direction by changing the polarity of the slice-selective gradient. The time shifts due to the phase accumulation in the excitation k-space were calculated. The time shift compensated for the start time of the slice-selective gradient. The total prescan time was 6-15 s. The slice profile and the UTE image with the half RF pulse excitation were acquired to evaluate the slice selectivity and the image quality. Improved slice selectivity was obtained. The simple method proposed in this paper can eliminate eddy current effect. Good UTE images were obtained. The slice profile of the half RF pulse excitation and the image quality of UTE images have been improved by using a dedicated prescan. This method has a possibility that can improve the image quality of a clinical UTE imaging.

  12. Standard and reduced radiation dose liver CT images: adaptive statistical iterative reconstruction versus model-based iterative reconstruction-comparison of findings and image quality.

    PubMed

    Shuman, William P; Chan, Keith T; Busey, Janet M; Mitsumori, Lee M; Choi, Eunice; Koprowicz, Kent M; Kanal, Kalpana M

    2014-12-01

    To investigate whether reduced radiation dose liver computed tomography (CT) images reconstructed with model-based iterative reconstruction ( MBIR model-based iterative reconstruction ) might compromise depiction of clinically relevant findings or might have decreased image quality when compared with clinical standard radiation dose CT images reconstructed with adaptive statistical iterative reconstruction ( ASIR adaptive statistical iterative reconstruction ). With institutional review board approval, informed consent, and HIPAA compliance, 50 patients (39 men, 11 women) were prospectively included who underwent liver CT. After a portal venous pass with ASIR adaptive statistical iterative reconstruction images, a 60% reduced radiation dose pass was added with MBIR model-based iterative reconstruction images. One reviewer scored ASIR adaptive statistical iterative reconstruction image quality and marked findings. Two additional independent reviewers noted whether marked findings were present on MBIR model-based iterative reconstruction images and assigned scores for relative conspicuity, spatial resolution, image noise, and image quality. Liver and aorta Hounsfield units and image noise were measured. Volume CT dose index and size-specific dose estimate ( SSDE size-specific dose estimate ) were recorded. Qualitative reviewer scores were summarized. Formal statistical inference for signal-to-noise ratio ( SNR signal-to-noise ratio ), contrast-to-noise ratio ( CNR contrast-to-noise ratio ), volume CT dose index, and SSDE size-specific dose estimate was made (paired t tests), with Bonferroni adjustment. Two independent reviewers identified all 136 ASIR adaptive statistical iterative reconstruction image findings (n = 272) on MBIR model-based iterative reconstruction images, scoring them as equal or better for conspicuity, spatial resolution, and image noise in 94.1% (256 of 272), 96.7% (263 of 272), and 99.3% (270 of 272), respectively. In 50 image sets, two reviewers (n = 100) scored overall image quality as sufficient or good with MBIR model-based iterative reconstruction in 99% (99 of 100). Liver SNR signal-to-noise ratio was significantly greater for MBIR model-based iterative reconstruction (10.8 ± 2.5 [standard deviation] vs 7.7 ± 1.4, P < .001); there was no difference for CNR contrast-to-noise ratio (2.5 ± 1.4 vs 2.4 ± 1.4, P = .45). For ASIR adaptive statistical iterative reconstruction and MBIR model-based iterative reconstruction , respectively, volume CT dose index was 15.2 mGy ± 7.6 versus 6.2 mGy ± 3.6; SSDE size-specific dose estimate was 16.4 mGy ± 6.6 versus 6.7 mGy ± 3.1 (P < .001). Liver CT images reconstructed with MBIR model-based iterative reconstruction may allow up to 59% radiation dose reduction compared with the dose with ASIR adaptive statistical iterative reconstruction , without compromising depiction of findings or image quality. © RSNA, 2014.

  13. TU-F-9A-01: Balancing Image Quality and Dose in Radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peck, D; Pasciak, A

    2014-06-15

    Emphasis is often placed on minimizing radiation dose in diagnostic imaging without a complete consideration of the effect on image quality, especially those that affect diagnostic accuracy. This session will include a patient image-based review of diagnostic quantities important to radiologists in conventional radiography, including the effects of body habitus, age, positioning, and the clinical indication of the exam. The relationships between image quality, radiation dose, and radiation risk will be discussed, specifically addressing how these factors are affected by image protocols and acquisition parameters and techniques. This session will also discuss some of the actual and perceived radiation riskmore » associated with diagnostic imaging. Regardless if the probability for radiation-induced cancer is small, the fear associated with radiation persists. Also when a risk has a benefit to an individual or to society, the risk may be justified with respect to the benefit. But how do you convey the risks and the benefits to people? This requires knowledge of how people perceive risk and how to communicate the risk and the benefit to different populations. In this presentation the sources of errors in estimating risk from radiation and some methods used to convey risks are reviewed. Learning Objectives: Understand the image quality metrics that are clinically relevant to radiologists. Understand how acquisition parameters and techniques affect image quality and radiation dose in conventional radiology. Understand the uncertainties in estimates of radiation risk from imaging exams. Learn some methods for effectively communicating radiation risk to the public.« less

  14. An approach for quantitative image quality analysis for CT

    NASA Astrophysics Data System (ADS)

    Rahimi, Amir; Cochran, Joe; Mooney, Doug; Regensburger, Joe

    2016-03-01

    An objective and standardized approach to assess image quality of Compute Tomography (CT) systems is required in a wide variety of imaging processes to identify CT systems appropriate for a given application. We present an overview of the framework we have developed to help standardize and to objectively assess CT image quality for different models of CT scanners used for security applications. Within this framework, we have developed methods to quantitatively measure metrics that should correlate with feature identification, detection accuracy and precision, and image registration capabilities of CT machines and to identify strengths and weaknesses in different CT imaging technologies in transportation security. To that end we have designed, developed and constructed phantoms that allow for systematic and repeatable measurements of roughly 88 image quality metrics, representing modulation transfer function, noise equivalent quanta, noise power spectra, slice sensitivity profiles, streak artifacts, CT number uniformity, CT number consistency, object length accuracy, CT number path length consistency, and object registration. Furthermore, we have developed a sophisticated MATLAB based image analysis tool kit to analyze CT generated images of phantoms and report these metrics in a format that is standardized across the considered models of CT scanners, allowing for comparative image quality analysis within a CT model or between different CT models. In addition, we have developed a modified sparse principal component analysis (SPCA) method to generate a modified set of PCA components as compared to the standard principal component analysis (PCA) with sparse loadings in conjunction with Hotelling T2 statistical analysis method to compare, qualify, and detect faults in the tested systems.

  15. Ultra-low-dose lung screening CT with model-based iterative reconstruction: an assessment of image quality and lesion conspicuity.

    PubMed

    Ju, Yun Hye; Lee, Geewon; Lee, Ji Won; Hong, Seung Baek; Suh, Young Ju; Jeong, Yeon Joo

    2018-05-01

    Background Reducing radiation dose inevitably increases image noise, and thus, it is important in low-dose computed tomography (CT) to maintain image quality and lesion detection performance. Purpose To assess image quality and lesion conspicuity of ultra-low-dose CT with model-based iterative reconstruction (MBIR) and to determine a suitable protocol for lung screening CT. Material and Methods A total of 120 heavy smokers underwent lung screening CT and were randomly and equally assigned to one of five groups: group 1 = 120 kVp, 25 mAs, with FBP reconstruction; group 2 = 120 kVp, 10 mAs, with MBIR; group 3 = 100 kVp, 15 mAs, with MBIR; group 4 = 100 kVp, 10 mAs, with MBIR; and group 5 = 100 kVp, 5 mAs, with MBIR. Two radiologists evaluated intergroup differences with respect to radiation dose, image noise, image quality, and lesion conspicuity using the Kruskal-Wallis test and the Chi-square test. Results Effective doses were 61-87% lower in groups 2-5 than in group 1. Image noises in groups 1 and 5 were significantly higher than in the other groups ( P < 0.001). Overall image quality was best in group 1, but diagnostic acceptability of overall image qualities in groups 1-3 was not significantly different (all P values > 0.05). Lesion conspicuities were similar in groups 1-4, but were significantly poorer in group 5. Conclusion Lung screening CT with MBIR obtained at 100 kVp and 15 mAs enables a ∼60% reduction in radiation dose versus low-dose CT, while maintaining image quality and lesion conspicuity.

  16. Influence of gantry rotation time and scan mode on image quality in ultra-high-resolution CT system.

    PubMed

    Honda, Osamu; Yanagawa, Masahiro; Hata, Akinori; Kikuchi, Noriko; Miyata, Tomo; Tsukagoshi, Shinsuke; Uranishi, Ayumi; Tomiyama, Noriyuki

    2018-06-01

    To investigate the image quality of helical scan (HS) mode and non-helical scan (non-HS) mode on ultra-high-resolution CT in different gantry rotation time. non-HS with 0.35 s/rot (non-HS200 mA/0.35 s). Three observers compared each non-HS image with HS image, and scored non-HS images by using 3-point scale, paying attention to normal findings, abnormal findings, noise, streak artifact, and overall image quality. Statistical analysis was performed with Steel-Dwass test. Overall image quality (score: 2.45) and noise (score: 2.42) of non-HS 200 mA/1.5s was statistically best (p < 0.0005). Overall Image quality and noise of non-HS200 mA/0.75 s (score: 2.0) was comparable to that of HS200 mA/1.5 s. CTDIvol of HS200 mA/1.5 s is 23.2 mGy. CTDIvol of non-HS200 mA/1.5 s, non-HS200 mA/0.75 s, non-HS200 mA/0.35 s is 19.2 mGy, 9.8 mGy, 4.7 mGy. Overall image quality and noise of non-helical scan is better than that of helical scan in the same rotation time. Overall Image quality of non-HS200 mA/0.75 s is comparable to that of HS200 mA/1.5 s, though the radiation dose of non-HS200 mA/0.75 s is lower than that of HS200 mA/1.5 s. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. TH-C-18A-06: Combined CT Image Quality and Radiation Dose Monitoring Program Based On Patient Data to Assess Consistency of Clinical Imaging Across Scanner Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christianson, O; Winslow, J; Samei, E

    2014-06-15

    Purpose: One of the principal challenges of clinical imaging is to achieve an ideal balance between image quality and radiation dose across multiple CT models. The number of scanners and protocols at large medical centers necessitates an automated quality assurance program to facilitate this objective. Therefore, the goal of this work was to implement an automated CT image quality and radiation dose monitoring program based on actual patient data and to use this program to assess consistency of protocols across CT scanner models. Methods: Patient CT scans are routed to a HIPPA compliant quality assurance server. CTDI, extracted using opticalmore » character recognition, and patient size, measured from the localizers, are used to calculate SSDE. A previously validated noise measurement algorithm determines the noise in uniform areas of the image across the scanned anatomy to generate a global noise level (GNL). Using this program, 2358 abdominopelvic scans acquired on three commercial CT scanners were analyzed. Median SSDE and GNL were compared across scanner models and trends in SSDE and GNL with patient size were used to determine the impact of differing automatic exposure control (AEC) algorithms. Results: There was a significant difference in both SSDE and GNL across scanner models (9–33% and 15–35% for SSDE and GNL, respectively). Adjusting all protocols to achieve the same image noise would reduce patient dose by 27–45% depending on scanner model. Additionally, differences in AEC methodologies across vendors resulted in disparate relationships of SSDE and GNL with patient size. Conclusion: The difference in noise across scanner models indicates that protocols are not optimally matched to achieve consistent image quality. Our results indicated substantial possibility for dose reduction while achieving more consistent image appearance. Finally, the difference in AEC methodologies suggests the need for size-specific CT protocols to minimize variability in image quality across CT vendors.« less

  18. Characterization of Long Working Distance Optical Coherence Tomography for Imaging of Pediatric Retinal Pathology.

    PubMed

    Qian, Ruobing; Carrasco-Zevallos, Oscar M; Mangalesh, Shwetha; Sarin, Neeru; Vajzovic, Lejla; Farsiu, Sina; Izatt, Joseph A; Toth, Cynthia A

    2017-10-01

    We determined the feasibility of fovea and optic nerve head imaging with a long working distance (LWD) swept source optical coherence tomography (OCT) prototype in adults, teenagers, and young children. A prototype swept source OCT system with a LWD (defined as distance from the last optical element of the imaging system to the eye) of 350 mm with custom fixation targets was developed to facilitate imaging of children. Imaging was performed in 49 participants from three age groups: 26 adults, 16 children 13 to 18 years old (teenagers), and seven children under 6 years old (young children) under an approved institutional review board protocol. The imaging goal was to acquire high quality scans of the fovea and optic nerve in each eye in the shortest time possible. OCT B-scans and volumes of the fovea and optic nerve head of each eligible eye were captured and graded based on four categories (lateral and axial centration, contrast, and resolution) and on ability to determine presence or absence of pathology. LWD-OCT imaging was successful in 88 of 94 eligible eyes, including seven of 10 eyes of young children. Of the successfully acquired OCT images, 83% of B-scan and volumetric images, including 86% from young children, were graded as high-quality scans. Pathology was observed in high-quality OCT images. The prototype LWD-OCT system achieved high quality retinal imaging of adults, teenagers, and some young children with and without pathology with reasonable alignment time. The LWD-OCT system can facilitate imaging in children.

  19. Characterization of Long Working Distance Optical Coherence Tomography for Imaging of Pediatric Retinal Pathology

    PubMed Central

    Qian, Ruobing; Carrasco-Zevallos, Oscar M.; Mangalesh, Shwetha; Sarin, Neeru; Vajzovic, Lejla; Farsiu, Sina; Izatt, Joseph A.; Toth, Cynthia A.

    2017-01-01

    Purpose We determined the feasibility of fovea and optic nerve head imaging with a long working distance (LWD) swept source optical coherence tomography (OCT) prototype in adults, teenagers, and young children. Methods A prototype swept source OCT system with a LWD (defined as distance from the last optical element of the imaging system to the eye) of 350 mm with custom fixation targets was developed to facilitate imaging of children. Imaging was performed in 49 participants from three age groups: 26 adults, 16 children 13 to 18 years old (teenagers), and seven children under 6 years old (young children) under an approved institutional review board protocol. The imaging goal was to acquire high quality scans of the fovea and optic nerve in each eye in the shortest time possible. OCT B-scans and volumes of the fovea and optic nerve head of each eligible eye were captured and graded based on four categories (lateral and axial centration, contrast, and resolution) and on ability to determine presence or absence of pathology. Results LWD-OCT imaging was successful in 88 of 94 eligible eyes, including seven of 10 eyes of young children. Of the successfully acquired OCT images, 83% of B-scan and volumetric images, including 86% from young children, were graded as high-quality scans. Pathology was observed in high-quality OCT images. Conclusions The prototype LWD-OCT system achieved high quality retinal imaging of adults, teenagers, and some young children with and without pathology with reasonable alignment time. Translational Relevance The LWD-OCT system can facilitate imaging in children. PMID:29057163

  20. Effects of dose reduction on multi-detector computed tomographic images in evaluating the maxilla and mandible for pre-surgical implant planning: a cadaveric study.

    PubMed

    Koizumi, Hiroshi; Sur, Jaideep; Seki, Kenji; Nakajima, Koh; Sano, Tsukasa; Okano, Tomohiro

    2010-08-01

    To assess effects of dose reduction on image quality in evaluating maxilla and mandible for pre-surgical implant planning using cadavers. Six cadavers were used for the study using multi-detector computed tomography (CT) operated at 120 kV and the variable tube current of 80, 40, 20 and 10 mA. A slice thickness of 0.625 mm and pitch 1 were used. Multi-planar images perpendicular and parallel to dentitions were created. The images were evaluated by five oral radiologists in terms of visibility of the anatomical landmarks including alveolar crest, mandibular canal, floors of the maxillary sinus and nasal cavity, contours/cortical layer of jaw bones and the details of trabecular bone. Observers were asked to determine the quality of the images in comparison with 80 mA images based on the criteria: excellent, good, fair or non-diagnostic. The average scores of all observers were calculated for each specimen in all exposure conditions. The 40 mA images could visualize such landmarks and were evaluated to be same or almost equivalent in quality to the 80 mA images. Even the 20 mA images could be accepted just for diagnostic purpose for implant with substantial deterioration of the image quality. The 10 mA images may not be accepted because of the obscured contour caused by image noise. Significant dose reduction by lowering mA can be utilized for pre-surgical implant planning in multi-detector CT.

Top