Remote Sensing Image Quality Assessment Experiment with Post-Processing
NASA Astrophysics Data System (ADS)
Jiang, W.; Chen, S.; Wang, X.; Huang, Q.; Shi, H.; Man, Y.
2018-04-01
This paper briefly describes the post-processing influence assessment experiment, the experiment includes three steps: the physical simulation, image processing, and image quality assessment. The physical simulation models sampled imaging system in laboratory, the imaging system parameters are tested, the digital image serving as image processing input are produced by this imaging system with the same imaging system parameters. The gathered optical sampled images with the tested imaging parameters are processed by 3 digital image processes, including calibration pre-processing, lossy compression with different compression ratio and image post-processing with different core. Image quality assessment method used is just noticeable difference (JND) subject assessment based on ISO20462, through subject assessment of the gathered and processing images, the influence of different imaging parameters and post-processing to image quality can be found. The six JND subject assessment experimental data can be validated each other. Main conclusions include: image post-processing can improve image quality; image post-processing can improve image quality even with lossy compression, image quality with higher compression ratio improves less than lower ratio; with our image post-processing method, image quality is better, when camera MTF being within a small range.
NASA Astrophysics Data System (ADS)
Mubarok, S.; Lubis, L. E.; Pawiro, S. A.
2016-03-01
Compromise between radiation dose and image quality is essential in the use of CT imaging. CT dose index (CTDI) is currently the primary dosimetric formalisms in CT scan, while the low and high contrast resolutions are aspects indicating the image quality. This study was aimed to estimate CTDIvol and image quality measures through a range of exposure parameters variation. CTDI measurements were performed using PMMA (polymethyl methacrylate) phantom of 16 cm diameter, while the image quality test was conducted by using catphan ® 600. CTDI measurements were carried out according to IAEA TRS 457 protocol using axial scan mode, under varied parameters of tube voltage, collimation or slice thickness, and tube current. Image quality test was conducted accordingly under the same exposure parameters with CTDI measurements. An Android™ based software was also result of this study. The software was designed to estimate the value of CTDIvol with maximum difference compared to actual CTDIvol measurement of 8.97%. Image quality can also be estimated through CNR parameter with maximum difference to actual CNR measurement of 21.65%.
Image quality assessment for CT used on small animals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cisneros, Isabela Paredes, E-mail: iparedesc@unal.edu.co; Agulles-Pedrós, Luis, E-mail: lagullesp@unal.edu.co
Image acquisition on a CT scanner is nowadays necessary in almost any kind of medical study. Its purpose, to produce anatomical images with the best achievable quality, implies the highest diagnostic radiation exposure to patients. Image quality can be measured quantitatively based on parameters such as noise, uniformity and resolution. This measure allows the determination of optimal parameters of operation for the scanner in order to get the best diagnostic image. A human Phillips CT scanner is the first one minded for veterinary-use exclusively in Colombia. The aim of this study was to measure the CT image quality parameters usingmore » an acrylic phantom and then, using the computational tool MATLAB, determine these parameters as a function of current value and window of visualization, in order to reduce dose delivery by keeping the appropriate image quality.« less
Image quality assessment for CT used on small animals
NASA Astrophysics Data System (ADS)
Cisneros, Isabela Paredes; Agulles-Pedrós, Luis
2016-07-01
Image acquisition on a CT scanner is nowadays necessary in almost any kind of medical study. Its purpose, to produce anatomical images with the best achievable quality, implies the highest diagnostic radiation exposure to patients. Image quality can be measured quantitatively based on parameters such as noise, uniformity and resolution. This measure allows the determination of optimal parameters of operation for the scanner in order to get the best diagnostic image. A human Phillips CT scanner is the first one minded for veterinary-use exclusively in Colombia. The aim of this study was to measure the CT image quality parameters using an acrylic phantom and then, using the computational tool MatLab, determine these parameters as a function of current value and window of visualization, in order to reduce dose delivery by keeping the appropriate image quality.
Zheng, Xiaoming
2017-12-01
The purpose of this work was to examine the effects of relationship functions between diagnostic image quality and radiation dose on the governing equations for image acquisition parameter variations in X-ray imaging. Various equations were derived for the optimal selection of peak kilovoltage (kVp) and exposure parameter (milliAmpere second, mAs) in computed tomography (CT), computed radiography (CR), and direct digital radiography. Logistic, logarithmic, and linear functions were employed to establish the relationship between radiation dose and diagnostic image quality. The radiation dose to the patient, as a function of image acquisition parameters (kVp, mAs) and patient size (d), was used in radiation dose and image quality optimization. Both logistic and logarithmic functions resulted in the same governing equation for optimal selection of image acquisition parameters using a dose efficiency index. For image quality as a linear function of radiation dose, the same governing equation was derived from the linear relationship. The general equations should be used in guiding clinical X-ray imaging through optimal selection of image acquisition parameters. The radiation dose to the patient could be reduced from current levels in medical X-ray imaging.
Qiu, Jianfeng; Wang, Guozhu; Min, Jiao; Wang, Xiaoyan; Wang, Pengcheng
2013-12-21
Our aim was to measure the performance of desktop magnetic resonance imaging (MRI) systems using specially designed phantoms, by testing imaging parameters and analysing the imaging quality. We designed multifunction phantoms with diameters of 18 and 60 mm for desktop MRI scanners in accordance with the American Association of Physicists in Medicine (AAPM) report no. 28. We scanned the phantoms with three permanent magnet 0.5 T desktop MRI systems, measured the MRI image parameters, and analysed imaging quality by comparing the data with the AAPM criteria and Chinese national standards. Image parameters included: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, signal-to-noise ratio (SNR), and image uniformity. The image parameters of three desktop MRI machines could be measured using our specially designed phantoms, and most parameters were in line with MRI quality control criterion, including: resonance frequency, high contrast spatial resolution, low contrast object detectability, slice thickness, geometrical distortion, image uniformity and slice position accuracy. However, SNR was significantly lower than in some references. The imaging test and quality control are necessary for desktop MRI systems, and should be performed with the applicable phantom and corresponding standards.
O'Loughlin, Declan; Oliveira, Bárbara L; Elahi, Muhammad Adnan; Glavin, Martin; Jones, Edward; Popović, Milica; O'Halloran, Martin
2017-12-06
Inaccurate estimation of average dielectric properties can have a tangible impact on microwave radar-based breast images. Despite this, recent patient imaging studies have used a fixed estimate although this is known to vary from patient to patient. Parameter search algorithms are a promising technique for estimating the average dielectric properties from the reconstructed microwave images themselves without additional hardware. In this work, qualities of accurately reconstructed images are identified from point spread functions. As the qualities of accurately reconstructed microwave images are similar to the qualities of focused microscopic and photographic images, this work proposes the use of focal quality metrics for average dielectric property estimation. The robustness of the parameter search is evaluated using experimental dielectrically heterogeneous phantoms on the three-dimensional volumetric image. Based on a very broad initial estimate of the average dielectric properties, this paper shows how these metrics can be used as suitable fitness functions in parameter search algorithms to reconstruct clear and focused microwave radar images.
Learning the manifold of quality ultrasound acquisition.
El-Zehiry, Noha; Yan, Michelle; Good, Sara; Fang, Tong; Zhou, S Kevin; Grady, Leo
2013-01-01
Ultrasound acquisition is a challenging task that requires simultaneous adjustment of several acquisition parameters (the depth, the focus, the frequency and its operation mode). If the acquisition parameters are not properly chosen, the resulting image will have a poor quality and will degrade the patient diagnosis and treatment workflow. Several hardware-based systems for autotuning the acquisition parameters have been previously proposed, but these solutions were largely abandoned because they failed to properly account for tissue inhomogeneity and other patient-specific characteristics. Consequently, in routine practice the clinician either uses population-based parameter presets or manually adjusts the acquisition parameters for each patient during the scan. In this paper, we revisit the problem of autotuning the acquisition parameters by taking a completely novel approach and producing a solution based on image analytics. Our solution is inspired by the autofocus capability of conventional digital cameras, but is significantly more challenging because the number of acquisition parameters is large and the determination of "good quality" images is more difficult to assess. Surprisingly, we show that the set of acquisition parameters which produce images that are favored by clinicians comprise a 1D manifold, allowing for a real-time optimization to maximize image quality. We demonstrate our method for acquisition parameter autotuning on several live patients, showing that our system can start with a poor initial set of parameters and automatically optimize the parameters to produce high quality images.
Content dependent selection of image enhancement parameters for mobile displays
NASA Astrophysics Data System (ADS)
Lee, Yoon-Gyoo; Kang, Yoo-Jin; Kim, Han-Eol; Kim, Ka-Hee; Kim, Choon-Woo
2011-01-01
Mobile devices such as cellular phones and portable multimedia player with capability of playing terrestrial digital multimedia broadcasting (T-DMB) contents have been introduced into consumer market. In this paper, content dependent image quality enhancement method for sharpness and colorfulness and noise reduction is presented to improve perceived image quality on mobile displays. Human visual experiments are performed to analyze viewers' preference. Relationship between the objective measures and the optimal values of image control parameters are modeled by simple lookup tables based on the results of human visual experiments. Content dependent values of image control parameters are determined based on the calculated measures and predetermined lookup tables. Experimental results indicate that dynamic selection of image control parameters yields better image quality.
Shan, Yan; Zeng, Meng-su; Liu, Kai; Miao, Xi-Yin; Lin, Jiang; Fu, Cai xia; Xu, Peng-ju
2015-01-01
To evaluate the effect on image quality and intravoxel incoherent motion (IVIM) parameters of small hepatocellular carcinoma (HCC) from choice of either free-breathing (FB) or navigator-triggered (NT) diffusion-weighted (DW) imaging. Thirty patients with 37 small HCCs underwent IVIM DW imaging using 12 b values (0-800 s/mm) with 2 sequences: NT, FB. A biexponential analysis with the Bayesian method yielded true diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f) in small HCCs and liver parenchyma. Apparent diffusion coefficient (ADC) was also calculated. The acquisition time and image quality scores were assessed for 2 sequences. Independent sample t test was used to compare image quality, signal intensity ratio, IVIM parameters, and ADC values between the 2 sequences; reproducibility of IVIM parameters, and ADC values between 2 sequences was assessed with the Bland-Altman method (BA-LA). Image quality with NT sequence was superior to that with FB acquisition (P = 0.02). The mean acquisition time for FB scheme was shorter than that of NT sequence (6 minutes 14 seconds vs 10 minutes 21 seconds ± 10 seconds P < 0.01). The signal intensity ratio of small HCCs did not vary significantly between the 2 sequences. The ADC and IVIM parameters from the 2 sequences show no significant difference. Reproducibility of D*and f parameters in small HCC was poor (BA-LA: 95% confidence interval, -180.8% to 189.2% for D* and -133.8% to 174.9% for f). A moderate reproducibility of D and ADC parameters was observed (BA-LA: 95% confidence interval, -83.5% to 76.8% for D and -74.4% to 88.2% for ADC) between the 2 sequences. The NT DW imaging technique offers no advantage in IVIM parameters measurements of small HCC except better image quality, whereas FB technique offers greater confidence in fitted diffusion parameters for matched acquisition periods.
NASA Astrophysics Data System (ADS)
Lee, Haenghwa; Choi, Sunghoon; Jo, Byungdu; Kim, Hyemi; Lee, Donghoon; Kim, Dohyeon; Choi, Seungyeon; Lee, Youngjin; Kim, Hee-Joung
2017-03-01
Chest digital tomosynthesis (CDT) is a new 3D imaging technique that can be expected to improve the detection of subtle lung disease over conventional chest radiography. Algorithm development for CDT system is challenging in that a limited number of low-dose projections are acquired over a limited angular range. To confirm the feasibility of algebraic reconstruction technique (ART) method under variations in key imaging parameters, quality metrics were conducted using LUNGMAN phantom included grand-glass opacity (GGO) tumor. Reconstructed images were acquired from the total 41 projection images over a total angular range of +/-20°. We evaluated contrast-to-noise ratio (CNR) and artifacts spread function (ASF) to investigate the effect of reconstruction parameters such as number of iterations, relaxation parameter and initial guess on image quality. We found that proper value of ART relaxation parameter could improve image quality from the same projection. In this study, proper value of relaxation parameters for zero-image (ZI) and back-projection (BP) initial guesses were 0.4 and 0.6, respectively. Also, the maximum CNR values and the minimum full width at half maximum (FWHM) of ASF were acquired in the reconstructed images after 20 iterations and 3 iterations, respectively. According to the results, BP initial guess for ART method could provide better image quality than ZI initial guess. In conclusion, ART method with proper reconstruction parameters could improve image quality due to the limited angular range in CDT system.
Zalvidea; Colautti; Sicre
2000-05-01
An analysis of the Strehl ratio and the optical transfer function as imaging quality parameters of optical elements with enhanced focal length is carried out by employing the Wigner distribution function. To this end, we use four different pupil functions: a full circular aperture, a hyper-Gaussian aperture, a quartic phase plate, and a logarithmic phase mask. A comparison is performed between the quality parameters and test images formed by these pupil functions at different defocus distances.
Shirvani, Atefeh; Jabbari, Keyvan; Amouheidari, Alireza
2017-01-01
In radiation therapy, computed tomography (CT) simulation is used for treatment planning to define the location of tumor. Magnetic resonance imaging (MRI)-CT image fusion leads to more efficient tumor contouring. This work tried to identify the practical issues for the combination of CT and MRI images in real clinical cases. The effect of various factors is evaluated on image fusion quality. In this study, the data of thirty patients with brain tumors were used for image fusion. The effect of several parameters on possibility and quality of image fusion was evaluated. These parameters include angles of the patient's head on the bed, slices thickness, slice gap, and height of the patient's head. According to the results, the first dominating factor on quality of image fusion was the difference slice gap between CT and MRI images (cor = 0.86, P < 0.005) and second factor was the angle between CT and MRI slice in the sagittal plane (cor = 0.75, P < 0.005). In 20% of patients, this angle was more than 28° and image fusion was not efficient. In 17% of patients, difference slice gap in CT and MRI was >4 cm and image fusion quality was <25%. The most important problem in image fusion is that MRI images are taken without regard to their use in treatment planning. In general, parameters related to the patient position during MRI imaging should be chosen to be consistent with CT images of the patient in terms of location and angle.
de Oliveira, Marcus Vinicius Linhares; Santos, António Carvalho; Paulo, Graciano; Campos, Paulo Sergio Flores; Santos, Joana
2017-06-01
The purpose of this study was to apply a newly developed free software program, at low cost and with minimal time, to evaluate the quality of dental and maxillofacial cone-beam computed tomography (CBCT) images. A polymethyl methacrylate (PMMA) phantom, CQP-IFBA, was scanned in 3 CBCT units with 7 protocols. A macro program was developed, using the free software ImageJ, to automatically evaluate the image quality parameters. The image quality evaluation was based on 8 parameters: uniformity, the signal-to-noise ratio (SNR), noise, the contrast-to-noise ratio (CNR), spatial resolution, the artifact index, geometric accuracy, and low-contrast resolution. The image uniformity and noise depended on the protocol that was applied. Regarding the CNR, high-density structures were more sensitive to the effect of scanning parameters. There were no significant differences between SNR and CNR in centered and peripheral objects. The geometric accuracy assessment showed that all the distance measurements were lower than the real values. Low-contrast resolution was influenced by the scanning parameters, and the 1-mm rod present in the phantom was not depicted in any of the 3 CBCT units. Smaller voxel sizes presented higher spatial resolution. There were no significant differences among the protocols regarding artifact presence. This software package provided a fast, low-cost, and feasible method for the evaluation of image quality parameters in CBCT.
NASA Astrophysics Data System (ADS)
Santos, T. M. P.; Machado, A. S.; Araújo, O. M. O.; Ferreira, C. G.; Lopes, R. T.
2018-03-01
X-ray computed microtomography is a powerful nondestructive technique for 2D and 3D structure analysis. However, parameters used in acquisition promote directs influence in qualitative and quantitative results in characterization of samples, due image resolution. The aim of this study is value the influence of theses parameters in results through of tests changing these parameters in different situations and system characterization. Results demonstrate those pixel size and detector matrixes are the main parameters that influence in resolution and image quality. Microtomography was considered an excellent technique for characterization using the best image resolution possible.
A Procedure for High Resolution Satellite Imagery Quality Assessment
Crespi, Mattia; De Vendictis, Laura
2009-01-01
Data products generated from High Resolution Satellite Imagery (HRSI) are routinely evaluated during the so-called in-orbit test period, in order to verify if their quality fits the desired features and, if necessary, to obtain the image correction parameters to be used at the ground processing center. Nevertheless, it is often useful to have tools to evaluate image quality also at the final user level. Image quality is defined by some parameters, such as the radiometric resolution and its accuracy, represented by the noise level, and the geometric resolution and sharpness, described by the Modulation Transfer Function (MTF). This paper proposes a procedure to evaluate these image quality parameters; the procedure was implemented in a suitable software and tested on high resolution imagery acquired by the QuickBird, WorldView-1 and Cartosat-1 satellites. PMID:22412312
Contrast-detail phantom scoring methodology.
Thomas, Jerry A; Chakrabarti, Kish; Kaczmarek, Richard; Romanyukha, Alexander
2005-03-01
Published results of medical imaging studies which make use of contrast detail mammography (CDMAM) phantom images for analysis are difficult to compare since data are often not analyzed in the same way. In order to address this situation, the concept of ideal contrast detail curves is suggested. The ideal contrast detail curves are constructed based on the requirement of having the same product of the diameter and contrast (disk thickness) of the minimal correctly determined object for every row of the CDMAM phantom image. A correlation and comparison of five different quality parameters of the CDMAM phantom image determined for obtained ideal contrast detail curves is performed. The image quality parameters compared include: (1) contrast detail curve--a graph correlation between "minimal correct reading" diameter and disk thickness; (2) correct observation ratio--the ratio of the number of correctly identified objects to the actual total number of objects multiplied by 100; (3) image quality figure--the sum of the product of the diameter of the smallest scored object and its relative contrast; (4) figure-of-merit--the zero disk diameter value obtained from extrapolation of the contrast detail curve to the origin (e.g., zero disk diameter); and (5) k-factor--the product of the thickness and the diameter of the smallest correctly identified disks. The analysis carried out showed the existence of a nonlinear relationship between the above parameters, which means that use of different parameters of CDMAM image quality potentially can cause different conclusions about changes in image quality. Construction of the ideal contrast detail curves for CDMAM phantom is an attempt to determine the quantitative limits of the CDMAM phantom as employed for image quality evaluation. These limits are determined by the relationship between certain parameters of a digital mammography system and the set of the gold disks sizes in the CDMAM phantom. Recommendations are made on selections of CDMAM phantom regions which should be used for scoring at different image quality and which scoring methodology may be most appropriate. Special attention is also paid to the use of the CDMAM phantom for image quality assessment of digital mammography systems particularly in the vicinity of the Nyquist frequency.
Shirvani, Atefeh; Jabbari, Keyvan; Amouheidari, Alireza
2017-01-01
Background: In radiation therapy, computed tomography (CT) simulation is used for treatment planning to define the location of tumor. Magnetic resonance imaging (MRI)-CT image fusion leads to more efficient tumor contouring. This work tried to identify the practical issues for the combination of CT and MRI images in real clinical cases. The effect of various factors is evaluated on image fusion quality. Materials and Methods: In this study, the data of thirty patients with brain tumors were used for image fusion. The effect of several parameters on possibility and quality of image fusion was evaluated. These parameters include angles of the patient's head on the bed, slices thickness, slice gap, and height of the patient's head. Results: According to the results, the first dominating factor on quality of image fusion was the difference slice gap between CT and MRI images (cor = 0.86, P < 0.005) and second factor was the angle between CT and MRI slice in the sagittal plane (cor = 0.75, P < 0.005). In 20% of patients, this angle was more than 28° and image fusion was not efficient. In 17% of patients, difference slice gap in CT and MRI was >4 cm and image fusion quality was <25%. Conclusion: The most important problem in image fusion is that MRI images are taken without regard to their use in treatment planning. In general, parameters related to the patient position during MRI imaging should be chosen to be consistent with CT images of the patient in terms of location and angle. PMID:29387672
Chen, Xinyuan; Dai, Jianrong
2018-05-01
Magnetic Resonance Imaging (MRI) simulation differs from diagnostic MRI in purpose, technical requirements, and implementation. We propose a semiautomatic method for image acceptance and commissioning for the scanner, the radiofrequency (RF) coils, and pulse sequences for an MRI simulator. The ACR MRI accreditation large phantom was used for image quality analysis with seven parameters. Standard ACR sequences with a split head coil were adopted to examine the scanner's basic performance. The performance of simulation RF coils were measured and compared using the standard sequence with different clinical diagnostic coils. We used simulation sequences with simulation coils to test the quality of image and advanced performance of the scanner. Codes and procedures were developed for semiautomatic image quality analysis. When using standard ACR sequences with a split head coil, image quality passed all ACR recommended criteria. The image intensity uniformity with a simulation RF coil decreased about 34% compared with the eight-channel diagnostic head coil, while the other six image quality parameters were acceptable. Those two image quality parameters could be improved to more than 85% by built-in intensity calibration methods. In the simulation sequences test, the contrast resolution was sensitive to the FOV and matrix settings. The geometric distortion of simulation sequences such as T1-weighted and T2-weighted images was well-controlled in the isocenter and 10 cm off-center within a range of ±1% (2 mm). We developed a semiautomatic image quality analysis method for quantitative evaluation of images and commissioning of an MRI simulator. The baseline performances of simulation RF coils and pulse sequences have been established for routine QA. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
SU-E-I-43: Pediatric CT Dose and Image Quality Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, G; Singh, R
2014-06-01
Purpose: To design an approach to optimize radiation dose and image quality for pediatric CT imaging, and to evaluate expected performance. Methods: A methodology was designed to quantify relative image quality as a function of CT image acquisition parameters. Image contrast and image noise were used to indicate expected conspicuity of objects, and a wide-cone system was used to minimize scan time for motion avoidance. A decision framework was designed to select acquisition parameters as a weighted combination of image quality and dose. Phantom tests were used to acquire images at multiple techniques to demonstrate expected contrast, noise and dose.more » Anthropomorphic phantoms with contrast inserts were imaged on a 160mm CT system with tube voltage capabilities as low as 70kVp. Previously acquired clinical images were used in conjunction with simulation tools to emulate images at different tube voltages and currents to assess human observer preferences. Results: Examination of image contrast, noise, dose and tube/generator capabilities indicates a clinical task and object-size dependent optimization. Phantom experiments confirm that system modeling can be used to achieve the desired image quality and noise performance. Observer studies indicate that clinical utilization of this optimization requires a modified approach to achieve the desired performance. Conclusion: This work indicates the potential to optimize radiation dose and image quality for pediatric CT imaging. In addition, the methodology can be used in an automated parameter selection feature that can suggest techniques given a limited number of user inputs. G Stevens and R Singh are employees of GE Healthcare.« less
Dyvorne, Hadrien A; Galea, Nicola; Nevers, Thomas; Fiel, M Isabel; Carpenter, David; Wong, Edmund; Orton, Matthew; de Oliveira, Andre; Feiweier, Thorsten; Vachon, Marie-Louise; Babb, James S; Taouli, Bachir
2013-03-01
To optimize intravoxel incoherent motion (IVIM) diffusion-weighted (DW) imaging by estimating the effects of diffusion gradient polarity and breathing acquisition scheme on image quality, signal-to-noise ratio (SNR), IVIM parameters, and parameter reproducibility, as well as to investigate the potential of IVIM in the detection of hepatic fibrosis. In this institutional review board-approved prospective study, 20 subjects (seven healthy volunteers, 13 patients with hepatitis C virus infection; 14 men, six women; mean age, 46 years) underwent IVIM DW imaging with four sequences: (a) respiratory-triggered (RT) bipolar (BP) sequence, (b) RT monopolar (MP) sequence, (c) free-breathing (FB) BP sequence, and (d) FB MP sequence. Image quality scores were assessed for all sequences. A biexponential analysis with the Bayesian method yielded true diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (PF) in liver parenchyma. Mixed-model analysis of variance was used to compare image quality, SNR, IVIM parameters, and interexamination variability between the four sequences, as well as the ability to differentiate areas of liver fibrosis from normal liver tissue. Image quality with RT sequences was superior to that with FB acquisitions (P = .02) and was not affected by gradient polarity. SNR did not vary significantly between sequences. IVIM parameter reproducibility was moderate to excellent for PF and D, while it was less reproducible for D*. PF and D were both significantly lower in patients with hepatitis C virus than in healthy volunteers with the RT BP sequence (PF = 13.5% ± 5.3 [standard deviation] vs 9.2% ± 2.5, P = .038; D = [1.16 ± 0.07] × 10(-3) mm(2)/sec vs [1.03 ± 0.1] × 10(-3) mm(2)/sec, P = .006). The RT BP DW imaging sequence had the best results in terms of image quality, reproducibility, and ability to discriminate between healthy and fibrotic liver with biexponential fitting.
Evolution of mammographic image quality in the state of Rio de Janeiro*
Villar, Vanessa Cristina Felippe Lopes; Seta, Marismary Horsth De; de Andrade, Carla Lourenço Tavares; Delamarque, Elizabete Vianna; de Azevedo, Ana Cecília Pedrosa
2015-01-01
Objective To evaluate the evolution of mammographic image quality in the state of Rio de Janeiro on the basis of parameters measured and analyzed during health surveillance inspections in the period from 2006 to 2011. Materials and Methods Descriptive study analyzing parameters connected with imaging quality of 52 mammography apparatuses inspected at least twice with a one-year interval. Results Amongst the 16 analyzed parameters, 7 presented more than 70% of conformity, namely: compression paddle pressure intensity (85.1%), films development (72.7%), film response (72.7%), low contrast fine detail (92.2%), tumor mass visualization (76.5%), absence of image artifacts (94.1%), mammography-specific developers availability (88.2%). On the other hand, relevant parameters were below 50% conformity, namely: monthly image quality control testing (28.8%) and high contrast details with respect to microcalcifications visualization (47.1%). Conclusion The analysis revealed critical situations in terms of compliance with the health surveillance standards. Priority should be given to those mammography apparatuses that remained non-compliant at the second inspection performed within the one-year interval. PMID:25987749
NASA Astrophysics Data System (ADS)
Bresnahan, Patricia A.; Pukinskis, Madeleine; Wiggins, Michael
1999-03-01
Image quality assessment systems differ greatly with respect to the number and types of mags they need to evaluate, and their overall architectures. Managers of these systems, however, all need to be able to tune and evaluate system performance, requirements often overlooked or under-designed during project planning. Performance tuning tools allow users to define acceptable quality standards for image features and attributes by adjusting parameter settings. Performance analysis tools allow users to evaluate and/or predict how well a system performs in a given parameter state. While image assessment algorithms are becoming quite sophisticated, duplicating or surpassing the human decision making process in their speed and reliability, they often require a greater investment in 'training' or fine tuning of parameters in order to achieve optimum performance. This process may involve the analysis of hundreds or thousands of images, generating a large database of files and statistics that can be difficult to sort through and interpret. Compounding the difficulty is the fact that personnel charged with tuning and maintaining the production system may not have the statistical or analytical background required for the task. Meanwhile, hardware innovations have greatly increased the volume of images that can be handled in a given time frame, magnifying the consequences of running a production site with an inadequately tuned system. In this paper, some general requirements for a performance evaluation and tuning data visualization system are discussed. A custom engineered solution to the tuning and evaluation problem is then presented, developed within the context of a high volume image quality assessment, data entry, OCR, and image archival system. A key factor influencing the design of the system was the context-dependent definition of image quality, as perceived by a human interpreter. This led to the development of a five-level, hierarchical approach to image quality evaluation. Lower-level pass-fail conditions and decision rules were coded into the system. Higher-level image quality states were defined by allowing the users to interactively adjust the system's sensitivity to various image attributes by manipulating graphical controls. Results were presented in easily interpreted bar graphs. These graphs were mouse- sensitive, allowing the user to more fully explore the subsets of data indicated by various color blocks. In order to simplify the performance evaluation and tuning process, users could choose to view the results of (1) the existing system parameter state, (2) the results of any arbitrary parameter values they chose, or (3) the results of a quasi-optimum parameter state, derived by applying a decision rule to a large set of possible parameter states. Giving managers easy- to-use tools for defining the more subjective aspects of quality resulted in a system that responded to contextual cues that are difficult to hard-code. It had the additional advantage of allowing the definition of quality to evolve over time, as users became more knowledgeable as to the strengths and limitations of an automated quality inspection system.
NASA Astrophysics Data System (ADS)
Wallace, D.; Ng, J. A.; Keall, P. J.; O'Brien, R. T.; Poulsen, P. R.; Juneja, P.; Booth, J. T.
2015-06-01
Kilovoltage intrafraction monitoring (KIM) utilises the kV imager during treatment for real-time tracking of prostate fiducial markers. However, its effectiveness relies on sufficient image quality for the fiducial tracking task. To guide the performance characterisation of KIM under different clinically relevant conditions, the effect of different kV parameters and patient size on image quality, and quantification of MV scatter from the patient to the kV detector panel were investigated in this study. Image quality was determined for a range of kV acquisition frame rates, kV exposure, MV dose rates and patient sizes. Two methods were used to determine image quality; the ratio of kV signal through the patient to the MV scatter from the patient incident on the kilovoltage detector, and the signal-to-noise ratio (SNR). The effect of patient size and frame rate on MV scatter was evaluated in a homogeneous CIRS pelvis phantom and marker segmentation was determined utilising the Rando phantom with embedded markers. MV scatter incident on the detector was shown to be dependent on patient thickness and frame rate. The segmentation code was shown to be successful for all frame rates above 3 Hz for the Rando phantom corresponding to a kV to MV ratio of 0.16 and an SNR of 1.67. For a maximum patient dimension less than 36.4 cm the conservative kV parameters of 5 Hz at 1 mAs can be used to reduce dose while retaining image quality, where the current baseline kV parameters of 10 Hz at 1 mAs is shown to be adequate for marker segmentation up to a patient dimension of 40 cm. In conclusion, the MV scatter component of image quality noise for KIM has been quantified. For most prostate patients, use of KIM with 10 Hz imaging at 1 mAs is adequate however image quality can be maintained and imaging dose reduced by altering existing acquisition parameters.
The study of surgical image quality evaluation system by subjective quality factor method
NASA Astrophysics Data System (ADS)
Zhang, Jian J.; Xuan, Jason R.; Yang, Xirong; Yu, Honggang; Koullick, Edouard
2016-03-01
GreenLightTM procedure is an effective and economical way of treatment of benign prostate hyperplasia (BPH); there are almost a million of patients treated with GreenLightTM worldwide. During the surgical procedure, the surgeon or physician will rely on the monitoring video system to survey and confirm the surgical progress. There are a few obstructions that could greatly affect the image quality of the monitoring video, like laser glare by the tissue and body fluid, air bubbles and debris generated by tissue evaporation, and bleeding, just to name a few. In order to improve the physician's visual experience of a laser surgical procedure, the system performance parameter related to image quality needs to be well defined. However, since image quality is the integrated set of perceptions of the overall degree of excellence of an image, or in other words, image quality is the perceptually weighted combination of significant attributes (contrast, graininess …) of an image when considered in its marketplace or application, there is no standard definition on overall image or video quality especially for the no-reference case (without a standard chart as reference). In this study, Subjective Quality Factor (SQF) and acutance are used for no-reference image quality evaluation. Basic image quality parameters, like sharpness, color accuracy, size of obstruction and transmission of obstruction, are used as subparameter to define the rating scale for image quality evaluation or comparison. Sample image groups were evaluated by human observers according to the rating scale. Surveys of physician groups were also conducted with lab generated sample videos. The study shows that human subjective perception is a trustworthy way of image quality evaluation. More systematic investigation on the relationship between video quality and image quality of each frame will be conducted as a future study.
Facial motion parameter estimation and error criteria in model-based image coding
NASA Astrophysics Data System (ADS)
Liu, Yunhai; Yu, Lu; Yao, Qingdong
2000-04-01
Model-based image coding has been given extensive attention due to its high subject image quality and low bit-rates. But the estimation of object motion parameter is still a difficult problem, and there is not a proper error criteria for the quality assessment that are consistent with visual properties. This paper presents an algorithm of the facial motion parameter estimation based on feature point correspondence and gives the motion parameter error criteria. The facial motion model comprises of three parts. The first part is the global 3-D rigid motion of the head, the second part is non-rigid translation motion in jaw area, and the third part consists of local non-rigid expression motion in eyes and mouth areas. The feature points are automatically selected by a function of edges, brightness and end-node outside the blocks of eyes and mouth. The numbers of feature point are adjusted adaptively. The jaw translation motion is tracked by the changes of the feature point position of jaw. The areas of non-rigid expression motion can be rebuilt by using block-pasting method. The estimation approach of motion parameter error based on the quality of reconstructed image is suggested, and area error function and the error function of contour transition-turn rate are used to be quality criteria. The criteria reflect the image geometric distortion caused by the error of estimated motion parameters properly.
de Barros, Pietro Paolo; Metello, Luis F.; Camozzato, Tatiane Sabriela Cagol; Vieira, Domingos Manuel da Silva
2015-01-01
Objective The present study is aimed at contributing to identify the most appropriate OSEM parameters to generate myocardial perfusion imaging reconstructions with the best diagnostic quality, correlating them with patients’ body mass index. Materials and Methods The present study included 28 adult patients submitted to myocardial perfusion imaging in a public hospital. The OSEM method was utilized in the images reconstruction with six different combinations of iterations and subsets numbers. The images were analyzed by nuclear cardiology specialists taking their diagnostic value into consideration and indicating the most appropriate images in terms of diagnostic quality. Results An overall scoring analysis demonstrated that the combination of four iterations and four subsets has generated the most appropriate images in terms of diagnostic quality for all the classes of body mass index; however, the role played by the combination of six iterations and four subsets is highlighted in relation to the higher body mass index classes. Conclusion The use of optimized parameters seems to play a relevant role in the generation of images with better diagnostic quality, ensuring the diagnosis and consequential appropriate and effective treatment for the patient. PMID:26543282
Effects of image processing on the detective quantum efficiency
NASA Astrophysics Data System (ADS)
Park, Hye-Suk; Kim, Hee-Joung; Cho, Hyo-Min; Lee, Chang-Lae; Lee, Seung-Wan; Choi, Yu-Na
2010-04-01
Digital radiography has gained popularity in many areas of clinical practice. This transition brings interest in advancing the methodologies for image quality characterization. However, as the methodologies for such characterizations have not been standardized, the results of these studies cannot be directly compared. The primary objective of this study was to standardize methodologies for image quality characterization. The secondary objective was to evaluate affected factors to Modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) according to image processing algorithm. Image performance parameters such as MTF, NPS, and DQE were evaluated using the international electro-technical commission (IEC 62220-1)-defined RQA5 radiographic techniques. Computed radiography (CR) images of hand posterior-anterior (PA) for measuring signal to noise ratio (SNR), slit image for measuring MTF, white image for measuring NPS were obtained and various Multi-Scale Image Contrast Amplification (MUSICA) parameters were applied to each of acquired images. In results, all of modified images were considerably influence on evaluating SNR, MTF, NPS, and DQE. Modified images by the post-processing had higher DQE than the MUSICA=0 image. This suggests that MUSICA values, as a post-processing, have an affect on the image when it is evaluating for image quality. In conclusion, the control parameters of image processing could be accounted for evaluating characterization of image quality in same way. The results of this study could be guided as a baseline to evaluate imaging systems and their imaging characteristics by measuring MTF, NPS, and DQE.
Optimization of dose and image quality in adult and pediatric computed tomography scans
NASA Astrophysics Data System (ADS)
Chang, Kwo-Ping; Hsu, Tzu-Kun; Lin, Wei-Ting; Hsu, Wen-Lin
2017-11-01
Exploration to maximize CT image and reduce radiation dose was conducted while controlling for multiple factors. The kVp, mAs, and iteration reconstruction (IR), affect the CT image quality and radiation dose absorbed. The optimal protocols (kVp, mAs, IR) are derived by figure of merit (FOM) based on CT image quality (CNR) and CT dose index (CTDIvol). CT image quality metrics such as CT number accuracy, SNR, low contrast materials' CNR and line pair resolution were also analyzed as auxiliary assessments. CT protocols were carried out with an ACR accreditation phantom and a five-year-old pediatric head phantom. The threshold values of the adult CT scan parameters, 100 kVp and 150 mAs, were determined from the CT number test and line pairs in ACR phantom module 1and module 4 respectively. The findings of this study suggest that the optimal scanning parameters for adults be set at 100 kVp and 150-250 mAs. However, for improved low- contrast resolution, 120 kVp and 150-250 mAs are optimal. Optimal settings for pediatric head CT scan were 80 kVp/50 mAs, for maxillary sinus and brain stem, while 80 kVp /300 mAs for temporal bone. SNR is not reliable as the independent image parameter nor the metric for determining optimal CT scan parameters. The iteration reconstruction (IR) approach is strongly recommended for both adult and pediatric CT scanning as it markedly improves image quality without affecting radiation dose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szczykutowicz, T; Rubert, N; Ranallo, F
Purpose: A framework for explaining differences in image quality to non-technical audiences in medial imaging is needed. Currently, this task is something that is learned “on the job.” The lack of a formal methodology for communicating optimal acquisition parameters into the clinic effectively mitigates many technological advances. As a community, medical physicists need to be held responsible for not only advancing image science, but also for ensuring its proper use in the clinic. This work outlines a framework that bridges the gap between the results from quantitative image quality metrics like detectability, MTF, and NPS and their effect on specificmore » anatomical structures present in diagnostic imaging tasks. Methods: Specific structures of clinical importance were identified for a body, an extremity, a chest, and a temporal bone protocol. Using these structures, quantitative metrics were used to identify the parameter space that should yield optimal image quality constrained within the confines of clinical logistics and dose considerations. The reading room workflow for presenting the proposed changes for imaging each of these structures is presented. The workflow consists of displaying images for physician review consisting of different combinations of acquisition parameters guided by quantitative metrics. Examples of using detectability index, MTF, NPS, noise and noise non-uniformity are provided. During review, the physician was forced to judge the image quality solely on those features they need for diagnosis, not on the overall “look” of the image. Results: We found that in many cases, use of this framework settled mis-agreements between physicians. Once forced to judge images on the ability to detect specific structures inter reader agreement was obtained. Conclusion: This framework will provide consulting, research/industrial, or in-house physicists with clinically relevant imaging tasks to guide reading room image review. This framework avoids use of the overall “look” or “feel” to dictate acquisition parameter selection. Equipment grants GE Healthcare.« less
Enders, Judith; Rief, Matthias; Zimmermann, Elke; Asbach, Patrick; Diederichs, Gerd; Wetz, Christoph; Siebert, Eberhard; Wagner, Moritz; Hamm, Bernd; Dewey, Marc
2013-01-01
The purpose of the present study was to compare the image quality of spinal magnetic resonance (MR) imaging performed on a high-field horizontal open versus a short-bore MR scanner in a randomized controlled study setup. Altogether, 93 (80% women, mean age 53) consecutive patients underwent spine imaging after random assignement to a 1-T horizontal open MR scanner with a vertical magnetic field or a 1.5-T short-bore MR scanner. This patient subset was part of a larger cohort. Image quality was assessed by determining qualitative parameters, signal-to-noise (SNR) and contrast-to-noise ratios (CNR), and quantitative contour sharpness. The image quality parameters were higher for short-bore MR imaging. Regarding all sequences, the relative differences were 39% for the mean overall qualitative image quality, 53% for the mean SNR values, and 34-37% for the quantitative contour sharpness (P<0.0001). The CNR values were also higher for images obtained with the short-bore MR scanner. No sequence was of very poor (nondiagnostic) image quality. Scanning times were significantly longer for examinations performed on the open MR scanner (mean: 32±22 min versus 20±9 min; P<0.0001). In this randomized controlled comparison of spinal MR imaging with an open versus a short-bore scanner, short-bore MR imaging revealed considerably higher image quality with shorter scanning times. ClinicalTrials.gov NCT00715806.
Zimmermann, Elke; Asbach, Patrick; Diederichs, Gerd; Wetz, Christoph; Siebert, Eberhard; Wagner, Moritz; Hamm, Bernd; Dewey, Marc
2013-01-01
Background The purpose of the present study was to compare the image quality of spinal magnetic resonance (MR) imaging performed on a high-field horizontal open versus a short-bore MR scanner in a randomized controlled study setup. Methods Altogether, 93 (80% women, mean age 53) consecutive patients underwent spine imaging after random assignement to a 1-T horizontal open MR scanner with a vertical magnetic field or a 1.5-T short-bore MR scanner. This patient subset was part of a larger cohort. Image quality was assessed by determining qualitative parameters, signal-to-noise (SNR) and contrast-to-noise ratios (CNR), and quantitative contour sharpness. Results The image quality parameters were higher for short-bore MR imaging. Regarding all sequences, the relative differences were 39% for the mean overall qualitative image quality, 53% for the mean SNR values, and 34–37% for the quantitative contour sharpness (P<0.0001). The CNR values were also higher for images obtained with the short-bore MR scanner. No sequence was of very poor (nondiagnostic) image quality. Scanning times were significantly longer for examinations performed on the open MR scanner (mean: 32±22 min versus 20±9 min; P<0.0001). Conclusions In this randomized controlled comparison of spinal MR imaging with an open versus a short-bore scanner, short-bore MR imaging revealed considerably higher image quality with shorter scanning times. Trial Registration ClinicalTrials.gov NCT00715806 PMID:24391767
Image quality enhancement for skin cancer optical diagnostics
NASA Astrophysics Data System (ADS)
Bliznuks, Dmitrijs; Kuzmina, Ilona; Bolocko, Katrina; Lihachev, Alexey
2017-12-01
The research presents image quality analysis and enhancement proposals in biophotonic area. The sources of image problems are reviewed and analyzed. The problems with most impact in biophotonic area are analyzed in terms of specific biophotonic task - skin cancer diagnostics. The results point out that main problem for skin cancer analysis is the skin illumination problems. Since it is often not possible to prevent illumination problems, the paper proposes image post processing algorithm - low frequency filtering. Practical results show diagnostic results improvement after using proposed filter. Along that, filter do not reduces diagnostic results' quality for images without illumination defects. Current filtering algorithm requires empirical tuning of filter parameters. Further work needed to test the algorithm in other biophotonic applications and propose automatic filter parameter selection.
Lv, Peijie; Liu, Jie; Chai, Yaru; Yan, Xiaopeng; Gao, Jianbo; Dong, Junqiang
2017-01-01
To evaluate the feasibility, image quality, and radiation dose of automatic spectral imaging protocol selection (ASIS) and adaptive statistical iterative reconstruction (ASIR) with reduced contrast agent dose in abdominal multiphase CT. One hundred and sixty patients were randomly divided into two scan protocols (n = 80 each; protocol A, 120 kVp/450 mgI/kg, filtered back projection algorithm (FBP); protocol B, spectral CT imaging with ASIS and 40 to 70 keV monochromatic images generated per 300 mgI/kg, ASIR algorithm. Quantitative parameters (image noise and contrast-to-noise ratios [CNRs]) and qualitative visual parameters (image noise, small structures, organ enhancement, and overall image quality) were compared. Monochromatic images at 50 keV and 60 keV provided similar or lower image noise, but higher contrast and overall image quality as compared with 120-kVp images. Despite the higher image noise, 40-keV images showed similar overall image quality compared to 120-kVp images. Radiation dose did not differ between the two protocols, while contrast agent dose in protocol B was reduced by 33 %. Application of ASIR and ASIS to monochromatic imaging from 40 to 60 keV allowed contrast agent dose reduction with adequate image quality and without increasing radiation dose compared to 120 kVp with FBP. • Automatic spectral imaging protocol selection provides appropriate scan protocols. • Abdominal CT is feasible using spectral imaging and 300 mgI/kg contrast agent. • 50-keV monochromatic images with 50 % ASIR provide optimal image quality.
Olivieri, Laura J; Cross, Russell R; O'Brien, Kendall E; Ratnayaka, Kanishka; Hansen, Michael S
2015-09-01
Cardiac magnetic resonance (MR) imaging is a valuable tool in congenital heart disease; however patients frequently have metal devices in the chest from the treatment of their disease that complicate imaging. Methods are needed to improve imaging around metal implants near the heart. Basic sequence parameter manipulations have the potential to minimize artifact while limiting effects on image resolution and quality. Our objective was to design cine and static cardiac imaging sequences to minimize metal artifact while maintaining image quality. Using systematic variation of standard imaging parameters on a fluid-filled phantom containing commonly used metal cardiac devices, we developed optimized sequences for steady-state free precession (SSFP), gradient recalled echo (GRE) cine imaging, and turbo spin-echo (TSE) black-blood imaging. We imaged 17 consecutive patients undergoing routine cardiac MR with 25 metal implants of various origins using both standard and optimized imaging protocols for a given slice position. We rated images for quality and metal artifact size by measuring metal artifact in two orthogonal planes within the image. All metal artifacts were reduced with optimized imaging. The average metal artifact reduction for the optimized SSFP cine was 1.5+/-1.8 mm, and for the optimized GRE cine the reduction was 4.6+/-4.5 mm (P < 0.05). Quality ratings favored the optimized GRE cine. Similarly, the average metal artifact reduction for the optimized TSE images was 1.6+/-1.7 mm (P < 0.05), and quality ratings favored the optimized TSE imaging. Imaging sequences tailored to minimize metal artifact are easily created by modifying basic sequence parameters, and images are superior to standard imaging sequences in both quality and artifact size. Specifically, for optimized cine imaging a GRE sequence should be used with settings that favor short echo time, i.e. flow compensation off, weak asymmetrical echo and a relatively high receiver bandwidth. For static black-blood imaging, a TSE sequence should be used with fat saturation turned off and high receiver bandwidth.
Oetjen, Janina; Lachmund, Delf; Palmer, Andrew; Alexandrov, Theodore; Becker, Michael; Boskamp, Tobias; Maass, Peter
2016-09-01
A standardized workflow for matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI imaging MS) is a prerequisite for the routine use of this promising technology in clinical applications. We present an approach to develop standard operating procedures for MALDI imaging MS sample preparation of formalin-fixed and paraffin-embedded (FFPE) tissue sections based on a novel quantitative measure of dataset quality. To cover many parts of the complex workflow and simultaneously test several parameters, experiments were planned according to a fractional factorial design of experiments (DoE). The effect of ten different experiment parameters was investigated in two distinct DoE sets, each consisting of eight experiments. FFPE rat brain sections were used as standard material because of low biological variance. The mean peak intensity and a recently proposed spatial complexity measure were calculated for a list of 26 predefined peptides obtained by in silico digestion of five different proteins and served as quality criteria. A five-way analysis of variance (ANOVA) was applied on the final scores to retrieve a ranking of experiment parameters with increasing impact on data variance. Graphical abstract MALDI imaging experiments were planned according to fractional factorial design of experiments for the parameters under study. Selected peptide images were evaluated by the chosen quality metric (structure and intensity for a given peak list), and the calculated values were used as an input for the ANOVA. The parameters with the highest impact on the quality were deduced and SOPs recommended.
Assessment of image quality in x-ray radiography imaging using a small plasma focus device
NASA Astrophysics Data System (ADS)
Kanani, A.; Shirani, B.; Jabbari, I.; Mokhtari, J.
2014-08-01
This paper offers a comprehensive investigation of image quality parameters for a small plasma focus as a pulsed hard x-ray source for radiography applications. A set of images were captured from some metal objects and electronic circuits using a low energy plasma focus at different voltages of capacitor bank and different pressures of argon gas. The x-ray source focal spot of this device was obtained to be about 0.6 mm using the penumbra imaging method. The image quality was studied by several parameters such as image contrast, line spread function (LSF) and modulation transfer function (MTF). Results showed that the contrast changes by variations in gas pressure. The best contrast was obtained at a pressure of 0.5 mbar and 3.75 kJ stored energy. The results of x-ray dose from the device showed that about 0.6 mGy is sufficient to obtain acceptable images on the film. The measurements of LSF and MTF parameters were carried out by means of a thin stainless steel wire 0.8 mm in diameter and the cut-off frequency was obtained to be about 1.5 cycles/mm.
Improved Compressive Sensing of Natural Scenes Using Localized Random Sampling
Barranca, Victor J.; Kovačič, Gregor; Zhou, Douglas; Cai, David
2016-01-01
Compressive sensing (CS) theory demonstrates that by using uniformly-random sampling, rather than uniformly-spaced sampling, higher quality image reconstructions are often achievable. Considering that the structure of sampling protocols has such a profound impact on the quality of image reconstructions, we formulate a new sampling scheme motivated by physiological receptive field structure, localized random sampling, which yields significantly improved CS image reconstructions. For each set of localized image measurements, our sampling method first randomly selects an image pixel and then measures its nearby pixels with probability depending on their distance from the initially selected pixel. We compare the uniformly-random and localized random sampling methods over a large space of sampling parameters, and show that, for the optimal parameter choices, higher quality image reconstructions can be consistently obtained by using localized random sampling. In addition, we argue that the localized random CS optimal parameter choice is stable with respect to diverse natural images, and scales with the number of samples used for reconstruction. We expect that the localized random sampling protocol helps to explain the evolutionarily advantageous nature of receptive field structure in visual systems and suggests several future research areas in CS theory and its application to brain imaging. PMID:27555464
Using the NEMA NU 4 PET image quality phantom in multipinhole small-animal SPECT.
Harteveld, Anita A; Meeuwis, Antoi P W; Disselhorst, Jonathan A; Slump, Cornelis H; Oyen, Wim J G; Boerman, Otto C; Visser, Eric P
2011-10-01
Several commercial small-animal SPECT scanners using multipinhole collimation are presently available. However, generally accepted standards to characterize the performance of these scanners do not exist. Whereas for small-animal PET, the National Electrical Manufacturers Association (NEMA) NU 4 standards have been defined in 2008, such standards are still lacking for small-animal SPECT. In this study, the image quality parameters associated with the NEMA NU 4 image quality phantom were determined for a small-animal multipinhole SPECT scanner. Multiple whole-body scans of the NEMA NU 4 image quality phantom of 1-h duration were performed in a U-SPECT-II scanner using (99m)Tc with activities ranging between 8.4 and 78.2 MBq. The collimator contained 75 pinholes of 1.0-mm diameter and had a bore diameter of 98 mm. Image quality parameters were determined as a function of average phantom activity, number of iterations, postreconstruction spatial filter, and scatter correction. In addition, a mouse was injected with (99m)Tc-hydroxymethylene diphosphonate and was euthanized 6.5 h after injection. Multiple whole-body scans of this mouse of 1-h duration were acquired for activities ranging between 3.29 and 52.7 MBq. An increase in the number of iterations was accompanied by an increase in the recovery coefficients for the small rods (RC(rod)), an increase in the noise in the uniform phantom region, and a decrease in spillover ratios for the cold-air- and water-filled scatter compartments (SOR(air) and SOR(wat)). Application of spatial filtering reduced image noise but lowered RC(rod). Filtering did not influence SOR(air) and SOR(wat). Scatter correction reduced SOR(air) and SOR(wat). The effect of total phantom activity was primarily seen in a reduction of image noise with increasing activity. RC(rod), SOR(air), and SOR(wat) were more or less constant as a function of phantom activity. The relation between acquisition and reconstruction settings and image quality was confirmed in the (99m)Tc-hydroxymethylene diphosphonate mouse scans. Although developed for small-animal PET, the NEMA NU 4 image quality phantom was found to be useful for small-animal SPECT as well, allowing for objective determination of image quality parameters and showing the trade-offs between several of these parameters on variation of acquisition and reconstruction settings.
Sinkó, József; Kákonyi, Róbert; Rees, Eric; Metcalf, Daniel; Knight, Alex E.; Kaminski, Clemens F.; Szabó, Gábor; Erdélyi, Miklós
2014-01-01
Localization-based super-resolution microscopy image quality depends on several factors such as dye choice and labeling strategy, microscope quality and user-defined parameters such as frame rate and number as well as the image processing algorithm. Experimental optimization of these parameters can be time-consuming and expensive so we present TestSTORM, a simulator that can be used to optimize these steps. TestSTORM users can select from among four different structures with specific patterns, dye and acquisition parameters. Example results are shown and the results of the vesicle pattern are compared with experimental data. Moreover, image stacks can be generated for further evaluation using localization algorithms, offering a tool for further software developments. PMID:24688813
NASA Astrophysics Data System (ADS)
Rill, Lynn Neitzey
Chest radiography is technically difficult because of the wide variation of tissue attenuations in the chest and limitations of screen-film systems. Mobile chest radiography, performed bedside on hospital inpatients, presents additional difficulties due to geometrical and equipment limitations inherent to mobile x-ray procedures and the severity of illness in patients. Computed radiography (CR) offers a new approach for mobile chest radiography by utilizing a photostimulable phosphor. Photostimulable phosphors are more efficient in absorbing lower-energy x-rays than standard intensifying screens and overcome some image quality limitations of mobile chest imaging, particularly because of the inherent latitude. This study evaluated changes in imaging parameters for CR to take advantage of differences between CR and screen-film radiography. Two chest phantoms, made of acrylic and aluminum, simulated x-ray attenuation for average-sized and large- sized adult chests. The phantoms contained regions representing the lungs, heart and subdiaphragm. Acrylic and aluminum disks (1.9 cm diameter) were positioned in the chest regions to make signal-to-noise ratio (SNR) measurements for different combinations of imaging parameters. Disk thicknesses (contrast) were determined from disk visibility. Effective dose to the phantom was also measured for technique combinations. The results indicated that using an anti-scatter grid and lowering x- ray tube potential improved the SNR significantly; however, the dose to the phantom also increased. An evaluation was performed to examine the clinical applicability of the observed improvements in SNR. Parameter adjustments that improved phantom SNRs by more than 50% resulted in perceived image quality improvements in the lung region of clinical mobile chest radiographs. Parameters that produced smaller improvements in SNR had no apparent effect on clinical image quality. Based on this study, it is recommended that a 3:1 grid be used for mobile chest radiography with CR in order to improve image quality. Using a higher kVp (+15 kVp) did not have a detrimental effect on image quality and offered a patient dose savings, including effective dose and breast dose. Higher kVp techniques should be considered when using a grid is not possible.
Dyvorne, Hadrien A.; Galea, Nicola; Nevers, Thomas; Fiel, M. Isabel; Carpenter, David; Wong, Edmund; Orton, Matthew; de Oliveira, Andre; Feiweier, Thorsten; Vachon, Marie-Louise; Babb, James S.
2013-01-01
Purpose: To optimize intravoxel incoherent motion (IVIM) diffusion-weighted (DW) imaging by estimating the effects of diffusion gradient polarity and breathing acquisition scheme on image quality, signal-to-noise ratio (SNR), IVIM parameters, and parameter reproducibility, as well as to investigate the potential of IVIM in the detection of hepatic fibrosis. Materials and Methods: In this institutional review board–approved prospective study, 20 subjects (seven healthy volunteers, 13 patients with hepatitis C virus infection; 14 men, six women; mean age, 46 years) underwent IVIM DW imaging with four sequences: (a) respiratory-triggered (RT) bipolar (BP) sequence, (b) RT monopolar (MP) sequence, (c) free-breathing (FB) BP sequence, and (d) FB MP sequence. Image quality scores were assessed for all sequences. A biexponential analysis with the Bayesian method yielded true diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (PF) in liver parenchyma. Mixed-model analysis of variance was used to compare image quality, SNR, IVIM parameters, and interexamination variability between the four sequences, as well as the ability to differentiate areas of liver fibrosis from normal liver tissue. Results: Image quality with RT sequences was superior to that with FB acquisitions (P = .02) and was not affected by gradient polarity. SNR did not vary significantly between sequences. IVIM parameter reproducibility was moderate to excellent for PF and D, while it was less reproducible for D*. PF and D were both significantly lower in patients with hepatitis C virus than in healthy volunteers with the RT BP sequence (PF = 13.5% ± 5.3 [standard deviation] vs 9.2% ± 2.5, P = .038; D = [1.16 ± 0.07] × 10−3 mm2/sec vs [1.03 ± 0.1] × 10−3 mm2/sec, P = .006). Conclusion: The RT BP DW imaging sequence had the best results in terms of image quality, reproducibility, and ability to discriminate between healthy and fibrotic liver with biexponential fitting. © RSNA, 2012 PMID:23220895
Kavurmacı, Murat; Ekercin, Semih; Altaş, Levent; Kurmaç, Yakup
2013-08-01
This paper focuses on the evaluation of water quality variations in Hirfanlı Water Reservoir, which is one of the most important water resources in Turkey, through EO-1 (Earth Observing-1) Advanced Land Imager (ALI) multispectral data and real-time field sampling. The study was materialized in 20 different sampling points during the overpass of the EO-1 ALI sensor over the study area. A multi-linear regression technique was used to explore the relationships between radiometrically corrected EO-1 ALI image data and water quality parameters: chlorophyll a, turbidity, and suspended solids. The retrieved and verified results show that the measured and estimated values of water quality parameters are in good agreement (R (2) >0.93). The resulting thematic maps derived from EO-1 multispectral data for chlorophyll a, turbidity, and suspended solids show the spatial distribution of the water quality parameters. The results indicate that the reservoir has average nutrient values. Furthermore, chlorophyll a, turbidity, and suspended solids values increased at the upstream reservoir and shallow coast of the Hirfanlı Water Reservoir.
Evaluation of image quality in terahertz pulsed imaging using test objects.
Fitzgerald, A J; Berry, E; Miles, R E; Zinovev, N N; Smith, M A; Chamberlain, J M
2002-11-07
As with other imaging modalities, the performance of terahertz (THz) imaging systems is limited by factors of spatial resolution, contrast and noise. The purpose of this paper is to introduce test objects and image analysis methods to evaluate and compare THz image quality in a quantitative and objective way, so that alternative terahertz imaging system configurations and acquisition techniques can be compared, and the range of image parameters can be assessed. Two test objects were designed and manufactured, one to determine the modulation transfer functions (MTF) and the other to derive image signal to noise ratio (SNR) at a range of contrasts. As expected the higher THz frequencies had larger MTFs, and better spatial resolution as determined by the spatial frequency at which the MTF dropped below the 20% threshold. Image SNR was compared for time domain and frequency domain image parameters and time delay based images consistently demonstrated higher SNR than intensity based parameters such as relative transmittance because the latter are more strongly affected by the sources of noise in the THz system such as laser fluctuations and detector shot noise.
SU-E-I-25: Determining Tube Current, Tube Voltage and Pitch Suitable for Low- Dose Lung Screening CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, K; Matthews, K
2014-06-01
Purpose: The quality of a computed tomography (CT) image and the dose delivered during its acquisition depend upon the acquisition parameters used. Tube current, tube voltage, and pitch are acquisition parameters that potentially affect image quality and dose. This study investigated physicians' abilities to characterize small, solid nodules in low-dose CT images for combinations of current, voltage and pitch, for three CT scanner models. Methods: Lung CT images was acquired of a Data Spectrum anthropomorphic torso phantom with various combinations of pitch, tube current, and tube voltage; this phantom was used because acrylic beads of various sizes could be placedmore » within the lung compartments to simulate nodules. The phantom was imaged on two 16-slice scanners and a 64-slice scanner. The acquisition parameters spanned a range of estimated CTDI levels; the CTDI estimates from the acquisition software were verified by measurement. Several experienced radiologists viewed the phantom lung CT images and noted nodule location, size and shape, as well as the acceptability of overall image quality. Results: Image quality for assessment of nodules was deemed unsatisfactory for all scanners at 80 kV (any tube current) and at 35 mA (any tube voltage). Tube current of 50 mA or more at 120 kV resulted in similar assessments from all three scanners. Physician-measured sphere diameters were closer to actual diameters for larger spheres, higher tube current, and higher kV. Pitch influenced size measurements less for larger spheres than for smaller spheres. CTDI was typically overestimated by the scanner software compared to measurement. Conclusion: Based on this survey of acquisition parameters, a low-dose CT protocol of 120 kV, 50 mA, and pitch of 1.4 is recommended to balance patient dose and acceptable image quality. For three models of scanners, this protocol resulted in estimated CTDIs from 2.9–3.6 mGy.« less
Optimization of contrast-enhanced spectral mammography depending on clinical indication
Dromain, Clarisse; Canale, Sandra; Saab-Puong, Sylvie; Carton, Ann-Katherine; Muller, Serge; Fallenberg, Eva Maria
2014-01-01
Abstract. The objective is to optimize low-energy (LE) and high-energy (HE) exposure parameters of contrast-enhanced spectral mammography (CESM) examinations in four different clinical applications for which different levels of average glandular dose (AGD) and ratios between LE and total doses are required. The optimization was performed on a Senographe DS with a SenoBright® upgrade. Simulations were performed to find the optima by maximizing the contrast-to-noise ratio (CNR) on the recombined CESM image using different targeted doses and LE image quality. The linearity between iodine concentration and CNR as well as the minimal detectable iodine concentration was assessed. The image quality of the LE image was assessed on the CDMAM contrast-detail phantom. Experiments confirmed the optima found on simulation. The CNR was higher for each clinical indication than for SenoBright®, including the screening indication for which the total AGD was 22% lower. Minimal iodine concentrations detectable in the case of a 3-mm-diameter round tumor were 12.5% lower than those obtained for the same dose in the clinical routine. LE image quality satisfied EUREF acceptable limits for threshold contrast. This newly optimized set of acquisition parameters allows increased contrast detectability compared to parameters currently used without a significant loss in LE image quality. PMID:26158058
Optimization of contrast-enhanced spectral mammography depending on clinical indication.
Dromain, Clarisse; Canale, Sandra; Saab-Puong, Sylvie; Carton, Ann-Katherine; Muller, Serge; Fallenberg, Eva Maria
2014-10-01
The objective is to optimize low-energy (LE) and high-energy (HE) exposure parameters of contrast-enhanced spectral mammography (CESM) examinations in four different clinical applications for which different levels of average glandular dose (AGD) and ratios between LE and total doses are required. The optimization was performed on a Senographe DS with a SenoBright® upgrade. Simulations were performed to find the optima by maximizing the contrast-to-noise ratio (CNR) on the recombined CESM image using different targeted doses and LE image quality. The linearity between iodine concentration and CNR as well as the minimal detectable iodine concentration was assessed. The image quality of the LE image was assessed on the CDMAM contrast-detail phantom. Experiments confirmed the optima found on simulation. The CNR was higher for each clinical indication than for SenoBright®, including the screening indication for which the total AGD was 22% lower. Minimal iodine concentrations detectable in the case of a 3-mm-diameter round tumor were 12.5% lower than those obtained for the same dose in the clinical routine. LE image quality satisfied EUREF acceptable limits for threshold contrast. This newly optimized set of acquisition parameters allows increased contrast detectability compared to parameters currently used without a significant loss in LE image quality.
Tugwell, J R; England, A; Hogg, P
2017-08-01
Physical and technical differences exist between imaging on an x-ray tabletop and imaging on a trolley. This study evaluates how trolley imaging impacts image quality and radiation dose for an antero-posterior (AP) pelvis projection whilst subsequently exploring means of optimising this imaging examination. An anthropomorphic pelvis phantom was imaged on a commercially available trolley under various conditions. Variables explored included two mattresses, two image receptor holder positions, three source to image distances (SIDs) and four mAs values. Image quality was evaluated using relative visual grading analysis with the reference image acquired on the x-ray tabletop. Contrast to noise ratio (CNR) was calculated. Effective dose was established using Monte Carlo simulation. Optimisation scores were derived as a figure of merit by dividing effective dose with visual image quality scores. Visual image quality reduced significantly (p < 0.05) whilst effective dose increased significantly (p < 0.05) for images acquired on the trolley using identical acquisition parameters to the reference image. The trolley image with the highest optimisation score was acquired using 130 cm SID, 20 mAs, the standard mattress and platform not elevated. A difference of 12.8 mm was found between the image with the lowest and highest magnification factor (18%). The acquisition parameters used for AP pelvis on the x-ray tabletop are not transferable to trolley imaging and should be modified accordingly to compensate for the differences that exist. Exposure charts should be developed for trolley imaging to ensure optimal image quality at lowest possible dose. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Thoen, Hendrik; Keereman, Vincent; Mollet, Pieter; Van Holen, Roel; Vandenberghe, Stefaan
2013-09-21
The optimization of a whole-body PET system remains a challenging task, as the imaging performance is influenced by a complex interaction of different design parameters. However, it is not always clear which parameters have the largest impact on image quality and are most eligible for optimization. To determine this, we need to be able to assess their influence on image quality. We performed Monte-Carlo simulations of a whole-body PET scanner to predict the influence on image quality of three detector parameters: the TOF resolution, the transverse pixel size and depth-of-interaction (DOI)-correction. The inner diameter of the PET scanner was 65 cm, small enough to allow physical integration into a simultaneous PET-MR system. Point sources were used to evaluate the influence of transverse pixel size and DOI-correction on spatial resolution as function of radial distance. To evaluate the influence on contrast recovery and pixel noise a cylindrical phantom of 35 cm diameter was used, representing a large patient. The phantom contained multiple hot lesions with 5 mm diameter. These lesions were placed at radial distances of 50, 100 and 150 mm from the center of the field-of-view, to be able to study the effects at different radial positions. The non-prewhitening (NPW) observer was used for objective analysis of the detectability of the hot lesions in the cylindrical phantom. Based on this analysis the NPW-SNR was used to quantify the relative improvements in image quality due to changes of the variable detector parameters. The image quality of a whole-body PET scanner can be improved significantly by reducing the transverse pixel size from 4 to 2.6 mm and improving the TOF resolution from 600 to 400 ps and further from 400 to 200 ps. Compared to pixel size, the TOF resolution has the larger potential to increase image quality for the simulated phantom. The introduction of two layer DOI-correction only leads to a modest improvement for the spheres at radial distance of 150 mm from the center of the transaxial FOV.
Bodelle, Boris; Fischbach, Constanze; Booz, Christian; Yel, Ibrahim; Frellesen, Claudia; Kaup, Moritz; Beeres, Martin; Vogl, Thomas J; Scholtz, Jan-Erik
2017-06-01
Most of the applied radiation dose at CT is in the lower photon energy range, which is of limited diagnostic importance. To investigate image quality and effects on radiation parameters of 100-kVp spectral filtration single-energy chest CT using a tin-filter at third-generation dual-source CT in comparison to standard 100-kVp chest CT. Thirty-three children referred for a non-contrast chest CT performed on a third-generation dual-source CT scanner were examined at 100 kVp with a dedicated tin filter with a tube current-time product resulting in standard protocol dose. We compared resulting images with images from children examined using standard single-source chest CT at 100 kVp. We assessed objective and subjective image quality and compared radiation dose parameters. Radiation dose was comparable for children 5 years old and younger, and it was moderately decreased for older children when using spectral filtration (P=0.006). Effective tube current increased significantly (P=0.0001) with spectral filtration, up to a factor of 10. Signal-to-noise ratio and image noise were similar for both examination techniques (P≥0.06). Subjective image quality showed no significant differences (P≥0.2). Using 100-kVp spectral filtration chest CT in children by means of a tube-based tin-filter on a third-generation dual-source CT scanner increases effective tube current up to a factor of 10 to provide similar image quality at equivalent dose compared to standard single-source CT without spectral filtration.
Comparative Study of the MTFA, ICS, and SQRI Image Quality Metrics for Visual Display Systems
1991-09-01
reasonable image quality predictions across select display and viewing condition parameters. 101 6.0 REFERENCES American National Standard for Human Factors Engineering of ’ Visual Display Terminal Workstations . ANSI
NASA Astrophysics Data System (ADS)
Vuori, Tero; Olkkonen, Maria
2006-01-01
The aim of the study is to test both customer image quality rating (subjective image quality) and physical measurement of user behavior (eye movements tracking) to find customer satisfaction differences in imaging technologies. Methodological aim is to find out whether eye movements could be quantitatively used in image quality preference studies. In general, we want to map objective or physically measurable image quality to subjective evaluations and eye movement data. We conducted a series of image quality tests, in which the test subjects evaluated image quality while we recorded their eye movements. Results show that eye movement parameters consistently change according to the instructions given to the user, and according to physical image quality, e.g. saccade duration increased with increasing blur. Results indicate that eye movement tracking could be used to differentiate image quality evaluation strategies that the users have. Results also show that eye movements would help mapping between technological and subjective image quality. Furthermore, these results give some empirical emphasis to top-down perception processes in image quality perception and evaluation by showing differences between perceptual processes in situations when cognitive task varies.
NASA Astrophysics Data System (ADS)
Flores, Jorge L.; García-Torales, G.; Ponce Ávila, Cristina
2006-08-01
This paper describes an in situ image recognition system designed to inspect the quality standards of the chocolate pops during their production. The essence of the recognition system is the localization of the events (i.e., defects) in the input images that affect the quality standards of pops. To this end, processing modules, based on correlation filter, and segmentation of images are employed with the objective of measuring the quality standards. Therefore, we designed the correlation filter and defined a set of features from the correlation plane. The desired values for these parameters are obtained by exploiting information about objects to be rejected in order to find the optimal discrimination capability of the system. Regarding this set of features, the pop can be correctly classified. The efficacy of the system has been tested thoroughly under laboratory conditions using at least 50 images, containing 3 different types of possible defects.
SU-D-12A-06: A Comprehensive Parameter Analysis for Low Dose Cone-Beam CT Reconstruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, W; Southern Medical University, Guangzhou; Yan, H
Purpose: There is always a parameter in compressive sensing based iterative reconstruction (IR) methods low dose cone-beam CT (CBCT), which controls the weight of regularization relative to data fidelity. A clear understanding of the relationship between image quality and parameter values is important. The purpose of this study is to investigate this subject based on experimental data and a representative advanced IR algorithm using Tight-frame (TF) regularization. Methods: Three data sets of a Catphan phantom acquired at low, regular and high dose levels are used. For each tests, 90 projections covering a 200-degree scan range are used for reconstruction. Threemore » different regions-of-interest (ROIs) of different contrasts are used to calculate contrast-to-noise ratios (CNR) for contrast evaluation. A single point structure is used to measure modulation transfer function (MTF) for spatial-resolution evaluation. Finally, we analyze CNRs and MTFs to study the relationship between image quality and parameter selections. Results: It was found that: 1) there is no universal optimal parameter. The optimal parameter value depends on specific task and dose level. 2) There is a clear trade-off between CNR and resolution. The parameter for the best CNR is always smaller than that for the best resolution. 3) Optimal parameters are also dose-specific. Data acquired under a high dose protocol require less regularization, yielding smaller optimal parameter values. 4) Comparing with conventional FDK images, TF-based CBCT images are better under a certain optimally selected parameters. The advantages are more obvious for low dose data. Conclusion: We have investigated the relationship between image quality and parameter values in the TF-based IR algorithm. Preliminary results indicate optimal parameters are specific to both the task types and dose levels, providing guidance for selecting parameters in advanced IR algorithms. This work is supported in part by NIH (1R01CA154747-01)« less
Lv, Peijie; Liu, Jie; Zhang, Rui; Jia, Yan
2015-01-01
Objective To assess the lesion conspicuity and image quality in CT evaluation of small (≤ 3 cm) hepatocellular carcinomas (HCCs) using automatic tube voltage selection (ATVS) and automatic tube current modulation (ATCM) with or without iterative reconstruction. Materials and Methods One hundred and five patients with 123 HCC lesions were included. Fifty-seven patients were scanned using both ATVS and ATCM and images were reconstructed using either filtered back-projection (FBP) (group A1) or sinogram-affirmed iterative reconstruction (SAFIRE) (group A2). Forty-eight patients were imaged using only ATCM, with a fixed tube potential of 120 kVp and FBP reconstruction (group B). Quantitative parameters (image noise in Hounsfield unit and contrast-to-noise ratio of the aorta, the liver, and the hepatic tumors) and qualitative visual parameters (image noise, overall image quality, and lesion conspicuity as graded on a 5-point scale) were compared among the groups. Results Group A2 scanned with the automatically chosen 80 kVp and 100 kVp tube voltages ranked the best in lesion conspicuity and subjective and objective image quality (p values ranging from < 0.001 to 0.004) among the three groups, except for overall image quality between group A2 and group B (p = 0.022). Group A1 showed higher image noise (p = 0.005) but similar lesion conspicuity and overall image quality as compared with group B. The radiation dose in group A was 19% lower than that in group B (p = 0.022). Conclusion CT scanning with combined use of ATVS and ATCM and image reconstruction with SAFIRE algorithm provides higher lesion conspicuity and better image quality for evaluating small hepatic HCCs with radiation dose reduction. PMID:25995682
Wang, Junqiang; Wang, Yu; Zhu, Gang; Chen, Xiangqian; Zhao, Xiangrui; Qiao, Huiting; Fan, Yubo
2018-06-01
Spatial positioning accuracy is a key issue in a computer-assisted orthopaedic surgery (CAOS) system. Since intraoperative fluoroscopic images are one of the most important input data to the CAOS system, the quality of these images should have a significant influence on the accuracy of the CAOS system. But the regularities and mechanism of the influence of the quality of intraoperative images on the accuracy of a CAOS system have yet to be studied. Two typical spatial positioning methods - a C-arm calibration-based method and a bi-planar positioning method - are used to study the influence of different image quality parameters, such as resolution, distortion, contrast and signal-to-noise ratio, on positioning accuracy. The error propagation rules of image error in different spatial positioning methods are analyzed by the Monte Carlo method. Correlation analysis showed that resolution and distortion had a significant influence on spatial positioning accuracy. In addition the C-arm calibration-based method was more sensitive to image distortion, while the bi-planar positioning method was more susceptible to image resolution. The image contrast and signal-to-noise ratio have no significant influence on the spatial positioning accuracy. The result of Monte Carlo analysis proved that generally the bi-planar positioning method was more sensitive to image quality than the C-arm calibration-based method. The quality of intraoperative fluoroscopic images is a key issue in the spatial positioning accuracy of a CAOS system. Although the 2 typical positioning methods have very similar mathematical principles, they showed different sensitivities to different image quality parameters. The result of this research may help to create a realistic standard for intraoperative fluoroscopic images for CAOS systems. Copyright © 2018 John Wiley & Sons, Ltd.
Measuring saliency in images: which experimental parameters for the assessment of image quality?
NASA Astrophysics Data System (ADS)
Fredembach, Clement; Woolfe, Geoff; Wang, Jue
2012-01-01
Predicting which areas of an image are perceptually salient or attended to has become an essential pre-requisite of many computer vision applications. Because observers are notoriously unreliable in remembering where they look a posteriori, and because asking where they look while observing the image necessarily in uences the results, ground truth about saliency and visual attention has to be obtained by gaze tracking methods. From the early work of Buswell and Yarbus to the most recent forays in computer vision there has been, perhaps unfortunately, little agreement on standardisation of eye tracking protocols for measuring visual attention. As the number of parameters involved in experimental methodology can be large, their individual in uence on the nal results is not well understood. Consequently, the performance of saliency algorithms, when assessed by correlation techniques, varies greatly across the literature. In this paper, we concern ourselves with the problem of image quality. Specically: where people look when judging images. We show that in this case, the performance gap between existing saliency prediction algorithms and experimental results is signicantly larger than otherwise reported. To understand this discrepancy, we rst devise an experimental protocol that is adapted to the task of measuring image quality. In a second step, we compare our experimental parameters with the ones of existing methods and show that a lot of the variability can directly be ascribed to these dierences in experimental methodology and choice of variables. In particular, the choice of a task, e.g., judging image quality vs. free viewing, has a great impact on measured saliency maps, suggesting that even for a mildly cognitive task, ground truth obtained by free viewing does not adapt well. Careful analysis of the prior art also reveals that systematic bias can occur depending on instrumental calibration and the choice of test images. We conclude this work by proposing a set of parameters, tasks and images that can be used to compare the various saliency prediction methods in a manner that is meaningful for image quality assessment.
Gaitanis, Anastasios; Kastis, George A; Vlastou, Elena; Bouziotis, Penelope; Verginis, Panayotis; Anagnostopoulos, Constantinos D
2017-08-01
The Tera-Tomo 3D image reconstruction algorithm (a version of OSEM), provided with the Mediso nanoScan® PC (PET8/2) small-animal positron emission tomograph (PET)/x-ray computed tomography (CT) scanner, has various parameter options such as total level of regularization, subsets, and iterations. Also, the acquisition time in PET plays an important role. This study aims to assess the performance of this new small-animal PET/CT scanner for different acquisition times and reconstruction parameters, for 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) and Ga-68, under the NEMA NU 4-2008 standards. Various image quality metrics were calculated for different realizations of [ 18 F]FDG and Ga-68 filled image quality (IQ) phantoms. [ 18 F]FDG imaging produced improved images over Ga-68. The best compromise for the optimization of all image quality factors is achieved for at least 30 min acquisition and image reconstruction with 52 iteration updates combined with a high regularization level. A high regularization level at 52 iteration updates and 30 min acquisition time were found to optimize most of the figures of merit investigated.
Image quality testing of assembled IR camera modules
NASA Astrophysics Data System (ADS)
Winters, Daniel; Erichsen, Patrik
2013-10-01
Infrared (IR) camera modules for the LWIR (8-12_m) that combine IR imaging optics with microbolometer focal plane array (FPA) sensors with readout electronics are becoming more and more a mass market product. At the same time, steady improvements in sensor resolution in the higher priced markets raise the requirement for imaging performance of objectives and the proper alignment between objective and FPA. This puts pressure on camera manufacturers and system integrators to assess the image quality of finished camera modules in a cost-efficient and automated way for quality control or during end-of-line testing. In this paper we present recent development work done in the field of image quality testing of IR camera modules. This technology provides a wealth of additional information in contrast to the more traditional test methods like minimum resolvable temperature difference (MRTD) which give only a subjective overall test result. Parameters that can be measured are image quality via the modulation transfer function (MTF) for broadband or with various bandpass filters on- and off-axis and optical parameters like e.g. effective focal length (EFL) and distortion. If the camera module allows for refocusing the optics, additional parameters like best focus plane, image plane tilt, auto-focus quality, chief ray angle etc. can be characterized. Additionally, the homogeneity and response of the sensor with the optics can be characterized in order to calculate the appropriate tables for non-uniformity correction (NUC). The technology can also be used to control active alignment methods during mechanical assembly of optics to high resolution sensors. Other important points that are discussed are the flexibility of the technology to test IR modules with different form factors, electrical interfaces and last but not least the suitability for fully automated measurements in mass production.
Quality evaluation of no-reference MR images using multidirectional filters and image statistics.
Jang, Jinseong; Bang, Kihun; Jang, Hanbyol; Hwang, Dosik
2018-09-01
This study aimed to develop a fully automatic, no-reference image-quality assessment (IQA) method for MR images. New quality-aware features were obtained by applying multidirectional filters to MR images and examining the feature statistics. A histogram of these features was then fitted to a generalized Gaussian distribution function for which the shape parameters yielded different values depending on the type of distortion in the MR image. Standard feature statistics were established through a training process based on high-quality MR images without distortion. Subsequently, the feature statistics of a test MR image were calculated and compared with the standards. The quality score was calculated as the difference between the shape parameters of the test image and the undistorted standard images. The proposed IQA method showed a >0.99 correlation with the conventional full-reference assessment methods; accordingly, this proposed method yielded the best performance among no-reference IQA methods for images containing six types of synthetic, MR-specific distortions. In addition, for authentically distorted images, the proposed method yielded the highest correlation with subjective assessments by human observers, thus demonstrating its superior performance over other no-reference IQAs. Our proposed IQA was designed to consider MR-specific features and outperformed other no-reference IQAs designed mainly for photographic images. Magn Reson Med 80:914-924, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.
Research on assessment and improvement method of remote sensing image reconstruction
NASA Astrophysics Data System (ADS)
Sun, Li; Hua, Nian; Yu, Yanbo; Zhao, Zhanping
2018-01-01
Remote sensing image quality assessment and improvement is an important part of image processing. Generally, the use of compressive sampling theory in remote sensing imaging system can compress images while sampling which can improve efficiency. A method of two-dimensional principal component analysis (2DPCA) is proposed to reconstruct the remote sensing image to improve the quality of the compressed image in this paper, which contain the useful information of image and can restrain the noise. Then, remote sensing image quality influence factors are analyzed, and the evaluation parameters for quantitative evaluation are introduced. On this basis, the quality of the reconstructed images is evaluated and the different factors influence on the reconstruction is analyzed, providing meaningful referential data for enhancing the quality of remote sensing images. The experiment results show that evaluation results fit human visual feature, and the method proposed have good application value in the field of remote sensing image processing.
Parikh, P T; Sandhu, G S; Blackham, K A; Coffey, M D; Hsu, D; Liu, K; Jesberger, J; Griswold, M; Sunshine, J L
2011-02-01
Multichannel phased-array head coils are undergoing exponential escalation of coil element numbers. While previous technical studies have found gains in SNR and spatial resolution with the addition of element coils, it remains to be determined how these gains affect clinical reading. The purpose of this clinical study was to determine if the SNR and spatial resolution characteristics of a 32-channel head coil result in improvements in perceived image quality and lesion evaluation. Twenty-one patients underwent MR imaging of the brain at 1.5T sequentially with both a 12-channel and a 32-channel receive-only phased-array head coil. Axial T2WIs, T1WIs, FLAIR images, and DWIs were acquired. Anonymized images were compared side-by-side and by sequence for image quality, lesion evaluation, and artifacts by 3 neuroradiologists. Results of the comparison were analyzed for the preference for a specific head coil. FLAIR and DWI images acquired with the 32-channel coil showed significant improvement in image quality in several parameters. T2WIs also improved significantly with acquisition by the 32-channel coil, while T1WIs improved in a limited number of parameters. While lesion evaluation also improved with acquisition of images by the 32-channel coil, there was no apparent improvement in diagnostic quality. There was no difference in artifacts between the 2 coils. Improvements in SNR and spatial resolution attributed to image acquisition with a 32-channel head coil are paralleled by perceived improvements in image quality.
Infrared thermal imaging figures of merit
NASA Technical Reports Server (NTRS)
Kaplan, Herbert
1989-01-01
Commercially available types of infrared thermal imaging instruments, both viewers (qualitative) and imagers (quantitative) are discussed. The various scanning methods by which thermal images (thermograms) are generated will be reviewed. The performance parameters (figures of merit) that define the quality of performance of infrared radiation thermometers will be introduced. A discussion of how these parameters are extended and adapted to define the performance of thermal imaging instruments will be provided. Finally, the significance of each of the key performance parameters of thermal imaging instruments will be reviewed and procedures currently used for testing to verify performance will be outlined.
Marshall, N W
2001-06-01
This paper applies a published version of signal detection theory to x-ray image intensifier fluoroscopy data and compares the results with more conventional subjective image quality measures. An eight-bit digital framestore was used to acquire temporally contiguous frames of fluoroscopy data from which the modulation transfer function (MTF(u)) and noise power spectrum were established. These parameters were then combined to give detective quantum efficiency (DQE(u)) and used in conjunction with signal detection theory to calculate contrast-detail performance. DQE(u) was found to lie between 0.1 and 0.5 for a range of fluoroscopy systems. Two separate image quality experiments were then performed in order to assess the correspondence between the objective and subjective methods. First, image quality for a given fluoroscopy system was studied as a function of doserate using objective parameters and a standard subjective contrast-detail method. Following this, the two approaches were used to assess three different fluoroscopy units. Agreement between objective and subjective methods was good; doserate changes were modelled correctly while both methods ranked the three systems consistently.
Genetics algorithm optimization of DWT-DCT based image Watermarking
NASA Astrophysics Data System (ADS)
Budiman, Gelar; Novamizanti, Ledya; Iwut, Iwan
2017-01-01
Data hiding in an image content is mandatory for setting the ownership of the image. Two dimensions discrete wavelet transform (DWT) and discrete cosine transform (DCT) are proposed as transform method in this paper. First, the host image in RGB color space is converted to selected color space. We also can select the layer where the watermark is embedded. Next, 2D-DWT transforms the selected layer obtaining 4 subband. We select only one subband. And then block-based 2D-DCT transforms the selected subband. Binary-based watermark is embedded on the AC coefficients of each block after zigzag movement and range based pixel selection. Delta parameter replacing pixels in each range represents embedded bit. +Delta represents bit “1” and -delta represents bit “0”. Several parameters to be optimized by Genetics Algorithm (GA) are selected color space, layer, selected subband of DWT decomposition, block size, embedding range, and delta. The result of simulation performs that GA is able to determine the exact parameters obtaining optimum imperceptibility and robustness, in any watermarked image condition, either it is not attacked or attacked. DWT process in DCT based image watermarking optimized by GA has improved the performance of image watermarking. By five attacks: JPEG 50%, resize 50%, histogram equalization, salt-pepper and additive noise with variance 0.01, robustness in the proposed method has reached perfect watermark quality with BER=0. And the watermarked image quality by PSNR parameter is also increased about 5 dB than the watermarked image quality from previous method.
NASA Astrophysics Data System (ADS)
Mulyadin; Dewang, Syamsir; Abdullah, Bualkar; Tahir, Dahlang
2018-03-01
In this study, the image quality of CT scan using phantom American College of Radiology (ACR) was determined. Scanning multidetector CT is used to know the image quality parameters by using a solid phantom containing four modules and primarily from materials that are equivalent to water. Each module is 4 cm in diameter and 20 cm in diameter. There is white alignment marks painted white to reflect the alignment laser and there are also “HEAD”, “FOOT”, and “TOP” marks on the phantom to help align. This test obtains CT images of each module according to the routine inspection protocol of the head. Acceptance of image quality obtained for determination: CT Number Accuracy (CTN), CT Number Uniformity and Noise, Linearity CT Number, Slice Technique, Low Contrast Resolution and High Contrast Resolution represent image quality parameters. In testing CT Number Accuracy (CTN), CT Uniform number and Noise are in the range of tolerable values allowed. In the test, Linearity CT Number obtained correlation value above 0.99 is the relationship between electron density and CT Number. In a low contrast resolution test, the smallest contrast groups are visible. In contrast, the high resolution is seen up to 7 lp/cm. The quality of GE CT Scan is very high, as all the image quality tests obtained are within the tolerance brackets of values permitted by the Nuclear Power Control Agency (BAPETEN). Image quality test is a way to get very important information about the accuracy of snoring result by using phantom ACR.
Lee, E J; Lee, S K; Agid, R; Howard, P; Bae, J M; terBrugge, K
2009-10-01
The combined automatic tube current modulation (ATCM) technique adapts and modulates the x-ray tube current in the x-y-z axis according to the patient's individual anatomy. We compared image quality and radiation dose of the combined ATCM technique with those of a fixed tube current (FTC) technique in craniocervical CT angiography performed with a 64-section multidetector row CT (MDCT) system. A retrospective review of craniocervical CT angiograms (CTAs) by using combined ATCM (n = 25) and FTC techniques (n = 25) was performed. Other CTA parameters, such as kilovolt (peak), matrix size, FOV, section thickness, pitch, contrast agent, and contrast injection techniques, were held constant. We recorded objective image noise in the muscles at 2 anatomic levels: radiation exposure doses (CT dose index volume and dose-length product); and subjective image quality parameters, such as vascular delineation of various arterial vessels, visibility of small arterial detail, image artifacts, and certainty of diagnosis. The Mann-Whitney U test was used for statistical analysis. No significant difference was detected in subjective image quality parameters between the FTC and combined ATCM techniques. Most subjects in both study groups (49/50, 98%) had acceptable subjective artifacts. The objective image noise values at shoulder level did not show a significant difference, but the noise value at the upper neck was higher with the combined ATCM (P < .05) technique. Significant reduction in radiation dose (18% reduction) was noted with the combined ATCM technique (P < .05). The combined ATCM technique for craniocervical CTA performed at 64-section MDCT substantially reduced radiation exposure dose but maintained diagnostic image quality.
Image quality, threshold contrast and mean glandular dose in CR mammography
NASA Astrophysics Data System (ADS)
Jakubiak, R. R.; Gamba, H. R.; Neves, E. B.; Peixoto, J. E.
2013-09-01
In many countries, computed radiography (CR) systems represent the majority of equipment used in digital mammography. This study presents a method for optimizing image quality and dose in CR mammography of patients with breast thicknesses between 45 and 75 mm. Initially, clinical images of 67 patients (group 1) were analyzed by three experienced radiologists, reporting about anatomical structures, noise and contrast in low and high pixel value areas, and image sharpness and contrast. Exposure parameters (kV, mAs and target/filter combination) used in the examinations of these patients were reproduced to determine the contrast-to-noise ratio (CNR) and mean glandular dose (MGD). The parameters were also used to radiograph a CDMAM (version 3.4) phantom (Artinis Medical Systems, The Netherlands) for image threshold contrast evaluation. After that, different breast thicknesses were simulated with polymethylmethacrylate layers and various sets of exposure parameters were used in order to determine optimal radiographic parameters. For each simulated breast thickness, optimal beam quality was defined as giving a target CNR to reach the threshold contrast of CDMAM images for acceptable MGD. These results were used for adjustments in the automatic exposure control (AEC) by the maintenance team. Using optimized exposure parameters, clinical images of 63 patients (group 2) were evaluated as described above. Threshold contrast, CNR and MGD for such exposure parameters were also determined. Results showed that the proposed optimization method was effective for all breast thicknesses studied in phantoms. The best result was found for breasts of 75 mm. While in group 1 there was no detection of the 0.1 mm critical diameter detail with threshold contrast below 23%, after the optimization, detection occurred in 47.6% of the images. There was also an average MGD reduction of 7.5%. The clinical image quality criteria were attended in 91.7% for all breast thicknesses evaluated in both patient groups. Finally, this study also concluded that the use of the AEC of the x-ray unit based on the constant dose to the detector may bring some difficulties to CR systems to operate under optimal conditions. More studies must be performed, so that the compatibility between systems and optimization methodologies can be evaluated, as well as this optimization method. Most methods are developed for phantoms, so comparative studies including clinical images must be developed.
NASA Astrophysics Data System (ADS)
Jermyn, Michael; Ghadyani, Hamid; Mastanduno, Michael A.; Turner, Wes; Davis, Scott C.; Dehghani, Hamid; Pogue, Brian W.
2013-08-01
Multimodal approaches that combine near-infrared (NIR) and conventional imaging modalities have been shown to improve optical parameter estimation dramatically and thus represent a prevailing trend in NIR imaging. These approaches typically involve applying anatomical templates from magnetic resonance imaging/computed tomography/ultrasound images to guide the recovery of optical parameters. However, merging these data sets using current technology requires multiple software packages, substantial expertise, significant time-commitment, and often results in unacceptably poor mesh quality for optical image reconstruction, a reality that represents a significant roadblock for translational research of multimodal NIR imaging. This work addresses these challenges directly by introducing automated digital imaging and communications in medicine image stack segmentation and a new one-click three-dimensional mesh generator optimized for multimodal NIR imaging, and combining these capabilities into a single software package (available for free download) with a streamlined workflow. Image processing time and mesh quality benchmarks were examined for four common multimodal NIR use-cases (breast, brain, pancreas, and small animal) and were compared to a commercial image processing package. Applying these tools resulted in a fivefold decrease in image processing time and 62% improvement in minimum mesh quality, in the absence of extra mesh postprocessing. These capabilities represent a significant step toward enabling translational multimodal NIR research for both expert and nonexpert users in an open-source platform.
Lenga, L; Czwikla, R; Wichmann, J L; Leithner, D; Albrecht, M H; D'Angelo, T; Arendt, C T; Booz, C; Hammerstingl, R; Vogl, T J; Martin, S S
2018-06-05
To investigate the impact of noise-optimised virtual monoenergetic imaging (VMI+) reconstructions on quantitative and qualitative image parameters in patients with malignant lymphoma at dual-energy computed tomography (DECT) examinations of the abdomen. Thirty-five consecutive patients (mean age, 53.8±18.6 years; range, 21-82 years) with histologically proven malignant lymphoma of the abdomen were included retrospectively. Images were post-processed with standard linear blending (M_0.6), traditional VMI, and VMI+ technique at energy levels ranging from 40 to 100 keV in 10 keV increments. Signal-to-noise (SNR) and contrast-to-noise ratios (CNR) were objectively measured in lymphoma lesions. Image quality, lesion delineation, and image noise were rated subjectively by three blinded observers using five-point Likert scales. Quantitative image quality parameters peaked at 40-keV VMI+ (SNR, 15.77±7.74; CNR, 18.27±8.04) with significant differences compared to standard linearly blended M_0.6 (SNR, 7.96±3.26; CNR, 13.55±3.47) and all traditional VMI series (p<0.001). Qualitative image quality assessment revealed significantly superior ratings for image quality at 60-keV VMI+ (median, 5) in comparison with all other image series (p<0.001). Assessment of lesion delineation showed the highest rating scores for 40-keV VMI+ series (median, 5), while lowest subjective image noise was found for 100-keV VMI+ reconstructions (median, 5). Low-keV VMI+ reconstructions led to improved image quality and lesion delineation of malignant lymphoma lesions compared to standard image reconstruction and traditional VMI at abdominal DECT examinations. Copyright © 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Bellesi, Luca; Wyttenbach, Rolf; Gaudino, Diego; Colleoni, Paolo; Pupillo, Francesco; Carrara, Mauro; Braghetti, Antonio; Puligheddu, Carla; Presilla, Stefano
2017-01-01
The aim of this work was to evaluate detection of low-contrast objects and image quality in computed tomography (CT) phantom images acquired at different tube loadings (i.e. mAs) and reconstructed with different algorithms, in order to find appropriate settings to reduce the dose to the patient without any image detriment. Images of supraslice low-contrast objects of a CT phantom were acquired using different mAs values. Images were reconstructed using filtered back projection (FBP), hybrid and iterative model-based methods. Image quality parameters were evaluated in terms of modulation transfer function; noise, and uniformity using two software resources. For the definition of low-contrast detectability, studies based on both human (i.e. four-alternative forced-choice test) and model observers were performed across the various images. Compared to FBP, image quality parameters were improved by using iterative reconstruction (IR) algorithms. In particular, IR model-based methods provided a 60% noise reduction and a 70% dose reduction, preserving image quality and low-contrast detectability for human radiological evaluation. According to the model observer, the diameters of the minimum detectable detail were around 2 mm (up to 100 mAs). Below 100 mAs, the model observer was unable to provide a result. IR methods improve CT protocol quality, providing a potential dose reduction while maintaining a good image detectability. Model observer can in principle be useful to assist human performance in CT low-contrast detection tasks and in dose optimisation.
2014-01-01
For building a new iris template, this paper proposes a strategy to fuse different portions of iris based on machine learning method to evaluate local quality of iris. There are three novelties compared to previous work. Firstly, the normalized segmented iris is divided into multitracks and then each track is estimated individually to analyze the recognition accuracy rate (RAR). Secondly, six local quality evaluation parameters are adopted to analyze texture information of each track. Besides, particle swarm optimization (PSO) is employed to get the weights of these evaluation parameters and corresponding weighted coefficients of different tracks. Finally, all tracks' information is fused according to the weights of different tracks. The experimental results based on subsets of three public and one private iris image databases demonstrate three contributions of this paper. (1) Our experimental results prove that partial iris image cannot completely replace the entire iris image for iris recognition system in several ways. (2) The proposed quality evaluation algorithm is a self-adaptive algorithm, and it can automatically optimize the parameters according to iris image samples' own characteristics. (3) Our feature information fusion strategy can effectively improve the performance of iris recognition system. PMID:24693243
Chen, Ying; Liu, Yuanning; Zhu, Xiaodong; Chen, Huiling; He, Fei; Pang, Yutong
2014-01-01
For building a new iris template, this paper proposes a strategy to fuse different portions of iris based on machine learning method to evaluate local quality of iris. There are three novelties compared to previous work. Firstly, the normalized segmented iris is divided into multitracks and then each track is estimated individually to analyze the recognition accuracy rate (RAR). Secondly, six local quality evaluation parameters are adopted to analyze texture information of each track. Besides, particle swarm optimization (PSO) is employed to get the weights of these evaluation parameters and corresponding weighted coefficients of different tracks. Finally, all tracks' information is fused according to the weights of different tracks. The experimental results based on subsets of three public and one private iris image databases demonstrate three contributions of this paper. (1) Our experimental results prove that partial iris image cannot completely replace the entire iris image for iris recognition system in several ways. (2) The proposed quality evaluation algorithm is a self-adaptive algorithm, and it can automatically optimize the parameters according to iris image samples' own characteristics. (3) Our feature information fusion strategy can effectively improve the performance of iris recognition system.
The impact of the condenser on cytogenetic image quality in digital microscope system.
Ren, Liqiang; Li, Zheng; Li, Yuhua; Zheng, Bin; Li, Shibo; Chen, Xiaodong; Liu, Hong
2013-01-01
Optimizing operational parameters of the digital microscope system is an important technique to acquire high quality cytogenetic images and facilitate the process of karyotyping so that the efficiency and accuracy of diagnosis can be improved. This study investigated the impact of the condenser on cytogenetic image quality and system working performance using a prototype digital microscope image scanning system. Both theoretical analysis and experimental validations through objectively evaluating a resolution test chart and subjectively observing large numbers of specimen were conducted. The results show that the optimal image quality and large depth of field (DOF) are simultaneously obtained when the numerical aperture of condenser is set as 60%-70% of the corresponding objective. Under this condition, more analyzable chromosomes and diagnostic information are obtained. As a result, the system shows higher working stability and less restriction for the implementation of algorithms such as autofocusing especially when the system is designed to achieve high throughput continuous image scanning. Although the above quantitative results were obtained using a specific prototype system under the experimental conditions reported in this paper, the presented evaluation methodologies can provide valuable guidelines for optimizing operational parameters in cytogenetic imaging using the high throughput continuous scanning microscopes in clinical practice.
PICASSO: an end-to-end image simulation tool for space and airborne imaging systems
NASA Astrophysics Data System (ADS)
Cota, Steve A.; Bell, Jabin T.; Boucher, Richard H.; Dutton, Tracy E.; Florio, Chris J.; Franz, Geoffrey A.; Grycewicz, Thomas J.; Kalman, Linda S.; Keller, Robert A.; Lomheim, Terrence S.; Paulson, Diane B.; Willkinson, Timothy S.
2008-08-01
The design of any modern imaging system is the end result of many trade studies, each seeking to optimize image quality within real world constraints such as cost, schedule and overall risk. Image chain analysis - the prediction of image quality from fundamental design parameters - is an important part of this design process. At The Aerospace Corporation we have been using a variety of image chain analysis tools for many years, the Parameterized Image Chain Analysis & Simulation SOftware (PICASSO) among them. In this paper we describe our PICASSO tool, showing how, starting with a high quality input image and hypothetical design descriptions representative of the current state of the art in commercial imaging satellites, PICASSO can generate standard metrics of image quality in support of the decision processes of designers and program managers alike.
PICASSO: an end-to-end image simulation tool for space and airborne imaging systems
NASA Astrophysics Data System (ADS)
Cota, Stephen A.; Bell, Jabin T.; Boucher, Richard H.; Dutton, Tracy E.; Florio, Christopher J.; Franz, Geoffrey A.; Grycewicz, Thomas J.; Kalman, Linda S.; Keller, Robert A.; Lomheim, Terrence S.; Paulson, Diane B.; Wilkinson, Timothy S.
2010-06-01
The design of any modern imaging system is the end result of many trade studies, each seeking to optimize image quality within real world constraints such as cost, schedule and overall risk. Image chain analysis - the prediction of image quality from fundamental design parameters - is an important part of this design process. At The Aerospace Corporation we have been using a variety of image chain analysis tools for many years, the Parameterized Image Chain Analysis & Simulation SOftware (PICASSO) among them. In this paper we describe our PICASSO tool, showing how, starting with a high quality input image and hypothetical design descriptions representative of the current state of the art in commercial imaging satellites, PICASSO can generate standard metrics of image quality in support of the decision processes of designers and program managers alike.
Guziński, Maciej; Waszczuk, Łukasz; Sąsiadek, Marek J
2016-10-01
To evaluate head CT protocol developed to improve visibility of the brainstem and cerebellum, lower bone-related artefacts in the posterior fossa and maintain patient radioprotection. A paired comparison of head CT performed without Adaptive Statistical Iterative Reconstruction (ASiR) and a clinically indicated follow-up with 40 % ASiR was acquired in one group of 55 patients. Patients were scanned in the axial mode with different scanner settings for the brain and the posterior fossa. Objective image quality analysis was performed with signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Subjective image quality analysis was based on brain structure visibility and evaluation of the artefacts. We achieved 19 % reduction of total DLP and significantly better image quality of posterior fossa structures. SNR for white and grey matter in the cerebellum were 34 % to 36 % higher, respectively, CNR was improved by 142 % and subjective analyses were better for images with ASiR. When imaging parameters are set independently for the brain and the posterior fossa imaging, ASiR has a great potential to improve CT performance: image quality of the brainstem and cerebellum is improved, and radiation dose for the brain as well as total radiation dose are reduced. •With ASiR it is possible to lower radiation dose or improve image quality •Sequentional imaging allows setting scan parameters for brain and posterior-fossa independently •We improved visibility of brainstem structures and decreased radiation dose •Total radiation dose (DLP) was decreased by 19.
NASA Astrophysics Data System (ADS)
Agüera, Francisco; Aguilar, Fernando J.; Aguilar, Manuel A.
The area occupied by plastic-covered greenhouses has undergone rapid growth in recent years, currently exceeding 500,000 ha worldwide. Due to the vast amount of input (water, fertilisers, fuel, etc.) required, and output of different agricultural wastes (vegetable, plastic, chemical, etc.), the environmental impact of this type of production system can be serious if not accompanied by sound and sustainable territorial planning. For this, the new generation of satellites which provide very high resolution imagery, such as QuickBird and IKONOS can be useful. In this study, one QuickBird and one IKONOS satellite image have been used to cover the same area under similar circumstances. The aim of this work was an exhaustive comparison of QuickBird vs. IKONOS images in land-cover detection. In terms of plastic greenhouse mapping, comparative tests were designed and implemented, each with separate objectives. Firstly, the Maximum Likelihood Classification (MLC) was applied using five different approaches combining R, G, B, NIR, and panchromatic bands. The combinations of the bands used, significantly influenced some of the indexes used to classify quality in this work. Furthermore, the quality classification of the QuickBird image was higher in all cases than that of the IKONOS image. Secondly, texture features derived from the panchromatic images at different window sizes and with different grey levels were added as a fifth band to the R, G, B, NIR images to carry out the MLC. The inclusion of texture information in the classification did not improve the classification quality. For classifications with texture information, the best accuracies were found in both images for mean and angular second moment texture parameters. The optimum window size in these texture parameters was 3×3 for IK images, while for QB images it depended on the quality index studied, but the optimum window size was around 15×15. With regard to the grey level, the optimum was 128. Thus, the optimum texture parameter depended on the main objective of the image classification. If the main classification goal is to minimize the number of pixels wrongly classified, the mean texture parameter should be used, whereas if the main classification goal is to minimize the unclassified pixels the angular second moment texture parameter should be used. On the whole, both QuickBird and IKONOS images offered promising results in classifying plastic greenhouses.
Comprehensive model for predicting perceptual image quality of smart mobile devices.
Gong, Rui; Xu, Haisong; Luo, M R; Li, Haifeng
2015-01-01
An image quality model for smart mobile devices was proposed based on visual assessments of several image quality attributes. A series of psychophysical experiments were carried out on two kinds of smart mobile devices, i.e., smart phones and tablet computers, in which naturalness, colorfulness, brightness, contrast, sharpness, clearness, and overall image quality were visually evaluated under three lighting environments via categorical judgment method for various application types of test images. On the basis of Pearson correlation coefficients and factor analysis, the overall image quality could first be predicted by its two constituent attributes with multiple linear regression functions for different types of images, respectively, and then the mathematical expressions were built to link the constituent image quality attributes with the physical parameters of smart mobile devices and image appearance factors. The procedure and algorithms were applicable to various smart mobile devices, different lighting conditions, and multiple types of images, and performance was verified by the visual data.
Digital radiography: optimization of image quality and dose using multi-frequency software.
Precht, H; Gerke, O; Rosendahl, K; Tingberg, A; Waaler, D
2012-09-01
New developments in processing of digital radiographs (DR), including multi-frequency processing (MFP), allow optimization of image quality and radiation dose. This is particularly promising in children as they are believed to be more sensitive to ionizing radiation than adults. To examine whether the use of MFP software reduces the radiation dose without compromising quality at DR of the femur in 5-year-old-equivalent anthropomorphic and technical phantoms. A total of 110 images of an anthropomorphic phantom were imaged on a DR system (Canon DR with CXDI-50 C detector and MLT[S] software) and analyzed by three pediatric radiologists using Visual Grading Analysis. In addition, 3,500 images taken of a technical contrast-detail phantom (CDRAD 2.0) provide an objective image-quality assessment. Optimal image-quality was maintained at a dose reduction of 61% with MLT(S) optimized images. Even for images of diagnostic quality, MLT(S) provided a dose reduction of 88% as compared to the reference image. Software impact on image quality was found significant for dose (mAs), dynamic range dark region and frequency band. By optimizing image processing parameters, a significant dose reduction is possible without significant loss of image quality.
Image quality assessment metric for frame accumulated image
NASA Astrophysics Data System (ADS)
Yu, Jianping; Li, Gang; Wang, Shaohui; Lin, Ling
2018-01-01
The medical image quality determines the accuracy of diagnosis, and the gray-scale resolution is an important parameter to measure image quality. But current objective metrics are not very suitable for assessing medical images obtained by frame accumulation technology. Little attention was paid to the gray-scale resolution, basically based on spatial resolution and limited to the 256 level gray scale of the existing display device. Thus, this paper proposes a metric, "mean signal-to-noise ratio" (MSNR) based on signal-to-noise in order to be more reasonable to evaluate frame accumulated medical image quality. We demonstrate its potential application through a series of images under a constant illumination signal. Here, the mean image of enough images was regarded as the reference image. Several groups of images by different frame accumulation and their MSNR were calculated. The results of the experiment show that, compared with other quality assessment methods, the metric is simpler, more effective, and more suitable for assessing frame accumulated images that surpass the gray scale and precision of the original image.
Deep supervised dictionary learning for no-reference image quality assessment
NASA Astrophysics Data System (ADS)
Huang, Yuge; Liu, Xuesong; Tian, Xiang; Zhou, Fan; Chen, Yaowu; Jiang, Rongxin
2018-03-01
We propose a deep convolutional neural network (CNN) for general no-reference image quality assessment (NR-IQA), i.e., accurate prediction of image quality without a reference image. The proposed model consists of three components such as a local feature extractor that is a fully CNN, an encoding module with an inherent dictionary that aggregates local features to output a fixed-length global quality-aware image representation, and a regression module that maps the representation to an image quality score. Our model can be trained in an end-to-end manner, and all of the parameters, including the weights of the convolutional layers, the dictionary, and the regression weights, are simultaneously learned from the loss function. In addition, the model can predict quality scores for input images of arbitrary sizes in a single step. We tested our method on commonly used image quality databases and showed that its performance is comparable with that of state-of-the-art general-purpose NR-IQA algorithms.
OHIO RIVER WATER QUALITY ASSESSMENT USING LANDSAT-7 DATA
The objectives of this project were (1) to develop a universal index for measuring Turbidity and Chlorophyll-A from remote sensing data and (2) to correlate satellite image parameters from Landsat-7 data with field measurements of water quality for five parameters: Chlorophyll-A ...
Influence of physical parameters on radiation protection and image quality in intra-oral radiology
NASA Astrophysics Data System (ADS)
Belinato, W.; Souza, D. N.
2011-10-01
In the world of diagnostic imaging, radiography is an important supplementary method for dental diagnosis. In radiology, special attention must be paid to the radiological protection of patients and health professionals, and also to image quality for correct diagnosis. In Brazil, the national rules governing the operation of medical and dental radiology were specified in 1998 by the National Sanitary Surveillance Agency, complemented in 2005 by the guide "Medical radiology: security and performance of equipment." In this study, quality control tests were performed in public clinics with dental X-ray equipment in the State of Sergipe, Brazil, with consideration of the physical parameters that influence radiological protection and also the quality of images taken in intra-oral radiography. The accuracy of the exposure time was considered acceptable for equipment with digital timers. Exposure times and focal-spot size variations can lead to increased entrance dose. Increased dose has also been associated with visual processing of radiographic film, which often requires repeating the radiographic examination.
Information Hiding: an Annotated Bibliography
1999-04-13
parameters needed for reconstruction are enciphered using DES . The encrypted image is hidden in a cover image . [153] 074115, ‘Watermarking algorithm ...authors present a block based watermarking algorithm for digital images . The D.C.T. of the block is increased by a certain value. Quality control is...includes evaluation of the watermark robustness and the subjec- tive visual image quality. Two algorithms use the frequency domain while the two others use
Imaging study of using radiopharmaceuticals labeled with cyclotron-produced 99mTc.
Hou, X; Tanguay, J; Vuckovic, M; Buckley, K; Schaffer, P; Bénard, F; Ruth, T J; Celler, A
2016-12-07
Cyclotron-produced 99m Tc (CPTc) has been recognized as an attractive and practical substitution of reactor/generator based 99m Tc. However, the small amount of 92-98 Mo in the irradiation of enriched 100 Mo could lead to the production of other radioactive technetium isotopes (Tc-impurities) which cannot be chemically separated. Thus, these impurities could contribute to patient dose and affect image quality. The potential radiation dose caused by these Tc-impurities produced using different targets, irradiation conditions, and corresponding to different injection times have been investigated, leading us to create dose-based limits of these parameters for producing clinically acceptable CPTc. However, image quality has been not considered. The aim of the present work is to provide a comprehensive and quantitative analysis of image quality for CPTc. The impact of Tc-impurities in CPTc on image resolution, background noise, and contrast is investigated by performing both Monte-Carlo simulations and phantom experiments. Various targets, irradiation, and acquisition conditions are employed for investigating the image-based limits of CPTc production parameters. Additionally, the relationship between patient dose and image quality of CPTc samples is studied. Only those samples which meet both dose- and image-based limits should be accepted in future clinical studies.
Imaging study of using radiopharmaceuticals labeled with cyclotron-produced 99mTc
NASA Astrophysics Data System (ADS)
Hou, X.; Tanguay, J.; Vuckovic, M.; Buckley, K.; Schaffer, P.; Bénard, F.; Ruth, T. J.; Celler, A.
2016-12-01
Cyclotron-produced 99mTc (CPTc) has been recognized as an attractive and practical substitution of reactor/generator based 99mTc. However, the small amount of 92-98Mo in the irradiation of enriched 100Mo could lead to the production of other radioactive technetium isotopes (Tc-impurities) which cannot be chemically separated. Thus, these impurities could contribute to patient dose and affect image quality. The potential radiation dose caused by these Tc-impurities produced using different targets, irradiation conditions, and corresponding to different injection times have been investigated, leading us to create dose-based limits of these parameters for producing clinically acceptable CPTc. However, image quality has been not considered. The aim of the present work is to provide a comprehensive and quantitative analysis of image quality for CPTc. The impact of Tc-impurities in CPTc on image resolution, background noise, and contrast is investigated by performing both Monte-Carlo simulations and phantom experiments. Various targets, irradiation, and acquisition conditions are employed for investigating the image-based limits of CPTc production parameters. Additionally, the relationship between patient dose and image quality of CPTc samples is studied. Only those samples which meet both dose- and image-based limits should be accepted in future clinical studies.
Motion artifact detection in four-dimensional computed tomography images
NASA Astrophysics Data System (ADS)
Bouilhol, G.; Ayadi, M.; Pinho, R.; Rit, S.; Sarrut, D.
2014-03-01
Motion artifacts appear in four-dimensional computed tomography (4DCT) images because of suboptimal acquisition parameters or patient breathing irregularities. Frequency of motion artifacts is high and they may introduce errors in radiation therapy treatment planning. Motion artifact detection can be useful for image quality assessment and 4D reconstruction improvement but manual detection in many images is a tedious process. We propose a novel method to evaluate the quality of 4DCT images by automatic detection of motion artifacts. The method was used to evaluate the impact of the optimization of acquisition parameters on image quality at our institute. 4DCT images of 114 lung cancer patients were analyzed. Acquisitions were performed with a rotation period of 0.5 seconds and a pitch of 0.1 (74 patients) or 0.081 (40 patients). A sensitivity of 0.70 and a specificity of 0.97 were observed. End-exhale phases were less prone to motion artifacts. In phases where motion speed is high, the number of detected artifacts was systematically reduced with a pitch of 0.081 instead of 0.1 and the mean reduction was 0.79. The increase of the number of patients with no artifact detected was statistically significant for the 10%, 70% and 80% respiratory phases, indicating a substantial image quality improvement.
Application of Oversampling to obtain the MTF of Digital Radiology Equipment.
NASA Astrophysics Data System (ADS)
Narváez, M.; Graffigna, J. P.; Gómez, M. E.; Romo, R.
2016-04-01
Within the objectives of theproject Medical Image Processing for QualityAssessment ofX Ray Imaging, the present research work is aimed at developinga phantomX ray image and itsassociated processing algorithms in order to evaluatethe image quality rendered by digital X ray equipment. These tools are used to measure various image parameters, among which spatial resolution shows afundamental property that can be characterized by the Modulation Transfer Function (MTF)of an imaging system [1]. After performing a thorough literature surveyon imaging quality control in digital X film in Argentine and international publications, it was decided to adopt for this work the Norm IEC 62220 1:2003 that recommends using an image edge as a testingmethod. In order to obtain the characterizing MTF, a protocol was designedfor unifying the conditions under which the images are acquired for later evaluation. The protocol implied acquiring a radiography image by means of a specific referential technique, i.e. referred either to voltage, current, time, distance focus plate (/film?) distance, or other referential parameter, and to interpret the image through a system of computed radiology or direct digital radiology. The contribution of the work stems from the fact that, even though the traditional way of evaluating an X film image quality has relied mostly on subjective methods, this work presents an objective evaluative toolfor the images obtained with a givenequipment, followed by a contrastive analysis with the renderings from other X filmimaging sets.Once the images were obtained, specific calculations were carried out. Though there exist some methods based on the subjective evaluation of the quality of image, this work offers an objective evaluation of the equipment under study. Finally, we present the results obtained on different equipment.
Scale Control and Quality Management of Printed Image Parameters
NASA Astrophysics Data System (ADS)
Novoselskaya, O. A.; Kolesnikov, V. L.; Solov'eva, T. V.; Nagornova, I. V.; Babluyk, E. B.; Trapeznikova, O. V.
2017-06-01
The article provides a comparison of the main valuation techniques for a regulated parameter of printability of the offset paper by current standards GOST 24356 and ISO 3783: 2006. The results of development and implementation of a complex test scale for management and control the quality of printed production are represented. The estimation scale is introduced. It includes normalized parameters of print optical density, print uniformity, picking out speed, the value of dot gain, print contrast with the added criteria of minimizing microtexts, a paper slip, resolution threshold and effusing ability of paper surface. The results of analysis allow directionally form surface properties of the substrate to facilitate achieving the required quality of the printed image parameters, i. e. optical density of a print at a predetermined level not less than 1.3, the print uniformity with minimal deviation of dot gain about the order of 10 per cents.
Resolution Quality and Atom Positions in Sub-Angstrom Electron Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Keefe, Michael A.; Allard, Lawrence F.; Blom, Douglas A.
2005-02-15
Ability to determine whether an image peak represents one single atom or several depends on resolution of the HR-(S)TEM. Rayleigh's resolution criterion, an accepted standard in optics, was derived as a means for judging when two image intensity peaks from two sources of light (stars) are distinguishable from a single source. Atom spacings closer than the Rayleigh limit have been resolved in HR-TEM, suggesting that it may be useful to consider other limits, such as the Sparrow resolution criterion. From the viewpoint of the materials scientist, it is important to be able to use the image to determine whether anmore » image feature represents one or more atoms (resolution), and where the atoms (or atom columns) are positioned relative to one another (resolution quality). When atoms and the corresponding image peaks are separated by more than the Rayleigh limit of the HR-(S)TEM, it is possible to adjust imaging parameters so that relative peak positions in the image correspond to relative atom positions in the specimen. When atoms are closer than the Rayleigh limit, we must find the relationship of the peak position to the atom position by peak fitting or, if we have a suitable model, by image simulation. Our Rayleigh-Sparrow parameter QRS reveals the ''resolution quality'' of a microscope image. QRS values greater than 1 indicate a clearly resolved twin peak, while values between 1 and 0 mean a lower-quality resolution and an image with peaks displaced from the relative atom positions. The depth of the twin-peak minimum can be used to determine the value of QRS and the true separation of the atom peaks that sum to produce the twin peak in the image. The Rayleigh-Sparrow parameter can be used to refine relative atom positions in defect images where atoms are closer than the Rayleigh limit of the HR-(S)TEM, reducing the necessity for full image simulations from large defect models.« less
Saade, Charbel; Deeb, Ibrahim Alsheikh; Mohamad, Maha; Al-Mohiy, Hussain; El-Merhi, Fadi
2016-01-01
Over the last decade, exponential advances in computed tomography (CT) technology have resulted in improved spatial and temporal resolution. Faster image acquisition enabled renal CT angiography to become a viable and effective noninvasive alternative in diagnosing renal vascular pathologies. However, with these advances, new challenges in contrast media administration have emerged. Poor synchronization between scanner and contrast media administration have reduced the consistency in image quality with poor spatial and contrast resolution. Comprehensive understanding of contrast media dynamics is essential in the design and implementation of contrast administration and image acquisition protocols. This review includes an overview of the parameters affecting renal artery opacification and current protocol strategies to achieve optimal image quality during renal CT angiography with iodinated contrast media, with current safety issues highlighted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauch, Phillip; Lin, Pei-Jan Paul; Balter, Stephen
2012-05-15
Task Group 125 (TG 125) was charged with investigating the functionality of fluoroscopic automatic dose rate and image quality control logic in modern angiographic systems, paying specific attention to the spectral shaping filters and variations in the selected radiologic imaging parameters. The task group was also charged with describing the operational aspects of the imaging equipment for the purpose of assisting the clinical medical physicist with clinical set-up and performance evaluation. Although there are clear distinctions between the fluoroscopic operation of an angiographic system and its acquisition modes (digital cine, digital angiography, digital subtraction angiography, etc.), the scope of thismore » work was limited to the fluoroscopic operation of the systems studied. The use of spectral shaping filters in cardiovascular and interventional angiography equipment has been shown to reduce patient dose. If the imaging control algorithm were programmed to work in conjunction with the selected spectral filter, and if the generator parameters were optimized for the selected filter, then image quality could also be improved. Although assessment of image quality was not included as part of this report, it was recognized that for fluoroscopic imaging the parameters that influence radiation output, differential absorption, and patient dose are also the same parameters that influence image quality. Therefore, this report will utilize the terminology ''automatic dose rate and image quality'' (ADRIQ) when describing the control logic in modern interventional angiographic systems and, where relevant, will describe the influence of controlled parameters on the subsequent image quality. A total of 22 angiography units were investigated by the task group and of these one each was chosen as representative of the equipment manufactured by GE Healthcare, Philips Medical Systems, Shimadzu Medical USA, and Siemens Medical Systems. All equipment, for which measurement data were included in this report, was manufactured within the three year period from 2006 to 2008. Using polymethylmethacrylate (PMMA) plastic to simulate patient attenuation, each angiographic imaging system was evaluated by recording the following parameters: tube potential in units of kilovolts peak (kVp), tube current in units of milliamperes (mA), pulse width (PW) in units of milliseconds (ms), spectral filtration setting, and patient air kerma rate (PAKR) as a function of the attenuator thickness. Data were graphically plotted to reveal the manner in which the ADRIQ control logic responded to changes in object attenuation. There were similarities in the manner in which the ADRIQ control logic operated that allowed the four chosen devices to be divided into two groups, with two of the systems in each group. There were also unique approaches to the ADRIQ control logic that were associated with some of the systems, and these are described in the report. The evaluation revealed relevant information about the testing procedure and also about the manner in which different manufacturers approach the utilization of spectral filtration, pulsed fluoroscopy, and maximum PAKR limitation. This information should be particularly valuable to the clinical medical physicist charged with acceptance testing and performance evaluation of modern angiographic systems.« less
Rauch, Phillip; Lin, Pei-Jan Paul; Balter, Stephen; Fukuda, Atsushi; Goode, Allen; Hartwell, Gary; LaFrance, Terry; Nickoloff, Edward; Shepard, Jeff; Strauss, Keith
2012-05-01
Task Group 125 (TG 125) was charged with investigating the functionality of fluoroscopic automatic dose rate and image quality control logic in modern angiographic systems, paying specific attention to the spectral shaping filters and variations in the selected radiologic imaging parameters. The task group was also charged with describing the operational aspects of the imaging equipment for the purpose of assisting the clinical medical physicist with clinical set-up and performance evaluation. Although there are clear distinctions between the fluoroscopic operation of an angiographic system and its acquisition modes (digital cine, digital angiography, digital subtraction angiography, etc.), the scope of this work was limited to the fluoroscopic operation of the systems studied. The use of spectral shaping filters in cardiovascular and interventional angiography equipment has been shown to reduce patient dose. If the imaging control algorithm were programmed to work in conjunction with the selected spectral filter, and if the generator parameters were optimized for the selected filter, then image quality could also be improved. Although assessment of image quality was not included as part of this report, it was recognized that for fluoroscopic imaging the parameters that influence radiation output, differential absorption, and patient dose are also the same parameters that influence image quality. Therefore, this report will utilize the terminology "automatic dose rate and image quality" (ADRIQ) when describing the control logic in modern interventional angiographic systems and, where relevant, will describe the influence of controlled parameters on the subsequent image quality. A total of 22 angiography units were investigated by the task group and of these one each was chosen as representative of the equipment manufactured by GE Healthcare, Philips Medical Systems, Shimadzu Medical USA, and Siemens Medical Systems. All equipment, for which measurement data were included in this report, was manufactured within the three year period from 2006 to 2008. Using polymethylmethacrylate (PMMA) plastic to simulate patient attenuation, each angiographic imaging system was evaluated by recording the following parameters: tube potential in units of kilovolts peak (kVp), tube current in units of milliamperes (mA), pulse width (PW) in units of milliseconds (ms), spectral filtration setting, and patient air kerma rate (PAKR) as a function of the attenuator thickness. Data were graphically plotted to reveal the manner in which the ADRIQ control logic responded to changes in object attenuation. There were similarities in the manner in which the ADRIQ control logic operated that allowed the four chosen devices to be divided into two groups, with two of the systems in each group. There were also unique approaches to the ADRIQ control logic that were associated with some of the systems, and these are described in the report. The evaluation revealed relevant information about the testing procedure and also about the manner in which different manufacturers approach the utilization of spectral filtration, pulsed fluoroscopy, and maximum PAKR limitation. This information should be particularly valuable to the clinical medical physicist charged with acceptance testing and performance evaluation of modern angiographic systems.
NASA Astrophysics Data System (ADS)
Han, Xiao; Pearson, Erik; Pelizzari, Charles; Al-Hallaq, Hania; Sidky, Emil Y.; Bian, Junguo; Pan, Xiaochuan
2015-06-01
Kilo-voltage (KV) cone-beam computed tomography (CBCT) unit mounted onto a linear accelerator treatment system, often referred to as on-board imager (OBI), plays an increasingly important role in image-guided radiation therapy. While the FDK algorithm is currently used for reconstructing images from clinical OBI data, optimization-based reconstruction has also been investigated for OBI CBCT. An optimization-based reconstruction involves numerous parameters, which can significantly impact reconstruction properties (or utility). The success of an optimization-based reconstruction for a particular class of practical applications thus relies strongly on appropriate selection of parameter values. In the work, we focus on tailoring the constrained-TV-minimization-based reconstruction, an optimization-based reconstruction previously shown of some potential for CBCT imaging conditions of practical interest, to OBI imaging through appropriate selection of parameter values. In particular, for given real data of phantoms and patient collected with OBI CBCT, we first devise utility metrics specific to OBI-quality-assurance tasks and then apply them to guiding the selection of parameter values in constrained-TV-minimization-based reconstruction. The study results show that the reconstructions are with improvement, relative to clinical FDK reconstruction, in both visualization and quantitative assessments in terms of the devised utility metrics.
Formation of parametric images using mixed-effects models: a feasibility study.
Huang, Husan-Ming; Shih, Yi-Yu; Lin, Chieh
2016-03-01
Mixed-effects models have been widely used in the analysis of longitudinal data. By presenting the parameters as a combination of fixed effects and random effects, mixed-effects models incorporating both within- and between-subject variations are capable of improving parameter estimation. In this work, we demonstrate the feasibility of using a non-linear mixed-effects (NLME) approach for generating parametric images from medical imaging data of a single study. By assuming that all voxels in the image are independent, we used simulation and animal data to evaluate whether NLME can improve the voxel-wise parameter estimation. For testing purposes, intravoxel incoherent motion (IVIM) diffusion parameters including perfusion fraction, pseudo-diffusion coefficient and true diffusion coefficient were estimated using diffusion-weighted MR images and NLME through fitting the IVIM model. The conventional method of non-linear least squares (NLLS) was used as the standard approach for comparison of the resulted parametric images. In the simulated data, NLME provides more accurate and precise estimates of diffusion parameters compared with NLLS. Similarly, we found that NLME has the ability to improve the signal-to-noise ratio of parametric images obtained from rat brain data. These data have shown that it is feasible to apply NLME in parametric image generation, and the parametric image quality can be accordingly improved with the use of NLME. With the flexibility to be adapted to other models or modalities, NLME may become a useful tool to improve the parametric image quality in the future. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Brown, Ryan; Storey, Pippa; Geppert, Christian; McGorty, KellyAnne; Leite, Ana Paula Klautau; Babb, James; Sodickson, Daniel K; Wiggins, Graham C; Moy, Linda
2013-11-01
To evaluate the image quality of T1-weighted fat-suppressed breast MRI at 7 T and to compare 7-T and 3-T images. Seventeen subjects were imaged using a 7-T bilateral transmit-receive coil and 3D gradient echo sequence with adiabatic inversion-based fat suppression (FS). Images were graded on a five-point scale and quantitatively assessed through signal-to-noise ratio (SNR), fibroglandular/fat contrast and signal uniformity measurements. Image scores at 7 and 3 T were similar on standard-resolution images (1.1 × 1.1 × 1.1-1.6 mm(3)), indicating that high-quality breast imaging with clinical parameters can be performed at 7 T. The 7-T SNR advantage was underscored on 0.6-mm isotropic images, where image quality was significantly greater than at 3 T (4.2 versus 3.1, P ≤ 0.0001). Fibroglandular/fat contrast was more than two times higher at 7 T than at 3 T, owing to effective adiabatic inversion-based FS and the inherent 7-T signal advantage. Signal uniformity was comparable at 7 and 3 T (P < 0.05). Similar 7-T image quality was observed in all subjects, indicating robustness against anatomical variation. The 7-T bilateral transmit-receive coil and adiabatic inversion-based FS technique produce image quality that is as good as or better than at 3 T. • High image quality bilateral breast MRI is achievable with clinical parameters at 7 T. • 7-T high-resolution imaging improves delineation of subtle soft tissue structures. • Adiabatic-based fat suppression provides excellent fibroglandular/fat contrast at 7 T. • 7- and 3-T 3D T1-weighted gradient-echo images have similar signal uniformity. • The 7-T dual solenoid coil enables bilateral imaging without compromising uniformity.
Use of LANDSAT 8 images for depth and water quality assessment of El Guájaro reservoir, Colombia
NASA Astrophysics Data System (ADS)
González-Márquez, Luis Carlos; Torres-Bejarano, Franklin M.; Torregroza-Espinosa, Ana Carolina; Hansen-Rodríguez, Ivette Renée; Rodríguez-Gallegos, Hugo B.
2018-03-01
The aim of this study was to evaluate the viability of using Landsat 8 spectral images to estimate water quality parameters and depth in El Guájaro Reservoir. On February and March 2015, two samplings were carried out in the reservoir, coinciding with the Landsat 8 images. Turbidity, dissolved oxygen, electrical conductivity, pH and depth were evaluated. Through multiple regression analysis between measured water quality parameters and the reflectance of the pixels corresponding to the sampling stations, statistical models with determination coefficients between 0.6249 and 0.9300 were generated. Results indicate that from a small number of measured parameters we can generate reliable models to estimate the spatial variation of turbidity, dissolved oxygen, pH and depth, as well the temporal variation of electrical conductivity, so models generated from Landsat 8 can be used as a tool to facilitate the environmental, economic and social management of the reservoir.
X-ray online detection for laser welding T-joint of Al-Li alloy
NASA Astrophysics Data System (ADS)
Zhan, Xiaohong; Bu, Xing; Qin, Tao; Yu, Haisong; Chen, Jie; Wei, Yanhong
2017-05-01
In order to detect weld defects in laser welding T-joint of Al-Li alloy, a real-time X-ray image system is set up for quality inspection. Experiments on real-time radiography procedure of the weldment are conducted by using this system. Twin fillet welding seam radiographic arrangement is designed according to the structural characteristics of the weldment. The critical parameters including magnification times, focal length, tube current and tube voltage are studied to acquire high quality weld images. Through the theoretical and data analysis, optimum parameters are settled and expected digital images are captured, which is conductive to automatic defect detection.
Beef quality parameters estimation using ultrasound and color images
2015-01-01
Background Beef quality measurement is a complex task with high economic impact. There is high interest in obtaining an automatic quality parameters estimation in live cattle or post mortem. In this paper we set out to obtain beef quality estimates from the analysis of ultrasound (in vivo) and color images (post mortem), with the measurement of various parameters related to tenderness and amount of meat: rib eye area, percentage of intramuscular fat and backfat thickness or subcutaneous fat. Proposal An algorithm based on curve evolution is implemented to calculate the rib eye area. The backfat thickness is estimated from the profile of distances between two curves that limit the steak and the rib eye, previously detected. A model base in Support Vector Regression (SVR) is trained to estimate the intramuscular fat percentage. A series of features extracted on a region of interest, previously detected in both ultrasound and color images, were proposed. In all cases, a complete evaluation was performed with different databases including: color and ultrasound images acquired by a beef industry expert, intramuscular fat estimation obtained by an expert using a commercial software, and chemical analysis. Conclusions The proposed algorithms show good results to calculate the rib eye area and the backfat thickness measure and profile. They are also promising in predicting the percentage of intramuscular fat. PMID:25734452
Paul, Jijo; Jacobi, Volkmar; Farhang, Mohammad; Bazrafshan, Babak; Vogl, Thomas J; Mbalisike, Emmanuel C
2013-06-01
Radiation dose and image quality estimation of three X-ray volume imaging (XVI) systems. A total of 126 patients were examined using three XVI systems (groups 1-3) and their data were retrospectively analysed from 2007 to 2012. Each group consisted of 42 patients and each patient was examined using cone-beam computed tomography (CBCT), digital subtraction angiography (DSA) and digital fluoroscopy (DF). Dose parameters such as dose-area product (DAP), skin entry dose (SED) and image quality parameters such as Hounsfield unit (HU), noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were estimated and compared using appropriate statistical tests. Mean DAP and SED were lower in recent XVI than its previous counterparts in CBCT, DSA and DF. HU of all measured locations was non-significant between the groups except the hepatic artery. Noise showed significant difference among groups (P < 0.05). Regarding CNR and SNR, the recent XVI showed a higher and significant difference compared to its previous versions. Qualitatively, CBCT showed significance between versions unlike the DSA and DF which showed non-significance. A reduction of radiation dose was obtained for the recent-generation XVI system in CBCT, DSA and DF. Image noise was significantly lower; SNR and CNR were higher than in previous versions. The technological advancements and the reduction in the number of frames led to a significant dose reduction and improved image quality with the recent-generation XVI system. • X-ray volume imaging (XVI) systems are increasingly used for interventional radiological procedures. • More modern XVI systems use lower radiation doses compared with earlier counterparts. • Furthermore more modern XVI systems provide higher image quality. • Technological advances reduce radiation dose and improve image quality.
The Impact of the Condenser on Cytogenetic Image Quality in Digital Microscope System
Ren, Liqiang; Li, Zheng; Li, Yuhua; Zheng, Bin; Li, Shibo; Chen, Xiaodong; Liu, Hong
2013-01-01
Background: Optimizing operational parameters of the digital microscope system is an important technique to acquire high quality cytogenetic images and facilitate the process of karyotyping so that the efficiency and accuracy of diagnosis can be improved. OBJECTIVE: This study investigated the impact of the condenser on cytogenetic image quality and system working performance using a prototype digital microscope image scanning system. Methods: Both theoretical analysis and experimental validations through objectively evaluating a resolution test chart and subjectively observing large numbers of specimen were conducted. Results: The results show that the optimal image quality and large depth of field (DOF) are simultaneously obtained when the numerical aperture of condenser is set as 60%–70% of the corresponding objective. Under this condition, more analyzable chromosomes and diagnostic information are obtained. As a result, the system shows higher working stability and less restriction for the implementation of algorithms such as autofocusing especially when the system is designed to achieve high throughput continuous image scanning. Conclusions: Although the above quantitative results were obtained using a specific prototype system under the experimental conditions reported in this paper, the presented evaluation methodologies can provide valuable guidelines for optimizing operational parameters in cytogenetic imaging using the high throughput continuous scanning microscopes in clinical practice. PMID:23676284
A procedure for testing the quality of LANDSAT atmospheric correction algorithms
NASA Technical Reports Server (NTRS)
Dias, L. A. V. (Principal Investigator); Vijaykumar, N. L.; Neto, G. C.
1982-01-01
There are two basic methods for testing the quality of an algorithm to minimize atmospheric effects on LANDSAT imagery: (1) test the results a posteriori, using ground truth or control points; (2) use a method based on image data plus estimation of additional ground and/or atmospheric parameters. A procedure based on the second method is described. In order to select the parameters, initially the image contrast is examined for a series of parameter combinations. The contrast improves for better corrections. In addition the correlation coefficient between two subimages, taken at different times, of the same scene is used for parameter's selection. The regions to be correlated should not have changed considerably in time. A few examples using this proposed procedure are presented.
Dependency of Optimal Parameters of the IRIS Template on Image Quality and Border Detection Error
NASA Astrophysics Data System (ADS)
Matveev, I. A.; Novik, V. P.
2017-05-01
Generation of a template containing spatial-frequency features of iris is an important stage of identification. The template is obtained by a wavelet transform in an image region specified by iris borders. One of the main characteristics of the identification system is the value of recognition error, equal error rate (EER) is used as criterion here. The optimal values (in sense of minimizing the EER) of wavelet transform parameters depend on many factors: image quality, sharpness, size of characteristic objects, etc. It is hard to isolate these factors and their influences. The work presents an attempt to study an influence of following factors to EER: iris segmentation precision, defocus level, noise level. Several public domain iris image databases were involved in experiments. The images were subjected to modelled distortions of said types. The dependencies of wavelet parameter and EER values from the distortion levels were build. It is observed that the increase of the segmentation error and image noise leads to the increase of the optimal wavelength of the wavelets, whereas the increase of defocus level leads to decreasing of this value.
TU-F-9A-01: Balancing Image Quality and Dose in Radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peck, D; Pasciak, A
2014-06-15
Emphasis is often placed on minimizing radiation dose in diagnostic imaging without a complete consideration of the effect on image quality, especially those that affect diagnostic accuracy. This session will include a patient image-based review of diagnostic quantities important to radiologists in conventional radiography, including the effects of body habitus, age, positioning, and the clinical indication of the exam. The relationships between image quality, radiation dose, and radiation risk will be discussed, specifically addressing how these factors are affected by image protocols and acquisition parameters and techniques. This session will also discuss some of the actual and perceived radiation riskmore » associated with diagnostic imaging. Regardless if the probability for radiation-induced cancer is small, the fear associated with radiation persists. Also when a risk has a benefit to an individual or to society, the risk may be justified with respect to the benefit. But how do you convey the risks and the benefits to people? This requires knowledge of how people perceive risk and how to communicate the risk and the benefit to different populations. In this presentation the sources of errors in estimating risk from radiation and some methods used to convey risks are reviewed. Learning Objectives: Understand the image quality metrics that are clinically relevant to radiologists. Understand how acquisition parameters and techniques affect image quality and radiation dose in conventional radiology. Understand the uncertainties in estimates of radiation risk from imaging exams. Learn some methods for effectively communicating radiation risk to the public.« less
Oliveira, M; Lopez, G; Geambastiani, P; Ubeda, C
2018-05-01
A quality assurance (QA) program is a valuable tool for the continuous production of optimal quality images. The aim of this paper is to assess a newly developed automatic computer software for image quality (IR) evaluation in fluoroscopy X-ray systems. Test object images were acquired using one fluoroscopy system, Siemens Axiom Artis model (Siemens AG, Medical Solutions Erlangen, Germany). The software was developed as an ImageJ plugin. Two image quality parameters were assessed: high-contrast spatial resolution (HCSR) and signal-to-noise ratio (SNR). The time between manual and automatic image quality assessment procedures were compared. The paired t-test was used to assess the data. p Values of less than 0.05 were considered significant. The Fluoro-QC software generated faster IQ evaluation results (mean = 0.31 ± 0.08 min) than manual procedure (mean = 4.68 ± 0.09 min). The mean difference between techniques was 4.36 min. Discrepancies were identified in the region of interest (ROI) areas drawn manually with evidence of user dependence. The new software presented the results of two tests (HCSR = 3.06, SNR = 5.17) and also collected information from the DICOM header. Significant differences were not identified between manual and automatic measures of SNR (p value = 0.22) and HCRS (p value = 0.46). The Fluoro-QC software is a feasible, fast and free to use method for evaluating imaging quality parameters on fluoroscopy systems. Copyright © 2017 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.
Sun, Xiaofei; Shi, Lin; Luo, Yishan; Yang, Wei; Li, Hongpeng; Liang, Peipeng; Li, Kuncheng; Mok, Vincent C T; Chu, Winnie C W; Wang, Defeng
2015-07-28
Intensity normalization is an important preprocessing step in brain magnetic resonance image (MRI) analysis. During MR image acquisition, different scanners or parameters would be used for scanning different subjects or the same subject at a different time, which may result in large intensity variations. This intensity variation will greatly undermine the performance of subsequent MRI processing and population analysis, such as image registration, segmentation, and tissue volume measurement. In this work, we proposed a new histogram normalization method to reduce the intensity variation between MRIs obtained from different acquisitions. In our experiment, we scanned each subject twice on two different scanners using different imaging parameters. With noise estimation, the image with lower noise level was determined and treated as the high-quality reference image. Then the histogram of the low-quality image was normalized to the histogram of the high-quality image. The normalization algorithm includes two main steps: (1) intensity scaling (IS), where, for the high-quality reference image, the intensities of the image are first rescaled to a range between the low intensity region (LIR) value and the high intensity region (HIR) value; and (2) histogram normalization (HN),where the histogram of low-quality image as input image is stretched to match the histogram of the reference image, so that the intensity range in the normalized image will also lie between LIR and HIR. We performed three sets of experiments to evaluate the proposed method, i.e., image registration, segmentation, and tissue volume measurement, and compared this with the existing intensity normalization method. It is then possible to validate that our histogram normalization framework can achieve better results in all the experiments. It is also demonstrated that the brain template with normalization preprocessing is of higher quality than the template with no normalization processing. We have proposed a histogram-based MRI intensity normalization method. The method can normalize scans which were acquired on different MRI units. We have validated that the method can greatly improve the image analysis performance. Furthermore, it is demonstrated that with the help of our normalization method, we can create a higher quality Chinese brain template.
Enhanced visual perception through tone mapping
NASA Astrophysics Data System (ADS)
Harrison, Andre; Mullins, Linda L.; Raglin, Adrienne; Etienne-Cummings, Ralph
2016-05-01
Tone mapping operators compress high dynamic range images to improve the picture quality on a digital display when the dynamic range of the display is lower than that of the image. However, tone mapping operators have been largely designed and evaluated based on the aesthetic quality of the resulting displayed image or how perceptually similar the compressed image appears relative to the original scene. They also often require per image tuning of parameters depending on the content of the image. In military operations, however, the amount of information that can be perceived is more important than the aesthetic quality of the image and any parameter adjustment needs to be as automated as possible regardless of the content of the image. We have conducted two studies to evaluate the perceivable detail of a set of tone mapping algorithms, and we apply our findings to develop and test an automated tone mapping algorithm that demonstrates a consistent improvement in the amount of perceived detail. An automated, and thereby predictable, tone mapping method enables a consistent presentation of perceivable features, can reduce the bandwidth required to transmit the imagery, and can improve the accessibility of the data by reducing the needed expertise of the analyst(s) viewing the imagery.
Clinical image quality evaluation for panoramic radiography in Korean dental clinics
Choi, Bo-Ram; Choi, Da-Hye; Huh, Kyung-Hoe; Yi, Won-Jin; Heo, Min-Suk; Choi, Soon-Chul; Bae, Kwang-Hak
2012-01-01
Purpose The purpose of this study was to investigate the level of clinical image quality of panoramic radiographs and to analyze the parameters that influence the overall image quality. Materials and Methods Korean dental clinics were asked to provide three randomly selected panoramic radiographs. An oral and maxillofacial radiology specialist evaluated those images using our self-developed Clinical Image Quality Evaluation Chart. Three evaluators classified the overall image quality of the panoramic radiographs and evaluated the causes of imaging errors. Results A total of 297 panoramic radiographs were collected from 99 dental hospitals and clinics. The mean of the scores according to the Clinical Image Quality Evaluation Chart was 79.9. In the classification of the overall image quality, 17 images were deemed 'optimal for obtaining diagnostic information,' 153 were 'adequate for diagnosis,' 109 were 'poor but diagnosable,' and nine were 'unrecognizable and too poor for diagnosis'. The results of the analysis of the causes of the errors in all the images are as follows: 139 errors in the positioning, 135 in the processing, 50 from the radiographic unit, and 13 due to anatomic abnormality. Conclusion Panoramic radiographs taken at local dental clinics generally have a normal or higher-level image quality. Principal factors affecting image quality were positioning of the patient and image density, sharpness, and contrast. Therefore, when images are taken, the patient position should be adjusted with great care. Also, standardizing objective criteria of image density, sharpness, and contrast is required to evaluate image quality effectively. PMID:23071969
Online geometric calibration of cone-beam computed tomography for arbitrary imaging objects.
Meng, Yuanzheng; Gong, Hui; Yang, Xiaoquan
2013-02-01
A novel online method based on the symmetry property of the sum of projections (SOP) is proposed to obtain the geometric parameters in cone-beam computed tomography (CBCT). This method requires no calibration phantom and can be used in circular trajectory CBCT with arbitrary cone angles. An objective function is deduced to illustrate the dependence of the symmetry of SOP on geometric parameters, which will converge to its minimum when the geometric parameters achieve their true values. Thus, by minimizing the objective function, we can obtain the geometric parameters for image reconstruction. To validate this method, numerical phantom studies with different noise levels are simulated. The results show that our method is insensitive to the noise and can determine the skew (in-plane rotation angle of the detector), the roll (rotation angle around the projection of the rotation axis on the detector), and the rotation axis with high accuracy, while the mid-plane and source-to-detector distance will be obtained with slightly lower accuracy. However, our simulation studies validate that the errors of the latter two parameters brought by our method will hardly degrade the quality of reconstructed images. The small animal studies show that our method is able to deal with arbitrary imaging objects. In addition, the results of the reconstructed images in different slices demonstrate that we have achieved comparable image quality in the reconstructions as some offline methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolly, S; Mutic, S; Anastasio, M
Purpose: Traditionally, image quality in radiation therapy is assessed subjectively or by utilizing physically-based metrics. Some model observers exist for task-based medical image quality assessment, but almost exclusively for diagnostic imaging tasks. As opposed to disease diagnosis, the task for image observers in radiation therapy is to utilize the available images to design and deliver a radiation dose which maximizes patient disease control while minimizing normal tissue damage. The purpose of this study was to design and implement a new computer simulation model observer to enable task-based image quality assessment in radiation therapy. Methods: A modular computer simulation framework wasmore » developed to resemble the radiotherapy observer by simulating an end-to-end radiation therapy treatment. Given images and the ground-truth organ boundaries from a numerical phantom as inputs, the framework simulates an external beam radiation therapy treatment and quantifies patient treatment outcomes using the previously defined therapeutic operating characteristic (TOC) curve. As a preliminary demonstration, TOC curves were calculated for various CT acquisition and reconstruction parameters, with the goal of assessing and optimizing simulation CT image quality for radiation therapy. Sources of randomness and bias within the system were analyzed. Results: The relationship between CT imaging dose and patient treatment outcome was objectively quantified in terms of a singular value, the area under the TOC (AUTOC) curve. The AUTOC decreases more rapidly for low-dose imaging protocols. AUTOC variation introduced by the dose optimization algorithm was approximately 0.02%, at the 95% confidence interval. Conclusion: A model observer has been developed and implemented to assess image quality based on radiation therapy treatment efficacy. It enables objective determination of appropriate imaging parameter values (e.g. imaging dose). Framework flexibility allows for incorporation of additional modules to include any aspect of the treatment process, and therefore has great potential for both assessment and optimization within radiation therapy.« less
A New Feedback-Based Method for Parameter Adaptation in Image Processing Routines.
Khan, Arif Ul Maula; Mikut, Ralf; Reischl, Markus
2016-01-01
The parametrization of automatic image processing routines is time-consuming if a lot of image processing parameters are involved. An expert can tune parameters sequentially to get desired results. This may not be productive for applications with difficult image analysis tasks, e.g. when high noise and shading levels in an image are present or images vary in their characteristics due to different acquisition conditions. Parameters are required to be tuned simultaneously. We propose a framework to improve standard image segmentation methods by using feedback-based automatic parameter adaptation. Moreover, we compare algorithms by implementing them in a feedforward fashion and then adapting their parameters. This comparison is proposed to be evaluated by a benchmark data set that contains challenging image distortions in an increasing fashion. This promptly enables us to compare different standard image segmentation algorithms in a feedback vs. feedforward implementation by evaluating their segmentation quality and robustness. We also propose an efficient way of performing automatic image analysis when only abstract ground truth is present. Such a framework evaluates robustness of different image processing pipelines using a graded data set. This is useful for both end-users and experts.
A New Feedback-Based Method for Parameter Adaptation in Image Processing Routines
Mikut, Ralf; Reischl, Markus
2016-01-01
The parametrization of automatic image processing routines is time-consuming if a lot of image processing parameters are involved. An expert can tune parameters sequentially to get desired results. This may not be productive for applications with difficult image analysis tasks, e.g. when high noise and shading levels in an image are present or images vary in their characteristics due to different acquisition conditions. Parameters are required to be tuned simultaneously. We propose a framework to improve standard image segmentation methods by using feedback-based automatic parameter adaptation. Moreover, we compare algorithms by implementing them in a feedforward fashion and then adapting their parameters. This comparison is proposed to be evaluated by a benchmark data set that contains challenging image distortions in an increasing fashion. This promptly enables us to compare different standard image segmentation algorithms in a feedback vs. feedforward implementation by evaluating their segmentation quality and robustness. We also propose an efficient way of performing automatic image analysis when only abstract ground truth is present. Such a framework evaluates robustness of different image processing pipelines using a graded data set. This is useful for both end-users and experts. PMID:27764213
Technical aspects of contrast-enhanced ultrasound (CEUS) examinations: tips and tricks.
Greis, C
2014-01-01
Ultrasound contrast agents have substantially extended the clinical value of ultrasound, allowing the assessment of blood flow and distribution in real-time down to microcapillary level. Selective imaging of contrast agent signals requires a contrast-specific imaging mode on the ultrasound scanner, allowing real-time separation of tissue and contrast agent signals. The creation of a contrast image requires a specific interaction between the insonated ultrasound wave and the contrast agent microbubbles, leading to persistent oscillation of the bubbles. Several technical and procedural parameters have a significant influence on the quality of CEUS images and should be controlled carefully to obtain good image quality and a reliable diagnosis. Achieving the proper balance between the respective parameters is a matter of technical knowledge and experience. Appropriate training and education should be mandatory for every investigator performing CEUS examinations.
Saade, Charbel; Deeb, Ibrahim Alsheikh; Mohamad, Maha; Al-Mohiy, Hussain; El-Merhi, Fadi
2016-01-01
Over the last decade, exponential advances in computed tomography (CT) technology have resulted in improved spatial and temporal resolution. Faster image acquisition enabled renal CT angiography to become a viable and effective noninvasive alternative in diagnosing renal vascular pathologies. However, with these advances, new challenges in contrast media administration have emerged. Poor synchronization between scanner and contrast media administration have reduced the consistency in image quality with poor spatial and contrast resolution. Comprehensive understanding of contrast media dynamics is essential in the design and implementation of contrast administration and image acquisition protocols. This review includes an overview of the parameters affecting renal artery opacification and current protocol strategies to achieve optimal image quality during renal CT angiography with iodinated contrast media, with current safety issues highlighted. PMID:26728701
An image quality comparison study between XVI and OBI CBCT systems.
Kamath, Srijit; Song, William; Chvetsov, Alexei; Ozawa, Shuichi; Lu, Haibin; Samant, Sanjiv; Liu, Chihray; Li, Jonathan G; Palta, Jatinder R
2011-02-04
The purpose of this study is to evaluate and compare image quality characteristics for two commonly used and commercially available CBCT systems: the X-ray Volumetric Imager and the On-Board Imager. A commonly used CATPHAN image quality phantom was used to measure various image quality parameters, namely, pixel value stability and accuracy, noise, contrast to noise ratio (CNR), high-contrast resolution, low contrast resolution and image uniformity. For the XVI unit, we evaluated the image quality for four manufacturer-supplied protocols as a function of mAs. For the OBI unit, we did the same for the full-fan and half-fan scanning modes, which were respectively used with the full bow-tie and half bow-tie filters. For XVI, the mean pixel values of regions of interest were found to generally decrease with increasing mAs for all protocols, while they were relatively stable with mAs for OBI. Noise was slightly lower on XVI and was seen to decrease with increasing mAs, while CNR increased with mAs for both systems. For XVI and OBI, the high-contrast resolution was approximately limited by the pixel resolution of the reconstructed image. On OBI images, up to 6 and 5 discs of 1% and 0.5% contrast, respectively, were visible for a high mAs setting using the full-fan mode, while none of the discs were clearly visible on the XVI images for various mAs settings when the medium resolution reconstruction was used. In conclusion, image quality parameters for XVI and OBI have been quantified and compared for clinical protocols under various mAs settings. These results need to be viewed in the context of a recent study that reported the dose-mAs relationship for the two systems and found that OBI generally delivered higher imaging doses than XVI.
Radiation dose and image quality for paediatric interventional cardiology
NASA Astrophysics Data System (ADS)
Vano, E.; Ubeda, C.; Leyton, F.; Miranda, P.
2008-08-01
Radiation dose and image quality for paediatric protocols in a biplane x-ray system used for interventional cardiology have been evaluated. Entrance surface air kerma (ESAK) and image quality using a test object and polymethyl methacrylate (PMMA) phantoms have been measured for the typical paediatric patient thicknesses (4-20 cm of PMMA). Images from fluoroscopy (low, medium and high) and cine modes have been archived in digital imaging and communications in medicine (DICOM) format. Signal-to-noise ratio (SNR), figure of merit (FOM), contrast (CO), contrast-to-noise ratio (CNR) and high contrast spatial resolution (HCSR) have been computed from the images. Data on dose transferred to the DICOM header have been used to test the values of the dosimetric display at the interventional reference point. ESAK for fluoroscopy modes ranges from 0.15 to 36.60 µGy/frame when moving from 4 to 20 cm PMMA. For cine, these values range from 2.80 to 161.10 µGy/frame. SNR, FOM, CO, CNR and HCSR are improved for high fluoroscopy and cine modes and maintained roughly constant for the different thicknesses. Cumulative dose at the interventional reference point resulted 25-45% higher than the skin dose for the vertical C-arm (depending of the phantom thickness). ESAK and numerical image quality parameters allow the verification of the proper setting of the x-ray system. Knowing the increases in dose per frame when increasing phantom thicknesses together with the image quality parameters will help cardiologists in the good management of patient dose and allow them to select the best imaging acquisition mode during clinical procedures.
Lofthag-Hansen, Sara; Thilander-Klang, Anne; Gröndahl, Kerstin
2011-11-01
To evaluate subjective image quality for two diagnostic tasks, periapical diagnosis and implant planning, for cone beam computed tomography (CBCT) using different exposure parameters and fields of view (FOVs). Examinations were performed in posterior part of the jaws on a skull phantom with 3D Accuitomo (FOV 3 cm×4 cm) and 3D Accuitomo FPD (FOVs 4 cm×4 cm and 6 cm×6 cm). All combinations of 60, 65, 70, 75, 80 kV and 2, 4, 6, 8, 10 mA with a rotation of 180° and 360° were used. Dose-area product (DAP) value was determined for each combination. The images were presented, displaying the object in axial, cross-sectional and sagittal views, without scanning data in a random order for each FOV and jaw. Seven observers assessed image quality on a six-point rating scale. Intra-observer agreement was good (κw=0.76) and inter-observer agreement moderate (κw=0.52). Stepwise logistic regression showed kV, mA and diagnostic task to be the most important variables. Periapical diagnosis, regardless jaw, required higher exposure parameters compared to implant planning. Implant planning in the lower jaw required higher exposure parameters compared to upper jaw. Overall ranking of FOVs gave 4 cm×4 cm, 6 cm×6 cm followed by 3 cm×4 cm. This study has shown that exposure parameters should be adjusted according to diagnostic task. For this particular CBCT brand a rotation of 180° gave good subjective image quality, hence a substantial dose reduction can be achieved without loss of diagnostic information. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Image degradation characteristics and restoration based on regularization for diffractive imaging
NASA Astrophysics Data System (ADS)
Zhi, Xiyang; Jiang, Shikai; Zhang, Wei; Wang, Dawei; Li, Yun
2017-11-01
The diffractive membrane optical imaging system is an important development trend of ultra large aperture and lightweight space camera. However, related investigations on physics-based diffractive imaging degradation characteristics and corresponding image restoration methods are less studied. In this paper, the model of image quality degradation for the diffraction imaging system is first deduced mathematically based on diffraction theory and then the degradation characteristics are analyzed. On this basis, a novel regularization model of image restoration that contains multiple prior constraints is established. After that, the solving approach of the equation with the multi-norm coexistence and multi-regularization parameters (prior's parameters) is presented. Subsequently, the space-variant PSF image restoration method for large aperture diffractive imaging system is proposed combined with block idea of isoplanatic region. Experimentally, the proposed algorithm demonstrates its capacity to achieve multi-objective improvement including MTF enhancing, dispersion correcting, noise and artifact suppressing as well as image's detail preserving, and produce satisfactory visual quality. This can provide scientific basis for applications and possesses potential application prospects on future space applications of diffractive membrane imaging technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S; Lu, B; Samant, S
2014-06-01
Purpose: To investigate the effects of scanning parameters and respiratory patterns on the image quality for 4-dimensional cone-beam computed tomography(4D-CBCT) imaging, and assess the accuracy of computed tumor trajectory for lung imaging using registration of phased 4D-CBCT imaging with treatment planning-CT. Methods: We simulated a periodic and non-sinusoidal respirations with various breathing periods and amplitudes using a respiratory phantom(Quasar, Modus Medical Devices Inc) to acquire respiration-correlated 4D-CBCT images. 4D-CBCT scans(Elekta Oncology Systems Ltd) were performed with different scanning parameters for collimation size(e.g., small and medium field-of-views) and scanning speed(e.g., slow 50°·min{sup −1}, fast 100°·min{sup −1}). Using a standard CBCT-QA phantom(Catphan500,more » The Phantom Laboratory), the image qualities of all phases in 4D-CBCT were evaluated with contrast-to-noise ratio(CNR) for lung tissue and uniformity in each module. Using a respiratory phantom, the target imaging in 4D-CBCT was compared to 3D-CBCT target image. The target trajectory from 10-respiratory phases in 4D-CBCT was extracted using an automatic image registration and subsequently assessed the accuracy by comparing with actual motion of the target. Results: Image analysis indicated that a short respiration with a small amplitude resulted in superior CNR and uniformity. Smaller variation of CNR and uniformity was present amongst different respiratory phases. The small field-of-view with a partial scan using slow scan can improve CNR, but degraded uniformity. Large amplitude of respiration can degrade image quality. RMS of voxel densities in tumor area of 4D-CBCT images between sinusoidal and non-sinusoidal motion exhibited no significant difference. The maximum displacement errors of motion trajectories were less than 1.0 mm and 13.5 mm, for sinusoidal and non-sinusoidal breathings, respectively. The accuracy of motion reconstruction showed good overall agreement with the 4D-CBCT image quality results only using sinusoidal breathings. Conclusion: This information can be used to determine the appropriate acquisition parameters of 4D-CBCT imaging for registration accuracy and target trajectory measurements in a clinical setting.« less
Pantanowitz, Liron; Liu, Chi; Huang, Yue; Guo, Huazhang; Rohde, Gustavo K
2017-01-01
The quality of data obtained from image analysis can be directly affected by several preanalytical (e.g., staining, image acquisition), analytical (e.g., algorithm, region of interest [ROI]), and postanalytical (e.g., computer processing) variables. Whole-slide scanners generate digital images that may vary depending on the type of scanner and device settings. Our goal was to evaluate the impact of altering brightness, contrast, compression, and blurring on image analysis data quality. Slides from 55 patients with invasive breast carcinoma were digitized to include a spectrum of human epidermal growth factor receptor 2 (HER2) scores analyzed with Visiopharm (30 cases with score 0, 10 with 1+, 5 with 2+, and 10 with 3+). For all images, an ROI was selected and four parameters (brightness, contrast, JPEG2000 compression, out-of-focus blurring) then serially adjusted. HER2 scores were obtained for each altered image. HER2 scores decreased with increased illumination, higher compression ratios, and increased blurring. HER2 scores increased with greater contrast. Cases with HER2 score 0 were least affected by image adjustments. This experiment shows that variations in image brightness, contrast, compression, and blurring can have major influences on image analysis results. Such changes can result in under- or over-scoring with image algorithms. Standardization of image analysis is recommended to minimize the undesirable impact such variations may have on data output.
Alizadeh Ashrafi, Sina; Miller, Peter W; Wandro, Kevin M; Kim, Dave
2016-10-13
Hole quality plays a crucial role in the production of close-tolerance holes utilized in aircraft assembly. Through drilling experiments of carbon fiber-reinforced plastic composites (CFRP), this study investigates the impact of varying drilling feed and speed conditions on fiber pull-out geometries and resulting hole quality parameters. For this study, hole quality parameters include hole size variance, hole roundness, and surface roughness. Fiber pull-out geometries are quantified by using scanning electron microscope (SEM) images of the mechanically-sectioned CFRP-machined holes, to measure pull-out length and depth. Fiber pull-out geometries and the hole quality parameter results are dependent on the drilling feed and spindle speed condition, which determines the forces and undeformed chip thickness during the process. Fiber pull-out geometries influence surface roughness parameters from a surface profilometer, while their effect on other hole quality parameters obtained from a coordinate measuring machine is minimal.
Sasaki, Kei; Sasaki, Hiroto; Takahashi, Atsuki; Kang, Siu; Yuasa, Tetsuya; Kato, Ryuji
2016-02-01
In recent years, cell and tissue therapy in regenerative medicine have advanced rapidly towards commercialization. However, conventional invasive cell quality assessment is incompatible with direct evaluation of the cells produced for such therapies, especially in the case of regenerative medicine products. Our group has demonstrated the potential of quantitative assessment of cell quality, using information obtained from cell images, for non-invasive real-time evaluation of regenerative medicine products. However, image of cells in the confluent state are often difficult to evaluate, because accurate recognition of cells is technically difficult and the morphological features of confluent cells are non-characteristic. To overcome these challenges, we developed a new image-processing algorithm, heterogeneity of orientation (H-Orient) processing, to describe the heterogeneous density of cells in the confluent state. In this algorithm, we introduced a Hessian calculation that converts pixel intensity data to orientation data and a statistical profiling calculation that evaluates the heterogeneity of orientations within an image, generating novel parameters that yield a quantitative profile of an image. Using such parameters, we tested the algorithm's performance in discriminating different qualities of cellular images with three types of clinically important cell quality check (QC) models: remaining lifespan check (QC1), manipulation error check (QC2), and differentiation potential check (QC3). Our results show that our orientation analysis algorithm could predict with high accuracy the outcomes of all types of cellular quality checks (>84% average accuracy with cross-validation). Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
An Automatic Image Processing Workflow for Daily Magnetic Resonance Imaging Quality Assurance.
Peltonen, Juha I; Mäkelä, Teemu; Sofiev, Alexey; Salli, Eero
2017-04-01
The performance of magnetic resonance imaging (MRI) equipment is typically monitored with a quality assurance (QA) program. The QA program includes various tests performed at regular intervals. Users may execute specific tests, e.g., daily, weekly, or monthly. The exact interval of these measurements varies according to the department policies, machine setup and usage, manufacturer's recommendations, and available resources. In our experience, a single image acquired before the first patient of the day offers a low effort and effective system check. When this daily QA check is repeated with identical imaging parameters and phantom setup, the data can be used to derive various time series of the scanner performance. However, daily QA with manual processing can quickly become laborious in a multi-scanner environment. Fully automated image analysis and results output can positively impact the QA process by decreasing reaction time, improving repeatability, and by offering novel performance evaluation methods. In this study, we have developed a daily MRI QA workflow that can measure multiple scanner performance parameters with minimal manual labor required. The daily QA system is built around a phantom image taken by the radiographers at the beginning of day. The image is acquired with a consistent phantom setup and standardized imaging parameters. Recorded parameters are processed into graphs available to everyone involved in the MRI QA process via a web-based interface. The presented automatic MRI QA system provides an efficient tool for following the short- and long-term stability of MRI scanners.
Performance optimization of the Varian aS500 EPID system.
Berger, Lucie; François, Pascal; Gaboriaud, Geneviève; Rosenwald, Jean-Claude
2006-01-01
Today, electronic portal imaging devices (EPIDs) are widely used as a replacement to portal films for patient position verification, but the image quality is not always optimal. The general aim of this study was to optimize the acquisition parameters of an amorphous silicon EPID commercially available for clinical use in radiation therapy with the view to avoid saturation of the system. Special attention was paid to selection of the parameter corresponding to the number of rows acquired between accelerator pulses (NRP) for various beam energies and dose rates. The image acquisition system (IAS2) has been studied, and portal image acquisition was found to be strongly dependent on the accelerator pulse frequency. This frequency is set for each "energy - dose rate" combination of the linear accelerator. For all combinations, the image acquisition parameters were systematically changed to determine their influence on the performances of the Varian aS500 EPID system. New parameters such as the maximum number of rows (MNR) and the number of pulses per frame (NPF) were introduced to explain portal image acquisition theory. Theoretical and experimental values of MNR and NPF were compared, and they were in good agreement. Other results showed that NRP had a major influence on detector saturation and dose per image. A rule of thumb was established to determine the optimum NRP value to be used. This practical application was illustrated by a clinical example in which the saturation of the aSi EPID was avoided by NRP optimization. Moreover, an additional study showed that image quality was relatively insensitive to this parameter.
Wang, Zhiyue J; Seo, Youngseob; Babcock, Evelyn; Huang, Hao; Bluml, Stefan; Wisnowski, Jessica; Holshouser, Barbara; Panigrahy, Ashok; Shaw, Dennis W W; Altman, Nolan; McColl, Roderick W; Rollins, Nancy K
2016-05-08
The purpose of this study was to explore the feasibility of assessing quality of diffusion tensor imaging (DTI) from multiple sites and vendors using American College of Radiology (ACR) phantom. Participating sites (Siemens (n = 2), GE (n= 2), and Philips (n = 4)) reached consensus on parameters for DTI and used the widely available ACR phantom. Tensor data were processed at one site. B0 and eddy current distortions were assessed using grid line displacement on phantom Slice 5; signal-to-noise ratio (SNR) was measured at the center and periphery of the b = 0 image; fractional anisotropy (FA) and mean diffusivity (MD) were assessed using phantom Slice 7. Variations of acquisition parameters and deviations from specified sequence parameters were recorded. Nonlinear grid line distortion was higher with linear shimming and could be corrected using the 2nd order shimming. Following image registration, eddy current distortion was consistently smaller than acquisi-tion voxel size. SNR was consistently higher in the image periphery than center by a factor of 1.3-2.0. ROI-based FA ranged from 0.007 to 0.024. ROI-based MD ranged from 1.90 × 10-3 to 2.33 × 10-3 mm2/s (median = 2.04 × 10-3 mm2/s). Two sites had image void artifacts. The ACR phantom can be used to compare key qual-ity measures of diffusion images acquired from multiple vendors at multiple sites.
A tuned mesh-generation strategy for image representation based on data-dependent triangulation.
Li, Ping; Adams, Michael D
2013-05-01
A mesh-generation framework for image representation based on data-dependent triangulation is proposed. The proposed framework is a modified version of the frameworks of Rippa and Garland and Heckbert that facilitates the development of more effective mesh-generation methods. As the proposed framework has several free parameters, the effects of different choices of these parameters on mesh quality are studied, leading to the recommendation of a particular set of choices for these parameters. A mesh-generation method is then introduced that employs the proposed framework with these best parameter choices. This method is demonstrated to produce meshes of higher quality (both in terms of squared error and subjectively) than those generated by several competing approaches, at a relatively modest computational and memory cost.
Morel, Baptiste; Moueddeb, Sonia; Blondiaux, Eleonore; Richard, Stephen; Bachy, Manon; Vialle, Raphael; Ducou Le Pointe, Hubert
2018-05-01
The aim of this study was to compare the radiation dose, image quality and 3D spine parameter measurements of EOS low-dose and micro-dose protocols for in-brace adolescent idiopathic scoliosis (AIS) patients. We prospectively included 25 consecutive patients (20 females, 5 males) followed for AIS and undergoing brace treatment. The mean age was 12 years (SD 2 years, range 8-15 years). For each patient, in-brace biplanar EOS radiographs were acquired in a standing position using both the conventional low-dose and micro-dose protocols. Dose area product (DAP) was systematically recorded. Diagnostic image quality was qualitatively assessed by two radiologists for visibility of anatomical structures. The reliability of 3D spine modeling between two operators was quantitatively evaluated for the most clinically relevant 3D radiological parameters using intraclass correlation coefficient (ICC). The mean DAP for the posteroanterior and lateral acquisitions was 300 ± 134 and 433 ± 181 mGy cm 2 for the low-dose radiographs, and 41 ± 19 and 81 ± 39 mGy cm 2 for micro-dose radiographs. Image quality was lower with the micro-dose protocol. The agreement was "good" to "very good" for all measured clinical parameters when comparing the low-dose and micro-dose protocols (ICC > 0.73). The micro-dose protocol substantially reduced the delivered dose (by a factor of 5-7 compared to the low-dose protocol) in braced children with AIS. Although image quality was reduced, the micro-dose protocol proved to be adapted to radiological follow-up, with adequate image quality and reliable clinical measurements. These slides can be retrieved under Electronic Supplementary Material.
Hein, L R O; Campos, K A; Caltabiano, P C R O; Kostov, K G
2013-01-01
The methodology for fracture analysis of polymeric composites with scanning electron microscopes (SEM) is still under discussion. Many authors prefer to use sputter coating with a conductive material instead of applying low-voltage (LV) or variable-pressure (VP) methods, which preserves the original surfaces. The present work examines the effects of sputter coating with 25 nm of gold on the topography of carbon-epoxy composites fracture surfaces, using an atomic force microscope. Also, the influence of SEM imaging parameters on fractal measurements is evaluated for the VP-SEM and LV-SEM methods. It was observed that topographic measurements were not significantly affected by the gold coating at tested scale. Moreover, changes on SEM setup leads to nonlinear outcome on texture parameters, such as fractal dimension and entropy values. For VP-SEM or LV-SEM, fractal dimension and entropy values did not present any evident relation with image quality parameters, but the resolution must be optimized with imaging setup, accompanied by charge neutralization. © Wiley Periodicals, Inc.
Zhang, Cheng; Zhang, Tao; Zheng, Jian; Li, Ming; Lu, Yanfei; You, Jiali; Guan, Yihui
2015-01-01
In recent years, X-ray computed tomography (CT) is becoming widely used to reveal patient's anatomical information. However, the side effect of radiation, relating to genetic or cancerous diseases, has caused great public concern. The problem is how to minimize radiation dose significantly while maintaining image quality. As a practical application of compressed sensing theory, one category of methods takes total variation (TV) minimization as the sparse constraint, which makes it possible and effective to get a reconstruction image of high quality in the undersampling situation. On the other hand, a preliminary attempt of low-dose CT reconstruction based on dictionary learning seems to be another effective choice. But some critical parameters, such as the regularization parameter, cannot be determined by detecting datasets. In this paper, we propose a reweighted objective function that contributes to a numerical calculation model of the regularization parameter. A number of experiments demonstrate that this strategy performs well with better reconstruction images and saving of a large amount of time.
Information theoretic methods for image processing algorithm optimization
NASA Astrophysics Data System (ADS)
Prokushkin, Sergey F.; Galil, Erez
2015-01-01
Modern image processing pipelines (e.g., those used in digital cameras) are full of advanced, highly adaptive filters that often have a large number of tunable parameters (sometimes > 100). This makes the calibration procedure for these filters very complex, and the optimal results barely achievable in the manual calibration; thus an automated approach is a must. We will discuss an information theory based metric for evaluation of algorithm adaptive characteristics ("adaptivity criterion") using noise reduction algorithms as an example. The method allows finding an "orthogonal decomposition" of the filter parameter space into the "filter adaptivity" and "filter strength" directions. This metric can be used as a cost function in automatic filter optimization. Since it is a measure of a physical "information restoration" rather than perceived image quality, it helps to reduce the set of the filter parameters to a smaller subset that is easier for a human operator to tune and achieve a better subjective image quality. With appropriate adjustments, the criterion can be used for assessment of the whole imaging system (sensor plus post-processing).
Verification of quality parameters for portal images in radiotherapy.
Pesznyák, Csilla; Polgár, István; Weisz, Csaba; Király, Réka; Zaránd, Pál
2011-03-01
The purpose of the study was to verify different values of quality parameters of portal images in radiotherapy. We investigated image qualities of different field verification systems. Four EPIDs (Siemens OptiVue500aSi(®), Siemens BeamView Plus(®), Elekta iView(®) and Varian PortalVision™) were investigated with the PTW EPID QC PHANTOM(®) and compared with two portal film systems (Kodak X-OMAT(®) cassette with Kodak X-OMAT V(®) film and Kodak EC-L Lightweight(®) cassette with Kodak Portal Localisation ReadyPack(®) film). A comparison of the f50 and f25 values of the modulation transfer functions (MTFs) belonging to each of the systems revealed that the amorphous silicon EPIDs provided a slightly better high contrast resolution than the Kodak Portal Localisation ReadyPack(®) film with the EC-L Lightweight(®) cassette. The Kodak X-OMAT V(®) film gave a poor low contrast resolution: from the existing 27 holes only 9 were detectable. On the base of physical characteristics, measured in this work, the authors suggest the use of amorphous-silicon EPIDs producing the best image quality. Parameters of the EPIDs with scanning liquid ionisation chamber (SLIC) were very stable. The disadvantage of older versions of EPIDs like SLIC and VEPID is a poor DICOM implementation, and the modulation transfer function (MTF) values (f50 and f25) are less than that of aSi detectors.
Radiation levels and image quality in patients undergoing chest X-ray examinations
NASA Astrophysics Data System (ADS)
de Oliveira, Paulo Márcio Campos; do Carmo Santana, Priscila; de Sousa Lacerda, Marco Aurélio; da Silva, Teógenes Augusto
2017-11-01
Patient dose monitoring for different radiographic procedures has been used as a parameter to evaluate the performance of radiology services; skin entrance absorbed dose values for each type of examination were internationally established and recommended aiming patient protection. In this work, a methodology for dose evaluation was applied to three diagnostic services: one with a conventional film and two with digital computerized radiography processing techniques. The x-ray beam parameters were selected and "doses" (specifically the entrance surface and incident air kerma) were evaluated based on images approved in European criteria during postero-anterior (PA) and lateral (LAT) incidences. Data were collected from 200 patients related to 200 PA and 100 LAT incidences. Results showed that doses distributions in the three diagnostic services were very different; the best relation between dose and image quality was found in the institution with the chemical film processing. This work contributed for disseminating the radiation protection culture by emphasizing the need of a continuous dose reduction without losing the quality of the diagnostic image.
Simultaneous Multislice Accelerated Free-Breathing Diffusion-Weighted Imaging of the Liver at 3T.
Obele, Chika C; Glielmi, Christopher; Ream, Justin; Doshi, Ankur; Campbell, Naomi; Zhang, Hoi Cheung; Babb, James; Bhat, Himanshu; Chandarana, Hersh
2015-10-01
To perform image quality comparison between accelerated multiband diffusion acquisition (mb2-DWI) and conventional diffusion acquisition (c-DWI) in patients undergoing clinically indicated liver MRI. In this prospective study 22 consecutive patients undergoing clinically indicated liver MRI on a 3-T scanner equipped to perform multiband diffusion-weighed imaging (mb-DWI) were included. DWI was performed with single-shot spin-echo echo-planar technique with fat-suppression in free breathing with matching parameters when possible using c-DWI, mb-DWI, and multiband DWI with a twofold acceleration (mb2-DWI). These diffusion sequences were compared with respect to various parameters of image quality, lesion detectability, and liver ADC measurements. Accelerated mb2-DWI was 40.9% faster than c-DWI (88 vs. 149 s). Various image quality parameter scores were similar or higher on mb2-DWI when compared to c-DWI. The overall image quality score (averaged over the three readers) was significantly higher for mb-2 compared to c-DWI for b = 0 s/mm(2) (3.48 ± 0.52 vs. 3.21 ± 0.54; p = 0.001) and for b = 800 s/mm(2) (3.24 ± 0.76 vs. 3.06 ± 0.86; p = 0.010). Total of 25 hepatic lesions were visible on mb2-DWI and c-DWI, with identical lesion detectability. There was no significant difference in liver ADC between mb2-DWI and c-DWI (p = 0.12). Bland-Altman plot demonstrates lower mean liver ADC with mb2-DWI compared to c-DWI (by 0.043 × 10(-3) mm(2)/s or 3.7% of the average ADC). Multiband technique can be used to increase acquisition speed nearly twofold for free-breathing DWI of the liver with similar or improved overall image quality and similar lesion detectability compared to conventional DWI.
Barriers to adopting satellite remote sensing for water quality management
Satellite technology can provide a robust and synoptic approach for measuring water quality parameters. Water quality measures typically include chlorophyll-a, suspended material, light attenuation, and colored dissolved organic matter. The Hyperspectral Imager for the Coastal ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jing; Guan, Huaiqun; Solberg, Timothy
2011-07-15
Purpose: A statistical projection restoration algorithm based on the penalized weighted least-squares (PWLS) criterion can substantially improve the image quality of low-dose CBCT images. The performance of PWLS is largely dependent on the choice of the penalty parameter. Previously, the penalty parameter was chosen empirically by trial and error. In this work, the authors developed an inverse technique to calculate the penalty parameter in PWLS for noise suppression of low-dose CBCT in image guided radiotherapy (IGRT). Methods: In IGRT, a daily CBCT is acquired for the same patient during a treatment course. In this work, the authors acquired the CBCTmore » with a high-mAs protocol for the first session and then a lower mAs protocol for the subsequent sessions. The high-mAs projections served as the goal (ideal) toward, which the low-mAs projections were to be smoothed by minimizing the PWLS objective function. The penalty parameter was determined through an inverse calculation of the derivative of the objective function incorporating both the high and low-mAs projections. Then the parameter obtained can be used for PWLS to smooth the noise in low-dose projections. CBCT projections for a CatPhan 600 and an anthropomorphic head phantom, as well as for a brain patient, were used to evaluate the performance of the proposed technique. Results: The penalty parameter in PWLS was obtained for each CBCT projection using the proposed strategy. The noise in the low-dose CBCT images reconstructed from the smoothed projections was greatly suppressed. Image quality in PWLS-processed low-dose CBCT was comparable to its corresponding high-dose CBCT. Conclusions: A technique was proposed to estimate the penalty parameter for PWLS algorithm. It provides an objective and efficient way to obtain the penalty parameter for image restoration algorithms that require predefined smoothing parameters.« less
The use of the general image quality equation in the design and evaluation of imaging systems
NASA Astrophysics Data System (ADS)
Cota, Steve A.; Florio, Christopher J.; Duvall, David J.; Leon, Michael A.
2009-08-01
The design of any modern imaging system is the end result of many trade studies, each seeking to optimize image quality within real world constraints such as cost, schedule and overall risk. The National Imagery Interpretability Rating Scale (NIIRS) is a useful measure of image quality, because, by characterizing the overall interpretability of an image, it combines into one metric those contributors to image quality to which a human interpreter is most sensitive. The main drawback to using a NIIRS rating as a measure of image quality in engineering trade studies is the fact that it is tied to the human observer and cannot be predicted from physical principles and engineering parameters alone. The General Image Quality Equation (GIQE) of Leachtenauer et al. 1997 [Appl. Opt. 36, 8322-8328 (1997)] is a regression of actual image analyst NIIRS ratings vs. readily calculable engineering metrics, and provides a mechanism for using the expected NIIRS rating of an imaging system in the design and evaluation process. In this paper, we will discuss how we use the GIQE in conjunction with The Aerospace Corporation's Parameterized Image Chain Analysis & Simulation SOftware (PICASSO) to evaluate imager designs, taking a hypothetical high resolution commercial imaging system as an example.
Rocking curve imaging of high quality sapphire crystals in backscattering geometry
Jafari, A.; European Synchrotron Radiation Facility; Univ. of Liege,; ...
2017-01-23
Here, we report on the characterization of high quality sapphire single crystals suitable for high-resolution X-ray optics at high energy. Investigations using rocking curve imaging reveal the crystals to be of uniformly good quality at the level of ~10 -4 in lattice parameter variations, deltad/d. But, investigations using backscattering rocking curve imaging with lattice spacing resolution of deltad/d ~ 5.10 -8 shows very diverse quality maps for all crystals. Our results highlight nearly ideal areas with edge length of 0.2-0.5 mm in most crystals, but a comparison of the back re ection peak positions shows that even neighboring ideal areasmore » exhibit a relative difference in the lattice parameters on the order of deltad/d = 10-20.10 -8; this is several times larger than the rocking curve width. Furthermore, the stress-strain analysis suggests that an extremely stringent limit on the strain at a level of ~100 kPa in the growth process is required in order to produce crystals with large areas of the quality required for X-ray optics at high energy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanley, D; Papanikolaou, N; Gutierrez, A
2015-06-15
Introduction Quality assurance of the image quality for image guided localization systems is crucial to ensure accurate visualization and localization of target volumes. In this study, the long term stability of selected image parameters was assessed and evaluated for CBCT mode, planar radiographic kV mode and MV mode. Methods and Materials: The CATPHAN, QckV-1 and QC-3 phantoms were used to evaluate the image quality parameters. The planar radiographic images were analyzed in PIPSpro™ with spatial resolution (f30, f40, f50) being recorded. For XVI CBCT, Head and Neck Small20 (S20) and Pelvis Medium20 (M20) standard acquisition modes were evaluated for Uniformity,more » Noise, Spatial Resolution and HU constancy. Dose and kVp for the XVI were recorded using the Unfors RaySafe Xi system with the R/F Low Detector for the kV planar radiographic mode. Results A total of 20 and 10 measurements were acquired for the planar radiographic and CBCT systems respectively over a two month period. Values were normalized to the mean and the standard deviations (STD) were recorded. For the planar radiographic spatial resolution, the STD for f30, f40, f50 were 0.004, 0.002, 0.002 and 0.005, 0.007, 0.008 for the kV and MV, respectively. The average recorded dose for kV was 38.7±2.7 μGy. The STD of the evaluated metrics for the S20 acquisition were: 0.444(f30), 0.067(f40), 0.062(f50), 0.018(Water/poly-HU constancy), 0.028(uniformity) and 0.106(noise). The standard deviations for the M20 acquisition were: 0.108(f30), 0.073(f40), 0.091(f50), 0.008(Water/poly-HU constancy), 0.005(uniformity) and 0.005(noise). Using these, tolerances can be reported as a warning and action threshold of 1σ and 2σ. Conclusion A study was performed to assess the stability of the basic image quality parameters recommended by TG-142 for the Elekta XVI and iView imaging systems. Consistent imaging and dosimetric properties over the evaluated time frame were noted. This work was funded in part by the Cancer Prevention Research Institute of Texas Pre doctoral fellowship training grant (RP140105) to Dennis N. Stanley M.Sc.« less
Park, Ji Eun; Choi, Young Hun; Cheon, Jung-Eun; Kim, Woo Sun; Kim, In-One; Cho, Hyun Suk; Ryu, Young Jin; Kim, Yu Jin
2017-05-01
Computed tomography (CT) has generated public concern associated with radiation exposure, especially for children. Lowering the tube voltage is one strategy to reduce radiation dose. To assess the image quality and radiation dose of non-enhanced brain CT scans acquired at 80 kilo-voltage peak (kVp) compared to those at 120 kVp in children. Thirty children who had undergone both 80- and 120-kVp non-enhanced brain CT were enrolled. For quantitative analysis, the mean attenuation of white and gray matter, attenuation difference, noise, signal-to-noise ratio, contrast-to-noise ratio and posterior fossa artifact index were measured. For qualitative analysis, noise, gray-white matter differentiation, artifact and overall image quality were scored. Radiation doses were evaluated by CT dose index, dose-length product and effective dose. The mean attenuations of gray and white matter and contrast-to-noise ratio were significantly increased at 80 kVp, while parameters related to image noise, i.e. noise, signal-to-noise ratio and posterior fossa artifact index were higher at 80 kVp than at 120 kVp. In qualitative analysis, 80-kVp images showed improved gray-white differentiation but more artifacts compared to 120-kVp images. Subjective image noise and overall image quality scores were similar between the two scans. Radiation dose parameters were significantly lower at 80 kVp than at 120 kVp. In pediatric non-enhanced brain CT scans, a decrease in tube voltage from 120 kVp to 80 kVp resulted in improved gray-white matter contrast, comparable image quality and decreased radiation dose.
Objective quality assessment of tone-mapped images.
Yeganeh, Hojatollah; Wang, Zhou
2013-02-01
Tone-mapping operators (TMOs) that convert high dynamic range (HDR) to low dynamic range (LDR) images provide practically useful tools for the visualization of HDR images on standard LDR displays. Different TMOs create different tone-mapped images, and a natural question is which one has the best quality. Without an appropriate quality measure, different TMOs cannot be compared, and further improvement is directionless. Subjective rating may be a reliable evaluation method, but it is expensive and time consuming, and more importantly, is difficult to be embedded into optimization frameworks. Here we propose an objective quality assessment algorithm for tone-mapped images by combining: 1) a multiscale signal fidelity measure on the basis of a modified structural similarity index and 2) a naturalness measure on the basis of intensity statistics of natural images. Validations using independent subject-rated image databases show good correlations between subjective ranking score and the proposed tone-mapped image quality index (TMQI). Furthermore, we demonstrate the extended applications of TMQI using two examples-parameter tuning for TMOs and adaptive fusion of multiple tone-mapped images.
NASA Astrophysics Data System (ADS)
Qin, B.; Li, L.; Li, S.
2018-04-01
Tiangong-2 is the first space laboratory in China, which launched in September 15, 2016. Wide-band Imaging Spectrometer is a medium resolution multispectral imager on Tiangong-2. In this paper, the authors introduced the indexes and parameters of Wideband Imaging Spectrometer, and made an objective evaluation about the data quality of Wide-band Imaging Spectrometer in radiation quality, image sharpness and information content, and compared the data quality evaluation results with that of Landsat-8. Although the data quality of Wide-band Imager Spectrometer has a certain disparity with Landsat-8 OLI data in terms of signal to noise ratio, clarity and entropy. Compared with OLI, Wide-band Imager Spectrometer has more bands, narrower bandwidth and wider swath, which make it a useful remote sensing data source in classification and identification of large and medium scale ground objects. In the future, Wide-band Imaging Spectrometer data will be widely applied in land cover classification, ecological environment assessment, marine and coastal zone monitoring, crop identification and classification, and other related areas.
MicroCT parameters for multimaterial elements assessment
NASA Astrophysics Data System (ADS)
de Araújo, Olga M. O.; Silva Bastos, Jaqueline; Machado, Alessandra S.; dos Santos, Thaís M. P.; Ferreira, Cintia G.; Rosifini Alves Claro, Ana Paula; Lopes, Ricardo T.
2018-03-01
Microtomography is a non-destructive testing technique for quantitative and qualitative analysis. The investigation of multimaterial elements with great difference of density can result in artifacts that degrade image quality depending on combination of additional filter. The aim of this study is the selection of parameters most appropriate for analysis of bone tissue with metallic implant. The results show the simulation with MCNPX code for the distribution of energy without additional filter, with use of aluminum, copper and brass filters and their respective reconstructed images showing the importance of the choice of these parameters in image acquisition process on computed microtomography.
Pantanowitz, Liron; Liu, Chi; Huang, Yue; Guo, Huazhang; Rohde, Gustavo K.
2017-01-01
Introduction: The quality of data obtained from image analysis can be directly affected by several preanalytical (e.g., staining, image acquisition), analytical (e.g., algorithm, region of interest [ROI]), and postanalytical (e.g., computer processing) variables. Whole-slide scanners generate digital images that may vary depending on the type of scanner and device settings. Our goal was to evaluate the impact of altering brightness, contrast, compression, and blurring on image analysis data quality. Methods: Slides from 55 patients with invasive breast carcinoma were digitized to include a spectrum of human epidermal growth factor receptor 2 (HER2) scores analyzed with Visiopharm (30 cases with score 0, 10 with 1+, 5 with 2+, and 10 with 3+). For all images, an ROI was selected and four parameters (brightness, contrast, JPEG2000 compression, out-of-focus blurring) then serially adjusted. HER2 scores were obtained for each altered image. Results: HER2 scores decreased with increased illumination, higher compression ratios, and increased blurring. HER2 scores increased with greater contrast. Cases with HER2 score 0 were least affected by image adjustments. Conclusion: This experiment shows that variations in image brightness, contrast, compression, and blurring can have major influences on image analysis results. Such changes can result in under- or over-scoring with image algorithms. Standardization of image analysis is recommended to minimize the undesirable impact such variations may have on data output. PMID:28966838
Multifacet structure of observed reconstructed integral images.
Martínez-Corral, Manuel; Javidi, Bahram; Martínez-Cuenca, Raúl; Saavedra, Genaro
2005-04-01
Three-dimensional images generated by an integral imaging system suffer from degradations in the form of grid of multiple facets. This multifacet structure breaks the continuity of the observed image and therefore reduces its visual quality. We perform an analysis of this effect and present the guidelines in the design of lenslet imaging parameters for optimization of viewing conditions with respect to the multifacet degradation. We consider the optimization of the system in terms of field of view, observer position and pupil function, lenslet parameters, and type of reconstruction. Numerical tests are presented to verify the theoretical analysis.
Optimising μCT imaging of the middle and inner cat ear.
Seifert, H; Röher, U; Staszyk, C; Angrisani, N; Dziuba, D; Meyer-Lindenberg, A
2012-04-01
This study's aim was to determine the optimal scan parameters for imaging the middle and inner ear of the cat with micro-computertomography (μCT). Besides, the study set out to assess whether adequate image quality can be obtained to use μCT in diagnostics and research on cat ears. For optimisation, μCT imaging of two cat skull preparations was performed using 36 different scanning protocols. The μCT-scans were evaluated by four experienced experts with regard to the image quality and detail detectability. By compiling a ranking of the results, the best possible scan parameters could be determined. From a third cat's skull, a μCT-scan, using these optimised scan parameters, and a comparative clinical CT-scan were acquired. Afterwards, histological specimens of the ears were produced which were compared to the μCT-images. The comparison shows that the osseous structures are depicted in detail. Although soft tissues cannot be differentiated, the osseous structures serve as valuable spatial orientation of relevant nerves and muscles. Clinical CT can depict many anatomical structures which can also be seen on μCT-images, but these appear a lot less sharp and also less detailed than with μCT. © 2011 Blackwell Verlag GmbH.
Ciraj-Bjelac, Olivera; Faj, Dario; Stimac, Damir; Kosutic, Dusko; Arandjic, Danijela; Brkic, Hrvoje
2011-04-01
The purpose of this study is to investigate the need for and the possible achievements of a comprehensive QA programme and to look at effects of simple corrective actions on image quality in Croatia and in Serbia. The paper focuses on activities related to the technical and radiological aspects of QA. The methodology consisted of two phases. The aim of the first phase was the initial assessment of mammography practice in terms of image quality, patient dose and equipment performance in selected number of mammography units in Croatia and Serbia. Subsequently, corrective actions were suggested and implemented. Then the same parameters were re-assessed. Most of the suggested corrective actions were simple, low-cost and possible to implement immediately, as these were related to working habits in mammography units, such as film processing and darkroom conditions. It has been demonstrated how simple quantitative assessment of image quality can be used for optimisation purposes. Analysis of image quality parameters as OD, gradient and contrast demonstrated general similarities between mammography practices in Croatia and Serbia. The applied methodology should be expanded to larger number of hospitals and applied on a regular basis. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.
Shi, Ximin; Li, Nan; Ding, Haiyan; Dang, Yonghong; Hu, Guilan; Liu, Shuai; Cui, Jie; Zhang, Yue; Li, Fang; Zhang, Hui; Huo, Li
2018-01-01
Kinetic modeling of dynamic 11 C-acetate PET imaging provides quantitative information for myocardium assessment. The quality and quantitation of PET images are known to be dependent on PET reconstruction methods. This study aims to investigate the impacts of reconstruction algorithms on the quantitative analysis of dynamic 11 C-acetate cardiac PET imaging. Suspected alcoholic cardiomyopathy patients ( N = 24) underwent 11 C-acetate dynamic PET imaging after low dose CT scan. PET images were reconstructed using four algorithms: filtered backprojection (FBP), ordered subsets expectation maximization (OSEM), OSEM with time-of-flight (TOF), and OSEM with both time-of-flight and point-spread-function (TPSF). Standardized uptake values (SUVs) at different time points were compared among images reconstructed using the four algorithms. Time-activity curves (TACs) in myocardium and blood pools of ventricles were generated from the dynamic image series. Kinetic parameters K 1 and k 2 were derived using a 1-tissue-compartment model for kinetic modeling of cardiac flow from 11 C-acetate PET images. Significant image quality improvement was found in the images reconstructed using iterative OSEM-type algorithms (OSME, TOF, and TPSF) compared with FBP. However, no statistical differences in SUVs were observed among the four reconstruction methods at the selected time points. Kinetic parameters K 1 and k 2 also exhibited no statistical difference among the four reconstruction algorithms in terms of mean value and standard deviation. However, for the correlation analysis, OSEM reconstruction presented relatively higher residual in correlation with FBP reconstruction compared with TOF and TPSF reconstruction, and TOF and TPSF reconstruction were highly correlated with each other. All the tested reconstruction algorithms performed similarly for quantitative analysis of 11 C-acetate cardiac PET imaging. TOF and TPSF yielded highly consistent kinetic parameter results with superior image quality compared with FBP. OSEM was relatively less reliable. Both TOF and TPSF were recommended for cardiac 11 C-acetate kinetic analysis.
NASA Astrophysics Data System (ADS)
Geniusz, Malwina; ZajÄ c, Marek
2016-09-01
Intraocular lens (IOL) is an artificial lens implanted into the eye in order to restore correct vision after the removal of natural lens cloudy due to cataract. The IOL prolonged stay in the eyeball causes the creation of different changes on the surface and inside the implant mainly in form of small-size local defects such as vacuoles and calcium deposites. Their presence worsens the imaging properties of the eye mainly due to occurence of scattered light thus deteriorating the vision quality of patients after cataract surgery. It is very difficult to study influence the effects of these changes on image quality in real patients. To avoid these difficulties two other possibilities were chosen: the analysis of the image obtained in an optomechanical eye model with artificially aged IOL as well as numerical calculation of the image characteristics while the eye lens is burdened with adequately modeled defects. In experiments the optomechanical model of an eye consisting of a glass "cornea", chamber filled with liquid where the IOL under investigation was inserted and a high resulution CCC detector serving as a "retina" was used. The Modulation Transfer Function (MTF) of such "eye" was evaluated on the basis of image of an edge. Experiments show that there is significant connection between ageing defects and decrease in MTF parameters. Numerical part was performed with a computer programme for optical imaging analysis (OpticStudio Professional, Zemax Professional from Radiant Zemax, LLC). On the basis of Atchison eye model with lens burdened with defects Modulation Transfer Functio was calculated. Particular parameters of defects used in a numerical model were based on own measurements. Numerical simulation also show significant connection between ageing defects and decrease of MTF parameters. With this technique the influence of types, density and distribution of local defect in the IOL on the retinal image quality can be evaluated quickly without the need of performing very difficult and even dangereous experiments on real human patients.
Cross-layer Energy Optimization Under Image Quality Constraints for Wireless Image Transmissions.
Yang, Na; Demirkol, Ilker; Heinzelman, Wendi
2012-01-01
Wireless image transmission is critical in many applications, such as surveillance and environment monitoring. In order to make the best use of the limited energy of the battery-operated cameras, while satisfying the application-level image quality constraints, cross-layer design is critical. In this paper, we develop an image transmission model that allows the application layer (e.g., the user) to specify an image quality constraint, and optimizes the lower layer parameters of transmit power and packet length, to minimize the energy dissipation in image transmission over a given distance. The effectiveness of this approach is evaluated by applying the proposed energy optimization to a reference ZigBee system and a WiFi system, and also by comparing to an energy optimization study that does not consider any image quality constraint. Evaluations show that our scheme outperforms the default settings of the investigated commercial devices and saves a significant amount of energy at middle-to-large transmission distances.
Energy Efficient Image/Video Data Transmission on Commercial Multi-Core Processors
Lee, Sungju; Kim, Heegon; Chung, Yongwha; Park, Daihee
2012-01-01
In transmitting image/video data over Video Sensor Networks (VSNs), energy consumption must be minimized while maintaining high image/video quality. Although image/video compression is well known for its efficiency and usefulness in VSNs, the excessive costs associated with encoding computation and complexity still hinder its adoption for practical use. However, it is anticipated that high-performance handheld multi-core devices will be used as VSN processing nodes in the near future. In this paper, we propose a way to improve the energy efficiency of image and video compression with multi-core processors while maintaining the image/video quality. We improve the compression efficiency at the algorithmic level or derive the optimal parameters for the combination of a machine and compression based on the tradeoff between the energy consumption and the image/video quality. Based on experimental results, we confirm that the proposed approach can improve the energy efficiency of the straightforward approach by a factor of 2∼5 without compromising image/video quality. PMID:23202181
Speckle imaging techniques of the turbulence degraded images
NASA Astrophysics Data System (ADS)
Liu, Jin; Huang, Zongfu; Mao, Hongjun; Liang, Yonghui
2018-03-01
We propose a speckle imaging algorithm in which we use the improved form of spectral ratio to obtain the Fried parameter, we also use a filter to reduce the high frequency noise effects. Our algorithm makes an improvement in the quality of the reconstructed images. The performance is illustrated by computer simulations.
Selection of regularization parameter in total variation image restoration.
Liao, Haiyong; Li, Fang; Ng, Michael K
2009-11-01
We consider and study total variation (TV) image restoration. In the literature there are several regularization parameter selection methods for Tikhonov regularization problems (e.g., the discrepancy principle and the generalized cross-validation method). However, to our knowledge, these selection methods have not been applied to TV regularization problems. The main aim of this paper is to develop a fast TV image restoration method with an automatic selection of the regularization parameter scheme to restore blurred and noisy images. The method exploits the generalized cross-validation (GCV) technique to determine inexpensively how much regularization to use in each restoration step. By updating the regularization parameter in each iteration, the restored image can be obtained. Our experimental results for testing different kinds of noise show that the visual quality and SNRs of images restored by the proposed method is promising. We also demonstrate that the method is efficient, as it can restore images of size 256 x 256 in approximately 20 s in the MATLAB computing environment.
Kim, Yun Ju; Kang, Bong Joo; Park, Chang Suk; Kim, Hyeon Sook; Son, Yo Han; Porter, David Andrew; Song, Byung Joo
2014-01-01
Objective The purpose of this study was to compare the image quality of standard single-shot echo-planar imaging (ss-EPI) and that of readout-segmented EPI (rs-EPI) in patients with breast cancer. Materials and Methods Seventy-one patients with 74 breast cancers underwent both ss-EPI and rs-EPI. For qualitative comparison of image quality, three readers independently assessed the two sets of diffusion-weighted (DW) images. To evaluate geometric distortion, a comparison was made between lesion lengths derived from contrast enhanced MR (CE-MR) images and those obtained from the corresponding DW images. For assessment of image parameters, signal-to-noise ratio (SNR), lesion contrast, and contrast-to-noise ratio (CNR) were calculated. Results The rs-EPI was superior to ss-EPI in most criteria regarding the qualitative image quality. Anatomical structure distinction, delineation of the lesion, ghosting artifact, and overall image quality were significantly better in rs-EPI. Regarding the geometric distortion, lesion length on ss-EPI was significantly different from that of CE-MR, whereas there were no significant differences between CE-MR and rs-EPI. The rs-EPI was superior to ss-EPI in SNR and CNR. Conclusion Readout-segmented EPI is superior to ss-EPI in the aspect of image quality in DW MR imaging of the breast. PMID:25053898
Alizadeh Ashrafi, Sina; Miller, Peter W.; Wandro, Kevin M.; Kim, Dave
2016-01-01
Hole quality plays a crucial role in the production of close-tolerance holes utilized in aircraft assembly. Through drilling experiments of carbon fiber-reinforced plastic composites (CFRP), this study investigates the impact of varying drilling feed and speed conditions on fiber pull-out geometries and resulting hole quality parameters. For this study, hole quality parameters include hole size variance, hole roundness, and surface roughness. Fiber pull-out geometries are quantified by using scanning electron microscope (SEM) images of the mechanically-sectioned CFRP-machined holes, to measure pull-out length and depth. Fiber pull-out geometries and the hole quality parameter results are dependent on the drilling feed and spindle speed condition, which determines the forces and undeformed chip thickness during the process. Fiber pull-out geometries influence surface roughness parameters from a surface profilometer, while their effect on other hole quality parameters obtained from a coordinate measuring machine is minimal. PMID:28773950
Dutta, Rishiraj
2013-08-15
This study tries to quantify the effects of green leaf tea parameters that influence tea quality in Northeast India. The study is to identify the different parameters that have a significant influence on tea quality through the use of remote sensing. It investigates the methods for estimating tea quality based on remotely sensed Normalized Difference Vegetation Index (NDVI) data. Attention focused on high yielding TV clones (TV1, TV18, TV22, TV23, TV25 and TV26). NDVI was obtained from ASTER images. Statistical analysis shows that NDVI has a strong significant effect on the caffeine content followed by epicatechin (EC), epigallocatechin (EGC) and to some extent in other chemical parameters. Relationships therefore exist between quality parameters and remote sensing in particular for the TV clones. This leads to the conclusion that NDVI has a large potential to be used for monitoring tea quality of individual cultivars in the future. Copyright © 2013 Elsevier Ltd. All rights reserved.
Clinical introduction of image lag correction for a cone beam CT system.
Stankovic, Uros; Ploeger, Lennert S; Sonke, Jan-Jakob; van Herk, Marcel
2016-03-01
Image lag in the flat-panel detector used for Linac integrated cone beam computed tomography (CBCT) has a degrading effect on CBCT image quality. The most prominent visible artifact is the presence of bright semicircular structure in the transverse view of the scans, known also as radar artifact. Several correction strategies have been proposed, but until now the clinical introduction of such corrections remains unreported. In November 2013, the authors have clinically implemented a previously proposed image lag correction on all of their machines at their main site in Amsterdam. The purpose of this study was to retrospectively evaluate the effect of the correction on the quality of CBCT images and evaluate the required calibration frequency. Image lag was measured in five clinical CBCT systems (Elekta Synergy 4.6) using an in-house developed beam interrupting device that stops the x-ray beam midway through the data acquisition of an unattenuated beam for calibration. A triple exponential falling edge response was fitted to the measured data and used to correct image lag from projection images with an infinite response. This filter, including an extrapolation for saturated pixels, was incorporated in the authors' in-house developed clinical cbct reconstruction software. To investigate the short-term stability of the lag and associated parameters, a series of five image lag measurement over a period of three months was performed. For quantitative analysis, the authors have retrospectively selected ten patients treated in the pelvic region. The apparent contrast was quantified in polar coordinates for scans reconstructed using the parameters obtained from different dates with and without saturation handling. Visually, the radar artifact was minimal in scans reconstructed using image lag correction especially when saturation handling was used. In patient imaging, there was a significant reduction of the apparent contrast from 43 ± 16.7 to 15.5 ± 11.9 HU without the saturation handling and to 9.6 ± 12.1 HU with the saturation handling, depending on the date of the calibration. The image lag correction parameters were stable over a period of 3 months. The computational load was increased by approximately 10%, not endangering the fast in-line reconstruction. The lag correction was successfully implemented clinically and removed most image lag artifacts thus improving the image quality. Image lag correction parameters were stable for 3 months indicating low frequency of calibration requirements.
ANALYZING WATER QUALITY WITH IMAGES ACQUIRED FROM AIRBORNE SENSORS
Monitoring different parameters of water quality can be a time consuming and expensive activity. However, the use of airborne light-sensitive (optical) instruments may enhance the abilities of resource managers to monitor water quality in rivers in a timely and cost-effective ma...
A method of rapidly evaluating image quality of NED optical system
NASA Astrophysics Data System (ADS)
Sun, Qi; Qiu, Chuankai; Yang, Huan
2014-11-01
In recent years, with the development of technology of micro-display, advanced optics and the software and hardware, near-to-eye display ( NED) optical system will have a wide range of potential applications in the fields of amusement and virtual reality. However, research on the evaluating image quality of this kind optical system is comparatively lagging behind. Although now there are some methods and equipment for evaluation, they can't be applied in commercial production because of their complex operation and inaccuracy. In this paper, an academic method is proposed and a Rapid Evaluation System (RES) is designed to evaluate the image of optical system rapidly and exactly. Firstly, a set of parameters that eyes are sensitive to and also express the quality of system should be extracted and quantized to be criterion, so the evaluation standards can be established. Then, some parameters can be detected by RES consisted of micro-display, CCD camera and computer and so on. By process of scaling, the measuring results of the RES are exact and creditable, relationship between object measurement, subjective evaluation and the RES will be established. After that, image quality of optical system can be evaluated just by detecting parameters of that. The RES is simple and the results of evaluation are exact and keeping with human vision. So the method can be used not only for optimizing design of optical system, but also for evaluation in commercial production.
Very low-dose adult whole-body tumor imaging with F-18 FDG PET/CT
NASA Astrophysics Data System (ADS)
Krol, Andrzej; Naveed, Muhammad; McGrath, Mary; Lisi, Michele; Lavalley, Cathy; Feiglin, David
2015-03-01
The aim of this study was to evaluate if effective radiation dose due to PET component in adult whole-body tumor imaging with time-of-flight F-18 FDG PET/CT could be significantly reduced. We retrospectively analyzed data for 10 patients with the body mass index ranging from 25 to 50. We simulated F-18 FDG dose reduction to 25% of the ACR recommended dose via reconstruction of simulated shorter acquisition time per bed position scans from the acquired list data. F-18 FDG whole-body scans were reconstructed using time-of-flight OSEM algorithm and advanced system modeling. Two groups of images were obtained: group A with a standard dose of F-18 FDG and standard reconstruction parameters and group B with simulated 25% dose and modified reconstruction parameters, respectively. Three nuclear medicine physicians blinded to the simulated activity independently reviewed the images and compared diagnostic quality of images. Based on the input from the physicians, we selected optimal modified reconstruction parameters for group B. In so obtained images, all the lesions observed in the group A were visible in the group B. The tumor SUV values were different in the group A, as compared to group B, respectively. However, no significant differences were reported in the final interpretation of the images from A and B groups. In conclusion, for a small number of patients, we have demonstrated that F-18 FDG dose reduction to 25% of the ACR recommended dose, accompanied by appropriate modification of the reconstruction parameters provided adequate diagnostic quality of PET images acquired on time-of-flight PET/CT.
Zhang, Cheng; Zhang, Tao; Li, Ming; Lu, Yanfei; You, Jiali; Guan, Yihui
2015-01-01
In recent years, X-ray computed tomography (CT) is becoming widely used to reveal patient's anatomical information. However, the side effect of radiation, relating to genetic or cancerous diseases, has caused great public concern. The problem is how to minimize radiation dose significantly while maintaining image quality. As a practical application of compressed sensing theory, one category of methods takes total variation (TV) minimization as the sparse constraint, which makes it possible and effective to get a reconstruction image of high quality in the undersampling situation. On the other hand, a preliminary attempt of low-dose CT reconstruction based on dictionary learning seems to be another effective choice. But some critical parameters, such as the regularization parameter, cannot be determined by detecting datasets. In this paper, we propose a reweighted objective function that contributes to a numerical calculation model of the regularization parameter. A number of experiments demonstrate that this strategy performs well with better reconstruction images and saving of a large amount of time. PMID:26550024
NASA Astrophysics Data System (ADS)
Cheatham, Patrick S.
1982-02-01
The term image quality can, unfortunately, apply to anything from a public relations firm's discussion to a comparison between corner drugstores' film processing. If we narrow the discussion to optical systems, we clarify the problem somewhat, but only slightly. We are still faced with a multitude of image quality measures all different, and all couched in different terminology. Optical designers speak of MTF values, digital processors talk about summations of before and after image differences, pattern recognition engineers allude to correlation values, and radar imagers use side-lobe response values measured in decibels. Further complexity is introduced by terms such as information content, bandwidth, Strehl ratios, and, of course, limiting resolution. The problem is to compare these different yardsticks and try to establish some concrete ideas about evaluation of a final image. We need to establish the image attributes which are the most important to perception of the image in question and then begin to apply the different system parameters to those attributes.
Image analysis for dental bone quality assessment using CBCT imaging
NASA Astrophysics Data System (ADS)
Suprijanto; Epsilawati, L.; Hajarini, M. S.; Juliastuti, E.; Susanti, H.
2016-03-01
Cone beam computerized tomography (CBCT) is one of X-ray imaging modalities that are applied in dentistry. Its modality can visualize the oral region in 3D and in a high resolution. CBCT jaw image has potential information for the assessment of bone quality that often used for pre-operative implant planning. We propose comparison method based on normalized histogram (NH) on the region of inter-dental septum and premolar teeth. Furthermore, the NH characteristic from normal and abnormal bone condition are compared and analyzed. Four test parameters are proposed, i.e. the difference between teeth and bone average intensity (s), the ratio between bone and teeth average intensity (n) of NH, the difference between teeth and bone peak value (Δp) of NH, and the ratio between teeth and bone of NH range (r). The results showed that n, s, and Δp have potential to be the classification parameters of dental calcium density.
Konishi, Masaru; Lindh, Christina; Nilsson, Mats; Tanimoto, Keiji; Rohlin, Madeleine
2012-08-01
The aims of this study were to review the literature on intraoral digital radiography in endodontic treatment with focus on technical parameters and to propose recommendations for improving the quality of reports in future publications. Two electronic databases were searched. Titles and abstracts were selected according to preestablished criteria. Data were extracted using a model of image acquisition and interpretation. The literature search yielded 233 titles and abstracts; 61 reports were read in full text. Recent reports presented technical parameters more thoroughly than older reports. Most reported important parameters for the x-ray unit, but for image interpretation only about one-half of the publications cited resolution of the display system and fewer than one-half bit depth of the graphics card. The methodologic quality of future publications must be improved to permit replication of studies and comparison of results between studies in dental digital radiography. Our recommendations can improve the quality of studies on diagnostic accuracy. Copyright © 2012 Mosby, Inc. All rights reserved.
Adaptive single-pixel imaging with aggregated sampling and continuous differential measurements
NASA Astrophysics Data System (ADS)
Huo, Yaoran; He, Hongjie; Chen, Fan; Tai, Heng-Ming
2018-06-01
This paper proposes an adaptive compressive imaging technique with one single-pixel detector and single arm. The aggregated sampling (AS) method enables the reduction of resolutions of the reconstructed images. It aims to reduce the time and space consumption. The target image with a resolution up to 1024 × 1024 can be reconstructed successfully at the 20% sampling rate. The continuous differential measurement (CDM) method combined with a ratio factor of significant coefficient (RFSC) improves the imaging quality. Moreover, RFSC reduces the human intervention in parameter setting. This technique enhances the practicability of single-pixel imaging with the benefits from less time and space consumption, better imaging quality and less human intervention.
A Robust Post-Processing Workflow for Datasets with Motion Artifacts in Diffusion Kurtosis Imaging
Li, Xianjun; Yang, Jian; Gao, Jie; Luo, Xue; Zhou, Zhenyu; Hu, Yajie; Wu, Ed X.; Wan, Mingxi
2014-01-01
Purpose The aim of this study was to develop a robust post-processing workflow for motion-corrupted datasets in diffusion kurtosis imaging (DKI). Materials and methods The proposed workflow consisted of brain extraction, rigid registration, distortion correction, artifacts rejection, spatial smoothing and tensor estimation. Rigid registration was utilized to correct misalignments. Motion artifacts were rejected by using local Pearson correlation coefficient (LPCC). The performance of LPCC in characterizing relative differences between artifacts and artifact-free images was compared with that of the conventional correlation coefficient in 10 randomly selected DKI datasets. The influence of rejected artifacts with information of gradient directions and b values for the parameter estimation was investigated by using mean square error (MSE). The variance of noise was used as the criterion for MSEs. The clinical practicality of the proposed workflow was evaluated by the image quality and measurements in regions of interest on 36 DKI datasets, including 18 artifact-free (18 pediatric subjects) and 18 motion-corrupted datasets (15 pediatric subjects and 3 essential tremor patients). Results The relative difference between artifacts and artifact-free images calculated by LPCC was larger than that of the conventional correlation coefficient (p<0.05). It indicated that LPCC was more sensitive in detecting motion artifacts. MSEs of all derived parameters from the reserved data after the artifacts rejection were smaller than the variance of the noise. It suggested that influence of rejected artifacts was less than influence of noise on the precision of derived parameters. The proposed workflow improved the image quality and reduced the measurement biases significantly on motion-corrupted datasets (p<0.05). Conclusion The proposed post-processing workflow was reliable to improve the image quality and the measurement precision of the derived parameters on motion-corrupted DKI datasets. The workflow provided an effective post-processing method for clinical applications of DKI in subjects with involuntary movements. PMID:24727862
A robust post-processing workflow for datasets with motion artifacts in diffusion kurtosis imaging.
Li, Xianjun; Yang, Jian; Gao, Jie; Luo, Xue; Zhou, Zhenyu; Hu, Yajie; Wu, Ed X; Wan, Mingxi
2014-01-01
The aim of this study was to develop a robust post-processing workflow for motion-corrupted datasets in diffusion kurtosis imaging (DKI). The proposed workflow consisted of brain extraction, rigid registration, distortion correction, artifacts rejection, spatial smoothing and tensor estimation. Rigid registration was utilized to correct misalignments. Motion artifacts were rejected by using local Pearson correlation coefficient (LPCC). The performance of LPCC in characterizing relative differences between artifacts and artifact-free images was compared with that of the conventional correlation coefficient in 10 randomly selected DKI datasets. The influence of rejected artifacts with information of gradient directions and b values for the parameter estimation was investigated by using mean square error (MSE). The variance of noise was used as the criterion for MSEs. The clinical practicality of the proposed workflow was evaluated by the image quality and measurements in regions of interest on 36 DKI datasets, including 18 artifact-free (18 pediatric subjects) and 18 motion-corrupted datasets (15 pediatric subjects and 3 essential tremor patients). The relative difference between artifacts and artifact-free images calculated by LPCC was larger than that of the conventional correlation coefficient (p<0.05). It indicated that LPCC was more sensitive in detecting motion artifacts. MSEs of all derived parameters from the reserved data after the artifacts rejection were smaller than the variance of the noise. It suggested that influence of rejected artifacts was less than influence of noise on the precision of derived parameters. The proposed workflow improved the image quality and reduced the measurement biases significantly on motion-corrupted datasets (p<0.05). The proposed post-processing workflow was reliable to improve the image quality and the measurement precision of the derived parameters on motion-corrupted DKI datasets. The workflow provided an effective post-processing method for clinical applications of DKI in subjects with involuntary movements.
A fast and efficient segmentation scheme for cell microscopic image.
Lebrun, G; Charrier, C; Lezoray, O; Meurie, C; Cardot, H
2007-04-27
Microscopic cellular image segmentation schemes must be efficient for reliable analysis and fast to process huge quantity of images. Recent studies have focused on improving segmentation quality. Several segmentation schemes have good quality but processing time is too expensive to deal with a great number of images per day. For segmentation schemes based on pixel classification, the classifier design is crucial since it is the one which requires most of the processing time necessary to segment an image. The main contribution of this work is focused on how to reduce the complexity of decision functions produced by support vector machines (SVM) while preserving recognition rate. Vector quantization is used in order to reduce the inherent redundancy present in huge pixel databases (i.e. images with expert pixel segmentation). Hybrid color space design is also used in order to improve data set size reduction rate and recognition rate. A new decision function quality criterion is defined to select good trade-off between recognition rate and processing time of pixel decision function. The first results of this study show that fast and efficient pixel classification with SVM is possible. Moreover posterior class pixel probability estimation is easy to compute with Platt method. Then a new segmentation scheme using probabilistic pixel classification has been developed. This one has several free parameters and an automatic selection must dealt with, but criteria for evaluate segmentation quality are not well adapted for cell segmentation, especially when comparison with expert pixel segmentation must be achieved. Another important contribution in this paper is the definition of a new quality criterion for evaluation of cell segmentation. The results presented here show that the selection of free parameters of the segmentation scheme by optimisation of the new quality cell segmentation criterion produces efficient cell segmentation.
Increasing spatial resolution and comparison of MR imaging sequences for the inner ear
NASA Astrophysics Data System (ADS)
Snyder, Carl J.; Bolinger, Lizann; Rubinstein, Jay T.; Wang, Ge
2002-04-01
The size and location of the cochlea and cochlear nerve are needed to assess the feasibility of cochlea implantation, provide information for surgical planning, and aid in construction of cochlear models. Models of implant stimulation incorporating anatomical and physiological information are likely to provide a better understanding of the biophysics of information transferred with cochlear implants and aid in electrode design and arrangement on cochlear implants. Until recently MR did not provide the necessary image resolution and suffered from long acquisition times. The purpose of this study was to optimize both Fast Spin Echo (FSE) and Steady State Free Precession (FIESTA) imaging scan parameters for the inner ear and comparatively examine both for improved image quality and increased spatial resolution. Image quality was determined by two primary measurements, signal to noise ratio (SNR), and image sharpness. Optimized parameters for FSE were 120ms, 3000ms, 64, and 32.25kHz for the TE, TR, echo train length, and bandwidth, respectively. FIESTA parameters were optimized to 2.7, 5.5ms, 70 degree(s), and 62.5kHz, for TE, TR, flip angle, and bandwidth, respectively. While both had the same in-plane spatial resolution, 0.625mm, FIESTA data shows higher SNR per acquisition time and better edge sharpness.
MASTOS: Mammography Simulation Tool for design Optimization Studies.
Spyrou, G; Panayiotakis, G; Tzanakos, G
2000-01-01
Mammography is a high quality imaging technique for the detection of breast lesions, which requires dedicated equipment and optimum operation. The design parameters of a mammography unit have to be decided and evaluated before the construction of such a high cost of apparatus. The optimum operational parameters also must be defined well before the real breast examination. MASTOS is a software package, based on Monte Carlo methods, that is designed to be used as a simulation tool in mammography. The input consists of the parameters that have to be specified when using a mammography unit, and also the parameters specifying the shape and composition of the breast phantom. In addition, the input may specify parameters needed in the design of a new mammographic apparatus. The main output of the simulation is a mammographic image and calculations of various factors that describe the image quality. The Monte Carlo simulation code is PC-based and is driven by an outer shell of a graphical user interface. The entire software package is a simulation tool for mammography and can be applied in basic research and/or in training in the fields of medical physics and biomedical engineering as well as in the performance evaluation of new designs of mammography units and in the determination of optimum standards for the operational parameters of a mammography unit.
Fundamentals of in Situ Digital Camera Methodology for Water Quality Monitoring of Coast and Ocean
Goddijn-Murphy, Lonneke; Dailloux, Damien; White, Martin; Bowers, Dave
2009-01-01
Conventional digital cameras, the Nikon Coolpix885® and the SeaLife ECOshot®, were used as in situ optical instruments for water quality monitoring. Measured response spectra showed that these digital cameras are basically three-band radiometers. The response values in the red, green and blue bands, quantified by RGB values of digital images of the water surface, were comparable to measurements of irradiance levels at red, green and cyan/blue wavelengths of water leaving light. Different systems were deployed to capture upwelling light from below the surface, while eliminating direct surface reflection. Relationships between RGB ratios of water surface images, and water quality parameters were found to be consistent with previous measurements using more traditional narrow-band radiometers. This current paper focuses on the method that was used to acquire digital images, derive RGB values and relate measurements to water quality parameters. Field measurements were obtained in Galway Bay, Ireland, and in the Southern Rockall Trough in the North Atlantic, where both yellow substance and chlorophyll concentrations were successfully assessed using the digital camera method. PMID:22346729
Mobile-based text recognition from water quality devices
NASA Astrophysics Data System (ADS)
Dhakal, Shanti; Rahnemoonfar, Maryam
2015-03-01
Measuring water quality of bays, estuaries, and gulfs is a complicated and time-consuming process. YSI Sonde is an instrument used to measure water quality parameters such as pH, temperature, salinity, and dissolved oxygen. This instrument is taken to water bodies in a boat trip and researchers note down different parameters displayed by the instrument's display monitor. In this project, a mobile application is developed for Android platform that allows a user to take a picture of the YSI Sonde monitor, extract text from the image and store it in a file on the phone. The image captured by the application is first processed to remove perspective distortion. Probabilistic Hough line transform is used to identify lines in the image and the corner of the image is then obtained by determining the intersection of the detected horizontal and vertical lines. The image is warped using the perspective transformation matrix, obtained from the corner points of the source image and the destination image, hence, removing the perspective distortion. Mathematical morphology operation, black-hat is used to correct the shading of the image. The image is binarized using Otsu's binarization technique and is then passed to the Optical Character Recognition (OCR) software for character recognition. The extracted information is stored in a file on the phone and can be retrieved later for analysis. The algorithm was tested on 60 different images of YSI Sonde with different perspective features and shading. Experimental results, in comparison to ground-truth results, demonstrate the effectiveness of the proposed method.
Stanley, Dennis N; Rasmussen, Karl; Kirby, Neil; Papanikolaou, Nikos; Gutiérrez, Alonso N
2018-05-01
A robust image quality assurance and analysis methodology for image-guided localization systems is crucial to ensure the accurate localization and visualization of target tumors. In this study, the long-term stability of selected image parameters was assessed and evaluated for the cone-beam computed tomography (CBCT) mode, planar radiographic kV mode, and the radiographic MV mode of an Elekta VersaHD. The CATPHAN, QckV-1, and QC-3 phantoms were used to evaluate the image quality parameters. The planar radiographic images were analyzed in PIPSpro™ with spatial resolution (f30, f40, f50), contrast to noise ratio (CNR) and noise being recorded. For XVI CBCT, Head and Neck Small20 (S20) and Pelvis Medium20 (M20) standard acquisition modes were evaluated for uniformity, noise, spatial resolution, and HU constancy. Dose and kVp for the XVI were recorded using the Unfors RaySafe Xi system with the R/F low detector for the kV planar radiographic mode. For each metric, values were normalized to the mean and the standard deviations were recorded. A total of 30 measurements were performed on a single Elekta VersaHD linear accelerator over an 18-month period without significant adjustment or recalibration to the XVI or iViewGT systems during the evaluated time frame. For the planar radiographic spatial resolution, the normalized standard deviation values of the f30, f40, and f50 were 0.004, 0.003, and 0.003 and 0.015, 0.009, and 0.017 for kV and MV, respectively. The average recorded dose for kV was 67.96 μGy. The standard deviations of the evaluated metrics for the S20 acquisition were 0.083(f30), 0.058(f40), 0.056(f50), 0.021(Water/poly-HU constancy), 0.029(uniformity) and 0.028(noise). The standard deviations for the M20 acquisition were 0.093(f30), 0.043(f40), 0.037(f50), 0.016(Water/poly-HU constancy), 0.010(uniformity) and 0.011(Noise). A study was performed to assess the stability of the basic image quality parameters recommended by TG-142 for the Elekta XVI and iViewGT imaging systems. The two systems show consistent imaging and dosimetric properties over the evaluated time frame. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Gupta, Sandeep Kumar; Trethewey, Scott; Brooker, Bree; Rutherford, Natalie; Diffey, Jenny; Viswanathan, Suresh; Attia, John
2017-01-01
The CT component of SPECT-CT is required for attenuation correction and anatomical localization of the uptake on SPECT but there is no guideline about the optimal CT acquisition parameters. In our department, a standard CT acquisition protocol was changed in 2013 to give lower radiation dose to the patient. In this study, we retrospectively compared the effects on patient dose as well as the CT image quality with current versus older CT protocols. Ninety nine consecutive patients [n=51 Standard dose ‘old’ protocol (SDP); n=48 lower dose ‘new’ protocol (LDP)] with lumbar spine SPECT-CT for bone scan were examined. The main differences between the two protocols were that SDP used 130 kVp tube voltage and reference current-time product of 70 mAs whereas the LDP used 110 kVp and 40 mAs respectively. Various quantitative parameters from the CT images were obtained and the images were also rated blindly by two experienced nuclear medicine physicians for bony definition and noise. The mean calculated dose length product of the LDP group (121.5±39.6 mGy.cm) was significantly lower compared to the SDP group patients (266.9±96.9 mGy.cm; P<0.0001). This translated into a significant reduction in the mean effective dose to 1.8 mSv from 4.0 mSv. The physicians reported better CT image quality for the bony structures in LDP group although for soft tissue structures, the SDP group had better image quality. The optimized new CT acquisition protocol significantly reduced the radiation dose to the patient and in-fact improved CT image quality for the assessment of bony structures. PMID:28533938
Onboard TDI stage estimation and calibration using SNR analysis
NASA Astrophysics Data System (ADS)
Haghshenas, Javad
2017-09-01
Electro-Optical design of a push-broom space camera for a Low Earth Orbit (LEO) remote sensing satellite is performed based on the noise analysis of TDI sensors for very high GSDs and low light level missions. It is well demonstrated that the CCD TDI mode of operation provides increased photosensitivity relative to a linear CCD array, without the sacrifice of spatial resolution. However, for satellite imaging, in order to utilize the advantages which the TDI mode of operation offers, attention should be given to the parameters which affect the image quality of TDI sensors such as jitters, vibrations, noises and etc. A predefined TDI stages may not properly satisfy image quality requirement of the satellite camera. Furthermore, in order to use the whole dynamic range of the sensor, imager must be capable to set the TDI stages in every shots based on the affecting parameters. This paper deals with the optimal estimation and setting the stages based on tradeoffs among MTF, noises and SNR. On-board SNR estimation is simulated using the atmosphere analysis based on the MODTRAN algorithm in PcModWin software. According to the noises models, we have proposed a formulation to estimate TDI stages in such a way to satisfy the system SNR requirement. On the other hand, MTF requirement must be satisfy in the same manner. A proper combination of both parameters will guaranty the full dynamic range usage along with the high SNR and image quality.
Adaptive photoacoustic imaging quality optimization with EMD and reconstruction
NASA Astrophysics Data System (ADS)
Guo, Chengwen; Ding, Yao; Yuan, Jie; Xu, Guan; Wang, Xueding; Carson, Paul L.
2016-10-01
Biomedical photoacoustic (PA) signal is characterized with extremely low signal to noise ratio which will yield significant artifacts in photoacoustic tomography (PAT) images. Since PA signals acquired by ultrasound transducers are non-linear and non-stationary, traditional data analysis methods such as Fourier and wavelet method cannot give useful information for further research. In this paper, we introduce an adaptive method to improve the quality of PA imaging based on empirical mode decomposition (EMD) and reconstruction. Data acquired by ultrasound transducers are adaptively decomposed into several intrinsic mode functions (IMFs) after a sifting pre-process. Since noise is randomly distributed in different IMFs, depressing IMFs with more noise while enhancing IMFs with less noise can effectively enhance the quality of reconstructed PAT images. However, searching optimal parameters by means of brute force searching algorithms will cost too much time, which prevent this method from practical use. To find parameters within reasonable time, heuristic algorithms, which are designed for finding good solutions more efficiently when traditional methods are too slow, are adopted in our method. Two of the heuristic algorithms, Simulated Annealing Algorithm, a probabilistic method to approximate the global optimal solution, and Artificial Bee Colony Algorithm, an optimization method inspired by the foraging behavior of bee swarm, are selected to search optimal parameters of IMFs in this paper. The effectiveness of our proposed method is proved both on simulated data and PA signals from real biomedical tissue, which might bear the potential for future clinical PA imaging de-noising.
TU-EF-204-02: Hiigh Quality and Sub-MSv Cerebral CT Perfusion Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ke; Niu, Kai; Wu, Yijing
2015-06-15
Purpose: CT Perfusion (CTP) imaging is of great importance in acute ischemic stroke management due to its potential to detect hypoperfused yet salvageable tissue and distinguish it from definitely unsalvageable tissue. However, current CTP imaging suffers from poor image quality and high radiation dose (up to 5 mSv). The purpose of this work was to demonstrate that technical innovations such as Prior Image Constrained Compressed Sensing (PICCS) have the potential to address these challenges and achieve high quality and sub-mSv CTP imaging. Methods: (1) A spatial-temporal 4D cascaded system model was developed to indentify the bottlenecks in the current CTPmore » technology; (2) A task-based framework was developed to optimize the CTP system parameters; (3) Guided by (1) and (2), PICCS was customized for the reconstruction of CTP source images. Digital anthropomorphic perfusion phantoms, animal studies, and preliminary human subject studies were used to validate and evaluate the potentials of using these innovations to advance the CTP technology. Results: The 4D cascaded model was validated in both phantom and canine stroke models. Based upon this cascaded model, it has been discovered that, as long as the spatial resolution and noise properties of the 4D source CT images are given, the 3D MTF and NPS of the final CTP maps can be analytically derived for a given set of processing methods and parameters. The cascaded model analysis also identified that the most critical technical factor in CTP is how to acquire and reconstruct high quality source images; it has very little to do with the denoising techniques often used after parametric perfusion calculations. This explained why PICCS resulted in a five-fold dose reduction or substantial improvement in image quality. Conclusion: Technical innovations generated promising results towards achieving high quality and sub-mSv CTP imaging for reliable and safe assessment of acute ischemic strokes. K. Li, K. Niu, Y. Wu: Nothing to disclose. G.-H. Chen: Research funded, GE Healthcare; Research funded, Siemens AX.« less
Verification technology of remote sensing camera satellite imaging simulation based on ray tracing
NASA Astrophysics Data System (ADS)
Gu, Qiongqiong; Chen, Xiaomei; Yang, Deyun
2017-08-01
Remote sensing satellite camera imaging simulation technology is broadly used to evaluate the satellite imaging quality and to test the data application system. But the simulation precision is hard to examine. In this paper, we propose an experimental simulation verification method, which is based on the test parameter variation comparison. According to the simulation model based on ray-tracing, the experiment is to verify the model precision by changing the types of devices, which are corresponding the parameters of the model. The experimental results show that the similarity between the imaging model based on ray tracing and the experimental image is 91.4%, which can simulate the remote sensing satellite imaging system very well.
Registration of interferometric SAR images
NASA Technical Reports Server (NTRS)
Lin, Qian; Vesecky, John F.; Zebker, Howard A.
1992-01-01
Interferometric synthetic aperture radar (INSAR) is a new way of performing topography mapping. Among the factors critical to mapping accuracy is the registration of the complex SAR images from repeated orbits. A new algorithm for registering interferometric SAR images is presented. A new figure of merit, the average fluctuation function of the phase difference image, is proposed to evaluate the fringe pattern quality. The process of adjusting the registration parameters according to the fringe pattern quality is optimized through a downhill simplex minimization algorithm. The results of applying the proposed algorithm to register two pairs of Seasat SAR images with a short baseline (75 m) and a long baseline (500 m) are shown. It is found that the average fluctuation function is a very stable measure of fringe pattern quality allowing very accurate registration.
Optimisation of the digital radiographic imaging of suspected non-accidental injury
NASA Astrophysics Data System (ADS)
Offiah, Amaka
Aim: To optimise the digital (radiographic) imaging of children presenting with suspected non-accidental injury (NAI). Objectives: (i) To evaluate existing radiographic quality criteria, and to develop a more suitable system if these are found to be inapplicable to skeletal surveys obtained in suspected NAI. (ii) To document differences in image quality between conventional film-screen and the recently installed Fuji5000R computed radiography (CR) system at Great Ormond Street Hospital for Children, (iii) To document the extent of variability in the standard of skeletal surveys obtained in the UK for suspected NAI. (iv) To determine those radiographic parameters which yield the highest diagnostic accuracy, while still maintaining acceptable radiation dose to the child, (v) To determine how varying degrees of edge-enhancement affect diagnostic accuracy. (vi) To establish the accuracy of soft compared to hard copy interpretation of images in suspected NAI. Materials and Methods: (i) and (ii) Retrospective analysis of 286 paediatric lateral spine radiographs by two observers based on the Commission of European Communities (CEC) quality criteria, (iii) Review of the skeletal surveys of 50 consecutive infants referred from hospitals throughout the United Kingdom (UK) with suspected NAI. (iv) Phantom studies. Leeds TO. 10 and TO. 16 test objects were used to compare the relationship between film density, exposure parameters and visualisation of object details, (iv) Clinical study. Anteroposterior and lateral post mortem skull radiographs of six consecutive infants were obtained at various exposures. Six observers independently scored the images based on visualisation of five criteria, (v) and (vi) A study of diagnostic accuracy in which six observers independently interpreted 50 radiographs from printed copies (with varying degrees of edge-enhancement) and from a monitor. Results: The CEC criteria are useful for optimisation of imaging parameters and allow the detection of differences in quality of film-screen and digital images. There is much variability in the quality and number of radiographs performed as part of skeletal surveys in the UK for suspected NAI. The Leeds test objects are either not sensitive enough (TO. 10) or perhaps over sensitive (TO. 16) for the purposes of this project. Furthermore, the minimum spatial resolution required for digital imaging in NAI has not been established. Therefore the objective interpretation of phantom studies is difficult. There is scope for reduction of radiation dose to children with no effect on image quality. Diagnostic accuracy (fracture detection) in suspected NAI is generally low, and is not affected by image display modality. Conclusions: The CEC quality criteria are not applicable to the assessment of clinical image quality. A national protocol for skeletal surveys in NAI is required. Dedicated training, close supervision, collaboration and consistent exposure of radiologists to cases of NAI should improve diagnostic accuracy. The potential exists for dose reduction when performing skeletal surveys in children and infants with suspected NAI. Future studies should address this issue.
Mesas-Carrascosa, Francisco-Javier; Notario García, María Dolores; Meroño de Larriva, Jose Emilio; García-Ferrer, Alfonso
2016-11-01
This article describes the configuration and technical specifications of a multi-rotor unmanned aerial vehicle (UAV) using a red-green-blue (RGB) sensor for the acquisition of images needed for the production of orthomosaics to be used in archaeological applications. Several flight missions were programmed as follows: flight altitudes at 30, 40, 50, 60, 70 and 80 m above ground level; two forward and side overlap settings (80%-50% and 70%-40%); and the use, or lack thereof, of ground control points. These settings were chosen to analyze their influence on the spatial quality of orthomosaicked images processed by Inpho UASMaster (Trimble, CA, USA). Changes in illumination over the study area, its impact on flight duration, and how it relates to these settings is also considered. The combined effect of these parameters on spatial quality is presented as well, defining a ratio between ground sample distance of UAV images and expected root mean square of a UAV orthomosaick. The results indicate that a balance between all the proposed parameters is useful for optimizing mission planning and image processing, altitude above ground level (AGL) being main parameter because of its influence on root mean square error (RMSE).
Mesas-Carrascosa, Francisco-Javier; Notario García, María Dolores; Meroño de Larriva, Jose Emilio; García-Ferrer, Alfonso
2016-01-01
This article describes the configuration and technical specifications of a multi-rotor unmanned aerial vehicle (UAV) using a red–green–blue (RGB) sensor for the acquisition of images needed for the production of orthomosaics to be used in archaeological applications. Several flight missions were programmed as follows: flight altitudes at 30, 40, 50, 60, 70 and 80 m above ground level; two forward and side overlap settings (80%–50% and 70%–40%); and the use, or lack thereof, of ground control points. These settings were chosen to analyze their influence on the spatial quality of orthomosaicked images processed by Inpho UASMaster (Trimble, CA, USA). Changes in illumination over the study area, its impact on flight duration, and how it relates to these settings is also considered. The combined effect of these parameters on spatial quality is presented as well, defining a ratio between ground sample distance of UAV images and expected root mean square of a UAV orthomosaick. The results indicate that a balance between all the proposed parameters is useful for optimizing mission planning and image processing, altitude above ground level (AGL) being main parameter because of its influence on root mean square error (RMSE). PMID:27809293
Joint image registration and fusion method with a gradient strength regularization
NASA Astrophysics Data System (ADS)
Lidong, Huang; Wei, Zhao; Jun, Wang
2015-05-01
Image registration is an essential process for image fusion, and fusion performance can be used to evaluate registration accuracy. We propose a maximum likelihood (ML) approach to joint image registration and fusion instead of treating them as two independent processes in the conventional way. To improve the visual quality of a fused image, a gradient strength (GS) regularization is introduced in the cost function of ML. The GS of the fused image is controllable by setting the target GS value in the regularization term. This is useful because a larger target GS brings a clearer fused image and a smaller target GS makes the fused image smoother and thus restrains noise. Hence, the subjective quality of the fused image can be improved whether the source images are polluted by noise or not. We can obtain the fused image and registration parameters successively by minimizing the cost function using an iterative optimization method. Experimental results show that our method is effective with transformation, rotation, and scale parameters in the range of [-2.0, 2.0] pixel, [-1.1 deg, 1.1 deg], and [0.95, 1.05], respectively, and variances of noise smaller than 300. It also demonstrated that our method yields a more visual pleasing fused image and higher registration accuracy compared with a state-of-the-art algorithm.
Determining Sala mango qualities with the use of RGB images captured by a mobile phone camera
NASA Astrophysics Data System (ADS)
Yahaya, Ommi Kalsom Mardziah; Jafri, Mohd Zubir Mat; Aziz, Azlan Abdul; Omar, Ahmad Fairuz
2015-04-01
Sala mango (Mangifera indicia) is one of the Malaysia's most popular tropical fruits that are widely marketed within the country. The degrees of ripeness of mangoes have conventionally been evaluated manually on the basis of color parameters, but a simple non-destructive technique using the Samsung Galaxy Note 1 mobile phone camera is introduced to replace the destructive technique. In this research, color parameters in terms of RGB values acquired using the ENVI software system were linked to detect Sala mango quality parameters. The features of mango were extracted from the acquired images and then used to classify of fruit skin color, which relates to the stages of ripening. A multivariate analysis method, multiple linear regression, was employed with the purpose of using RGB color parameters to estimate the pH, soluble solids content (SSC), and firmness. The relationship between these qualities parameters of Sala mango and its mean pixel values in the RGB system is analyzed. Findings show that pH yields the highest accuracy with a correlation coefficient R = 0.913 and root mean square of error RMSE = 0.166 pH. Meanwhile, firmness has R = 0.875 and RMSE = 1.392 kgf, whereas soluble solid content has the lowest accuracy with R = 0.814 and RMSE = 1.218°Brix with the correlation between color parameters. Therefore, this non-invasive method can be used to determine the quality attributes of mangoes.
Image quality (IQ) guided multispectral image compression
NASA Astrophysics Data System (ADS)
Zheng, Yufeng; Chen, Genshe; Wang, Zhonghai; Blasch, Erik
2016-05-01
Image compression is necessary for data transportation, which saves both transferring time and storage space. In this paper, we focus on our discussion on lossy compression. There are many standard image formats and corresponding compression algorithms, for examples, JPEG (DCT -- discrete cosine transform), JPEG 2000 (DWT -- discrete wavelet transform), BPG (better portable graphics) and TIFF (LZW -- Lempel-Ziv-Welch). The image quality (IQ) of decompressed image will be measured by numerical metrics such as root mean square error (RMSE), peak signal-to-noise ratio (PSNR), and structural Similarity (SSIM) Index. Given an image and a specified IQ, we will investigate how to select a compression method and its parameters to achieve an expected compression. Our scenario consists of 3 steps. The first step is to compress a set of interested images by varying parameters and compute their IQs for each compression method. The second step is to create several regression models per compression method after analyzing the IQ-measurement versus compression-parameter from a number of compressed images. The third step is to compress the given image with the specified IQ using the selected compression method (JPEG, JPEG2000, BPG, or TIFF) according to the regressed models. The IQ may be specified by a compression ratio (e.g., 100), then we will select the compression method of the highest IQ (SSIM, or PSNR). Or the IQ may be specified by a IQ metric (e.g., SSIM = 0.8, or PSNR = 50), then we will select the compression method of the highest compression ratio. Our experiments tested on thermal (long-wave infrared) images (in gray scales) showed very promising results.
Strauss, Rupert W; Krieglstein, Tina R; Priglinger, Siegfried G; Reis, Werner; Ulbig, Michael W; Kampik, Anselm; Neubauer, Aljoscha S
2007-11-01
To establish a set of quality parameters for grading image quality and apply those to evaluate the fundus image quality obtained by a new scanning digital ophthalmoscope (SDO) compared with standard slide photography. On visual analogue scales a total of eight image characteristics were defined: overall quality, contrast, colour brilliance, focus (sharpness), resolution and details, noise, artefacts and validity of clinical assessment. Grading was repeated after 4 months to assess repeatability. Fundus images of 23 patients imaged digitally by SDO and by Zeiss 450FF fundus camera using Kodak film were graded side-by-side by three graders. Lens opacity was quantified with the Interzeag Lens Opacity Meter 701. For all of the eight scales of image quality, good repeatability within the graders (mean Kendall's W 0.69) was obtained after 4 months. Inter-grader agreement ranged between 0.31 and 0.66. Despite the SDO's limited nominal image resolution of 720 x 576 pixels, the Zeiss FF 450 camera performed better in only two of the subscales - noise (p = 0.001) and artefacts (p = 0.01). Lens opacities significantly influenced only the two subscales 'resolution' and 'details', which deteriorated with increasing media opacities for both imaging systems. Distinct scales to grade image characteristics of different origin were developed and validated. Overall SDO digital imaging was found to provide fundus pictures of a similarly high level of quality as expert photography on slides.
Gatti, Marco; Marchisio, Filippo; Fronda, Marco; Rampado, Osvaldo; Faletti, Riccardo; Bergamasco, Laura; Ropolo, Roberto; Fonio, Paolo
The aim of this study was to evaluate the impact on dose reduction and image quality of the new iterative reconstruction technique: adaptive statistical iterative reconstruction (ASIR-V). Fifty consecutive oncologic patients acted as case controls undergoing during their follow-up a computed tomography scan both with ASIR and ASIR-V. Each study was analyzed in a double-blinded fashion by 2 radiologists. Both quantitative and qualitative analyses of image quality were conducted. Computed tomography scanner radiation output was 38% (29%-45%) lower (P < 0.0001) for the ASIR-V examinations than for the ASIR ones. The quantitative image noise was significantly lower (P < 0.0001) for ASIR-V. Adaptive statistical iterative reconstruction-V had a higher performance for the subjective image noise (P = 0.01 for 5 mm and P = 0.009 for 1.25 mm), the other parameters (image sharpness, diagnostic acceptability, and overall image quality) being similar (P > 0.05). Adaptive statistical iterative reconstruction-V is a new iterative reconstruction technique that has the potential to provide image quality equal to or greater than ASIR, with a dose reduction around 40%.
Objective Quality Assessment for Color-to-Gray Image Conversion.
Ma, Kede; Zhao, Tiesong; Zeng, Kai; Wang, Zhou
2015-12-01
Color-to-gray (C2G) image conversion is the process of transforming a color image into a grayscale one. Despite its wide usage in real-world applications, little work has been dedicated to compare the performance of C2G conversion algorithms. Subjective evaluation is reliable but is also inconvenient and time consuming. Here, we make one of the first attempts to develop an objective quality model that automatically predicts the perceived quality of C2G converted images. Inspired by the philosophy of the structural similarity index, we propose a C2G structural similarity (C2G-SSIM) index, which evaluates the luminance, contrast, and structure similarities between the reference color image and the C2G converted image. The three components are then combined depending on image type to yield an overall quality measure. Experimental results show that the proposed C2G-SSIM index has close agreement with subjective rankings and significantly outperforms existing objective quality metrics for C2G conversion. To explore the potentials of C2G-SSIM, we further demonstrate its use in two applications: 1) automatic parameter tuning for C2G conversion algorithms and 2) adaptive fusion of C2G converted images.
Grootjans, Willem; Tixier, Florent; van der Vos, Charlotte S; Vriens, Dennis; Le Rest, Catherine C; Bussink, Johan; Oyen, Wim J G; de Geus-Oei, Lioe-Fee; Visvikis, Dimitris; Visser, Eric P
2016-11-01
Accurate measurement of intratumor heterogeneity using parameters of texture on PET images is essential for precise characterization of cancer lesions. In this study, we investigated the influence of respiratory motion and varying noise levels on quantification of textural parameters in patients with lung cancer. We used an optimal-respiratory-gating algorithm on the list-mode data of 60 lung cancer patients who underwent 18 F-FDG PET. The images were reconstructed using a duty cycle of 35% (percentage of the total acquired PET data). In addition, nongated images of varying statistical quality (using 35% and 100% of the PET data) were reconstructed to investigate the effects of image noise. Several global image-derived indices and textural parameters (entropy, high-intensity emphasis, zone percentage, and dissimilarity) that have been associated with patient outcome were calculated. The clinical impact of optimal respiratory gating and image noise on assessment of intratumor heterogeneity was evaluated using Cox regression models, with overall survival as the outcome measure. The threshold for statistical significance was adjusted for multiple comparisons using Bonferroni correction. In the lower lung lobes, respiratory motion significantly affected quantification of intratumor heterogeneity for all textural parameters (P < 0.007) except entropy (P > 0.007). The mean increase in entropy, dissimilarity, zone percentage, and high-intensity emphasis was 1.3% ± 1.5% (P = 0.02), 11.6% ± 11.8% (P = 0.006), 2.3% ± 2.2% (P = 0.002), and 16.8% ± 17.2% (P = 0.006), respectively. No significant differences were observed for lesions in the upper lung lobes (P > 0.007). Differences in the statistical quality of the PET images affected the textural parameters less than respiratory motion, with no significant difference observed. The median follow-up time was 35 mo (range, 7-39 mo). In multivariate analysis for overall survival, total lesion glycolysis and high-intensity emphasis were the two most relevant image-derived indices and were considered to be independent significant covariates for the model regardless of the image type considered. The tested textural parameters are robust in the presence of respiratory motion artifacts and varying levels of image noise. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Ketcha, M D; de Silva, T; Han, R; Uneri, A; Goerres, J; Jacobson, M; Vogt, S; Kleinszig, G; Siewerdsen, J H
2017-02-11
In image-guided procedures, image acquisition is often performed primarily for the task of geometrically registering information from another image dataset, rather than detection / visualization of a particular feature. While the ability to detect a particular feature in an image has been studied extensively with respect to image quality characteristics (noise, resolution) and is an ongoing, active area of research, comparatively little has been accomplished to relate such image quality characteristics to registration performance. To establish such a framework, we derived Cramer-Rao lower bounds (CRLB) for registration accuracy, revealing the underlying dependencies on image variance and gradient strength. The CRLB was analyzed as a function of image quality factors (in particular, dose) for various similarity metrics and compared to registration accuracy using CT images of an anthropomorphic head phantom at various simulated dose levels. Performance was evaluated in terms of root mean square error (RMSE) of the registration parameters. Analysis of the CRLB shows two primary dependencies: 1) noise variance (related to dose); and 2) sum of squared image gradients (related to spatial resolution and image content). Comparison of the measured RMSE to the CRLB showed that the best registration method, RMSE achieved the CRLB to within an efficiency factor of 0.21, and optimal estimators followed the predicted inverse proportionality between registration performance and radiation dose. Analysis of the CRLB for image registration is an important step toward understanding and evaluating an intraoperative imaging system with respect to a registration task. While the CRLB is optimistic in absolute performance, it reveals a basis for relating the performance of registration estimators as a function of noise content and may be used to guide acquisition parameter selection (e.g., dose) for purposes of intraoperative registration.
In-situ quality monitoring during laser brazing
NASA Astrophysics Data System (ADS)
Ungers, Michael; Fecker, Daniel; Frank, Sascha; Donst, Dmitri; Märgner, Volker; Abels, Peter; Kaierle, Stefan
Laser brazing of zinc coated steel is a widely established manufacturing process in the automotive sector, where high quality requirements must be fulfilled. The strength, impermeablitiy and surface appearance of the joint are particularly important for judging its quality. The development of an on-line quality control system is highly desired by the industry. This paper presents recent works on the development of such a system, which consists of two cameras operating in different spectral ranges. For the evaluation of the system, seam imperfections are created artificially during experiments. Finally image processing algorithms for monitoring process parameters based the captured images are presented.
USDA-ARS?s Scientific Manuscript database
Shell eggs with microcracks are often undetected during egg grading processes. In the past, a modified pressure imaging system was developed to detect eggs with microcracks without adversely affecting the quality of normal intact eggs. The basic idea of the modified pressure imaging system was to ap...
Model-based quantification of image quality
NASA Technical Reports Server (NTRS)
Hazra, Rajeeb; Miller, Keith W.; Park, Stephen K.
1989-01-01
In 1982, Park and Schowengerdt published an end-to-end analysis of a digital imaging system quantifying three principal degradation components: (1) image blur - blurring caused by the acquisition system, (2) aliasing - caused by insufficient sampling, and (3) reconstruction blur - blurring caused by the imperfect interpolative reconstruction. This analysis, which measures degradation as the square of the radiometric error, includes the sample-scene phase as an explicit random parameter and characterizes the image degradation caused by imperfect acquisition and reconstruction together with the effects of undersampling and random sample-scene phases. In a recent paper Mitchell and Netravelli displayed the visual effects of the above mentioned degradations and presented subjective analysis about their relative importance in determining image quality. The primary aim of the research is to use the analysis of Park and Schowengerdt to correlate their mathematical criteria for measuring image degradations with subjective visual criteria. Insight gained from this research can be exploited in the end-to-end design of optical systems, so that system parameters (transfer functions of the acquisition and display systems) can be designed relative to each other, to obtain the best possible results using quantitative measurements.
Haneder, Stefan; Siedek, Florian; Doerner, Jonas; Pahn, Gregor; Grosse Hokamp, Nils; Maintz, David; Wybranski, Christian
2018-01-01
Background A novel, multi-energy, dual-layer spectral detector computed tomography (SDCT) is commercially available now with the vendor's claim that it yields the same or better quality of polychromatic, conventional CT images like modern single-energy CT scanners without any radiation dose penalty. Purpose To intra-individually compare the quality of conventional polychromatic CT images acquired with a dual-layer spectral detector (SDCT) and the latest generation 128-row single-energy-detector (CT128) from the same manufacturer. Material and Methods Fifty patients underwent portal-venous phase, thoracic-abdominal CT scans with the SDCT and prior CT128 imaging. The SDCT scanning protocol was adapted to yield a similar estimated dose length product (DLP) as the CT128. Patient dose optimization by automatic tube current modulation and CT image reconstruction with a state-of-the-art iterative algorithm were identical on both scanners. CT image contrast-to-noise ratio (CNR) was compared between the SDCT and CT128 in different anatomic structures. Image quality and noise were assessed independently by two readers with 5-point-Likert-scales. Volume CT dose index (CTDI vol ), and DLP were recorded and normalized to 68 cm acquisition length (DLP 68 ). Results The SDCT yielded higher mean CNR values of 30.0% ± 2.0% (26.4-32.5%) in all anatomic structures ( P < 0.001) and excellent scores for qualitative parameters surpassing the CT128 (all P < 0.0001) with substantial inter-rater agreement (κ ≥ 0.801). Despite adapted scan protocols the SDCT yielded lower values for CTDI vol (-10.1 ± 12.8%), DLP (-13.1 ± 13.9%), and DLP 68 (-15.3 ± 16.9%) than the CT128 (all P < 0.0001). Conclusion The SDCT scanner yielded better CT image quality compared to the CT128 and lower radiation dose parameters.
Honda, O; Yanagawa, M; Inoue, A; Kikuyama, A; Yoshida, S; Sumikawa, H; Tobino, K; Koyama, M; Tomiyama, N
2011-04-01
We investigated the image quality of multiplanar reconstruction (MPR) using adaptive statistical iterative reconstruction (ASIR). Inflated and fixed lungs were scanned with a garnet detector CT in high-resolution mode (HR mode) or non-high-resolution (HR) mode, and MPR images were then reconstructed. Observers compared 15 MPR images of ASIR (40%) and ASIR (80%) with those of ASIR (0%), and assessed image quality using a visual five-point scale (1, definitely inferior; 5, definitely superior), with particular emphasis on normal pulmonary structures, artefacts, noise and overall image quality. The mean overall image quality scores in HR mode were 3.67 with ASIR (40%) and 4.97 with ASIR (80%). Those in non-HR mode were 3.27 with ASIR (40%) and 3.90 with ASIR (80%). The mean artefact scores in HR mode were 3.13 with ASIR (40%) and 3.63 with ASIR (80%), but those in non-HR mode were 2.87 with ASIR (40%) and 2.53 with ASIR (80%). The mean scores of the other parameters were greater than 3, whereas those in HR mode were higher than those in non-HR mode. There were significant differences between ASIR (40%) and ASIR (80%) in overall image quality (p<0.01). Contrast medium in the injection syringe was scanned to analyse image quality; ASIR did not suppress the severe artefacts of contrast medium. In general, MPR image quality with ASIR (80%) was superior to that with ASIR (40%). However, there was an increased incidence of artefacts by ASIR when CT images were obtained in non-HR mode.
NASA Astrophysics Data System (ADS)
Zhong, Qiu-Xiang; Wu, Chuan-Sheng; Shu, Qiao-Ling; Liu, Ryan Wen
2018-04-01
Image deblurring under impulse noise is a typical ill-posed problem which requires regularization methods to guarantee high-quality imaging. L1-norm data-fidelity term and total variation (TV) regularizer have been combined to contribute the popular regularization method. However, the TV-regularized variational image deblurring model often suffers from the staircase-like artifacts leading to image quality degradation. To enhance image quality, the detailpreserving total generalized variation (TGV) was introduced to replace TV to eliminate the undesirable artifacts. The resulting nonconvex optimization problem was effectively solved using the alternating direction method of multipliers (ADMM). In addition, an automatic method for selecting spatially adapted regularization parameters was proposed to further improve deblurring performance. Our proposed image deblurring framework is able to remove blurring and impulse noise effects while maintaining the image edge details. Comprehensive experiments have been conducted to demonstrate the superior performance of our proposed method over several state-of-the-art image deblurring methods.
Tchebichef moment based restoration of Gaussian blurred images.
Kumar, Ahlad; Paramesran, Raveendran; Lim, Chern-Loon; Dass, Sarat C
2016-11-10
With the knowledge of how edges vary in the presence of a Gaussian blur, a method that uses low-order Tchebichef moments is proposed to estimate the blur parameters: sigma (σ) and size (w). The difference between the Tchebichef moments of the original and the reblurred images is used as feature vectors to train an extreme learning machine for estimating the blur parameters (σ,w). The effectiveness of the proposed method to estimate the blur parameters is examined using cross-database validation. The estimated blur parameters from the proposed method are used in the split Bregman-based image restoration algorithm. A comparative analysis of the proposed method with three existing methods using all the images from the LIVE database is carried out. The results show that the proposed method in most of the cases performs better than the three existing methods in terms of the visual quality evaluated using the structural similarity index.
Supplemental optical specifications for imaging systems: parameters of phase gradient
NASA Astrophysics Data System (ADS)
Xuan, Bin; Li, Jun-Feng; Wang, Peng; Chen, Xiao-Ping; Song, Shu-Mei; Xie, Jing-Jiang
2009-12-01
Specifications of phase error, peak to valley (PV), and root mean square (rms) are not able to represent the properties of a wavefront reasonably because of their irresponsibility for spatial frequencies. Power spectral density is a parameter that is especially effective to indicate the frequency regime. However, it seems not convenient for opticians to implement. Parameters of phase gradient, PV gradient, and rms gradient are most correlated with a point-spread function of an imaging system, and they can provide clear instruction of manufacture. The algorithms of gradient parameters have been modified in order to represent the image quality better. In order to demonstrate the analyses, an experimental spherical mirror has been worked out. It is clear that imaging performances can be maintained while manufacture difficulties are decreased when a reasonable trade-off between specifications of phase error and phase gradient is made.
Detection of the spatial accuracy of an O-arm in the region of surgical interest
NASA Astrophysics Data System (ADS)
Koivukangas, Tapani; Katisko, Jani P. A.; Koivukangsa, John P.
2013-03-01
Medical imaging is an essential component of a wide range of surgical procedures1. For image guided surgical (IGS) procedures, medical images are the main source of information2. The IGS procedures rely largely on obtained image data, so the data needs to provide differentiation between normal and abnormal tissues, especially when other surgical guidance devices are used in the procedures. The image data also needs to provide accurate spatial representation of the patient3. This research has concentrated on the concept of accuracy assessment of IGS devices to meet the needs of quality assurance in the hospital environment. For this purpose, two precision engineered accuracy assessment phantoms have been developed as advanced materials and methods for the community. The phantoms were designed to mimic the volume of a human head as the common region of surgical interest (ROSI). This paper introduces the utilization of the phantoms in spatial accuracy assessment of a commercial surgical 3D CT scanner, the O-Arm. The study presents methods and results of image quality detection of possible geometrical distortions in the region of surgical interest. The results show that in the pre-determined ROSI there are clear image distortion and artefacts using too high imaging parameters when scanning the objects. On the other hand, when using optimal parameters, the O-Arm causes minimal error in IGS accuracy. The detected spatial inaccuracy of the O-Arm with used parameters was in the range of less than 1.00 mm.
Method for acquiring, storing and analyzing crystal images
NASA Technical Reports Server (NTRS)
Gester, Thomas E. (Inventor); Rosenblum, William M. (Inventor); Christopher, Gayle K. (Inventor); Hamrick, David T. (Inventor); Delucas, Lawrence J. (Inventor); Tillotson, Brian (Inventor)
2003-01-01
A system utilizing a digital computer for acquiring, storing and evaluating crystal images. The system includes a video camera (12) which produces a digital output signal representative of a crystal specimen positioned within its focal window (16). The digitized output from the camera (12) is then stored on data storage media (32) together with other parameters inputted by a technician and relevant to the crystal specimen. Preferably, the digitized images are stored on removable media (32) while the parameters for different crystal specimens are maintained in a database (40) with indices to the digitized optical images on the other data storage media (32). Computer software is then utilized to identify not only the presence and number of crystals and the edges of the crystal specimens from the optical image, but to also rate the crystal specimens by various parameters, such as edge straightness, polygon formation, aspect ratio, surface clarity, crystal cracks and other defects or lack thereof, and other parameters relevant to the quality of the crystals.
Clinical introduction of image lag correction for a cone beam CT system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stankovic, Uros; Ploeger, Lennert S.; Sonke, Jan-Jakob, E-mail: j.sonke@nki.nl
Purpose: Image lag in the flat-panel detector used for Linac integrated cone beam computed tomography (CBCT) has a degrading effect on CBCT image quality. The most prominent visible artifact is the presence of bright semicircular structure in the transverse view of the scans, known also as radar artifact. Several correction strategies have been proposed, but until now the clinical introduction of such corrections remains unreported. In November 2013, the authors have clinically implemented a previously proposed image lag correction on all of their machines at their main site in Amsterdam. The purpose of this study was to retrospectively evaluate themore » effect of the correction on the quality of CBCT images and evaluate the required calibration frequency. Methods: Image lag was measured in five clinical CBCT systems (Elekta Synergy 4.6) using an in-house developed beam interrupting device that stops the x-ray beam midway through the data acquisition of an unattenuated beam for calibration. A triple exponential falling edge response was fitted to the measured data and used to correct image lag from projection images with an infinite response. This filter, including an extrapolation for saturated pixels, was incorporated in the authors’ in-house developed clinical CBCT reconstruction software. To investigate the short-term stability of the lag and associated parameters, a series of five image lag measurement over a period of three months was performed. For quantitative analysis, the authors have retrospectively selected ten patients treated in the pelvic region. The apparent contrast was quantified in polar coordinates for scans reconstructed using the parameters obtained from different dates with and without saturation handling. Results: Visually, the radar artifact was minimal in scans reconstructed using image lag correction especially when saturation handling was used. In patient imaging, there was a significant reduction of the apparent contrast from 43 ± 16.7 to 15.5 ± 11.9 HU without the saturation handling and to 9.6 ± 12.1 HU with the saturation handling, depending on the date of the calibration. The image lag correction parameters were stable over a period of 3 months. The computational load was increased by approximately 10%, not endangering the fast in-line reconstruction. Conclusions: The lag correction was successfully implemented clinically and removed most image lag artifacts thus improving the image quality. Image lag correction parameters were stable for 3 months indicating low frequency of calibration requirements.« less
NASA Astrophysics Data System (ADS)
Amouriq, Yves; Guedon, Jeanpierre; Normand, Nicolas; Arlicot, Aurore; Benhdech, Yassine; Weiss, Pierre
2011-03-01
Bone microarchitecture is the predictor of bone quality or bone disease. It can only be measured on a bone biopsy, which is invasive and not available for all clinical situations. Texture analysis on radiographs is a common way to investigate bone microarchitecture. But relationship between three-dimension histomorphometric parameters and two-dimension texture parameters is not always well known, with poor results. The aim of this study is to performed angulated radiographs of the same region of interest and see if a better relationship between texture analysis on several radiographs and histomorphometric parameters can be developed. Computed radiography images of dog (Beagle) mandible section in molar regions were compared with high-resolution micro-CT (Computed-Tomograph) volumes. Four radiographs with 27° angle (up, down, left, right, using Rinn ring and customized arm positioning system) were performed from initial radiograph position. Bone texture parameters were calculated on all images. Texture parameters were also computed from new images obtained by difference between angulated images. Results of fractal values in different trabecular areas give some caracterisation of bone microarchitecture.
Algorithm sensitivity analysis and parameter tuning for tissue image segmentation pipelines
Kurç, Tahsin M.; Taveira, Luís F. R.; Melo, Alba C. M. A.; Gao, Yi; Kong, Jun; Saltz, Joel H.
2017-01-01
Abstract Motivation: Sensitivity analysis and parameter tuning are important processes in large-scale image analysis. They are very costly because the image analysis workflows are required to be executed several times to systematically correlate output variations with parameter changes or to tune parameters. An integrated solution with minimum user interaction that uses effective methodologies and high performance computing is required to scale these studies to large imaging datasets and expensive analysis workflows. Results: The experiments with two segmentation workflows show that the proposed approach can (i) quickly identify and prune parameters that are non-influential; (ii) search a small fraction (about 100 points) of the parameter search space with billions to trillions of points and improve the quality of segmentation results (Dice and Jaccard metrics) by as much as 1.42× compared to the results from the default parameters; (iii) attain good scalability on a high performance cluster with several effective optimizations. Conclusions: Our work demonstrates the feasibility of performing sensitivity analyses, parameter studies and auto-tuning with large datasets. The proposed framework can enable the quantification of error estimations and output variations in image segmentation pipelines. Availability and Implementation: Source code: https://github.com/SBU-BMI/region-templates/. Contact: teodoro@unb.br Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28062445
Algorithm sensitivity analysis and parameter tuning for tissue image segmentation pipelines.
Teodoro, George; Kurç, Tahsin M; Taveira, Luís F R; Melo, Alba C M A; Gao, Yi; Kong, Jun; Saltz, Joel H
2017-04-01
Sensitivity analysis and parameter tuning are important processes in large-scale image analysis. They are very costly because the image analysis workflows are required to be executed several times to systematically correlate output variations with parameter changes or to tune parameters. An integrated solution with minimum user interaction that uses effective methodologies and high performance computing is required to scale these studies to large imaging datasets and expensive analysis workflows. The experiments with two segmentation workflows show that the proposed approach can (i) quickly identify and prune parameters that are non-influential; (ii) search a small fraction (about 100 points) of the parameter search space with billions to trillions of points and improve the quality of segmentation results (Dice and Jaccard metrics) by as much as 1.42× compared to the results from the default parameters; (iii) attain good scalability on a high performance cluster with several effective optimizations. Our work demonstrates the feasibility of performing sensitivity analyses, parameter studies and auto-tuning with large datasets. The proposed framework can enable the quantification of error estimations and output variations in image segmentation pipelines. Source code: https://github.com/SBU-BMI/region-templates/ . teodoro@unb.br. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Luo, Jianhua; Mou, Zhiying; Qin, Binjie; Li, Wanqing; Ogunbona, Philip; Robini, Marc C; Zhu, Yuemin
2018-07-01
Reconstructing magnetic resonance images from undersampled k-space data is a challenging problem. This paper introduces a novel method of image reconstruction from undersampled k-space data based on the concept of singularizing operators and a novel singular k-space model. Exploring the sparsity of an image in the k-space, the singular k-space model (SKM) is proposed in terms of the k-space functions of a singularizing operator. The singularizing operator is constructed by combining basic difference operators. An algorithm is developed to reliably estimate the model parameters from undersampled k-space data. The estimated parameters are then used to recover the missing k-space data through the model, subsequently achieving high-quality reconstruction of the image using inverse Fourier transform. Experiments on physical phantom and real brain MR images have shown that the proposed SKM method constantly outperforms the popular total variation (TV) and the classical zero-filling (ZF) methods regardless of the undersampling rates, the noise levels, and the image structures. For the same objective quality of the reconstructed images, the proposed method requires much less k-space data than the TV method. The SKM method is an effective method for fast MRI reconstruction from the undersampled k-space data. Graphical abstract Two Real Images and their sparsified images by singularizing operator.
In vivo High Angular Resolution Diffusion-Weighted Imaging of Mouse Brain at 16.4 Tesla
Alomair, Othman I.; Brereton, Ian M.; Smith, Maree T.; Galloway, Graham J.; Kurniawan, Nyoman D.
2015-01-01
Magnetic Resonance Imaging (MRI) of the rodent brain at ultra-high magnetic fields (> 9.4 Tesla) offers a higher signal-to-noise ratio that can be exploited to reduce image acquisition time or provide higher spatial resolution. However, significant challenges are presented due to a combination of longer T 1 and shorter T 2/T2* relaxation times and increased sensitivity to magnetic susceptibility resulting in severe local-field inhomogeneity artefacts from air pockets and bone/brain interfaces. The Stejskal-Tanner spin echo diffusion-weighted imaging (DWI) sequence is often used in high-field rodent brain MRI due to its immunity to these artefacts. To accurately determine diffusion-tensor or fibre-orientation distribution, high angular resolution diffusion imaging (HARDI) with strong diffusion weighting (b >3000 s/mm2) and at least 30 diffusion-encoding directions are required. However, this results in long image acquisition times unsuitable for live animal imaging. In this study, we describe the optimization of HARDI acquisition parameters at 16.4T using a Stejskal-Tanner sequence with echo-planar imaging (EPI) readout. EPI segmentation and partial Fourier encoding acceleration were applied to reduce the echo time (TE), thereby minimizing signal decay and distortion artefacts while maintaining a reasonably short acquisition time. The final HARDI acquisition protocol was achieved with the following parameters: 4 shot EPI, b = 3000 s/mm2, 64 diffusion-encoding directions, 125×150 μm2 in-plane resolution, 0.6 mm slice thickness, and 2h acquisition time. This protocol was used to image a cohort of adult C57BL/6 male mice, whereby the quality of the acquired data was assessed and diffusion tensor imaging (DTI) derived parameters were measured. High-quality images with high spatial and angular resolution, low distortion and low variability in DTI-derived parameters were obtained, indicating that EPI-DWI is feasible at 16.4T to study animal models of white matter (WM) diseases. PMID:26110770
Chest CT in children: anesthesia and atelectasis.
Newman, Beverley; Krane, Elliot J; Gawande, Rakhee; Holmes, Tyson H; Robinson, Terry E
2014-02-01
There has been an increasing tendency for anesthesiologists to be responsible for providing sedation or anesthesia during chest CT imaging in young children. Anesthesia-related atelectasis noted on chest CT imaging has proven to be a common and troublesome problem, affecting image quality and diagnostic sensitivity. To evaluate the safety and effectiveness of a standardized anesthesia, lung recruitment, controlled-ventilation technique developed at our institution to prevent atelectasis for chest CT imaging in young children. Fifty-six chest CT scans were obtained in 42 children using a research-based intubation, lung recruitment and controlled-ventilation CT scanning protocol. These studies were compared with 70 non-protocolized chest CT scans under anesthesia taken from 18 of the same children, who were tested at different times, without the specific lung recruitment and controlled-ventilation technique. Two radiology readers scored all inspiratory chest CT scans for overall CT quality and atelectasis. Detailed cardiorespiratory parameters were evaluated at baseline, and during recruitment and inspiratory imaging on 21 controlled-ventilation cases and 8 control cases. Significant differences were noted between groups for both quality and atelectasis scores with optimal scoring demonstrated in the controlled-ventilation cases where 70% were rated very good to excellent quality scans compared with only 24% of non-protocol cases. There was no or minimal atelectasis in 48% of the controlled ventilation cases compared to 51% of non-protocol cases with segmental, multisegmental or lobar atelectasis present. No significant difference in cardiorespiratory parameters was found between controlled ventilation and other chest CT cases and no procedure-related adverse events occurred. Controlled-ventilation infant CT scanning under general anesthesia, utilizing intubation and recruitment maneuvers followed by chest CT scans, appears to be a safe and effective method to obtain reliable and reproducible high-quality, motion-free chest CT images in children.
Quality and Control of Water Vapor Winds
NASA Technical Reports Server (NTRS)
Jedlovec, Gary J.; Atkinson, Robert J.
1996-01-01
Water vapor imagery from the geostationary satellites such as GOES, Meteosat, and GMS provides synoptic views of dynamical events on a continual basis. Because the imagery represents a non-linear combination of mid- and upper-tropospheric thermodynamic parameters (three-dimensional variations in temperature and humidity), video loops of these image products provide enlightening views of regional flow fields, the movement of tropical and extratropical storm systems, the transfer of moisture between hemispheres and from the tropics to the mid- latitudes, and the dominance of high pressure systems over particular regions of the Earth. Despite the obvious larger scale features, the water vapor imagery contains significant image variability down to the single 8 km GOES pixel. These features can be quantitatively identified and tracked from one time to the next using various image processing techniques. Merrill et al. (1991), Hayden and Schmidt (1992), and Laurent (1993) have documented the operational procedures and capabilities of NOAA and ESOC to produce cloud and water vapor winds. These techniques employ standard correlation and template matching approaches to wind tracking and use qualitative and quantitative procedures to eliminate bad wind vectors from the wind data set. Techniques have also been developed to improve the quality of the operational winds though robust editing procedures (Hayden and Veldon 1991). These quality and control approaches have limitations, are often subjective, and constrain wind variability to be consistent with model derived wind fields. This paper describes research focused on the refinement of objective quality and control parameters for water vapor wind vector data sets. New quality and control measures are developed and employed to provide a more robust wind data set for climate analysis, data assimilation studies, as well as operational weather forecasting. The parameters are applicable to cloud-tracked winds as well with minor modifications. The improvement in winds through use of these new quality and control parameters is measured without the use of rawinsonde or modeled wind field data and compared with other approaches.
NASA Astrophysics Data System (ADS)
Visser, Eric P.; Disselhorst, Jonathan A.; van Lier, Monique G. J. T. B.; Laverman, Peter; de Jong, Gabie M.; Oyen, Wim J. G.; Boerman, Otto C.
2011-02-01
The image reconstruction algorithms provided with the Siemens Inveon small-animal PET scanner are filtered backprojection (FBP), 3-dimensional reprojection (3DRP), ordered subset expectation maximization in 2 or 3 dimensions (OSEM2D/3D) and maximum a posteriori (MAP) reconstruction. This study aimed at optimizing the reconstruction parameter settings with regard to image quality (IQ) as defined by the NEMA NU 4-2008 standards. The NEMA NU 4-2008 image quality phantom was used to determine image noise, expressed as percentage standard deviation in the uniform phantom region (%STD unif), activity recovery coefficients for the FDG-filled rods (RC rod), and spill-over ratios for the non-radioactive water- and air-filled phantom compartments (SOR wat and SOR air). Although not required by NEMA NU 4, we also determined a contrast-to-noise ratio for each rod (CNR rod), expressing the trade-off between activity recovery and image noise. For FBP and 3DRP the cut-off frequency of the applied filters, and for OSEM2D and OSEM3D, the number of iterations was varied. For MAP, the "smoothing parameter" β and the type of uniformity constraint (variance or resolution) were varied. Results of these analyses were demonstrated in images of an FDG-injected rat showing tumours in the liver, and of a mouse injected with an 18F-labeled peptide, showing a small subcutaneous tumour and the cortex structure of the kidneys. Optimum IQ in terms of CNR rod for the small-diameter rods was obtained using MAP with uniform variance and β=0.4. This setting led to RC rod,1 mm=0.21, RC rod,2 mm=0.57, %STD unif=1.38, SOR wat=0.0011, and SOR air=0.00086. However, the highest activity recovery for the smallest rods with still very small %STD unif was obtained using β=0.075, for which these IQ parameters were 0.31, 0.74, 2.67, 0.0041, and 0.0030, respectively. The different settings of reconstruction parameters were clearly reflected in the rat and mouse images as the trade-off between the recovery of small structures (blood vessels, small tumours, kidney cortex structure) and image noise in homogeneous body parts (healthy liver background). Highest IQ for the Inveon PET scanner was obtained using MAP reconstruction with uniform variance. The setting of β depended on the specific imaging goals.
Technical aspects of CT imaging of the spine.
Tins, Bernhard
2010-11-01
This review article discusses technical aspects of computed tomography (CT) imaging of the spine. Patient positioning, and its influence on image quality and movement artefact, is discussed. Particular emphasis is placed on the choice of scan parameters and their relation to image quality and radiation burden to the patient. Strategies to reduce radiation burden and artefact from metal implants are outlined. Data acquisition, processing, image display and steps to reduce artefact are reviewed. CT imaging of the spine is put into context with other imaging modalities for specific clinical indications or problems. This review aims to review underlying principles for image acquisition and to provide a rough guide for clinical problems without being prescriptive. Individual practice will always vary and reflect differences in local experience, technical provisions and clinical requirements.
Non local means denoising in photoacoustic imaging
NASA Astrophysics Data System (ADS)
Siregar, Syahril; Nagaoka, Ryo; Haq, Israr Ul; Saijo, Yoshifumi
2018-07-01
Photoacoustic (PA) imaging has the ability to visualize human organs with high spatial resolution and high contrast. Like digital images, PA images are contaminated with random noise due to some parameters. The band-pass filter does not effectively remove the noise because noise is randomly distributed in the bandwidth frequency. We present noise removal method in PA images by using non local means denoising (NLMD) method. The NLMD can be used if there are similarities or redundancies in the image. PA images contain of blood vessel which repeating on the small patch. The method was tested on PA images of carbon nanotubes in micropipe, in vivo mice brain and in vivo mice ear. We estimated the suggested input parameters of NLMD, so it can be automatically applied after scanning the image in PA imaging system. Our results declared that the NLMD enhanced the image quality of PA images.
NASA Astrophysics Data System (ADS)
Subiyanto, Sawitri; Ramadhanis, Zainab; Baktiar, Aditya Hafidh
2018-02-01
One of the waters that has been contaminated by industrial waste and domestic waste is the waters in estuaries inlet of Semarang Eastern Flood Canal which is the estuary of the river system, which passes through the eastern city of Semarang which is dense with residential and industrial. So it is necessary to have information about the assessment of water quality in Estuaries Inlet of Semarang Eastern Flood Canal. Remote sensing technology can analyze the results of recording the spectral characteristics of water with water quality parameters. One of the parameters for assessing water quality is Chlorophyll-a and Total Suspended Solid, can be estimated through remote sensing technology using multispectral Sentinel-2A Satellite images. In this research there are 3 algorithms that will be used in determining the content of chlorophyll a, and for determining TSS. Image accuracy test is done to find out how far the image can give information about Chlorophyll-a and TSS in the waters. The results of the image accuracy test will be compared with the value of chlorophyll-a and TSS that have been tested through laboratory analysis. The result of this research is the distribution map of chlorophyll-a and TSS content in the waters.
Iterative image reconstruction that includes a total variation regularization for radial MRI.
Kojima, Shinya; Shinohara, Hiroyuki; Hashimoto, Takeyuki; Hirata, Masami; Ueno, Eiko
2015-07-01
This paper presents an iterative image reconstruction method for radial encodings in MRI based on a total variation (TV) regularization. The algebraic reconstruction method combined with total variation regularization (ART_TV) is implemented with a regularization parameter specifying the weight of the TV term in the optimization process. We used numerical simulations of a Shepp-Logan phantom, as well as experimental imaging of a phantom that included a rectangular-wave chart, to evaluate the performance of ART_TV, and to compare it with that of the Fourier transform (FT) method. The trade-off between spatial resolution and signal-to-noise ratio (SNR) was investigated for different values of the regularization parameter by experiments on a phantom and a commercially available MRI system. ART_TV was inferior to the FT with respect to the evaluation of the modulation transfer function (MTF), especially at high frequencies; however, it outperformed the FT with regard to the SNR. In accordance with the results of SNR measurement, visual impression suggested that the image quality of ART_TV was better than that of the FT for reconstruction of a noisy image of a kiwi fruit. In conclusion, ART_TV provides radial MRI with improved image quality for low-SNR data; however, the regularization parameter in ART_TV is a critical factor for obtaining improvement over the FT.
Colony image acquisition and genetic segmentation algorithm and colony analyses
NASA Astrophysics Data System (ADS)
Wang, W. X.
2012-01-01
Colony anaysis is used in a large number of engineerings such as food, dairy, beverages, hygiene, environmental monitoring, water, toxicology, sterility testing. In order to reduce laboring and increase analysis acuracy, many researchers and developers have made efforts for image analysis systems. The main problems in the systems are image acquisition, image segmentation and image analysis. In this paper, to acquire colony images with good quality, an illumination box was constructed. In the box, the distances between lights and dishe, camra lens and lights, and camera lens and dishe are adjusted optimally. In image segmentation, It is based on a genetic approach that allow one to consider the segmentation problem as a global optimization,. After image pre-processing and image segmentation, the colony analyses are perfomed. The colony image analysis consists of (1) basic colony parameter measurements; (2) colony size analysis; (3) colony shape analysis; and (4) colony surface measurements. All the above visual colony parameters can be selected and combined together, used to make a new engineeing parameters. The colony analysis can be applied into different applications.
Hyperspectral imaging technique for determination of pork freshness attributes
NASA Astrophysics Data System (ADS)
Li, Yongyu; Zhang, Leilei; Peng, Yankun; Tang, Xiuying; Chao, Kuanglin; Dhakal, Sagar
2011-06-01
Freshness of pork is an important quality attribute, which can vary greatly in storage and logistics. The specific objectives of this research were to develop a hyperspectral imaging system to predict pork freshness based on quality attributes such as total volatile basic-nitrogen (TVB-N), pH value and color parameters (L*,a*,b*). Pork samples were packed in seal plastic bags and then stored at 4°C. Every 12 hours. Hyperspectral scattering images were collected from the pork surface at the range of 400 nm to 1100 nm. Two different methods were performed to extract scattering feature spectra from the hyperspectral scattering images. First, the spectral scattering profiles at individual wavelengths were fitted accurately by a three-parameter Lorentzian distribution (LD) function; second, reflectance spectra were extracted from the scattering images. Partial Least Square Regression (PLSR) method was used to establish prediction models to predict pork freshness. The results showed that the PLSR models based on reflectance spectra was better than combinations of LD "parameter spectra" in prediction of TVB-N with a correlation coefficient (r) = 0.90, a standard error of prediction (SEP) = 7.80 mg/100g. Moreover, a prediction model for pork freshness was established by using a combination of TVB-N, pH and color parameters. It could give a good prediction results with r = 0.91 for pork freshness. The research demonstrated that hyperspectral scattering technique is a valid tool for real-time and nondestructive detection of pork freshness.
Dose and diagnostic image quality in digital tomosynthesis imaging of facial bones in pediatrics
NASA Astrophysics Data System (ADS)
King, J. M.; Hickling, S.; Elbakri, I. A.; Reed, M.; Wrogemann, J.
2011-03-01
The purpose of this study was to evaluate the use of digital tomosynthesis (DT) for pediatric facial bone imaging. We compared the eye lens dose and diagnostic image quality of DT facial bone exams relative to digital radiography (DR) and computed tomography (CT), and investigated whether we could modify our current DT imaging protocol to reduce patient dose while maintaining sufficient diagnostic image quality. We measured the dose to the eye lens for all three modalities using high-sensitivity thermoluminescent dosimeters (TLDs) and an anthropomorphic skull phantom. To assess the diagnostic image quality of DT compared to the corresponding DR and CT images, we performed an observer study where the visibility of anatomical structures in the DT phantom images were rated on a four-point scale. We then acquired DT images at lower doses and had radiologists indicate whether the visibility of each structure was adequate for diagnostic purposes. For typical facial bone exams, we measured eye lens doses of 0.1-0.4 mGy for DR, 0.3-3.7 mGy for DT, and 26 mGy for CT. In general, facial bone structures were visualized better with DT then DR, and the majority of structures were visualized well enough to avoid the need for CT. DT imaging provides high quality diagnostic images of the facial bones while delivering significantly lower doses to the lens of the eye compared to CT. In addition, we found that by adjusting the imaging parameters, the DT effective dose can be reduced by up to 50% while maintaining sufficient image quality.
The influence of software filtering in digital mammography image quality
NASA Astrophysics Data System (ADS)
Michail, C.; Spyropoulou, V.; Kalyvas, N.; Valais, I.; Dimitropoulos, N.; Fountos, G.; Kandarakis, I.; Panayiotakis, G.
2009-05-01
Breast cancer is one of the most frequently diagnosed cancers among women. Several techniques have been developed to help in the early detection of breast cancer such as conventional and digital x-ray mammography, positron and single-photon emission mammography, etc. A key advantage in digital mammography is that images can be manipulated as simple computer image files. Thus non-dedicated commercially available image manipulation software can be employed to process and store the images. The image processing tools of the Photoshop (CS 2) software usually incorporate digital filters which may be used to reduce image noise, enhance contrast and increase spatial resolution. However, improving an image quality parameter may result in degradation of another. The aim of this work was to investigate the influence of three sharpening filters, named hereafter sharpen, sharpen more and sharpen edges on image resolution and noise. Image resolution was assessed by means of the Modulation Transfer Function (MTF).In conclusion it was found that the correct use of commercial non-dedicated software on digital mammograms may improve some aspects of image quality.
Chian, Teo Chee; Nassir, Norziana Mat; Ibrahim, Mohd Izuan; Yusof, Ahmad Khairuddin Md; Sabarudin, Akmal
2017-02-01
This study was carried out to quantify and compare the quantitative image quality of coronary computed tomography angiography (CCTA) between genders as well as between different tube voltages scan protocols. Fifty-five cases of CCTA were collected retrospectively and all images including reformatted axial images at systolic and diastolic phases as well as images with curved multi planar reformation (cMPR) were obtained. Quantitative image quality including signal intensity, image noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of right coronary artery (RCA), left anterior descending artery (LAD), left circumflex artery (LCx) and left main artery (LM) were quantified using Analyze 12.0 software. Six hundred and fifty-seven coronary arteries were evaluated. There were no significant differences in any quantitative image quality parameters between genders. 100 kilovoltage peak (kVp) scanning protocol produced images with significantly higher signal intensity compared to 120 kVp scanning protocol (P<0.001) in all coronary arteries in all types of images. Higher SNR was also observed in 100 kVp scan protocol in all coronary arteries except in LCx where 120 kVp showed better SNR than 100 kVp. There were no significant differences in image quality of CCTA between genders and different tube voltages. Lower tube voltage (100 kVp) scanning protocol is recommended in clinical practice to reduce the radiation dose to patient.
NASA Astrophysics Data System (ADS)
Lohvithee, Manasavee; Biguri, Ander; Soleimani, Manuchehr
2017-12-01
There are a number of powerful total variation (TV) regularization methods that have great promise in limited data cone-beam CT reconstruction with an enhancement of image quality. These promising TV methods require careful selection of the image reconstruction parameters, for which there are no well-established criteria. This paper presents a comprehensive evaluation of parameter selection in a number of major TV-based reconstruction algorithms. An appropriate way of selecting the values for each individual parameter has been suggested. Finally, a new adaptive-weighted projection-controlled steepest descent (AwPCSD) algorithm is presented, which implements the edge-preserving function for CBCT reconstruction with limited data. The proposed algorithm shows significant robustness compared to three other existing algorithms: ASD-POCS, AwASD-POCS and PCSD. The proposed AwPCSD algorithm is able to preserve the edges of the reconstructed images better with fewer sensitive parameters to tune.
Direct Metal Deposition of H13 Tool Steel on Copper Alloy Substrate: Parametric Investigation
NASA Astrophysics Data System (ADS)
Imran, M. Khalid; Masood, S. H.; Brandt, Milan
2015-12-01
Over the past decade, researchers have demonstrated interest in tribology and prototyping by the laser aided material deposition process. Laser aided direct metal deposition (DMD) enables the formation of a uniform clad by melting the powder to form desired component from metal powder materials. In this research H13 tool steel has been used to clad on a copper alloy substrate using DMD. The effects of laser parameters on the quality of DMD deposited clad have been investigated and acceptable processing parameters have been determined largely through trial-and-error approaches. The relationships between DMD process parameters and the product characteristics such as porosity, micro-cracks and microhardness have been analysed using scanning electron microscope (SEM), image analysis software (ImageJ) and microhardness tester. It has been found that DMD parameters such as laser power, powder mass flow rate, feed rate and focus size have an important role in clad quality and crack formation.
NASA Astrophysics Data System (ADS)
Pande-Chhetri, Roshan
High resolution hyperspectral imagery (airborne or ground-based) is gaining momentum as a useful analytical tool in various fields including agriculture and aquatic systems. These images are often contaminated with stripes and noise resulting in lower signal-to-noise ratio, especially in aquatic regions where signal is naturally low. This research investigates effective methods for filtering high spatial resolution hyperspectral imagery and use of the imagery in water quality parameter estimation and aquatic vegetation classification. The striping pattern of the hyperspectral imagery is non-parametric and difficult to filter. In this research, a de-striping algorithm based on wavelet analysis and adaptive Fourier domain normalization was examined. The result of this algorithm was found superior to other available algorithms and yielded highest Peak Signal to Noise Ratio improvement. The algorithm was implemented on individual image bands and on selected bands of the Maximum Noise Fraction (MNF) transformed images. The results showed that image filtering in the MNF domain was efficient and produced best results. The study investigated methods of analyzing hyperspectral imagery to estimate water quality parameters and to map aquatic vegetation in case-2 waters. Ground-based hyperspectral imagery was analyzed to determine chlorophyll-a (Chl-a) concentrations in aquaculture ponds. Two-band and three-band indices were implemented and the effect of using submerged reflectance targets was evaluated. Laboratory measured values were found to be in strong correlation with two-band and three-band spectral indices computed from the hyperspectral image. Coefficients of determination (R2) values were found to be 0.833 and 0.862 without submerged targets and stronger values of 0.975 and 0.982 were obtained using submerged targets. Airborne hyperspectral images were used to detect and classify aquatic vegetation in a black river estuarine system. Image normalization for water surface reflectance and water depths was conducted and non-parametric classifiers such as ANN, SVM and SAM were tested and compared. Quality assessment indicated better classification and detection when non-parametric classifiers were applied to normalized or depth invariant transform images. Best classification accuracy of 73% was achieved when ANN is applied on normalized image and best detection accuracy of around 92% was obtained when SVM or SAM was applied on depth invariant images.
Dezawa, Akira; Sairyo, Koichi
2014-05-01
Organic electroluminescence displays (OELD) use organic materials that self-emit light with the passage of an electric current. OELD provide high contrast, excellent color reproducibility at low brightness, excellent video images, and less restricted viewing angles. OELD are thus promising for medical use. This study compared the utility of an OELD with conventional liquid crystal displays (LCD) for imaging in orthopedic endoscopic surgery. One OELD and two conventional LCD that were indistinguishable in external appearance were used in this study. Images from 18 patients were displayed simultaneously on three monitors and evaluated by six orthopedic surgeons with extensive surgical experience. Images were shown for 2 min, repeated twice, and viewed from the front and side (diagonally). Surgeon rated both clinical utility (12 parameters) and image quality (11 parameters) for each image on a 5-point scale: 1, very good; 2, good; 3, average; 4, poor; and 5, very poor. For clinical utility in 16 percutaneous endoscopic discectomy cases, mean scores for all 12 parameters were significantly better on the OELD than on the LCD, including organ distinguishability (2.1 vs 3.2, respectively), lesion identification (2.2 vs 3.1), and overall viewing impression (2.1 vs 3.1). For image quality, all 11 parameters were better on the OELD than on LCD. Significant differences were identified in six parameters, including contrast (1.8 vs 2.9), color reproducibility in dark areas (1.8 vs 2.9), and viewing angle (2.2 vs 2.9). The high contrast and excellent color reproducibility of the OELD reduced the constraints of imaging under endoscopy, in which securing a field of view may be difficult. Distinguishability of organs was good, including ligaments, dura mater, nerves, and adipose tissue, contributing to good stereoscopic images of the surgical field. These findings suggest the utility of OELD for excellent display of surgical images and for enabling safe and highly accurate endoscopic surgery. © 2014 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and Wiley Publishing Asia Pty Ltd.
Nagy, Eszter; Apfaltrer, Georg; Riccabona, Michael; Singer, Georg; Stücklschweiger, Georg; Guss, Helmuth; Sorantin, Erich
2017-01-01
Objectives To evaluate and compare surface doses of a cone beam computed tomography (CBCT) and a multidetector computed tomography (MDCT) device in pediatric ankle and wrist phantoms. Methods Thermoluminescent dosimeters (TLD) were used to measure and compare surface doses between CBCT and MDCT in a left ankle and a right wrist pediatric phantom. In both modalities adapted pediatric dose protocols were utilized to achieve realistic imaging conditions. All measurements were repeated three times to prove test-retest reliability. Additionally, objective and subjective image quality parameters were assessed. Results Average surface doses were 3.8 ±2.1 mGy for the ankle, and 2.2 ±1.3 mGy for the wrist in CBCT. The corresponding surface doses in optimized MDCT were 4.5 ±1.3 mGy for the ankle, and 3.4 ±0.7 mGy for the wrist. Overall, mean surface dose was significantly lower in CBCT (3.0 ±1.9 mGy vs. 3.9 ±1.2 mGy, p<0.001). Subjectively rated general image quality was not significantly different between the study protocols (p = 0.421), whereas objectively measured image quality parameters were in favor of CBCT (p<0.001). Conclusions Adapted extremity CBCT imaging protocols have the potential to fall below optimized pediatric ankle and wrist MDCT doses at comparable image qualities. These possible dose savings warrant further development and research in pediatric extremity CBCT applications. PMID:28570626
Color image lossy compression based on blind evaluation and prediction of noise characteristics
NASA Astrophysics Data System (ADS)
Ponomarenko, Nikolay N.; Lukin, Vladimir V.; Egiazarian, Karen O.; Lepisto, Leena
2011-03-01
The paper deals with JPEG adaptive lossy compression of color images formed by digital cameras. Adaptation to noise characteristics and blur estimated for each given image is carried out. The dominant factor degrading image quality is determined in a blind manner. Characteristics of this dominant factor are then estimated. Finally, a scaling factor that determines quantization steps for default JPEG table is adaptively set (selected). Within this general framework, two possible strategies are considered. A first one presumes blind estimation for an image after all operations in digital image processing chain just before compressing a given raster image. A second strategy is based on prediction of noise and blur parameters from analysis of RAW image under quite general assumptions concerning characteristics parameters of transformations an image will be subject to at further processing stages. The advantages of both strategies are discussed. The first strategy provides more accurate estimation and larger benefit in image compression ratio (CR) compared to super-high quality (SHQ) mode. However, it is more complicated and requires more resources. The second strategy is simpler but less beneficial. The proposed approaches are tested for quite many real life color images acquired by digital cameras and shown to provide more than two time increase of average CR compared to SHQ mode without introducing visible distortions with respect to SHQ compressed images.
NASA Astrophysics Data System (ADS)
Vogt, William C.; Jia, Congxian; Wear, Keith A.; Garra, Brian S.; Pfefer, T. Joshua
2017-03-01
As Photoacoustic Tomography (PAT) matures and undergoes clinical translation, objective performance test methods are needed to facilitate device development, regulatory clearance and clinical quality assurance. For mature medical imaging modalities such as CT, MRI, and ultrasound, tissue-mimicking phantoms are frequently incorporated into consensus standards for performance testing. A well-validated set of phantom-based test methods is needed for evaluating performance characteristics of PAT systems. To this end, we have constructed phantoms using a custom tissue-mimicking material based on PVC plastisol with tunable, biologically-relevant optical and acoustic properties. Each phantom is designed to enable quantitative assessment of one or more image quality characteristics including 3D spatial resolution, spatial measurement accuracy, ultrasound/PAT co-registration, uniformity, penetration depth, geometric distortion, sensitivity, and linearity. Phantoms contained targets including high-intensity point source targets and dye-filled tubes. This suite of phantoms was used to measure the dependence of performance of a custom PAT system (equipped with four interchangeable linear array transducers of varying design) on design parameters (e.g., center frequency, bandwidth, element geometry). Phantoms also allowed comparison of image artifacts, including surface-generated clutter and bandlimited sensing artifacts. Results showed that transducer design parameters create strong variations in performance including a trade-off between resolution and penetration depth, which could be quantified with our method. This study demonstrates the utility of phantom-based image quality testing in device performance assessment, which may guide development of consensus standards for PAT systems.
Nagata, Yasufumi; Kado, Yuichiro; Onoue, Takeshi; Otani, Kyoko; Nakazono, Akemi; Otsuji, Yutaka; Takeuchi, Masaaki
2018-01-01
Background Left ventricular ejection fraction (LVEF) and global longitudinal strain (GLS) play important roles in diagnosis and management of cardiac diseases. However, the issue of the accuracy and reliability of LVEF and GLS remains to be solved. Image quality is one of the most important factors affecting measurement variability. The aim of this study was to investigate whether improved image quality could reduce observer variability. Methods Two sets of three apical images were acquired using relatively old- and new-generation ultrasound imaging systems (Vivid 7 and Vivid E95) in 308 subjects. Image quality was assessed by endocardial border delineation index (EBDI) using a 3-point scoring system. Three observers measured the LVEF and GLS, and these values and inter-observer variability were investigated. Results Image quality was significantly better with Vivid E95 (EBDI: 26.8 ± 5.9) than that with Vivid 7 (22.8 ± 6.3, P < 0.0001). Regarding the inter-observer variability of LVEF, the r-value, bias, 95% limit of agreement and intra-class correlation coefficient for Vivid 7 were comparable to those for Vivid E95. The % variabilities were significantly lower for Vivid E95 (5.3–6.5%) than those for Vivid 7 (6.5–7.5%). Regarding GLS, all observer variability parameters were better for Vivid E95 than for Vivid 7. Improvements in image quality yielded benefits to both LVEF and GLS measurement reliability. Multivariate analysis showed that image quality was indeed an important factor of observer variability in the measurement of LVEF and GLS. Conclusions The new-generation ultrasound imaging system offers improved image quality and reduces inter-observer variability in the measurement of LVEF and GLS. PMID:29432198
Honda, O; Yanagawa, M; Inoue, A; Kikuyama, A; Yoshida, S; Sumikawa, H; Tobino, K; Koyama, M; Tomiyama, N
2011-01-01
Objective We investigated the image quality of multiplanar reconstruction (MPR) using adaptive statistical iterative reconstruction (ASIR). Methods Inflated and fixed lungs were scanned with a garnet detector CT in high-resolution mode (HR mode) or non-high-resolution (HR) mode, and MPR images were then reconstructed. Observers compared 15 MPR images of ASIR (40%) and ASIR (80%) with those of ASIR (0%), and assessed image quality using a visual five-point scale (1, definitely inferior; 5, definitely superior), with particular emphasis on normal pulmonary structures, artefacts, noise and overall image quality. Results The mean overall image quality scores in HR mode were 3.67 with ASIR (40%) and 4.97 with ASIR (80%). Those in non-HR mode were 3.27 with ASIR (40%) and 3.90 with ASIR (80%). The mean artefact scores in HR mode were 3.13 with ASIR (40%) and 3.63 with ASIR (80%), but those in non-HR mode were 2.87 with ASIR (40%) and 2.53 with ASIR (80%). The mean scores of the other parameters were greater than 3, whereas those in HR mode were higher than those in non-HR mode. There were significant differences between ASIR (40%) and ASIR (80%) in overall image quality (p<0.01). Contrast medium in the injection syringe was scanned to analyse image quality; ASIR did not suppress the severe artefacts of contrast medium. Conclusion In general, MPR image quality with ASIR (80%) was superior to that with ASIR (40%). However, there was an increased incidence of artefacts by ASIR when CT images were obtained in non-HR mode. PMID:21081572
Nagata, Yasufumi; Kado, Yuichiro; Onoue, Takeshi; Otani, Kyoko; Nakazono, Akemi; Otsuji, Yutaka; Takeuchi, Masaaki
2018-03-01
Left ventricular ejection fraction (LVEF) and global longitudinal strain (GLS) play important roles in diagnosis and management of cardiac diseases. However, the issue of the accuracy and reliability of LVEF and GLS remains to be solved. Image quality is one of the most important factors affecting measurement variability. The aim of this study was to investigate whether improved image quality could reduce observer variability. Two sets of three apical images were acquired using relatively old- and new-generation ultrasound imaging systems (Vivid 7 and Vivid E95) in 308 subjects. Image quality was assessed by endocardial border delineation index (EBDI) using a 3-point scoring system. Three observers measured the LVEF and GLS, and these values and inter-observer variability were investigated. Image quality was significantly better with Vivid E95 (EBDI: 26.8 ± 5.9) than that with Vivid 7 (22.8 ± 6.3, P < 0.0001). Regarding the inter-observer variability of LVEF, the r -value, bias, 95% limit of agreement and intra-class correlation coefficient for Vivid 7 were comparable to those for Vivid E95. The % variabilities were significantly lower for Vivid E95 (5.3-6.5%) than those for Vivid 7 (6.5-7.5%). Regarding GLS, all observer variability parameters were better for Vivid E95 than for Vivid 7. Improvements in image quality yielded benefits to both LVEF and GLS measurement reliability. Multivariate analysis showed that image quality was indeed an important factor of observer variability in the measurement of LVEF and GLS. The new-generation ultrasound imaging system offers improved image quality and reduces inter-observer variability in the measurement of LVEF and GLS. © 2018 The authors.
Emerging Techniques for Dose Optimization in Abdominal CT
Platt, Joel F.; Goodsitt, Mitchell M.; Al-Hawary, Mahmoud M.; Maturen, Katherine E.; Wasnik, Ashish P.; Pandya, Amit
2014-01-01
Recent advances in computed tomographic (CT) scanning technique such as automated tube current modulation (ATCM), optimized x-ray tube voltage, and better use of iterative image reconstruction have allowed maintenance of good CT image quality with reduced radiation dose. ATCM varies the tube current during scanning to account for differences in patient attenuation, ensuring a more homogeneous image quality, although selection of the appropriate image quality parameter is essential for achieving optimal dose reduction. Reducing the x-ray tube voltage is best suited for evaluating iodinated structures, since the effective energy of the x-ray beam will be closer to the k-edge of iodine, resulting in a higher attenuation for the iodine. The optimal kilovoltage for a CT study should be chosen on the basis of imaging task and patient habitus. The aim of iterative image reconstruction is to identify factors that contribute to noise on CT images with use of statistical models of noise (statistical iterative reconstruction) and selective removal of noise to improve image quality. The degree of noise suppression achieved with statistical iterative reconstruction can be customized to minimize the effect of altered image quality on CT images. Unlike with statistical iterative reconstruction, model-based iterative reconstruction algorithms model both the statistical noise and the physical acquisition process, allowing CT to be performed with further reduction in radiation dose without an increase in image noise or loss of spatial resolution. Understanding these recently developed scanning techniques is essential for optimization of imaging protocols designed to achieve the desired image quality with a reduced dose. © RSNA, 2014 PMID:24428277
Avila, Manuel; Graterol, Eduardo; Alezones, Jesús; Criollo, Beisy; Castillo, Dámaso; Kuri, Victoria; Oviedo, Norman; Moquete, Cesar; Romero, Marbella; Hanley, Zaida; Taylor, Margie
2012-06-01
The appearance of rice grain is a key aspect in quality determination. Mainly, this analysis is performed by expert analysts through visual observation; however, due to the subjective nature of the analysis, the results may vary among analysts. In order to evaluate the concordance between analysts from Latin-American rice quality laboratories for rice grain appearance through digital images, an inter-laboratory test was performed with ten analysts and images of 90 grains captured with a high resolution scanner. Rice grains were classified in four categories including translucent, chalky, white belly, and damaged grain. Data was categorized using statistic parameters like mode and its frequency, the relative concordance, and the reproducibility parameter kappa. Additionally, a referential image gallery of typical grain for each category was constructed based on mode frequency. Results showed a Kappa value of 0.49, corresponding to a moderate reproducibility, attributable to subjectivity in the visual analysis of grain images. These results reveal the need for standardize the evaluation criteria among analysts to improve the confidence of the determination of rice grain appearance.
Sliding window adaptive histogram equalization of intraoral radiographs: effect on image quality.
Sund, T; Møystad, A
2006-05-01
To investigate whether contrast enhancement by non-interactive, sliding window adaptive histogram equalization (SWAHE) can enhance the image quality of intraoral radiographs in the dental clinic. Three dentists read 22 periapical and 12 bitewing storage phosphor (SP) radiographs. For the periapical readings they graded the quality of the examination with regard to visually locating the root apex. For the bitewing readings they registered all occurrences of approximal caries on a confidence scale. Each reading was first done on an unprocessed radiograph ("single-view"), and then re-done with the image processed with SWAHE displayed beside the unprocessed version ("twin-view"). The processing parameters for SWAHE were the same for all the images. For the periapical examinations, twin-view was judged to raise the image quality for 52% of those cases where the single-view quality was below the maximum. For the bitewing radiographs, there was a change of caries classification (both positive and negative) with twin-view in 19% of the cases, but with only a 3% net increase in the total number of caries registrations. For both examinations interobserver variance was unaffected. Non-interactive SWAHE applied to dental SP radiographs produces a supplemental contrast enhanced image which in twin-view reading improves the image quality of periapical examinations. SWAHE also affects caries diagnosis of bitewing images, and further study using a gold standard is warranted.
Tran Thi, Thu Nhi; Morse, J.; Caliste, D.; Fernandez, B.; Eon, D.; Härtwig, J.; Mer-Calfati, C.; Tranchant, N.; Arnault, J. C.; Lafford, T. A.; Baruchel, J.
2017-01-01
Bragg diffraction imaging enables the quality of synthetic single-crystal diamond substrates and their overgrown, mostly doped, diamond layers to be characterized. This is very important for improving diamond-based devices produced for X-ray optics and power electronics applications. The usual first step for this characterization is white-beam X-ray diffraction topography, which is a simple and fast method to identify the extended defects (dislocations, growth sectors, boundaries, stacking faults, overall curvature etc.) within the crystal. This allows easy and quick comparison of the crystal quality of diamond plates available from various commercial suppliers. When needed, rocking curve imaging (RCI) is also employed, which is the quantitative counterpart of monochromatic Bragg diffraction imaging. RCI enables the local determination of both the effective misorientation, which results from lattice parameter variation and the local lattice tilt, and the local Bragg position. Maps derived from these parameters are used to measure the magnitude of the distortions associated with polishing damage and the depth of this damage within the volume of the crystal. For overgrown layers, these maps also reveal the distortion induced by the incorporation of impurities such as boron, or the lattice parameter variations associated with the presence of growth-incorporated nitrogen. These techniques are described, and their capabilities for studying the quality of diamond substrates and overgrown layers, and the surface damage caused by mechanical polishing, are illustrated by examples. PMID:28381981
Performance evaluation and optimization of the MiniPET-II scanner
NASA Astrophysics Data System (ADS)
Lajtos, Imre; Emri, Miklos; Kis, Sandor A.; Opposits, Gabor; Potari, Norbert; Kiraly, Beata; Nagy, Ferenc; Tron, Lajos; Balkay, Laszlo
2013-04-01
This paper presents results of the performance of a small animal PET system (MiniPET-II) installed at our Institute. MiniPET-II is a full ring camera that includes 12 detector modules in a single ring comprised of 1.27×1.27×12 mm3 LYSO scintillator crystals. The axial field of view and the inner ring diameter are 48 mm and 211 mm, respectively. The goal of this study was to determine the NEMA-NU4 performance parameters of the scanner. In addition, we also investigated how the calculated parameters depend on the coincidence time window (τ=2, 3 and 4 ns) and the low threshold settings of the energy window (Elt=250, 350 and 450 keV). Independent measurements supported optimization of the effective system radius and the coincidence time window of the system. We found that the optimal coincidence time window and low threshold energy window are 3 ns and 350 keV, respectively. The spatial resolution was close to 1.2 mm in the center of the FOV with an increase of 17% at the radial edge. The maximum value of the absolute sensitivity was 1.37% for a point source. Count rate tests resulted in peak values for the noise equivalent count rate (NEC) curve and scatter fraction of 14.2 kcps (at 36 MBq) and 27.7%, respectively, using the rat phantom. Numerical values of the same parameters obtained for the mouse phantom were 55.1 kcps (at 38.8 MBq) and 12.3%, respectively. The recovery coefficients of the image quality phantom ranged from 0.1 to 0.87. Altering the τ and Elt resulted in substantial changes in the NEC peak and the sensitivity while the effect on the image quality was negligible. The spatial resolution proved to be, as expected, independent of the τ and Elt. The calculated optimal effective system radius (resulting in the best image quality) was 109 mm. Although the NEC peak parameters do not compare favorably with those of other small animal scanners, it can be concluded that under normal counting situations the MiniPET-II imaging capability assures remarkably good image quality, sensitivity and spatial resolution.
Automated optical testing of LWIR objective lenses using focal plane array sensors
NASA Astrophysics Data System (ADS)
Winters, Daniel; Erichsen, Patrik; Domagalski, Christian; Peter, Frank; Heinisch, Josef; Dumitrescu, Eugen
2012-10-01
The image quality of today's state-of-the-art IR objective lenses is constantly improving while at the same time the market for thermography and vision grows strongly. Because of increasing demands on the quality of IR optics and increasing production volumes, the standards for image quality testing increase and tests need to be performed in shorter time. Most high-precision MTF testing equipment for the IR spectral bands in use today relies on the scanning slit method that scans a 1D detector over a pattern in the image generated by the lens under test, followed by image analysis to extract performance parameters. The disadvantages of this approach are that it is relatively slow, it requires highly trained operators for aligning the sample and the number of parameters that can be extracted is limited. In this paper we present lessons learned from the R and D process on using focal plane array (FPA) sensors for testing of long-wave IR (LWIR, 8-12 m) optics. Factors that need to be taken into account when switching from scanning slit to FPAs are e.g.: the thermal background from the environment, the low scene contrast in the LWIR, the need for advanced image processing algorithms to pre-process camera images for analysis and camera artifacts. Finally, we discuss 2 measurement systems for LWIR lens characterization that we recently developed with different target applications: 1) A fully automated system suitable for production testing and metrology that uses uncooled microbolometer cameras to automatically measure MTF (on-axis and at several o-axis positions) and parameters like EFL, FFL, autofocus curves, image plane tilt, etc. for LWIR objectives with an EFL between 1 and 12mm. The measurement cycle time for one sample is typically between 6 and 8s. 2) A high-precision research-grade system using again an uncooled LWIR camera as detector, that is very simple to align and operate. A wide range of lens parameters (MTF, EFL, astigmatism, distortion, etc.) can be easily and accurately measured with this system.
SU-E-I-59: Image Quality and Dose Measurement for Partial Cone-Beam CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abouei, E; Ford, N
Purpose: To characterize performance of cone beam CT (CBCT) used in dentistry investigating quantitatively the image quality and radiation dose during dental CBCT over different settings for partial rotation of the x-ray tube. Methods: Image quality and dose measurements were done on a variable field of view (FOV) dental CBCT (Carestream 9300). X-ray parameters for clinical settings were adjustable for 2–10 mA, 60–90 kVp, and two optional voxel size values, but time was fixed for each FOV. Image quality was assessed by scanning cylindrical poly-methyl methacrylate (PMMA) image quality phantom (SEDENTEXCT IQ), and then the images were analyzed using ImageJmore » to calculate image quality parameters such as noise, uniformity, and contrast to noise ratio (CNR). A protocol proposed by SEDENTEXCT, dose index 1 (DI1), was applied to dose measurements obtained using a thimble ionization chamber and cylindrical PMMA dose index phantom (SEDENTEXCT DI). Dose distributions were obtained using Gafchromic film. The phantoms were positioned in the FOV to imitate a clinical positioning. Results: The image noise was 6–12.5% which, when normalized to the difference of mean voxel value of PMMA and air, was comparable between different FOVs. Uniformity was 93.5ß 99.7% across the images. CNR was 1.7–4.2 and 6.3–14.3 for LDPE and Aluminum, respectively. Dose distributions were symmetric about the rotation angle's bisector. For large and medium FOVs at 4 mA and 80–90 kVp, DI1 values were in the range of 1.26–3.23 mGy. DI1 values were between 1.01–1.93 mGy for small FOV (5×5 cm{sup 2}) at 4–5 mA and 75–84 kVp. Conclusion: Noise decreased by increasing kVp, and the CNR increased for each FOV. When FOV size increased, image noise increased and CNR decreased. DI1 values were increased by increasing tube current (mA), tube voltage (kVp), and/or FOV. Funding for this project from NSERC Discovery grant, UBC Faculty of Dentistry Research Equipment Grant and UBC Faculty of Dentistry S. Wah Leung Endowment Fund.« less
Imaging quality analysis of multi-channel scanning radiometer
NASA Astrophysics Data System (ADS)
Fan, Hong; Xu, Wujun; Wang, Chengliang
2008-03-01
Multi-channel scanning radiometer, on boarding FY-2 geostationary meteorological satellite, plays a key role in remote sensing because of its wide field of view and continuous multi-spectral images acquirements. It is significant to evaluate image quality after performance parameters of the imaging system are validated. Several methods of evaluating imaging quality are discussed. Of these methods, the most fundamental is the MTF. The MTF of photoelectric scanning remote instrument, in the scanning direction, is the multiplication of optics transfer function (OTF), detector transfer function (DTF) and electronics transfer function (ETF). For image motion compensation, moving speed of scanning mirror should be considered. The optical MTF measurement is performed in both the EAST/WEST and NORTH/SOUTH direction, whose values are used for alignment purposes and are used to determine the general health of the instrument during integration and testing. Imaging systems cannot perfectly reproduce what they see and end up "blurring" the image. Many parts of the imaging system can cause blurring. Among these are the optical elements, the sampling of the detector itself, post-processing, or the earth's atmosphere for systems that image through it. Through theory calculation and actual measurement, it is proved that DTF and ETF are the main factors of system MTF and the imaging quality can satisfy the requirement of instrument design.
Mammographic compression in Asian women.
Lau, Susie; Abdul Aziz, Yang Faridah; Ng, Kwan Hoong
2017-01-01
To investigate: (1) the variability of mammographic compression parameters amongst Asian women; and (2) the effects of reducing compression force on image quality and mean glandular dose (MGD) in Asian women based on phantom study. We retrospectively collected 15818 raw digital mammograms from 3772 Asian women aged 35-80 years who underwent screening or diagnostic mammography between Jan 2012 and Dec 2014 at our center. The mammograms were processed using a volumetric breast density (VBD) measurement software (Volpara) to assess compression force, compression pressure, compressed breast thickness (CBT), breast volume, VBD and MGD against breast contact area. The effects of reducing compression force on image quality and MGD were also evaluated based on measurement obtained from 105 Asian women, as well as using the RMI156 Mammographic Accreditation Phantom and polymethyl methacrylate (PMMA) slabs. Compression force, compression pressure, CBT, breast volume, VBD and MGD correlated significantly with breast contact area (p<0.0001). Compression parameters including compression force, compression pressure, CBT and breast contact area were widely variable between [relative standard deviation (RSD)≥21.0%] and within (p<0.0001) Asian women. The median compression force should be about 8.1 daN compared to the current 12.0 daN. Decreasing compression force from 12.0 daN to 9.0 daN increased CBT by 3.3±1.4 mm, MGD by 6.2-11.0%, and caused no significant effects on image quality (p>0.05). Force-standardized protocol led to widely variable compression parameters in Asian women. Based on phantom study, it is feasible to reduce compression force up to 32.5% with minimal effects on image quality and MGD.
Aircraft and satellite monitoring of water quality in Lake Superior near Duluth
NASA Technical Reports Server (NTRS)
Scherz, J. P.; Sydor, M.; Vandomelen, J. F.
1974-01-01
Satellite images and low altitude aerial photographs often show vivid discolorations in water bodies. Extensive laboratory analysis shows that water reflectance, which causes brightness on aerial images, positively correlates to the water quality parameter of turbidity, which on a particular day correlates to suspended solids. Work with low altitude photography on three overcast days and with ERTS images on five clear days provides positive correlation of image brightness to the high turbidity and solids which are present in Lake Superior near Duluth over 50% of the time. Proper use of aerial images would have shown that an $8,000,000 drinking water intake constructed in the midst of this unpotable, turbid water should have been located 6 miles north in clear, usable water. Noise effects such as skylight reflection, atmospheric effects, and depth penetration also must be understood for operational use of remote sensing for water quality monitoring and are considered in the paper.
Second Iteration of Photogrammetric Pipeline to Enhance the Accuracy of Image Pose Estimation
NASA Astrophysics Data System (ADS)
Nguyen, T. G.; Pierrot-Deseilligny, M.; Muller, J.-M.; Thom, C.
2017-05-01
In classical photogrammetric processing pipeline, the automatic tie point extraction plays a key role in the quality of achieved results. The image tie points are crucial to pose estimation and have a significant influence on the precision of calculated orientation parameters. Therefore, both relative and absolute orientations of the 3D model can be affected. By improving the precision of image tie point measurement, one can enhance the quality of image orientation. The quality of image tie points is under the influence of several factors such as the multiplicity, the measurement precision and the distribution in 2D images as well as in 3D scenes. In complex acquisition scenarios such as indoor applications and oblique aerial images, tie point extraction is limited while only image information can be exploited. Hence, we propose here a method which improves the precision of pose estimation in complex scenarios by adding a second iteration to the classical processing pipeline. The result of a first iteration is used as a priori information to guide the extraction of new tie points with better quality. Evaluated with multiple case studies, the proposed method shows its validity and its high potiential for precision improvement.
Imaging characteristics of photogrammetric camera systems
Welch, R.; Halliday, J.
1973-01-01
In view of the current interest in high-altitude and space photographic systems for photogrammetric mapping, the United States Geological Survey (U.S.G.S.) undertook a comprehensive research project designed to explore the practical aspects of applying the latest image quality evaluation techniques to the analysis of such systems. The project had two direct objectives: (1) to evaluate the imaging characteristics of current U.S.G.S. photogrammetric camera systems; and (2) to develop methodologies for predicting the imaging capabilities of photogrammetric camera systems, comparing conventional systems with new or different types of systems, and analyzing the image quality of photographs. Image quality was judged in terms of a number of evaluation factors including response functions, resolving power, and the detectability and measurability of small detail. The limiting capabilities of the U.S.G.S. 6-inch and 12-inch focal length camera systems were established by analyzing laboratory and aerial photographs in terms of these evaluation factors. In the process, the contributing effects of relevant parameters such as lens aberrations, lens aperture, shutter function, image motion, film type, and target contrast procedures for analyzing image quality and predicting and comparing performance capabilities. ?? 1973.
Quantitative metrics for assessment of chemical image quality and spatial resolution
Kertesz, Vilmos; Cahill, John F.; Van Berkel, Gary J.
2016-02-28
Rationale: Currently objective/quantitative descriptions of the quality and spatial resolution of mass spectrometry derived chemical images are not standardized. Development of these standardized metrics is required to objectively describe chemical imaging capabilities of existing and/or new mass spectrometry imaging technologies. Such metrics would allow unbiased judgment of intra-laboratory advancement and/or inter-laboratory comparison for these technologies if used together with standardized surfaces. Methods: We developed two image metrics, viz., chemical image contrast (ChemIC) based on signal-to-noise related statistical measures on chemical image pixels and corrected resolving power factor (cRPF) constructed from statistical analysis of mass-to-charge chronograms across features of interest inmore » an image. These metrics, quantifying chemical image quality and spatial resolution, respectively, were used to evaluate chemical images of a model photoresist patterned surface collected using a laser ablation/liquid vortex capture mass spectrometry imaging system under different instrument operational parameters. Results: The calculated ChemIC and cRPF metrics determined in an unbiased fashion the relative ranking of chemical image quality obtained with the laser ablation/liquid vortex capture mass spectrometry imaging system. These rankings were used to show that both chemical image contrast and spatial resolution deteriorated with increasing surface scan speed, increased lane spacing and decreasing size of surface features. Conclusions: ChemIC and cRPF, respectively, were developed and successfully applied for the objective description of chemical image quality and spatial resolution of chemical images collected from model surfaces using a laser ablation/liquid vortex capture mass spectrometry imaging system.« less
Quantitative metrics for assessment of chemical image quality and spatial resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kertesz, Vilmos; Cahill, John F.; Van Berkel, Gary J.
Rationale: Currently objective/quantitative descriptions of the quality and spatial resolution of mass spectrometry derived chemical images are not standardized. Development of these standardized metrics is required to objectively describe chemical imaging capabilities of existing and/or new mass spectrometry imaging technologies. Such metrics would allow unbiased judgment of intra-laboratory advancement and/or inter-laboratory comparison for these technologies if used together with standardized surfaces. Methods: We developed two image metrics, viz., chemical image contrast (ChemIC) based on signal-to-noise related statistical measures on chemical image pixels and corrected resolving power factor (cRPF) constructed from statistical analysis of mass-to-charge chronograms across features of interest inmore » an image. These metrics, quantifying chemical image quality and spatial resolution, respectively, were used to evaluate chemical images of a model photoresist patterned surface collected using a laser ablation/liquid vortex capture mass spectrometry imaging system under different instrument operational parameters. Results: The calculated ChemIC and cRPF metrics determined in an unbiased fashion the relative ranking of chemical image quality obtained with the laser ablation/liquid vortex capture mass spectrometry imaging system. These rankings were used to show that both chemical image contrast and spatial resolution deteriorated with increasing surface scan speed, increased lane spacing and decreasing size of surface features. Conclusions: ChemIC and cRPF, respectively, were developed and successfully applied for the objective description of chemical image quality and spatial resolution of chemical images collected from model surfaces using a laser ablation/liquid vortex capture mass spectrometry imaging system.« less
Martin, Simon S; Wichmann, Julian L; Weyer, Hendrik; Albrecht, Moritz H; D'Angelo, Tommaso; Leithner, Doris; Lenga, Lukas; Booz, Christian; Scholtz, Jan-Erik; Bodelle, Boris; Vogl, Thomas J; Hammerstingl, Renate
2017-10-01
The aim of this study was to investigate the impact of noise-optimized virtual monoenergetic imaging (VMI+) reconstructions on quantitative and qualitative image parameters in patients with cutaneous malignant melanoma at thoracoabdominal dual-energy computed tomography (DECT). Seventy-six patients (48 men; 66.6±13.8years) with metastatic cutaneous malignant melanoma underwent DECT of the thorax and abdomen. Images were post-processed with standard linear blending (M_0.6), traditional virtual monoenergetic (VMI), and VMI+ technique. VMI and VMI+ images were reconstructed in 10-keV intervals from 40 to 100keV. Attenuation measurements were performed in cutaneous melanoma lesions, as well as in regional lymph node, subcutaneous and in-transit metastases to calculate objective signal-to-noise (SNR) and contrast-to-noise (CNR) ratios. Five-point scales were used to evaluate overall image quality and lesion delineation by three radiologists with different levels of experience. Objective indices SNR and CNR were highest at 40-keV VMI+ series (5.6±2.6 and 12.4±3.4), significantly superior to all other reconstructions (all P<0.001). Qualitative image parameters showed highest values for 50-keV and 60-keV VMI+ reconstructions (median 5, respectively; P≤0.019) regarding overall image quality. Moreover, qualitative assessment of lesion delineation peaked in 40-keV VMI+ (median 5) and 50-keV VMI+ (median 4; P=0.055), significantly superior to all other reconstructions (all P<0.001). Low-keV noise-optimized VMI+ reconstructions substantially increase quantitative and qualitative image parameters, as well as subjective lesion delineation compared to standard image reconstruction and traditional VMI in patients with cutaneous malignant melanoma at thoracoabdominal DECT. Copyright © 2017 Elsevier B.V. All rights reserved.
Image-classification-based global dimming algorithm for LED backlights in LCDs
NASA Astrophysics Data System (ADS)
Qibin, Feng; Huijie, He; Dong, Han; Lei, Zhang; Guoqiang, Lv
2015-07-01
Backlight dimming can help LCDs reduce power consumption and improve CR. With fixed parameters, dimming algorithm cannot achieve satisfied effects for all kinds of images. The paper introduces an image-classification-based global dimming algorithm. The proposed classification method especially for backlight dimming is based on luminance and CR of input images. The parameters for backlight dimming level and pixel compensation are adaptive with image classifications. The simulation results show that the classification based dimming algorithm presents 86.13% power reduction improvement compared with dimming without classification, with almost same display quality. The prototype is developed. There are no perceived distortions when playing videos. The practical average power reduction of the prototype TV is 18.72%, compared with common TV without dimming.
NASA Astrophysics Data System (ADS)
Zhang, Guozhi; Petrov, Dimitar; Marshall, Nicholas; Bosmans, Hilde
2017-03-01
Digital breast tomosynthesis (DBT) is a relatively new diagnostic imaging modality for women. Currently, various models of DBT systems are available on the market and the number of installations is rapidly increasing. EUREF, the European Reference Organization for Quality Assured Breast Screening and Diagnostic Services, has proposed a preliminary Guideline - protocol for the quality control of the physical and technical aspects of digital breast tomosynthesis systems, with an ultimate aim of providing limiting values guaranteeing proper performance for different applications of DBT. In this work, we introduce an adaptive toolkit developed in accordance with this guideline to facilitate the process of image quality evaluation in DBT performance test. This toolkit implements robust algorithms to quantify various technical parameters of DBT images and provides a convenient user interface in practice. Each test is built into a separate module with configurations set corresponding to the European guideline, which can be easily adapted to different settings and extended with additional tests. This toolkit largely improves the efficiency for image quality evaluation of DBT. It is also going to evolve with the development of protocols in quality control of DBT systems.
Q selection for an electro-optical earth imaging system: theoretical and experimental results.
Cochrane, Andy; Schulz, Kevin; Kendrick, Rick; Bell, Ray
2013-09-23
This paper explores practical design considerations for selecting Q for an electro-optical earth imaging system, where Q is defined as (λ FN) / pixel pitch. Analytical methods are used to show that, under imaging conditions with high SNR, increasing Q with fixed aperture cannot lead to degradation of image quality regardless of the angular smear rate of the system. The potential for degradation of image quality under low SNR is bounded by an increase of the detector noise scaling as Q. An imaging test bed is used to collect representative imagery for various Q configurations. The test bed includes real world errors such as image smear and haze. The value of Q is varied by changing the focal length of the imaging system. Imagery is presented over a broad range of parameters.
Investigation of statistical iterative reconstruction for dedicated breast CT
Makeev, Andrey; Glick, Stephen J.
2013-01-01
Purpose: Dedicated breast CT has great potential for improving the detection and diagnosis of breast cancer. Statistical iterative reconstruction (SIR) in dedicated breast CT is a promising alternative to traditional filtered backprojection (FBP). One of the difficulties in using SIR is the presence of free parameters in the algorithm that control the appearance of the resulting image. These parameters require tuning in order to achieve high quality reconstructions. In this study, the authors investigated the penalized maximum likelihood (PML) method with two commonly used types of roughness penalty functions: hyperbolic potential and anisotropic total variation (TV) norm. Reconstructed images were compared with images obtained using standard FBP. Optimal parameters for PML with the hyperbolic prior are reported for the task of detecting microcalcifications embedded in breast tissue. Methods: Computer simulations were used to acquire projections in a half-cone beam geometry. The modeled setup describes a realistic breast CT benchtop system, with an x-ray spectra produced by a point source and an a-Si, CsI:Tl flat-panel detector. A voxelized anthropomorphic breast phantom with 280 μm microcalcification spheres embedded in it was used to model attenuation properties of the uncompressed woman's breast in a pendant position. The reconstruction of 3D images was performed using the separable paraboloidal surrogates algorithm with ordered subsets. Task performance was assessed with the ideal observer detectability index to determine optimal PML parameters. Results: The authors' findings suggest that there is a preferred range of values of the roughness penalty weight and the edge preservation threshold in the penalized objective function with the hyperbolic potential, which resulted in low noise images with high contrast microcalcifications preserved. In terms of numerical observer detectability index, the PML method with optimal parameters yielded substantially improved performance (by a factor of greater than 10) compared to FBP. The hyperbolic prior was also observed to be superior to the TV norm. A few of the best-performing parameter pairs for the PML method also demonstrated superior performance for various radiation doses. In fact, using PML with certain parameter values results in better images, acquired using 2 mGy dose, than FBP-reconstructed images acquired using 6 mGy dose. Conclusions: A range of optimal free parameters for the PML algorithm with hyperbolic and TV norm-based potentials is presented for the microcalcification detection task, in dedicated breast CT. The reported values can be used as starting values of the free parameters, when SIR techniques are used for image reconstruction. Significant improvement in image quality can be achieved by using PML with optimal combination of parameters, as compared to FBP. Importantly, these results suggest improved detection of microcalcifications can be obtained by using PML with lower radiation dose to the patient, than using FBP with higher dose. PMID:23927318
Kim, Jo-Eun; Yi, Won-Jin; Heo, Min-Suk; Lee, Sam-Sun; Choi, Soon-Chul; Huh, Kyung-Hoe
2015-12-01
To evaluate the potential feasibility of cone beam computed tomography (CBCT) in the assessment of trabecular bone microarchitecture. Sixty-eight specimens from four pairs of human jaw were scanned using both micro-computed tomography (micro-CT) of 19.37-μm voxel size and CBCT of 100-μm voxel size. The correlation of 3-dimensional parameters between CBCT and micro-CT was evaluated. All parameters, except bone-specific surface and trabecular thickness, showed linear correlations between the 2 imaging modalities (P < .05). Among the parameters, bone volume, percent bone volume, trabecular separation, and degree of anisotropy (DA) of CBCT images showed strong correlations with those of micro-CT images. DA showed the strongest correlation (r = 0.693). Most microarchitectural parameters from CBCT were correlated with those from micro-CT. Some microarchitectural parameters, especially DA, could be used as strong predictors of bone quality in the human jaw. Copyright © 2015 Elsevier Inc. All rights reserved.
Note: Simple hysteresis parameter inspector for camera module with liquid lens
NASA Astrophysics Data System (ADS)
Chen, Po-Jui; Liao, Tai-Shan; Hwang, Chi-Hung
2010-05-01
A method to inspect hysteresis parameter is presented in this article. The hysteresis of whole camera module with liquid lens can be measured rather than a single lens merely. Because the variation in focal length influences image quality, we propose utilizing the sharpness of images which is captured from camera module for hysteresis evaluation. Experiments reveal that the profile of sharpness hysteresis corresponds to the characteristic of contact angle of liquid lens. Therefore, it can infer that the hysteresis of camera module is induced by the contact angle of liquid lens. An inspection process takes only 20 s to complete. Thus comparing with other instruments, this inspection method is more suitable to integrate into the mass production lines for online quality assurance.
A GIS-based Model for Urban Change and Implications for Water Quality in the Pontchartrain Basin
NASA Astrophysics Data System (ADS)
Carstens, D.; Amer, R. M.
2017-12-01
The combination of remote sensing techniques and Geographic Information Systems (GIS) to measure water quality allows researchers to monitor changes in various water quality parameters over temporal and spatial scales that are not always readily apparent from in situ measurements. Water has a distinct spectral behavior in comparison to soil, vegetation and urban, and therefore can be distinguished from surrounding environments. This study involves using remote sensing and GIS methods to map urban sprawl and its resulting influences on water quality in the Pontchartrain Basin over the last three decades. Two images of Landsat Thematic Mapper (TM) were taken in October 1985 and two images of Landsat Operational Land Imager (OLI) were taken in 2015 were atmospherically corrected and processed to map urban sprawl and influences on water quality of Pontchartrain Basin in the last three decades. To accomplish this, a normalized difference building index (NDBI) was developed for Landsat images. The NDBI was calculated from (NIR - SWIR) / (NIR + SWIR), where SWIR is the longest wavelength. The normalized difference vegetation index (NDVI), the normalized difference soil index (NDSI), and the normalized difference water index (NDWI) were also calculated for Landsat images. A GIS model was developed by integrating the NDBI, NDVI, NDSI, and NDWI, and yielded urban/non-urban/water boundary maps with 30-m resolution. Results indicate that urban areas have increased approximately from 25,643 km2 to 26,677 km2, which represents about 4.0% change from non-urban to urban in the last 3 decades. The results are in a good agreement with the U.S. Census data, which indicated that there is a 12.25% increase in population over the last 25 years in the 16 parishes of the Pontchartrain Basin. Urban changes were compared with changes of water quality parameters in PONTCHARTRAIN BASIN, which include pH, specific conductance, nitrogen, phosphorous, and dissolved oxygen. The results show that decrease in dissolved oxygen and phosphorus, and the increase in specific conductance, nitrogen and pH from 1985 to 2015 are consistent with the rate of urban sprawl that occurred during this time period. Future work will include analysis of changes in agricultural and industrial activities and correlation with changes of water quality parameters.
Diffusion Weighted Image Denoising Using Overcomplete Local PCA
Manjón, José V.; Coupé, Pierrick; Concha, Luis; Buades, Antonio; Collins, D. Louis; Robles, Montserrat
2013-01-01
Diffusion Weighted Images (DWI) normally shows a low Signal to Noise Ratio (SNR) due to the presence of noise from the measurement process that complicates and biases the estimation of quantitative diffusion parameters. In this paper, a new denoising methodology is proposed that takes into consideration the multicomponent nature of multi-directional DWI datasets such as those employed in diffusion imaging. This new filter reduces random noise in multicomponent DWI by locally shrinking less significant Principal Components using an overcomplete approach. The proposed method is compared with state-of-the-art methods using synthetic and real clinical MR images, showing improved performance in terms of denoising quality and estimation of diffusion parameters. PMID:24019889
Pandey, Anil K; Bisht, Chandan S; Sharma, Param D; ArunRaj, Sreedharan Thankarajan; Taywade, Sameer; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh
2017-11-01
Tc-methylene diphosphonate (Tc-MDP) bone scintigraphy images have limited number of counts per pixel. A noise filtering method based on local statistics of the image produces better results than a linear filter. However, the mask size has a significant effect on image quality. In this study, we have identified the optimal mask size that yields a good smooth bone scan image. Forty four bone scan images were processed using mask sizes 3, 5, 7, 9, 11, 13, and 15 pixels. The input and processed images were reviewed in two steps. In the first step, the images were inspected and the mask sizes that produced images with significant loss of clinical details in comparison with the input image were excluded. In the second step, the image quality of the 40 sets of images (each set had input image, and its corresponding three processed images with 3, 5, and 7-pixel masks) was assessed by two nuclear medicine physicians. They selected one good smooth image from each set of images. The image quality was also assessed quantitatively with a line profile. Fisher's exact test was used to find statistically significant differences in image quality processed with 5 and 7-pixel mask at a 5% cut-off. A statistically significant difference was found between the image quality processed with 5 and 7-pixel mask at P=0.00528. The identified optimal mask size to produce a good smooth image was found to be 7 pixels. The best mask size for the John-Sen Lee filter was found to be 7×7 pixels, which yielded Tc-methylene diphosphonate bone scan images with the highest acceptable smoothness.
Color enhancement and image defogging in HSI based on Retinex model
NASA Astrophysics Data System (ADS)
Gao, Han; Wei, Ping; Ke, Jun
2015-08-01
Retinex is a luminance perceptual algorithm based on color consistency. It has a good performance in color enhancement. But in some cases, the traditional Retinex algorithms, both Single-Scale Retinex(SSR) and Multi-Scale Retinex(MSR) in RGB color space, do not work well and will cause color deviation. To solve this problem, we present improved SSR and MSR algorithms. Compared to other Retinex algorithms, we implement Retinex algorithms in HSI(Hue, Saturation, Intensity) color space, and use a parameter αto improve quality of the image. Moreover, the algorithms presented in this paper has a good performance in image defogging. Contrasted with traditional Retinex algorithms, we use intensity channel to obtain reflection information of an image. The intensity channel is processed using a Gaussian center-surround image filter to get light information, which should be removed from intensity channel. After that, we subtract the light information from intensity channel to obtain the reflection image, which only includes the attribute of the objects in image. Using the reflection image and a parameter α, which is an arbitrary scale factor set manually, we improve the intensity channel, and complete the color enhancement. Our experiments show that this approach works well compared with existing methods for color enhancement. Besides a better performance in color deviation problem and image defogging, a visible improvement in the image quality for human contrast perception is also observed.
Automatic color preference correction for color reproduction
NASA Astrophysics Data System (ADS)
Tsukada, Masato; Funayama, Chisato; Tajima, Johji
2000-12-01
The reproduction of natural objects in color images has attracted a great deal of attention. Reproduction more pleasing colors of natural objects is one of the methods available to improve image quality. We developed an automatic color correction method to maintain preferred color reproduction for three significant categories: facial skin color, green grass and blue sky. In this method, a representative color in an object area to be corrected is automatically extracted from an input image, and a set of color correction parameters is selected depending on the representative color. The improvement in image quality for reproductions of natural image was more than 93 percent in subjective experiments. These results show the usefulness of our automatic color correction method for the reproduction of preferred colors.
Iterative methods for dose reduction and image enhancement in tomography
Miao, Jianwei; Fahimian, Benjamin Pooya
2012-09-18
A system and method for creating a three dimensional cross sectional image of an object by the reconstruction of its projections that have been iteratively refined through modification in object space and Fourier space is disclosed. The invention provides systems and methods for use with any tomographic imaging system that reconstructs an object from its projections. In one embodiment, the invention presents a method to eliminate interpolations present in conventional tomography. The method has been experimentally shown to provide higher resolution and improved image quality parameters over existing approaches. A primary benefit of the method is radiation dose reduction since the invention can produce an image of a desired quality with a fewer number projections than seen with conventional methods.
Evaluation of Chilling Injury in Mangoes Using Multispectral Imaging.
Hashim, Norhashila; Onwude, Daniel I; Osman, Muhamad Syafiq
2018-05-01
Commodities originating from tropical and subtropical climes are prone to chilling injury (CI). This injury could affect the quality and marketing potential of mango after harvest. This will later affect the quality of the produce and subsequent consumer acceptance. In this study, the appearance of CI symptoms in mango was evaluated non-destructively using multispectral imaging. The fruit were stored at 4 °C to induce CI and 12 °C to preserve the quality of the control samples for 4 days before they were taken out and stored at ambient temperature for 24 hr. Measurements using multispectral imaging and standard reference methods were conducted before and after storage. The performance of multispectral imaging was compared using standard reference properties including moisture content (MC), total soluble solids (TSS) content, firmness, pH, and color. Least square support vector machine (LS-SVM) combined with principal component analysis (PCA) were used to discriminate CI samples with those of control and before storage, respectively. The statistical results demonstrated significant changes in the reference quality properties of samples before and after storage. The results also revealed that multispectral parameters have a strong correlation with the reference parameters of L * , a * , TSS, and MC. The MC and L * were found to be the best reference parameters in identifying the severity of CI in mangoes. PCA and LS-SVM analysis indicated that the fruit were successfully classified into their categories, that is, before storage, control, and CI. This indicated that the multispectral imaging technique is feasible for detecting CI in mangoes during postharvest storage and processing. This paper demonstrates a fast, easy, and accurate method of identifying the effect of cold storage on mango, nondestructively. The method presented in this paper can be used industrially to efficiently differentiate different fruits from each other after low temperature storage. © 2018 Institute of Food Technologists®.
Nowik, Patrik; Bujila, Robert; Poludniowski, Gavin; Fransson, Annette
2015-07-08
The purpose of this study was to develop a method of performing routine periodical quality controls (QC) of CT systems by automatically analyzing key performance indicators (KPIs), obtainable from images of manufacturers' quality assurance (QA) phantoms. A KPI pertains to a measurable or determinable QC parameter that is influenced by other underlying fundamental QC parameters. The established KPIs are based on relationships between existing QC parameters used in the annual testing program of CT scanners at the Karolinska University Hospital in Stockholm, Sweden. The KPIs include positioning, image noise, uniformity, homogeneity, the CT number of water, and the CT number of air. An application (MonitorCT) was developed to automatically evaluate phantom images in terms of the established KPIs. The developed methodology has been used for two years in clinical routine, where CT technologists perform daily scans of the manufacturer's QA phantom and automatically send the images to MonitorCT for KPI evaluation. In the cases where results were out of tolerance, actions could be initiated in less than 10 min. 900 QC scans from two CT scanners have been collected and analyzed over the two-year period that MonitorCT has been active. Two types of errors have been registered in this period: a ring artifact was discovered with the image noise test, and a calibration error was detected multiple times with the CT number test. In both cases, results were outside the tolerances defined for MonitorCT, as well as by the vendor. Automated monitoring of KPIs is a powerful tool that can be used to supplement established QC methodologies. Medical physicists and other professionals concerned with the performance of a CT system will, using such methods, have access to comprehensive data on the current and historical (trend) status of the system such that swift actions can be taken in order to ensure the quality of the CT examinations, patient safety, and minimal disruption of service.
Wang, Yali; Hamal, Preeti; You, Xiaofang; Mao, Haixia; Li, Fei; Sun, Xiwen
2017-01-01
The aim of this study was to assess whether CT imaging using an ultra-high-resolution CT (UHRCT) scan with a small scan field of view (FOV) provides higher image quality and helps to reduce the follow-up period compared with a conventional high-resolution CT (CHRCT) scan. We identified patients with at least one pulmonary nodule at our hospital from July 2015 to November 2015. CHRCT and UHRCT scans were conducted in all enrolled patients. Three experienced radiologists evaluated the image quality using a 5-point score and made diagnoses. The paired images were displayed side by side in a random manner and annotations of scan information were removed. The following parameters including image quality, diagnostic confidence of radiologists, follow-up recommendations and diagnostic accuracy were assessed. A total of 52 patients (62 nodules) were included in this study. UHRCT scan provides a better image quality regarding the margin of nodules and solid internal component compared to that of CHRCT (P < 0.05). Readers have higher diagnostic confidence based on the UHRCT images than of CHRCT images (P<0.05). The follow-up recommendations were significantly different between UHRCT and CHRCT images (P<0.05). Compared with the surgical pathological findings, UHRCT had a relative higher diagnostic accuracy than CHRCT (P > 0.05). These findings suggest that the UHRCT prototype scanner provides a better image quality of subsolid nodules compared to CHRCT and contributes significantly to reduce the patients' follow-up period. PMID:28231320
De Crop, An; Casselman, Jan; Van Hoof, Tom; Dierens, Melissa; Vereecke, Elke; Bossu, Nicolas; Pamplona, Jaime; D'Herde, Katharina; Thierens, Hubert; Bacher, Klaus
2015-08-01
Metal artifacts may negatively affect radiologic assessment in the oral cavity. The aim of this study was to evaluate different metal artifact reduction techniques for metal artifacts induced by dental hardware in CT scans of the oral cavity. Clinical image quality was assessed using a Thiel-embalmed cadaver. A Catphan phantom and a polymethylmethacrylate (PMMA) phantom were used to evaluate physical-technical image quality parameters such as artifact area, artifact index (AI), and contrast detail (IQFinv). Metal cylinders were inserted in each phantom to create metal artifacts. CT images of both phantoms and the Thiel-embalmed cadaver were acquired on a multislice CT scanner using 80, 100, 120, and 140 kVp; model-based iterative reconstruction (Veo); and synthesized monochromatic keV images with and without metal artifact reduction software (MARs). Four radiologists assessed the clinical image quality, using an image criteria score (ICS). Significant influence of increasing kVp and the use of Veo was found on clinical image quality (p = 0.007 and p = 0.014, respectively). Application of MARs resulted in a smaller artifact area (p < 0.05). However, MARs reconstructed images resulted in lower ICS. Of all investigated techniques, Veo shows to be most promising, with a significant improvement of both the clinical and physical-technical image quality without adversely affecting contrast detail. MARs reconstruction in CT images of the oral cavity to reduce dental hardware metallic artifacts is not sufficient and may even adversely influence the image quality.
Kim, Hyun Gi; Lee, Young Han; Choi, Jin-Young; Park, Mi-Suk; Kim, Myeong-Jin; Kim, Ki Whang
2015-01-01
Purpose To investigate the optimal blending percentage of adaptive statistical iterative reconstruction (ASIR) in a reduced radiation dose while preserving a degree of image quality and texture that is similar to that of standard-dose computed tomography (CT). Materials and Methods The CT performance phantom was scanned with standard and dose reduction protocols including reduced mAs or kVp. Image quality parameters including noise, spatial, and low-contrast resolution, as well as image texture, were quantitatively evaluated after applying various blending percentages of ASIR. The optimal blending percentage of ASIR that preserved image quality and texture compared to standard dose CT was investigated in each radiation dose reduction protocol. Results As the percentage of ASIR increased, noise and spatial-resolution decreased, whereas low-contrast resolution increased. In the texture analysis, an increasing percentage of ASIR resulted in an increase of angular second moment, inverse difference moment, and correlation and in a decrease of contrast and entropy. The 20% and 40% dose reduction protocols with 20% and 40% ASIR blending, respectively, resulted in an optimal quality of images with preservation of the image texture. Conclusion Blending the 40% ASIR to the 40% reduced tube-current product can maximize radiation dose reduction and preserve adequate image quality and texture. PMID:25510772
Prezzi, D; Goh, V; Virdi, S; Mallett, S; Grierson, C; Breen, D J
2017-01-01
To determine the effect of Adaptive Statistical Iterative Reconstruction (ASIR) on perfusion CT (pCT) parameter quantitation and image quality in primary colorectal cancer. Prospective observational study. Following institutional review board approval and informed consent, 32 patients with colorectal adenocarcinoma underwent pCT (100 kV, 150 mA, 120 s acquisition, axial mode). Tumour regional blood flow (BF), blood volume (BV), mean transit time (MTT) and permeability surface area product (PS) were determined using identical regions-of-interests for ASIR percentages of 0%, 20%, 40%, 60%, 80% and 100%. Image noise, contrast-to-noise ratio (CNR) and pCT parameters were assessed across ASIR percentages. Coefficients of variation (CV), repeated measures analysis of variance (rANOVA) and Spearman' rank order correlation were performed with statistical significance at 5%. With increasing ASIR percentages, image noise decreased by 33% while CNR increased by 61%; peak tumour CNR was greater than 1.5 with 60% ASIR and above. Mean BF, BV, MTT and PS differed by less than 1.8%, 2.9%, 2.5% and 2.6% across ASIR percentages. CV were 4.9%, 4.2%, 3.3% and 7.9%; rANOVA P values: 0.85, 0.62, 0.02 and 0.81 respectively. ASIR improves image noise and CNR without altering pCT parameters substantially.
NASA Astrophysics Data System (ADS)
Wu, Xiaojun; Wu, Yumei; Wen, Peizhi
2018-03-01
To obtain information on the outer surface of a cylinder object, we propose a catadioptric panoramic imaging system based on the principle of uniform spatial resolution for vertical scenes. First, the influence of the projection-equation coefficients on the spatial resolution and astigmatism of the panoramic system are discussed, respectively. Through parameter optimization, we obtain the appropriate coefficients for the projection equation, and so the imaging quality of the entire imaging system can reach an optimum value. Finally, the system projection equation is calibrated, and an undistorted rectangular panoramic image is obtained using the cylindrical-surface projection expansion method. The proposed 360-deg panoramic-imaging device overcomes the shortcomings of existing surface panoramic-imaging methods, and it has the advantages of low cost, simple structure, high imaging quality, and small distortion, etc. The experimental results show the effectiveness of the proposed method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stankovic, Uros; Herk, Marcel van; Ploeger, Lennert S.
Purpose: Medical linear accelerator mounted cone beam CT (CBCT) scanner provides useful soft tissue contrast for purposes of image guidance in radiotherapy. The presence of extensive scattered radiation has a negative effect on soft tissue visibility and uniformity of CBCT scans. Antiscatter grids (ASG) are used in the field of diagnostic radiography to mitigate the scatter. They usually do increase the contrast of the scan, but simultaneously increase the noise. Therefore, and considering other scatter mitigation mechanisms present in a CBCT scanner, the applicability of ASGs with aluminum interspacing for a wide range of imaging conditions has been inconclusive inmore » previous studies. In recent years, grids using fiber interspacers have appeared, providing grids with higher scatter rejection while maintaining reasonable transmission of primary radiation. The purpose of this study was to evaluate the impact of one such grid on CBCT image quality. Methods: The grid used (Philips Medical Systems) had ratio of 21:1, frequency 36 lp/cm, and nominal selectivity of 11.9. It was mounted on the kV flat panel detector of an Elekta Synergy linear accelerator and tested in a phantom and a clinical study. Due to the flex of the linac and presence of gridline artifacts an angle dependent gain correction algorithm was devised to mitigate resulting artifacts. Scan reconstruction was performed using XVI4.5 augmented with inhouse developed image lag correction and Hounsfield unit calibration. To determine the necessary parameters for Hounsfield unit calibration and software scatter correction parameters, the Catphan 600 (The Phantom Laboratory) phantom was used. Image quality parameters were evaluated using CIRS CBCT Image Quality and Electron Density Phantom (CIRS) in two different geometries: one modeling head and neck and other pelvic region. Phantoms were acquired with and without the grid and reconstructed with and without software correction which was adapted for the different acquisition scenarios. Parameters used in the phantom study weret{sub cup} for nonuniformity and contrast-to-noise ratio (CNR) for soft tissue visibility. Clinical scans were evaluated in an observer study in which four experienced radiotherapy technologists rated soft tissue visibility and uniformity of scans with and without the grid. Results: The proposed angle dependent gain correction algorithm suppressed the visible ring artifacts. Grid had a beneficial impact on nonuniformity, contrast to noise ratio, and Hounsfield unit accuracy for both scanning geometries. The nonuniformity reduced by 90% for head sized object and 91% for pelvic-sized object. CNR improved compared to no corrections on average by a factor 2.8 for the head sized object, and 2.2 for the pelvic sized phantom. Grid outperformed software correction alone, but adding additional software correction to the grid was overall the best strategy. In the observer study, a significant improvement was found in both soft tissue visibility and nonuniformity of scans when grid is used. Conclusions: The evaluated fiber-interspaced grid improved the image quality of the CBCT system for broad range of imaging conditions. Clinical scans show significant improvement in soft tissue visibility and uniformity without the need to increase the imaging dose.« less
Stankovic, Uros; van Herk, Marcel; Ploeger, Lennert S; Sonke, Jan-Jakob
2014-06-01
Medical linear accelerator mounted cone beam CT (CBCT) scanner provides useful soft tissue contrast for purposes of image guidance in radiotherapy. The presence of extensive scattered radiation has a negative effect on soft tissue visibility and uniformity of CBCT scans. Antiscatter grids (ASG) are used in the field of diagnostic radiography to mitigate the scatter. They usually do increase the contrast of the scan, but simultaneously increase the noise. Therefore, and considering other scatter mitigation mechanisms present in a CBCT scanner, the applicability of ASGs with aluminum interspacing for a wide range of imaging conditions has been inconclusive in previous studies. In recent years, grids using fiber interspacers have appeared, providing grids with higher scatter rejection while maintaining reasonable transmission of primary radiation. The purpose of this study was to evaluate the impact of one such grid on CBCT image quality. The grid used (Philips Medical Systems) had ratio of 21:1, frequency 36 lp/cm, and nominal selectivity of 11.9. It was mounted on the kV flat panel detector of an Elekta Synergy linear accelerator and tested in a phantom and a clinical study. Due to the flex of the linac and presence of gridline artifacts an angle dependent gain correction algorithm was devised to mitigate resulting artifacts. Scan reconstruction was performed using XVI4.5 augmented with inhouse developed image lag correction and Hounsfield unit calibration. To determine the necessary parameters for Hounsfield unit calibration and software scatter correction parameters, the Catphan 600 (The Phantom Laboratory) phantom was used. Image quality parameters were evaluated using CIRS CBCT Image Quality and Electron Density Phantom (CIRS) in two different geometries: one modeling head and neck and other pelvic region. Phantoms were acquired with and without the grid and reconstructed with and without software correction which was adapted for the different acquisition scenarios. Parameters used in the phantom study were t(cup) for nonuniformity and contrast-to-noise ratio (CNR) for soft tissue visibility. Clinical scans were evaluated in an observer study in which four experienced radiotherapy technologists rated soft tissue visibility and uniformity of scans with and without the grid. The proposed angle dependent gain correction algorithm suppressed the visible ring artifacts. Grid had a beneficial impact on nonuniformity, contrast to noise ratio, and Hounsfield unit accuracy for both scanning geometries. The nonuniformity reduced by 90% for head sized object and 91% for pelvic-sized object. CNR improved compared to no corrections on average by a factor 2.8 for the head sized object, and 2.2 for the pelvic sized phantom. Grid outperformed software correction alone, but adding additional software correction to the grid was overall the best strategy. In the observer study, a significant improvement was found in both soft tissue visibility and nonuniformity of scans when grid is used. The evaluated fiber-interspaced grid improved the image quality of the CBCT system for broad range of imaging conditions. Clinical scans show significant improvement in soft tissue visibility and uniformity without the need to increase the imaging dose.
Mohrs, Oliver K; Petersen, Steffen E; Voigtlaender, Thomas; Peters, Jutta; Nowak, Bernd; Heinemann, Markus K; Kauczor, Hans-Ulrich
2006-10-01
The aim of this study was to evaluate the diagnostic value of time-resolved contrast-enhanced MR angiography in adults with congenital heart disease. Twenty patients with congenital heart disease (mean age, 38 +/- 14 years; range, 16-73 years) underwent contrast-enhanced turbo fast low-angle shot MR angiography. Thirty consecutive coronal 3D slabs with a frame rate of 1-second duration were acquired. The mask defined as the first data set was subtracted from subsequent images. Image quality was evaluated using a 5-point scale (from 1, not assessable, to 5, excellent image quality). Twelve diagnostic parameters yielded 1 point each in case of correct diagnosis (binary analysis into normal or abnormal) and were summarized into three categories: anatomy of the main thoracic vessels (maximum, 5 points), sequential cardiac anatomy (maximum, 5 points), and shunt detection (maximum, 2 points). The results were compared with a combined clinical reference comprising medical or surgical reports and other imaging studies. Diagnostic accuracies were calculated for each of the parameters as well as for the three categories. The mean image quality was 3.7 +/- 1.0. Using a binary approach, 220 (92%) of the 240 single diagnostic parameters could be analyzed. The percentage of maximum diagnostic points, the sensitivity, the specificity, and the positive and the negative predictive values were all 100% for the anatomy of the main thoracic vessels; 97%, 87%, 100%, 100%, and 96% for sequential cardiac anatomy; and 93%, 93%, 92%, 88%, and 96% for shunt detection. Time-resolved contrast-enhanced MR angiography provides, in one breath-hold, anatomic and qualitative functional information in adult patients with congenital heart disease. The high diagnostic accuracy allows the investigator to tailor subsequent specific MR sequences within the same session.
Chian, Teo Chee; Nassir, Norziana Mat; Ibrahim, Mohd Izuan; Yusof, Ahmad Khairuddin Md
2017-01-01
Background This study was carried out to quantify and compare the quantitative image quality of coronary computed tomography angiography (CCTA) between genders as well as between different tube voltages scan protocols. Methods Fifty-five cases of CCTA were collected retrospectively and all images including reformatted axial images at systolic and diastolic phases as well as images with curved multi planar reformation (cMPR) were obtained. Quantitative image quality including signal intensity, image noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of right coronary artery (RCA), left anterior descending artery (LAD), left circumflex artery (LCx) and left main artery (LM) were quantified using Analyze 12.0 software. Results Six hundred and fifty-seven coronary arteries were evaluated. There were no significant differences in any quantitative image quality parameters between genders. 100 kilovoltage peak (kVp) scanning protocol produced images with significantly higher signal intensity compared to 120 kVp scanning protocol (P<0.001) in all coronary arteries in all types of images. Higher SNR was also observed in 100 kVp scan protocol in all coronary arteries except in LCx where 120 kVp showed better SNR than 100 kVp. Conclusions There were no significant differences in image quality of CCTA between genders and different tube voltages. Lower tube voltage (100 kVp) scanning protocol is recommended in clinical practice to reduce the radiation dose to patient. PMID:28275559
Brunner, Matthias; Romano, Vito; Steger, Bernhard; Vinciguerra, Riccardo; Lawman, Samuel; Williams, Bryan; Hicks, Nicholas; Czanner, Gabriela; Zheng, Yalin; Willoughby, Colin E; Kaye, Stephen B
2018-03-01
The purpose of this study was to compare optical coherence tomography angiography (OCTA) and indocyanine green angiography (ICGA) for the assessment of corneal neovascularization (CoNV). Patients with CoNV extending at least 3 mm into the cornea were included. All patients underwent corneal imaging at the same visit. Images were recorded using the AngioVue OCTA system (Optovue, Inc.) with the long corneal adaptor module (CAM-L). ICGA images were recorded with fluorescent filters using the Heidelberg system (HRA2 Scanning Laser Ophthalmoscope; Heidelberg Engineering). Images were graded for quality by two independent observers. Vessel parameters: area, number, diameter, branch and end points, and tortuosity, were compared between devices. Bland-Altman plots were used to assess differences between parameters. Fifteen patients with CoNV predominantly associated with microbial keratitis were included. Mean subjective image quality score was better for ICGA (3.3 ± 0.9) than for OCTA (2.1 ± 1.2, P = 0.002), with almost perfect interobserver agreement for ICGA images (κ = 0.83) and substantial agreement for OCTA images (κ = 0.69). Agreement of grading of all investigated vessel parameters between ICGA and OCT images was slight to moderate, with significant differences found for vessel diameter (-8.98 μm, P = 0.01, 95% limits of agreement [LOA]: -15.89 to -2.07), number of branch (25.93, P = 0.09, 95% LOA: -4.31 to 56.17), and terminal points (49, P = 0.05, 95% LOA: 0.78 to 97.22). Compared with ICGA, current OCTA systems are less precise in capturing small vessels in CoNV complexes, and validation studies are needed for OCTA segmentation software. OCTA, however, complements ICGA by providing evidence of red blood cell flow, which together with depth information, may be helpful when planning treatment of CoNV.
Spaceborne SAR Imaging Algorithm for Coherence Optimized.
Qiu, Zhiwei; Yue, Jianping; Wang, Xueqin; Yue, Shun
2016-01-01
This paper proposes SAR imaging algorithm with largest coherence based on the existing SAR imaging algorithm. The basic idea of SAR imaging algorithm in imaging processing is that output signal can have maximum signal-to-noise ratio (SNR) by using the optimal imaging parameters. Traditional imaging algorithm can acquire the best focusing effect, but would bring the decoherence phenomenon in subsequent interference process. Algorithm proposed in this paper is that SAR echo adopts consistent imaging parameters in focusing processing. Although the SNR of the output signal is reduced slightly, their coherence is ensured greatly, and finally the interferogram with high quality is obtained. In this paper, two scenes of Envisat ASAR data in Zhangbei are employed to conduct experiment for this algorithm. Compared with the interferogram from the traditional algorithm, the results show that this algorithm is more suitable for SAR interferometry (InSAR) research and application.
Spaceborne SAR Imaging Algorithm for Coherence Optimized
Qiu, Zhiwei; Yue, Jianping; Wang, Xueqin; Yue, Shun
2016-01-01
This paper proposes SAR imaging algorithm with largest coherence based on the existing SAR imaging algorithm. The basic idea of SAR imaging algorithm in imaging processing is that output signal can have maximum signal-to-noise ratio (SNR) by using the optimal imaging parameters. Traditional imaging algorithm can acquire the best focusing effect, but would bring the decoherence phenomenon in subsequent interference process. Algorithm proposed in this paper is that SAR echo adopts consistent imaging parameters in focusing processing. Although the SNR of the output signal is reduced slightly, their coherence is ensured greatly, and finally the interferogram with high quality is obtained. In this paper, two scenes of Envisat ASAR data in Zhangbei are employed to conduct experiment for this algorithm. Compared with the interferogram from the traditional algorithm, the results show that this algorithm is more suitable for SAR interferometry (InSAR) research and application. PMID:26871446
The use of noise equivalent count rate and the NEMA phantom for PET image quality evaluation.
Yang, Xin; Peng, Hao
2015-03-01
PET image quality is directly associated with two important parameters among others: count-rate performance and image signal-to-noise ratio (SNR). The framework of noise equivalent count rate (NECR) was developed back in the 1990s and has been widely used since then to evaluate count-rate performance for PET systems. The concept of NECR is not entirely straightforward, however, and among the issues requiring clarification are its original definition, its relationship to image quality, and its consistency among different derivation methods. In particular, we try to answer whether a higher NECR measurement using a standard NEMA phantom actually corresponds to better imaging performance. The paper includes the following topics: 1) revisiting the original analytical model for NECR derivation; 2) validating three methods for NECR calculation based on the NEMA phantom/standard; and 3) studying the spatial dependence of NECR and quantitative relationship between NECR and image SNR. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Low-Dose CT of the Paranasal Sinuses: Minimizing X-Ray Exposure with Spectral Shaping.
Wuest, Wolfgang; May, Matthias; Saake, Marc; Brand, Michael; Uder, Michael; Lell, Michael
2016-11-01
Shaping the energy spectrum of the X-ray beam has been shown to be beneficial in low-dose CT. This study's aim was to investigate dose and image quality of tin filtration at 100 kV for pre-operative planning in low-dose paranasal CT imaging in a large patient cohort. In a prospective trial, 129 patients were included. 64 patients were randomly assigned to the study protocol (100 kV with additional tin filtration, 150mAs, 192x0.6-mm slice collimation) and 65 patients to the standard low-dose protocol (100 kV, 50mAs, 128 × 0.6-mm slice collimation). To assess the image quality, subjective parameters were evaluated using a five-point scale. This scale was applied on overall image quality and contour delineation of critical anatomical structures. All scans were of diagnostic image quality. Bony structures were of good diagnostic image quality in both groups, soft tissues were of sufficient diagnostic image quality in the study group because of a high level of noise. Radiation exposure was very low in both groups, but significantly lower in the study group (CTDI vol 1.2 mGy vs. 4.4 mGy, p < 0.001). Spectral optimization (tin filtration at 100 kV) allows for visualization of the paranasal sinus with sufficient image quality at a very low radiation exposure. • Spectral optimization (tin filtration) is beneficial to low-dose parasinus CT • Tin filtration at 100 kV yields sufficient image quality for pre-operative planning • Diagnostic parasinus CT can be performed with an effective dose <0.05 mSv.
Body Image, Self-esteem, and Quality of Life in Patients with Psoriasis.
Nazik, Hulya; Nazik, Selcuk; Gul, Feride C
2017-01-01
Psoriasis is a chronic inflammatory disease of the skin that may affect the visible areas of body. Hence, the quality of life, self-esteem, and body image can be affected in psoriasis patients. We aimed in the present study to assess the effects of psoriasis on the quality of life, self-esteem, and body image. The study included 92 patients with psoriasis, along with 98 control participants. The sociodemographic characteristics of the patients were assessed, their Psoriasis Area Severity Index (PASI) scores were calculated to determine the clinical severity of the psoriasis, and the values were recorded. In addition, Dermatology Life Quality Index (DLQI), Body Image Scale, and Rosenberg Self-Esteem Scale results were evaluated. When the control and psoriasis groups were evaluated regarding the DLQI, self-esteem, and body image, quality of life was found to be more negatively affected in the psoriasis group than the controls, which was statistically significant ( P < 0.001), and self-esteem ( P < 0.001) and body image ( P < 0.001) were found to be significantly lower. Educational status significantly affected self-esteem ( P < 0.001) and body image ( P = 0.021), however, quality of life was not significantly affected by this parameter ( P = 0.345). PASI was positively correlated with the quality of life ( r = 0.703) and self-esteem ( r = 0.448), however, it was negatively correlated with the body image ( r = -0.423). Psoriasis may negatively affect quality of life, self-esteem, and body image, and may also cause psychosocial problems. An assessment of new approaches on this issue may contribute to developments in the treatment of and rehabilitation from this disease.
Application of side-oblique image-motion blur correction to Kuaizhou-1 agile optical images.
Sun, Tao; Long, Hui; Liu, Bao-Cheng; Li, Ying
2016-03-21
Given the recent development of agile optical satellites for rapid-response land observation, side-oblique image-motion (SOIM) detection and blur correction have become increasingly essential for improving the radiometric quality of side-oblique images. The Chinese small-scale agile mapping satellite Kuaizhou-1 (KZ-1) was developed by the Harbin Institute of Technology and launched for multiple emergency applications. Like other agile satellites, KZ-1 suffers from SOIM blur, particularly in captured images with large side-oblique angles. SOIM detection and blur correction are critical for improving the image radiometric accuracy. This study proposes a SOIM restoration method based on segmental point spread function detection. The segment region width is determined by satellite parameters such as speed, height, integration time, and side-oblique angle. The corresponding algorithms and a matrix form are proposed for SOIM blur correction. Radiometric objective evaluation indices are used to assess the restoration quality. Beijing regional images from KZ-1 are used as experimental data. The radiometric quality is found to increase greatly after SOIM correction. Thus, the proposed method effectively corrects image motion for KZ-1 agile optical satellites.
Matching rendered and real world images by digital image processing
NASA Astrophysics Data System (ADS)
Mitjà, Carles; Bover, Toni; Bigas, Miquel; Escofet, Jaume
2010-05-01
Recent advances in computer-generated images (CGI) have been used in commercial and industrial photography providing a broad scope in product advertising. Mixing real world images with those rendered from virtual space software shows a more or less visible mismatching between corresponding image quality performance. Rendered images are produced by software which quality performance is only limited by the resolution output. Real world images are taken with cameras with some amount of image degradation factors as lens residual aberrations, diffraction, sensor low pass anti aliasing filters, color pattern demosaicing, etc. The effect of all those image quality degradation factors can be characterized by the system Point Spread Function (PSF). Because the image is the convolution of the object by the system PSF, its characterization shows the amount of image degradation added to any taken picture. This work explores the use of image processing to degrade the rendered images following the parameters indicated by the real system PSF, attempting to match both virtual and real world image qualities. The system MTF is determined by the slanted edge method both in laboratory conditions and in the real picture environment in order to compare the influence of the working conditions on the device performance; an approximation to the system PSF is derived from the two measurements. The rendered images are filtered through a Gaussian filter obtained from the taking system PSF. Results with and without filtering are shown and compared measuring the contrast achieved in different final image regions.
Geometric correction method for 3d in-line X-ray phase contrast image reconstruction
2014-01-01
Background Mechanical system with imperfect or misalignment of X-ray phase contrast imaging (XPCI) components causes projection data misplaced, and thus result in the reconstructed slice images of computed tomography (CT) blurred or with edge artifacts. So the features of biological microstructures to be investigated are destroyed unexpectedly, and the spatial resolution of XPCI image is decreased. It makes data correction an essential pre-processing step for CT reconstruction of XPCI. Methods To remove unexpected blurs and edge artifacts, a mathematics model for in-line XPCI is built by considering primary geometric parameters which include a rotation angle and a shift variant in this paper. Optimal geometric parameters are achieved by finding the solution of a maximization problem. And an iterative approach is employed to solve the maximization problem by using a two-step scheme which includes performing a composite geometric transformation and then following a linear regression process. After applying the geometric transformation with optimal parameters to projection data, standard filtered back-projection algorithm is used to reconstruct CT slice images. Results Numerical experiments were carried out on both synthetic and real in-line XPCI datasets. Experimental results demonstrate that the proposed method improves CT image quality by removing both blurring and edge artifacts at the same time compared to existing correction methods. Conclusions The method proposed in this paper provides an effective projection data correction scheme and significantly improves the image quality by removing both blurring and edge artifacts at the same time for in-line XPCI. It is easy to implement and can also be extended to other XPCI techniques. PMID:25069768
Kuo, Chung-Feng Jeffrey; Wang, Hsing-Won; Hsiao, Shang-Wun; Peng, Kai-Ching; Chou, Ying-Liang; Lai, Chun-Yu; Hsu, Chien-Tung Max
2014-01-01
Physicians clinically use laryngeal video stroboscope as an auxiliary instrument to test glottal diseases, and read vocal fold images and voice quality for diagnosis. As the position of vocal fold varies in each person, the proportion of the vocal fold size as presented in the vocal fold image is different, making it impossible to directly estimate relevant glottis physiological parameters, such as the length, area, perimeter, and opening angle of the glottis. Hence, this study designs an innovative laser projection marking module for the laryngeal video stroboscope to provide reference parameters for image scaling conversion. This innovative laser projection marking module to be installed on the laryngeal video stroboscope using laser beams to project onto the glottis plane, in order to provide reference parameters for scaling conversion of images of laryngeal video stroboscope. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Qi; Deng, Bin; Wang, Hongqiang; Qin, Yuliang
2017-07-01
Rotation is one of the typical micro-motions of radar targets. In many cases, rotation of the targets is always accompanied with vibrating interference, and it will significantly affect the parameter estimation and imaging, especially in the terahertz band. In this paper, we propose a parameter estimation method and an image reconstruction method based on the inverse Radon transform, the time-frequency analysis, and its inverse. The method can separate and estimate the rotating Doppler and the vibrating Doppler simultaneously and can obtain high-quality reconstructed images after vibration compensation. In addition, a 322-GHz radar system and a 25-GHz commercial radar are introduced and experiments on rotating corner reflectors are carried out in this paper. The results of the simulation and experiments verify the validity of the methods, which lay a foundation for the practical processing of the terahertz radar.
NASA Astrophysics Data System (ADS)
Amanda, A. R.; Widita, R.
2016-03-01
The aim of this research is to compare some image segmentation methods for lungs based on performance evaluation parameter (Mean Square Error (MSE) and Peak Signal Noise to Ratio (PSNR)). In this study, the methods compared were connected threshold, neighborhood connected, and the threshold level set segmentation on the image of the lungs. These three methods require one important parameter, i.e the threshold. The threshold interval was obtained from the histogram of the original image. The software used to segment the image here was InsightToolkit-4.7.0 (ITK). This research used 5 lung images to be analyzed. Then, the results were compared using the performance evaluation parameter determined by using MATLAB. The segmentation method is said to have a good quality if it has the smallest MSE value and the highest PSNR. The results show that four sample images match the criteria of connected threshold, while one sample refers to the threshold level set segmentation. Therefore, it can be concluded that connected threshold method is better than the other two methods for these cases.
TU-AB-207A-03: Image Quality, Dose, and Clinical Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, F.
Practicing medical physicists are often time charged with the tasks of evaluating and troubleshooting complex image quality issues related to CT scanners. This course will equip them with a solid and practical understanding of common CT imaging chain and its major components with emphasis on acquisition physics and hardware, reconstruction, artifacts, image quality, dose, and advanced clinical applications. The core objective is to explain the effects of these major system components on the image quality. This course will not focus on the rapid-changing advanced technologies given the two-hour time limit, but the fundamental principles discussed in this course may facilitatemore » better understanding of those more complicated technologies. The course will begin with an overview of CT acquisition physics and geometry. X-ray tube and CT detector are important acquisition hardware critical to the overall image quality. Each of these two subsystems consists of several major components. An in-depth description of the function and failure modes of these components will be provided. Examples of artifacts related to these failure modes will be presented: off-focal radiation, tube arcing, heel effect, oil bubble, offset drift effect, cross-talk effect, and bad pixels. The fundamentals of CT image reconstruction will first be discussed on an intuitive level. Approaches that do not require rigorous derivation of mathematical formulations will be presented. This is followed by a detailed derivation of the Fourier slice theorem: the foundation of the FBP algorithm. FBP for parallel-beam, fan-beam, and cone-beam geometries will be discussed. To address the issue of radiation dose related to x-ray CT, recent advances in iterative reconstruction, their advantages, and clinical applications will also be described. Because of the nature of fundamental physics and mathematics, limitations in data acquisition, and non-ideal conditions of major system components, image artifact often arise in the reconstructed images. Because of the limited scope of this course, only major imaging artifacts, their appearance, and possible mitigation and corrections will be discussed. Assessment of the performance of a CT scanner is a complicated subject. Procedures to measure common image quality metrics such as high contrast spatial resolution, low contrast detectability, and slice profile will be described. The reason why these metrics used for FBP may not be sufficient for statistical iterative reconstruction will be explained. Optimizing radiation dose requires comprehension of CT dose metrics. This course will briefly describe various dose metrics, and interaction with acquisition parameters and patient habitus. CT is among the most frequently used imaging tools due to its superior image quality, easy to operate, and a broad range of applications. This course will present several interesting CT applications such as a mobile CT unit on an ambulance for stroke patients, low dose lung cancer screening, and single heartbeat cardiac CT. Learning Objectives: Understand the function and impact of major components of X-ray tube on the image quality. Understand the function and impact of major components of CT detector on the image quality. Be familiar with the basic procedure of CT image reconstruction. Understand the effect of image reconstruction on CT image quality and artifacts. Understand the root causes of common CT image artifacts. Be familiar with image quality metrics especially high and low contrast resolution, noise power spectrum, slice sensitivity profile, etc. Understand why basic image quality metrics used for FBP may not be sufficient to characterize the performance of advanced iterative reconstruction. Be familiar with various CT dose metrics and their interaction with acquisition parameters. New development in advanced CT clinical applications. JH: Employee of GE Healthcare. FD: No disclosure.; J. Hsieh, Jiang Hsieh is an employee of GE Healthcare.« less
Reduced exposure using asymmetric cone beam processing for wide area detector cardiac CT
Bedayat, Arash; Kumamaru, Kanako; Powers, Sara L.; Signorelli, Jason; Steigner, Michael L.; Steveson, Chloe; Soga, Shigeyoshi; Adams, Kimberly; Mitsouras, Dimitrios; Clouse, Melvin; Mather, Richard T.
2011-01-01
The purpose of this study was to estimate dose reduction after implementation of asymmetrical cone beam processing using exposure differences measured in a water phantom and a small cohort of clinical coronary CTA patients. Two separate 320 × 0.5 mm detector row scans of a water phantom used identical cardiac acquisition parameters before and after software modifications from symmetric to asymmetric cone beam acquisition and processing. Exposure was measured at the phantom surface with Optically Stimulated Luminescence (OSL) dosimeters at 12 equally spaced angular locations. Mean HU and standard deviation (SD) for both approaches were compared using ROI measurements obtained at the center plus four peripheral locations in the water phantom. To assess image quality, mean HU and standard deviation (SD) for both approaches were compared using ROI measurements obtained at five points within the water phantom. Retrospective evaluation of 64 patients (37 symmetric; 27 asymmetric acquisition) included clinical data, scanning parameters, quantitative plus qualitative image assessment, and estimated radiation dose. In the water phantom, the asymmetric cone beam processing reduces exposure by approximately 20% with no change in image quality. The clinical coronary CTA patient groups had comparable demographics. The estimated dose reduction after implementation of the asymmetric approach was roughly 24% with no significant difference between the symmetric and asymmetric approach with respect to objective measures of image quality or subjective assessment using a four point scale. When compared to a symmetric approach, the decreased exposure, subsequent lower patient radiation dose, and similar image quality from asymmetric cone beam processing supports its routine clinical use. PMID:21336552
Reduced exposure using asymmetric cone beam processing for wide area detector cardiac CT.
Bedayat, Arash; Rybicki, Frank J; Kumamaru, Kanako; Powers, Sara L; Signorelli, Jason; Steigner, Michael L; Steveson, Chloe; Soga, Shigeyoshi; Adams, Kimberly; Mitsouras, Dimitrios; Clouse, Melvin; Mather, Richard T
2012-02-01
The purpose of this study was to estimate dose reduction after implementation of asymmetrical cone beam processing using exposure differences measured in a water phantom and a small cohort of clinical coronary CTA patients. Two separate 320 × 0.5 mm detector row scans of a water phantom used identical cardiac acquisition parameters before and after software modifications from symmetric to asymmetric cone beam acquisition and processing. Exposure was measured at the phantom surface with Optically Stimulated Luminescence (OSL) dosimeters at 12 equally spaced angular locations. Mean HU and standard deviation (SD) for both approaches were compared using ROI measurements obtained at the center plus four peripheral locations in the water phantom. To assess image quality, mean HU and standard deviation (SD) for both approaches were compared using ROI measurements obtained at five points within the water phantom. Retrospective evaluation of 64 patients (37 symmetric; 27 asymmetric acquisition) included clinical data, scanning parameters, quantitative plus qualitative image assessment, and estimated radiation dose. In the water phantom, the asymmetric cone beam processing reduces exposure by approximately 20% with no change in image quality. The clinical coronary CTA patient groups had comparable demographics. The estimated dose reduction after implementation of the asymmetric approach was roughly 24% with no significant difference between the symmetric and asymmetric approach with respect to objective measures of image quality or subjective assessment using a four point scale. When compared to a symmetric approach, the decreased exposure, subsequent lower patient radiation dose, and similar image quality from asymmetric cone beam processing supports its routine clinical use.
Huang, Tao; Li, Xiao-yu; Xu, Meng-ling; Jin, Rui; Ku, Jing; Xu, Sen-miao; Wu, Zhen-zhong
2015-01-01
The quality of potato is directly related to their edible value and industrial value. Hollow heart of potato, as a physiological disease occurred inside the tuber, is difficult to be detected. This paper put forward a non-destructive detection method by using semi-transmission hyperspectral imaging with support vector machine (SVM) to detect hollow heart of potato. Compared to reflection and transmission hyperspectral image, semi-transmission hyperspectral image can get clearer image which contains the internal quality information of agricultural products. In this study, 224 potato samples (149 normal samples and 75 hollow samples) were selected as the research object, and semi-transmission hyperspectral image acquisition system was constructed to acquire the hyperspectral images (390-1 040 nn) of the potato samples, and then the average spectrum of region of interest were extracted for spectral characteristics analysis. Normalize was used to preprocess the original spectrum, and prediction model were developed based on SVM using all wave bands, the accurate recognition rate of test set is only 87. 5%. In order to simplify the model competitive.adaptive reweighed sampling algorithm (CARS) and successive projection algorithm (SPA) were utilized to select important variables from the all 520 spectral variables and 8 variables were selected (454, 601, 639, 664, 748, 827, 874 and 936 nm). 94. 64% of the accurate recognition rate of test set was obtained by using the 8 variables to develop SVM model. Parameter optimization algorithms, including artificial fish swarm algorithm (AFSA), genetic algorithm (GA) and grid search algorithm, were used to optimize the SVM model parameters: penalty parameter c and kernel parameter g. After comparative analysis, AFSA, a new bionic optimization algorithm based on the foraging behavior of fish swarm, was proved to get the optimal model parameter (c=10. 659 1, g=0. 349 7), and the recognition accuracy of 10% were obtained for the AFSA-SVM model. The results indicate that combining the semi-transmission hyperspectral imaging technology with CARS-SPA and AFSA-SVM can accurately detect hollow heart of potato, and also provide technical support for rapid non-destructive detecting of hollow heart of potato.
Speckle reduction in optical coherence tomography by adaptive total variation method
NASA Astrophysics Data System (ADS)
Wu, Tong; Shi, Yaoyao; Liu, Youwen; He, Chongjun
2015-12-01
An adaptive total variation method based on the combination of speckle statistics and total variation restoration is proposed and developed for reducing speckle noise in optical coherence tomography (OCT) images. The statistical distribution of the speckle noise in OCT image is investigated and measured. With the measured parameters such as the mean value and variance of the speckle noise, the OCT image is restored by the adaptive total variation restoration method. The adaptive total variation restoration algorithm was applied to the OCT images of a volunteer's hand skin, which showed effective speckle noise reduction and image quality improvement. For image quality comparison, the commonly used median filtering method was also applied to the same images to reduce the speckle noise. The measured results demonstrate the superior performance of the adaptive total variation restoration method in terms of image signal-to-noise ratio, equivalent number of looks, contrast-to-noise ratio, and mean square error.
Methods for CT automatic exposure control protocol translation between scanner platforms.
McKenney, Sarah E; Seibert, J Anthony; Lamba, Ramit; Boone, John M
2014-03-01
An imaging facility with a diverse fleet of CT scanners faces considerable challenges when propagating CT protocols with consistent image quality and patient dose across scanner makes and models. Although some protocol parameters can comfortably remain constant among scanners (eg, tube voltage, gantry rotation time), the automatic exposure control (AEC) parameter, which selects the overall mA level during tube current modulation, is difficult to match among scanners, especially from different CT manufacturers. Objective methods for converting tube current modulation protocols among CT scanners were developed. Three CT scanners were investigated, a GE LightSpeed 16 scanner, a GE VCT scanner, and a Siemens Definition AS+ scanner. Translation of the AEC parameters such as noise index and quality reference mAs across CT scanners was specifically investigated. A variable-diameter poly(methyl methacrylate) phantom was imaged on the 3 scanners using a range of AEC parameters for each scanner. The phantom consisted of 5 cylindrical sections with diameters of 13, 16, 20, 25, and 32 cm. The protocol translation scheme was based on matching either the volumetric CT dose index or image noise (in Hounsfield units) between two different CT scanners. A series of analytic fit functions, corresponding to different patient sizes (phantom diameters), were developed from the measured CT data. These functions relate the AEC metric of the reference scanner, the GE LightSpeed 16 in this case, to the AEC metric of a secondary scanner. When translating protocols between different models of CT scanners (from the GE LightSpeed 16 reference scanner to the GE VCT system), the translation functions were linear. However, a power-law function was necessary to convert the AEC functions of the GE LightSpeed 16 reference scanner to the Siemens Definition AS+ secondary scanner, because of differences in the AEC functionality designed by these two companies. Protocol translation on the basis of quantitative metrics (volumetric CT dose index or measured image noise) is feasible. Protocol translation has a dependency on patient size, especially between the GE and Siemens systems. Translation schemes that preserve dose levels may not produce identical image quality. Copyright © 2014 American College of Radiology. Published by Elsevier Inc. All rights reserved.
MO-C-18A-01: Advances in Model-Based 3D Image Reconstruction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, G; Pan, X; Stayman, J
2014-06-15
Recent years have seen the emergence of CT image reconstruction techniques that exploit physical models of the imaging system, photon statistics, and even the patient to achieve improved 3D image quality and/or reduction of radiation dose. With numerous advantages in comparison to conventional 3D filtered backprojection, such techniques bring a variety of challenges as well, including: a demanding computational load associated with sophisticated forward models and iterative optimization methods; nonlinearity and nonstationarity in image quality characteristics; a complex dependency on multiple free parameters; and the need to understand how best to incorporate prior information (including patient-specific prior images) within themore » reconstruction process. The advantages, however, are even greater – for example: improved image quality; reduced dose; robustness to noise and artifacts; task-specific reconstruction protocols; suitability to novel CT imaging platforms and noncircular orbits; and incorporation of known characteristics of the imager and patient that are conventionally discarded. This symposium features experts in 3D image reconstruction, image quality assessment, and the translation of such methods to emerging clinical applications. Dr. Chen will address novel methods for the incorporation of prior information in 3D and 4D CT reconstruction techniques. Dr. Pan will show recent advances in optimization-based reconstruction that enable potential reduction of dose and sampling requirements. Dr. Stayman will describe a “task-based imaging” approach that leverages models of the imaging system and patient in combination with a specification of the imaging task to optimize both the acquisition and reconstruction process. Dr. Samei will describe the development of methods for image quality assessment in such nonlinear reconstruction techniques and the use of these methods to characterize and optimize image quality and dose in a spectrum of clinical applications. Learning Objectives: Learn the general methodologies associated with model-based 3D image reconstruction. Learn the potential advantages in image quality and dose associated with model-based image reconstruction. Learn the challenges associated with computational load and image quality assessment for such reconstruction methods. Learn how imaging task can be incorporated as a means to drive optimal image acquisition and reconstruction techniques. Learn how model-based reconstruction methods can incorporate prior information to improve image quality, ease sampling requirements, and reduce dose.« less
Tan, T J; Lau, Kenneth K; Jackson, Dana; Ardley, Nicholas; Borasu, Adina
2017-04-01
The purpose of this study was to assess the efficacy of model-based iterative reconstruction (MBIR), statistical iterative reconstruction (SIR), and filtered back projection (FBP) image reconstruction algorithms in the delineation of ureters and overall image quality on non-enhanced computed tomography of the renal tracts (NECT-KUB). This was a prospective study of 40 adult patients who underwent NECT-KUB for investigation of ureteric colic. Images were reconstructed using FBP, SIR, and MBIR techniques and individually and randomly assessed by two blinded radiologists. Parameters measured were overall image quality, presence of ureteric calculus, presence of hydronephrosis or hydroureters, image quality of each ureteric segment, total length of ureters unable to be visualized, attenuation values of image noise, and retroperitoneal fat content for each patient. There were no diagnostic discrepancies between image reconstruction modalities for urolithiasis. Overall image qualities and for each ureteric segment were superior using MBIR (67.5 % rated as 'Good to Excellent' vs. 25 % in SIR and 2.5 % in FBP). The lengths of non-visualized ureteric segments were shortest using MBIR (55.0 % measured 'less than 5 cm' vs. ASIR 33.8 % and FBP 10 %). MBIR was able to reduce overall image noise by up to 49.36 % over SIR and 71.02 % over FBP. MBIR technique improves overall image quality and visualization of ureters over FBP and SIR.
Quadratic trigonometric B-spline for image interpolation using GA
Abbas, Samreen; Irshad, Misbah
2017-01-01
In this article, a new quadratic trigonometric B-spline with control parameters is constructed to address the problems related to two dimensional digital image interpolation. The newly constructed spline is then used to design an image interpolation scheme together with one of the soft computing techniques named as Genetic Algorithm (GA). The idea of GA has been formed to optimize the control parameters in the description of newly constructed spline. The Feature SIMilarity (FSIM), Structure SIMilarity (SSIM) and Multi-Scale Structure SIMilarity (MS-SSIM) indices along with traditional Peak Signal-to-Noise Ratio (PSNR) are employed as image quality metrics to analyze and compare the outcomes of approach offered in this work, with three of the present digital image interpolation schemes. The upshots show that the proposed scheme is better choice to deal with the problems associated to image interpolation. PMID:28640906
Quadratic trigonometric B-spline for image interpolation using GA.
Hussain, Malik Zawwar; Abbas, Samreen; Irshad, Misbah
2017-01-01
In this article, a new quadratic trigonometric B-spline with control parameters is constructed to address the problems related to two dimensional digital image interpolation. The newly constructed spline is then used to design an image interpolation scheme together with one of the soft computing techniques named as Genetic Algorithm (GA). The idea of GA has been formed to optimize the control parameters in the description of newly constructed spline. The Feature SIMilarity (FSIM), Structure SIMilarity (SSIM) and Multi-Scale Structure SIMilarity (MS-SSIM) indices along with traditional Peak Signal-to-Noise Ratio (PSNR) are employed as image quality metrics to analyze and compare the outcomes of approach offered in this work, with three of the present digital image interpolation schemes. The upshots show that the proposed scheme is better choice to deal with the problems associated to image interpolation.
Image quality associated with the use of an MR-compatible incubator in neonatal neuroimaging.
O'Regan, K; Filan, P; Pandit, N; Maher, M; Fanning, N
2012-04-01
MRI in the neonate poses significant challenges associated with patient transport and monitoring, and the potential for diminished image quality owing to patient motion. The objective of this study was to evaluate the usefulness of a dedicated MR-compatible incubator with integrated radiofrequency coils in improving image quality of MRI studies of the brain acquired in term and preterm neonates using standard MRI equipment. Subjective and objective analyses of image quality of neonatal brain MR examinations were performed before and after the introduction of an MR-compatible incubator. For all studies, the signal-to-noise ratio (SNR) was calculated, image quality was graded (1-3) and each was assessed for image artefact (e.g. motion). Student's t-test and the Mann-Whitney U-test were used to compare mean SNR values. 39 patients were included [mean gestational age 39 weeks (range 30-42 weeks); mean postnatal age 13 days (range 1-56 days); mean weight 3.5 kg (range 1.4-4.5 kg)]. Following the introduction of the MR-compatible incubator, diagnostic quality scans increased from 50 to 89% and motion artefact decreased from 73 to 44% of studies. SNR did not increase initially, but, when using MR sequences and parameters specifically tailored for neonatal brain imaging, SNR increased from 70 to 213 (p=0.001). Use of an MR-compatible incubator in neonatal neuroimaging provides a safe environment for MRI of the neonate and also facilitates patient monitoring and transport. When specifically tailored MR protocols are used, this results in improved image quality.
Iterative image reconstruction for PROPELLER-MRI using the nonuniform fast fourier transform.
Tamhane, Ashish A; Anastasio, Mark A; Gui, Minzhi; Arfanakis, Konstantinos
2010-07-01
To investigate an iterative image reconstruction algorithm using the nonuniform fast Fourier transform (NUFFT) for PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction) MRI. Numerical simulations, as well as experiments on a phantom and a healthy human subject were used to evaluate the performance of the iterative image reconstruction algorithm for PROPELLER, and compare it with that of conventional gridding. The trade-off between spatial resolution, signal to noise ratio, and image artifacts, was investigated for different values of the regularization parameter. The performance of the iterative image reconstruction algorithm in the presence of motion was also evaluated. It was demonstrated that, for a certain range of values of the regularization parameter, iterative reconstruction produced images with significantly increased signal to noise ratio, reduced artifacts, for similar spatial resolution, compared with gridding. Furthermore, the ability to reduce the effects of motion in PROPELLER-MRI was maintained when using the iterative reconstruction approach. An iterative image reconstruction technique based on the NUFFT was investigated for PROPELLER MRI. For a certain range of values of the regularization parameter, the new reconstruction technique may provide PROPELLER images with improved image quality compared with conventional gridding. (c) 2010 Wiley-Liss, Inc.
Iterative Image Reconstruction for PROPELLER-MRI using the NonUniform Fast Fourier Transform
Tamhane, Ashish A.; Anastasio, Mark A.; Gui, Minzhi; Arfanakis, Konstantinos
2013-01-01
Purpose To investigate an iterative image reconstruction algorithm using the non-uniform fast Fourier transform (NUFFT) for PROPELLER (Periodically Rotated Overlapping parallEL Lines with Enhanced Reconstruction) MRI. Materials and Methods Numerical simulations, as well as experiments on a phantom and a healthy human subject were used to evaluate the performance of the iterative image reconstruction algorithm for PROPELLER, and compare it to that of conventional gridding. The trade-off between spatial resolution, signal to noise ratio, and image artifacts, was investigated for different values of the regularization parameter. The performance of the iterative image reconstruction algorithm in the presence of motion was also evaluated. Results It was demonstrated that, for a certain range of values of the regularization parameter, iterative reconstruction produced images with significantly increased SNR, reduced artifacts, for similar spatial resolution, compared to gridding. Furthermore, the ability to reduce the effects of motion in PROPELLER-MRI was maintained when using the iterative reconstruction approach. Conclusion An iterative image reconstruction technique based on the NUFFT was investigated for PROPELLER MRI. For a certain range of values of the regularization parameter the new reconstruction technique may provide PROPELLER images with improved image quality compared to conventional gridding. PMID:20578028
Image quality and stability of image-guided radiotherapy (IGRT) devices: A comparative study.
Stock, Markus; Pasler, Marlies; Birkfellner, Wolfgang; Homolka, Peter; Poetter, Richard; Georg, Dietmar
2009-10-01
Our aim was to implement standards for quality assurance of IGRT devices used in our department and to compare their performances with that of a CT simulator. We investigated image quality parameters for three devices over a period of 16months. A multislice CT was used as a benchmark and results related to noise, spatial resolution, low contrast visibility (LCV) and uniformity were compared with a cone beam CT (CBCT) at a linac and simulator. All devices performed well in terms of LCV and, in fact, exceeded vendor specifications. MTF was comparable between CT and linac CBCT. Integral nonuniformity was, on average, 0.002 for the CT and 0.006 for the linac CBCT. Uniformity, LCV and MTF varied depending on the protocols used for the linac CBCT. Contrast-to-noise ratio was an average of 51% higher for the CT than for the linac and simulator CBCT. No significant time trend was observed and tolerance limits were implemented. Reasonable differences in image quality between CT and CBCT were observed. Further research and development are necessary to increase image quality of commercially available CBCT devices in order for them to serve the needs for adaptive and/or online planning.
SU-E-J-178: Development of Image Planning System for Radiation Therapy.
Thapa, B; Molloy, J
2012-06-01
The constraints required for patient imaging dose received during image-guided radiotherapy differ from those applied in the diagnostic realm. Wide latitude in applied dose can be justified if it results in useful improvement in image quality. Currently, image acquisition parameters are chosen via broad categorizations in patient anatomy and imaging goal. Herein, we describe the development and early benchmarking of a patient-specific image planning system that is capable of predetermining the optimal acquisition parameters for a given level of patient dose and imaging goal. An algorithm was written in Matlab that performed a divergent ray-trace through a 3D CT data set and impinges on a flat imaging receptor. Energy-specific attenuation through each voxel of the CT data set is calculated to derive a net transmitted intensity. The detector response as a function of beam quality and exposure was measured and integrated into the algorithm. It is primarily this feature that distinguishes this from a traditional digitally reconstructed radiograph. Verification data was collected using a flat panel imager mounted onto a linear accelerator gantry and a lung phantom with an embedded nodule. Loss of object detectability was evaluated by measuring the visible diameter of the phantom nodule. There is qualitative agreement between simulated and measured images in terms of contrast and object detectability. The simulation algorithm predicts both under-exposure and saturation of the detector over a range of beam qualities (80 keV to 120keV) and exposure levels. Object detectability erodes predictably above 60 mAs for at 80keV and above 15mAs for 120 keV for both simulated and measured images. Quantitative accuracy is currently limited by lack of beam heterogeneity, which will be added in further work. The feasibility and qualitative accuracy of an image planning system has been established. © 2012 American Association of Physicists in Medicine.
Manoliu, Andrei; Ho, Michael; Nanz, Daniel; Piccirelli, Marco; Dappa, Evelyn; Klarhöfer, Markus; Del Grande, Filippo; Kuhn, Felix Pierre
2016-08-01
The aim of this study was to compare the quality of recently emerged advanced diffusion tensor imaging (DTI) techniques with conventional single-shot echo-planar imaging (EPI) in a functional assessment of lumbar nerve roots. The institutional review board approved the study including 12 healthy volunteers. Diffusion tensor imaging was performed at 3 T (MAGNETOM Skyra; Siemens Healthcare) with b-values of 0 and 700 s/mm and an isotropic spatial resolution for subsequent multiplanar reformatting. The nerve roots L2 to S1 were imaged in coronal orientation with readout-segmented EPI (rs-DTI) and selective-excitation EPI (sTX-DTI) with an acquisition time of 5 minutes each, and in axial orientation with single-shot EPI (ss-DTI) with an acquisition time of 12 minutes (scan parameters as in recent literature). Two independent readers qualitatively and quantitatively assessed image quality. The interobserver reliability ranged from "substantial" to "almost perfect" for all examined parameter and all 3 sequences (κ = 0.70-0.94). Overall image quality was rated higher, and artifact levels were scored lower for rs-DTI and sTX-DTI than for ss-DTI (P = 0.007-0.027), while fractional anisotropy and signal-to-noise ratio values were similar for all sequences (P ≥ 0.306 and P ≥ 0.100, respectively). Contrast-to-noise ratios were significantly higher for rs-DTI and ss-DTI than for sTX-DTI (P = 0.004-0.013). Despite shorter acquisition times, rs-DTI and sTX-DTI produced images of higher quality with smaller geometrical distortions than the current standard of reference, ss-DTI. Thus, DTI acquisitions in the coronal plane, requiring fewer slices for full coverage of exiting nerve roots, may allow for functional neurography in scan times suitable for routine clinical practice.
NASA Astrophysics Data System (ADS)
Han, Jianguang; Wang, Yun; Yu, Changqing; Chen, Peng
2017-02-01
An approach for extracting angle-domain common-image gathers (ADCIGs) from anisotropic Gaussian beam prestack depth migration (GB-PSDM) is presented in this paper. The propagation angle is calculated in the process of migration using the real-value traveltime information of Gaussian beam. Based on the above, we further investigate the effects of anisotropy on GB-PSDM, where the corresponding ADCIGs are extracted to assess the quality of migration images. The test results of the VTI syncline model and the TTI thrust sheet model show that anisotropic parameters ɛ, δ, and tilt angle 𝜃, have a great influence on the accuracy of the migrated image in anisotropic media, and ignoring any one of them will cause obvious imaging errors. The anisotropic GB-PSDM with the true anisotropic parameters can obtain more accurate seismic images of subsurface structures in anisotropic media.
Measurement methods and accuracy analysis of Chang'E-5 Panoramic Camera installation parameters
NASA Astrophysics Data System (ADS)
Yan, Wei; Ren, Xin; Liu, Jianjun; Tan, Xu; Wang, Wenrui; Chen, Wangli; Zhang, Xiaoxia; Li, Chunlai
2016-04-01
Chang'E-5 (CE-5) is a lunar probe for the third phase of China Lunar Exploration Project (CLEP), whose main scientific objectives are to implement lunar surface sampling and to return the samples back to the Earth. To achieve these goals, investigation of lunar surface topography and geological structure within sampling area seems to be extremely important. The Panoramic Camera (PCAM) is one of the payloads mounted on CE-5 lander. It consists of two optical systems which installed on a camera rotating platform. Optical images of sampling area can be obtained by PCAM in the form of a two-dimensional image and a stereo images pair can be formed by left and right PCAM images. Then lunar terrain can be reconstructed based on photogrammetry. Installation parameters of PCAM with respect to CE-5 lander are critical for the calculation of exterior orientation elements (EO) of PCAM images, which is used for lunar terrain reconstruction. In this paper, types of PCAM installation parameters and coordinate systems involved are defined. Measurement methods combining camera images and optical coordinate observations are studied for this work. Then research contents such as observation program and specific solution methods of installation parameters are introduced. Parametric solution accuracy is analyzed according to observations obtained by PCAM scientifically validated experiment, which is used to test the authenticity of PCAM detection process, ground data processing methods, product quality and so on. Analysis results show that the accuracy of the installation parameters affects the positional accuracy of corresponding image points of PCAM stereo images within 1 pixel. So the measurement methods and parameter accuracy studied in this paper meet the needs of engineering and scientific applications. Keywords: Chang'E-5 Mission; Panoramic Camera; Installation Parameters; Total Station; Coordinate Conversion
Brown, Ryan; Storey, Pippa; Geppert, Christian; McGorty, KellyAnne; Leite, Ana Paula Klautau; Babb, James; Sodickson, Daniel K.; Wiggins, Graham C.; Moy, Linda
2014-01-01
Objectives To evaluate the image quality of T1-weighted fat-suppressed breast MRI at 7 T, and to compare 7-T and 3-T images. Methods Seventeen subjects were imaged using a 7-T bilateral transmit-receive coil and adiabatic inversion-based fat suppression (FS). Images were graded on a five-point scale and quantitatively assessed through signal-to-noise ratio (SNR), fibroglandular/fat contrast and signal uniformity measurements. Results Image scores at 7 T and 3 T were similar on standard-resolution images (1.1× 1.1×1.1−1.6 mm3), indicating that high-quality breast imaging with clinical parameters can be performed at 7 T. The 7-T SNR advantage was underscored on 0.6-mm isotropic images, where image quality was significantly greater than at 3 T (4.2 versus 3.1, P≤0.0001). Fibroglandular/fat contrast was more than two times higher at 7 T over 3 T, owing to effective adiabatic inversion-based FS and the inherent 7 T signal advantage. Signal uniformity was comparable at 7 T and 3 T (P<0.05). Similar 7-T image quality was observed in all subjects, indicating robustness against anatomical variation. Conclusion The 7-T bilateral transmit-receive coil and adiabatic inversion-based FS technique mitigate the impact of high-field heterogeneity to produce image quality that is as good as or better than at 3 T PMID:23896763
Chen, Li-Hong; Jin, Chao; Li, Jian-Ying; Wang, Ge-Liang; Jia, Yong-Jun; Duan, Hai-Feng; Pan, Ning; Guo, Jianxin
2018-06-06
To compare image quality of two adaptive statistical iterative reconstruction (ASiR and ASiR-V) algorithms using objective and subjective metrics for routine liver CT, with the conventional filtered back projection (FBP) reconstructions as reference standards. This institutional review board-approved study included 52 patients with clinically suspected hepatic metastases. Patients were divided equally into ASiR and ASiR-V groups with same scan parameters. Images were reconstructed with ASiR and ASiR-V from 0 (FBP) to 100% blending percentages at 10% interval in its respective group. Mean and standard deviation of CT numbers for liver parenchyma were recorded. Two experienced radiologists reviewed all images for image quality blindly and independently. Data were statistically analyzed. There was no difference in CT dose index between ASiR and ASiR-V groups. As the percentage of ASiR and ASiR-V increased from 10 to 100% , image noise reduced by 8.6 -57.9% and 8.9-81.6%, respectively, compared with FBP. There was substantial interobserver agreement in image quality assessment for ASiR and ASiR-V images. Compared with FBP reconstruction, subjective image quality scores of ASiR and ASiR-V improved significantly as percentage increased from 10 to 80% for ASiR (peaked at 50% with 32.2% noise reduction) and from 10 to 90% (peaked at 60% with 51.5% noise reduction) for ASiR-V. Both ASiR and ASiR-V improved the objective and subjective image quality for routine liver CT compared with FBP. ASiR-V provided further image quality improvement with higher acceptable percentage than ASiR, and ASiR-V60% had the highest image quality score. Advances in knowledge: (1) Both ASiR and ASiR-V significantly reduce image noise compared with conventional FBP reconstruction. (2) ASiR-V with 60 blending percentage provides the highest image quality score in routine liver CT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pino, Francisco; Roé, Nuria; Aguiar, Pablo, E-mail: pablo.aguiar.fernandez@sergas.es
2015-02-15
Purpose: Single photon emission computed tomography (SPECT) has become an important noninvasive imaging technique in small-animal research. Due to the high resolution required in small-animal SPECT systems, the spatially variant system response needs to be included in the reconstruction algorithm. Accurate modeling of the system response should result in a major improvement in the quality of reconstructed images. The aim of this study was to quantitatively assess the impact that an accurate modeling of spatially variant collimator/detector response has on image-quality parameters, using a low magnification SPECT system equipped with a pinhole collimator and a small gamma camera. Methods: Threemore » methods were used to model the point spread function (PSF). For the first, only the geometrical pinhole aperture was included in the PSF. For the second, the septal penetration through the pinhole collimator was added. In the third method, the measured intrinsic detector response was incorporated. Tomographic spatial resolution was evaluated and contrast, recovery coefficients, contrast-to-noise ratio, and noise were quantified using a custom-built NEMA NU 4–2008 image-quality phantom. Results: A high correlation was found between the experimental data corresponding to intrinsic detector response and the fitted values obtained by means of an asymmetric Gaussian distribution. For all PSF models, resolution improved as the distance from the point source to the center of the field of view increased and when the acquisition radius diminished. An improvement of resolution was observed after a minimum of five iterations when the PSF modeling included more corrections. Contrast, recovery coefficients, and contrast-to-noise ratio were better for the same level of noise in the image when more accurate models were included. Ring-type artifacts were observed when the number of iterations exceeded 12. Conclusions: Accurate modeling of the PSF improves resolution, contrast, and recovery coefficients in the reconstructed images. To avoid the appearance of ring-type artifacts, the number of iterations should be limited. In low magnification systems, the intrinsic detector PSF plays a major role in improvement of the image-quality parameters.« less
Ramos, Susie Medeiros Oliveira; Glavam, Adriana Pereira; Kubo, Tadeu Takao Almodovar; de Sá, Lidia Vasconcellos
2014-01-01
To develop a study aiming at optimizing myocardial perfusion imaging. Imaging of an anthropomorphic thorax phantom with a GE SPECT Ventri gamma camera, with varied activities and acquisition times, in order to evaluate the influence of these parameters on the quality of the reconstructed medical images. The (99m)Tc-sestamibi radiotracer was utilized, and then the images were clinically evaluated on the basis of data such as summed stress score, and on the technical image quality and perfusion. The software ImageJ was utilized in the data quantification. The results demonstrated that for the standard acquisition time utilized in the procedure (15 seconds per angle), the injected activity could be reduced by 33.34%. Additionally, even if the standard scan time is reduced by 53.34% (7 seconds per angle), the standard injected activity could still be reduced by 16.67%, without impairing the image quality and the diagnostic reliability. The described method and respective results provide a basis for the development of a clinical trial of patients in an optimized protocol.
Ramos, Susie Medeiros Oliveira; Glavam, Adriana Pereira; Kubo, Tadeu Takao Almodovar; de Sá, Lidia Vasconcellos
2014-01-01
Objective To develop a study aiming at optimizing myocardial perfusion imaging. Materials and Methods Imaging of an anthropomorphic thorax phantom with a GE SPECT Ventri gamma camera, with varied activities and acquisition times, in order to evaluate the influence of these parameters on the quality of the reconstructed medical images. The 99mTc-sestamibi radiotracer was utilized, and then the images were clinically evaluated on the basis of data such as summed stress score, and on the technical image quality and perfusion. The software ImageJ was utilized in the data quantification. Results The results demonstrated that for the standard acquisition time utilized in the procedure (15 seconds per angle), the injected activity could be reduced by 33.34%. Additionally, even if the standard scan time is reduced by 53.34% (7 seconds per angle), the standard injected activity could still be reduced by 16.67%, without impairing the image quality and the diagnostic reliability. Conclusion The described method and respective results provide a basis for the development of a clinical trial of patients in an optimized protocol. PMID:25741088
Motion effects in multistatic millimeter-wave imaging systems
NASA Astrophysics Data System (ADS)
Schiessl, Andreas; Ahmed, Sherif Sayed; Schmidt, Lorenz-Peter
2013-10-01
At airport security checkpoints, authorities are demanding improved personnel screening devices for increased security. Active mm-wave imaging systems deliver the high quality images needed for reliable automatic detection of hidden threats. As mm-wave imaging systems assume static scenarios, motion effects caused by movement of persons during the screening procedure can degrade image quality, so very short measurement time is required. Multistatic imaging array designs and fully electronic scanning in combination with digital beamforming offer short measurement time together with high resolution and high image dynamic range, which are critical parameters for imaging systems used for passenger screening. In this paper, operational principles of such systems are explained, and the performance of the imaging systems with respect to motion within the scenarios is demonstrated using mm-wave images of different test objects and standing as well as moving persons. Electronic microwave imaging systems using multistatic sparse arrays are suitable for next generation screening systems, which will support on the move screening of passengers.
Cardiac cine imaging at 3 Tesla: initial experience with a 32-element body-array coil.
Fenchel, Michael; Deshpande, Vibhas S; Nael, Kambiz; Finn, J Paul; Miller, Stephan; Ruehm, Stefan; Laub, Gerhard
2006-08-01
We sought to assess the feasibility of cardiac cine imaging and evaluate image quality at 3 T using a body-array coil with 32 coil elements. Eight healthy volunteers (3 men; median age 29 years) were examined on a 3-T magnetic resonance scanner (Magnetom Trio, Siemens Medical Solutions) using a 32-element phased-array coil (prototype from In vivo Corp.). Gradient-recalled-echo (GRE) cine (GRAPPAx3), GRE cine with tagging lines, steady-state-free-precession (SSFP) cine (GRAPPAx3 and x4), and SSFP cine(TSENSEx4 andx6) images were acquired in short-axis and 4-chamber view. Reference images with identical scan parameters were acquired using the total-imaging-matrix (Tim) coil system with a total of 12 coil elements. Images were assessed by 2 observers in a consensus reading with regard to image quality, noise and presence of artifacts. Furthermore, signal-to-noise values were determined in phantom measurements. In phantom measurements signal-to-noise values were increased by 115-155% for the various cine sequences using the 32-element coil. Scoring of image quality yielded statistically significant increased image quality with the SSFP-GRAPPAx4, SSFP-TSENSEx4, and SSFP-TSENSEx6 sequence using the 32-element coil (P < 0.05). Similarly, scoring of image noise yielded a statistically significant lower noise rating with the SSFP-GRAPPAx4, GRE-GRAPPAx3, SSFP-TSENSEx4, and SSFP-TSENSEx6 sequence using the 32-element coil (P < 0.05). This study shows that cardiac cine imaging at 3 T using a 32-element body-array coil is feasible in healthy volunteers. Using a large number of coil elements with a favorable sensitivity profile supports faster image acquisition, with high diagnostic image quality even for high parallel imaging factors.
A Study on the Basic Criteria for Selecting Heterogeneity Parameters of F18-FDG PET Images.
Forgacs, Attila; Pall Jonsson, Hermann; Dahlbom, Magnus; Daver, Freddie; D DiFranco, Matthew; Opposits, Gabor; K Krizsan, Aron; Garai, Ildiko; Czernin, Johannes; Varga, Jozsef; Tron, Lajos; Balkay, Laszlo
2016-01-01
Textural analysis might give new insights into the quantitative characterization of metabolically active tumors. More than thirty textural parameters have been investigated in former F18-FDG studies already. The purpose of the paper is to declare basic requirements as a selection strategy to identify the most appropriate heterogeneity parameters to measure textural features. Our predefined requirements were: a reliable heterogeneity parameter has to be volume independent, reproducible, and suitable for expressing quantitatively the degree of heterogeneity. Based on this criteria, we compared various suggested measures of homogeneity. A homogeneous cylindrical phantom was measured on three different PET/CT scanners using the commonly used protocol. In addition, a custom-made inhomogeneous tumor insert placed into the NEMA image quality phantom was imaged with a set of acquisition times and several different reconstruction protocols. PET data of 65 patients with proven lung lesions were retrospectively analyzed as well. Four heterogeneity parameters out of 27 were found as the most attractive ones to characterize the textural properties of metabolically active tumors in FDG PET images. These four parameters included Entropy, Contrast, Correlation, and Coefficient of Variation. These parameters were independent of delineated tumor volume (bigger than 25-30 ml), provided reproducible values (relative standard deviation< 10%), and showed high sensitivity to changes in heterogeneity. Phantom measurements are a viable way to test the reliability of heterogeneity parameters that would be of interest to nuclear imaging clinicians.
A Study on the Basic Criteria for Selecting Heterogeneity Parameters of F18-FDG PET Images
Forgacs, Attila; Pall Jonsson, Hermann; Dahlbom, Magnus; Daver, Freddie; D. DiFranco, Matthew; Opposits, Gabor; K. Krizsan, Aron; Garai, Ildiko; Czernin, Johannes; Varga, Jozsef; Tron, Lajos; Balkay, Laszlo
2016-01-01
Textural analysis might give new insights into the quantitative characterization of metabolically active tumors. More than thirty textural parameters have been investigated in former F18-FDG studies already. The purpose of the paper is to declare basic requirements as a selection strategy to identify the most appropriate heterogeneity parameters to measure textural features. Our predefined requirements were: a reliable heterogeneity parameter has to be volume independent, reproducible, and suitable for expressing quantitatively the degree of heterogeneity. Based on this criteria, we compared various suggested measures of homogeneity. A homogeneous cylindrical phantom was measured on three different PET/CT scanners using the commonly used protocol. In addition, a custom-made inhomogeneous tumor insert placed into the NEMA image quality phantom was imaged with a set of acquisition times and several different reconstruction protocols. PET data of 65 patients with proven lung lesions were retrospectively analyzed as well. Four heterogeneity parameters out of 27 were found as the most attractive ones to characterize the textural properties of metabolically active tumors in FDG PET images. These four parameters included Entropy, Contrast, Correlation, and Coefficient of Variation. These parameters were independent of delineated tumor volume (bigger than 25–30 ml), provided reproducible values (relative standard deviation< 10%), and showed high sensitivity to changes in heterogeneity. Phantom measurements are a viable way to test the reliability of heterogeneity parameters that would be of interest to nuclear imaging clinicians. PMID:27736888
Lass, Jonathan H; Gal, Robin L; Ruedy, Katrina J; Benetz, Beth Ann; Beck, Roy W; Baratz, Keith H; Holland, Edward J; Kalajian, Andrea; Kollman, Craig; Manning, Francis J; Mannis, Mark J; McCoy, Kristen; Montoya, Monty; Stulting, Doyle; Xing, Dongyuan
2005-03-01
The Specular Microscopy Ancillary Study was designed to examine donor corneal endothelial specular image quality, compare the central endothelial cell density determined by eye banks with the endothelial cell density determined by a central specular microscopy reading center, and evaluate donor factors that may have an impact on specular image quality and endothelial cell density accuracy. Nonrandomized comparative trial. Endothelial specular images of donor corneas assigned in the Cornea Donor Study. Certified readers assessed donor image quality (analyzable from fair to excellent vs. unanalyzable) and determined the central endothelial cell density. Independent adjudication was performed if there was a difference in the quality of grading or if the endothelial cell density varied by > or =5.0% between readers. Average reading center-determined endothelial cell density was compared with the endothelial cell density determined by each eye bank. Evaluation of image quality and accuracy of endothelial cell density. Of 688 donor endothelial images submitted by 23 eye banks, 663 (96%) were analyzable (excellent, 40 [6%]; good, 302 [44%]; fair, 321 [47%]), and 25 (4%) were unanalyzable by reading center standards. In situ retrieval and greater epithelial exposure correlated with a higher image quality grading. The eye bank-determined endothelial cell density of 434 of the 663 (65%) analyzable images were within 10% of the endothelial cell density determined by the reading center, whereas 185 (28%) were more than 10% higher and 44 (7%) were more than 10% lower. Greater variation in endothelial cell density between the eye banks and the reading center was observed with shorter time of death to preservation, presence of an epithelial defect, folds in Descemet's membrane, lower image quality, and the use of fixed-frame or center method endothelial cell density analysis. Overall, donor endothelial specular image quality and accuracy of endothelial cell density determination were good. However, the data suggest that factors that may affect image quality and contribute to variation in interpretation of the endothelial cell density should be addressed, because the donor endothelial cell density is an important parameter for assessing long-term corneal graft survival.
Statistical iterative reconstruction to improve image quality for digital breast tomosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Shiyu, E-mail: shiyu.xu@gmail.com; Chen, Ying, E-mail: adachen@siu.edu; Lu, Jianping
2015-09-15
Purpose: Digital breast tomosynthesis (DBT) is a novel modality with the potential to improve early detection of breast cancer by providing three-dimensional (3D) imaging with a low radiation dose. 3D image reconstruction presents some challenges: cone-beam and flat-panel geometry, and highly incomplete sampling. A promising means to overcome these challenges is statistical iterative reconstruction (IR), since it provides the flexibility of accurate physics modeling and a general description of system geometry. The authors’ goal was to develop techniques for applying statistical IR to tomosynthesis imaging data. Methods: These techniques include the following: a physics model with a local voxel-pair basedmore » prior with flexible parameters to fine-tune image quality; a precomputed parameter λ in the prior, to remove data dependence and to achieve a uniform resolution property; an effective ray-driven technique to compute the forward and backprojection; and an oversampled, ray-driven method to perform high resolution reconstruction with a practical region-of-interest technique. To assess the performance of these techniques, the authors acquired phantom data on the stationary DBT prototype system. To solve the estimation problem, the authors proposed an optimization-transfer based algorithm framework that potentially allows fewer iterations to achieve an acceptably converged reconstruction. Results: IR improved the detectability of low-contrast and small microcalcifications, reduced cross-plane artifacts, improved spatial resolution, and lowered noise in reconstructed images. Conclusions: Although the computational load remains a significant challenge for practical development, the superior image quality provided by statistical IR, combined with advancing computational techniques, may bring benefits to screening, diagnostics, and intraoperative imaging in clinical applications.« less
Barca, Patrizio; Giannelli, Marco; Fantacci, Maria Evelina; Caramella, Davide
2018-06-01
Computed tomography (CT) is a useful and widely employed imaging technique, which represents the largest source of population exposure to ionizing radiation in industrialized countries. Adaptive Statistical Iterative Reconstruction (ASIR) is an iterative reconstruction algorithm with the potential to allow reduction of radiation exposure while preserving diagnostic information. The aim of this phantom study was to assess the performance of ASIR, in terms of a number of image quality indices, when different reconstruction blending levels are employed. CT images of the Catphan-504 phantom were reconstructed using conventional filtered back-projection (FBP) and ASIR with reconstruction blending levels of 20, 40, 60, 80, and 100%. Noise, noise power spectrum (NPS), contrast-to-noise ratio (CNR) and modulation transfer function (MTF) were estimated for different scanning parameters and contrast objects. Noise decreased and CNR increased non-linearly up to 50 and 100%, respectively, with increasing blending level of reconstruction. Also, ASIR has proven to modify the NPS curve shape. The MTF of ASIR reconstructed images depended on tube load/contrast and decreased with increasing blending level of reconstruction. In particular, for low radiation exposure and low contrast acquisitions, ASIR showed lower performance than FBP, in terms of spatial resolution for all blending levels of reconstruction. CT image quality varies substantially with the blending level of reconstruction. ASIR has the potential to reduce noise whilst maintaining diagnostic information in low radiation exposure CT imaging. Given the opposite variation of CNR and spatial resolution with the blending level of reconstruction, it is recommended to use an optimal value of this parameter for each specific clinical application.
Aurumskjöld, Marie-Louise; Ydström, Kristina; Tingberg, Anders; Söderberg, Marcus
2017-01-01
The number of computed tomography (CT) examinations is increasing and leading to an increase in total patient exposure. It is therefore important to optimize CT scan imaging conditions in order to reduce the radiation dose. The introduction of iterative reconstruction methods has enabled an improvement in image quality and a reduction in radiation dose. To investigate how image quality depends on reconstruction method and to discuss patient dose reduction resulting from the use of hybrid and model-based iterative reconstruction. An image quality phantom (Catphan® 600) and an anthropomorphic torso phantom were examined on a Philips Brilliance iCT. The image quality was evaluated in terms of CT numbers, noise, noise power spectra (NPS), contrast-to-noise ratio (CNR), low-contrast resolution, and spatial resolution for different scan parameters and dose levels. The images were reconstructed using filtered back projection (FBP) and different settings of hybrid (iDose 4 ) and model-based (IMR) iterative reconstruction methods. iDose 4 decreased the noise by 15-45% compared with FBP depending on the level of iDose 4 . The IMR reduced the noise even further, by 60-75% compared to FBP. The results are independent of dose. The NPS showed changes in the noise distribution for different reconstruction methods. The low-contrast resolution and CNR were improved with iDose 4 , and the improvement was even greater with IMR. There is great potential to reduce noise and thereby improve image quality by using hybrid or, in particular, model-based iterative reconstruction methods, or to lower radiation dose and maintain image quality. © The Foundation Acta Radiologica 2016.
Estimation of tissue optical parameters with hyperspectral imaging and spectral unmixing
NASA Astrophysics Data System (ADS)
Lu, Guolan; Qin, Xulei; Wang, Dongsheng; Chen, Zhuo G.; Fei, Baowei
2015-03-01
Early detection of oral cancer and its curable precursors can improve patient survival and quality of life. Hyperspectral imaging (HSI) holds the potential for noninvasive early detection of oral cancer. The quantification of tissue chromophores by spectral unmixing of hyperspectral images could provide insights for evaluating cancer progression. In this study, non-negative matrix factorization has been applied for decomposing hyperspectral images into physiologically meaningful chromophore concentration maps. The approach has been validated by computer-simulated hyperspectral images and in vivo tumor hyperspectral images from a head and neck cancer animal model.
Eller, Achim; Wuest, Wolfgang; Scharf, Michael; Brand, Michael; Achenbach, Stephan; Uder, Michael; Lell, Michael M
2013-12-01
To evaluate an automated attenuation-based kV-selection in computed tomography of the chest in respect to radiation dose and image quality, compared to a standard 120 kV protocol. 104 patients were examined using a 128-slice scanner. Fifty examinations (58 ± 15 years, study group) were performed using the automated adaption of tube potential (100-140 kV), based on the attenuation profile of the scout scan, 54 examinations (62 ± 14 years, control group) with fixed 120 kV. Estimated CT dose index (CTDI) of the software-proposed setting was compared with a 120 kV protocol. After the scan CTDI volume (CTDIvol) and dose length product (DLP) were recorded. Image quality was assessed by region of interest (ROI) measurements, subjective image quality by two observers with a 4-point scale (3--excellent, 0--not diagnostic). The algorithm selected 100 kV in 78% and 120 kV in 22%. Overall CTDIvol reduction was 26.6% (34% in 100 kV) overall DLP reduction was 22.8% (32.1% in 100 kV) (all p<0.001). Subjective image quality was excellent in both groups. The attenuation based kV-selection algorithm enables relevant dose reduction (~27%) in chest-CT while keeping image quality parameters at high levels. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Siddiqui, Khan M.; Siegel, Eliot L.; Reiner, Bruce I.; Johnson, Jeffrey P.
2005-04-01
The authors identify a fundamental disconnect between the ways in which industry and radiologists assess and even discuss product performance. What is needed is a quantitative methodology that can assess both subjective image quality and observer task performance. In this study, we propose and evaluate the use of a visual discrimination model (VDM) that assesses just-noticeable differences (JNDs) to serve this purpose. The study compares radiologists' subjective perceptions of image quality of computer tomography (CT) and computed radiography (CR) images with quantitative measures of peak signal-to-noise ratio (PSNR) and JNDs as measured by a VDM. The study included 4 CT and 6 CR studies with compression ratios ranging from lossless to 90:1 (total of 80 sets of images were generated [n = 1,200]). Eleven radiologists reviewed the images and rated them in terms of overall quality and readability and identified images not acceptable for interpretation. Normalized reader scores were correlated with compression, objective PSNR, and mean JND values. Results indicated a significantly higher correlation between observer performance and JND values than with PSNR methods. These results support the use of the VDM as a metric not only for the threshold discriminations for which it was calibrated, but also as a general image quality metric. This VDM is a highly promising, reproducible, and reliable adjunct or even alternative to human observer studies for research or to establish clinical guidelines for image compression, dose reductions, and evaluation of various display technologies.
Physics of cardiac imaging with multiple-row detector CT.
Mahesh, Mahadevappa; Cody, Dianna D
2007-01-01
Cardiac imaging with multiple-row detector computed tomography (CT) has become possible due to rapid advances in CT technologies. Images with high temporal and spatial resolution can be obtained with multiple-row detector CT scanners; however, the radiation dose associated with cardiac imaging is high. Understanding the physics of cardiac imaging with multiple-row detector CT scanners allows optimization of cardiac CT protocols in terms of image quality and radiation dose. Knowledge of the trade-offs between various scan parameters that affect image quality--such as temporal resolution, spatial resolution, and pitch--is the key to optimized cardiac CT protocols, which can minimize the radiation risks associated with these studies. Factors affecting temporal resolution include gantry rotation time, acquisition mode, and reconstruction method; factors affecting spatial resolution include detector size and reconstruction interval. Cardiac CT has the potential to become a reliable tool for noninvasive diagnosis and prevention of cardiac and coronary artery disease. (c) RSNA, 2007.
Investigation of statistical iterative reconstruction for dedicated breast CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makeev, Andrey; Glick, Stephen J.
2013-08-15
Purpose: Dedicated breast CT has great potential for improving the detection and diagnosis of breast cancer. Statistical iterative reconstruction (SIR) in dedicated breast CT is a promising alternative to traditional filtered backprojection (FBP). One of the difficulties in using SIR is the presence of free parameters in the algorithm that control the appearance of the resulting image. These parameters require tuning in order to achieve high quality reconstructions. In this study, the authors investigated the penalized maximum likelihood (PML) method with two commonly used types of roughness penalty functions: hyperbolic potential and anisotropic total variation (TV) norm. Reconstructed images weremore » compared with images obtained using standard FBP. Optimal parameters for PML with the hyperbolic prior are reported for the task of detecting microcalcifications embedded in breast tissue.Methods: Computer simulations were used to acquire projections in a half-cone beam geometry. The modeled setup describes a realistic breast CT benchtop system, with an x-ray spectra produced by a point source and an a-Si, CsI:Tl flat-panel detector. A voxelized anthropomorphic breast phantom with 280 μm microcalcification spheres embedded in it was used to model attenuation properties of the uncompressed woman's breast in a pendant position. The reconstruction of 3D images was performed using the separable paraboloidal surrogates algorithm with ordered subsets. Task performance was assessed with the ideal observer detectability index to determine optimal PML parameters.Results: The authors' findings suggest that there is a preferred range of values of the roughness penalty weight and the edge preservation threshold in the penalized objective function with the hyperbolic potential, which resulted in low noise images with high contrast microcalcifications preserved. In terms of numerical observer detectability index, the PML method with optimal parameters yielded substantially improved performance (by a factor of greater than 10) compared to FBP. The hyperbolic prior was also observed to be superior to the TV norm. A few of the best-performing parameter pairs for the PML method also demonstrated superior performance for various radiation doses. In fact, using PML with certain parameter values results in better images, acquired using 2 mGy dose, than FBP-reconstructed images acquired using 6 mGy dose.Conclusions: A range of optimal free parameters for the PML algorithm with hyperbolic and TV norm-based potentials is presented for the microcalcification detection task, in dedicated breast CT. The reported values can be used as starting values of the free parameters, when SIR techniques are used for image reconstruction. Significant improvement in image quality can be achieved by using PML with optimal combination of parameters, as compared to FBP. Importantly, these results suggest improved detection of microcalcifications can be obtained by using PML with lower radiation dose to the patient, than using FBP with higher dose.« less
Application of machine vision to pup loaf bread evaluation
NASA Astrophysics Data System (ADS)
Zayas, Inna Y.; Chung, O. K.
1996-12-01
Intrinsic end-use quality of hard winter wheat breeding lines is routinely evaluated at the USDA, ARS, USGMRL, Hard Winter Wheat Quality Laboratory. Experimental baking test of pup loaves is the ultimate test for evaluating hard wheat quality. Computer vision was applied to developing an objective methodology for bread quality evaluation for the 1994 and 1995 crop wheat breeding line samples. Computer extracted features for bread crumb grain were studied, using subimages (32 by 32 pixel) and features computed for the slices with different threshold settings. A subsampling grid was located with respect to the axis of symmetry of a slice to provide identical topological subimage information. Different ranking techniques were applied to the databases. Statistical analysis was run on the database with digital image and breadmaking features. Several ranking algorithms and data visualization techniques were employed to create a sensitive scale for porosity patterns of bread crumb. There were significant linear correlations between machine vision extracted features and breadmaking parameters. Crumb grain scores by human experts were correlated more highly with some image features than with breadmaking parameters.
Yamashita, Shozo; Yokoyama, Kunihiko; Onoguchi, Masahisa; Yamamoto, Haruki; Hiko, Shigeaki; Horita, Akihiro; Nakajima, Kenichi
2014-01-01
Deep-inspiration breath-hold (DIBH) PET/CT with short-time acquisition and respiratory-gated (RG) PET/CT are performed for pulmonary lesions to reduce the respiratory motion artifacts, and to obtain more accurate standardized uptake value (SUV). DIBH PET/CT demonstrates significant advantages in terms of rapid examination, good quality of CT images and low radiation exposure. On the other hand, the image quality of DIBH PET is generally inferior to that of RG PET because of short-time acquisition resulting in poor signal-to-noise ratio. In this study, RG PET has been regarded as a gold standard, and its detectability between DIBH and RG PET studies was compared using each of the most optimal reconstruction parameters. In the phantom study, the most optimal reconstruction parameters for DIBH and RG PET were determined. In the clinical study, 19 cases were examined using each of the most optimal reconstruction parameters. In the phantom study, the most optimal reconstruction parameters for DIBH and RG PET were different. Reconstruction parameters of DIBH PET could be obtained by reducing the number of subsets for those of RG PET in the state of fixing the number of iterations. In the clinical study, high correlation in the maximum SUV was observed between DIBH and RG PET studies. The clinical result was consistent with that of the phantom study surrounded by air since most of the lesions were located in the low pulmonary radioactivity. DIBH PET/CT may be the most practical method which can be the first choice to reduce respiratory motion artifacts if the detectability of DIBH PET is equivalent with that of RG PET. Although DIBH PET may have limitations in suboptimal signal-to-noise ratio, most of the lesions surrounded by low background radioactivity could provide nearly equivalent image quality between DIBH and RG PET studies when each of the most optimal reconstruction parameters was used.
Initial clinical results with a new needle screen storage phosphor system in chest radiograms.
Körner, M; Wirth, S; Treitl, M; Reiser, M; Pfeifer, K-J
2005-11-01
To evaluate image quality and anatomical detail depiction in dose-reduced digital plain chest radiograms using a new needle screen storage phosphor (NIP) in comparison to full dose conventional powder screen storage phosphor (PIP) images. 24 supine chest radiograms were obtained with PIP at standard dose and compared to follow-up studies of the same patients obtained with NIP with dose reduced to 50 % of the PIP dose (all imaging systems: AGFA-Gevaert, Mortsel, Belgium). In both systems identical versions of post-processing software supplied by the manufacturer were used with matched parameters. Six independent readers blinded to both modality and dose evaluated the images for depiction and differentiation of defined anatomical regions (peripheral lung parenchyma, central lung parenchyma, hilum, heart, diaphragm, upper mediastinum, and bone). All NIP images were compared to the corresponding PIP images using a five-point scale (- 2, clearly inferior to + 2, clearly superior). Overall image quality was rated for each PIP and NIP image separately (1, not usable to 5, excellent). PIP and dose reduced NIP images were rated equivalent. Mean image noise impression was only slightly higher on NIP images. Mean image quality for NIP showed no significant differences (p > 0.05, Mann-Whitney U test). With the use of the new needle structured storage phosphors in chest radiography, dose reduction of up to 50 % is possible without detracting from image quality or detail depiction. Especially in patients with multiple follow-up studies the overall dose can be decreased significantly.
Formation of the image on the receiver of thermal radiation
NASA Astrophysics Data System (ADS)
Akimenko, Tatiana A.
2018-04-01
The formation of the thermal picture of the observed scene with the verification of the quality of the thermal images obtained is one of the important stages of the technological process that determine the quality of the thermal imaging observation system. In this article propose to consider a model for the formation of a thermal picture of a scene, which must take into account: the features of the object of observation as the source of the signal; signal transmission through the physical elements of the thermal imaging system that produce signal processing at the optical, photoelectronic and electronic stages, which determines the final parameters of the signal and its compliance with the requirements for thermal information and measurement systems.
Multi-frame super-resolution with quality self-assessment for retinal fundus videos.
Köhler, Thomas; Brost, Alexander; Mogalle, Katja; Zhang, Qianyi; Köhler, Christiane; Michelson, Georg; Hornegger, Joachim; Tornow, Ralf P
2014-01-01
This paper proposes a novel super-resolution framework to reconstruct high-resolution fundus images from multiple low-resolution video frames in retinal fundus imaging. Natural eye movements during an examination are used as a cue for super-resolution in a robust maximum a-posteriori scheme. In order to compensate heterogeneous illumination on the fundus, we integrate retrospective illumination correction for photometric registration to the underlying imaging model. Our method utilizes quality self-assessment to provide objective quality scores for reconstructed images as well as to select regularization parameters automatically. In our evaluation on real data acquired from six human subjects with a low-cost video camera, the proposed method achieved considerable enhancements of low-resolution frames and improved noise and sharpness characteristics by 74%. In terms of image analysis, we demonstrate the importance of our method for the improvement of automatic blood vessel segmentation as an example application, where the sensitivity was increased by 13% using super-resolution reconstruction.
Ziegler, Susanne; Jakoby, Bjoern W; Braun, Harald; Paulus, Daniel H; Quick, Harald H
2015-12-01
In integrated PET/MR hybrid imaging the evaluation of PET performance characteristics according to the NEMA standard NU 2-2007 is challenging because of incomplete MR-based attenuation correction (AC) for phantom imaging. In this study, a strategy for CT-based AC of the NEMA image quality (IQ) phantom is assessed. The method is systematically evaluated in NEMA IQ phantom measurements on an integrated PET/MR system. NEMA IQ measurements were performed on the integrated 3.0 Tesla PET/MR hybrid system (Biograph mMR, Siemens Healthcare). AC of the NEMA IQ phantom was realized by an MR-based and by a CT-based method. The suggested CT-based AC uses a template μ-map of the NEMA IQ phantom and a phantom holder for exact repositioning of the phantom on the systems patient table. The PET image quality parameters contrast recovery, background variability, and signal-to-noise ratio (SNR) were determined and compared for both phantom AC methods. Reconstruction parameters of an iterative 3D OP-OSEM reconstruction were optimized for highest lesion SNR in NEMA IQ phantom imaging. Using a CT-based NEMA IQ phantom μ-map on the PET/MR system is straightforward and allowed performing accurate NEMA IQ measurements on the hybrid system. MR-based AC was determined to be insufficient for PET quantification in the tested NEMA IQ phantom because only photon attenuation caused by the MR-visible phantom filling but not the phantom housing is considered. Using the suggested CT-based AC, the highest SNR in this phantom experiment for small lesions (<= 13 mm) was obtained with 3 iterations, 21 subsets and 4 mm Gaussian filtering. This study suggests CT-based AC for the NEMA IQ phantom when performing PET NEMA IQ measurements on an integrated PET/MR hybrid system. The superiority of CT-based AC for this phantom is demonstrated by comparison to measurements using MR-based AC. Furthermore, optimized PET image reconstruction parameters are provided for the highest lesion SNR in NEMA IQ phantom measurements.
Continuous-tone applications in digital hard-copy output devices
NASA Astrophysics Data System (ADS)
Saunders, Jeffrey C.
1990-11-01
Dye diffusion technology has made a recent entry into the hardcopy printer arena making it now possible to achieve near-photographic quality images from digital raster image data. Whereas the majority of low cost printers utilizing ink-jet, thermal wax, or dotmatrix technologies advertise high resolution printheads, the restrictions which dithering algorithms apply to these inherently binary printing systems force them to sacrifice spatial resolution capability for tone scale reproduction. Dye diffusion technology allows a fully continuous range of density at each pixel location thus preserving the full spatial resolution capability of the printhead; spatial resolution is not sacrificed for tone scale. This results in images whose quality is far superior to the ink-jet or wax-transfer products; image quality so high in fact, to the unaided eye, dye diffusion images are indistinguishable from their silver-halide counterparts. Eastman Kodak Co. offers a highly refined application of dye diffusion technology in the Kodak XL 7700 Digital Continuous Tone Printer and Kodak EKTATHERM media products. The XL . 7700 Printer represents a serious alternative to expensive laser-based film recorders for applications which require high quality image output from digital data files. This paper presents an explanation of dye diffusion printing, what distinguishes it from other technologies, sensitometric control and image quality parameters, and applications within the industry, particularly that of Airborne Reconnaissance and Remote Sensing.
Event-based image recognition applied in tennis training assistance
NASA Astrophysics Data System (ADS)
Wawrzyniak, Zbigniew M.; Kowalski, Adam
2016-09-01
This paper presents a concept of a real-time system for individual tennis training assistance. The system is supposed to provide user (player) with information on his strokes accuracy as well as other training quality parameters such as velocity and rotation of the ball during its flight. The method is based on image processing methods equipped with developed explorative analysis of the events and their description by parameters of the movement. There has been presented the concept for further deployment to create a complete system that could assist tennis player during individual training.
Iterative optimization method for design of quantitative magnetization transfer imaging experiments.
Levesque, Ives R; Sled, John G; Pike, G Bruce
2011-09-01
Quantitative magnetization transfer imaging (QMTI) using spoiled gradient echo sequences with pulsed off-resonance saturation can be a time-consuming technique. A method is presented for selection of an optimum experimental design for quantitative magnetization transfer imaging based on the iterative reduction of a discrete sampling of the Z-spectrum. The applicability of the technique is demonstrated for human brain white matter imaging at 1.5 T and 3 T, and optimal designs are produced to target specific model parameters. The optimal number of measurements and the signal-to-noise ratio required for stable parameter estimation are also investigated. In vivo imaging results demonstrate that this optimal design approach substantially improves parameter map quality. The iterative method presented here provides an advantage over free form optimal design methods, in that pragmatic design constraints are readily incorporated. In particular, the presented method avoids clustering and repeated measures in the final experimental design, an attractive feature for the purpose of magnetization transfer model validation. The iterative optimal design technique is general and can be applied to any method of quantitative magnetization transfer imaging. Copyright © 2011 Wiley-Liss, Inc.
Quantification of Water Quality Parameters for the Wabash River Using Hyperspectral Remote Sensing
NASA Astrophysics Data System (ADS)
Tan, J.; Cherkauer, K. A.; Chaubey, I.
2011-12-01
Increasingly impaired water bodies in the agriculturally dominated Midwestern United States pose a risk to water supplies, aquatic ecology and contribute to the eutrophication of the Gulf of Mexico. Improving regional water quality calls for new techniques for monitoring and managing water quality over large river systems. Optical indicators of water quality enable a timely and cost-effective method for observing and quantifying water quality conditions by remote sensing. Compared to broad spectral sensors such as Landsat, which observe reflectance over limited spectral bands, hyperspectral sensors should have significant advantages in their ability to estimate water quality parameters because they are designed to split the spectral signature into hundreds of very narrow spectral bands increasing their ability to resolve optically sensitive water quality indicators. Two airborne hyperspectral images were acquired over the Wabash River using a ProSpecTIR-VS2 sensor system on May 15th, 2010. These images were analyzed together with concurrent in-stream water quality data collected to assess our ability to extract optically sensitive constituents. Utilizing the correlation between in-stream data and reflectance from the hyperspectral images, models were developed to estimate the concentrations of chlorophyll a, dissolved organic carbon and total suspended solids. Models were developed using the full array of hyperspectral bands, as well as Landsat bands synthesized by averaging hyperspectral bands within the Landsat spectral range. Higher R2 and lower RMSE values were found for the models taking full advantage of the hyperspectral sensor, supporting the conclusion that the hyperspectral sensor was better at predicting the in-stream concentrations of chlorophyll a, dissolved organic carbon and total suspended solids in the Wabash River. Results also suggest that predictive models may not be the same for the Wabash River as for its tributaries.
Deconvolution of astronomical images using SOR with adaptive relaxation.
Vorontsov, S V; Strakhov, V N; Jefferies, S M; Borelli, K J
2011-07-04
We address the potential performance of the successive overrelaxation technique (SOR) in image deconvolution, focusing our attention on the restoration of astronomical images distorted by atmospheric turbulence. SOR is the classical Gauss-Seidel iteration, supplemented with relaxation. As indicated by earlier work, the convergence properties of SOR, and its ultimate performance in the deconvolution of blurred and noisy images, can be made competitive to other iterative techniques, including conjugate gradients, by a proper choice of the relaxation parameter. The question of how to choose the relaxation parameter, however, remained open, and in the practical work one had to rely on experimentation. In this paper, using constructive (rather than exact) arguments, we suggest a simple strategy for choosing the relaxation parameter and for updating its value in consecutive iterations to optimize the performance of the SOR algorithm (and its positivity-constrained version, +SOR) at finite iteration counts. We suggest an extension of the algorithm to the notoriously difficult problem of "blind" deconvolution, where both the true object and the point-spread function have to be recovered from the blurred image. We report the results of numerical inversions with artificial and real data, where the algorithm is compared with techniques based on conjugate gradients. In all of our experiments +SOR provides the highest quality results. In addition +SOR is found to be able to detect moderately small changes in the true object between separate data frames: an important quality for multi-frame blind deconvolution where stationarity of the object is a necesessity.
Extracting atmospheric turbulence and aerosol characteristics from passive imagery
NASA Astrophysics Data System (ADS)
Reinhardt, Colin N.; Wayne, D.; McBryde, K.; Cauble, G.
2013-09-01
Obtaining accurate, precise and timely information about the local atmospheric turbulence and extinction conditions and aerosol/particulate content remains a difficult problem with incomplete solutions. It has important applications in areas such as optical and IR free-space communications, imaging systems performance, and the propagation of directed energy. The capability to utilize passive imaging data to extract parameters characterizing atmospheric turbulence and aerosol/particulate conditions would represent a valuable addition to the current piecemeal toolset for atmospheric sensing. Our research investigates an application of fundamental results from optical turbulence theory and aerosol extinction theory combined with recent advances in image-quality-metrics (IQM) and image-quality-assessment (IQA) methods. We have developed an algorithm which extracts important parameters used for characterizing atmospheric turbulence and extinction along the propagation channel, such as the refractive-index structure parameter C2n , the Fried atmospheric coherence width r0 , and the atmospheric extinction coefficient βext , from passive image data. We will analyze the algorithm performance using simulations based on modeling with turbulence modulation transfer functions. An experimental field campaign was organized and data were collected from passive imaging through turbulence of Siemens star resolution targets over several short littoral paths in Point Loma, San Diego, under conditions various turbulence intensities. We present initial results of the algorithm's effectiveness using this field data and compare against measurements taken concurrently with other standard atmospheric characterization equipment. We also discuss some of the challenges encountered with the algorithm, tasks currently in progress, and approaches planned for improving the performance in the near future.
Optimized Plane Wave Imaging for Fast and High-Quality Ultrasound Imaging.
Jensen, Jonas; Stuart, Matthias Bo; Jensen, Jorgen Arendt
2016-11-01
This paper presents a method for optimizing parameters affecting the image quality in plane wave imaging. More specifically, the number of emissions and steering angles is optimized to attain the best images with the highest frame rate possible. The method is applied to a specific problem, where image quality for a λ -pitch transducer is compared with a λ /2-pitch transducer. Grating lobe artifacts for λ -pitch transducers degrade the contrast in plane wave images, and the impact on frame rate is studied. Field II simulations of plane wave images are made for all combinations of the parameters, and the optimal setup is selected based on Pareto optimality. The optimal setup for a simulated 4.1-MHz λ -pitch transducer uses 61 emissions and a maximum steering angle of 20° for depths from 0 to 60 mm. The achieved lateral full-width at half-maximum (FWHM) is 1.5λ and the contrast is -29 dB for a scatterer at 9 mm ( 24λ ). Using a λ /2-pitch transducer and only 21 emissions within the same angle range, the image quality is improved in terms of contrast, which is -37 dB. For imaging in regions deeper than 25 mm ( 66λ ), only 21 emissions are optimal for both the transducers, resulting in a -36 dB contrast at 34 mm ( 90λ ). Measurements are performed using the experimental SARUS scanner connected to a λ -pitch and λ /2-pitch transducer. A wire phantom and a tissue mimicking phantom containing anechoic cysts are scanned and show the performance using the optimized sequences for the transducers. FWHM is 1.6λ and contrast is -25 dB for a wire at 9 mm using the λ -pitch transducer. For the λ /2-pitch transducer, contrast is -29 dB. In vivo scans of the carotid artery of a healthy volunteer show improved contrast and present fewer artifacts, when using the λ /2-pitch transducer compared with the λ -pitch. It is demonstrated with a frame rate, which is three times higher for the λ /2-pitch transducer.
Efficient iterative image reconstruction algorithm for dedicated breast CT
NASA Astrophysics Data System (ADS)
Antropova, Natalia; Sanchez, Adrian; Reiser, Ingrid S.; Sidky, Emil Y.; Boone, John; Pan, Xiaochuan
2016-03-01
Dedicated breast computed tomography (bCT) is currently being studied as a potential screening method for breast cancer. The X-ray exposure is set low to achieve an average glandular dose comparable to that of mammography, yielding projection data that contains high levels of noise. Iterative image reconstruction (IIR) algorithms may be well-suited for the system since they potentially reduce the effects of noise in the reconstructed images. However, IIR outcomes can be difficult to control since the algorithm parameters do not directly correspond to the image properties. Also, IIR algorithms are computationally demanding and have optimal parameter settings that depend on the size and shape of the breast and positioning of the patient. In this work, we design an efficient IIR algorithm with meaningful parameter specifications and that can be used on a large, diverse sample of bCT cases. The flexibility and efficiency of this method comes from having the final image produced by a linear combination of two separately reconstructed images - one containing gray level information and the other with enhanced high frequency components. Both of the images result from few iterations of separate IIR algorithms. The proposed algorithm depends on two parameters both of which have a well-defined impact on image quality. The algorithm is applied to numerous bCT cases from a dedicated bCT prototype system developed at University of California, Davis.
Automatic brain MR image denoising based on texture feature-based artificial neural networks.
Chang, Yu-Ning; Chang, Herng-Hua
2015-01-01
Noise is one of the main sources of quality deterioration not only for visual inspection but also in computerized processing in brain magnetic resonance (MR) image analysis such as tissue classification, segmentation and registration. Accordingly, noise removal in brain MR images is important for a wide variety of subsequent processing applications. However, most existing denoising algorithms require laborious tuning of parameters that are often sensitive to specific image features and textures. Automation of these parameters through artificial intelligence techniques will be highly beneficial. In the present study, an artificial neural network associated with image texture feature analysis is proposed to establish a predictable parameter model and automate the denoising procedure. In the proposed approach, a total of 83 image attributes were extracted based on four categories: 1) Basic image statistics. 2) Gray-level co-occurrence matrix (GLCM). 3) Gray-level run-length matrix (GLRLM) and 4) Tamura texture features. To obtain the ranking of discrimination in these texture features, a paired-samples t-test was applied to each individual image feature computed in every image. Subsequently, the sequential forward selection (SFS) method was used to select the best texture features according to the ranking of discrimination. The selected optimal features were further incorporated into a back propagation neural network to establish a predictable parameter model. A wide variety of MR images with various scenarios were adopted to evaluate the performance of the proposed framework. Experimental results indicated that this new automation system accurately predicted the bilateral filtering parameters and effectively removed the noise in a number of MR images. Comparing to the manually tuned filtering process, our approach not only produced better denoised results but also saved significant processing time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Guanglei, E-mail: guangleizhang@bjtu.edu.cn; Department of Biomedical Engineering, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044; Pu, Huangsheng
2015-02-23
Images of pharmacokinetic parameters (also known as parametric images) in dynamic fluorescence molecular tomography (FMT) can provide three-dimensional metabolic information for biological studies and drug development. However, the ill-posed nature of FMT and the high temporal variation of fluorophore concentration together make it difficult to obtain accurate parametric images in small animals in vivo. In this letter, we present a method to directly reconstruct the parametric images from the boundary measurements based on hybrid FMT/X-ray computed tomography (XCT) system. This method can not only utilize structural priors obtained from the XCT system to mitigate the ill-posedness of FMT but alsomore » make full use of the temporal correlations of boundary measurements to model the high temporal variation of fluorophore concentration. The results of numerical simulation and mouse experiment demonstrate that the proposed method leads to significant improvements in the reconstruction quality of parametric images.« less
SU-E-J-06: A Time Dependence Analysis of CBCT Image Quality and Mechanical Stability.
Oves, S; Stenbeck, J; Gebreamlak, W; Alkhatib, H
2012-06-01
To quantify the change, if any, in flexmap correction factors and image quality with the XVI system over a course of several years and from these results, assess their clinical impact. Flexmap, a calibration procedure which corrects for imperfect gantry rotation for cone-beam CT reconstruction, and image quality tests were performed on three Elekta Synergy linacs equipped with XVI. Data was collected per month over three years. U and V values, corresponding to lateral and longitudinal shifts respectively, were acquired through the XVI software. Image quality parameters were obtained through CT imaging of the Catphan 500®. For each reconstruction, pixel values for low density polyethylene (LDPE) and polystyrene materials were recorded. For all three linacs, analysis of the flexmap showed a significant change in the U factor for both month-to-month comparisons and comparisons between machines. The V correction factor exhibited a small variation month to month, and showed a slight, gradual increase over time (0.2 +/-0.08 mm). Image quality analysis showed a near consistent decrease (5-10%) in LDPE and polystyrene. Despite this decrease in pixel values, the ratio of the two pixel values remained constant, thus a similar decreasing trend in contrast was not observed. Analysis of monthly flexmap calibration showed the general monthly change in correction shifts and their general trend over several years. For image quality, our research exhibited roughly 0.5% per month decrease in pixel values of the Catphan®. Our results imply that CBCT images obtained from XVI are not appropriate for treatment planning and despite the decrease in panel response over time, image quality with respect to contrast will remain within acceptable clinical standards. Future studies may be carried out to assess any correlation between image quality and XVI source strength. © 2012 American Association of Physicists in Medicine.
Quantitative evaluation of 3D images produced from computer-generated holograms
NASA Astrophysics Data System (ADS)
Sheerin, David T.; Mason, Ian R.; Cameron, Colin D.; Payne, Douglas A.; Slinger, Christopher W.
1999-08-01
Advances in computing and optical modulation techniques now make it possible to anticipate the generation of near real- time, reconfigurable, high quality, three-dimensional images using holographic methods. Computer generated holography (CGH) is the only technique which holds promise of producing synthetic images having the full range of visual depth cues. These realistic images will be viewable by several users simultaneously, without the need for headtracking or special glasses. Such a data visualization tool will be key to speeding up the manufacture of new commercial and military equipment by negating the need for the production of physical 3D models in the design phase. DERA Malvern has been involved in designing and testing fixed CGH in order to understand the connection between the complexity of the CGH, the algorithms used to design them, the processes employed in their implementation and the quality of the images produced. This poster describes results from CGH containing up to 108 pixels. The methods used to evaluate the reconstructed images are discussed and quantitative measures of image fidelity made. An understanding of the effect of the various system parameters upon final image quality enables a study of the possible system trade-offs to be carried out. Such an understanding of CGH production and resulting image quality is key to effective implementation of a reconfigurable CGH system currently under development at DERA.
An excitation wavelength-scanning spectral imaging system for preclinical imaging
NASA Astrophysics Data System (ADS)
Leavesley, Silas; Jiang, Yanan; Patsekin, Valery; Rajwa, Bartek; Robinson, J. Paul
2008-02-01
Small-animal fluorescence imaging is a rapidly growing field, driven by applications in cancer detection and pharmaceutical therapies. However, the practical use of this imaging technology is limited by image-quality issues related to autofluorescence background from animal tissues, as well as attenuation of the fluorescence signal due to scatter and absorption. To combat these problems, spectral imaging and analysis techniques are being employed to separate the fluorescence signal from background autofluorescence. To date, these technologies have focused on detecting the fluorescence emission spectrum at a fixed excitation wavelength. We present an alternative to this technique, an imaging spectrometer that detects the fluorescence excitation spectrum at a fixed emission wavelength. The advantages of this approach include increased available information for discrimination of fluorescent dyes, decreased optical radiation dose to the animal, and ability to scan a continuous wavelength range instead of discrete wavelength sampling. This excitation-scanning imager utilizes an acousto-optic tunable filter (AOTF), with supporting optics, to scan the excitation spectrum. Advanced image acquisition and analysis software has also been developed for classification and unmixing of the spectral image sets. Filtering has been implemented in a single-pass configuration with a bandwidth (full width at half maximum) of 16nm at 550nm central diffracted wavelength. We have characterized AOTF filtering over a wide range of incident light angles, much wider than has been previously reported in the literature, and we show how changes in incident light angle can be used to attenuate AOTF side lobes and alter bandwidth. A new parameter, in-band to out-of-band ratio, was defined to assess the quality of the filtered excitation light. Additional parameters were measured to allow objective characterization of the AOTF and the imager as a whole. This is necessary for comparing the excitation-scanning imager to other spectral and fluorescence imaging technologies. The effectiveness of the hyperspectral imager was tested by imaging and analysis of mice with injected fluorescent dyes. Finally, a discussion of the optimization of spectral fluorescence imagers is given, relating the effects of filter quality on fluorescence images collected and the analysis outcome.
Paediatric interventional cardiology: flat detector versus image intensifier using a test object
NASA Astrophysics Data System (ADS)
Vano, E.; Ubeda, C.; Martinez, L. C.; Leyton, F.; Miranda, P.
2010-12-01
Entrance surface air kerma (ESAK) values and image quality parameters were measured and compared for two biplane angiography x-ray systems dedicated to paediatric interventional cardiology, one equipped with image intensifiers (II) and the other one with dynamic flat detectors (FDs). Polymethyl methacrylate phantoms of different thicknesses, ranging from 8 to 16 cm, and a Leeds TOR 18-FG test object were used. The parameters of the image quality evaluated were noise, signal-difference-to-noise ratio (SdNR), high contrast spatial resolution (HCSR) and three figures of merit combining entrance doses and signal-to-noise ratios or HCSR. The comparisons showed a better behaviour of the II-based system in the low contrast region over the whole interval of thicknesses. The FD-based system showed a better performance in HCSR. The FD system evaluated would need around two times more dose than the II system evaluated to reach a given value of SdNR; moreover, a better spatial resolution was measured (and perceived in conventional monitors) for the system equipped with flat detectors. According to the results of this paper, the use of dynamic FD systems does not lead to an automatic reduction in ESAK or to an automatic improvement in image quality by comparison with II systems. Any improvement also depends on the setting of the x-ray systems and it should still be possible to refine these settings for some of the dynamic FDs used in paediatric cardiology.
Guggenberger, R; Winklhofer, S; Osterhoff, G; Wanner, G A; Fortunati, M; Andreisek, G; Alkadhi, H; Stolzmann, P
2012-11-01
To evaluate optimal monoenergetic dual-energy computed tomography (DECT) settings for artefact reduction of posterior spinal fusion implants of various vendors and spine levels. Posterior spinal fusion implants of five vendors for cervical, thoracic and lumbar spine were examined ex vivo with single-energy (SE) CT (120 kVp) and DECT (140/100 kVp). Extrapolated monoenergetic DECT images at 64, 69, 88, 105 keV and individually adjusted monoenergy for optimised image quality (OPTkeV) were generated. Two independent radiologists assessed quantitative and qualitative image parameters for each device and spine level. Inter-reader agreements of quantitative and qualitative parameters were high (ICC = 0.81-1.00, κ = 0.54-0.77). HU values of spinal fusion implants were significantly different among vendors (P < 0.001), spine levels (P < 0.01) and among SECT, monoenergetic DECT of 64, 69, 88, 105 keV and OPTkeV (P < 0.01). Image quality was significantly (P < 0.001) different between datasets and improved with higher monoenergies of DECT compared with SECT (V = 0.58, P < 0.001). Artefacts decreased significantly (V = 0.51, P < 0.001) at higher monoenergies. OPTkeV values ranged from 123-141 keV. OPTkeV according to vendor and spine level are presented herein. Monoenergetic DECT provides significantly better image quality and less metallic artefacts from implants than SECT. Use of individual keV values for vendor and spine level is recommended. • Artefacts pose problems for CT following posterior spinal fusion implants. • CT images are interpreted better with monoenergetic extrapolation using dual-energy (DE) CT. • DECT extrapolation improves image quality and reduces metallic artefacts over SECT. • There were considerable differences in monoenergy values among vendors and spine levels. • Use of individualised monoenergy values is indicated for different metallic hardware devices.
Ivanovic, S; Bosmans, H; Mijovic, S
2015-07-01
The purpose of this work is (i) to work out a test procedure for quality assurance (QA) in digital mammography with newly released test equipment, including the MagicMax mam multimeter (IBA, Germany) and the anthropomorphic tissue equivalent phantom Mammo AT (IBA, Germany), and (ii) to determine whether a first digital computer radiography (CR) system in Montenegro meets the current European standards. Tested parameters were tube output (µGy mAs(-1)) and output rate (mGy s(-1)), reproducibility and accuracy of tube voltage, half value layer, reproducibility and accuracy of the AEC system, exposure control steps, image receptor's response function, image quality and printer stability test. The evaluated dosimetric quantity is the average glandular dose (AGD) as evaluated from PMMA slabs simulating breast tissue. The main findings are that QA can be organised in Montenegro. (1) All measured parameters are within the range described in European protocols except the tube voltage which deviated more than ± 1 kV. The automatic determination of the HVL was satisfactorily. AGD ranged from 0.66 to 7.02 mGy for PMMA thicknesses from 20 to 70 mm, and is in accordance with literature data. (2) The image quality score as obtained with the anthropomorphic tissue equivalent phantom Mammo AT for the CR system was similar to findings on the authors' conventional screen-film mammography. (3) In clinical practice the mammograms are printed. The CR reader produces images with a pixel size of 43.75 µm, which is compatible with the laser printer (39 µm laser spot spacing). The image processing algorithm embedded in the reader successfully processes mammograms with desirable image brightness and contrast in the printed image. The authors conclude that this first digital mammography system seems a good candidate for breast cancer screening applications. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Lawi, Armin; Adhitya, Yudhi
2018-03-01
The objective of this research is to determine the quality of cocoa beans through morphology of their digital images. Samples of cocoa beans were scattered on a bright white paper under a controlled lighting condition. A compact digital camera was used to capture the images. The images were then processed to extract their morphological parameters. Classification process begins with an analysis of cocoa beans image based on morphological feature extraction. Parameters for extraction of morphological or physical feature parameters, i.e., Area, Perimeter, Major Axis Length, Minor Axis Length, Aspect Ratio, Circularity, Roundness, Ferret Diameter. The cocoa beans are classified into 4 groups, i.e.: Normal Beans, Broken Beans, Fractured Beans, and Skin Damaged Beans. The model of classification used in this paper is the Multiclass Ensemble Least-Squares Support Vector Machine (MELS-SVM), a proposed improvement model of SVM using ensemble method in which the separate hyperplanes are obtained by least square approach and the multiclass procedure uses One-Against- All method. The result of our proposed model showed that the classification with morphological feature input parameters were accurately as 99.705% for the four classes, respectively.
Liu, Jinping; Tang, Zhaohui; Xu, Pengfei; Liu, Wenzhong; Zhang, Jin; Zhu, Jianyong
2016-06-29
The topic of online product quality inspection (OPQI) with smart visual sensors is attracting increasing interest in both the academic and industrial communities on account of the natural connection between the visual appearance of products with their underlying qualities. Visual images captured from granulated products (GPs), e.g., cereal products, fabric textiles, are comprised of a large number of independent particles or stochastically stacking locally homogeneous fragments, whose analysis and understanding remains challenging. A method of image statistical modeling-based OPQI for GP quality grading and monitoring by a Weibull distribution(WD) model with a semi-supervised learning classifier is presented. WD-model parameters (WD-MPs) of GP images' spatial structures, obtained with omnidirectional Gaussian derivative filtering (OGDF), which were demonstrated theoretically to obey a specific WD model of integral form, were extracted as the visual features. Then, a co-training-style semi-supervised classifier algorithm, named COSC-Boosting, was exploited for semi-supervised GP quality grading, by integrating two independent classifiers with complementary nature in the face of scarce labeled samples. Effectiveness of the proposed OPQI method was verified and compared in the field of automated rice quality grading with commonly-used methods and showed superior performance, which lays a foundation for the quality control of GP on assembly lines.
Vardhanabhuti, Varut; James, Julia; Nensey, Rehaan; Hyde, Christopher; Roobottom, Carl
2015-05-01
To compare image quality on computed tomographic colonography (CTC) acquired at standard dose (STD) and low dose (LD) using filtered-back projection, adaptive statistical iterative reconstruction, and model-based iterative reconstruction (MBIR) techniques. A total of 65 symptomatic patients were prospectively enrolled for the study and underwent STD and LD CTC with filtered-back projection, adaptive statistical iterative reconstruction, and MBIR to allow direct per-patient comparison. Objective image noise, subjective image analyses, and polyp detection were assessed. Objective image noise analysis demonstrates significant noise reduction using MBIR technique (P < .05) despite being acquired at lower doses. Subjective image analyses were superior for LD MBIR in all parameters except visibility of extracolonic lesions (two-dimensional) and visibility of colonic wall (three-dimensional) where there were no significant differences. There was no significant difference in polyp detection rates (P > .05). Doses: LD (dose-length product, 257.7), STD (dose-length product, 483.6). LD MBIR CTC objectively shows improved image noise using parameters in our study. Subjectively, image quality is maintained. Polyp detection shows no significant difference but because of small numbers needs further validation. Average dose reduction of 47% can be achieved. This study confirms feasibility of using MBIR in this context of CTC in symptomatic population. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.
MR and CT image fusion for postimplant analysis in permanent prostate seed implants.
Polo, Alfredo; Cattani, Federica; Vavassori, Andrea; Origgi, Daniela; Villa, Gaetano; Marsiglia, Hugo; Bellomi, Massimo; Tosi, Giampiero; De Cobelli, Ottavio; Orecchia, Roberto
2004-12-01
To compare the outcome of two different image-based postimplant dosimetry methods in permanent seed implantation. Between October 1999 and October 2002, 150 patients with low-risk prostate carcinoma were treated with (125)I and (103)Pd in our institution. A CT-MRI image fusion protocol was used in 21 consecutive patients treated with exclusive brachytherapy. The accuracy and reproducibility of the method was calculated, and then the CT-based dosimetry was compared with the CT-MRI-based dosimetry using the dose-volume histogram (DVH) related parameters recommended by the American Brachytherapy Society and the American Association of Physicists in Medicine. Our method for CT-MRI image fusion was accurate and reproducible (median shift <1 mm). Differences in prostate volume were found, depending on the image modality used. Quality assurance DVH-related parameters strongly depended on the image modality (CT vs. CT-MRI): V(100) = 82% vs. 88%, p < 0.05. D(90) = 96% vs. 115%, p < 0.05. Those results depend on the institutional implant technique and reflect the importance of lowering inter- and intraobserver discrepancies when outlining prostate and organs at risk for postimplant dosimetry. Computed tomography-MRI fused images allow accurate determination of prostate size, significantly improving the dosimetric evaluation based on DVH analysis. This provides a consistent method to judge a prostate seed implant's quality.
High resolution remote sensing of densely urbanised regions: a case study of Hong Kong.
Nichol, Janet E; Wong, Man Sing
2009-01-01
Data on the urban environment such as climate or air quality is usually collected at a few point monitoring stations distributed over a city. However, the synoptic viewpoint of satellites where a whole city is visible on a single image permits the collection of spatially comprehensive data at city-wide scale. In spite of rapid developments in remote sensing systems, deficiencies in image resolution and algorithm development still exist for applications such as air quality monitoring and urban heat island analysis. This paper describes state-of-the-art techniques for enhancing and maximising the spatial detail available from satellite images, and demonstrates their applications to the densely urbanised environment of Hong Kong. An Emissivity Modulation technique for spatial enhancement of thermal satellite images permits modelling of urban microclimate in combination with other urban structural parameters at local scale. For air quality monitoring, a Minimum Reflectance Technique (MRT) has been developed for MODIS 500 m images. The techniques described can promote the routine utilization of remotely sensed images for environmental monitoring in cities of the 21(st) century.
High Resolution Remote Sensing of Densely Urbanised Regions: a Case Study of Hong Kong
Nichol, Janet E.; Wong, Man Sing
2009-01-01
Data on the urban environment such as climate or air quality is usually collected at a few point monitoring stations distributed over a city. However, the synoptic viewpoint of satellites where a whole city is visible on a single image permits the collection of spatially comprehensive data at city-wide scale. In spite of rapid developments in remote sensing systems, deficiencies in image resolution and algorithm development still exist for applications such as air quality monitoring and urban heat island analysis. This paper describes state-of-the-art techniques for enhancing and maximising the spatial detail available from satellite images, and demonstrates their applications to the densely urbanised environment of Hong Kong. An Emissivity Modulation technique for spatial enhancement of thermal satellite images permits modelling of urban microclimate in combination with other urban structural parameters at local scale. For air quality monitoring, a Minimum Reflectance Technique (MRT) has been developed for MODIS 500 m images. The techniques described can promote the routine utilization of remotely sensed images for environmental monitoring in cities of the 21st century. PMID:22408549
Prostate seed implant quality assessment using MR and CT image fusion.
Amdur, R J; Gladstone, D; Leopold, K A; Harris, R D
1999-01-01
After a seed implant of the prostate, computerized tomography (CT) is ideal for determining seed distribution but soft tissue anatomy is frequently not well visualized. Magnetic resonance (MR) images soft tissue anatomy well but seed visualization is problematic. We describe a method of fusing CT and MR images to exploit the advantages of both of these modalities when assessing the quality of a prostate seed implant. Eleven consecutive prostate seed implant patients were imaged with axial MR and CT scans. MR and CT images were fused in three dimensions using the Pinnacle 3.0 version of the ADAC treatment planning system. The urethra and bladder base were used to "line up" MR and CT image sets during image fusion. Alignment was accomplished using translation and rotation in the three ortho-normal planes. Accuracy of image fusion was evaluated by calculating the maximum deviation in millimeters between the center of the urethra on axial MR versus CT images. Implant quality was determined by comparing dosimetric results to previously set parameters. Image fusion was performed with a high degree of accuracy. When lining up the urethra and base of bladder, the maximum difference in axial position of the urethra between MR and CT averaged 2.5 mm (range 1.3-4.0 mm, SD 0.9 mm). By projecting CT-derived dose distributions over MR images of soft tissue structures, qualitative and quantitative evaluation of implant quality is straightforward. The image-fusion process we describe provides a sophisticated way of assessing the quality of a prostate seed implant. Commercial software makes the process time-efficient and available to any clinical practice with a high-quality treatment planning system. While we use MR to image soft tissue structures, the process could be used with any imaging modality that is able to visualize the prostatic urethra (e.g., ultrasound).
NASA Astrophysics Data System (ADS)
Jeon, Pil-Hyun; Kim, Hee-Joung; Lee, Chang-Lae; Kim, Dae-Hong; Lee, Won-Hyung; Jeon, Sung-Su
2012-06-01
For a considerable number of emergency computed tomography (CT) scans, patients are unable to position their arms above their head due to traumatic injuries. The arms-down position has been shown to reduce image quality with beam-hardening artifacts in the dorsal regions of the liver, spleen, and kidneys, rendering these images non-diagnostic. The purpose of this study was to evaluate the effect of arm position on the image quality in patients undergoing whole-body CT. We acquired CT scans with various acquisition parameters at voltages of 80, 120, and 140 kVp and an increasing tube current from 200 to 400 mAs in 50 mAs increments. The image noise and the contrast assessment were considered for quantitative analyses of the CT images. The image noise (IN), the contrast-to-noise ratio (CNR), the signal-to-noise ratio (SNR), and the coefficient of variation (COV) were evaluated. Quantitative analyses of the experiments were performed with CT scans representative of five different arm positions. Results of the CT scans acquired at 120 kVp and 250 mAs showed high image quality in patients with both arms raised above the head (SNR: 12.4, CNR: 10.9, and COV: 8.1) and both arms flexed at the elbows on the chest (SNR: 11.5, CNR: 10.2, and COV: 8.8) while the image quality significantly decreased with both arms in the down position (SNR: 9.1, CNR: 7.6, and COV: 11). Both arms raised, one arm raised, and both arms flexed improved the image quality compared to arms in the down position by reducing beam-hardening and streak artifacts caused by the arms being at the side of body. This study provides optimal methods for achieving higher image quality and lower noise in abdominal CT for trauma patients.
McCafferty, Sean J; Schwiegerling, Jim T
2015-04-01
Present an analysis methodology for developing and evaluating accommodating intraocular lenses incorporating a deformable interface. The next generation design of extruded gel interface intraocular lens is presented. A prototype based upon similar previously in vivo proven design was tested with measurements of actuation force, lens power, interface contour, optical transfer function, and visual Strehl ratio. Prototype verified mathematical models were used to optimize optical and mechanical design parameters to maximize the image quality and minimize the required force to accommodate. The prototype lens produced adequate image quality with the available physiologic accommodating force. The iterative mathematical modeling based upon the prototype yielded maximized optical and mechanical performance through maximum allowable gel thickness to extrusion diameter ratio, maximum feasible refractive index change at the interface, and minimum gel material properties in Poisson's ratio and Young's modulus. The design prototype performed well. It operated within the physiologic constraints of the human eye including the force available for full accommodative amplitude using the eye's natural focusing feedback, while maintaining image quality in the space available. The parameters that optimized optical and mechanical performance were delineated as those, which minimize both asphericity and actuation pressure. The design parameters outlined herein can be used as a template to maximize the performance of a deformable interface intraocular lens. The article combines a multidisciplinary basic science approach from biomechanics, optical science, and ophthalmology to optimize an intraocular lens design suitable for preliminary animal trials.
The Estimation of Precisions in the Planning of Uas Photogrammetric Surveys
NASA Astrophysics Data System (ADS)
Passoni, D.; Federici, B.; Ferrando, I.; Gagliolo, S.; Sguerso, D.
2018-05-01
The Unmanned Aerial System (UAS) is widely used in the photogrammetric surveys both of structures and of small areas. Geomatics focuses the attention on the metric quality of the final products of the survey, creating several 3D modelling applications from UAS images. As widely known, the quality of results derives from the quality of images acquisition phase, which needs an a priori estimation of the expected precisions. The planning phase is typically managed using dedicated tools, adapted from the traditional aerial-photogrammetric flight plan. But UAS flight has features completely different from the traditional one. Hence, the use of UAS for photogrammetric applications today requires a growth in knowledge in planning. The basic idea of this research is to provide a drone photogrammetric flight planning tools considering the required metric precisions, given a priori the classical parameters of a photogrammetric planning: flight altitude, overlaps and geometric parameters of the camera. The created "office suite" allows a realistic planning of a photogrammetric survey, starting from an approximate knowledge of the Digital Surface Model (DSM), and the effective attitude parameters, changing along the route. The planning products are the overlapping of the images, the Ground Sample Distance (GSD) and the precision on each pixel taking into account the real geometry. The different tested procedures, the obtained results and the solution proposed for the a priori estimates of the precisions in the particular case of UAS surveys are here reported.
Giardino, Claudia; Bresciani, Mariano; Cazzaniga, Ilaria; Schenk, Karin; Rieger, Patrizia; Braga, Federica; Matta, Erica; Brando, Vittorio E
2014-12-15
In this study we evaluate the capabilities of three satellite sensors for assessing water composition and bottom depth in Lake Garda, Italy. A consistent physics-based processing chain was applied to Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat-8 Operational Land Imager (OLI) and RapidEye. Images gathered on 10 June 2014 were corrected for the atmospheric effects with the 6SV code. The computed remote sensing reflectance (Rrs) from MODIS and OLI were converted into water quality parameters by adopting a spectral inversion procedure based on a bio-optical model calibrated with optical properties of the lake. The same spectral inversion procedure was applied to RapidEye and to OLI data to map bottom depth. In situ measurements of Rrs and of concentrations of water quality parameters collected in five locations were used to evaluate the models. The bottom depth maps from OLI and RapidEye showed similar gradients up to 7 m (r = 0.72). The results indicate that: (1) the spatial and radiometric resolutions of OLI enabled mapping water constituents and bottom properties; (2) MODIS was appropriate for assessing water quality in the pelagic areas at a coarser spatial resolution; and (3) RapidEye had the capability to retrieve bottom depth at high spatial resolution. Future work should evaluate the performance of the three sensors in different bio-optical conditions.
Hyperspectral imaging simulation of object under sea-sky background
NASA Astrophysics Data System (ADS)
Wang, Biao; Lin, Jia-xuan; Gao, Wei; Yue, Hui
2016-10-01
Remote sensing image simulation plays an important role in spaceborne/airborne load demonstration and algorithm development. Hyperspectral imaging is valuable in marine monitoring, search and rescue. On the demand of spectral imaging of objects under the complex sea scene, physics based simulation method of spectral image of object under sea scene is proposed. On the development of an imaging simulation model considering object, background, atmosphere conditions, sensor, it is able to examine the influence of wind speed, atmosphere conditions and other environment factors change on spectral image quality under complex sea scene. Firstly, the sea scattering model is established based on the Philips sea spectral model, the rough surface scattering theory and the water volume scattering characteristics. The measured bi directional reflectance distribution function (BRDF) data of objects is fit to the statistical model. MODTRAN software is used to obtain solar illumination on the sea, sky brightness, the atmosphere transmittance from sea to sensor and atmosphere backscattered radiance, and Monte Carlo ray tracing method is used to calculate the sea surface object composite scattering and spectral image. Finally, the object spectrum is acquired by the space transformation, radiation degradation and adding the noise. The model connects the spectrum image with the environmental parameters, the object parameters, and the sensor parameters, which provide a tool for the load demonstration and algorithm development.
Ferumoxytol as an off-label contrast agent in body 3-T MR angiography: a pilot study in children
Ruangwattanapaisarn, Nichanan; Hsiao, Albert
2014-01-01
Background Ferumoxytol is an ultrasmall superparamagnetic iron oxide (USPIO) nanoparticle agent used to treat iron deficiency anemia in adults with chronic kidney disease. Objective We aim to determine the feasibility of using of ferumoxytol for clinical pediatric cardiac and vascular imaging. Material and methods We retrospectively identified 23 consecutive children who underwent MRI with ferumoxytol (11 males; mean age: 7.4 years, range: 3 days–18 years), yielding 12 abdominal MR angiography and 15 cardiac MRI studies. Medical records were reviewed for the clinical indication, ferumoxytol dose, injection rate, sedation and any complication. A two-reader consensus scored the images on a 5-point scale for overall image quality and delineation of various anatomical structures. Signal-to-background ratios for abdominal aorta and inferior vena cava for abdominal cases and blood pool-myocardium contrast ratios for cardiac cases were calculated. The confidence intervals for obtaining a score of 3 or above for each image parameter were calculated by using adjusted Wald method. Results For abdominal MR angiography, average scores for overall image quality, as well as delineation of the hepatic artery, superior mesenteric artery, renal artery, and veins were 4.5, 4.3, 4.3, 3.7 and 4.7, respectively. For cardiac exams, the average scores for overall image quality, systemic arteries, pulmonary arteries, pulmonary veins, valves and ventricles were 4.4, 4.6, 4.1, 4.8, 4.1 and 4.7, respectively. For all parameters, lower bound for proportion of cases to have a score of 3 or above was 65%. Signal-to-background ratios for aorta and abdominal veins averaged 86 +/− 74 and 86 +/− 77 for full-dose images, and 23 and 18 for half-dose images, respectively. Mean blood pool to myocardium contrast ratio was 3:3. Conclusion Ferumoxytol can provide excellent image quality for pediatric body MR angiography/MR venography at a dose of 1.5 or 3 mg Fe/kg. Further investigation should be directed toward understanding the lowest dose that can be administered. PMID:25427433
Image-Processing Techniques for the Creation of Presentation-Quality Astronomical Images
NASA Astrophysics Data System (ADS)
Rector, Travis A.; Levay, Zoltan G.; Frattare, Lisa M.; English, Jayanne; Pu'uohau-Pummill, Kirk
2007-02-01
The quality of modern astronomical data and the agility of current image-processing software enable the visualization of data in a way that exceeds the traditional definition of an astronomical image. Two developments in particular have led to a fundamental change in how astronomical images can be assembled. First, the availability of high-quality multiwavelength and narrowband data allow for images that do not correspond to the wavelength sensitivity of the human eye, thereby introducing ambiguity in the usage and interpretation of color. Second, many image-processing software packages now use a layering metaphor that allows for any number of astronomical data sets to be combined into a color image. With this technique, images with as many as eight data sets have been produced. Each data set is intensity-scaled and colorized independently, creating an immense parameter space that can be used to assemble the image. Since such images are intended for data visualization, scaling and color schemes must be chosen that best illustrate the science. A practical guide is presented on how to use the layering metaphor to generate publication-ready astronomical images from as many data sets as desired. A methodology is also given on how to use intensity scaling, color, and composition to create contrasts in an image that highlight the scientific detail. Examples of image creation are discussed.
Image quality and stability of image-guided radiotherapy (IGRT) devices: A comparative study
Stock, Markus; Pasler, Marlies; Birkfellner, Wolfgang; Homolka, Peter; Poetter, Richard; Georg, Dietmar
2010-01-01
Introduction Our aim was to implement standards for quality assurance of IGRT devices used in our department and to compare their performances with that of a CT simulator. Materials and methods We investigated image quality parameters for three devices over a period of 16 months. A multislice CT was used as a benchmark and results related to noise, spatial resolution, low contrast visibility (LCV) and uniformity were compared with a cone beam CT (CBCT) at a linac and simulator. Results All devices performed well in terms of LCV and, in fact, exceeded vendor specifications. MTF was comparable between CT and linac CBCT. Integral nonuniformity was, on average, 0.002 for the CT and 0.006 for the linac CBCT. Uniformity, LCV and MTF varied depending on the protocols used for the linac CBCT. Contrast-to-noise ratio was an average of 51% higher for the CT than for the linac and simulator CBCT. No significant time trend was observed and tolerance limits were implemented. Discussion Reasonable differences in image quality between CT and CBCT were observed. Further research and development are necessary to increase image quality of commercially available CBCT devices in order for them to serve the needs for adaptive and/or online planning. PMID:19695725
Reconstruction of magnetic resonance imaging by three-dimensional dual-dictionary learning.
Song, Ying; Zhu, Zhen; Lu, Yang; Liu, Qiegen; Zhao, Jun
2014-03-01
To improve the magnetic resonance imaging (MRI) data acquisition speed while maintaining the reconstruction quality, a novel method is proposed for multislice MRI reconstruction from undersampled k-space data based on compressed-sensing theory using dictionary learning. There are two aspects to improve the reconstruction quality. One is that spatial correlation among slices is used by extending the atoms in dictionary learning from patches to blocks. The other is that the dictionary-learning scheme is used at two resolution levels; i.e., a low-resolution dictionary is used for sparse coding and a high-resolution dictionary is used for image updating. Numerical experiments are carried out on in vivo 3D MR images of brains and abdomens with a variety of undersampling schemes and ratios. The proposed method (dual-DLMRI) achieves better reconstruction quality than conventional reconstruction methods, with the peak signal-to-noise ratio being 7 dB higher. The advantages of the dual dictionaries are obvious compared with the single dictionary. Parameter variations ranging from 50% to 200% only bias the image quality within 15% in terms of the peak signal-to-noise ratio. Dual-DLMRI effectively uses the a priori information in the dual-dictionary scheme and provides dramatically improved reconstruction quality. Copyright © 2013 Wiley Periodicals, Inc.
Schernthaner, Ruediger E; Haroun, Reham R; Nguyen, Sonny; Duran, Rafael; Sohn, Jae Ho; Sahu, Sonia; Chapiro, Julius; Zhao, Yan; Radaelli, Alessandro; van der Bom, Imramsjah M; Mauti, Maria; Hong, Kelvin; Geschwind, Jean-François H; Lin, MingDe
2018-03-01
To compare image quality and radiation exposure between a new angiographic imaging system and the preceding generation system during uterine artery embolization (UAE). In this retrospective, IRB-approved two-arm study, 54 patients with symptomatic uterine fibroids were treated with UAE on two different angiographic imaging systems. The new system includes optimized acquisition parameters and real-time image processing algorithms. Air kerma (AK), dose area product (DAP) and acquisition time for digital fluoroscopy (DF) and digital subtraction angiography (DSA) were recorded. Body mass index was noted as well. DF image quality was assessed objectively by image noise measurements. DSA image quality was rated by two blinded, independent readers on a four-rank scale. Statistical differences were assessed with unpaired t tests and Wilcoxon rank-sum tests. There was no significant difference between the patients treated on the new (n = 36) and the old system (n = 18) regarding age (p = 0.10), BMI (p = 0.18), DF time (p = 0.35) and DSA time (p = 0.17). The new system significantly reduced the cumulative AK and DAP by 64 and 72%, respectively (median 0.58 Gy and 145.9 Gy*cm 2 vs. 1.62 Gy and 526.8 Gy*cm 2 , p < 0.01 for both). Specifically, DAP for DF and DSA decreased by 59% (75.3 vs. 181.9 Gy*cm 2 , p < 0.01) and 78% (67.6 vs. 312.2 Gy*cm 2 , p < 0.01), respectively. The new system achieved a significant decrease in DF image noise (p < 0.01) and a significantly better DSA image quality (p < 0.01). The new angiographic imaging system significantly improved image quality and reduced radiation exposure during UAE procedures.
Bujila, Robert; Poludniowski, Gavin; Fransson, Annette
2015-01-01
The purpose of this study was to develop a method of performing routine periodical quality controls (QC) of CT systems by automatically analyzing key performance indicators (KPIs), obtainable from images of manufacturers' quality assurance (QA) phantoms. A KPI pertains to a measurable or determinable QC parameter that is influenced by other underlying fundamental QC parameters. The established KPIs are based on relationships between existing QC parameters used in the annual testing program of CT scanners at the Karolinska University Hospital in Stockholm, Sweden. The KPIs include positioning, image noise, uniformity, homogeneity, the CT number of water, and the CT number of air. An application (MonitorCT) was developed to automatically evaluate phantom images in terms of the established KPIs. The developed methodology has been used for two years in clinical routine, where CT technologists perform daily scans of the manufacturer's QA phantom and automatically send the images to MonitorCT for KPI evaluation. In the cases where results were out of tolerance, actions could be initiated in less than 10 min. 900 QC scans from two CT scanners have been collected and analyzed over the two‐year period that MonitorCT has been active. Two types of errors have been registered in this period: a ring artifact was discovered with the image noise test, and a calibration error was detected multiple times with the CT number test. In both cases, results were outside the tolerances defined for MonitorCT, as well as by the vendor. Automated monitoring of KPIs is a powerful tool that can be used to supplement established QC methodologies. Medical physicists and other professionals concerned with the performance of a CT system will, using such methods, have access to comprehensive data on the current and historical (trend) status of the system such that swift actions can be taken in order to ensure the quality of the CT examinations, patient safety, and minimal disruption of service PACS numbers: 87.57.C‐, 87.57.N‐, 87.57.Q‐ PMID:26219012
Prospective regularization design in prior-image-based reconstruction
NASA Astrophysics Data System (ADS)
Dang, Hao; Siewerdsen, Jeffrey H.; Webster Stayman, J.
2015-12-01
Prior-image-based reconstruction (PIBR) methods leveraging patient-specific anatomical information from previous imaging studies and/or sequences have demonstrated dramatic improvements in dose utilization and image quality for low-fidelity data. However, a proper balance of information from the prior images and information from the measurements is required (e.g. through careful tuning of regularization parameters). Inappropriate selection of reconstruction parameters can lead to detrimental effects including false structures and failure to improve image quality. Traditional methods based on heuristics are subject to error and sub-optimal solutions, while exhaustive searches require a large number of computationally intensive image reconstructions. In this work, we propose a novel method that prospectively estimates the optimal amount of prior image information for accurate admission of specific anatomical changes in PIBR without performing full image reconstructions. This method leverages an analytical approximation to the implicitly defined PIBR estimator, and introduces a predictive performance metric leveraging this analytical form and knowledge of a particular presumed anatomical change whose accurate reconstruction is sought. Additionally, since model-based PIBR approaches tend to be space-variant, a spatially varying prior image strength map is proposed to optimally admit changes everywhere in the image (eliminating the need to know change locations a priori). Studies were conducted in both an ellipse phantom and a realistic thorax phantom emulating a lung nodule surveillance scenario. The proposed method demonstrated accurate estimation of the optimal prior image strength while achieving a substantial computational speedup (about a factor of 20) compared to traditional exhaustive search. Moreover, the use of the proposed prior strength map in PIBR demonstrated accurate reconstruction of anatomical changes without foreknowledge of change locations in phantoms where the optimal parameters vary spatially by an order of magnitude or more. In a series of studies designed to explore potential unknowns associated with accurate PIBR, optimal prior image strength was found to vary with attenuation differences associated with anatomical change but exhibited only small variations as a function of the shape and size of the change. The results suggest that, given a target change attenuation, prospective patient-, change-, and data-specific customization of the prior image strength can be performed to ensure reliable reconstruction of specific anatomical changes.
An invertebrate embryologist's guide to routine processing of confocal images.
von Dassow, George
2014-01-01
It is almost impossible to use a confocal microscope without encountering the need to transform the raw data through image processing. Adherence to a set of straightforward guidelines will help ensure that image manipulations are both credible and repeatable. Meanwhile, attention to optimal data collection parameters will greatly simplify image processing, not only for convenience but for quality and credibility as well. Here I describe how to conduct routine confocal image processing tasks, including creating 3D animations or stereo images, false coloring or merging channels, background suppression, and compressing movie files for display.
Contrast-to-noise ratio in magnification mammography: a Monte Carlo study
NASA Astrophysics Data System (ADS)
Koutalonis, M.; Delis, H.; Spyrou, G.; Costaridou, L.; Tzanakos, G.; Panayiotakis, G.
2007-06-01
Magnification views are a common way to perform a secondary examination when suspicious abnormalities are found in a screening mammogram. The visibility of microcalcifications and breast lesions is restricted by the compromise between the image quality and the absorbed dose. In this study, image quality characteristics in magnification mammography were evaluated based on Monte Carlo techniques. A breast phantom was utilized, simulating a homogeneous mixture of adipose and glandular tissue in various percentages of glandularity, containing inhomogeneities of various sizes and compositions. The effect of the magnification degree, breast glandularity, tube voltage and anode/filter material combination on image quality characteristics was investigated in terms of a contrast-to-noise ratio (CNR). A performance index PIν was introduced in order to study the overall performance of various anode/filter combinations under different exposure parameters. Results demonstrate that CNR is improved with the degree of magnification and degraded as the breast glandularity is increased. Degree of magnification 1.3 offers the best overall performance for most of the anode/filter combinations utilized. Under magnification conditions, the role of dose is demoted against the image quality, as magnification views are secondary, diagnostic examinations and not screening procedures oriented to non-symptomatic women. For decreased image quality weighting, some anode/filter combinations different from Mo/0.030mmMo can be utilized as they offer a similar performance index. However, if the desired weighting for the image quality is high, the Mo/0.030mmMo combination has the best overall performance.
Objective measurement of the optical image quality in the human eye
NASA Astrophysics Data System (ADS)
Navarro, Rafael M.
2001-05-01
This communication reviews some recent studies on the optical performance of the human eye. Although the retinal image cannot be recorded directly, different objective methods have been developed, which permit to determine optical quality parameters, such as the Point Spread Function (PSF), the Modulation Transfer Function (MTF), the geometrical ray aberrations or the wavefront distortions, in the living human eye. These methods have been applied in both basic and applied research. This includes the measurement of the optical performance of the eye across visual field, the optical quality of eyes with intraocular lens implants, the aberrations induced by LASIK refractive surgery, or the manufacture of customized phase plates to compensate the wavefront aberration in the eye.
NASA Astrophysics Data System (ADS)
Zhang, Xueliang; Feng, Xuezhi; Xiao, Pengfeng; He, Guangjun; Zhu, Liujun
2015-04-01
Segmentation of remote sensing images is a critical step in geographic object-based image analysis. Evaluating the performance of segmentation algorithms is essential to identify effective segmentation methods and optimize their parameters. In this study, we propose region-based precision and recall measures and use them to compare two image partitions for the purpose of evaluating segmentation quality. The two measures are calculated based on region overlapping and presented as a point or a curve in a precision-recall space, which can indicate segmentation quality in both geometric and arithmetic respects. Furthermore, the precision and recall measures are combined by using four different methods. We examine and compare the effectiveness of the combined indicators through geometric illustration, in an effort to reveal segmentation quality clearly and capture the trade-off between the two measures. In the experiments, we adopted the multiresolution segmentation (MRS) method for evaluation. The proposed measures are compared with four existing discrepancy measures to further confirm their capabilities. Finally, we suggest using a combination of the region-based precision-recall curve and the F-measure for supervised segmentation evaluation.
Fritscher, Karl; Grunerbl, Agnes; Hanni, Markus; Suhm, Norbert; Hengg, Clemens; Schubert, Rainer
2009-10-01
Currently, conventional X-ray and CT images as well as invasive methods performed during the surgical intervention are used to judge the local quality of a fractured proximal femur. However, these approaches are either dependent on the surgeon's experience or cannot assist diagnostic and planning tasks preoperatively. Therefore, in this work a method for the individual analysis of local bone quality in the proximal femur based on model-based analysis of CT- and X-ray images of femur specimen will be proposed. A combined representation of shape and spatial intensity distribution of an object and different statistical approaches for dimensionality reduction are used to create a statistical appearance model in order to assess the local bone quality in CT and X-ray images. The developed algorithms are tested and evaluated on 28 femur specimen. It will be shown that the tools and algorithms presented herein are highly adequate to automatically and objectively predict bone mineral density values as well as a biomechanical parameter of the bone that can be measured intraoperatively.
Dewes, Patricia; Frellesen, Claudia; Scholtz, Jan-Erik; Fischer, Sebastian; Vogl, Thomas J; Bauer, Ralf W; Schulz, Boris
2016-06-01
To evaluate a novel tin filter-based abdominal CT protocol for urolithiasis in terms of image quality and CT dose parameters. 130 consecutive patients with suspected urolithiasis underwent non-enhanced CT with three different protocols: 48 patients (group 1) were examined at tin-filtered 150kV (150kV Sn) on a third-generation dual-source-CT, 33 patients were examined with automated kV-selection (110-140kV) based on the scout view on the same CT-device (group 2), and 49 patients were examined on a second-generation dual-source-CT (group 3) with automated kV-selection (100-140kV). Automated exposure control was active in all groups. Image quality was subjectively evaluated on a 5-point-likert-scale by two radiologists and interobserver agreement as well as signal-to-noise-ratio (SNR) was calculated. Dose-length-product (DLP) and volume CT dose index (CTDIvol) were compared. Image quality was rated in favour for the tin filter protocol with excellent interobserver agreement (ICC=0.86-0.91) and the difference reached statistical significance (p<0.001). SNR was significantly higher in group 1 and 2 compared to second-generation DSCT (p<0.001). On third-generation dual-source CT, there was no significant difference in SNR between the 150kV Sn and the automated kV selection protocol (p=0.5). The DLP of group 1 was 23% and 21% (p<0.002) lower in comparison to group 2 and 3, respectively. So was the CTDIvol of group 1 compared to group 2 (-36%) and 3 (-32%) (p<0.001). Additional shaping of a 150kV source spectrum by a tin filter substantially lowers patient exposure while improving image quality on un-enhanced abdominal computed tomography for urinary stone disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Benefits of utilizing CellProfiler as a characterization tool for U-10Mo nuclear fuel
Collette, R.; Douglas, J.; Patterson, L.; ...
2015-05-01
Automated image processing techniques have the potential to aid in the performance evaluation of nuclear fuels by eliminating judgment calls that may vary from person-to-person or sample-to-sample. Analysis of in-core fuel performance is required for design and safety evaluations related to almost every aspect of the nuclear fuel cycle. This study presents a methodology for assessing the quality of uranium-molybdenum fuel images and describes image analysis routines designed for the characterization of several important microstructural properties. The analyses are performed in CellProfiler, an open-source program designed to enable biologists without training in computer vision or programming to automatically extract cellularmore » measurements from large image sets. The quality metric scores an image based on three parameters: the illumination gradient across the image, the overall focus of the image, and the fraction of the image that contains scratches. The metric presents the user with the ability to ‘pass’ or ‘fail’ an image based on a reproducible quality score. Passable images may then be characterized through a separate CellProfiler pipeline, which enlists a variety of common image analysis techniques. The results demonstrate the ability to reliably pass or fail images based on the illumination, focus, and scratch fraction of the image, followed by automatic extraction of morphological data with respect to fission gas voids, interaction layers, and grain boundaries.« less
SU-E-I-95: Personalized Radiography Technical Parameters for Each Patient and Exam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soares, F; Camozzato, T; Kahl, G
Purpose: To determine exact electrical parameters (kV, mAs) a radiological technologist shall use taking account the exam and patient's structure, with guarantee of minimum dose and adequate quality image. Methods: A patient's absorbed dose equation was developed by means of Entrance Skin Dose (ESD), irradiated area and patient width for specific anatomy. ESD is calculated from a developed equation, where entrance surface air-KERMA and backscatter factor are included, with air-to-skin coefficient conversion. We developed specific Lambert-Beer attenuation equations derived from mass energy-absorption coefficients data for skin, fat, and muscle and bone as one tissue. Anatomy tissue thickness distribution at centralmore » X-ray location in anteroposterior incidence for hand and chest, was estimate by discounting constant skin and bone thickness from patient measured width, assuming the result as muscle and fat. A clinical research at a big hospital were executed when real parameters (kV, mAs, filtration, ripple) used by technologists were combined with the image quality and patient's data: anatomy width, height and weight. A correlation among the best images acquired and electrical parameters used were confronted with patient's data and dose estimation. The best combinations were used as gold standards. Results: For each anatomy, two equations were developed to calculate voltage (kV) and exposure (mAs) to reproduce and interpolate the gold standards. Patient is measured and data are input into equations, giving radiological technologists the right set of electrical parameters for that specific exam. Conclusion: This work indicates that radiological technologist can personalize the exact electrical parameters for each patient exam, instead of using standard values. It also guarantee that patients under or over-sized measures will receive the right dose for the best image. It will stop wrong empiric adjusts technologists do when examining a non-standard patient and reduce probability of radiography retaken because of over or under exposition.« less
DCTune Perceptual Optimization of Compressed Dental X-Rays
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Null, Cynthia H. (Technical Monitor)
1996-01-01
In current dental practice, x-rays of completed dental work are often sent to the insurer for verification. It is faster and cheaper to transmit instead digital scans of the x-rays. Further economies result if the images are sent in compressed form. DCTune is a technology for optimizing DCT (digital communication technology) quantization matrices to yield maximum perceptual quality for a given bit-rate, or minimum bit-rate for a given perceptual quality. Perceptual optimization of DCT color quantization matrices. In addition, the technology provides a means of setting the perceptual quality of compressed imagery in a systematic way. The purpose of this research was, with respect to dental x-rays, 1) to verify the advantage of DCTune over standard JPEG (Joint Photographic Experts Group), 2) to verify the quality control feature of DCTune, and 3) to discover regularities in the optimized matrices of a set of images. We optimized matrices for a total of 20 images at two resolutions (150 and 300 dpi) and four bit-rates (0.25, 0.5, 0.75, 1.0 bits/pixel), and examined structural regularities in the resulting matrices. We also conducted psychophysical studies (1) to discover the DCTune quality level at which the images became 'visually lossless,' and (2) to rate the relative quality of DCTune and standard JPEG images at various bitrates. Results include: (1) At both resolutions, DCTune quality is a linear function of bit-rate. (2) DCTune quantization matrices for all images at all bitrates and resolutions are modeled well by an inverse Gaussian, with parameters of amplitude and width. (3) As bit-rate is varied, optimal values of both amplitude and width covary in an approximately linear fashion. (4) Both amplitude and width vary in systematic and orderly fashion with either bit-rate or DCTune quality; simple mathematical functions serve to describe these relationships. (5) In going from 150 to 300 dpi, amplitude parameters are substantially lower and widths larger at corresponding bit-rates or qualities. (6) Visually lossless compression occurs at a DCTune quality value of about 1. (7) At 0.25 bits/pixel, comparative ratings give DCTune a substantial advantage over standard JPEG. As visually lossless bit-rates are approached, this advantage of necessity diminishes. We have concluded that DCTune optimized quantization matrices provide better visual quality than standard JPEG. Meaningful quality levels may be specified by means of the DCTune metric. Optimized matrices are very similar across the class of dental x-rays, suggesting the possibility of a 'class-optimal' matrix. DCTune technology appears to provide some value in the context of compressed dental x-rays.
Optical design of microlens array for CMOS image sensors
NASA Astrophysics Data System (ADS)
Zhang, Rongzhu; Lai, Liping
2016-10-01
The optical crosstalk between the pixel units can influence the image quality of CMOS image sensor. In the meantime, the duty ratio of CMOS is low because of its pixel structure. These two factors cause the low detection sensitivity of CMOS. In order to reduce the optical crosstalk and improve the fill factor of CMOS image sensor, a microlens array has been designed and integrated with CMOS. The initial parameters of the microlens array have been calculated according to the structure of a CMOS. Then the parameters have been optimized by using ZEMAX and the microlens arrays with different substrate thicknesses have been compared. The results show that in order to obtain the best imaging quality, when the effect of optical crosstalk for CMOS is the minimum, the best distance between microlens array and CMOS is about 19.3 μm. When incident light successively passes through microlens array and the distance, obtaining the minimum facula is around 0.347 um in the active area. In addition, when the incident angle of the light is 0o 22o, the microlens array has obvious inhibitory effect on the optical crosstalk. And the anti-crosstalk distance between microlens array and CMOS is 0 μm 162 μm.
NASA Astrophysics Data System (ADS)
Sun, Ziheng; Fang, Hui; Di, Liping; Yue, Peng
2016-09-01
It was an untouchable dream for remote sensing experts to realize total automatic image classification without inputting any parameter values. Experts usually spend hours and hours on tuning the input parameters of classification algorithms in order to obtain the best results. With the rapid development of knowledge engineering and cyberinfrastructure, a lot of data processing and knowledge reasoning capabilities become online accessible, shareable and interoperable. Based on these recent improvements, this paper presents an idea of parameterless automatic classification which only requires an image and automatically outputs a labeled vector. No parameters and operations are needed from endpoint consumers. An approach is proposed to realize the idea. It adopts an ontology database to store the experiences of tuning values for classifiers. A sample database is used to record training samples of image segments. Geoprocessing Web services are used as functionality blocks to finish basic classification steps. Workflow technology is involved to turn the overall image classification into a total automatic process. A Web-based prototypical system named PACS (Parameterless Automatic Classification System) is implemented. A number of images are fed into the system for evaluation purposes. The results show that the approach could automatically classify remote sensing images and have a fairly good average accuracy. It is indicated that the classified results will be more accurate if the two databases have higher quality. Once the experiences and samples in the databases are accumulated as many as an expert has, the approach should be able to get the results with similar quality to that a human expert can get. Since the approach is total automatic and parameterless, it can not only relieve remote sensing workers from the heavy and time-consuming parameter tuning work, but also significantly shorten the waiting time for consumers and facilitate them to engage in image classification activities. Currently, the approach is used only on high resolution optical three-band remote sensing imagery. The feasibility using the approach on other kinds of remote sensing images or involving additional bands in classification will be studied in future.
NASA Astrophysics Data System (ADS)
Jeon, P.-H.; Lee, C.-L.; Kim, D.-H.; Lee, Y.-J.; Jeon, S.-S.; Kim, H.-J.
2014-03-01
Multi-detector computed tomography (MDCT) can be used to easily and rapidly perform numerous acquisitions, possibly leading to a marked increase in the radiation dose to individual patients. Technical options dedicated to automatically adjusting the acquisition parameters according to the patient's size are of specific interest in pediatric radiology. A constant tube potential reduction can be achieved for adults and children, while maintaining a constant detector energy fluence. To evaluate radiation dose, the weighted CT dose index (CTDIw) was calculated based on the CT dose index (CTDI) measured using an ion chamber, and image noise and image contrast were measured from a scanned image to evaluate image quality. The dose-weighted contrast-to-noise ratio (CNRD) was calculated from the radiation dose, image noise, and image contrast measured from a scanned image. The noise derivative (ND) is a quality index for dose efficiency. X-ray spectra with tube voltages ranging from 80 to 140 kVp were used to compute the average photon energy. Image contrast and the corresponding contrast-to-noise ratio (CNR) were determined for lesions of soft tissue, muscle, bone, and iodine relative to a uniform water background, as the iodine contrast increases at lower energy (i.e., k-edge of iodine is 33 keV closer to the beam energy) using mixed water-iodine contrast normalization (water 0, iodine 25, 100, 200, and 1000 HU, respectively). The proposed values correspond to high quality images and can be reduced if only high-contrast organs are assessed. The potential benefit of lowering the tube voltage is an improved CNRD, resulting in a lower radiation dose and optimization of image quality. Adjusting the tube potential in abdominal CT would be useful in current pediatric radiography, where the choice of X-ray techniques generally takes into account the size of the patient as well as the need to balance the conflicting requirements of diagnostic image quality and radiation dose optimization.
Mertens, Jan E.J.; Roie, Martijn Van; Merckx, Jonas; Dekoninck, Wouter
2017-01-01
Abstract Digitization of specimen collections has become a key priority of many natural history museums. The camera systems built for this purpose are expensive, providing a barrier in institutes with limited funding, and therefore hampering progress. An assessment is made on whether a low cost compact camera with image stacking functionality can help expedite the digitization process in large museums or provide smaller institutes and amateur entomologists with the means to digitize their collections. Images of a professional setup were compared with the Olympus Stylus TG-4 Tough, a low-cost compact camera with internal focus stacking functions. Parameters considered include image quality, digitization speed, price, and ease-of-use. The compact camera’s image quality, although inferior to the professional setup, is exceptional considering its fourfold lower price point. Producing the image slices in the compact camera is a matter of seconds and when optimal image quality is less of a priority, the internal stacking function omits the need for dedicated stacking software altogether, further decreasing the cost and speeding up the process. In general, it is found that, aware of its limitations, this compact camera is capable of digitizing entomological collections with sufficient quality. As technology advances, more institutes and amateur entomologists will be able to easily and affordably catalogue their specimens. PMID:29134038
GPU-accelerated Kernel Regression Reconstruction for Freehand 3D Ultrasound Imaging.
Wen, Tiexiang; Li, Ling; Zhu, Qingsong; Qin, Wenjian; Gu, Jia; Yang, Feng; Xie, Yaoqin
2017-07-01
Volume reconstruction method plays an important role in improving reconstructed volumetric image quality for freehand three-dimensional (3D) ultrasound imaging. By utilizing the capability of programmable graphics processing unit (GPU), we can achieve a real-time incremental volume reconstruction at a speed of 25-50 frames per second (fps). After incremental reconstruction and visualization, hole-filling is performed on GPU to fill remaining empty voxels. However, traditional pixel nearest neighbor-based hole-filling fails to reconstruct volume with high image quality. On the contrary, the kernel regression provides an accurate volume reconstruction method for 3D ultrasound imaging but with the cost of heavy computational complexity. In this paper, a GPU-based fast kernel regression method is proposed for high-quality volume after the incremental reconstruction of freehand ultrasound. The experimental results show that improved image quality for speckle reduction and details preservation can be obtained with the parameter setting of kernel window size of [Formula: see text] and kernel bandwidth of 1.0. The computational performance of the proposed GPU-based method can be over 200 times faster than that on central processing unit (CPU), and the volume with size of 50 million voxels in our experiment can be reconstructed within 10 seconds.
Crystal surface analysis using matrix textural features classified by a probabilistic neural network
NASA Astrophysics Data System (ADS)
Sawyer, Curry R.; Quach, Viet; Nason, Donald; van den Berg, Lodewijk
1991-12-01
A system is under development in which surface quality of a growing bulk mercuric iodide crystal is monitored by video camera at regular intervals for early detection of growth irregularities. Mercuric iodide single crystals are employed in radiation detectors. A microcomputer system is used for image capture and processing. The digitized image is divided into multiple overlapping sub-images and features are extracted from each sub-image based on statistical measures of the gray tone distribution, according to the method of Haralick. Twenty parameters are derived from each sub-image and presented to a probabilistic neural network (PNN) for classification. This number of parameters was found to be optimal for the system. The PNN is a hierarchical, feed-forward network that can be rapidly reconfigured as additional training data become available. Training data is gathered by reviewing digital images of many crystals during their growth cycle and compiling two sets of images, those with and without irregularities.
Tawfik, Ahmed M; Razek, Ahmed A; Elhawary, Galal; Batouty, Nihal M
2014-01-01
To evaluate the effect of increasing the sampling interval from 1 second (1 image per second) to 2 seconds (1 image every 2 seconds) on computed tomographic (CT) perfusion (CTP) of head and neck tumors. Twenty patients underwent CTP studies of head and neck tumors with images acquired in cine mode for 50 seconds using sampling interval of 1 second. Using deconvolution-based software, analysis of CTP was done with sampling interval of 1 second and then 2 seconds. Perfusion maps representing blood flow, blood volume, mean transit time, and permeability surface area product (PS) were obtained. Quantitative tumor CTP values were compared between the 2 sampling intervals. Two blinded radiologists compared the subjective quality of CTP maps using a 3-point scale between the 2 sampling intervals. Radiation dose parameters were recorded for the 2 sampling interval rates. No significant differences were observed between the means of the 4 perfusion parameters generated using both sampling intervals; all P >0.05. The 95% limits of agreement between the 2 sampling intervals were -65.9 to 48.1) mL/min per 100 g for blood flow, -3.6 to 3.1 mL/100 g for blood volume, -2.9 to 3.8 seconds for mean transit time, and -10.0 to 12.5 mL/min per 100 g for PS. There was no significant difference between the subjective quality scores of CTP maps obtained using the 2 sampling intervals; all P > 0.05. Radiation dose was halved when sampling interval increased from 1 to 2 seconds. Increasing the sampling interval rate to 1 image every 2 seconds does not compromise the image quality and has no significant effect on quantitative perfusion parameters of head and neck tumors. The radiation dose is halved.
Lyubimov, Artem Y; Uervirojnangkoorn, Monarin; Zeldin, Oliver B; Brewster, Aaron S; Murray, Thomas D; Sauter, Nicholas K; Berger, James M; Weis, William I; Brunger, Axel T
2016-06-01
Serial femtosecond crystallography (SFX) uses an X-ray free-electron laser to extract diffraction data from crystals not amenable to conventional X-ray light sources owing to their small size or radiation sensitivity. However, a limitation of SFX is the high variability of the diffraction images that are obtained. As a result, it is often difficult to determine optimal indexing and integration parameters for the individual diffraction images. Presented here is a software package, called IOTA , which uses a grid-search technique to determine optimal spot-finding parameters that can in turn affect the success of indexing and the quality of integration on an image-by-image basis. Integration results can be filtered using a priori information about the Bravais lattice and unit-cell dimensions and analyzed for unit-cell isomorphism, facilitating an improvement in subsequent data-processing steps.
See-through ophthalmoscope for retinal imaging
NASA Astrophysics Data System (ADS)
Carpentras, Dino; Moser, Christophe
2017-05-01
With the miniaturization of scanning mirrors and the emergence of wearable health monitoring, an intriguing step is to investigate the potential of a laser scanning ophthalmoscope (LSO) for retinal imaging with wearable glasses. In addition to providing morphological information of the retina, such as vasculature, LSO images could also be used to provide information on general health conditions. A compact eyeglass with LSO capability would give access, on demand, to retinal parameters without disturbing the subject's activity. One of the main challenges in this field is the creation of a device that does not interrupt the user's field of view. We report, to our knowledge, the first see-through ophthalmoscope. The system is analyzed with three-dimensional simulations and tested in a proof-of-concept setup with the same key parameters of a wearable device. Finally, image quality is analyzed by acquiring images of an ex-vivo human eye sample.
Feasibility study of imaging spectroscopy to monitor the quality of online welding.
Mirapeix, Jesús; García-Allende, P Beatriz; Cobo, Adolfo; Conde, Olga M; López-Higuera, José M
2009-08-20
An online welding quality system based on the use of imaging spectroscopy is proposed and discussed. Plasma optical spectroscopy has already been successfully applied in this context by establishing a direct correlation between some spectroscopic parameters, e.g., the plasma electronic temperature and the resulting seam quality. Given that the use of the so-called hyperspectral devices provides both spatial and spectral information, we propose their use for the particular case of arc welding quality monitoring in an attempt to determine whether this technique would be suitable for this industrial situation. Experimental welding tests are presented, and the ability of the proposed solution to identify simulated defects is proved. Detailed spatial analyses suggest that this additional dimension can be used to improve the performance of the entire system.
Wang, Yong
2015-01-01
A novel radar imaging approach for non-uniformly rotating targets is proposed in this study. It is assumed that the maneuverability of the non-cooperative target is severe, and the received signal in a range cell can be modeled as multi-component amplitude-modulated and frequency-modulated (AM-FM) signals after motion compensation. Then, the modified version of Chirplet decomposition (MCD) based on the integrated high order ambiguity function (IHAF) is presented for the parameter estimation of AM-FM signals, and the corresponding high quality instantaneous ISAR images can be obtained from the estimated parameters. Compared with the MCD algorithm based on the generalized cubic phase function (GCPF) in the authors’ previous paper, the novel algorithm presented in this paper is more accurate and efficient, and the results with simulated and real data demonstrate the superiority of the proposed method. PMID:25806870
A curve fitting method for extrinsic camera calibration from a single image of a cylindrical object
NASA Astrophysics Data System (ADS)
Winkler, A. W.; Zagar, B. G.
2013-08-01
An important step in the process of optical steel coil quality assurance is to measure the proportions of width and radius of steel coils as well as the relative position and orientation of the camera. This work attempts to estimate these extrinsic parameters from single images by using the cylindrical coil itself as the calibration target. Therefore, an adaptive least-squares algorithm is applied to fit parametrized curves to the detected true coil outline in the acquisition. The employed model allows for strictly separating the intrinsic and the extrinsic parameters. Thus, the intrinsic camera parameters can be calibrated beforehand using available calibration software. Furthermore, a way to segment the true coil outline in the acquired images is motivated. The proposed optimization method yields highly accurate results and can be generalized even to measure other solids which cannot be characterized by the identification of simple geometric primitives.
Study on polarization image methods in turbid medium
NASA Astrophysics Data System (ADS)
Fu, Qiang; Mo, Chunhe; Liu, Boyu; Duan, Jin; Zhang, Su; Zhu, Yong
2014-11-01
Polarization imaging detection technology in addition to the traditional imaging information, also can get polarization multi-dimensional information, thus improve the probability of target detection and recognition.Image fusion in turbid medium target polarization image research, is helpful to obtain high quality images. Based on visible light wavelength of light wavelength of laser polarization imaging, through the rotation Angle of polaroid get corresponding linear polarized light intensity, respectively to obtain the concentration range from 5% to 10% of turbid medium target stocks of polarization parameters, introduces the processing of image fusion technology, main research on access to the polarization of the image by using different polarization image fusion methods for image processing, discusses several kinds of turbid medium has superior performance of polarization image fusion method, and gives the treatment effect and analysis of data tables. Then use pixel level, feature level and decision level fusion algorithm on three levels of information fusion, DOLP polarization image fusion, the results show that: with the increase of the polarization Angle, polarization image will be more and more fuzzy, quality worse and worse. Than a single fused image contrast of the image be improved obviously, the finally analysis on reasons of the increase the image contrast and polarized light.
Mangold, Stefanie; De Cecco, Carlo N; Wichmann, Julian L; Canstein, Christian; Varga-Szemes, Akos; Caruso, Damiano; Fuller, Stephen R; Bamberg, Fabian; Nikolaou, Konstantin; Schoepf, U Joseph
2016-05-01
To compare, on an intra-individual basis, the effect of automated tube voltage selection (ATVS), integrated circuit detector and advanced iterative reconstruction on radiation dose and image quality of aortic CTA studies using 2nd and 3rd generation dual-source CT (DSCT). We retrospectively evaluated 32 patients who had undergone CTA of the entire aorta with both 2nd generation DSCT at 120kV using filtered back projection (FBP) (protocol 1) and 3rd generation DSCT using ATVS, an integrated circuit detector and advanced iterative reconstruction (protocol 2). Contrast-to-noise ratio (CNR) was calculated. Image quality was subjectively evaluated using a five-point scale. Radiation dose parameters were recorded. All studies were considered of diagnostic image quality. CNR was significantly higher with protocol 2 (15.0±5.2 vs 11.0±4.2; p<.0001). Subjective image quality analysis revealed no significant differences for evaluation of attenuation (p=0.08501) but image noise was rated significantly lower with protocol 2 (p=0.0005). Mean tube voltage and effective dose were 94.7±14.1kV and 6.7±3.9mSv with protocol 2; 120±0kV and 11.5±5.2mSv with protocol 1 (p<0.0001, respectively). Aortic CTA performed with 3rd generation DSCT, ATVS, integrated circuit detector, and advanced iterative reconstruction allow a substantial reduction of radiation exposure while improving image quality in comparison to 120kV imaging with FBP. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Mastropietro, Alfonso; Porcelli, Simone; Cadioli, Marcello; Rasica, Letizia; Scalco, Elisa; Gerevini, Simonetta; Marzorati, Mauro; Rizzo, Giovanna
2018-06-01
The main aim of this paper was to propose triggered intravoxel incoherent motion (IVIM) imaging sequences for the evaluation of perfusion changes in calf muscles before, during and after isometric intermittent exercise. Twelve healthy volunteers were involved in the study. The subjects were asked to perform intermittent isometric plantar flexions inside the MRI bore. MRI of the calf muscles was performed on a 3.0 T scanner and diffusion-weighted (DW) images were obtained using eight different b values (0 to 500 s/mm 2 ). Acquisitions were performed at rest, during exercise and in the subsequent recovery phase. A motion-triggered echo-planar imaging DW sequence was implemented to avoid movement artifacts. Image quality was evaluated using the average edge strength (AES) as a quantitative metric to assess the motion artifact effect. IVIM parameters (diffusion D, perfusion fraction f and pseudo-diffusion D*) were estimated using a segmented fitting approach and evaluated in gastrocnemius and soleus muscles. No differences were observed in quality of IVIM images between resting state and triggered exercise, whereas the non-triggered images acquired during exercise had a significantly lower value of AES (reduction of more than 20%). The isometric intermittent plantar-flexion exercise induced an increase of all IVIM parameters (D by 10%; f by 90%; D* by 124%; fD* by 260%), in agreement with the increased muscle perfusion occurring during exercise. Finally, IVIM parameters reverted to the resting values within 3 min during the recovery phase. In conclusion, the IVIM approach, if properly adapted using motion-triggered sequences, seems to be a promising method to investigate muscle perfusion during isometric exercise. Copyright © 2018 John Wiley & Sons, Ltd.
Qualification process of CR system and quantification of digital image quality
NASA Astrophysics Data System (ADS)
Garnier, P.; Hun, L.; Klein, J.; Lemerle, C.
2013-01-01
CEA Valduc uses several X-Ray generators to carry out many inspections: void search, welding expertise, gap measurements, etc. Most of these inspections are carried out on silver based plates. For several years, the CEA/Valduc has decided to qualify new devices such as digital plates or CCD/flat panel plates. On one hand, the choice of this technological orientation is to forecast the assumed and eventual disappearance of silver based plates; on the other hand, it is also to keep our skills mastering up-to-date. The main improvement brought by numerical plates is the continuous progress of the measurement accuracy, especially with image data processing. It is now common to measure defects thickness or depth position within a part. In such applications, data image processing is used to obtain complementary information compared to scanned silver based plates. This scanning procedure is harmful for measurements which imply a data corruption of the resolution, the adding of numerical noise and is time expensive. Digital plates enable to suppress the scanning procedure and to increase resolution. It is nonetheless difficult to define, for digital images, single criteria for the image quality. A procedure has to be defined in order to estimate quality of the digital data itself; the impact of the scanning device and the configuration parameters are also to be taken into account. This presentation deals with the qualification process developed by CEA/Valduc for digital plates (DUR-NDT) based on the study of quantitative criteria chosen to define a direct numerical image quality that could be compared with scanned silver based pictures and the classical optical density. The versatility of the X-Ray parameters is also discussed (X-ray tension, intensity, time exposure). The aim is to be able to transfer the year long experience of CEA/Valduc with silver-based plates inspection to these new digital plates supports. This is an industrial stake.
Aligning HST Images to Gaia: A Faster Mosaicking Workflow
NASA Astrophysics Data System (ADS)
Bajaj, V.
2017-11-01
We present a fully programmatic workflow for aligning HST images using the high-quality astrometry provided by Gaia Data Release 1. Code provided in a Jupyter Notebook works through this procedure, including parsing the data to determine the query area parameters, querying Gaia for the coordinate catalog, and using the catalog with TweakReg as reference catalog. This workflow greatly simplifies the normally time-consuming process of aligning HST images, especially those taken as part of mosaics.
NASA Astrophysics Data System (ADS)
Brolin, Gustav; Sjögreen Gleisner, Katarina; Ljungberg, Michael
2013-05-01
In dynamic renal scintigraphy, the main interest is the radiopharmaceutical redistribution as a function of time. Quality control (QC) of renal procedures often relies on phantom experiments to compare image-based results with the measurement setup. A phantom with a realistic anatomy and time-varying activity distribution is therefore desirable. This work describes a pharmacokinetic (PK) compartment model for 99mTc-MAG3, used for defining a dynamic whole-body activity distribution within a digital phantom (XCAT) for accurate Monte Carlo (MC)-based images for QC. Each phantom structure is assigned a time-activity curve provided by the PK model, employing parameter values consistent with MAG3 pharmacokinetics. This approach ensures that the total amount of tracer in the phantom is preserved between time points, and it allows for modifications of the pharmacokinetics in a controlled fashion. By adjusting parameter values in the PK model, different clinically realistic scenarios can be mimicked, regarding, e.g., the relative renal uptake and renal transit time. Using the MC code SIMIND, a complete set of renography images including effects of photon attenuation, scattering, limited spatial resolution and noise, are simulated. The obtained image data can be used to evaluate quantitative techniques and computer software in clinical renography.
NASA Astrophysics Data System (ADS)
Xie, Shi-Peng; Luo, Li-Min
2012-06-01
The authors propose a combined scatter reduction and correction method to improve image quality in cone beam computed tomography (CBCT). The scatter kernel superposition (SKS) method has been used occasionally in previous studies. However, this method differs in that a scatter detecting blocker (SDB) was used between the X-ray source and the tested object to model the self-adaptive scatter kernel. This study first evaluates the scatter kernel parameters using the SDB, and then isolates the scatter distribution based on the SKS. The quality of image can be improved by removing the scatter distribution. The results show that the method can effectively reduce the scatter artifacts, and increase the image quality. Our approach increases the image contrast and reduces the magnitude of cupping. The accuracy of the SKS technique can be significantly improved in our method by using a self-adaptive scatter kernel. This method is computationally efficient, easy to implement, and provides scatter correction using a single scan acquisition.
Takayama, Yukihisa; Nishie, Akihiro; Asayama, Yoshiki; Ishigami, Kousei; Kakihara, Daisuke; Ushijima, Yasuhiro; Fujita, Nobuhiro; Yoshiura, Takashi; Takemura, Atsushi; Obara, Makoto; Takahara, Taro; Honda, Hiroshi
2015-01-01
We compared the image quality of free-breathing diffusion-weighted imaging (FB-DWI) to that of respiratory-triggered DWI (RT-DWI) after proper optimization. Three healthy subjects were scanned to optimize magnetic resonance (MR) parameters of FB-DWI to improve image quality, including spatial resolution, image noise, and chemical shift artifacts. After this optimization, we scanned 32 patients with liver disease to assess the clinical feasibility of the optimized FB-DWI. Of the 32 patients, 14 had a total of 28 hepatocellular carcinomas (HCCs), four had a total of 15 metastatic liver tumors, and the other 14 had no tumor. Qualitatively, we compared the image quality scores of FB-DWI with those of RT-DWI with the Wilcoxon signed-rank test. Quantitatively, we compared the signal-to-noise ratios (SNRs) of the liver parenchyma, lesion-to-nonlesion contrast-to-noise ratios (CNRs) and apparent diffusion coefficient (ADC) values of the liver parenchyma and liver tumor by the paired t-test. The average scores of image quality for sharpness of liver contour, image noise, and chemical shift artifacts were significantly higher for FB-DWI than RT-DWI (P < 0.05). SNRs, CNRs, and ADC values of the liver parenchyma and tumors did not differ significantly between the 2 DWI methods. Compared with RT-DWI, the optimized FB-DWI provided better spatial resolution, fewer artifacts, and comparable SNRs, lesion-to-nonlesion CNRs, and ADC values.
Image enhancement using the hypothesis selection filter: theory and application to JPEG decoding.
Wong, Tak-Shing; Bouman, Charles A; Pollak, Ilya
2013-03-01
We introduce the hypothesis selection filter (HSF) as a new approach for image quality enhancement. We assume that a set of filters has been selected a priori to improve the quality of a distorted image containing regions with different characteristics. At each pixel, HSF uses a locally computed feature vector to predict the relative performance of the filters in estimating the corresponding pixel intensity in the original undistorted image. The prediction result then determines the proportion of each filter used to obtain the final processed output. In this way, the HSF serves as a framework for combining the outputs of a number of different user selected filters, each best suited for a different region of an image. We formulate our scheme in a probabilistic framework where the HSF output is obtained as the Bayesian minimum mean square error estimate of the original image. Maximum likelihood estimates of the model parameters are determined from an offline fully unsupervised training procedure that is derived from the expectation-maximization algorithm. To illustrate how to apply the HSF and to demonstrate its potential, we apply our scheme as a post-processing step to improve the decoding quality of JPEG-encoded document images. The scheme consistently improves the quality of the decoded image over a variety of image content with different characteristics. We show that our scheme results in quantitative improvements over several other state-of-the-art JPEG decoding methods.
USDA-ARS?s Scientific Manuscript database
BACKGROUND: Texture is a major quality parameter for the acceptability of canned whole beans. Prior knowledge of this quality trait before processing would be useful to guide variety development by bean breeders and optimize handling protocols by processors. The objective of this study was to evalua...
Noel, Camille E; Parikh, Parag J
2011-05-01
Though it is known that irregular breathing can introduce artifacts in commercial 4DCT, this has not been systematically explored. The purpose of this study is to investigate the effect of variations in basic parameters of the breathing wave on 4DCT imaging quality. A four-dimensional motion platform holding an acrylic sphere was scanned while moving in a trajectory modeled from a lung cancer patient. A bellows device was used as a respiratory surrogate, and the images were sorted by a commercial phase-based sorting algorithm. Motion during the first half of the scan was produced at a baseline trajectory with a consistent frequency and amplitude of 15 breaths per minute and 1 cm, peak to peak. The two parameters were then varied mid-scan to new frequency and amplitude values, with frequencies ranging from 7.5 to 22 bpm and amplitudes ranging from 0.5 to 1.5 cm. Image sets representing four respiratory phases were contoured. Each set was analyzed to compare centroid displacement, density homogeneity, and volumetric and geometric distortions of the imaged sphere. Undercoverage of the target ITV and overcoverage of healthy tissue was also evaluated. Changes in amplitude of 25% or more, with or without changes in frequency, consistently caused measurable distortions in shape, position, and density of the imaged sphere. Frequency changes over 50% showed a similar trend. This study suggests that basic breathing statistics can be used to quickly assess the quality of a 4DCT scan prior to image reconstruction. Such information can help give indication of the proper course of action when irregular breathing patterns are observed during CT scanning.
3D reconstruction from multi-view VHR-satellite images in MicMac
NASA Astrophysics Data System (ADS)
Rupnik, Ewelina; Pierrot-Deseilligny, Marc; Delorme, Arthur
2018-05-01
This work addresses the generation of high quality digital surface models by fusing multiple depths maps calculated with the dense image matching method. The algorithm is adapted to very high resolution multi-view satellite images, and the main contributions of this work are in the multi-view fusion. The algorithm is insensitive to outliers, takes into account the matching quality indicators, handles non-correlated zones (e.g. occlusions), and is solved with a multi-directional dynamic programming approach. No geometric constraints (e.g. surface planarity) or auxiliary data in form of ground control points are required for its operation. Prior to the fusion procedures, the RPC geolocation parameters of all images are improved in a bundle block adjustment routine. The performance of the algorithm is evaluated on two VHR (Very High Resolution)-satellite image datasets (Pléiades, WorldView-3) revealing its good performance in reconstructing non-textured areas, repetitive patterns, and surface discontinuities.
Photoacoustic image reconstruction via deep learning
NASA Astrophysics Data System (ADS)
Antholzer, Stephan; Haltmeier, Markus; Nuster, Robert; Schwab, Johannes
2018-02-01
Applying standard algorithms to sparse data problems in photoacoustic tomography (PAT) yields low-quality images containing severe under-sampling artifacts. To some extent, these artifacts can be reduced by iterative image reconstruction algorithms which allow to include prior knowledge such as smoothness, total variation (TV) or sparsity constraints. These algorithms tend to be time consuming as the forward and adjoint problems have to be solved repeatedly. Further, iterative algorithms have additional drawbacks. For example, the reconstruction quality strongly depends on a-priori model assumptions about the objects to be recovered, which are often not strictly satisfied in practical applications. To overcome these issues, in this paper, we develop direct and efficient reconstruction algorithms based on deep learning. As opposed to iterative algorithms, we apply a convolutional neural network, whose parameters are trained before the reconstruction process based on a set of training data. For actual image reconstruction, a single evaluation of the trained network yields the desired result. Our presented numerical results (using two different network architectures) demonstrate that the proposed deep learning approach reconstructs images with a quality comparable to state of the art iterative reconstruction methods.
Sereshti, Hassan; Poursorkh, Zahra; Aliakbarzadeh, Ghazaleh; Zarre, Shahin; Ataolahi, Sahar
2018-01-15
Quality of saffron, a valuable food additive, could considerably affect the consumers' health. In this work, a novel preprocessing strategy for image analysis of saffron thin layer chromatographic (TLC) patterns was introduced. This includes performing a series of image pre-processing techniques on TLC images such as compression, inversion, elimination of general baseline (using asymmetric least squares (AsLS)), removing spots shift and concavity (by correlation optimization warping (COW)), and finally conversion to RGB chromatograms. Subsequently, an unsupervised multivariate data analysis including principal component analysis (PCA) and k-means clustering was utilized to investigate the soil salinity effect, as a cultivation parameter, on saffron TLC patterns. This method was used as a rapid and simple technique to obtain the chemical fingerprints of saffron TLC images. Finally, the separated TLC spots were chemically identified using high-performance liquid chromatography-diode array detection (HPLC-DAD). Accordingly, the saffron quality from different areas of Iran was evaluated and classified. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sentinel 2B: the image quality performances at the beginning of the mission
NASA Astrophysics Data System (ADS)
Trémas, T.; Lonjou, V.; Dick, A.; Languille, F.; Gaudel-Vacaresse, A.; Vidal, B.; Revel, C.
2017-09-01
Launched on March 6th, 2017 from Kourou, Sentinel 2B has passed the phase of commissioning. Sentinel 2B will work together with Sentinel 2A launched in June 2015. The building and implementation of the satellite has been made under the responsibility of ESA, for the European Commission. The subset of Image Quality commissioning was delegated by ESA to CNES, referring to the experience of the French Space Agency on previous imagers. This phase lasted 4 months after the launch, a little longer than the formal In Orbit Calibration period conducted by ESA, some Image Quality parameters requiring several months before converging to a stable state. This paper presents the status of the satellite, from an IQ prospective, just before it entered its operational phase. The radiometric and geometric performances are listed, including: the absolute radiometric calibration, the equalization, the SNR, the absolute and the multi-temporal location accuracy. The performances of both satellites Sentinel and Sentinel 2B working together, will be addressed. A particular focus will be done on multi-temporal location performances, homogeneity of radiometric inter calibrations. The accomplishment of the Global Reference Image over Europe is evoked as well. The IQ commissioning phase ended on June 2017. From this date, the monitoring of IQ parameters is under the responsibility of ESA/ESRIN. Nevertheless, CNES continues to support ESA to survey the accuracy of S2A and S2B performances. The article ends by dealing with the prospective offered by the couple Sentinel 2A + Sentinel 2B.
Meyer-Lindenberg, Andrea; Ebermaier, Christine; Wolvekamp, Pim; Tellhelm, Bernd; Meutstege, Freek J; Lang, Johann; Hartung, Klaus; Fehr, Michael; Nolte, Ingo
2008-01-01
In this study the quality of digital and analog radiography in dogs was compared. For this purpose, three conventional radiographs (varying in exposure) and three digital radiographs (varying in MUSI-contrast [MUSI = MUlti Scale Image Contrast], the main post-processing parameter) of six different body regions of the dog were evaluated (thorax, abdomen, skull, femur, hip joints, elbow). The quality of the radiographs was evaluated by eight veterinary specialists familiar with radiographic images using a questionnaire based on details of each body region significant in obtaining a radiographic diagnosis. In the first part of the study the overall quality of the radiographs was evaluated. Within one region, 89.5% (43/48) chose a digital radiograph as the best image. Divided into analog and digital groups, the digital image with the highest MUSI-contrast was most often considered the best, while the analog image considered the best varied between the one with the medium and the one with the longest exposure time. In the second part of the study, each image was rated for the visibility of specific, diagnostically important details. After summarisation of the scores for each criterion, divided into analog and digital imaging, the digital images were rated considerably superior to conventional images. The results of image comparison revealed that digital radiographs showed better image detail than radiographs taken with the analog technique in all six areas of the body.
Image Segmentation, Registration, Compression, and Matching
NASA Technical Reports Server (NTRS)
Yadegar, Jacob; Wei, Hai; Yadegar, Joseph; Ray, Nilanjan; Zabuawala, Sakina
2011-01-01
A novel computational framework was developed of a 2D affine invariant matching exploiting a parameter space. Named as affine invariant parameter space (AIPS), the technique can be applied to many image-processing and computer-vision problems, including image registration, template matching, and object tracking from image sequence. The AIPS is formed by the parameters in an affine combination of a set of feature points in the image plane. In cases where the entire image can be assumed to have undergone a single affine transformation, the new AIPS match metric and matching framework becomes very effective (compared with the state-of-the-art methods at the time of this reporting). No knowledge about scaling or any other transformation parameters need to be known a priori to apply the AIPS framework. An automated suite of software tools has been created to provide accurate image segmentation (for data cleaning) and high-quality 2D image and 3D surface registration (for fusing multi-resolution terrain, image, and map data). These tools are capable of supporting existing GIS toolkits already in the marketplace, and will also be usable in a stand-alone fashion. The toolkit applies novel algorithmic approaches for image segmentation, feature extraction, and registration of 2D imagery and 3D surface data, which supports first-pass, batched, fully automatic feature extraction (for segmentation), and registration. A hierarchical and adaptive approach is taken for achieving automatic feature extraction, segmentation, and registration. Surface registration is the process of aligning two (or more) data sets to a common coordinate system, during which the transformation between their different coordinate systems is determined. Also developed here are a novel, volumetric surface modeling and compression technique that provide both quality-guaranteed mesh surface approximations and compaction of the model sizes by efficiently coding the geometry and connectivity/topology components of the generated models. The highly efficient triangular mesh compression compacts the connectivity information at the rate of 1.5-4 bits per vertex (on average for triangle meshes), while reducing the 3D geometry by 40-50 percent. Finally, taking into consideration the characteristics of 3D terrain data, and using the innovative, regularized binary decomposition mesh modeling, a multistage, pattern-drive modeling, and compression technique has been developed to provide an effective framework for compressing digital elevation model (DEM) surfaces, high-resolution aerial imagery, and other types of NASA data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dekker, A.G.; Hoogenboom, H.J.; Rijkeboer, M.
1997-06-01
Deriving thematic maps of water quality parameters from a remote sensing image requires a number of processing steps, such as calibration, atmospheric correction, air/water interface correction, and application of water quality algorithms. A prototype software environment has recently been developed that enables the user to perform and control these processing steps. Main parts of this environment are: (i) access to the MODTRAN 3 radiative transfer code for removing atmospheric and air-water interface influences, (ii) a tool for analyzing of algorithms for estimating water quality and (iii) a spectral database, containing apparent and inherent optical properties and associated water quality parameters.more » The use of the software is illustrated by applying implemented algorithms for estimating chlorophyll to data from a spectral library of Dutch inland waters with CHL ranging from 1 to 500 pg 1{sup -1}. The algorithms currently implemented in the Toolkit software are recommended for optically simple waters, but for optically complex waters development of more advanced retrieval methods is required.« less
Megavoltage cargo radiography with dual energy material decomposition
NASA Astrophysics Data System (ADS)
Shikhaliev, Polad M.
2018-02-01
Megavoltage (MV) radiography has important applications in imaging large cargos for detecting illicit materials. A useful feature of MV radiography is the possibility of decomposing and quantifying materials with different atomic numbers. This can be achieved by imaging cargo at two different X-ray energies, or dual energy (DE) radiography. The performance of both single energy and DE radiography depends on beam energy, beam filtration, radiation dose, object size, and object content. The purpose of this work was to perform comprehensive qualitative and quantitative investigations of the image quality in MV radiography depending on the above parameters. A digital phantom was designed including Fe background with thicknesses of 2cm, 6cm, and 18cm, and materials samples of Polyethylene, Fe, Pb, and U. The single energy images were generated at x-ray beam energies 3.5MV, 6MV, and 9MV. The DE material decomposed images were generated using interlaced low and high energy beams 3.5/6MV and 6/9MV. The X-ray beams were filtered by low-Z (Polyethylene) and high-Z (Pb) filters with variable thicknesses. The radiation output of the accelerator was kept constant for all beam energies. The image quality metrics was signal-to-noise ratio (SNR) of the particular sample over a particular background. It was found that the SNR depends on the above parameters in a complex way, but can be optimized by selecting a particular set of parameters. For some imaging setups increased filter thicknesses, while strongly absorbing the beams, increased the SNR of material decomposed images. Beam hardening due to polyenergetic x-ray spectra resulted in material decomposition errors, but this could be addressed using region of interest decomposition. It was shown that it is not feasible to separate the materials with close atomic numbers using the DE method. Particularly, Pb and U were difficult to decompose, at least at the dose levels allowed by radiation source and safety requirements.
D Point Cloud Model Colorization by Dense Registration of Digital Images
NASA Astrophysics Data System (ADS)
Crombez, N.; Caron, G.; Mouaddib, E.
2015-02-01
Architectural heritage is a historic and artistic property which has to be protected, preserved, restored and must be shown to the public. Modern tools like 3D laser scanners are more and more used in heritage documentation. Most of the time, the 3D laser scanner is completed by a digital camera which is used to enrich the accurate geometric informations with the scanned objects colors. However, the photometric quality of the acquired point clouds is generally rather low because of several problems presented below. We propose an accurate method for registering digital images acquired from any viewpoints on point clouds which is a crucial step for a good colorization by colors projection. We express this image-to-geometry registration as a pose estimation problem. The camera pose is computed using the entire images intensities under a photometric visual and virtual servoing (VVS) framework. The camera extrinsic and intrinsic parameters are automatically estimated. Because we estimates the intrinsic parameters we do not need any informations about the camera which took the used digital image. Finally, when the point cloud model and the digital image are correctly registered, we project the 3D model in the digital image frame and assign new colors to the visible points. The performance of the approach is proven in simulation and real experiments on indoor and outdoor datasets of the cathedral of Amiens, which highlight the success of our method, leading to point clouds with better photometric quality and resolution.
Karimi, Mohammad H; Asemani, Davud
2014-05-01
Ceramic and tile industries should indispensably include a grading stage to quantify the quality of products. Actually, human control systems are often used for grading purposes. An automatic grading system is essential to enhance the quality control and marketing of the products. Since there generally exist six different types of defects originating from various stages of tile manufacturing lines with distinct textures and morphologies, many image processing techniques have been proposed for defect detection. In this paper, a survey has been made on the pattern recognition and image processing algorithms which have been used to detect surface defects. Each method appears to be limited for detecting some subgroup of defects. The detection techniques may be divided into three main groups: statistical pattern recognition, feature vector extraction and texture/image classification. The methods such as wavelet transform, filtering, morphology and contourlet transform are more effective for pre-processing tasks. Others including statistical methods, neural networks and model-based algorithms can be applied to extract the surface defects. Although, statistical methods are often appropriate for identification of large defects such as Spots, but techniques such as wavelet processing provide an acceptable response for detection of small defects such as Pinhole. A thorough survey is made in this paper on the existing algorithms in each subgroup. Also, the evaluation parameters are discussed including supervised and unsupervised parameters. Using various performance parameters, different defect detection algorithms are compared and evaluated. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dolly, Steven R.; Anastasio, Mark A.; Yu, Lifeng; Li, Hua
2017-03-01
In current radiation therapy practice, image quality is still assessed subjectively or by utilizing physically-based metrics. Recently, a methodology for objective task-based image quality (IQ) assessment in radiation therapy was proposed by Barrett et al.1 In this work, we present a comprehensive implementation and evaluation of this new IQ assessment methodology. A modular simulation framework was designed to perform an automated, computer-simulated end-to-end radiation therapy treatment. A fully simulated framework was created that utilizes new learning-based stochastic object models (SOM) to obtain known organ boundaries, generates a set of images directly from the numerical phantoms created with the SOM, and automates the image segmentation and treatment planning steps of a radiation therapy work ow. By use of this computational framework, therapeutic operating characteristic (TOC) curves can be computed and the area under the TOC curve (AUTOC) can be employed as a figure-of-merit to guide optimization of different components of the treatment planning process. The developed computational framework is employed to optimize X-ray CT pre-treatment imaging. We demonstrate that use of the radiation therapy-based-based IQ measures lead to different imaging parameters than obtained by use of physical-based measures.
NASA Astrophysics Data System (ADS)
Zeng, Rongping; Badano, Aldo; Myers, Kyle J.
2017-04-01
We showed in our earlier work that the choice of reconstruction methods does not affect the optimization of DBT acquisition parameters (angular span and number of views) using simulated breast phantom images in detecting lesions with a channelized Hotelling observer (CHO). In this work we investigate whether the model-observer based conclusion is valid when using humans to interpret images. We used previously generated DBT breast phantom images and recruited human readers to find the optimal geometry settings associated with two reconstruction algorithms, filtered back projection (FBP) and simultaneous algebraic reconstruction technique (SART). The human reader results show that image quality trends as a function of the acquisition parameters are consistent between FBP and SART reconstructions. The consistent trends confirm that the optimization of DBT system geometry is insensitive to the choice of reconstruction algorithm. The results also show that humans perform better in SART reconstructed images than in FBP reconstructed images. In addition, we applied CHOs with three commonly used channel models, Laguerre-Gauss (LG) channels, square (SQR) channels and sparse difference-of-Gaussian (sDOG) channels. We found that LG channels predict human performance trends better than SQR and sDOG channel models for the task of detecting lesions in tomosynthesis backgrounds. Overall, this work confirms that the choice of reconstruction algorithm is not critical for optimizing DBT system acquisition parameters.
Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging
NASA Astrophysics Data System (ADS)
Baran, P.; Pacile, S.; Nesterets, Y. I.; Mayo, S. C.; Dullin, C.; Dreossi, D.; Arfelli, F.; Thompson, D.; Lockie, D.; McCormack, M.; Taba, S. T.; Brun, F.; Pinamonti, M.; Nickson, C.; Hall, C.; Dimmock, M.; Zanconati, F.; Cholewa, M.; Quiney, H.; Brennan, P. C.; Tromba, G.; Gureyev, T. E.
2017-03-01
The aim of this study was to optimise the experimental protocol and data analysis for in-vivo breast cancer x-ray imaging. Results are presented of the experiment at the SYRMEP beamline of Elettra Synchrotron using the propagation-based phase-contrast mammographic tomography method, which incorporates not only absorption, but also x-ray phase information. In this study the images of breast tissue samples, of a size corresponding to a full human breast, with radiologically acceptable x-ray doses were obtained, and the degree of improvement of the image quality (from the diagnostic point of view) achievable using propagation-based phase-contrast image acquisition protocols with proper incorporation of x-ray phase retrieval into the reconstruction pipeline was investigated. Parameters such as the x-ray energy, sample-to-detector distance and data processing methods were tested, evaluated and optimized with respect to the estimated diagnostic value using a mastectomy sample with a malignant lesion. The results of quantitative evaluation of images were obtained by means of radiological assessment carried out by 13 experienced specialists. A comparative analysis was performed between the x-ray and the histological images of the specimen. The results of the analysis indicate that, within the investigated range of parameters, both the objective image quality characteristics and the subjective radiological scores of propagation-based phase-contrast images of breast tissues monotonically increase with the strength of phase contrast which in turn is directly proportional to the product of the radiation wavelength and the sample-to-detector distance. The outcomes of this study serve to define the practical imaging conditions and the CT reconstruction procedures appropriate for low-dose phase-contrast mammographic imaging of live patients at specially designed synchrotron beamlines.
Kunduk, Melda; Vansant, Mathew B; Ikuma, Takeshi; McWhorter, Andrew
2017-03-01
This study investigated the effect of menstrual cycle on vocal fold vibratory characteristics in young women using high-speed digital imaging. This study examined the menstrual phase effect on five objective high-speed imaging parameters and two self-rated perceptual parameters. The effects of oral birth control use were also investigated. Thirteen subjects with no prior voice complaints were included in this study. All data were collected at three different time periods (premenses, postmenses, ovulation) over the course of one menstrual cycle. For five of the 13 subjects, data were collected for two consecutive cycles. Six of 13 subjects were oral birth control users. From high-speed imaging data, five objective parameters were computed: fundamental frequency, fundamental frequency deviation, harmonics-to-noise ratio, harmonic richness factor, and ratio of first and second harmonics. They were supplemented by two self-rated parameters: Reflux Severity Index and perceptual voice quality rating. Analysis included mixed model linear analysis with repeated measures. Results indicated no significant main effects for menstrual phase, between-cycle, or birth control use in the analysis for mean fundamental frequency, fundamental frequency deviation, harmonics-to-noise ratio, harmonic richness factor, first and second harmonics, Reflux Severity Index, and perceptual voice quality rating. Additionally, there were no interaction effects. Hormone fluctuations observed across the menstrual cycle do not appear to have direct effect on vocal fold vibratory characteristics in young women with no voice concerns. Birth control use, on the other hand, may have influence on spectral richness of vocal fold vibration. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
TRMM Microwave Imager (TMI) Updates for Final Data Version Release
NASA Technical Reports Server (NTRS)
Kroodsma, Rachael A; Bilanow, Stephen; Ji, Yimin; McKague, Darren
2017-01-01
The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) dataset released by the Precipitation Processing System (PPS) will be updated to a final version within the next year. These updates are based on increased knowledge in recent years of radiometer calibration and sensor performance issues. In particular, the Global Precipitation Measurement (GPM) Microwave Imager (GMI) is used as a model for many of the TMI version updates. This paper discusses four aspects of the TMI data product that will be improved: spacecraft attitude, calibration and quality control, along-scan bias corrections, and sensor pointing accuracy. These updates will be incorporated into the final TMI data version, improving the quality of the data product and ensuring accurate geophysical parameters can be derived from TMI.
NASA Astrophysics Data System (ADS)
Chang, Ni-Bin; Xuan, Zhemin
2011-09-01
Excessive nutrients, which may be represented as Total Nitrogen (TN) and Total Phosphorus (TP) levels, in natural water systems have proven to cause high levels of algae production. The process of phytoplankton growth which consumes the excess TN and TP in a water body can also be related to the changing water quality levels, such as Dissolved Oxygen (DO), chlorophyll-a, and turbidity, associated with their changes in absorbance of natural radiation. This paper explores spatiotemporal nutrient patterns in Tampa Bay, Florida with the aid of Moderate Resolution Imaging Spectroradiometer or MODIS images and Genetic Programming (GP) models that are deigned to link those relevant water quality parameters in aquatic environments.
Assessing microscope image focus quality with deep learning.
Yang, Samuel J; Berndl, Marc; Michael Ando, D; Barch, Mariya; Narayanaswamy, Arunachalam; Christiansen, Eric; Hoyer, Stephan; Roat, Chris; Hung, Jane; Rueden, Curtis T; Shankar, Asim; Finkbeiner, Steven; Nelson, Philip
2018-03-15
Large image datasets acquired on automated microscopes typically have some fraction of low quality, out-of-focus images, despite the use of hardware autofocus systems. Identification of these images using automated image analysis with high accuracy is important for obtaining a clean, unbiased image dataset. Complicating this task is the fact that image focus quality is only well-defined in foreground regions of images, and as a result, most previous approaches only enable a computation of the relative difference in quality between two or more images, rather than an absolute measure of quality. We present a deep neural network model capable of predicting an absolute measure of image focus on a single image in isolation, without any user-specified parameters. The model operates at the image-patch level, and also outputs a measure of prediction certainty, enabling interpretable predictions. The model was trained on only 384 in-focus Hoechst (nuclei) stain images of U2OS cells, which were synthetically defocused to one of 11 absolute defocus levels during training. The trained model can generalize on previously unseen real Hoechst stain images, identifying the absolute image focus to within one defocus level (approximately 3 pixel blur diameter difference) with 95% accuracy. On a simpler binary in/out-of-focus classification task, the trained model outperforms previous approaches on both Hoechst and Phalloidin (actin) stain images (F-scores of 0.89 and 0.86, respectively over 0.84 and 0.83), despite only having been presented Hoechst stain images during training. Lastly, we observe qualitatively that the model generalizes to two additional stains, Hoechst and Tubulin, of an unseen cell type (Human MCF-7) acquired on a different instrument. Our deep neural network enables classification of out-of-focus microscope images with both higher accuracy and greater precision than previous approaches via interpretable patch-level focus and certainty predictions. The use of synthetically defocused images precludes the need for a manually annotated training dataset. The model also generalizes to different image and cell types. The framework for model training and image prediction is available as a free software library and the pre-trained model is available for immediate use in Fiji (ImageJ) and CellProfiler.
Ultra-High-Resolution Computed Tomography of the Lung: Image Quality of a Prototype Scanner.
Kakinuma, Ryutaro; Moriyama, Noriyuki; Muramatsu, Yukio; Gomi, Shiho; Suzuki, Masahiro; Nagasawa, Hirobumi; Kusumoto, Masahiko; Aso, Tomohiko; Muramatsu, Yoshihisa; Tsuchida, Takaaki; Tsuta, Koji; Maeshima, Akiko Miyagi; Tochigi, Naobumi; Watanabe, Shun-Ichi; Sugihara, Naoki; Tsukagoshi, Shinsuke; Saito, Yasuo; Kazama, Masahiro; Ashizawa, Kazuto; Awai, Kazuo; Honda, Osamu; Ishikawa, Hiroyuki; Koizumi, Naoya; Komoto, Daisuke; Moriya, Hiroshi; Oda, Seitaro; Oshiro, Yasuji; Yanagawa, Masahiro; Tomiyama, Noriyuki; Asamura, Hisao
2015-01-01
The image noise and image quality of a prototype ultra-high-resolution computed tomography (U-HRCT) scanner was evaluated and compared with those of conventional high-resolution CT (C-HRCT) scanners. This study was approved by the institutional review board. A U-HRCT scanner prototype with 0.25 mm x 4 rows and operating at 120 mAs was used. The C-HRCT images were obtained using a 0.5 mm x 16 or 0.5 mm x 64 detector-row CT scanner operating at 150 mAs. Images from both scanners were reconstructed at 0.1-mm intervals; the slice thickness was 0.25 mm for the U-HRCT scanner and 0.5 mm for the C-HRCT scanners. For both scanners, the display field of view was 80 mm. The image noise of each scanner was evaluated using a phantom. U-HRCT and C-HRCT images of 53 images selected from 37 lung nodules were then observed and graded using a 5-point score by 10 board-certified thoracic radiologists. The images were presented to the observers randomly and in a blinded manner. The image noise for U-HRCT (100.87 ± 0.51 Hounsfield units [HU]) was greater than that for C-HRCT (40.41 ± 0.52 HU; P < .0001). The image quality of U-HRCT was graded as superior to that of C-HRCT (P < .0001) for all of the following parameters that were examined: margins of subsolid and solid nodules, edges of solid components and pulmonary vessels in subsolid nodules, air bronchograms, pleural indentations, margins of pulmonary vessels, edges of bronchi, and interlobar fissures. Despite a larger image noise, the prototype U-HRCT scanner had a significantly better image quality than the C-HRCT scanners.
Foundations for Measuring Volume Rendering Quality
NASA Technical Reports Server (NTRS)
Williams, Peter L.; Uselton, Samuel P.; Chancellor, Marisa K. (Technical Monitor)
1997-01-01
The goal of this paper is to provide a foundation for objectively comparing volume rendered images. The key elements of the foundation are: (1) a rigorous specification of all the parameters that need to be specified to define the conditions under which a volume rendered image is generated; (2) a methodology for difference classification, including a suite of functions or metrics to quantify and classify the difference between two volume rendered images that will support an analysis of the relative importance of particular differences. The results of this method can be used to study the changes caused by modifying particular parameter values, to compare and quantify changes between images of similar data sets rendered in the same way, and even to detect errors in the design, implementation or modification of a volume rendering system. If one has a benchmark image, for example one created by a high accuracy volume rendering system, the method can be used to evaluate the accuracy of a given image.
Optically sectioned in vivo imaging with speckle illumination HiLo microscopy
Lim, Daryl; Ford, Tim N.; Chu, Kengyeh K.; Mertz, Jerome
2011-01-01
We present a simple wide-field imaging technique, called HiLo microscopy, that is capable of producing optically sectioned images in real time, comparable in quality to confocal laser scanning microscopy. The technique is based on the fusion of two raw images, one acquired with speckle illumination and another with standard uniform illumination. The fusion can be numerically adjusted, using a single parameter, to produce optically sectioned images of varying thicknesses with the same raw data. Direct comparison between our HiLo microscope and a commercial confocal laser scanning microscope is made on the basis of sectioning strength and imaging performance. Specifically, we show that HiLo and confocal 3-D imaging of a GFP-labeled mouse brain hippocampus are comparable in quality. Moreover, HiLo microscopy is capable of faster, near video rate imaging over larger fields of view than attainable with standard confocal microscopes. The goal of this paper is to advertise the simplicity, robustness, and versatility of HiLo microscopy, which we highlight with in vivo imaging of common model organisms including planaria, C. elegans, and zebrafish. PMID:21280920
Optically sectioned in vivo imaging with speckle illumination HiLo microscopy.
Lim, Daryl; Ford, Tim N; Chu, Kengyeh K; Mertz, Jerome
2011-01-01
We present a simple wide-field imaging technique, called HiLo microscopy, that is capable of producing optically sectioned images in real time, comparable in quality to confocal laser scanning microscopy. The technique is based on the fusion of two raw images, one acquired with speckle illumination and another with standard uniform illumination. The fusion can be numerically adjusted, using a single parameter, to produce optically sectioned images of varying thicknesses with the same raw data. Direct comparison between our HiLo microscope and a commercial confocal laser scanning microscope is made on the basis of sectioning strength and imaging performance. Specifically, we show that HiLo and confocal 3-D imaging of a GFP-labeled mouse brain hippocampus are comparable in quality. Moreover, HiLo microscopy is capable of faster, near video rate imaging over larger fields of view than attainable with standard confocal microscopes. The goal of this paper is to advertise the simplicity, robustness, and versatility of HiLo microscopy, which we highlight with in vivo imaging of common model organisms including planaria, C. elegans, and zebrafish.
Optically sectioned in vivo imaging with speckle illumination HiLo microscopy
NASA Astrophysics Data System (ADS)
Lim, Daryl; Ford, Tim N.; Chu, Kengyeh K.; Mertz, Jerome
2011-01-01
We present a simple wide-field imaging technique, called HiLo microscopy, that is capable of producing optically sectioned images in real time, comparable in quality to confocal laser scanning microscopy. The technique is based on the fusion of two raw images, one acquired with speckle illumination and another with standard uniform illumination. The fusion can be numerically adjusted, using a single parameter, to produce optically sectioned images of varying thicknesses with the same raw data. Direct comparison between our HiLo microscope and a commercial confocal laser scanning microscope is made on the basis of sectioning strength and imaging performance. Specifically, we show that HiLo and confocal 3-D imaging of a GFP-labeled mouse brain hippocampus are comparable in quality. Moreover, HiLo microscopy is capable of faster, near video rate imaging over larger fields of view than attainable with standard confocal microscopes. The goal of this paper is to advertise the simplicity, robustness, and versatility of HiLo microscopy, which we highlight with in vivo imaging of common model organisms including planaria, C. elegans, and zebrafish.
A robust color image fusion for low light level and infrared images
NASA Astrophysics Data System (ADS)
Liu, Chao; Zhang, Xiao-hui; Hu, Qing-ping; Chen, Yong-kang
2016-09-01
The low light level and infrared color fusion technology has achieved great success in the field of night vision, the technology is designed to make the hot target of fused image pop out with intenser colors, represent the background details with a nearest color appearance to nature, and improve the ability in target discovery, detection and identification. The low light level images have great noise under low illumination, and that the existing color fusion methods are easily to be influenced by low light level channel noise. To be explicit, when the low light level image noise is very large, the quality of the fused image decreases significantly, and even targets in infrared image would be submerged by the noise. This paper proposes an adaptive color night vision technology, the noise evaluation parameters of low light level image is introduced into fusion process, which improve the robustness of the color fusion. The color fuse results are still very good in low-light situations, which shows that this method can effectively improve the quality of low light level and infrared fused image under low illumination conditions.
Experimental design and analysis of JND test on coded image/video
NASA Astrophysics Data System (ADS)
Lin, Joe Yuchieh; Jin, Lina; Hu, Sudeng; Katsavounidis, Ioannis; Li, Zhi; Aaron, Anne; Kuo, C.-C. Jay
2015-09-01
The visual Just-Noticeable-Difference (JND) metric is characterized by the detectable minimum amount of two visual stimuli. Conducting the subjective JND test is a labor-intensive task. In this work, we present a novel interactive method in performing the visual JND test on compressed image/video. JND has been used to enhance perceptual visual quality in the context of image/video compression. Given a set of coding parameters, a JND test is designed to determine the distinguishable quality level against a reference image/video, which is called the anchor. The JND metric can be used to save coding bitrates by exploiting the special characteristics of the human visual system. The proposed JND test is conducted using a binary-forced choice, which is often adopted to discriminate the difference in perception in a psychophysical experiment. The assessors are asked to compare coded image/video pairs and determine whether they are of the same quality or not. A bisection procedure is designed to find the JND locations so as to reduce the required number of comparisons over a wide range of bitrates. We will demonstrate the efficiency of the proposed JND test, report experimental results on the image and video JND tests.
Healy, Sinead; McMahon, Jill; Owens, Peter; Dockery, Peter; FitzGerald, Una
2018-02-01
Image segmentation is often imperfect, particularly in complex image sets such z-stack micrographs of slice cultures and there is a need for sufficient details of parameters used in quantitative image analysis to allow independent repeatability and appraisal. For the first time, we have critically evaluated, quantified and validated the performance of different segmentation methodologies using z-stack images of ex vivo glial cells. The BioVoxxel toolbox plugin, available in FIJI, was used to measure the relative quality, accuracy, specificity and sensitivity of 16 global and 9 local threshold automatic thresholding algorithms. Automatic thresholding yields improved binary representation of glial cells compared with the conventional user-chosen single threshold approach for confocal z-stacks acquired from ex vivo slice cultures. The performance of threshold algorithms varies considerably in quality, specificity, accuracy and sensitivity with entropy-based thresholds scoring highest for fluorescent staining. We have used the BioVoxxel toolbox to correctly and consistently select the best automated threshold algorithm to segment z-projected images of ex vivo glial cells for downstream digital image analysis and to define segmentation quality. The automated OLIG2 cell count was validated using stereology. As image segmentation and feature extraction can quite critically affect the performance of successive steps in the image analysis workflow, it is becoming increasingly necessary to consider the quality of digital segmenting methodologies. Here, we have applied, validated and extended an existing performance-check methodology in the BioVoxxel toolbox to z-projected images of ex vivo glia cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Dueholm, M; Christensen, J W; Rydbjerg, S; Hansen, E S; Ørtoft, G
2015-06-01
To evaluate the diagnostic efficiency of two-dimensional (2D) and three-dimensional (3D) transvaginal ultrasonography, power Doppler angiography (PDA) and gel infusion sonography (GIS) at offline analysis for recognition of malignant endometrium compared with real-time evaluation during scanning, and to determine optimal image parameters at 3D analysis. One hundred and sixty-nine consecutive women with postmenopausal bleeding and endometrial thickness ≥ 5 mm underwent systematic evaluation of endometrial pattern on 2D imaging, and 2D videoclips and 3D volumes were later analyzed offline. Histopathological findings at hysteroscopy or hysterectomy were used as the reference standard. The efficiency of the different techniques for diagnosis of malignancy was calculated and compared. 3D image parameters, endometrial volume and 3D vascular indices were assessed. Optimal 3D image parameters were transformed by logistic regression into a risk of endometrial cancer (REC) score, including scores for body mass index, endometrial thickness and endometrial morphology at gray-scale and PDA and GIS. Offline 2D and 3D analysis were equivalent, but had lower diagnostic performance compared with real-time evaluation during scanning. Their diagnostic performance was not markedly improved by the addition of PDA or GIS, but their efficiency was comparable with that of real-time 2D-GIS in offline examinations of good image quality. On logistic regression, the 3D parameters from the REC-score system had the highest diagnostic efficiency. The area under the curve of the REC-score system at 3D-GIS (0.89) was not improved by inclusion of vascular indices or endometrial volume calculations. Real-time evaluation during scanning is most efficient, but offline 2D and 3D analysis is useful for prediction of endometrial cancer when good image quality can be obtained. The diagnostic efficiency at 3D analysis may be improved by use of REC-scoring systems, without the need for calculation of vascular indices or endometrial volume. The optimal imaging modality appears to be real-time 2D-GIS. Copyright © 2014 ISUOG. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altundal, Y; Pokhrel, D; Jiang, H
Purpose: To compare image quality parameters and assessing the image stability of three different linear accelerators (linac) for 2D and 3D imaging modalities: planar kV, MV images and cone-beam CT (CBCT). Methods: QCkV1, QC-3 and Cathpan-600 phantoms were utilized to acquire kV, MV and CBCT images respectively on monthly basis per TG142 QA protocol for over 2 years on 21Ex, NovalisTx and TrueBeam linacs. DICOM images were analyzed with the help of QA analysis software: PIPsPro from Standard Imaging. For planar kV and MV images, planar spatial resolution, contrast to noise ratio (CNR) and noise; for CBCT, HU values weremore » collected and analyzed. Results: Two years of monthly QA measurements were analyzed for the planar and CBCT images. Values were normalized to the mean and the standard deviations (STD) are presented. For the kV planar radiographic images the STD of spatial resolution for f30, f40, f50, CNR and noise for 21Ex are 0.006, 0.011, 0.013, 0.046, 0.026; Novalis-Tx are 0.009, 0.016, 0.016, 0.067, 0.053 ; TrueBeam are 0.007, 0.005, 0.009, 0.017, 0.016 respectively. For the MV planar radiographic images, the STD of spatial resolution for f30, f40, f50, CNR and noise for 21Ex are 0.009, 0.010, 0.008, 0.023, 0.023; for Novalix-Tx are 0.012, 0.010, 0.008, 0.029, 0.023 and for TrueBeam are 0.010, 0.010, 0.007, 0.022, 0.022 respectively. For the CBCT images, HU constancies of Air, Polystyrene, Teflon, PMP, LDPE and Delrin for 21Ex are 0.014, 0.070, 0.031, 0.053, 0.076, 0.087; for Novalis Tx are 0.019, 0.047, 0.035, 0.059, 0.077, 0.087 and for TrueBeam are 0.011, 0.044, 0.025, 0.044, 0.056, 0.020 respectively. Conclusion: These Imaging QA results demonstrated that the TrueBeam, performed better in terms of image quality stability for both kV planer and CBCT images as well as EPID MV images, however other two linacs were also satisfied TG142 guidelines.« less
Decision theory applied to image quality control in radiology.
Lessa, Patrícia S; Caous, Cristofer A; Arantes, Paula R; Amaro, Edson; de Souza, Fernando M Campello
2008-11-13
The present work aims at the application of the decision theory to radiological image quality control (QC) in diagnostic routine. The main problem addressed in the framework of decision theory is to accept or reject a film lot of a radiology service. The probability of each decision of a determined set of variables was obtained from the selected films. Based on a radiology service routine a decision probability function was determined for each considered group of combination characteristics. These characteristics were related to the film quality control. These parameters were also framed in a set of 8 possibilities, resulting in 256 possible decision rules. In order to determine a general utility application function to access the decision risk, we have used a simple unique parameter called r. The payoffs chosen were: diagnostic's result (correct/incorrect), cost (high/low), and patient satisfaction (yes/no) resulting in eight possible combinations. Depending on the value of r, more or less risk will occur related to the decision-making. The utility function was evaluated in order to determine the probability of a decision. The decision was made with patients or administrators' opinions from a radiology service center. The model is a formal quantitative approach to make a decision related to the medical imaging quality, providing an instrument to discriminate what is really necessary to accept or reject a film or a film lot. The method presented herein can help to access the risk level of an incorrect radiological diagnosis decision.
Feger, Sarah; Rief, Matthias; Zimmermann, Elke; Martus, Peter; Schuijf, Joanne Désirée; Blobel, Jörg; Richter, Felicitas; Dewey, Marc
2015-01-01
Purpose The aim of this study was the systematic image quality evaluation of coronary CT angiography (CTA), reconstructed with the 3 different levels of adaptive iterative dose reduction (AIDR 3D) and compared to filtered back projection (FBP) with quantum denoising software (QDS). Methods Standard-dose CTA raw data of 30 patients with mean radiation dose of 3.2 ± 2.6 mSv were reconstructed using AIDR 3D mild, standard, strong and compared to FBP/QDS. Objective image quality comparison (signal, noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), contour sharpness) was performed using 21 measurement points per patient, including measurements in each coronary artery from proximal to distal. Results Objective image quality parameters improved with increasing levels of AIDR 3D. Noise was lowest in AIDR 3D strong (p≤0.001 at 20/21 measurement points; compared with FBP/QDS). Signal and contour sharpness analysis showed no significant difference between the reconstruction algorithms for most measurement points. Best coronary SNR and CNR were achieved with AIDR 3D strong. No loss of SNR or CNR in distal segments was seen with AIDR 3D as compared to FBP. Conclusions On standard-dose coronary CTA images, AIDR 3D strong showed higher objective image quality than FBP/QDS without reducing contour sharpness. Trial Registration Clinicaltrials.gov NCT00967876 PMID:25945924
Precht, Helle; Thygesen, Jesper; Gerke, Oke; Egstrup, Kenneth; Waaler, Dag; Lambrechtsen, Jess
2016-12-01
Coronary computed tomography angiography (CCTA) requires high spatial and temporal resolution, increased low contrast resolution for the assessment of coronary artery stenosis, plaque detection, and/or non-coronary pathology. Therefore, new reconstruction algorithms, particularly iterative reconstruction (IR) techniques, have been developed in an attempt to improve image quality with no cost in radiation exposure. To evaluate whether adaptive statistical iterative reconstruction (ASIR) enhances perceived image quality in CCTA compared to filtered back projection (FBP). Thirty patients underwent CCTA due to suspected coronary artery disease. Images were reconstructed using FBP, 30% ASIR, and 60% ASIR. Ninety image sets were evaluated by five observers using the subjective visual grading analysis (VGA) and assessed by proportional odds modeling. Objective quality assessment (contrast, noise, and the contrast-to-noise ratio [CNR]) was analyzed with linear mixed effects modeling on log-transformed data. The need for ethical approval was waived by the local ethics committee as the study only involved anonymously collected clinical data. VGA showed significant improvements in sharpness by comparing FBP with ASIR, resulting in odds ratios of 1.54 for 30% ASIR and 1.89 for 60% ASIR ( P = 0.004). The objective measures showed significant differences between FBP and 60% ASIR ( P < 0.0001) for noise, with an estimated ratio of 0.82, and for CNR, with an estimated ratio of 1.26. ASIR improved the subjective image quality of parameter sharpness and, objectively, reduced noise and increased CNR.
Pieniazek, Facundo; Messina, Valeria
2016-11-01
In this study the effect of freeze drying on the microstructure, texture, and tenderness of Semitendinous and Gluteus Medius bovine muscles were analyzed applying Scanning Electron Microscopy combined with image analysis. Samples were analyzed by Scanning Electron Microscopy at different magnifications (250, 500, and 1,000×). Texture parameters were analyzed by Texture analyzer and by image analysis. Tenderness by Warner-Bratzler shear force. Significant differences (p < 0.05) were obtained for image and instrumental texture features. A linear trend with a linear correlation was applied for instrumental and image features. Image texture features calculated from Gray Level Co-occurrence Matrix (homogeneity, contrast, entropy, correlation and energy) at 1,000× in both muscles had high correlations with instrumental features (chewiness, hardness, cohesiveness, and springiness). Tenderness showed a positive correlation in both muscles with image features (energy and homogeneity). Combing Scanning Electron Microscopy with image analysis can be a useful tool to analyze quality parameters in meat.Summary SCANNING 38:727-734, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Huang, Zhenghua; Zhang, Tianxu; Deng, Lihua; Fang, Hao; Li, Qian
2015-12-01
Total variation(TV) based on regularization has been proven as a popular and effective model for image restoration, because of its ability of edge preserved. However, as the TV favors a piece-wise constant solution, the processing results in the flat regions of the image are easily produced "staircase effects", and the amplitude of the edges will be underestimated; the underlying cause of the problem is that the regularization parameter can not be changeable with spatial local information of image. In this paper, we propose a novel Scatter-matrix eigenvalues-based TV(SMETV) regularization with image blind restoration algorithm for deblurring medical images. The spatial information in different image regions is incorporated into regularization by using the edge indicator called difference eigenvalue to distinguish edges from flat areas. The proposed algorithm can effectively reduce the noise in flat regions as well as preserve the edge and detailed information. Moreover, it becomes more robust with the change of the regularization parameter. Extensive experiments demonstrate that the proposed approach produces results superior to most methods in both visual image quality and quantitative measures.
Doña, Carolina; Chang, Ni-Bin; Caselles, Vicente; Sánchez, Juan M; Camacho, Antonio; Delegido, Jesús; Vannah, Benjamin W
2015-03-15
Lake eutrophication is a critical issue in the interplay of water supply, environmental management, and ecosystem conservation. Integrated sensing, monitoring, and modeling for a holistic lake water quality assessment with respect to multiple constituents is in acute need. The aim of this paper is to develop an integrated algorithm for data fusion and mining of satellite remote sensing images to generate daily estimates of some water quality parameters of interest, such as chlorophyll a concentrations and water transparency, to be applied for the assessment of the hypertrophic Albufera de Valencia. The Albufera de Valencia is the largest freshwater lake in Spain, which can often present values of chlorophyll a concentration over 200 mg m(-3) and values of transparency (Secchi Disk, SD) as low as 20 cm. Remote sensing data from Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat Thematic Mapper (TM) and Enhance Thematic Mapper (ETM+) images were fused to carry out an integrative near-real time water quality assessment on a daily basis. Landsat images are useful to study the spatial variability of the water quality parameters, due to its spatial resolution of 30 m, in comparison to the low spatial resolution (250/500 m) of MODIS. While Landsat offers a high spatial resolution, the low temporal resolution of 16 days is a significant drawback to achieve a near real-time monitoring system. This gap may be bridged by using MODIS images that have a high temporal resolution of 1 day, in spite of its low spatial resolution. Synthetic Landsat images were fused for dates with no Landsat overpass over the study area. Finally, with a suite of ground truth data, a few genetic programming (GP) models were derived to estimate the water quality using the fused surface reflectance data as inputs. The GP model for chlorophyll a estimation yielded a R(2) of 0.94, with a Root Mean Square Error (RMSE) = 8 mg m(-3), and the GP model for water transparency estimation using Secchi disk showed a R(2) of 0.89, with an RMSE = 4 cm. With this effort, the spatiotemporal variations of water transparency and chlorophyll a concentrations may be assessed simultaneously on a daily basis throughout the lake for environmental management. Copyright © 2014 Elsevier Ltd. All rights reserved.
CerebroMatic: A Versatile Toolbox for Spline-Based MRI Template Creation
Wilke, Marko; Altaye, Mekibib; Holland, Scott K.
2017-01-01
Brain image spatial normalization and tissue segmentation rely on prior tissue probability maps. Appropriately selecting these tissue maps becomes particularly important when investigating “unusual” populations, such as young children or elderly subjects. When creating such priors, the disadvantage of applying more deformation must be weighed against the benefit of achieving a crisper image. We have previously suggested that statistically modeling demographic variables, instead of simply averaging images, is advantageous. Both aspects (more vs. less deformation and modeling vs. averaging) were explored here. We used imaging data from 1914 subjects, aged 13 months to 75 years, and employed multivariate adaptive regression splines to model the effects of age, field strength, gender, and data quality. Within the spm/cat12 framework, we compared an affine-only with a low- and a high-dimensional warping approach. As expected, more deformation on the individual level results in lower group dissimilarity. Consequently, effects of age in particular are less apparent in the resulting tissue maps when using a more extensive deformation scheme. Using statistically-described parameters, high-quality tissue probability maps could be generated for the whole age range; they are consistently closer to a gold standard than conventionally-generated priors based on 25, 50, or 100 subjects. Distinct effects of field strength, gender, and data quality were seen. We conclude that an extensive matching for generating tissue priors may model much of the variability inherent in the dataset which is then not contained in the resulting priors. Further, the statistical description of relevant parameters (using regression splines) allows for the generation of high-quality tissue probability maps while controlling for known confounds. The resulting CerebroMatic toolbox is available for download at http://irc.cchmc.org/software/cerebromatic.php. PMID:28275348
CerebroMatic: A Versatile Toolbox for Spline-Based MRI Template Creation.
Wilke, Marko; Altaye, Mekibib; Holland, Scott K
2017-01-01
Brain image spatial normalization and tissue segmentation rely on prior tissue probability maps. Appropriately selecting these tissue maps becomes particularly important when investigating "unusual" populations, such as young children or elderly subjects. When creating such priors, the disadvantage of applying more deformation must be weighed against the benefit of achieving a crisper image. We have previously suggested that statistically modeling demographic variables, instead of simply averaging images, is advantageous. Both aspects (more vs. less deformation and modeling vs. averaging) were explored here. We used imaging data from 1914 subjects, aged 13 months to 75 years, and employed multivariate adaptive regression splines to model the effects of age, field strength, gender, and data quality. Within the spm/cat12 framework, we compared an affine-only with a low- and a high-dimensional warping approach. As expected, more deformation on the individual level results in lower group dissimilarity. Consequently, effects of age in particular are less apparent in the resulting tissue maps when using a more extensive deformation scheme. Using statistically-described parameters, high-quality tissue probability maps could be generated for the whole age range; they are consistently closer to a gold standard than conventionally-generated priors based on 25, 50, or 100 subjects. Distinct effects of field strength, gender, and data quality were seen. We conclude that an extensive matching for generating tissue priors may model much of the variability inherent in the dataset which is then not contained in the resulting priors. Further, the statistical description of relevant parameters (using regression splines) allows for the generation of high-quality tissue probability maps while controlling for known confounds. The resulting CerebroMatic toolbox is available for download at http://irc.cchmc.org/software/cerebromatic.php.
Wen, Qiuting; Kodiweera, Chandana; Dale, Brian M; Shivraman, Giri; Wu, Yu-Chien
2018-01-01
To accelerate high-resolution diffusion imaging, rotating single-shot acquisition (RoSA) with composite reconstruction is proposed. Acceleration was achieved by acquiring only one rotating single-shot blade per diffusion direction, and high-resolution diffusion-weighted (DW) images were reconstructed by using similarities of neighboring DW images. A parallel imaging technique was implemented in RoSA to further improve the image quality and acquisition speed. RoSA performance was evaluated by simulation and human experiments. A brain tensor phantom was developed to determine an optimal blade size and rotation angle by considering similarity in DW images, off-resonance effects, and k-space coverage. With the optimal parameters, RoSA MR pulse sequence and reconstruction algorithm were developed to acquire human brain data. For comparison, multishot echo planar imaging (EPI) and conventional single-shot EPI sequences were performed with matched scan time, resolution, field of view, and diffusion directions. The simulation indicated an optimal blade size of 48 × 256 and a 30 ° rotation angle. For 1 × 1 mm 2 in-plane resolution, RoSA was 12 times faster than the multishot acquisition with comparable image quality. With the same acquisition time as SS-EPI, RoSA provided superior image quality and minimum geometric distortion. RoSA offers fast, high-quality, high-resolution diffusion images. The composite image reconstruction is model-free and compatible with various diffusion computation approaches including parametric and nonparametric analyses. Magn Reson Med 79:264-275, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Optical design of ultrashort throw liquid crystal on silicon projection system
NASA Astrophysics Data System (ADS)
Huang, Jiun-Woei
2017-05-01
An ultrashort throw liquid crystal on silicon (LCoS) projector for home cinema, virtual reality, and automobile heads-up display has been designed and fabricated. To achieve the best performance and highest-quality image, this study aimed to design wide-angle projection optics and optimize the illumination for LCoS. Based on the telecentric lens projection system and optimized Koehler illumination, the optical parameters were calculated. The projector's optical system consisted of a conic aspheric mirror and image optics using either symmetric double Gauss or a large-angle eyepiece to achieve a full projection angle larger than 155 deg. By applying Koehler illumination, image resolution was enhanced and the modulation transfer function of the image in high spatial frequency was increased to form a high-quality illuminated image. The partial coherence analysis verified that the design was capable of 2.5 lps/mm within a 2 m×1.5 m projected image. The throw ratio was less than 0.25 in HD format.
Adaptive compressed sensing of remote-sensing imaging based on the sparsity prediction
NASA Astrophysics Data System (ADS)
Yang, Senlin; Li, Xilong; Chong, Xin
2017-10-01
The conventional compressive sensing works based on the non-adaptive linear projections, and the parameter of its measurement times is usually set empirically. As a result, the quality of image reconstruction is always affected. Firstly, the block-based compressed sensing (BCS) with conventional selection for compressive measurements was given. Then an estimation method for the sparsity of image was proposed based on the two dimensional discrete cosine transform (2D DCT). With an energy threshold given beforehand, the DCT coefficients were processed with both energy normalization and sorting in descending order, and the sparsity of the image can be achieved by the proportion of dominant coefficients. And finally, the simulation result shows that, the method can estimate the sparsity of image effectively, and provides an active basis for the selection of compressive observation times. The result also shows that, since the selection of observation times is based on the sparse degree estimated with the energy threshold provided, the proposed method can ensure the quality of image reconstruction.
Adaptive sigmoid function bihistogram equalization for image contrast enhancement
NASA Astrophysics Data System (ADS)
Arriaga-Garcia, Edgar F.; Sanchez-Yanez, Raul E.; Ruiz-Pinales, Jose; Garcia-Hernandez, Ma. de Guadalupe
2015-09-01
Contrast enhancement plays a key role in a wide range of applications including consumer electronic applications, such as video surveillance, digital cameras, and televisions. The main goal of contrast enhancement is to increase the quality of images. However, most state-of-the-art methods induce different types of distortion such as intensity shift, wash-out, noise, intensity burn-out, and intensity saturation. In addition, in consumer electronics, simple and fast methods are required in order to be implemented in real time. A bihistogram equalization method based on adaptive sigmoid functions is proposed. It consists of splitting the image histogram into two parts that are equalized independently by using adaptive sigmoid functions. In order to preserve the mean brightness of the input image, the parameter of the sigmoid functions is chosen to minimize the absolute mean brightness metric. Experiments on the Berkeley database have shown that the proposed method improves the quality of images and preserves their mean brightness. An application to improve the colorfulness of images is also presented.
Performance evaluation of image-intensifier-TV fluoroscopy systems
NASA Astrophysics Data System (ADS)
van der Putten, Wilhelm J.; Bouley, Shawn
1995-05-01
Through use of a computer model and an aluminum low contrast phantom developed in-house, a method has been developed which is able to grade the imaging performance of fluoroscopy systems through use of a variable, K. This parameter was derived from Rose's model of image perception and is here used as a figure of merit to grade fluoroscopy systems. From Rose's model for an ideal system, a typical value of K for the perception of low contrast details should be between 3 and 7, assuming threshold vision by human observers. Thus, various fluoroscopy systems are graded with different values of K, with a lower value of K indicating better imaging performance of the system. A series of fluoroscopy systems have been graded where the best system produces a value in the low teens, while the poorest systems produce a value in the low twenties. Correlation with conventional image quality measurements is good and the method has the potential for automated assessment of image quality.
Computer-aided diagnosis in radiological imaging: current status and future challenges
NASA Astrophysics Data System (ADS)
Doi, Kunio
2009-10-01
Computer-aided diagnosis (CAD) has become one of the major research subjects in medical imaging and diagnostic radiology. Many different types of CAD schemes are being developed for detection and/or characterization of various lesions in medical imaging, including conventional projection radiography, CT, MRI, and ultrasound imaging. Commercial systems for detection of breast lesions on mammograms have been developed and have received FDA approval for clinical use. CAD may be defined as a diagnosis made by a physician who takes into account the computer output as a "second opinion". The purpose of CAD is to improve the quality and productivity of physicians in their interpretation of radiologic images. The quality of their work can be improved in terms of the accuracy and consistency of their radiologic diagnoses. In addition, the productivity of radiologists is expected to be improved by a reduction in the time required for their image readings. The computer output is derived from quantitative analysis of radiologic images by use of various methods and techniques in computer vision, artificial intelligence, and artificial neural networks (ANNs). The computer output may indicate a number of important parameters, for example, the locations of potential lesions such as lung cancer and breast cancer, the likelihood of malignancy of detected lesions, and the likelihood of various diseases based on differential diagnosis in a given image and clinical parameters. In this review article, the basic concept of CAD is first defined, and the current status of CAD research is then described. In addition, the potential of CAD in the future is discussed and predicted.
NASA Astrophysics Data System (ADS)
Petoussi-Henss, Nina; Becker, Janine; Greiter, Matthias; Schlattl, Helmut; Zankl, Maria; Hoeschen, Christoph
2014-03-01
In radiography there is generally a conflict between the best image quality and the lowest possible patient dose. A proven method of dosimetry is the simulation of radiation transport in virtual human models (i.e. phantoms). However, while the resolution of these voxel models is adequate for most dosimetric purposes, they cannot provide the required organ fine structures necessary for the assessment of the imaging quality. The aim of this work is to develop hybrid/dual-lattice voxel models (called also phantoms) as well as simulation methods by which patient dose and image quality for typical radiographic procedures can be determined. The results will provide a basis to investigate by means of simulations the relationships between patient dose and image quality for various imaging parameters and develop methods for their optimization. A hybrid model, based on NURBS (Non Linear Uniform Rational B-Spline) and PM (Polygon Mesh) surfaces, was constructed from an existing voxel model of a female patient. The organs of the hybrid model can be then scaled and deformed in a non-uniform way i.e. organ by organ; they can be, thus, adapted to patient characteristics without losing their anatomical realism. Furthermore, the left lobe of the lung was substituted by a high resolution lung voxel model, resulting in a dual-lattice geometry model. "Dual lattice" means in this context the combination of voxel models with different resolution. Monte Carlo simulations of radiographic imaging were performed with the code EGS4nrc, modified such as to perform dual lattice transport. Results are presented for a thorax examination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mench, A; Lipnharski, I; Carranza, C
Purpose: New radiation dose reduction technologies are emerging constantly in the medical imaging field. The latest of these technologies, iterative reconstruction (IR) in CT, presents the ability to reduce dose significantly and hence provides great opportunity for CT protocol optimization. However, without effective analysis of image quality, the reduction in radiation exposure becomes irrelevant. This work explores the use of postmortem subjects as an image quality assessment medium for protocol optimizations in abdominal CT. Methods: Three female postmortem subjects were scanned using the Abdomen-Pelvis (AP) protocol at reduced minimum tube current and target noise index (SD) settings of 12.5, 17.5,more » 20.0, and 25.0. Images were reconstructed using two strengths of iterative reconstruction. Radiologists and radiology residents from several subspecialties were asked to evaluate 8 AP image sets including the current facility default scan protocol and 7 scans with the parameters varied as listed above. Images were viewed in the soft tissue window and scored on a 3-point scale as acceptable, borderline acceptable, and unacceptable for diagnosis. The facility default AP scan was identified to the reviewer while the 7 remaining AP scans were randomized and de-identified of acquisition and reconstruction details. The observers were also asked to comment on the subjective image quality criteria they used for scoring images. This included visibility of specific anatomical structures and tissue textures. Results: Radiologists scored images as acceptable or borderline acceptable for target noise index settings of up to 20. Due to the postmortem subjects’ close representation of living human anatomy, readers were able to evaluate images as they would those of actual patients. Conclusion: Postmortem subjects have already been proven useful for direct CT organ dose measurements. This work illustrates the validity of their use for the crucial evaluation of image quality during CT protocol optimization, especially when investigating the effects of new technologies.« less
QR images: optimized image embedding in QR codes.
Garateguy, Gonzalo J; Arce, Gonzalo R; Lau, Daniel L; Villarreal, Ofelia P
2014-07-01
This paper introduces the concept of QR images, an automatic method to embed QR codes into color images with bounded probability of detection error. These embeddings are compatible with standard decoding applications and can be applied to any color image with full area coverage. The QR information bits are encoded into the luminance values of the image, taking advantage of the immunity of QR readers against local luminance disturbances. To mitigate the visual distortion of the QR image, the algorithm utilizes halftoning masks for the selection of modified pixels and nonlinear programming techniques to locally optimize luminance levels. A tractable model for the probability of error is developed and models of the human visual system are considered in the quality metric used to optimize the luminance levels of the QR image. To minimize the processing time, the optimization techniques proposed to consider the mechanics of a common binarization method and are designed to be amenable for parallel implementations. Experimental results show the graceful degradation of the decoding rate and the perceptual quality as a function the embedding parameters. A visual comparison between the proposed and existing methods is presented.
NASA Astrophysics Data System (ADS)
Tonbul, H.; Kavzoglu, T.
2016-12-01
In recent years, object based image analysis (OBIA) has spread out and become a widely accepted technique for the analysis of remotely sensed data. OBIA deals with grouping pixels into homogenous objects based on spectral, spatial and textural features of contiguous pixels in an image. The first stage of OBIA, named as image segmentation, is the most prominent part of object recognition. In this study, multiresolution segmentation, which is a region-based approach, was employed to construct image objects. In the application of multi-resolution, three parameters, namely shape, compactness and scale must be set by the analyst. Segmentation quality remarkably influences the fidelity of the thematic maps and accordingly the classification accuracy. Therefore, it is of great importance to search and set optimal values for the segmentation parameters. In the literature, main focus has been on the definition of scale parameter, assuming that the effect of shape and compactness parameters is limited in terms of achieved classification accuracy. The aim of this study is to deeply analyze the influence of shape/compactness parameters by varying their values while using the optimal scale parameter determined by the use of Estimation of Scale Parameter (ESP-2) approach. A pansharpened Qickbird-2 image covering Trabzon, Turkey was employed to investigate the objectives of the study. For this purpose, six different combinations of shape/compactness were utilized to make deductions on the behavior of shape and compactness parameters and optimal setting for all parameters as a whole. Objects were assigned to classes using nearest neighbor classifier in all segmentation observations and equal number of pixels was randomly selected to calculate accuracy metrics. The highest overall accuracy (92.3%) was achieved by setting the shape/compactness criteria to 0.3/0.3. The results of this study indicate that shape/compactness parameters can have significant effect on classification accuracy with 4% change in overall accuracy. Also, statistical significance of differences in accuracy was tested using the McNemar's test and found that the difference between poor and optimal setting of shape/compactness parameters was statistically significant, suggesting a search for optimal parameterization instead of default setting.
Armstrong, Anderson C; Gjesdal, Ola; Almeida, André; Nacif, Marcelo; Wu, Colin; Bluemke, David A; Brumback, Lyndia; Lima, João A C
2014-01-01
Left ventricular mass (LVM) and hypertrophy (LVH) are important parameters, but their use is surrounded by controversies. We compare LVM by echocardiography and cardiac magnetic resonance (CMR), investigating reproducibility aspects and the effect of echocardiography image quality. We also compare indexing methods within and between imaging modalities for classification of LVH and cardiovascular risk. Multi-Ethnic Study of Atherosclerosis enrolled 880 participants in Baltimore city, 146 had echocardiograms and CMR on the same day. LVM was then assessed using standard techniques. Echocardiography image quality was rated (good/limited) according to the parasternal view. LVH was defined after indexing LVM to body surface area, height(1.7) , height(2.7) , or by the predicted LVM from a reference group. Participants were classified for cardiovascular risk according to Framingham score. Pearson's correlation, Bland-Altman plots, percent agreement, and kappa coefficient assessed agreement within and between modalities. Left ventricular mass by echocardiography (140 ± 40 g) and by CMR were correlated (r = 0.8, P < 0.001) regardless of the echocardiography image quality. The reproducibility profile had strong correlations and agreement for both modalities. Image quality groups had similar characteristics; those with good images compared to CMR slightly superiorly. The prevalence of LVH tended to be higher with higher cardiovascular risk. The agreement for LVH between imaging modalities ranged from 77% to 98% and the kappa coefficient from 0.10 to 0.76. Echocardiography has a reliable performance for LVM assessment and classification of LVH, with limited influence of image quality. Echocardiography and CMR differ in the assessment of LVH, and additional differences rise from the indexing methods. © 2013. This article is a U.S. Government work and is in the public domain in the USA.
Armstrong, Anderson C.; Gjesdal, Ola; Almeida, André; Nacif, Marcelo; Wu, Colin; Bluemke, David A.; Brumback, Lyndia; Lima, João A. C.
2013-01-01
BACKGROUND Left ventricular mass (LVM) and hypertrophy (LVH) are important parameters, but their use is surrounded by controversies. We compare LVM by echocardiography and cardiac magnetic resonance (CMR), investigating reproducibility aspects and the effect of echocardiography image quality. We also compare indexing methods within and between imaging modalities for classification of LVH and cardiovascular risk. METHODS MESA enrolled 880 participants in Baltimore City; 146 had echocardiograms and CMR on the same day. LVM was then assessed using standard techniques. Echocardiography image quality was rated (good/limited) according to the parasternal view. LVH was defined after indexing LVM to body surface area, height1.7, height2.7, or by the predicted LVM from a reference group. Participants were classified for cardiovascular risk according to Framingham score. Pearson’s correlation, Bland-Altman plots, percent agreement, and kappa coefficient assessed agreement within and between modalities. RESULTS LVM by echocardiography (140 ± 40 g) and by CMR were correlated (r = 0.8, p < 0.001) regardless of the echocardiography image quality. The reproducibility profile had strong correlations and agreement for both modalities. Image quality groups had similar characteristics; those with good images compared to CMR slightly superiorly. The prevalence of LVH tended to be higher with higher cardiovascular risk. The agreement for LVH between imaging modalities ranged from 77% to 98% and the kappa coefficient from 0.10 to 0.76. CONCLUSIONS Echocardiography has a reliable performance for LVM assessment and classification of LVH, with limited influence of image quality. Echocardiography and CMR differ in the assessment of LVH, and additional differences rise from the indexing methods. PMID:23930739
NASA Astrophysics Data System (ADS)
Huang, Xiaokun; Zhang, You; Wang, Jing
2018-02-01
Reconstructing four-dimensional cone-beam computed tomography (4D-CBCT) images directly from respiratory phase-sorted traditional 3D-CBCT projections can capture target motion trajectory, reduce motion artifacts, and reduce imaging dose and time. However, the limited numbers of projections in each phase after phase-sorting decreases CBCT image quality under traditional reconstruction techniques. To address this problem, we developed a simultaneous motion estimation and image reconstruction (SMEIR) algorithm, an iterative method that can reconstruct higher quality 4D-CBCT images from limited projections using an inter-phase intensity-driven motion model. However, the accuracy of the intensity-driven motion model is limited in regions with fine details whose quality is degraded due to insufficient projection number, which consequently degrades the reconstructed image quality in corresponding regions. In this study, we developed a new 4D-CBCT reconstruction algorithm by introducing biomechanical modeling into SMEIR (SMEIR-Bio) to boost the accuracy of the motion model in regions with small fine structures. The biomechanical modeling uses tetrahedral meshes to model organs of interest and solves internal organ motion using tissue elasticity parameters and mesh boundary conditions. This physics-driven approach enhances the accuracy of solved motion in the organ’s fine structures regions. This study used 11 lung patient cases to evaluate the performance of SMEIR-Bio, making both qualitative and quantitative comparisons between SMEIR-Bio, SMEIR, and the algebraic reconstruction technique with total variation regularization (ART-TV). The reconstruction results suggest that SMEIR-Bio improves the motion model’s accuracy in regions containing small fine details, which consequently enhances the accuracy and quality of the reconstructed 4D-CBCT images.
Muckley, Matthew J; Noll, Douglas C; Fessler, Jeffrey A
2015-02-01
Sparsity-promoting regularization is useful for combining compressed sensing assumptions with parallel MRI for reducing scan time while preserving image quality. Variable splitting algorithms are the current state-of-the-art algorithms for SENSE-type MR image reconstruction with sparsity-promoting regularization. These methods are very general and have been observed to work with almost any regularizer; however, the tuning of associated convergence parameters is a commonly-cited hindrance in their adoption. Conversely, majorize-minimize algorithms based on a single Lipschitz constant have been observed to be slow in shift-variant applications such as SENSE-type MR image reconstruction since the associated Lipschitz constants are loose bounds for the shift-variant behavior. This paper bridges the gap between the Lipschitz constant and the shift-variant aspects of SENSE-type MR imaging by introducing majorizing matrices in the range of the regularizer matrix. The proposed majorize-minimize methods (called BARISTA) converge faster than state-of-the-art variable splitting algorithms when combined with momentum acceleration and adaptive momentum restarting. Furthermore, the tuning parameters associated with the proposed methods are unitless convergence tolerances that are easier to choose than the constraint penalty parameters required by variable splitting algorithms.
Noll, Douglas C.; Fessler, Jeffrey A.
2014-01-01
Sparsity-promoting regularization is useful for combining compressed sensing assumptions with parallel MRI for reducing scan time while preserving image quality. Variable splitting algorithms are the current state-of-the-art algorithms for SENSE-type MR image reconstruction with sparsity-promoting regularization. These methods are very general and have been observed to work with almost any regularizer; however, the tuning of associated convergence parameters is a commonly-cited hindrance in their adoption. Conversely, majorize-minimize algorithms based on a single Lipschitz constant have been observed to be slow in shift-variant applications such as SENSE-type MR image reconstruction since the associated Lipschitz constants are loose bounds for the shift-variant behavior. This paper bridges the gap between the Lipschitz constant and the shift-variant aspects of SENSE-type MR imaging by introducing majorizing matrices in the range of the regularizer matrix. The proposed majorize-minimize methods (called BARISTA) converge faster than state-of-the-art variable splitting algorithms when combined with momentum acceleration and adaptive momentum restarting. Furthermore, the tuning parameters associated with the proposed methods are unitless convergence tolerances that are easier to choose than the constraint penalty parameters required by variable splitting algorithms. PMID:25330484
Joint image and motion reconstruction for PET using a B-spline motion model.
Blume, Moritz; Navab, Nassir; Rafecas, Magdalena
2012-12-21
We present a novel joint image and motion reconstruction method for PET. The method is based on gated data and reconstructs an image together with a motion function. The motion function can be used to transform the reconstructed image to any of the input gates. All available events (from all gates) are used in the reconstruction. The presented method uses a B-spline motion model, together with a novel motion regularization procedure that does not need a regularization parameter (which is usually extremely difficult to adjust). Several image and motion grid levels are used in order to reduce the reconstruction time. In a simulation study, the presented method is compared to a recently proposed joint reconstruction method. While the presented method provides comparable reconstruction quality, it is much easier to use since no regularization parameter has to be chosen. Furthermore, since the B-spline discretization of the motion function depends on fewer parameters than a displacement field, the presented method is considerably faster and consumes less memory than its counterpart. The method is also applied to clinical data, for which a novel purely data-driven gating approach is presented.
Improved magnetic resonance fingerprinting reconstruction with low-rank and subspace modeling.
Zhao, Bo; Setsompop, Kawin; Adalsteinsson, Elfar; Gagoski, Borjan; Ye, Huihui; Ma, Dan; Jiang, Yun; Ellen Grant, P; Griswold, Mark A; Wald, Lawrence L
2018-02-01
This article introduces a constrained imaging method based on low-rank and subspace modeling to improve the accuracy and speed of MR fingerprinting (MRF). A new model-based imaging method is developed for MRF to reconstruct high-quality time-series images and accurate tissue parameter maps (e.g., T 1 , T 2 , and spin density maps). Specifically, the proposed method exploits low-rank approximations of MRF time-series images, and further enforces temporal subspace constraints to capture magnetization dynamics. This allows the time-series image reconstruction problem to be formulated as a simple linear least-squares problem, which enables efficient computation. After image reconstruction, tissue parameter maps are estimated via dictionary-based pattern matching, as in the conventional approach. The effectiveness of the proposed method was evaluated with in vivo experiments. Compared with the conventional MRF reconstruction, the proposed method reconstructs time-series images with significantly reduced aliasing artifacts and noise contamination. Although the conventional approach exhibits some robustness to these corruptions, the improved time-series image reconstruction in turn provides more accurate tissue parameter maps. The improvement is pronounced especially when the acquisition time becomes short. The proposed method significantly improves the accuracy of MRF, and also reduces data acquisition time. Magn Reson Med 79:933-942, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Spectral unmixing of hyperspectral data to map bauxite deposits
NASA Astrophysics Data System (ADS)
Shanmugam, Sanjeevi; Abhishekh, P. V.
2006-12-01
This paper presents a study about the potential of remote sensing in bauxite exploration in the Kolli hills of Tamilnadu state, southern India. ASTER image (acquired in the VNIR and SWIR regions) has been used in conjunction with SRTM - DEM in this study. A new approach of spectral unmixing of ASTER image data delineated areas rich in alumina. Various geological and geomorphological parameters that control bauxite formation were also derived from the ASTER image. All these information, when integrated, showed that there are 16 cappings (including the existing mines) that satisfy most of the conditions favouring bauxitization in the Kolli Hills. The study concludes that spectral unmixing of hyperspectral satellite data in the VNIR and SWIR regions may be combined with the terrain parameters to get accurate information about bauxite deposits, including their quality.
Real-time fusion of endoscopic views with dynamic 3-D cardiac images: a phantom study.
Szpala, Stanislaw; Wierzbicki, Marcin; Guiraudon, Gerard; Peters, Terry M
2005-09-01
Minimally invasive robotically assisted cardiac surgical systems currently do not routinely employ 3-D image guidance. However, preoperative magnetic resonance and computed tomography (CT) images have the potential to be used in this role, if appropriately registered with the patient anatomy and animated synchronously with the motion of the actual heart. This paper discusses the fusion of optical images of a beating heart phantom obtained from an optically tracked endoscope, with volumetric images of the phantom created from a dynamic CT dataset. High quality preoperative dynamic CT images are created by first extracting the motion parameters of the heart from the series of temporal frames, and then applying this information to animate a high-quality heart image acquired at end systole. Temporal synchronization of the endoscopic and CT model is achieved by selecting the appropriate CT image from the dynamic set, based on an electrocardiographic trigger signal. The spatial error between the optical and virtual images is 1.4 +/- 1.1 mm, while the time discrepancy is typically 50-100 ms. Index Terms-Image guidance, image warping, minimally invasive cardiac surgery, virtual endoscopy, virtual reality.
Lee, Sangyun; Kwon, Heejin; Cho, Jihan
2016-12-01
To investigate image quality characteristics of abdominal computed tomography (CT) scans reconstructed with adaptive statistical iterative reconstruction V (ASIR-V) vs currently using applied adaptive statistical iterative reconstruction (ASIR). This institutional review board-approved study included 35 consecutive patients who underwent CT of the abdomen. Among these 35 patients, 27 with focal liver lesions underwent abdomen CT with a 128-slice multidetector unit using the following parameters: fixed noise index of 30, 1.25 mm slice thickness, 120 kVp, and a gantry rotation time of 0.5 seconds. CT images were analyzed depending on the method of reconstruction: ASIR (30%, 50%, and 70%) vs ASIR-V (30%, 50%, and 70%). Three radiologists independently assessed randomized images in a blinded manner. Imaging sets were compared to focal lesion detection numbers, overall image quality, and objective noise with a paired sample t test. Interobserver agreement was assessed with the intraclass correlation coefficient. The detection of small focal liver lesions (<10 mm) was significantly higher when ASIR-V was used when compared to ASIR (P <0.001). Subjective image noise, artifact, and objective image noise in liver were generally significantly better for ASIR-V compared to ASIR, especially in 50% ASIR-V. Image sharpness and diagnostic acceptability were significantly worse in 70% ASIR-V compared to various levels of ASIR. Images analyzed using 50% ASIR-V were significantly better than three different series of ASIR or other ASIR-V conditions at providing diagnostically acceptable CT scans without compromising image quality and in the detection of focal liver lesions. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Prospective PET image quality gain calculation method by optimizing detector parameters.
Theodorakis, Lampros; Loudos, George; Prassopoulos, Vasilios; Kappas, Constantine; Tsougos, Ioannis; Georgoulias, Panagiotis
2015-12-01
Lutetium-based scintillators with high-performance electronics introduced time-of-flight (TOF) reconstruction in the clinical setting. Let G' be the total signal to noise ratio gain in a reconstructed image using the TOF kernel compared with conventional reconstruction modes. G' is then the product of G1 gain arising from the reconstruction process itself and (n-1) other gain factors (G2, G3, … Gn) arising from the inherent properties of the detector. We calculated G2 and G3 gains resulting from the optimization of the coincidence and energy window width for prompts and singles, respectively. Both quantitative and image-based validated Monte Carlo models of Lu2SiO5 (LSO) TOF-permitting and Bi4Ge3O12 (BGO) TOF-nonpermitting detectors were used for the calculations. G2 and G3 values were 1.05 and 1.08 for the BGO detector and G3 was 1.07 for the LSO. A value of almost unity for G2 of the LSO detector indicated a nonsignificant optimization by altering the energy window setting. G' was found to be ∼1.4 times higher for the TOF-permitting detector after reconstruction and optimization of the coincidence and energy windows. The method described could potentially predict image noise variations by altering detector acquisition parameters. It could also further contribute toward a long-lasting debate related to cost-efficiency issues of TOF scanners versus the non-TOF ones. Some vendors re-engage nowadays to non-TOF product line designs in an effort to reduce crystal costs. Therefore, exploring the limits of image quality gain by altering the parameters of these detectors remains a topical issue.
Learning Photogrammetry with Interactive Software Tool PhoX
NASA Astrophysics Data System (ADS)
Luhmann, T.
2016-06-01
Photogrammetry is a complex topic in high-level university teaching, especially in the fields of geodesy, geoinformatics and metrology where high quality results are demanded. In addition, more and more black-box solutions for 3D image processing and point cloud generation are available that generate nice results easily, e.g. by structure-from-motion approaches. Within this context, the classical approach of teaching photogrammetry (e.g. focusing on aerial stereophotogrammetry) has to be reformed in order to educate students and professionals with new topics and provide them with more information behind the scene. Since around 20 years photogrammetry courses at the Jade University of Applied Sciences in Oldenburg, Germany, include the use of digital photogrammetry software that provide individual exercises, deep analysis of calculation results and a wide range of visualization tools for almost all standard tasks in photogrammetry. During the last years the software package PhoX has been developed that is part of a new didactic concept in photogrammetry and related subjects. It also serves as analysis tool in recent research projects. PhoX consists of a project-oriented data structure for images, image data, measured points and features and 3D objects. It allows for almost all basic photogrammetric measurement tools, image processing, calculation methods, graphical analysis functions, simulations and much more. Students use the program in order to conduct predefined exercises where they have the opportunity to analyse results in a high level of detail. This includes the analysis of statistical quality parameters but also the meaning of transformation parameters, rotation matrices, calibration and orientation data. As one specific advantage, PhoX allows for the interactive modification of single parameters and the direct view of the resulting effect in image or object space.
NASA Astrophysics Data System (ADS)
Avbelj, Janja; Iwaszczuk, Dorota; Müller, Rupert; Reinartz, Peter; Stilla, Uwe
2015-02-01
For image fusion in remote sensing applications the georeferencing accuracy using position, attitude, and camera calibration measurements can be insufficient. Thus, image processing techniques should be employed for precise coregistration of images. In this article a method for multimodal object-based image coregistration refinement between hyperspectral images (HSI) and digital surface models (DSM) is presented. The method is divided in three parts: object outline detection in HSI and DSM, matching, and determination of transformation parameters. The novelty of our proposed coregistration refinement method is the use of material properties and height information of urban objects from HSI and DSM, respectively. We refer to urban objects as objects which are typical in urban environments and focus on buildings by describing them with 2D outlines. Furthermore, the geometric accuracy of these detected building outlines is taken into account in the matching step and for the determination of transformation parameters. Hence, a stochastic model is introduced to compute optimal transformation parameters. The feasibility of the method is shown by testing it on two aerial HSI of different spatial and spectral resolution, and two DSM of different spatial resolution. The evaluation is carried out by comparing the accuracies of the transformations parameters to the reference parameters, determined by considering object outlines at much higher resolution, and also by computing the correctness and the quality rate of the extracted outlines before and after coregistration refinement. Results indicate that using outlines of objects instead of only line segments is advantageous for coregistration of HSI and DSM. The extraction of building outlines in comparison to the line cue extraction provides a larger amount of assigned lines between the images and is more robust to outliers, i.e. false matches.
Phase-contrast tomography of sciatic nerves: image quality and experimental parameters
NASA Astrophysics Data System (ADS)
Töpperwien, M.; Krenkel, M.; Ruhwedel, T.; Möbius, W.; Pacureanu, A.; Cloetens, P.; Salditt, T.
2017-06-01
We present propagation-based phase-contrast tomography of mouse sciatic nerves stained with osmium, leading to an enhanced contrast in the myelin sheath around the axons, in order to visualize the threedimensional (3D) structure of the nerve. We compare different experimental parameters and show that contrast and resolution are high enough to identify single axons in the nerve, including characteristic functional structures such as Schmidt-Lanterman incisures.
NASA Astrophysics Data System (ADS)
Rauf, N.; Alam, D. Y.; Jamaluddin, M.; Samad, B. A.
2018-03-01
The Magnetic Resonance Imaging (MRI) is a medical imaging technique that uses the interaction between the magnetic field and the nuclear spins. MRI can be used to show disparity of pathology by transversal relaxation time (T2) weighted images. Some techniques for producing T2-weighted images are Periodically Rotated Overlapping Parallel Lines with Enhanced Reconstruction (PROPELLER) and Fluid Attenuated Inversion Recovery (FLAIR). A comparison of T2 PROPELLER and T2 FLAIR parameters in MRI image has been conducted. And improve Image Quality the image by using RadiAnt DICOM Viewer and ENVI software with method of image segmentation and Region of Interest (ROI). Brain images were randomly selected. The result of research showed that Time Repetition (TR) and Time Echo (TE) values in all types of images were not influenced by age. T2 FLAIR images had longer TR value (9000 ms), meanwhile T2 PROPELLER images had longer TE value (100.75 - 102.1 ms). Furthermore, areas with low and medium signal intensity appeared clearer by using T2 PROPELLER images (average coefficients of variation for low and medium signal intensity were 0.0431 and 0.0705, respectively). As for areas with high signal intensity appeared clearer by using T2 FLAIR images (average coefficient of variation was 0.0637).
Image quality phantom and parameters for high spatial resolution small-animal SPECT
NASA Astrophysics Data System (ADS)
Visser, Eric P.; Harteveld, Anita A.; Meeuwis, Antoi P. W.; Disselhorst, Jonathan A.; Beekman, Freek J.; Oyen, Wim J. G.; Boerman, Otto C.
2011-10-01
At present, generally accepted standards to characterize small-animal single photon emission tomographs (SPECT) do not exist. Whereas for small-animal positron emission tomography (PET), the NEMA NU 4-2008 guidelines are available, such standards are still lacking for small-animal SPECT. More specifically, a dedicated image quality (IQ) phantom and corresponding IQ parameters are absent. The structures of the existing PET IQ phantom are too large to fully characterize the sub-millimeter spatial resolution of modern multi-pinhole SPECT scanners, and its diameter will not fit into all scanners when operating in high spatial resolution mode. We therefore designed and constructed an adapted IQ phantom with smaller internal structures and external diameter, and a facility to guarantee complete filling of the smallest rods. The associated IQ parameters were adapted from NEMA NU 4. An additional parameter, effective whole-body sensitivity, was defined since this was considered relevant in view of the variable size of the field of view and the use of multiple bed positions as encountered in modern small-animal SPECT scanners. The usefulness of the phantom was demonstrated for 99mTc in a USPECT-II scanner operated in whole-body scanning mode using a multi-pinhole mouse collimator with 0.6 mm pinhole diameter.
Tseng, Hsin-Wu; Fan, Jiahua; Kupinski, Matthew A.
2016-01-01
Abstract. The use of a channelization mechanism on model observers not only makes mimicking human visual behavior possible, but also reduces the amount of image data needed to estimate the model observer parameters. The channelized Hotelling observer (CHO) and channelized scanning linear observer (CSLO) have recently been used to assess CT image quality for detection tasks and combined detection/estimation tasks, respectively. Although the use of channels substantially reduces the amount of data required to compute image quality, the number of scans required for CT imaging is still not practical for routine use. It is our desire to further reduce the number of scans required to make CHO or CSLO an image quality tool for routine and frequent system validations and evaluations. This work explores different data-reduction schemes and designs an approach that requires only a few CT scans. Three different kinds of approaches are included in this study: a conventional CHO/CSLO technique with a large sample size, a conventional CHO/CSLO technique with fewer samples, and an approach that we will show requires fewer samples to mimic conventional performance with a large sample size. The mean value and standard deviation of areas under ROC/EROC curve were estimated using the well-validated shuffle approach. The results indicate that an 80% data reduction can be achieved without loss of accuracy. This substantial data reduction is a step toward a practical tool for routine-task-based QA/QC CT system assessment. PMID:27493982
An Approach to Improve the Quality of Infrared Images of Vein-Patterns
Lin, Chih-Lung
2011-01-01
This study develops an approach to improve the quality of infrared (IR) images of vein-patterns, which usually have noise, low contrast, low brightness and small objects of interest, thus requiring preprocessing to improve their quality. The main characteristics of the proposed approach are that no prior knowledge about the IR image is necessary and no parameters must be preset. Two main goals are sought: impulse noise reduction and adaptive contrast enhancement technologies. In our study, a fast median-based filter (FMBF) is developed as a noise reduction method. It is based on an IR imaging mechanism to detect the noisy pixels and on a modified median-based filter to remove the noisy pixels in IR images. FMBF has the advantage of a low computation load. In addition, FMBF can retain reasonably good edges and texture information when the size of the filter window increases. The most important advantage is that the peak signal-to-noise ratio (PSNR) caused by FMBF is higher than the PSNR caused by the median filter. A hybrid cumulative histogram equalization (HCHE) is proposed for adaptive contrast enhancement. HCHE can automatically generate a hybrid cumulative histogram (HCH) based on two different pieces of information about the image histogram. HCHE can improve the enhancement effect on hot objects rather than background. The experimental results are addressed and demonstrate that the proposed approach is feasible for use as an effective and adaptive process for enhancing the quality of IR vein-pattern images. PMID:22247674
An approach to improve the quality of infrared images of vein-patterns.
Lin, Chih-Lung
2011-01-01
This study develops an approach to improve the quality of infrared (IR) images of vein-patterns, which usually have noise, low contrast, low brightness and small objects of interest, thus requiring preprocessing to improve their quality. The main characteristics of the proposed approach are that no prior knowledge about the IR image is necessary and no parameters must be preset. Two main goals are sought: impulse noise reduction and adaptive contrast enhancement technologies. In our study, a fast median-based filter (FMBF) is developed as a noise reduction method. It is based on an IR imaging mechanism to detect the noisy pixels and on a modified median-based filter to remove the noisy pixels in IR images. FMBF has the advantage of a low computation load. In addition, FMBF can retain reasonably good edges and texture information when the size of the filter window increases. The most important advantage is that the peak signal-to-noise ratio (PSNR) caused by FMBF is higher than the PSNR caused by the median filter. A hybrid cumulative histogram equalization (HCHE) is proposed for adaptive contrast enhancement. HCHE can automatically generate a hybrid cumulative histogram (HCH) based on two different pieces of information about the image histogram. HCHE can improve the enhancement effect on hot objects rather than background. The experimental results are addressed and demonstrate that the proposed approach is feasible for use as an effective and adaptive process for enhancing the quality of IR vein-pattern images.
Accuracy Analysis for Automatic Orientation of a Tumbling Oblique Viewing Sensor System
NASA Astrophysics Data System (ADS)
Stebner, K.; Wieden, A.
2014-03-01
Dynamic camera systems with moving parts are difficult to handle in photogrammetric workflow, because it is not ensured that the dynamics are constant over the recording period. Minimum changes of the camera's orientation greatly influence the projection of oblique images. In this publication these effects - originating from the kinematic chain of a dynamic camera system - are analysed and validated. A member of the Modular Airborne Camera System family - MACS-TumbleCam - consisting of a vertical viewing and a tumbling oblique camera was used for this investigation. Focus is on dynamic geometric modeling and the stability of the kinematic chain. To validate the experimental findings, the determined parameters are applied to the exterior orientation of an actual aerial image acquisition campaign using MACS-TumbleCam. The quality of the parameters is sufficient for direct georeferencing of oblique image data from the orientation information of a synchronously captured vertical image dataset. Relative accuracy for the oblique data set ranges from 1.5 pixels when using all images of the image block to 0.3 pixels when using only adjacent images.
Molray--a web interface between O and the POV-Ray ray tracer.
Harris, M; Jones, T A
2001-08-01
A publicly available web-based interface is presented for producing high-quality ray-traced images and movies from the molecular-modelling program O [Jones et al. (1991), Acta Cryst. A47, 110-119]. The interface allows the user to select O-plot files and set parameters to create standard input files for the popular ray-tracing renderer POV-Ray, which can then produce publication-quality still images or simple movies. To ensure ease of use, we have made this service available to the O user community via the World Wide Web. The public Molray server is available at http://xray.bmc.uu.se/molray.
Phased array inspection of large size forged steel parts
NASA Astrophysics Data System (ADS)
Dupont-Marillia, Frederic; Jahazi, Mohammad; Belanger, Pierre
2018-04-01
High strength forged steel requires uncompromising quality to warrant advance performance for numerous critical applications. Ultrasonic inspection is commonly used in nondestructive testing to detect cracks and other defects. In steel blocks of relatively small dimensions (at least two directions not exceeding a few centimetres), phased array inspection is a trusted method to generate images of the inside of the blocks and therefore identify and size defects. However, casting of large size forged ingots introduces changes of mechanical parameters such as grain size, the Young's modulus, the Poisson's ratio, and the chemical composition. These heterogeneities affect the wave propagation, and consequently, the reliability of ultrasonic inspection and the imaging capabilities for these blocks. In this context, a custom phased array transducer designed for a 40-ton bainitic forged ingot was investigated. Following a previous study that provided local mechanical parameters for a similar block, two-dimensional simulations were made to compute the optimal transducer parameters including the pitch, width and number of elements. It appeared that depending on the number of elements, backwall reconstruction can generate high amplitude artefacts. Indeed, the large dimensions of the simulated block introduce numerous constructive interferences from backwall reflections which may lead to important artefacts. To increase image quality, the reconstruction algorithm was adapted and promising results were observed and compared with the scattering cone filter method available in the CIVA software.
Benefits of utilizing CellProfiler as a characterization tool for U–10Mo nuclear fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collette, R.; Douglas, J.; Patterson, L.
2015-07-15
Automated image processing techniques have the potential to aid in the performance evaluation of nuclear fuels by eliminating judgment calls that may vary from person-to-person or sample-to-sample. Analysis of in-core fuel performance is required for design and safety evaluations related to almost every aspect of the nuclear fuel cycle. This study presents a methodology for assessing the quality of uranium–molybdenum fuel images and describes image analysis routines designed for the characterization of several important microstructural properties. The analyses are performed in CellProfiler, an open-source program designed to enable biologists without training in computer vision or programming to automatically extract cellularmore » measurements from large image sets. The quality metric scores an image based on three parameters: the illumination gradient across the image, the overall focus of the image, and the fraction of the image that contains scratches. The metric presents the user with the ability to ‘pass’ or ‘fail’ an image based on a reproducible quality score. Passable images may then be characterized through a separate CellProfiler pipeline, which enlists a variety of common image analysis techniques. The results demonstrate the ability to reliably pass or fail images based on the illumination, focus, and scratch fraction of the image, followed by automatic extraction of morphological data with respect to fission gas voids, interaction layers, and grain boundaries. - Graphical abstract: Display Omitted - Highlights: • A technique is developed to score U–10Mo FIB-SEM image quality using CellProfiler. • The pass/fail metric is based on image illumination, focus, and area scratched. • Automated image analysis is performed in pipeline fashion to characterize images. • Fission gas void, interaction layer, and grain boundary coverage data is extracted. • Preliminary characterization results demonstrate consistency of the algorithm.« less
2018-01-01
Objective To determine whether the body size-adapted volume computed tomography (CT) dose index (CTDvol) in pediatric cardiothoracic CT with tube current modulation is better to be entered before or after scan range adjustment for radiation dose optimization. Materials and Methods In 83 patients, cardiothoracic CT with tube current modulation was performed with the body size-adapted CTDIvol entered after (group 1, n = 42) or before (group 2, n = 41) scan range adjustment. Patient-related, radiation dose, and image quality parameters were compared and correlated between the two groups. Results The CTDIvol after the CT scan in group 1 was significantly higher than that in group 2 (1.7 ± 0.1 mGy vs. 1.4 ± 0.3 mGy; p < 0.0001). Image noise (4.6 ± 0.5 Hounsfield units [HU] vs. 4.5 ± 0.7 HU) and image quality (1.5 ± 0.6 vs. 1.5 ± 0.6) showed no significant differences between the two (p > 0.05). In both groups, all patient-related parameters, except body density, showed positive correlations (r = 0.49–0.94; p < 0.01) with the CTDIvol before and after the CT scan. The CTDIvol after CT scan showed modest positive correlation (r = 0.49; p ≤ 0.001) with image noise in group 1 but no significant correlation (p > 0.05) in group 2. Conclusion In pediatric cardiothoracic CT with tube current modulation, the CTDIvol entered before scan range adjustment provides a significant dose reduction (18%) with comparable image quality compared with that entered after scan range adjustment.
Sentinel 2A: the image quality performances at the beginning of its mission
NASA Astrophysics Data System (ADS)
Trémas, T.; Lonjou, V.; Lachérade, S.; Languille, F.; Gaudel-Vacaresse, A.,
2016-09-01
Launched on June 23rd, 2015 from Kourou, Sentinel 2A has been providing images for more than 1 year now. The satellite behavior is very satisfactory and the quality of data fulfills the requirements with comfortable margins. The realization and implementation of the satellite has been realized under the responsibility of ESA, for the European Commission. The In Orbit Commissioning phase lasted 4 months, concluded by a review on October 16th, 2015. At this date, the S2A space segment handover took place from the Project Manager (ESA/ESTEC) to the Mission Manager (ESA/ESRIN). The subset of Image Quality commissioning was delegated by ESA to CNES, referring to the experience of the French Space Agency on previous imagers. This phase lasted 7 months after the launch, extending beyond the IOCR. Actually, some parameters required several months before converging to a stable state. This paper presents the status of the satellite, from an IQ prospective, just before it entered its operational phase. The radiometric and geometric performances are listed, including: the absolute radiometric calibration, the equalization, the SNR, the absolute and the multi-temporal location accuracy. The accomplishment of a part of the Global Reference Image over Europe is evoked as well. The IQ commissioning phase ended on January 28th, 2016. From this date, the monitoring of IQ parameters is under the responsibility of ESA/ESRIN. Nevertheless, CNES continues to support ESA to survey the accuracy of S2A performances. The article ends by dealing with the future of S2A that will work together with S2B by the end of 2016.
Robustness of speckle imaging techniques applied to horizontal imaging scenarios
NASA Astrophysics Data System (ADS)
Bos, Jeremy P.
Atmospheric turbulence near the ground severely limits the quality of imagery acquired over long horizontal paths. In defense, surveillance, and border security applications, there is interest in deploying man-portable, embedded systems incorporating image reconstruction to improve the quality of imagery available to operators. To be effective, these systems must operate over significant variations in turbulence conditions while also subject to other variations due to operation by novice users. Systems that meet these requirements and are otherwise designed to be immune to the factors that cause variation in performance are considered robust. In addition to robustness in design, the portable nature of these systems implies a preference for systems with a minimum level of computational complexity. Speckle imaging methods are one of a variety of methods recently been proposed for use in man-portable horizontal imagers. In this work, the robustness of speckle imaging methods is established by identifying a subset of design parameters that provide immunity to the expected variations in operating conditions while minimizing the computation time necessary for image recovery. This performance evaluation is made possible using a novel technique for simulating anisoplanatic image formation. I find that incorporate as few as 15 image frames and 4 estimates of the object phase per reconstructed frame provide an average reduction of 45% reduction in Mean Squared Error (MSE) and 68% reduction in deviation in MSE. In addition, the Knox-Thompson phase recovery method is demonstrated to produce images in half the time required by the bispectrum. Finally, it is shown that certain blind image quality metrics can be used in place of the MSE to evaluate reconstruction quality in field scenarios. Using blind metrics rather depending on user estimates allows for reconstruction quality that differs from the minimum MSE by as little as 1%, significantly reducing the deviation in performance due to user action.
Adaptively Tuned Iterative Low Dose CT Image Denoising
Hashemi, SayedMasoud; Paul, Narinder S.; Beheshti, Soosan; Cobbold, Richard S. C.
2015-01-01
Improving image quality is a critical objective in low dose computed tomography (CT) imaging and is the primary focus of CT image denoising. State-of-the-art CT denoising algorithms are mainly based on iterative minimization of an objective function, in which the performance is controlled by regularization parameters. To achieve the best results, these should be chosen carefully. However, the parameter selection is typically performed in an ad hoc manner, which can cause the algorithms to converge slowly or become trapped in a local minimum. To overcome these issues a noise confidence region evaluation (NCRE) method is used, which evaluates the denoising residuals iteratively and compares their statistics with those produced by additive noise. It then updates the parameters at the end of each iteration to achieve a better match to the noise statistics. By combining NCRE with the fundamentals of block matching and 3D filtering (BM3D) approach, a new iterative CT image denoising method is proposed. It is shown that this new denoising method improves the BM3D performance in terms of both the mean square error and a structural similarity index. Moreover, simulations and patient results show that this method preserves the clinically important details of low dose CT images together with a substantial noise reduction. PMID:26089972
Effect of slice thickness on brain magnetic resonance image texture analysis
2010-01-01
Background The accuracy of texture analysis in clinical evaluation of magnetic resonance images depends considerably on imaging arrangements and various image quality parameters. In this paper, we study the effect of slice thickness on brain tissue texture analysis using a statistical approach and classification of T1-weighted images of clinically confirmed multiple sclerosis patients. Methods We averaged the intensities of three consecutive 1-mm slices to simulate 3-mm slices. Two hundred sixty-four texture parameters were calculated for both the original and the averaged slices. Wilcoxon's signed ranks test was used to find differences between the regions of interest representing white matter and multiple sclerosis plaques. Linear and nonlinear discriminant analyses were applied with several separate training and test sets to determine the actual classification accuracy. Results Only moderate differences in distributions of the texture parameter value for 1-mm and simulated 3-mm-thick slices were found. Our study also showed that white matter areas are well separable from multiple sclerosis plaques even if the slice thickness differs between training and test sets. Conclusions Three-millimeter-thick magnetic resonance image slices acquired with a 1.5 T clinical magnetic resonance scanner seem to be sufficient for texture analysis of multiple sclerosis plaques and white matter tissue. PMID:20955567
NASA Astrophysics Data System (ADS)
Hachaj, Tomasz; Ogiela, Marek R.
2012-10-01
The proposed framework for cognitive analysis of perfusion computed tomography images is a fusion of image processing, pattern recognition, and image analysis procedures. The output data of the algorithm consists of: regions of perfusion abnormalities, anatomy atlas description of brain tissues, measures of perfusion parameters, and prognosis for infracted tissues. That information is superimposed onto volumetric computed tomography data and displayed to radiologists. Our rendering algorithm enables rendering large volumes on off-the-shelf hardware. This portability of rendering solution is very important because our framework can be run without using expensive dedicated hardware. The other important factors are theoretically unlimited size of rendered volume and possibility of trading of image quality for rendering speed. Such rendered, high quality visualizations may be further used for intelligent brain perfusion abnormality identification, and computer aided-diagnosis of selected types of pathologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mundy, D; Tryggestad, E; Beltran, C
Purpose: To develop daily and monthly quality assurance (QA) programs in support of a new spot-scanning proton treatment facility using a combination of commercial and custom equipment and software. Emphasis was placed on efficiency and evaluation of key quality parameters. Methods: The daily QA program was developed to test output, spot size and position, proton beam energy, and image guidance using the Sun Nuclear Corporation rf-DQA™3 device and Atlas QA software. The program utilizes standard Atlas linear accelerator tests repurposed for proton measurements and a custom jig for indexing the device to the treatment couch. The monthly QA program wasmore » designed to test mechanical performance, image quality, radiation quality, isocenter coincidence, and safety features. Many of these tests are similar to linear accelerator QA counterparts, but many require customized test design and equipment. Coincidence of imaging, laser marker, mechanical, and radiation isocenters, for instance, is verified using a custom film-based device devised and manufactured at our facility. Proton spot size and position as a function of energy are verified using a custom spot pattern incident on film and analysis software developed in-house. More details concerning the equipment and software developed for monthly QA are included in the supporting document. Thresholds for daily and monthly tests were established via perturbation analysis, early experience, and/or proton system specifications and associated acceptance test results. Results: The periodic QA program described here has been in effect for approximately 9 months and has proven efficient and sensitive to sub-clinical variations in treatment delivery characteristics. Conclusion: Tools and professional guidelines for periodic proton system QA are not as well developed as their photon and electron counterparts. The program described here efficiently evaluates key quality parameters and, while specific to the needs of our facility, could be readily adapted to other proton centers.« less
Clark, Toshimasa J; Wilson, Gregory J; Maki, Jeffrey H
2017-07-01
Contrast-enhanced (CE)-MRA optimization involves interactions of sequence duration, bolus timing, contrast recirculation, and both R 1 relaxivity and R2*-related reduction of signal. Prior data suggest superior image quality with slower gadolinium injection rates than typically used. A computer-based model of CE-MRA was developed, with contrast injection, physiologic, and image acquisition parameters varied over a wide gamut. Gadolinium concentration was derived using Verhoeven's model with recirculation, R 1 and R2* calculated at each time point, and modulation transfer curves used to determine injection rates, resulting in optimal resolution and image contrast for renal and carotid artery CE-MRA. Validation was via a vessel stenosis phantom and example patients who underwent carotid CE-MRA with low effective injection rates. Optimal resolution for renal and carotid CE-MRA is achieved with injection rates between 0.5 to 0.9 mL/s and 0.2 to 0.3 mL/s, respectively, dependent on contrast volume. Optimal image contrast requires slightly faster injection rates. Expected signal-to-noise ratio varies with both contrast volume and cardiac output. Simulated vessel phantom and clinical carotid CE-MRA exams at an effective contrast injection rate of 0.4 to 0.5 mL/s demonstrate increased resolution. Optimal image resolution is achieved at intuitively low, effective injection rates (0.2-0.9 mL/s, dependent on imaging parameters and contrast injection volume). Magn Reson Med 78:357-369, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
A Digital Sensor Simulator of the Pushbroom Offner Hyperspectral Imaging Spectrometer
Tao, Dongxing; Jia, Guorui; Yuan, Yan; Zhao, Huijie
2014-01-01
Sensor simulators can be used in forecasting the imaging quality of a new hyperspectral imaging spectrometer, and generating simulated data for the development and validation of the data processing algorithms. This paper presents a novel digital sensor simulator for the pushbroom Offner hyperspectral imaging spectrometer, which is widely used in the hyperspectral remote sensing. Based on the imaging process, the sensor simulator consists of a spatial response module, a spectral response module, and a radiometric response module. In order to enhance the simulation accuracy, spatial interpolation-resampling, which is implemented before the spatial degradation, is developed to compromise the direction error and the extra aliasing effect. Instead of using the spectral response function (SRF), the dispersive imaging characteristics of the Offner convex grating optical system is accurately modeled by its configuration parameters. The non-uniformity characteristics, such as keystone and smile effects, are simulated in the corresponding modules. In this work, the spatial, spectral and radiometric calibration processes are simulated to provide the parameters of modulation transfer function (MTF), SRF and radiometric calibration parameters of the sensor simulator. Some uncertainty factors (the stability, band width of the monochromator for the spectral calibration, and the integrating sphere uncertainty for the radiometric calibration) are considered in the simulation of the calibration process. With the calibration parameters, several experiments were designed to validate the spatial, spectral and radiometric response of the sensor simulator, respectively. The experiment results indicate that the sensor simulator is valid. PMID:25615727
Study of image reconstruction for terahertz indirect holography with quasi-optics receiver.
Gao, Xiang; Li, Chao; Fang, Guangyou
2013-06-01
In this paper, an indirect holographic image reconstruction algorithm was studied for terahertz imaging with a quasi-optics receiver. Based on the combination of the reciprocity principle and modified quasi-optics theory, analytical expressions of the received spatial power distribution and its spectrum are obtained for the interference pattern of target wave and reference wave. These results clearly give the quantitative relationship between imaging quality and the parameters of a Gaussian beam, which provides a good criterion for terahertz quasi-optics transceivers design in terahertz off-axis holographic imagers. To validate the effectiveness of the proposed analysis method, some imaging results with a 0.3 THz prototype system are shown based on electromagnetic simulation.
A denoising algorithm for CT image using low-rank sparse coding
NASA Astrophysics Data System (ADS)
Lei, Yang; Xu, Dong; Zhou, Zhengyang; Wang, Tonghe; Dong, Xue; Liu, Tian; Dhabaan, Anees; Curran, Walter J.; Yang, Xiaofeng
2018-03-01
We propose a denoising method of CT image based on low-rank sparse coding. The proposed method constructs an adaptive dictionary of image patches and estimates the sparse coding regularization parameters using the Bayesian interpretation. A low-rank approximation approach is used to simultaneously construct the dictionary and achieve sparse representation through clustering similar image patches. A variable-splitting scheme and a quadratic optimization are used to reconstruct CT image based on achieved sparse coefficients. We tested this denoising technology using phantom, brain and abdominal CT images. The experimental results showed that the proposed method delivers state-of-art denoising performance, both in terms of objective criteria and visual quality.
Chain of evidence generation for contrast enhancement in digital image forensics
NASA Astrophysics Data System (ADS)
Battiato, Sebastiano; Messina, Giuseppe; Strano, Daniela
2010-01-01
The quality of the images obtained by digital cameras has improved a lot since digital cameras early days. Unfortunately, it is not unusual in image forensics to find wrongly exposed pictures. This is mainly due to obsolete techniques or old technologies, but also due to backlight conditions. To extrapolate some invisible details a stretching of the image contrast is obviously required. The forensics rules to produce evidences require a complete documentation of the processing steps, enabling the replication of the entire process. The automation of enhancement techniques is thus quite difficult and needs to be carefully documented. This work presents an automatic procedure to find contrast enhancement settings, allowing both image correction and automatic scripting generation. The technique is based on a preprocessing step which extracts the features of the image and selects correction parameters. The parameters are thus saved through a JavaScript code that is used in the second step of the approach to correct the image. The generated script is Adobe Photoshop compliant (which is largely used in image forensics analysis) thus permitting the replication of the enhancement steps. Experiments on a dataset of images are also reported showing the effectiveness of the proposed methodology.
Quantitative imaging methods in osteoporosis.
Oei, Ling; Koromani, Fjorda; Rivadeneira, Fernando; Zillikens, M Carola; Oei, Edwin H G
2016-12-01
Osteoporosis is characterized by a decreased bone mass and quality resulting in an increased fracture risk. Quantitative imaging methods are critical in the diagnosis and follow-up of treatment effects in osteoporosis. Prior radiographic vertebral fractures and bone mineral density (BMD) as a quantitative parameter derived from dual-energy X-ray absorptiometry (DXA) are among the strongest known predictors of future osteoporotic fractures. Therefore, current clinical decision making relies heavily on accurate assessment of these imaging features. Further, novel quantitative techniques are being developed to appraise additional characteristics of osteoporosis including three-dimensional bone architecture with quantitative computed tomography (QCT). Dedicated high-resolution (HR) CT equipment is available to enhance image quality. At the other end of the spectrum, by utilizing post-processing techniques such as the trabecular bone score (TBS) information on three-dimensional architecture can be derived from DXA images. Further developments in magnetic resonance imaging (MRI) seem promising to not only capture bone micro-architecture but also characterize processes at the molecular level. This review provides an overview of various quantitative imaging techniques based on different radiological modalities utilized in clinical osteoporosis care and research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haan, J.F. de; Kokke, J.M.M.; Hoogenboom, H.J.
1997-06-01
Deriving thematic maps of water quality parameters from a remote sensing image requires a number of processing steps, such as calibration, atmospheric correction, air-water interface correction, and application of water quality algorithms. A prototype version of an integrated software environment has recently been developed that enables the user to perform and control these processing steps. Major parts of this environment are: (i) access to the MODTRAN 3 radiative transfer code, (ii) a database of water quality algorithms, and (iii) a spectral library of Dutch coastal and inland waters, containing subsurface irradiance reflectance spectra and associated water quality parameters. The atmosphericmore » correction part of this environment is discussed here. It is shown that this part can be used to accurately retrieve spectral signatures of inland water for wavelengths between 450 and 750 nm, provided in situ measurements are used to determine atmospheric model parameters. Assessment of the usefulness of the completely integrated software system in an operational environment requires a revised version that is presently being developed.« less
NASA Astrophysics Data System (ADS)
Sramek, Benjamin Koerner
The ability to deliver conformal dose distributions in radiation therapy through intensity modulation and the potential for tumor dose escalation to improve treatment outcome has necessitated an increase in localization accuracy of inter- and intra-fractional patient geometry. Megavoltage cone-beam CT imaging using the treatment beam and onboard electronic portal imaging device is one option currently being studied for implementation in image-guided radiation therapy. However, routine clinical use is predicated upon continued improvements in image quality and patient dose delivered during acquisition. The formal statement of hypothesis for this investigation was that the conformity of planned to delivered dose distributions in image-guided radiation therapy could be further enhanced through the application of kilovoltage scatter correction and intermediate view estimation techniques to megavoltage cone-beam CT imaging, and that normalized dose measurements could be acquired and inter-compared between multiple imaging geometries. The specific aims of this investigation were to: (1) incorporate the Feldkamp, Davis and Kress filtered backprojection algorithm into a program to reconstruct a voxelized linear attenuation coefficient dataset from a set of acquired megavoltage cone-beam CT projections, (2) characterize the effects on megavoltage cone-beam CT image quality resulting from the application of Intermediate View Interpolation and Intermediate View Reprojection techniques to limited-projection datasets, (3) incorporate the Scatter and Primary Estimation from Collimator Shadows (SPECS) algorithm into megavoltage cone-beam CT image reconstruction and determine the set of SPECS parameters which maximize image quality and quantitative accuracy, and (4) evaluate the normalized axial dose distributions received during megavoltage cone-beam CT image acquisition using radiochromic film and thermoluminescent dosimeter measurements in anthropomorphic pelvic and head and neck phantoms. The conclusions of this investigation were: (1) the implementation of intermediate view estimation techniques to megavoltage cone-beam CT produced improvements in image quality, with the largest impact occurring for smaller numbers of initially-acquired projections, (2) the SPECS scatter correction algorithm could be successfully incorporated into projection data acquired using an electronic portal imaging device during megavoltage cone-beam CT image reconstruction, (3) a large range of SPECS parameters were shown to reduce cupping artifacts as well as improve reconstruction accuracy, with application to anthropomorphic phantom geometries improving the percent difference in reconstructed electron density for soft tissue from -13.6% to -2.0%, and for cortical bone from -9.7% to 1.4%, (4) dose measurements in the anthropomorphic phantoms showed consistent agreement between planar measurements using radiochromic film and point measurements using thermoluminescent dosimeters, and (5) a comparison of normalized dose measurements acquired with radiochromic film to those calculated using multiple treatment planning systems, accelerator-detector combinations, patient geometries and accelerator outputs produced a relatively good agreement.
Chronic brain damage in sickle cell disease and its relation with quality of life.
Cela, Elena; Vélez, Ana G; Aguado, Alejandra; Medín, Gabriela; Bellón, José M; Beléndez, Cristina
2016-12-16
Sickle cell anaemia causes progressive organ damage. The objective is to describe school performance of patients with sickle cell anaemia and their clinical parameters and quality of life that may have an influence. The hypothesis is that if school alterations occur without other objective data, additional factors must be present besides the disease itself. Transversal study performed in November 2015 considering analytical variables, complications and neuroradiological images of children with sickle cell anaemia, and family survey on school performance and quality of life. Median age was 6.8 years and 78% were diagnosed at birth. Sixty patients were included. School performance was altered in 51% of cases and was related to nocturnal hypoxemia. Acute stroke incidence was 6.7%. Transcranial ultrasound was abnormal in 4% of cases and magnetic resonance imaging in 16% of cases. Quality of life showed pathological findings in all areas and the low values increased proportionally in older ages. The stroke affected the physical and social sphere, and lung disease affected the physical and emotional spheres. Poor school performance affects half of the patients and it is related to nocturnal hypoxemia, although other socio-cultural factors may have an influence. Quality of life is affected in most of these cases independently of academic results. The absence of alterations in neuroimaging or the apparent lack of severe clinical parameters do not mean that quality of life and schooling are normal. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.
Banić, Nikola; Lončarić, Sven
2015-11-01
Removing the influence of illumination on image colors and adjusting the brightness across the scene are important image enhancement problems. This is achieved by applying adequate color constancy and brightness adjustment methods. One of the earliest models to deal with both of these problems was the Retinex theory. Some of the Retinex implementations tend to give high-quality results by performing local operations, but they are computationally relatively slow. One of the recent Retinex implementations is light random sprays Retinex (LRSR). In this paper, a new method is proposed for brightness adjustment and color correction that overcomes the main disadvantages of LRSR. There are three main contributions of this paper. First, a concept of memory sprays is proposed to reduce the number of LRSR's per-pixel operations to a constant regardless of the parameter values, thereby enabling a fast Retinex-based local image enhancement. Second, an effective remapping of image intensities is proposed that results in significantly higher quality. Third, the problem of LRSR's halo effect is significantly reduced by using an alternative illumination processing method. The proposed method enables a fast Retinex-based image enhancement by processing Retinex paths in a constant number of steps regardless of the path size. Due to the halo effect removal and remapping of the resulting intensities, the method outperforms many of the well-known image enhancement methods in terms of resulting image quality. The results are presented and discussed. It is shown that the proposed method outperforms most of the tested methods in terms of image brightness adjustment, color correction, and computational speed.
Thygesen, Jesper; Gerke, Oke; Egstrup, Kenneth; Waaler, Dag; Lambrechtsen, Jess
2016-01-01
Background Coronary computed tomography angiography (CCTA) requires high spatial and temporal resolution, increased low contrast resolution for the assessment of coronary artery stenosis, plaque detection, and/or non-coronary pathology. Therefore, new reconstruction algorithms, particularly iterative reconstruction (IR) techniques, have been developed in an attempt to improve image quality with no cost in radiation exposure. Purpose To evaluate whether adaptive statistical iterative reconstruction (ASIR) enhances perceived image quality in CCTA compared to filtered back projection (FBP). Material and Methods Thirty patients underwent CCTA due to suspected coronary artery disease. Images were reconstructed using FBP, 30% ASIR, and 60% ASIR. Ninety image sets were evaluated by five observers using the subjective visual grading analysis (VGA) and assessed by proportional odds modeling. Objective quality assessment (contrast, noise, and the contrast-to-noise ratio [CNR]) was analyzed with linear mixed effects modeling on log-transformed data. The need for ethical approval was waived by the local ethics committee as the study only involved anonymously collected clinical data. Results VGA showed significant improvements in sharpness by comparing FBP with ASIR, resulting in odds ratios of 1.54 for 30% ASIR and 1.89 for 60% ASIR (P = 0.004). The objective measures showed significant differences between FBP and 60% ASIR (P < 0.0001) for noise, with an estimated ratio of 0.82, and for CNR, with an estimated ratio of 1.26. Conclusion ASIR improved the subjective image quality of parameter sharpness and, objectively, reduced noise and increased CNR. PMID:28405477
2D and 3D visualization methods of endoscopic panoramic bladder images
NASA Astrophysics Data System (ADS)
Behrens, Alexander; Heisterklaus, Iris; Müller, Yannick; Stehle, Thomas; Gross, Sebastian; Aach, Til
2011-03-01
While several mosaicking algorithms have been developed to compose endoscopic images of the internal urinary bladder wall into panoramic images, the quantitative evaluation of these output images in terms of geometrical distortions have often not been discussed. However, the visualization of the distortion level is highly desired for an objective image-based medical diagnosis. Thus, we present in this paper a method to create quality maps from the characteristics of transformation parameters, which were applied to the endoscopic images during the registration process of the mosaicking algorithm. For a global first view impression, the quality maps are laid over the panoramic image and highlight image regions in pseudo-colors according to their local distortions. This illustration supports then surgeons to identify geometrically distorted structures easily in the panoramic image, which allow more objective medical interpretations of tumor tissue in shape and size. Aside from introducing quality maps in 2-D, we also discuss a visualization method to map panoramic images onto a 3-D spherical bladder model. Reference points are manually selected by the surgeon in the panoramic image and the 3-D model. Then the panoramic image is mapped by the Hammer-Aitoff equal-area projection onto the 3-D surface using texture mapping. Finally the textured bladder model can be freely moved in a virtual environment for inspection. Using a two-hemisphere bladder representation, references between panoramic image regions and their corresponding space coordinates within the bladder model are reconstructed. This additional spatial 3-D information thus assists the surgeon in navigation, documentation, as well as surgical planning.
Task-driven imaging in cone-beam computed tomography.
Gang, G J; Stayman, J W; Ouadah, S; Ehtiati, T; Siewerdsen, J H
Conventional workflow in interventional imaging often ignores a wealth of prior information of the patient anatomy and the imaging task. This work introduces a task-driven imaging framework that utilizes such information to prospectively design acquisition and reconstruction techniques for cone-beam CT (CBCT) in a manner that maximizes task-based performance in subsequent imaging procedures. The framework is employed in jointly optimizing tube current modulation, orbital tilt, and reconstruction parameters in filtered backprojection reconstruction for interventional imaging. Theoretical predictors of noise and resolution relates acquisition and reconstruction parameters to task-based detectability. Given a patient-specific prior image and specification of the imaging task, an optimization algorithm prospectively identifies the combination of imaging parameters that maximizes task-based detectability. Initial investigations were performed for a variety of imaging tasks in an elliptical phantom and an anthropomorphic head phantom. Optimization of tube current modulation and view-dependent reconstruction kernel was shown to have greatest benefits for a directional task (e.g., identification of device or tissue orientation). The task-driven approach yielded techniques in which the dose and sharp kernels were concentrated in views contributing the most to the signal power associated with the imaging task. For example, detectability of a line pair detection task was improved by at least three fold compared to conventional approaches. For radially symmetric tasks, the task-driven strategy yielded results similar to a minimum variance strategy in the absence of kernel modulation. Optimization of the orbital tilt successfully avoided highly attenuating structures that can confound the imaging task by introducing noise correlations masquerading at spatial frequencies of interest. This work demonstrated the potential of a task-driven imaging framework to improve image quality and reduce dose beyond that achievable with conventional imaging approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, A; Stayman, J; Otake, Y
Purpose: To address the challenges of image quality, radiation dose, and reconstruction speed in intraoperative cone-beam CT (CBCT) for neurosurgery by combining model-based image reconstruction (MBIR) with accelerated algorithmic and computational methods. Methods: Preclinical studies involved a mobile C-arm for CBCT imaging of two anthropomorphic head phantoms that included simulated imaging targets (ventricles, soft-tissue structures/bleeds) and neurosurgical procedures (deep brain stimulation (DBS) electrode insertion) for assessment of image quality. The penalized likelihood (PL) framework was used for MBIR, incorporating a statistical model with image regularization via an edgepreserving penalty. To accelerate PL reconstruction, the ordered-subset, separable quadratic surrogates (OS-SQS) algorithmmore » was modified to incorporate Nesterov's method and implemented on a multi-GPU system. A fair comparison of image quality between PL and conventional filtered backprojection (FBP) was performed by selecting reconstruction parameters that provided matched low-contrast spatial resolution. Results: CBCT images of the head phantoms demonstrated that PL reconstruction improved image quality (∼28% higher CNR) even at half the radiation dose (3.3 mGy) compared to FBP. A combination of Nesterov's method and fast projectors yielded a PL reconstruction run-time of 251 sec (cf., 5729 sec for OS-SQS, 13 sec for FBP). Insertion of a DBS electrode resulted in severe metal artifact streaks in FBP reconstructions, whereas PL was intrinsically robust against metal artifact. The combination of noise and artifact was reduced from 32.2 HU in FBP to 9.5 HU in PL, thereby providing better assessment of device placement and potential complications. Conclusion: The methods can be applied to intraoperative CBCT for guidance and verification of neurosurgical procedures (DBS electrode insertion, biopsy, tumor resection) and detection of complications (intracranial hemorrhage). Significant improvement in image quality, dose reduction, and reconstruction time of ∼4 min will enable practical deployment of low-dose C-arm CBCT within the operating room. AAPM Research Seed Funding (2013-2014); NIH Fellowship F32EB017571; Siemens Healthcare (XP Division)« less
Investigation of iterative image reconstruction in low-dose breast CT
NASA Astrophysics Data System (ADS)
Bian, Junguo; Yang, Kai; Boone, John M.; Han, Xiao; Sidky, Emil Y.; Pan, Xiaochuan
2014-06-01
There is interest in developing computed tomography (CT) dedicated to breast-cancer imaging. Because breast tissues are radiation-sensitive, the total radiation exposure in a breast-CT scan is kept low, often comparable to a typical two-view mammography exam, thus resulting in a challenging low-dose-data-reconstruction problem. In recent years, evidence has been found that suggests that iterative reconstruction may yield images of improved quality from low-dose data. In this work, based upon the constrained image total-variation minimization program and its numerical solver, i.e., the adaptive steepest descent-projection onto the convex set (ASD-POCS), we investigate and evaluate iterative image reconstructions from low-dose breast-CT data of patients, with a focus on identifying and determining key reconstruction parameters, devising surrogate utility metrics for characterizing reconstruction quality, and tailoring the program and ASD-POCS to the specific reconstruction task under consideration. The ASD-POCS reconstructions appear to outperform the corresponding clinical FDK reconstructions, in terms of subjective visualization and surrogate utility metrics.
Blew, Robert M; Lee, Vinson R; Farr, Joshua N; Schiferl, Daniel J; Going, Scott B
2014-02-01
Peripheral quantitative computed tomography (pQCT) is an essential tool for assessing bone parameters of the limbs, but subject movement and its impact on image quality remains a challenge to manage. The current approach to determine image viability is by visual inspection, but pQCT lacks a quantitative evaluation. Therefore, the aims of this study were to (1) examine the reliability of a qualitative visual inspection scale and (2) establish a quantitative motion assessment methodology. Scans were performed on 506 healthy girls (9-13 years) at diaphyseal regions of the femur and tibia. Scans were rated for movement independently by three technicians using a linear, nominal scale. Quantitatively, a ratio of movement to limb size (%Move) provided a measure of movement artifact. A repeat-scan subsample (n = 46) was examined to determine %Move's impact on bone parameters. Agreement between measurers was strong (intraclass correlation coefficient = 0.732 for tibia, 0.812 for femur), but greater variability was observed in scans rated 3 or 4, the delineation between repeat and no repeat. The quantitative approach found ≥95% of subjects had %Move <25 %. Comparison of initial and repeat scans by groups above and below 25% initial movement showed significant differences in the >25 % grouping. A pQCT visual inspection scale can be a reliable metric of image quality, but technicians may periodically mischaracterize subject motion. The presented quantitative methodology yields more consistent movement assessment and could unify procedure across laboratories. Data suggest a delineation of 25% movement for determining whether a diaphyseal scan is viable or requires repeat.
Blew, Robert M.; Lee, Vinson R.; Farr, Joshua N.; Schiferl, Daniel J.; Going, Scott B.
2013-01-01
Purpose Peripheral quantitative computed tomography (pQCT) is an essential tool for assessing bone parameters of the limbs, but subject movement and its impact on image quality remains a challenge to manage. The current approach to determine image viability is by visual inspection, but pQCT lacks a quantitative evaluation. Therefore, the aims of this study were to (1) examine the reliability of a qualitative visual inspection scale, and (2) establish a quantitative motion assessment methodology. Methods Scans were performed on 506 healthy girls (9–13yr) at diaphyseal regions of the femur and tibia. Scans were rated for movement independently by three technicians using a linear, nominal scale. Quantitatively, a ratio of movement to limb size (%Move) provided a measure of movement artifact. A repeat-scan subsample (n=46) was examined to determine %Move’s impact on bone parameters. Results Agreement between measurers was strong (ICC = .732 for tibia, .812 for femur), but greater variability was observed in scans rated 3 or 4, the delineation between repeat or no repeat. The quantitative approach found ≥95% of subjects had %Move <25%. Comparison of initial and repeat scans by groups above and below 25% initial movement, showed significant differences in the >25% grouping. Conclusions A pQCT visual inspection scale can be a reliable metric of image quality but technicians may periodically mischaracterize subject motion. The presented quantitative methodology yields more consistent movement assessment and could unify procedure across laboratories. Data suggest a delineation of 25% movement for determining whether a diaphyseal scan is viable or requires repeat. PMID:24077875
Liteplo, Andrew S; Noble, Vicki E; Attwood, Ben H C
2011-11-01
As the use of point-of-care sonography spreads, so too does the need for remote expert over-reading via telesonogrpahy. We sought to assess the feasibility of using familiar, widespread, and cost-effective existent technology to allow remote over-reading of sonograms in real time and to compare 4 different methods of transmission and communication for both the feasibility of transmission and image quality. Sonographic video clips were transmitted using 2 different connections (WiFi and 3G) and via 2 different videoconferencing modalities (iChat [Apple Inc, Cupertino, CA] and Skype [Skype Software Sàrl, Luxembourg]), for a total of 4 different permutations. The clips were received at a remote location and recorded and then scored by expert reviewers for image quality, resolution, and detail. Wireless transmission of sonographic clips was feasible in all cases when WiFi was used and when Skype was used over a 3G connection. Images transmitted via a WiFi connection were statistically superior to those transmitted via 3G in all parameters of quality (average P = .031), and those sent by iChat were superior to those sent by Skype but not statistically so (average P = .057). Wireless transmission of sonographic video clips using inexpensive hardware, free videoconferencing software, and domestic Internet networks is feasible with retention of image quality sufficient for interpretation. WiFi transmission results in greater image quality than transmission by a 3G network.
Development of a universal medical X-ray imaging phantom prototype.
Groenewald, Annemari; Groenewald, Willem A
2016-11-08
Diagnostic X-ray imaging depends on the maintenance of image quality that allows for proper diagnosis of medical conditions. Maintenance of image quality requires quality assurance programs on the various X-ray modalities, which consist of pro-jection radiography (including mobile X-ray units), fluoroscopy, mammography, and computed tomography (CT) scanning. Currently a variety of modality-specific phantoms are used to perform quality assurance (QA) tests. These phantoms are not only expensive, but suitably trained personnel are needed to successfully use them and interpret the results. The question arose as to whether a single universal phantom could be designed and applied to all of the X-ray imaging modalities. A universal phantom would reduce initial procurement cost, possibly reduce the time spent on QA procedures and simplify training of staff on the single device. The aim of the study was to design and manufacture a prototype of a universal phantom, suitable for image quality assurance in general X-rays, fluoroscopy, mammography, and CT scanning. The universal phantom should be easy to use and would enable automatic data analysis, pass/fail reporting, and corrective action recommendation. In addition, a universal phantom would especially be of value in low-income countries where finances and human resources are limited. The design process included a thorough investigation of commercially available phantoms. Image quality parameters necessary for image quality assurance in the different X-ray imaging modalities were determined. Based on information obtained from the above-mentioned investigations, a prototype of a universal phantom was developed, keeping ease of use and reduced cost in mind. A variety of possible phantom housing and insert materials were investigated, considering physical properties, machinability, and cost. A three-dimensional computer model of the first phantom prototype was used to manufacture the prototype housing and inserts. Some of the inserts were 3D-printed, others were machined from different materials. The different components were assembled to form the first prototype of the universal X-ray imaging phantom. The resulting prototype of the universal phantom conformed to the aims of a single phantom for multiple imag-ing modalities, which would be easy to use and manufacture at a reduced cost. A PCT International Patent Application No. PCT/IB2016/051165 has been filed for this technology. © 2016 The Authors.
High-Definition Infrared Spectroscopic Imaging
Reddy, Rohith K.; Walsh, Michael J.; Schulmerich, Matthew V.; Carney, P. Scott; Bhargava, Rohit
2013-01-01
The quality of images from an infrared (IR) microscope has traditionally been limited by considerations of throughput and signal-to-noise ratio (SNR). An understanding of the achievable quality as a function of instrument parameters, from first principals is needed for improved instrument design. Here, we first present a model for light propagation through an IR spectroscopic imaging system based on scalar wave theory. The model analytically describes the propagation of light along the entire beam path from the source to the detector. The effect of various optical elements and the sample in the microscope is understood in terms of the accessible spatial frequencies by using a Fourier optics approach and simulations are conducted to gain insights into spectroscopic image formation. The optimal pixel size at the sample plane is calculated and shown much smaller than that in current mid-IR microscopy systems. A commercial imaging system is modified, and experimental data are presented to demonstrate the validity of the developed model. Building on this validated theoretical foundation, an optimal sampling configuration is set up. Acquired data were of high spatial quality but, as expected, of poorer SNR. Signal processing approaches were implemented to improve the spectral SNR. The resulting data demonstrated the ability to perform high-definition IR imaging in the laboratory by using minimally-modified commercial instruments. PMID:23317676
High-definition infrared spectroscopic imaging.
Reddy, Rohith K; Walsh, Michael J; Schulmerich, Matthew V; Carney, P Scott; Bhargava, Rohit
2013-01-01
The quality of images from an infrared (IR) microscope has traditionally been limited by considerations of throughput and signal-to-noise ratio (SNR). An understanding of the achievable quality as a function of instrument parameters, from first principals is needed for improved instrument design. Here, we first present a model for light propagation through an IR spectroscopic imaging system based on scalar wave theory. The model analytically describes the propagation of light along the entire beam path from the source to the detector. The effect of various optical elements and the sample in the microscope is understood in terms of the accessible spatial frequencies by using a Fourier optics approach and simulations are conducted to gain insights into spectroscopic image formation. The optimal pixel size at the sample plane is calculated and shown much smaller than that in current mid-IR microscopy systems. A commercial imaging system is modified, and experimental data are presented to demonstrate the validity of the developed model. Building on this validated theoretical foundation, an optimal sampling configuration is set up. Acquired data were of high spatial quality but, as expected, of poorer SNR. Signal processing approaches were implemented to improve the spectral SNR. The resulting data demonstrated the ability to perform high-definition IR imaging in the laboratory by using minimally-modified commercial instruments.
Quality assessment of butter cookies applying multispectral imaging
Andresen, Mette S; Dissing, Bjørn S; Løje, Hanne
2013-01-01
A method for characterization of butter cookie quality by assessing the surface browning and water content using multispectral images is presented. Based on evaluations of the browning of butter cookies, cookies were manually divided into groups. From this categorization, reference values were calculated for a statistical prediction model correlating multispectral images with a browning score. The browning score is calculated as a function of oven temperature and baking time. It is presented as a quadratic response surface. The investigated process window was the intervals 4–16 min and 160–200°C in a forced convection electrically heated oven. In addition to the browning score, a model for predicting the average water content based on the same images is presented. This shows how multispectral images of butter cookies may be used for the assessment of different quality parameters. Statistical analysis showed that the most significant wavelengths for browning predictions were in the interval 400–700 nm and the wavelengths significant for water prediction were primarily located in the near-infrared spectrum. The water prediction model was found to correctly estimate the average water content with an absolute error of 0.22%. From the images it was also possible to follow the browning and drying propagation from the cookie edge toward the center. PMID:24804036
NASA Astrophysics Data System (ADS)
Li, Yuanbo; Cui, Xiaoqian; Wang, Hongbei; Zhao, Mengge; Ding, Hongbin
2017-10-01
Digital speckle pattern interferometry (DSPI) can diagnose the topography evolution in real-time, continuous and non-destructive, and has been considered as a most promising technique for Plasma-Facing Components (PFCs) topography diagnostic under the complicated environment of tokamak. It is important for the study of digital speckle pattern interferometry to enhance speckle patterns and obtain the real topography of the ablated crater. In this paper, two kinds of numerical model based on flood-fill algorithm has been developed to obtain the real profile by unwrapping from the wrapped phase in speckle interference pattern, which can be calculated through four intensity images by means of 4-step phase-shifting technique. During the process of phase unwrapping by means of flood-fill algorithm, since the existence of noise pollution, and other inevitable factors will lead to poor quality of the reconstruction results, this will have an impact on the authenticity of the restored topography. The calculation of the quality parameters was introduced to obtain the quality-map from the wrapped phase map, this work presents two different methods to calculate the quality parameters. Then quality parameters are used to guide the path of flood-fill algorithm, and the pixels with good quality parameters are given priority calculation, so that the quality of speckle interference pattern reconstruction results are improved. According to the comparison between the flood-fill algorithm which is suitable for speckle pattern interferometry and the quality-guided flood-fill algorithm (with two different calculation approaches), the errors which caused by noise pollution and the discontinuous of the strips were successfully reduced.
Pre-processing, registration and selection of adaptive optics corrected retinal images.
Ramaswamy, Gomathy; Devaney, Nicholas
2013-07-01
In this paper, the aim is to demonstrate enhanced processing of sequences of fundus images obtained using a commercial AO flood illumination system. The purpose of the work is to (1) correct for uneven illumination at the retina (2) automatically select the best quality images and (3) precisely register the best images. Adaptive optics corrected retinal images are pre-processed to correct uneven illumination using different methods; subtracting or dividing by the average filtered image, homomorphic filtering and a wavelet based approach. These images are evaluated to measure the image quality using various parameters, including sharpness, variance, power spectrum kurtosis and contrast. We have carried out the registration in two stages; a coarse stage using cross-correlation followed by fine registration using two approaches; parabolic interpolation on the peak of the cross-correlation and maximum-likelihood estimation. The angle of rotation of the images is measured using a combination of peak tracking and Procrustes transformation. We have found that a wavelet approach (Daubechies 4 wavelet at 6th level decomposition) provides good illumination correction with clear improvement in image sharpness and contrast. The assessment of image quality using a 'Designer metric' works well when compared to visual evaluation, although it is highly correlated with other metrics. In image registration, sub-pixel translation measured using parabolic interpolation on the peak of the cross-correlation function and maximum-likelihood estimation are found to give very similar results (RMS difference 0.047 pixels). We have confirmed that correcting rotation of the images provides a significant improvement, especially at the edges of the image. We observed that selecting the better quality frames (e.g. best 75% images) for image registration gives improved resolution, at the expense of poorer signal-to-noise. The sharpness map of the registered and de-rotated images shows increased sharpness over most of the field of view. Adaptive optics assisted images of the cone photoreceptors can be better pre-processed using a wavelet approach. These images can be assessed for image quality using a 'Designer Metric'. Two-stage image registration including correcting for rotation significantly improves the final image contrast and sharpness. © 2013 The Authors Ophthalmic & Physiological Optics © 2013 The College of Optometrists.
Optimized image acquisition for breast tomosynthesis in projection and reconstruction space.
Chawla, Amarpreet S; Lo, Joseph Y; Baker, Jay A; Samei, Ehsan
2009-11-01
Breast tomosynthesis has been an exciting new development in the field of breast imaging. While the diagnostic improvement via tomosynthesis is notable, the full potential of tomosynthesis has not yet been realized. This may be attributed to the dependency of the diagnostic quality of tomosynthesis on multiple variables, each of which needs to be optimized. Those include dose, number of angular projections, and the total angular span of those projections. In this study, the authors investigated the effects of these acquisition parameters on the overall diagnostic image quality of breast tomosynthesis in both the projection and reconstruction space. Five mastectomy specimens were imaged using a prototype tomosynthesis system. 25 angular projections of each specimen were acquired at 6.2 times typical single-view clinical dose level. Images at lower dose levels were then simulated using a noise modification routine. Each projection image was supplemented with 84 simulated 3 mm 3D lesions embedded at the center of 84 nonoverlapping ROIs. The projection images were then reconstructed using a filtered backprojection algorithm at different combinations of acquisition parameters to investigate which of the many possible combinations maximizes the performance. Performance was evaluated in terms of a Laguerre-Gauss channelized Hotelling observer model-based measure of lesion detectability. The analysis was also performed without reconstruction by combining the model results from projection images using Bayesian decision fusion algorithm. The effect of acquisition parameters on projection images and reconstructed slices were then compared to derive an optimization rule for tomosynthesis. The results indicated that projection images yield comparable but higher performance than reconstructed images. Both modes, however, offered similar trends: Performance improved with an increase in the total acquisition dose level and the angular span. Using a constant dose level and angular span, the performance rolled off beyond a certain number of projections, indicating that simply increasing the number of projections in tomosynthesis may not necessarily improve its performance. The best performance for both projection images and tomosynthesis slices was obtained for 15-17 projections spanning an angular are of approximately 45 degrees--the maximum tested in our study, and for an acquisition dose equal to single-view mammography. The optimization framework developed in this framework is applicable to other reconstruction techniques and other multiprojection systems.
Improving best-phase image quality in cardiac CT by motion correction with MAM optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohkohl, Christopher; Bruder, Herbert; Stierstorfer, Karl
2013-03-15
Purpose: Research in image reconstruction for cardiac CT aims at using motion correction algorithms to improve the image quality of the coronary arteries. The key to those algorithms is motion estimation, which is currently based on 3-D/3-D registration to align the structures of interest in images acquired in multiple heart phases. The need for an extended scan data range covering several heart phases is critical in terms of radiation dose to the patient and limits the clinical potential of the method. Furthermore, literature reports only slight quality improvements of the motion corrected images when compared to the most quiet phasemore » (best-phase) that was actually used for motion estimation. In this paper a motion estimation algorithm is proposed which does not require an extended scan range but works with a short scan data interval, and which markedly improves the best-phase image quality. Methods: Motion estimation is based on the definition of motion artifact metrics (MAM) to quantify motion artifacts in a 3-D reconstructed image volume. The authors use two different MAMs, entropy, and positivity. By adjusting the motion field parameters, the MAM of the resulting motion-compensated reconstruction is optimized using a gradient descent procedure. In this way motion artifacts are minimized. For a fast and practical implementation, only analytical methods are used for motion estimation and compensation. Both the MAM-optimization and a 3-D/3-D registration-based motion estimation algorithm were investigated by means of a computer-simulated vessel with a cardiac motion profile. Image quality was evaluated using normalized cross-correlation (NCC) with the ground truth template and root-mean-square deviation (RMSD). Four coronary CT angiography patient cases were reconstructed to evaluate the clinical performance of the proposed method. Results: For the MAM-approach, the best-phase image quality could be improved for all investigated heart phases, with a maximum improvement of the NCC value by 100% and of the RMSD value by 81%. The corresponding maximum improvements for the registration-based approach were 20% and 40%. In phases with very rapid motion the registration-based algorithm obtained better image quality, while the image quality of the MAM algorithm was superior in phases with less motion. The image quality improvement of the MAM optimization was visually confirmed for the different clinical cases. Conclusions: The proposed method allows a software-based best-phase image quality improvement in coronary CT angiography. A short scan data interval at the target heart phase is sufficient, no additional scan data in other cardiac phases are required. The algorithm is therefore directly applicable to any standard cardiac CT acquisition protocol.« less
Updated MDRIZTAB Parameters for ACS/WFC
NASA Astrophysics Data System (ADS)
Hoffman, S. L.; Avila, R. J.
2017-03-01
The Mikulski Archive for Space Telescopes (MAST) pipeline performs geometric distortion corrections, associated image combinations, and cosmic ray rejections with AstroDrizzle. The MDRIZTAB reference table contains a list of relevant parameters that controls this program. This document details our photometric analysis of Advanced Camera for Surveys Wide Field Channel (ACS/WFC) data processed by AstroDrizzle. Based on this analysis, we update the MDRIZTAB table to improve the quality of the drizzled products delivered by MAST.
Design and implementation of a cloud based lithography illumination pupil processing application
NASA Astrophysics Data System (ADS)
Zhang, Youbao; Ma, Xinghua; Zhu, Jing; Zhang, Fang; Huang, Huijie
2017-02-01
Pupil parameters are important parameters to evaluate the quality of lithography illumination system. In this paper, a cloud based full-featured pupil processing application is implemented. A web browser is used for the UI (User Interface), the websocket protocol and JSON format are used for the communication between the client and the server, and the computing part is implemented in the server side, where the application integrated a variety of high quality professional libraries, such as image processing libraries libvips and ImageMagic, automatic reporting system latex, etc., to support the program. The cloud based framework takes advantage of server's superior computing power and rich software collections, and the program could run anywhere there is a modern browser due to its web UI design. Compared to the traditional way of software operation model: purchased, licensed, shipped, downloaded, installed, maintained, and upgraded, the new cloud based approach, which is no installation, easy to use and maintenance, opens up a new way. Cloud based application probably is the future of the software development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J; Nishikawa, R; Reiser, I
Purpose: Segmentation quality can affect quantitative image feature analysis. The objective of this study is to examine the relationship between computed tomography (CT) image quality, segmentation performance, and quantitative image feature analysis. Methods: A total of 90 pathology proven breast lesions in 87 dedicated breast CT images were considered. An iterative image reconstruction (IIR) algorithm was used to obtain CT images with different quality. With different combinations of 4 variables in the algorithm, this study obtained a total of 28 different qualities of CT images. Two imaging tasks/objectives were considered: 1) segmentation and 2) classification of the lesion as benignmore » or malignant. Twenty-three image features were extracted after segmentation using a semi-automated algorithm and 5 of them were selected via a feature selection technique. Logistic regression was trained and tested using leave-one-out-cross-validation and its area under the ROC curve (AUC) was recorded. The standard deviation of a homogeneous portion and the gradient of a parenchymal portion of an example breast were used as an estimate of image noise and sharpness. The DICE coefficient was computed using a radiologist’s drawing on the lesion. Mean DICE and AUC were used as performance metrics for each of the 28 reconstructions. The relationship between segmentation and classification performance under different reconstructions were compared. Distributions (median, 95% confidence interval) of DICE and AUC for each reconstruction were also compared. Results: Moderate correlation (Pearson’s rho = 0.43, p-value = 0.02) between DICE and AUC values was found. However, the variation between DICE and AUC values for each reconstruction increased as the image sharpness increased. There was a combination of IIR parameters that resulted in the best segmentation with the worst classification performance. Conclusion: There are certain images that yield better segmentation or classification performance. The best segmentation Result does not necessarily lead to the best classification Result. This work has been supported in part by grants from the NIH R21-EB015053. R Nishikawa is receives royalties form Hologic, Inc.« less
Chen, Zhenning; Shao, Xinxing; Xu, Xiangyang; He, Xiaoyuan
2018-02-01
The technique of digital image correlation (DIC), which has been widely used for noncontact deformation measurements in both the scientific and engineering fields, is greatly affected by the quality of speckle patterns in terms of its performance. This study was concerned with the optimization of the digital speckle pattern (DSP) for DIC in consideration of both the accuracy and efficiency. The root-mean-square error of the inverse compositional Gauss-Newton algorithm and the average number of iterations were used as quality metrics. Moreover, the influence of subset sizes and the noise level of images, which are the basic parameters in the quality assessment formulations, were also considered. The simulated binary speckle patterns were first compared with the Gaussian speckle patterns and captured DSPs. Both the single-radius and multi-radius DSPs were optimized. Experimental tests and analyses were conducted to obtain the optimized and recommended DSP. The vector diagram of the optimized speckle pattern was also uploaded as reference.
Modeling of video compression effects on target acquisition performance
NASA Astrophysics Data System (ADS)
Cha, Jae H.; Preece, Bradley; Espinola, Richard L.
2009-05-01
The effect of video compression on image quality was investigated from the perspective of target acquisition performance modeling. Human perception tests were conducted recently at the U.S. Army RDECOM CERDEC NVESD, measuring identification (ID) performance on simulated military vehicle targets at various ranges. These videos were compressed with different quality and/or quantization levels utilizing motion JPEG, motion JPEG2000, and MPEG-4 encoding. To model the degradation on task performance, the loss in image quality is fit to an equivalent Gaussian MTF scaled by the Structural Similarity Image Metric (SSIM). Residual compression artifacts are treated as 3-D spatio-temporal noise. This 3-D noise is found by taking the difference of the uncompressed frame, with the estimated equivalent blur applied, and the corresponding compressed frame. Results show good agreement between the experimental data and the model prediction. This method has led to a predictive performance model for video compression by correlating various compression levels to particular blur and noise input parameters for NVESD target acquisition performance model suite.
Parallax barrier engineering for image quality improvement in an autostereoscopic 3D display.
Kim, Sung-Kyu; Yoon, Ki-Hyuk; Yoon, Seon Kyu; Ju, Heongkyu
2015-05-18
We present a image quality improvement in a parallax barrier (PB)-based multiview autostereoscopic 3D display system under a real-time tracking of positions of a viewer's eyes. The system presented exploits a parallax barrier engineered to offer significantly improved quality of three-dimensional images for a moving viewer without an eyewear under the dynamic eye tracking. The improved image quality includes enhanced uniformity of image brightness, reduced point crosstalk, and no pseudoscopic effects. We control the relative ratio between two parameters i.e., a pixel size and the aperture of a parallax barrier slit to improve uniformity of image brightness at a viewing zone. The eye tracking that monitors positions of a viewer's eyes enables pixel data control software to turn on only pixels for view images near the viewer's eyes (the other pixels turned off), thus reducing point crosstalk. The eye tracking combined software provides right images for the respective eyes, therefore producing no pseudoscopic effects at its zone boundaries. The viewing zone can be spanned over area larger than the central viewing zone offered by a conventional PB-based multiview autostereoscopic 3D display (no eye tracking). Our 3D display system also provides multiviews for motion parallax under eye tracking. More importantly, we demonstrate substantial reduction of point crosstalk of images at the viewing zone, its level being comparable to that of a commercialized eyewear-assisted 3D display system. The multiview autostereoscopic 3D display presented can greatly resolve the point crosstalk problem, which is one of the critical factors that make it difficult for previous technologies for a multiview autostereoscopic 3D display to replace an eyewear-assisted counterpart.
Wang, Z X; Chen, S L; Wang, Q Q; Liu, B; Zhu, J; Shen, J
2015-06-01
The aim of this study was to evaluate the accuracy of magnetic resonance imaging in the detection of triangular fibrocartilage complex injury through a meta-analysis. A comprehensive literature search was conducted before 1 April 2014. All studies comparing magnetic resonance imaging results with arthroscopy or open surgery findings were reviewed, and 25 studies that satisfied the eligibility criteria were included. Data were pooled to yield pooled sensitivity and specificity, which were respectively 0.83 and 0.82. In detection of central and peripheral tears, magnetic resonance imaging had respectively a pooled sensitivity of 0.90 and 0.88 and a pooled specificity of 0.97 and 0.97. Six high-quality studies using Ringler's recommended magnetic resonance imaging parameters were selected for analysis to determine whether optimal imaging protocols yielded better results. The pooled sensitivity and specificity of these six studies were 0.92 and 0.82, respectively. The overall accuracy of magnetic resonance imaging was acceptable. For peripheral tears, the pooled data showed a relatively high accuracy. Magnetic resonance imaging with appropriate parameters are an ideal method for diagnosing different types of triangular fibrocartilage complex tears. © The Author(s) 2015.
AOTF hyperspectral microscopic imaging for foodborne pathogenic bacteria detection
NASA Astrophysics Data System (ADS)
Park, Bosoon; Lee, Sangdae; Yoon, Seung-Chul; Sundaram, Jaya; Windham, William R.; Hinton, Arthur, Jr.; Lawrence, Kurt C.
2011-06-01
Hyperspectral microscope imaging (HMI) method which provides both spatial and spectral information can be effective for foodborne pathogen detection. The AOTF-based hyperspectral microscope imaging method can be used to characterize spectral properties of biofilm formed by Salmonella enteritidis as well as Escherichia coli. The intensity of spectral imagery and the pattern of spectral distribution varied with system parameters (integration time and gain) of HMI system. The preliminary results demonstrated determination of optimum parameter values of HMI system and the integration time must be no more than 250 ms for quality image acquisition from biofilm formed by S. enteritidis. Among the contiguous spectral imagery between 450 and 800 nm, the intensity of spectral images at 498, 522, 550 and 594 nm were distinctive for biofilm; whereas, the intensity of spectral images at 546 nm was distinctive for E. coli. For more accurate comparison of intensity from spectral images, a calibration protocol, using neutral density filters and multiple exposures, need to be developed to standardize image acquisition. For the identification or classification of unknown food pathogen samples, ground truth regions-of-interest pixels need to be selected for "spectrally pure fingerprints" for the Salmonella and E. coli species.
An Automatic Procedure for Combining Digital Images and Laser Scanner Data
NASA Astrophysics Data System (ADS)
Moussa, W.; Abdel-Wahab, M.; Fritsch, D.
2012-07-01
Besides improving both the geometry and the visual quality of the model, the integration of close-range photogrammetry and terrestrial laser scanning techniques directs at filling gaps in laser scanner point clouds to avoid modeling errors, reconstructing more details in higher resolution and recovering simple structures with less geometric details. Thus, within this paper a flexible approach for the automatic combination of digital images and laser scanner data is presented. Our approach comprises two methods for data fusion. The first method starts by a marker-free registration of digital images based on a point-based environment model (PEM) of a scene which stores the 3D laser scanner point clouds associated with intensity and RGB values. The PEM allows the extraction of accurate control information for the direct computation of absolute camera orientations with redundant information by means of accurate space resection methods. In order to use the computed relations between the digital images and the laser scanner data, an extended Helmert (seven-parameter) transformation is introduced and its parameters are estimated. Precedent to that, in the second method, the local relative orientation parameters of the camera images are calculated by means of an optimized Structure and Motion (SaM) reconstruction method. Then, using the determined transformation parameters results in having absolute oriented images in relation to the laser scanner data. With the resulting absolute orientations we have employed robust dense image reconstruction algorithms to create oriented dense image point clouds, which are automatically combined with the laser scanner data to form a complete detailed representation of a scene. Examples of different data sets are shown and experimental results demonstrate the effectiveness of the presented procedures.
Sentinel-2: State of the Image Quality Calibration at the End of the Commissioning
NASA Astrophysics Data System (ADS)
Tremas, Thierry; Lonjou, Vincent; Lacherade, Sophie; Gaudel-Vacaresse, Angelique; Languille, Florie
2016-08-01
This article summarizes the activity of CNES during the In Orbit Calibration Phase of Sentinel 2A as well as the transfer of production of GIPP (Ground Image Processing Parameters) from CNES to ESRIN. The state of the main calibration parameters and performances, few months before PDGS is declared fully operational, are listed and explained.In radiometry a special attention is paid to the absolute calibration using the on-board diffuser, and the vicarious calibration methods using instrumented or statistically well characterized sites and inter- comparisons with other sensors. Regarding geometry, the presentation focuses on the performances of absolute location with and without reference points. The requirements of multi-band and multi-temporal registration are exposed. Finally, the construction and the rule of the GRI (Ground Reference Images) in the future are explained.
Storage and retrieval of digital images in dermatology.
Bittorf, A; Krejci-Papa, N C; Diepgen, T L
1995-11-01
Differential diagnosis in dermatology relies on the interpretation of visual information in the form of clinical and histopathological images. Up until now, reference images have had to be retrieved from textbooks and/or appropriate journals. To overcome inherent limitations of those storage media with respect to the number of images stored, display, and search parameters available, we designed a computer-based database of digitized dermatologic images. Images were taken from the photo archive of the Dermatological Clinic of the University of Erlangen. A database was designed using the Entity-Relationship approach. It was implemented on a PC-Windows platform using MS Access* and MS Visual Basic®. As WWW-server a Sparc 10 workstation was used with the CERN Hypertext-Transfer-Protocol-Daemon (httpd) 3.0 pre 6 software running. For compressed storage on a hard drive, a quality factor of 60 allowed on-screen differential diagnosis and corresponded to a compression factor of 1:35 for clinical images and 1:40 for histopathological images. Hierarchical keys of clinical or histopathological criteria permitted multi-criteria searches. A script using the Common Gateway Interface (CGI) enabled remote search and image retrieval via the World-Wide-Web (W3). A dermatologic image database, featurig clinical and histopathological images was constructed which allows for multi-parameter searches and world-wide remote access.
Median prior constrained TV algorithm for sparse view low-dose CT reconstruction.
Liu, Yi; Shangguan, Hong; Zhang, Quan; Zhu, Hongqing; Shu, Huazhong; Gui, Zhiguo
2015-05-01
It is known that lowering the X-ray tube current (mAs) or tube voltage (kVp) and simultaneously reducing the total number of X-ray views (sparse view) is an effective means to achieve low-dose in computed tomography (CT) scan. However, the associated image quality by the conventional filtered back-projection (FBP) usually degrades due to the excessive quantum noise. Although sparse-view CT reconstruction algorithm via total variation (TV), in the scanning protocol of reducing X-ray tube current, has been demonstrated to be able to result in significant radiation dose reduction while maintain image quality, noticeable patchy artifacts still exist in reconstructed images. In this study, to address the problem of patchy artifacts, we proposed a median prior constrained TV regularization to retain the image quality by introducing an auxiliary vector m in register with the object. Specifically, the approximate action of m is to draw, in each iteration, an object voxel toward its own local median, aiming to improve low-dose image quality with sparse-view projection measurements. Subsequently, an alternating optimization algorithm is adopted to optimize the associative objective function. We refer to the median prior constrained TV regularization as "TV_MP" for simplicity. Experimental results on digital phantoms and clinical phantom demonstrated that the proposed TV_MP with appropriate control parameters can not only ensure a higher signal to noise ratio (SNR) of the reconstructed image, but also its resolution compared with the original TV method. Copyright © 2015 Elsevier Ltd. All rights reserved.