Target recognition of ladar range images using slice image: comparison of four improved algorithms
NASA Astrophysics Data System (ADS)
Xia, Wenze; Han, Shaokun; Cao, Jingya; Wang, Liang; Zhai, Yu; Cheng, Yang
2017-07-01
Compared with traditional 3-D shape data, ladar range images possess properties of strong noise, shape degeneracy, and sparsity, which make feature extraction and representation difficult. The slice image is an effective feature descriptor to resolve this problem. We propose four improved algorithms on target recognition of ladar range images using slice image. In order to improve resolution invariance of the slice image, mean value detection instead of maximum value detection is applied in these four improved algorithms. In order to improve rotation invariance of the slice image, three new improved feature descriptors-which are feature slice image, slice-Zernike moments, and slice-Fourier moments-are applied to the last three improved algorithms, respectively. Backpropagation neural networks are used as feature classifiers in the last two improved algorithms. The performance of these four improved recognition systems is analyzed comprehensively in the aspects of the three invariances, recognition rate, and execution time. The final experiment results show that the improvements for these four algorithms reach the desired effect, the three invariances of feature descriptors are not directly related to the final recognition performance of recognition systems, and these four improved recognition systems have different performances under different conditions.
The fast iris image clarity evaluation based on Tenengrad and ROI selection
NASA Astrophysics Data System (ADS)
Gao, Shuqin; Han, Min; Cheng, Xu
2018-04-01
In iris recognition system, the clarity of iris image is an important factor that influences recognition effect. In the process of recognition, the blurred image may possibly be rejected by the automatic iris recognition system, which will lead to the failure of identification. Therefore it is necessary to evaluate the iris image definition before recognition. Considered the existing evaluation methods on iris image definition, we proposed a fast algorithm to evaluate the definition of iris image in this paper. In our algorithm, firstly ROI (Region of Interest) is extracted based on the reference point which is determined by using the feature of the light spots within the pupil, then Tenengrad operator is used to evaluate the iris image's definition. Experiment results show that, the iris image definition algorithm proposed in this paper could accurately distinguish the iris images of different clarity, and the algorithm has the merit of low computational complexity and more effectiveness.
Score-Level Fusion of Phase-Based and Feature-Based Fingerprint Matching Algorithms
NASA Astrophysics Data System (ADS)
Ito, Koichi; Morita, Ayumi; Aoki, Takafumi; Nakajima, Hiroshi; Kobayashi, Koji; Higuchi, Tatsuo
This paper proposes an efficient fingerprint recognition algorithm combining phase-based image matching and feature-based matching. In our previous work, we have already proposed an efficient fingerprint recognition algorithm using Phase-Only Correlation (POC), and developed commercial fingerprint verification units for access control applications. The use of Fourier phase information of fingerprint images makes it possible to achieve robust recognition for weakly impressed, low-quality fingerprint images. This paper presents an idea of improving the performance of POC-based fingerprint matching by combining it with feature-based matching, where feature-based matching is introduced in order to improve recognition efficiency for images with nonlinear distortion. Experimental evaluation using two different types of fingerprint image databases demonstrates efficient recognition performance of the combination of the POC-based algorithm and the feature-based algorithm.
High-speed cell recognition algorithm for ultrafast flow cytometer imaging system.
Zhao, Wanyue; Wang, Chao; Chen, Hongwei; Chen, Minghua; Yang, Sigang
2018-04-01
An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
High-speed cell recognition algorithm for ultrafast flow cytometer imaging system
NASA Astrophysics Data System (ADS)
Zhao, Wanyue; Wang, Chao; Chen, Hongwei; Chen, Minghua; Yang, Sigang
2018-04-01
An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform.
Locality constrained joint dynamic sparse representation for local matching based face recognition.
Wang, Jianzhong; Yi, Yugen; Zhou, Wei; Shi, Yanjiao; Qi, Miao; Zhang, Ming; Zhang, Baoxue; Kong, Jun
2014-01-01
Recently, Sparse Representation-based Classification (SRC) has attracted a lot of attention for its applications to various tasks, especially in biometric techniques such as face recognition. However, factors such as lighting, expression, pose and disguise variations in face images will decrease the performances of SRC and most other face recognition techniques. In order to overcome these limitations, we propose a robust face recognition method named Locality Constrained Joint Dynamic Sparse Representation-based Classification (LCJDSRC) in this paper. In our method, a face image is first partitioned into several smaller sub-images. Then, these sub-images are sparsely represented using the proposed locality constrained joint dynamic sparse representation algorithm. Finally, the representation results for all sub-images are aggregated to obtain the final recognition result. Compared with other algorithms which process each sub-image of a face image independently, the proposed algorithm regards the local matching-based face recognition as a multi-task learning problem. Thus, the latent relationships among the sub-images from the same face image are taken into account. Meanwhile, the locality information of the data is also considered in our algorithm. We evaluate our algorithm by comparing it with other state-of-the-art approaches. Extensive experiments on four benchmark face databases (ORL, Extended YaleB, AR and LFW) demonstrate the effectiveness of LCJDSRC.
Automated Recognition of 3D Features in GPIR Images
NASA Technical Reports Server (NTRS)
Park, Han; Stough, Timothy; Fijany, Amir
2007-01-01
A method of automated recognition of three-dimensional (3D) features in images generated by ground-penetrating imaging radar (GPIR) is undergoing development. GPIR 3D images can be analyzed to detect and identify such subsurface features as pipes and other utility conduits. Until now, much of the analysis of GPIR images has been performed manually by expert operators who must visually identify and track each feature. The present method is intended to satisfy a need for more efficient and accurate analysis by means of algorithms that can automatically identify and track subsurface features, with minimal supervision by human operators. In this method, data from multiple sources (for example, data on different features extracted by different algorithms) are fused together for identifying subsurface objects. The algorithms of this method can be classified in several different ways. In one classification, the algorithms fall into three classes: (1) image-processing algorithms, (2) feature- extraction algorithms, and (3) a multiaxis data-fusion/pattern-recognition algorithm that includes a combination of machine-learning, pattern-recognition, and object-linking algorithms. The image-processing class includes preprocessing algorithms for reducing noise and enhancing target features for pattern recognition. The feature-extraction algorithms operate on preprocessed data to extract such specific features in images as two-dimensional (2D) slices of a pipe. Then the multiaxis data-fusion/ pattern-recognition algorithm identifies, classifies, and reconstructs 3D objects from the extracted features. In this process, multiple 2D features extracted by use of different algorithms and representing views along different directions are used to identify and reconstruct 3D objects. In object linking, which is an essential part of this process, features identified in successive 2D slices and located within a threshold radius of identical features in adjacent slices are linked in a directed-graph data structure. Relative to past approaches, this multiaxis approach offers the advantages of more reliable detections, better discrimination of objects, and provision of redundant information, which can be helpful in filling gaps in feature recognition by one of the component algorithms. The image-processing class also includes postprocessing algorithms that enhance identified features to prepare them for further scrutiny by human analysts (see figure). Enhancement of images as a postprocessing step is a significant departure from traditional practice, in which enhancement of images is a preprocessing step.
Face sketch recognition based on edge enhancement via deep learning
NASA Astrophysics Data System (ADS)
Xie, Zhenzhu; Yang, Fumeng; Zhang, Yuming; Wu, Congzhong
2017-11-01
In this paper,we address the face sketch recognition problem. Firstly, we utilize the eigenface algorithm to convert a sketch image into a synthesized sketch face image. Subsequently, considering the low-level vision problem in synthesized face sketch image .Super resolution reconstruction algorithm based on CNN(convolutional neural network) is employed to improve the visual effect. To be specific, we uses a lightweight super-resolution structure to learn a residual mapping instead of directly mapping the feature maps from the low-level space to high-level patch representations, which making the networks are easier to optimize and have lower computational complexity. Finally, we adopt LDA(Linear Discriminant Analysis) algorithm to realize face sketch recognition on synthesized face image before super resolution and after respectively. Extensive experiments on the face sketch database(CUFS) from CUHK demonstrate that the recognition rate of SVM(Support Vector Machine) algorithm improves from 65% to 69% and the recognition rate of LDA(Linear Discriminant Analysis) algorithm improves from 69% to 75%.What'more,the synthesized face image after super resolution can not only better describer image details such as hair ,nose and mouth etc, but also improve the recognition accuracy effectively.
Fast and accurate face recognition based on image compression
NASA Astrophysics Data System (ADS)
Zheng, Yufeng; Blasch, Erik
2017-05-01
Image compression is desired for many image-related applications especially for network-based applications with bandwidth and storage constraints. The face recognition community typical reports concentrate on the maximal compression rate that would not decrease the recognition accuracy. In general, the wavelet-based face recognition methods such as EBGM (elastic bunch graph matching) and FPB (face pattern byte) are of high performance but run slowly due to their high computation demands. The PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis) algorithms run fast but perform poorly in face recognition. In this paper, we propose a novel face recognition method based on standard image compression algorithm, which is termed as compression-based (CPB) face recognition. First, all gallery images are compressed by the selected compression algorithm. Second, a mixed image is formed with the probe and gallery images and then compressed. Third, a composite compression ratio (CCR) is computed with three compression ratios calculated from: probe, gallery and mixed images. Finally, the CCR values are compared and the largest CCR corresponds to the matched face. The time cost of each face matching is about the time of compressing the mixed face image. We tested the proposed CPB method on the "ASUMSS face database" (visible and thermal images) from 105 subjects. The face recognition accuracy with visible images is 94.76% when using JPEG compression. On the same face dataset, the accuracy of FPB algorithm was reported as 91.43%. The JPEG-compressionbased (JPEG-CPB) face recognition is standard and fast, which may be integrated into a real-time imaging device.
Analysis of objects in binary images. M.S. Thesis - Old Dominion Univ.
NASA Technical Reports Server (NTRS)
Leonard, Desiree M.
1991-01-01
Digital image processing techniques are typically used to produce improved digital images through the application of successive enhancement techniques to a given image or to generate quantitative data about the objects within that image. In support of and to assist researchers in a wide range of disciplines, e.g., interferometry, heavy rain effects on aerodynamics, and structure recognition research, it is often desirable to count objects in an image and compute their geometric properties. Therefore, an image analysis application package, focusing on a subset of image analysis techniques used for object recognition in binary images, was developed. This report describes the techniques and algorithms utilized in three main phases of the application and are categorized as: image segmentation, object recognition, and quantitative analysis. Appendices provide supplemental formulas for the algorithms employed as well as examples and results from the various image segmentation techniques and the object recognition algorithm implemented.
Chen, Yibing; Ogata, Taiki; Ueyama, Tsuyoshi; Takada, Toshiyuki; Ota, Jun
2018-01-01
Machine vision is playing an increasingly important role in industrial applications, and the automated design of image recognition systems has been a subject of intense research. This study has proposed a system for automatically designing the field-of-view (FOV) of a camera, the illumination strength and the parameters in a recognition algorithm. We formulated the design problem as an optimisation problem and used an experiment based on a hierarchical algorithm to solve it. The evaluation experiments using translucent plastics objects showed that the use of the proposed system resulted in an effective solution with a wide FOV, recognition of all objects and 0.32 mm and 0.4° maximal positional and angular errors when all the RGB (red, green and blue) for illumination and R channel image for recognition were used. Though all the RGB illumination and grey scale images also provided recognition of all the objects, only a narrow FOV was selected. Moreover, full recognition was not achieved by using only G illumination and a grey-scale image. The results showed that the proposed method can automatically design the FOV, illumination and parameters in the recognition algorithm and that tuning all the RGB illumination is desirable even when single-channel or grey-scale images are used for recognition. PMID:29786665
Chen, Yibing; Ogata, Taiki; Ueyama, Tsuyoshi; Takada, Toshiyuki; Ota, Jun
2018-05-22
Machine vision is playing an increasingly important role in industrial applications, and the automated design of image recognition systems has been a subject of intense research. This study has proposed a system for automatically designing the field-of-view (FOV) of a camera, the illumination strength and the parameters in a recognition algorithm. We formulated the design problem as an optimisation problem and used an experiment based on a hierarchical algorithm to solve it. The evaluation experiments using translucent plastics objects showed that the use of the proposed system resulted in an effective solution with a wide FOV, recognition of all objects and 0.32 mm and 0.4° maximal positional and angular errors when all the RGB (red, green and blue) for illumination and R channel image for recognition were used. Though all the RGB illumination and grey scale images also provided recognition of all the objects, only a narrow FOV was selected. Moreover, full recognition was not achieved by using only G illumination and a grey-scale image. The results showed that the proposed method can automatically design the FOV, illumination and parameters in the recognition algorithm and that tuning all the RGB illumination is desirable even when single-channel or grey-scale images are used for recognition.
Gaussian mixture models-based ship target recognition algorithm in remote sensing infrared images
NASA Astrophysics Data System (ADS)
Yao, Shoukui; Qin, Xiaojuan
2018-02-01
Since the resolution of remote sensing infrared images is low, the features of ship targets become unstable. The issue of how to recognize ships with fuzzy features is an open problem. In this paper, we propose a novel ship target recognition algorithm based on Gaussian mixture models (GMMs). In the proposed algorithm, there are mainly two steps. At the first step, the Hu moments of these ship target images are calculated, and the GMMs are trained on the moment features of ships. At the second step, the moment feature of each ship image is assigned to the trained GMMs for recognition. Because of the scale, rotation, translation invariance property of Hu moments and the power feature-space description ability of GMMs, the GMMs-based ship target recognition algorithm can recognize ship reliably. Experimental results of a large simulating image set show that our approach is effective in distinguishing different ship types, and obtains a satisfactory ship recognition performance.
A Palmprint Recognition Algorithm Using Phase-Only Correlation
NASA Astrophysics Data System (ADS)
Ito, Koichi; Aoki, Takafumi; Nakajima, Hiroshi; Kobayashi, Koji; Higuchi, Tatsuo
This paper presents a palmprint recognition algorithm using Phase-Only Correlation (POC). The use of phase components in 2D (two-dimensional) discrete Fourier transforms of palmprint images makes it possible to achieve highly robust image registration and matching. In the proposed algorithm, POC is used to align scaling, rotation and translation between two palmprint images, and evaluate similarity between them. Experimental evaluation using a palmprint image database clearly demonstrates efficient matching performance of the proposed algorithm.
An effective approach for iris recognition using phase-based image matching.
Miyazawa, Kazuyuki; Ito, Koichi; Aoki, Takafumi; Kobayashi, Koji; Nakajima, Hiroshi
2008-10-01
This paper presents an efficient algorithm for iris recognition using phase-based image matching--an image matching technique using phase components in 2D Discrete Fourier Transforms (DFTs) of given images. Experimental evaluation using CASIA iris image databases (versions 1.0 and 2.0) and Iris Challenge Evaluation (ICE) 2005 database clearly demonstrates that the use of phase components of iris images makes possible to achieve highly accurate iris recognition with a simple matching algorithm. This paper also discusses major implementation issues of our algorithm. In order to reduce the size of iris data and to prevent the visibility of iris images, we introduce the idea of 2D Fourier Phase Code (FPC) for representing iris information. The 2D FPC is particularly useful for implementing compact iris recognition devices using state-of-the-art Digital Signal Processing (DSP) technology.
An improved finger-vein recognition algorithm based on template matching
NASA Astrophysics Data System (ADS)
Liu, Yueyue; Di, Si; Jin, Jian; Huang, Daoping
2016-10-01
Finger-vein recognition has became the most popular biometric identify methods. The investigation on the recognition algorithms always is the key point in this field. So far, there are many applicable algorithms have been developed. However, there are still some problems in practice, such as the variance of the finger position which may lead to the image distortion and shifting; during the identification process, some matching parameters determined according to experience may also reduce the adaptability of algorithm. Focus on above mentioned problems, this paper proposes an improved finger-vein recognition algorithm based on template matching. In order to enhance the robustness of the algorithm for the image distortion, the least squares error method is adopted to correct the oblique finger. During the feature extraction, local adaptive threshold method is adopted. As regard as the matching scores, we optimized the translation preferences as well as matching distance between the input images and register images on the basis of Naoto Miura algorithm. Experimental results indicate that the proposed method can improve the robustness effectively under the finger shifting and rotation conditions.
Design method of ARM based embedded iris recognition system
NASA Astrophysics Data System (ADS)
Wang, Yuanbo; He, Yuqing; Hou, Yushi; Liu, Ting
2008-03-01
With the advantages of non-invasiveness, uniqueness, stability and low false recognition rate, iris recognition has been successfully applied in many fields. Up to now, most of the iris recognition systems are based on PC. However, a PC is not portable and it needs more power. In this paper, we proposed an embedded iris recognition system based on ARM. Considering the requirements of iris image acquisition and recognition algorithm, we analyzed the design method of the iris image acquisition module, designed the ARM processing module and its peripherals, studied the Linux platform and the recognition algorithm based on this platform, finally actualized the design method of ARM-based iris imaging and recognition system. Experimental results show that the ARM platform we used is fast enough to run the iris recognition algorithm, and the data stream can flow smoothly between the camera and the ARM chip based on the embedded Linux system. It's an effective method of using ARM to actualize portable embedded iris recognition system.
Word recognition using a lexicon constrained by first/last character decisions
NASA Astrophysics Data System (ADS)
Zhao, Sheila X.; Srihari, Sargur N.
1995-03-01
In lexicon based recognition of machine-printed word images, the size of the lexicon can be quite extensive. The recognition performance is closely related to the size of the lexicon. Recognition performance drops quickly when lexicon size increases. Here, we present an algorithm to improve the word recognition performance by reducing the size of the given lexicon. The algorithm utilizes the information provided by the first and last characters of a word to reduce the size of the given lexicon. Given a word image and a lexicon that contains the word in the image, the first and last characters are segmented and then recognized by a character classifier. The possible candidates based on the results given by the classifier are selected, which give us the sub-lexicon. Then a word shape analysis algorithm is applied to produce the final ranking of the given lexicon. The algorithm was tested on a set of machine- printed gray-scale word images which includes a wide range of print types and qualities.
NASA Astrophysics Data System (ADS)
Babayan, Pavel; Smirnov, Sergey; Strotov, Valery
2017-10-01
This paper describes the aerial object recognition algorithm for on-board and stationary vision system. Suggested algorithm is intended to recognize the objects of a specific kind using the set of the reference objects defined by 3D models. The proposed algorithm based on the outer contour descriptor building. The algorithm consists of two stages: learning and recognition. Learning stage is devoted to the exploring of reference objects. Using 3D models we can build the database containing training images by rendering the 3D model from viewpoints evenly distributed on a sphere. Sphere points distribution is made by the geosphere principle. Gathered training image set is used for calculating descriptors, which will be used in the recognition stage of the algorithm. The recognition stage is focusing on estimating the similarity of the captured object and the reference objects by matching an observed image descriptor and the reference object descriptors. The experimental research was performed using a set of the models of the aircraft of the different types (airplanes, helicopters, UAVs). The proposed orientation estimation algorithm showed good accuracy in all case studies. The real-time performance of the algorithm in FPGA-based vision system was demonstrated.
NASA Astrophysics Data System (ADS)
Sheng, Yehua; Zhang, Ka; Ye, Chun; Liang, Cheng; Li, Jian
2008-04-01
Considering the problem of automatic traffic sign detection and recognition in stereo images captured under motion conditions, a new algorithm for traffic sign detection and recognition based on features and probabilistic neural networks (PNN) is proposed in this paper. Firstly, global statistical color features of left image are computed based on statistics theory. Then for red, yellow and blue traffic signs, left image is segmented to three binary images by self-adaptive color segmentation method. Secondly, gray-value projection and shape analysis are used to confirm traffic sign regions in left image. Then stereo image matching is used to locate the homonymy traffic signs in right image. Thirdly, self-adaptive image segmentation is used to extract binary inner core shapes of detected traffic signs. One-dimensional feature vectors of inner core shapes are computed by central projection transformation. Fourthly, these vectors are input to the trained probabilistic neural networks for traffic sign recognition. Lastly, recognition results in left image are compared with recognition results in right image. If results in stereo images are identical, these results are confirmed as final recognition results. The new algorithm is applied to 220 real images of natural scenes taken by the vehicle-borne mobile photogrammetry system in Nanjing at different time. Experimental results show a detection and recognition rate of over 92%. So the algorithm is not only simple, but also reliable and high-speed on real traffic sign detection and recognition. Furthermore, it can obtain geometrical information of traffic signs at the same time of recognizing their types.
Analysis and Recognition of Curve Type as The Basis of Object Recognition in Image
NASA Astrophysics Data System (ADS)
Nugraha, Nurma; Madenda, Sarifuddin; Indarti, Dina; Dewi Agushinta, R.; Ernastuti
2016-06-01
An object in an image when analyzed further will show the characteristics that distinguish one object with another object in an image. Characteristics that are used in object recognition in an image can be a color, shape, pattern, texture and spatial information that can be used to represent objects in the digital image. The method has recently been developed for image feature extraction on objects that share characteristics curve analysis (simple curve) and use the search feature of chain code object. This study will develop an algorithm analysis and the recognition of the type of curve as the basis for object recognition in images, with proposing addition of complex curve characteristics with maximum four branches that will be used for the process of object recognition in images. Definition of complex curve is the curve that has a point of intersection. By using some of the image of the edge detection, the algorithm was able to do the analysis and recognition of complex curve shape well.
NASA Astrophysics Data System (ADS)
Yi, Juan; Du, Qingyu; Zhang, Hong jiang; Zhang, Yao lei
2017-11-01
Target recognition is a leading key technology in intelligent image processing and application development at present, with the enhancement of computer processing ability, autonomous target recognition algorithm, gradually improve intelligence, and showed good adaptability. Taking the airport target as the research object, analysis the airport layout characteristics, construction of knowledge model, Gabor filter and Radon transform based on the target recognition algorithm of independent design, image processing and feature extraction of the airport, the algorithm was verified, and achieved better recognition results.
Image-algebraic design of multispectral target recognition algorithms
NASA Astrophysics Data System (ADS)
Schmalz, Mark S.; Ritter, Gerhard X.
1994-06-01
In this paper, we discuss methods for multispectral ATR (Automated Target Recognition) of small targets that are sensed under suboptimal conditions, such as haze, smoke, and low light levels. In particular, we discuss our ongoing development of algorithms and software that effect intelligent object recognition by selecting ATR filter parameters according to ambient conditions. Our algorithms are expressed in terms of IA (image algebra), a concise, rigorous notation that unifies linear and nonlinear mathematics in the image processing domain. IA has been implemented on a variety of parallel computers, with preprocessors available for the Ada and FORTRAN languages. An image algebra C++ class library has recently been made available. Thus, our algorithms are both feasible implementationally and portable to numerous machines. Analyses emphasize the aspects of image algebra that aid the design of multispectral vision algorithms, such as parameterized templates that facilitate the flexible specification of ATR filters.
Key features for ATA / ATR database design in missile systems
NASA Astrophysics Data System (ADS)
Özertem, Kemal Arda
2017-05-01
Automatic target acquisition (ATA) and automatic target recognition (ATR) are two vital tasks for missile systems, and having a robust detection and recognition algorithm is crucial for overall system performance. In order to have a robust target detection and recognition algorithm, an extensive image database is required. Automatic target recognition algorithms use the database of images in training and testing steps of algorithm. This directly affects the recognition performance, since the training accuracy is driven by the quality of the image database. In addition, the performance of an automatic target detection algorithm can be measured effectively by using an image database. There are two main ways for designing an ATA / ATR database. The first and easy way is by using a scene generator. A scene generator can model the objects by considering its material information, the atmospheric conditions, detector type and the territory. Designing image database by using a scene generator is inexpensive and it allows creating many different scenarios quickly and easily. However the major drawback of using a scene generator is its low fidelity, since the images are created virtually. The second and difficult way is designing it using real-world images. Designing image database with real-world images is a lot more costly and time consuming; however it offers high fidelity, which is critical for missile algorithms. In this paper, critical concepts in ATA / ATR database design with real-world images are discussed. Each concept is discussed in the perspective of ATA and ATR separately. For the implementation stage, some possible solutions and trade-offs for creating the database are proposed, and all proposed approaches are compared to each other with regards to their pros and cons.
Gabor filter based fingerprint image enhancement
NASA Astrophysics Data System (ADS)
Wang, Jin-Xiang
2013-03-01
Fingerprint recognition technology has become the most reliable biometric technology due to its uniqueness and invariance, which has been most convenient and most reliable technique for personal authentication. The development of Automated Fingerprint Identification System is an urgent need for modern information security. Meanwhile, fingerprint preprocessing algorithm of fingerprint recognition technology has played an important part in Automatic Fingerprint Identification System. This article introduces the general steps in the fingerprint recognition technology, namely the image input, preprocessing, feature recognition, and fingerprint image enhancement. As the key to fingerprint identification technology, fingerprint image enhancement affects the accuracy of the system. It focuses on the characteristics of the fingerprint image, Gabor filters algorithm for fingerprint image enhancement, the theoretical basis of Gabor filters, and demonstration of the filter. The enhancement algorithm for fingerprint image is in the windows XP platform with matlab.65 as a development tool for the demonstration. The result shows that the Gabor filter is effective in fingerprint image enhancement technology.
Infrared vehicle recognition using unsupervised feature learning based on K-feature
NASA Astrophysics Data System (ADS)
Lin, Jin; Tan, Yihua; Xia, Haijiao; Tian, Jinwen
2018-02-01
Subject to the complex battlefield environment, it is difficult to establish a complete knowledge base in practical application of vehicle recognition algorithms. The infrared vehicle recognition is always difficult and challenging, which plays an important role in remote sensing. In this paper we propose a new unsupervised feature learning method based on K-feature to recognize vehicle in infrared images. First, we use the target detection algorithm which is based on the saliency to detect the initial image. Then, the unsupervised feature learning based on K-feature, which is generated by Kmeans clustering algorithm that extracted features by learning a visual dictionary from a large number of samples without label, is calculated to suppress the false alarm and improve the accuracy. Finally, the vehicle target recognition image is finished by some post-processing. Large numbers of experiments demonstrate that the proposed method has satisfy recognition effectiveness and robustness for vehicle recognition in infrared images under complex backgrounds, and it also improve the reliability of it.
Hyperspectral face recognition with spatiospectral information fusion and PLS regression.
Uzair, Muhammad; Mahmood, Arif; Mian, Ajmal
2015-03-01
Hyperspectral imaging offers new opportunities for face recognition via improved discrimination along the spectral dimension. However, it poses new challenges, including low signal-to-noise ratio, interband misalignment, and high data dimensionality. Due to these challenges, the literature on hyperspectral face recognition is not only sparse but is limited to ad hoc dimensionality reduction techniques and lacks comprehensive evaluation. We propose a hyperspectral face recognition algorithm using a spatiospectral covariance for band fusion and partial least square regression for classification. Moreover, we extend 13 existing face recognition techniques, for the first time, to perform hyperspectral face recognition.We formulate hyperspectral face recognition as an image-set classification problem and evaluate the performance of seven state-of-the-art image-set classification techniques. We also test six state-of-the-art grayscale and RGB (color) face recognition algorithms after applying fusion techniques on hyperspectral images. Comparison with the 13 extended and five existing hyperspectral face recognition techniques on three standard data sets show that the proposed algorithm outperforms all by a significant margin. Finally, we perform band selection experiments to find the most discriminative bands in the visible and near infrared response spectrum.
Vatsa, Mayank; Singh, Richa; Noore, Afzel
2008-08-01
This paper proposes algorithms for iris segmentation, quality enhancement, match score fusion, and indexing to improve both the accuracy and the speed of iris recognition. A curve evolution approach is proposed to effectively segment a nonideal iris image using the modified Mumford-Shah functional. Different enhancement algorithms are concurrently applied on the segmented iris image to produce multiple enhanced versions of the iris image. A support-vector-machine-based learning algorithm selects locally enhanced regions from each globally enhanced image and combines these good-quality regions to create a single high-quality iris image. Two distinct features are extracted from the high-quality iris image. The global textural feature is extracted using the 1-D log polar Gabor transform, and the local topological feature is extracted using Euler numbers. An intelligent fusion algorithm combines the textural and topological matching scores to further improve the iris recognition performance and reduce the false rejection rate, whereas an indexing algorithm enables fast and accurate iris identification. The verification and identification performance of the proposed algorithms is validated and compared with other algorithms using the CASIA Version 3, ICE 2005, and UBIRIS iris databases.
Pattern recognition for passive polarimetric data using nonparametric classifiers
NASA Astrophysics Data System (ADS)
Thilak, Vimal; Saini, Jatinder; Voelz, David G.; Creusere, Charles D.
2005-08-01
Passive polarization based imaging is a useful tool in computer vision and pattern recognition. A passive polarization imaging system forms a polarimetric image from the reflection of ambient light that contains useful information for computer vision tasks such as object detection (classification) and recognition. Applications of polarization based pattern recognition include material classification and automatic shape recognition. In this paper, we present two target detection algorithms for images captured by a passive polarimetric imaging system. The proposed detection algorithms are based on Bayesian decision theory. In these approaches, an object can belong to one of any given number classes and classification involves making decisions that minimize the average probability of making incorrect decisions. This minimum is achieved by assigning an object to the class that maximizes the a posteriori probability. Computing a posteriori probabilities requires estimates of class conditional probability density functions (likelihoods) and prior probabilities. A Probabilistic neural network (PNN), which is a nonparametric method that can compute Bayes optimal boundaries, and a -nearest neighbor (KNN) classifier, is used for density estimation and classification. The proposed algorithms are applied to polarimetric image data gathered in the laboratory with a liquid crystal-based system. The experimental results validate the effectiveness of the above algorithms for target detection from polarimetric data.
A novel rotational invariants target recognition method for rotating motion blurred images
NASA Astrophysics Data System (ADS)
Lan, Jinhui; Gong, Meiling; Dong, Mingwei; Zeng, Yiliang; Zhang, Yuzhen
2017-11-01
The imaging of the image sensor is blurred due to the rotational motion of the carrier and reducing the target recognition rate greatly. Although the traditional mode that restores the image first and then identifies the target can improve the recognition rate, it takes a long time to recognize. In order to solve this problem, a rotating fuzzy invariants extracted model was constructed that recognizes target directly. The model includes three metric layers. The object description capability of metric algorithms that contain gray value statistical algorithm, improved round projection transformation algorithm and rotation-convolution moment invariants in the three metric layers ranges from low to high, and the metric layer with the lowest description ability among them is as the input which can eliminate non pixel points of target region from degenerate image gradually. Experimental results show that the proposed model can improve the correct target recognition rate of blurred image and optimum allocation between the computational complexity and function of region.
Identification of Alfalfa Leaf Diseases Using Image Recognition Technology
Qin, Feng; Liu, Dongxia; Sun, Bingda; Ruan, Liu; Ma, Zhanhong; Wang, Haiguang
2016-01-01
Common leaf spot (caused by Pseudopeziza medicaginis), rust (caused by Uromyces striatus), Leptosphaerulina leaf spot (caused by Leptosphaerulina briosiana) and Cercospora leaf spot (caused by Cercospora medicaginis) are the four common types of alfalfa leaf diseases. Timely and accurate diagnoses of these diseases are critical for disease management, alfalfa quality control and the healthy development of the alfalfa industry. In this study, the identification and diagnosis of the four types of alfalfa leaf diseases were investigated using pattern recognition algorithms based on image-processing technology. A sub-image with one or multiple typical lesions was obtained by artificial cutting from each acquired digital disease image. Then the sub-images were segmented using twelve lesion segmentation methods integrated with clustering algorithms (including K_means clustering, fuzzy C-means clustering and K_median clustering) and supervised classification algorithms (including logistic regression analysis, Naive Bayes algorithm, classification and regression tree, and linear discriminant analysis). After a comprehensive comparison, the segmentation method integrating the K_median clustering algorithm and linear discriminant analysis was chosen to obtain lesion images. After the lesion segmentation using this method, a total of 129 texture, color and shape features were extracted from the lesion images. Based on the features selected using three methods (ReliefF, 1R and correlation-based feature selection), disease recognition models were built using three supervised learning methods, including the random forest, support vector machine (SVM) and K-nearest neighbor methods. A comparison of the recognition results of the models was conducted. The results showed that when the ReliefF method was used for feature selection, the SVM model built with the most important 45 features (selected from a total of 129 features) was the optimal model. For this SVM model, the recognition accuracies of the training set and the testing set were 97.64% and 94.74%, respectively. Semi-supervised models for disease recognition were built based on the 45 effective features that were used for building the optimal SVM model. For the optimal semi-supervised models built with three ratios of labeled to unlabeled samples in the training set, the recognition accuracies of the training set and the testing set were both approximately 80%. The results indicated that image recognition of the four alfalfa leaf diseases can be implemented with high accuracy. This study provides a feasible solution for lesion image segmentation and image recognition of alfalfa leaf disease. PMID:27977767
Identification of Alfalfa Leaf Diseases Using Image Recognition Technology.
Qin, Feng; Liu, Dongxia; Sun, Bingda; Ruan, Liu; Ma, Zhanhong; Wang, Haiguang
2016-01-01
Common leaf spot (caused by Pseudopeziza medicaginis), rust (caused by Uromyces striatus), Leptosphaerulina leaf spot (caused by Leptosphaerulina briosiana) and Cercospora leaf spot (caused by Cercospora medicaginis) are the four common types of alfalfa leaf diseases. Timely and accurate diagnoses of these diseases are critical for disease management, alfalfa quality control and the healthy development of the alfalfa industry. In this study, the identification and diagnosis of the four types of alfalfa leaf diseases were investigated using pattern recognition algorithms based on image-processing technology. A sub-image with one or multiple typical lesions was obtained by artificial cutting from each acquired digital disease image. Then the sub-images were segmented using twelve lesion segmentation methods integrated with clustering algorithms (including K_means clustering, fuzzy C-means clustering and K_median clustering) and supervised classification algorithms (including logistic regression analysis, Naive Bayes algorithm, classification and regression tree, and linear discriminant analysis). After a comprehensive comparison, the segmentation method integrating the K_median clustering algorithm and linear discriminant analysis was chosen to obtain lesion images. After the lesion segmentation using this method, a total of 129 texture, color and shape features were extracted from the lesion images. Based on the features selected using three methods (ReliefF, 1R and correlation-based feature selection), disease recognition models were built using three supervised learning methods, including the random forest, support vector machine (SVM) and K-nearest neighbor methods. A comparison of the recognition results of the models was conducted. The results showed that when the ReliefF method was used for feature selection, the SVM model built with the most important 45 features (selected from a total of 129 features) was the optimal model. For this SVM model, the recognition accuracies of the training set and the testing set were 97.64% and 94.74%, respectively. Semi-supervised models for disease recognition were built based on the 45 effective features that were used for building the optimal SVM model. For the optimal semi-supervised models built with three ratios of labeled to unlabeled samples in the training set, the recognition accuracies of the training set and the testing set were both approximately 80%. The results indicated that image recognition of the four alfalfa leaf diseases can be implemented with high accuracy. This study provides a feasible solution for lesion image segmentation and image recognition of alfalfa leaf disease.
Comparison of photo-matching algorithms commonly used for photographic capture-recapture studies.
Matthé, Maximilian; Sannolo, Marco; Winiarski, Kristopher; Spitzen-van der Sluijs, Annemarieke; Goedbloed, Daniel; Steinfartz, Sebastian; Stachow, Ulrich
2017-08-01
Photographic capture-recapture is a valuable tool for obtaining demographic information on wildlife populations due to its noninvasive nature and cost-effectiveness. Recently, several computer-aided photo-matching algorithms have been developed to more efficiently match images of unique individuals in databases with thousands of images. However, the identification accuracy of these algorithms can severely bias estimates of vital rates and population size. Therefore, it is important to understand the performance and limitations of state-of-the-art photo-matching algorithms prior to implementation in capture-recapture studies involving possibly thousands of images. Here, we compared the performance of four photo-matching algorithms; Wild-ID, I3S Pattern+, APHIS, and AmphIdent using multiple amphibian databases of varying image quality. We measured the performance of each algorithm and evaluated the performance in relation to database size and the number of matching images in the database. We found that algorithm performance differed greatly by algorithm and image database, with recognition rates ranging from 100% to 22.6% when limiting the review to the 10 highest ranking images. We found that recognition rate degraded marginally with increased database size and could be improved considerably with a higher number of matching images in the database. In our study, the pixel-based algorithm of AmphIdent exhibited superior recognition rates compared to the other approaches. We recommend carefully evaluating algorithm performance prior to using it to match a complete database. By choosing a suitable matching algorithm, databases of sizes that are unfeasible to match "by eye" can be easily translated to accurate individual capture histories necessary for robust demographic estimates.
Hipp, Jason D; Cheng, Jerome Y; Toner, Mehmet; Tompkins, Ronald G; Balis, Ulysses J
2011-02-26
HISTORICALLY, EFFECTIVE CLINICAL UTILIZATION OF IMAGE ANALYSIS AND PATTERN RECOGNITION ALGORITHMS IN PATHOLOGY HAS BEEN HAMPERED BY TWO CRITICAL LIMITATIONS: 1) the availability of digital whole slide imagery data sets and 2) a relative domain knowledge deficit in terms of application of such algorithms, on the part of practicing pathologists. With the advent of the recent and rapid adoption of whole slide imaging solutions, the former limitation has been largely resolved. However, with the expectation that it is unlikely for the general cohort of contemporary pathologists to gain advanced image analysis skills in the short term, the latter problem remains, thus underscoring the need for a class of algorithm that has the concurrent properties of image domain (or organ system) independence and extreme ease of use, without the need for specialized training or expertise. In this report, we present a novel, general case pattern recognition algorithm, Spatially Invariant Vector Quantization (SIVQ), that overcomes the aforementioned knowledge deficit. Fundamentally based on conventional Vector Quantization (VQ) pattern recognition approaches, SIVQ gains its superior performance and essentially zero-training workflow model from its use of ring vectors, which exhibit continuous symmetry, as opposed to square or rectangular vectors, which do not. By use of the stochastic matching properties inherent in continuous symmetry, a single ring vector can exhibit as much as a millionfold improvement in matching possibilities, as opposed to conventional VQ vectors. SIVQ was utilized to demonstrate rapid and highly precise pattern recognition capability in a broad range of gross and microscopic use-case settings. With the performance of SIVQ observed thus far, we find evidence that indeed there exist classes of image analysis/pattern recognition algorithms suitable for deployment in settings where pathologists alone can effectively incorporate their use into clinical workflow, as a turnkey solution. We anticipate that SIVQ, and other related class-independent pattern recognition algorithms, will become part of the overall armamentarium of digital image analysis approaches that are immediately available to practicing pathologists, without the need for the immediate availability of an image analysis expert.
Cross-modal face recognition using multi-matcher face scores
NASA Astrophysics Data System (ADS)
Zheng, Yufeng; Blasch, Erik
2015-05-01
The performance of face recognition can be improved using information fusion of multimodal images and/or multiple algorithms. When multimodal face images are available, cross-modal recognition is meaningful for security and surveillance applications. For example, a probe face is a thermal image (especially at nighttime), while only visible face images are available in the gallery database. Matching a thermal probe face onto the visible gallery faces requires crossmodal matching approaches. A few such studies were implemented in facial feature space with medium recognition performance. In this paper, we propose a cross-modal recognition approach, where multimodal faces are cross-matched in feature space and the recognition performance is enhanced with stereo fusion at image, feature and/or score level. In the proposed scenario, there are two cameras for stereo imaging, two face imagers (visible and thermal images) in each camera, and three recognition algorithms (circular Gaussian filter, face pattern byte, linear discriminant analysis). A score vector is formed with three cross-matched face scores from the aforementioned three algorithms. A classifier (e.g., k-nearest neighbor, support vector machine, binomial logical regression [BLR]) is trained then tested with the score vectors by using 10-fold cross validations. The proposed approach was validated with a multispectral stereo face dataset from 105 subjects. Our experiments show very promising results: ACR (accuracy rate) = 97.84%, FAR (false accept rate) = 0.84% when cross-matching the fused thermal faces onto the fused visible faces by using three face scores and the BLR classifier.
Appearance-based face recognition and light-fields.
Gross, Ralph; Matthews, Iain; Baker, Simon
2004-04-01
Arguably the most important decision to be made when developing an object recognition algorithm is selecting the scene measurements or features on which to base the algorithm. In appearance-based object recognition, the features are chosen to be the pixel intensity values in an image of the object. These pixel intensities correspond directly to the radiance of light emitted from the object along certain rays in space. The set of all such radiance values over all possible rays is known as the plenoptic function or light-field. In this paper, we develop a theory of appearance-based object recognition from light-fields. This theory leads directly to an algorithm for face recognition across pose that uses as many images of the face as are available, from one upwards. All of the pixels, whichever image they come from, are treated equally and used to estimate the (eigen) light-field of the object. The eigen light-field is then used as the set of features on which to base recognition, analogously to how the pixel intensities are used in appearance-based face and object recognition.
Tensor Rank Preserving Discriminant Analysis for Facial Recognition.
Tao, Dapeng; Guo, Yanan; Li, Yaotang; Gao, Xinbo
2017-10-12
Facial recognition, one of the basic topics in computer vision and pattern recognition, has received substantial attention in recent years. However, for those traditional facial recognition algorithms, the facial images are reshaped to a long vector, thereby losing part of the original spatial constraints of each pixel. In this paper, a new tensor-based feature extraction algorithm termed tensor rank preserving discriminant analysis (TRPDA) for facial image recognition is proposed; the proposed method involves two stages: in the first stage, the low-dimensional tensor subspace of the original input tensor samples was obtained; in the second stage, discriminative locality alignment was utilized to obtain the ultimate vector feature representation for subsequent facial recognition. On the one hand, the proposed TRPDA algorithm fully utilizes the natural structure of the input samples, and it applies an optimization criterion that can directly handle the tensor spectral analysis problem, thereby decreasing the computation cost compared those traditional tensor-based feature selection algorithms. On the other hand, the proposed TRPDA algorithm extracts feature by finding a tensor subspace that preserves most of the rank order information of the intra-class input samples. Experiments on the three facial databases are performed here to determine the effectiveness of the proposed TRPDA algorithm.
False match elimination for face recognition based on SIFT algorithm
NASA Astrophysics Data System (ADS)
Gu, Xuyuan; Shi, Ping; Shao, Meide
2011-06-01
The SIFT (Scale Invariant Feature Transform) is a well known algorithm used to detect and describe local features in images. It is invariant to image scale, rotation and robust to the noise and illumination. In this paper, a novel method used for face recognition based on SIFT is proposed, which combines the optimization of SIFT, mutual matching and Progressive Sample Consensus (PROSAC) together and can eliminate the false matches of face recognition effectively. Experiments on ORL face database show that many false matches can be eliminated and better recognition rate is achieved.
An Interactive Image Segmentation Method in Hand Gesture Recognition
Chen, Disi; Li, Gongfa; Sun, Ying; Kong, Jianyi; Jiang, Guozhang; Tang, Heng; Ju, Zhaojie; Yu, Hui; Liu, Honghai
2017-01-01
In order to improve the recognition rate of hand gestures a new interactive image segmentation method for hand gesture recognition is presented, and popular methods, e.g., Graph cut, Random walker, Interactive image segmentation using geodesic star convexity, are studied in this article. The Gaussian Mixture Model was employed for image modelling and the iteration of Expectation Maximum algorithm learns the parameters of Gaussian Mixture Model. We apply a Gibbs random field to the image segmentation and minimize the Gibbs Energy using Min-cut theorem to find the optimal segmentation. The segmentation result of our method is tested on an image dataset and compared with other methods by estimating the region accuracy and boundary accuracy. Finally five kinds of hand gestures in different backgrounds are tested on our experimental platform, and the sparse representation algorithm is used, proving that the segmentation of hand gesture images helps to improve the recognition accuracy. PMID:28134818
A Survey on Sentiment Classification in Face Recognition
NASA Astrophysics Data System (ADS)
Qian, Jingyu
2018-01-01
Face recognition has been an important topic for both industry and academia for a long time. K-means clustering, autoencoder, and convolutional neural network, each representing a design idea for face recognition method, are three popular algorithms to deal with face recognition problems. It is worthwhile to summarize and compare these three different algorithms. This paper will focus on one specific face recognition problem-sentiment classification from images. Three different algorithms for sentiment classification problems will be summarized, including k-means clustering, autoencoder, and convolutional neural network. An experiment with the application of these algorithms on a specific dataset of human faces will be conducted to illustrate how these algorithms are applied and their accuracy. Finally, the three algorithms are compared based on the accuracy result.
An Improved Iris Recognition Algorithm Based on Hybrid Feature and ELM
NASA Astrophysics Data System (ADS)
Wang, Juan
2018-03-01
The iris image is easily polluted by noise and uneven light. This paper proposed an improved extreme learning machine (ELM) based iris recognition algorithm with hybrid feature. 2D-Gabor filters and GLCM is employed to generate a multi-granularity hybrid feature vector. 2D-Gabor filter and GLCM feature work for capturing low-intermediate frequency and high frequency texture information, respectively. Finally, we utilize extreme learning machine for iris recognition. Experimental results reveal our proposed ELM based multi-granularity iris recognition algorithm (ELM-MGIR) has higher accuracy of 99.86%, and lower EER of 0.12% under the premise of real-time performance. The proposed ELM-MGIR algorithm outperforms other mainstream iris recognition algorithms.
[Research progress of multi-model medical image fusion and recognition].
Zhou, Tao; Lu, Huiling; Chen, Zhiqiang; Ma, Jingxian
2013-10-01
Medical image fusion and recognition has a wide range of applications, such as focal location, cancer staging and treatment effect assessment. Multi-model medical image fusion and recognition are analyzed and summarized in this paper. Firstly, the question of multi-model medical image fusion and recognition is discussed, and its advantage and key steps are discussed. Secondly, three fusion strategies are reviewed from the point of algorithm, and four fusion recognition structures are discussed. Thirdly, difficulties, challenges and possible future research direction are discussed.
Analysis of contour images using optics of spiral beams
NASA Astrophysics Data System (ADS)
Volostnikov, V. G.; Kishkin, S. A.; Kotova, S. P.
2018-03-01
An approach is outlined to the recognition of contour images using computer technology based on coherent optics principles. A mathematical description of the recognition process algorithm and the results of numerical modelling are presented. The developed approach to the recognition of contour images using optics of spiral beams is described and justified.
Real-time polarization imaging algorithm for camera-based polarization navigation sensors.
Lu, Hao; Zhao, Kaichun; You, Zheng; Huang, Kaoli
2017-04-10
Biologically inspired polarization navigation is a promising approach due to its autonomous nature, high precision, and robustness. Many researchers have built point source-based and camera-based polarization navigation prototypes in recent years. Camera-based prototypes can benefit from their high spatial resolution but incur a heavy computation load. The pattern recognition algorithm in most polarization imaging algorithms involves several nonlinear calculations that impose a significant computation burden. In this paper, the polarization imaging and pattern recognition algorithms are optimized through reduction to several linear calculations by exploiting the orthogonality of the Stokes parameters without affecting precision according to the features of the solar meridian and the patterns of the polarized skylight. The algorithm contains a pattern recognition algorithm with a Hough transform as well as orientation measurement algorithms. The algorithm was loaded and run on a digital signal processing system to test its computational complexity. The test showed that the running time decreased to several tens of milliseconds from several thousand milliseconds. Through simulations and experiments, it was found that the algorithm can measure orientation without reducing precision. It can hence satisfy the practical demands of low computational load and high precision for use in embedded systems.
New development of the image matching algorithm
NASA Astrophysics Data System (ADS)
Zhang, Xiaoqiang; Feng, Zhao
2018-04-01
To study the image matching algorithm, algorithm four elements are described, i.e., similarity measurement, feature space, search space and search strategy. Four common indexes for evaluating the image matching algorithm are described, i.e., matching accuracy, matching efficiency, robustness and universality. Meanwhile, this paper describes the principle of image matching algorithm based on the gray value, image matching algorithm based on the feature, image matching algorithm based on the frequency domain analysis, image matching algorithm based on the neural network and image matching algorithm based on the semantic recognition, and analyzes their characteristics and latest research achievements. Finally, the development trend of image matching algorithm is discussed. This study is significant for the algorithm improvement, new algorithm design and algorithm selection in practice.
Cognitive object recognition system (CORS)
NASA Astrophysics Data System (ADS)
Raju, Chaitanya; Varadarajan, Karthik Mahesh; Krishnamurthi, Niyant; Xu, Shuli; Biederman, Irving; Kelley, Troy
2010-04-01
We have developed a framework, Cognitive Object Recognition System (CORS), inspired by current neurocomputational models and psychophysical research in which multiple recognition algorithms (shape based geometric primitives, 'geons,' and non-geometric feature-based algorithms) are integrated to provide a comprehensive solution to object recognition and landmarking. Objects are defined as a combination of geons, corresponding to their simple parts, and the relations among the parts. However, those objects that are not easily decomposable into geons, such as bushes and trees, are recognized by CORS using "feature-based" algorithms. The unique interaction between these algorithms is a novel approach that combines the effectiveness of both algorithms and takes us closer to a generalized approach to object recognition. CORS allows recognition of objects through a larger range of poses using geometric primitives and performs well under heavy occlusion - about 35% of object surface is sufficient. Furthermore, geon composition of an object allows image understanding and reasoning even with novel objects. With reliable landmarking capability, the system improves vision-based robot navigation in GPS-denied environments. Feasibility of the CORS system was demonstrated with real stereo images captured from a Pioneer robot. The system can currently identify doors, door handles, staircases, trashcans and other relevant landmarks in the indoor environment.
Iris recognition based on key image feature extraction.
Ren, X; Tian, Q; Zhang, J; Wu, S; Zeng, Y
2008-01-01
In iris recognition, feature extraction can be influenced by factors such as illumination and contrast, and thus the features extracted may be unreliable, which can cause a high rate of false results in iris pattern recognition. In order to obtain stable features, an algorithm was proposed in this paper to extract key features of a pattern from multiple images. The proposed algorithm built an iris feature template by extracting key features and performed iris identity enrolment. Simulation results showed that the selected key features have high recognition accuracy on the CASIA Iris Set, where both contrast and illumination variance exist.
Atmospheric turbulence and sensor system effects on biometric algorithm performance
NASA Astrophysics Data System (ADS)
Espinola, Richard L.; Leonard, Kevin R.; Byrd, Kenneth A.; Potvin, Guy
2015-05-01
Biometric technologies composed of electro-optical/infrared (EO/IR) sensor systems and advanced matching algorithms are being used in various force protection/security and tactical surveillance applications. To date, most of these sensor systems have been widely used in controlled conditions with varying success (e.g., short range, uniform illumination, cooperative subjects). However the limiting conditions of such systems have yet to be fully studied for long range applications and degraded imaging environments. Biometric technologies used for long range applications will invariably suffer from the effects of atmospheric turbulence degradation. Atmospheric turbulence causes blur, distortion and intensity fluctuations that can severely degrade image quality of electro-optic and thermal imaging systems and, for the case of biometrics technology, translate to poor matching algorithm performance. In this paper, we evaluate the effects of atmospheric turbulence and sensor resolution on biometric matching algorithm performance. We use a subset of the Facial Recognition Technology (FERET) database and a commercial algorithm to analyze facial recognition performance on turbulence degraded facial images. The goal of this work is to understand the feasibility of long-range facial recognition in degraded imaging conditions, and the utility of camera parameter trade studies to enable the design of the next generation biometrics sensor systems.
Aided target recognition processing of MUDSS sonar data
NASA Astrophysics Data System (ADS)
Lau, Brian; Chao, Tien-Hsin
1998-09-01
The Mobile Underwater Debris Survey System (MUDSS) is a collaborative effort by the Navy and the Jet Propulsion Lab to demonstrate multi-sensor, real-time, survey of underwater sites for ordnance and explosive waste (OEW). We describe the sonar processing algorithm, a novel target recognition algorithm incorporating wavelets, morphological image processing, expansion by Hermite polynomials, and neural networks. This algorithm has found all planted targets in MUDSS tests and has achieved spectacular success upon another Coastal Systems Station (CSS) sonar image database.
Recognizing Age-Separated Face Images: Humans and Machines
Yadav, Daksha; Singh, Richa; Vatsa, Mayank; Noore, Afzel
2014-01-01
Humans utilize facial appearance, gender, expression, aging pattern, and other ancillary information to recognize individuals. It is interesting to observe how humans perceive facial age. Analyzing these properties can help in understanding the phenomenon of facial aging and incorporating the findings can help in designing effective algorithms. Such a study has two components - facial age estimation and age-separated face recognition. Age estimation involves predicting the age of an individual given his/her facial image. On the other hand, age-separated face recognition consists of recognizing an individual given his/her age-separated images. In this research, we investigate which facial cues are utilized by humans for estimating the age of people belonging to various age groups along with analyzing the effect of one's gender, age, and ethnicity on age estimation skills. We also analyze how various facial regions such as binocular and mouth regions influence age estimation and recognition capabilities. Finally, we propose an age-invariant face recognition algorithm that incorporates the knowledge learned from these observations. Key observations of our research are: (1) the age group of newborns and toddlers is easiest to estimate, (2) gender and ethnicity do not affect the judgment of age group estimation, (3) face as a global feature, is essential to achieve good performance in age-separated face recognition, and (4) the proposed algorithm yields improved recognition performance compared to existing algorithms and also outperforms a commercial system in the young image as probe scenario. PMID:25474200
Recognizing age-separated face images: humans and machines.
Yadav, Daksha; Singh, Richa; Vatsa, Mayank; Noore, Afzel
2014-01-01
Humans utilize facial appearance, gender, expression, aging pattern, and other ancillary information to recognize individuals. It is interesting to observe how humans perceive facial age. Analyzing these properties can help in understanding the phenomenon of facial aging and incorporating the findings can help in designing effective algorithms. Such a study has two components--facial age estimation and age-separated face recognition. Age estimation involves predicting the age of an individual given his/her facial image. On the other hand, age-separated face recognition consists of recognizing an individual given his/her age-separated images. In this research, we investigate which facial cues are utilized by humans for estimating the age of people belonging to various age groups along with analyzing the effect of one's gender, age, and ethnicity on age estimation skills. We also analyze how various facial regions such as binocular and mouth regions influence age estimation and recognition capabilities. Finally, we propose an age-invariant face recognition algorithm that incorporates the knowledge learned from these observations. Key observations of our research are: (1) the age group of newborns and toddlers is easiest to estimate, (2) gender and ethnicity do not affect the judgment of age group estimation, (3) face as a global feature, is essential to achieve good performance in age-separated face recognition, and (4) the proposed algorithm yields improved recognition performance compared to existing algorithms and also outperforms a commercial system in the young image as probe scenario.
Terrain type recognition using ERTS-1 MSS images
NASA Technical Reports Server (NTRS)
Gramenopoulos, N.
1973-01-01
For the automatic recognition of earth resources from ERTS-1 digital tapes, both multispectral and spatial pattern recognition techniques are important. Recognition of terrain types is based on spatial signatures that become evident by processing small portions of an image through selected algorithms. An investigation of spatial signatures that are applicable to ERTS-1 MSS images is described. Artifacts in the spatial signatures seem to be related to the multispectral scanner. A method for suppressing such artifacts is presented. Finally, results of terrain type recognition for one ERTS-1 image are presented.
The Pandora multi-algorithm approach to automated pattern recognition in LAr TPC detectors
NASA Astrophysics Data System (ADS)
Marshall, J. S.; Blake, A. S. T.; Thomson, M. A.; Escudero, L.; de Vries, J.; Weston, J.;
2017-09-01
The development and operation of Liquid Argon Time Projection Chambers (LAr TPCs) for neutrino physics has created a need for new approaches to pattern recognition, in order to fully exploit the superb imaging capabilities offered by this technology. The Pandora Software Development Kit provides functionality to aid the process of designing, implementing and running pattern recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition: individual algorithms each address a specific task in a particular topology; a series of many tens of algorithms then carefully builds-up a picture of the event. The input to the Pandora pattern recognition is a list of 2D Hits. The output from the chain of over 70 algorithms is a hierarchy of reconstructed 3D Particles, each with an identified particle type, vertex and direction.
Automated Recognition of Geologically Significant Shapes in MER PANCAM and MI Images
NASA Technical Reports Server (NTRS)
Morris, Robert; Shipman, Mark; Roush, Ted L.
2004-01-01
Autonomous recognition of scientifically important information provides the capability of: 1) Prioritizing data return; 2) Intelligent data compression; 3) Reactive behavior onboard robotic vehicles. Such capabilities are desirable as mission scenarios include longer durations with decreasing interaction from mission control. To address such issues, we have implemented several computer algorithms, intended to autonomously recognize morphological shapes of scientific interest within a software architecture envisioned for future rover missions. Mars Exploration Rovers (MER) instrument payloads include a Panoramic Camera (PANCAM) and Microscopic Imager (MI). These provide a unique opportunity to evaluate our algorithms when applied to data obtained from the surface of Mars. Early in the mission we applied our algorithms to images available at the mission web site (http://marsrovers.jpl.nasa.gov/gallery/images.html), even though these are not at full resolution. Some algorithms would normally use ancillary information, e.g. camera pointing and position of the sun, but these data were not readily available. The initial results of applying our algorithms to the PANCAM and MI images are encouraging. The horizon is recognized in all images containing it; such information could be used to eliminate unwanted areas from the image prior to data transmission to Earth. Additionally, several rocks were identified that represent targets for the mini-thermal emission spectrometer. Our algorithms also recognize the layers, identified by mission scientists. Such information could be used to prioritize data return or in a decision-making process regarding future rover activities. The spherules seen in MI images were also autonomously recognized. Our results indicate that reliable recognition of scientifically relevant morphologies in images is feasible.
Study on recognition algorithm for paper currency numbers based on neural network
NASA Astrophysics Data System (ADS)
Li, Xiuyan; Liu, Tiegen; Li, Yuanyao; Zhang, Zhongchuan; Deng, Shichao
2008-12-01
Based on the unique characteristic, the paper currency numbers can be put into record and the automatic identification equipment for paper currency numbers is supplied to currency circulation market in order to provide convenience for financial sectors to trace the fiduciary circulation socially and provide effective supervision on paper currency. Simultaneously it is favorable for identifying forged notes, blacklisting the forged notes numbers and solving the major social problems, such as armor cash carrier robbery, money laundering. For the purpose of recognizing the paper currency numbers, a recognition algorithm based on neural network is presented in the paper. Number lines in original paper currency images can be draw out through image processing, such as image de-noising, skew correction, segmentation, and image normalization. According to the different characteristics between digits and letters in serial number, two kinds of classifiers are designed. With the characteristics of associative memory, optimization-compute and rapid convergence, the Discrete Hopfield Neural Network (DHNN) is utilized to recognize the letters; with the characteristics of simple structure, quick learning and global optimum, the Radial-Basis Function Neural Network (RBFNN) is adopted to identify the digits. Then the final recognition results are obtained by combining the two kinds of recognition results in regular sequence. Through the simulation tests, it is confirmed by simulation results that the recognition algorithm of combination of two kinds of recognition methods has such advantages as high recognition rate and faster recognition simultaneously, which is worthy of broad application prospect.
NASA Astrophysics Data System (ADS)
Yu, Yongtao; Li, Jonathan; Wen, Chenglu; Guan, Haiyan; Luo, Huan; Wang, Cheng
2016-03-01
This paper presents a novel algorithm for detection and recognition of traffic signs in mobile laser scanning (MLS) data for intelligent transportation-related applications. The traffic sign detection task is accomplished based on 3-D point clouds by using bag-of-visual-phrases representations; whereas the recognition task is achieved based on 2-D images by using a Gaussian-Bernoulli deep Boltzmann machine-based hierarchical classifier. To exploit high-order feature encodings of feature regions, a deep Boltzmann machine-based feature encoder is constructed. For detecting traffic signs in 3-D point clouds, the proposed algorithm achieves an average recall, precision, quality, and F-score of 0.956, 0.946, 0.907, and 0.951, respectively, on the four selected MLS datasets. For on-image traffic sign recognition, a recognition accuracy of 97.54% is achieved by using the proposed hierarchical classifier. Comparative studies with the existing traffic sign detection and recognition methods demonstrate that our algorithm obtains promising, reliable, and high performance in both detecting traffic signs in 3-D point clouds and recognizing traffic signs on 2-D images.
Indonesian Sign Language Number Recognition using SIFT Algorithm
NASA Astrophysics Data System (ADS)
Mahfudi, Isa; Sarosa, Moechammad; Andrie Asmara, Rosa; Azrino Gustalika, M.
2018-04-01
Indonesian sign language (ISL) is generally used for deaf individuals and poor people communication in communicating. They use sign language as their primary language which consists of 2 types of action: sign and finger spelling. However, not all people understand their sign language so that this becomes a problem for them to communicate with normal people. this problem also becomes a factor they are isolated feel from the social life. It needs a solution that can help them to be able to interacting with normal people. Many research that offers a variety of methods in solving the problem of sign language recognition based on image processing. SIFT (Scale Invariant Feature Transform) algorithm is one of the methods that can be used to identify an object. SIFT is claimed very resistant to scaling, rotation, illumination and noise. Using SIFT algorithm for Indonesian sign language recognition number result rate recognition to 82% with the use of a total of 100 samples image dataset consisting 50 sample for training data and 50 sample images for testing data. Change threshold value get affect the result of the recognition. The best value threshold is 0.45 with rate recognition of 94%.
Comparing an FPGA to a Cell for an Image Processing Application
NASA Astrophysics Data System (ADS)
Rakvic, Ryan N.; Ngo, Hau; Broussard, Randy P.; Ives, Robert W.
2010-12-01
Modern advancements in configurable hardware, most notably Field-Programmable Gate Arrays (FPGAs), have provided an exciting opportunity to discover the parallel nature of modern image processing algorithms. On the other hand, PlayStation3 (PS3) game consoles contain a multicore heterogeneous processor known as the Cell, which is designed to perform complex image processing algorithms at a high performance. In this research project, our aim is to study the differences in performance of a modern image processing algorithm on these two hardware platforms. In particular, Iris Recognition Systems have recently become an attractive identification method because of their extremely high accuracy. Iris matching, a repeatedly executed portion of a modern iris recognition algorithm, is parallelized on an FPGA system and a Cell processor. We demonstrate a 2.5 times speedup of the parallelized algorithm on the FPGA system when compared to a Cell processor-based version.
Image preprocessing study on KPCA-based face recognition
NASA Astrophysics Data System (ADS)
Li, Xuan; Li, Dehua
2015-12-01
Face recognition as an important biometric identification method, with its friendly, natural, convenient advantages, has obtained more and more attention. This paper intends to research a face recognition system including face detection, feature extraction and face recognition, mainly through researching on related theory and the key technology of various preprocessing methods in face detection process, using KPCA method, focuses on the different recognition results in different preprocessing methods. In this paper, we choose YCbCr color space for skin segmentation and choose integral projection for face location. We use erosion and dilation of the opening and closing operation and illumination compensation method to preprocess face images, and then use the face recognition method based on kernel principal component analysis method for analysis and research, and the experiments were carried out using the typical face database. The algorithms experiment on MATLAB platform. Experimental results show that integration of the kernel method based on PCA algorithm under certain conditions make the extracted features represent the original image information better for using nonlinear feature extraction method, which can obtain higher recognition rate. In the image preprocessing stage, we found that images under various operations may appear different results, so as to obtain different recognition rate in recognition stage. At the same time, in the process of the kernel principal component analysis, the value of the power of the polynomial function can affect the recognition result.
Parallel processing considerations for image recognition tasks
NASA Astrophysics Data System (ADS)
Simske, Steven J.
2011-01-01
Many image recognition tasks are well-suited to parallel processing. The most obvious example is that many imaging tasks require the analysis of multiple images. From this standpoint, then, parallel processing need be no more complicated than assigning individual images to individual processors. However, there are three less trivial categories of parallel processing that will be considered in this paper: parallel processing (1) by task; (2) by image region; and (3) by meta-algorithm. Parallel processing by task allows the assignment of multiple workflows-as diverse as optical character recognition [OCR], document classification and barcode reading-to parallel pipelines. This can substantially decrease time to completion for the document tasks. For this approach, each parallel pipeline is generally performing a different task. Parallel processing by image region allows a larger imaging task to be sub-divided into a set of parallel pipelines, each performing the same task but on a different data set. This type of image analysis is readily addressed by a map-reduce approach. Examples include document skew detection and multiple face detection and tracking. Finally, parallel processing by meta-algorithm allows different algorithms to be deployed on the same image simultaneously. This approach may result in improved accuracy.
An improved silhouette for human pose estimation
NASA Astrophysics Data System (ADS)
Hawes, Anthony H.; Iftekharuddin, Khan M.
2017-08-01
We propose a novel method for analyzing images that exploits the natural lines of a human poses to find areas where self-occlusion could be present. Errors caused by self-occlusion cause several modern human pose estimation methods to mis-identify body parts, which reduces the performance of most action recognition algorithms. Our method is motivated by the observation that, in several cases, occlusion can be reasoned using only boundary lines of limbs. An intelligent edge detection algorithm based on the above principle could be used to augment the silhouette with information useful for pose estimation algorithms and push forward progress on occlusion handling for human action recognition. The algorithm described is applicable to computer vision scenarios involving 2D images and (appropriated flattened) 3D images.
Detection of insect damage in almonds
NASA Astrophysics Data System (ADS)
Kim, Soowon; Schatzki, Thomas F.
1999-01-01
Pinhole insect damage in natural almonds is very difficult to detect on-line. Further, evidence exists relating insect damage to aflatoxin contamination. Hence, for quality and health reasons, methods to detect and remove such damaged nuts are of great importance in this study, we explored the possibility of using x-ray imaging to detect pinhole damage in almonds by insects. X-ray film images of about 2000 almonds and x-ray linescan images of only 522 pinhole damaged almonds were obtained. The pinhole damaged region appeared slightly darker than non-damaged region in x-ray negative images. A machine recognition algorithm was developed to detect these darker regions. The algorithm used the first order and the second order information to identify the damaged region. To reduce the possibility of false positive results due to germ region in high resolution images, germ detection and removal routines were also included. With film images, the algorithm showed approximately an 81 percent correct recognition ratio with only 1 percent false positives whereas line scan images correctly recognized 65 percent of pinholes with about 9 percent false positives. The algorithms was very fast and efficient requiring only minimal computation time. If implemented on line, theoretical throughput of this recognition system would be 66 nuts/second.
NASA Astrophysics Data System (ADS)
Miwa, Shotaro; Kage, Hiroshi; Hirai, Takashi; Sumi, Kazuhiko
We propose a probabilistic face recognition algorithm for Access Control System(ACS)s. Comparing with existing ACSs using low cost IC-cards, face recognition has advantages in usability and security that it doesn't require people to hold cards over scanners and doesn't accept imposters with authorized cards. Therefore face recognition attracts more interests in security markets than IC-cards. But in security markets where low cost ACSs exist, price competition is important, and there is a limitation on the quality of available cameras and image control. Therefore ACSs using face recognition are required to handle much lower quality images, such as defocused and poor gain-controlled images than high security systems, such as immigration control. To tackle with such image quality problems we developed a face recognition algorithm based on a probabilistic model which combines a variety of image-difference features trained by Real AdaBoost with their prior probability distributions. It enables to evaluate and utilize only reliable features among trained ones during each authentication, and achieve high recognition performance rates. The field evaluation using a pseudo Access Control System installed in our office shows that the proposed system achieves a constant high recognition performance rate independent on face image qualities, that is about four times lower EER (Equal Error Rate) under a variety of image conditions than one without any prior probability distributions. On the other hand using image difference features without any prior probabilities are sensitive to image qualities. We also evaluated PCA, and it has worse, but constant performance rates because of its general optimization on overall data. Comparing with PCA, Real AdaBoost without any prior distribution performs twice better under good image conditions, but degrades to a performance as good as PCA under poor image conditions.
Robust Tomato Recognition for Robotic Harvesting Using Feature Images Fusion
Zhao, Yuanshen; Gong, Liang; Huang, Yixiang; Liu, Chengliang
2016-01-01
Automatic recognition of mature fruits in a complex agricultural environment is still a challenge for an autonomous harvesting robot due to various disturbances existing in the background of the image. The bottleneck to robust fruit recognition is reducing influence from two main disturbances: illumination and overlapping. In order to recognize the tomato in the tree canopy using a low-cost camera, a robust tomato recognition algorithm based on multiple feature images and image fusion was studied in this paper. Firstly, two novel feature images, the a*-component image and the I-component image, were extracted from the L*a*b* color space and luminance, in-phase, quadrature-phase (YIQ) color space, respectively. Secondly, wavelet transformation was adopted to fuse the two feature images at the pixel level, which combined the feature information of the two source images. Thirdly, in order to segment the target tomato from the background, an adaptive threshold algorithm was used to get the optimal threshold. The final segmentation result was processed by morphology operation to reduce a small amount of noise. In the detection tests, 93% target tomatoes were recognized out of 200 overall samples. It indicates that the proposed tomato recognition method is available for robotic tomato harvesting in the uncontrolled environment with low cost. PMID:26840313
Research and implementation of finger-vein recognition algorithm
NASA Astrophysics Data System (ADS)
Pang, Zengyao; Yang, Jie; Chen, Yilei; Liu, Yin
2017-06-01
In finger vein image preprocessing, finger angle correction and ROI extraction are important parts of the system. In this paper, we propose an angle correction algorithm based on the centroid of the vein image, and extract the ROI region according to the bidirectional gray projection method. Inspired by the fact that features in those vein areas have similar appearance as valleys, a novel method was proposed to extract center and width of palm vein based on multi-directional gradients, which is easy-computing, quick and stable. On this basis, an encoding method was designed to determine the gray value distribution of texture image. This algorithm could effectively overcome the edge of the texture extraction error. Finally, the system was equipped with higher robustness and recognition accuracy by utilizing fuzzy threshold determination and global gray value matching algorithm. Experimental results on pairs of matched palm images show that, the proposed method has a EER with 3.21% extracts features at the speed of 27ms per image. It can be concluded that the proposed algorithm has obvious advantages in grain extraction efficiency, matching accuracy and algorithm efficiency.
Basics of identification measurement technology
NASA Astrophysics Data System (ADS)
Klikushin, Yu N.; Kobenko, V. Yu; Stepanov, P. P.
2018-01-01
All available algorithms and suitable for pattern recognition do not give 100% guarantee, therefore there is a field of scientific night activity in this direction, studies are relevant. It is proposed to develop existing technologies for pattern recognition in the form of application of identification measurements. The purpose of the study is to identify the possibility of recognizing images using identification measurement technologies. In solving problems of pattern recognition, neural networks and hidden Markov models are mainly used. A fundamentally new approach to the solution of problems of pattern recognition based on the technology of identification signal measurements (IIS) is proposed. The essence of IIS technology is the quantitative evaluation of the shape of images using special tools and algorithms.
Grayscale image segmentation for real-time traffic sign recognition: the hardware point of view
NASA Astrophysics Data System (ADS)
Cao, Tam P.; Deng, Guang; Elton, Darrell
2009-02-01
In this paper, we study several grayscale-based image segmentation methods for real-time road sign recognition applications on an FPGA hardware platform. The performance of different image segmentation algorithms in different lighting conditions are initially compared using PC simulation. Based on these results and analysis, suitable algorithms are implemented and tested on a real-time FPGA speed sign detection system. Experimental results show that the system using segmented images uses significantly less hardware resources on an FPGA while maintaining comparable system's performance. The system is capable of processing 60 live video frames per second.
Two-dimensional shape recognition using oriented-polar representation
NASA Astrophysics Data System (ADS)
Hu, Neng-Chung; Yu, Kuo-Kan; Hsu, Yung-Li
1997-10-01
To deal with such a problem as object recognition of position, scale, and rotation invariance (PSRI), we utilize some PSRI properties of images obtained from objects, for example, the centroid of the image. The corresponding position of the centroid to the boundary of the image is invariant in spite of rotation, scale, and translation of the image. To obtain the information of the image, we use the technique similar to Radon transform, called the oriented-polar representation of a 2D image. In this representation, two specific points, the centroid and the weighted mean point, are selected to form an initial ray, then the image is sampled with N angularly equispaced rays departing from the initial rays. Each ray contains a number of intersections and the distance information obtained from the centroid to the intersections. The shape recognition algorithm is based on the least total error of these two items of information. Together with a simple noise removal and a typical backpropagation neural network, this algorithm is simple, but the PSRI is achieved with a high recognition rate.
Computational Burden Resulting from Image Recognition of High Resolution Radar Sensors
López-Rodríguez, Patricia; Fernández-Recio, Raúl; Bravo, Ignacio; Gardel, Alfredo; Lázaro, José L.; Rufo, Elena
2013-01-01
This paper presents a methodology for high resolution radar image generation and automatic target recognition emphasizing the computational cost involved in the process. In order to obtain focused inverse synthetic aperture radar (ISAR) images certain signal processing algorithms must be applied to the information sensed by the radar. From actual data collected by radar the stages and algorithms needed to obtain ISAR images are revised, including high resolution range profile generation, motion compensation and ISAR formation. Target recognition is achieved by comparing the generated set of actual ISAR images with a database of ISAR images generated by electromagnetic software. High resolution radar image generation and target recognition processes are burdensome and time consuming, so to determine the most suitable implementation platform the analysis of the computational complexity is of great interest. To this end and since target identification must be completed in real time, computational burden of both processes the generation and comparison with a database is explained separately. Conclusions are drawn about implementation platforms and calculation efficiency in order to reduce time consumption in a possible future implementation. PMID:23609804
Computational burden resulting from image recognition of high resolution radar sensors.
López-Rodríguez, Patricia; Fernández-Recio, Raúl; Bravo, Ignacio; Gardel, Alfredo; Lázaro, José L; Rufo, Elena
2013-04-22
This paper presents a methodology for high resolution radar image generation and automatic target recognition emphasizing the computational cost involved in the process. In order to obtain focused inverse synthetic aperture radar (ISAR) images certain signal processing algorithms must be applied to the information sensed by the radar. From actual data collected by radar the stages and algorithms needed to obtain ISAR images are revised, including high resolution range profile generation, motion compensation and ISAR formation. Target recognition is achieved by comparing the generated set of actual ISAR images with a database of ISAR images generated by electromagnetic software. High resolution radar image generation and target recognition processes are burdensome and time consuming, so to determine the most suitable implementation platform the analysis of the computational complexity is of great interest. To this end and since target identification must be completed in real time, computational burden of both processes the generation and comparison with a database is explained separately. Conclusions are drawn about implementation platforms and calculation efficiency in order to reduce time consumption in a possible future implementation.
NASA Astrophysics Data System (ADS)
Acciarri, R.; Adams, C.; An, R.; Anthony, J.; Asaadi, J.; Auger, M.; Bagby, L.; Balasubramanian, S.; Baller, B.; Barnes, C.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Cohen, E.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anadón, J. I.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fadeeva, A. A.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garcia-Gamez, D.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; Hourlier, A.; Huang, E.-C.; James, C.; Jan de Vries, J.; Jen, C.-M.; Jiang, L.; Johnson, R. A.; Joshi, J.; Jostlein, H.; Kaleko, D.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Martinez Caicedo, D. A.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Piasetzky, E.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; Rudolf von Rohr, C.; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Smith, A.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Van De Pontseele, W.; Van de Water, R. G.; Viren, B.; Weber, M.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Yates, L.; Zeller, G. P.; Zennamo, J.; Zhang, C.
2018-01-01
The development and operation of liquid-argon time-projection chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens of algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.
Pohit, M; Sharma, J
2015-05-10
Image recognition in the presence of both rotation and translation is a longstanding problem in correlation pattern recognition. Use of log polar transform gives a solution to this problem, but at a cost of losing the vital phase information from the image. The main objective of this paper is to develop an algorithm based on Fourier slice theorem for measuring the simultaneous rotation and translation of an object in a 2D plane. The algorithm is applicable for any arbitrary object shift for full 180° rotation.
Face recognition algorithm based on Gabor wavelet and locality preserving projections
NASA Astrophysics Data System (ADS)
Liu, Xiaojie; Shen, Lin; Fan, Honghui
2017-07-01
In order to solve the effects of illumination changes and differences of personal features on the face recognition rate, this paper presents a new face recognition algorithm based on Gabor wavelet and Locality Preserving Projections (LPP). The problem of the Gabor filter banks with high dimensions was solved effectively, and also the shortcoming of the LPP on the light illumination changes was overcome. Firstly, the features of global image information were achieved, which used the good spatial locality and orientation selectivity of Gabor wavelet filters. Then the dimensions were reduced by utilizing the LPP, which well-preserved the local information of the image. The experimental results shown that this algorithm can effectively extract the features relating to facial expressions, attitude and other information. Besides, it can reduce influence of the illumination changes and the differences in personal features effectively, which improves the face recognition rate to 99.2%.
Sub-pattern based multi-manifold discriminant analysis for face recognition
NASA Astrophysics Data System (ADS)
Dai, Jiangyan; Guo, Changlu; Zhou, Wei; Shi, Yanjiao; Cong, Lin; Yi, Yugen
2018-04-01
In this paper, we present a Sub-pattern based Multi-manifold Discriminant Analysis (SpMMDA) algorithm for face recognition. Unlike existing Multi-manifold Discriminant Analysis (MMDA) approach which is based on holistic information of face image for recognition, SpMMDA operates on sub-images partitioned from the original face image and then extracts the discriminative local feature from the sub-images separately. Moreover, the structure information of different sub-images from the same face image is considered in the proposed method with the aim of further improve the recognition performance. Extensive experiments on three standard face databases (Extended YaleB, CMU PIE and AR) demonstrate that the proposed method is effective and outperforms some other sub-pattern based face recognition methods.
A 2D range Hausdorff approach to 3D facial recognition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koch, Mark William; Russ, Trina Denise; Little, Charles Quentin
2004-11-01
This paper presents a 3D facial recognition algorithm based on the Hausdorff distance metric. The standard 3D formulation of the Hausdorff matching algorithm has been modified to operate on a 2D range image, enabling a reduction in computation from O(N2) to O(N) without large storage requirements. The Hausdorff distance is known for its robustness to data outliers and inconsistent data between two data sets, making it a suitable choice for dealing with the inherent problems in many 3D datasets due to sensor noise and object self-occlusion. For optimal performance, the algorithm assumes a good initial alignment between probe and templatemore » datasets. However, to minimize the error between two faces, the alignment can be iteratively refined. Results from the algorithm are presented using 3D face images from the Face Recognition Grand Challenge database version 1.0.« less
Measurement Marker Recognition In A Time Sequence Of Infrared Images For Biomedical Applications
NASA Astrophysics Data System (ADS)
Fiorini, A. R.; Fumero, R.; Marchesi, R.
1986-03-01
In thermographic measurements, quantitative surface temperature evaluation is often uncertain. The main reason is in the lack of available reference points in transient conditions. Reflective markers were used for automatic marker recognition and pixel coordinate computations. An algorithm selects marker icons to match marker references where particular luminance conditions are satisfied. Automatic marker recognition allows luminance compensation and temperature calibration of recorded infrared images. A biomedical application is presented: the dynamic behaviour of the surface temperature distributions is investigated in order to study the performance of two different pumping systems for extracorporeal circulation. Sequences of images are compared and results are discussed. Finally, the algorithm allows to monitor the experimental environment and to alert for the presence of unusual experimental conditions.
Deep kernel learning method for SAR image target recognition
NASA Astrophysics Data System (ADS)
Chen, Xiuyuan; Peng, Xiyuan; Duan, Ran; Li, Junbao
2017-10-01
With the development of deep learning, research on image target recognition has made great progress in recent years. Remote sensing detection urgently requires target recognition for military, geographic, and other scientific research. This paper aims to solve the synthetic aperture radar image target recognition problem by combining deep and kernel learning. The model, which has a multilayer multiple kernel structure, is optimized layer by layer with the parameters of Support Vector Machine and a gradient descent algorithm. This new deep kernel learning method improves accuracy and achieves competitive recognition results compared with other learning methods.
A fingerprint classification algorithm based on combination of local and global information
NASA Astrophysics Data System (ADS)
Liu, Chongjin; Fu, Xiang; Bian, Junjie; Feng, Jufu
2011-12-01
Fingerprint recognition is one of the most important technologies in biometric identification and has been wildly applied in commercial and forensic areas. Fingerprint classification, as the fundamental procedure in fingerprint recognition, can sharply decrease the quantity for fingerprint matching and improve the efficiency of fingerprint recognition. Most fingerprint classification algorithms are based on the number and position of singular points. Because the singular points detecting method only considers the local information commonly, the classification algorithms are sensitive to noise. In this paper, we propose a novel fingerprint classification algorithm combining the local and global information of fingerprint. Firstly we use local information to detect singular points and measure their quality considering orientation structure and image texture in adjacent areas. Furthermore the global orientation model is adopted to measure the reliability of singular points group. Finally the local quality and global reliability is weighted to classify fingerprint. Experiments demonstrate the accuracy and effectivity of our algorithm especially for the poor quality fingerprint images.
Xu, Dong; Yan, Shuicheng; Tao, Dacheng; Lin, Stephen; Zhang, Hong-Jiang
2007-11-01
Dimensionality reduction algorithms, which aim to select a small set of efficient and discriminant features, have attracted great attention for human gait recognition and content-based image retrieval (CBIR). In this paper, we present extensions of our recently proposed marginal Fisher analysis (MFA) to address these problems. For human gait recognition, we first present a direct application of MFA, then inspired by recent advances in matrix and tensor-based dimensionality reduction algorithms, we present matrix-based MFA for directly handling 2-D input in the form of gray-level averaged images. For CBIR, we deal with the relevance feedback problem by extending MFA to marginal biased analysis, in which within-class compactness is characterized only by the distances between each positive sample and its neighboring positive samples. In addition, we present a new technique to acquire a direct optimal solution for MFA without resorting to objective function modification as done in many previous algorithms. We conduct comprehensive experiments on the USF HumanID gait database and the Corel image retrieval database. Experimental results demonstrate that MFA and its extensions outperform related algorithms in both applications.
Nie, Haitao; Long, Kehui; Ma, Jun; Yue, Dan; Liu, Jinguo
2015-01-01
Partial occlusions, large pose variations, and extreme ambient illumination conditions generally cause the performance degradation of object recognition systems. Therefore, this paper presents a novel approach for fast and robust object recognition in cluttered scenes based on an improved scale invariant feature transform (SIFT) algorithm and a fuzzy closed-loop control method. First, a fast SIFT algorithm is proposed by classifying SIFT features into several clusters based on several attributes computed from the sub-orientation histogram (SOH), in the feature matching phase only features that share nearly the same corresponding attributes are compared. Second, a feature matching step is performed following a prioritized order based on the scale factor, which is calculated between the object image and the target object image, guaranteeing robust feature matching. Finally, a fuzzy closed-loop control strategy is applied to increase the accuracy of the object recognition and is essential for autonomous object manipulation process. Compared to the original SIFT algorithm for object recognition, the result of the proposed method shows that the number of SIFT features extracted from an object has a significant increase, and the computing speed of the object recognition processes increases by more than 40%. The experimental results confirmed that the proposed method performs effectively and accurately in cluttered scenes. PMID:25714094
A novel deep learning algorithm for incomplete face recognition: Low-rank-recovery network.
Zhao, Jianwei; Lv, Yongbiao; Zhou, Zhenghua; Cao, Feilong
2017-10-01
There have been a lot of methods to address the recognition of complete face images. However, in real applications, the images to be recognized are usually incomplete, and it is more difficult to realize such a recognition. In this paper, a novel convolution neural network frame, named a low-rank-recovery network (LRRNet), is proposed to conquer the difficulty effectively inspired by matrix completion and deep learning techniques. The proposed LRRNet first recovers the incomplete face images via an approach of matrix completion with the truncated nuclear norm regularization solution, and then extracts some low-rank parts of the recovered images as the filters. With these filters, some important features are obtained by means of the binaryzation and histogram algorithms. Finally, these features are classified with the classical support vector machines (SVMs). The proposed LRRNet method has high face recognition rate for the heavily corrupted images, especially for the images in the large databases. The proposed LRRNet performs well and efficiently for the images with heavily corrupted, especially in the case of large databases. Extensive experiments on several benchmark databases demonstrate that the proposed LRRNet performs better than some other excellent robust face recognition methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mărăscu, V.; Dinescu, G.; Faculty of Physics, University of Bucharest, 405 Atomistilor Street, Bucharest-Magurele
In this paper we propose a statistical approach for describing the self-assembling of sub-micronic polystyrene beads on silicon surfaces, as well as the evolution of surface topography due to plasma treatments. Algorithms for image recognition are used in conjunction with Scanning Electron Microscopy (SEM) imaging of surfaces. In a first step, greyscale images of the surface covered by the polystyrene beads are obtained. Further, an adaptive thresholding method was applied for obtaining binary images. The next step consisted in automatic identification of polystyrene beads dimensions, by using Hough transform algorithm, according to beads radius. In order to analyze the uniformitymore » of the self–assembled polystyrene beads, the squared modulus of 2-dimensional Fast Fourier Transform (2- D FFT) was applied. By combining these algorithms we obtain a powerful and fast statistical tool for analysis of micro and nanomaterials with aspect features regularly distributed on surface upon SEM examination.« less
USDA-ARS?s Scientific Manuscript database
In this research, a multispectral algorithm derived from hyperspectral line-scan fluorescence imaging under violet LED excitation was developed for the detection of frass contamination on mature tomatoes. The algorithm utilized the fluorescence intensities at two wavebands, 664 nm and 690 nm, for co...
NASA Astrophysics Data System (ADS)
Han, Sheng; Xi, Shi-qiong; Geng, Wei-dong
2017-11-01
In order to solve the problem of low recognition rate of traditional feature extraction operators under low-resolution images, a novel algorithm of expression recognition is proposed, named central oblique average center-symmetric local binary pattern (CS-LBP) with adaptive threshold (ATCS-LBP). Firstly, the features of face images can be extracted by the proposed operator after pretreatment. Secondly, the obtained feature image is divided into blocks. Thirdly, the histogram of each block is computed independently and all histograms can be connected serially to create a final feature vector. Finally, expression classification is achieved by using support vector machine (SVM) classifier. Experimental results on Japanese female facial expression (JAFFE) database show that the proposed algorithm can achieve a recognition rate of 81.9% when the resolution is as low as 16×16, which is much better than that of the traditional feature extraction operators.
A Taxonomy of 3D Occluded Objects Recognition Techniques
NASA Astrophysics Data System (ADS)
Soleimanizadeh, Shiva; Mohamad, Dzulkifli; Saba, Tanzila; Al-ghamdi, Jarallah Saleh
2016-03-01
The overall performances of object recognition techniques under different condition (e.g., occlusion, viewpoint, and illumination) have been improved significantly in recent years. New applications and hardware are shifted towards digital photography, and digital media. This faces an increase in Internet usage requiring object recognition for certain applications; particularly occulded objects. However occlusion is still an issue unhandled, interlacing the relations between extracted feature points through image, research is going on to develop efficient techniques and easy to use algorithms that would help users to source images; this need to overcome problems and issues regarding occlusion. The aim of this research is to review recognition occluded objects algorithms and figure out their pros and cons to solve the occlusion problem features, which are extracted from occluded object to distinguish objects from other co-existing objects by determining the new techniques, which could differentiate the occluded fragment and sections inside an image.
Object recognition of real targets using modelled SAR images
NASA Astrophysics Data System (ADS)
Zherdev, D. A.
2017-12-01
In this work the problem of recognition is studied using SAR images. The algorithm of recognition is based on the computation of conjugation indices with vectors of class. The support subspaces for each class are constructed by exception of the most and the less correlated vectors in a class. In the study we examine the ability of a significant feature vector size reduce that leads to recognition time decrease. The images of targets form the feature vectors that are transformed using pre-trained convolutional neural network (CNN).
SU-F-T-20: Novel Catheter Lumen Recognition Algorithm for Rapid Digitization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dise, J; McDonald, D; Ashenafi, M
Purpose: Manual catheter recognition remains a time-consuming aspect of high-dose-rate brachytherapy (HDR) treatment planning. In this work, a novel catheter lumen recognition algorithm was created for accurate and rapid digitization. Methods: MatLab v8.5 was used to create the catheter recognition algorithm. Initially, the algorithm searches the patient CT dataset using an intensity based k-means filter designed to locate catheters. Once the catheters have been located, seed points are manually selected to initialize digitization of each catheter. From each seed point, the algorithm searches locally in order to automatically digitize the remaining catheter. This digitization is accomplished by finding pixels withmore » similar image curvature and divergence parameters compared to the seed pixel. Newly digitized pixels are treated as new seed positions, and hessian image analysis is used to direct the algorithm toward neighboring catheter pixels, and to make the algorithm insensitive to adjacent catheters that are unresolvable on CT, air pockets, and high Z artifacts. The algorithm was tested using 11 HDR treatment plans, including the Syed template, tandem and ovoid applicator, and multi-catheter lung brachytherapy. Digitization error was calculated by comparing manually determined catheter positions to those determined by the algorithm. Results: he digitization error was 0.23 mm ± 0.14 mm axially and 0.62 mm ± 0.13 mm longitudinally at the tip. The time of digitization, following initial seed placement was less than 1 second per catheter. The maximum total time required to digitize all tested applicators was 4 minutes (Syed template with 15 needles). Conclusion: This algorithm successfully digitizes HDR catheters for a variety of applicators with or without CT markers. The minimal axial error demonstrates the accuracy of the algorithm, and its insensitivity to image artifacts and challenging catheter positioning. Future work to automatically place initial seed positions would improve the algorithm speed.« less
Image-based automatic recognition of larvae
NASA Astrophysics Data System (ADS)
Sang, Ru; Yu, Guiying; Fan, Weijun; Guo, Tiantai
2010-08-01
As the main objects, imagoes have been researched in quarantine pest recognition in these days. However, pests in their larval stage are latent, and the larvae spread abroad much easily with the circulation of agricultural and forest products. It is presented in this paper that, as the new research objects, larvae are recognized by means of machine vision, image processing and pattern recognition. More visional information is reserved and the recognition rate is improved as color image segmentation is applied to images of larvae. Along with the characteristics of affine invariance, perspective invariance and brightness invariance, scale invariant feature transform (SIFT) is adopted for the feature extraction. The neural network algorithm is utilized for pattern recognition, and the automatic identification of larvae images is successfully achieved with satisfactory results.
a Review on State-Of Face Recognition Approaches
NASA Astrophysics Data System (ADS)
Mahmood, Zahid; Muhammad, Nazeer; Bibi, Nargis; Ali, Tauseef
Automatic Face Recognition (FR) presents a challenging task in the field of pattern recognition and despite the huge research in the past several decades; it still remains an open research problem. This is primarily due to the variability in the facial images, such as non-uniform illuminations, low resolution, occlusion, and/or variation in poses. Due to its non-intrusive nature, the FR is an attractive biometric modality and has gained a lot of attention in the biometric research community. Driven by the enormous number of potential application domains, many algorithms have been proposed for the FR. This paper presents an overview of the state-of-the-art FR algorithms, focusing their performances on publicly available databases. We highlight the conditions of the image databases with regard to the recognition rate of each approach. This is useful as a quick research overview and for practitioners as well to choose an algorithm for their specified FR application. To provide a comprehensive survey, the paper divides the FR algorithms into three categories: (1) intensity-based, (2) video-based, and (3) 3D based FR algorithms. In each category, the most commonly used algorithms and their performance is reported on standard face databases and a brief critical discussion is carried out.
Research on Palmprint Identification Method Based on Quantum Algorithms
Zhang, Zhanzhan
2014-01-01
Quantum image recognition is a technology by using quantum algorithm to process the image information. It can obtain better effect than classical algorithm. In this paper, four different quantum algorithms are used in the three stages of palmprint recognition. First, quantum adaptive median filtering algorithm is presented in palmprint filtering processing. Quantum filtering algorithm can get a better filtering result than classical algorithm through the comparison. Next, quantum Fourier transform (QFT) is used to extract pattern features by only one operation due to quantum parallelism. The proposed algorithm exhibits an exponential speed-up compared with discrete Fourier transform in the feature extraction. Finally, quantum set operations and Grover algorithm are used in palmprint matching. According to the experimental results, quantum algorithm only needs to apply square of N operations to find out the target palmprint, but the traditional method needs N times of calculation. At the same time, the matching accuracy of quantum algorithm is almost 100%. PMID:25105165
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acciarri, R.; Adams, C.; An, R.
The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens ofmore » algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.« less
Acciarri, R.; Adams, C.; An, R.; ...
2018-01-29
The development and operation of Liquid-Argon Time-Projection Chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens ofmore » algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.« less
Sign Language Recognition System using Neural Network for Digital Hardware Implementation
NASA Astrophysics Data System (ADS)
Vargas, Lorena P.; Barba, Leiner; Torres, C. O.; Mattos, L.
2011-01-01
This work presents an image pattern recognition system using neural network for the identification of sign language to deaf people. The system has several stored image that show the specific symbol in this kind of language, which is employed to teach a multilayer neural network using a back propagation algorithm. Initially, the images are processed to adapt them and to improve the performance of discriminating of the network, including in this process of filtering, reduction and elimination noise algorithms as well as edge detection. The system is evaluated using the signs without including movement in their representation.
Yuan, Tao; Zheng, Xinqi; Hu, Xuan; Zhou, Wei; Wang, Wei
2014-01-01
Objective and effective image quality assessment (IQA) is directly related to the application of optical remote sensing images (ORSI). In this study, a new IQA method of standardizing the target object recognition rate (ORR) is presented to reflect quality. First, several quality degradation treatments with high-resolution ORSIs are implemented to model the ORSIs obtained in different imaging conditions; then, a machine learning algorithm is adopted for recognition experiments on a chosen target object to obtain ORRs; finally, a comparison with commonly used IQA indicators was performed to reveal their applicability and limitations. The results showed that the ORR of the original ORSI was calculated to be up to 81.95%, whereas the ORR ratios of the quality-degraded images to the original images were 65.52%, 64.58%, 71.21%, and 73.11%. The results show that these data can more accurately reflect the advantages and disadvantages of different images in object identification and information extraction when compared with conventional digital image assessment indexes. By recognizing the difference in image quality from the application effect perspective, using a machine learning algorithm to extract regional gray scale features of typical objects in the image for analysis, and quantitatively assessing quality of ORSI according to the difference, this method provides a new approach for objective ORSI assessment.
Structural model constructing for optical handwritten character recognition
NASA Astrophysics Data System (ADS)
Khaustov, P. A.; Spitsyn, V. G.; Maksimova, E. I.
2017-02-01
The article is devoted to the development of the algorithms for optical handwritten character recognition based on the structural models constructing. The main advantage of these algorithms is the low requirement regarding the number of reference images. The one-pass approach to a thinning of the binary character representation has been proposed. This approach is based on the joint use of Zhang-Suen and Wu-Tsai algorithms. The effectiveness of the proposed approach is confirmed by the results of the experiments. The article includes the detailed description of the structural model constructing algorithm’s steps. The proposed algorithm has been implemented in character processing application and has been approved on MNIST handwriting characters database. Algorithms that could be used in case of limited reference images number were used for the comparison.
An automatic iris occlusion estimation method based on high-dimensional density estimation.
Li, Yung-Hui; Savvides, Marios
2013-04-01
Iris masks play an important role in iris recognition. They indicate which part of the iris texture map is useful and which part is occluded or contaminated by noisy image artifacts such as eyelashes, eyelids, eyeglasses frames, and specular reflections. The accuracy of the iris mask is extremely important. The performance of the iris recognition system will decrease dramatically when the iris mask is inaccurate, even when the best recognition algorithm is used. Traditionally, people used the rule-based algorithms to estimate iris masks from iris images. However, the accuracy of the iris masks generated this way is questionable. In this work, we propose to use Figueiredo and Jain's Gaussian Mixture Models (FJ-GMMs) to model the underlying probabilistic distributions of both valid and invalid regions on iris images. We also explored possible features and found that Gabor Filter Bank (GFB) provides the most discriminative information for our goal. Finally, we applied Simulated Annealing (SA) technique to optimize the parameters of GFB in order to achieve the best recognition rate. Experimental results show that the masks generated by the proposed algorithm increase the iris recognition rate on both ICE2 and UBIRIS dataset, verifying the effectiveness and importance of our proposed method for iris occlusion estimation.
Comparison Of Eigenvector-Based Statistical Pattern Recognition Algorithms For Hybrid Processing
NASA Astrophysics Data System (ADS)
Tian, Q.; Fainman, Y.; Lee, Sing H.
1989-02-01
The pattern recognition algorithms based on eigenvector analysis (group 2) are theoretically and experimentally compared in this part of the paper. Group 2 consists of Foley-Sammon (F-S) transform, Hotelling trace criterion (HTC), Fukunaga-Koontz (F-K) transform, linear discriminant function (LDF) and generalized matched filter (GMF). It is shown that all eigenvector-based algorithms can be represented in a generalized eigenvector form. However, the calculations of the discriminant vectors are different for different algorithms. Summaries on how to calculate the discriminant functions for the F-S, HTC and F-K transforms are provided. Especially for the more practical, underdetermined case, where the number of training images is less than the number of pixels in each image, the calculations usually require the inversion of a large, singular, pixel correlation (or covariance) matrix. We suggest solving this problem by finding its pseudo-inverse, which requires inverting only the smaller, non-singular image correlation (or covariance) matrix plus multiplying several non-singular matrices. We also compare theoretically the effectiveness for classification with the discriminant functions from F-S, HTC and F-K with LDF and GMF, and between the linear-mapping-based algorithms and the eigenvector-based algorithms. Experimentally, we compare the eigenvector-based algorithms using a set of image data bases each image consisting of 64 x 64 pixels.
Practical vision based degraded text recognition system
NASA Astrophysics Data System (ADS)
Mohammad, Khader; Agaian, Sos; Saleh, Hani
2011-02-01
Rapid growth and progress in the medical, industrial, security and technology fields means more and more consideration for the use of camera based optical character recognition (OCR) Applying OCR to scanned documents is quite mature, and there are many commercial and research products available on this topic. These products achieve acceptable recognition accuracy and reasonable processing times especially with trained software, and constrained text characteristics. Even though the application space for OCR is huge, it is quite challenging to design a single system that is capable of performing automatic OCR for text embedded in an image irrespective of the application. Challenges for OCR systems include; images are taken under natural real world conditions, Surface curvature, text orientation, font, size, lighting conditions, and noise. These and many other conditions make it extremely difficult to achieve reasonable character recognition. Performance for conventional OCR systems drops dramatically as the degradation level of the text image quality increases. In this paper, a new recognition method is proposed to recognize solid or dotted line degraded characters. The degraded text string is localized and segmented using a new algorithm. The new method was implemented and tested using a development framework system that is capable of performing OCR on camera captured images. The framework allows parameter tuning of the image-processing algorithm based on a training set of camera-captured text images. Novel methods were used for enhancement, text localization and the segmentation algorithm which enables building a custom system that is capable of performing automatic OCR which can be used for different applications. The developed framework system includes: new image enhancement, filtering, and segmentation techniques which enabled higher recognition accuracies, faster processing time, and lower energy consumption, compared with the best state of the art published techniques. The system successfully produced impressive OCR accuracies (90% -to- 93%) using customized systems generated by our development framework in two industrial OCR applications: water bottle label text recognition and concrete slab plate text recognition. The system was also trained for the Arabic language alphabet, and demonstrated extremely high recognition accuracy (99%) for Arabic license name plate text recognition with processing times of 10 seconds. The accuracy and run times of the system were compared to conventional and many states of art methods, the proposed system shows excellent results.
Increasing the object recognition distance of compact open air on board vision system
NASA Astrophysics Data System (ADS)
Kirillov, Sergey; Kostkin, Ivan; Strotov, Valery; Dmitriev, Vladimir; Berdnikov, Vadim; Akopov, Eduard; Elyutin, Aleksey
2016-10-01
The aim of this work was developing an algorithm eliminating the atmospheric distortion and improves image quality. The proposed algorithm is entirely software without using additional hardware photographic equipment. . This algorithm does not required preliminary calibration. It can work equally effectively with the images obtained at a distances from 1 to 500 meters. An algorithm for the open air images improve designed for Raspberry Pi model B on-board vision systems is proposed. The results of experimental examination are given.
Recognition of Equations Using a Two-Dimensional Stochastic Context-Free Grammar
NASA Astrophysics Data System (ADS)
Chou, Philip A.
1989-11-01
We propose using two-dimensional stochastic context-free grammars for image recognition, in a manner analogous to using hidden Markov models for speech recognition. The value of the approach is demonstrated in a system that recognizes printed, noisy equations. The system uses a two-dimensional probabilistic version of the Cocke-Younger-Kasami parsing algorithm to find the most likely parse of the observed image, and then traverses the corresponding parse tree in accordance with translation formats associated with each production rule, to produce eqn I troff commands for the imaged equation. In addition, it uses two-dimensional versions of the Inside/Outside and Baum re-estimation algorithms for learning the parameters of the grammar from a training set of examples. Parsing the image of a simple noisy equation currently takes about one second of cpu time on an Alliant FX/80.
Huang, Tao; Li, Xiao-yu; Jin, Rui; Ku, Jing; Xu, Sen-miao; Xu, Meng-ling; Wu, Zhen-zhong; Kong, De-guo
2015-04-01
The present paper put forward a non-destructive detection method which combines semi-transmission hyperspectral imaging technology with manifold learning dimension reduction algorithm and least squares support vector machine (LSSVM) to recognize internal and external defects in potatoes simultaneously. Three hundred fifteen potatoes were bought in farmers market as research object, and semi-transmission hyperspectral image acquisition system was constructed to acquire the hyperspectral images of normal external defects (bud and green rind) and internal defect (hollow heart) potatoes. In order to conform to the actual production, defect part is randomly put right, side and back to the acquisition probe when the hyperspectral images of external defects potatoes are acquired. The average spectrums (390-1,040 nm) were extracted from the region of interests for spectral preprocessing. Then three kinds of manifold learning algorithm were respectively utilized to reduce the dimension of spectrum data, including supervised locally linear embedding (SLLE), locally linear embedding (LLE) and isometric mapping (ISOMAP), the low-dimensional data gotten by manifold learning algorithms is used as model input, Error Correcting Output Code (ECOC) and LSSVM were combined to develop the multi-target classification model. By comparing and analyzing results of the three models, we concluded that SLLE is the optimal manifold learning dimension reduction algorithm, and the SLLE-LSSVM model is determined to get the best recognition rate for recognizing internal and external defects potatoes. For test set data, the single recognition rate of normal, bud, green rind and hollow heart potato reached 96.83%, 86.96%, 86.96% and 95% respectively, and he hybrid recognition rate was 93.02%. The results indicate that combining the semi-transmission hyperspectral imaging technology with SLLE-LSSVM is a feasible qualitative analytical method which can simultaneously recognize the internal and external defects potatoes and also provide technical reference for rapid on-line non-destructive detecting of the internal and external defects potatoes.
Identity Recognition Algorithm Using Improved Gabor Feature Selection of Gait Energy Image
NASA Astrophysics Data System (ADS)
Chao, LIANG; Ling-yao, JIA; Dong-cheng, SHI
2017-01-01
This paper describes an effective gait recognition approach based on Gabor features of gait energy image. In this paper, the kernel Fisher analysis combined with kernel matrix is proposed to select dominant features. The nearest neighbor classifier based on whitened cosine distance is used to discriminate different gait patterns. The approach proposed is tested on the CASIA and USF gait databases. The results show that our approach outperforms other state of gait recognition approaches in terms of recognition accuracy and robustness.
NASA Astrophysics Data System (ADS)
Watanabe, Eriko; Ishikawa, Mami; Ohta, Maiko; Kodate, Kashiko
2005-09-01
Face recognition is used in a wide range of security systems, such as monitoring credit card use, searching for individuals with street cameras via Internet and maintaining immigration control. There are still many technical subjects under study. For instance, the number of images that can be stored is limited under the current system, and the rate of recognition must be improved to account for photo shots taken at different angles under various conditions. We implemented a fully automatic Fast Face Recognition Optical Correlator (FARCO) system by using a 1000 frame/s optical parallel correlator designed and assembled by us. Operational speed for the 1: N (i.e. matching a pair of images among N, where N refers to the number of images in the database) identification experiment (4000 face images) amounts to less than 1.5 seconds, including the pre/post processing. From trial 1: N identification experiments using FARCO, we acquired low error rates of 2.6% False Reject Rate and 1.3% False Accept Rate. By making the most of the high-speed data-processing capability of this system, much more robustness can be achieved for various recognition conditions when large-category data are registered for a single person. We propose a face recognition algorithm for the FARCO while employing a temporal image sequence of moving images. Applying this algorithm to a natural posture, a two times higher recognition rate scored compared with our conventional system. The system has high potential for future use in a variety of purposes such as search for criminal suspects by use of street and airport video cameras, registration of babies at hospitals or handling of an immeasurable number of images in a database.
NASA Astrophysics Data System (ADS)
Shuxin, Li; Zhilong, Zhang; Biao, Li
2018-01-01
Plane is an important target category in remote sensing targets and it is of great value to detect the plane targets automatically. As remote imaging technology developing continuously, the resolution of the remote sensing image has been very high and we can get more detailed information for detecting the remote sensing targets automatically. Deep learning network technology is the most advanced technology in image target detection and recognition, which provided great performance improvement in the field of target detection and recognition in the everyday scenes. We combined the technology with the application in the remote sensing target detection and proposed an algorithm with end to end deep network, which can learn from the remote sensing images to detect the targets in the new images automatically and robustly. Our experiments shows that the algorithm can capture the feature information of the plane target and has better performance in target detection with the old methods.
A new FOD recognition algorithm based on multi-source information fusion and experiment analysis
NASA Astrophysics Data System (ADS)
Li, Yu; Xiao, Gang
2011-08-01
Foreign Object Debris (FOD) is a kind of substance, debris or article alien to an aircraft or system, which would potentially cause huge damage when it appears on the airport runway. Due to the airport's complex circumstance, quick and precise detection of FOD target on the runway is one of the important protections for airplane's safety. A multi-sensor system including millimeter-wave radar and Infrared image sensors is introduced and a developed new FOD detection and recognition algorithm based on inherent feature of FOD is proposed in this paper. Firstly, the FOD's location and coordinate can be accurately obtained by millimeter-wave radar, and then according to the coordinate IR camera will take target images and background images. Secondly, in IR image the runway's edges which are straight lines can be extracted by using Hough transformation method. The potential target region, that is, runway region, can be segmented from the whole image. Thirdly, background subtraction is utilized to localize the FOD target in runway region. Finally, in the detailed small images of FOD target, a new characteristic is discussed and used in target classification. The experiment results show that this algorithm can effectively reduce the computational complexity, satisfy the real-time requirement and possess of high detection and recognition probability.
Algorithmic Approaches for Place Recognition in Featureless, Walled Environments
2015-01-01
inertial measurement unit LIDAR light detection and ranging RANSAC random sample consensus SLAM simultaneous localization and mapping SUSAN smallest...algorithm 38 21 Typical input image for general junction based algorithm 39 22 Short exposure image of hallway junction taken by LIDAR 40 23...discipline of simultaneous localization and mapping ( SLAM ) has been studied intensively over the past several years. Many technical approaches
The software peculiarities of pattern recognition in track detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starkov, N.
The different kinds of nuclear track recognition algorithms are represented. Several complicated samples of use them in physical experiments are considered. The some processing methods of complicated images are described.
Image simulation for automatic license plate recognition
NASA Astrophysics Data System (ADS)
Bala, Raja; Zhao, Yonghui; Burry, Aaron; Kozitsky, Vladimir; Fillion, Claude; Saunders, Craig; Rodríguez-Serrano, José
2012-01-01
Automatic license plate recognition (ALPR) is an important capability for traffic surveillance applications, including toll monitoring and detection of different types of traffic violations. ALPR is a multi-stage process comprising plate localization, character segmentation, optical character recognition (OCR), and identification of originating jurisdiction (i.e. state or province). Training of an ALPR system for a new jurisdiction typically involves gathering vast amounts of license plate images and associated ground truth data, followed by iterative tuning and optimization of the ALPR algorithms. The substantial time and effort required to train and optimize the ALPR system can result in excessive operational cost and overhead. In this paper we propose a framework to create an artificial set of license plate images for accelerated training and optimization of ALPR algorithms. The framework comprises two steps: the synthesis of license plate images according to the design and layout for a jurisdiction of interest; and the modeling of imaging transformations and distortions typically encountered in the image capture process. Distortion parameters are estimated by measurements of real plate images. The simulation methodology is successfully demonstrated for training of OCR.
Object-oriented recognition of high-resolution remote sensing image
NASA Astrophysics Data System (ADS)
Wang, Yongyan; Li, Haitao; Chen, Hong; Xu, Yuannan
2016-01-01
With the development of remote sensing imaging technology and the improvement of multi-source image's resolution in satellite visible light, multi-spectral and hyper spectral , the high resolution remote sensing image has been widely used in various fields, for example military field, surveying and mapping, geophysical prospecting, environment and so forth. In remote sensing image, the segmentation of ground targets, feature extraction and the technology of automatic recognition are the hotspot and difficulty in the research of modern information technology. This paper also presents an object-oriented remote sensing image scene classification method. The method is consist of vehicles typical objects classification generation, nonparametric density estimation theory, mean shift segmentation theory, multi-scale corner detection algorithm, local shape matching algorithm based on template. Remote sensing vehicles image classification software system is designed and implemented to meet the requirements .
The Potential of Using Brain Images for Authentication
Zhou, Zongtan; Shen, Hui; Hu, Dewen
2014-01-01
Biometric recognition (also known as biometrics) refers to the automated recognition of individuals based on their biological or behavioral traits. Examples of biometric traits include fingerprint, palmprint, iris, and face. The brain is the most important and complex organ in the human body. Can it be used as a biometric trait? In this study, we analyze the uniqueness of the brain and try to use the brain for identity authentication. The proposed brain-based verification system operates in two stages: gray matter extraction and gray matter matching. A modified brain segmentation algorithm is implemented for extracting gray matter from an input brain image. Then, an alignment-based matching algorithm is developed for brain matching. Experimental results on two data sets show that the proposed brain recognition system meets the high accuracy requirement of identity authentication. Though currently the acquisition of the brain is still time consuming and expensive, brain images are highly unique and have the potential possibility for authentication in view of pattern recognition. PMID:25126604
The potential of using brain images for authentication.
Chen, Fanglin; Zhou, Zongtan; Shen, Hui; Hu, Dewen
2014-01-01
Biometric recognition (also known as biometrics) refers to the automated recognition of individuals based on their biological or behavioral traits. Examples of biometric traits include fingerprint, palmprint, iris, and face. The brain is the most important and complex organ in the human body. Can it be used as a biometric trait? In this study, we analyze the uniqueness of the brain and try to use the brain for identity authentication. The proposed brain-based verification system operates in two stages: gray matter extraction and gray matter matching. A modified brain segmentation algorithm is implemented for extracting gray matter from an input brain image. Then, an alignment-based matching algorithm is developed for brain matching. Experimental results on two data sets show that the proposed brain recognition system meets the high accuracy requirement of identity authentication. Though currently the acquisition of the brain is still time consuming and expensive, brain images are highly unique and have the potential possibility for authentication in view of pattern recognition.
NASA Astrophysics Data System (ADS)
Chen, Chung-Hao; Yao, Yi; Chang, Hong; Koschan, Andreas; Abidi, Mongi
2013-06-01
Due to increasing security concerns, a complete security system should consist of two major components, a computer-based face-recognition system and a real-time automated video surveillance system. A computerbased face-recognition system can be used in gate access control for identity authentication. In recent studies, multispectral imaging and fusion of multispectral narrow-band images in the visible spectrum have been employed and proven to enhance the recognition performance over conventional broad-band images, especially when the illumination changes. Thus, we present an automated method that specifies the optimal spectral ranges under the given illumination. Experimental results verify the consistent performance of our algorithm via the observation that an identical set of spectral band images is selected under all tested conditions. Our discovery can be practically used for a new customized sensor design associated with given illuminations for an improved face recognition performance over conventional broad-band images. In addition, once a person is authorized to enter a restricted area, we still need to continuously monitor his/her activities for the sake of security. Because pantilt-zoom (PTZ) cameras are capable of covering a panoramic area and maintaining high resolution imagery for real-time behavior understanding, researches in automated surveillance systems with multiple PTZ cameras have become increasingly important. Most existing algorithms require the prior knowledge of intrinsic parameters of the PTZ camera to infer the relative positioning and orientation among multiple PTZ cameras. To overcome this limitation, we propose a novel mapping algorithm that derives the relative positioning and orientation between two PTZ cameras based on a unified polynomial model. This reduces the dependence on the knowledge of intrinsic parameters of PTZ camera and relative positions. Experimental results demonstrate that our proposed algorithm presents substantially reduced computational complexity and improved flexibility at the cost of slightly decreased pixel accuracy as compared to Chen and Wang's method [18].
Development of an Autonomous Face Recognition Machine.
1986-12-08
This approach, like Baron’s, would be a very time consuming task. The problem of locating a face in Bromley’s work was the least complex of the three...top level design and the development and design decisions that were made in developing the Autonomous Face Recognition Machine (AFRM). The chapter is...images within a digital image. The second sectio examines the algorithm used in performing face recognition. The decision to divide the development
A robust star identification algorithm with star shortlisting
NASA Astrophysics Data System (ADS)
Mehta, Deval Samirbhai; Chen, Shoushun; Low, Kay Soon
2018-05-01
A star tracker provides the most accurate attitude solution in terms of arc seconds compared to the other existing attitude sensors. When no prior attitude information is available, it operates in "Lost-In-Space (LIS)" mode. Star pattern recognition, also known as star identification algorithm, forms the most crucial part of a star tracker in the LIS mode. Recognition reliability and speed are the two most important parameters of a star pattern recognition technique. In this paper, a novel star identification algorithm with star ID shortlisting is proposed. Firstly, the star IDs are shortlisted based on worst-case patch mismatch, and later stars are identified in the image by an initial match confirmed with a running sequential angular match technique. The proposed idea is tested on 16,200 simulated star images having magnitude uncertainty, noise stars, positional deviation, and varying size of the field of view. The proposed idea is also benchmarked with the state-of-the-art star pattern recognition techniques. Finally, the real-time performance of the proposed technique is tested on the 3104 real star images captured by a star tracker SST-20S currently mounted on a satellite. The proposed technique can achieve an identification accuracy of 98% and takes only 8.2 ms for identification on real images. Simulation and real-time results depict that the proposed technique is highly robust and achieves a high speed of identification suitable for actual space applications.
DeitY-TU face database: its design, multiple camera capturing, characteristics, and evaluation
NASA Astrophysics Data System (ADS)
Bhowmik, Mrinal Kanti; Saha, Kankan; Saha, Priya; Bhattacharjee, Debotosh
2014-10-01
The development of the latest face databases is providing researchers different and realistic problems that play an important role in the development of efficient algorithms for solving the difficulties during automatic recognition of human faces. This paper presents the creation of a new visual face database, named the Department of Electronics and Information Technology-Tripura University (DeitY-TU) face database. It contains face images of 524 persons belonging to different nontribes and Mongolian tribes of north-east India, with their anthropometric measurements for identification. Database images are captured within a room with controlled variations in illumination, expression, and pose along with variability in age, gender, accessories, make-up, and partial occlusion. Each image contains the combined primary challenges of face recognition, i.e., illumination, expression, and pose. This database also represents some new features: soft biometric traits such as mole, freckle, scar, etc., and facial anthropometric variations that may be helpful for researchers for biometric recognition. It also gives an equivalent study of the existing two-dimensional face image databases. The database has been tested using two baseline algorithms: linear discriminant analysis and principal component analysis, which may be used by other researchers as the control algorithm performance score.
Semisupervised kernel marginal Fisher analysis for face recognition.
Wang, Ziqiang; Sun, Xia; Sun, Lijun; Huang, Yuchun
2013-01-01
Dimensionality reduction is a key problem in face recognition due to the high-dimensionality of face image. To effectively cope with this problem, a novel dimensionality reduction algorithm called semisupervised kernel marginal Fisher analysis (SKMFA) for face recognition is proposed in this paper. SKMFA can make use of both labelled and unlabeled samples to learn the projection matrix for nonlinear dimensionality reduction. Meanwhile, it can successfully avoid the singularity problem by not calculating the matrix inverse. In addition, in order to make the nonlinear structure captured by the data-dependent kernel consistent with the intrinsic manifold structure, a manifold adaptive nonparameter kernel is incorporated into the learning process of SKMFA. Experimental results on three face image databases demonstrate the effectiveness of our proposed algorithm.
Huang, Tao; Li, Xiao-yu; Xu, Meng-ling; Jin, Rui; Ku, Jing; Xu, Sen-miao; Wu, Zhen-zhong
2015-01-01
The quality of potato is directly related to their edible value and industrial value. Hollow heart of potato, as a physiological disease occurred inside the tuber, is difficult to be detected. This paper put forward a non-destructive detection method by using semi-transmission hyperspectral imaging with support vector machine (SVM) to detect hollow heart of potato. Compared to reflection and transmission hyperspectral image, semi-transmission hyperspectral image can get clearer image which contains the internal quality information of agricultural products. In this study, 224 potato samples (149 normal samples and 75 hollow samples) were selected as the research object, and semi-transmission hyperspectral image acquisition system was constructed to acquire the hyperspectral images (390-1 040 nn) of the potato samples, and then the average spectrum of region of interest were extracted for spectral characteristics analysis. Normalize was used to preprocess the original spectrum, and prediction model were developed based on SVM using all wave bands, the accurate recognition rate of test set is only 87. 5%. In order to simplify the model competitive.adaptive reweighed sampling algorithm (CARS) and successive projection algorithm (SPA) were utilized to select important variables from the all 520 spectral variables and 8 variables were selected (454, 601, 639, 664, 748, 827, 874 and 936 nm). 94. 64% of the accurate recognition rate of test set was obtained by using the 8 variables to develop SVM model. Parameter optimization algorithms, including artificial fish swarm algorithm (AFSA), genetic algorithm (GA) and grid search algorithm, were used to optimize the SVM model parameters: penalty parameter c and kernel parameter g. After comparative analysis, AFSA, a new bionic optimization algorithm based on the foraging behavior of fish swarm, was proved to get the optimal model parameter (c=10. 659 1, g=0. 349 7), and the recognition accuracy of 10% were obtained for the AFSA-SVM model. The results indicate that combining the semi-transmission hyperspectral imaging technology with CARS-SPA and AFSA-SVM can accurately detect hollow heart of potato, and also provide technical support for rapid non-destructive detecting of hollow heart of potato.
Image based book cover recognition and retrieval
NASA Astrophysics Data System (ADS)
Sukhadan, Kalyani; Vijayarajan, V.; Krishnamoorthi, A.; Bessie Amali, D. Geraldine
2017-11-01
In this we are developing a graphical user interface using MATLAB for the users to check the information related to books in real time. We are taking the photos of the book cover using GUI, then by using MSER algorithm it will automatically detect all the features from the input image, after this it will filter bifurcate non-text features which will be based on morphological difference between text and non-text regions. We implemented a text character alignment algorithm which will improve the accuracy of the original text detection. We will also have a look upon the built in MATLAB OCR recognition algorithm and an open source OCR which is commonly used to perform better detection results, post detection algorithm is implemented and natural language processing to perform word correction and false detection inhibition. Finally, the detection result will be linked to internet to perform online matching. More than 86% accuracy can be obtained by this algorithm.
Geometry Of Discrete Sets With Applications To Pattern Recognition
NASA Astrophysics Data System (ADS)
Sinha, Divyendu
1990-03-01
In this paper we present a new framework for discrete black and white images that employs only integer arithmetic. This framework is shown to retain the essential characteristics of the framework for Euclidean images. We propose two norms and based on them, the permissible geometric operations on images are defined. The basic invariants of our geometry are line images, structure of image and the corresponding local property of strong attachment of pixels. The permissible operations also preserve the 3x3 neighborhoods, area, and perpendicularity. The structure, patterns, and the inter-pattern gaps in a discrete image are shown to be conserved by the magnification and contraction process. Our notions of approximate congruence, similarity and symmetry are similar, in character, to the corresponding notions, for Euclidean images [1]. We mention two discrete pattern recognition algorithms that work purely with integers, and which fit into our framework. Their performance has been shown to be at par with the performance of traditional geometric schemes. Also, all the undesired effects of finite length registers in fixed point arithmetic that plague traditional algorithms, are non-existent in this family of algorithms.
Vision-based posture recognition using an ensemble classifier and a vote filter
NASA Astrophysics Data System (ADS)
Ji, Peng; Wu, Changcheng; Xu, Xiaonong; Song, Aiguo; Li, Huijun
2016-10-01
Posture recognition is a very important Human-Robot Interaction (HRI) way. To segment effective posture from an image, we propose an improved region grow algorithm which combining with the Single Gauss Color Model. The experiment shows that the improved region grow algorithm can get the complete and accurate posture than traditional Single Gauss Model and region grow algorithm, and it can eliminate the similar region from the background at the same time. In the posture recognition part, and in order to improve the recognition rate, we propose a CNN ensemble classifier, and in order to reduce the misjudgments during a continuous gesture control, a vote filter is proposed and applied to the sequence of recognition results. Comparing with CNN classifier, the CNN ensemble classifier we proposed can yield a 96.27% recognition rate, which is better than that of CNN classifier, and the proposed vote filter can improve the recognition result and reduce the misjudgments during the consecutive gesture switch.
A novel image retrieval algorithm based on PHOG and LSH
NASA Astrophysics Data System (ADS)
Wu, Hongliang; Wu, Weimin; Peng, Jiajin; Zhang, Junyuan
2017-08-01
PHOG can describe the local shape of the image and its relationship between the spaces. The using of PHOG algorithm to extract image features in image recognition and retrieval and other aspects have achieved good results. In recent years, locality sensitive hashing (LSH) algorithm has been superior to large-scale data in solving near-nearest neighbor problems compared with traditional algorithms. This paper presents a novel image retrieval algorithm based on PHOG and LSH. First, we use PHOG to extract the feature vector of the image, then use L different LSH hash table to reduce the dimension of PHOG texture to index values and map to different bucket, and finally extract the corresponding value of the image in the bucket for second image retrieval using Manhattan distance. This algorithm can adapt to the massive image retrieval, which ensures the high accuracy of the image retrieval and reduces the time complexity of the retrieval. This algorithm is of great significance.
Constrained Metric Learning by Permutation Inducing Isometries.
Bosveld, Joel; Mahmood, Arif; Huynh, Du Q; Noakes, Lyle
2016-01-01
The choice of metric critically affects the performance of classification and clustering algorithms. Metric learning algorithms attempt to improve performance, by learning a more appropriate metric. Unfortunately, most of the current algorithms learn a distance function which is not invariant to rigid transformations of images. Therefore, the distances between two images and their rigidly transformed pair may differ, leading to inconsistent classification or clustering results. We propose to constrain the learned metric to be invariant to the geometry preserving transformations of images that induce permutations in the feature space. The constraint that these transformations are isometries of the metric ensures consistent results and improves accuracy. Our second contribution is a dimension reduction technique that is consistent with the isometry constraints. Our third contribution is the formulation of the isometry constrained logistic discriminant metric learning (IC-LDML) algorithm, by incorporating the isometry constraints within the objective function of the LDML algorithm. The proposed algorithm is compared with the existing techniques on the publicly available labeled faces in the wild, viewpoint-invariant pedestrian recognition, and Toy Cars data sets. The IC-LDML algorithm has outperformed existing techniques for the tasks of face recognition, person identification, and object classification by a significant margin.
Image recognition of clipped stigma traces in rice seeds
NASA Astrophysics Data System (ADS)
Cheng, F.; Ying, YB
2005-11-01
The objective of this research is to develop algorithm to recognize clipped stigma traces in rice seeds using image processing. At first, the micro-configuration of clipped stigma traces was observed with electronic scanning microscope. Then images of rice seeds were acquired with a color machine vision system. A digital image-processing algorithm based on morphological operations and Hough transform was developed to inspect the occurrence of clipped stigma traces. Five varieties of Jinyou402, Shanyou10, Zhongyou207, Jiayou and you3207 were evaluated. The algorithm was implemented with all image sets using a Matlab 6.5 procedure. The results showed that the algorithm achieved an average accuracy of 96%. The algorithm was proved to be insensitive to the different rice seed varieties.
VASIR: An Open-Source Research Platform for Advanced Iris Recognition Technologies.
Lee, Yooyoung; Micheals, Ross J; Filliben, James J; Phillips, P Jonathon
2013-01-01
The performance of iris recognition systems is frequently affected by input image quality, which in turn is vulnerable to less-than-optimal conditions due to illuminations, environments, and subject characteristics (e.g., distance, movement, face/body visibility, blinking, etc.). VASIR (Video-based Automatic System for Iris Recognition) is a state-of-the-art NIST-developed iris recognition software platform designed to systematically address these vulnerabilities. We developed VASIR as a research tool that will not only provide a reference (to assess the relative performance of alternative algorithms) for the biometrics community, but will also advance (via this new emerging iris recognition paradigm) NIST's measurement mission. VASIR is designed to accommodate both ideal (e.g., classical still images) and less-than-ideal images (e.g., face-visible videos). VASIR has three primary modules: 1) Image Acquisition 2) Video Processing, and 3) Iris Recognition. Each module consists of several sub-components that have been optimized by use of rigorous orthogonal experiment design and analysis techniques. We evaluated VASIR performance using the MBGC (Multiple Biometric Grand Challenge) NIR (Near-Infrared) face-visible video dataset and the ICE (Iris Challenge Evaluation) 2005 still-based dataset. The results showed that even though VASIR was primarily developed and optimized for the less-constrained video case, it still achieved high verification rates for the traditional still-image case. For this reason, VASIR may be used as an effective baseline for the biometrics community to evaluate their algorithm performance, and thus serves as a valuable research platform.
VASIR: An Open-Source Research Platform for Advanced Iris Recognition Technologies
Lee, Yooyoung; Micheals, Ross J; Filliben, James J; Phillips, P Jonathon
2013-01-01
The performance of iris recognition systems is frequently affected by input image quality, which in turn is vulnerable to less-than-optimal conditions due to illuminations, environments, and subject characteristics (e.g., distance, movement, face/body visibility, blinking, etc.). VASIR (Video-based Automatic System for Iris Recognition) is a state-of-the-art NIST-developed iris recognition software platform designed to systematically address these vulnerabilities. We developed VASIR as a research tool that will not only provide a reference (to assess the relative performance of alternative algorithms) for the biometrics community, but will also advance (via this new emerging iris recognition paradigm) NIST’s measurement mission. VASIR is designed to accommodate both ideal (e.g., classical still images) and less-than-ideal images (e.g., face-visible videos). VASIR has three primary modules: 1) Image Acquisition 2) Video Processing, and 3) Iris Recognition. Each module consists of several sub-components that have been optimized by use of rigorous orthogonal experiment design and analysis techniques. We evaluated VASIR performance using the MBGC (Multiple Biometric Grand Challenge) NIR (Near-Infrared) face-visible video dataset and the ICE (Iris Challenge Evaluation) 2005 still-based dataset. The results showed that even though VASIR was primarily developed and optimized for the less-constrained video case, it still achieved high verification rates for the traditional still-image case. For this reason, VASIR may be used as an effective baseline for the biometrics community to evaluate their algorithm performance, and thus serves as a valuable research platform. PMID:26401431
Facial Asymmetry-Based Age Group Estimation: Role in Recognizing Age-Separated Face Images.
Sajid, Muhammad; Taj, Imtiaz Ahmad; Bajwa, Usama Ijaz; Ratyal, Naeem Iqbal
2018-04-23
Face recognition aims to establish the identity of a person based on facial characteristics. On the other hand, age group estimation is the automatic calculation of an individual's age range based on facial features. Recognizing age-separated face images is still a challenging research problem due to complex aging processes involving different types of facial tissues, skin, fat, muscles, and bones. Certain holistic and local facial features are used to recognize age-separated face images. However, most of the existing methods recognize face images without incorporating the knowledge learned from age group estimation. In this paper, we propose an age-assisted face recognition approach to handle aging variations. Inspired by the observation that facial asymmetry is an age-dependent intrinsic facial feature, we first use asymmetric facial dimensions to estimate the age group of a given face image. Deeply learned asymmetric facial features are then extracted for face recognition using a deep convolutional neural network (dCNN). Finally, we integrate the knowledge learned from the age group estimation into the face recognition algorithm using the same dCNN. This integration results in a significant improvement in the overall performance compared to using the face recognition algorithm alone. The experimental results on two large facial aging datasets, the MORPH and FERET sets, show that the proposed age group estimation based on the face recognition approach yields superior performance compared to some existing state-of-the-art methods. © 2018 American Academy of Forensic Sciences.
Wang, Rui; Zhou, Yongquan; Zhao, Chengyan; Wu, Haizhou
2015-01-01
Multi-threshold image segmentation is a powerful image processing technique that is used for the preprocessing of pattern recognition and computer vision. However, traditional multilevel thresholding methods are computationally expensive because they involve exhaustively searching the optimal thresholds to optimize the objective functions. To overcome this drawback, this paper proposes a flower pollination algorithm with a randomized location modification. The proposed algorithm is used to find optimal threshold values for maximizing Otsu's objective functions with regard to eight medical grayscale images. When benchmarked against other state-of-the-art evolutionary algorithms, the new algorithm proves itself to be robust and effective through numerical experimental results including Otsu's objective values and standard deviations.
Search algorithm complexity modeling with application to image alignment and matching
NASA Astrophysics Data System (ADS)
DelMarco, Stephen
2014-05-01
Search algorithm complexity modeling, in the form of penetration rate estimation, provides a useful way to estimate search efficiency in application domains which involve searching over a hypothesis space of reference templates or models, as in model-based object recognition, automatic target recognition, and biometric recognition. The penetration rate quantifies the expected portion of the database that must be searched, and is useful for estimating search algorithm computational requirements. In this paper we perform mathematical modeling to derive general equations for penetration rate estimates that are applicable to a wide range of recognition problems. We extend previous penetration rate analyses to use more general probabilistic modeling assumptions. In particular we provide penetration rate equations within the framework of a model-based image alignment application domain in which a prioritized hierarchical grid search is used to rank subspace bins based on matching probability. We derive general equations, and provide special cases based on simplifying assumptions. We show how previously-derived penetration rate equations are special cases of the general formulation. We apply the analysis to model-based logo image alignment in which a hierarchical grid search is used over a geometric misalignment transform hypothesis space. We present numerical results validating the modeling assumptions and derived formulation.
Indoor navigation by image recognition
NASA Astrophysics Data System (ADS)
Choi, Io Teng; Leong, Chi Chong; Hong, Ka Wo; Pun, Chi-Man
2017-07-01
With the progress of smartphones hardware, it is simple on smartphone using image recognition technique such as face detection. In addition, indoor navigation system development is much slower than outdoor navigation system. Hence, this research proves a usage of image recognition technique for navigation in indoor environment. In this paper, we introduced an indoor navigation application that uses the indoor environment features to locate user's location and a route calculating algorithm to generate an appropriate path for user. The application is implemented on Android smartphone rather than iPhone. Yet, the application design can also be applied on iOS because the design is implemented without using special features only for Android. We found that digital navigation system provides better and clearer location information than paper map. Also, the indoor environment is ideal for Image recognition processing. Hence, the results motivate us to design an indoor navigation system using image recognition.
NASA Astrophysics Data System (ADS)
Liu, Likun
2018-01-01
In the field of remote sensing image processing, remote sensing image segmentation is a preliminary step for later analysis of remote sensing image processing and semi-auto human interpretation, fully-automatic machine recognition and learning. Since 2000, a technique of object-oriented remote sensing image processing method and its basic thought prevails. The core of the approach is Fractal Net Evolution Approach (FNEA) multi-scale segmentation algorithm. The paper is intent on the research and improvement of the algorithm, which analyzes present segmentation algorithms and selects optimum watershed algorithm as an initialization. Meanwhile, the algorithm is modified by modifying an area parameter, and then combining area parameter with a heterogeneous parameter further. After that, several experiments is carried on to prove the modified FNEA algorithm, compared with traditional pixel-based method (FCM algorithm based on neighborhood information) and combination of FNEA and watershed, has a better segmentation result.
Leukocyte Recognition Using EM-Algorithm
NASA Astrophysics Data System (ADS)
Colunga, Mario Chirinos; Siordia, Oscar Sánchez; Maybank, Stephen J.
This document describes a method for classifying images of blood cells. Three different classes of cells are used: Band Neutrophils, Eosinophils and Lymphocytes. The image pattern is projected down to a lower dimensional sub space using PCA; the probability density function for each class is modeled with a Gaussian mixture using the EM-Algorithm. A new cell image is classified using the maximum a posteriori decision rule.
Finger vein verification system based on sparse representation.
Xin, Yang; Liu, Zhi; Zhang, Haixia; Zhang, Hong
2012-09-01
Finger vein verification is a promising biometric pattern for personal identification in terms of security and convenience. The recognition performance of this technology heavily relies on the quality of finger vein images and on the recognition algorithm. To achieve efficient recognition performance, a special finger vein imaging device is developed, and a finger vein recognition method based on sparse representation is proposed. The motivation for the proposed method is that finger vein images exhibit a sparse property. In the proposed system, the regions of interest (ROIs) in the finger vein images are segmented and enhanced. Sparse representation and sparsity preserving projection on ROIs are performed to obtain the features. Finally, the features are measured for recognition. An equal error rate of 0.017% was achieved based on the finger vein image database, which contains images that were captured by using the near-IR imaging device that was developed in this study. The experimental results demonstrate that the proposed method is faster and more robust than previous methods.
Comparison of crisp and fuzzy character networks in handwritten word recognition
NASA Technical Reports Server (NTRS)
Gader, Paul; Mohamed, Magdi; Chiang, Jung-Hsien
1992-01-01
Experiments involving handwritten word recognition on words taken from images of handwritten address blocks from the United States Postal Service mailstream are described. The word recognition algorithm relies on the use of neural networks at the character level. The neural networks are trained using crisp and fuzzy desired outputs. The fuzzy outputs were defined using a fuzzy k-nearest neighbor algorithm. The crisp networks slightly outperformed the fuzzy networks at the character level but the fuzzy networks outperformed the crisp networks at the word level.
NASA Astrophysics Data System (ADS)
Chaa, Mourad; Boukezzoula, Naceur-Eddine; Attia, Abdelouahab
2017-01-01
Two types of scores extracted from two-dimensional (2-D) and three-dimensional (3-D) palmprint for personal recognition systems are merged, introducing a local image descriptor for 2-D palmprint-based recognition systems, named bank of binarized statistical image features (B-BSIF). The main idea of B-BSIF is that the extracted histograms from the binarized statistical image features (BSIF) code images (the results of applying the different BSIF descriptor size with the length 12) are concatenated into one to produce a large feature vector. 3-D palmprint contains the depth information of the palm surface. The self-quotient image (SQI) algorithm is applied for reconstructing illumination-invariant 3-D palmprint images. To extract discriminative Gabor features from SQI images, Gabor wavelets are defined and used. Indeed, the dimensionality reduction methods have shown their ability in biometrics systems. Given this, a principal component analysis (PCA)+linear discriminant analysis (LDA) technique is employed. For the matching process, the cosine Mahalanobis distance is applied. Extensive experiments were conducted on a 2-D and 3-D palmprint database with 10,400 range images from 260 individuals. Then, a comparison was made between the proposed algorithm and other existing methods in the literature. Results clearly show that the proposed framework provides a higher correct recognition rate. Furthermore, the best results were obtained by merging the score of B-BSIF descriptor with the score of the SQI+Gabor wavelets+PCA+LDA method, yielding an equal error rate of 0.00% and a recognition rate of rank-1=100.00%.
Exploitation of Microdoppler and Multiple Scattering Phenomena for Radar Target Recognition
2006-08-24
is tested with measurement data. The resulting GPR images demonstrate the effectiveness of the proposed algorithm. INTRODUCTION Subsurface imaging to...utilizes the fast Fourier . transform (FFT) to expedite the imaging GPR. Recently, we re- .... ported a fast and effective SAR-based subsurface ... imaging tech- nique that can provide good resolutions in both the range and cross-range domains I111. Our algorithm differs from Witten’s [91 and Hansen’s
Multispectral iris recognition based on group selection and game theory
NASA Astrophysics Data System (ADS)
Ahmad, Foysal; Roy, Kaushik
2017-05-01
A commercially available iris recognition system uses only a narrow band of the near infrared spectrum (700-900 nm) while iris images captured in the wide range of 405 nm to 1550 nm offer potential benefits to enhance recognition performance of an iris biometric system. The novelty of this research is that a group selection algorithm based on coalition game theory is explored to select the best patch subsets. In this algorithm, patches are divided into several groups based on their maximum contribution in different groups. Shapley values are used to evaluate the contribution of patches in different groups. Results show that this group selection based iris recognition
Automatic recognition of ship types from infrared images using superstructure moment invariants
NASA Astrophysics Data System (ADS)
Li, Heng; Wang, Xinyu
2007-11-01
Automatic object recognition is an active area of interest for military and commercial applications. In this paper, a system addressing autonomous recognition of ship types in infrared images is proposed. Firstly, an approach of segmentation based on detection of salient features of the target with subsequent shadow removing is proposed, as is the base of the subsequent object recognition. Considering the differences between the shapes of various ships mainly lie in their superstructures, we then use superstructure moment functions invariant to translation, rotation and scale differences in input patterns and develop a robust algorithm of obtaining ship superstructure. Subsequently a back-propagation neural network is used as a classifier in the recognition stage and projection images of simulated three-dimensional ship models are used as the training sets. Our recognition model was implemented and experimentally validated using both simulated three-dimensional ship model images and real images derived from video of an AN/AAS-44V Forward Looking Infrared(FLIR) sensor.
Research on pre-processing of QR Code
NASA Astrophysics Data System (ADS)
Sun, Haixing; Xia, Haojie; Dong, Ning
2013-10-01
QR code encodes many kinds of information because of its advantages: large storage capacity, high reliability, full arrange of utter-high-speed reading, small printing size and high-efficient representation of Chinese characters, etc. In order to obtain the clearer binarization image from complex background, and improve the recognition rate of QR code, this paper researches on pre-processing methods of QR code (Quick Response Code), and shows algorithms and results of image pre-processing for QR code recognition. Improve the conventional method by changing the Souvola's adaptive text recognition method. Additionally, introduce the QR code Extraction which adapts to different image size, flexible image correction approach, and improve the efficiency and accuracy of QR code image processing.
Research on gait-based human identification
NASA Astrophysics Data System (ADS)
Li, Youguo
Gait recognition refers to automatic identification of individual based on his/her style of walking. This paper proposes a gait recognition method based on Continuous Hidden Markov Model with Mixture of Gaussians(G-CHMM). First, we initialize a Gaussian mix model for training image sequence with K-means algorithm, then train the HMM parameters using a Baum-Welch algorithm. These gait feature sequences can be trained and obtain a Continuous HMM for every person, therefore, the 7 key frames and the obtained HMM can represent each person's gait sequence. Finally, the recognition is achieved by Front algorithm. The experiments made on CASIA gait databases obtain comparatively high correction identification ratio and comparatively strong robustness for variety of bodily angle.
Artificial intelligence tools for pattern recognition
NASA Astrophysics Data System (ADS)
Acevedo, Elena; Acevedo, Antonio; Felipe, Federico; Avilés, Pedro
2017-06-01
In this work, we present a system for pattern recognition that combines the power of genetic algorithms for solving problems and the efficiency of the morphological associative memories. We use a set of 48 tire prints divided into 8 brands of tires. The images have dimensions of 200 x 200 pixels. We applied Hough transform to obtain lines as main features. The number of lines obtained is 449. The genetic algorithm reduces the number of features to ten suitable lines that give thus the 100% of recognition. Morphological associative memories were used as evaluation function. The selection algorithms were Tournament and Roulette wheel. For reproduction, we applied one-point, two-point and uniform crossover.
A fast automatic recognition and location algorithm for fetal genital organs in ultrasound images.
Tang, Sheng; Chen, Si-ping
2009-09-01
Severe sex ratio imbalance at birth is now becoming an important issue in several Asian countries. Its leading immediate cause is prenatal sex-selective abortion following illegal sex identification by ultrasound scanning. In this paper, a fast automatic recognition and location algorithm for fetal genital organs is proposed as an effective method to help prevent ultrasound technicians from unethically and illegally identifying the sex of the fetus. This automatic recognition algorithm can be divided into two stages. In the 'rough' stage, a few pixels in the image, which are likely to represent the genital organs, are automatically chosen as points of interest (POIs) according to certain salient characteristics of fetal genital organs. In the 'fine' stage, a specifically supervised learning framework, which fuses an effective feature data preprocessing mechanism into the multiple classifier architecture, is applied to every POI. The basic classifiers in the framework are selected from three widely used classifiers: radial basis function network, backpropagation network, and support vector machine. The classification results of all the POIs are then synthesized to determine whether the fetal genital organ is present in the image, and to locate the genital organ within the positive image. Experiments were designed and carried out based on an image dataset comprising 658 positive images (images with fetal genital organs) and 500 negative images (images without fetal genital organs). The experimental results showed true positive (TP) and true negative (TN) results from 80.5% (265 from 329) and 83.0% (415 from 500) of samples, respectively. The average computation time was 453 ms per image.
A super resolution framework for low resolution document image OCR
NASA Astrophysics Data System (ADS)
Ma, Di; Agam, Gady
2013-01-01
Optical character recognition is widely used for converting document images into digital media. Existing OCR algorithms and tools produce good results from high resolution, good quality, document images. In this paper, we propose a machine learning based super resolution framework for low resolution document image OCR. Two main techniques are used in our proposed approach: a document page segmentation algorithm and a modified K-means clustering algorithm. Using this approach, by exploiting coherence in the document, we reconstruct from a low resolution document image a better resolution image and improve OCR results. Experimental results show substantial gain in low resolution documents such as the ones captured from video.
NASA Astrophysics Data System (ADS)
Lin, Chien-Liang; Su, Yu-Zheng; Hung, Min-Wei; Huang, Kuo-Cheng
2010-08-01
In recent years, Augmented Reality (AR)[1][2][3] is very popular in universities and research organizations. The AR technology has been widely used in Virtual Reality (VR) fields, such as sophisticated weapons, flight vehicle development, data model visualization, virtual training, entertainment and arts. AR has characteristics to enhance the display output as a real environment with specific user interactive functions or specific object recognitions. It can be use in medical treatment, anatomy training, precision instrument casting, warplane guidance, engineering and distance robot control. AR has a lot of vantages than VR. This system developed combines sensors, software and imaging algorithms to make users feel real, actual and existing. Imaging algorithms include gray level method, image binarization method, and white balance method in order to make accurate image recognition and overcome the effects of light.
Takahashi; Nakazawa; Watanabe; Konagaya
1999-01-01
We have developed the automated processing algorithms for 2-dimensional (2-D) electrophoretograms of genomic DNA based on RLGS (Restriction Landmark Genomic Scanning) method, which scans the restriction enzyme recognition sites as the landmark and maps them onto a 2-D electrophoresis gel. Our powerful processing algorithms realize the automated spot recognition from RLGS electrophoretograms and the automated comparison of a huge number of such images. In the final stage of the automated processing, a master spot pattern, on which all the spots in the RLGS images are mapped at once, can be obtained. The spot pattern variations which seemed to be specific to the pathogenic DNA molecular changes can be easily detected by simply looking over the master spot pattern. When we applied our algorithms to the analysis of 33 RLGS images derived from human colon tissues, we successfully detected several colon tumor specific spot pattern changes.
Pattern recognition applied to infrared images for early alerts in fog
NASA Astrophysics Data System (ADS)
Boucher, Vincent; Marchetti, Mario; Dumoulin, Jean; Cord, Aurélien
2014-09-01
Fog conditions are the cause of severe car accidents in western countries because of the poor induced visibility. Its forecast and intensity are still very difficult to predict by weather services. Infrared cameras allow to detect and to identify objects in fog while visibility is too low for eye detection. Over the past years, the implementation of cost effective infrared cameras on some vehicles has enabled such detection. On the other hand pattern recognition algorithms based on Canny filters and Hough transformation are a common tool applied to images. Based on these facts, a joint research program between IFSTTAR and Cerema has been developed to study the benefit of infrared images obtained in a fog tunnel during its natural dissipation. Pattern recognition algorithms have been applied, specifically on road signs which shape is usually associated to a specific meaning (circular for a speed limit, triangle for an alert, …). It has been shown that road signs were detected early enough in images, with respect to images in the visible spectrum, to trigger useful alerts for Advanced Driver Assistance Systems.
2014-01-01
For building a new iris template, this paper proposes a strategy to fuse different portions of iris based on machine learning method to evaluate local quality of iris. There are three novelties compared to previous work. Firstly, the normalized segmented iris is divided into multitracks and then each track is estimated individually to analyze the recognition accuracy rate (RAR). Secondly, six local quality evaluation parameters are adopted to analyze texture information of each track. Besides, particle swarm optimization (PSO) is employed to get the weights of these evaluation parameters and corresponding weighted coefficients of different tracks. Finally, all tracks' information is fused according to the weights of different tracks. The experimental results based on subsets of three public and one private iris image databases demonstrate three contributions of this paper. (1) Our experimental results prove that partial iris image cannot completely replace the entire iris image for iris recognition system in several ways. (2) The proposed quality evaluation algorithm is a self-adaptive algorithm, and it can automatically optimize the parameters according to iris image samples' own characteristics. (3) Our feature information fusion strategy can effectively improve the performance of iris recognition system. PMID:24693243
Chen, Ying; Liu, Yuanning; Zhu, Xiaodong; Chen, Huiling; He, Fei; Pang, Yutong
2014-01-01
For building a new iris template, this paper proposes a strategy to fuse different portions of iris based on machine learning method to evaluate local quality of iris. There are three novelties compared to previous work. Firstly, the normalized segmented iris is divided into multitracks and then each track is estimated individually to analyze the recognition accuracy rate (RAR). Secondly, six local quality evaluation parameters are adopted to analyze texture information of each track. Besides, particle swarm optimization (PSO) is employed to get the weights of these evaluation parameters and corresponding weighted coefficients of different tracks. Finally, all tracks' information is fused according to the weights of different tracks. The experimental results based on subsets of three public and one private iris image databases demonstrate three contributions of this paper. (1) Our experimental results prove that partial iris image cannot completely replace the entire iris image for iris recognition system in several ways. (2) The proposed quality evaluation algorithm is a self-adaptive algorithm, and it can automatically optimize the parameters according to iris image samples' own characteristics. (3) Our feature information fusion strategy can effectively improve the performance of iris recognition system.
NASA Technical Reports Server (NTRS)
Juday, Richard D. (Editor)
1988-01-01
The present conference discusses topics in pattern-recognition correlator architectures, digital stereo systems, geometric image transformations and their applications, topics in pattern recognition, filter algorithms, object detection and classification, shape representation techniques, and model-based object recognition methods. Attention is given to edge-enhancement preprocessing using liquid crystal TVs, massively-parallel optical data base management, three-dimensional sensing with polar exponential sensor arrays, the optical processing of imaging spectrometer data, hybrid associative memories and metric data models, the representation of shape primitives in neural networks, and the Monte Carlo estimation of moment invariants for pattern recognition.
Liquid lens: advances in adaptive optics
NASA Astrophysics Data System (ADS)
Casey, Shawn Patrick
2010-12-01
'Liquid lens' technologies promise significant advancements in machine vision and optical communications systems. Adaptations for machine vision, human vision correction, and optical communications are used to exemplify the versatile nature of this technology. Utilization of liquid lens elements allows the cost effective implementation of optical velocity measurement. The project consists of a custom image processor, camera, and interface. The images are passed into customized pattern recognition and optical character recognition algorithms. A single camera would be used for both speed detection and object recognition.
Fusion of LBP and SWLD using spatio-spectral information for hyperspectral face recognition
NASA Astrophysics Data System (ADS)
Xie, Zhihua; Jiang, Peng; Zhang, Shuai; Xiong, Jinquan
2018-01-01
Hyperspectral imaging, recording intrinsic spectral information of the skin cross different spectral bands, become an important issue for robust face recognition. However, the main challenges for hyperspectral face recognition are high data dimensionality, low signal to noise ratio and inter band misalignment. In this paper, hyperspectral face recognition based on LBP (Local binary pattern) and SWLD (Simplified Weber local descriptor) is proposed to extract discriminative local features from spatio-spectral fusion information. Firstly, the spatio-spectral fusion strategy based on statistical information is used to attain discriminative features of hyperspectral face images. Secondly, LBP is applied to extract the orientation of the fusion face edges. Thirdly, SWLD is proposed to encode the intensity information in hyperspectral images. Finally, we adopt a symmetric Kullback-Leibler distance to compute the encoded face images. The hyperspectral face recognition is tested on Hong Kong Polytechnic University Hyperspectral Face database (PolyUHSFD). Experimental results show that the proposed method has higher recognition rate (92.8%) than the state of the art hyperspectral face recognition algorithms.
Object recognition in images via a factor graph model
NASA Astrophysics Data System (ADS)
He, Yong; Wang, Long; Wu, Zhaolin; Zhang, Haisu
2018-04-01
Object recognition in images suffered from huge search space and uncertain object profile. Recently, the Bag-of- Words methods are utilized to solve these problems, especially the 2-dimension CRF(Conditional Random Field) model. In this paper we suggest the method based on a general and flexible fact graph model, which can catch the long-range correlation in Bag-of-Words by constructing a network learning framework contrasted from lattice in CRF. Furthermore, we explore a parameter learning algorithm based on the gradient descent and Loopy Sum-Product algorithms for the factor graph model. Experimental results on Graz 02 dataset show that, the recognition performance of our method in precision and recall is better than a state-of-art method and the original CRF model, demonstrating the effectiveness of the proposed method.
HD-MTL: Hierarchical Deep Multi-Task Learning for Large-Scale Visual Recognition.
Fan, Jianping; Zhao, Tianyi; Kuang, Zhenzhong; Zheng, Yu; Zhang, Ji; Yu, Jun; Peng, Jinye
2017-02-09
In this paper, a hierarchical deep multi-task learning (HD-MTL) algorithm is developed to support large-scale visual recognition (e.g., recognizing thousands or even tens of thousands of atomic object classes automatically). First, multiple sets of multi-level deep features are extracted from different layers of deep convolutional neural networks (deep CNNs), and they are used to achieve more effective accomplishment of the coarseto- fine tasks for hierarchical visual recognition. A visual tree is then learned by assigning the visually-similar atomic object classes with similar learning complexities into the same group, which can provide a good environment for determining the interrelated learning tasks automatically. By leveraging the inter-task relatedness (inter-class similarities) to learn more discriminative group-specific deep representations, our deep multi-task learning algorithm can train more discriminative node classifiers for distinguishing the visually-similar atomic object classes effectively. Our hierarchical deep multi-task learning (HD-MTL) algorithm can integrate two discriminative regularization terms to control the inter-level error propagation effectively, and it can provide an end-to-end approach for jointly learning more representative deep CNNs (for image representation) and more discriminative tree classifier (for large-scale visual recognition) and updating them simultaneously. Our incremental deep learning algorithms can effectively adapt both the deep CNNs and the tree classifier to the new training images and the new object classes. Our experimental results have demonstrated that our HD-MTL algorithm can achieve very competitive results on improving the accuracy rates for large-scale visual recognition.
Embedded Palmprint Recognition System Using OMAP 3530
Shen, Linlin; Wu, Shipei; Zheng, Songhao; Ji, Zhen
2012-01-01
We have proposed in this paper an embedded palmprint recognition system using the dual-core OMAP 3530 platform. An improved algorithm based on palm code was proposed first. In this method, a Gabor wavelet is first convolved with the palmprint image to produce a response image, where local binary patterns are then applied to code the relation among the magnitude of wavelet response at the ccentral pixel with that of its neighbors. The method is fully tested using the public PolyU palmprint database. While palm code achieves only about 89% accuracy, over 96% accuracy is achieved by the proposed G-LBP approach. The proposed algorithm was then deployed to the DSP processor of OMAP 3530 and work together with the ARM processor for feature extraction. When complicated algorithms run on the DSP processor, the ARM processor can focus on image capture, user interface and peripheral control. Integrated with an image sensing module and central processing board, the designed device can achieve accurate and real time performance. PMID:22438721
Embedded palmprint recognition system using OMAP 3530.
Shen, Linlin; Wu, Shipei; Zheng, Songhao; Ji, Zhen
2012-01-01
We have proposed in this paper an embedded palmprint recognition system using the dual-core OMAP 3530 platform. An improved algorithm based on palm code was proposed first. In this method, a Gabor wavelet is first convolved with the palmprint image to produce a response image, where local binary patterns are then applied to code the relation among the magnitude of wavelet response at the central pixel with that of its neighbors. The method is fully tested using the public PolyU palmprint database. While palm code achieves only about 89% accuracy, over 96% accuracy is achieved by the proposed G-LBP approach. The proposed algorithm was then deployed to the DSP processor of OMAP 3530 and work together with the ARM processor for feature extraction. When complicated algorithms run on the DSP processor, the ARM processor can focus on image capture, user interface and peripheral control. Integrated with an image sensing module and central processing board, the designed device can achieve accurate and real time performance.
Uyghur face recognition method combining 2DDCT with POEM
NASA Astrophysics Data System (ADS)
Yi, Lihamu; Ya, Ermaimaiti
2017-11-01
In this paper, in light of the reduced recognition rate and poor robustness of Uyghur face under illumination and partial occlusion, a Uyghur face recognition method combining Two Dimension Discrete Cosine Transform (2DDCT) with Patterns Oriented Edge Magnitudes (POEM) was proposed. Firstly, the Uyghur face images were divided into 8×8 block matrix, and the Uyghur face images after block processing were converted into frequency-domain status using 2DDCT; secondly, the Uyghur face images were compressed to exclude non-sensitive medium frequency parts and non-high frequency parts, so it can reduce the feature dimensions necessary for the Uyghur face images, and further reduce the amount of computation; thirdly, the corresponding POEM histograms of the Uyghur face images were obtained by calculating the feature quantity of POEM; fourthly, the POEM histograms were cascaded together as the texture histogram of the center feature point to obtain the texture features of the Uyghur face feature points; finally, classification of the training samples was carried out using deep learning algorithm. The simulation experiment results showed that the proposed algorithm further improved the recognition rate of the self-built Uyghur face database, and greatly improved the computing speed of the self-built Uyghur face database, and had strong robustness.
Towards online iris and periocular recognition under relaxed imaging constraints.
Tan, Chun-Wei; Kumar, Ajay
2013-10-01
Online iris recognition using distantly acquired images in a less imaging constrained environment requires the development of a efficient iris segmentation approach and recognition strategy that can exploit multiple features available for the potential identification. This paper presents an effective solution toward addressing such a problem. The developed iris segmentation approach exploits a random walker algorithm to efficiently estimate coarsely segmented iris images. These coarsely segmented iris images are postprocessed using a sequence of operations that can effectively improve the segmentation accuracy. The robustness of the proposed iris segmentation approach is ascertained by providing comparison with other state-of-the-art algorithms using publicly available UBIRIS.v2, FRGC, and CASIA.v4-distance databases. Our experimental results achieve improvement of 9.5%, 4.3%, and 25.7% in the average segmentation accuracy, respectively, for the UBIRIS.v2, FRGC, and CASIA.v4-distance databases, as compared with most competing approaches. We also exploit the simultaneously extracted periocular features to achieve significant performance improvement. The joint segmentation and combination strategy suggest promising results and achieve average improvement of 132.3%, 7.45%, and 17.5% in the recognition performance, respectively, from the UBIRIS.v2, FRGC, and CASIA.v4-distance databases, as compared with the related competing approaches.
Microscopic image analysis for reticulocyte based on watershed algorithm
NASA Astrophysics Data System (ADS)
Wang, J. Q.; Liu, G. F.; Liu, J. G.; Wang, G.
2007-12-01
We present a watershed-based algorithm in the analysis of light microscopic image for reticulocyte (RET), which will be used in an automated recognition system for RET in peripheral blood. The original images, obtained by micrography, are segmented by modified watershed algorithm and are recognized in term of gray entropy and area of connective area. In the process of watershed algorithm, judgment conditions are controlled according to character of the image, besides, the segmentation is performed by morphological subtraction. The algorithm was simulated with MATLAB software. It is similar for automated and manual scoring and there is good correlation(r=0.956) between the methods, which is resulted from 50 pieces of RET images. The result indicates that the algorithm for peripheral blood RETs is comparable to conventional manual scoring, and it is superior in objectivity. This algorithm avoids time-consuming calculation such as ultra-erosion and region-growth, which will speed up the computation consequentially.
Integrating image quality in 2nu-SVM biometric match score fusion.
Vatsa, Mayank; Singh, Richa; Noore, Afzel
2007-10-01
This paper proposes an intelligent 2nu-support vector machine based match score fusion algorithm to improve the performance of face and iris recognition by integrating the quality of images. The proposed algorithm applies redundant discrete wavelet transform to evaluate the underlying linear and non-linear features present in the image. A composite quality score is computed to determine the extent of smoothness, sharpness, noise, and other pertinent features present in each subband of the image. The match score and the corresponding quality score of an image are fused using 2nu-support vector machine to improve the verification performance. The proposed algorithm is experimentally validated using the FERET face database and the CASIA iris database. The verification performance and statistical evaluation show that the proposed algorithm outperforms existing fusion algorithms.
NASA Astrophysics Data System (ADS)
Jelen, Lukasz; Kobel, Joanna; Podbielska, Halina
2003-11-01
This paper discusses the possibility of exploiting of the tennovision registration and artificial neural networks for facial recognition systems. A biometric system that is able to identify people from thermograms is presented. To identify a person we used the Eigenfaces algorithm. For the face detection in the picture the backpropagation neural network was designed. For this purpose thermograms of 10 people in various external conditions were studies. The Eigenfaces algorithm calculated an average face and then the set of characteristic features for each studied person was produced. The neural network has to detect the face in the image before it actually can be identified. We used five hidden layers for that purpose. It was shown that the errors in recognition depend on the feature extraction, for low quality pictures the error was so high as 30%. However, for pictures with a good feature extraction the results of proper identification higher then 90%, were obtained.
NASA Astrophysics Data System (ADS)
Harit, Aditya; Joshi, J. C., Col; Gupta, K. K.
2018-03-01
The paper proposed an automatic facial emotion recognition algorithm which comprises of two main components: feature extraction and expression recognition. The algorithm uses a Gabor filter bank on fiducial points to find the facial expression features. The resulting magnitudes of Gabor transforms, along with 14 chosen FAPs (Facial Animation Parameters), compose the feature space. There are two stages: the training phase and the recognition phase. Firstly, for the present 6 different emotions, the system classifies all training expressions in 6 different classes (one for each emotion) in the training stage. In the recognition phase, it recognizes the emotion by applying the Gabor bank to a face image, then finds the fiducial points, and then feeds it to the trained neural architecture.
Kruskal-Wallis-based computationally efficient feature selection for face recognition.
Ali Khan, Sajid; Hussain, Ayyaz; Basit, Abdul; Akram, Sheeraz
2014-01-01
Face recognition in today's technological world, and face recognition applications attain much more importance. Most of the existing work used frontal face images to classify face image. However these techniques fail when applied on real world face images. The proposed technique effectively extracts the prominent facial features. Most of the features are redundant and do not contribute to representing face. In order to eliminate those redundant features, computationally efficient algorithm is used to select the more discriminative face features. Extracted features are then passed to classification step. In the classification step, different classifiers are ensemble to enhance the recognition accuracy rate as single classifier is unable to achieve the high accuracy. Experiments are performed on standard face database images and results are compared with existing techniques.
Pornographic image recognition and filtering using incremental learning in compressed domain
NASA Astrophysics Data System (ADS)
Zhang, Jing; Wang, Chao; Zhuo, Li; Geng, Wenhao
2015-11-01
With the rapid development and popularity of the network, the openness, anonymity, and interactivity of networks have led to the spread and proliferation of pornographic images on the Internet, which have done great harm to adolescents' physical and mental health. With the establishment of image compression standards, pornographic images are mainly stored with compressed formats. Therefore, how to efficiently filter pornographic images is one of the challenging issues for information security. A pornographic image recognition and filtering method in the compressed domain is proposed by using incremental learning, which includes the following steps: (1) low-resolution (LR) images are first reconstructed from the compressed stream of pornographic images, (2) visual words are created from the LR image to represent the pornographic image, and (3) incremental learning is adopted to continuously adjust the classification rules to recognize the new pornographic image samples after the covering algorithm is utilized to train and recognize the visual words in order to build the initial classification model of pornographic images. The experimental results show that the proposed pornographic image recognition method using incremental learning has a higher recognition rate as well as costing less recognition time in the compressed domain.
Lip reading using neural networks
NASA Astrophysics Data System (ADS)
Kalbande, Dhananjay; Mishra, Akassh A.; Patil, Sanjivani; Nirgudkar, Sneha; Patel, Prashant
2011-10-01
Computerized lip reading, or speech reading, is concerned with the difficult task of converting a video signal of a speaking person to written text. It has several applications like teaching deaf and dumb to speak and communicate effectively with the other people, its crime fighting potential and invariance to acoustic environment. We convert the video of the subject speaking vowels into images and then images are further selected manually for processing. However, several factors like fast speech, bad pronunciation, and poor illumination, movement of face, moustaches and beards make lip reading difficult. Contour tracking methods and Template matching are used for the extraction of lips from the face. K Nearest Neighbor algorithm is then used to classify the 'speaking' images and the 'silent' images. The sequence of images is then transformed into segments of utterances. Feature vector is calculated on each frame for all the segments and is stored in the database with properly labeled class. Character recognition is performed using modified KNN algorithm which assigns more weight to nearer neighbors. This paper reports the recognition of vowels using KNN algorithms
A Fuzzy Aproach For Facial Emotion Recognition
NASA Astrophysics Data System (ADS)
Gîlcă, Gheorghe; Bîzdoacă, Nicu-George
2015-09-01
This article deals with an emotion recognition system based on the fuzzy sets. Human faces are detected in images with the Viola - Jones algorithm and for its tracking in video sequences we used the Camshift algorithm. The detected human faces are transferred to the decisional fuzzy system, which is based on the variable fuzzyfication measurements of the face: eyebrow, eyelid and mouth. The system can easily determine the emotional state of a person.
NASA Astrophysics Data System (ADS)
Wang, Deng-wei; Zhang, Tian-xu; Shi, Wen-jun; Wei, Long-sheng; Wang, Xiao-ping; Ao, Guo-qing
2009-07-01
Infrared images at sea background are notorious for the low signal-to-noise ratio, therefore, the target recognition of infrared image through traditional methods is very difficult. In this paper, we present a novel target recognition method based on the integration of visual attention computational model and conventional approach (selective filtering and segmentation). The two distinct techniques for image processing are combined in a manner to utilize the strengths of both. The visual attention algorithm searches the salient regions automatically, and represented them by a set of winner points, at the same time, demonstrated the salient regions in terms of circles centered at these winner points. This provides a priori knowledge for the filtering and segmentation process. Based on the winner point, we construct a rectangular region to facilitate the filtering and segmentation, then the labeling operation will be added selectively by requirement. Making use of the labeled information, from the final segmentation result we obtain the positional information of the interested region, label the centroid on the corresponding original image, and finish the localization for the target. The cost time does not depend on the size of the image but the salient regions, therefore the consumed time is greatly reduced. The method is used in the recognition of several kinds of real infrared images, and the experimental results reveal the effectiveness of the algorithm presented in this paper.
An adaptive deep Q-learning strategy for handwritten digit recognition.
Qiao, Junfei; Wang, Gongming; Li, Wenjing; Chen, Min
2018-02-22
Handwritten digits recognition is a challenging problem in recent years. Although many deep learning-based classification algorithms are studied for handwritten digits recognition, the recognition accuracy and running time still need to be further improved. In this paper, an adaptive deep Q-learning strategy is proposed to improve accuracy and shorten running time for handwritten digit recognition. The adaptive deep Q-learning strategy combines the feature-extracting capability of deep learning and the decision-making of reinforcement learning to form an adaptive Q-learning deep belief network (Q-ADBN). First, Q-ADBN extracts the features of original images using an adaptive deep auto-encoder (ADAE), and the extracted features are considered as the current states of Q-learning algorithm. Second, Q-ADBN receives Q-function (reward signal) during recognition of the current states, and the final handwritten digits recognition is implemented by maximizing the Q-function using Q-learning algorithm. Finally, experimental results from the well-known MNIST dataset show that the proposed Q-ADBN has a superiority to other similar methods in terms of accuracy and running time. Copyright © 2018 Elsevier Ltd. All rights reserved.
Locating and decoding barcodes in fuzzy images captured by smart phones
NASA Astrophysics Data System (ADS)
Deng, Wupeng; Hu, Jiwei; Liu, Quan; Lou, Ping
2017-07-01
With the development of barcodes for commercial use, people's requirements for detecting barcodes by smart phone become increasingly pressing. The low quality of barcode image captured by mobile phone always affects the decoding and recognition rates. This paper focuses on locating and decoding EAN-13 barcodes in fuzzy images. We present a more accurate locating algorithm based on segment length and high fault-tolerant rate algorithm for decoding barcodes. Unlike existing approaches, location algorithm is based on the edge segment length of EAN -13 barcodes, while our decoding algorithm allows the appearance of fuzzy region in barcode image. Experimental results are performed on damaged, contaminated and scratched digital images, and provide a quite promising result for EAN -13 barcode location and decoding.
A New Pivoting and Iterative Text Detection Algorithm for Biomedical Images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Songhua; Krauthammer, Prof. Michael
2010-01-01
There is interest to expand the reach of literature mining to include the analysis of biomedical images, which often contain a paper's key findings. Examples include recent studies that use Optical Character Recognition (OCR) to extract image text, which is used to boost biomedical image retrieval and classification. Such studies rely on the robust identification of text elements in biomedical images, which is a non-trivial task. In this work, we introduce a new text detection algorithm for biomedical images based on iterative projection histograms. We study the effectiveness of our algorithm by evaluating the performance on a set of manuallymore » labeled random biomedical images, and compare the performance against other state-of-the-art text detection algorithms. We demonstrate that our projection histogram-based text detection approach is well suited for text detection in biomedical images, and that the iterative application of the algorithm boosts performance to an F score of .60. We provide a C++ implementation of our algorithm freely available for academic use.« less
NASA Technical Reports Server (NTRS)
Hung, Stephen H. Y.
1989-01-01
A fast 3-D object recognition algorithm that can be used as a quick-look subsystem to the vision system for the Special-Purpose Dexterous Manipulator (SPDM) is described. Global features that can be easily computed from range data are used to characterize the images of a viewer-centered model of an object. This algorithm will speed up the processing by eliminating the low level processing whenever possible. It may identify the object, reject a set of bad data in the early stage, or create a better environment for a more powerful algorithm to carry the work further.
What does voice-processing technology support today?
Nakatsu, R; Suzuki, Y
1995-01-01
This paper describes the state of the art in applications of voice-processing technologies. In the first part, technologies concerning the implementation of speech recognition and synthesis algorithms are described. Hardware technologies such as microprocessors and DSPs (digital signal processors) are discussed. Software development environment, which is a key technology in developing applications software, ranging from DSP software to support software also is described. In the second part, the state of the art of algorithms from the standpoint of applications is discussed. Several issues concerning evaluation of speech recognition/synthesis algorithms are covered, as well as issues concerning the robustness of algorithms in adverse conditions. Images Fig. 3 PMID:7479720
Fast and accurate image recognition algorithms for fresh produce food safety sensing
NASA Astrophysics Data System (ADS)
Yang, Chun-Chieh; Kim, Moon S.; Chao, Kuanglin; Kang, Sukwon; Lefcourt, Alan M.
2011-06-01
This research developed and evaluated the multispectral algorithms derived from hyperspectral line-scan fluorescence imaging under violet LED excitation for detection of fecal contamination on Golden Delicious apples. The algorithms utilized the fluorescence intensities at four wavebands, 680 nm, 684 nm, 720 nm, and 780 nm, for computation of simple functions for effective detection of contamination spots created on the apple surfaces using four concentrations of aqueous fecal dilutions. The algorithms detected more than 99% of the fecal spots. The effective detection of feces showed that a simple multispectral fluorescence imaging algorithm based on violet LED excitation may be appropriate to detect fecal contamination on fast-speed apple processing lines.
Simulation of millimeter-wave body images and its application to biometric recognition
NASA Astrophysics Data System (ADS)
Moreno-Moreno, Miriam; Fierrez, Julian; Vera-Rodriguez, Ruben; Parron, Josep
2012-06-01
One of the emerging applications of the millimeter-wave imaging technology is its use in biometric recognition. This is mainly due to some properties of the millimeter-waves such as their ability to penetrate through clothing and other occlusions, their low obtrusiveness when collecting the image and the fact that they are harmless to health. In this work we first describe the generation of a database comprising 1200 synthetic images at 94 GHz obtained from the body of 50 people. Then we extract a small set of distance-based features from each image and select the best feature subsets for person recognition using the SFFS feature selection algorithm. Finally these features are used in body geometry authentication obtaining promising results.
Near-infrared face recognition utilizing open CV software
NASA Astrophysics Data System (ADS)
Sellami, Louiza; Ngo, Hau; Fowler, Chris J.; Kearney, Liam M.
2014-06-01
Commercially available hardware, freely available algorithms, and authors' developed software are synergized successfully to detect and recognize subjects in an environment without visible light. This project integrates three major components: an illumination device operating in near infrared (NIR) spectrum, a NIR capable camera and a software algorithm capable of performing image manipulation, facial detection and recognition. Focusing our efforts in the near infrared spectrum allows the low budget system to operate covertly while still allowing for accurate face recognition. In doing so a valuable function has been developed which presents potential benefits in future civilian and military security and surveillance operations.
Enhanced facial texture illumination normalization for face recognition.
Luo, Yong; Guan, Ye-Peng
2015-08-01
An uncontrolled lighting condition is one of the most critical challenges for practical face recognition applications. An enhanced facial texture illumination normalization method is put forward to resolve this challenge. An adaptive relighting algorithm is developed to improve the brightness uniformity of face images. Facial texture is extracted by using an illumination estimation difference algorithm. An anisotropic histogram-stretching algorithm is proposed to minimize the intraclass distance of facial skin and maximize the dynamic range of facial texture distribution. Compared with the existing methods, the proposed method can more effectively eliminate the redundant information of facial skin and illumination. Extensive experiments show that the proposed method has superior performance in normalizing illumination variation and enhancing facial texture features for illumination-insensitive face recognition.
Iris recognition using image moments and k-means algorithm.
Khan, Yaser Daanial; Khan, Sher Afzal; Ahmad, Farooq; Islam, Saeed
2014-01-01
This paper presents a biometric technique for identification of a person using the iris image. The iris is first segmented from the acquired image of an eye using an edge detection algorithm. The disk shaped area of the iris is transformed into a rectangular form. Described moments are extracted from the grayscale image which yields a feature vector containing scale, rotation, and translation invariant moments. Images are clustered using the k-means algorithm and centroids for each cluster are computed. An arbitrary image is assumed to belong to the cluster whose centroid is the nearest to the feature vector in terms of Euclidean distance computed. The described model exhibits an accuracy of 98.5%.
Iris Recognition Using Image Moments and k-Means Algorithm
Khan, Yaser Daanial; Khan, Sher Afzal; Ahmad, Farooq; Islam, Saeed
2014-01-01
This paper presents a biometric technique for identification of a person using the iris image. The iris is first segmented from the acquired image of an eye using an edge detection algorithm. The disk shaped area of the iris is transformed into a rectangular form. Described moments are extracted from the grayscale image which yields a feature vector containing scale, rotation, and translation invariant moments. Images are clustered using the k-means algorithm and centroids for each cluster are computed. An arbitrary image is assumed to belong to the cluster whose centroid is the nearest to the feature vector in terms of Euclidean distance computed. The described model exhibits an accuracy of 98.5%. PMID:24977221
Modeling of skin cancer dermatoscopy images
NASA Astrophysics Data System (ADS)
Iralieva, Malica B.; Myakinin, Oleg O.; Bratchenko, Ivan A.; Zakharov, Valery P.
2018-04-01
An early identified cancer is more likely to effective respond to treatment and has a less expensive treatment as well. Dermatoscopy is one of general diagnostic techniques for skin cancer early detection that allows us in vivo evaluation of colors and microstructures on skin lesions. Digital phantoms with known properties are required during new instrument developing to compare sample's features with data from the instrument. An algorithm for image modeling of skin cancer is proposed in the paper. Steps of the algorithm include setting shape, texture generation, adding texture and normal skin background setting. The Gaussian represents the shape, and then the texture generation based on a fractal noise algorithm is responsible for spatial chromophores distributions, while the colormap applied to the values corresponds to spectral properties. Finally, a normal skin image simulated by mixed Monte Carlo method using a special online tool is added as a background. Varying of Asymmetry, Borders, Colors and Diameter settings is shown to be fully matched to the ABCD clinical recognition algorithm. The asymmetry is specified by setting different standard deviation values of Gaussian in different parts of image. The noise amplitude is increased to set the irregular borders score. Standard deviation is changed to determine size of the lesion. Colors are set by colormap changing. The algorithm for simulating different structural elements is required to match with others recognition algorithms.
Generation and assessment of turntable SAR data for the support of ATR development
NASA Astrophysics Data System (ADS)
Cohen, Marvin N.; Showman, Gregory A.; Sangston, K. James; Sylvester, Vincent B.; Gostin, Lamar; Scheer, C. Ruby
1998-10-01
Inverse synthetic aperture radar (ISAR) imaging on a turntable-tower test range permits convenient generation of high resolution two-dimensional images of radar targets under controlled conditions for testing SAR image processing and for supporting automatic target recognition (ATR) algorithm development. However, turntable ISAR images are often obtained under near-field geometries and hence may suffer geometric distortions not present in airborne SAR images. In this paper, turntable data collected at Georgia Tech's Electromagnetic Test Facility are used to begin to assess the utility of two- dimensional ISAR imaging algorithms in forming images to support ATR development. The imaging algorithms considered include a simple 2D discrete Fourier transform (DFT), a 2-D DFT with geometric correction based on image domain resampling, and a computationally-intensive geometric matched filter solution. Images formed with the various algorithms are used to develop ATR templates, which are then compared with an eye toward utilization in an ATR algorithm.
NASA Astrophysics Data System (ADS)
Lhamon, Michael Earl
A pattern recognition system which uses complex correlation filter banks requires proportionally more computational effort than single-real valued filters. This introduces increased computation burden but also introduces a higher level of parallelism, that common computing platforms fail to identify. As a result, we consider algorithm mapping to both optical and digital processors. For digital implementation, we develop computationally efficient pattern recognition algorithms, referred to as, vector inner product operators that require less computational effort than traditional fast Fourier methods. These algorithms do not need correlation and they map readily onto parallel digital architectures, which imply new architectures for optical processors. These filters exploit circulant-symmetric matrix structures of the training set data representing a variety of distortions. By using the same mathematical basis as with the vector inner product operations, we are able to extend the capabilities of more traditional correlation filtering to what we refer to as "Super Images". These "Super Images" are used to morphologically transform a complicated input scene into a predetermined dot pattern. The orientation of the dot pattern is related to the rotational distortion of the object of interest. The optical implementation of "Super Images" yields feature reduction necessary for using other techniques, such as artificial neural networks. We propose a parallel digital signal processor architecture based on specific pattern recognition algorithms but general enough to be applicable to other similar problems. Such an architecture is classified as a data flow architecture. Instead of mapping an algorithm to an architecture, we propose mapping the DSP architecture to a class of pattern recognition algorithms. Today's optical processing systems have difficulties implementing full complex filter structures. Typically, optical systems (like the 4f correlators) are limited to phase-only implementation with lower detection performance than full complex electronic systems. Our study includes pseudo-random pixel encoding techniques for approximating full complex filtering. Optical filter bank implementation is possible and they have the advantage of time averaging the entire filter bank at real time rates. Time-averaged optical filtering is computational comparable to billions of digital operations-per-second. For this reason, we believe future trends in high speed pattern recognition will involve hybrid architectures of both optical and DSP elements.
Efficient iris recognition by characterizing key local variations.
Ma, Li; Tan, Tieniu; Wang, Yunhong; Zhang, Dexin
2004-06-01
Unlike other biometrics such as fingerprints and face, the distinct aspect of iris comes from randomly distributed features. This leads to its high reliability for personal identification, and at the same time, the difficulty in effectively representing such details in an image. This paper describes an efficient algorithm for iris recognition by characterizing key local variations. The basic idea is that local sharp variation points, denoting the appearing or vanishing of an important image structure, are utilized to represent the characteristics of the iris. The whole procedure of feature extraction includes two steps: 1) a set of one-dimensional intensity signals is constructed to effectively characterize the most important information of the original two-dimensional image; 2) using a particular class of wavelets, a position sequence of local sharp variation points in such signals is recorded as features. We also present a fast matching scheme based on exclusive OR operation to compute the similarity between a pair of position sequences. Experimental results on 2255 iris images show that the performance of the proposed method is encouraging and comparable to the best iris recognition algorithm found in the current literature.
Target Recognition Using Neural Networks for Model Deformation Measurements
NASA Technical Reports Server (NTRS)
Ross, Richard W.; Hibler, David L.
1999-01-01
Optical measurements provide a non-invasive method for measuring deformation of wind tunnel models. Model deformation systems use targets mounted or painted on the surface of the model to identify known positions, and photogrammetric methods are used to calculate 3-D positions of the targets on the model from digital 2-D images. Under ideal conditions, the reflective targets are placed against a dark background and provide high-contrast images, aiding in target recognition. However, glints of light reflecting from the model surface, or reduced contrast caused by light source or model smoothness constraints, can compromise accurate target determination using current algorithmic methods. This paper describes a technique using a neural network and image processing technologies which increases the reliability of target recognition systems. Unlike algorithmic methods, the neural network can be trained to identify the characteristic patterns that distinguish targets from other objects of similar size and appearance and can adapt to changes in lighting and environmental conditions.
Multirotor micro air vehicle autonomous landing system based on image markers recognition
NASA Astrophysics Data System (ADS)
Skoczylas, Marcin; Gadomer, Lukasz; Walendziuk, Wojciech
2017-08-01
In this paper the idea of an autonomic drone landing system which bases on different markers detection, is presented. The issue of safe autonomic drone landing is one of the major aspects connected with drone missions. The idea of the proposed system is to detect the landing place, marked with an image called marker, using one of the image recognition algorithms, and heading during the landing procedure to this place. Choosing the proper marker, which allows the greatest quality of the recognition system, is the main problem faced in this paper. Seven markers are tested and compared. The achieved results are described and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, Neal R; Ruggiero, Christy E; Pawley, Norma H
2009-01-01
Detecting complex targets, such as facilities, in commercially available satellite imagery is a difficult problem that human analysts try to solve by applying world knowledge. Often there are known observables that can be extracted by pixel-level feature detectors that can assist in the facility detection process. Individually, each of these observables is not sufficient for an accurate and reliable detection, but in combination, these auxiliary observables may provide sufficient context for detection by a machine learning algorithm. We describe an approach for automatic detection of facilities that uses an automated feature extraction algorithm to extract auxiliary observables, and a semi-supervisedmore » assisted target recognition algorithm to then identify facilities of interest. We illustrate the approach using an example of finding schools in Quickbird image data of Albuquerque, New Mexico. We use Los Alamos National Laboratory's Genie Pro automated feature extraction algorithm to find a set of auxiliary features that should be useful in the search for schools, such as parking lots, large buildings, sports fields and residential areas and then combine these features using Genie Pro's assisted target recognition algorithm to learn a classifier that finds schools in the image data.« less
Iris Recognition: The Consequences of Image Compression
NASA Astrophysics Data System (ADS)
Ives, Robert W.; Bishop, Daniel A.; Du, Yingzi; Belcher, Craig
2010-12-01
Iris recognition for human identification is one of the most accurate biometrics, and its employment is expanding globally. The use of portable iris systems, particularly in law enforcement applications, is growing. In many of these applications, the portable device may be required to transmit an iris image or template over a narrow-bandwidth communication channel. Typically, a full resolution image (e.g., VGA) is desired to ensure sufficient pixels across the iris to be confident of accurate recognition results. To minimize the time to transmit a large amount of data over a narrow-bandwidth communication channel, image compression can be used to reduce the file size of the iris image. In other applications, such as the Registered Traveler program, an entire iris image is stored on a smart card, but only 4 kB is allowed for the iris image. For this type of application, image compression is also the solution. This paper investigates the effects of image compression on recognition system performance using a commercial version of the Daugman iris2pi algorithm along with JPEG-2000 compression, and links these to image quality. Using the ICE 2005 iris database, we find that even in the face of significant compression, recognition performance is minimally affected.
Frontal view reconstruction for iris recognition
Santos-Villalobos, Hector J; Bolme, David S; Boehnen, Chris Bensing
2015-02-17
Iris recognition can be accomplished for a wide variety of eye images by correcting input images with an off-angle gaze. A variety of techniques, from limbus modeling, corneal refraction modeling, optical flows, and genetic algorithms can be used. A variety of techniques, including aspherical eye modeling, corneal refraction modeling, ray tracing, and the like can be employed. Precomputed transforms can enhance performance for use in commercial applications. With application of the technologies, images with significantly unfavorable gaze angles can be successfully recognized.
NASA Technical Reports Server (NTRS)
Thadani, S. G.
1977-01-01
The Maximum Likelihood Estimation of Signature Transformation (MLEST) algorithm is used to obtain maximum likelihood estimates (MLE) of affine transformation. The algorithm has been evaluated for three sets of data: simulated (training and recognition segment pairs), consecutive-day (data gathered from Landsat images), and geographical-extension (large-area crop inventory experiment) data sets. For each set, MLEST signature extension runs were made to determine MLE values and the affine-transformed training segment signatures were used to classify the recognition segments. The classification results were used to estimate wheat proportions at 0 and 1% threshold values.
NASA Astrophysics Data System (ADS)
Fang, Yi-Chin; Wu, Bo-Wen; Lin, Wei-Tang; Jon, Jen-Liung
2007-11-01
Resolution and color are two main directions for measuring optical digital image, but it will be a hard work to integral improve the image quality of optical system, because there are many limits such as size, materials and environment of optical system design. Therefore, it is important to let blurred images as aberrations and noises or due to the characteristics of human vision as far distance and small targets to raise the capability of image recognition with artificial intelligence such as genetic algorithm and neural network in the condition that decreasing color aberration of optical system and not to increase complex calculation in the image processes. This study could achieve the goal of integral, economically and effectively to improve recognition and classification in low quality image from optical system and environment.
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang (Editor); Schenker, Paul (Editor)
1987-01-01
The papers presented in this volume provide an overview of current research in both optical and digital pattern recognition, with a theme of identifying overlapping research problems and methodologies. Topics discussed include image analysis and low-level vision, optical system design, object analysis and recognition, real-time hybrid architectures and algorithms, high-level image understanding, and optical matched filter design. Papers are presented on synthetic estimation filters for a control system; white-light correlator character recognition; optical AI architectures for intelligent sensors; interpreting aerial photographs by segmentation and search; and optical information processing using a new photopolymer.
Super-resolution method for face recognition using nonlinear mappings on coherent features.
Huang, Hua; He, Huiting
2011-01-01
Low-resolution (LR) of face images significantly decreases the performance of face recognition. To address this problem, we present a super-resolution method that uses nonlinear mappings to infer coherent features that favor higher recognition of the nearest neighbor (NN) classifiers for recognition of single LR face image. Canonical correlation analysis is applied to establish the coherent subspaces between the principal component analysis (PCA) based features of high-resolution (HR) and LR face images. Then, a nonlinear mapping between HR/LR features can be built by radial basis functions (RBFs) with lower regression errors in the coherent feature space than in the PCA feature space. Thus, we can compute super-resolved coherent features corresponding to an input LR image according to the trained RBF model efficiently and accurately. And, face identity can be obtained by feeding these super-resolved features to a simple NN classifier. Extensive experiments on the Facial Recognition Technology, University of Manchester Institute of Science and Technology, and Olivetti Research Laboratory databases show that the proposed method outperforms the state-of-the-art face recognition algorithms for single LR image in terms of both recognition rate and robustness to facial variations of pose and expression.
NASA Astrophysics Data System (ADS)
Li, Shuo; Jin, Weiqi; Li, Li; Li, Yiyang
2018-05-01
Infrared thermal images can reflect the thermal-radiation distribution of a particular scene. However, the contrast of the infrared images is usually low. Hence, it is generally necessary to enhance the contrast of infrared images in advance to facilitate subsequent recognition and analysis. Based on the adaptive double plateaus histogram equalization, this paper presents an improved contrast enhancement algorithm for infrared thermal images. In the proposed algorithm, the normalized coefficient of variation of the histogram, which characterizes the level of contrast enhancement, is introduced as feedback information to adjust the upper and lower plateau thresholds. The experiments on actual infrared images show that compared to the three typical contrast-enhancement algorithms, the proposed algorithm has better scene adaptability and yields better contrast-enhancement results for infrared images with more dark areas or a higher dynamic range. Hence, it has high application value in contrast enhancement, dynamic range compression, and digital detail enhancement for infrared thermal images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos-Villalobos, Hector J; Barstow, Del R; Karakaya, Mahmut
Iris recognition has been proven to be an accurate and reliable biometric. However, the recognition of non-ideal iris images such as off angle images is still an unsolved problem. We propose a new biometric targeted eye model and a method to reconstruct the off-axis eye to its frontal view allowing for recognition using existing methods and algorithms. This allows for existing enterprise level algorithms and approaches to be largely unmodified by using our work as a pre-processor to improve performance. In addition, we describe the `Limbus effect' and its importance for an accurate segmentation of off-axis irides. Our method usesmore » an anatomically accurate human eye model and ray-tracing techniques to compute a transformation function, which reconstructs the iris to its frontal, non-refracted state. Then, the same eye model is used to render a frontal view of the reconstructed iris. The proposed method is fully described and results from synthetic data are shown to establish an upper limit on performance improvement and establish the importance of the proposed approach over traditional linear elliptical unwrapping methods. Our results with synthetic data demonstrate the ability to perform an accurate iris recognition with an image taken as much as 70 degrees off-axis.« less
Iris Location Algorithm Based on the CANNY Operator and Gradient Hough Transform
NASA Astrophysics Data System (ADS)
Zhong, L. H.; Meng, K.; Wang, Y.; Dai, Z. Q.; Li, S.
2017-12-01
In the iris recognition system, the accuracy of the localization of the inner and outer edges of the iris directly affects the performance of the recognition system, so iris localization has important research meaning. Our iris data contain eyelid, eyelashes, light spot and other noise, even the gray transformation of the images is not obvious, so the general methods of iris location are unable to realize the iris location. The method of the iris location based on Canny operator and gradient Hough transform is proposed. Firstly, the images are pre-processed; then, calculating the gradient information of images, the inner and outer edges of iris are coarse positioned using Canny operator; finally, according to the gradient Hough transform to realize precise localization of the inner and outer edge of iris. The experimental results show that our algorithm can achieve the localization of the inner and outer edges of the iris well, and the algorithm has strong anti-interference ability, can greatly reduce the location time and has higher accuracy and stability.
Performance analysis of robust road sign identification
NASA Astrophysics Data System (ADS)
Ali, Nursabillilah M.; Mustafah, Y. M.; Rashid, N. K. A. M.
2013-12-01
This study describes performance analysis of a robust system for road sign identification that incorporated two stages of different algorithms. The proposed algorithms consist of HSV color filtering and PCA techniques respectively in detection and recognition stages. The proposed algorithms are able to detect the three standard types of colored images namely Red, Yellow and Blue. The hypothesis of the study is that road sign images can be used to detect and identify signs that are involved with the existence of occlusions and rotational changes. PCA is known as feature extraction technique that reduces dimensional size. The sign image can be easily recognized and identified by the PCA method as is has been used in many application areas. Based on the experimental result, it shows that the HSV is robust in road sign detection with minimum of 88% and 77% successful rate for non-partial and partial occlusions images. For successful recognition rates using PCA can be achieved in the range of 94-98%. The occurrences of all classes are recognized successfully is between 5% and 10% level of occlusions.
Hierarchical Feature Extraction With Local Neural Response for Image Recognition.
Li, Hong; Wei, Yantao; Li, Luoqing; Chen, C L P
2013-04-01
In this paper, a hierarchical feature extraction method is proposed for image recognition. The key idea of the proposed method is to extract an effective feature, called local neural response (LNR), of the input image with nontrivial discrimination and invariance properties by alternating between local coding and maximum pooling operation. The local coding, which is carried out on the locally linear manifold, can extract the salient feature of image patches and leads to a sparse measure matrix on which maximum pooling is carried out. The maximum pooling operation builds the translation invariance into the model. We also show that other invariant properties, such as rotation and scaling, can be induced by the proposed model. In addition, a template selection algorithm is presented to reduce computational complexity and to improve the discrimination ability of the LNR. Experimental results show that our method is robust to local distortion and clutter compared with state-of-the-art algorithms.
Citrus fruit recognition using color image analysis
NASA Astrophysics Data System (ADS)
Xu, Huirong; Ying, Yibin
2004-10-01
An algorithm for the automatic recognition of citrus fruit on the tree was developed. Citrus fruits have different color with leaves and branches portions. Fifty-three color images with natural citrus-grove scenes were digitized and analyzed for red, green, and blue (RGB) color content. The color characteristics of target surfaces (fruits, leaves, or branches) were extracted using the range of interest (ROI) tool. Several types of contrast color indices were designed and tested. In this study, the fruit image was enhanced using the (R-B) contrast color index because results show that the fruit have the highest color difference among the objects in the image. A dynamic threshold function was derived from this color model and used to distinguish citrus fruit from background. The results show that the algorithm worked well under frontlighting or backlighting condition. However, there are misclassifications when the fruit or the background is under a brighter sunlight.
Products recognition on shop-racks from local scale-invariant features
NASA Astrophysics Data System (ADS)
Zawistowski, Jacek; Kurzejamski, Grzegorz; Garbat, Piotr; Naruniec, Jacek
2016-04-01
This paper presents a system designed for the multi-object detection purposes and adjusted for the application of product search on the market shelves. System uses well known binary keypoint detection algorithms for finding characteristic points in the image. One of the main idea is object recognition based on Implicit Shape Model method. Authors of the article proposed many improvements of the algorithm. Originally fiducial points are matched with a very simple function. This leads to the limitations in the number of objects parts being success- fully separated, while various methods of classification may be validated in order to achieve higher performance. Such an extension implies research on training procedure able to deal with many objects categories. Proposed solution opens a new possibilities for many algorithms demanding fast and robust multi-object recognition.
NASA Astrophysics Data System (ADS)
Krasilenko, Vladimir G.; Nikolsky, Alexander I.; Zaitsev, Alexandr V.; Voloshin, Victor M.
2001-03-01
Historic information regarding the appearance and creation of fundamentals of algebra-logical apparatus-`equivalental algebra' for description of neuro-nets paradigms and algorithms is considered which is unification of theory of neuron nets (NN), linear algebra and the most generalized neuro-biology extended for matrix case. A survey is given of `equivalental models' of neuron nets and associative memory is suggested new, modified matrix-tenzor neurological equivalental models (MTNLEMS) are offered with double adaptive-equivalental weighing (DAEW) for spatial-non- invariant recognition (SNIR) and space-invariant recognition (SIR) of 2D images (patterns). It is shown, that MTNLEMS DAEW are the most generalized, they can describe the processes in NN both within the frames of known paradigms and within new `equivalental' paradigm of non-interaction type, and the computing process in NN under using the offered MTNLEMs DAEW is reduced to two-step and multi-step algorithms and step-by-step matrix-tenzor procedures (for SNIR) and procedures of defining of space-dependent equivalental functions from two images (for SIR).
Scene text recognition in mobile applications by character descriptor and structure configuration.
Yi, Chucai; Tian, Yingli
2014-07-01
Text characters and strings in natural scene can provide valuable information for many applications. Extracting text directly from natural scene images or videos is a challenging task because of diverse text patterns and variant background interferences. This paper proposes a method of scene text recognition from detected text regions. In text detection, our previously proposed algorithms are applied to obtain text regions from scene image. First, we design a discriminative character descriptor by combining several state-of-the-art feature detectors and descriptors. Second, we model character structure at each character class by designing stroke configuration maps. Our algorithm design is compatible with the application of scene text extraction in smart mobile devices. An Android-based demo system is developed to show the effectiveness of our proposed method on scene text information extraction from nearby objects. The demo system also provides us some insight into algorithm design and performance improvement of scene text extraction. The evaluation results on benchmark data sets demonstrate that our proposed scheme of text recognition is comparable with the best existing methods.
A modified active appearance model based on an adaptive artificial bee colony.
Abdulameer, Mohammed Hasan; Sheikh Abdullah, Siti Norul Huda; Othman, Zulaiha Ali
2014-01-01
Active appearance model (AAM) is one of the most popular model-based approaches that have been extensively used to extract features by highly accurate modeling of human faces under various physical and environmental circumstances. However, in such active appearance model, fitting the model with original image is a challenging task. State of the art shows that optimization method is applicable to resolve this problem. However, another common problem is applying optimization. Hence, in this paper we propose an AAM based face recognition technique, which is capable of resolving the fitting problem of AAM by introducing a new adaptive ABC algorithm. The adaptation increases the efficiency of fitting as against the conventional ABC algorithm. We have used three datasets: CASIA dataset, property 2.5D face dataset, and UBIRIS v1 images dataset in our experiments. The results have revealed that the proposed face recognition technique has performed effectively, in terms of accuracy of face recognition.
NASA Astrophysics Data System (ADS)
Moriwaki, Katsumi; Koike, Issei; Sano, Tsuyoshi; Fukunaga, Tetsuya; Tanaka, Katsuyuki
We propose a new method of environmental recognition around an autonomous vehicle using dual vision sensor and navigation control based on binocular images. We consider to develop a guide robot that can play the role of a guide dog as the aid to people such as the visually impaired or the aged, as an application of above-mentioned techniques. This paper presents a recognition algorithm, which finds out the line of a series of Braille blocks and the boundary line between a sidewalk and a roadway where a difference in level exists by binocular images obtained from a pair of parallelarrayed CCD cameras. This paper also presents a tracking algorithm, with which the guide robot traces along a series of Braille blocks and avoids obstacles and unsafe areas which exist in the way of a person with the guide robot.
A new pivoting and iterative text detection algorithm for biomedical images.
Xu, Songhua; Krauthammer, Michael
2010-12-01
There is interest to expand the reach of literature mining to include the analysis of biomedical images, which often contain a paper's key findings. Examples include recent studies that use Optical Character Recognition (OCR) to extract image text, which is used to boost biomedical image retrieval and classification. Such studies rely on the robust identification of text elements in biomedical images, which is a non-trivial task. In this work, we introduce a new text detection algorithm for biomedical images based on iterative projection histograms. We study the effectiveness of our algorithm by evaluating the performance on a set of manually labeled random biomedical images, and compare the performance against other state-of-the-art text detection algorithms. We demonstrate that our projection histogram-based text detection approach is well suited for text detection in biomedical images, and that the iterative application of the algorithm boosts performance to an F score of .60. We provide a C++ implementation of our algorithm freely available for academic use. Copyright © 2010 Elsevier Inc. All rights reserved.
Dilated contour extraction and component labeling algorithm for object vector representation
NASA Astrophysics Data System (ADS)
Skourikhine, Alexei N.
2005-08-01
Object boundary extraction from binary images is important for many applications, e.g., image vectorization, automatic interpretation of images containing segmentation results, printed and handwritten documents and drawings, maps, and AutoCAD drawings. Efficient and reliable contour extraction is also important for pattern recognition due to its impact on shape-based object characterization and recognition. The presented contour tracing and component labeling algorithm produces dilated (sub-pixel) contours associated with corresponding regions. The algorithm has the following features: (1) it always produces non-intersecting, non-degenerate contours, including the case of one-pixel wide objects; (2) it associates the outer and inner (i.e., around hole) contours with the corresponding regions during the process of contour tracing in a single pass over the image; (3) it maintains desired connectivity of object regions as specified by 8-neighbor or 4-neighbor connectivity of adjacent pixels; (4) it avoids degenerate regions in both background and foreground; (5) it allows an easy augmentation that will provide information about the containment relations among regions; (6) it has a time complexity that is dominantly linear in the number of contour points. This early component labeling (contour-region association) enables subsequent efficient object-based processing of the image information.
Improving the recognition of fingerprint biometric system using enhanced image fusion
NASA Astrophysics Data System (ADS)
Alsharif, Salim; El-Saba, Aed; Stripathi, Reshma
2010-04-01
Fingerprints recognition systems have been widely used by financial institutions, law enforcement, border control, visa issuing, just to mention few. Biometric identifiers can be counterfeited, but considered more reliable and secure compared to traditional ID cards or personal passwords methods. Fingerprint pattern fusion improves the performance of a fingerprint recognition system in terms of accuracy and security. This paper presents digital enhancement and fusion approaches that improve the biometric of the fingerprint recognition system. It is a two-step approach. In the first step raw fingerprint images are enhanced using high-frequency-emphasis filtering (HFEF). The second step is a simple linear fusion process between the raw images and the HFEF ones. It is shown that the proposed approach increases the verification and identification of the fingerprint biometric recognition system, where any improvement is justified using the correlation performance metrics of the matching algorithm.
Extraction of edge-based and region-based features for object recognition
NASA Astrophysics Data System (ADS)
Coutts, Benjamin; Ravi, Srinivas; Hu, Gongzhu; Shrikhande, Neelima
1993-08-01
One of the central problems of computer vision is object recognition. A catalogue of model objects is described as a set of features such as edges and surfaces. The same features are extracted from the scene and matched against the models for object recognition. Edges and surfaces extracted from the scenes are often noisy and imperfect. In this paper algorithms are described for improving low level edge and surface features. Existing edge extraction algorithms are applied to the intensity image to obtain edge features. Initial edges are traced by following directions of the current contour. These are improved by using corresponding depth and intensity information for decision making at branch points. Surface fitting routines are applied to the range image to obtain planar surface patches. An algorithm of region growing is developed that starts with a coarse segmentation and uses quadric surface fitting to iteratively merge adjacent regions into quadric surfaces based on approximate orthogonal distance regression. Surface information obtained is returned to the edge extraction routine to detect and remove fake edges. This process repeats until no more merging or edge improvement can take place. Both synthetic (with Gaussian noise) and real images containing multiple object scenes have been tested using the merging criteria. Results appeared quite encouraging.
Horror Image Recognition Based on Context-Aware Multi-Instance Learning.
Li, Bing; Xiong, Weihua; Wu, Ou; Hu, Weiming; Maybank, Stephen; Yan, Shuicheng
2015-12-01
Horror content sharing on the Web is a growing phenomenon that can interfere with our daily life and affect the mental health of those involved. As an important form of expression, horror images have their own characteristics that can evoke extreme emotions. In this paper, we present a novel context-aware multi-instance learning (CMIL) algorithm for horror image recognition. The CMIL algorithm identifies horror images and picks out the regions that cause the sensation of horror in these horror images. It obtains contextual cues among adjacent regions in an image using a random walk on a contextual graph. Borrowing the strength of the fuzzy support vector machine (FSVM), we define a heuristic optimization procedure based on the FSVM to search for the optimal classifier for the CMIL. To improve the initialization of the CMIL, we propose a novel visual saliency model based on the tensor analysis. The average saliency value of each segmented region is set as its initial fuzzy membership in the CMIL. The advantage of the tensor-based visual saliency model is that it not only adaptively selects features, but also dynamically determines fusion weights for saliency value combination from different feature subspaces. The effectiveness of the proposed CMIL model is demonstrated by its use in horror image recognition on two large-scale image sets collected from the Internet.
The Design of a Single-Bit CMOS Image Sensor for Iris Recognition Applications
Park, Keunyeol; Song, Minkyu
2018-01-01
This paper presents a single-bit CMOS image sensor (CIS) that uses a data processing technique with an edge detection block for simple iris segmentation. In order to recognize the iris image, the image sensor conventionally captures high-resolution image data in digital code, extracts the iris data, and then compares it with a reference image through a recognition algorithm. However, in this case, the frame rate decreases by the time required for digital signal conversion of multi-bit digital data through the analog-to-digital converter (ADC) in the CIS. In order to reduce the overall processing time as well as the power consumption, we propose a data processing technique with an exclusive OR (XOR) logic gate to obtain single-bit and edge detection image data instead of multi-bit image data through the ADC. In addition, we propose a logarithmic counter to efficiently measure single-bit image data that can be applied to the iris recognition algorithm. The effective area of the proposed single-bit image sensor (174 × 144 pixel) is 2.84 mm2 with a 0.18 μm 1-poly 4-metal CMOS image sensor process. The power consumption of the proposed single-bit CIS is 2.8 mW with a 3.3 V of supply voltage and 520 frame/s of the maximum frame rates. The error rate of the ADC is 0.24 least significant bit (LSB) on an 8-bit ADC basis at a 50 MHz sampling frequency. PMID:29495273
The Design of a Single-Bit CMOS Image Sensor for Iris Recognition Applications.
Park, Keunyeol; Song, Minkyu; Kim, Soo Youn
2018-02-24
This paper presents a single-bit CMOS image sensor (CIS) that uses a data processing technique with an edge detection block for simple iris segmentation. In order to recognize the iris image, the image sensor conventionally captures high-resolution image data in digital code, extracts the iris data, and then compares it with a reference image through a recognition algorithm. However, in this case, the frame rate decreases by the time required for digital signal conversion of multi-bit digital data through the analog-to-digital converter (ADC) in the CIS. In order to reduce the overall processing time as well as the power consumption, we propose a data processing technique with an exclusive OR (XOR) logic gate to obtain single-bit and edge detection image data instead of multi-bit image data through the ADC. In addition, we propose a logarithmic counter to efficiently measure single-bit image data that can be applied to the iris recognition algorithm. The effective area of the proposed single-bit image sensor (174 × 144 pixel) is 2.84 mm² with a 0.18 μm 1-poly 4-metal CMOS image sensor process. The power consumption of the proposed single-bit CIS is 2.8 mW with a 3.3 V of supply voltage and 520 frame/s of the maximum frame rates. The error rate of the ADC is 0.24 least significant bit (LSB) on an 8-bit ADC basis at a 50 MHz sampling frequency.
Mathematical algorithm for the automatic recognition of intestinal parasites.
Alva, Alicia; Cangalaya, Carla; Quiliano, Miguel; Krebs, Casey; Gilman, Robert H; Sheen, Patricia; Zimic, Mirko
2017-01-01
Parasitic infections are generally diagnosed by professionals trained to recognize the morphological characteristics of the eggs in microscopic images of fecal smears. However, this laboratory diagnosis requires medical specialists which are lacking in many of the areas where these infections are most prevalent. In response to this public health issue, we developed a software based on pattern recognition analysis from microscopi digital images of fecal smears, capable of automatically recognizing and diagnosing common human intestinal parasites. To this end, we selected 229, 124, 217, and 229 objects from microscopic images of fecal smears positive for Taenia sp., Trichuris trichiura, Diphyllobothrium latum, and Fasciola hepatica, respectively. Representative photographs were selected by a parasitologist. We then implemented our algorithm in the open source program SCILAB. The algorithm processes the image by first converting to gray-scale, then applies a fourteen step filtering process, and produces a skeletonized and tri-colored image. The features extracted fall into two general categories: geometric characteristics and brightness descriptions. Individual characteristics were quantified and evaluated with a logistic regression to model their ability to correctly identify each parasite separately. Subsequently, all algorithms were evaluated for false positive cross reactivity with the other parasites studied, excepting Taenia sp. which shares very few morphological characteristics with the others. The principal result showed that our algorithm reached sensitivities between 99.10%-100% and specificities between 98.13%- 98.38% to detect each parasite separately. We did not find any cross-positivity in the algorithms for the three parasites evaluated. In conclusion, the results demonstrated the capacity of our computer algorithm to automatically recognize and diagnose Taenia sp., Trichuris trichiura, Diphyllobothrium latum, and Fasciola hepatica with a high sensitivity and specificity.
Mathematical algorithm for the automatic recognition of intestinal parasites
Alva, Alicia; Cangalaya, Carla; Quiliano, Miguel; Krebs, Casey; Gilman, Robert H.; Sheen, Patricia; Zimic, Mirko
2017-01-01
Parasitic infections are generally diagnosed by professionals trained to recognize the morphological characteristics of the eggs in microscopic images of fecal smears. However, this laboratory diagnosis requires medical specialists which are lacking in many of the areas where these infections are most prevalent. In response to this public health issue, we developed a software based on pattern recognition analysis from microscopi digital images of fecal smears, capable of automatically recognizing and diagnosing common human intestinal parasites. To this end, we selected 229, 124, 217, and 229 objects from microscopic images of fecal smears positive for Taenia sp., Trichuris trichiura, Diphyllobothrium latum, and Fasciola hepatica, respectively. Representative photographs were selected by a parasitologist. We then implemented our algorithm in the open source program SCILAB. The algorithm processes the image by first converting to gray-scale, then applies a fourteen step filtering process, and produces a skeletonized and tri-colored image. The features extracted fall into two general categories: geometric characteristics and brightness descriptions. Individual characteristics were quantified and evaluated with a logistic regression to model their ability to correctly identify each parasite separately. Subsequently, all algorithms were evaluated for false positive cross reactivity with the other parasites studied, excepting Taenia sp. which shares very few morphological characteristics with the others. The principal result showed that our algorithm reached sensitivities between 99.10%-100% and specificities between 98.13%- 98.38% to detect each parasite separately. We did not find any cross-positivity in the algorithms for the three parasites evaluated. In conclusion, the results demonstrated the capacity of our computer algorithm to automatically recognize and diagnose Taenia sp., Trichuris trichiura, Diphyllobothrium latum, and Fasciola hepatica with a high sensitivity and specificity. PMID:28410387
NASA Astrophysics Data System (ADS)
Lu, Li; Sheng, Wen; Liu, Shihua; Zhang, Xianzhi
2014-10-01
The ballistic missile hyperspectral data of imaging spectrometer from the near-space platform are generated by numerical method. The characteristic of the ballistic missile hyperspectral data is extracted and matched based on two different kinds of algorithms, which called transverse counting and quantization coding, respectively. The simulation results show that two algorithms extract the characteristic of ballistic missile adequately and accurately. The algorithm based on the transverse counting has the low complexity and can be implemented easily compared to the algorithm based on the quantization coding does. The transverse counting algorithm also shows the good immunity to the disturbance signals and speed up the matching and recognition of subsequent targets.
NASA Technical Reports Server (NTRS)
Knasel, T. Michael
1996-01-01
The primary goal of the Adaptive Vision Laboratory Research project was to develop advanced computer vision systems for automatic target recognition. The approach used in this effort combined several machine learning paradigms including evolutionary learning algorithms, neural networks, and adaptive clustering techniques to develop the E-MOR.PH system. This system is capable of generating pattern recognition systems to solve a wide variety of complex recognition tasks. A series of simulation experiments were conducted using E-MORPH to solve problems in OCR, military target recognition, industrial inspection, and medical image analysis. The bulk of the funds provided through this grant were used to purchase computer hardware and software to support these computationally intensive simulations. The payoff from this effort is the reduced need for human involvement in the design and implementation of recognition systems. We have shown that the techniques used in E-MORPH are generic and readily transition to other problem domains. Specifically, E-MORPH is multi-phase evolutionary leaming system that evolves cooperative sets of features detectors and combines their response using an adaptive classifier to form a complete pattern recognition system. The system can operate on binary or grayscale images. In our most recent experiments, we used multi-resolution images that are formed by applying a Gabor wavelet transform to a set of grayscale input images. To begin the leaming process, candidate chips are extracted from the multi-resolution images to form a training set and a test set. A population of detector sets is randomly initialized to start the evolutionary process. Using a combination of evolutionary programming and genetic algorithms, the feature detectors are enhanced to solve a recognition problem. The design of E-MORPH and recognition results for a complex problem in medical image analysis are described at the end of this report. The specific task involves the identification of vertebrae in x-ray images of human spinal columns. This problem is extremely challenging because the individual vertebra exhibit variation in shape, scale, orientation, and contrast. E-MORPH generated several accurate recognition systems to solve this task. This dual use of this ATR technology clearly demonstrates the flexibility and power of our approach.
NASA Astrophysics Data System (ADS)
Duclos, D.; Lonnoy, J.; Guillerm, Q.; Jurie, F.; Herbin, S.; D'Angelo, E.
2008-04-01
The last five years have seen a renewal of Automatic Target Recognition applications, mainly because of the latest advances in machine learning techniques. In this context, large collections of image datasets are essential for training algorithms as well as for their evaluation. Indeed, the recent proliferation of recognition algorithms, generally applied to slightly different problems, make their comparisons through clean evaluation campaigns necessary. The ROBIN project tries to fulfil these two needs by putting unclassified datasets, ground truths, competitions and metrics for the evaluation of ATR algorithms at the disposition of the scientific community. The scope of this project includes single and multi-class generic target detection and generic target recognition, in military and security contexts. From our knowledge, it is the first time that a database of this importance (several hundred thousands of visible and infrared hand annotated images) has been publicly released. Funded by the French Ministry of Defence (DGA) and by the French Ministry of Research, ROBIN is one of the ten Techno-vision projects. Techno-vision is a large and ambitious government initiative for building evaluation means for computer vision technologies, for various application contexts. ROBIN's consortium includes major companies and research centres involved in Computer Vision R&D in the field of defence: Bertin Technologies, CNES, ECA, DGA, EADS, INRIA, ONERA, MBDA, SAGEM, THALES. This paper, which first gives an overview of the whole project, is focused on one of ROBIN's key competitions, the SAGEM Defence Security database. This dataset contains more than eight hundred ground and aerial infrared images of six different vehicles in cluttered scenes including distracters. Two different sets of data are available for each target. The first set includes different views of each vehicle at close range in a "simple" background, and can be used to train algorithms. The second set contains many views of the same vehicle in different contexts and situations simulating operational scenarios.
Scheirer, Walter J; de Rezende Rocha, Anderson; Sapkota, Archana; Boult, Terrance E
2013-07-01
To date, almost all experimental evaluations of machine learning-based recognition algorithms in computer vision have taken the form of "closed set" recognition, whereby all testing classes are known at training time. A more realistic scenario for vision applications is "open set" recognition, where incomplete knowledge of the world is present at training time, and unknown classes can be submitted to an algorithm during testing. This paper explores the nature of open set recognition and formalizes its definition as a constrained minimization problem. The open set recognition problem is not well addressed by existing algorithms because it requires strong generalization. As a step toward a solution, we introduce a novel "1-vs-set machine," which sculpts a decision space from the marginal distances of a 1-class or binary SVM with a linear kernel. This methodology applies to several different applications in computer vision where open set recognition is a challenging problem, including object recognition and face verification. We consider both in this work, with large scale cross-dataset experiments performed over the Caltech 256 and ImageNet sets, as well as face matching experiments performed over the Labeled Faces in the Wild set. The experiments highlight the effectiveness of machines adapted for open set evaluation compared to existing 1-class and binary SVMs for the same tasks.
High-Performance 3D Image Processing Architectures for Image-Guided Interventions
2008-01-01
Parallel architectures and algorithms for image understanding. Boston: Academic Press, 1991. [99] A. Bruhn, T. Jakob, M. Fischer, T. Kohlberger , J...Symposium on Pattern Recognition, vol. 2449(pp. 290-297, 2002. [100] A. Bruhn, T. Jakob, M. Fischer, T. Kohlberger , J. Weickert, U. Bruning, and C
Face recognition in the thermal infrared domain
NASA Astrophysics Data System (ADS)
Kowalski, M.; Grudzień, A.; Palka, N.; Szustakowski, M.
2017-10-01
Biometrics refers to unique human characteristics. Each unique characteristic may be used to label and describe individuals and for automatic recognition of a person based on physiological or behavioural properties. One of the most natural and the most popular biometric trait is a face. The most common research methods on face recognition are based on visible light. State-of-the-art face recognition systems operating in the visible light spectrum achieve very high level of recognition accuracy under controlled environmental conditions. Thermal infrared imagery seems to be a promising alternative or complement to visible range imaging due to its relatively high resistance to illumination changes. A thermal infrared image of the human face presents its unique heat-signature and can be used for recognition. The characteristics of thermal images maintain advantages over visible light images, and can be used to improve algorithms of human face recognition in several aspects. Mid-wavelength or far-wavelength infrared also referred to as thermal infrared seems to be promising alternatives. We present the study on 1:1 recognition in thermal infrared domain. The two approaches we are considering are stand-off face verification of non-moving person as well as stop-less face verification on-the-move. The paper presents methodology of our studies and challenges for face recognition systems in the thermal infrared domain.
An Autonomous Star Identification Algorithm Based on One-Dimensional Vector Pattern for Star Sensors
Luo, Liyan; Xu, Luping; Zhang, Hua
2015-01-01
In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms. PMID:26198233
Luo, Liyan; Xu, Luping; Zhang, Hua
2015-07-07
In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms.
Stochastic resonance investigation of object detection in images
NASA Astrophysics Data System (ADS)
Repperger, Daniel W.; Pinkus, Alan R.; Skipper, Julie A.; Schrider, Christina D.
2007-02-01
Object detection in images was conducted using a nonlinear means of improving signal to noise ratio termed "stochastic resonance" (SR). In a recent United States patent application, it was shown that arbitrarily large signal to noise ratio gains could be realized when a signal detection problem is cast within the context of a SR filter. Signal-to-noise ratio measures were investigated. For a binary object recognition task (friendly versus hostile), the method was implemented by perturbing the recognition algorithm and subsequently thresholding via a computer simulation. To fairly test the efficacy of the proposed algorithm, a unique database of images has been constructed by modifying two sample library objects by adjusting their brightness, contrast and relative size via commercial software to gradually compromise their saliency to identification. The key to the use of the SR method is to produce a small perturbation in the identification algorithm and then to threshold the results, thus improving the overall system's ability to discern objects. A background discussion of the SR method is presented. A standard test is proposed in which object identification algorithms could be fairly compared against each other with respect to their relative performance.
Single-pixel non-imaging object recognition by means of Fourier spectrum acquisition
NASA Astrophysics Data System (ADS)
Chen, Huichao; Shi, Jianhong; Liu, Xialin; Niu, Zhouzhou; Zeng, Guihua
2018-04-01
Single-pixel imaging has emerged over recent years as a novel imaging technique, which has significant application prospects. In this paper, we propose and experimentally demonstrate a scheme that can achieve single-pixel non-imaging object recognition by acquiring the Fourier spectrum. In an experiment, a four-step phase-shifting sinusoid illumination light is used to irradiate the object image, the value of the light intensity is measured with a single-pixel detection unit, and the Fourier coefficients of the object image are obtained by a differential measurement. The Fourier coefficients are first cast into binary numbers to obtain the hash value. We propose a new method of perceptual hashing algorithm, which is combined with a discrete Fourier transform to calculate the hash value. The hash distance is obtained by calculating the difference of the hash value between the object image and the contrast images. By setting an appropriate threshold, the object image can be quickly and accurately recognized. The proposed scheme realizes single-pixel non-imaging perceptual hashing object recognition by using fewer measurements. Our result might open a new path for realizing object recognition with non-imaging.
Image processing for drawing recognition
NASA Astrophysics Data System (ADS)
Feyzkhanov, Rustem; Zhelavskaya, Irina
2014-03-01
The task of recognizing edges of rectangular structures is well known. Still, almost all of them work with static images and has no limit on work time. We propose application of conducting homography for the video stream which can be obtained from the webcam. We propose algorithm which can be successfully used for this kind of application. One of the main use cases of such application is recognition of drawings by person on the piece of paper before webcam.
Near infrared and visible face recognition based on decision fusion of LBP and DCT features
NASA Astrophysics Data System (ADS)
Xie, Zhihua; Zhang, Shuai; Liu, Guodong; Xiong, Jinquan
2018-03-01
Visible face recognition systems, being vulnerable to illumination, expression, and pose, can not achieve robust performance in unconstrained situations. Meanwhile, near infrared face images, being light- independent, can avoid or limit the drawbacks of face recognition in visible light, but its main challenges are low resolution and signal noise ratio (SNR). Therefore, near infrared and visible fusion face recognition has become an important direction in the field of unconstrained face recognition research. In order to extract the discriminative complementary features between near infrared and visible images, in this paper, we proposed a novel near infrared and visible face fusion recognition algorithm based on DCT and LBP features. Firstly, the effective features in near-infrared face image are extracted by the low frequency part of DCT coefficients and the partition histograms of LBP operator. Secondly, the LBP features of visible-light face image are extracted to compensate for the lacking detail features of the near-infrared face image. Then, the LBP features of visible-light face image, the DCT and LBP features of near-infrared face image are sent to each classifier for labeling. Finally, decision level fusion strategy is used to obtain the final recognition result. The visible and near infrared face recognition is tested on HITSZ Lab2 visible and near infrared face database. The experiment results show that the proposed method extracts the complementary features of near-infrared and visible face images and improves the robustness of unconstrained face recognition. Especially for the circumstance of small training samples, the recognition rate of proposed method can reach 96.13%, which has improved significantly than 92.75 % of the method based on statistical feature fusion.
Fuzzy automata and pattern matching
NASA Technical Reports Server (NTRS)
Setzer, C. B.; Warsi, N. A.
1986-01-01
A wide-ranging search for articles and books concerned with fuzzy automata and syntactic pattern recognition is presented. A number of survey articles on image processing and feature detection were included. Hough's algorithm is presented to illustrate the way in which knowledge about an image can be used to interpret the details of the image. It was found that in hand generated pictures, the algorithm worked well on following the straight lines, but had great difficulty turning corners. An algorithm was developed which produces a minimal finite automaton recognizing a given finite set of strings. One difficulty of the construction is that, in some cases, this minimal automaton is not unique for a given set of strings and a given maximum length. This algorithm compares favorably with other inference algorithms. More importantly, the algorithm produces an automaton with a rigorously described relationship to the original set of strings that does not depend on the algorithm itself.
Applications of independent component analysis in SAR images
NASA Astrophysics Data System (ADS)
Huang, Shiqi; Cai, Xinhua; Hui, Weihua; Xu, Ping
2009-07-01
The detection of faint, small and hidden targets in synthetic aperture radar (SAR) image is still an issue for automatic target recognition (ATR) system. How to effectively separate these targets from the complex background is the aim of this paper. Independent component analysis (ICA) theory can enhance SAR image targets and improve signal clutter ratio (SCR), which benefits to detect and recognize faint targets. Therefore, this paper proposes a new SAR image target detection algorithm based on ICA. In experimental process, the fast ICA (FICA) algorithm is utilized. Finally, some real SAR image data is used to test the method. The experimental results verify that the algorithm is feasible, and it can improve the SCR of SAR image and increase the detection rate for the faint small targets.
Classifier dependent feature preprocessing methods
NASA Astrophysics Data System (ADS)
Rodriguez, Benjamin M., II; Peterson, Gilbert L.
2008-04-01
In mobile applications, computational complexity is an issue that limits sophisticated algorithms from being implemented on these devices. This paper provides an initial solution to applying pattern recognition systems on mobile devices by combining existing preprocessing algorithms for recognition. In pattern recognition systems, it is essential to properly apply feature preprocessing tools prior to training classification models in an attempt to reduce computational complexity and improve the overall classification accuracy. The feature preprocessing tools extended for the mobile environment are feature ranking, feature extraction, data preparation and outlier removal. Most desktop systems today are capable of processing a majority of the available classification algorithms without concern of processing while the same is not true on mobile platforms. As an application of pattern recognition for mobile devices, the recognition system targets the problem of steganalysis, determining if an image contains hidden information. The measure of performance shows that feature preprocessing increases the overall steganalysis classification accuracy by an average of 22%. The methods in this paper are tested on a workstation and a Nokia 6620 (Symbian operating system) camera phone with similar results.
Character recognition using a neural network model with fuzzy representation
NASA Technical Reports Server (NTRS)
Tavakoli, Nassrin; Seniw, David
1992-01-01
The degree to which digital images are recognized correctly by computerized algorithms is highly dependent upon the representation and the classification processes. Fuzzy techniques play an important role in both processes. In this paper, the role of fuzzy representation and classification on the recognition of digital characters is investigated. An experimental Neural Network model with application to character recognition was developed. Through a set of experiments, the effect of fuzzy representation on the recognition accuracy of this model is presented.
Extraction of prostatic lumina and automated recognition for prostatic calculus image using PCA-SVM.
Wang, Zhuocai; Xu, Xiangmin; Ding, Xiaojun; Xiao, Hui; Huang, Yusheng; Liu, Jian; Xing, Xiaofen; Wang, Hua; Liao, D Joshua
2011-01-01
Identification of prostatic calculi is an important basis for determining the tissue origin. Computation-assistant diagnosis of prostatic calculi may have promising potential but is currently still less studied. We studied the extraction of prostatic lumina and automated recognition for calculus images. Extraction of lumina from prostate histology images was based on local entropy and Otsu threshold recognition using PCA-SVM and based on the texture features of prostatic calculus. The SVM classifier showed an average time 0.1432 second, an average training accuracy of 100%, an average test accuracy of 93.12%, a sensitivity of 87.74%, and a specificity of 94.82%. We concluded that the algorithm, based on texture features and PCA-SVM, can recognize the concentric structure and visualized features easily. Therefore, this method is effective for the automated recognition of prostatic calculi.
Improved document image segmentation algorithm using multiresolution morphology
NASA Astrophysics Data System (ADS)
Bukhari, Syed Saqib; Shafait, Faisal; Breuel, Thomas M.
2011-01-01
Page segmentation into text and non-text elements is an essential preprocessing step before optical character recognition (OCR) operation. In case of poor segmentation, an OCR classification engine produces garbage characters due to the presence of non-text elements. This paper describes modifications to the text/non-text segmentation algorithm presented by Bloomberg,1 which is also available in his open-source Leptonica library.2The modifications result in significant improvements and achieved better segmentation accuracy than the original algorithm for UW-III, UNLV, ICDAR 2009 page segmentation competition test images and circuit diagram datasets.
Wavelet-Based Signal and Image Processing for Target Recognition
NASA Astrophysics Data System (ADS)
Sherlock, Barry G.
2002-11-01
The PI visited NSWC Dahlgren, VA, for six weeks in May-June 2002 and collaborated with scientists in the G33 TEAMS facility, and with Marilyn Rudzinsky of T44 Technology and Photonic Systems Branch. During this visit the PI also presented six educational seminars to NSWC scientists on various aspects of signal processing. Several items from the grant proposal were completed, including (1) wavelet-based algorithms for interpolation of 1-d signals and 2-d images; (2) Discrete Wavelet Transform domain based algorithms for filtering of image data; (3) wavelet-based smoothing of image sequence data originally obtained for the CRITTIR (Clutter Rejection Involving Temporal Techniques in the Infra-Red) project. The PI visited the University of Stellenbosch, South Africa to collaborate with colleagues Prof. B.M. Herbst and Prof. J. du Preez on the use of wavelet image processing in conjunction with pattern recognition techniques. The University of Stellenbosch has offered the PI partial funding to support a sabbatical visit in Fall 2003, the primary purpose of which is to enable the PI to develop and enhance his expertise in Pattern Recognition. During the first year, the grant supported publication of 3 referred papers, presentation of 9 seminars and an intensive two-day course on wavelet theory. The grant supported the work of two students who functioned as research assistants.
NASA Technical Reports Server (NTRS)
Gramenopoulos, N. (Principal Investigator)
1974-01-01
The author has identified the following significant results. A diffraction pattern analysis of MSS images led to the development of spatial signatures for farm land, urban areas and mountains. Four spatial features are employed to describe the spatial characteristics of image cells in the digital data. Three spectral features are combined with the spatial features to form a seven dimensional vector describing each cell. Then, the classification of the feature vectors is accomplished by using the maximum likelihood criterion. It was determined that the recognition accuracy with the maximum likelihood criterion depends on the statistics of the feature vectors. It was also determined that for a given geographic area the statistics of the classes remain invariable for a period of a month, but vary substantially between seasons. Three ERTS-1 images from the Phoenix, Arizona area were processed, and recognition rates between 85% and 100% were obtained for the terrain classes of desert, farms, mountains, and urban areas. To eliminate the need for training data, a new clustering algorithm has been developed. Seven ERTS-1 images from four test sites have been processed through the clustering algorithm, and high recognition rates have been achieved for all terrain classes.
Advanced biologically plausible algorithms for low-level image processing
NASA Astrophysics Data System (ADS)
Gusakova, Valentina I.; Podladchikova, Lubov N.; Shaposhnikov, Dmitry G.; Markin, Sergey N.; Golovan, Alexander V.; Lee, Seong-Whan
1999-08-01
At present, in computer vision, the approach based on modeling the biological vision mechanisms is extensively developed. However, up to now, real world image processing has no effective solution in frameworks of both biologically inspired and conventional approaches. Evidently, new algorithms and system architectures based on advanced biological motivation should be developed for solution of computational problems related to this visual task. Basic problems that should be solved for creation of effective artificial visual system to process real world imags are a search for new algorithms of low-level image processing that, in a great extent, determine system performance. In the present paper, the result of psychophysical experiments and several advanced biologically motivated algorithms for low-level processing are presented. These algorithms are based on local space-variant filter, context encoding visual information presented in the center of input window, and automatic detection of perceptually important image fragments. The core of latter algorithm are using local feature conjunctions such as noncolinear oriented segment and composite feature map formation. Developed algorithms were integrated into foveal active vision model, the MARR. It is supposed that proposed algorithms may significantly improve model performance while real world image processing during memorizing, search, and recognition.
Wavelet decomposition based principal component analysis for face recognition using MATLAB
NASA Astrophysics Data System (ADS)
Sharma, Mahesh Kumar; Sharma, Shashikant; Leeprechanon, Nopbhorn; Ranjan, Aashish
2016-03-01
For the realization of face recognition systems in the static as well as in the real time frame, algorithms such as principal component analysis, independent component analysis, linear discriminate analysis, neural networks and genetic algorithms are used for decades. This paper discusses an approach which is a wavelet decomposition based principal component analysis for face recognition. Principal component analysis is chosen over other algorithms due to its relative simplicity, efficiency, and robustness features. The term face recognition stands for identifying a person from his facial gestures and having resemblance with factor analysis in some sense, i.e. extraction of the principal component of an image. Principal component analysis is subjected to some drawbacks, mainly the poor discriminatory power and the large computational load in finding eigenvectors, in particular. These drawbacks can be greatly reduced by combining both wavelet transform decomposition for feature extraction and principal component analysis for pattern representation and classification together, by analyzing the facial gestures into space and time domain, where, frequency and time are used interchangeably. From the experimental results, it is envisaged that this face recognition method has made a significant percentage improvement in recognition rate as well as having a better computational efficiency.
Fingerprint recognition of wavelet-based compressed images by neuro-fuzzy clustering
NASA Astrophysics Data System (ADS)
Liu, Ti C.; Mitra, Sunanda
1996-06-01
Image compression plays a crucial role in many important and diverse applications requiring efficient storage and transmission. This work mainly focuses on a wavelet transform (WT) based compression of fingerprint images and the subsequent classification of the reconstructed images. The algorithm developed involves multiresolution wavelet decomposition, uniform scalar quantization, entropy and run- length encoder/decoder and K-means clustering of the invariant moments as fingerprint features. The performance of the WT-based compression algorithm has been compared with JPEG current image compression standard. Simulation results show that WT outperforms JPEG in high compression ratio region and the reconstructed fingerprint image yields proper classification.
Matsugu, Masakazu; Mori, Katsuhiko; Mitari, Yusuke; Kaneda, Yuji
2003-01-01
Reliable detection of ordinary facial expressions (e.g. smile) despite the variability among individuals as well as face appearance is an important step toward the realization of perceptual user interface with autonomous perception of persons. We describe a rule-based algorithm for robust facial expression recognition combined with robust face detection using a convolutional neural network. In this study, we address the problem of subject independence as well as translation, rotation, and scale invariance in the recognition of facial expression. The result shows reliable detection of smiles with recognition rate of 97.6% for 5600 still images of more than 10 subjects. The proposed algorithm demonstrated the ability to discriminate smiling from talking based on the saliency score obtained from voting visual cues. To the best of our knowledge, it is the first facial expression recognition model with the property of subject independence combined with robustness to variability in facial appearance.
Infrared and visible fusion face recognition based on NSCT domain
NASA Astrophysics Data System (ADS)
Xie, Zhihua; Zhang, Shuai; Liu, Guodong; Xiong, Jinquan
2018-01-01
Visible face recognition systems, being vulnerable to illumination, expression, and pose, can not achieve robust performance in unconstrained situations. Meanwhile, near infrared face images, being light- independent, can avoid or limit the drawbacks of face recognition in visible light, but its main challenges are low resolution and signal noise ratio (SNR). Therefore, near infrared and visible fusion face recognition has become an important direction in the field of unconstrained face recognition research. In this paper, a novel fusion algorithm in non-subsampled contourlet transform (NSCT) domain is proposed for Infrared and visible face fusion recognition. Firstly, NSCT is used respectively to process the infrared and visible face images, which exploits the image information at multiple scales, orientations, and frequency bands. Then, to exploit the effective discriminant feature and balance the power of high-low frequency band of NSCT coefficients, the local Gabor binary pattern (LGBP) and Local Binary Pattern (LBP) are applied respectively in different frequency parts to obtain the robust representation of infrared and visible face images. Finally, the score-level fusion is used to fuse the all the features for final classification. The visible and near infrared face recognition is tested on HITSZ Lab2 visible and near infrared face database. Experiments results show that the proposed method extracts the complementary features of near-infrared and visible-light images and improves the robustness of unconstrained face recognition.
A New Pivoting and Iterative Text Detection Algorithm for Biomedical Images
Xu, Songhua; Krauthammer, Michael
2010-01-01
There is interest to expand the reach of literature mining to include the analysis of biomedical images, which often contain a paper’s key findings. Examples include recent studies that use Optical Character Recognition (OCR) to extract image text, which is used to boost biomedical image retrieval and classification. Such studies rely on the robust identification of text elements in biomedical images, which is a non-trivial task. In this work, we introduce a new text detection algorithm for biomedical images based on iterative projection histograms. We study the effectiveness of our algorithm by evaluating the performance on a set of manually labeled random biomedical images, and compare the performance against other state-of-the-art text detection algorithms. In this paper, we demonstrate that a projection histogram-based text detection approach is well suited for text detection in biomedical images, with a performance of F score of .60. The approach performs better than comparable approaches for text detection. Further, we show that the iterative application of the algorithm is boosting overall detection performance. A C++ implementation of our algorithm is freely available through email request for academic use. PMID:20887803
Object recognition and localization from 3D point clouds by maximum-likelihood estimation
NASA Astrophysics Data System (ADS)
Dantanarayana, Harshana G.; Huntley, Jonathan M.
2017-08-01
We present an algorithm based on maximum-likelihood analysis for the automated recognition of objects, and estimation of their pose, from 3D point clouds. Surfaces segmented from depth images are used as the features, unlike `interest point'-based algorithms which normally discard such data. Compared to the 6D Hough transform, it has negligible memory requirements, and is computationally efficient compared to iterative closest point algorithms. The same method is applicable to both the initial recognition/pose estimation problem as well as subsequent pose refinement through appropriate choice of the dispersion of the probability density functions. This single unified approach therefore avoids the usual requirement for different algorithms for these two tasks. In addition to the theoretical description, a simple 2 degrees of freedom (d.f.) example is given, followed by a full 6 d.f. analysis of 3D point cloud data from a cluttered scene acquired by a projected fringe-based scanner, which demonstrated an RMS alignment error as low as 0.3 mm.
Textual and shape-based feature extraction and neuro-fuzzy classifier for nuclear track recognition
NASA Astrophysics Data System (ADS)
Khayat, Omid; Afarideh, Hossein
2013-04-01
Track counting algorithms as one of the fundamental principles of nuclear science have been emphasized in the recent years. Accurate measurement of nuclear tracks on solid-state nuclear track detectors is the aim of track counting systems. Commonly track counting systems comprise a hardware system for the task of imaging and software for analysing the track images. In this paper, a track recognition algorithm based on 12 defined textual and shape-based features and a neuro-fuzzy classifier is proposed. Features are defined so as to discern the tracks from the background and small objects. Then, according to the defined features, tracks are detected using a trained neuro-fuzzy system. Features and the classifier are finally validated via 100 Alpha track images and 40 training samples. It is shown that principle textual and shape-based features concomitantly yield a high rate of track detection compared with the single-feature based methods.
Probst, Yasmine; Nguyen, Duc Thanh; Tran, Minh Khoi; Li, Wanqing
2015-07-27
Dietary assessment, while traditionally based on pen-and-paper, is rapidly moving towards automatic approaches. This study describes an Australian automatic food record method and its prototype for dietary assessment via the use of a mobile phone and techniques of image processing and pattern recognition. Common visual features including scale invariant feature transformation (SIFT), local binary patterns (LBP), and colour are used for describing food images. The popular bag-of-words (BoW) model is employed for recognizing the images taken by a mobile phone for dietary assessment. Technical details are provided together with discussions on the issues and future work.
Skeletonization of gray-scale images by gray weighted distance transform
NASA Astrophysics Data System (ADS)
Qian, Kai; Cao, Siqi; Bhattacharya, Prabir
1997-07-01
In pattern recognition, thinning algorithms are often a useful tool to represent a digital pattern by means of a skeletonized image, consisting of a set of one-pixel-width lines that highlight the significant features interest in applying thinning directly to gray-scale images, motivated by the desire of processing images characterized by meaningful information distributed over different levels of gray intensity. In this paper, a new algorithm is presented which can skeletonize both black-white and gray pictures. This algorithm is based on the gray distance transformation and can be used to process any non-well uniformly distributed gray-scale picture and can preserve the topology of original picture. This process includes a preliminary phase of investigation in the 'hollows' in the gray-scale image; these hollows are considered not as topological constrains for the skeleton structure depending on their statistically significant depth. This algorithm can also be executed on a parallel machine as all the operations are executed in local. Some examples are discussed to illustrate the algorithm.
A lane line segmentation algorithm based on adaptive threshold and connected domain theory
NASA Astrophysics Data System (ADS)
Feng, Hui; Xu, Guo-sheng; Han, Yi; Liu, Yang
2018-04-01
Before detecting cracks and repairs on road lanes, it's necessary to eliminate the influence of lane lines on the recognition result in road lane images. Aiming at the problems caused by lane lines, an image segmentation algorithm based on adaptive threshold and connected domain is proposed. First, by analyzing features like grey level distribution and the illumination of the images, the algorithm uses Hough transform to divide the images into different sections and convert them into binary images separately. It then uses the connected domain theory to amend the outcome of segmentation, remove noises and fill the interior zone of lane lines. Experiments have proved that this method could eliminate the influence of illumination and lane line abrasion, removing noises thoroughly while maintaining high segmentation precision.
NASA Astrophysics Data System (ADS)
Rose, Jake; Martin, Michael; Bourlai, Thirimachos
2014-06-01
In law enforcement and security applications, the acquisition of face images is critical in producing key trace evidence for the successful identification of potential threats. The goal of the study is to demonstrate that steroid usage significantly affects human facial appearance and hence, the performance of commercial and academic face recognition (FR) algorithms. In this work, we evaluate the performance of state-of-the-art FR algorithms on two unique face image datasets of subjects before (gallery set) and after (probe set) steroid (or human growth hormone) usage. For the purpose of this study, datasets of 73 subjects were created from multiple sources found on the Internet, containing images of men and women before and after steroid usage. Next, we geometrically pre-processed all images of both face datasets. Then, we applied image restoration techniques on the same face datasets, and finally, we applied FR algorithms in order to match the pre-processed face images of our probe datasets against the face images of the gallery set. Experimental results demonstrate that only a specific set of FR algorithms obtain the most accurate results (in terms of the rank-1 identification rate). This is because there are several factors that influence the efficiency of face matchers including (i) the time lapse between the before and after image pre-processing and restoration face photos, (ii) the usage of different drugs (e.g. Dianabol, Winstrol, and Decabolan), (iii) the usage of different cameras to capture face images, and finally, (iv) the variability of standoff distance, illumination and other noise factors (e.g. motion noise). All of the previously mentioned complicated scenarios make clear that cross-scenario matching is a very challenging problem and, thus, further investigation is required.
A new method of edge detection for object recognition
Maddox, Brian G.; Rhew, Benjamin
2004-01-01
Traditional edge detection systems function by returning every edge in an input image. This can result in a large amount of clutter and make certain vectorization algorithms less accurate. Accuracy problems can then have a large impact on automated object recognition systems that depend on edge information. A new method of directed edge detection can be used to limit the number of edges returned based on a particular feature. This results in a cleaner image that is easier for vectorization. Vectorized edges from this process could then feed an object recognition system where the edge data would also contain information as to what type of feature it bordered.
Modal-Power-Based Haptic Motion Recognition
NASA Astrophysics Data System (ADS)
Kasahara, Yusuke; Shimono, Tomoyuki; Kuwahara, Hiroaki; Sato, Masataka; Ohnishi, Kouhei
Motion recognition based on sensory information is important for providing assistance to human using robots. Several studies have been carried out on motion recognition based on image information. However, in the motion of humans contact with an object can not be evaluated precisely by image-based recognition. This is because the considering force information is very important for describing contact motion. In this paper, a modal-power-based haptic motion recognition is proposed; modal power is considered to reveal information on both position and force. Modal power is considered to be one of the defining features of human motion. A motion recognition algorithm based on linear discriminant analysis is proposed to distinguish between similar motions. Haptic information is extracted using a bilateral master-slave system. Then, the observed motion is decomposed in terms of primitive functions in a modal space. The experimental results show the effectiveness of the proposed method.
Hybrid wavefront sensing and image correction algorithm for imaging through turbulent media
NASA Astrophysics Data System (ADS)
Wu, Chensheng; Robertson Rzasa, John; Ko, Jonathan; Davis, Christopher C.
2017-09-01
It is well known that passive image correction of turbulence distortions often involves using geometry-dependent deconvolution algorithms. On the other hand, active imaging techniques using adaptive optic correction should use the distorted wavefront information for guidance. Our work shows that a hybrid hardware-software approach is possible to obtain accurate and highly detailed images through turbulent media. The processing algorithm also takes much fewer iteration steps in comparison with conventional image processing algorithms. In our proposed approach, a plenoptic sensor is used as a wavefront sensor to guide post-stage image correction on a high-definition zoomable camera. Conversely, we show that given the ground truth of the highly detailed image and the plenoptic imaging result, we can generate an accurate prediction of the blurred image on a traditional zoomable camera. Similarly, the ground truth combined with the blurred image from the zoomable camera would provide the wavefront conditions. In application, our hybrid approach can be used as an effective way to conduct object recognition in a turbulent environment where the target has been significantly distorted or is even unrecognizable.
A fuzzy clustering algorithm to detect planar and quadric shapes
NASA Technical Reports Server (NTRS)
Krishnapuram, Raghu; Frigui, Hichem; Nasraoui, Olfa
1992-01-01
In this paper, we introduce a new fuzzy clustering algorithm to detect an unknown number of planar and quadric shapes in noisy data. The proposed algorithm is computationally and implementationally simple, and it overcomes many of the drawbacks of the existing algorithms that have been proposed for similar tasks. Since the clustering is performed in the original image space, and since no features need to be computed, this approach is particularly suited for sparse data. The algorithm may also be used in pattern recognition applications.
Recognition of pornographic web pages by classifying texts and images.
Hu, Weiming; Wu, Ou; Chen, Zhouyao; Fu, Zhouyu; Maybank, Steve
2007-06-01
With the rapid development of the World Wide Web, people benefit more and more from the sharing of information. However, Web pages with obscene, harmful, or illegal content can be easily accessed. It is important to recognize such unsuitable, offensive, or pornographic Web pages. In this paper, a novel framework for recognizing pornographic Web pages is described. A C4.5 decision tree is used to divide Web pages, according to content representations, into continuous text pages, discrete text pages, and image pages. These three categories of Web pages are handled, respectively, by a continuous text classifier, a discrete text classifier, and an algorithm that fuses the results from the image classifier and the discrete text classifier. In the continuous text classifier, statistical and semantic features are used to recognize pornographic texts. In the discrete text classifier, the naive Bayes rule is used to calculate the probability that a discrete text is pornographic. In the image classifier, the object's contour-based features are extracted to recognize pornographic images. In the text and image fusion algorithm, the Bayes theory is used to combine the recognition results from images and texts. Experimental results demonstrate that the continuous text classifier outperforms the traditional keyword-statistics-based classifier, the contour-based image classifier outperforms the traditional skin-region-based image classifier, the results obtained by our fusion algorithm outperform those by either of the individual classifiers, and our framework can be adapted to different categories of Web pages.
Jaafar, Haryati; Ibrahim, Salwani; Ramli, Dzati Athiar
2015-01-01
Mobile implementation is a current trend in biometric design. This paper proposes a new approach to palm print recognition, in which smart phones are used to capture palm print images at a distance. A touchless system was developed because of public demand for privacy and sanitation. Robust hand tracking, image enhancement, and fast computation processing algorithms are required for effective touchless and mobile-based recognition. In this project, hand tracking and the region of interest (ROI) extraction method were discussed. A sliding neighborhood operation with local histogram equalization, followed by a local adaptive thresholding or LHEAT approach, was proposed in the image enhancement stage to manage low-quality palm print images. To accelerate the recognition process, a new classifier, improved fuzzy-based k nearest centroid neighbor (IFkNCN), was implemented. By removing outliers and reducing the amount of training data, this classifier exhibited faster computation. Our experimental results demonstrate that a touchless palm print system using LHEAT and IFkNCN achieves a promising recognition rate of 98.64%. PMID:26113861
Automated thematic mapping and change detection of ERTS-A images
NASA Technical Reports Server (NTRS)
Gramenopoulos, N. (Principal Investigator)
1975-01-01
The author has identified the following significant results. In the first part of the investigation, spatial and spectral features were developed which were employed to automatically recognize terrain features through a clustering algorithm. In this part of the investigation, the size of the cell which is the number of digital picture elements used for computing the spatial and spectral features was varied. It was determined that the accuracy of terrain recognition decreases slowly as the cell size is reduced and coincides with increased cluster diffuseness. It was also proven that a cell size of 17 x 17 pixels when used with the clustering algorithm results in high recognition rates for major terrain classes. ERTS-1 data from five diverse geographic regions of the United States were processed through the clustering algorithm with 17 x 17 pixel cells. Simple land use maps were produced and the average terrain recognition accuracy was 82 percent.
Component Pin Recognition Using Algorithms Based on Machine Learning
NASA Astrophysics Data System (ADS)
Xiao, Yang; Hu, Hong; Liu, Ze; Xu, Jiangchang
2018-04-01
The purpose of machine vision for a plug-in machine is to improve the machine’s stability and accuracy, and recognition of the component pin is an important part of the vision. This paper focuses on component pin recognition using three different techniques. The first technique involves traditional image processing using the core algorithm for binary large object (BLOB) analysis. The second technique uses the histogram of oriented gradients (HOG), to experimentally compare the effect of the support vector machine (SVM) and the adaptive boosting machine (AdaBoost) learning meta-algorithm classifiers. The third technique is the use of an in-depth learning method known as convolution neural network (CNN), which involves identifying the pin by comparing a sample to its training. The main purpose of the research presented in this paper is to increase the knowledge of learning methods used in the plug-in machine industry in order to achieve better results.
Extraction of Prostatic Lumina and Automated Recognition for Prostatic Calculus Image Using PCA-SVM
Wang, Zhuocai; Xu, Xiangmin; Ding, Xiaojun; Xiao, Hui; Huang, Yusheng; Liu, Jian; Xing, Xiaofen; Wang, Hua; Liao, D. Joshua
2011-01-01
Identification of prostatic calculi is an important basis for determining the tissue origin. Computation-assistant diagnosis of prostatic calculi may have promising potential but is currently still less studied. We studied the extraction of prostatic lumina and automated recognition for calculus images. Extraction of lumina from prostate histology images was based on local entropy and Otsu threshold recognition using PCA-SVM and based on the texture features of prostatic calculus. The SVM classifier showed an average time 0.1432 second, an average training accuracy of 100%, an average test accuracy of 93.12%, a sensitivity of 87.74%, and a specificity of 94.82%. We concluded that the algorithm, based on texture features and PCA-SVM, can recognize the concentric structure and visualized features easily. Therefore, this method is effective for the automated recognition of prostatic calculi. PMID:21461364
Russian Character Recognition using Self-Organizing Map
NASA Astrophysics Data System (ADS)
Gunawan, D.; Arisandi, D.; Ginting, F. M.; Rahmat, R. F.; Amalia, A.
2017-01-01
The World Tourism Organization (UNWTO) in 2014 released that there are 28 million visitors who visit Russia. Most of the visitors might have problem in typing Russian word when using digital dictionary. This is caused by the letters, called Cyrillic that used by the Russian and the countries around it, have different shape than Latin letters. The visitors might not familiar with Cyrillic. This research proposes an alternative way to input the Cyrillic words. Instead of typing the Cyrillic words directly, camera can be used to capture image of the words as input. The captured image is cropped, then several pre-processing steps are applied such as noise filtering, binary image processing, segmentation and thinning. Next, the feature extraction process is applied to the image. Cyrillic letters recognition in the image is done by utilizing Self-Organizing Map (SOM) algorithm. SOM successfully recognizes 89.09% Cyrillic letters from the computer-generated images. On the other hand, SOM successfully recognizes 88.89% Cyrillic letters from the image captured by the smartphone’s camera. For the word recognition, SOM successfully recognized 292 words and partially recognized 58 words from the image captured by the smartphone’s camera. Therefore, the accuracy of the word recognition using SOM is 83.42%
Modeling IrisCode and its variants as convex polyhedral cones and its security implications.
Kong, Adams Wai-Kin
2013-03-01
IrisCode, developed by Daugman, in 1993, is the most influential iris recognition algorithm. A thorough understanding of IrisCode is essential, because over 100 million persons have been enrolled by this algorithm and many biometric personal identification and template protection methods have been developed based on IrisCode. This paper indicates that a template produced by IrisCode or its variants is a convex polyhedral cone in a hyperspace. Its central ray, being a rough representation of the original biometric signal, can be computed by a simple algorithm, which can often be implemented in one Matlab command line. The central ray is an expected ray and also an optimal ray of an objective function on a group of distributions. This algorithm is derived from geometric properties of a convex polyhedral cone but does not rely on any prior knowledge (e.g., iris images). The experimental results show that biometric templates, including iris and palmprint templates, produced by different recognition methods can be matched through the central rays in their convex polyhedral cones and that templates protected by a method extended from IrisCode can be broken into. These experimental results indicate that, without a thorough security analysis, convex polyhedral cone templates cannot be assumed secure. Additionally, the simplicity of the algorithm implies that even junior hackers without knowledge of advanced image processing and biometric databases can still break into protected templates and reveal relationships among templates produced by different recognition methods.
A Modified Active Appearance Model Based on an Adaptive Artificial Bee Colony
Othman, Zulaiha Ali
2014-01-01
Active appearance model (AAM) is one of the most popular model-based approaches that have been extensively used to extract features by highly accurate modeling of human faces under various physical and environmental circumstances. However, in such active appearance model, fitting the model with original image is a challenging task. State of the art shows that optimization method is applicable to resolve this problem. However, another common problem is applying optimization. Hence, in this paper we propose an AAM based face recognition technique, which is capable of resolving the fitting problem of AAM by introducing a new adaptive ABC algorithm. The adaptation increases the efficiency of fitting as against the conventional ABC algorithm. We have used three datasets: CASIA dataset, property 2.5D face dataset, and UBIRIS v1 images dataset in our experiments. The results have revealed that the proposed face recognition technique has performed effectively, in terms of accuracy of face recognition. PMID:25165748
A Class of Manifold Regularized Multiplicative Update Algorithms for Image Clustering.
Yang, Shangming; Yi, Zhang; He, Xiaofei; Li, Xuelong
2015-12-01
Multiplicative update algorithms are important tools for information retrieval, image processing, and pattern recognition. However, when the graph regularization is added to the cost function, different classes of sample data may be mapped to the same subspace, which leads to the increase of data clustering error rate. In this paper, an improved nonnegative matrix factorization (NMF) cost function is introduced. Based on the cost function, a class of novel graph regularized NMF algorithms is developed, which results in a class of extended multiplicative update algorithms with manifold structure regularization. Analysis shows that in the learning, the proposed algorithms can efficiently minimize the rank of the data representation matrix. Theoretical results presented in this paper are confirmed by simulations. For different initializations and data sets, variation curves of cost functions and decomposition data are presented to show the convergence features of the proposed update rules. Basis images, reconstructed images, and clustering results are utilized to present the efficiency of the new algorithms. Last, the clustering accuracies of different algorithms are also investigated, which shows that the proposed algorithms can achieve state-of-the-art performance in applications of image clustering.
A unified classifier for robust face recognition based on combining multiple subspace algorithms
NASA Astrophysics Data System (ADS)
Ijaz Bajwa, Usama; Ahmad Taj, Imtiaz; Waqas Anwar, Muhammad
2012-10-01
Face recognition being the fastest growing biometric technology has expanded manifold in the last few years. Various new algorithms and commercial systems have been proposed and developed. However, none of the proposed or developed algorithm is a complete solution because it may work very well on one set of images with say illumination changes but may not work properly on another set of image variations like expression variations. This study is motivated by the fact that any single classifier cannot claim to show generally better performance against all facial image variations. To overcome this shortcoming and achieve generality, combining several classifiers using various strategies has been studied extensively also incorporating the question of suitability of any classifier for this task. The study is based on the outcome of a comprehensive comparative analysis conducted on a combination of six subspace extraction algorithms and four distance metrics on three facial databases. The analysis leads to the selection of the most suitable classifiers which performs better on one task or the other. These classifiers are then combined together onto an ensemble classifier by two different strategies of weighted sum and re-ranking. The results of the ensemble classifier show that these strategies can be effectively used to construct a single classifier that can successfully handle varying facial image conditions of illumination, aging and facial expressions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhr, L.
1987-01-01
This book is written by research scientists involved in the development of massively parallel, but hierarchically structured, algorithms, architectures, and programs for image processing, pattern recognition, and computer vision. The book gives an integrated picture of the programs and algorithms that are being developed, and also of the multi-computer hardware architectures for which these systems are designed.
Transfer learning for bimodal biometrics recognition
NASA Astrophysics Data System (ADS)
Dan, Zhiping; Sun, Shuifa; Chen, Yanfei; Gan, Haitao
2013-10-01
Biometrics recognition aims to identify and predict new personal identities based on their existing knowledge. As the use of multiple biometric traits of the individual may enables more information to be used for recognition, it has been proved that multi-biometrics can produce higher accuracy than single biometrics. However, a common problem with traditional machine learning is that the training and test data should be in the same feature space, and have the same underlying distribution. If the distributions and features are different between training and future data, the model performance often drops. In this paper, we propose a transfer learning method for face recognition on bimodal biometrics. The training and test samples of bimodal biometric images are composed of the visible light face images and the infrared face images. Our algorithm transfers the knowledge across feature spaces, relaxing the assumption of same feature space as well as same underlying distribution by automatically learning a mapping between two different but somewhat similar face images. According to the experiments in the face images, the results show that the accuracy of face recognition has been greatly improved by the proposed method compared with the other previous methods. It demonstrates the effectiveness and robustness of our method.
NASA Technical Reports Server (NTRS)
Kasturi, Rangachar; Devadiga, Sadashiva; Tang, Yuan-Liang
1994-01-01
This research was initiated as a part of the Advanced Sensor and Imaging System Technology (ASSIST) program at NASA Langley Research Center. The primary goal of this research is the development of image analysis algorithms for the detection of runways and other objects using an on-board camera. Initial effort was concentrated on images acquired using a passive millimeter wave (PMMW) sensor. The images obtained using PMMW sensors under poor visibility conditions due to atmospheric fog are characterized by very low spatial resolution but good image contrast compared to those images obtained using sensors operating in the visible spectrum. Algorithms developed for analyzing these images using a model of the runway and other objects are described in Part 1 of this report. Experimental verification of these algorithms was limited to a sequence of images simulated from a single frame of PMMW image. Subsequent development and evaluation of algorithms was done using video image sequences. These images have better spatial and temporal resolution compared to PMMW images. Algorithms for reliable recognition of runways and accurate estimation of spatial position of stationary objects on the ground have been developed and evaluated using several image sequences. These algorithms are described in Part 2 of this report. A list of all publications resulting from this work is also included.
A comparison of image processing techniques for bird recognition.
Nadimpalli, Uma D; Price, Randy R; Hall, Steven G; Bomma, Pallavi
2006-01-01
Bird predation is one of the major concerns for fish culture in open ponds. A novel method for dispersing birds is the use of autonomous vehicles. Image recognition software can improve their efficiency. Several image processing techniques for recognition of birds have been tested. A series of morphological operations were implemented. We divided images into 3 types, Type 1, Type 2, and Type 3, based on the level of difficulty of recognizing birds. Type 1 images were clear; Type 2 images were medium clear, and Type 3 images were unclear. Local thresholding has been implemented using HSV (Hue, Saturation, and Value), GRAY, and RGB (Red, Green, and Blue) color models on all three sections of images and results were tabulated. Template matching using normal correlation and artificial neural networks (ANN) are the other methods that have been developed in this study in addition to image morphology. Template matching produced satisfactory results irrespective of the difficulty level of images, but artificial neural networks produced accuracies of 100, 60, and 50% on Type 1, Type 2, and Type 3 images, respectively. Correct classification rate can be increased by further training. Future research will focus on testing the recognition algorithms in natural or aquacultural settings on autonomous boats. Applications of such techniques to industrial, agricultural, or related areas are additional future possibilities.
Face detection and eyeglasses detection for thermal face recognition
NASA Astrophysics Data System (ADS)
Zheng, Yufeng
2012-01-01
Thermal face recognition becomes an active research direction in human identification because it does not rely on illumination condition. Face detection and eyeglasses detection are necessary steps prior to face recognition using thermal images. Infrared light cannot go through glasses and thus glasses will appear as dark areas in a thermal image. One possible solution is to detect eyeglasses and to exclude the eyeglasses areas before face matching. In thermal face detection, a projection profile analysis algorithm is proposed, where region growing and morphology operations are used to segment the body of a subject; then the derivatives of two projections (horizontal and vertical) are calculated and analyzed to locate a minimal rectangle of containing the face area. Of course, the searching region of a pair of eyeglasses is within the detected face area. The eyeglasses detection algorithm should produce either a binary mask if eyeglasses present, or an empty set if no eyeglasses at all. In the proposed eyeglasses detection algorithm, block processing, region growing, and priori knowledge (i.e., low mean and variance within glasses areas, the shapes and locations of eyeglasses) are employed. The results of face detection and eyeglasses detection are quantitatively measured and analyzed using the manually defined ground truths (for both face and eyeglasses). Our experimental results shown that the proposed face detection and eyeglasses detection algorithms performed very well in contrast with the predefined ground truths.
The impact of privacy protection filters on gender recognition
NASA Astrophysics Data System (ADS)
Ruchaud, Natacha; Antipov, Grigory; Korshunov, Pavel; Dugelay, Jean-Luc; Ebrahimi, Touradj; Berrani, Sid-Ahmed
2015-09-01
Deep learning-based algorithms have become increasingly efficient in recognition and detection tasks, especially when they are trained on large-scale datasets. Such recent success has led to a speculation that deep learning methods are comparable to or even outperform human visual system in its ability to detect and recognize objects and their features. In this paper, we focus on the specific task of gender recognition in images when they have been processed by privacy protection filters (e.g., blurring, masking, and pixelization) applied at different strengths. Assuming a privacy protection scenario, we compare the performance of state of the art deep learning algorithms with a subjective evaluation obtained via crowdsourcing to understand how privacy protection filters affect both machine and human vision.
Error Rates in Users of Automatic Face Recognition Software
White, David; Dunn, James D.; Schmid, Alexandra C.; Kemp, Richard I.
2015-01-01
In recent years, wide deployment of automatic face recognition systems has been accompanied by substantial gains in algorithm performance. However, benchmarking tests designed to evaluate these systems do not account for the errors of human operators, who are often an integral part of face recognition solutions in forensic and security settings. This causes a mismatch between evaluation tests and operational accuracy. We address this by measuring user performance in a face recognition system used to screen passport applications for identity fraud. Experiment 1 measured target detection accuracy in algorithm-generated ‘candidate lists’ selected from a large database of passport images. Accuracy was notably poorer than in previous studies of unfamiliar face matching: participants made over 50% errors for adult target faces, and over 60% when matching images of children. Experiment 2 then compared performance of student participants to trained passport officers–who use the system in their daily work–and found equivalent performance in these groups. Encouragingly, a group of highly trained and experienced “facial examiners” outperformed these groups by 20 percentage points. We conclude that human performance curtails accuracy of face recognition systems–potentially reducing benchmark estimates by 50% in operational settings. Mere practise does not attenuate these limits, but superior performance of trained examiners suggests that recruitment and selection of human operators, in combination with effective training and mentorship, can improve the operational accuracy of face recognition systems. PMID:26465631
Automated Coronal Loop Identification Using Digital Image Processing Techniques
NASA Technical Reports Server (NTRS)
Lee, Jong K.; Gary, G. Allen; Newman, Timothy S.
2003-01-01
The results of a master thesis project on a study of computer algorithms for automatic identification of optical-thin, 3-dimensional solar coronal loop centers from extreme ultraviolet and X-ray 2-dimensional images will be presented. These center splines are proxies of associated magnetic field lines. The project is pattern recognition problems in which there are no unique shapes or edges and in which photon and detector noise heavily influence the images. The study explores extraction techniques using: (1) linear feature recognition of local patterns (related to the inertia-tensor concept), (2) parametric space via the Hough transform, and (3) topological adaptive contours (snakes) that constrains curvature and continuity as possible candidates for digital loop detection schemes. We have developed synthesized images for the coronal loops to test the various loop identification algorithms. Since the topology of these solar features is dominated by the magnetic field structure, a first-order magnetic field approximation using multiple dipoles provides a priori information in the identification process. Results from both synthesized and solar images will be presented.
Machine vision system for inspecting characteristics of hybrid rice seed
NASA Astrophysics Data System (ADS)
Cheng, Fang; Ying, Yibin
2004-03-01
Obtaining clear images advantaged of improving the classification accuracy involves many factors, light source, lens extender and background were discussed in this paper. The analysis of rice seed reflectance curves showed that the wavelength of light source for discrimination of the diseased seeds from normal rice seeds in the monochromic image recognition mode was about 815nm for jinyou402 and shanyou10. To determine optimizing conditions for acquiring digital images of rice seed using a computer vision system, an adjustable color machine vision system was developed. The machine vision system with 20mm to 25mm lens extender produce close-up images which made it easy to object recognition of characteristics in hybrid rice seeds. White background was proved to be better than black background for inspecting rice seeds infected by disease and using the algorithms based on shape. Experimental results indicated good classification for most of the characteristics with the machine vision system. The same algorithm yielded better results in optimizing condition for quality inspection of rice seed. Specifically, the image processing can correct for details such as fine fissure with the machine vision system.
Ball-scale based hierarchical multi-object recognition in 3D medical images
NASA Astrophysics Data System (ADS)
Bağci, Ulas; Udupa, Jayaram K.; Chen, Xinjian
2010-03-01
This paper investigates, using prior shape models and the concept of ball scale (b-scale), ways of automatically recognizing objects in 3D images without performing elaborate searches or optimization. That is, the goal is to place the model in a single shot close to the right pose (position, orientation, and scale) in a given image so that the model boundaries fall in the close vicinity of object boundaries in the image. This is achieved via the following set of key ideas: (a) A semi-automatic way of constructing a multi-object shape model assembly. (b) A novel strategy of encoding, via b-scale, the pose relationship between objects in the training images and their intensity patterns captured in b-scale images. (c) A hierarchical mechanism of positioning the model, in a one-shot way, in a given image from a knowledge of the learnt pose relationship and the b-scale image of the given image to be segmented. The evaluation results on a set of 20 routine clinical abdominal female and male CT data sets indicate the following: (1) Incorporating a large number of objects improves the recognition accuracy dramatically. (2) The recognition algorithm can be thought as a hierarchical framework such that quick replacement of the model assembly is defined as coarse recognition and delineation itself is known as finest recognition. (3) Scale yields useful information about the relationship between the model assembly and any given image such that the recognition results in a placement of the model close to the actual pose without doing any elaborate searches or optimization. (4) Effective object recognition can make delineation most accurate.
Pattern-Recognition System for Approaching a Known Target
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance; Cheng, Yang
2008-01-01
A closed-loop pattern-recognition system is designed to provide guidance for maneuvering a small exploratory robotic vehicle (rover) on Mars to return to a landed spacecraft to deliver soil and rock samples that the spacecraft would subsequently bring back to Earth. The system could be adapted to terrestrial use in guiding mobile robots to approach known structures that humans could not approach safely, for such purposes as reconnaissance in military or law-enforcement applications, terrestrial scientific exploration, and removal of explosive or other hazardous items. The system has been demonstrated in experiments in which the Field Integrated Design and Operations (FIDO) rover (a prototype Mars rover equipped with a video camera for guidance) is made to return to a mockup of Mars-lander spacecraft. The FIDO rover camera autonomously acquires an image of the lander from a distance of 125 m in an outdoor environment. Then under guidance by an algorithm that performs fusion of multiple line and texture features in digitized images acquired by the camera, the rover traverses the intervening terrain, using features derived from images of the lander truss structure. Then by use of precise pattern matching for determining the position and orientation of the rover relative to the lander, the rover aligns itself with the bottom of ramps extending from the lander, in preparation for climbing the ramps to deliver samples to the lander. The most innovative aspect of the system is a set of pattern-recognition algorithms that govern a three-phase visual-guidance sequence for approaching the lander. During the first phase, a multifeature fusion algorithm integrates the outputs of a horizontal-line-detection algorithm and a wavelet-transform-based visual-area-of-interest algorithm for detecting the lander from a significant distance. The horizontal-line-detection algorithm is used to determine candidate lander locations based on detection of a horizontal deck that is part of the lander.
Face recognition via sparse representation of SIFT feature on hexagonal-sampling image
NASA Astrophysics Data System (ADS)
Zhang, Daming; Zhang, Xueyong; Li, Lu; Liu, Huayong
2018-04-01
This paper investigates a face recognition approach based on Scale Invariant Feature Transform (SIFT) feature and sparse representation. The approach takes advantage of SIFT which is local feature other than holistic feature in classical Sparse Representation based Classification (SRC) algorithm and possesses strong robustness to expression, pose and illumination variations. Since hexagonal image has more inherit merits than square image to make recognition process more efficient, we extract SIFT keypoint in hexagonal-sampling image. Instead of matching SIFT feature, firstly the sparse representation of each SIFT keypoint is given according the constructed dictionary; secondly these sparse vectors are quantized according dictionary; finally each face image is represented by a histogram and these so-called Bag-of-Words vectors are classified by SVM. Due to use of local feature, the proposed method achieves better result even when the number of training sample is small. In the experiments, the proposed method gave higher face recognition rather than other methods in ORL and Yale B face databases; also, the effectiveness of the hexagonal-sampling in the proposed method is verified.
Improvement and implementation for Canny edge detection algorithm
NASA Astrophysics Data System (ADS)
Yang, Tao; Qiu, Yue-hong
2015-07-01
Edge detection is necessary for image segmentation and pattern recognition. In this paper, an improved Canny edge detection approach is proposed due to the defect of traditional algorithm. A modified bilateral filter with a compensation function based on pixel intensity similarity judgment was used to smooth image instead of Gaussian filter, which could preserve edge feature and remove noise effectively. In order to solve the problems of sensitivity to the noise in gradient calculating, the algorithm used 4 directions gradient templates. Finally, Otsu algorithm adaptively obtain the dual-threshold. All of the algorithm simulated with OpenCV 2.4.0 library in the environments of vs2010, and through the experimental analysis, the improved algorithm has been proved to detect edge details more effectively and with more adaptability.
Automatic extraction of numeric strings in unconstrained handwritten document images
NASA Astrophysics Data System (ADS)
Haji, M. Mehdi; Bui, Tien D.; Suen, Ching Y.
2011-01-01
Numeric strings such as identification numbers carry vital pieces of information in documents. In this paper, we present a novel algorithm for automatic extraction of numeric strings in unconstrained handwritten document images. The algorithm has two main phases: pruning and verification. In the pruning phase, the algorithm first performs a new segment-merge procedure on each text line, and then using a new regularity measure, it prunes all sequences of characters that are unlikely to be numeric strings. The segment-merge procedure is composed of two modules: a new explicit character segmentation algorithm which is based on analysis of skeletal graphs and a merging algorithm which is based on graph partitioning. All the candidate sequences that pass the pruning phase are sent to a recognition-based verification phase for the final decision. The recognition is based on a coarse-to-fine approach using probabilistic RBF networks. We developed our algorithm for the processing of real-world documents where letters and digits may be connected or broken in a document. The effectiveness of the proposed approach is shown by extensive experiments done on a real-world database of 607 documents which contains handwritten, machine-printed and mixed documents with different types of layouts and levels of noise.
Physiology-based face recognition in the thermal infrared spectrum.
Buddharaju, Pradeep; Pavlidis, Ioannis T; Tsiamyrtzis, Panagiotis; Bazakos, Mike
2007-04-01
The current dominant approaches to face recognition rely on facial characteristics that are on or over the skin. Some of these characteristics have low permanency can be altered, and their phenomenology varies significantly with environmental factors (e.g., lighting). Many methodologies have been developed to address these problems to various degrees. However, the current framework of face recognition research has a potential weakness due to its very nature. We present a novel framework for face recognition based on physiological information. The motivation behind this effort is to capitalize on the permanency of innate characteristics that are under the skin. To establish feasibility, we propose a specific methodology to capture facial physiological patterns using the bioheat information contained in thermal imagery. First, the algorithm delineates the human face from the background using the Bayesian framework. Then, it localizes the superficial blood vessel network using image morphology. The extracted vascular network produces contour shapes that are characteristic to each individual. The branching points of the skeletonized vascular network are referred to as Thermal Minutia Points (TMPs) and constitute the feature database. To render the method robust to facial pose variations, we collect for each subject to be stored in the database five different pose images (center, midleft profile, left profile, midright profile, and right profile). During the classification stage, the algorithm first estimates the pose of the test image. Then, it matches the local and global TMP structures extracted from the test image with those of the corresponding pose images in the database. We have conducted experiments on a multipose database of thermal facial images collected in our laboratory, as well as on the time-gap database of the University of Notre Dame. The good experimental results show that the proposed methodology has merit, especially with respect to the problem of low permanence over time. More importantly, the results demonstrate the feasibility of the physiological framework in face recognition and open the way for further methodological and experimental research in the area.
A Horizontal Tilt Correction Method for Ship License Numbers Recognition
NASA Astrophysics Data System (ADS)
Liu, Baolong; Zhang, Sanyuan; Hong, Zhenjie; Ye, Xiuzi
2018-02-01
An automatic ship license numbers (SLNs) recognition system plays a significant role in intelligent waterway transportation systems since it can be used to identify ships by recognizing the characters in SLNs. Tilt occurs frequently in many SLNs because the monitors and the ships usually have great vertical or horizontal angles, which decreases the accuracy and robustness of a SLNs recognition system significantly. In this paper, we present a horizontal tilt correction method for SLNs. For an input tilt SLN image, the proposed method accomplishes the correction task through three main steps. First, a MSER-based characters’ center-points computation algorithm is designed to compute the accurate center-points of the characters contained in the input SLN image. Second, a L 1- L 2 distance-based straight line is fitted to the computed center-points using M-estimator algorithm. The tilt angle is estimated at this stage. Finally, based on the computed tilt angle, an affine transformation rotation is conducted to rotate and to correct the input SLN horizontally. At last, the proposed method is tested on 200 tilt SLN images, the proposed method is proved to be effective with a tilt correction rate of 80.5%.
An Iris Segmentation Algorithm based on Edge Orientation for Off-angle Iris Recognition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karakaya, Mahmut; Barstow, Del R; Santos-Villalobos, Hector J
Iris recognition is known as one of the most accurate and reliable biometrics. However, the accuracy of iris recognition systems depends on the quality of data capture and is negatively affected by several factors such as angle, occlusion, and dilation. In this paper, we present a segmentation algorithm for off-angle iris images that uses edge detection, edge elimination, edge classification, and ellipse fitting techniques. In our approach, we first detect all candidate edges in the iris image by using the canny edge detector; this collection contains edges from the iris and pupil boundaries as well as eyelash, eyelids, iris texturemore » etc. Edge orientation is used to eliminate the edges that cannot be part of the iris or pupil. Then, we classify the remaining edge points into two sets as pupil edges and iris edges. Finally, we randomly generate subsets of iris and pupil edge points, fit ellipses for each subset, select ellipses with similar parameters, and average to form the resultant ellipses. Based on the results from real experiments, the proposed method shows effectiveness in segmentation for off-angle iris images.« less
Toward More Accurate Iris Recognition Using Cross-Spectral Matching.
Nalla, Pattabhi Ramaiah; Kumar, Ajay
2017-01-01
Iris recognition systems are increasingly deployed for large-scale applications such as national ID programs, which continue to acquire millions of iris images to establish identity among billions. However, with the availability of variety of iris sensors that are deployed for the iris imaging under different illumination/environment, significant performance degradation is expected while matching such iris images acquired under two different domains (either sensor-specific or wavelength-specific). This paper develops a domain adaptation framework to address this problem and introduces a new algorithm using Markov random fields model to significantly improve cross-domain iris recognition. The proposed domain adaptation framework based on the naive Bayes nearest neighbor classification uses a real-valued feature representation, which is capable of learning domain knowledge. Our approach to estimate corresponding visible iris patterns from the synthesis of iris patches in the near infrared iris images achieves outperforming results for the cross-spectral iris recognition. In this paper, a new class of bi-spectral iris recognition system that can simultaneously acquire visible and near infra-red images with pixel-to-pixel correspondences is proposed and evaluated. This paper presents experimental results from three publicly available databases; PolyU cross-spectral iris image database, IIITD CLI and UND database, and achieve outperforming results for the cross-sensor and cross-spectral iris matching.
Component-based target recognition inspired by human vision
NASA Astrophysics Data System (ADS)
Zheng, Yufeng; Agyepong, Kwabena
2009-05-01
In contrast with machine vision, human can recognize an object from complex background with great flexibility. For example, given the task of finding and circling all cars (no further information) in a picture, you may build a virtual image in mind from the task (or target) description before looking at the picture. Specifically, the virtual car image may be composed of the key components such as driver cabin and wheels. In this paper, we propose a component-based target recognition method by simulating the human recognition process. The component templates (equivalent to the virtual image in mind) of the target (car) are manually decomposed from the target feature image. Meanwhile, the edges of the testing image can be extracted by using a difference of Gaussian (DOG) model that simulates the spatiotemporal response in visual process. A phase correlation matching algorithm is then applied to match the templates with the testing edge image. If all key component templates are matched with the examining object, then this object is recognized as the target. Besides the recognition accuracy, we will also investigate if this method works with part targets (half cars). In our experiments, several natural pictures taken on streets were used to test the proposed method. The preliminary results show that the component-based recognition method is very promising.
Iterative cross section sequence graph for handwritten character segmentation.
Dawoud, Amer
2007-08-01
The iterative cross section sequence graph (ICSSG) is an algorithm for handwritten character segmentation. It expands the cross section sequence graph concept by applying it iteratively at equally spaced thresholds. The iterative thresholding reduces the effect of information loss associated with image binarization. ICSSG preserves the characters' skeletal structure by preventing the interference of pixels that causes flooding of adjacent characters' segments. Improving the structural quality of the characters' skeleton facilitates better feature extraction and classification, which improves the overall performance of optical character recognition (OCR). Experimental results showed significant improvements in OCR recognition rates compared to other well-established segmentation algorithms.
Color model and method for video fire flame and smoke detection using Fisher linear discriminant
NASA Astrophysics Data System (ADS)
Wei, Yuan; Jie, Li; Jun, Fang; Yongming, Zhang
2013-02-01
Video fire detection is playing an increasingly important role in our life. But recent research is often based on a traditional RGB color model used to analyze the flame, which may be not the optimal color space for fire recognition. It is worse when we research smoke simply using gray images instead of color ones. We clarify the importance of color information for fire detection. We present a fire discriminant color (FDC) model for flame or smoke recognition based on color images. The FDC models aim to unify fire color image representation and fire recognition task into one framework. With the definition of between-class scatter matrices and within-class scatter matrices of Fisher linear discriminant, the proposed models seek to obtain one color-space-transform matrix and a discriminate projection basis vector by maximizing the ratio of these two scatter matrices. First, an iterative basic algorithm is designed to get one-component color space transformed from RGB. Then, a general algorithm is extended to generate three-component color space for further improvement. Moreover, we propose a method for video fire detection based on the models using the kNN classifier. To evaluate the recognition performance, we create a database including flame, smoke, and nonfire images for training and testing. The test experiments show that the proposed model achieves a flame verification rate receiver operating characteristic (ROC I) of 97.5% at a false alarm rate (FAR) of 1.06% and a smoke verification rate (ROC II) of 91.5% at a FAR of 1.2%, and lots of fire video experiments demonstrate that our method reaches a high accuracy for fire recognition.
Probst, Yasmine; Nguyen, Duc Thanh; Tran, Minh Khoi; Li, Wanqing
2015-01-01
Dietary assessment, while traditionally based on pen-and-paper, is rapidly moving towards automatic approaches. This study describes an Australian automatic food record method and its prototype for dietary assessment via the use of a mobile phone and techniques of image processing and pattern recognition. Common visual features including scale invariant feature transformation (SIFT), local binary patterns (LBP), and colour are used for describing food images. The popular bag-of-words (BoW) model is employed for recognizing the images taken by a mobile phone for dietary assessment. Technical details are provided together with discussions on the issues and future work. PMID:26225994
Aslam, Tariq Mehmood; Shakir, Savana; Wong, James; Au, Leon; Ashworth, Jane
2012-12-01
Mucopolysaccharidoses (MPS) can cause corneal opacification that is currently difficult to objectively quantify. With newer treatments for MPS comes an increased need for a more objective, valid and reliable index of disease severity for clinical and research use. Clinical evaluation by slit lamp is very subjective and techniques based on colour photography are difficult to standardise. In this article the authors present evidence for the utility of dedicated image analysis algorithms applied to images obtained by a highly sophisticated iris recognition camera that is small, manoeuvrable and adapted to achieve rapid, reliable and standardised objective imaging in a wide variety of patients while minimising artefactual interference in image quality.
NASA Astrophysics Data System (ADS)
Dinges, David F.; Venkataraman, Sundara; McGlinchey, Eleanor L.; Metaxas, Dimitris N.
2007-02-01
Astronauts are required to perform mission-critical tasks at a high level of functional capability throughout spaceflight. Stressors can compromise their ability to do so, making early objective detection of neurobehavioral problems in spaceflight a priority. Computer optical approaches offer a completely unobtrusive way to detect distress during critical operations in space flight. A methodology was developed and a study completed to determine whether optical computer recognition algorithms could be used to discriminate facial expressions during stress induced by performance demands. Stress recognition from a facial image sequence is a subject that has not received much attention although it is an important problem for many applications beyond space flight (security, human-computer interaction, etc.). This paper proposes a comprehensive method to detect stress from facial image sequences by using a model-based tracker. The image sequences were captured as subjects underwent a battery of psychological tests under high- and low-stress conditions. A cue integration-based tracking system accurately captured the rigid and non-rigid parameters of different parts of the face (eyebrows, lips). The labeled sequences were used to train the recognition system, which consisted of generative (hidden Markov model) and discriminative (support vector machine) parts that yield results superior to using either approach individually. The current optical algorithm methods performed at a 68% accuracy rate in an experimental study of 60 healthy adults undergoing periods of high-stress versus low-stress performance demands. Accuracy and practical feasibility of the technique is being improved further with automatic multi-resolution selection for the discretization of the mask, and automated face detection and mask initialization algorithms.
Biometric recognition using 3D ear shape.
Yan, Ping; Bowyer, Kevin W
2007-08-01
Previous works have shown that the ear is a promising candidate for biometric identification. However, in prior work, the preprocessing of ear images has had manual steps and algorithms have not necessarily handled problems caused by hair and earrings. We present a complete system for ear biometrics, including automated segmentation of the ear in a profile view image and 3D shape matching for recognition. We evaluated this system with the largest experimental study to date in ear biometrics, achieving a rank-one recognition rate of 97.8 percent for an identification scenario and an equal error rate of 1.2 percent for a verification scenario on a database of 415 subjects and 1,386 total probes.
Iris unwrapping using the Bresenham circle algorithm for real-time iris recognition
NASA Astrophysics Data System (ADS)
Carothers, Matthew T.; Ngo, Hau T.; Rakvic, Ryan N.; Broussard, Randy P.
2015-02-01
An efficient parallel architecture design for the iris unwrapping process in a real-time iris recognition system using the Bresenham Circle Algorithm is presented in this paper. Based on the characteristics of the model parameters this algorithm was chosen over the widely used polar conversion technique as the iris unwrapping model. The architecture design is parallelized to increase the throughput of the system and is suitable for processing an inputted image size of 320 × 240 pixels in real-time using Field Programmable Gate Array (FPGA) technology. Quartus software is used to implement, verify, and analyze the design's performance using the VHSIC Hardware Description Language. The system's predicted processing time is faster than the modern iris unwrapping technique used today∗.
Edge detection techniques for iris recognition system
NASA Astrophysics Data System (ADS)
Tania, U. T.; Motakabber, S. M. A.; Ibrahimy, M. I.
2013-12-01
Nowadays security and authentication are the major parts of our daily life. Iris is one of the most reliable organ or part of human body which can be used for identification and authentication purpose. To develop an iris authentication algorithm for personal identification, this paper examines two edge detection techniques for iris recognition system. Between the Sobel and the Canny edge detection techniques, the experimental result shows that the Canny's technique has better ability to detect points in a digital image where image gray level changes even at slow rate.
Finger vein recognition based on finger crease location
NASA Astrophysics Data System (ADS)
Lu, Zhiying; Ding, Shumeng; Yin, Jing
2016-07-01
Finger vein recognition technology has significant advantages over other methods in terms of accuracy, uniqueness, and stability, and it has wide promising applications in the field of biometric recognition. We propose using finger creases to locate and extract an object region. Then we use linear fitting to overcome the problem of finger rotation in the plane. The method of modular adaptive histogram equalization (MAHE) is presented to enhance image contrast and reduce computational cost. To extract the finger vein features, we use a fusion method, which can obtain clear and distinguishable vein patterns under different conditions. We used the Hausdorff average distance algorithm to examine the recognition performance of the system. The experimental results demonstrate that MAHE can better balance the recognition accuracy and the expenditure of time compared with three other methods. Our resulting equal error rate throughout the total procedure was 3.268% in a database of 153 finger vein images.
NASA Astrophysics Data System (ADS)
Megherbi, Dalila B.; Yan, Yin; Tanmay, Parikh; Khoury, Jed; Woods, C. L.
2004-11-01
Recently surveillance and Automatic Target Recognition (ATR) applications are increasing as the cost of computing power needed to process the massive amount of information continues to fall. This computing power has been made possible partly by the latest advances in FPGAs and SOPCs. In particular, to design and implement state-of-the-Art electro-optical imaging systems to provide advanced surveillance capabilities, there is a need to integrate several technologies (e.g. telescope, precise optics, cameras, image/compute vision algorithms, which can be geographically distributed or sharing distributed resources) into a programmable system and DSP systems. Additionally, pattern recognition techniques and fast information retrieval, are often important components of intelligent systems. The aim of this work is using embedded FPGA as a fast, configurable and synthesizable search engine in fast image pattern recognition/retrieval in a distributed hardware/software co-design environment. In particular, we propose and show a low cost Content Addressable Memory (CAM)-based distributed embedded FPGA hardware architecture solution with real time recognition capabilities and computing for pattern look-up, pattern recognition, and image retrieval. We show how the distributed CAM-based architecture offers a performance advantage of an order-of-magnitude over RAM-based architecture (Random Access Memory) search for implementing high speed pattern recognition for image retrieval. The methods of designing, implementing, and analyzing the proposed CAM based embedded architecture are described here. Other SOPC solutions/design issues are covered. Finally, experimental results, hardware verification, and performance evaluations using both the Xilinx Virtex-II and the Altera Apex20k are provided to show the potential and power of the proposed method for low cost reconfigurable fast image pattern recognition/retrieval at the hardware/software co-design level.
NASA Astrophysics Data System (ADS)
Zamora Ramos, Ernesto
Artificial Intelligence is a big part of automation and with today's technological advances, artificial intelligence has taken great strides towards positioning itself as the technology of the future to control, enhance and perfect automation. Computer vision includes pattern recognition and classification and machine learning. Computer vision is at the core of decision making and it is a vast and fruitful branch of artificial intelligence. In this work, we expose novel algorithms and techniques built upon existing technologies to improve pattern recognition and neural network training, initially motivated by a multidisciplinary effort to build a robot that helps maintain and optimize solar panel energy production. Our contributions detail an improved non-linear pre-processing technique to enhance poorly illuminated images based on modifications to the standard histogram equalization for an image. While the original motivation was to improve nocturnal navigation, the results have applications in surveillance, search and rescue, medical imaging enhancing, and many others. We created a vision system for precise camera distance positioning motivated to correctly locate the robot for capture of solar panel images for classification. The classification algorithm marks solar panels as clean or dirty for later processing. Our algorithm extends past image classification and, based on historical and experimental data, it identifies the optimal moment in which to perform maintenance on marked solar panels as to minimize the energy and profit loss. In order to improve upon the classification algorithm, we delved into feedforward neural networks because of their recent advancements, proven universal approximation and classification capabilities, and excellent recognition rates. We explore state-of-the-art neural network training techniques offering pointers and insights, culminating on the implementation of a complete library with support for modern deep learning architectures, multilayer percepterons and convolutional neural networks. Our research with neural networks has encountered a great deal of difficulties regarding hyperparameter estimation for good training convergence rate and accuracy. Most hyperparameters, including architecture, learning rate, regularization, trainable parameters (or weights) initialization, and so on, are chosen via a trial and error process with some educated guesses. However, we developed the first quantitative method to compare weight initialization strategies, a critical hyperparameter choice during training, to estimate among a group of candidate strategies which would make the network converge to the highest classification accuracy faster with high probability. Our method provides a quick, objective measure to compare initialization strategies to select the best possible among them beforehand without having to complete multiple training sessions for each candidate strategy to compare final results.
Document image cleanup and binarization
NASA Astrophysics Data System (ADS)
Wu, Victor; Manmatha, Raghaven
1998-04-01
Image binarization is a difficult task for documents with text over textured or shaded backgrounds, poor contrast, and/or considerable noise. Current optical character recognition (OCR) and document analysis technology do not handle such documents well. We have developed a simple yet effective algorithm for document image clean-up and binarization. The algorithm consists of two basic steps. In the first step, the input image is smoothed using a low-pass filter. The smoothing operation enhances the text relative to any background texture. This is because background texture normally has higher frequency than text does. The smoothing operation also removes speckle noise. In the second step, the intensity histogram of the smoothed image is computed and a threshold automatically selected as follows. For black text, the first peak of the histogram corresponds to text. Thresholding the image at the value of the valley between the first and second peaks of the histogram binarizes the image well. In order to reliably identify the valley, the histogram is smoothed by a low-pass filter before the threshold is computed. The algorithm has been applied to some 50 images from a wide variety of source: digitized video frames, photos, newspapers, advertisements in magazines or sales flyers, personal checks, etc. There are 21820 characters and 4406 words in these images. 91 percent of the characters and 86 percent of the words are successfully cleaned up and binarized. A commercial OCR was applied to the binarized text when it consisted of fonts which were OCR recognizable. The recognition rate was 84 percent for the characters and 77 percent for the words.
Fusion of Visible and Thermal Descriptors Using Genetic Algorithms for Face Recognition Systems.
Hermosilla, Gabriel; Gallardo, Francisco; Farias, Gonzalo; San Martin, Cesar
2015-07-23
The aim of this article is to present a new face recognition system based on the fusion of visible and thermal features obtained from the most current local matching descriptors by maximizing face recognition rates through the use of genetic algorithms. The article considers a comparison of the performance of the proposed fusion methodology against five current face recognition methods and classic fusion techniques used commonly in the literature. These were selected by considering their performance in face recognition. The five local matching methods and the proposed fusion methodology are evaluated using the standard visible/thermal database, the Equinox database, along with a new database, the PUCV-VTF, designed for visible-thermal studies in face recognition and described for the first time in this work. The latter is created considering visible and thermal image sensors with different real-world conditions, such as variations in illumination, facial expression, pose, occlusion, etc. The main conclusions of this article are that two variants of the proposed fusion methodology surpass current face recognition methods and the classic fusion techniques reported in the literature, attaining recognition rates of over 97% and 99% for the Equinox and PUCV-VTF databases, respectively. The fusion methodology is very robust to illumination and expression changes, as it combines thermal and visible information efficiently by using genetic algorithms, thus allowing it to choose optimal face areas where one spectrum is more representative than the other.
Fusion of Visible and Thermal Descriptors Using Genetic Algorithms for Face Recognition Systems
Hermosilla, Gabriel; Gallardo, Francisco; Farias, Gonzalo; San Martin, Cesar
2015-01-01
The aim of this article is to present a new face recognition system based on the fusion of visible and thermal features obtained from the most current local matching descriptors by maximizing face recognition rates through the use of genetic algorithms. The article considers a comparison of the performance of the proposed fusion methodology against five current face recognition methods and classic fusion techniques used commonly in the literature. These were selected by considering their performance in face recognition. The five local matching methods and the proposed fusion methodology are evaluated using the standard visible/thermal database, the Equinox database, along with a new database, the PUCV-VTF, designed for visible-thermal studies in face recognition and described for the first time in this work. The latter is created considering visible and thermal image sensors with different real-world conditions, such as variations in illumination, facial expression, pose, occlusion, etc. The main conclusions of this article are that two variants of the proposed fusion methodology surpass current face recognition methods and the classic fusion techniques reported in the literature, attaining recognition rates of over 97% and 99% for the Equinox and PUCV-VTF databases, respectively. The fusion methodology is very robust to illumination and expression changes, as it combines thermal and visible information efficiently by using genetic algorithms, thus allowing it to choose optimal face areas where one spectrum is more representative than the other. PMID:26213932
Zhang, Xin; Cui, Jintian; Wang, Weisheng; Lin, Chao
2017-01-01
To address the problem of image texture feature extraction, a direction measure statistic that is based on the directionality of image texture is constructed, and a new method of texture feature extraction, which is based on the direction measure and a gray level co-occurrence matrix (GLCM) fusion algorithm, is proposed in this paper. This method applies the GLCM to extract the texture feature value of an image and integrates the weight factor that is introduced by the direction measure to obtain the final texture feature of an image. A set of classification experiments for the high-resolution remote sensing images were performed by using support vector machine (SVM) classifier with the direction measure and gray level co-occurrence matrix fusion algorithm. Both qualitative and quantitative approaches were applied to assess the classification results. The experimental results demonstrated that texture feature extraction based on the fusion algorithm achieved a better image recognition, and the accuracy of classification based on this method has been significantly improved. PMID:28640181
Robust and Effective Component-based Banknote Recognition for the Blind
Hasanuzzaman, Faiz M.; Yang, Xiaodong; Tian, YingLi
2012-01-01
We develop a novel camera-based computer vision technology to automatically recognize banknotes for assisting visually impaired people. Our banknote recognition system is robust and effective with the following features: 1) high accuracy: high true recognition rate and low false recognition rate, 2) robustness: handles a variety of currency designs and bills in various conditions, 3) high efficiency: recognizes banknotes quickly, and 4) ease of use: helps blind users to aim the target for image capture. To make the system robust to a variety of conditions including occlusion, rotation, scaling, cluttered background, illumination change, viewpoint variation, and worn or wrinkled bills, we propose a component-based framework by using Speeded Up Robust Features (SURF). Furthermore, we employ the spatial relationship of matched SURF features to detect if there is a bill in the camera view. This process largely alleviates false recognition and can guide the user to correctly aim at the bill to be recognized. The robustness and generalizability of the proposed system is evaluated on a dataset including both positive images (with U.S. banknotes) and negative images (no U.S. banknotes) collected under a variety of conditions. The proposed algorithm, achieves 100% true recognition rate and 0% false recognition rate. Our banknote recognition system is also tested by blind users. PMID:22661884
Online signature recognition using principal component analysis and artificial neural network
NASA Astrophysics Data System (ADS)
Hwang, Seung-Jun; Park, Seung-Je; Baek, Joong-Hwan
2016-12-01
In this paper, we propose an algorithm for on-line signature recognition using fingertip point in the air from the depth image acquired by Kinect. We extract 10 statistical features from X, Y, Z axis, which are invariant to changes in shifting and scaling of the signature trajectories in three-dimensional space. Artificial neural network is adopted to solve the complex signature classification problem. 30 dimensional features are converted into 10 principal components using principal component analysis, which is 99.02% of total variances. We implement the proposed algorithm and test to actual on-line signatures. In experiment, we verify the proposed method is successful to classify 15 different on-line signatures. Experimental result shows 98.47% of recognition rate when using only 10 feature vectors.
Open set recognition of aircraft in aerial imagery using synthetic template models
NASA Astrophysics Data System (ADS)
Bapst, Aleksander B.; Tran, Jonathan; Koch, Mark W.; Moya, Mary M.; Swahn, Robert
2017-05-01
Fast, accurate and robust automatic target recognition (ATR) in optical aerial imagery can provide game-changing advantages to military commanders and personnel. ATR algorithms must reject non-targets with a high degree of confidence in a world with an infinite number of possible input images. Furthermore, they must learn to recognize new targets without requiring massive data collections. Whereas most machine learning algorithms classify data in a closed set manner by mapping inputs to a fixed set of training classes, open set recognizers incorporate constraints that allow for inputs to be labelled as unknown. We have adapted two template-based open set recognizers to use computer generated synthetic images of military aircraft as training data, to provide a baseline for military-grade ATR: (1) a frequentist approach based on probabilistic fusion of extracted image features, and (2) an open set extension to the one-class support vector machine (SVM). These algorithms both use histograms of oriented gradients (HOG) as features as well as artificial augmentation of both real and synthetic image chips to take advantage of minimal training data. Our results show that open set recognizers trained with synthetic data and tested with real data can successfully discriminate real target inputs from non-targets. However, there is still a requirement for some knowledge of the real target in order to calibrate the relationship between synthetic template and target score distributions. We conclude by proposing algorithm modifications that may improve the ability of synthetic data to represent real data.
Karimi, Mohammad H; Asemani, Davud
2014-05-01
Ceramic and tile industries should indispensably include a grading stage to quantify the quality of products. Actually, human control systems are often used for grading purposes. An automatic grading system is essential to enhance the quality control and marketing of the products. Since there generally exist six different types of defects originating from various stages of tile manufacturing lines with distinct textures and morphologies, many image processing techniques have been proposed for defect detection. In this paper, a survey has been made on the pattern recognition and image processing algorithms which have been used to detect surface defects. Each method appears to be limited for detecting some subgroup of defects. The detection techniques may be divided into three main groups: statistical pattern recognition, feature vector extraction and texture/image classification. The methods such as wavelet transform, filtering, morphology and contourlet transform are more effective for pre-processing tasks. Others including statistical methods, neural networks and model-based algorithms can be applied to extract the surface defects. Although, statistical methods are often appropriate for identification of large defects such as Spots, but techniques such as wavelet processing provide an acceptable response for detection of small defects such as Pinhole. A thorough survey is made in this paper on the existing algorithms in each subgroup. Also, the evaluation parameters are discussed including supervised and unsupervised parameters. Using various performance parameters, different defect detection algorithms are compared and evaluated. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
General tensor discriminant analysis and gabor features for gait recognition.
Tao, Dacheng; Li, Xuelong; Wu, Xindong; Maybank, Stephen J
2007-10-01
The traditional image representations are not suited to conventional classification methods, such as the linear discriminant analysis (LDA), because of the under sample problem (USP): the dimensionality of the feature space is much higher than the number of training samples. Motivated by the successes of the two dimensional LDA (2DLDA) for face recognition, we develop a general tensor discriminant analysis (GTDA) as a preprocessing step for LDA. The benefits of GTDA compared with existing preprocessing methods, e.g., principal component analysis (PCA) and 2DLDA, include 1) the USP is reduced in subsequent classification by, for example, LDA; 2) the discriminative information in the training tensors is preserved; and 3) GTDA provides stable recognition rates because the alternating projection optimization algorithm to obtain a solution of GTDA converges, while that of 2DLDA does not. We use human gait recognition to validate the proposed GTDA. The averaged gait images are utilized for gait representation. Given the popularity of Gabor function based image decompositions for image understanding and object recognition, we develop three different Gabor function based image representations: 1) the GaborD representation is the sum of Gabor filter responses over directions, 2) GaborS is the sum of Gabor filter responses over scales, and 3) GaborSD is the sum of Gabor filter responses over scales and directions. The GaborD, GaborS and GaborSD representations are applied to the problem of recognizing people from their averaged gait images.A large number of experiments were carried out to evaluate the effectiveness (recognition rate) of gait recognition based on first obtaining a Gabor, GaborD, GaborS or GaborSD image representation, then using GDTA to extract features and finally using LDA for classification. The proposed methods achieved good performance for gait recognition based on image sequences from the USF HumanID Database. Experimental comparisons are made with nine state of the art classification methods in gait recognition.
Research on multi-source image fusion technology in haze environment
NASA Astrophysics Data System (ADS)
Ma, GuoDong; Piao, Yan; Li, Bing
2017-11-01
In the haze environment, the visible image collected by a single sensor can express the details of the shape, color and texture of the target very well, but because of the haze, the sharpness is low and some of the target subjects are lost; Because of the expression of thermal radiation and strong penetration ability, infrared image collected by a single sensor can clearly express the target subject, but it will lose detail information. Therefore, the multi-source image fusion method is proposed to exploit their respective advantages. Firstly, the improved Dark Channel Prior algorithm is used to preprocess the visible haze image. Secondly, the improved SURF algorithm is used to register the infrared image and the haze-free visible image. Finally, the weighted fusion algorithm based on information complementary is used to fuse the image. Experiments show that the proposed method can improve the clarity of the visible target and highlight the occluded infrared target for target recognition.
Multi-texture local ternary pattern for face recognition
NASA Astrophysics Data System (ADS)
Essa, Almabrok; Asari, Vijayan
2017-05-01
In imagery and pattern analysis domain a variety of descriptors have been proposed and employed for different computer vision applications like face detection and recognition. Many of them are affected under different conditions during the image acquisition process such as variations in illumination and presence of noise, because they totally rely on the image intensity values to encode the image information. To overcome these problems, a novel technique named Multi-Texture Local Ternary Pattern (MTLTP) is proposed in this paper. MTLTP combines the edges and corners based on the local ternary pattern strategy to extract the local texture features of the input image. Then returns a spatial histogram feature vector which is the descriptor for each image that we use to recognize a human being. Experimental results using a k-nearest neighbors classifier (k-NN) on two publicly available datasets justify our algorithm for efficient face recognition in the presence of extreme variations of illumination/lighting environments and slight variation of pose conditions.
Classification of time-series images using deep convolutional neural networks
NASA Astrophysics Data System (ADS)
Hatami, Nima; Gavet, Yann; Debayle, Johan
2018-04-01
Convolutional Neural Networks (CNN) has achieved a great success in image recognition task by automatically learning a hierarchical feature representation from raw data. While the majority of Time-Series Classification (TSC) literature is focused on 1D signals, this paper uses Recurrence Plots (RP) to transform time-series into 2D texture images and then take advantage of the deep CNN classifier. Image representation of time-series introduces different feature types that are not available for 1D signals, and therefore TSC can be treated as texture image recognition task. CNN model also allows learning different levels of representations together with a classifier, jointly and automatically. Therefore, using RP and CNN in a unified framework is expected to boost the recognition rate of TSC. Experimental results on the UCR time-series classification archive demonstrate competitive accuracy of the proposed approach, compared not only to the existing deep architectures, but also to the state-of-the art TSC algorithms.
Iris Matching Based on Personalized Weight Map.
Dong, Wenbo; Sun, Zhenan; Tan, Tieniu
2011-09-01
Iris recognition typically involves three steps, namely, iris image preprocessing, feature extraction, and feature matching. The first two steps of iris recognition have been well studied, but the last step is less addressed. Each human iris has its unique visual pattern and local image features also vary from region to region, which leads to significant differences in robustness and distinctiveness among the feature codes derived from different iris regions. However, most state-of-the-art iris recognition methods use a uniform matching strategy, where features extracted from different regions of the same person or the same region for different individuals are considered to be equally important. This paper proposes a personalized iris matching strategy using a class-specific weight map learned from the training images of the same iris class. The weight map can be updated online during the iris recognition procedure when the successfully recognized iris images are regarded as the new training data. The weight map reflects the robustness of an encoding algorithm on different iris regions by assigning an appropriate weight to each feature code for iris matching. Such a weight map trained by sufficient iris templates is convergent and robust against various noise. Extensive and comprehensive experiments demonstrate that the proposed personalized iris matching strategy achieves much better iris recognition performance than uniform strategies, especially for poor quality iris images.
A model of traffic signs recognition with convolutional neural network
NASA Astrophysics Data System (ADS)
Hu, Haihe; Li, Yujian; Zhang, Ting; Huo, Yi; Kuang, Wenqing
2016-10-01
In real traffic scenes, the quality of captured images are generally low due to some factors such as lighting conditions, and occlusion on. All of these factors are challengeable for automated recognition algorithms of traffic signs. Deep learning has provided a new way to solve this kind of problems recently. The deep network can automatically learn features from a large number of data samples and obtain an excellent recognition performance. We therefore approach this task of recognition of traffic signs as a general vision problem, with few assumptions related to road signs. We propose a model of Convolutional Neural Network (CNN) and apply the model to the task of traffic signs recognition. The proposed model adopts deep CNN as the supervised learning model, directly takes the collected traffic signs image as the input, alternates the convolutional layer and subsampling layer, and automatically extracts the features for the recognition of the traffic signs images. The proposed model includes an input layer, three convolutional layers, three subsampling layers, a fully-connected layer, and an output layer. To validate the proposed model, the experiments are implemented using the public dataset of China competition of fuzzy image processing. Experimental results show that the proposed model produces a recognition accuracy of 99.01 % on the training dataset, and yield a record of 92% on the preliminary contest within the fourth best.
Advanced methods in NDE using machine learning approaches
NASA Astrophysics Data System (ADS)
Wunderlich, Christian; Tschöpe, Constanze; Duckhorn, Frank
2018-04-01
Machine learning (ML) methods and algorithms have been applied recently with great success in quality control and predictive maintenance. Its goal to build new and/or leverage existing algorithms to learn from training data and give accurate predictions, or to find patterns, particularly with new and unseen similar data, fits perfectly to Non-Destructive Evaluation. The advantages of ML in NDE are obvious in such tasks as pattern recognition in acoustic signals or automated processing of images from X-ray, Ultrasonics or optical methods. Fraunhofer IKTS is using machine learning algorithms in acoustic signal analysis. The approach had been applied to such a variety of tasks in quality assessment. The principal approach is based on acoustic signal processing with a primary and secondary analysis step followed by a cognitive system to create model data. Already in the second analysis steps unsupervised learning algorithms as principal component analysis are used to simplify data structures. In the cognitive part of the software further unsupervised and supervised learning algorithms will be trained. Later the sensor signals from unknown samples can be recognized and classified automatically by the algorithms trained before. Recently the IKTS team was able to transfer the software for signal processing and pattern recognition to a small printed circuit board (PCB). Still, algorithms will be trained on an ordinary PC; however, trained algorithms run on the Digital Signal Processor and the FPGA chip. The identical approach will be used for pattern recognition in image analysis of OCT pictures. Some key requirements have to be fulfilled, however. A sufficiently large set of training data, a high signal-to-noise ratio, and an optimized and exact fixation of components are required. The automated testing can be done subsequently by the machine. By integrating the test data of many components along the value chain further optimization including lifetime and durability prediction based on big data becomes possible, even if components are used in different versions or configurations. This is the promise behind German Industry 4.0.
Biological object recognition in μ-radiography images
NASA Astrophysics Data System (ADS)
Prochazka, A.; Dammer, J.; Weyda, F.; Sopko, V.; Benes, J.; Zeman, J.; Jandejsek, I.
2015-03-01
This study presents an applicability of real-time microradiography to biological objects, namely to horse chestnut leafminer, Cameraria ohridella (Insecta: Lepidoptera, Gracillariidae) and following image processing focusing on image segmentation and object recognition. The microradiography of insects (such as horse chestnut leafminer) provides a non-invasive imaging that leaves the organisms alive. The imaging requires a high spatial resolution (micrometer scale) radiographic system. Our radiographic system consists of a micro-focus X-ray tube and two types of detectors. The first is a charge integrating detector (Hamamatsu flat panel), the second is a pixel semiconductor detector (Medipix2 detector). The latter allows detection of single quantum photon of ionizing radiation. We obtained numerous horse chestnuts leafminer pupae in several microradiography images easy recognizable in automatic mode using the image processing methods. We implemented an algorithm that is able to count a number of dead and alive pupae in images. The algorithm was based on two methods: 1) noise reduction using mathematical morphology filters, 2) Canny edge detection. The accuracy of the algorithm is higher for the Medipix2 (average recall for detection of alive pupae =0.99, average recall for detection of dead pupae =0.83), than for the flat panel (average recall for detection of alive pupae =0.99, average recall for detection of dead pupae =0.77). Therefore, we conclude that Medipix2 has lower noise and better displays contours (edges) of biological objects. Our method allows automatic selection and calculation of dead and alive chestnut leafminer pupae. It leads to faster monitoring of the population of one of the world's important insect pest.
Off-Angle Iris Correction Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos-Villalobos, Hector J; Thompson, Joseph T; Karakaya, Mahmut
In many real world iris recognition systems obtaining consistent frontal images is problematic do to inexperienced or uncooperative users, untrained operators, or distracting environments. As a result many collected images are unusable by modern iris matchers. In this chapter we present four methods for correcting off-angle iris images to appear frontal which makes them compatible with existing iris matchers. The methods include an affine correction, a retraced model of the human eye, measured displacements, and a genetic algorithm optimized correction. The affine correction represents a simple way to create an iris image that appears frontal but it does not accountmore » for refractive distortions of the cornea. The other method account for refraction. The retraced model simulates the optical properties of the cornea. The other two methods are data driven. The first uses optical flow to measure the displacements of the iris texture when compared to frontal images of the same subject. The second uses a genetic algorithm to learn a mapping that optimizes the Hamming Distance scores between off-angle and frontal images. In this paper we hypothesize that the biological model presented in our earlier work does not adequately account for all variations in eye anatomy and therefore the two data-driven approaches should yield better performance. Results are presented using the commercial VeriEye matcher that show that the genetic algorithm method clearly improves over prior work and makes iris recognition possible up to 50 degrees off-angle.« less
Cherry recognition in natural environment based on the vision of picking robot
NASA Astrophysics Data System (ADS)
Zhang, Qirong; Chen, Shanxiong; Yu, Tingzhong; Wang, Yan
2017-04-01
In order to realize the automatic recognition of cherry in the natural environment, this paper designed a robot vision system recognition method. The first step of this method is to pre-process the cherry image by median filtering. The second step is to identify the colour of the cherry through the 0.9R-G colour difference formula, and then use the Otsu algorithm for threshold segmentation. The third step is to remove noise by using the area threshold. The fourth step is to remove the holes in the cherry image by morphological closed and open operation. The fifth step is to obtain the centroid and contour of cherry by using the smallest external rectangular and the Hough transform. Through this recognition process, we can successfully identify 96% of the cherry without blocking and adhesion.
Start-ups Bring AI to Pathology.
2018-04-01
New startups are developing pattern-recognition algorithms that could one day help pathologists more accurately spot tumors on digitized tissue images, thereby aiding in diagnosis, treatment, drug discovery, and more. ©2018 American Association for Cancer Research.
Similarity analysis between quantum images
NASA Astrophysics Data System (ADS)
Zhou, Ri-Gui; Liu, XingAo; Zhu, Changming; Wei, Lai; Zhang, Xiafen; Ian, Hou
2018-06-01
Similarity analyses between quantum images are so essential in quantum image processing that it provides fundamental research for the other fields, such as quantum image matching, quantum pattern recognition. In this paper, a quantum scheme based on a novel quantum image representation and quantum amplitude amplification algorithm is proposed. At the end of the paper, three examples and simulation experiments show that the measurement result must be 0 when two images are same, and the measurement result has high probability of being 1 when two images are different.
SVD compression for magnetic resonance fingerprinting in the time domain.
McGivney, Debra F; Pierre, Eric; Ma, Dan; Jiang, Yun; Saybasili, Haris; Gulani, Vikas; Griswold, Mark A
2014-12-01
Magnetic resonance (MR) fingerprinting is a technique for acquiring and processing MR data that simultaneously provides quantitative maps of different tissue parameters through a pattern recognition algorithm. A predefined dictionary models the possible signal evolutions simulated using the Bloch equations with different combinations of various MR parameters and pattern recognition is completed by computing the inner product between the observed signal and each of the predicted signals within the dictionary. Though this matching algorithm has been shown to accurately predict the MR parameters of interest, one desires a more efficient method to obtain the quantitative images. We propose to compress the dictionary using the singular value decomposition, which will provide a low-rank approximation. By compressing the size of the dictionary in the time domain, we are able to speed up the pattern recognition algorithm, by a factor of between 3.4-4.8, without sacrificing the high signal-to-noise ratio of the original scheme presented previously.
SVD Compression for Magnetic Resonance Fingerprinting in the Time Domain
McGivney, Debra F.; Pierre, Eric; Ma, Dan; Jiang, Yun; Saybasili, Haris; Gulani, Vikas; Griswold, Mark A.
2016-01-01
Magnetic resonance fingerprinting is a technique for acquiring and processing MR data that simultaneously provides quantitative maps of different tissue parameters through a pattern recognition algorithm. A predefined dictionary models the possible signal evolutions simulated using the Bloch equations with different combinations of various MR parameters and pattern recognition is completed by computing the inner product between the observed signal and each of the predicted signals within the dictionary. Though this matching algorithm has been shown to accurately predict the MR parameters of interest, one desires a more efficient method to obtain the quantitative images. We propose to compress the dictionary using the singular value decomposition (SVD), which will provide a low-rank approximation. By compressing the size of the dictionary in the time domain, we are able to speed up the pattern recognition algorithm, by a factor of between 3.4-4.8, without sacrificing the high signal-to-noise ratio of the original scheme presented previously. PMID:25029380
Exhibits Recognition System for Combining Online Services and Offline Services
NASA Astrophysics Data System (ADS)
Ma, He; Liu, Jianbo; Zhang, Yuan; Wu, Xiaoyu
2017-10-01
In order to achieve a more convenient and accurate digital museum navigation, we have developed a real-time and online-to-offline museum exhibits recognition system using image recognition method based on deep learning. In this paper, the client and server of the system are separated and connected through the HTTP. Firstly, by using the client app in the Android mobile phone, the user can take pictures and upload them to the server. Secondly, the features of the picture are extracted using the deep learning network in the server. With the help of the features, the pictures user uploaded are classified with a well-trained SVM. Finally, the classification results are sent to the client and the detailed exhibition’s introduction corresponding to the classification results are shown in the client app. Experimental results demonstrate that the recognition accuracy is close to 100% and the computing time from the image uploading to the exhibit information show is less than 1S. By means of exhibition image recognition algorithm, our implemented exhibits recognition system can combine online detailed exhibition information to the user in the offline exhibition hall so as to achieve better digital navigation.
Analysis of Variance in Statistical Image Processing
NASA Astrophysics Data System (ADS)
Kurz, Ludwik; Hafed Benteftifa, M.
1997-04-01
A key problem in practical image processing is the detection of specific features in a noisy image. Analysis of variance (ANOVA) techniques can be very effective in such situations, and this book gives a detailed account of the use of ANOVA in statistical image processing. The book begins by describing the statistical representation of images in the various ANOVA models. The authors present a number of computationally efficient algorithms and techniques to deal with such problems as line, edge, and object detection, as well as image restoration and enhancement. By describing the basic principles of these techniques, and showing their use in specific situations, the book will facilitate the design of new algorithms for particular applications. It will be of great interest to graduate students and engineers in the field of image processing and pattern recognition.
The method for froth floatation condition recognition based on adaptive feature weighted
NASA Astrophysics Data System (ADS)
Wang, Jieran; Zhang, Jun; Tian, Jinwen; Zhang, Daimeng; Liu, Xiaomao
2018-03-01
The fusion of foam characteristics can play a complementary role in expressing the content of foam image. The weight of foam characteristics is the key to make full use of the relationship between the different features. In this paper, an Adaptive Feature Weighted Method For Froth Floatation Condition Recognition is proposed. Foam features without and with weights are both classified by using support vector machine (SVM).The classification accuracy and optimal equaling algorithm under the each ore grade are regarded as the result of the adaptive feature weighting algorithm. At the same time the effectiveness of adaptive weighted method is demonstrated.
Robust Bioinformatics Recognition with VLSI Biochip Microsystem
NASA Technical Reports Server (NTRS)
Lue, Jaw-Chyng L.; Fang, Wai-Chi
2006-01-01
A microsystem architecture for real-time, on-site, robust bioinformatic patterns recognition and analysis has been proposed. This system is compatible with on-chip DNA analysis means such as polymerase chain reaction (PCR)amplification. A corresponding novel artificial neural network (ANN) learning algorithm using new sigmoid-logarithmic transfer function based on error backpropagation (EBP) algorithm is invented. Our results show the trained new ANN can recognize low fluorescence patterns better than the conventional sigmoidal ANN does. A differential logarithmic imaging chip is designed for calculating logarithm of relative intensities of fluorescence signals. The single-rail logarithmic circuit and a prototype ANN chip are designed, fabricated and characterized.
Tensor Fukunaga-Koontz transform for small target detection in infrared images
NASA Astrophysics Data System (ADS)
Liu, Ruiming; Wang, Jingzhuo; Yang, Huizhen; Gong, Chenglong; Zhou, Yuanshen; Liu, Lipeng; Zhang, Zhen; Shen, Shuli
2016-09-01
Infrared small targets detection plays a crucial role in warning and tracking systems. Some novel methods based on pattern recognition technology catch much attention from researchers. However, those classic methods must reshape images into vectors with the high dimensionality. Moreover, vectorizing breaks the natural structure and correlations in the image data. Image representation based on tensor treats images as matrices and can hold the natural structure and correlation information. So tensor algorithms have better classification performance than vector algorithms. Fukunaga-Koontz transform is one of classification algorithms and it is a vector version method with the disadvantage of all vector algorithms. In this paper, we first extended the Fukunaga-Koontz transform into its tensor version, tensor Fukunaga-Koontz transform. Then we designed a method based on tensor Fukunaga-Koontz transform for detecting targets and used it to detect small targets in infrared images. The experimental results, comparison through signal-to-clutter, signal-to-clutter gain and background suppression factor, have validated the advantage of the target detection based on the tensor Fukunaga-Koontz transform over that based on the Fukunaga-Koontz transform.
Study on polarized optical flow algorithm for imaging bionic polarization navigation micro sensor
NASA Astrophysics Data System (ADS)
Guan, Le; Liu, Sheng; Li, Shi-qi; Lin, Wei; Zhai, Li-yuan; Chu, Jin-kui
2018-05-01
At present, both the point source and the imaging polarization navigation devices only can output the angle information, which means that the velocity information of the carrier cannot be extracted from the polarization field pattern directly. Optical flow is an image-based method for calculating the velocity of pixel point movement in an image. However, for ordinary optical flow, the difference in pixel value as well as the calculation accuracy can be reduced in weak light. Polarization imaging technology has the ability to improve both the detection accuracy and the recognition probability of the target because it can acquire the extra polarization multi-dimensional information of target radiation or reflection. In this paper, combining the polarization imaging technique with the traditional optical flow algorithm, a polarization optical flow algorithm is proposed, and it is verified that the polarized optical flow algorithm has good adaptation in weak light and can improve the application range of polarization navigation sensors. This research lays the foundation for day and night all-weather polarization navigation applications in future.
Real Time Intelligent Target Detection and Analysis with Machine Vision
NASA Technical Reports Server (NTRS)
Howard, Ayanna; Padgett, Curtis; Brown, Kenneth
2000-01-01
We present an algorithm for detecting a specified set of targets for an Automatic Target Recognition (ATR) application. ATR involves processing images for detecting, classifying, and tracking targets embedded in a background scene. We address the problem of discriminating between targets and nontarget objects in a scene by evaluating 40x40 image blocks belonging to an image. Each image block is first projected onto a set of templates specifically designed to separate images of targets embedded in a typical background scene from those background images without targets. These filters are found using directed principal component analysis which maximally separates the two groups. The projected images are then clustered into one of n classes based on a minimum distance to a set of n cluster prototypes. These cluster prototypes have previously been identified using a modified clustering algorithm based on prior sensed data. Each projected image pattern is then fed into the associated cluster's trained neural network for classification. A detailed description of our algorithm will be given in this paper. We outline our methodology for designing the templates, describe our modified clustering algorithm, and provide details on the neural network classifiers. Evaluation of the overall algorithm demonstrates that our detection rates approach 96% with a false positive rate of less than 0.03%.
Sub-word image clustering in Farsi printed books
NASA Astrophysics Data System (ADS)
Soheili, Mohammad Reza; Kabir, Ehsanollah; Stricker, Didier
2015-02-01
Most OCR systems are designed for the recognition of a single page. In case of unfamiliar font faces, low quality papers and degraded prints, the performance of these products drops sharply. However, an OCR system can use redundancy of word occurrences in large documents to improve recognition results. In this paper, we propose a sub-word image clustering method for the applications dealing with large printed documents. We assume that the whole document is printed by a unique unknown font with low quality print. Our proposed method finds clusters of equivalent sub-word images with an incremental algorithm. Due to the low print quality, we propose an image matching algorithm for measuring the distance between two sub-word images, based on Hamming distance and the ratio of the area to the perimeter of the connected components. We built a ground-truth dataset of more than 111000 sub-word images to evaluate our method. All of these images were extracted from an old Farsi book. We cluster all of these sub-words, including isolated letters and even punctuation marks. Then all centers of created clusters are labeled manually. We show that all sub-words of the book can be recognized with more than 99.7% accuracy by assigning the label of each cluster center to all of its members.
Crawford, D C; Bell, D S; Bamber, J C
1993-01-01
A systematic method to compensate for nonlinear amplification of individual ultrasound B-scanners has been investigated in order to optimise performance of an adaptive speckle reduction (ASR) filter for a wide range of clinical ultrasonic imaging equipment. Three potential methods have been investigated: (1) a method involving an appropriate selection of the speckle recognition feature was successful when the scanner signal processing executes simple logarithmic compressions; (2) an inverse transform (decompression) of the B-mode image was effective in correcting for the measured characteristics of image data compression when the algorithm was implemented in full floating point arithmetic; (3) characterising the behaviour of the statistical speckle recognition feature under conditions of speckle noise was found to be the method of choice for implementation of the adaptive speckle reduction algorithm in limited precision integer arithmetic. In this example, the statistical features of variance and mean were investigated. The third method may be implemented on commercially available fast image processing hardware and is also better suited for transfer into dedicated hardware to facilitate real-time adaptive speckle reduction. A systematic method is described for obtaining ASR calibration data from B-mode images of a speckle producing phantom.
An embedded system for face classification in infrared video using sparse representation
NASA Astrophysics Data System (ADS)
Saavedra M., Antonio; Pezoa, Jorge E.; Zarkesh-Ha, Payman; Figueroa, Miguel
2017-09-01
We propose a platform for robust face recognition in Infrared (IR) images using Compressive Sensing (CS). In line with CS theory, the classification problem is solved using a sparse representation framework, where test images are modeled by means of a linear combination of the training set. Because the training set constitutes an over-complete dictionary, we identify new images by finding their sparsest representation based on the training set, using standard l1-minimization algorithms. Unlike conventional face-recognition algorithms, we feature extraction is performed using random projections with a precomputed binary matrix, as proposed in the CS literature. This random sampling reduces the effects of noise and occlusions such as facial hair, eyeglasses, and disguises, which are notoriously challenging in IR images. Thus, the performance of our framework is robust to these noise and occlusion factors, achieving an average accuracy of approximately 90% when the UCHThermalFace database is used for training and testing purposes. We implemented our framework on a high-performance embedded digital system, where the computation of the sparse representation of IR images was performed by a dedicated hardware using a deeply pipelined architecture on an Field-Programmable Gate Array (FPGA).
Fast iterative censoring CFAR algorithm for ship detection from SAR images
NASA Astrophysics Data System (ADS)
Gu, Dandan; Yue, Hui; Zhang, Yuan; Gao, Pengcheng
2017-11-01
Ship detection is one of the essential techniques for ship recognition from synthetic aperture radar (SAR) images. This paper presents a fast iterative detection procedure to eliminate the influence of target returns on the estimation of local sea clutter distributions for constant false alarm rate (CFAR) detectors. A fast block detector is first employed to extract potential target sub-images; and then, an iterative censoring CFAR algorithm is used to detect ship candidates from each target blocks adaptively and efficiently, where parallel detection is available, and statistical parameters of G0 distribution fitting local sea clutter well can be quickly estimated based on an integral image operator. Experimental results of TerraSAR-X images demonstrate the effectiveness of the proposed technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, X; Yang, D
Purpose: To investigate the method to automatically recognize the treatment site in the X-Ray portal images. It could be useful to detect potential treatment errors, and to provide guidance to sequential tasks, e.g. automatically verify the patient daily setup. Methods: The portal images were exported from MOSAIQ as DICOM files, and were 1) processed with a threshold based intensity transformation algorithm to enhance contrast, and 2) where then down-sampled (from 1024×768 to 128×96) by using bi-cubic interpolation algorithm. An appearance-based vector space model (VSM) was used to rearrange the images into vectors. A principal component analysis (PCA) method was usedmore » to reduce the vector dimensions. A multi-class support vector machine (SVM), with radial basis function kernel, was used to build the treatment site recognition models. These models were then used to recognize the treatment sites in the portal image. Portal images of 120 patients were included in the study. The images were selected to cover six treatment sites: brain, head and neck, breast, lung, abdomen and pelvis. Each site had images of the twenty patients. Cross-validation experiments were performed to evaluate the performance. Results: MATLAB image processing Toolbox and scikit-learn (a machine learning library in python) were used to implement the proposed method. The average accuracies using the AP and RT images separately were 95% and 94% respectively. The average accuracy using AP and RT images together was 98%. Computation time was ∼0.16 seconds per patient with AP or RT image, ∼0.33 seconds per patient with both of AP and RT images. Conclusion: The proposed method of treatment site recognition is efficient and accurate. It is not sensitive to the differences of image intensity, size and positions of patients in the portal images. It could be useful for the patient safety assurance. The work was partially supported by a research grant from Varian Medical System.« less
Face averages enhance user recognition for smartphone security.
Robertson, David J; Kramer, Robin S S; Burton, A Mike
2015-01-01
Our recognition of familiar faces is excellent, and generalises across viewing conditions. However, unfamiliar face recognition is much poorer. For this reason, automatic face recognition systems might benefit from incorporating the advantages of familiarity. Here we put this to the test using the face verification system available on a popular smartphone (the Samsung Galaxy). In two experiments we tested the recognition performance of the smartphone when it was encoded with an individual's 'face-average'--a representation derived from theories of human face perception. This technique significantly improved performance for both unconstrained celebrity images (Experiment 1) and for real faces (Experiment 2): users could unlock their phones more reliably when the device stored an average of the user's face than when they stored a single image. This advantage was consistent across a wide variety of everyday viewing conditions. Furthermore, the benefit did not reduce the rejection of imposter faces. This benefit is brought about solely by consideration of suitable representations for automatic face recognition, and we argue that this is just as important as development of matching algorithms themselves. We propose that this representation could significantly improve recognition rates in everyday settings.
A biologically inspired neural network model to transformation invariant object recognition
NASA Astrophysics Data System (ADS)
Iftekharuddin, Khan M.; Li, Yaqin; Siddiqui, Faraz
2007-09-01
Transformation invariant image recognition has been an active research area due to its widespread applications in a variety of fields such as military operations, robotics, medical practices, geographic scene analysis, and many others. The primary goal for this research is detection of objects in the presence of image transformations such as changes in resolution, rotation, translation, scale and occlusion. We investigate a biologically-inspired neural network (NN) model for such transformation-invariant object recognition. In a classical training-testing setup for NN, the performance is largely dependent on the range of transformation or orientation involved in training. However, an even more serious dilemma is that there may not be enough training data available for successful learning or even no training data at all. To alleviate this problem, a biologically inspired reinforcement learning (RL) approach is proposed. In this paper, the RL approach is explored for object recognition with different types of transformations such as changes in scale, size, resolution and rotation. The RL is implemented in an adaptive critic design (ACD) framework, which approximates the neuro-dynamic programming of an action network and a critic network, respectively. Two ACD algorithms such as Heuristic Dynamic Programming (HDP) and Dual Heuristic dynamic Programming (DHP) are investigated to obtain transformation invariant object recognition. The two learning algorithms are evaluated statistically using simulated transformations in images as well as with a large-scale UMIST face database with pose variations. In the face database authentication case, the 90° out-of-plane rotation of faces from 20 different subjects in the UMIST database is used. Our simulations show promising results for both designs for transformation-invariant object recognition and authentication of faces. Comparing the two algorithms, DHP outperforms HDP in learning capability, as DHP takes fewer steps to perform a successful recognition task in general. Further, the residual critic error in DHP is generally smaller than that of HDP, and DHP achieves a 100% success rate more frequently than HDP for individual objects/subjects. On the other hand, HDP is more robust than the DHP as far as success rate across the database is concerned when applied in a stochastic and uncertain environment, and the computational time involved in DHP is more.
Automated recognition and tracking of aerosol threat plumes with an IR camera pod
NASA Astrophysics Data System (ADS)
Fauth, Ryan; Powell, Christopher; Gruber, Thomas; Clapp, Dan
2012-06-01
Protection of fixed sites from chemical, biological, or radiological aerosol plume attacks depends on early warning so that there is time to take mitigating actions. Early warning requires continuous, autonomous, and rapid coverage of large surrounding areas; however, this must be done at an affordable cost. Once a potential threat plume is detected though, a different type of sensor (e.g., a more expensive, slower sensor) may be cued for identification purposes, but the problem is to quickly identify all of the potential threats around the fixed site of interest. To address this problem of low cost, persistent, wide area surveillance, an IR camera pod and multi-image stitching and processing algorithms have been developed for automatic recognition and tracking of aerosol plumes. A rugged, modular, static pod design, which accommodates as many as four micro-bolometer IR cameras for 45deg to 180deg of azimuth coverage, is presented. Various OpenCV1 based image-processing algorithms, including stitching of multiple adjacent FOVs, recognition of aerosol plume objects, and the tracking of aerosol plumes, are presented using process block diagrams and sample field test results, including chemical and biological simulant plumes. Methods for dealing with the background removal, brightness equalization between images, and focus quality for optimal plume tracking are also discussed.
Fuzzy Set Methods for Object Recognition in Space Applications
NASA Technical Reports Server (NTRS)
Keller, James M. (Editor)
1992-01-01
Progress on the following four tasks is described: (1) fuzzy set based decision methodologies; (2) membership calculation; (3) clustering methods (including derivation of pose estimation parameters), and (4) acquisition of images and testing of algorithms.
Fast linear feature detection using multiple directional non-maximum suppression.
Sun, C; Vallotton, P
2009-05-01
The capacity to detect linear features is central to image analysis, computer vision and pattern recognition and has practical applications in areas such as neurite outgrowth detection, retinal vessel extraction, skin hair removal, plant root analysis and road detection. Linear feature detection often represents the starting point for image segmentation and image interpretation. In this paper, we present a new algorithm for linear feature detection using multiple directional non-maximum suppression with symmetry checking and gap linking. Given its low computational complexity, the algorithm is very fast. We show in several examples that it performs very well in terms of both sensitivity and continuity of detected linear features.
An improved architecture for video rate image transformations
NASA Technical Reports Server (NTRS)
Fisher, Timothy E.; Juday, Richard D.
1989-01-01
Geometric image transformations are of interest to pattern recognition algorithms for their use in simplifying some aspects of the pattern recognition process. Examples include reducing sensitivity to rotation, scale, and perspective of the object being recognized. The NASA Programmable Remapper can perform a wide variety of geometric transforms at full video rate. An architecture is proposed that extends its abilities and alleviates many of the first version's shortcomings. The need for the improvements are discussed in the context of the initial Programmable Remapper and the benefits and limitations it has delivered. The implementation and capabilities of the proposed architecture are discussed.
Artificial intelligence and signal processing for infrastructure assessment
NASA Astrophysics Data System (ADS)
Assaleh, Khaled; Shanableh, Tamer; Yehia, Sherif
2015-04-01
The Ground Penetrating Radar (GPR) is being recognized as an effective nondestructive evaluation technique to improve the inspection process. However, data interpretation and complexity of the results impose some limitations on the practicality of using this technique. This is mainly due to the need of a trained experienced person to interpret images obtained by the GPR system. In this paper, an algorithm to classify and assess the condition of infrastructures utilizing image processing and pattern recognition techniques is discussed. Features extracted form a dataset of images of defected and healthy slabs are used to train a computer vision based system while another dataset is used to evaluate the proposed algorithm. Initial results show that the proposed algorithm is able to detect the existence of defects with about 77% success rate.
Video face recognition against a watch list
NASA Astrophysics Data System (ADS)
Abbas, Jehanzeb; Dagli, Charlie K.; Huang, Thomas S.
2007-10-01
Due to a large increase in the video surveillance data recently in an effort to maintain high security at public places, we need more robust systems to analyze this data and make tasks like face recognition a realistic possibility in challenging environments. In this paper we explore a watch-list scenario where we use an appearance based model to classify query faces from low resolution videos into either a watch-list or a non-watch-list face. We then use our simple yet a powerful face recognition system to recognize the faces classified as watch-list faces. Where the watch-list includes those people that we are interested in recognizing. Our system uses simple feature machine algorithms from our previous work to match video faces against still images. To test our approach, we match video faces against a large database of still images obtained from a previous work in the field from Yahoo News over a period of time. We do this matching in an efficient manner to come up with a faster and nearly real-time system. This system can be incorporated into a larger surveillance system equipped with advanced algorithms involving anomalous event detection and activity recognition. This is a step towards more secure and robust surveillance systems and efficient video data analysis.
Face recognition using tridiagonal matrix enhanced multivariance products representation
NASA Astrophysics Data System (ADS)
Ã-zay, Evrim Korkmaz
2017-01-01
This study aims to retrieve face images from a database according to a target face image. For this purpose, Tridiagonal Matrix Enhanced Multivariance Products Representation (TMEMPR) is taken into consideration. TMEMPR is a recursive algorithm based on Enhanced Multivariance Products Representation (EMPR). TMEMPR decomposes a matrix into three components which are a matrix of left support terms, a tridiagonal matrix of weight parameters for each recursion, and a matrix of right support terms, respectively. In this sense, there is an analogy between Singular Value Decomposition (SVD) and TMEMPR. However TMEMPR is a more flexible algorithm since its initial support terms (or vectors) can be chosen as desired. Low computational complexity is another advantage of TMEMPR because the algorithm has been constructed with recursions of certain arithmetic operations without requiring any iteration. The algorithm has been trained and tested with ORL face image database with 400 different grayscale images of 40 different people. TMEMPR's performance has been compared with SVD's performance as a result.
Sinha, S K; Karray, F
2002-01-01
Pipeline surface defects such as holes and cracks cause major problems for utility managers, particularly when the pipeline is buried under the ground. Manual inspection for surface defects in the pipeline has a number of drawbacks, including subjectivity, varying standards, and high costs. Automatic inspection system using image processing and artificial intelligence techniques can overcome many of these disadvantages and offer utility managers an opportunity to significantly improve quality and reduce costs. A recognition and classification of pipe cracks using images analysis and neuro-fuzzy algorithm is proposed. In the preprocessing step the scanned images of pipe are analyzed and crack features are extracted. In the classification step the neuro-fuzzy algorithm is developed that employs a fuzzy membership function and error backpropagation algorithm. The idea behind the proposed approach is that the fuzzy membership function will absorb variation of feature values and the backpropagation network, with its learning ability, will show good classification efficiency.
CNNs flag recognition preprocessing scheme based on gray scale stretching and local binary pattern
NASA Astrophysics Data System (ADS)
Gong, Qian; Qu, Zhiyi; Hao, Kun
2017-07-01
Flag is a rather special recognition target in image recognition because of its non-rigid features with the location, scale and rotation characteristics. The location change can be handled well by the depth learning algorithm Convolutional Neural Networks (CNNs), but the scale and rotation changes are quite a challenge for CNNs. Since it has good rotation and gray scale invariance, the local binary pattern (LBP) is combined with grayscale stretching and CNNs to make LBP and grayscale stretching as CNNs pretreatment, which can not only significantly improve the efficiency of flag recognition, but can also evaluate the recognition effect through ROC, accuracy, MSE and quality factor.
Face recognition based on matching of local features on 3D dynamic range sequences
NASA Astrophysics Data System (ADS)
Echeagaray-Patrón, B. A.; Kober, Vitaly
2016-09-01
3D face recognition has attracted attention in the last decade due to improvement of technology of 3D image acquisition and its wide range of applications such as access control, surveillance, human-computer interaction and biometric identification systems. Most research on 3D face recognition has focused on analysis of 3D still data. In this work, a new method for face recognition using dynamic 3D range sequences is proposed. Experimental results are presented and discussed using 3D sequences in the presence of pose variation. The performance of the proposed method is compared with that of conventional face recognition algorithms based on descriptors.
Effectiveness of feature and classifier algorithms in character recognition systems
NASA Astrophysics Data System (ADS)
Wilson, Charles L.
1993-04-01
At the first Census Optical Character Recognition Systems Conference, NIST generated accuracy data for more than character recognition systems. Most systems were tested on the recognition of isolated digits and upper and lower case alphabetic characters. The recognition experiments were performed on sample sizes of 58,000 digits, and 12,000 upper and lower case alphabetic characters. The algorithms used by the 26 conference participants included rule-based methods, image-based methods, statistical methods, and neural networks. The neural network methods included Multi-Layer Perceptron's, Learned Vector Quantitization, Neocognitrons, and cascaded neural networks. In this paper 11 different systems are compared using correlations between the answers of different systems, comparing the decrease in error rate as a function of confidence of recognition, and comparing the writer dependence of recognition. This comparison shows that methods that used different algorithms for feature extraction and recognition performed with very high levels of correlation. This is true for neural network systems, hybrid systems, and statistically based systems, and leads to the conclusion that neural networks have not yet demonstrated a clear superiority to more conventional statistical methods. Comparison of these results with the models of Vapnick (for estimation problems), MacKay (for Bayesian statistical models), Moody (for effective parameterization), and Boltzmann models (for information content) demonstrate that as the limits of training data variance are approached, all classifier systems have similar statistical properties. The limiting condition can only be approached for sufficiently rich feature sets because the accuracy limit is controlled by the available information content of the training set, which must pass through the feature extraction process prior to classification.
NASA Astrophysics Data System (ADS)
Zafar, I.; Edirisinghe, E. A.; Acar, S.; Bez, H. E.
2007-02-01
Automatic vehicle Make and Model Recognition (MMR) systems provide useful performance enhancements to vehicle recognitions systems that are solely based on Automatic License Plate Recognition (ALPR) systems. Several car MMR systems have been proposed in literature. However these approaches are based on feature detection algorithms that can perform sub-optimally under adverse lighting and/or occlusion conditions. In this paper we propose a real time, appearance based, car MMR approach using Two Dimensional Linear Discriminant Analysis that is capable of addressing this limitation. We provide experimental results to analyse the proposed algorithm's robustness under varying illumination and occlusions conditions. We have shown that the best performance with the proposed 2D-LDA based car MMR approach is obtained when the eigenvectors of lower significance are ignored. For the given database of 200 car images of 25 different make-model classifications, a best accuracy of 91% was obtained with the 2D-LDA approach. We use a direct Principle Component Analysis (PCA) based approach as a benchmark to compare and contrast the performance of the proposed 2D-LDA approach to car MMR. We conclude that in general the 2D-LDA based algorithm supersedes the performance of the PCA based approach.
NASA Astrophysics Data System (ADS)
Wei, B. G.; Huo, K. X.; Yao, Z. F.; Lou, J.; Li, X. Y.
2018-03-01
It is one of the difficult problems encountered in the research of condition maintenance technology of transformers to recognize partial discharge (PD) pattern. According to the main physical characteristics of PD, three models of oil-paper insulation defects were set up in laboratory to study the PD of transformers, and phase resolved partial discharge (PRPD) was constructed. By using least square method, the grey-scale images of PRPD were constructed and features of each grey-scale image were 28 box dimensions and 28 information dimensions. Affinity propagation algorithm based on manifold distance (AP-MD) for transformers PD pattern recognition was established, and the data of box dimension and information dimension were clustered based on AP-MD. Study shows that clustering result of AP-MD is better than the results of affinity propagation (AP), k-means and fuzzy c-means algorithm (FCM). By choosing different k values of k-nearest neighbor, we find clustering accuracy of AP-MD falls when k value is larger or smaller, and the optimal k value depends on sample size.
Food Recognition: A New Dataset, Experiments, and Results.
Ciocca, Gianluigi; Napoletano, Paolo; Schettini, Raimondo
2017-05-01
We propose a new dataset for the evaluation of food recognition algorithms that can be used in dietary monitoring applications. Each image depicts a real canteen tray with dishes and foods arranged in different ways. Each tray contains multiple instances of food classes. The dataset contains 1027 canteen trays for a total of 3616 food instances belonging to 73 food classes. The food on the tray images has been manually segmented using carefully drawn polygonal boundaries. We have benchmarked the dataset by designing an automatic tray analysis pipeline that takes a tray image as input, finds the regions of interest, and predicts for each region the corresponding food class. We have experimented with three different classification strategies using also several visual descriptors. We achieve about 79% of food and tray recognition accuracy using convolutional-neural-networks-based features. The dataset, as well as the benchmark framework, are available to the research community.
Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images.
Udupa, Jayaram K; Odhner, Dewey; Zhao, Liming; Tong, Yubing; Matsumoto, Monica M S; Ciesielski, Krzysztof C; Falcao, Alexandre X; Vaideeswaran, Pavithra; Ciesielski, Victoria; Saboury, Babak; Mohammadianrasanani, Syedmehrdad; Sin, Sanghun; Arens, Raanan; Torigian, Drew A
2014-07-01
To make Quantitative Radiology (QR) a reality in radiological practice, computerized body-wide Automatic Anatomy Recognition (AAR) becomes essential. With the goal of building a general AAR system that is not tied to any specific organ system, body region, or image modality, this paper presents an AAR methodology for localizing and delineating all major organs in different body regions based on fuzzy modeling ideas and a tight integration of fuzzy models with an Iterative Relative Fuzzy Connectedness (IRFC) delineation algorithm. The methodology consists of five main steps: (a) gathering image data for both building models and testing the AAR algorithms from patient image sets existing in our health system; (b) formulating precise definitions of each body region and organ and delineating them following these definitions; (c) building hierarchical fuzzy anatomy models of organs for each body region; (d) recognizing and locating organs in given images by employing the hierarchical models; and (e) delineating the organs following the hierarchy. In Step (c), we explicitly encode object size and positional relationships into the hierarchy and subsequently exploit this information in object recognition in Step (d) and delineation in Step (e). Modality-independent and dependent aspects are carefully separated in model encoding. At the model building stage, a learning process is carried out for rehearsing an optimal threshold-based object recognition method. The recognition process in Step (d) starts from large, well-defined objects and proceeds down the hierarchy in a global to local manner. A fuzzy model-based version of the IRFC algorithm is created by naturally integrating the fuzzy model constraints into the delineation algorithm. The AAR system is tested on three body regions - thorax (on CT), abdomen (on CT and MRI), and neck (on MRI and CT) - involving a total of over 35 organs and 130 data sets (the total used for model building and testing). The training and testing data sets are divided into equal size in all cases except for the neck. Overall the AAR method achieves a mean accuracy of about 2 voxels in localizing non-sparse blob-like objects and most sparse tubular objects. The delineation accuracy in terms of mean false positive and negative volume fractions is 2% and 8%, respectively, for non-sparse objects, and 5% and 15%, respectively, for sparse objects. The two object groups achieve mean boundary distance relative to ground truth of 0.9 and 1.5 voxels, respectively. Some sparse objects - venous system (in the thorax on CT), inferior vena cava (in the abdomen on CT), and mandible and naso-pharynx (in neck on MRI, but not on CT) - pose challenges at all levels, leading to poor recognition and/or delineation results. The AAR method fares quite favorably when compared with methods from the recent literature for liver, kidneys, and spleen on CT images. We conclude that separation of modality-independent from dependent aspects, organization of objects in a hierarchy, encoding of object relationship information explicitly into the hierarchy, optimal threshold-based recognition learning, and fuzzy model-based IRFC are effective concepts which allowed us to demonstrate the feasibility of a general AAR system that works in different body regions on a variety of organs and on different modalities. Copyright © 2014 Elsevier B.V. All rights reserved.
A Greedy Algorithm for Brain MRI's Registration.
Chesseboeuf, Clément
2016-12-01
This document presents a non-rigid registration algorithm for the use of brain magnetic resonance (MR) images comparison. More precisely, we want to compare pre-operative and post-operative MR images in order to assess the deformation due to a surgical removal. The proposed algorithm has been studied in Chesseboeuf et al. ((Non-rigid registration of magnetic resonance imaging of brain. IEEE, 385-390. doi: 10.1109/IPTA.2015.7367172 , 2015), following ideas of Trouvé (An infinite dimensional group approach for physics based models in patterns recognition. Technical Report DMI Ecole Normale Supérieure, Cachan, 1995), in which the author introduces the algorithm within a very general framework. Here we recalled this theory from a practical point of view. The emphasis is on illustrations and description of the numerical procedure. Our version of the algorithm is associated with a particular matching criterion. Then, a section is devoted to the description of this object. In the last section we focus on the construction of a statistical method of evaluation.
SAR image dataset of military ground targets with multiple poses for ATR
NASA Astrophysics Data System (ADS)
Belloni, Carole; Balleri, Alessio; Aouf, Nabil; Merlet, Thomas; Le Caillec, Jean-Marc
2017-10-01
Automatic Target Recognition (ATR) is the task of automatically detecting and classifying targets. Recognition using Synthetic Aperture Radar (SAR) images is interesting because SAR images can be acquired at night and under any weather conditions, whereas optical sensors operating in the visible band do not have this capability. Existing SAR ATR algorithms have mostly been evaluated using the MSTAR dataset.1 The problem with the MSTAR is that some of the proposed ATR methods have shown good classification performance even when targets were hidden,2 suggesting the presence of a bias in the dataset. Evaluations of SAR ATR techniques are currently challenging due to the lack of publicly available data in the SAR domain. In this paper, we present a high resolution SAR dataset consisting of images of a set of ground military target models taken at various aspect angles, The dataset can be used for a fair evaluation and comparison of SAR ATR algorithms. We applied the Inverse Synthetic Aperture Radar (ISAR) technique to echoes from targets rotating on a turntable and illuminated with a stepped frequency waveform. The targets in the database consist of four variants of two 1.7m-long models of T-64 and T-72 tanks. The gun, the turret position and the depression angle are varied to form 26 different sequences of images. The emitted signal spanned the frequency range from 13 GHz to 18 GHz to achieve a bandwidth of 5 GHz sampled with 4001 frequency points. The resolution obtained with respect to the size of the model targets is comparable to typical values obtained using SAR airborne systems. Single polarized images (Horizontal-Horizontal) are generated using the backprojection algorithm.3 A total of 1480 images are produced using a 20° integration angle. The images in the dataset are organized in a suggested training and testing set to facilitate a standard evaluation of SAR ATR algorithms.
Qin, Jiangyi; Huang, Zhiping; Liu, Chunwu; Su, Shaojing; Zhou, Jing
2015-01-01
A novel blind recognition algorithm of frame synchronization words is proposed to recognize the frame synchronization words parameters in digital communication systems. In this paper, a blind recognition method of frame synchronization words based on the hard-decision is deduced in detail. And the standards of parameter recognition are given. Comparing with the blind recognition based on the hard-decision, utilizing the soft-decision can improve the accuracy of blind recognition. Therefore, combining with the characteristics of Quadrature Phase Shift Keying (QPSK) signal, an improved blind recognition algorithm based on the soft-decision is proposed. Meanwhile, the improved algorithm can be extended to other signal modulation forms. Then, the complete blind recognition steps of the hard-decision algorithm and the soft-decision algorithm are given in detail. Finally, the simulation results show that both the hard-decision algorithm and the soft-decision algorithm can recognize the parameters of frame synchronization words blindly. What's more, the improved algorithm can enhance the accuracy of blind recognition obviously.
Arsalan, Muhammad; Naqvi, Rizwan Ali; Kim, Dong Seop; Nguyen, Phong Ha; Owais, Muhammad; Park, Kang Ryoung
2018-01-01
The recent advancements in computer vision have opened new horizons for deploying biometric recognition algorithms in mobile and handheld devices. Similarly, iris recognition is now much needed in unconstraint scenarios with accuracy. These environments make the acquired iris image exhibit occlusion, low resolution, blur, unusual glint, ghost effect, and off-angles. The prevailing segmentation algorithms cannot cope with these constraints. In addition, owing to the unavailability of near-infrared (NIR) light, iris recognition in visible light environment makes the iris segmentation challenging with the noise of visible light. Deep learning with convolutional neural networks (CNN) has brought a considerable breakthrough in various applications. To address the iris segmentation issues in challenging situations by visible light and near-infrared light camera sensors, this paper proposes a densely connected fully convolutional network (IrisDenseNet), which can determine the true iris boundary even with inferior-quality images by using better information gradient flow between the dense blocks. In the experiments conducted, five datasets of visible light and NIR environments were used. For visible light environment, noisy iris challenge evaluation part-II (NICE-II selected from UBIRIS.v2 database) and mobile iris challenge evaluation (MICHE-I) datasets were used. For NIR environment, the institute of automation, Chinese academy of sciences (CASIA) v4.0 interval, CASIA v4.0 distance, and IIT Delhi v1.0 iris datasets were used. Experimental results showed the optimal segmentation of the proposed IrisDenseNet and its excellent performance over existing algorithms for all five datasets. PMID:29748495
Arsalan, Muhammad; Naqvi, Rizwan Ali; Kim, Dong Seop; Nguyen, Phong Ha; Owais, Muhammad; Park, Kang Ryoung
2018-05-10
The recent advancements in computer vision have opened new horizons for deploying biometric recognition algorithms in mobile and handheld devices. Similarly, iris recognition is now much needed in unconstraint scenarios with accuracy. These environments make the acquired iris image exhibit occlusion, low resolution, blur, unusual glint, ghost effect, and off-angles. The prevailing segmentation algorithms cannot cope with these constraints. In addition, owing to the unavailability of near-infrared (NIR) light, iris recognition in visible light environment makes the iris segmentation challenging with the noise of visible light. Deep learning with convolutional neural networks (CNN) has brought a considerable breakthrough in various applications. To address the iris segmentation issues in challenging situations by visible light and near-infrared light camera sensors, this paper proposes a densely connected fully convolutional network (IrisDenseNet), which can determine the true iris boundary even with inferior-quality images by using better information gradient flow between the dense blocks. In the experiments conducted, five datasets of visible light and NIR environments were used. For visible light environment, noisy iris challenge evaluation part-II (NICE-II selected from UBIRIS.v2 database) and mobile iris challenge evaluation (MICHE-I) datasets were used. For NIR environment, the institute of automation, Chinese academy of sciences (CASIA) v4.0 interval, CASIA v4.0 distance, and IIT Delhi v1.0 iris datasets were used. Experimental results showed the optimal segmentation of the proposed IrisDenseNet and its excellent performance over existing algorithms for all five datasets.
Study of robot landmark recognition with complex background
NASA Astrophysics Data System (ADS)
Huang, Yuqing; Yang, Jia
2007-12-01
It's of great importance for assisting robot in path planning, position navigating and task performing by perceiving and recognising environment characteristic. To solve the problem of monocular-vision-oriented landmark recognition for mobile intelligent robot marching with complex background, a kind of nested region growing algorithm which fused with transcendental color information and based on current maximum convergence center is proposed, allowing invariance localization to changes in position, scale, rotation, jitters and weather conditions. Firstly, a novel experiment threshold based on RGB vision model is used for the first image segmentation, which allowing some objects and partial scenes with similar color to landmarks also are detected with landmarks together. Secondly, with current maximum convergence center on segmented image as each growing seed point, the above region growing algorithm accordingly starts to establish several Regions of Interest (ROI) orderly. According to shape characteristics, a quick and effectual contour analysis based on primitive element is applied in deciding whether current ROI could be reserved or deleted after each region growing, then each ROI is judged initially and positioned. When the position information as feedback is conveyed to the gray image, the whole landmarks are extracted accurately with the second segmentation on the local image that exclusive to landmark area. Finally, landmarks are recognised by Hopfield neural network. Results issued from experiments on a great number of images with both campus and urban district as background show the effectiveness of the proposed algorithm.
NASA Astrophysics Data System (ADS)
You, Daekeun; Simpson, Matthew; Antani, Sameer; Demner-Fushman, Dina; Thoma, George R.
2013-01-01
Pointers (arrows and symbols) are frequently used in biomedical images to highlight specific image regions of interest (ROIs) that are mentioned in figure captions and/or text discussion. Detection of pointers is the first step toward extracting relevant visual features from ROIs and combining them with textual descriptions for a multimodal (text and image) biomedical article retrieval system. Recently we developed a pointer recognition algorithm based on an edge-based pointer segmentation method, and subsequently reported improvements made on our initial approach involving the use of Active Shape Models (ASM) for pointer recognition and region growing-based method for pointer segmentation. These methods contributed to improving the recall of pointer recognition but not much to the precision. The method discussed in this article is our recent effort to improve the precision rate. Evaluation performed on two datasets and compared with other pointer segmentation methods show significantly improved precision and the highest F1 score.
Modification of YAPE keypoint detection algorithm for wide local contrast range images
NASA Astrophysics Data System (ADS)
Lukoyanov, A.; Nikolaev, D.; Konovalenko, I.
2018-04-01
Keypoint detection is an important tool of image analysis, and among many contemporary keypoint detection algorithms YAPE is known for its computational performance, allowing its use in mobile and embedded systems. One of its shortcomings is high sensitivity to local contrast which leads to high detection density in high-contrast areas while missing detections in low-contrast ones. In this work we study the contrast sensitivity of YAPE and propose a modification which compensates for this property on images with wide local contrast range (Yet Another Contrast-Invariant Point Extractor, YACIPE). As a model example, we considered the traffic sign recognition problem, where some signs are well-lighted, whereas others are in shadows and thus have low contrast. We show that the number of traffic signs on the image of which has not been detected any keypoints is 40% less for the proposed modification compared to the original algorithm.
A novel iris localization algorithm using correlation filtering
NASA Astrophysics Data System (ADS)
Pohit, Mausumi; Sharma, Jitu
2015-06-01
Fast and efficient segmentation of iris from the eye images is a primary requirement for robust database independent iris recognition. In this paper we have presented a new algorithm for computing the inner and outer boundaries of the iris and locating the pupil centre. Pupil-iris boundary computation is based on correlation filtering approach, whereas iris-sclera boundary is determined through one dimensional intensity mapping. The proposed approach is computationally less extensive when compared with the existing algorithms like Hough transform.
Vision-based object detection and recognition system for intelligent vehicles
NASA Astrophysics Data System (ADS)
Ran, Bin; Liu, Henry X.; Martono, Wilfung
1999-01-01
Recently, a proactive crash mitigation system is proposed to enhance the crash avoidance and survivability of the Intelligent Vehicles. Accurate object detection and recognition system is a prerequisite for a proactive crash mitigation system, as system component deployment algorithms rely on accurate hazard detection, recognition, and tracking information. In this paper, we present a vision-based approach to detect and recognize vehicles and traffic signs, obtain their information, and track multiple objects by using a sequence of color images taken from a moving vehicle. The entire system consist of two sub-systems, the vehicle detection and recognition sub-system and traffic sign detection and recognition sub-system. Both of the sub- systems consist of four models: object detection model, object recognition model, object information model, and object tracking model. In order to detect potential objects on the road, several features of the objects are investigated, which include symmetrical shape and aspect ratio of a vehicle and color and shape information of the signs. A two-layer neural network is trained to recognize different types of vehicles and a parameterized traffic sign model is established in the process of recognizing a sign. Tracking is accomplished by combining the analysis of single image frame with the analysis of consecutive image frames. The analysis of the single image frame is performed every ten full-size images. The information model will obtain the information related to the object, such as time to collision for the object vehicle and relative distance from the traffic sings. Experimental results demonstrated a robust and accurate system in real time object detection and recognition over thousands of image frames.
Development of Portable Automatic Number Plate Recognition System on Android Mobile Phone
NASA Astrophysics Data System (ADS)
Mutholib, Abdul; Gunawan, Teddy S.; Chebil, Jalel; Kartiwi, Mira
2013-12-01
The Automatic Number Plate Recognition (ANPR) System has performed as the main role in various access control and security, such as: tracking of stolen vehicles, traffic violations (speed trap) and parking management system. In this paper, the portable ANPR implemented on android mobile phone is presented. The main challenges in mobile application are including higher coding efficiency, reduced computational complexity, and improved flexibility. Significance efforts are being explored to find suitable and adaptive algorithm for implementation of ANPR on mobile phone. ANPR system for mobile phone need to be optimize due to its limited CPU and memory resources, its ability for geo-tagging image captured using GPS coordinates and its ability to access online database to store the vehicle's information. In this paper, the design of portable ANPR on android mobile phone will be described as follows. First, the graphical user interface (GUI) for capturing image using built-in camera was developed to acquire vehicle plate number in Malaysia. Second, the preprocessing of raw image was done using contrast enhancement. Next, character segmentation using fixed pitch and an optical character recognition (OCR) using neural network were utilized to extract texts and numbers. Both character segmentation and OCR were using Tesseract library from Google Inc. The proposed portable ANPR algorithm was implemented and simulated using Android SDK on a computer. Based on the experimental results, the proposed system can effectively recognize the license plate number at 90.86%. The required processing time to recognize a license plate is only 2 seconds on average. The result is consider good in comparison with the results obtained from previous system that was processed in a desktop PC with the range of result from 91.59% to 98% recognition rate and 0.284 second to 1.5 seconds recognition time.
Visual recognition and inference using dynamic overcomplete sparse learning.
Murray, Joseph F; Kreutz-Delgado, Kenneth
2007-09-01
We present a hierarchical architecture and learning algorithm for visual recognition and other visual inference tasks such as imagination, reconstruction of occluded images, and expectation-driven segmentation. Using properties of biological vision for guidance, we posit a stochastic generative world model and from it develop a simplified world model (SWM) based on a tractable variational approximation that is designed to enforce sparse coding. Recent developments in computational methods for learning overcomplete representations (Lewicki & Sejnowski, 2000; Teh, Welling, Osindero, & Hinton, 2003) suggest that overcompleteness can be useful for visual tasks, and we use an overcomplete dictionary learning algorithm (Kreutz-Delgado, et al., 2003) as a preprocessing stage to produce accurate, sparse codings of images. Inference is performed by constructing a dynamic multilayer network with feedforward, feedback, and lateral connections, which is trained to approximate the SWM. Learning is done with a variant of the back-propagation-through-time algorithm, which encourages convergence to desired states within a fixed number of iterations. Vision tasks require large networks, and to make learning efficient, we take advantage of the sparsity of each layer to update only a small subset of elements in a large weight matrix at each iteration. Experiments on a set of rotated objects demonstrate various types of visual inference and show that increasing the degree of overcompleteness improves recognition performance in difficult scenes with occluded objects in clutter.
Automated detection of diabetic retinopathy on digital fundus images.
Sinthanayothin, C; Boyce, J F; Williamson, T H; Cook, H L; Mensah, E; Lal, S; Usher, D
2002-02-01
The aim was to develop an automated screening system to analyse digital colour retinal images for important features of non-proliferative diabetic retinopathy (NPDR). High performance pre-processing of the colour images was performed. Previously described automated image analysis systems were used to detect major landmarks of the retinal image (optic disc, blood vessels and fovea). Recursive region growing segmentation algorithms combined with the use of a new technique, termed a 'Moat Operator', were used to automatically detect features of NPDR. These features included haemorrhages and microaneurysms (HMA), which were treated as one group, and hard exudates as another group. Sensitivity and specificity data were calculated by comparison with an experienced fundoscopist. The algorithm for exudate recognition was applied to 30 retinal images of which 21 contained exudates and nine were without pathology. The sensitivity and specificity for exudate detection were 88.5% and 99.7%, respectively, when compared with the ophthalmologist. HMA were present in 14 retinal images. The algorithm achieved a sensitivity of 77.5% and specificity of 88.7% for detection of HMA. Fully automated computer algorithms were able to detect hard exudates and HMA. This paper presents encouraging results in automatic identification of important features of NPDR.
NASA Astrophysics Data System (ADS)
Kolb, Kimberly E.; Choi, Hee-sue S.; Kaur, Balvinder; Olson, Jeffrey T.; Hill, Clayton F.; Hutchinson, James A.
2016-05-01
The US Army's Communications Electronics Research, Development and Engineering Center (CERDEC) Night Vision and Electronic Sensors Directorate (referred to as NVESD) is developing a virtual detection, recognition, and identification (DRI) testing methodology using simulated imagery as a means of augmenting the field testing component of sensor performance evaluation, which is expensive, resource intensive, time consuming, and limited to the available target(s) and existing atmospheric visibility and environmental conditions at the time of testing. Existing simulation capabilities such as the Digital Imaging Remote Sensing Image Generator (DIRSIG) and NVESD's Integrated Performance Model Image Generator (NVIPM-IG) can be combined with existing detection algorithms to reduce cost/time, minimize testing risk, and allow virtual/simulated testing using full spectral and thermal object signatures, as well as those collected in the field. NVESD has developed an end-to-end capability to demonstrate the feasibility of this approach. Simple detection algorithms have been used on the degraded images generated by NVIPM-IG to determine the relative performance of the algorithms on both DIRSIG-simulated and collected images. Evaluating the degree to which the algorithm performance agrees between simulated versus field collected imagery is the first step in validating the simulated imagery procedure.
Flightspeed Integral Image Analysis Toolkit
NASA Technical Reports Server (NTRS)
Thompson, David R.
2009-01-01
The Flightspeed Integral Image Analysis Toolkit (FIIAT) is a C library that provides image analysis functions in a single, portable package. It provides basic low-level filtering, texture analysis, and subwindow descriptor for applications dealing with image interpretation and object recognition. Designed with spaceflight in mind, it addresses: Ease of integration (minimal external dependencies) Fast, real-time operation using integer arithmetic where possible (useful for platforms lacking a dedicated floatingpoint processor) Written entirely in C (easily modified) Mostly static memory allocation 8-bit image data The basic goal of the FIIAT library is to compute meaningful numerical descriptors for images or rectangular image regions. These n-vectors can then be used directly for novelty detection or pattern recognition, or as a feature space for higher-level pattern recognition tasks. The library provides routines for leveraging training data to derive descriptors that are most useful for a specific data set. Its runtime algorithms exploit a structure known as the "integral image." This is a caching method that permits fast summation of values within rectangular regions of an image. This integral frame facilitates a wide range of fast image-processing functions. This toolkit has applicability to a wide range of autonomous image analysis tasks in the space-flight domain, including novelty detection, object and scene classification, target detection for autonomous instrument placement, and science analysis of geomorphology. It makes real-time texture and pattern recognition possible for platforms with severe computational restraints. The software provides an order of magnitude speed increase over alternative software libraries currently in use by the research community. FIIAT can commercially support intelligent video cameras used in intelligent surveillance. It is also useful for object recognition by robots or other autonomous vehicles
The research of multi-frame target recognition based on laser active imaging
NASA Astrophysics Data System (ADS)
Wang, Can-jin; Sun, Tao; Wang, Tin-feng; Chen, Juan
2013-09-01
Laser active imaging is fit to conditions such as no difference in temperature between target and background, pitch-black night, bad visibility. Also it can be used to detect a faint target in long range or small target in deep space, which has advantage of high definition and good contrast. In one word, it is immune to environment. However, due to the affect of long distance, limited laser energy and atmospheric backscatter, it is impossible to illuminate the whole scene at the same time. It means that the target in every single frame is unevenly or partly illuminated, which make the recognition more difficult. At the same time the speckle noise which is common in laser active imaging blurs the images . In this paper we do some research on laser active imaging and propose a new target recognition method based on multi-frame images . Firstly, multi pulses of laser is used to obtain sub-images for different parts of scene. A denoising method combined homomorphic filter with wavelet domain SURE is used to suppress speckle noise. And blind deconvolution is introduced to obtain low-noise and clear sub-images. Then these sub-images are registered and stitched to combine a completely and uniformly illuminated scene image. After that, a new target recognition method based on contour moments is proposed. Firstly, canny operator is used to obtain contours. For each contour, seven invariant Hu moments are calculated to generate the feature vectors. At last the feature vectors are input into double hidden layers BP neural network for classification . Experiments results indicate that the proposed algorithm could achieve a high recognition rate and satisfactory real-time performance for laser active imaging.
Recognizable-image selection for fingerprint recognition with a mobile-device camera.
Lee, Dongjae; Choi, Kyoungtaek; Choi, Heeseung; Kim, Jaihie
2008-02-01
This paper proposes a recognizable-image selection algorithm for fingerprint-verification systems that use a camera embedded in a mobile device. A recognizable image is defined as the fingerprint image which includes the characteristics that are sufficiently discriminating an individual from other people. While general camera systems obtain focused images by using various gradient measures to estimate high-frequency components, mobile cameras cannot acquire recognizable images in the same way because the obtained images may not be adequate for fingerprint recognition, even if they are properly focused. A recognizable image has to meet the following two conditions: First, valid region in the recognizable image should be large enough compared with other nonrecognizable images. Here, a valid region is a well-focused part, and ridges in the region are clearly distinguishable from valleys. In order to select valid regions, this paper proposes a new focus-measurement algorithm using the secondary partial derivatives and a quality estimation utilizing the coherence and symmetry of gradient distribution. Second, rolling and pitching degrees of a finger measured from the camera plane should be within some limit for a recognizable image. The position of a core point and the contour of a finger are used to estimate the degrees of rolling and pitching. Experimental results show that our proposed method selects valid regions and estimates the degrees of rolling and pitching properly. In addition, fingerprint-verification performance is improved by detecting the recognizable images.
Bin Mustafa, Ammar Safwan; Ishii, Takashi; Matsunaga, Yoshiki; Nakadate, Ryu; Ishii, Hiroyuki; Ogawa, Kouji; Saito, Akiko; Sugawara, Motoaki; Niki, Kiyomi; Takanishi, Atsuo
2013-01-01
Physicians use ultrasound scans to obtain real-time images of internal organs, because such scans are safe and inexpensive. However, people in remote areas face difficulties to be scanned due to aging society and physician's shortage. Hence, it is important to develop an autonomous robotic system to perform remote ultrasound scans. Previously, we developed a robotic system for automatic ultrasound scan focusing on human's liver. In order to make it a completely autonomous system, we present in this paper a way to autonomously localize the epigastric region as the starting position for the automatic ultrasound scan. An image processing algorithm marks the umbilicus and mammary papillae on a digital photograph of the patient's abdomen. Then, we made estimation for the location of the epigastric region using the distances between these landmarks. A supporting algorithm distinguishes rib position from epigastrium using the relationship between force and displacement. We implemented these algorithms with the automatic scanning system into an apparatus: a Mitsubishi Electric's MELFA RV-1 six axis manipulator. Tests on 14 healthy male subjects showed the apparatus located the epigastric region with a success rate of 94%. The results suggest that image recognition was effective in localizing a human body part.
An efficient classification method based on principal component and sparse representation.
Zhai, Lin; Fu, Shujun; Zhang, Caiming; Liu, Yunxian; Wang, Lu; Liu, Guohua; Yang, Mingqiang
2016-01-01
As an important application in optical imaging, palmprint recognition is interfered by many unfavorable factors. An effective fusion of blockwise bi-directional two-dimensional principal component analysis and grouping sparse classification is presented. The dimension reduction and normalizing are implemented by the blockwise bi-directional two-dimensional principal component analysis for palmprint images to extract feature matrixes, which are assembled into an overcomplete dictionary in sparse classification. A subspace orthogonal matching pursuit algorithm is designed to solve the grouping sparse representation. Finally, the classification result is gained by comparing the residual between testing and reconstructed images. Experiments are carried out on a palmprint database, and the results show that this method has better robustness against position and illumination changes of palmprint images, and can get higher rate of palmprint recognition.
A novel iris patterns matching algorithm of weighted polar frequency correlation
NASA Astrophysics Data System (ADS)
Zhao, Weijie; Jiang, Linhua
2014-11-01
Iris recognition is recognized as one of the most accurate techniques for biometric authentication. In this paper, we present a novel correlation method - Weighted Polar Frequency Correlation(WPFC) - to match and evaluate two iris images, actually it can also be used for evaluating the similarity of any two images. The WPFC method is a novel matching and evaluating method for iris image matching, which is complete different from the conventional methods. For instance, the classical John Daugman's method of iris recognition uses 2D Gabor wavelets to extract features of iris image into a compact bit stream, and then matching two bit streams with hamming distance. Our new method is based on the correlation in the polar coordinate system in frequency domain with regulated weights. The new method is motivated by the observation that the pattern of iris that contains far more information for recognition is fine structure at high frequency other than the gross shapes of iris images. Therefore, we transform iris images into frequency domain and set different weights to frequencies. Then calculate the correlation of two iris images in frequency domain. We evaluate the iris images by summing the discrete correlation values with regulated weights, comparing the value with preset threshold to tell whether these two iris images are captured from the same person or not. Experiments are carried out on both CASIA database and self-obtained images. The results show that our method is functional and reliable. Our method provides a new prospect for iris recognition system.
Fully convolutional network with cluster for semantic segmentation
NASA Astrophysics Data System (ADS)
Ma, Xiao; Chen, Zhongbi; Zhang, Jianlin
2018-04-01
At present, image semantic segmentation technology has been an active research topic for scientists in the field of computer vision and artificial intelligence. Especially, the extensive research of deep neural network in image recognition greatly promotes the development of semantic segmentation. This paper puts forward a method based on fully convolutional network, by cluster algorithm k-means. The cluster algorithm using the image's low-level features and initializing the cluster centers by the super-pixel segmentation is proposed to correct the set of points with low reliability, which are mistakenly classified in great probability, by the set of points with high reliability in each clustering regions. This method refines the segmentation of the target contour and improves the accuracy of the image segmentation.
IDEAL: Images Across Domains, Experiments, Algorithms and Learning
NASA Astrophysics Data System (ADS)
Ushizima, Daniela M.; Bale, Hrishikesh A.; Bethel, E. Wes; Ercius, Peter; Helms, Brett A.; Krishnan, Harinarayan; Grinberg, Lea T.; Haranczyk, Maciej; Macdowell, Alastair A.; Odziomek, Katarzyna; Parkinson, Dilworth Y.; Perciano, Talita; Ritchie, Robert O.; Yang, Chao
2016-11-01
Research across science domains is increasingly reliant on image-centric data. Software tools are in high demand to uncover relevant, but hidden, information in digital images, such as those coming from faster next generation high-throughput imaging platforms. The challenge is to analyze the data torrent generated by the advanced instruments efficiently, and provide insights such as measurements for decision-making. In this paper, we overview work performed by an interdisciplinary team of computational and materials scientists, aimed at designing software applications and coordinating research efforts connecting (1) emerging algorithms for dealing with large and complex datasets; (2) data analysis methods with emphasis in pattern recognition and machine learning; and (3) advances in evolving computer architectures. Engineering tools around these efforts accelerate the analyses of image-based recordings, improve reusability and reproducibility, scale scientific procedures by reducing time between experiments, increase efficiency, and open opportunities for more users of the imaging facilities. This paper describes our algorithms and software tools, showing results across image scales, demonstrating how our framework plays a role in improving image understanding for quality control of existent materials and discovery of new compounds.
Wavelet analysis enables system-independent texture analysis of optical coherence tomography images.
Lingley-Papadopoulos, Colleen A; Loew, Murray H; Zara, Jason M
2009-01-01
Texture analysis for tissue characterization is a current area of optical coherence tomography (OCT) research. We discuss some of the differences between OCT systems and the effects those differences have on the resulting images and subsequent image analysis. In addition, as an example, two algorithms for the automatic recognition of bladder cancer are compared: one that was developed on a single system with no consideration for system differences, and one that was developed to address the issues associated with system differences. The first algorithm had a sensitivity of 73% and specificity of 69% when tested using leave-one-out cross-validation on data taken from a single system. When tested on images from another system with a different central wavelength, however, the method classified all images as cancerous regardless of the true pathology. By contrast, with the use of wavelet analysis and the removal of system-dependent features, the second algorithm reported sensitivity and specificity values of 87 and 58%, respectively, when trained on images taken with one imaging system and tested on images taken with another.
Wavelet analysis enables system-independent texture analysis of optical coherence tomography images
NASA Astrophysics Data System (ADS)
Lingley-Papadopoulos, Colleen A.; Loew, Murray H.; Zara, Jason M.
2009-07-01
Texture analysis for tissue characterization is a current area of optical coherence tomography (OCT) research. We discuss some of the differences between OCT systems and the effects those differences have on the resulting images and subsequent image analysis. In addition, as an example, two algorithms for the automatic recognition of bladder cancer are compared: one that was developed on a single system with no consideration for system differences, and one that was developed to address the issues associated with system differences. The first algorithm had a sensitivity of 73% and specificity of 69% when tested using leave-one-out cross-validation on data taken from a single system. When tested on images from another system with a different central wavelength, however, the method classified all images as cancerous regardless of the true pathology. By contrast, with the use of wavelet analysis and the removal of system-dependent features, the second algorithm reported sensitivity and specificity values of 87 and 58%, respectively, when trained on images taken with one imaging system and tested on images taken with another.
Yoo, Sung-Hoon; Oh, Sung-Kwun; Pedrycz, Witold
2015-09-01
In this study, we propose a hybrid method of face recognition by using face region information extracted from the detected face region. In the preprocessing part, we develop a hybrid approach based on the Active Shape Model (ASM) and the Principal Component Analysis (PCA) algorithm. At this step, we use a CCD (Charge Coupled Device) camera to acquire a facial image by using AdaBoost and then Histogram Equalization (HE) is employed to improve the quality of the image. ASM extracts the face contour and image shape to produce a personal profile. Then we use a PCA method to reduce dimensionality of face images. In the recognition part, we consider the improved Radial Basis Function Neural Networks (RBF NNs) to identify a unique pattern associated with each person. The proposed RBF NN architecture consists of three functional modules realizing the condition phase, the conclusion phase, and the inference phase completed with the help of fuzzy rules coming in the standard 'if-then' format. In the formation of the condition part of the fuzzy rules, the input space is partitioned with the use of Fuzzy C-Means (FCM) clustering. In the conclusion part of the fuzzy rules, the connections (weights) of the RBF NNs are represented by four kinds of polynomials such as constant, linear, quadratic, and reduced quadratic. The values of the coefficients are determined by running a gradient descent method. The output of the RBF NNs model is obtained by running a fuzzy inference method. The essential design parameters of the network (including learning rate, momentum coefficient and fuzzification coefficient used by the FCM) are optimized by means of Differential Evolution (DE). The proposed P-RBF NNs (Polynomial based RBF NNs) are applied to facial recognition and its performance is quantified from the viewpoint of the output performance and recognition rate. Copyright © 2015 Elsevier Ltd. All rights reserved.
Spatial Uncertainty Modeling of Fuzzy Information in Images for Pattern Classification
Pham, Tuan D.
2014-01-01
The modeling of the spatial distribution of image properties is important for many pattern recognition problems in science and engineering. Mathematical methods are needed to quantify the variability of this spatial distribution based on which a decision of classification can be made in an optimal sense. However, image properties are often subject to uncertainty due to both incomplete and imprecise information. This paper presents an integrated approach for estimating the spatial uncertainty of vagueness in images using the theory of geostatistics and the calculus of probability measures of fuzzy events. Such a model for the quantification of spatial uncertainty is utilized as a new image feature extraction method, based on which classifiers can be trained to perform the task of pattern recognition. Applications of the proposed algorithm to the classification of various types of image data suggest the usefulness of the proposed uncertainty modeling technique for texture feature extraction. PMID:25157744
On techniques for angle compensation in nonideal iris recognition.
Schuckers, Stephanie A C; Schmid, Natalia A; Abhyankar, Aditya; Dorairaj, Vivekanand; Boyce, Christopher K; Hornak, Lawrence A
2007-10-01
The popularity of the iris biometric has grown considerably over the past two to three years. Most research has been focused on the development of new iris processing and recognition algorithms for frontal view iris images. However, a few challenging directions in iris research have been identified, including processing of a nonideal iris and iris at a distance. In this paper, we describe two nonideal iris recognition systems and analyze their performance. The word "nonideal" is used in the sense of compensating for off-angle occluded iris images. The system is designed to process nonideal iris images in two steps: 1) compensation for off-angle gaze direction and 2) processing and encoding of the rotated iris image. Two approaches are presented to account for angular variations in the iris images. In the first approach, we use Daugman's integrodifferential operator as an objective function to estimate the gaze direction. After the angle is estimated, the off-angle iris image undergoes geometric transformations involving the estimated angle and is further processed as if it were a frontal view image. The encoding technique developed for a frontal image is based on the application of the global independent component analysis. The second approach uses an angular deformation calibration model. The angular deformations are modeled, and calibration parameters are calculated. The proposed method consists of a closed-form solution, followed by an iterative optimization procedure. The images are projected on the plane closest to the base calibrated plane. Biorthogonal wavelets are used for encoding to perform iris recognition. We use a special dataset of the off-angle iris images to quantify the performance of the designed systems. A series of receiver operating characteristics demonstrate various effects on the performance of the nonideal-iris-based recognition system.
Clustering of Farsi sub-word images for whole-book recognition
NASA Astrophysics Data System (ADS)
Soheili, Mohammad Reza; Kabir, Ehsanollah; Stricker, Didier
2015-01-01
Redundancy of word and sub-word occurrences in large documents can be effectively utilized in an OCR system to improve recognition results. Most OCR systems employ language modeling techniques as a post-processing step; however these techniques do not use important pictorial information that exist in the text image. In case of large-scale recognition of degraded documents, this information is even more valuable. In our previous work, we proposed a subword image clustering method for the applications dealing with large printed documents. In our clustering method, the ideal case is when all equivalent sub-word images lie in one cluster. To overcome the issues of low print quality, the clustering method uses an image matching algorithm for measuring the distance between two sub-word images. The measured distance with a set of simple shape features were used to cluster all sub-word images. In this paper, we analyze the effects of adding more shape features on processing time, purity of clustering, and the final recognition rate. Previously published experiments have shown the efficiency of our method on a book. Here we present extended experimental results and evaluate our method on another book with totally different font face. Also we show that the number of the new created clusters in a page can be used as a criteria for assessing the quality of print and evaluating preprocessing phases.
Three-dimensional model-based object recognition and segmentation in cluttered scenes.
Mian, Ajmal S; Bennamoun, Mohammed; Owens, Robyn
2006-10-01
Viewpoint independent recognition of free-form objects and their segmentation in the presence of clutter and occlusions is a challenging task. We present a novel 3D model-based algorithm which performs this task automatically and efficiently. A 3D model of an object is automatically constructed offline from its multiple unordered range images (views). These views are converted into multidimensional table representations (which we refer to as tensors). Correspondences are automatically established between these views by simultaneously matching the tensors of a view with those of the remaining views using a hash table-based voting scheme. This results in a graph of relative transformations used to register the views before they are integrated into a seamless 3D model. These models and their tensor representations constitute the model library. During online recognition, a tensor from the scene is simultaneously matched with those in the library by casting votes. Similarity measures are calculated for the model tensors which receive the most votes. The model with the highest similarity is transformed to the scene and, if it aligns accurately with an object in the scene, that object is declared as recognized and is segmented. This process is repeated until the scene is completely segmented. Experiments were performed on real and synthetic data comprised of 55 models and 610 scenes and an overall recognition rate of 95 percent was achieved. Comparison with the spin images revealed that our algorithm is superior in terms of recognition rate and efficiency.
Twelve automated thresholding methods for segmentation of PET images: a phantom study.
Prieto, Elena; Lecumberri, Pablo; Pagola, Miguel; Gómez, Marisol; Bilbao, Izaskun; Ecay, Margarita; Peñuelas, Iván; Martí-Climent, Josep M
2012-06-21
Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical (18)F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.
Twelve automated thresholding methods for segmentation of PET images: a phantom study
NASA Astrophysics Data System (ADS)
Prieto, Elena; Lecumberri, Pablo; Pagola, Miguel; Gómez, Marisol; Bilbao, Izaskun; Ecay, Margarita; Peñuelas, Iván; Martí-Climent, Josep M.
2012-06-01
Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical 18F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.
Design of compactly supported wavelet to match singularities in medical images
NASA Astrophysics Data System (ADS)
Fung, Carrson C.; Shi, Pengcheng
2002-11-01
Analysis and understanding of medical images has important clinical values for patient diagnosis and treatment, as well as technical implications for computer vision and pattern recognition. One of the most fundamental issues is the detection of object boundaries or singularities, which is often the basis for further processes such as organ/tissue recognition, image registration, motion analysis, measurement of anatomical and physiological parameters, etc. The focus of this work involved taking a correlation based approach toward edge detection, by exploiting some of desirable properties of wavelet analysis. This leads to the possibility of constructing a bank of detectors, consisting of multiple wavelet basis functions of different scales which are optimal for specific types of edges, in order to optimally detect all the edges in an image. Our work involved developing a set of wavelet functions which matches the shape of the ramp and pulse edges. The matching algorithm used focuses on matching the edges in the frequency domain. It was proven that this technique could create matching wavelets applicable at all scales. Results have shown that matching wavelets can be obtained for the pulse edge while the ramp edge requires another matching algorithm.
Filter Design and Performance Evaluation for Fingerprint Image Segmentation
Thai, Duy Hoang; Huckemann, Stephan; Gottschlich, Carsten
2016-01-01
Fingerprint recognition plays an important role in many commercial applications and is used by millions of people every day, e.g. for unlocking mobile phones. Fingerprint image segmentation is typically the first processing step of most fingerprint algorithms and it divides an image into foreground, the region of interest, and background. Two types of error can occur during this step which both have a negative impact on the recognition performance: ‘true’ foreground can be labeled as background and features like minutiae can be lost, or conversely ‘true’ background can be misclassified as foreground and spurious features can be introduced. The contribution of this paper is threefold: firstly, we propose a novel factorized directional bandpass (FDB) segmentation method for texture extraction based on the directional Hilbert transform of a Butterworth bandpass (DHBB) filter interwoven with soft-thresholding. Secondly, we provide a manually marked ground truth segmentation for 10560 images as an evaluation benchmark. Thirdly, we conduct a systematic performance comparison between the FDB method and four of the most often cited fingerprint segmentation algorithms showing that the FDB segmentation method clearly outperforms these four widely used methods. The benchmark and the implementation of the FDB method are made publicly available. PMID:27171150
Souto, Leonardo A V; Castro, André; Gonçalves, Luiz Marcos Garcia; Nascimento, Tiago P
2017-08-08
Natural landmarks are the main features in the next step of the research in localization of mobile robot platforms. The identification and recognition of these landmarks are crucial to better localize a robot. To help solving this problem, this work proposes an approach for the identification and recognition of natural marks included in the environment using images from RGB-D (Red, Green, Blue, Depth) sensors. In the identification step, a structural analysis of the natural landmarks that are present in the environment is performed. The extraction of edge points of these landmarks is done using the 3D point cloud obtained from the RGB-D sensor. These edge points are smoothed through the S l 0 algorithm, which minimizes the standard deviation of the normals at each point. Then, the second step of the proposed algorithm begins, which is the proper recognition of the natural landmarks. This recognition step is done as a real-time algorithm that extracts the points referring to the filtered edges and determines to which structure they belong to in the current scenario: stairs or doors. Finally, the geometrical characteristics that are intrinsic to the doors and stairs are identified. The approach proposed here has been validated with real robot experiments. The performed tests verify the efficacy of our proposed approach.
Castro, André; Nascimento, Tiago P.
2017-01-01
Natural landmarks are the main features in the next step of the research in localization of mobile robot platforms. The identification and recognition of these landmarks are crucial to better localize a robot. To help solving this problem, this work proposes an approach for the identification and recognition of natural marks included in the environment using images from RGB-D (Red, Green, Blue, Depth) sensors. In the identification step, a structural analysis of the natural landmarks that are present in the environment is performed. The extraction of edge points of these landmarks is done using the 3D point cloud obtained from the RGB-D sensor. These edge points are smoothed through the Sl0 algorithm, which minimizes the standard deviation of the normals at each point. Then, the second step of the proposed algorithm begins, which is the proper recognition of the natural landmarks. This recognition step is done as a real-time algorithm that extracts the points referring to the filtered edges and determines to which structure they belong to in the current scenario: stairs or doors. Finally, the geometrical characteristics that are intrinsic to the doors and stairs are identified. The approach proposed here has been validated with real robot experiments. The performed tests verify the efficacy of our proposed approach. PMID:28786925
Goal-oriented evaluation of binarization algorithms for historical document images
NASA Astrophysics Data System (ADS)
Obafemi-Ajayi, Tayo; Agam, Gady
2013-01-01
Binarization is of significant importance in document analysis systems. It is an essential first step, prior to further stages such as Optical Character Recognition (OCR), document segmentation, or enhancement of readability of the document after some restoration stages. Hence, proper evaluation of binarization methods to verify their effectiveness is of great value to the document analysis community. In this work, we perform a detailed goal-oriented evaluation of image quality assessment of the 18 binarization methods that participated in the DIBCO 2011 competition using the 16 historical document test images used in the contest. We are interested in the image quality assessment of the outputs generated by the different binarization algorithms as well as the OCR performance, where possible. We compare our evaluation of the algorithms based on human perception of quality to the DIBCO evaluation metrics. The results obtained provide an insight into the effectiveness of these methods with respect to human perception of image quality as well as OCR performance.
Local structure preserving sparse coding for infrared target recognition
Han, Jing; Yue, Jiang; Zhang, Yi; Bai, Lianfa
2017-01-01
Sparse coding performs well in image classification. However, robust target recognition requires a lot of comprehensive template images and the sparse learning process is complex. We incorporate sparsity into a template matching concept to construct a local sparse structure matching (LSSM) model for general infrared target recognition. A local structure preserving sparse coding (LSPSc) formulation is proposed to simultaneously preserve the local sparse and structural information of objects. By adding a spatial local structure constraint into the classical sparse coding algorithm, LSPSc can improve the stability of sparse representation for targets and inhibit background interference in infrared images. Furthermore, a kernel LSPSc (K-LSPSc) formulation is proposed, which extends LSPSc to the kernel space to weaken the influence of the linear structure constraint in nonlinear natural data. Because of the anti-interference and fault-tolerant capabilities, both LSPSc- and K-LSPSc-based LSSM can implement target identification based on a simple template set, which just needs several images containing enough local sparse structures to learn a sufficient sparse structure dictionary of a target class. Specifically, this LSSM approach has stable performance in the target detection with scene, shape and occlusions variations. High performance is demonstrated on several datasets, indicating robust infrared target recognition in diverse environments and imaging conditions. PMID:28323824
The biometric recognition on contactless multi-spectrum finger images
NASA Astrophysics Data System (ADS)
Kang, Wenxiong; Chen, Xiaopeng; Wu, Qiuxia
2015-01-01
This paper presents a novel multimodal biometric system based on contactless multi-spectrum finger images, which aims to deal with the limitations of unimodal biometrics. The chief merits of the system are the richness of the permissible texture and the ease of data access. We constructed a multi-spectrum instrument to simultaneously acquire three different types of biometrics from a finger: contactless fingerprint, finger vein, and knuckleprint. On the basis of the samples with these characteristics, a moderate database was built for the evaluation of our system. Considering the real-time requirements and the respective characteristics of the three biometrics, the block local binary patterns algorithm was used to extract features and match for the fingerprints and finger veins, while the Oriented FAST and Rotated BRIEF algorithm was applied for knuckleprints. Finally, score-level fusion was performed on the matching results from the aforementioned three types of biometrics. The experiments showed that our proposed multimodal biometric recognition system achieves an equal error rate of 0.109%, which is 88.9%, 94.6%, and 89.7% lower than the individual fingerprint, knuckleprint, and finger vein recognitions, respectively. Nevertheless, our proposed system also satisfies the real-time requirements of the applications.
Can surgical simulation be used to train detection and classification of neural networks?
Zisimopoulos, Odysseas; Flouty, Evangello; Stacey, Mark; Muscroft, Sam; Giataganas, Petros; Nehme, Jean; Chow, Andre; Stoyanov, Danail
2017-10-01
Computer-assisted interventions (CAI) aim to increase the effectiveness, precision and repeatability of procedures to improve surgical outcomes. The presence and motion of surgical tools is a key information input for CAI surgical phase recognition algorithms. Vision-based tool detection and recognition approaches are an attractive solution and can be designed to take advantage of the powerful deep learning paradigm that is rapidly advancing image recognition and classification. The challenge for such algorithms is the availability and quality of labelled data used for training. In this Letter, surgical simulation is used to train tool detection and segmentation based on deep convolutional neural networks and generative adversarial networks. The authors experiment with two network architectures for image segmentation in tool classes commonly encountered during cataract surgery. A commercially-available simulator is used to create a simulated cataract dataset for training models prior to performing transfer learning on real surgical data. To the best of authors' knowledge, this is the first attempt to train deep learning models for surgical instrument detection on simulated data while demonstrating promising results to generalise on real data. Results indicate that simulated data does have some potential for training advanced classification methods for CAI systems.
A self-organized learning strategy for object recognition by an embedded line of attraction
NASA Astrophysics Data System (ADS)
Seow, Ming-Jung; Alex, Ann T.; Asari, Vijayan K.
2012-04-01
For humans, a picture is worth a thousand words, but to a machine, it is just a seemingly random array of numbers. Although machines are very fast and efficient, they are vastly inferior to humans for everyday information processing. Algorithms that mimic the way the human brain computes and learns may be the solution. In this paper we present a theoretical model based on the observation that images of similar visual perceptions reside in a complex manifold in an image space. The perceived features are often highly structured and hidden in a complex set of relationships or high-dimensional abstractions. To model the pattern manifold, we present a novel learning algorithm using a recurrent neural network. The brain memorizes information using a dynamical system made of interconnected neurons. Retrieval of information is accomplished in an associative sense. It starts from an arbitrary state that might be an encoded representation of a visual image and converges to another state that is stable. The stable state is what the brain remembers. In designing a recurrent neural network, it is usually of prime importance to guarantee the convergence in the dynamics of the network. We propose to modify this picture: if the brain remembers by converging to the state representing familiar patterns, it should also diverge from such states when presented with an unknown encoded representation of a visual image belonging to a different category. That is, the identification of an instability mode is an indication that a presented pattern is far away from any stored pattern and therefore cannot be associated with current memories. These properties can be used to circumvent the plasticity-stability dilemma by using the fluctuating mode as an indicator to create new states. We capture this behavior using a novel neural architecture and learning algorithm, in which the system performs self-organization utilizing a stability mode and an instability mode for the dynamical system. Based on this observation we developed a self- organizing line attractor, which is capable of generating new lines in the feature space to learn unrecognized patterns. Experiments performed on UMIST pose database and CMU face expression variant database for face recognition have shown that the proposed nonlinear line attractor is able to successfully identify the individuals and it provided better recognition rate when compared to the state of the art face recognition techniques. Experiments on FRGC version 2 database has also provided excellent recognition rate in images captured in complex lighting environments. Experiments performed on the Japanese female face expression database and Essex Grimace database using the self organizing line attractor have also shown successful expression invariant face recognition. These results show that the proposed model is able to create nonlinear manifolds in a multidimensional feature space to distinguish complex patterns.
Face Averages Enhance User Recognition for Smartphone Security
Robertson, David J.; Kramer, Robin S. S.; Burton, A. Mike
2015-01-01
Our recognition of familiar faces is excellent, and generalises across viewing conditions. However, unfamiliar face recognition is much poorer. For this reason, automatic face recognition systems might benefit from incorporating the advantages of familiarity. Here we put this to the test using the face verification system available on a popular smartphone (the Samsung Galaxy). In two experiments we tested the recognition performance of the smartphone when it was encoded with an individual’s ‘face-average’ – a representation derived from theories of human face perception. This technique significantly improved performance for both unconstrained celebrity images (Experiment 1) and for real faces (Experiment 2): users could unlock their phones more reliably when the device stored an average of the user’s face than when they stored a single image. This advantage was consistent across a wide variety of everyday viewing conditions. Furthermore, the benefit did not reduce the rejection of imposter faces. This benefit is brought about solely by consideration of suitable representations for automatic face recognition, and we argue that this is just as important as development of matching algorithms themselves. We propose that this representation could significantly improve recognition rates in everyday settings. PMID:25807251
NASA Astrophysics Data System (ADS)
Bezmaternykh, P. V.; Nikolaev, D. P.; Arlazarov, V. L.
2018-04-01
Textual blocks rectification or slant correction is an important stage of document image processing in OCR systems. This paper considers existing methods and introduces an approach for the construction of such algorithms based on Fast Hough Transform analysis. A quality measurement technique is proposed and obtained results are shown for both printed and handwritten textual blocks processing as a part of an industrial system of identity documents recognition on mobile devices.
Possibility expectation and its decision making algorithm
NASA Technical Reports Server (NTRS)
Keller, James M.; Yan, Bolin
1992-01-01
The fuzzy integral has been shown to be an effective tool for the aggregation of evidence in decision making. Of primary importance in the development of a fuzzy integral pattern recognition algorithm is the choice (construction) of the measure which embodies the importance of subsets of sources of evidence. Sugeno fuzzy measures have received the most attention due to the recursive nature of the fabrication of the measure on nested sequences of subsets. Possibility measures exhibit an even simpler generation capability, but usually require that one of the sources of information possess complete credibility. In real applications, such normalization may not be possible, or even desirable. In this report, both the theory and a decision making algorithm for a variation of the fuzzy integral are presented. This integral is based on a possibility measure where it is not required that the measure of the universe be unity. A training algorithm for the possibility densities in a pattern recognition application is also presented with the results demonstrated on the shuttle-earth-space training and testing images.
Finger tips detection for two handed gesture recognition
NASA Astrophysics Data System (ADS)
Bhuyan, M. K.; Kar, Mithun Kumar; Neog, Debanga Raj
2011-10-01
In this paper, a novel algorithm is proposed for fingertips detection in view of two-handed static hand pose recognition. In our method, finger tips of both hands are detected after detecting hand regions by skin color-based segmentation. At first, the face is removed in the image by using Haar classifier and subsequently, the regions corresponding to the gesturing hands are isolated by a region labeling technique. Next, the key geometric features characterizing gesturing hands are extracted for two hands. Finally, for all possible/allowable finger movements, a probabilistic model is developed for pose recognition. Proposed method can be employed in a variety of applications like sign language recognition and human-robot-interactions etc.
Detecting objects in radiographs for homeland security
NASA Astrophysics Data System (ADS)
Prasad, Lakshman; Snyder, Hans
2005-05-01
We present a general scheme for segmenting a radiographic image into polygons that correspond to visual features. This decomposition provides a vectorized representation that is a high-level description of the image. The polygons correspond to objects or object parts present in the image. This characterization of radiographs allows the direct application of several shape recognition algorithms to identify objects. In this paper we describe the use of constrained Delaunay triangulations as a uniform foundational tool to achieve multiple visual tasks, namely image segmentation, shape decomposition, and parts-based shape matching. Shape decomposition yields parts that serve as tokens representing local shape characteristics. Parts-based shape matching enables the recognition of objects in the presence of occlusions, which commonly occur in radiographs. The polygonal representation of image features affords the efficient design and application of sophisticated geometric filtering methods to detect large-scale structural properties of objects in images. Finally, the representation of radiographs via polygons results in significant reduction of image file sizes and permits the scalable graphical representation of images, along with annotations of detected objects, in the SVG (scalable vector graphics) format that is proposed by the world wide web consortium (W3C). This is a textual representation that can be compressed and encrypted for efficient and secure transmission of information over wireless channels and on the Internet. In particular, our methods described here provide an algorithmic framework for developing image analysis tools for screening cargo at ports of entry for homeland security.
NASA Astrophysics Data System (ADS)
Movia, A.; Beinat, A.; Crosilla, F.
2015-04-01
The recognition of vegetation by the analysis of very high resolution (VHR) aerial images provides meaningful information about environmental features; nevertheless, VHR images frequently contain shadows that generate significant problems for the classification of the image components and for the extraction of the needed information. The aim of this research is to classify, from VHR aerial images, vegetation involved in the balance process of the environmental biochemical cycle, and to discriminate it with respect to urban and agricultural features. Three classification algorithms have been experimented in order to better recognize vegetation, and compared to NDVI index; unfortunately all these methods are conditioned by the presence of shadows on the images. Literature presents several algorithms to detect and remove shadows in the scene: most of them are based on the RGB to HSI transformations. In this work some of them have been implemented and compared with one based on RGB bands. Successively, in order to remove shadows and restore brightness on the images, some innovative algorithms, based on Procrustes theory, have been implemented and applied. Among these, we evaluate the capability of the so called "not-centered oblique Procrustes" and "anisotropic Procrustes" methods to efficiently restore brightness with respect to a linear correlation correction based on the Cholesky decomposition. Some experimental results obtained by different classification methods after shadows removal carried out with the innovative algorithms are presented and discussed.
Still-to-video face recognition in unconstrained environments
NASA Astrophysics Data System (ADS)
Wang, Haoyu; Liu, Changsong; Ding, Xiaoqing
2015-02-01
Face images from video sequences captured in unconstrained environments usually contain several kinds of variations, e.g. pose, facial expression, illumination, image resolution and occlusion. Motion blur and compression artifacts also deteriorate recognition performance. Besides, in various practical systems such as law enforcement, video surveillance and e-passport identification, only a single still image per person is enrolled as the gallery set. Many existing methods may fail to work due to variations in face appearances and the limit of available gallery samples. In this paper, we propose a novel approach for still-to-video face recognition in unconstrained environments. By assuming that faces from still images and video frames share the same identity space, a regularized least squares regression method is utilized to tackle the multi-modality problem. Regularization terms based on heuristic assumptions are enrolled to avoid overfitting. In order to deal with the single image per person problem, we exploit face variations learned from training sets to synthesize virtual samples for gallery samples. We adopt a learning algorithm combining both affine/convex hull-based approach and regularizations to match image sets. Experimental results on a real-world dataset consisting of unconstrained video sequences demonstrate that our method outperforms the state-of-the-art methods impressively.
Automatic recognition of fundamental tissues on histology images of the human cardiovascular system.
Mazo, Claudia; Trujillo, Maria; Alegre, Enrique; Salazar, Liliana
2016-10-01
Cardiovascular disease is the leading cause of death worldwide. Therefore, techniques for improving diagnosis and treatment in this field have become key areas for research. In particular, approaches for tissue image processing may support education system and medical practice. In this paper, an approach to automatic recognition and classification of fundamental tissues, using morphological information is presented. Taking a 40× or 10× histological image as input, three clusters are created with the k-means algorithm using a structural tensor and the red and the green channels. Loose connective tissue, light regions and cell nuclei are recognised on 40× images. Then, the cell nuclei's features - shape and spatial projection - and light regions are used to recognise and classify epithelial cells and tissue into flat, cubic and cylindrical. In a similar way, light regions, loose connective and muscle tissues are recognised on 10× images. Finally, the tissue's function and composition are used to refine muscle tissue recognition. Experimental validation is then carried out by histologist following expert criteria, along with manually annotated images that are used as a ground-truth. The results revealed that the proposed approach classified the fundamental tissues in a similar way to the conventional method employed by histologists. The proposed automatic recognition approach provides for epithelial tissues a sensitivity of 0.79 for cubic, 0.85 for cylindrical and 0.91 for flat. Furthermore, the experts gave our method an average score of 4.85 out of 5 in the recognition of loose connective tissue and 4.82 out of 5 for muscle tissue recognition. Copyright © 2016 Elsevier Ltd. All rights reserved.
Intelligent Image Analysis for Image-Guided Laser Hair Removal and Skin Therapy
NASA Technical Reports Server (NTRS)
Walker, Brian; Lu, Thomas; Chao, Tien-Hsin
2012-01-01
We present the development of advanced automatic target recognition (ATR) algorithms for the hair follicles identification in digital skin images to accurately direct the laser beam to remove the hair. The ATR system first performs a wavelet filtering to enhance the contrast of the hair features in the image. The system then extracts the unique features of the targets and sends the features to an Adaboost based classifier for training and recognition operations. The ATR system automatically classifies the hair, moles, or other skin lesion and provides the accurate coordinates of the intended hair follicle locations. The coordinates can be used to guide a scanning laser to focus energy only on the hair follicles. The intended benefit would be to protect the skin from unwanted laser exposure and to provide more effective skin therapy.
Jacob, Mithun George; Wachs, Juan Pablo; Packer, Rebecca A
2013-01-01
This paper presents a method to improve the navigation and manipulation of radiological images through a sterile hand gesture recognition interface based on attentional contextual cues. Computer vision algorithms were developed to extract intention and attention cues from the surgeon's behavior and combine them with sensory data from a commodity depth camera. The developed interface was tested in a usability experiment to assess the effectiveness of the new interface. An image navigation and manipulation task was performed, and the gesture recognition accuracy, false positives and task completion times were computed to evaluate system performance. Experimental results show that gesture interaction and surgeon behavior analysis can be used to accurately navigate, manipulate and access MRI images, and therefore this modality could replace the use of keyboard and mice-based interfaces. PMID:23250787
Salient man-made structure detection in infrared images
NASA Astrophysics Data System (ADS)
Li, Dong-jie; Zhou, Fu-gen; Jin, Ting
2013-09-01
Target detection, segmentation and recognition is a hot research topic in the field of image processing and pattern recognition nowadays, among which salient area or object detection is one of core technologies of precision guided weapon. Many theories have been raised in this paper; we detect salient objects in a series of input infrared images by using the classical feature integration theory and Itti's visual attention system. In order to find the salient object in an image accurately, we present a new method to solve the edge blur problem by calculating and using the edge mask. We also greatly improve the computing speed by improving the center-surround differences method. Unlike the traditional algorithm, we calculate the center-surround differences through rows and columns separately. Experimental results show that our method is effective in detecting salient object accurately and rapidly.
Jacob, Mithun George; Wachs, Juan Pablo; Packer, Rebecca A
2013-06-01
This paper presents a method to improve the navigation and manipulation of radiological images through a sterile hand gesture recognition interface based on attentional contextual cues. Computer vision algorithms were developed to extract intention and attention cues from the surgeon's behavior and combine them with sensory data from a commodity depth camera. The developed interface was tested in a usability experiment to assess the effectiveness of the new interface. An image navigation and manipulation task was performed, and the gesture recognition accuracy, false positives and task completion times were computed to evaluate system performance. Experimental results show that gesture interaction and surgeon behavior analysis can be used to accurately navigate, manipulate and access MRI images, and therefore this modality could replace the use of keyboard and mice-based interfaces.
Performance evaluation methodology for historical document image binarization.
Ntirogiannis, Konstantinos; Gatos, Basilis; Pratikakis, Ioannis
2013-02-01
Document image binarization is of great importance in the document image analysis and recognition pipeline since it affects further stages of the recognition process. The evaluation of a binarization method aids in studying its algorithmic behavior, as well as verifying its effectiveness, by providing qualitative and quantitative indication of its performance. This paper addresses a pixel-based binarization evaluation methodology for historical handwritten/machine-printed document images. In the proposed evaluation scheme, the recall and precision evaluation measures are properly modified using a weighting scheme that diminishes any potential evaluation bias. Additional performance metrics of the proposed evaluation scheme consist of the percentage rates of broken and missed text, false alarms, background noise, character enlargement, and merging. Several experiments conducted in comparison with other pixel-based evaluation measures demonstrate the validity of the proposed evaluation scheme.
Digital signal processing algorithms for automatic voice recognition
NASA Technical Reports Server (NTRS)
Botros, Nazeih M.
1987-01-01
The current digital signal analysis algorithms are investigated that are implemented in automatic voice recognition algorithms. Automatic voice recognition means, the capability of a computer to recognize and interact with verbal commands. The digital signal is focused on, rather than the linguistic, analysis of speech signal. Several digital signal processing algorithms are available for voice recognition. Some of these algorithms are: Linear Predictive Coding (LPC), Short-time Fourier Analysis, and Cepstrum Analysis. Among these algorithms, the LPC is the most widely used. This algorithm has short execution time and do not require large memory storage. However, it has several limitations due to the assumptions used to develop it. The other 2 algorithms are frequency domain algorithms with not many assumptions, but they are not widely implemented or investigated. However, with the recent advances in the digital technology, namely signal processors, these 2 frequency domain algorithms may be investigated in order to implement them in voice recognition. This research is concerned with real time, microprocessor based recognition algorithms.
Recognition of pigment network pattern in dermoscopy images based on fuzzy classification of pixels.
Garcia-Arroyo, Jose Luis; Garcia-Zapirain, Begonya
2018-01-01
One of the most relevant dermoscopic patterns is the pigment network. An innovative method of pattern recognition is presented for its detection in dermoscopy images. It consists of two steps. In the first one, by means of a supervised machine learning process and after performing the extraction of different colour and texture features, a fuzzy classification of pixels into the three categories present in the pattern's definition ("net", "hole" and "other") is carried out. This enables the three corresponding fuzzy sets to be created and, as a result, the three probability images that map them out are generated. In the second step, the pigment network pattern is characterised from a parameterisation process -derived from the system specification- and the subsequent extraction of different features calculated from the combinations of image masks extracted from the probability images, corresponding to the alpha-cuts obtained from the fuzzy sets. The method was tested on a database of 875 images -by far the largest used in the state of the art to detect pigment network- extracted from a public Atlas of Dermoscopy, obtaining AUC results of 0.912 and 88%% accuracy, with 90.71%% sensitivity and 83.44%% specificity. The main contribution of this method is the very design of the algorithm, highly innovative, which could also be used to deal with other pattern recognition problems of a similar nature. Other contributions are: 1. The good performance in discriminating between the pattern and the disturbing artefacts -which means that no prior preprocessing is required in this method- and between the pattern and other dermoscopic patterns; 2. It puts forward a new methodological approach for work of this kind, introducing the system specification as a required step prior to algorithm design and development, being this specification the basis for a required parameterisation -in the form of configurable parameters (with their value ranges) and set threshold values- of the algorithm and the subsequent conducting of the experiments. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Lin, Zhimin; Zeng, Ying; Tong, Li; Zhang, Hangming; Zhang, Chi
2017-01-01
The application of electroencephalogram (EEG) generated by human viewing images is a new thrust in image retrieval technology. A P300 component in the EEG is induced when the subjects see their point of interest in a target image under the rapid serial visual presentation (RSVP) experimental paradigm. We detected the single-trial P300 component to determine whether a subject was interested in an image. In practice, the latency and amplitude of the P300 component may vary in relation to different experimental parameters, such as target probability and stimulus semantics. Thus, we proposed a novel method, Target Recognition using Image Complexity Priori (TRICP) algorithm, in which the image information is introduced in the calculation of the interest score in the RSVP paradigm. The method combines information from the image and EEG to enhance the accuracy of single-trial P300 detection on the basis of traditional single-trial P300 detection algorithm. We defined an image complexity parameter based on the features of the different layers of a convolution neural network (CNN). We used the TRICP algorithm to compute for the complexity of an image to quantify the effect of different complexity images on the P300 components and training specialty classifier according to the image complexity. We compared TRICP with the HDCA algorithm. Results show that TRICP is significantly higher than the HDCA algorithm (Wilcoxon Sign Rank Test, p<0.05). Thus, the proposed method can be used in other and visual task-related single-trial event-related potential detection. PMID:29283998
Semi-automatic mapping of linear-trending bedforms using 'Self-Organizing Maps' algorithm
NASA Astrophysics Data System (ADS)
Foroutan, M.; Zimbelman, J. R.
2017-09-01
Increased application of high resolution spatial data such as high resolution satellite or Unmanned Aerial Vehicle (UAV) images from Earth, as well as High Resolution Imaging Science Experiment (HiRISE) images from Mars, makes it necessary to increase automation techniques capable of extracting detailed geomorphologic elements from such large data sets. Model validation by repeated images in environmental management studies such as climate-related changes as well as increasing access to high-resolution satellite images underline the demand for detailed automatic image-processing techniques in remote sensing. This study presents a methodology based on an unsupervised Artificial Neural Network (ANN) algorithm, known as Self Organizing Maps (SOM), to achieve the semi-automatic extraction of linear features with small footprints on satellite images. SOM is based on competitive learning and is efficient for handling huge data sets. We applied the SOM algorithm to high resolution satellite images of Earth and Mars (Quickbird, Worldview and HiRISE) in order to facilitate and speed up image analysis along with the improvement of the accuracy of results. About 98% overall accuracy and 0.001 quantization error in the recognition of small linear-trending bedforms demonstrate a promising framework.
A novel approach for fire recognition using hybrid features and manifold learning-based classifier
NASA Astrophysics Data System (ADS)
Zhu, Rong; Hu, Xueying; Tang, Jiajun; Hu, Sheng
2018-03-01
Although image/video based fire recognition has received growing attention, an efficient and robust fire detection strategy is rarely explored. In this paper, we propose a novel approach to automatically identify the flame or smoke regions in an image. It is composed to three stages: (1) a block processing is applied to divide an image into several nonoverlapping image blocks, and these image blocks are identified as suspicious fire regions or not by using two color models and a color histogram-based similarity matching method in the HSV color space, (2) considering that compared to other information, the flame and smoke regions have significant visual characteristics, so that two kinds of image features are extracted for fire recognition, where local features are obtained based on the Scale Invariant Feature Transform (SIFT) descriptor and the Bags of Keypoints (BOK) technique, and texture features are extracted based on the Gray Level Co-occurrence Matrices (GLCM) and the Wavelet-based Analysis (WA) methods, and (3) a manifold learning-based classifier is constructed based on two image manifolds, which is designed via an improve Globular Neighborhood Locally Linear Embedding (GNLLE) algorithm, and the extracted hybrid features are used as input feature vectors to train the classifier, which is used to make decision for fire images or non fire images. Experiments and comparative analyses with four approaches are conducted on the collected image sets. The results show that the proposed approach is superior to the other ones in detecting fire and achieving a high recognition accuracy and a low error rate.
Online aptitude automatic surface quality inspection system for hot rolled strips steel
NASA Astrophysics Data System (ADS)
Lin, Jin; Xie, Zhi-jiang; Wang, Xue; Sun, Nan-Nan
2005-12-01
Defects on the surface of hot rolled steel strips are main factors to evaluate quality of steel strips, an improved image recognition algorithm are used to extract the feature of Defects on the surface of steel strips. Base on the Machine vision and Artificial Neural Networks, establish a defect recognition method to select defect on the surface of steel strips. Base on these research. A surface inspection system and advanced algorithms for image processing to hot rolled strips is developed. Preparing two different fashion to lighting, adopting line blast vidicon of CCD on the surface steel strips on-line. Opening up capacity-diagnose-system with level the surface of steel strips on line, toward the above and undersurface of steel strips with ferric oxide, injure, stamp etc of defects on the surface to analyze and estimate. Miscarriage of justice and alternate of justice rate not preponderate over 5%.Geting hold of applications on some big enterprises of steel at home. Experiment proved that this measure is feasible and effective.
QuantiFly: Robust Trainable Software for Automated Drosophila Egg Counting.
Waithe, Dominic; Rennert, Peter; Brostow, Gabriel; Piper, Matthew D W
2015-01-01
We report the development and testing of software called QuantiFly: an automated tool to quantify Drosophila egg laying. Many laboratories count Drosophila eggs as a marker of fitness. The existing method requires laboratory researchers to count eggs manually while looking down a microscope. This technique is both time-consuming and tedious, especially when experiments require daily counts of hundreds of vials. The basis of the QuantiFly software is an algorithm which applies and improves upon an existing advanced pattern recognition and machine-learning routine. The accuracy of the baseline algorithm is additionally increased in this study through correction of bias observed in the algorithm output. The QuantiFly software, which includes the refined algorithm, has been designed to be immediately accessible to scientists through an intuitive and responsive user-friendly graphical interface. The software is also open-source, self-contained, has no dependencies and is easily installed (https://github.com/dwaithe/quantifly). Compared to manual egg counts made from digital images, QuantiFly achieved average accuracies of 94% and 85% for eggs laid on transparent (defined) and opaque (yeast-based) fly media. Thus, the software is capable of detecting experimental differences in most experimental situations. Significantly, the advanced feature recognition capabilities of the software proved to be robust to food surface artefacts like bubbles and crevices. The user experience involves image acquisition, algorithm training by labelling a subset of eggs in images of some of the vials, followed by a batch analysis mode in which new images are automatically assessed for egg numbers. Initial training typically requires approximately 10 minutes, while subsequent image evaluation by the software is performed in just a few seconds. Given the average time per vial for manual counting is approximately 40 seconds, our software introduces a timesaving advantage for experiments starting with as few as 20 vials. We also describe an optional acrylic box to be used as a digital camera mount and to provide controlled lighting during image acquisition which will guarantee the conditions used in this study.
QuantiFly: Robust Trainable Software for Automated Drosophila Egg Counting
Waithe, Dominic; Rennert, Peter; Brostow, Gabriel; Piper, Matthew D. W.
2015-01-01
We report the development and testing of software called QuantiFly: an automated tool to quantify Drosophila egg laying. Many laboratories count Drosophila eggs as a marker of fitness. The existing method requires laboratory researchers to count eggs manually while looking down a microscope. This technique is both time-consuming and tedious, especially when experiments require daily counts of hundreds of vials. The basis of the QuantiFly software is an algorithm which applies and improves upon an existing advanced pattern recognition and machine-learning routine. The accuracy of the baseline algorithm is additionally increased in this study through correction of bias observed in the algorithm output. The QuantiFly software, which includes the refined algorithm, has been designed to be immediately accessible to scientists through an intuitive and responsive user-friendly graphical interface. The software is also open-source, self-contained, has no dependencies and is easily installed (https://github.com/dwaithe/quantifly). Compared to manual egg counts made from digital images, QuantiFly achieved average accuracies of 94% and 85% for eggs laid on transparent (defined) and opaque (yeast-based) fly media. Thus, the software is capable of detecting experimental differences in most experimental situations. Significantly, the advanced feature recognition capabilities of the software proved to be robust to food surface artefacts like bubbles and crevices. The user experience involves image acquisition, algorithm training by labelling a subset of eggs in images of some of the vials, followed by a batch analysis mode in which new images are automatically assessed for egg numbers. Initial training typically requires approximately 10 minutes, while subsequent image evaluation by the software is performed in just a few seconds. Given the average time per vial for manual counting is approximately 40 seconds, our software introduces a timesaving advantage for experiments starting with as few as 20 vials. We also describe an optional acrylic box to be used as a digital camera mount and to provide controlled lighting during image acquisition which will guarantee the conditions used in this study. PMID:25992957
Automated phenotype pattern recognition of zebrafish for high-throughput screening.
Schutera, Mark; Dickmeis, Thomas; Mione, Marina; Peravali, Ravindra; Marcato, Daniel; Reischl, Markus; Mikut, Ralf; Pylatiuk, Christian
2016-07-03
Over the last years, the zebrafish (Danio rerio) has become a key model organism in genetic and chemical screenings. A growing number of experiments and an expanding interest in zebrafish research makes it increasingly essential to automatize the distribution of embryos and larvae into standard microtiter plates or other sample holders for screening, often according to phenotypical features. Until now, such sorting processes have been carried out by manually handling the larvae and manual feature detection. Here, a prototype platform for image acquisition together with a classification software is presented. Zebrafish embryos and larvae and their features such as pigmentation are detected automatically from the image. Zebrafish of 4 different phenotypes can be classified through pattern recognition at 72 h post fertilization (hpf), allowing the software to classify an embryo into 2 distinct phenotypic classes: wild-type versus variant. The zebrafish phenotypes are classified with an accuracy of 79-99% without any user interaction. A description of the prototype platform and of the algorithms for image processing and pattern recognition is presented.
Optimization of image processing algorithms on mobile platforms
NASA Astrophysics Data System (ADS)
Poudel, Pramod; Shirvaikar, Mukul
2011-03-01
This work presents a technique to optimize popular image processing algorithms on mobile platforms such as cell phones, net-books and personal digital assistants (PDAs). The increasing demand for video applications like context-aware computing on mobile embedded systems requires the use of computationally intensive image processing algorithms. The system engineer has a mandate to optimize them so as to meet real-time deadlines. A methodology to take advantage of the asymmetric dual-core processor, which includes an ARM and a DSP core supported by shared memory, is presented with implementation details. The target platform chosen is the popular OMAP 3530 processor for embedded media systems. It has an asymmetric dual-core architecture with an ARM Cortex-A8 and a TMS320C64x Digital Signal Processor (DSP). The development platform was the BeagleBoard with 256 MB of NAND RAM and 256 MB SDRAM memory. The basic image correlation algorithm is chosen for benchmarking as it finds widespread application for various template matching tasks such as face-recognition. The basic algorithm prototypes conform to OpenCV, a popular computer vision library. OpenCV algorithms can be easily ported to the ARM core which runs a popular operating system such as Linux or Windows CE. However, the DSP is architecturally more efficient at handling DFT algorithms. The algorithms are tested on a variety of images and performance results are presented measuring the speedup obtained due to dual-core implementation. A major advantage of this approach is that it allows the ARM processor to perform important real-time tasks, while the DSP addresses performance-hungry algorithms.
Low-level processing for real-time image analysis
NASA Technical Reports Server (NTRS)
Eskenazi, R.; Wilf, J. M.
1979-01-01
A system that detects object outlines in television images in real time is described. A high-speed pipeline processor transforms the raw image into an edge map and a microprocessor, which is integrated into the system, clusters the edges, and represents them as chain codes. Image statistics, useful for higher level tasks such as pattern recognition, are computed by the microprocessor. Peak intensity and peak gradient values are extracted within a programmable window and are used for iris and focus control. The algorithms implemented in hardware and the pipeline processor architecture are described. The strategy for partitioning functions in the pipeline was chosen to make the implementation modular. The microprocessor interface allows flexible and adaptive control of the feature extraction process. The software algorithms for clustering edge segments, creating chain codes, and computing image statistics are also discussed. A strategy for real time image analysis that uses this system is given.
Sunspot drawings handwritten character recognition method based on deep learning
NASA Astrophysics Data System (ADS)
Zheng, Sheng; Zeng, Xiangyun; Lin, Ganghua; Zhao, Cui; Feng, Yongli; Tao, Jinping; Zhu, Daoyuan; Xiong, Li
2016-05-01
High accuracy scanned sunspot drawings handwritten characters recognition is an issue of critical importance to analyze sunspots movement and store them in the database. This paper presents a robust deep learning method for scanned sunspot drawings handwritten characters recognition. The convolution neural network (CNN) is one algorithm of deep learning which is truly successful in training of multi-layer network structure. CNN is used to train recognition model of handwritten character images which are extracted from the original sunspot drawings. We demonstrate the advantages of the proposed method on sunspot drawings provided by Chinese Academy Yunnan Observatory and obtain the daily full-disc sunspot numbers and sunspot areas from the sunspot drawings. The experimental results show that the proposed method achieves a high recognition accurate rate.
NASA Astrophysics Data System (ADS)
Maas, Christian; Schmalzl, Jörg
2013-08-01
Ground Penetrating Radar (GPR) is used for the localization of supply lines, land mines, pipes and many other buried objects. These objects can be recognized in the recorded data as reflection hyperbolas with a typical shape depending on depth and material of the object and the surrounding material. To obtain the parameters, the shape of the hyperbola has to be fitted. In the last years several methods were developed to automate this task during post-processing. In this paper we show another approach for the automated localization of reflection hyperbolas in GPR data by solving a pattern recognition problem in grayscale images. In contrast to other methods our detection program is also able to immediately mark potential objects in real-time. For this task we use a version of the Viola-Jones learning algorithm, which is part of the open source library "OpenCV". This algorithm was initially developed for face recognition, but can be adapted to any other simple shape. In our program it is used to narrow down the location of reflection hyperbolas to certain areas in the GPR data. In order to extract the exact location and the velocity of the hyperbolas we apply a simple Hough Transform for hyperbolas. Because the Viola-Jones Algorithm reduces the input for the computational expensive Hough Transform dramatically the detection system can also be implemented on normal field computers, so on-site application is possible. The developed detection system shows promising results and detection rates in unprocessed radargrams. In order to improve the detection results and apply the program to noisy radar images more data of different GPR systems as input for the learning algorithm is necessary.
Flexible methods for segmentation evaluation: results from CT-based luggage screening.
Karimi, Seemeen; Jiang, Xiaoqian; Cosman, Pamela; Martz, Harry
2014-01-01
Imaging systems used in aviation security include segmentation algorithms in an automatic threat recognition pipeline. The segmentation algorithms evolve in response to emerging threats and changing performance requirements. Analysis of segmentation algorithms' behavior, including the nature of errors and feature recovery, facilitates their development. However, evaluation methods from the literature provide limited characterization of the segmentation algorithms. To develop segmentation evaluation methods that measure systematic errors such as oversegmentation and undersegmentation, outliers, and overall errors. The methods must measure feature recovery and allow us to prioritize segments. We developed two complementary evaluation methods using statistical techniques and information theory. We also created a semi-automatic method to define ground truth from 3D images. We applied our methods to evaluate five segmentation algorithms developed for CT luggage screening. We validated our methods with synthetic problems and an observer evaluation. Both methods selected the same best segmentation algorithm. Human evaluation confirmed the findings. The measurement of systematic errors and prioritization helped in understanding the behavior of each segmentation algorithm. Our evaluation methods allow us to measure and explain the accuracy of segmentation algorithms.
Novel palmprint representations for palmprint recognition
NASA Astrophysics Data System (ADS)
Li, Hengjian; Dong, Jiwen; Li, Jinping; Wang, Lei
2015-02-01
In this paper, we propose a novel palmprint recognition algorithm. Firstly, the palmprint images are represented by the anisotropic filter. The filters are built on Gaussian functions along one direction, and on second derivative of Gaussian functions in the orthogonal direction. Also, this choice is motivated by the optimal joint spatial and frequency localization of the Gaussian kernel. Therefore,they can better approximate the edge or line of palmprint images. A palmprint image is processed with a bank of anisotropic filters at different scales and rotations for robust palmprint features extraction. Once these features are extracted, subspace analysis is then applied to the feature vectors for dimension reduction as well as class separability. Experimental results on a public palmprint database show that the accuracy could be improved by the proposed novel representations, compared with Gabor.
3D automatic anatomy recognition based on iterative graph-cut-ASM
NASA Astrophysics Data System (ADS)
Chen, Xinjian; Udupa, Jayaram K.; Bagci, Ulas; Alavi, Abass; Torigian, Drew A.
2010-02-01
We call the computerized assistive process of recognizing, delineating, and quantifying organs and tissue regions in medical imaging, occurring automatically during clinical image interpretation, automatic anatomy recognition (AAR). The AAR system we are developing includes five main parts: model building, object recognition, object delineation, pathology detection, and organ system quantification. In this paper, we focus on the delineation part. For the modeling part, we employ the active shape model (ASM) strategy. For recognition and delineation, we integrate several hybrid strategies of combining purely image based methods with ASM. In this paper, an iterative Graph-Cut ASM (IGCASM) method is proposed for object delineation. An algorithm called GC-ASM was presented at this symposium last year for object delineation in 2D images which attempted to combine synergistically ASM and GC. Here, we extend this method to 3D medical image delineation. The IGCASM method effectively combines the rich statistical shape information embodied in ASM with the globally optimal delineation capability of the GC method. We propose a new GC cost function, which effectively integrates the specific image information with the ASM shape model information. The proposed methods are tested on a clinical abdominal CT data set. The preliminary results show that: (a) it is feasible to explicitly bring prior 3D statistical shape information into the GC framework; (b) the 3D IGCASM delineation method improves on ASM and GC and can provide practical operational time on clinical images.
Contact-free palm-vein recognition based on local invariant features.
Kang, Wenxiong; Liu, Yang; Wu, Qiuxia; Yue, Xishun
2014-01-01
Contact-free palm-vein recognition is one of the most challenging and promising areas in hand biometrics. In view of the existing problems in contact-free palm-vein imaging, including projection transformation, uneven illumination and difficulty in extracting exact ROIs, this paper presents a novel recognition approach for contact-free palm-vein recognition that performs feature extraction and matching on all vein textures distributed over the palm surface, including finger veins and palm veins, to minimize the loss of feature information. First, a hierarchical enhancement algorithm, which combines a DOG filter and histogram equalization, is adopted to alleviate uneven illumination and to highlight vein textures. Second, RootSIFT, a more stable local invariant feature extraction method in comparison to SIFT, is adopted to overcome the projection transformation in contact-free mode. Subsequently, a novel hierarchical mismatching removal algorithm based on neighborhood searching and LBP histograms is adopted to improve the accuracy of feature matching. Finally, we rigorously evaluated the proposed approach using two different databases and obtained 0.996% and 3.112% Equal Error Rates (EERs), respectively, which demonstrate the effectiveness of the proposed approach.
Contact-Free Palm-Vein Recognition Based on Local Invariant Features
Kang, Wenxiong; Liu, Yang; Wu, Qiuxia; Yue, Xishun
2014-01-01
Contact-free palm-vein recognition is one of the most challenging and promising areas in hand biometrics. In view of the existing problems in contact-free palm-vein imaging, including projection transformation, uneven illumination and difficulty in extracting exact ROIs, this paper presents a novel recognition approach for contact-free palm-vein recognition that performs feature extraction and matching on all vein textures distributed over the palm surface, including finger veins and palm veins, to minimize the loss of feature information. First, a hierarchical enhancement algorithm, which combines a DOG filter and histogram equalization, is adopted to alleviate uneven illumination and to highlight vein textures. Second, RootSIFT, a more stable local invariant feature extraction method in comparison to SIFT, is adopted to overcome the projection transformation in contact-free mode. Subsequently, a novel hierarchical mismatching removal algorithm based on neighborhood searching and LBP histograms is adopted to improve the accuracy of feature matching. Finally, we rigorously evaluated the proposed approach using two different databases and obtained 0.996% and 3.112% Equal Error Rates (EERs), respectively, which demonstrate the effectiveness of the proposed approach. PMID:24866176
Generation, recognition, and consistent fusion of partial boundary representations from range images
NASA Astrophysics Data System (ADS)
Kohlhepp, Peter; Hanczak, Andrzej M.; Li, Gang
1994-10-01
This paper presents SOMBRERO, a new system for recognizing and locating 3D, rigid, non- moving objects from range data. The objects may be polyhedral or curved, partially occluding, touching or lying flush with each other. For data collection, we employ 2D time- of-flight laser scanners mounted to a moving gantry robot. By combining sensor and robot coordinates, we obtain 3D cartesian coordinates. Boundary representations (Brep's) provide view independent geometry models that are both efficiently recognizable and derivable automatically from sensor data. SOMBRERO's methods for generating, matching and fusing Brep's are highly synergetic. A split-and-merge segmentation algorithm with dynamic triangular builds a partial (21/2D) Brep from scattered data. The recognition module matches this scene description with a model database and outputs recognized objects, their positions and orientations, and possibly surfaces corresponding to unknown objects. We present preliminary results in scene segmentation and recognition. Partial Brep's corresponding to different range sensors or viewpoints can be merged into a consistent, complete and irredundant 3D object or scene model. This fusion algorithm itself uses the recognition and segmentation methods.
NASA Astrophysics Data System (ADS)
Bentaieb, Samia; Ouamri, Abdelaziz; Nait-Ali, Amine; Keche, Mokhtar
2018-01-01
We propose and evaluate a three-dimensional (3D) face recognition approach that applies the speeded up robust feature (SURF) algorithm to the depth representation of shape index map, under real-world conditions, using only a single gallery sample for each subject. First, the 3D scans are preprocessed, then SURF is applied on the shape index map to find interest points and their descriptors. Each 3D face scan is represented by keypoints descriptors, and a large dictionary is built from all the gallery descriptors. At the recognition step, descriptors of a probe face scan are sparsely represented by the dictionary. A multitask sparse representation classification is used to determine the identity of each probe face. The feasibility of the approach that uses the SURF algorithm on the shape index map for face identification/authentication is checked through an experimental investigation conducted on Bosphorus, University of Milano Bicocca, and CASIA 3D datasets. It achieves an overall rank one recognition rate of 97.75%, 80.85%, and 95.12%, respectively, on these datasets.
Nika, Varvara; Babyn, Paul; Zhu, Hongmei
2014-07-01
Automatic change detection methods for identifying the changes of serial MR images taken at different times are of great interest to radiologists. The majority of existing change detection methods in medical imaging, and those of brain images in particular, include many preprocessing steps and rely mostly on statistical analysis of magnetic resonance imaging (MRI) scans. Although most methods utilize registration software, tissue classification remains a difficult and overwhelming task. Recently, dictionary learning techniques are being used in many areas of image processing, such as image surveillance, face recognition, remote sensing, and medical imaging. We present an improved version of the EigenBlockCD algorithm, named the EigenBlockCD-2. The EigenBlockCD-2 algorithm performs an initial global registration and identifies the changes between serial MR images of the brain. Blocks of pixels from a baseline scan are used to train local dictionaries to detect changes in the follow-up scan. We use PCA to reduce the dimensionality of the local dictionaries and the redundancy of data. Choosing the appropriate distance measure significantly affects the performance of our algorithm. We examine the differences between [Formula: see text] and [Formula: see text] norms as two possible similarity measures in the improved EigenBlockCD-2 algorithm. We show the advantages of the [Formula: see text] norm over the [Formula: see text] norm both theoretically and numerically. We also demonstrate the performance of the new EigenBlockCD-2 algorithm for detecting changes of MR images and compare our results with those provided in the recent literature. Experimental results with both simulated and real MRI scans show that our improved EigenBlockCD-2 algorithm outperforms the previous methods. It detects clinical changes while ignoring the changes due to the patient's position and other acquisition artifacts.
Explosive Detection in Aviation Applications Using CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martz, H E; Crawford, C R
2011-02-15
CT scanners are deployed world-wide to detect explosives in checked and carry-on baggage. Though very similar to single- and dual-energy multi-slice CT scanners used today in medical imaging, some recently developed explosives detection scanners employ multiple sources and detector arrays to eliminate mechanical rotation of a gantry, photon counting detectors for spectral imaging, and limited number of views to reduce cost. For each bag scanned, the resulting reconstructed images are first processed by automated threat recognition algorithms to screen for explosives and other threats. Human operators review the images only when these automated algorithms report the presence of possible threats.more » The US Department of Homeland Security (DHS) has requirements for future scanners that include dealing with a larger number of threats, higher probability of detection, lower false alarm rates and lower operating costs. One tactic that DHS is pursuing to achieve these requirements is to augment the capabilities of the established security vendors with third-party algorithm developers. A third-party in this context refers to academics and companies other than the established vendors. DHS is particularly interested in exploring the model that has been used very successfully by the medical imaging industry, in which university researchers develop algorithms that are eventually deployed in commercial medical imaging equipment. The purpose of this paper is to discuss opportunities for third-parties to develop advanced reconstruction and threat detection algorithms.« less
Jothilakshmi, G R; Raaza, Arun; Rajendran, V; Sreenivasa Varma, Y; Guru Nirmal Raj, R
2018-06-05
Breast cancer is one of the life-threatening cancers occurring in women. In recent years, from the surveys provided by various medical organizations, it has become clear that the mortality rate of females is increasing owing to the late detection of breast cancer. Therefore, an automated algorithm is needed to identify the early occurrence of microcalcification, which would assist radiologists and physicians in reducing the false predictions via image processing techniques. In this work, we propose a new algorithm to detect the pattern of a microcalcification by calculating its physical characteristics. The considered physical characteristics are the reflection coefficient and mass density of the binned digital mammogram image. The calculation of physical characteristics doubly confirms the presence of malignant microcalcification. Subsequently, by interpolating the physical characteristics via thresholding and mapping techniques, a three-dimensional (3D) projection of the region of interest (RoI) is obtained in terms of the distance in millimeter. The size of a microcalcification is determined using this 3D-projected view. This algorithm is verified with 100 abnormal mammogram images showing microcalcification and 10 normal mammogram images. In addition to the size calculation, the proposed algorithm acts as a good classifier that is used to classify the considered input image as normal or abnormal with the help of only two physical characteristics. This proposed algorithm exhibits a classification accuracy of 99%.
Target recognition in passive terahertz image of human body
NASA Astrophysics Data System (ADS)
Zhao, Ran; Zhao, Yuan-meng; Deng, Chao; Zhang, Cun-lin; Li, Yue
2014-11-01
THz radiation can penetrate through many nonpolar dielectric materials and can be used for nondestructive/noninvasive sensing and imaging of targets under nonpolar, nonmetallic covers or containers. Thus using THz systems to "see through" concealing barriers (i.e. packaging, corrugated cardboard, clothing) has been proposed as a new security screening method. Objects that can be detected by THz include concealed weapons, explosives, and chemical agents under clothing. Passive THz imaging system can detect THz wave from human body without transmit any electromagnetic wave, and the suspicious objects will become visible because the THz wave is blocked by this items. We can find out whether or not someone is carrying dangerous objects through this image. In this paper, the THz image enhancement, segmentation and contour extraction algorithms were studied to achieve effective target image detection. First, the terahertz images are enhanced and their grayscales are stretched. Then we apply global threshold segmentation to extract the target, and finally the targets are marked on the image. Experimental results showed that the algorithm proposed in this paper can extract and mark targets effectively, so that people can identify suspicious objects under clothing quickly. The algorithm can significantly improve the usefulness of the terahertz security apparatus.
Gong, Li-Gang
2014-01-01
Image template matching refers to the technique of locating a given reference image over a source image such that they are the most similar. It is a fundamental mission in the field of visual target recognition. In general, there are two critical aspects of a template matching scheme. One is similarity measurement and the other is best-match location search. In this work, we choose the well-known normalized cross correlation model as a similarity criterion. The searching procedure for the best-match location is carried out through an internal-feedback artificial bee colony (IF-ABC) algorithm. IF-ABC algorithm is highlighted by its effort to fight against premature convergence. This purpose is achieved through discarding the conventional roulette selection procedure in the ABC algorithm so as to provide each employed bee an equal chance to be followed by the onlooker bees in the local search phase. Besides that, we also suggest efficiently utilizing the internal convergence states as feedback guidance for searching intensity in the subsequent cycles of iteration. We have investigated four ideal template matching cases as well as four actual cases using different searching algorithms. Our simulation results show that the IF-ABC algorithm is more effective and robust for this template matching mission than the conventional ABC and two state-of-the-art modified ABC algorithms do. PMID:24892107
NASA Astrophysics Data System (ADS)
Plaza, Antonio; Chang, Chein-I.; Plaza, Javier; Valencia, David
2006-05-01
The incorporation of hyperspectral sensors aboard airborne/satellite platforms is currently producing a nearly continual stream of multidimensional image data, and this high data volume has soon introduced new processing challenges. The price paid for the wealth spatial and spectral information available from hyperspectral sensors is the enormous amounts of data that they generate. Several applications exist, however, where having the desired information calculated quickly enough for practical use is highly desirable. High computing performance of algorithm analysis is particularly important in homeland defense and security applications, in which swift decisions often involve detection of (sub-pixel) military targets (including hostile weaponry, camouflage, concealment, and decoys) or chemical/biological agents. In order to speed-up computational performance of hyperspectral imaging algorithms, this paper develops several fast parallel data processing techniques. Techniques include four classes of algorithms: (1) unsupervised classification, (2) spectral unmixing, and (3) automatic target recognition, and (4) onboard data compression. A massively parallel Beowulf cluster (Thunderhead) at NASA's Goddard Space Flight Center in Maryland is used to measure parallel performance of the proposed algorithms. In order to explore the viability of developing onboard, real-time hyperspectral data compression algorithms, a Xilinx Virtex-II field programmable gate array (FPGA) is also used in experiments. Our quantitative and comparative assessment of parallel techniques and strategies may help image analysts in selection of parallel hyperspectral algorithms for specific applications.
The review and results of different methods for facial recognition
NASA Astrophysics Data System (ADS)
Le, Yifan
2017-09-01
In recent years, facial recognition draws much attention due to its wide potential applications. As a unique technology in Biometric Identification, facial recognition represents a significant improvement since it could be operated without cooperation of people under detection. Hence, facial recognition will be taken into defense system, medical detection, human behavior understanding, etc. Several theories and methods have been established to make progress in facial recognition: (1) A novel two-stage facial landmark localization method is proposed which has more accurate facial localization effect under specific database; (2) A statistical face frontalization method is proposed which outperforms state-of-the-art methods for face landmark localization; (3) It proposes a general facial landmark detection algorithm to handle images with severe occlusion and images with large head poses; (4) There are three methods proposed on Face Alignment including shape augmented regression method, pose-indexed based multi-view method and a learning based method via regressing local binary features. The aim of this paper is to analyze previous work of different aspects in facial recognition, focusing on concrete method and performance under various databases. In addition, some improvement measures and suggestions in potential applications will be put forward.
Trigram-based algorithms for OCR result correction
NASA Astrophysics Data System (ADS)
Bulatov, Konstantin; Manzhikov, Temudzhin; Slavin, Oleg; Faradjev, Igor; Janiszewski, Igor
2017-03-01
In this paper we consider a task of improving optical character recognition (OCR) results of document fields on low-quality and average-quality images using N-gram models. Cyrillic fields of Russian Federation internal passport are analyzed as an example. Two approaches are presented: the first one is based on hypothesis of dependence of a symbol from two adjacent symbols and the second is based on calculation of marginal distributions and Bayesian networks computation. A comparison of the algorithms and experimental results within a real document OCR system are presented, it's showed that the document field OCR accuracy can be improved by more than 6% for low-quality images.
CONCAM's Fuzzy-Logic All-Sky Star Recognition Algorithm
NASA Astrophysics Data System (ADS)
Shamir, L.; Nemiroff, R. J.
2004-05-01
One of the purposes of the global Night Sky Live (NSL) network of fisheye CONtinuous CAMeras (CONCAMs) is to monitor and archive the entire bright night sky, track stellar variability, and search for transients. The high quality of raw CONCAM data allows automation of stellar object recognition, although distortions of the fisheye lens and frequent slight shifts in CONCAM orientations can make even this seemingly simple task formidable. To meet this challenge, a fuzzy logic based algorithm has been developed that transforms (x,y) image coordinates in the CCD frame into fuzzy right ascension and declination coordinates for use in matching with star catalogs. Using a training set of reference stars, the algorithm statically builds the fuzzy logic model. At runtime, the algorithm searches for peaks, and then applies the fuzzy logic model to perform the coordinate transformation before choosing the optimal star catalog match. The present fuzzy-logic algorithm works much better than our first generation, straightforward coordinate transformation formula. Following this essential step, algorithms dealing with the higher level data products can then provide a stream of photometry for a few hundred stellar objects visible in the night sky. Accurate photometry further enables the computation of all-sky maps of skyglow and opacity, as well as a search for uncataloged transients. All information is stored in XML-like tagged ASCII files that are instantly copied to the public domain and available at http://NightSkyLive.net. Currently, the NSL software detects stars and creates all-sky image files from eight different locations around the globe every 3 minutes and 56 seconds.
NASA Astrophysics Data System (ADS)
Hortos, William S.
2008-04-01
In previous work by the author, effective persistent and pervasive sensing for recognition and tracking of battlefield targets were seen to be achieved, using intelligent algorithms implemented by distributed mobile agents over a composite system of unmanned aerial vehicles (UAVs) for persistence and a wireless network of unattended ground sensors for pervasive coverage of the mission environment. While simulated performance results for the supervised algorithms of the composite system are shown to provide satisfactory target recognition over relatively brief periods of system operation, this performance can degrade by as much as 50% as target dynamics in the environment evolve beyond the period of system operation in which the training data are representative. To overcome this limitation, this paper applies the distributed approach using mobile agents to the network of ground-based wireless sensors alone, without the UAV subsystem, to provide persistent as well as pervasive sensing for target recognition and tracking. The supervised algorithms used in the earlier work are supplanted by unsupervised routines, including competitive-learning neural networks (CLNNs) and new versions of support vector machines (SVMs) for characterization of an unknown target environment. To capture the same physical phenomena from battlefield targets as the composite system, the suite of ground-based sensors can be expanded to include imaging and video capabilities. The spatial density of deployed sensor nodes is increased to allow more precise ground-based location and tracking of detected targets by active nodes. The "swarm" mobile agents enabling WSN intelligence are organized in a three processing stages: detection, recognition and sustained tracking of ground targets. Features formed from the compressed sensor data are down-selected according to an information-theoretic algorithm that reduces redundancy within the feature set, reducing the dimension of samples used in the target recognition and tracking routines. Target tracking is based on simplified versions of Kalman filtration. Accuracy of recognition and tracking of implemented versions of the proposed suite of unsupervised algorithms is somewhat degraded from the ideal. Target recognition and tracking by supervised routines and by unsupervised SVM and CLNN routines in the ground-based WSN is evaluated in simulations using published system values and sensor data from vehicular targets in ground-surveillance scenarios. Results are compared with previously published performance for the system of the ground-based sensor network (GSN) and UAV swarm.
Assessment of metal artifact reduction methods in pelvic CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdoli, Mehrsima; Mehranian, Abolfazl; Ailianou, Angeliki
2016-04-15
Purpose: Metal artifact reduction (MAR) produces images with improved quality potentially leading to confident and reliable clinical diagnosis and therapy planning. In this work, the authors evaluate the performance of five MAR techniques for the assessment of computed tomography images of patients with hip prostheses. Methods: Five MAR algorithms were evaluated using simulation and clinical studies. The algorithms included one-dimensional linear interpolation (LI) of the corrupted projection bins in the sinogram, two-dimensional interpolation (2D), a normalized metal artifact reduction (NMAR) technique, a metal deletion technique, and a maximum a posteriori completion (MAPC) approach. The algorithms were applied to ten simulatedmore » datasets as well as 30 clinical studies of patients with metallic hip implants. Qualitative evaluations were performed by two blinded experienced radiologists who ranked overall artifact severity and pelvic organ recognition for each algorithm by assigning scores from zero to five (zero indicating totally obscured organs with no structures identifiable and five indicating recognition with high confidence). Results: Simulation studies revealed that 2D, NMAR, and MAPC techniques performed almost equally well in all regions. LI falls behind the other approaches in terms of reducing dark streaking artifacts as well as preserving unaffected regions (p < 0.05). Visual assessment of clinical datasets revealed the superiority of NMAR and MAPC in the evaluated pelvic organs and in terms of overall image quality. Conclusions: Overall, all methods, except LI, performed equally well in artifact-free regions. Considering both clinical and simulation studies, 2D, NMAR, and MAPC seem to outperform the other techniques.« less
Seamless Tracing of Human Behavior Using Complementary Wearable and House-Embedded Sensors
Augustyniak, Piotr; Smoleń, Magdalena; Mikrut, Zbigniew; Kańtoch, Eliasz
2014-01-01
This paper presents a multimodal system for seamless surveillance of elderly people in their living environment. The system uses simultaneously a wearable sensor network for each individual and premise-embedded sensors specific for each environment. The paper demonstrates the benefits of using complementary information from two types of mobility sensors: visual flow-based image analysis and an accelerometer-based wearable network. The paper provides results for indoor recognition of several elementary poses and outdoor recognition of complex movements. Instead of complete system description, particular attention was drawn to a polar histogram-based method of visual pose recognition, complementary use and synchronization of the data from wearable and premise-embedded networks and an automatic danger detection algorithm driven by two premise- and subject-related databases. The novelty of our approach also consists in feeding the databases with real-life recordings from the subject, and in using the dynamic time-warping algorithm for measurements of distance between actions represented as elementary poses in behavioral records. The main results of testing our method include: 95.5% accuracy of elementary pose recognition by the video system, 96.7% accuracy of elementary pose recognition by the accelerometer-based system, 98.9% accuracy of elementary pose recognition by the combined accelerometer and video-based system, and 80% accuracy of complex outdoor activity recognition by the accelerometer-based wearable system. PMID:24787640
Kinect-based sign language recognition of static and dynamic hand movements
NASA Astrophysics Data System (ADS)
Dalawis, Rando C.; Olayao, Kenneth Deniel R.; Ramos, Evan Geoffrey I.; Samonte, Mary Jane C.
2017-02-01
A different approach of sign language recognition of static and dynamic hand movements was developed in this study using normalized correlation algorithm. The goal of this research was to translate fingerspelling sign language into text using MATLAB and Microsoft Kinect. Digital input image captured by Kinect devices are matched from template samples stored in a database. This Human Computer Interaction (HCI) prototype was developed to help people with communication disability to express their thoughts with ease. Frame segmentation and feature extraction was used to give meaning to the captured images. Sequential and random testing was used to test both static and dynamic fingerspelling gestures. The researchers explained some factors they encountered causing some misclassification of signs.
Knowledge-based vision for space station object motion detection, recognition, and tracking
NASA Technical Reports Server (NTRS)
Symosek, P.; Panda, D.; Yalamanchili, S.; Wehner, W., III
1987-01-01
Computer vision, especially color image analysis and understanding, has much to offer in the area of the automation of Space Station tasks such as construction, satellite servicing, rendezvous and proximity operations, inspection, experiment monitoring, data management and training. Knowledge-based techniques improve the performance of vision algorithms for unstructured environments because of their ability to deal with imprecise a priori information or inaccurately estimated feature data and still produce useful results. Conventional techniques using statistical and purely model-based approaches lack flexibility in dealing with the variabilities anticipated in the unstructured viewing environment of space. Algorithms developed under NASA sponsorship for Space Station applications to demonstrate the value of a hypothesized architecture for a Video Image Processor (VIP) are presented. Approaches to the enhancement of the performance of these algorithms with knowledge-based techniques and the potential for deployment of highly-parallel multi-processor systems for these algorithms are discussed.
Qian, Jianjun; Yang, Jian; Xu, Yong
2013-09-01
This paper presents a robust but simple image feature extraction method, called image decomposition based on local structure (IDLS). It is assumed that in the local window of an image, the macro-pixel (patch) of the central pixel, and those of its neighbors, are locally linear. IDLS captures the local structural information by describing the relationship between the central macro-pixel and its neighbors. This relationship is represented with the linear representation coefficients determined using ridge regression. One image is actually decomposed into a series of sub-images (also called structure images) according to a local structure feature vector. All the structure images, after being down-sampled for dimensionality reduction, are concatenated into one super-vector. Fisher linear discriminant analysis is then used to provide a low-dimensional, compact, and discriminative representation for each super-vector. The proposed method is applied to face recognition and examined using our real-world face image database, NUST-RWFR, and five popular, publicly available, benchmark face image databases (AR, Extended Yale B, PIE, FERET, and LFW). Experimental results show the performance advantages of IDLS over state-of-the-art algorithms.
Application of machine learning methods for traffic signs recognition
NASA Astrophysics Data System (ADS)
Filatov, D. V.; Ignatev, K. V.; Deviatkin, A. V.; Serykh, E. V.
2018-02-01
This paper focuses on solving a relevant and pressing safety issue on intercity roads. Two approaches were considered for solving the problem of traffic signs recognition; the approaches involved neural networks to analyze images obtained from a camera in the real-time mode. The first approach is based on a sequential image processing. At the initial stage, with the help of color filters and morphological operations (dilatation and erosion), the area containing the traffic sign is located on the image, then the selected and scaled fragment of the image is analyzed using a feedforward neural network to determine the meaning of the found traffic sign. Learning of the neural network in this approach is carried out using a backpropagation method. The second approach involves convolution neural networks at both stages, i.e. when searching and selecting the area of the image containing the traffic sign, and when determining its meaning. Learning of the neural network in the second approach is carried out using the intersection over union function and a loss function. For neural networks to learn and the proposed algorithms to be tested, a series of videos from a dash cam were used that were shot under various weather and illumination conditions. As a result, the proposed approaches for traffic signs recognition were analyzed and compared by key indicators such as recognition rate percentage and the complexity of neural networks’ learning process.
Accessing eSDO Solar Image Processing and Visualization through AstroGrid
NASA Astrophysics Data System (ADS)
Auden, E.; Dalla, S.
2008-08-01
The eSDO project is funded by the UK's Science and Technology Facilities Council (STFC) to integrate Solar Dynamics Observatory (SDO) data, algorithms, and visualization tools with the UK's Virtual Observatory project, AstroGrid. In preparation for the SDO launch in January 2009, the eSDO team has developed nine algorithms covering coronal behaviour, feature recognition, and global / local helioseismology. Each of these algorithms has been deployed as an AstroGrid Common Execution Architecture (CEA) application so that they can be included in complex VO workflows. In addition, the PLASTIC-enabled eSDO "Streaming Tool" online movie application allows users to search multi-instrument solar archives through AstroGrid web services and visualise the image data through galleries, an interactive movie viewing applet, and QuickTime movies generated on-the-fly.
Detection of person borne IEDs using multiple cooperative sensors
NASA Astrophysics Data System (ADS)
MacIntosh, Scott; Deming, Ross; Hansen, Thorkild; Kishan, Neel; Tang, Ling; Shea, Jing; Lang, Stephen
2011-06-01
The use of multiple cooperative sensors for the detection of person borne IEDs is investigated. The purpose of the effort is to evaluate the performance benefits of adding multiple sensor data streams into an aided threat detection algorithm, and a quantitative analysis of which sensor data combinations improve overall detection performance. Testing includes both mannequins and human subjects with simulated suicide bomb devices of various configurations, materials, sizes and metal content. Aided threat recognition algorithms are being developed to test detection performance of individual sensors against combined fused sensors inputs. Sensors investigated include active and passive millimeter wave imaging systems, passive infrared, 3-D profiling sensors and acoustic imaging. The paper describes the experimental set-up and outlines the methodology behind a decision fusion algorithm-based on the concept of a "body model".
Two fast approximate wavelet algorithms for image processing, classification, and recognition
NASA Astrophysics Data System (ADS)
Wickerhauser, Mladen V.
1994-07-01
We use large libraries of template waveforms with remarkable orthogonality properties to recast the relatively complex principal orthogonal decomposition (POD) into an optimization problem with a fast solution algorithm. Then it becomes practical to use POD to solve two related problems: recognizing or classifying images, and inverting a complicated map from a low-dimensional configuration space to a high-dimensional measurement space. In the case where the number N of pixels or measurements is more than 1000 or so, the classical O(N3) POD algorithms becomes very costly, but it can be replaced with an approximate best-basis method that has complexity O(N2logN). A variation of POD can also be used to compute an approximate Jacobian for the complicated map.
Lifting wavelet method of target detection
NASA Astrophysics Data System (ADS)
Han, Jun; Zhang, Chi; Jiang, Xu; Wang, Fang; Zhang, Jin
2009-11-01
Image target recognition plays a very important role in the areas of scientific exploration, aeronautics and space-to-ground observation, photography and topographic mapping. Complex environment of the image noise, fuzzy, all kinds of interference has always been to affect the stability of recognition algorithm. In this paper, the existence of target detection in real-time, accuracy problems, as well as anti-interference ability, using lifting wavelet image target detection methods. First of all, the use of histogram equalization, the goal difference method to obtain the region, on the basis of adaptive threshold and mathematical morphology operations to deal with the elimination of the background error. Secondly, the use of multi-channel wavelet filter wavelet transform of the original image de-noising and enhancement, to overcome the general algorithm of the noise caused by the sensitive issue of reducing the rate of miscarriage of justice will be the multi-resolution characteristics of wavelet and promotion of the framework can be designed directly in the benefits of space-time region used in target detection, feature extraction of targets. The experimental results show that the design of lifting wavelet has solved the movement of the target due to the complexity of the context of the difficulties caused by testing, which can effectively suppress noise, and improve the efficiency and speed of detection.
NASA Astrophysics Data System (ADS)
Dan, Luo; Ohya, Jun
2010-02-01
Recognizing hand gestures from the video sequence acquired by a dynamic camera could be a useful interface between humans and mobile robots. We develop a state based approach to extract and recognize hand gestures from moving camera images. We improved Human-Following Local Coordinate (HFLC) System, a very simple and stable method for extracting hand motion trajectories, which is obtained from the located human face, body part and hand blob changing factor. Condensation algorithm and PCA-based algorithm was performed to recognize extracted hand trajectories. In last research, this Condensation Algorithm based method only applied for one person's hand gestures. In this paper, we propose a principal component analysis (PCA) based approach to improve the recognition accuracy. For further improvement, temporal changes in the observed hand area changing factor are utilized as new image features to be stored in the database after being analyzed by PCA. Every hand gesture trajectory in the database is classified into either one hand gesture categories, two hand gesture categories, or temporal changes in hand blob changes. We demonstrate the effectiveness of the proposed method by conducting experiments on 45 kinds of sign language based Japanese and American Sign Language gestures obtained from 5 people. Our experimental recognition results show better performance is obtained by PCA based approach than the Condensation algorithm based method.
Simple Smartphone-Based Guiding System for Visually Impaired People
Lin, Bor-Shing; Lee, Cheng-Che; Chiang, Pei-Ying
2017-01-01
Visually impaired people are often unaware of dangers in front of them, even in familiar environments. Furthermore, in unfamiliar environments, such people require guidance to reduce the risk of colliding with obstacles. This study proposes a simple smartphone-based guiding system for solving the navigation problems for visually impaired people and achieving obstacle avoidance to enable visually impaired people to travel smoothly from a beginning point to a destination with greater awareness of their surroundings. In this study, a computer image recognition system and smartphone application were integrated to form a simple assisted guiding system. Two operating modes, online mode and offline mode, can be chosen depending on network availability. When the system begins to operate, the smartphone captures the scene in front of the user and sends the captured images to the backend server to be processed. The backend server uses the faster region convolutional neural network algorithm or the you only look once algorithm to recognize multiple obstacles in every image, and it subsequently sends the results back to the smartphone. The results of obstacle recognition in this study reached 60%, which is sufficient for assisting visually impaired people in realizing the types and locations of obstacles around them. PMID:28608811
Simple Smartphone-Based Guiding System for Visually Impaired People.
Lin, Bor-Shing; Lee, Cheng-Che; Chiang, Pei-Ying
2017-06-13
Visually impaired people are often unaware of dangers in front of them, even in familiar environments. Furthermore, in unfamiliar environments, such people require guidance to reduce the risk of colliding with obstacles. This study proposes a simple smartphone-based guiding system for solving the navigation problems for visually impaired people and achieving obstacle avoidance to enable visually impaired people to travel smoothly from a beginning point to a destination with greater awareness of their surroundings. In this study, a computer image recognition system and smartphone application were integrated to form a simple assisted guiding system. Two operating modes, online mode and offline mode, can be chosen depending on network availability. When the system begins to operate, the smartphone captures the scene in front of the user and sends the captured images to the backend server to be processed. The backend server uses the faster region convolutional neural network algorithm or the you only look once algorithm to recognize multiple obstacles in every image, and it subsequently sends the results back to the smartphone. The results of obstacle recognition in this study reached 60%, which is sufficient for assisting visually impaired people in realizing the types and locations of obstacles around them.
Deformed Palmprint Matching Based on Stable Regions.
Wu, Xiangqian; Zhao, Qiushi
2015-12-01
Palmprint recognition (PR) is an effective technology for personal recognition. A main problem, which deteriorates the performance of PR, is the deformations of palmprint images. This problem becomes more severe on contactless occasions, in which images are acquired without any guiding mechanisms, and hence critically limits the applications of PR. To solve the deformation problems, in this paper, a model for non-linearly deformed palmprint matching is derived by approximating non-linear deformed palmprint images with piecewise-linear deformed stable regions. Based on this model, a novel approach for deformed palmprint matching, named key point-based block growing (KPBG), is proposed. In KPBG, an iterative M-estimator sample consensus algorithm based on scale invariant feature transform features is devised to compute piecewise-linear transformations to approximate the non-linear deformations of palmprints, and then, the stable regions complying with the linear transformations are decided using a block growing algorithm. Palmprint feature extraction and matching are performed over these stable regions to compute matching scores for decision. Experiments on several public palmprint databases show that the proposed models and the KPBG approach can effectively solve the deformation problem in palmprint verification and outperform the state-of-the-art methods.
NASA Astrophysics Data System (ADS)
Qu, Hongquan; Yuan, Shijiao; Wang, Yanping; Yang, Dan
2018-04-01
To improve the recognition performance of optical fiber prewarning system (OFPS), this study proposed a hierarchical recognition algorithm (HRA). Compared with traditional methods, which employ only a complex algorithm that includes multiple extracted features and complex classifiers to increase the recognition rate with a considerable decrease in recognition speed, HRA takes advantage of the continuity of intrusion events, thereby creating a staged recognition flow inspired by stress reaction. HRA is expected to achieve high-level recognition accuracy with less time consumption. First, this work analyzed the continuity of intrusion events and then presented the algorithm based on the mechanism of stress reaction. Finally, it verified the time consumption through theoretical analysis and experiments, and the recognition accuracy was obtained through experiments. Experiment results show that the processing speed of HRA is 3.3 times faster than that of a traditional complicated algorithm and has a similar recognition rate of 98%. The study is of great significance to fast intrusion event recognition in OFPS.
Development of a two wheeled self balancing robot with speech recognition and navigation algorithm
NASA Astrophysics Data System (ADS)
Rahman, Md. Muhaimin; Ashik-E-Rasul, Haq, Nowab. Md. Aminul; Hassan, Mehedi; Hasib, Irfan Mohammad Al; Hassan, K. M. Rafidh
2016-07-01
This paper is aimed to discuss modeling, construction and development of navigation algorithm of a two wheeled self balancing mobile robot in an enclosure. In this paper, we have discussed the design of two of the main controller algorithms, namely PID algorithms, on the robot model. Simulation is performed in the SIMULINK environment. The controller is developed primarily for self-balancing of the robot and also it's positioning. As for the navigation in an enclosure, template matching algorithm is proposed for precise measurement of the robot position. The navigation system needs to be calibrated before navigation process starts. Almost all of the earlier template matching algorithms that can be found in the open literature can only trace the robot. But the proposed algorithm here can also locate the position of other objects in an enclosure, like furniture, tables etc. This will enable the robot to know the exact location of every stationary object in the enclosure. Moreover, some additional features, such as Speech Recognition and Object Detection, are added. For Object Detection, the single board Computer Raspberry Pi is used. The system is programmed to analyze images captured via the camera, which are then processed through background subtraction, followed by active noise reduction.
Use of laser range finders and range image analysis in automated assembly tasks
NASA Technical Reports Server (NTRS)
Alvertos, Nicolas; Dcunha, Ivan
1990-01-01
A proposition to study the effect of filtering processes on range images and to evaluate the performance of two different laser range mappers is made. Median filtering was utilized to remove noise from the range images. First and second order derivatives are then utilized to locate the similarities and dissimilarities between the processed and the original images. Range depth information is converted into spatial coordinates, and a set of coefficients which describe 3-D objects is generated using the algorithm developed in the second phase of this research. Range images of spheres and cylinders are used for experimental purposes. An algorithm was developed to compare the performance of two different laser range mappers based upon the range depth information of surfaces generated by each of the mappers. Furthermore, an approach based on 2-D analytic geometry is also proposed which serves as a basis for the recognition of regular 3-D geometric objects.
Detection of maize kernels breakage rate based on K-means clustering
NASA Astrophysics Data System (ADS)
Yang, Liang; Wang, Zhuo; Gao, Lei; Bai, Xiaoping
2017-04-01
In order to optimize the recognition accuracy of maize kernels breakage detection and improve the detection efficiency of maize kernels breakage, this paper using computer vision technology and detecting of the maize kernels breakage based on K-means clustering algorithm. First, the collected RGB images are converted into Lab images, then the original images clarity evaluation are evaluated by the energy function of Sobel 8 gradient. Finally, the detection of maize kernels breakage using different pixel acquisition equipments and different shooting angles. In this paper, the broken maize kernels are identified by the color difference between integrity kernels and broken kernels. The original images clarity evaluation and different shooting angles are taken to verify that the clarity and shooting angles of the images have a direct influence on the feature extraction. The results show that K-means clustering algorithm can distinguish the broken maize kernels effectively.
NASA Astrophysics Data System (ADS)
Huang, Jian; Yuen, Pong C.; Chen, Wen-Sheng; Lai, J. H.
2005-05-01
Many face recognition algorithms/systems have been developed in the last decade and excellent performances have also been reported when there is a sufficient number of representative training samples. In many real-life applications such as passport identification, only one well-controlled frontal sample image is available for training. Under this situation, the performance of existing algorithms will degrade dramatically or may not even be implemented. We propose a component-based linear discriminant analysis (LDA) method to solve the one training sample problem. The basic idea of the proposed method is to construct local facial feature component bunches by moving each local feature region in four directions. In this way, we not only generate more samples with lower dimension than the original image, but also consider the face detection localization error while training. After that, we propose a subspace LDA method, which is tailor-made for a small number of training samples, for the local feature projection to maximize the discrimination power. Theoretical analysis and experiment results show that our proposed subspace LDA is efficient and overcomes the limitations in existing LDA methods. Finally, we combine the contributions of each local component bunch with a weighted combination scheme to draw the recognition decision. A FERET database is used for evaluating the proposed method and results are encouraging.
Binarization algorithm for document image with complex background
NASA Astrophysics Data System (ADS)
Miao, Shaojun; Lu, Tongwei; Min, Feng
2015-12-01
The most important step in image preprocessing for Optical Character Recognition (OCR) is binarization. Due to the complex background or varying light in the text image, binarization is a very difficult problem. This paper presents the improved binarization algorithm. The algorithm can be divided into several steps. First, the background approximation can be obtained by the polynomial fitting, and the text is sharpened by using bilateral filter. Second, the image contrast compensation is done to reduce the impact of light and improve contrast of the original image. Third, the first derivative of the pixels in the compensated image are calculated to get the average value of the threshold, then the edge detection is obtained. Fourth, the stroke width of the text is estimated through a measuring of distance between edge pixels. The final stroke width is determined by choosing the most frequent distance in the histogram. Fifth, according to the value of the final stroke width, the window size is calculated, then a local threshold estimation approach can begin to binaries the image. Finally, the small noise is removed based on the morphological operators. The experimental result shows that the proposed method can effectively remove the noise caused by complex background and varying light.
An iris recognition algorithm based on DCT and GLCM
NASA Astrophysics Data System (ADS)
Feng, G.; Wu, Ye-qing
2008-04-01
With the enlargement of mankind's activity range, the significance for person's status identity is becoming more and more important. So many different techniques for person's status identity were proposed for this practical usage. Conventional person's status identity methods like password and identification card are not always reliable. A wide variety of biometrics has been developed for this challenge. Among those biologic characteristics, iris pattern gains increasing attention for its stability, reliability, uniqueness, noninvasiveness and difficult to counterfeit. The distinct merits of the iris lead to its high reliability for personal identification. So the iris identification technique had become hot research point in the past several years. This paper presents an efficient algorithm for iris recognition using gray-level co-occurrence matrix(GLCM) and Discrete Cosine transform(DCT). To obtain more representative iris features, features from space and DCT transformation domain are extracted. Both GLCM and DCT are applied on the iris image to form the feature sequence in this paper. The combination of GLCM and DCT makes the iris feature more distinct. Upon GLCM and DCT the eigenvector of iris extracted, which reflects features of spatial transformation and frequency transformation. Experimental results show that the algorithm is effective and feasible with iris recognition.
AstroCV: Astronomy computer vision library
NASA Astrophysics Data System (ADS)
González, Roberto E.; Muñoz, Roberto P.; Hernández, Cristian A.
2018-04-01
AstroCV processes and analyzes big astronomical datasets, and is intended to provide a community repository of high performance Python and C++ algorithms used for image processing and computer vision. The library offers methods for object recognition, segmentation and classification, with emphasis in the automatic detection and classification of galaxies.
Semi-automated identification of leopard frogs
Petrovska-Delacrétaz, Dijana; Edwards, Aaron; Chiasson, John; Chollet, Gérard; Pilliod, David S.
2014-01-01
Principal component analysis is used to implement a semi-automatic recognition system to identify recaptured northern leopard frogs (Lithobates pipiens). Results of both open set and closed set experiments are given. The presented algorithm is shown to provide accurate identification of 209 individual leopard frogs from a total set of 1386 images.
Identifying People with Soft-Biometrics at Fleet Week
2013-03-01
onboard sensors. This included: Color Camera: Located in the right eye, Octavia stored 640x480 RGB images at ~4 Hz from a Point Grey Firefly camera. A...Face Detection The Fleet Week experiments demonstrated the potential of soft biometrics for recognition, but all of the existing algorithms currently
Recognition of strong earthquake-prone areas with a single learning class
NASA Astrophysics Data System (ADS)
Gvishiani, A. D.; Agayan, S. M.; Dzeboev, B. A.; Belov, I. O.
2017-05-01
This article presents a new Barrier recognition algorithm with learning, designed for recognition of earthquake-prone areas. In comparison to the Crust (Kora) algorithm, used by the classical EPA approach, the Barrier algorithm proceeds with learning just on one "pure" high-seismic class. The new algorithm operates in the space of absolute values of the geological-geophysical parameters of the objects. The algorithm is used for recognition of earthquake-prone areas with M ≥ 6.0 in the Caucasus region. Comparative analysis of the Crust and Barrier algorithms justifies their productive coherence.
Probabilistic Open Set Recognition
NASA Astrophysics Data System (ADS)
Jain, Lalit Prithviraj
Real-world tasks in computer vision, pattern recognition and machine learning often touch upon the open set recognition problem: multi-class recognition with incomplete knowledge of the world and many unknown inputs. An obvious way to approach such problems is to develop a recognition system that thresholds probabilities to reject unknown classes. Traditional rejection techniques are not about the unknown; they are about the uncertain boundary and rejection around that boundary. Thus traditional techniques only represent the "known unknowns". However, a proper open set recognition algorithm is needed to reduce the risk from the "unknown unknowns". This dissertation examines this concept and finds existing probabilistic multi-class recognition approaches are ineffective for true open set recognition. We hypothesize the cause is due to weak adhoc assumptions combined with closed-world assumptions made by existing calibration techniques. Intuitively, if we could accurately model just the positive data for any known class without overfitting, we could reject the large set of unknown classes even under this assumption of incomplete class knowledge. For this, we formulate the problem as one of modeling positive training data by invoking statistical extreme value theory (EVT) near the decision boundary of positive data with respect to negative data. We provide a new algorithm called the PI-SVM for estimating the unnormalized posterior probability of class inclusion. This dissertation also introduces a new open set recognition model called Compact Abating Probability (CAP), where the probability of class membership decreases in value (abates) as points move from known data toward open space. We show that CAP models improve open set recognition for multiple algorithms. Leveraging the CAP formulation, we go on to describe the novel Weibull-calibrated SVM (W-SVM) algorithm, which combines the useful properties of statistical EVT for score calibration with one-class and binary support vector machines. Building from the success of statistical EVT based recognition methods such as PI-SVM and W-SVM on the open set problem, we present a new general supervised learning algorithm for multi-class classification and multi-class open set recognition called the Extreme Value Local Basis (EVLB). The design of this algorithm is motivated by the observation that extrema from known negative class distributions are the closest negative points to any positive sample during training, and thus should be used to define the parameters of a probabilistic decision model. In the EVLB, the kernel distribution for each positive training sample is estimated via an EVT distribution fit over the distances to the separating hyperplane between positive training sample and closest negative samples, with a subset of the overall positive training data retained to form a probabilistic decision boundary. Using this subset as a frame of reference, the probability of a sample at test time decreases as it moves away from the positive class. Possessing this property, the EVLB is well-suited to open set recognition problems where samples from unknown or novel classes are encountered at test. Our experimental evaluation shows that the EVLB provides a substantial improvement in scalability compared to standard radial basis function kernel machines, as well as P I-SVM and W-SVM, with improved accuracy in many cases. We evaluate our algorithm on open set variations of the standard visual learning benchmarks, as well as with an open subset of classes from Caltech 256 and ImageNet. Our experiments show that PI-SVM, WSVM and EVLB provide significant advances over the previous state-of-the-art solutions for the same tasks.
Optimization of spectral bands for hyperspectral remote sensing of forest vegetation
NASA Astrophysics Data System (ADS)
Dmitriev, Egor V.; Kozoderov, Vladimir V.
2013-10-01
Optimization principles of accounting for the most informative spectral channels in hyperspectral remote sensing data processing serve to enhance the efficiency of the employed high-productive computers. The problem of pattern recognition of the remotely sensed land surface objects with the accent on the forests is outlined from the point of view of the spectral channels optimization on the processed hyperspectral images. The relevant computational procedures are tested using the images obtained by the produced in Russia hyperspectral camera that was installed on a gyro-stabilized platform to conduct the airborne flight campaigns. The Bayesian classifier is used for the pattern recognition of the forests with different tree species and age. The probabilistically optimal algorithm constructed on the basis of the maximum likelihood principle is described to minimize the probability of misclassification given by this classifier. The classification error is the major category to estimate the accuracy of the applied algorithm by the known holdout cross-validation method. Details of the related techniques are presented. Results are shown of selecting the spectral channels of the camera while processing the images having in mind radiometric distortions that diminish the classification accuracy. The spectral channels are selected of the obtained subclasses extracted from the proposed validation techniques and the confusion matrices are constructed that characterize the age composition of the classified pine species as well as the broad age-class recognition for the pine and birch species with the fully illuminated parts of their crowns.
NASA Astrophysics Data System (ADS)
Zhang, K.; Sheng, Y. H.; Li, Y. Q.; Han, B.; Liang, Ch.; Sha, W.
2006-10-01
In the field of digital photogrammetry and computer vision, the determination of conjugate points in a stereo image pair, referred to as "image matching," is the critical step to realize automatic surveying and recognition. Traditional matching methods encounter some problems in the digital close-range stereo photogrammetry, because the change of gray-scale or texture is not obvious in the close-range stereo images. The main shortcoming of traditional matching methods is that geometric information of matching points is not fully used, which will lead to wrong matching results in regions with poor texture. To fully use the geometry and gray-scale information, a new stereo image matching algorithm is proposed in this paper considering the characteristics of digital close-range photogrammetry. Compared with the traditional matching method, the new algorithm has three improvements on image matching. Firstly, shape factor, fuzzy maths and gray-scale projection are introduced into the design of synthetical matching measure. Secondly, the topology connecting relations of matching points in Delaunay triangulated network and epipolar-line are used to decide matching order and narrow the searching scope of conjugate point of the matching point. Lastly, the theory of parameter adjustment with constraint is introduced into least square image matching to carry out subpixel level matching under epipolar-line constraint. The new algorithm is applied to actual stereo images of a building taken by digital close-range photogrammetric system. The experimental result shows that the algorithm has a higher matching speed and matching accuracy than pyramid image matching algorithm based on gray-scale correlation.
Automatic Recognition of Fetal Facial Standard Plane in Ultrasound Image via Fisher Vector.
Lei, Baiying; Tan, Ee-Leng; Chen, Siping; Zhuo, Liu; Li, Shengli; Ni, Dong; Wang, Tianfu
2015-01-01
Acquisition of the standard plane is the prerequisite of biometric measurement and diagnosis during the ultrasound (US) examination. In this paper, a new algorithm is developed for the automatic recognition of the fetal facial standard planes (FFSPs) such as the axial, coronal, and sagittal planes. Specifically, densely sampled root scale invariant feature transform (RootSIFT) features are extracted and then encoded by Fisher vector (FV). The Fisher network with multi-layer design is also developed to extract spatial information to boost the classification performance. Finally, automatic recognition of the FFSPs is implemented by support vector machine (SVM) classifier based on the stochastic dual coordinate ascent (SDCA) algorithm. Experimental results using our dataset demonstrate that the proposed method achieves an accuracy of 93.27% and a mean average precision (mAP) of 99.19% in recognizing different FFSPs. Furthermore, the comparative analyses reveal the superiority of the proposed method based on FV over the traditional methods.
Recognition of children on age-different images: Facial morphology and age-stable features.
Caplova, Zuzana; Compassi, Valentina; Giancola, Silvio; Gibelli, Daniele M; Obertová, Zuzana; Poppa, Pasquale; Sala, Remo; Sforza, Chiarella; Cattaneo, Cristina
2017-07-01
The situation of missing children is one of the most emotional social issues worldwide. The search for and identification of missing children is often hampered, among others, by the fact that the facial morphology of long-term missing children changes as they grow. Nowadays, the wide coverage by surveillance systems potentially provides image material for comparisons with images of missing children that may facilitate identification. The aim of study was to identify whether facial features are stable in time and can be utilized for facial recognition by comparing facial images of children at different ages as well as to test the possible use of moles in recognition. The study was divided into two phases (1) morphological classification of facial features using an Anthropological Atlas; (2) algorithm developed in MATLAB® R2014b for assessing the use of moles as age-stable features. The assessment of facial features by Anthropological Atlases showed high mismatch percentages among observers. On average, the mismatch percentages were lower for features describing shape than for those describing size. The nose tip cleft and the chin dimple showed the best agreement between observers regarding both categorization and stability over time. Using the position of moles as a reference point for recognition of the same person on age-different images seems to be a useful method in terms of objectivity and it can be concluded that moles represent age-stable facial features that may be considered for preliminary recognition. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.
A method of depth image based human action recognition
NASA Astrophysics Data System (ADS)
Li, Pei; Cheng, Wanli
2017-05-01
In this paper, we propose an action recognition algorithm framework based on human skeleton joint information. In order to extract the feature of human motion, we use the information of body posture, speed and acceleration of movement to construct spatial motion feature that can describe and reflect the joint. On the other hand, we use the classical temporal pyramid matching algorithm to construct temporal feature and describe the motion sequence variation from different time scales. Then, we use bag of words to represent these actions, which is to present every action in the histogram by clustering these extracted feature. Finally, we employ Hidden Markov Model to train and test the extracted motion features. In the experimental part, the correctness and effectiveness of the proposed model are comprehensively verified on two well-known datasets.
NASA Astrophysics Data System (ADS)
Zhai, Xiaojun; Bensaali, Faycal; Sotudeh, Reza
2013-01-01
Number plate (NP) binarization and adjustment are important preprocessing stages in automatic number plate recognition (ANPR) systems and are used to link the number plate localization (NPL) and character segmentation stages. Successfully linking these two stages will improve the performance of the entire ANPR system. We present two optimized low-complexity NP binarization and adjustment algorithms. Efficient area/speed architectures based on the proposed algorithms are also presented and have been successfully implemented and tested using the Mentor Graphics RC240 FPGA development board, which together require only 9% of the available on-chip resources of a Virtex-4 FPGA, run with a maximum frequency of 95.8 MHz and are capable of processing one image in 0.07 to 0.17 ms.
Stereo-Based Region-Growing using String Matching
NASA Technical Reports Server (NTRS)
Mandelbaum, Robert; Mintz, Max
1995-01-01
We present a novel stereo algorithm based on a coarse texture segmentation preprocessing phase. Matching is performed using a string comparison. Matching sub-strings correspond to matching sequences of textures. Inter-scanline clustering of matching sub-strings yields regions of matching texture. The shape of these regions yield information concerning object's height, width and azimuthal position relative to the camera pair. Hence, rather than the standard dense depth map, the output of this algorithm is a segmentation of objects in the scene. Such a format is useful for the integration of stereo with other sensor modalities on a mobile robotic platform. It is also useful for localization; the height and width of a detected object may be used for landmark recognition, while depth and relative azimuthal location determine pose. The algorithm does not rely on the monotonicity of order of image primitives. Occlusions, exposures, and foreshortening effects are not problematic. The algorithm can deal with certain types of transparencies. It is computationally efficient, and very amenable to parallel implementation. Further, the epipolar constraints may be relaxed to some small but significant degree. A version of the algorithm has been implemented and tested on various types of images. It performs best on random dot stereograms, on images with easily filtered backgrounds (as in synthetic images), and on real scenes with uncontrived backgrounds.
Impact of multi-focused images on recognition of soft biometric traits
NASA Astrophysics Data System (ADS)
Chiesa, V.; Dugelay, J. L.
2016-09-01
In video surveillance semantic traits estimation as gender and age has always been debated topic because of the uncontrolled environment: while light or pose variations have been largely studied, defocused images are still rarely investigated. Recently the emergence of new technologies, as plenoptic cameras, yields to deal with these problems analyzing multi-focus images. Thanks to a microlens array arranged between the sensor and the main lens, light field cameras are able to record not only the RGB values but also the information related to the direction of light rays: the additional data make possible rendering the image with different focal plane after the acquisition. For our experiments, we use the GUC Light Field Face Database that includes pictures from the First Generation Lytro camera. Taking advantage of light field images, we explore the influence of defocusing on gender recognition and age estimation problems. Evaluations are computed on up-to-date and competitive technologies based on deep learning algorithms. After studying the relationship between focus and gender recognition and focus and age estimation, we compare the results obtained by images defocused by Lytro software with images blurred by more standard filters in order to explore the difference between defocusing and blurring effects. In addition we investigate the impact of deblurring on defocused images with the goal to better understand the different impacts of defocusing and standard blurring on gender and age estimation.
Automated alignment system for optical wireless communication systems using image recognition.
Brandl, Paul; Weiss, Alexander; Zimmermann, Horst
2014-07-01
In this Letter, we describe the realization of a tracked line-of-sight optical wireless communication system for indoor data distribution. We built a laser-based transmitter with adaptive focus and ray steering by a microelectromechanical systems mirror. To execute the alignment procedure, we used a CMOS image sensor at the transmitter side and developed an algorithm for image recognition to localize the receiver's position. The receiver is based on a self-developed optoelectronic integrated chip with low requirements on the receiver optics to make the system economically attractive. With this system, we were able to set up the communication link automatically without any back channel and to perform error-free (bit error rate <10⁻⁹) data transmission over a distance of 3.5 m with a data rate of 3 Gbit/s.
Sparse and redundant representations for inverse problems and recognition
NASA Astrophysics Data System (ADS)
Patel, Vishal M.
Sparse and redundant representation of data enables the description of signals as linear combinations of a few atoms from a dictionary. In this dissertation, we study applications of sparse and redundant representations in inverse problems and object recognition. Furthermore, we propose two novel imaging modalities based on the recently introduced theory of Compressed Sensing (CS). This dissertation consists of four major parts. In the first part of the dissertation, we study a new type of deconvolution algorithm that is based on estimating the image from a shearlet decomposition. Shearlets provide a multi-directional and multi-scale decomposition that has been mathematically shown to represent distributed discontinuities such as edges better than traditional wavelets. We develop a deconvolution algorithm that allows for the approximation inversion operator to be controlled on a multi-scale and multi-directional basis. Furthermore, we develop a method for the automatic determination of the threshold values for the noise shrinkage for each scale and direction without explicit knowledge of the noise variance using a generalized cross validation method. In the second part of the dissertation, we study a reconstruction method that recovers highly undersampled images assumed to have a sparse representation in a gradient domain by using partial measurement samples that are collected in the Fourier domain. Our method makes use of a robust generalized Poisson solver that greatly aids in achieving a significantly improved performance over similar proposed methods. We will demonstrate by experiments that this new technique is more flexible to work with either random or restricted sampling scenarios better than its competitors. In the third part of the dissertation, we introduce a novel Synthetic Aperture Radar (SAR) imaging modality which can provide a high resolution map of the spatial distribution of targets and terrain using a significantly reduced number of needed transmitted and/or received electromagnetic waveforms. We demonstrate that this new imaging scheme, requires no new hardware components and allows the aperture to be compressed. Also, it presents many new applications and advantages which include strong resistance to countermesasures and interception, imaging much wider swaths and reduced on-board storage requirements. The last part of the dissertation deals with object recognition based on learning dictionaries for simultaneous sparse signal approximations and feature extraction. A dictionary is learned for each object class based on given training examples which minimize the representation error with a sparseness constraint. A novel test image is then projected onto the span of the atoms in each learned dictionary. The residual vectors along with the coefficients are then used for recognition. Applications to illumination robust face recognition and automatic target recognition are presented.
New approach to gallbladder ultrasonic images analysis and lesions recognition.
Bodzioch, Sławomir; Ogiela, Marek R
2009-03-01
This paper presents a new approach to gallbladder ultrasonic image processing and analysis towards detection of disease symptoms on processed images. First, in this paper, there is presented a new method of filtering gallbladder contours from USG images. A major stage in this filtration is to segment and section off areas occupied by the said organ. In most cases this procedure is based on filtration that plays a key role in the process of diagnosing pathological changes. Unfortunately ultrasound images present among the most troublesome methods of analysis owing to the echogenic inconsistency of structures under observation. This paper provides for an inventive algorithm for the holistic extraction of gallbladder image contours. The algorithm is based on rank filtration, as well as on the analysis of histogram sections on tested organs. The second part concerns detecting lesion symptoms of the gallbladder. Automating a process of diagnosis always comes down to developing algorithms used to analyze the object of such diagnosis and verify the occurrence of symptoms related to given affection. Usually the final stage is to make a diagnosis based on the detected symptoms. This last stage can be carried out through either dedicated expert systems or more classic pattern analysis approach like using rules to determine illness basing on detected symptoms. This paper discusses the pattern analysis algorithms for gallbladder image interpretation towards classification of the most frequent illness symptoms of this organ.
NASA Astrophysics Data System (ADS)
Mishra, Deependra K.; Umbaugh, Scott E.; Lama, Norsang; Dahal, Rohini; Marino, Dominic J.; Sackman, Joseph
2016-09-01
CVIPtools is a software package for the exploration of computer vision and image processing developed in the Computer Vision and Image Processing Laboratory at Southern Illinois University Edwardsville. CVIPtools is available in three variants - a) CVIPtools Graphical User Interface, b) CVIPtools C library and c) CVIPtools MATLAB toolbox, which makes it accessible to a variety of different users. It offers students, faculty, researchers and any user a free and easy way to explore computer vision and image processing techniques. Many functions have been implemented and are updated on a regular basis, the library has reached a level of sophistication that makes it suitable for both educational and research purposes. In this paper, the detail list of the functions available in the CVIPtools MATLAB toolbox are presented and how these functions can be used in image analysis and computer vision applications. The CVIPtools MATLAB toolbox allows the user to gain practical experience to better understand underlying theoretical problems in image processing and pattern recognition. As an example application, the algorithm for the automatic creation of masks for veterinary thermographic images is presented.
Evaluation of image deblurring methods via a classification metric
NASA Astrophysics Data System (ADS)
Perrone, Daniele; Humphreys, David; Lamb, Robert A.; Favaro, Paolo
2012-09-01
The performance of single image deblurring algorithms is typically evaluated via a certain discrepancy measure between the reconstructed image and the ideal sharp image. The choice of metric, however, has been a source of debate and has also led to alternative metrics based on human visual perception. While fixed metrics may fail to capture some small but visible artifacts, perception-based metrics may favor reconstructions with artifacts that are visually pleasant. To overcome these limitations, we propose to assess the quality of reconstructed images via a task-driven metric. In this paper we consider object classification as the task and therefore use the rate of classification as the metric to measure deblurring performance. In our evaluation we use data with different types of blur in two cases: Optical Character Recognition (OCR), where the goal is to recognise characters in a black and white image, and object classification with no restrictions on pose, illumination and orientation. Finally, we show how off-the-shelf classification algorithms benefit from working with deblurred images.
Toward faster and more accurate star sensors using recursive centroiding and star identification
NASA Astrophysics Data System (ADS)
Samaan, Malak Anees
The objective of this research is to study different novel developed techniques for spacecraft attitude determination methods using star tracker sensors. This dissertation addresses various issues on developing improved star tracker software, presents new approaches for better performance of star trackers, and considers applications to realize high precision attitude estimates. Star-sensors are often included in a spacecraft attitude-system instrument suite, where high accuracy pointing capability is required. Novel methods for image processing, camera parameters ground calibration, autonomous star pattern recognition, and recursive star identification are researched and implemented to achieve high accuracy and a high frame rate star tracker that can be used for many space missions. This dissertation presents the methods and algorithms implemented for the one Field of View 'FOV'Star NavI sensor that was tested aboard the STS-107 mission in spring 2003 and the two fields of view StarNavII sensor for the EO-3 spacecraft scheduled for launch in 2007. The results of this research enable advances in spacecraft attitude determination based upon real time star sensing and pattern recognition. Building upon recent developments in image processing, pattern recognition algorithms, focal plane detectors, electro-optics, and microprocessors, the star tracker concept utilized in this research has the following key objectives for spacecraft of the future: lower cost, lower mass and smaller volume, increased robustness to environment-induced aging and instrument response variations, increased adaptability and autonomy via recursive self-calibration and health-monitoring on-orbit. Many of these attributes are consequences of improved algorithms that are derived in this dissertation.
Human recognition based on head-shoulder contour extraction and BP neural network
NASA Astrophysics Data System (ADS)
Kong, Xiao-fang; Wang, Xiu-qin; Gu, Guohua; Chen, Qian; Qian, Wei-xian
2014-11-01
In practical application scenarios like video surveillance and human-computer interaction, human body movements are uncertain because the human body is a non-rigid object. Based on the fact that the head-shoulder part of human body can be less affected by the movement, and will seldom be obscured by other objects, in human detection and recognition, a head-shoulder model with its stable characteristics can be applied as a detection feature to describe the human body. In order to extract the head-shoulder contour accurately, a head-shoulder model establish method with combination of edge detection and the mean-shift algorithm in image clustering has been proposed in this paper. First, an adaptive method of mixture Gaussian background update has been used to extract targets from the video sequence. Second, edge detection has been used to extract the contour of moving objects, and the mean-shift algorithm has been combined to cluster parts of target's contour. Third, the head-shoulder model can be established, according to the width and height ratio of human head-shoulder combined with the projection histogram of the binary image, and the eigenvectors of the head-shoulder contour can be acquired. Finally, the relationship between head-shoulder contour eigenvectors and the moving objects will be formed by the training of back-propagation (BP) neural network classifier, and the human head-shoulder model can be clustered for human detection and recognition. Experiments have shown that the method combined with edge detection and mean-shift algorithm proposed in this paper can extract the complete head-shoulder contour, with low calculating complexity and high efficiency.
Computer vision system: a tool for evaluating the quality of wheat in a grain tank
NASA Astrophysics Data System (ADS)
Minkin, Uryi Igorevish; Panchenko, Aleksei Vladimirovich; Shkanaev, Aleksandr Yurievich; Konovalenko, Ivan Andreevich; Putintsev, Dmitry Nikolaevich; Sadekov, Rinat Nailevish
2018-04-01
The paper describes a technology that allows for automatizing the process of evaluating the grain quality in a grain tank of a combine harvester. Special recognition algorithm analyzes photographic images taken by the camera, and that provides automatic estimates of the total mass fraction of broken grains and the presence of non-grains. The paper also presents the operating details of the tank prototype as well as it defines the accuracy of the algorithms designed.
Optimisation of shape kernel and threshold in image-processing motion analysers.
Pedrocchi, A; Baroni, G; Sada, S; Marcon, E; Pedotti, A; Ferrigno, G
2001-09-01
The aim of the work is to optimise the image processing of a motion analyser. This is to improve accuracy, which is crucial for neurophysiological and rehabilitation applications. A new motion analyser, ELITE-S2, for installation on the International Space Station is described, with the focus on image processing. Important improvements are expected in the hardware of ELITE-S2 compared with ELITE and previous versions (ELITE-S and Kinelite). The core algorithm for marker recognition was based on the current ELITE version, using the cross-correlation technique. This technique was based on the matching of the expected marker shape, the so-called kernel, with image features. Optimisation of the kernel parameters was achieved using a genetic algorithm, taking into account noise rejection and accuracy. Optimisation was achieved by performing tests on six highly precise grids (with marker diameters ranging from 1.5 to 4 mm), representing all allowed marker image sizes, and on a noise image. The results of comparing the optimised kernels and the current ELITE version showed a great improvement in marker recognition accuracy, while noise rejection characteristics were preserved. An average increase in marker co-ordinate accuracy of +22% was achieved, corresponding to a mean accuracy of 0.11 pixel in comparison with 0.14 pixel, measured over all grids. An improvement of +37%, corresponding to an improvement from 0.22 pixel to 0.14 pixel, was observed over the grid with the biggest markers.
Characterizing Feature Matching Performance Over Long Time Periods (Author’s Manuscript)
2015-01-05
older imagery. These applications, including approaches to geo-location, geo- orientation [13], geo-tagging [16], landmark recognition [23], image... orientation between features is less than 10 degrees. We calculate the percent of features from the reference image that fit into each of these three...always because the key point detection algorithm did not find feature points at the same locations and orientation . 5. Conclusions In this paper, we offer
Flight Results from the HST SM4 Relative Navigation Sensor System
NASA Technical Reports Server (NTRS)
Naasz, Bo; Eepoel, John Van; Queen, Steve; Southward, C. Michael; Hannah, Joel
2010-01-01
On May 11, 2009, Space Shuttle Atlantis roared off of Launch Pad 39A enroute to the Hubble Space Telescope (HST) to undertake its final servicing of HST, Servicing Mission 4. Onboard Atlantis was a small payload called the Relative Navigation Sensor experiment, which included three cameras of varying focal ranges, avionics to record images and estimate, in real time, the relative position and attitude (aka "pose") of the telescope during rendezvous and deploy. The avionics package, known as SpaceCube and developed at the Goddard Space Flight Center, performed image processing using field programmable gate arrays to accelerate this process, and in addition executed two different pose algorithms in parallel, the Goddard Natural Feature Image Recognition and the ULTOR Passive Pose and Position Engine (P3E) algorithms
Ben Younes, Lassad; Nakajima, Yoshikazu; Saito, Toki
2014-03-01
Femur segmentation is well established and widely used in computer-assisted orthopedic surgery. However, most of the robust segmentation methods such as statistical shape models (SSM) require human intervention to provide an initial position for the SSM. In this paper, we propose to overcome this problem and provide a fully automatic femur segmentation method for CT images based on primitive shape recognition and SSM. Femur segmentation in CT scans was performed using primitive shape recognition based on a robust algorithm such as the Hough transform and RANdom SAmple Consensus. The proposed method is divided into 3 steps: (1) detection of the femoral head as sphere and the femoral shaft as cylinder in the SSM and the CT images, (2) rigid registration between primitives of SSM and CT image to initialize the SSM into the CT image, and (3) fitting of the SSM to the CT image edge using an affine transformation followed by a nonlinear fitting. The automated method provided good results even with a high number of outliers. The difference of segmentation error between the proposed automatic initialization method and a manual initialization method is less than 1 mm. The proposed method detects primitive shape position to initialize the SSM into the target image. Based on primitive shapes, this method overcomes the problem of inter-patient variability. Moreover, the results demonstrate that our method of primitive shape recognition can be used for 3D SSM initialization to achieve fully automatic segmentation of the femur.
Rotation-invariant features for multi-oriented text detection in natural images.
Yao, Cong; Zhang, Xin; Bai, Xiang; Liu, Wenyu; Ma, Yi; Tu, Zhuowen
2013-01-01
Texts in natural scenes carry rich semantic information, which can be used to assist a wide range of applications, such as object recognition, image/video retrieval, mapping/navigation, and human computer interaction. However, most existing systems are designed to detect and recognize horizontal (or near-horizontal) texts. Due to the increasing popularity of mobile-computing devices and applications, detecting texts of varying orientations from natural images under less controlled conditions has become an important but challenging task. In this paper, we propose a new algorithm to detect texts of varying orientations. Our algorithm is based on a two-level classification scheme and two sets of features specially designed for capturing the intrinsic characteristics of texts. To better evaluate the proposed method and compare it with the competing algorithms, we generate a comprehensive dataset with various types of texts in diverse real-world scenes. We also propose a new evaluation protocol, which is more suitable for benchmarking algorithms for detecting texts in varying orientations. Experiments on benchmark datasets demonstrate that our system compares favorably with the state-of-the-art algorithms when handling horizontal texts and achieves significantly enhanced performance on variant texts in complex natural scenes.
Luo, Jiebo; Boutell, Matthew
2005-05-01
Automatic image orientation detection for natural images is a useful, yet challenging research topic. Humans use scene context and semantic object recognition to identify the correct image orientation. However, it is difficult for a computer to perform the task in the same way because current object recognition algorithms are extremely limited in their scope and robustness. As a result, existing orientation detection methods were built upon low-level vision features such as spatial distributions of color and texture. Discrepant detection rates have been reported for these methods in the literature. We have developed a probabilistic approach to image orientation detection via confidence-based integration of low-level and semantic cues within a Bayesian framework. Our current accuracy is 90 percent for unconstrained consumer photos, impressive given the findings of a psychophysical study conducted recently. The proposed framework is an attempt to bridge the gap between computer and human vision systems and is applicable to other problems involving semantic scene content understanding.
GPU-based relative fuzzy connectedness image segmentation.
Zhuge, Ying; Ciesielski, Krzysztof C; Udupa, Jayaram K; Miller, Robert W
2013-01-01
Recently, clinical radiological research and practice are becoming increasingly quantitative. Further, images continue to increase in size and volume. For quantitative radiology to become practical, it is crucial that image segmentation algorithms and their implementations are rapid and yield practical run time on very large data sets. The purpose of this paper is to present a parallel version of an algorithm that belongs to the family of fuzzy connectedness (FC) algorithms, to achieve an interactive speed for segmenting large medical image data sets. The most common FC segmentations, optimizing an [script-l](∞)-based energy, are known as relative fuzzy connectedness (RFC) and iterative relative fuzzy connectedness (IRFC). Both RFC and IRFC objects (of which IRFC contains RFC) can be found via linear time algorithms, linear with respect to the image size. The new algorithm, P-ORFC (for parallel optimal RFC), which is implemented by using NVIDIA's Compute Unified Device Architecture (CUDA) platform, considerably improves the computational speed of the above mentioned CPU based IRFC algorithm. Experiments based on four data sets of small, medium, large, and super data size, achieved speedup factors of 32.8×, 22.9×, 20.9×, and 17.5×, correspondingly, on the NVIDIA Tesla C1060 platform. Although the output of P-ORFC need not precisely match that of IRFC output, it is very close to it and, as the authors prove, always lies between the RFC and IRFC objects. A parallel version of a top-of-the-line algorithm in the family of FC has been developed on the NVIDIA GPUs. An interactive speed of segmentation has been achieved, even for the largest medical image data set. Such GPU implementations may play a crucial role in automatic anatomy recognition in clinical radiology.
GPU-based relative fuzzy connectedness image segmentation
Zhuge, Ying; Ciesielski, Krzysztof C.; Udupa, Jayaram K.; Miller, Robert W.
2013-01-01
Purpose: Recently, clinical radiological research and practice are becoming increasingly quantitative. Further, images continue to increase in size and volume. For quantitative radiology to become practical, it is crucial that image segmentation algorithms and their implementations are rapid and yield practical run time on very large data sets. The purpose of this paper is to present a parallel version of an algorithm that belongs to the family of fuzzy connectedness (FC) algorithms, to achieve an interactive speed for segmenting large medical image data sets. Methods: The most common FC segmentations, optimizing an ℓ∞-based energy, are known as relative fuzzy connectedness (RFC) and iterative relative fuzzy connectedness (IRFC). Both RFC and IRFC objects (of which IRFC contains RFC) can be found via linear time algorithms, linear with respect to the image size. The new algorithm, P-ORFC (for parallel optimal RFC), which is implemented by using NVIDIA’s Compute Unified Device Architecture (CUDA) platform, considerably improves the computational speed of the above mentioned CPU based IRFC algorithm. Results: Experiments based on four data sets of small, medium, large, and super data size, achieved speedup factors of 32.8×, 22.9×, 20.9×, and 17.5×, correspondingly, on the NVIDIA Tesla C1060 platform. Although the output of P-ORFC need not precisely match that of IRFC output, it is very close to it and, as the authors prove, always lies between the RFC and IRFC objects. Conclusions: A parallel version of a top-of-the-line algorithm in the family of FC has been developed on the NVIDIA GPUs. An interactive speed of segmentation has been achieved, even for the largest medical image data set. Such GPU implementations may play a crucial role in automatic anatomy recognition in clinical radiology. PMID:23298094
Automated recognition of microcalcification clusters in mammograms
NASA Astrophysics Data System (ADS)
Bankman, Isaac N.; Christens-Barry, William A.; Kim, Dong W.; Weinberg, Irving N.; Gatewood, Olga B.; Brody, William R.
1993-07-01
The widespread and increasing use of mammographic screening for early breast cancer detection is placing a significant strain on clinical radiologists. Large numbers of radiographic films have to be visually interpreted in fine detail to determine the subtle hallmarks of cancer that may be present. We developed an algorithm for detecting microcalcification clusters, the most common and useful signs of early, potentially curable breast cancer. We describe this algorithm, which utilizes contour map representations of digitized mammographic films, and discuss its benefits in overcoming difficulties often encountered in algorithmic approaches to radiographic image processing. We present experimental analyses of mammographic films employing this contour-based algorithm and discuss practical issues relevant to its use in an automated film interpretation instrument.
Performance Review of Harmony Search, Differential Evolution and Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Mohan Pandey, Hari
2017-08-01
Metaheuristic algorithms are effective in the design of an intelligent system. These algorithms are widely applied to solve complex optimization problems, including image processing, big data analytics, language processing, pattern recognition and others. This paper presents a performance comparison of three meta-heuristic algorithms, namely Harmony Search, Differential Evolution, and Particle Swarm Optimization. These algorithms are originated altogether from different fields of meta-heuristics yet share a common objective. The standard benchmark functions are used for the simulation. Statistical tests are conducted to derive a conclusion on the performance. The key motivation to conduct this research is to categorize the computational capabilities, which might be useful to the researchers.
Document localization algorithms based on feature points and straight lines
NASA Astrophysics Data System (ADS)
Skoryukina, Natalya; Shemiakina, Julia; Arlazarov, Vladimir L.; Faradjev, Igor
2018-04-01
The important part of the system of a planar rectangular object analysis is the localization: the estimation of projective transform from template image of an object to its photograph. The system also includes such subsystems as the selection and recognition of text fields, the usage of contexts etc. In this paper three localization algorithms are described. All algorithms use feature points and two of them also analyze near-horizontal and near- vertical lines on the photograph. The algorithms and their combinations are tested on a dataset of real document photographs. Also the method of localization quality estimation is proposed that allows configuring the localization subsystem independently of the other subsystems quality.
Facial Expression Recognition using Multiclass Ensemble Least-Square Support Vector Machine
NASA Astrophysics Data System (ADS)
Lawi, Armin; Sya'Rani Machrizzandi, M.
2018-03-01
Facial expression is one of behavior characteristics of human-being. The use of biometrics technology system with facial expression characteristics makes it possible to recognize a person’s mood or emotion. The basic components of facial expression analysis system are face detection, face image extraction, facial classification and facial expressions recognition. This paper uses Principal Component Analysis (PCA) algorithm to extract facial features with expression parameters, i.e., happy, sad, neutral, angry, fear, and disgusted. Then Multiclass Ensemble Least-Squares Support Vector Machine (MELS-SVM) is used for the classification process of facial expression. The result of MELS-SVM model obtained from our 185 different expression images of 10 persons showed high accuracy level of 99.998% using RBF kernel.
Object recognition based on Google's reverse image search and image similarity
NASA Astrophysics Data System (ADS)
Horváth, András.
2015-12-01
Image classification is one of the most challenging tasks in computer vision and a general multiclass classifier could solve many different tasks in image processing. Classification is usually done by shallow learning for predefined objects, which is a difficult task and very different from human vision, which is based on continuous learning of object classes and one requires years to learn a large taxonomy of objects which are not disjunct nor independent. In this paper I present a system based on Google image similarity algorithm and Google image database, which can classify a large set of different objects in a human like manner, identifying related classes and taxonomies.
A multi-view face recognition system based on cascade face detector and improved Dlib
NASA Astrophysics Data System (ADS)
Zhou, Hongjun; Chen, Pei; Shen, Wei
2018-03-01
In this research, we present a framework for multi-view face detect and recognition system based on cascade face detector and improved Dlib. This method is aimed to solve the problems of low efficiency and low accuracy in multi-view face recognition, to build a multi-view face recognition system, and to discover a suitable monitoring scheme. For face detection, the cascade face detector is used to extracted the Haar-like feature from the training samples, and Haar-like feature is used to train a cascade classifier by combining Adaboost algorithm. Next, for face recognition, we proposed an improved distance model based on Dlib to improve the accuracy of multiview face recognition. Furthermore, we applied this proposed method into recognizing face images taken from different viewing directions, including horizontal view, overlooks view, and looking-up view, and researched a suitable monitoring scheme. This method works well for multi-view face recognition, and it is also simulated and tested, showing satisfactory experimental results.
NASA Astrophysics Data System (ADS)
Zhang, Ka; Sheng, Yehua; Gong, Zhijun; Ye, Chun; Li, Yongqiang; Liang, Cheng
2007-06-01
As an important sub-system in intelligent transportation system (ITS), the detection and recognition of traffic signs from mobile images is becoming one of the hot spots in the international research field of ITS. Considering the problem of traffic sign automatic detection in motion images, a new self-adaptive algorithm for traffic sign detection based on color and shape features is proposed in this paper. Firstly, global statistical color features of different images are computed based on statistics theory. Secondly, some self-adaptive thresholds and special segmentation rules for image segmentation are designed according to these global color features. Then, for red, yellow and blue traffic signs, the color image is segmented to three binary images by these thresholds and rules. Thirdly, if the number of white pixels in the segmented binary image exceeds the filtering threshold, the binary image should be further filtered. Fourthly, the method of gray-value projection is used to confirm top, bottom, left and right boundaries for candidate regions of traffic signs in the segmented binary image. Lastly, if the shape feature of candidate region satisfies the need of real traffic sign, this candidate region is confirmed as the detected traffic sign region. The new algorithm is applied to actual motion images of natural scenes taken by a CCD camera of the mobile photogrammetry system in Nanjing at different time. The experimental results show that the algorithm is not only simple, robust and more adaptive to natural scene images, but also reliable and high-speed on real traffic sign detection.
Dactyl Alphabet Gesture Recognition in a Video Sequence Using Microsoft Kinect
NASA Astrophysics Data System (ADS)
Artyukhin, S. G.; Mestetskiy, L. M.
2015-05-01
This paper presents an efficient framework for solving the problem of static gesture recognition based on data obtained from the web cameras and depth sensor Kinect (RGB-D - data). Each gesture given by a pair of images: color image and depth map. The database store gestures by it features description, genereated by frame for each gesture of the alphabet. Recognition algorithm takes as input a video sequence (a sequence of frames) for marking, put in correspondence with each frame sequence gesture from the database, or decide that there is no suitable gesture in the database. First, classification of the frame of the video sequence is done separately without interframe information. Then, a sequence of successful marked frames in equal gesture is grouped into a single static gesture. We propose a method combined segmentation of frame by depth map and RGB-image. The primary segmentation is based on the depth map. It gives information about the position and allows to get hands rough border. Then, based on the color image border is specified and performed analysis of the shape of the hand. Method of continuous skeleton is used to generate features. We propose a method of skeleton terminal branches, which gives the opportunity to determine the position of the fingers and wrist. Classification features for gesture is description of the position of the fingers relative to the wrist. The experiments were carried out with the developed algorithm on the example of the American Sign Language. American Sign Language gesture has several components, including the shape of the hand, its orientation in space and the type of movement. The accuracy of the proposed method is evaluated on the base of collected gestures consisting of 2700 frames.
Mobile-based text recognition from water quality devices
NASA Astrophysics Data System (ADS)
Dhakal, Shanti; Rahnemoonfar, Maryam
2015-03-01
Measuring water quality of bays, estuaries, and gulfs is a complicated and time-consuming process. YSI Sonde is an instrument used to measure water quality parameters such as pH, temperature, salinity, and dissolved oxygen. This instrument is taken to water bodies in a boat trip and researchers note down different parameters displayed by the instrument's display monitor. In this project, a mobile application is developed for Android platform that allows a user to take a picture of the YSI Sonde monitor, extract text from the image and store it in a file on the phone. The image captured by the application is first processed to remove perspective distortion. Probabilistic Hough line transform is used to identify lines in the image and the corner of the image is then obtained by determining the intersection of the detected horizontal and vertical lines. The image is warped using the perspective transformation matrix, obtained from the corner points of the source image and the destination image, hence, removing the perspective distortion. Mathematical morphology operation, black-hat is used to correct the shading of the image. The image is binarized using Otsu's binarization technique and is then passed to the Optical Character Recognition (OCR) software for character recognition. The extracted information is stored in a file on the phone and can be retrieved later for analysis. The algorithm was tested on 60 different images of YSI Sonde with different perspective features and shading. Experimental results, in comparison to ground-truth results, demonstrate the effectiveness of the proposed method.
Local linear discriminant analysis framework using sample neighbors.
Fan, Zizhu; Xu, Yong; Zhang, David
2011-07-01
The linear discriminant analysis (LDA) is a very popular linear feature extraction approach. The algorithms of LDA usually perform well under the following two assumptions. The first assumption is that the global data structure is consistent with the local data structure. The second assumption is that the input data classes are Gaussian distributions. However, in real-world applications, these assumptions are not always satisfied. In this paper, we propose an improved LDA framework, the local LDA (LLDA), which can perform well without needing to satisfy the above two assumptions. Our LLDA framework can effectively capture the local structure of samples. According to different types of local data structure, our LLDA framework incorporates several different forms of linear feature extraction approaches, such as the classical LDA and principal component analysis. The proposed framework includes two LLDA algorithms: a vector-based LLDA algorithm and a matrix-based LLDA (MLLDA) algorithm. MLLDA is directly applicable to image recognition, such as face recognition. Our algorithms need to train only a small portion of the whole training set before testing a sample. They are suitable for learning large-scale databases especially when the input data dimensions are very high and can achieve high classification accuracy. Extensive experiments show that the proposed algorithms can obtain good classification results.
Handwritten digits recognition based on immune network
NASA Astrophysics Data System (ADS)
Li, Yangyang; Wu, Yunhui; Jiao, Lc; Wu, Jianshe
2011-11-01
With the development of society, handwritten digits recognition technique has been widely applied to production and daily life. It is a very difficult task to solve these problems in the field of pattern recognition. In this paper, a new method is presented for handwritten digit recognition. The digit samples firstly are processed and features extraction. Based on these features, a novel immune network classification algorithm is designed and implemented to the handwritten digits recognition. The proposed algorithm is developed by Jerne's immune network model for feature selection and KNN method for classification. Its characteristic is the novel network with parallel commutating and learning. The performance of the proposed method is experimented to the handwritten number datasets MNIST and compared with some other recognition algorithms-KNN, ANN and SVM algorithm. The result shows that the novel classification algorithm based on immune network gives promising performance and stable behavior for handwritten digits recognition.
NASA Astrophysics Data System (ADS)
Cherkasov, Kirill V.; Gavrilova, Irina V.; Chernova, Elena V.; Dokolin, Andrey S.
2018-05-01
The article is devoted to reflection of separate aspects of intellectual system gesture recognition development. The peculiarity of the system is its intellectual block which completely based on open technologies: OpenCV library and Microsoft Cognitive Toolkit (CNTK) platform. The article presents the rationale for the choice of such set of tools, as well as the functional scheme of the system and the hierarchy of its modules. Experiments have shown that the system correctly recognizes about 85% of images received from sensors. The authors assume that the improvement of the algorithmic block of the system will increase the accuracy of gesture recognition up to 95%.
Face recognition based on two-dimensional discriminant sparse preserving projection
NASA Astrophysics Data System (ADS)
Zhang, Dawei; Zhu, Shanan
2018-04-01
In this paper, a supervised dimensionality reduction algorithm named two-dimensional discriminant sparse preserving projection (2DDSPP) is proposed for face recognition. In order to accurately model manifold structure of data, 2DDSPP constructs within-class affinity graph and between-class affinity graph by the constrained least squares (LS) and l1 norm minimization problem, respectively. Based on directly operating on image matrix, 2DDSPP integrates graph embedding (GE) with Fisher criterion. The obtained projection subspace preserves within-class neighborhood geometry structure of samples, while keeping away samples from different classes. The experimental results on the PIE and AR face databases show that 2DDSPP can achieve better recognition performance.
NASA Technical Reports Server (NTRS)
Gramenopoulos, N. (Principal Investigator)
1973-01-01
The author has identified the following significant results. For the recognition of terrain types, spatial signatures are developed from the diffraction patterns of small areas of ERTS-1 images. This knowledge is exploited for the measurements of a small number of meaningful spatial features from the digital Fourier transforms of ERTS-1 image cells containing 32 x 32 picture elements. Using these spatial features and a heuristic algorithm, the terrain types in the vicinity of Phoenix, Arizona were recognized by the computer with a high accuracy. Then, the spatial features were combined with spectral features and using the maximum likelihood criterion the recognition accuracy of terrain types increased substantially. It was determined that the recognition accuracy with the maximum likelihood criterion depends on the statistics of the feature vectors. Nonlinear transformations of the feature vectors are required so that the terrain class statistics become approximately Gaussian. It was also determined that for a given geographic area the statistics of the classes remain invariable for a period of a month but vary substantially between seasons.
Software for Partly Automated Recognition of Targets
NASA Technical Reports Server (NTRS)
Opitz, David; Blundell, Stuart; Bain, William; Morris, Matthew; Carlson, Ian; Mangrich, Mark; Selinsky, T.
2002-01-01
The Feature Analyst is a computer program for assisted (partially automated) recognition of targets in images. This program was developed to accelerate the processing of high-resolution satellite image data for incorporation into geographic information systems (GIS). This program creates an advanced user interface that embeds proprietary machine-learning algorithms in commercial image-processing and GIS software. A human analyst provides samples of target features from multiple sets of data, then the software develops a data-fusion model that automatically extracts the remaining features from selected sets of data. The program thus leverages the natural ability of humans to recognize objects in complex scenes, without requiring the user to explain the human visual recognition process by means of lengthy software. Two major subprograms are the reactive agent and the thinking agent. The reactive agent strives to quickly learn the user's tendencies while the user is selecting targets and to increase the user's productivity by immediately suggesting the next set of pixels that the user may wish to select. The thinking agent utilizes all available resources, taking as much time as needed, to produce the most accurate autonomous feature-extraction model possible.
Thermalnet: a Deep Convolutional Network for Synthetic Thermal Image Generation
NASA Astrophysics Data System (ADS)
Kniaz, V. V.; Gorbatsevich, V. S.; Mizginov, V. A.
2017-05-01
Deep convolutional neural networks have dramatically changed the landscape of the modern computer vision. Nowadays methods based on deep neural networks show the best performance among image recognition and object detection algorithms. While polishing of network architectures received a lot of scholar attention, from the practical point of view the preparation of a large image dataset for a successful training of a neural network became one of major challenges. This challenge is particularly profound for image recognition in wavelengths lying outside the visible spectrum. For example no infrared or radar image datasets large enough for successful training of a deep neural network are available to date in public domain. Recent advances of deep neural networks prove that they are also capable to do arbitrary image transformations such as super-resolution image generation, grayscale image colorisation and imitation of style of a given artist. Thus a natural question arise: how could be deep neural networks used for augmentation of existing large image datasets? This paper is focused on the development of the Thermalnet deep convolutional neural network for augmentation of existing large visible image datasets with synthetic thermal images. The Thermalnet network architecture is inspired by colorisation deep neural networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ushizima, Daniela; Perciano, Talita; Krishnan, Harinarayan
Fibers provide exceptional strength-to-weight ratio capabilities when woven into ceramic composites, transforming them into materials with exceptional resistance to high temperature, and high strength combined with improved fracture toughness. Microcracks are inevitable when the material is under strain, which can be imaged using synchrotron X-ray computed micro-tomography (mu-CT) for assessment of material mechanical toughness variation. An important part of this analysis is to recognize fibrillar features. This paper presents algorithms for detecting and quantifying composite cracks and fiber breaks from high-resolution image stacks. First, we propose recognition algorithms to identify the different structures of the composite, including matrix cracks andmore » fibers breaks. Second, we introduce our package F3D for fast filtering of large 3D imagery, implemented in OpenCL to take advantage of graphic cards. Results show that our algorithms automatically identify micro-damage and that the GPU-based implementation introduced here takes minutes, being 17x faster than similar tools on a typical image file.« less
NASA Astrophysics Data System (ADS)
Wang, Q.; Alfalou, A.; Brosseau, C.
2016-04-01
Here, we report a brief review on the recent developments of correlation algorithms. Several implementation schemes and specific applications proposed in recent years are also given to illustrate powerful applications of these methods. Following a discussion and comparison of the implementation of these schemes, we believe that all-numerical implementation is the most practical choice for application of the correlation method because the advantages of optical processing cannot compensate the technical and/or financial cost needed for an optical implementation platform. We also present a simple iterative algorithm to optimize the training images of composite correlation filters. By making use of three or four iterations, the peak-to-correlation energy (PCE) value of correlation plane can be significantly enhanced. A simulation test using the Pointing Head Pose Image Database (PHPID) illustrates the effectiveness of this statement. Our method can be applied in many composite filters based on linear composition of training images as an optimization means.
Localized contourlet features in vehicle make and model recognition
NASA Astrophysics Data System (ADS)
Zafar, I.; Edirisinghe, E. A.; Acar, B. S.
2009-02-01
Automatic vehicle Make and Model Recognition (MMR) systems provide useful performance enhancements to vehicle recognitions systems that are solely based on Automatic Number Plate Recognition (ANPR) systems. Several vehicle MMR systems have been proposed in literature. In parallel to this, the usefulness of multi-resolution based feature analysis techniques leading to efficient object classification algorithms have received close attention from the research community. To this effect, Contourlet transforms that can provide an efficient directional multi-resolution image representation has recently been introduced. Already an attempt has been made in literature to use Curvelet/Contourlet transforms in vehicle MMR. In this paper we propose a novel localized feature detection method in Contourlet transform domain that is capable of increasing the classification rates up to 4%, as compared to the previously proposed Contourlet based vehicle MMR approach in which the features are non-localized and thus results in sub-optimal classification. Further we show that the proposed algorithm can achieve the increased classification accuracy of 96% at significantly lower computational complexity due to the use of Two Dimensional Linear Discriminant Analysis (2DLDA) for dimensionality reduction by preserving the features with high between-class variance and low inter-class variance.
NASA Astrophysics Data System (ADS)
Hachaj, Tomasz; Ogiela, Marek R.
2012-10-01
The proposed framework for cognitive analysis of perfusion computed tomography images is a fusion of image processing, pattern recognition, and image analysis procedures. The output data of the algorithm consists of: regions of perfusion abnormalities, anatomy atlas description of brain tissues, measures of perfusion parameters, and prognosis for infracted tissues. That information is superimposed onto volumetric computed tomography data and displayed to radiologists. Our rendering algorithm enables rendering large volumes on off-the-shelf hardware. This portability of rendering solution is very important because our framework can be run without using expensive dedicated hardware. The other important factors are theoretically unlimited size of rendered volume and possibility of trading of image quality for rendering speed. Such rendered, high quality visualizations may be further used for intelligent brain perfusion abnormality identification, and computer aided-diagnosis of selected types of pathologies.
Signal detection using support vector machines in the presence of ultrasonic speckle
NASA Astrophysics Data System (ADS)
Kotropoulos, Constantine L.; Pitas, Ioannis
2002-04-01
Support Vector Machines are a general algorithm based on guaranteed risk bounds of statistical learning theory. They have found numerous applications, such as in classification of brain PET images, optical character recognition, object detection, face verification, text categorization and so on. In this paper we propose the use of support vector machines to segment lesions in ultrasound images and we assess thoroughly their lesion detection ability. We demonstrate that trained support vector machines with a Radial Basis Function kernel segment satisfactorily (unseen) ultrasound B-mode images as well as clinical ultrasonic images.
Scene recognition based on integrating active learning with dictionary learning
NASA Astrophysics Data System (ADS)
Wang, Chengxi; Yin, Xueyan; Yang, Lin; Gong, Chengrong; Zheng, Caixia; Yi, Yugen
2018-04-01
Scene recognition is a significant topic in the field of computer vision. Most of the existing scene recognition models require a large amount of labeled training samples to achieve a good performance. However, labeling image manually is a time consuming task and often unrealistic in practice. In order to gain satisfying recognition results when labeled samples are insufficient, this paper proposed a scene recognition algorithm named Integrating Active Learning and Dictionary Leaning (IALDL). IALDL adopts projective dictionary pair learning (DPL) as classifier and introduces active learning mechanism into DPL for improving its performance. When constructing sampling criterion in active learning, IALDL considers both the uncertainty and representativeness as the sampling criteria to effectively select the useful unlabeled samples from a given sample set for expanding the training dataset. Experiment results on three standard databases demonstrate the feasibility and validity of the proposed IALDL.
Neural Network for Nanoscience Scanning Electron Microscope Image Recognition.
Modarres, Mohammad Hadi; Aversa, Rossella; Cozzini, Stefano; Ciancio, Regina; Leto, Angelo; Brandino, Giuseppe Piero
2017-10-16
In this paper we applied transfer learning techniques for image recognition, automatic categorization, and labeling of nanoscience images obtained by scanning electron microscope (SEM). Roughly 20,000 SEM images were manually classified into 10 categories to form a labeled training set, which can be used as a reference set for future applications of deep learning enhanced algorithms in the nanoscience domain. The categories chosen spanned the range of 0-Dimensional (0D) objects such as particles, 1D nanowires and fibres, 2D films and coated surfaces, and 3D patterned surfaces such as pillars. The training set was used to retrain on the SEM dataset and to compare many convolutional neural network models (Inception-v3, Inception-v4, ResNet). We obtained compatible results by performing a feature extraction of the different models on the same dataset. We performed additional analysis of the classifier on a second test set to further investigate the results both on particular cases and from a statistical point of view. Our algorithm was able to successfully classify around 90% of a test dataset consisting of SEM images, while reduced accuracy was found in the case of images at the boundary between two categories or containing elements of multiple categories. In these cases, the image classification did not identify a predominant category with a high score. We used the statistical outcomes from testing to deploy a semi-automatic workflow able to classify and label images generated by the SEM. Finally, a separate training was performed to determine the volume fraction of coherently aligned nanowires in SEM images. The results were compared with what was obtained using the Local Gradient Orientation method. This example demonstrates the versatility and the potential of transfer learning to address specific tasks of interest in nanoscience applications.
WND-CHARM: Multi-purpose image classification using compound image transforms
Orlov, Nikita; Shamir, Lior; Macura, Tomasz; Johnston, Josiah; Eckley, D. Mark; Goldberg, Ilya G.
2008-01-01
We describe a multi-purpose image classifier that can be applied to a wide variety of image classification tasks without modifications or fine-tuning, and yet provide classification accuracy comparable to state-of-the-art task-specific image classifiers. The proposed image classifier first extracts a large set of 1025 image features including polynomial decompositions, high contrast features, pixel statistics, and textures. These features are computed on the raw image, transforms of the image, and transforms of transforms of the image. The feature values are then used to classify test images into a set of pre-defined image classes. This classifier was tested on several different problems including biological image classification and face recognition. Although we cannot make a claim of universality, our experimental results show that this classifier performs as well or better than classifiers developed specifically for these image classification tasks. Our classifier’s high performance on a variety of classification problems is attributed to (i) a large set of features extracted from images; and (ii) an effective feature selection and weighting algorithm sensitive to specific image classification problems. The algorithms are available for free download from openmicroscopy.org. PMID:18958301
An Underwater Target Detection System for Electro-Optical Imagery Data
2010-06-01
detection and segmentation of underwater mine-like objects in the EO images captured with a CCD-based image sensor. The main focus of this research is to...develop a robust detection algorithm that can be used to detect low contrast and partial underwater objects from the EO imagery with low false alarm rate...underwater target detection I. INTRODUCTION Automatic detection and recognition of underwater objects from EO imagery poses a serious challenge due to poor
Evaluation of Image Segmentation and Object Recognition Algorithms for Image Parsing
2013-09-01
generation of the features from the key points. OpenCV uses Euclidean distance to match the key points and has the option to use Manhattan distance...feature vector includes polarity and intensity information. Final step is matching the key points. In OpenCV , Euclidean distance or Manhattan...the code below is one way and OpenCV offers the function radiusMatch (a pair must have a distance less than a given maximum distance). OpenCV’s
Fang, Hongqing; He, Lei; Si, Hao; Liu, Peng; Xie, Xiaolei
2014-09-01
In this paper, Back-propagation(BP) algorithm has been used to train the feed forward neural network for human activity recognition in smart home environments, and inter-class distance method for feature selection of observed motion sensor events is discussed and tested. And then, the human activity recognition performances of neural network using BP algorithm have been evaluated and compared with other probabilistic algorithms: Naïve Bayes(NB) classifier and Hidden Markov Model(HMM). The results show that different feature datasets yield different activity recognition accuracy. The selection of unsuitable feature datasets increases the computational complexity and degrades the activity recognition accuracy. Furthermore, neural network using BP algorithm has relatively better human activity recognition performances than NB classifier and HMM. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Multispectral image fusion based on fractal features
NASA Astrophysics Data System (ADS)
Tian, Jie; Chen, Jie; Zhang, Chunhua
2004-01-01
Imagery sensors have been one indispensable part of the detection and recognition systems. They are widely used to the field of surveillance, navigation, control and guide, et. However, different imagery sensors depend on diverse imaging mechanisms, and work within diverse range of spectrum. They also perform diverse functions and have diverse circumstance requires. So it is unpractical to accomplish the task of detection or recognition with a single imagery sensor under the conditions of different circumstances, different backgrounds and different targets. Fortunately, the multi-sensor image fusion technique emerged as important route to solve this problem. So image fusion has been one of the main technical routines used to detect and recognize objects from images. While, loss of information is unavoidable during fusion process, so it is always a very important content of image fusion how to preserve the useful information to the utmost. That is to say, it should be taken into account before designing the fusion schemes how to avoid the loss of useful information or how to preserve the features helpful to the detection. In consideration of these issues and the fact that most detection problems are actually to distinguish man-made objects from natural background, a fractal-based multi-spectral fusion algorithm has been proposed in this paper aiming at the recognition of battlefield targets in the complicated backgrounds. According to this algorithm, source images are firstly orthogonally decomposed according to wavelet transform theories, and then fractal-based detection is held to each decomposed image. At this step, natural background and man-made targets are distinguished by use of fractal models that can well imitate natural objects. Special fusion operators are employed during the fusion of area that contains man-made targets so that useful information could be preserved and features of targets could be extruded. The final fused image is reconstructed from the composition of source pyramid images. So this fusion scheme is a multi-resolution analysis. The wavelet decomposition of image can be actually considered as special pyramid decomposition. According to wavelet decomposition theories, the approximation of image (formula available in paper) at resolution 2j+1 equal to its orthogonal projection in space , that is, where Ajf is the low-frequency approximation of image f(x, y) at resolution 2j and , , represent the vertical, horizontal and diagonal wavelet coefficients respectively at resolution 2j. These coefficients describe the high-frequency information of image at direction of vertical, horizontal and diagonal respectively. Ajf, , and are independent and can be considered as images. In this paper J is set to be 1, so the source image is decomposed to produce the son-images Af, D1f, D2f and D3f. To solve the problem of detecting artifacts, the concepts of vertical fractal dimension FD1, horizontal fractal dimension FD2 and diagonal fractal dimension FD3 are proposed in this paper. The vertical fractal dimension FD1 corresponds to the vertical wavelet coefficients image after the wavelet decomposition of source image, the horizontal fractal dimension FD2 corresponds to the horizontal wavelet coefficients and the diagonal fractal dimension FD3 the diagonal one. These definitions enrich the illustration of source images. Therefore they are helpful to classify the targets. Then the detection of artifacts in the decomposed images is a problem of pattern recognition in 4-D space. The combination of FD0, FD1, FD2 and FD3 make a vector of (FD0, FD1, FD2, FD3), which can be considered as a united feature vector of the studied image. All the parts of the images are classified in the 4-D pattern space created by the vector of (FD0, FD1, FD2, FD3) so that the area that contains man-made objects could be detected. This detection can be considered as a coarse recognition, and then the significant areas in each son-images are signed so that they can be dealt with special rules. There has been various fusion rules developed with each one aiming at a special problem. These rules have different performance, so it is very important to select an appropriate rule during the design of an image fusion system. Recent research denotes that the rule should be adjustable so that it is always suitable to extrude the features of targets and to preserve the pixels of useful information. In this paper, owing to the consideration that fractal dimension is one of the main features to distinguish man-made targets from natural objects, the fusion rule was defined that if the studied region of image contains man-made target, the pixels of the source image whose fractal dimension is minimal are saved to be the pixels of the fused image, otherwise, a weighted average operator is adopted to avoid loss of information. The main idea of this rule is to store the pixels with low fractal dimensions, so it can be named Minimal Fractal dimensions (MFD) fusion rule. This fractal-based algorithm is compared with a common weighted average fusion algorithm. An objective assessment is taken to the two fusion results. The criteria of Entropy, Cross-Entropy, Peak Signal-to-Noise Ratio (PSNR) and Standard Gray Scale Difference are defined in this paper. Reversely to the idea of constructing an ideal image as the assessing reference, the source images are selected to be the reference in this paper. It can be deemed that this assessment is to calculate how much the image quality has been enhanced and the quantity of information has been increased when the fused image is compared with the source images. The experimental results imply that the fractal-based multi-spectral fusion algorithm can effectively preserve the information of man-made objects with a high contrast. It is proved that this algorithm could well preserve features of military targets because that battlefield targets are most man-made objects and in common their images differ from fractal models obviously. Furthermore, the fractal features are not sensitive to the imaging conditions and the movement of targets, so this fractal-based algorithm may be very practical.
A hierarchical word-merging algorithm with class separability measure.
Wang, Lei; Zhou, Luping; Shen, Chunhua; Liu, Lingqiao; Liu, Huan
2014-03-01
In image recognition with the bag-of-features model, a small-sized visual codebook is usually preferred to obtain a low-dimensional histogram representation and high computational efficiency. Such a visual codebook has to be discriminative enough to achieve excellent recognition performance. To create a compact and discriminative codebook, in this paper we propose to merge the visual words in a large-sized initial codebook by maximally preserving class separability. We first show that this results in a difficult optimization problem. To deal with this situation, we devise a suboptimal but very efficient hierarchical word-merging algorithm, which optimally merges two words at each level of the hierarchy. By exploiting the characteristics of the class separability measure and designing a novel indexing structure, the proposed algorithm can hierarchically merge 10,000 visual words down to two words in merely 90 seconds. Also, to show the properties of the proposed algorithm and reveal its advantages, we conduct detailed theoretical analysis to compare it with another hierarchical word-merging algorithm that maximally preserves mutual information, obtaining interesting findings. Experimental studies are conducted to verify the effectiveness of the proposed algorithm on multiple benchmark data sets. As shown, it can efficiently produce more compact and discriminative codebooks than the state-of-the-art hierarchical word-merging algorithms, especially when the size of the codebook is significantly reduced.
Fast processing of microscopic images using object-based extended depth of field.
Intarapanich, Apichart; Kaewkamnerd, Saowaluck; Pannarut, Montri; Shaw, Philip J; Tongsima, Sissades
2016-12-22
Microscopic analysis requires that foreground objects of interest, e.g. cells, are in focus. In a typical microscopic specimen, the foreground objects may lie on different depths of field necessitating capture of multiple images taken at different focal planes. The extended depth of field (EDoF) technique is a computational method for merging images from different depths of field into a composite image with all foreground objects in focus. Composite images generated by EDoF can be applied in automated image processing and pattern recognition systems. However, current algorithms for EDoF are computationally intensive and impractical, especially for applications such as medical diagnosis where rapid sample turnaround is important. Since foreground objects typically constitute a minor part of an image, the EDoF technique could be made to work much faster if only foreground regions are processed to make the composite image. We propose a novel algorithm called object-based extended depths of field (OEDoF) to address this issue. The OEDoF algorithm consists of four major modules: 1) color conversion, 2) object region identification, 3) good contrast pixel identification and 4) detail merging. First, the algorithm employs color conversion to enhance contrast followed by identification of foreground pixels. A composite image is constructed using only these foreground pixels, which dramatically reduces the computational time. We used 250 images obtained from 45 specimens of confirmed malaria infections to test our proposed algorithm. The resulting composite images with all in-focus objects were produced using the proposed OEDoF algorithm. We measured the performance of OEDoF in terms of image clarity (quality) and processing time. The features of interest selected by the OEDoF algorithm are comparable in quality with equivalent regions in images processed by the state-of-the-art complex wavelet EDoF algorithm; however, OEDoF required four times less processing time. This work presents a modification of the extended depth of field approach for efficiently enhancing microscopic images. This selective object processing scheme used in OEDoF can significantly reduce the overall processing time while maintaining the clarity of important image features. The empirical results from parasite-infected red cell images revealed that our proposed method efficiently and effectively produced in-focus composite images. With the speed improvement of OEDoF, this proposed algorithm is suitable for processing large numbers of microscope images, e.g., as required for medical diagnosis.
Fusion of 3D laser scanner and depth images for obstacle recognition in mobile applications
NASA Astrophysics Data System (ADS)
Budzan, Sebastian; Kasprzyk, Jerzy
2016-02-01
The problem of obstacle detection and recognition or, generally, scene mapping is one of the most investigated problems in computer vision, especially in mobile applications. In this paper a fused optical system using depth information with color images gathered from the Microsoft Kinect sensor and 3D laser range scanner data is proposed for obstacle detection and ground estimation in real-time mobile systems. The algorithm consists of feature extraction in the laser range images, processing of the depth information from the Kinect sensor, fusion of the sensor information, and classification of the data into two separate categories: road and obstacle. Exemplary results are presented and it is shown that fusion of information gathered from different sources increases the effectiveness of the obstacle detection in different scenarios, and it can be used successfully for road surface mapping.