Multivariate statistical model for 3D image segmentation with application to medical images.
John, Nigel M; Kabuka, Mansur R; Ibrahim, Mohamed O
2003-12-01
In this article we describe a statistical model that was developed to segment brain magnetic resonance images. The statistical segmentation algorithm was applied after a pre-processing stage involving the use of a 3D anisotropic filter along with histogram equalization techniques. The segmentation algorithm makes use of prior knowledge and a probability-based multivariate model designed to semi-automate the process of segmentation. The algorithm was applied to images obtained from the Center for Morphometric Analysis at Massachusetts General Hospital as part of the Internet Brain Segmentation Repository (IBSR). The developed algorithm showed improved accuracy over the k-means, adaptive Maximum Apriori Probability (MAP), biased MAP, and other algorithms. Experimental results showing the segmentation and the results of comparisons with other algorithms are provided. Results are based on an overlap criterion against expertly segmented images from the IBSR. The algorithm produced average results of approximately 80% overlap with the expertly segmented images (compared with 85% for manual segmentation and 55% for other algorithms).
Analysis of image thresholding segmentation algorithms based on swarm intelligence
NASA Astrophysics Data System (ADS)
Zhang, Yi; Lu, Kai; Gao, Yinghui; Yang, Bo
2013-03-01
Swarm intelligence-based image thresholding segmentation algorithms are playing an important role in the research field of image segmentation. In this paper, we briefly introduce the theories of four existing image segmentation algorithms based on swarm intelligence including fish swarm algorithm, artificial bee colony, bacteria foraging algorithm and particle swarm optimization. Then some image benchmarks are tested in order to show the differences of the segmentation accuracy, time consumption, convergence and robustness for Salt & Pepper noise and Gaussian noise of these four algorithms. Through these comparisons, this paper gives qualitative analyses for the performance variance of the four algorithms. The conclusions in this paper would give a significant guide for the actual image segmentation.
Validation tools for image segmentation
NASA Astrophysics Data System (ADS)
Padfield, Dirk; Ross, James
2009-02-01
A large variety of image analysis tasks require the segmentation of various regions in an image. For example, segmentation is required to generate accurate models of brain pathology that are important components of modern diagnosis and therapy. While the manual delineation of such structures gives accurate information, the automatic segmentation of regions such as the brain and tumors from such images greatly enhances the speed and repeatability of quantifying such structures. The ubiquitous need for such algorithms has lead to a wide range of image segmentation algorithms with various assumptions, parameters, and robustness. The evaluation of such algorithms is an important step in determining their effectiveness. Therefore, rather than developing new segmentation algorithms, we here describe validation methods for segmentation algorithms. Using similarity metrics comparing the automatic to manual segmentations, we demonstrate methods for optimizing the parameter settings for individual cases and across a collection of datasets using the Design of Experiment framework. We then employ statistical analysis methods to compare the effectiveness of various algorithms. We investigate several region-growing algorithms from the Insight Toolkit and compare their accuracy to that of a separate statistical segmentation algorithm. The segmentation algorithms are used with their optimized parameters to automatically segment the brain and tumor regions in MRI images of 10 patients. The validation tools indicate that none of the ITK algorithms studied are able to outperform with statistical significance the statistical segmentation algorithm although they perform reasonably well considering their simplicity.
Application of an enhanced fuzzy algorithm for MR brain tumor image segmentation
NASA Astrophysics Data System (ADS)
Hemanth, D. Jude; Vijila, C. Kezi Selva; Anitha, J.
2010-02-01
Image segmentation is one of the significant digital image processing techniques commonly used in the medical field. One of the specific applications is tumor detection in abnormal Magnetic Resonance (MR) brain images. Fuzzy approaches are widely preferred for tumor segmentation which generally yields superior results in terms of accuracy. But most of the fuzzy algorithms suffer from the drawback of slow convergence rate which makes the system practically non-feasible. In this work, the application of modified Fuzzy C-means (FCM) algorithm to tackle the convergence problem is explored in the context of brain image segmentation. This modified FCM algorithm employs the concept of quantization to improve the convergence rate besides yielding excellent segmentation efficiency. This algorithm is experimented on real time abnormal MR brain images collected from the radiologists. A comprehensive feature vector is extracted from these images and used for the segmentation technique. An extensive feature selection process is performed which reduces the convergence time period and improve the segmentation efficiency. After segmentation, the tumor portion is extracted from the segmented image. Comparative analysis in terms of segmentation efficiency and convergence rate is performed between the conventional FCM and the modified FCM. Experimental results show superior results for the modified FCM algorithm in terms of the performance measures. Thus, this work highlights the application of the modified algorithm for brain tumor detection in abnormal MR brain images.
The remote sensing image segmentation mean shift algorithm parallel processing based on MapReduce
NASA Astrophysics Data System (ADS)
Chen, Xi; Zhou, Liqing
2015-12-01
With the development of satellite remote sensing technology and the remote sensing image data, traditional remote sensing image segmentation technology cannot meet the massive remote sensing image processing and storage requirements. This article put cloud computing and parallel computing technology in remote sensing image segmentation process, and build a cheap and efficient computer cluster system that uses parallel processing to achieve MeanShift algorithm of remote sensing image segmentation based on the MapReduce model, not only to ensure the quality of remote sensing image segmentation, improved split speed, and better meet the real-time requirements. The remote sensing image segmentation MeanShift algorithm parallel processing algorithm based on MapReduce shows certain significance and a realization of value.
A segmentation algorithm based on image projection for complex text layout
NASA Astrophysics Data System (ADS)
Zhu, Wangsheng; Chen, Qin; Wei, Chuanyi; Li, Ziyang
2017-10-01
Segmentation algorithm is an important part of layout analysis, considering the efficiency advantage of the top-down approach and the particularity of the object, a breakdown of projection layout segmentation algorithm. Firstly, the algorithm will algorithm first partitions the text image, and divided into several columns, then for each column scanning projection, the text image is divided into several sub regions through multiple projection. The experimental results show that, this method inherits the projection itself and rapid calculation speed, but also can avoid the effect of arc image information page segmentation, and also can accurate segmentation of the text image layout is complex.
NASA Astrophysics Data System (ADS)
Abdul-Nasir, Aimi Salihah; Mashor, Mohd Yusoff; Halim, Nurul Hazwani Abd; Mohamed, Zeehaida
2015-05-01
Malaria is a life-threatening parasitic infectious disease that corresponds for nearly one million deaths each year. Due to the requirement of prompt and accurate diagnosis of malaria, the current study has proposed an unsupervised pixel segmentation based on clustering algorithm in order to obtain the fully segmented red blood cells (RBCs) infected with malaria parasites based on the thin blood smear images of P. vivax species. In order to obtain the segmented infected cell, the malaria images are first enhanced by using modified global contrast stretching technique. Then, an unsupervised segmentation technique based on clustering algorithm has been applied on the intensity component of malaria image in order to segment the infected cell from its blood cells background. In this study, cascaded moving k-means (MKM) and fuzzy c-means (FCM) clustering algorithms has been proposed for malaria slide image segmentation. After that, median filter algorithm has been applied to smooth the image as well as to remove any unwanted regions such as small background pixels from the image. Finally, seeded region growing area extraction algorithm has been applied in order to remove large unwanted regions that are still appeared on the image due to their size in which cannot be cleaned by using median filter. The effectiveness of the proposed cascaded MKM and FCM clustering algorithms has been analyzed qualitatively and quantitatively by comparing the proposed cascaded clustering algorithm with MKM and FCM clustering algorithms. Overall, the results indicate that segmentation using the proposed cascaded clustering algorithm has produced the best segmentation performances by achieving acceptable sensitivity as well as high specificity and accuracy values compared to the segmentation results provided by MKM and FCM algorithms.
BlobContours: adapting Blobworld for supervised color- and texture-based image segmentation
NASA Astrophysics Data System (ADS)
Vogel, Thomas; Nguyen, Dinh Quyen; Dittmann, Jana
2006-01-01
Extracting features is the first and one of the most crucial steps in recent image retrieval process. While the color features and the texture features of digital images can be extracted rather easily, the shape features and the layout features depend on reliable image segmentation. Unsupervised image segmentation, often used in image analysis, works on merely syntactical basis. That is, what an unsupervised segmentation algorithm can segment is only regions, but not objects. To obtain high-level objects, which is desirable in image retrieval, human assistance is needed. Supervised image segmentations schemes can improve the reliability of segmentation and segmentation refinement. In this paper we propose a novel interactive image segmentation technique that combines the reliability of a human expert with the precision of automated image segmentation. The iterative procedure can be considered a variation on the Blobworld algorithm introduced by Carson et al. from EECS Department, University of California, Berkeley. Starting with an initial segmentation as provided by the Blobworld framework, our algorithm, namely BlobContours, gradually updates it by recalculating every blob, based on the original features and the updated number of Gaussians. Since the original algorithm has hardly been designed for interactive processing we had to consider additional requirements for realizing a supervised segmentation scheme on the basis of Blobworld. Increasing transparency of the algorithm by applying usercontrolled iterative segmentation, providing different types of visualization for displaying the segmented image and decreasing computational time of segmentation are three major requirements which are discussed in detail.
Xue, Zhong; Shen, Dinggang; Li, Hai; Wong, Stephen
2010-01-01
The traditional fuzzy clustering algorithm and its extensions have been successfully applied in medical image segmentation. However, because of the variability of tissues and anatomical structures, the clustering results might be biased by the tissue population and intensity differences. For example, clustering-based algorithms tend to over-segment white matter tissues of MR brain images. To solve this problem, we introduce a tissue probability map constrained clustering algorithm and apply it to serial MR brain image segmentation, i.e., a series of 3-D MR brain images of the same subject at different time points. Using the new serial image segmentation algorithm in the framework of the CLASSIC framework, which iteratively segments the images and estimates the longitudinal deformations, we improved both accuracy and robustness for serial image computing, and at the mean time produced longitudinally consistent segmentation and stable measures. In the algorithm, the tissue probability maps consist of both the population-based and subject-specific segmentation priors. Experimental study using both simulated longitudinal MR brain data and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data confirmed that using both priors more accurate and robust segmentation results can be obtained. The proposed algorithm can be applied in longitudinal follow up studies of MR brain imaging with subtle morphological changes for neurological disorders. PMID:26566399
A., Javadpour; A., Mohammadi
2016-01-01
Background Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging. Objective This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regional growth. Methods Among medical imaging methods, brains MRI segmentation is important due to high contrast of non-intrusive soft tissue and high spatial resolution. Size variations of brain tissues are often accompanied by various diseases such as Alzheimer’s disease. As our knowledge about the relation between various brain diseases and deviation of brain anatomy increases, MRI segmentation is exploited as the first step in early diagnosis. In this paper, regional growth method and auto-mate selection of initial points by genetic algorithm is used to introduce a new method for MRI segmentation. Primary pixels and similarity criterion are automatically by genetic algorithms to maximize the accuracy and validity in image segmentation. Results By using genetic algorithms and defining the fixed function of image segmentation, the initial points for the algorithm were found. The proposed algorithms are applied to the images and results are manually selected by regional growth in which the initial points were compared. The results showed that the proposed algorithm could reduce segmentation error effectively. Conclusion The study concluded that the proposed algorithm could reduce segmentation error effectively and help us to diagnose brain diseases. PMID:27672629
Image segmentation evaluation for very-large datasets
NASA Astrophysics Data System (ADS)
Reeves, Anthony P.; Liu, Shuang; Xie, Yiting
2016-03-01
With the advent of modern machine learning methods and fully automated image analysis there is a need for very large image datasets having documented segmentations for both computer algorithm training and evaluation. Current approaches of visual inspection and manual markings do not scale well to big data. We present a new approach that depends on fully automated algorithm outcomes for segmentation documentation, requires no manual marking, and provides quantitative evaluation for computer algorithms. The documentation of new image segmentations and new algorithm outcomes are achieved by visual inspection. The burden of visual inspection on large datasets is minimized by (a) customized visualizations for rapid review and (b) reducing the number of cases to be reviewed through analysis of quantitative segmentation evaluation. This method has been applied to a dataset of 7,440 whole-lung CT images for 6 different segmentation algorithms designed to fully automatically facilitate the measurement of a number of very important quantitative image biomarkers. The results indicate that we could achieve 93% to 99% successful segmentation for these algorithms on this relatively large image database. The presented evaluation method may be scaled to much larger image databases.
Performance evaluation of image segmentation algorithms on microscopic image data.
Beneš, Miroslav; Zitová, Barbara
2015-01-01
In our paper, we present a performance evaluation of image segmentation algorithms on microscopic image data. In spite of the existence of many algorithms for image data partitioning, there is no universal and 'the best' method yet. Moreover, images of microscopic samples can be of various character and quality which can negatively influence the performance of image segmentation algorithms. Thus, the issue of selecting suitable method for a given set of image data is of big interest. We carried out a large number of experiments with a variety of segmentation methods to evaluate the behaviour of individual approaches on the testing set of microscopic images (cross-section images taken in three different modalities from the field of art restoration). The segmentation results were assessed by several indices used for measuring the output quality of image segmentation algorithms. In the end, the benefit of segmentation combination approach is studied and applicability of achieved results on another representatives of microscopic data category - biological samples - is shown. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
An algorithm for calculi segmentation on ureteroscopic images.
Rosa, Benoît; Mozer, Pierre; Szewczyk, Jérôme
2011-03-01
The purpose of the study is to develop an algorithm for the segmentation of renal calculi on ureteroscopic images. In fact, renal calculi are common source of urological obstruction, and laser lithotripsy during ureteroscopy is a possible therapy. A laser-based system to sweep the calculus surface and vaporize it was developed to automate a very tedious manual task. The distal tip of the ureteroscope is directed using image guidance, and this operation is not possible without an efficient segmentation of renal calculi on the ureteroscopic images. We proposed and developed a region growing algorithm to segment renal calculi on ureteroscopic images. Using real video images to compute ground truth and compare our segmentation with a reference segmentation, we computed statistics on different image metrics, such as Precision, Recall, and Yasnoff Measure, for comparison with ground truth. The algorithm and its parameters were established for the most likely clinical scenarii. The segmentation results are encouraging: the developed algorithm was able to correctly detect more than 90% of the surface of the calculi, according to an expert observer. Implementation of an algorithm for the segmentation of calculi on ureteroscopic images is feasible. The next step is the integration of our algorithm in the command scheme of a motorized system to build a complete operating prototype.
NASA Astrophysics Data System (ADS)
Liu, Likun
2018-01-01
In the field of remote sensing image processing, remote sensing image segmentation is a preliminary step for later analysis of remote sensing image processing and semi-auto human interpretation, fully-automatic machine recognition and learning. Since 2000, a technique of object-oriented remote sensing image processing method and its basic thought prevails. The core of the approach is Fractal Net Evolution Approach (FNEA) multi-scale segmentation algorithm. The paper is intent on the research and improvement of the algorithm, which analyzes present segmentation algorithms and selects optimum watershed algorithm as an initialization. Meanwhile, the algorithm is modified by modifying an area parameter, and then combining area parameter with a heterogeneous parameter further. After that, several experiments is carried on to prove the modified FNEA algorithm, compared with traditional pixel-based method (FCM algorithm based on neighborhood information) and combination of FNEA and watershed, has a better segmentation result.
NASA Astrophysics Data System (ADS)
Hu, Xiaoqian; Tao, Jinxu; Ye, Zhongfu; Qiu, Bensheng; Xu, Jinzhang
2018-05-01
In order to solve the problem of medical image segmentation, a wavelet neural network medical image segmentation algorithm based on combined maximum entropy criterion is proposed. Firstly, we use bee colony algorithm to optimize the network parameters of wavelet neural network, get the parameters of network structure, initial weights and threshold values, and so on, we can quickly converge to higher precision when training, and avoid to falling into relative extremum; then the optimal number of iterations is obtained by calculating the maximum entropy of the segmented image, so as to achieve the automatic and accurate segmentation effect. Medical image segmentation experiments show that the proposed algorithm can reduce sample training time effectively and improve convergence precision, and segmentation effect is more accurate and effective than traditional BP neural network (back propagation neural network : a multilayer feed forward neural network which trained according to the error backward propagation algorithm.
A validation framework for brain tumor segmentation.
Archip, Neculai; Jolesz, Ferenc A; Warfield, Simon K
2007-10-01
We introduce a validation framework for the segmentation of brain tumors from magnetic resonance (MR) images. A novel unsupervised semiautomatic brain tumor segmentation algorithm is also presented. The proposed framework consists of 1) T1-weighted MR images of patients with brain tumors, 2) segmentation of brain tumors performed by four independent experts, 3) segmentation of brain tumors generated by a semiautomatic algorithm, and 4) a software tool that estimates the performance of segmentation algorithms. We demonstrate the validation of the novel segmentation algorithm within the proposed framework. We show its performance and compare it with existent segmentation. The image datasets and software are available at http://www.brain-tumor-repository.org/. We present an Internet resource that provides access to MR brain tumor image data and segmentation that can be openly used by the research community. Its purpose is to encourage the development and evaluation of segmentation methods by providing raw test and image data, human expert segmentation results, and methods for comparing segmentation results.
GPU accelerated fuzzy connected image segmentation by using CUDA.
Zhuge, Ying; Cao, Yong; Miller, Robert W
2009-01-01
Image segmentation techniques using fuzzy connectedness principles have shown their effectiveness in segmenting a variety of objects in several large applications in recent years. However, one problem of these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays commodity graphics hardware provides high parallel computing power. In this paper, we present a parallel fuzzy connected image segmentation algorithm on Nvidia's Compute Unified Device Architecture (CUDA) platform for segmenting large medical image data sets. Our experiments based on three data sets with small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 7.2x, 7.3x, and 14.4x, correspondingly, for the three data sets over the sequential implementation of fuzzy connected image segmentation algorithm on CPU.
Blessy, S A Praylin Selva; Sulochana, C Helen
2015-01-01
Segmentation of brain tumor from Magnetic Resonance Imaging (MRI) becomes very complicated due to the structural complexities of human brain and the presence of intensity inhomogeneities. To propose a method that effectively segments brain tumor from MR images and to evaluate the performance of unsupervised optimal fuzzy clustering (UOFC) algorithm for segmentation of brain tumor from MR images. Segmentation is done by preprocessing the MR image to standardize intensity inhomogeneities followed by feature extraction, feature fusion and clustering. Different validation measures are used to evaluate the performance of the proposed method using different clustering algorithms. The proposed method using UOFC algorithm produces high sensitivity (96%) and low specificity (4%) compared to other clustering methods. Validation results clearly show that the proposed method with UOFC algorithm effectively segments brain tumor from MR images.
Image Information Mining Utilizing Hierarchical Segmentation
NASA Technical Reports Server (NTRS)
Tilton, James C.; Marchisio, Giovanni; Koperski, Krzysztof; Datcu, Mihai
2002-01-01
The Hierarchical Segmentation (HSEG) algorithm is an approach for producing high quality, hierarchically related image segmentations. The VisiMine image information mining system utilizes clustering and segmentation algorithms for reducing visual information in multispectral images to a manageable size. The project discussed herein seeks to enhance the VisiMine system through incorporating hierarchical segmentations from HSEG into the VisiMine system.
A comparative study of automatic image segmentation algorithms for target tracking in MR-IGRT.
Feng, Yuan; Kawrakow, Iwan; Olsen, Jeff; Parikh, Parag J; Noel, Camille; Wooten, Omar; Du, Dongsu; Mutic, Sasa; Hu, Yanle
2016-03-08
On-board magnetic resonance (MR) image guidance during radiation therapy offers the potential for more accurate treatment delivery. To utilize the real-time image information, a crucial prerequisite is the ability to successfully segment and track regions of interest (ROI). The purpose of this work is to evaluate the performance of different segmentation algorithms using motion images (4 frames per second) acquired using a MR image-guided radiotherapy (MR-IGRT) system. Manual con-tours of the kidney, bladder, duodenum, and a liver tumor by an experienced radiation oncologist were used as the ground truth for performance evaluation. Besides the manual segmentation, images were automatically segmented using thresholding, fuzzy k-means (FKM), k-harmonic means (KHM), and reaction-diffusion level set evolution (RD-LSE) algorithms, as well as the tissue tracking algorithm provided by the ViewRay treatment planning and delivery system (VR-TPDS). The performance of the five algorithms was evaluated quantitatively by comparing with the manual segmentation using the Dice coefficient and target registration error (TRE) measured as the distance between the centroid of the manual ROI and the centroid of the automatically segmented ROI. All methods were able to successfully segment the bladder and the kidney, but only FKM, KHM, and VR-TPDS were able to segment the liver tumor and the duodenum. The performance of the thresholding, FKM, KHM, and RD-LSE algorithms degraded as the local image contrast decreased, whereas the performance of the VP-TPDS method was nearly independent of local image contrast due to the reference registration algorithm. For segmenting high-contrast images (i.e., kidney), the thresholding method provided the best speed (< 1 ms) with a satisfying accuracy (Dice = 0.95). When the image contrast was low, the VR-TPDS method had the best automatic contour. Results suggest an image quality determination procedure before segmentation and a combination of different methods for optimal segmentation with the on-board MR-IGRT system.
Finite grade pheromone ant colony optimization for image segmentation
NASA Astrophysics Data System (ADS)
Yuanjing, F.; Li, Y.; Liangjun, K.
2008-06-01
By combining the decision process of ant colony optimization (ACO) with the multistage decision process of image segmentation based on active contour model (ACM), an algorithm called finite grade ACO (FACO) for image segmentation is proposed. This algorithm classifies pheromone into finite grades and updating of the pheromone is achieved by changing the grades and the updated quantity of pheromone is independent from the objective function. The algorithm that provides a new approach to obtain precise contour is proved to converge to the global optimal solutions linearly by means of finite Markov chains. The segmentation experiments with ultrasound heart image show the effectiveness of the algorithm. Comparing the results for segmentation of left ventricle images shows that the ACO for image segmentation is more effective than the GA approach and the new pheromone updating strategy appears good time performance in optimization process.
NASA Astrophysics Data System (ADS)
Lisitsa, Y. V.; Yatskou, M. M.; Apanasovich, V. V.; Apanasovich, T. V.
2015-09-01
We have developed an algorithm for segmentation of cancer cell nuclei in three-channel luminescent images of microbiological specimens. The algorithm is based on using a correlation between fluorescence signals in the detection channels for object segmentation, which permits complete automation of the data analysis procedure. We have carried out a comparative analysis of the proposed method and conventional algorithms implemented in the CellProfiler and ImageJ software packages. Our algorithm has an object localization uncertainty which is 2-3 times smaller than for the conventional algorithms, with comparable segmentation accuracy.
An enhanced fast scanning algorithm for image segmentation
NASA Astrophysics Data System (ADS)
Ismael, Ahmed Naser; Yusof, Yuhanis binti
2015-12-01
Segmentation is an essential and important process that separates an image into regions that have similar characteristics or features. This will transform the image for a better image analysis and evaluation. An important benefit of segmentation is the identification of region of interest in a particular image. Various algorithms have been proposed for image segmentation and this includes the Fast Scanning algorithm which has been employed on food, sport and medical images. It scans all pixels in the image and cluster each pixel according to the upper and left neighbor pixels. The clustering process in Fast Scanning algorithm is performed by merging pixels with similar neighbor based on an identified threshold. Such an approach will lead to a weak reliability and shape matching of the produced segments. This paper proposes an adaptive threshold function to be used in the clustering process of the Fast Scanning algorithm. This function used the gray'value in the image's pixels and variance Also, the level of the image that is more the threshold are converted into intensity values between 0 and 1, and other values are converted into intensity values zero. The proposed enhanced Fast Scanning algorithm is realized on images of the public and private transportation in Iraq. Evaluation is later made by comparing the produced images of proposed algorithm and the standard Fast Scanning algorithm. The results showed that proposed algorithm is faster in terms the time from standard fast scanning.
A hybrid algorithm for the segmentation of books in libraries
NASA Astrophysics Data System (ADS)
Hu, Zilong; Tang, Jinshan; Lei, Liang
2016-05-01
This paper proposes an algorithm for book segmentation based on bookshelves images. The algorithm can be separated into three parts. The first part is pre-processing, aiming at eliminating or decreasing the effect of image noise and illumination conditions. The second part is near-horizontal line detection based on Canny edge detector, and separating a bookshelves image into multiple sub-images so that each sub-image contains an individual shelf. The last part is book segmentation. In each shelf image, near-vertical line is detected, and obtained lines are used for book segmentation. The proposed algorithm was tested with the bookshelf images taken from OPIE library in MTU, and the experimental results demonstrate good performance.
3D segmentations of neuronal nuclei from confocal microscope image stacks
LaTorre, Antonio; Alonso-Nanclares, Lidia; Muelas, Santiago; Peña, José-María; DeFelipe, Javier
2013-01-01
In this paper, we present an algorithm to create 3D segmentations of neuronal cells from stacks of previously segmented 2D images. The idea behind this proposal is to provide a general method to reconstruct 3D structures from 2D stacks, regardless of how these 2D stacks have been obtained. The algorithm not only reuses the information obtained in the 2D segmentation, but also attempts to correct some typical mistakes made by the 2D segmentation algorithms (for example, under segmentation of tightly-coupled clusters of cells). We have tested our algorithm in a real scenario—the segmentation of the neuronal nuclei in different layers of the rat cerebral cortex. Several representative images from different layers of the cerebral cortex have been considered and several 2D segmentation algorithms have been compared. Furthermore, the algorithm has also been compared with the traditional 3D Watershed algorithm and the results obtained here show better performance in terms of correctly identified neuronal nuclei. PMID:24409123
3D segmentations of neuronal nuclei from confocal microscope image stacks.
Latorre, Antonio; Alonso-Nanclares, Lidia; Muelas, Santiago; Peña, José-María; Defelipe, Javier
2013-01-01
In this paper, we present an algorithm to create 3D segmentations of neuronal cells from stacks of previously segmented 2D images. The idea behind this proposal is to provide a general method to reconstruct 3D structures from 2D stacks, regardless of how these 2D stacks have been obtained. The algorithm not only reuses the information obtained in the 2D segmentation, but also attempts to correct some typical mistakes made by the 2D segmentation algorithms (for example, under segmentation of tightly-coupled clusters of cells). We have tested our algorithm in a real scenario-the segmentation of the neuronal nuclei in different layers of the rat cerebral cortex. Several representative images from different layers of the cerebral cortex have been considered and several 2D segmentation algorithms have been compared. Furthermore, the algorithm has also been compared with the traditional 3D Watershed algorithm and the results obtained here show better performance in terms of correctly identified neuronal nuclei.
Glisson, Courtenay L; Altamar, Hernan O; Herrell, S Duke; Clark, Peter; Galloway, Robert L
2011-11-01
Image segmentation is integral to implementing intraoperative guidance for kidney tumor resection. Results seen in computed tomography (CT) data are affected by target organ physiology as well as by the segmentation algorithm used. This work studies variables involved in using level set methods found in the Insight Toolkit to segment kidneys from CT scans and applies the results to an image guidance setting. A composite algorithm drawing on the strengths of multiple level set approaches was built using the Insight Toolkit. This algorithm requires image contrast state and seed points to be identified as input, and functions independently thereafter, selecting and altering method and variable choice as needed. Semi-automatic results were compared to expert hand segmentation results directly and by the use of the resultant surfaces for registration of intraoperative data. Direct comparison using the Dice metric showed average agreement of 0.93 between semi-automatic and hand segmentation results. Use of the segmented surfaces in closest point registration of intraoperative laser range scan data yielded average closest point distances of approximately 1 mm. Application of both inverse registration transforms from the previous step to all hand segmented image space points revealed that the distance variability introduced by registering to the semi-automatically segmented surface versus the hand segmented surface was typically less than 3 mm both near the tumor target and at distal points, including subsurface points. Use of the algorithm shortened user interaction time and provided results which were comparable to the gold standard of hand segmentation. Further, the use of the algorithm's resultant surfaces in image registration provided comparable transformations to surfaces produced by hand segmentation. These data support the applicability and utility of such an algorithm as part of an image guidance workflow.
Robust generative asymmetric GMM for brain MR image segmentation.
Ji, Zexuan; Xia, Yong; Zheng, Yuhui
2017-11-01
Accurate segmentation of brain tissues from magnetic resonance (MR) images based on the unsupervised statistical models such as Gaussian mixture model (GMM) has been widely studied during last decades. However, most GMM based segmentation methods suffer from limited accuracy due to the influences of noise and intensity inhomogeneity in brain MR images. To further improve the accuracy for brain MR image segmentation, this paper presents a Robust Generative Asymmetric GMM (RGAGMM) for simultaneous brain MR image segmentation and intensity inhomogeneity correction. First, we develop an asymmetric distribution to fit the data shapes, and thus construct a spatial constrained asymmetric model. Then, we incorporate two pseudo-likelihood quantities and bias field estimation into the model's log-likelihood, aiming to exploit the neighboring priors of within-cluster and between-cluster and to alleviate the impact of intensity inhomogeneity, respectively. Finally, an expectation maximization algorithm is derived to iteratively maximize the approximation of the data log-likelihood function to overcome the intensity inhomogeneity in the image and segment the brain MR images simultaneously. To demonstrate the performances of the proposed algorithm, we first applied the proposed algorithm to a synthetic brain MR image to show the intermediate illustrations and the estimated distribution of the proposed algorithm. The next group of experiments is carried out in clinical 3T-weighted brain MR images which contain quite serious intensity inhomogeneity and noise. Then we quantitatively compare our algorithm to state-of-the-art segmentation approaches by using Dice coefficient (DC) on benchmark images obtained from IBSR and BrainWeb with different level of noise and intensity inhomogeneity. The comparison results on various brain MR images demonstrate the superior performances of the proposed algorithm in dealing with the noise and intensity inhomogeneity. In this paper, the RGAGMM algorithm is proposed which can simply and efficiently incorporate spatial constraints into an EM framework to simultaneously segment brain MR images and estimate the intensity inhomogeneity. The proposed algorithm is flexible to fit the data shapes, and can simultaneously overcome the influence of noise and intensity inhomogeneity, and hence is capable of improving over 5% segmentation accuracy comparing with several state-of-the-art algorithms. Copyright © 2017 Elsevier B.V. All rights reserved.
Jha, Abhinav K.; Kupinski, Matthew A.; Rodríguez, Jeffrey J.; Stephen, Renu M.; Stopeck, Alison T.
2012-01-01
In many studies, the estimation of the apparent diffusion coefficient (ADC) of lesions in visceral organs in diffusion-weighted (DW) magnetic resonance images requires an accurate lesion-segmentation algorithm. To evaluate these lesion-segmentation algorithms, region-overlap measures are used currently. However, the end task from the DW images is accurate ADC estimation, and the region-overlap measures do not evaluate the segmentation algorithms on this task. Moreover, these measures rely on the existence of gold-standard segmentation of the lesion, which is typically unavailable. In this paper, we study the problem of task-based evaluation of segmentation algorithms in DW imaging in the absence of a gold standard. We first show that using manual segmentations instead of gold-standard segmentations for this task-based evaluation is unreliable. We then propose a method to compare the segmentation algorithms that does not require gold-standard or manual segmentation results. The no-gold-standard method estimates the bias and the variance of the error between the true ADC values and the ADC values estimated using the automated segmentation algorithm. The method can be used to rank the segmentation algorithms on the basis of both accuracy and precision. We also propose consistency checks for this evaluation technique. PMID:22713231
A comparative study of automatic image segmentation algorithms for target tracking in MR-IGRT.
Feng, Yuan; Kawrakow, Iwan; Olsen, Jeff; Parikh, Parag J; Noel, Camille; Wooten, Omar; Du, Dongsu; Mutic, Sasa; Hu, Yanle
2016-03-01
On-board magnetic resonance (MR) image guidance during radiation therapy offers the potential for more accurate treatment delivery. To utilize the real-time image information, a crucial prerequisite is the ability to successfully segment and track regions of interest (ROI). The purpose of this work is to evaluate the performance of different segmentation algorithms using motion images (4 frames per second) acquired using a MR image-guided radiotherapy (MR-IGRT) system. Manual contours of the kidney, bladder, duodenum, and a liver tumor by an experienced radiation oncologist were used as the ground truth for performance evaluation. Besides the manual segmentation, images were automatically segmented using thresholding, fuzzy k-means (FKM), k-harmonic means (KHM), and reaction-diffusion level set evolution (RD-LSE) algorithms, as well as the tissue tracking algorithm provided by the ViewRay treatment planning and delivery system (VR-TPDS). The performance of the five algorithms was evaluated quantitatively by comparing with the manual segmentation using the Dice coefficient and target registration error (TRE) measured as the distance between the centroid of the manual ROI and the centroid of the automatically segmented ROI. All methods were able to successfully segment the bladder and the kidney, but only FKM, KHM, and VR-TPDS were able to segment the liver tumor and the duodenum. The performance of the thresholding, FKM, KHM, and RD-LSE algorithms degraded as the local image contrast decreased, whereas the performance of the VP-TPDS method was nearly independent of local image contrast due to the reference registration algorithm. For segmenting high-contrast images (i.e., kidney), the thresholding method provided the best speed (<1 ms) with a satisfying accuracy (Dice=0.95). When the image contrast was low, the VR-TPDS method had the best automatic contour. Results suggest an image quality determination procedure before segmentation and a combination of different methods for optimal segmentation with the on-board MR-IGRT system. PACS number(s): 87.57.nm, 87.57.N-, 87.61.Tg. © 2016 The Authors.
Wang, Yuliang; Zhang, Zaicheng; Wang, Huimin; Bi, Shusheng
2015-01-01
Cell image segmentation plays a central role in numerous biology studies and clinical applications. As a result, the development of cell image segmentation algorithms with high robustness and accuracy is attracting more and more attention. In this study, an automated cell image segmentation algorithm is developed to get improved cell image segmentation with respect to cell boundary detection and segmentation of the clustered cells for all cells in the field of view in negative phase contrast images. A new method which combines the thresholding method and edge based active contour method was proposed to optimize cell boundary detection. In order to segment clustered cells, the geographic peaks of cell light intensity were utilized to detect numbers and locations of the clustered cells. In this paper, the working principles of the algorithms are described. The influence of parameters in cell boundary detection and the selection of the threshold value on the final segmentation results are investigated. At last, the proposed algorithm is applied to the negative phase contrast images from different experiments. The performance of the proposed method is evaluated. Results show that the proposed method can achieve optimized cell boundary detection and highly accurate segmentation for clustered cells. PMID:26066315
Algorithm guided outlining of 105 pancreatic cancer liver metastases in Ultrasound.
Hann, Alexander; Bettac, Lucas; Haenle, Mark M; Graeter, Tilmann; Berger, Andreas W; Dreyhaupt, Jens; Schmalstieg, Dieter; Zoller, Wolfram G; Egger, Jan
2017-10-06
Manual segmentation of hepatic metastases in ultrasound images acquired from patients suffering from pancreatic cancer is common practice. Semiautomatic measurements promising assistance in this process are often assessed using a small number of lesions performed by examiners who already know the algorithm. In this work, we present the application of an algorithm for the segmentation of liver metastases due to pancreatic cancer using a set of 105 different images of metastases. The algorithm and the two examiners had never assessed the images before. The examiners first performed a manual segmentation and, after five weeks, a semiautomatic segmentation using the algorithm. They were satisfied in up to 90% of the cases with the semiautomatic segmentation results. Using the algorithm was significantly faster and resulted in a median Dice similarity score of over 80%. Estimation of the inter-operator variability by using the intra class correlation coefficient was good with 0.8. In conclusion, the algorithm facilitates fast and accurate segmentation of liver metastases, comparable to the current gold standard of manual segmentation.
A comparative study of automatic image segmentation algorithms for target tracking in MR‐IGRT
Feng, Yuan; Kawrakow, Iwan; Olsen, Jeff; Parikh, Parag J.; Noel, Camille; Wooten, Omar; Du, Dongsu; Mutic, Sasa
2016-01-01
On‐board magnetic resonance (MR) image guidance during radiation therapy offers the potential for more accurate treatment delivery. To utilize the real‐time image information, a crucial prerequisite is the ability to successfully segment and track regions of interest (ROI). The purpose of this work is to evaluate the performance of different segmentation algorithms using motion images (4 frames per second) acquired using a MR image‐guided radiotherapy (MR‐IGRT) system. Manual contours of the kidney, bladder, duodenum, and a liver tumor by an experienced radiation oncologist were used as the ground truth for performance evaluation. Besides the manual segmentation, images were automatically segmented using thresholding, fuzzy k‐means (FKM), k‐harmonic means (KHM), and reaction‐diffusion level set evolution (RD‐LSE) algorithms, as well as the tissue tracking algorithm provided by the ViewRay treatment planning and delivery system (VR‐TPDS). The performance of the five algorithms was evaluated quantitatively by comparing with the manual segmentation using the Dice coefficient and target registration error (TRE) measured as the distance between the centroid of the manual ROI and the centroid of the automatically segmented ROI. All methods were able to successfully segment the bladder and the kidney, but only FKM, KHM, and VR‐TPDS were able to segment the liver tumor and the duodenum. The performance of the thresholding, FKM, KHM, and RD‐LSE algorithms degraded as the local image contrast decreased, whereas the performance of the VP‐TPDS method was nearly independent of local image contrast due to the reference registration algorithm. For segmenting high‐contrast images (i.e., kidney), the thresholding method provided the best speed (<1 ms) with a satisfying accuracy (Dice=0.95). When the image contrast was low, the VR‐TPDS method had the best automatic contour. Results suggest an image quality determination procedure before segmentation and a combination of different methods for optimal segmentation with the on‐board MR‐IGRT system. PACS number(s): 87.57.nm, 87.57.N‐, 87.61.Tg
Distance-based over-segmentation for single-frame RGB-D images
NASA Astrophysics Data System (ADS)
Fang, Zhuoqun; Wu, Chengdong; Chen, Dongyue; Jia, Tong; Yu, Xiaosheng; Zhang, Shihong; Qi, Erzhao
2017-11-01
Over-segmentation, known as super-pixels, is a widely used preprocessing step in segmentation algorithms. Oversegmentation algorithm segments an image into regions of perceptually similar pixels, but performs badly based on only color image in the indoor environments. Fortunately, RGB-D images can improve the performances on the images of indoor scene. In order to segment RGB-D images into super-pixels effectively, we propose a novel algorithm, DBOS (Distance-Based Over-Segmentation), which realizes full coverage of super-pixels on the image. DBOS fills the holes in depth images to fully utilize the depth information, and applies SLIC-like frameworks for fast running. Additionally, depth features such as plane projection distance are extracted to compute distance which is the core of SLIC-like frameworks. Experiments on RGB-D images of NYU Depth V2 dataset demonstrate that DBOS outperforms state-ofthe-art methods in quality while maintaining speeds comparable to them.
Image segmentation on adaptive edge-preserving smoothing
NASA Astrophysics Data System (ADS)
He, Kun; Wang, Dan; Zheng, Xiuqing
2016-09-01
Nowadays, typical active contour models are widely applied in image segmentation. However, they perform badly on real images with inhomogeneous subregions. In order to overcome the drawback, this paper proposes an edge-preserving smoothing image segmentation algorithm. At first, this paper analyzes the edge-preserving smoothing conditions for image segmentation and constructs an edge-preserving smoothing model inspired by total variation. The proposed model has the ability to smooth inhomogeneous subregions and preserve edges. Then, a kind of clustering algorithm, which reasonably trades off edge-preserving and subregion-smoothing according to the local information, is employed to learn the edge-preserving parameter adaptively. At last, according to the confidence level of segmentation subregions, this paper constructs a smoothing convergence condition to avoid oversmoothing. Experiments indicate that the proposed algorithm has superior performance in precision, recall, and F-measure compared with other segmentation algorithms, and it is insensitive to noise and inhomogeneous-regions.
Automated brain tumor segmentation using spatial accuracy-weighted hidden Markov Random Field.
Nie, Jingxin; Xue, Zhong; Liu, Tianming; Young, Geoffrey S; Setayesh, Kian; Guo, Lei; Wong, Stephen T C
2009-09-01
A variety of algorithms have been proposed for brain tumor segmentation from multi-channel sequences, however, most of them require isotropic or pseudo-isotropic resolution of the MR images. Although co-registration and interpolation of low-resolution sequences, such as T2-weighted images, onto the space of the high-resolution image, such as T1-weighted image, can be performed prior to the segmentation, the results are usually limited by partial volume effects due to interpolation of low-resolution images. To improve the quality of tumor segmentation in clinical applications where low-resolution sequences are commonly used together with high-resolution images, we propose the algorithm based on Spatial accuracy-weighted Hidden Markov random field and Expectation maximization (SHE) approach for both automated tumor and enhanced-tumor segmentation. SHE incorporates the spatial interpolation accuracy of low-resolution images into the optimization procedure of the Hidden Markov Random Field (HMRF) to segment tumor using multi-channel MR images with different resolutions, e.g., high-resolution T1-weighted and low-resolution T2-weighted images. In experiments, we evaluated this algorithm using a set of simulated multi-channel brain MR images with known ground-truth tissue segmentation and also applied it to a dataset of MR images obtained during clinical trials of brain tumor chemotherapy. The results show that more accurate tumor segmentation results can be obtained by comparing with conventional multi-channel segmentation algorithms.
Multi scales based sparse matrix spectral clustering image segmentation
NASA Astrophysics Data System (ADS)
Liu, Zhongmin; Chen, Zhicai; Li, Zhanming; Hu, Wenjin
2018-04-01
In image segmentation, spectral clustering algorithms have to adopt the appropriate scaling parameter to calculate the similarity matrix between the pixels, which may have a great impact on the clustering result. Moreover, when the number of data instance is large, computational complexity and memory use of the algorithm will greatly increase. To solve these two problems, we proposed a new spectral clustering image segmentation algorithm based on multi scales and sparse matrix. We devised a new feature extraction method at first, then extracted the features of image on different scales, at last, using the feature information to construct sparse similarity matrix which can improve the operation efficiency. Compared with traditional spectral clustering algorithm, image segmentation experimental results show our algorithm have better degree of accuracy and robustness.
Hierarchical layered and semantic-based image segmentation using ergodicity map
NASA Astrophysics Data System (ADS)
Yadegar, Jacob; Liu, Xiaoqing
2010-04-01
Image segmentation plays a foundational role in image understanding and computer vision. Although great strides have been made and progress achieved on automatic/semi-automatic image segmentation algorithms, designing a generic, robust, and efficient image segmentation algorithm is still challenging. Human vision is still far superior compared to computer vision, especially in interpreting semantic meanings/objects in images. We present a hierarchical/layered semantic image segmentation algorithm that can automatically and efficiently segment images into hierarchical layered/multi-scaled semantic regions/objects with contextual topological relationships. The proposed algorithm bridges the gap between high-level semantics and low-level visual features/cues (such as color, intensity, edge, etc.) through utilizing a layered/hierarchical ergodicity map, where ergodicity is computed based on a space filling fractal concept and used as a region dissimilarity measurement. The algorithm applies a highly scalable, efficient, and adaptive Peano- Cesaro triangulation/tiling technique to decompose the given image into a set of similar/homogenous regions based on low-level visual cues in a top-down manner. The layered/hierarchical ergodicity map is built through a bottom-up region dissimilarity analysis. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level of detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanisms for contextual topological object/region relationship generation. Experiments have been conducted within the maritime image environment where the segmented layered semantic objects include the basic level objects (i.e. sky/land/water) and deeper level objects in the sky/land/water surfaces. Experimental results demonstrate the proposed algorithm has the capability to robustly and efficiently segment images into layered semantic objects/regions with contextual topological relationships.
Is STAPLE algorithm confident to assess segmentation methods in PET imaging?
NASA Astrophysics Data System (ADS)
Dewalle-Vignion, Anne-Sophie; Betrouni, Nacim; Baillet, Clio; Vermandel, Maximilien
2015-12-01
Accurate tumor segmentation in [18F]-fluorodeoxyglucose positron emission tomography is crucial for tumor response assessment and target volume definition in radiation therapy. Evaluation of segmentation methods from clinical data without ground truth is usually based on physicians’ manual delineations. In this context, the simultaneous truth and performance level estimation (STAPLE) algorithm could be useful to manage the multi-observers variability. In this paper, we evaluated how this algorithm could accurately estimate the ground truth in PET imaging. Complete evaluation study using different criteria was performed on simulated data. The STAPLE algorithm was applied to manual and automatic segmentation results. A specific configuration of the implementation provided by the Computational Radiology Laboratory was used. Consensus obtained by the STAPLE algorithm from manual delineations appeared to be more accurate than manual delineations themselves (80% of overlap). An improvement of the accuracy was also observed when applying the STAPLE algorithm to automatic segmentations results. The STAPLE algorithm, with the configuration used in this paper, is more appropriate than manual delineations alone or automatic segmentations results alone to estimate the ground truth in PET imaging. Therefore, it might be preferred to assess the accuracy of tumor segmentation methods in PET imaging.
Is STAPLE algorithm confident to assess segmentation methods in PET imaging?
Dewalle-Vignion, Anne-Sophie; Betrouni, Nacim; Baillet, Clio; Vermandel, Maximilien
2015-12-21
Accurate tumor segmentation in [18F]-fluorodeoxyglucose positron emission tomography is crucial for tumor response assessment and target volume definition in radiation therapy. Evaluation of segmentation methods from clinical data without ground truth is usually based on physicians' manual delineations. In this context, the simultaneous truth and performance level estimation (STAPLE) algorithm could be useful to manage the multi-observers variability. In this paper, we evaluated how this algorithm could accurately estimate the ground truth in PET imaging. Complete evaluation study using different criteria was performed on simulated data. The STAPLE algorithm was applied to manual and automatic segmentation results. A specific configuration of the implementation provided by the Computational Radiology Laboratory was used. Consensus obtained by the STAPLE algorithm from manual delineations appeared to be more accurate than manual delineations themselves (80% of overlap). An improvement of the accuracy was also observed when applying the STAPLE algorithm to automatic segmentations results. The STAPLE algorithm, with the configuration used in this paper, is more appropriate than manual delineations alone or automatic segmentations results alone to estimate the ground truth in PET imaging. Therefore, it might be preferred to assess the accuracy of tumor segmentation methods in PET imaging.
Medical image segmentation using genetic algorithms.
Maulik, Ujjwal
2009-03-01
Genetic algorithms (GAs) have been found to be effective in the domain of medical image segmentation, since the problem can often be mapped to one of search in a complex and multimodal landscape. The challenges in medical image segmentation arise due to poor image contrast and artifacts that result in missing or diffuse organ/tissue boundaries. The resulting search space is therefore often noisy with a multitude of local optima. Not only does the genetic algorithmic framework prove to be effective in coming out of local optima, it also brings considerable flexibility into the segmentation procedure. In this paper, an attempt has been made to review the major applications of GAs to the domain of medical image segmentation.
Graph run-length matrices for histopathological image segmentation.
Tosun, Akif Burak; Gunduz-Demir, Cigdem
2011-03-01
The histopathological examination of tissue specimens is essential for cancer diagnosis and grading. However, this examination is subject to a considerable amount of observer variability as it mainly relies on visual interpretation of pathologists. To alleviate this problem, it is very important to develop computational quantitative tools, for which image segmentation constitutes the core step. In this paper, we introduce an effective and robust algorithm for the segmentation of histopathological tissue images. This algorithm incorporates the background knowledge of the tissue organization into segmentation. For this purpose, it quantifies spatial relations of cytological tissue components by constructing a graph and uses this graph to define new texture features for image segmentation. This new texture definition makes use of the idea of gray-level run-length matrices. However, it considers the runs of cytological components on a graph to form a matrix, instead of considering the runs of pixel intensities. Working with colon tissue images, our experiments demonstrate that the texture features extracted from "graph run-length matrices" lead to high segmentation accuracies, also providing a reasonable number of segmented regions. Compared with four other segmentation algorithms, the results show that the proposed algorithm is more effective in histopathological image segmentation.
Research of the multimodal brain-tumor segmentation algorithm
NASA Astrophysics Data System (ADS)
Lu, Yisu; Chen, Wufan
2015-12-01
It is well-known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult to define owing to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this study, a nonparametric mixture of Dirichlet process (MDP) model is applied to segment the tumor images, and the MDP segmentation can be performed without the initialization of the number of clusters. A new nonparametric segmentation algorithm combined with anisotropic diffusion and a Markov random field (MRF) smooth constraint is proposed in this study. Besides the segmentation of single modal brain tumor images, we developed the algorithm to segment multimodal brain tumor images by the magnetic resonance (MR) multimodal features and obtain the active tumor and edema in the same time. The proposed algorithm is evaluated and compared with other approaches. The accuracy and computation time of our algorithm demonstrates very impressive performance.
A kind of color image segmentation algorithm based on super-pixel and PCNN
NASA Astrophysics Data System (ADS)
Xu, GuangZhu; Wang, YaWen; Zhang, Liu; Zhao, JingJing; Fu, YunXia; Lei, BangJun
2018-04-01
Image segmentation is a very important step in the low-level visual computing. Although image segmentation has been studied for many years, there are still many problems. PCNN (Pulse Coupled Neural network) has biological background, when it is applied to image segmentation it can be viewed as a region-based method, but due to the dynamics properties of PCNN, many connectionless neurons will pulse at the same time, so it is necessary to identify different regions for further processing. The existing PCNN image segmentation algorithm based on region growing is used for grayscale image segmentation, cannot be directly used for color image segmentation. In addition, the super-pixel can better reserve the edges of images, and reduce the influences resulted from the individual difference between the pixels on image segmentation at the same time. Therefore, on the basis of the super-pixel, the original PCNN algorithm based on region growing is improved by this paper. First, the color super-pixel image was transformed into grayscale super-pixel image which was used to seek seeds among the neurons that hadn't been fired. And then it determined whether to stop growing by comparing the average of each color channel of all the pixels in the corresponding regions of the color super-pixel image. Experiment results show that the proposed algorithm for the color image segmentation is fast and effective, and has a certain effect and accuracy.
Image Segmentation Method Using Fuzzy C Mean Clustering Based on Multi-Objective Optimization
NASA Astrophysics Data System (ADS)
Chen, Jinlin; Yang, Chunzhi; Xu, Guangkui; Ning, Li
2018-04-01
Image segmentation is not only one of the hottest topics in digital image processing, but also an important part of computer vision applications. As one kind of image segmentation algorithms, fuzzy C-means clustering is an effective and concise segmentation algorithm. However, the drawback of FCM is that it is sensitive to image noise. To solve the problem, this paper designs a novel fuzzy C-mean clustering algorithm based on multi-objective optimization. We add a parameter λ to the fuzzy distance measurement formula to improve the multi-objective optimization. The parameter λ can adjust the weights of the pixel local information. In the algorithm, the local correlation of neighboring pixels is added to the improved multi-objective mathematical model to optimize the clustering cent. Two different experimental results show that the novel fuzzy C-means approach has an efficient performance and computational time while segmenting images by different type of noises.
Segmentation and learning in the quantitative analysis of microscopy images
NASA Astrophysics Data System (ADS)
Ruggiero, Christy; Ross, Amy; Porter, Reid
2015-02-01
In material science and bio-medical domains the quantity and quality of microscopy images is rapidly increasing and there is a great need to automatically detect, delineate and quantify particles, grains, cells, neurons and other functional "objects" within these images. These are challenging problems for image processing because of the variability in object appearance that inevitably arises in real world image acquisition and analysis. One of the most promising (and practical) ways to address these challenges is interactive image segmentation. These algorithms are designed to incorporate input from a human operator to tailor the segmentation method to the image at hand. Interactive image segmentation is now a key tool in a wide range of applications in microscopy and elsewhere. Historically, interactive image segmentation algorithms have tailored segmentation on an image-by-image basis, and information derived from operator input is not transferred between images. But recently there has been increasing interest to use machine learning in segmentation to provide interactive tools that accumulate and learn from the operator input over longer periods of time. These new learning algorithms reduce the need for operator input over time, and can potentially provide a more dynamic balance between customization and automation for different applications. This paper reviews the state of the art in this area, provides a unified view of these algorithms, and compares the segmentation performance of various design choices.
Segmentation of pomegranate MR images using spatial fuzzy c-means (SFCM) algorithm
NASA Astrophysics Data System (ADS)
Moradi, Ghobad; Shamsi, Mousa; Sedaaghi, M. H.; Alsharif, M. R.
2011-10-01
Segmentation is one of the fundamental issues of image processing and machine vision. It plays a prominent role in a variety of image processing applications. In this paper, one of the most important applications of image processing in MRI segmentation of pomegranate is explored. Pomegranate is a fruit with pharmacological properties such as being anti-viral and anti-cancer. Having a high quality product in hand would be critical factor in its marketing. The internal quality of the product is comprehensively important in the sorting process. The determination of qualitative features cannot be manually made. Therefore, the segmentation of the internal structures of the fruit needs to be performed as accurately as possible in presence of noise. Fuzzy c-means (FCM) algorithm is noise-sensitive and pixels with noise are classified inversely. As a solution, in this paper, the spatial FCM algorithm in pomegranate MR images' segmentation is proposed. The algorithm is performed with setting the spatial neighborhood information in FCM and modification of fuzzy membership function for each class. The segmentation algorithm results on the original and the corrupted Pomegranate MR images by Gaussian, Salt Pepper and Speckle noises show that the SFCM algorithm operates much more significantly than FCM algorithm. Also, after diverse steps of qualitative and quantitative analysis, we have concluded that the SFCM algorithm with 5×5 window size is better than the other windows.
Evaluation of segmentation algorithms for optical coherence tomography images of ovarian tissue
NASA Astrophysics Data System (ADS)
Sawyer, Travis W.; Rice, Photini F. S.; Sawyer, David M.; Koevary, Jennifer W.; Barton, Jennifer K.
2018-02-01
Ovarian cancer has the lowest survival rate among all gynecologic cancers due to predominantly late diagnosis. Early detection of ovarian cancer can increase 5-year survival rates from 40% up to 92%, yet no reliable early detection techniques exist. Optical coherence tomography (OCT) is an emerging technique that provides depthresolved, high-resolution images of biological tissue in real time and demonstrates great potential for imaging of ovarian tissue. Mouse models are crucial to quantitatively assess the diagnostic potential of OCT for ovarian cancer imaging; however, due to small organ size, the ovaries must rst be separated from the image background using the process of segmentation. Manual segmentation is time-intensive, as OCT yields three-dimensional data. Furthermore, speckle noise complicates OCT images, frustrating many processing techniques. While much work has investigated noise-reduction and automated segmentation for retinal OCT imaging, little has considered the application to the ovaries, which exhibit higher variance and inhomogeneity than the retina. To address these challenges, we evaluated a set of algorithms to segment OCT images of mouse ovaries. We examined ve preprocessing techniques and six segmentation algorithms. While all pre-processing methods improve segmentation, Gaussian filtering is most effective, showing an improvement of 32% +/- 1.2%. Of the segmentation algorithms, active contours performs best, segmenting with an accuracy of 0.948 +/- 0.012 compared with manual segmentation (1.0 being identical). Nonetheless, further optimization could lead to maximizing the performance for segmenting OCT images of the ovaries.
Cellular image segmentation using n-agent cooperative game theory
NASA Astrophysics Data System (ADS)
Dimock, Ian B.; Wan, Justin W. L.
2016-03-01
Image segmentation is an important problem in computer vision and has significant applications in the segmentation of cellular images. Many different imaging techniques exist and produce a variety of image properties which pose difficulties to image segmentation routines. Bright-field images are particularly challenging because of the non-uniform shape of the cells, the low contrast between cells and background, and imaging artifacts such as halos and broken edges. Classical segmentation techniques often produce poor results on these challenging images. Previous attempts at bright-field imaging are often limited in scope to the images that they segment. In this paper, we introduce a new algorithm for automatically segmenting cellular images. The algorithm incorporates two game theoretic models which allow each pixel to act as an independent agent with the goal of selecting their best labelling strategy. In the non-cooperative model, the pixels choose strategies greedily based only on local information. In the cooperative model, the pixels can form coalitions, which select labelling strategies that benefit the entire group. Combining these two models produces a method which allows the pixels to balance both local and global information when selecting their label. With the addition of k-means and active contour techniques for initialization and post-processing purposes, we achieve a robust segmentation routine. The algorithm is applied to several cell image datasets including bright-field images, fluorescent images and simulated images. Experiments show that the algorithm produces good segmentation results across the variety of datasets which differ in cell density, cell shape, contrast, and noise levels.
Flexible methods for segmentation evaluation: results from CT-based luggage screening.
Karimi, Seemeen; Jiang, Xiaoqian; Cosman, Pamela; Martz, Harry
2014-01-01
Imaging systems used in aviation security include segmentation algorithms in an automatic threat recognition pipeline. The segmentation algorithms evolve in response to emerging threats and changing performance requirements. Analysis of segmentation algorithms' behavior, including the nature of errors and feature recovery, facilitates their development. However, evaluation methods from the literature provide limited characterization of the segmentation algorithms. To develop segmentation evaluation methods that measure systematic errors such as oversegmentation and undersegmentation, outliers, and overall errors. The methods must measure feature recovery and allow us to prioritize segments. We developed two complementary evaluation methods using statistical techniques and information theory. We also created a semi-automatic method to define ground truth from 3D images. We applied our methods to evaluate five segmentation algorithms developed for CT luggage screening. We validated our methods with synthetic problems and an observer evaluation. Both methods selected the same best segmentation algorithm. Human evaluation confirmed the findings. The measurement of systematic errors and prioritization helped in understanding the behavior of each segmentation algorithm. Our evaluation methods allow us to measure and explain the accuracy of segmentation algorithms.
Evaluation metrics for bone segmentation in ultrasound
NASA Astrophysics Data System (ADS)
Lougheed, Matthew; Fichtinger, Gabor; Ungi, Tamas
2015-03-01
Tracked ultrasound is a safe alternative to X-ray for imaging bones. The interpretation of bony structures is challenging as ultrasound has no specific intensity characteristic of bones. Several image segmentation algorithms have been devised to identify bony structures. We propose an open-source framework that would aid in the development and comparison of such algorithms by quantitatively measuring segmentation performance in the ultrasound images. True-positive and false-negative metrics used in the framework quantify algorithm performance based on correctly segmented bone and correctly segmented boneless regions. Ground-truth for these metrics are defined manually and along with the corresponding automatically segmented image are used for the performance analysis. Manually created ground truth tests were generated to verify the accuracy of the analysis. Further evaluation metrics for determining average performance per slide and standard deviation are considered. The metrics provide a means of evaluating accuracy of frames along the length of a volume. This would aid in assessing the accuracy of the volume itself and the approach to image acquisition (positioning and frequency of frame). The framework was implemented as an open-source module of the 3D Slicer platform. The ground truth tests verified that the framework correctly calculates the implemented metrics. The developed framework provides a convenient way to evaluate bone segmentation algorithms. The implementation fits in a widely used application for segmentation algorithm prototyping. Future algorithm development will benefit by monitoring the effects of adjustments to an algorithm in a standard evaluation framework.
Remote sensing image segmentation based on Hadoop cloud platform
NASA Astrophysics Data System (ADS)
Li, Jie; Zhu, Lingling; Cao, Fubin
2018-01-01
To solve the problem that the remote sensing image segmentation speed is slow and the real-time performance is poor, this paper studies the method of remote sensing image segmentation based on Hadoop platform. On the basis of analyzing the structural characteristics of Hadoop cloud platform and its component MapReduce programming, this paper proposes a method of image segmentation based on the combination of OpenCV and Hadoop cloud platform. Firstly, the MapReduce image processing model of Hadoop cloud platform is designed, the input and output of image are customized and the segmentation method of the data file is rewritten. Then the Mean Shift image segmentation algorithm is implemented. Finally, this paper makes a segmentation experiment on remote sensing image, and uses MATLAB to realize the Mean Shift image segmentation algorithm to compare the same image segmentation experiment. The experimental results show that under the premise of ensuring good effect, the segmentation rate of remote sensing image segmentation based on Hadoop cloud Platform has been greatly improved compared with the single MATLAB image segmentation, and there is a great improvement in the effectiveness of image segmentation.
A Method for the Evaluation of Thousands of Automated 3D Stem Cell Segmentations
Bajcsy, Peter; Simon, Mylene; Florczyk, Stephen; Simon, Carl G.; Juba, Derek; Brady, Mary
2016-01-01
There is no segmentation method that performs perfectly with any data set in comparison to human segmentation. Evaluation procedures for segmentation algorithms become critical for their selection. The problems associated with segmentation performance evaluations and visual verification of segmentation results are exaggerated when dealing with thousands of 3D image volumes because of the amount of computation and manual inputs needed. We address the problem of evaluating 3D segmentation performance when segmentation is applied to thousands of confocal microscopy images (z-stacks). Our approach is to incorporate experimental imaging and geometrical criteria, and map them into computationally efficient segmentation algorithms that can be applied to a very large number of z-stacks. This is an alternative approach to considering existing segmentation methods and evaluating most state-of-the-art algorithms. We designed a methodology for 3D segmentation performance characterization that consists of design, evaluation and verification steps. The characterization integrates manual inputs from projected surrogate “ground truth” of statistically representative samples and from visual inspection into the evaluation. The novelty of the methodology lies in (1) designing candidate segmentation algorithms by mapping imaging and geometrical criteria into algorithmic steps, and constructing plausible segmentation algorithms with respect to the order of algorithmic steps and their parameters, (2) evaluating segmentation accuracy using samples drawn from probability distribution estimates of candidate segmentations, and (3) minimizing human labor needed to create surrogate “truth” by approximating z-stack segmentations with 2D contours from three orthogonal z-stack projections and by developing visual verification tools. We demonstrate the methodology by applying it to a dataset of 1253 mesenchymal stem cells. The cells reside on 10 different types of biomaterial scaffolds, and are stained for actin and nucleus yielding 128 460 image frames (on average 125 cells/scaffold × 10 scaffold types × 2 stains × 51 frames/cell). After constructing and evaluating six candidates of 3D segmentation algorithms, the most accurate 3D segmentation algorithm achieved an average precision of 0.82 and an accuracy of 0.84 as measured by the Dice similarity index where values greater than 0.7 indicate a good spatial overlap. A probability of segmentation success was 0.85 based on visual verification, and a computation time was 42.3 h to process all z-stacks. While the most accurate segmentation technique was 4.2 times slower than the second most accurate algorithm, it consumed on average 9.65 times less memory per z-stack segmentation. PMID:26268699
Twelve automated thresholding methods for segmentation of PET images: a phantom study.
Prieto, Elena; Lecumberri, Pablo; Pagola, Miguel; Gómez, Marisol; Bilbao, Izaskun; Ecay, Margarita; Peñuelas, Iván; Martí-Climent, Josep M
2012-06-21
Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical (18)F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.
Twelve automated thresholding methods for segmentation of PET images: a phantom study
NASA Astrophysics Data System (ADS)
Prieto, Elena; Lecumberri, Pablo; Pagola, Miguel; Gómez, Marisol; Bilbao, Izaskun; Ecay, Margarita; Peñuelas, Iván; Martí-Climent, Josep M.
2012-06-01
Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical 18F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.
A New SAR Image Segmentation Algorithm for the Detection of Target and Shadow Regions
Huang, Shiqi; Huang, Wenzhun; Zhang, Ting
2016-01-01
The most distinctive characteristic of synthetic aperture radar (SAR) is that it can acquire data under all weather conditions and at all times. However, its coherent imaging mechanism introduces a great deal of speckle noise into SAR images, which makes the segmentation of target and shadow regions in SAR images very difficult. This paper proposes a new SAR image segmentation method based on wavelet decomposition and a constant false alarm rate (WD-CFAR). The WD-CFAR algorithm not only is insensitive to the speckle noise in SAR images but also can segment target and shadow regions simultaneously, and it is also able to effectively segment SAR images with a low signal-to-clutter ratio (SCR). Experiments were performed to assess the performance of the new algorithm on various SAR images. The experimental results show that the proposed method is effective and feasible and possesses good characteristics for general application. PMID:27924935
A New SAR Image Segmentation Algorithm for the Detection of Target and Shadow Regions.
Huang, Shiqi; Huang, Wenzhun; Zhang, Ting
2016-12-07
The most distinctive characteristic of synthetic aperture radar (SAR) is that it can acquire data under all weather conditions and at all times. However, its coherent imaging mechanism introduces a great deal of speckle noise into SAR images, which makes the segmentation of target and shadow regions in SAR images very difficult. This paper proposes a new SAR image segmentation method based on wavelet decomposition and a constant false alarm rate (WD-CFAR). The WD-CFAR algorithm not only is insensitive to the speckle noise in SAR images but also can segment target and shadow regions simultaneously, and it is also able to effectively segment SAR images with a low signal-to-clutter ratio (SCR). Experiments were performed to assess the performance of the new algorithm on various SAR images. The experimental results show that the proposed method is effective and feasible and possesses good characteristics for general application.
A novel line segment detection algorithm based on graph search
NASA Astrophysics Data System (ADS)
Zhao, Hong-dan; Liu, Guo-ying; Song, Xu
2018-02-01
To overcome the problem of extracting line segment from an image, a method of line segment detection was proposed based on the graph search algorithm. After obtaining the edge detection result of the image, the candidate straight line segments are obtained in four directions. For the candidate straight line segments, their adjacency relationships are depicted by a graph model, based on which the depth-first search algorithm is employed to determine how many adjacent line segments need to be merged. Finally we use the least squares method to fit the detected straight lines. The comparative experimental results verify that the proposed algorithm has achieved better results than the line segment detector (LSD).
Sprengers, Andre M J; Caan, Matthan W A; Moerman, Kevin M; Nederveen, Aart J; Lamerichs, Rolf M; Stoker, Jaap
2013-04-01
This study proposes a scale space based algorithm for automated segmentation of single-shot tagged images of modest SNR. Furthermore the algorithm was designed for analysis of discontinuous or shearing types of motion, i.e. segmentation of broken tag patterns. The proposed algorithm utilises non-linear scale space for automatic segmentation of single-shot tagged images. The algorithm's ability to automatically segment tagged shearing motion was evaluated in a numerical simulation and in vivo. A typical shearing deformation was simulated in a Shepp-Logan phantom allowing for quantitative evaluation of the algorithm's success rate as a function of both SNR and the amount of deformation. For a qualitative in vivo evaluation tagged images showing deformations in the calf muscles and eye movement in a healthy volunteer were acquired. Both the numerical simulation and the in vivo tagged data demonstrated the algorithm's ability for automated segmentation of single-shot tagged MR provided that SNR of the images is above 10 and the amount of deformation does not exceed the tag spacing. The latter constraint can be met by adjusting the tag delay or the tag spacing. The scale space based algorithm for automatic segmentation of single-shot tagged MR enables the application of tagged MR to complex (shearing) deformation and the processing of datasets with relatively low SNR.
Improved document image segmentation algorithm using multiresolution morphology
NASA Astrophysics Data System (ADS)
Bukhari, Syed Saqib; Shafait, Faisal; Breuel, Thomas M.
2011-01-01
Page segmentation into text and non-text elements is an essential preprocessing step before optical character recognition (OCR) operation. In case of poor segmentation, an OCR classification engine produces garbage characters due to the presence of non-text elements. This paper describes modifications to the text/non-text segmentation algorithm presented by Bloomberg,1 which is also available in his open-source Leptonica library.2The modifications result in significant improvements and achieved better segmentation accuracy than the original algorithm for UW-III, UNLV, ICDAR 2009 page segmentation competition test images and circuit diagram datasets.
Novel multimodality segmentation using level sets and Jensen-Rényi divergence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markel, Daniel, E-mail: daniel.markel@mail.mcgill.ca; Zaidi, Habib; Geneva Neuroscience Center, Geneva University, CH-1205 Geneva
2013-12-15
Purpose: Positron emission tomography (PET) is playing an increasing role in radiotherapy treatment planning. However, despite progress, robust algorithms for PET and multimodal image segmentation are still lacking, especially if the algorithm were extended to image-guided and adaptive radiotherapy (IGART). This work presents a novel multimodality segmentation algorithm using the Jensen-Rényi divergence (JRD) to evolve the geometric level set contour. The algorithm offers improved noise tolerance which is particularly applicable to segmentation of regions found in PET and cone-beam computed tomography. Methods: A steepest gradient ascent optimization method is used in conjunction with the JRD and a level set activemore » contour to iteratively evolve a contour to partition an image based on statistical divergence of the intensity histograms. The algorithm is evaluated using PET scans of pharyngolaryngeal squamous cell carcinoma with the corresponding histological reference. The multimodality extension of the algorithm is evaluated using 22 PET/CT scans of patients with lung carcinoma and a physical phantom scanned under varying image quality conditions. Results: The average concordance index (CI) of the JRD segmentation of the PET images was 0.56 with an average classification error of 65%. The segmentation of the lung carcinoma images had a maximum diameter relative error of 63%, 19.5%, and 14.8% when using CT, PET, and combined PET/CT images, respectively. The estimated maximal diameters of the gross tumor volume (GTV) showed a high correlation with the macroscopically determined maximal diameters, with aR{sup 2} value of 0.85 and 0.88 using the PET and PET/CT images, respectively. Results from the physical phantom show that the JRD is more robust to image noise compared to mutual information and region growing. Conclusions: The JRD has shown improved noise tolerance compared to mutual information for the purpose of PET image segmentation. Presented is a flexible framework for multimodal image segmentation that can incorporate a large number of inputs efficiently for IGART.« less
Novel multimodality segmentation using level sets and Jensen-Rényi divergence.
Markel, Daniel; Zaidi, Habib; El Naqa, Issam
2013-12-01
Positron emission tomography (PET) is playing an increasing role in radiotherapy treatment planning. However, despite progress, robust algorithms for PET and multimodal image segmentation are still lacking, especially if the algorithm were extended to image-guided and adaptive radiotherapy (IGART). This work presents a novel multimodality segmentation algorithm using the Jensen-Rényi divergence (JRD) to evolve the geometric level set contour. The algorithm offers improved noise tolerance which is particularly applicable to segmentation of regions found in PET and cone-beam computed tomography. A steepest gradient ascent optimization method is used in conjunction with the JRD and a level set active contour to iteratively evolve a contour to partition an image based on statistical divergence of the intensity histograms. The algorithm is evaluated using PET scans of pharyngolaryngeal squamous cell carcinoma with the corresponding histological reference. The multimodality extension of the algorithm is evaluated using 22 PET/CT scans of patients with lung carcinoma and a physical phantom scanned under varying image quality conditions. The average concordance index (CI) of the JRD segmentation of the PET images was 0.56 with an average classification error of 65%. The segmentation of the lung carcinoma images had a maximum diameter relative error of 63%, 19.5%, and 14.8% when using CT, PET, and combined PET/CT images, respectively. The estimated maximal diameters of the gross tumor volume (GTV) showed a high correlation with the macroscopically determined maximal diameters, with a R(2) value of 0.85 and 0.88 using the PET and PET/CT images, respectively. Results from the physical phantom show that the JRD is more robust to image noise compared to mutual information and region growing. The JRD has shown improved noise tolerance compared to mutual information for the purpose of PET image segmentation. Presented is a flexible framework for multimodal image segmentation that can incorporate a large number of inputs efficiently for IGART.
NASA Astrophysics Data System (ADS)
Deng, Xiang; Huang, Haibin; Zhu, Lei; Du, Guangwei; Xu, Xiaodong; Sun, Yiyong; Xu, Chenyang; Jolly, Marie-Pierre; Chen, Jiuhong; Xiao, Jie; Merges, Reto; Suehling, Michael; Rinck, Daniel; Song, Lan; Jin, Zhengyu; Jiang, Zhaoxia; Wu, Bin; Wang, Xiaohong; Zhang, Shuai; Peng, Weijun
2008-03-01
Comprehensive quantitative evaluation of tumor segmentation technique on large scale clinical data sets is crucial for routine clinical use of CT based tumor volumetry for cancer diagnosis and treatment response evaluation. In this paper, we present a systematic validation study of a semi-automatic image segmentation technique for measuring tumor volume from CT images. The segmentation algorithm was tested using clinical data of 200 tumors in 107 patients with liver, lung, lymphoma and other types of cancer. The performance was evaluated using both accuracy and reproducibility. The accuracy was assessed using 7 commonly used metrics that can provide complementary information regarding the quality of the segmentation results. The reproducibility was measured by the variation of the volume measurements from 10 independent segmentations. The effect of disease type, lesion size and slice thickness of image data on the accuracy measures were also analyzed. Our results demonstrate that the tumor segmentation algorithm showed good correlation with ground truth for all four lesion types (r = 0.97, 0.99, 0.97, 0.98, p < 0.0001 for liver, lung, lymphoma and other respectively). The segmentation algorithm can produce relatively reproducible volume measurements on all lesion types (coefficient of variation in the range of 10-20%). Our results show that the algorithm is insensitive to lesion size (coefficient of determination close to 0) and slice thickness of image data(p > 0.90). The validation framework used in this study has the potential to facilitate the development of new tumor segmentation algorithms and assist large scale evaluation of segmentation techniques for other clinical applications.
Ababneh, Sufyan Y; Prescott, Jeff W; Gurcan, Metin N
2011-08-01
In this paper, a new, fully automated, content-based system is proposed for knee bone segmentation from magnetic resonance images (MRI). The purpose of the bone segmentation is to support the discovery and characterization of imaging biomarkers for the incidence and progression of osteoarthritis, a debilitating joint disease, which affects a large portion of the aging population. The segmentation algorithm includes a novel content-based, two-pass disjoint block discovery mechanism, which is designed to support automation, segmentation initialization, and post-processing. The block discovery is achieved by classifying the image content to bone and background blocks according to their similarity to the categories in the training data collected from typical bone structures. The classified blocks are then used to design an efficient graph-cut based segmentation algorithm. This algorithm requires constructing a graph using image pixel data followed by applying a maximum-flow algorithm which generates a minimum graph-cut that corresponds to an initial image segmentation. Content-based refinements and morphological operations are then applied to obtain the final segmentation. The proposed segmentation technique does not require any user interaction and can distinguish between bone and highly similar adjacent structures, such as fat tissues with high accuracy. The performance of the proposed system is evaluated by testing it on 376 MR images from the Osteoarthritis Initiative (OAI) database. This database included a selection of single images containing the femur and tibia from 200 subjects with varying levels of osteoarthritis severity. Additionally, a full three-dimensional segmentation of the bones from ten subjects with 14 slices each, and synthetic images with background having intensity and spatial characteristics similar to those of bone are used to assess the robustness and consistency of the developed algorithm. The results show an automatic bone detection rate of 0.99 and an average segmentation accuracy of 0.95 using the Dice similarity index. Copyright © 2011 Elsevier B.V. All rights reserved.
Parallel fuzzy connected image segmentation on GPU
Zhuge, Ying; Cao, Yong; Udupa, Jayaram K.; Miller, Robert W.
2011-01-01
Purpose: Image segmentation techniques using fuzzy connectedness (FC) principles have shown their effectiveness in segmenting a variety of objects in several large applications. However, one challenge in these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays, commodity graphics hardware provides a highly parallel computing environment. In this paper, the authors present a parallel fuzzy connected image segmentation algorithm implementation on NVIDIA’s compute unified device Architecture (cuda) platform for segmenting medical image data sets. Methods: In the FC algorithm, there are two major computational tasks: (i) computing the fuzzy affinity relations and (ii) computing the fuzzy connectedness relations. These two tasks are implemented as cuda kernels and executed on GPU. A dramatic improvement in speed for both tasks is achieved as a result. Results: Our experiments based on three data sets of small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 24.4x, 18.1x, and 10.3x, correspondingly, for the three data sets on the NVIDIA Tesla C1060 over the implementation of the algorithm on CPU, and takes 0.25, 0.72, and 15.04 s, correspondingly, for the three data sets. Conclusions: The authors developed a parallel algorithm of the widely used fuzzy connected image segmentation method on the NVIDIA GPUs, which are far more cost- and speed-effective than both cluster of workstations and multiprocessing systems. A near-interactive speed of segmentation has been achieved, even for the large data set. PMID:21859037
Parallel fuzzy connected image segmentation on GPU.
Zhuge, Ying; Cao, Yong; Udupa, Jayaram K; Miller, Robert W
2011-07-01
Image segmentation techniques using fuzzy connectedness (FC) principles have shown their effectiveness in segmenting a variety of objects in several large applications. However, one challenge in these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays, commodity graphics hardware provides a highly parallel computing environment. In this paper, the authors present a parallel fuzzy connected image segmentation algorithm implementation on NVIDIA's compute unified device Architecture (CUDA) platform for segmenting medical image data sets. In the FC algorithm, there are two major computational tasks: (i) computing the fuzzy affinity relations and (ii) computing the fuzzy connectedness relations. These two tasks are implemented as CUDA kernels and executed on GPU. A dramatic improvement in speed for both tasks is achieved as a result. Our experiments based on three data sets of small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 24.4x, 18.1x, and 10.3x, correspondingly, for the three data sets on the NVIDIA Tesla C1060 over the implementation of the algorithm on CPU, and takes 0.25, 0.72, and 15.04 s, correspondingly, for the three data sets. The authors developed a parallel algorithm of the widely used fuzzy connected image segmentation method on the NVIDIA GPUs, which are far more cost- and speed-effective than both cluster of workstations and multiprocessing systems. A near-interactive speed of segmentation has been achieved, even for the large data set.
Kandaswamy, Umasankar; Rotman, Ziv; Watt, Dana; Schillebeeckx, Ian; Cavalli, Valeria; Klyachko, Vitaly
2013-01-01
High-resolution live-cell imaging studies of neuronal structure and function are characterized by large variability in image acquisition conditions due to background and sample variations as well as low signal-to-noise ratio. The lack of automated image analysis tools that can be generalized for varying image acquisition conditions represents one of the main challenges in the field of biomedical image analysis. Specifically, segmentation of the axonal/dendritic arborizations in brightfield or fluorescence imaging studies is extremely labor-intensive and still performed mostly manually. Here we describe a fully automated machine-learning approach based on textural analysis algorithms for segmenting neuronal arborizations in high-resolution brightfield images of live cultured neurons. We compare performance of our algorithm to manual segmentation and show that it combines 90% accuracy, with similarly high levels of specificity and sensitivity. Moreover, the algorithm maintains high performance levels under a wide range of image acquisition conditions indicating that it is largely condition-invariable. We further describe an application of this algorithm to fully automated synapse localization and classification in fluorescence imaging studies based on synaptic activity. Textural analysis-based machine-learning approach thus offers a high performance condition-invariable tool for automated neurite segmentation. PMID:23261652
MRI brain tumor segmentation based on improved fuzzy c-means method
NASA Astrophysics Data System (ADS)
Deng, Wankai; Xiao, Wei; Pan, Chao; Liu, Jianguo
2009-10-01
This paper focuses on the image segmentation, which is one of the key problems in medical image processing. A new medical image segmentation method is proposed based on fuzzy c- means algorithm and spatial information. Firstly, we classify the image into the region of interest and background using fuzzy c means algorithm. Then we use the information of the tissues' gradient and the intensity inhomogeneities of regions to improve the quality of segmentation. The sum of the mean variance in the region and the reciprocal of the mean gradient along the edge of the region are chosen as an objective function. The minimum of the sum is optimum result. The result shows that the clustering segmentation algorithm is effective.
The development of a 3D mesoscopic model of metallic foam based on an improved watershed algorithm
NASA Astrophysics Data System (ADS)
Zhang, Jinhua; Zhang, Yadong; Wang, Guikun; Fang, Qin
2018-06-01
The watershed algorithm has been used widely in the x-ray computed tomography (XCT) image segmentation. It provides a transformation defined on a grayscale image and finds the lines that separate adjacent images. However, distortion occurs in developing a mesoscopic model of metallic foam based on XCT image data. The cells are oversegmented at some events when the traditional watershed algorithm is used. The improved watershed algorithm presented in this paper can avoid oversegmentation and is composed of three steps. Firstly, it finds all of the connected cells and identifies the junctions of the corresponding cell walls. Secondly, the image segmentation is conducted to separate the adjacent cells. It generates the lost cell walls between the adjacent cells. Optimization is then performed on the segmentation image. Thirdly, this improved algorithm is validated when it is compared with the image of the metallic foam, which shows that it can avoid the image segmentation distortion. A mesoscopic model of metallic foam is thus formed based on the improved algorithm, and the mesoscopic characteristics of the metallic foam, such as cell size, volume and shape, are identified and analyzed.
Malik, Bilal H.; Jabbour, Joey M.; Maitland, Kristen C.
2015-01-01
Automatic segmentation of nuclei in reflectance confocal microscopy images is critical for visualization and rapid quantification of nuclear-to-cytoplasmic ratio, a useful indicator of epithelial precancer. Reflectance confocal microscopy can provide three-dimensional imaging of epithelial tissue in vivo with sub-cellular resolution. Changes in nuclear density or nuclear-to-cytoplasmic ratio as a function of depth obtained from confocal images can be used to determine the presence or stage of epithelial cancers. However, low nuclear to background contrast, low resolution at greater imaging depths, and significant variation in reflectance signal of nuclei complicate segmentation required for quantification of nuclear-to-cytoplasmic ratio. Here, we present an automated segmentation method to segment nuclei in reflectance confocal images using a pulse coupled neural network algorithm, specifically a spiking cortical model, and an artificial neural network classifier. The segmentation algorithm was applied to an image model of nuclei with varying nuclear to background contrast. Greater than 90% of simulated nuclei were detected for contrast of 2.0 or greater. Confocal images of porcine and human oral mucosa were used to evaluate application to epithelial tissue. Segmentation accuracy was assessed using manual segmentation of nuclei as the gold standard. PMID:25816131
Qi, Xin; Xing, Fuyong; Foran, David J.; Yang, Lin
2013-01-01
Summary Background Automated analysis of imaged histopathology specimens could potentially provide support for improved reliability in detection and classification in a range of investigative and clinical cancer applications. Automated segmentation of cells in the digitized tissue microarray (TMA) is often the prerequisite for quantitative analysis. However overlapping cells usually bring significant challenges for traditional segmentation algorithms. Objectives In this paper, we propose a novel, automatic algorithm to separate overlapping cells in stained histology specimens acquired using bright-field RGB imaging. Methods It starts by systematically identifying salient regions of interest throughout the image based upon their underlying visual content. The segmentation algorithm subsequently performs a quick, voting based seed detection. Finally, the contour of each cell is obtained using a repulsive level set deformable model using the seeds generated in the previous step. We compared the experimental results with the most current literature, and the pixel wise accuracy between human experts' annotation and those generated using the automatic segmentation algorithm. Results The method is tested with 100 image patches which contain more than 1000 overlapping cells. The overall precision and recall of the developed algorithm is 90% and 78%, respectively. We also implement the algorithm on GPU. The parallel implementation is 22 times faster than its C/C++ sequential implementation. Conclusion The proposed overlapping cell segmentation algorithm can accurately detect the center of each overlapping cell and effectively separate each of the overlapping cells. GPU is proven to be an efficient parallel platform for overlapping cell segmentation. PMID:22526139
Segmentation of MRI Brain Images with an Improved Harmony Searching Algorithm.
Yang, Zhang; Shufan, Ye; Li, Guo; Weifeng, Ding
2016-01-01
The harmony searching (HS) algorithm is a kind of optimization search algorithm currently applied in many practical problems. The HS algorithm constantly revises variables in the harmony database and the probability of different values that can be used to complete iteration convergence to achieve the optimal effect. Accordingly, this study proposed a modified algorithm to improve the efficiency of the algorithm. First, a rough set algorithm was employed to improve the convergence and accuracy of the HS algorithm. Then, the optimal value was obtained using the improved HS algorithm. The optimal value of convergence was employed as the initial value of the fuzzy clustering algorithm for segmenting magnetic resonance imaging (MRI) brain images. Experimental results showed that the improved HS algorithm attained better convergence and more accurate results than those of the original HS algorithm. In our study, the MRI image segmentation effect of the improved algorithm was superior to that of the original fuzzy clustering method.
Segmentation of MRI Brain Images with an Improved Harmony Searching Algorithm
Yang, Zhang; Li, Guo; Weifeng, Ding
2016-01-01
The harmony searching (HS) algorithm is a kind of optimization search algorithm currently applied in many practical problems. The HS algorithm constantly revises variables in the harmony database and the probability of different values that can be used to complete iteration convergence to achieve the optimal effect. Accordingly, this study proposed a modified algorithm to improve the efficiency of the algorithm. First, a rough set algorithm was employed to improve the convergence and accuracy of the HS algorithm. Then, the optimal value was obtained using the improved HS algorithm. The optimal value of convergence was employed as the initial value of the fuzzy clustering algorithm for segmenting magnetic resonance imaging (MRI) brain images. Experimental results showed that the improved HS algorithm attained better convergence and more accurate results than those of the original HS algorithm. In our study, the MRI image segmentation effect of the improved algorithm was superior to that of the original fuzzy clustering method. PMID:27403428
Auroux, Didier; Cohen, Laurent D.; Masmoudi, Mohamed
2011-01-01
We combine in this paper the topological gradient, which is a powerful method for edge detection in image processing, and a variant of the minimal path method in order to find connected contours. The topological gradient provides a more global analysis of the image than the standard gradient and identifies the main edges of an image. Several image processing problems (e.g., inpainting and segmentation) require continuous contours. For this purpose, we consider the fast marching algorithm in order to find minimal paths in the topological gradient image. This coupled algorithm quickly provides accurate and connected contours. We present then two numerical applications, to image inpainting and segmentation, of this hybrid algorithm. PMID:22194734
Lesion Detection in CT Images Using Deep Learning Semantic Segmentation Technique
NASA Astrophysics Data System (ADS)
Kalinovsky, A.; Liauchuk, V.; Tarasau, A.
2017-05-01
In this paper, the problem of automatic detection of tuberculosis lesion on 3D lung CT images is considered as a benchmark for testing out algorithms based on a modern concept of Deep Learning. For training and testing of the algorithms a domestic dataset of 338 3D CT scans of tuberculosis patients with manually labelled lesions was used. The algorithms which are based on using Deep Convolutional Networks were implemented and applied in three different ways including slice-wise lesion detection in 2D images using semantic segmentation, slice-wise lesion detection in 2D images using sliding window technique as well as straightforward detection of lesions via semantic segmentation in whole 3D CT scans. The algorithms demonstrate superior performance compared to algorithms based on conventional image analysis methods.
Vatsa, Mayank; Singh, Richa; Noore, Afzel
2008-08-01
This paper proposes algorithms for iris segmentation, quality enhancement, match score fusion, and indexing to improve both the accuracy and the speed of iris recognition. A curve evolution approach is proposed to effectively segment a nonideal iris image using the modified Mumford-Shah functional. Different enhancement algorithms are concurrently applied on the segmented iris image to produce multiple enhanced versions of the iris image. A support-vector-machine-based learning algorithm selects locally enhanced regions from each globally enhanced image and combines these good-quality regions to create a single high-quality iris image. Two distinct features are extracted from the high-quality iris image. The global textural feature is extracted using the 1-D log polar Gabor transform, and the local topological feature is extracted using Euler numbers. An intelligent fusion algorithm combines the textural and topological matching scores to further improve the iris recognition performance and reduce the false rejection rate, whereas an indexing algorithm enables fast and accurate iris identification. The verification and identification performance of the proposed algorithms is validated and compared with other algorithms using the CASIA Version 3, ICE 2005, and UBIRIS iris databases.
Active contour based segmentation of resected livers in CT images
NASA Astrophysics Data System (ADS)
Oelmann, Simon; Oyarzun Laura, Cristina; Drechsler, Klaus; Wesarg, Stefan
2015-03-01
The majority of state of the art segmentation algorithms are able to give proper results in healthy organs but not in pathological ones. However, many clinical applications require an accurate segmentation of pathological organs. The determination of the target boundaries for radiotherapy or liver volumetry calculations are examples of this. Volumetry measurements are of special interest after tumor resection for follow up of liver regrow. The segmentation of resected livers presents additional challenges that were not addressed by state of the art algorithms. This paper presents a snakes based algorithm specially developed for the segmentation of resected livers. The algorithm is enhanced with a novel dynamic smoothing technique that allows the active contour to propagate with different speeds depending on the intensities visible in its neighborhood. The algorithm is evaluated in 6 clinical CT images as well as 18 artificial datasets generated from additional clinical CT images.
Optic cup segmentation: type-II fuzzy thresholding approach and blood vessel extraction
Almazroa, Ahmed; Alodhayb, Sami; Raahemifar, Kaamran; Lakshminarayanan, Vasudevan
2017-01-01
We introduce here a new technique for segmenting optic cup using two-dimensional fundus images. Cup segmentation is the most challenging part of image processing of the optic nerve head due to the complexity of its structure. Using the blood vessels to segment the cup is important. Here, we report on blood vessel extraction using first a top-hat transform and Otsu’s segmentation function to detect the curves in the blood vessels (kinks) which indicate the cup boundary. This was followed by an interval type-II fuzzy entropy procedure. Finally, the Hough transform was applied to approximate the cup boundary. The algorithm was evaluated on 550 fundus images from a large dataset, which contained three different sets of images, where the cup was manually marked by six ophthalmologists. On one side, the accuracy of the algorithm was tested on the three image sets independently. The final cup detection accuracy in terms of area and centroid was calculated to be 78.2% of 441 images. Finally, we compared the algorithm performance with manual markings done by the six ophthalmologists. The agreement was determined between the ophthalmologists as well as the algorithm. The best agreement was between ophthalmologists one, two and five in 398 of 550 images, while the algorithm agreed with them in 356 images. PMID:28515636
Optic cup segmentation: type-II fuzzy thresholding approach and blood vessel extraction.
Almazroa, Ahmed; Alodhayb, Sami; Raahemifar, Kaamran; Lakshminarayanan, Vasudevan
2017-01-01
We introduce here a new technique for segmenting optic cup using two-dimensional fundus images. Cup segmentation is the most challenging part of image processing of the optic nerve head due to the complexity of its structure. Using the blood vessels to segment the cup is important. Here, we report on blood vessel extraction using first a top-hat transform and Otsu's segmentation function to detect the curves in the blood vessels (kinks) which indicate the cup boundary. This was followed by an interval type-II fuzzy entropy procedure. Finally, the Hough transform was applied to approximate the cup boundary. The algorithm was evaluated on 550 fundus images from a large dataset, which contained three different sets of images, where the cup was manually marked by six ophthalmologists. On one side, the accuracy of the algorithm was tested on the three image sets independently. The final cup detection accuracy in terms of area and centroid was calculated to be 78.2% of 441 images. Finally, we compared the algorithm performance with manual markings done by the six ophthalmologists. The agreement was determined between the ophthalmologists as well as the algorithm. The best agreement was between ophthalmologists one, two and five in 398 of 550 images, while the algorithm agreed with them in 356 images.
Flexible methods for segmentation evaluation: Results from CT-based luggage screening
Karimi, Seemeen; Jiang, Xiaoqian; Cosman, Pamela; Martz, Harry
2017-01-01
BACKGROUND Imaging systems used in aviation security include segmentation algorithms in an automatic threat recognition pipeline. The segmentation algorithms evolve in response to emerging threats and changing performance requirements. Analysis of segmentation algorithms’ behavior, including the nature of errors and feature recovery, facilitates their development. However, evaluation methods from the literature provide limited characterization of the segmentation algorithms. OBJECTIVE To develop segmentation evaluation methods that measure systematic errors such as oversegmentation and undersegmentation, outliers, and overall errors. The methods must measure feature recovery and allow us to prioritize segments. METHODS We developed two complementary evaluation methods using statistical techniques and information theory. We also created a semi-automatic method to define ground truth from 3D images. We applied our methods to evaluate five segmentation algorithms developed for CT luggage screening. We validated our methods with synthetic problems and an observer evaluation. RESULTS Both methods selected the same best segmentation algorithm. Human evaluation confirmed the findings. The measurement of systematic errors and prioritization helped in understanding the behavior of each segmentation algorithm. CONCLUSIONS Our evaluation methods allow us to measure and explain the accuracy of segmentation algorithms. PMID:24699346
Incorporating User Input in Template-Based Segmentation
Vidal, Camille; Beggs, Dale; Younes, Laurent; Jain, Sanjay K.; Jedynak, Bruno
2015-01-01
We present a simple and elegant method to incorporate user input in a template-based segmentation method for diseased organs. The user provides a partial segmentation of the organ of interest, which is used to guide the template towards its target. The user also highlights some elements of the background that should be excluded from the final segmentation. We derive by likelihood maximization a registration algorithm from a simple statistical image model in which the user labels are modeled as Bernoulli random variables. The resulting registration algorithm minimizes the sum of square differences between the binary template and the user labels, while preventing the template from shrinking, and penalizing for the inclusion of background elements into the final segmentation. We assess the performance of the proposed algorithm on synthetic images in which the amount of user annotation is controlled. We demonstrate our algorithm on the segmentation of the lungs of Mycobacterium tuberculosis infected mice from μCT images. PMID:26146532
Segmentation of magnetic resonance images using fuzzy algorithms for learning vector quantization.
Karayiannis, N B; Pai, P I
1999-02-01
This paper evaluates a segmentation technique for magnetic resonance (MR) images of the brain based on fuzzy algorithms for learning vector quantization (FALVQ). These algorithms perform vector quantization by updating all prototypes of a competitive network through an unsupervised learning process. Segmentation of MR images is formulated as an unsupervised vector quantization process, where the local values of different relaxation parameters form the feature vectors which are represented by a relatively small set of prototypes. The experiments evaluate a variety of FALVQ algorithms in terms of their ability to identify different tissues and discriminate between normal tissues and abnormalities.
Effect of segmentation algorithms on the performance of computerized detection of lung nodules in CT
Guo, Wei; Li, Qiang
2014-01-01
Purpose: The purpose of this study is to reveal how the performance of lung nodule segmentation algorithm impacts the performance of lung nodule detection, and to provide guidelines for choosing an appropriate segmentation algorithm with appropriate parameters in a computer-aided detection (CAD) scheme. Methods: The database consisted of 85 CT scans with 111 nodules of 3 mm or larger in diameter from the standard CT lung nodule database created by the Lung Image Database Consortium. The initial nodule candidates were identified as those with strong response to a selective nodule enhancement filter. A uniform viewpoint reformation technique was applied to a three-dimensional nodule candidate to generate 24 two-dimensional (2D) reformatted images, which would be used to effectively distinguish between true nodules and false positives. Six different algorithms were employed to segment the initial nodule candidates in the 2D reformatted images. Finally, 2D features from the segmented areas in the 24 reformatted images were determined, selected, and classified for removal of false positives. Therefore, there were six similar CAD schemes, in which only the segmentation algorithms were different. The six segmentation algorithms included the fixed thresholding (FT), Otsu thresholding (OTSU), fuzzy C-means (FCM), Gaussian mixture model (GMM), Chan and Vese model (CV), and local binary fitting (LBF). The mean Jaccard index and the mean absolute distance (Dmean) were employed to evaluate the performance of segmentation algorithms, and the number of false positives at a fixed sensitivity was employed to evaluate the performance of the CAD schemes. Results: For the segmentation algorithms of FT, OTSU, FCM, GMM, CV, and LBF, the highest mean Jaccard index between the segmented nodule and the ground truth were 0.601, 0.586, 0.588, 0.563, 0.543, and 0.553, respectively, and the corresponding Dmean were 1.74, 1.80, 2.32, 2.80, 3.48, and 3.18 pixels, respectively. With these segmentation results of the six segmentation algorithms, the six CAD schemes reported 4.4, 8.8, 3.4, 9.2, 13.6, and 10.4 false positives per CT scan at a sensitivity of 80%. Conclusions: When multiple algorithms are available for segmenting nodule candidates in a CAD scheme, the “optimal” segmentation algorithm did not necessarily lead to the “optimal” CAD detection performance. PMID:25186393
Jayender, Jagadaeesan; Chikarmane, Sona; Jolesz, Ferenc A; Gombos, Eva
2014-08-01
To accurately segment invasive ductal carcinomas (IDCs) from dynamic contrast-enhanced MRI (DCE-MRI) using time series analysis based on linear dynamic system (LDS) modeling. Quantitative segmentation methods based on black-box modeling and pharmacokinetic modeling are highly dependent on imaging pulse sequence, timing of bolus injection, arterial input function, imaging noise, and fitting algorithms. We modeled the underlying dynamics of the tumor by an LDS and used the system parameters to segment the carcinoma on the DCE-MRI. Twenty-four patients with biopsy-proven IDCs were analyzed. The lesions segmented by the algorithm were compared with an expert radiologist's segmentation and the output of a commercial software, CADstream. The results are quantified in terms of the accuracy and sensitivity of detecting the lesion and the amount of overlap, measured in terms of the Dice similarity coefficient (DSC). The segmentation algorithm detected the tumor with 90% accuracy and 100% sensitivity when compared with the radiologist's segmentation and 82.1% accuracy and 100% sensitivity when compared with the CADstream output. The overlap of the algorithm output with the radiologist's segmentation and CADstream output, computed in terms of the DSC was 0.77 and 0.72, respectively. The algorithm also shows robust stability to imaging noise. Simulated imaging noise with zero mean and standard deviation equal to 25% of the base signal intensity was added to the DCE-MRI series. The amount of overlap between the tumor maps generated by the LDS-based algorithm from the noisy and original DCE-MRI was DSC = 0.95. The time-series analysis based segmentation algorithm provides high accuracy and sensitivity in delineating the regions of enhanced perfusion corresponding to tumor from DCE-MRI. © 2013 Wiley Periodicals, Inc.
Automatic Segmentation of Invasive Breast Carcinomas from DCE-MRI using Time Series Analysis
Jayender, Jagadaeesan; Chikarmane, Sona; Jolesz, Ferenc A.; Gombos, Eva
2013-01-01
Purpose Quantitative segmentation methods based on black-box modeling and pharmacokinetic modeling are highly dependent on imaging pulse sequence, timing of bolus injection, arterial input function, imaging noise and fitting algorithms. To accurately segment invasive ductal carcinomas (IDCs) from dynamic contrast enhanced MRI (DCE-MRI) using time series analysis based on linear dynamic system (LDS) modeling. Methods We modeled the underlying dynamics of the tumor by a LDS and use the system parameters to segment the carcinoma on the DCE-MRI. Twenty-four patients with biopsy-proven IDCs were analyzed. The lesions segmented by the algorithm were compared with an expert radiologist’s segmentation and the output of a commercial software, CADstream. The results are quantified in terms of the accuracy and sensitivity of detecting the lesion and the amount of overlap, measured in terms of the Dice similarity coefficient (DSC). Results The segmentation algorithm detected the tumor with 90% accuracy and 100% sensitivity when compared to the radiologist’s segmentation and 82.1% accuracy and 100% sensitivity when compared to the CADstream output. The overlap of the algorithm output with the radiologist’s segmentation and CADstream output, computed in terms of the DSC was 0.77 and 0.72 respectively. The algorithm also shows robust stability to imaging noise. Simulated imaging noise with zero mean and standard deviation equal to 25% of the base signal intensity was added to the DCE-MRI series. The amount of overlap between the tumor maps generated by the LDS-based algorithm from the noisy and original DCE-MRI was DSC=0.95. Conclusion The time-series analysis based segmentation algorithm provides high accuracy and sensitivity in delineating the regions of enhanced perfusion corresponding to tumor from DCE-MRI. PMID:24115175
Markel, D; Naqa, I El; Freeman, C; Vallières, M
2012-06-01
To present a novel joint segmentation/registration for multimodality image-guided and adaptive radiotherapy. A major challenge to this framework is the sensitivity of many segmentation or registration algorithms to noise. Presented is a level set active contour based on the Jensen-Renyi (JR) divergence to achieve improved noise robustness in a multi-modality imaging space. To present a novel joint segmentation/registration for multimodality image-guided and adaptive radiotherapy. A major challenge to this framework is the sensitivity of many segmentation or registration algorithms to noise. Presented is a level set active contour based on the Jensen-Renyi (JR) divergence to achieve improved noise robustness in a multi-modality imaging space. It was found that JR divergence when used for segmentation has an improved robustness to noise compared to using mutual information, or other entropy-based metrics. The MI metric failed at around 2/3 the noise power than the JR divergence. The JR divergence metric is useful for the task of joint segmentation/registration of multimodality images and shows improved results compared entropy based metric. The algorithm can be easily modified to incorporate non-intensity based images, which would allow applications into multi-modality and texture analysis. © 2012 American Association of Physicists in Medicine.
A Review of Algorithms for Segmentation of Optical Coherence Tomography from Retina
Kafieh, Raheleh; Rabbani, Hossein; Kermani, Saeed
2013-01-01
Optical coherence tomography (OCT) is a recently established imaging technique to describe different information about the internal structures of an object and to image various aspects of biological tissues. OCT image segmentation is mostly introduced on retinal OCT to localize the intra-retinal boundaries. Here, we review some of the important image segmentation methods for processing retinal OCT images. We may classify the OCT segmentation approaches into five distinct groups according to the image domain subjected to the segmentation algorithm. Current researches in OCT segmentation are mostly based on improving the accuracy and precision, and on reducing the required processing time. There is no doubt that current 3-D imaging modalities are now moving the research projects toward volume segmentation along with 3-D rendering and visualization. It is also important to develop robust methods capable of dealing with pathologic cases in OCT imaging. PMID:24083137
Lu, Yisu; Jiang, Jun; Yang, Wei; Feng, Qianjin; Chen, Wufan
2014-01-01
Brain-tumor segmentation is an important clinical requirement for brain-tumor diagnosis and radiotherapy planning. It is well-known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult to define owing to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this study, a nonparametric mixture of Dirichlet process (MDP) model is applied to segment the tumor images, and the MDP segmentation can be performed without the initialization of the number of clusters. Because the classical MDP segmentation cannot be applied for real-time diagnosis, a new nonparametric segmentation algorithm combined with anisotropic diffusion and a Markov random field (MRF) smooth constraint is proposed in this study. Besides the segmentation of single modal brain-tumor images, we developed the algorithm to segment multimodal brain-tumor images by the magnetic resonance (MR) multimodal features and obtain the active tumor and edema in the same time. The proposed algorithm is evaluated using 32 multimodal MR glioma image sequences, and the segmentation results are compared with other approaches. The accuracy and computation time of our algorithm demonstrates very impressive performance and has a great potential for practical real-time clinical use.
Lu, Yisu; Jiang, Jun; Chen, Wufan
2014-01-01
Brain-tumor segmentation is an important clinical requirement for brain-tumor diagnosis and radiotherapy planning. It is well-known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult to define owing to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this study, a nonparametric mixture of Dirichlet process (MDP) model is applied to segment the tumor images, and the MDP segmentation can be performed without the initialization of the number of clusters. Because the classical MDP segmentation cannot be applied for real-time diagnosis, a new nonparametric segmentation algorithm combined with anisotropic diffusion and a Markov random field (MRF) smooth constraint is proposed in this study. Besides the segmentation of single modal brain-tumor images, we developed the algorithm to segment multimodal brain-tumor images by the magnetic resonance (MR) multimodal features and obtain the active tumor and edema in the same time. The proposed algorithm is evaluated using 32 multimodal MR glioma image sequences, and the segmentation results are compared with other approaches. The accuracy and computation time of our algorithm demonstrates very impressive performance and has a great potential for practical real-time clinical use. PMID:25254064
Detection of bone disease by hybrid SST-watershed x-ray image segmentation
NASA Astrophysics Data System (ADS)
Sanei, Saeid; Azron, Mohammad; Heng, Ong Sim
2001-07-01
Detection of diagnostic features from X-ray images is favorable due to the low cost of these images. Accurate detection of the bone metastasis region greatly assists physicians to monitor the treatment and to remove the cancerous tissue by surgery. A hybrid SST-watershed algorithm, here, efficiently detects the boundary of the diseased regions. Shortest Spanning Tree (SST), based on graph theory, is one of the most powerful tools in grey level image segmentation. The method converts the images into arbitrary-shape closed segments of distinct grey levels. To do that, the image is initially mapped to a tree. Then using RSST algorithm the image is segmented to a certain number of arbitrary-shaped regions. However, in fine segmentation, over-segmentation causes loss of objects of interest. In coarse segmentation, on the other hand, SST-based method suffers from merging the regions belonged to different objects. By applying watershed algorithm, the large segments are divided into the smaller regions based on the number of catchment's basins for each segment. The process exploits bi-level watershed concept to separate each multi-lobe region into a number of areas each corresponding to an object (in our case a cancerous region of the bone,) disregarding their homogeneity in grey level.
Optic disc segmentation: level set methods and blood vessels inpainting
NASA Astrophysics Data System (ADS)
Almazroa, A.; Sun, Weiwei; Alodhayb, Sami; Raahemifar, Kaamran; Lakshminarayanan, Vasudevan
2017-03-01
Segmenting the optic disc (OD) is an important and essential step in creating a frame of reference for diagnosing optic nerve head (ONH) pathology such as glaucoma. Therefore, a reliable OD segmentation technique is necessary for automatic screening of ONH abnormalities. The main contribution of this paper is in presenting a novel OD segmentation algorithm based on applying a level set method on a localized OD image. To prevent the blood vessels from interfering with the level set process, an inpainting technique is applied. The algorithm is evaluated using a new retinal fundus image dataset called RIGA (Retinal Images for Glaucoma Analysis). In the case of low quality images, a double level set is applied in which the first level set is considered to be a localization for the OD. Five hundred and fifty images are used to test the algorithm accuracy as well as its agreement with manual markings by six ophthalmologists. The accuracy of the algorithm in marking the optic disc area and centroid is 83.9%, and the best agreement is observed between the results of the algorithm and manual markings in 379 images.
Computer aided detection of tumor and edema in brain FLAIR magnetic resonance image using ANN
NASA Astrophysics Data System (ADS)
Pradhan, Nandita; Sinha, A. K.
2008-03-01
This paper presents an efficient region based segmentation technique for detecting pathological tissues (Tumor & Edema) of brain using fluid attenuated inversion recovery (FLAIR) magnetic resonance (MR) images. This work segments FLAIR brain images for normal and pathological tissues based on statistical features and wavelet transform coefficients using k-means algorithm. The image is divided into small blocks of 4×4 pixels. The k-means algorithm is used to cluster the image based on the feature vectors of blocks forming different classes representing different regions in the whole image. With the knowledge of the feature vectors of different segmented regions, supervised technique is used to train Artificial Neural Network using fuzzy back propagation algorithm (FBPA). Segmentation for detecting healthy tissues and tumors has been reported by several researchers by using conventional MRI sequences like T1, T2 and PD weighted sequences. This work successfully presents segmentation of healthy and pathological tissues (both Tumors and Edema) using FLAIR images. At the end pseudo coloring of segmented and classified regions are done for better human visualization.
Automatic segmentation of psoriasis lesions
NASA Astrophysics Data System (ADS)
Ning, Yang; Shi, Chenbo; Wang, Li; Shu, Chang
2014-10-01
The automatic segmentation of psoriatic lesions is widely researched these years. It is an important step in Computer-aid methods of calculating PASI for estimation of lesions. Currently those algorithms can only handle single erythema or only deal with scaling segmentation. In practice, scaling and erythema are often mixed together. In order to get the segmentation of lesions area - this paper proposes an algorithm based on Random forests with color and texture features. The algorithm has three steps. The first step, the polarized light is applied based on the skin's Tyndall-effect in the imaging to eliminate the reflection and Lab color space are used for fitting the human perception. The second step, sliding window and its sub windows are used to get textural feature and color feature. In this step, a feature of image roughness has been defined, so that scaling can be easily separated from normal skin. In the end, Random forests will be used to ensure the generalization ability of the algorithm. This algorithm can give reliable segmentation results even the image has different lighting conditions, skin types. In the data set offered by Union Hospital, more than 90% images can be segmented accurately.
NASA Astrophysics Data System (ADS)
Rysavy, Steven; Flores, Arturo; Enciso, Reyes; Okada, Kazunori
2008-03-01
This paper presents an experimental study for assessing the applicability of general-purpose 3D segmentation algorithms for analyzing dental periapical lesions in cone-beam computed tomography (CBCT) scans. In the field of Endodontics, clinical studies have been unable to determine if a periapical granuloma can heal with non-surgical methods. Addressing this issue, Simon et al. recently proposed a diagnostic technique which non-invasively classifies target lesions using CBCT. Manual segmentation exploited in their study, however, is too time consuming and unreliable for real world adoption. On the other hand, many technically advanced algorithms have been proposed to address segmentation problems in various biomedical and non-biomedical contexts, but they have not yet been applied to the field of dentistry. Presented in this paper is a novel application of such segmentation algorithms to the clinically-significant dental problem. This study evaluates three state-of-the-art graph-based algorithms: a normalized cut algorithm based on a generalized eigen-value problem, a graph cut algorithm implementing energy minimization techniques, and a random walks algorithm derived from discrete electrical potential theory. In this paper, we extend the original 2D formulation of the above algorithms to segment 3D images directly and apply the resulting algorithms to the dental CBCT images. We experimentally evaluate quality of the segmentation results for 3D CBCT images, as well as their 2D cross sections. The benefits and pitfalls of each algorithm are highlighted.
An Interactive Image Segmentation Method in Hand Gesture Recognition
Chen, Disi; Li, Gongfa; Sun, Ying; Kong, Jianyi; Jiang, Guozhang; Tang, Heng; Ju, Zhaojie; Yu, Hui; Liu, Honghai
2017-01-01
In order to improve the recognition rate of hand gestures a new interactive image segmentation method for hand gesture recognition is presented, and popular methods, e.g., Graph cut, Random walker, Interactive image segmentation using geodesic star convexity, are studied in this article. The Gaussian Mixture Model was employed for image modelling and the iteration of Expectation Maximum algorithm learns the parameters of Gaussian Mixture Model. We apply a Gibbs random field to the image segmentation and minimize the Gibbs Energy using Min-cut theorem to find the optimal segmentation. The segmentation result of our method is tested on an image dataset and compared with other methods by estimating the region accuracy and boundary accuracy. Finally five kinds of hand gestures in different backgrounds are tested on our experimental platform, and the sparse representation algorithm is used, proving that the segmentation of hand gesture images helps to improve the recognition accuracy. PMID:28134818
A lane line segmentation algorithm based on adaptive threshold and connected domain theory
NASA Astrophysics Data System (ADS)
Feng, Hui; Xu, Guo-sheng; Han, Yi; Liu, Yang
2018-04-01
Before detecting cracks and repairs on road lanes, it's necessary to eliminate the influence of lane lines on the recognition result in road lane images. Aiming at the problems caused by lane lines, an image segmentation algorithm based on adaptive threshold and connected domain is proposed. First, by analyzing features like grey level distribution and the illumination of the images, the algorithm uses Hough transform to divide the images into different sections and convert them into binary images separately. It then uses the connected domain theory to amend the outcome of segmentation, remove noises and fill the interior zone of lane lines. Experiments have proved that this method could eliminate the influence of illumination and lane line abrasion, removing noises thoroughly while maintaining high segmentation precision.
The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).
Menze, Bjoern H; Jakab, Andras; Bauer, Stefan; Kalpathy-Cramer, Jayashree; Farahani, Keyvan; Kirby, Justin; Burren, Yuliya; Porz, Nicole; Slotboom, Johannes; Wiest, Roland; Lanczi, Levente; Gerstner, Elizabeth; Weber, Marc-André; Arbel, Tal; Avants, Brian B; Ayache, Nicholas; Buendia, Patricia; Collins, D Louis; Cordier, Nicolas; Corso, Jason J; Criminisi, Antonio; Das, Tilak; Delingette, Hervé; Demiralp, Çağatay; Durst, Christopher R; Dojat, Michel; Doyle, Senan; Festa, Joana; Forbes, Florence; Geremia, Ezequiel; Glocker, Ben; Golland, Polina; Guo, Xiaotao; Hamamci, Andac; Iftekharuddin, Khan M; Jena, Raj; John, Nigel M; Konukoglu, Ender; Lashkari, Danial; Mariz, José Antonió; Meier, Raphael; Pereira, Sérgio; Precup, Doina; Price, Stephen J; Raviv, Tammy Riklin; Reza, Syed M S; Ryan, Michael; Sarikaya, Duygu; Schwartz, Lawrence; Shin, Hoo-Chang; Shotton, Jamie; Silva, Carlos A; Sousa, Nuno; Subbanna, Nagesh K; Szekely, Gabor; Taylor, Thomas J; Thomas, Owen M; Tustison, Nicholas J; Unal, Gozde; Vasseur, Flor; Wintermark, Max; Ye, Dong Hye; Zhao, Liang; Zhao, Binsheng; Zikic, Darko; Prastawa, Marcel; Reyes, Mauricio; Van Leemput, Koen
2015-10-01
In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients-manually annotated by up to four raters-and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.
The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)
Jakab, Andras; Bauer, Stefan; Kalpathy-Cramer, Jayashree; Farahani, Keyvan; Kirby, Justin; Burren, Yuliya; Porz, Nicole; Slotboom, Johannes; Wiest, Roland; Lanczi, Levente; Gerstner, Elizabeth; Weber, Marc-André; Arbel, Tal; Avants, Brian B.; Ayache, Nicholas; Buendia, Patricia; Collins, D. Louis; Cordier, Nicolas; Corso, Jason J.; Criminisi, Antonio; Das, Tilak; Delingette, Hervé; Demiralp, Çağatay; Durst, Christopher R.; Dojat, Michel; Doyle, Senan; Festa, Joana; Forbes, Florence; Geremia, Ezequiel; Glocker, Ben; Golland, Polina; Guo, Xiaotao; Hamamci, Andac; Iftekharuddin, Khan M.; Jena, Raj; John, Nigel M.; Konukoglu, Ender; Lashkari, Danial; Mariz, José António; Meier, Raphael; Pereira, Sérgio; Precup, Doina; Price, Stephen J.; Raviv, Tammy Riklin; Reza, Syed M. S.; Ryan, Michael; Sarikaya, Duygu; Schwartz, Lawrence; Shin, Hoo-Chang; Shotton, Jamie; Silva, Carlos A.; Sousa, Nuno; Subbanna, Nagesh K.; Szekely, Gabor; Taylor, Thomas J.; Thomas, Owen M.; Tustison, Nicholas J.; Unal, Gozde; Vasseur, Flor; Wintermark, Max; Ye, Dong Hye; Zhao, Liang; Zhao, Binsheng; Zikic, Darko; Prastawa, Marcel; Reyes, Mauricio; Van Leemput, Koen
2016-01-01
In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients—manually annotated by up to four raters—and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%–85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource. PMID:25494501
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalvati, Farzad, E-mail: farzad.khalvati@uwaterloo.ca; Tizhoosh, Hamid R.; Salmanpour, Aryan
Purpose: Accurate segmentation and volume estimation of the prostate gland in magnetic resonance (MR) and computed tomography (CT) images are necessary steps in diagnosis, treatment, and monitoring of prostate cancer. This paper presents an algorithm for the prostate gland volume estimation based on the semiautomated segmentation of individual slices in T2-weighted MR and CT image sequences. Methods: The proposedInter-Slice Bidirectional Registration-based Segmentation (iBRS) algorithm relies on interslice image registration of volume data to segment the prostate gland without the use of an anatomical atlas. It requires the user to mark only three slices in a given volume dataset, i.e., themore » first, middle, and last slices. Next, the proposed algorithm uses a registration algorithm to autosegment the remaining slices. We conducted comprehensive experiments to measure the performance of the proposed algorithm using three registration methods (i.e., rigid, affine, and nonrigid techniques). Results: The results with the proposed technique were compared with manual marking using prostate MR and CT images from 117 patients. Manual marking was performed by an expert user for all 117 patients. The median accuracies for individual slices measured using the Dice similarity coefficient (DSC) were 92% and 91% for MR and CT images, respectively. The iBRS algorithm was also evaluated regarding user variability, which confirmed that the algorithm was robust to interuser variability when marking the prostate gland. Conclusions: The proposed algorithm exploits the interslice data redundancy of the images in a volume dataset of MR and CT images and eliminates the need for an atlas, minimizing the computational cost while producing highly accurate results which are robust to interuser variability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalvati, Farzad, E-mail: farzad.khalvati@uwaterloo.ca; Tizhoosh, Hamid R.; Salmanpour, Aryan
2013-12-15
Purpose: Accurate segmentation and volume estimation of the prostate gland in magnetic resonance (MR) and computed tomography (CT) images are necessary steps in diagnosis, treatment, and monitoring of prostate cancer. This paper presents an algorithm for the prostate gland volume estimation based on the semiautomated segmentation of individual slices in T2-weighted MR and CT image sequences. Methods: The proposedInter-Slice Bidirectional Registration-based Segmentation (iBRS) algorithm relies on interslice image registration of volume data to segment the prostate gland without the use of an anatomical atlas. It requires the user to mark only three slices in a given volume dataset, i.e., themore » first, middle, and last slices. Next, the proposed algorithm uses a registration algorithm to autosegment the remaining slices. We conducted comprehensive experiments to measure the performance of the proposed algorithm using three registration methods (i.e., rigid, affine, and nonrigid techniques). Results: The results with the proposed technique were compared with manual marking using prostate MR and CT images from 117 patients. Manual marking was performed by an expert user for all 117 patients. The median accuracies for individual slices measured using the Dice similarity coefficient (DSC) were 92% and 91% for MR and CT images, respectively. The iBRS algorithm was also evaluated regarding user variability, which confirmed that the algorithm was robust to interuser variability when marking the prostate gland. Conclusions: The proposed algorithm exploits the interslice data redundancy of the images in a volume dataset of MR and CT images and eliminates the need for an atlas, minimizing the computational cost while producing highly accurate results which are robust to interuser variability.« less
NASA Astrophysics Data System (ADS)
Polan, Daniel F.; Brady, Samuel L.; Kaufman, Robert A.
2016-09-01
There is a need for robust, fully automated whole body organ segmentation for diagnostic CT. This study investigates and optimizes a Random Forest algorithm for automated organ segmentation; explores the limitations of a Random Forest algorithm applied to the CT environment; and demonstrates segmentation accuracy in a feasibility study of pediatric and adult patients. To the best of our knowledge, this is the first study to investigate a trainable Weka segmentation (TWS) implementation using Random Forest machine-learning as a means to develop a fully automated tissue segmentation tool developed specifically for pediatric and adult examinations in a diagnostic CT environment. Current innovation in computed tomography (CT) is focused on radiomics, patient-specific radiation dose calculation, and image quality improvement using iterative reconstruction, all of which require specific knowledge of tissue and organ systems within a CT image. The purpose of this study was to develop a fully automated Random Forest classifier algorithm for segmentation of neck-chest-abdomen-pelvis CT examinations based on pediatric and adult CT protocols. Seven materials were classified: background, lung/internal air or gas, fat, muscle, solid organ parenchyma, blood/contrast enhanced fluid, and bone tissue using Matlab and the TWS plugin of FIJI. The following classifier feature filters of TWS were investigated: minimum, maximum, mean, and variance evaluated over a voxel radius of 2 n , (n from 0 to 4), along with noise reduction and edge preserving filters: Gaussian, bilateral, Kuwahara, and anisotropic diffusion. The Random Forest algorithm used 200 trees with 2 features randomly selected per node. The optimized auto-segmentation algorithm resulted in 16 image features including features derived from maximum, mean, variance Gaussian and Kuwahara filters. Dice similarity coefficient (DSC) calculations between manually segmented and Random Forest algorithm segmented images from 21 patient image sections, were analyzed. The automated algorithm produced segmentation of seven material classes with a median DSC of 0.86 ± 0.03 for pediatric patient protocols, and 0.85 ± 0.04 for adult patient protocols. Additionally, 100 randomly selected patient examinations were segmented and analyzed, and a mean sensitivity of 0.91 (range: 0.82-0.98), specificity of 0.89 (range: 0.70-0.98), and accuracy of 0.90 (range: 0.76-0.98) were demonstrated. In this study, we demonstrate that this fully automated segmentation tool was able to produce fast and accurate segmentation of the neck and trunk of the body over a wide range of patient habitus and scan parameters.
Rastgarpour, Maryam; Shanbehzadeh, Jamshid
2014-01-01
Researchers recently apply an integrative approach to automate medical image segmentation for benefiting available methods and eliminating their disadvantages. Intensity inhomogeneity is a challenging and open problem in this area, which has received less attention by this approach. It has considerable effects on segmentation accuracy. This paper proposes a new kernel-based fuzzy level set algorithm by an integrative approach to deal with this problem. It can directly evolve from the initial level set obtained by Gaussian Kernel-Based Fuzzy C-Means (GKFCM). The controlling parameters of level set evolution are also estimated from the results of GKFCM. Moreover the proposed algorithm is enhanced with locally regularized evolution based on an image model that describes the composition of real-world images, in which intensity inhomogeneity is assumed as a component of an image. Such improvements make level set manipulation easier and lead to more robust segmentation in intensity inhomogeneity. The proposed algorithm has valuable benefits including automation, invariant of intensity inhomogeneity, and high accuracy. Performance evaluation of the proposed algorithm was carried on medical images from different modalities. The results confirm its effectiveness for medical image segmentation.
NASA Astrophysics Data System (ADS)
Roy, Priyanka; Gholami, Peyman; Kuppuswamy Parthasarathy, Mohana; Zelek, John; Lakshminarayanan, Vasudevan
2018-02-01
Segmentation of spectral-domain Optical Coherence Tomography (SD-OCT) images facilitates visualization and quantification of sub-retinal layers for diagnosis of retinal pathologies. However, manual segmentation is subjective, expertise dependent, and time-consuming, which limits applicability of SD-OCT. Efforts are therefore being made to implement active-contours, artificial intelligence, and graph-search to automatically segment retinal layers with accuracy comparable to that of manual segmentation, to ease clinical decision-making. Although, low optical contrast, heavy speckle noise, and pathologies pose challenges to automated segmentation. Graph-based image segmentation approach stands out from the rest because of its ability to minimize the cost function while maximising the flow. This study has developed and implemented a shortest-path based graph-search algorithm for automated intraretinal layer segmentation of SD-OCT images. The algorithm estimates the minimal-weight path between two graph-nodes based on their gradients. Boundary position indices (BPI) are computed from the transition between pixel intensities. The mean difference between BPIs of two consecutive layers quantify individual layer thicknesses, which shows statistically insignificant differences when compared to a previous study [for overall retina: p = 0.17, for individual layers: p > 0.05 (except one layer: p = 0.04)]. These results substantiate the accurate delineation of seven intraretinal boundaries in SD-OCT images by this algorithm, with a mean computation time of 0.93 seconds (64-bit Windows10, core i5, 8GB RAM). Besides being self-reliant for denoising, the algorithm is further computationally optimized to restrict segmentation within the user defined region-of-interest. The efficiency and reliability of this algorithm, even in noisy image conditions, makes it clinically applicable.
A fuzzy optimal threshold technique for medical images
NASA Astrophysics Data System (ADS)
Thirupathi Kannan, Balaji; Krishnasamy, Krishnaveni; Pradeep Kumar Kenny, S.
2012-01-01
A new fuzzy based thresholding method for medical images especially cervical cytology images having blob and mosaic structures is proposed in this paper. Many existing thresholding algorithms may segment either blob or mosaic images but there aren't any single algorithm that can do both. In this paper, an input cervical cytology image is binarized, preprocessed and the pixel value with minimum Fuzzy Gaussian Index is identified as an optimal threshold value and used for segmentation. The proposed technique is tested on various cervical cytology images having blob or mosaic structures, compared with various existing algorithms and proved better than the existing algorithms.
A fully convolutional networks (FCN) based image segmentation algorithm in binocular imaging system
NASA Astrophysics Data System (ADS)
Long, Zourong; Wei, Biao; Feng, Peng; Yu, Pengwei; Liu, Yuanyuan
2018-01-01
This paper proposes an image segmentation algorithm with fully convolutional networks (FCN) in binocular imaging system under various circumstance. Image segmentation is perfectly solved by semantic segmentation. FCN classifies the pixels, so as to achieve the level of image semantic segmentation. Different from the classical convolutional neural networks (CNN), FCN uses convolution layers instead of the fully connected layers. So it can accept image of arbitrary size. In this paper, we combine the convolutional neural network and scale invariant feature matching to solve the problem of visual positioning under different scenarios. All high-resolution images are captured with our calibrated binocular imaging system and several groups of test data are collected to verify this method. The experimental results show that the binocular images are effectively segmented without over-segmentation. With these segmented images, feature matching via SURF method is implemented to obtain regional information for further image processing. The final positioning procedure shows that the results are acceptable in the range of 1.4 1.6 m, the distance error is less than 10mm.
Image segmentation and 3D visualization for MRI mammography
NASA Astrophysics Data System (ADS)
Li, Lihua; Chu, Yong; Salem, Angela F.; Clark, Robert A.
2002-05-01
MRI mammography has a number of advantages, including the tomographic, and therefore three-dimensional (3-D) nature, of the images. It allows the application of MRI mammography to breasts with dense tissue, post operative scarring, and silicon implants. However, due to the vast quantity of images and subtlety of difference in MR sequence, there is a need for reliable computer diagnosis to reduce the radiologist's workload. The purpose of this work was to develop automatic breast/tissue segmentation and visualization algorithms to aid physicians in detecting and observing abnormalities in breast. Two segmentation algorithms were developed: one for breast segmentation, the other for glandular tissue segmentation. In breast segmentation, the MRI image is first segmented using an adaptive growing clustering method. Two tracing algorithms were then developed to refine the breast air and chest wall boundaries of breast. The glandular tissue segmentation was performed using an adaptive thresholding method, in which the threshold value was spatially adaptive using a sliding window. The 3D visualization of the segmented 2D slices of MRI mammography was implemented under IDL environment. The breast and glandular tissue rendering, slicing and animation were displayed.
Global Linking of Cell Tracks Using the Viterbi Algorithm
Jaldén, Joakim; Gilbert, Penney M.; Blau, Helen M.
2016-01-01
Automated tracking of living cells in microscopy image sequences is an important and challenging problem. With this application in mind, we propose a global track linking algorithm, which links cell outlines generated by a segmentation algorithm into tracks. The algorithm adds tracks to the image sequence one at a time, in a way which uses information from the complete image sequence in every linking decision. This is achieved by finding the tracks which give the largest possible increases to a probabilistically motivated scoring function, using the Viterbi algorithm. We also present a novel way to alter previously created tracks when new tracks are created, thus mitigating the effects of error propagation. The algorithm can handle mitosis, apoptosis, and migration in and out of the imaged area, and can also deal with false positives, missed detections, and clusters of jointly segmented cells. The algorithm performance is demonstrated on two challenging datasets acquired using bright-field microscopy, but in principle, the algorithm can be used with any cell type and any imaging technique, presuming there is a suitable segmentation algorithm. PMID:25415983
Automatic CT Brain Image Segmentation Using Two Level Multiresolution Mixture Model of EM
NASA Astrophysics Data System (ADS)
Jiji, G. Wiselin; Dehmeshki, Jamshid
2014-04-01
Tissue classification in computed tomography (CT) brain images is an important issue in the analysis of several brain dementias. A combination of different approaches for the segmentation of brain images is presented in this paper. A multi resolution algorithm is proposed along with scaled versions using Gaussian filter and wavelet analysis that extends expectation maximization (EM) algorithm. It is found that it is less sensitive to noise and got more accurate image segmentation than traditional EM. Moreover the algorithm has been applied on 20 sets of CT of the human brain and compared with other works. The segmentation results show the advantages of the proposed work have achieved more promising results and the results have been tested with Doctors.
Moya, Nikolas; Falcão, Alexandre X; Ciesielski, Krzysztof C; Udupa, Jayaram K
2014-01-01
Graph-cut algorithms have been extensively investigated for interactive binary segmentation, when the simultaneous delineation of multiple objects can save considerable user's time. We present an algorithm (named DRIFT) for 3D multiple object segmentation based on seed voxels and Differential Image Foresting Transforms (DIFTs) with relaxation. DRIFT stands behind efficient implementations of some state-of-the-art methods. The user can add/remove markers (seed voxels) along a sequence of executions of the DRIFT algorithm to improve segmentation. Its first execution takes linear time with the image's size, while the subsequent executions for corrections take sublinear time in practice. At each execution, DRIFT first runs the DIFT algorithm, then it applies diffusion filtering to smooth boundaries between objects (and background) and, finally, it corrects possible objects' disconnection occurrences with respect to their seeds. We evaluate DRIFT in 3D CT-images of the thorax for segmenting the arterial system, esophagus, left pleural cavity, right pleural cavity, trachea and bronchi, and the venous system.
Knowledge-based low-level image analysis for computer vision systems
NASA Technical Reports Server (NTRS)
Dhawan, Atam P.; Baxi, Himanshu; Ranganath, M. V.
1988-01-01
Two algorithms for entry-level image analysis and preliminary segmentation are proposed which are flexible enough to incorporate local properties of the image. The first algorithm involves pyramid-based multiresolution processing and a strategy to define and use interlevel and intralevel link strengths. The second algorithm, which is designed for selected window processing, extracts regions adaptively using local histograms. The preliminary segmentation and a set of features are employed as the input to an efficient rule-based low-level analysis system, resulting in suboptimal meaningful segmentation.
NASA Astrophysics Data System (ADS)
Srinivasan, Yeshwanth; Hernes, Dana; Tulpule, Bhakti; Yang, Shuyu; Guo, Jiangling; Mitra, Sunanda; Yagneswaran, Sriraja; Nutter, Brian; Jeronimo, Jose; Phillips, Benny; Long, Rodney; Ferris, Daron
2005-04-01
Automated segmentation and classification of diagnostic markers in medical imagery are challenging tasks. Numerous algorithms for segmentation and classification based on statistical approaches of varying complexity are found in the literature. However, the design of an efficient and automated algorithm for precise classification of desired diagnostic markers is extremely image-specific. The National Library of Medicine (NLM), in collaboration with the National Cancer Institute (NCI), is creating an archive of 60,000 digitized color images of the uterine cervix. NLM is developing tools for the analysis and dissemination of these images over the Web for the study of visual features correlated with precancerous neoplasia and cancer. To enable indexing of images of the cervix, it is essential to develop algorithms for the segmentation of regions of interest, such as acetowhitened regions, and automatic identification and classification of regions exhibiting mosaicism and punctation. Success of such algorithms depends, primarily, on the selection of relevant features representing the region of interest. We present color and geometric features based statistical classification and segmentation algorithms yielding excellent identification of the regions of interest. The distinct classification of the mosaic regions from the non-mosaic ones has been obtained by clustering multiple geometric and color features of the segmented sections using various morphological and statistical approaches. Such automated classification methodologies will facilitate content-based image retrieval from the digital archive of uterine cervix and have the potential of developing an image based screening tool for cervical cancer.
Localization of the transverse processes in ultrasound for spinal curvature measurement
NASA Astrophysics Data System (ADS)
Kamali, Shahrokh; Ungi, Tamas; Lasso, Andras; Yan, Christina; Lougheed, Matthew; Fichtinger, Gabor
2017-03-01
PURPOSE: In scoliosis monitoring, tracked ultrasound has been explored as a safer imaging alternative to traditional radiography. The use of ultrasound in spinal curvature measurement requires identification of vertebral landmarks such as transverse processes, but as bones have reduced visibility in ultrasound imaging, skeletal landmarks are typically segmented manually, which is an exceedingly laborious and long process. We propose an automatic algorithm to segment and localize the surface of bony areas in the transverse process for scoliosis in ultrasound. METHODS: The algorithm uses cascade of filters to remove low intensity pixels, smooth the image and detect bony edges. By applying first differentiation, candidate bony areas are classified. The average intensity under each area has a correlation with the possibility of a shadow, and areas with strong shadow are kept for bone segmentation. The segmented images are used to reconstruct a 3-D volume to represent the whole spinal structure around the transverse processes. RESULTS: A comparison between the manual ground truth segmentation and the automatic algorithm in 50 images showed 0.17 mm average difference. The time to process all 1,938 images was about 37 Sec. (0.0191 Sec. / Image), including reading the original sequence file. CONCLUSION: Initial experiments showed the algorithm to be sufficiently accurate and fast for segmentation transverse processes in ultrasound for spinal curvature measurement. An extensive evaluation of the method is currently underway on images from a larger patient cohort and using multiple observers in producing ground truth segmentation.
Brain tissue segmentation in MR images based on a hybrid of MRF and social algorithms.
Yousefi, Sahar; Azmi, Reza; Zahedi, Morteza
2012-05-01
Effective abnormality detection and diagnosis in Magnetic Resonance Images (MRIs) requires a robust segmentation strategy. Since manual segmentation is a time-consuming task which engages valuable human resources, automatic MRI segmentations received an enormous amount of attention. For this goal, various techniques have been applied. However, Markov Random Field (MRF) based algorithms have produced reasonable results in noisy images compared to other methods. MRF seeks a label field which minimizes an energy function. The traditional minimization method, simulated annealing (SA), uses Monte Carlo simulation to access the minimum solution with heavy computation burden. For this reason, MRFs are rarely used in real time processing environments. This paper proposed a novel method based on MRF and a hybrid of social algorithms that contain an ant colony optimization (ACO) and a Gossiping algorithm which can be used for segmenting single and multispectral MRIs in real time environments. Combining ACO with the Gossiping algorithm helps find the better path using neighborhood information. Therefore, this interaction causes the algorithm to converge to an optimum solution faster. Several experiments on phantom and real images were performed. Results indicate that the proposed algorithm outperforms the traditional MRF and hybrid of MRF-ACO in speed and accuracy. Copyright © 2012 Elsevier B.V. All rights reserved.
Semiautomatic tumor segmentation with multimodal images in a conditional random field framework.
Hu, Yu-Chi; Grossberg, Michael; Mageras, Gikas
2016-04-01
Volumetric medical images of a single subject can be acquired using different imaging modalities, such as computed tomography, magnetic resonance imaging (MRI), and positron emission tomography. In this work, we present a semiautomatic segmentation algorithm that can leverage the synergies between different image modalities while integrating interactive human guidance. The algorithm provides a statistical segmentation framework partly automating the segmentation task while still maintaining critical human oversight. The statistical models presented are trained interactively using simple brush strokes to indicate tumor and nontumor tissues and using intermediate results within a patient's image study. To accomplish the segmentation, we construct the energy function in the conditional random field (CRF) framework. For each slice, the energy function is set using the estimated probabilities from both user brush stroke data and prior approved segmented slices within a patient study. The progressive segmentation is obtained using a graph-cut-based minimization. Although no similar semiautomated algorithm is currently available, we evaluated our method with an MRI data set from Medical Image Computing and Computer Assisted Intervention Society multimodal brain segmentation challenge (BRATS 2012 and 2013) against a similar fully automatic method based on CRF and a semiautomatic method based on grow-cut, and our method shows superior performance.
Automated segmentation and feature extraction of product inspection items
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Casasent, David P.
1997-03-01
X-ray film and linescan images of pistachio nuts on conveyor trays for product inspection are considered. The final objective is the categorization of pistachios into good, blemished and infested nuts. A crucial step before classification is the separation of touching products and the extraction of features essential for classification. This paper addresses new detection and segmentation algorithms to isolate touching or overlapping items. These algorithms employ a new filter, a new watershed algorithm, and morphological processing to produce nutmeat-only images. Tests on a large database of x-ray film and real-time x-ray linescan images of around 2900 small, medium and large nuts showed excellent segmentation results. A new technique to detect and segment dark regions in nutmeat images is also presented and tested on approximately 300 x-ray film and approximately 300 real-time linescan x-ray images with 95-97 percent detection and correct segmentation. New algorithms are described that determine nutmeat fill ratio and locate splits in nutmeat. The techniques formulated in this paper are of general use in many different product inspection and computer vision problems.
Comparison of segmentation algorithms for fluorescence microscopy images of cells.
Dima, Alden A; Elliott, John T; Filliben, James J; Halter, Michael; Peskin, Adele; Bernal, Javier; Kociolek, Marcin; Brady, Mary C; Tang, Hai C; Plant, Anne L
2011-07-01
The analysis of fluorescence microscopy of cells often requires the determination of cell edges. This is typically done using segmentation techniques that separate the cell objects in an image from the surrounding background. This study compares segmentation results from nine different segmentation techniques applied to two different cell lines and five different sets of imaging conditions. Significant variability in the results of segmentation was observed that was due solely to differences in imaging conditions or applications of different algorithms. We quantified and compared the results with a novel bivariate similarity index metric that evaluates the degree of underestimating or overestimating a cell object. The results show that commonly used threshold-based segmentation techniques are less accurate than k-means clustering with multiple clusters. Segmentation accuracy varies with imaging conditions that determine the sharpness of cell edges and with geometric features of a cell. Based on this observation, we propose a method that quantifies cell edge character to provide an estimate of how accurately an algorithm will perform. The results of this study will assist the development of criteria for evaluating interlaboratory comparability. Published 2011 Wiley-Liss, Inc.
Attributed relational graphs for cell nucleus segmentation in fluorescence microscopy images.
Arslan, Salim; Ersahin, Tulin; Cetin-Atalay, Rengul; Gunduz-Demir, Cigdem
2013-06-01
More rapid and accurate high-throughput screening in molecular cellular biology research has become possible with the development of automated microscopy imaging, for which cell nucleus segmentation commonly constitutes the core step. Although several promising methods exist for segmenting the nuclei of monolayer isolated and less-confluent cells, it still remains an open problem to segment the nuclei of more-confluent cells, which tend to grow in overlayers. To address this problem, we propose a new model-based nucleus segmentation algorithm. This algorithm models how a human locates a nucleus by identifying the nucleus boundaries and piecing them together. In this algorithm, we define four types of primitives to represent nucleus boundaries at different orientations and construct an attributed relational graph on the primitives to represent their spatial relations. Then, we reduce the nucleus identification problem to finding predefined structural patterns in the constructed graph and also use the primitives in region growing to delineate the nucleus borders. Working with fluorescence microscopy images, our experiments demonstrate that the proposed algorithm identifies nuclei better than previous nucleus segmentation algorithms.
Automatic macroscopic characterization of diesel sprays by means of a new image processing algorithm
NASA Astrophysics Data System (ADS)
Rubio-Gómez, Guillermo; Martínez-Martínez, S.; Rua-Mojica, Luis F.; Gómez-Gordo, Pablo; de la Garza, Oscar A.
2018-05-01
A novel algorithm is proposed for the automatic segmentation of diesel spray images and the calculation of their macroscopic parameters. The algorithm automatically detects each spray present in an image, and therefore it is able to work with diesel injectors with a different number of nozzle holes without any modification. The main characteristic of the algorithm is that it splits each spray into three different regions and then segments each one with an individually calculated binarization threshold. Each threshold level is calculated from the analysis of a representative luminosity profile of each region. This approach makes it robust to irregular light distribution along a single spray and between different sprays of an image. Once the sprays are segmented, the macroscopic parameters of each one are calculated. The algorithm is tested with two sets of diesel spray images taken under normal and irregular illumination setups.
Color segmentation in the HSI color space using the K-means algorithm
NASA Astrophysics Data System (ADS)
Weeks, Arthur R.; Hague, G. Eric
1997-04-01
Segmentation of images is an important aspect of image recognition. While grayscale image segmentation has become quite a mature field, much less work has been done with regard to color image segmentation. Until recently, this was predominantly due to the lack of available computing power and color display hardware that is required to manipulate true color images (24-bit). TOday, it is not uncommon to find a standard desktop computer system with a true-color 24-bit display, at least 8 million bytes of memory, and 2 gigabytes of hard disk storage. Segmentation of color images is not as simple as segmenting each of the three RGB color components separately. The difficulty of using the RGB color space is that it doesn't closely model the psychological understanding of color. A better color model, which closely follows that of human visual perception is the hue, saturation, intensity model. This color model separates the color components in terms of chromatic and achromatic information. Strickland et al. was able to show the importance of color in the extraction of edge features form an image. His method enhances the edges that are detectable in the luminance image with information from the saturation image. Segmentation of both the saturation and intensity components is easily accomplished with any gray scale segmentation algorithm, since these spaces are linear. The modulus 2(pi) nature of the hue color component makes its segmentation difficult. For example, a hue of 0 and 2(pi) yields the same color tint. Instead of applying separate image segmentation to each of the hue, saturation, and intensity components, a better method is to segment the chromatic component separately from the intensity component because of the importance that the chromatic information plays in the segmentation of color images. This paper presents a method of using the gray scale K-means algorithm to segment 24-bit color images. Additionally, this paper will show the importance the hue component plays in the segmentation of color images.
Measurement of thermally ablated lesions in sonoelastographic images using level set methods
NASA Astrophysics Data System (ADS)
Castaneda, Benjamin; Tamez-Pena, Jose Gerardo; Zhang, Man; Hoyt, Kenneth; Bylund, Kevin; Christensen, Jared; Saad, Wael; Strang, John; Rubens, Deborah J.; Parker, Kevin J.
2008-03-01
The capability of sonoelastography to detect lesions based on elasticity contrast can be applied to monitor the creation of thermally ablated lesion. Currently, segmentation of lesions depicted in sonoelastographic images is performed manually which can be a time consuming process and prone to significant intra- and inter-observer variability. This work presents a semi-automated segmentation algorithm for sonoelastographic data. The user starts by planting a seed in the perceived center of the lesion. Fast marching methods use this information to create an initial estimate of the lesion. Subsequently, level set methods refine its final shape by attaching the segmented contour to edges in the image while maintaining smoothness. The algorithm is applied to in vivo sonoelastographic images from twenty five thermal ablated lesions created in porcine livers. The estimated area is compared to results from manual segmentation and gross pathology images. Results show that the algorithm outperforms manual segmentation in accuracy, inter- and intra-observer variability. The processing time per image is significantly reduced.
Generalized expectation-maximization segmentation of brain MR images
NASA Astrophysics Data System (ADS)
Devalkeneer, Arnaud A.; Robe, Pierre A.; Verly, Jacques G.; Phillips, Christophe L. M.
2006-03-01
Manual segmentation of medical images is unpractical because it is time consuming, not reproducible, and prone to human error. It is also very difficult to take into account the 3D nature of the images. Thus, semi- or fully-automatic methods are of great interest. Current segmentation algorithms based on an Expectation- Maximization (EM) procedure present some limitations. The algorithm by Ashburner et al., 2005, does not allow multichannel inputs, e.g. two MR images of different contrast, and does not use spatial constraints between adjacent voxels, e.g. Markov random field (MRF) constraints. The solution of Van Leemput et al., 1999, employs a simplified model (mixture coefficients are not estimated and only one Gaussian is used by tissue class, with three for the image background). We have thus implemented an algorithm that combines the features of these two approaches: multichannel inputs, intensity bias correction, multi-Gaussian histogram model, and Markov random field (MRF) constraints. Our proposed method classifies tissues in three iterative main stages by way of a Generalized-EM (GEM) algorithm: (1) estimation of the Gaussian parameters modeling the histogram of the images, (2) correction of image intensity non-uniformity, and (3) modification of prior classification knowledge by MRF techniques. The goal of the GEM algorithm is to maximize the log-likelihood across the classes and voxels. Our segmentation algorithm was validated on synthetic data (with the Dice metric criterion) and real data (by a neurosurgeon) and compared to the original algorithms by Ashburner et al. and Van Leemput et al. Our combined approach leads to more robust and accurate segmentation.
Yi, Faliu; Moon, Inkyu; Javidi, Bahram
2017-10-01
In this paper, we present two models for automatically extracting red blood cells (RBCs) from RBCs holographic images based on a deep learning fully convolutional neural network (FCN) algorithm. The first model, called FCN-1, only uses the FCN algorithm to carry out RBCs prediction, whereas the second model, called FCN-2, combines the FCN approach with the marker-controlled watershed transform segmentation scheme to achieve RBCs extraction. Both models achieve good segmentation accuracy. In addition, the second model has much better performance in terms of cell separation than traditional segmentation methods. In the proposed methods, the RBCs phase images are first numerically reconstructed from RBCs holograms recorded with off-axis digital holographic microscopy. Then, some RBCs phase images are manually segmented and used as training data to fine-tune the FCN. Finally, each pixel in new input RBCs phase images is predicted into either foreground or background using the trained FCN models. The RBCs prediction result from the first model is the final segmentation result, whereas the result from the second model is used as the internal markers of the marker-controlled transform algorithm for further segmentation. Experimental results show that the given schemes can automatically extract RBCs from RBCs phase images and much better RBCs separation results are obtained when the FCN technique is combined with the marker-controlled watershed segmentation algorithm.
Yi, Faliu; Moon, Inkyu; Javidi, Bahram
2017-01-01
In this paper, we present two models for automatically extracting red blood cells (RBCs) from RBCs holographic images based on a deep learning fully convolutional neural network (FCN) algorithm. The first model, called FCN-1, only uses the FCN algorithm to carry out RBCs prediction, whereas the second model, called FCN-2, combines the FCN approach with the marker-controlled watershed transform segmentation scheme to achieve RBCs extraction. Both models achieve good segmentation accuracy. In addition, the second model has much better performance in terms of cell separation than traditional segmentation methods. In the proposed methods, the RBCs phase images are first numerically reconstructed from RBCs holograms recorded with off-axis digital holographic microscopy. Then, some RBCs phase images are manually segmented and used as training data to fine-tune the FCN. Finally, each pixel in new input RBCs phase images is predicted into either foreground or background using the trained FCN models. The RBCs prediction result from the first model is the final segmentation result, whereas the result from the second model is used as the internal markers of the marker-controlled transform algorithm for further segmentation. Experimental results show that the given schemes can automatically extract RBCs from RBCs phase images and much better RBCs separation results are obtained when the FCN technique is combined with the marker-controlled watershed segmentation algorithm. PMID:29082078
Towards Automatic Image Segmentation Using Optimised Region Growing Technique
NASA Astrophysics Data System (ADS)
Alazab, Mamoun; Islam, Mofakharul; Venkatraman, Sitalakshmi
Image analysis is being adopted extensively in many applications such as digital forensics, medical treatment, industrial inspection, etc. primarily for diagnostic purposes. Hence, there is a growing interest among researches in developing new segmentation techniques to aid the diagnosis process. Manual segmentation of images is labour intensive, extremely time consuming and prone to human errors and hence an automated real-time technique is warranted in such applications. There is no universally applicable automated segmentation technique that will work for all images as the image segmentation is quite complex and unique depending upon the domain application. Hence, to fill the gap, this paper presents an efficient segmentation algorithm that can segment a digital image of interest into a more meaningful arrangement of regions and objects. Our algorithm combines region growing approach with optimised elimination of false boundaries to arrive at more meaningful segments automatically. We demonstrate this using X-ray teeth images that were taken for real-life dental diagnosis.
NASA Astrophysics Data System (ADS)
Akinin, M. V.; Akinina, N. V.; Klochkov, A. Y.; Nikiforov, M. B.; Sokolova, A. V.
2015-05-01
The report reviewed the algorithm fuzzy c-means, performs image segmentation, give an estimate of the quality of his work on the criterion of Xie-Beni, contain the results of experimental studies of the algorithm in the context of solving the problem of drawing up detailed two-dimensional maps with the use of unmanned aerial vehicles. According to the results of the experiment concluded that the possibility of applying the algorithm in problems of decoding images obtained as a result of aerial photography. The considered algorithm can significantly break the original image into a plurality of segments (clusters) in a relatively short period of time, which is achieved by modification of the original k-means algorithm to work in a fuzzy task.
USDA-ARS?s Scientific Manuscript database
Segmentation is the first step in image analysis to subdivide an image into meaningful regions. The segmentation result directly affects the subsequent image analysis. The objective of the research was to develop an automatic adjustable algorithm for segmentation of color images, using linear suppor...
Automatic segmentation of vessels in in-vivo ultrasound scans
NASA Astrophysics Data System (ADS)
Tamimi-Sarnikowski, Philip; Brink-Kjær, Andreas; Moshavegh, Ramin; Arendt Jensen, Jørgen
2017-03-01
Ultrasound has become highly popular to monitor atherosclerosis, by scanning the carotid artery. The screening involves measuring the thickness of the vessel wall and diameter of the lumen. An automatic segmentation of the vessel lumen, can enable the determination of lumen diameter. This paper presents a fully automatic segmentation algorithm, for robustly segmenting the vessel lumen in longitudinal B-mode ultrasound images. The automatic segmentation is performed using a combination of B-mode and power Doppler images. The proposed algorithm includes a series of preprocessing steps, and performs a vessel segmentation by use of the marker-controlled watershed transform. The ultrasound images used in the study were acquired using the bk3000 ultrasound scanner (BK Ultrasound, Herlev, Denmark) with two transducers "8L2 Linear" and "10L2w Wide Linear" (BK Ultrasound, Herlev, Denmark). The algorithm was evaluated empirically and applied to a dataset of in-vivo 1770 images recorded from 8 healthy subjects. The segmentation results were compared to manual delineation performed by two experienced users. The results showed a sensitivity and specificity of 90.41+/-11.2 % and 97.93+/-5.7% (mean+/-standard deviation), respectively. The amount of overlap of segmentation and manual segmentation, was measured by the Dice similarity coefficient, which was 91.25+/-11.6%. The empirical results demonstrated the feasibility of segmenting the vessel lumen in ultrasound scans using a fully automatic algorithm.
Adaptive geodesic transform for segmentation of vertebrae on CT images
NASA Astrophysics Data System (ADS)
Gaonkar, Bilwaj; Shu, Liao; Hermosillo, Gerardo; Zhan, Yiqiang
2014-03-01
Vertebral segmentation is a critical first step in any quantitative evaluation of vertebral pathology using CT images. This is especially challenging because bone marrow tissue has the same intensity profile as the muscle surrounding the bone. Thus simple methods such as thresholding or adaptive k-means fail to accurately segment vertebrae. While several other algorithms such as level sets may be used for segmentation any algorithm that is clinically deployable has to work in under a few seconds. To address these dual challenges we present here, a new algorithm based on the geodesic distance transform that is capable of segmenting the spinal vertebrae in under one second. To achieve this we extend the theory of the geodesic distance transforms proposed in1 to incorporate high level anatomical knowledge through adaptive weighting of image gradients. Such knowledge may be provided by the user directly or may be automatically generated by another algorithm. We incorporate information 'learnt' using a previously published machine learning algorithm2 to segment the L1 to L5 vertebrae. While we present a particular application here, the adaptive geodesic transform is a generic concept which can be applied to segmentation of other organs as well.
Khan, Muhammad Burhan; Nisar, Humaira; Ng, Choon Aun; Yeap, Kim Ho; Lai, Koon Chun
2017-12-01
Image processing and analysis is an effective tool for monitoring and fault diagnosis of activated sludge (AS) wastewater treatment plants. The AS image comprise of flocs (microbial aggregates) and filamentous bacteria. In this paper, nine different approaches are proposed for image segmentation of phase-contrast microscopic (PCM) images of AS samples. The proposed strategies are assessed for their effectiveness from the perspective of microscopic artifacts associated with PCM. The first approach uses an algorithm that is based on the idea that different color space representation of images other than red-green-blue may have better contrast. The second uses an edge detection approach. The third strategy, employs a clustering algorithm for the segmentation and the fourth applies local adaptive thresholding. The fifth technique is based on texture-based segmentation and the sixth uses watershed algorithm. The seventh adopts a split-and-merge approach. The eighth employs Kittler's thresholding. Finally, the ninth uses a top-hat and bottom-hat filtering-based technique. The approaches are assessed, and analyzed critically with reference to the artifacts of PCM. Gold approximations of ground truth images are prepared to assess the segmentations. Overall, the edge detection-based approach exhibits the best results in terms of accuracy, and the texture-based algorithm in terms of false negative ratio. The respective scenarios are explained for suitability of edge detection and texture-based algorithms.
A diabetic retinopathy detection method using an improved pillar K-means algorithm.
Gogula, Susmitha Valli; Divakar, Ch; Satyanarayana, Ch; Rao, Allam Appa
2014-01-01
The paper presents a new approach for medical image segmentation. Exudates are a visible sign of diabetic retinopathy that is the major reason of vision loss in patients with diabetes. If the exudates extend into the macular area, blindness may occur. Automated detection of exudates will assist ophthalmologists in early diagnosis. This segmentation process includes a new mechanism for clustering the elements of high-resolution images in order to improve precision and reduce computation time. The system applies K-means clustering to the image segmentation after getting optimized by Pillar algorithm; pillars are constructed in such a way that they can withstand the pressure. Improved pillar algorithm can optimize the K-means clustering for image segmentation in aspects of precision and computation time. This evaluates the proposed approach for image segmentation by comparing with Kmeans and Fuzzy C-means in a medical image. Using this method, identification of dark spot in the retina becomes easier and the proposed algorithm is applied on diabetic retinal images of all stages to identify hard and soft exudates, where the existing pillar K-means is more appropriate for brain MRI images. This proposed system help the doctors to identify the problem in the early stage and can suggest a better drug for preventing further retinal damage.
NASA Astrophysics Data System (ADS)
Guerrout, EL-Hachemi; Ait-Aoudia, Samy; Michelucci, Dominique; Mahiou, Ramdane
2018-05-01
Many routine medical examinations produce images of patients suffering from various pathologies. With the huge number of medical images, the manual analysis and interpretation became a tedious task. Thus, automatic image segmentation became essential for diagnosis assistance. Segmentation consists in dividing the image into homogeneous and significant regions. We focus on hidden Markov random fields referred to as HMRF to model the problem of segmentation. This modelisation leads to a classical function minimisation problem. Broyden-Fletcher-Goldfarb-Shanno algorithm referred to as BFGS is one of the most powerful methods to solve unconstrained optimisation problem. In this paper, we investigate the combination of HMRF and BFGS algorithm to perform the segmentation operation. The proposed method shows very good segmentation results comparing with well-known approaches. The tests are conducted on brain magnetic resonance image databases (BrainWeb and IBSR) largely used to objectively confront the results obtained. The well-known Dice coefficient (DC) was used as similarity metric. The experimental results show that, in many cases, our proposed method approaches the perfect segmentation with a Dice Coefficient above .9. Moreover, it generally outperforms other methods in the tests conducted.
Dysli, Chantal; Enzmann, Volker; Sznitman, Raphael; Zinkernagel, Martin S.
2015-01-01
Purpose Quantification of retinal layers using automated segmentation of optical coherence tomography (OCT) images allows for longitudinal studies of retinal and neurological disorders in mice. The purpose of this study was to compare the performance of automated retinal layer segmentation algorithms with data from manual segmentation in mice using the Spectralis OCT. Methods Spectral domain OCT images from 55 mice from three different mouse strains were analyzed in total. The OCT scans from 22 C57Bl/6, 22 BALBc, and 11 C3A.Cg-Pde6b+Prph2Rd2/J mice were automatically segmented using three commercially available automated retinal segmentation algorithms and compared to manual segmentation. Results Fully automated segmentation performed well in mice and showed coefficients of variation (CV) of below 5% for the total retinal volume. However, all three automated segmentation algorithms yielded much thicker total retinal thickness values compared to manual segmentation data (P < 0.0001) due to segmentation errors in the basement membrane. Conclusions Whereas the automated retinal segmentation algorithms performed well for the inner layers, the retinal pigmentation epithelium (RPE) was delineated within the sclera, leading to consistently thicker measurements of the photoreceptor layer and the total retina. Translational Relevance The introduction of spectral domain OCT allows for accurate imaging of the mouse retina. Exact quantification of retinal layer thicknesses in mice is important to study layers of interest under various pathological conditions. PMID:26336634
Unsupervised tattoo segmentation combining bottom-up and top-down cues
NASA Astrophysics Data System (ADS)
Allen, Josef D.; Zhao, Nan; Yuan, Jiangbo; Liu, Xiuwen
2011-06-01
Tattoo segmentation is challenging due to the complexity and large variance in tattoo structures. We have developed a segmentation algorithm for finding tattoos in an image. Our basic idea is split-merge: split each tattoo image into clusters through a bottom-up process, learn to merge the clusters containing skin and then distinguish tattoo from the other skin via top-down prior in the image itself. Tattoo segmentation with unknown number of clusters is transferred to a figureground segmentation. We have applied our segmentation algorithm on a tattoo dataset and the results have shown that our tattoo segmentation system is efficient and suitable for further tattoo classification and retrieval purpose.
Yang, Jinzhong; Beadle, Beth M; Garden, Adam S; Schwartz, David L; Aristophanous, Michalis
2015-09-01
To develop an automatic segmentation algorithm integrating imaging information from computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) to delineate target volume in head and neck cancer radiotherapy. Eleven patients with unresectable disease at the tonsil or base of tongue who underwent MRI, CT, and PET/CT within two months before the start of radiotherapy or chemoradiotherapy were recruited for the study. For each patient, PET/CT and T1-weighted contrast MRI scans were first registered to the planning CT using deformable and rigid registration, respectively, to resample the PET and magnetic resonance (MR) images to the planning CT space. A binary mask was manually defined to identify the tumor area. The resampled PET and MR images, the planning CT image, and the binary mask were fed into the automatic segmentation algorithm for target delineation. The algorithm was based on a multichannel Gaussian mixture model and solved using an expectation-maximization algorithm with Markov random fields. To evaluate the algorithm, we compared the multichannel autosegmentation with an autosegmentation method using only PET images. The physician-defined gross tumor volume (GTV) was used as the "ground truth" for quantitative evaluation. The median multichannel segmented GTV of the primary tumor was 15.7 cm(3) (range, 6.6-44.3 cm(3)), while the PET segmented GTV was 10.2 cm(3) (range, 2.8-45.1 cm(3)). The median physician-defined GTV was 22.1 cm(3) (range, 4.2-38.4 cm(3)). The median difference between the multichannel segmented and physician-defined GTVs was -10.7%, not showing a statistically significant difference (p-value = 0.43). However, the median difference between the PET segmented and physician-defined GTVs was -19.2%, showing a statistically significant difference (p-value =0.0037). The median Dice similarity coefficient between the multichannel segmented and physician-defined GTVs was 0.75 (range, 0.55-0.84), and the median sensitivity and positive predictive value between them were 0.76 and 0.81, respectively. The authors developed an automated multimodality segmentation algorithm for tumor volume delineation and validated this algorithm for head and neck cancer radiotherapy. The multichannel segmented GTV agreed well with the physician-defined GTV. The authors expect that their algorithm will improve the accuracy and consistency in target definition for radiotherapy.
Grayscale image segmentation for real-time traffic sign recognition: the hardware point of view
NASA Astrophysics Data System (ADS)
Cao, Tam P.; Deng, Guang; Elton, Darrell
2009-02-01
In this paper, we study several grayscale-based image segmentation methods for real-time road sign recognition applications on an FPGA hardware platform. The performance of different image segmentation algorithms in different lighting conditions are initially compared using PC simulation. Based on these results and analysis, suitable algorithms are implemented and tested on a real-time FPGA speed sign detection system. Experimental results show that the system using segmented images uses significantly less hardware resources on an FPGA while maintaining comparable system's performance. The system is capable of processing 60 live video frames per second.
Comparison of two algorithms in the automatic segmentation of blood vessels in fundus images
NASA Astrophysics Data System (ADS)
LeAnder, Robert; Chowdary, Myneni Sushma; Mokkapati, Swapnasri; Umbaugh, Scott E.
2008-03-01
Effective timing and treatment are critical to saving the sight of patients with diabetes. Lack of screening, as well as a shortage of ophthalmologists, help contribute to approximately 8,000 cases per year of people who lose their sight to diabetic retinopathy, the leading cause of new cases of blindness [1] [2]. Timely treatment for diabetic retinopathy prevents severe vision loss in over 50% of eyes tested [1]. Fundus images can provide information for detecting and monitoring eye-related diseases, like diabetic retinopathy, which if detected early, may help prevent vision loss. Damaged blood vessels can indicate the presence of diabetic retinopathy [9]. So, early detection of damaged vessels in retinal images can provide valuable information about the presence of disease, thereby helping to prevent vision loss. Purpose: The purpose of this study was to compare the effectiveness of two blood vessel segmentation algorithms. Methods: Fifteen fundus images from the STARE database were used to develop two algorithms using the CVIPtools software environment. Another set of fifteen images were derived from the first fifteen and contained ophthalmologists' hand-drawn tracings over the retinal vessels. The ophthalmologists' tracings were used as the "gold standard" for perfect segmentation and compared with the segmented images that were output by the two algorithms. Comparisons between the segmented and the hand-drawn images were made using Pratt's Figure of Merit (FOM), Signal-to-Noise Ratio (SNR) and Root Mean Square (RMS) Error. Results: Algorithm 2 has an FOM that is 10% higher than Algorithm 1. Algorithm 2 has a 6%-higher SNR than Algorithm 1. Algorithm 2 has only 1.3% more RMS error than Algorithm 1. Conclusions: Algorithm 1 extracted most of the blood vessels with some missing intersections and bifurcations. Algorithm 2 extracted all the major blood vessels, but eradicated some vessels as well. Algorithm 2 outperformed Algorithm 1 in terms of visual clarity, FOM and SNR. The performances of these algorithms show that they have an appreciable amount of potential in helping ophthalmologists detect the severity of eye-related diseases and prevent vision loss.
A novel measure and significance testing in data analysis of cell image segmentation.
Wu, Jin Chu; Halter, Michael; Kacker, Raghu N; Elliott, John T; Plant, Anne L
2017-03-14
Cell image segmentation (CIS) is an essential part of quantitative imaging of biological cells. Designing a performance measure and conducting significance testing are critical for evaluating and comparing the CIS algorithms for image-based cell assays in cytometry. Many measures and methods have been proposed and implemented to evaluate segmentation methods. However, computing the standard errors (SE) of the measures and their correlation coefficient is not described, and thus the statistical significance of performance differences between CIS algorithms cannot be assessed. We propose the total error rate (TER), a novel performance measure for segmenting all cells in the supervised evaluation. The TER statistically aggregates all misclassification error rates (MER) by taking cell sizes as weights. The MERs are for segmenting each single cell in the population. The TER is fully supported by the pairwise comparisons of MERs using 106 manually segmented ground-truth cells with different sizes and seven CIS algorithms taken from ImageJ. Further, the SE and 95% confidence interval (CI) of TER are computed based on the SE of MER that is calculated using the bootstrap method. An algorithm for computing the correlation coefficient of TERs between two CIS algorithms is also provided. Hence, the 95% CI error bars can be used to classify CIS algorithms. The SEs of TERs and their correlation coefficient can be employed to conduct the hypothesis testing, while the CIs overlap, to determine the statistical significance of the performance differences between CIS algorithms. A novel measure TER of CIS is proposed. The TER's SEs and correlation coefficient are computed. Thereafter, CIS algorithms can be evaluated and compared statistically by conducting the significance testing.
Integrated segmentation of cellular structures
NASA Astrophysics Data System (ADS)
Ajemba, Peter; Al-Kofahi, Yousef; Scott, Richard; Donovan, Michael; Fernandez, Gerardo
2011-03-01
Automatic segmentation of cellular structures is an essential step in image cytology and histology. Despite substantial progress, better automation and improvements in accuracy and adaptability to novel applications are needed. In applications utilizing multi-channel immuno-fluorescence images, challenges include misclassification of epithelial and stromal nuclei, irregular nuclei and cytoplasm boundaries, and over and under-segmentation of clustered nuclei. Variations in image acquisition conditions and artifacts from nuclei and cytoplasm images often confound existing algorithms in practice. In this paper, we present a robust and accurate algorithm for jointly segmenting cell nuclei and cytoplasm using a combination of ideas to reduce the aforementioned problems. First, an adaptive process that includes top-hat filtering, Eigenvalues-of-Hessian blob detection and distance transforms is used to estimate the inverse illumination field and correct for intensity non-uniformity in the nuclei channel. Next, a minimum-error-thresholding based binarization process and seed-detection combining Laplacian-of-Gaussian filtering constrained by a distance-map-based scale selection is used to identify candidate seeds for nuclei segmentation. The initial segmentation using a local maximum clustering algorithm is refined using a minimum-error-thresholding technique. Final refinements include an artifact removal process specifically targeted at lumens and other problematic structures and a systemic decision process to reclassify nuclei objects near the cytoplasm boundary as epithelial or stromal. Segmentation results were evaluated using 48 realistic phantom images with known ground-truth. The overall segmentation accuracy exceeds 94%. The algorithm was further tested on 981 images of actual prostate cancer tissue. The artifact removal process worked in 90% of cases. The algorithm has now been deployed in a high-volume histology analysis application.
Afshar, Yaser; Sbalzarini, Ivo F.
2016-01-01
Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 1010 pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments. PMID:27046144
Afshar, Yaser; Sbalzarini, Ivo F
2016-01-01
Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 10(10) pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments.
Reeves, Anthony P; Xie, Yiting; Liu, Shuang
2017-04-01
With the advent of fully automated image analysis and modern machine learning methods, there is a need for very large image datasets having documented segmentations for both computer algorithm training and evaluation. This paper presents a method and implementation for facilitating such datasets that addresses the critical issue of size scaling for algorithm validation and evaluation; current evaluation methods that are usually used in academic studies do not scale to large datasets. This method includes protocols for the documentation of many regions in very large image datasets; the documentation may be incrementally updated by new image data and by improved algorithm outcomes. This method has been used for 5 years in the context of chest health biomarkers from low-dose chest CT images that are now being used with increasing frequency in lung cancer screening practice. The lung scans are segmented into over 100 different anatomical regions, and the method has been applied to a dataset of over 20,000 chest CT images. Using this framework, the computer algorithms have been developed to achieve over 90% acceptable image segmentation on the complete dataset.
Fully convolutional network with cluster for semantic segmentation
NASA Astrophysics Data System (ADS)
Ma, Xiao; Chen, Zhongbi; Zhang, Jianlin
2018-04-01
At present, image semantic segmentation technology has been an active research topic for scientists in the field of computer vision and artificial intelligence. Especially, the extensive research of deep neural network in image recognition greatly promotes the development of semantic segmentation. This paper puts forward a method based on fully convolutional network, by cluster algorithm k-means. The cluster algorithm using the image's low-level features and initializing the cluster centers by the super-pixel segmentation is proposed to correct the set of points with low reliability, which are mistakenly classified in great probability, by the set of points with high reliability in each clustering regions. This method refines the segmentation of the target contour and improves the accuracy of the image segmentation.
NASA Technical Reports Server (NTRS)
Hall, Lawrence O.; Bensaid, Amine M.; Clarke, Laurence P.; Velthuizen, Robert P.; Silbiger, Martin S.; Bezdek, James C.
1992-01-01
Magnetic resonance (MR) brain section images are segmented and then synthetically colored to give visual representations of the original data with three approaches: the literal and approximate fuzzy c-means unsupervised clustering algorithms and a supervised computational neural network, a dynamic multilayered perception trained with the cascade correlation learning algorithm. Initial clinical results are presented on both normal volunteers and selected patients with brain tumors surrounded by edema. Supervised and unsupervised segmentation techniques provide broadly similar results. Unsupervised fuzzy algorithms were visually observed to show better segmentation when compared with raw image data for volunteer studies. However, for a more complex segmentation problem with tumor/edema or cerebrospinal fluid boundary, where the tissues have similar MR relaxation behavior, inconsistency in rating among experts was observed.
Automatic layer segmentation of H&E microscopic images of mice skin
NASA Astrophysics Data System (ADS)
Hussein, Saif; Selway, Joanne; Jassim, Sabah; Al-Assam, Hisham
2016-05-01
Mammalian skin is a complex organ composed of a variety of cells and tissue types. The automatic detection and quantification of changes in skin structures has a wide range of applications for biological research. To accurately segment and quantify nuclei, sebaceous gland, hair follicles, and other skin structures, there is a need for a reliable segmentation of different skin layers. This paper presents an efficient segmentation algorithm to segment the three main layers of mice skin, namely epidermis, dermis, and subcutaneous layers. It also segments the epidermis layer into two sub layers, basal and cornified layers. The proposed algorithm uses adaptive colour deconvolution technique on H&E stain images to separate different tissue structures, inter-modes and Otsu thresholding techniques were effectively combined to segment the layers. It then uses a set of morphological and logical operations on each layer to removing unwanted objects. A dataset of 7000 H&E microscopic images of mutant and wild type mice were used to evaluate the effectiveness of the algorithm. Experimental results examined by domain experts have confirmed the viability of the proposed algorithms.
Hatipoglu, Nuh; Bilgin, Gokhan
2017-10-01
In many computerized methods for cell detection, segmentation, and classification in digital histopathology that have recently emerged, the task of cell segmentation remains a chief problem for image processing in designing computer-aided diagnosis (CAD) systems. In research and diagnostic studies on cancer, pathologists can use CAD systems as second readers to analyze high-resolution histopathological images. Since cell detection and segmentation are critical for cancer grade assessments, cellular and extracellular structures should primarily be extracted from histopathological images. In response, we sought to identify a useful cell segmentation approach with histopathological images that uses not only prominent deep learning algorithms (i.e., convolutional neural networks, stacked autoencoders, and deep belief networks), but also spatial relationships, information of which is critical for achieving better cell segmentation results. To that end, we collected cellular and extracellular samples from histopathological images by windowing in small patches with various sizes. In experiments, the segmentation accuracies of the methods used improved as the window sizes increased due to the addition of local spatial and contextual information. Once we compared the effects of training sample size and influence of window size, results revealed that the deep learning algorithms, especially convolutional neural networks and partly stacked autoencoders, performed better than conventional methods in cell segmentation.
Improved fuzzy clustering algorithms in segmentation of DC-enhanced breast MRI.
Kannan, S R; Ramathilagam, S; Devi, Pandiyarajan; Sathya, A
2012-02-01
Segmentation of medical images is a difficult and challenging problem due to poor image contrast and artifacts that result in missing or diffuse organ/tissue boundaries. Many researchers have applied various techniques however fuzzy c-means (FCM) based algorithms is more effective compared to other methods. The objective of this work is to develop some robust fuzzy clustering segmentation systems for effective segmentation of DCE - breast MRI. This paper obtains the robust fuzzy clustering algorithms by incorporating kernel methods, penalty terms, tolerance of the neighborhood attraction, additional entropy term and fuzzy parameters. The initial centers are obtained using initialization algorithm to reduce the computation complexity and running time of proposed algorithms. Experimental works on breast images show that the proposed algorithms are effective to improve the similarity measurement, to handle large amount of noise, to have better results in dealing the data corrupted by noise, and other artifacts. The clustering results of proposed methods are validated using Silhouette Method.
Efficient threshold for volumetric segmentation
NASA Astrophysics Data System (ADS)
Burdescu, Dumitru D.; Brezovan, Marius; Stanescu, Liana; Stoica Spahiu, Cosmin; Ebanca, Daniel
2015-07-01
Image segmentation plays a crucial role in effective understanding of digital images. However, the research on the existence of general purpose segmentation algorithm that suits for variety of applications is still very much active. Among the many approaches in performing image segmentation, graph based approach is gaining popularity primarily due to its ability in reflecting global image properties. Volumetric image segmentation can simply result an image partition composed by relevant regions, but the most fundamental challenge in segmentation algorithm is to precisely define the volumetric extent of some object, which may be represented by the union of multiple regions. The aim in this paper is to present a new method to detect visual objects from color volumetric images and efficient threshold. We present a unified framework for volumetric image segmentation and contour extraction that uses a virtual tree-hexagonal structure defined on the set of the image voxels. The advantage of using a virtual tree-hexagonal network superposed over the initial image voxels is that it reduces the execution time and the memory space used, without losing the initial resolution of the image.
Saliency detection algorithm based on LSC-RC
NASA Astrophysics Data System (ADS)
Wu, Wei; Tian, Weiye; Wang, Ding; Luo, Xin; Wu, Yingfei; Zhang, Yu
2018-02-01
Image prominence is the most important region in an image, which can cause the visual attention and response of human beings. Preferentially allocating the computer resources for the image analysis and synthesis by the significant region is of great significance to improve the image area detecting. As a preprocessing of other disciplines in image processing field, the image prominence has widely applications in image retrieval and image segmentation. Among these applications, the super-pixel segmentation significance detection algorithm based on linear spectral clustering (LSC) has achieved good results. The significance detection algorithm proposed in this paper is better than the regional contrast ratio by replacing the method of regional formation in the latter with the linear spectral clustering image is super-pixel block. After combining with the latest depth learning method, the accuracy of the significant region detecting has a great promotion. At last, the superiority and feasibility of the super-pixel segmentation detection algorithm based on linear spectral clustering are proved by the comparative test.
Image segmentation algorithm based on improved PCNN
NASA Astrophysics Data System (ADS)
Chen, Hong; Wu, Chengdong; Yu, Xiaosheng; Wu, Jiahui
2017-11-01
A modified simplified Pulse Coupled Neural Network (PCNN) model is proposed in this article based on simplified PCNN. Some work have done to enrich this model, such as imposing restrictions items of the inputs, improving linking inputs and internal activity of PCNN. A self-adaptive parameter setting method of linking coefficient and threshold value decay time constant is proposed here, too. At last, we realized image segmentation algorithm for five pictures based on this proposed simplified PCNN model and PSO. Experimental results demonstrate that this image segmentation algorithm is much better than method of SPCNN and OTSU.
Gao, Bin; Li, Xiaoqing; Woo, Wai Lok; Tian, Gui Yun
2018-05-01
Thermographic inspection has been widely applied to non-destructive testing and evaluation with the capabilities of rapid, contactless, and large surface area detection. Image segmentation is considered essential for identifying and sizing defects. To attain a high-level performance, specific physics-based models that describe defects generation and enable the precise extraction of target region are of crucial importance. In this paper, an effective genetic first-order statistical image segmentation algorithm is proposed for quantitative crack detection. The proposed method automatically extracts valuable spatial-temporal patterns from unsupervised feature extraction algorithm and avoids a range of issues associated with human intervention in laborious manual selection of specific thermal video frames for processing. An internal genetic functionality is built into the proposed algorithm to automatically control the segmentation threshold to render enhanced accuracy in sizing the cracks. Eddy current pulsed thermography will be implemented as a platform to demonstrate surface crack detection. Experimental tests and comparisons have been conducted to verify the efficacy of the proposed method. In addition, a global quantitative assessment index F-score has been adopted to objectively evaluate the performance of different segmentation algorithms.
Fast segmentation of stained nuclei in terabyte-scale, time resolved 3D microscopy image stacks.
Stegmaier, Johannes; Otte, Jens C; Kobitski, Andrei; Bartschat, Andreas; Garcia, Ariel; Nienhaus, G Ulrich; Strähle, Uwe; Mikut, Ralf
2014-01-01
Automated analysis of multi-dimensional microscopy images has become an integral part of modern research in life science. Most available algorithms that provide sufficient segmentation quality, however, are infeasible for a large amount of data due to their high complexity. In this contribution we present a fast parallelized segmentation method that is especially suited for the extraction of stained nuclei from microscopy images, e.g., of developing zebrafish embryos. The idea is to transform the input image based on gradient and normal directions in the proximity of detected seed points such that it can be handled by straightforward global thresholding like Otsu's method. We evaluate the quality of the obtained segmentation results on a set of real and simulated benchmark images in 2D and 3D and show the algorithm's superior performance compared to other state-of-the-art algorithms. We achieve an up to ten-fold decrease in processing times, allowing us to process large data sets while still providing reasonable segmentation results.
Blood vessel segmentation algorithms - Review of methods, datasets and evaluation metrics.
Moccia, Sara; De Momi, Elena; El Hadji, Sara; Mattos, Leonardo S
2018-05-01
Blood vessel segmentation is a topic of high interest in medical image analysis since the analysis of vessels is crucial for diagnosis, treatment planning and execution, and evaluation of clinical outcomes in different fields, including laryngology, neurosurgery and ophthalmology. Automatic or semi-automatic vessel segmentation can support clinicians in performing these tasks. Different medical imaging techniques are currently used in clinical practice and an appropriate choice of the segmentation algorithm is mandatory to deal with the adopted imaging technique characteristics (e.g. resolution, noise and vessel contrast). This paper aims at reviewing the most recent and innovative blood vessel segmentation algorithms. Among the algorithms and approaches considered, we deeply investigated the most novel blood vessel segmentation including machine learning, deformable model, and tracking-based approaches. This paper analyzes more than 100 articles focused on blood vessel segmentation methods. For each analyzed approach, summary tables are presented reporting imaging technique used, anatomical region and performance measures employed. Benefits and disadvantages of each method are highlighted. Despite the constant progress and efforts addressed in the field, several issues still need to be overcome. A relevant limitation consists in the segmentation of pathological vessels. Unfortunately, not consistent research effort has been addressed to this issue yet. Research is needed since some of the main assumptions made for healthy vessels (such as linearity and circular cross-section) do not hold in pathological tissues, which on the other hand require new vessel model formulations. Moreover, image intensity drops, noise and low contrast still represent an important obstacle for the achievement of a high-quality enhancement. This is particularly true for optical imaging, where the image quality is usually lower in terms of noise and contrast with respect to magnetic resonance and computer tomography angiography. No single segmentation approach is suitable for all the different anatomical region or imaging modalities, thus the primary goal of this review was to provide an up to date source of information about the state of the art of the vessel segmentation algorithms so that the most suitable methods can be chosen according to the specific task. Copyright © 2018 Elsevier B.V. All rights reserved.
Active mask segmentation of fluorescence microscope images.
Srinivasa, Gowri; Fickus, Matthew C; Guo, Yusong; Linstedt, Adam D; Kovacević, Jelena
2009-08-01
We propose a new active mask algorithm for the segmentation of fluorescence microscope images of punctate patterns. It combines the (a) flexibility offered by active-contour methods, (b) speed offered by multiresolution methods, (c) smoothing offered by multiscale methods, and (d) statistical modeling offered by region-growing methods into a fast and accurate segmentation tool. The framework moves from the idea of the "contour" to that of "inside and outside," or masks, allowing for easy multidimensional segmentation. It adapts to the topology of the image through the use of multiple masks. The algorithm is almost invariant under initialization, allowing for random initialization, and uses a few easily tunable parameters. Experiments show that the active mask algorithm matches the ground truth well and outperforms the algorithm widely used in fluorescence microscopy, seeded watershed, both qualitatively, as well as quantitatively.
Retinal vessel segmentation on SLO image
Xu, Juan; Ishikawa, Hiroshi; Wollstein, Gadi; Schuman, Joel S.
2010-01-01
A scanning laser ophthalmoscopy (SLO) image, taken from optical coherence tomography (OCT), usually has lower global/local contrast and more noise compared to the traditional retinal photograph, which makes the vessel segmentation challenging work. A hybrid algorithm is proposed to efficiently solve these problems by fusing several designed methods, taking the advantages of each method and reducing the error measurements. The algorithm has several steps consisting of image preprocessing, thresholding probe and weighted fusing. Four different methods are first designed to transform the SLO image into feature response images by taking different combinations of matched filter, contrast enhancement and mathematical morphology operators. A thresholding probe algorithm is then applied on those response images to obtain four vessel maps. Weighted majority opinion is used to fuse these vessel maps and generate a final vessel map. The experimental results showed that the proposed hybrid algorithm could successfully segment the blood vessels on SLO images, by detecting the major and small vessels and suppressing the noises. The algorithm showed substantial potential in various clinical applications. The use of this method can be also extended to medical image registration based on blood vessel location. PMID:19163149
Weights and topology: a study of the effects of graph construction on 3D image segmentation.
Grady, Leo; Jolly, Marie-Pierre
2008-01-01
Graph-based algorithms have become increasingly popular for medical image segmentation. The fundamental process for each of these algorithms is to use the image content to generate a set of weights for the graph and then set conditions for an optimal partition of the graph with respect to these weights. To date, the heuristics used for generating the weighted graphs from image intensities have largely been ignored, while the primary focus of attention has been on the details of providing the partitioning conditions. In this paper we empirically study the effects of graph connectivity and weighting function on the quality of the segmentation results. To control for algorithm-specific effects, we employ both the Graph Cuts and Random Walker algorithms in our experiments.
Graph-based surface reconstruction from stereo pairs using image segmentation
NASA Astrophysics Data System (ADS)
Bleyer, Michael; Gelautz, Margrit
2005-01-01
This paper describes a novel stereo matching algorithm for epipolar rectified images. The method applies colour segmentation on the reference image. The use of segmentation makes the algorithm capable of handling large untextured regions, estimating precise depth boundaries and propagating disparity information to occluded regions, which are challenging tasks for conventional stereo methods. We model disparity inside a segment by a planar equation. Initial disparity segments are clustered to form a set of disparity layers, which are planar surfaces that are likely to occur in the scene. Assignments of segments to disparity layers are then derived by minimization of a global cost function via a robust optimization technique that employs graph cuts. The cost function is defined on the pixel level, as well as on the segment level. While the pixel level measures the data similarity based on the current disparity map and detects occlusions symmetrically in both views, the segment level propagates the segmentation information and incorporates a smoothness term. New planar models are then generated based on the disparity layers' spatial extents. Results obtained for benchmark and self-recorded image pairs indicate that the proposed method is able to compete with the best-performing state-of-the-art algorithms.
Ji, Hongwei; He, Jiangping; Yang, Xin; Deklerck, Rudi; Cornelis, Jan
2013-05-01
In this paper, we present an autocontext model(ACM)-based automatic liver segmentation algorithm, which combines ACM, multiatlases, and mean-shift techniques to segment liver from 3-D CT images. Our algorithm is a learning-based method and can be divided into two stages. At the first stage, i.e., the training stage, ACM is performed to learn a sequence of classifiers in each atlas space (based on each atlas and other aligned atlases). With the use of multiple atlases, multiple sequences of ACM-based classifiers are obtained. At the second stage, i.e., the segmentation stage, the test image will be segmented in each atlas space by applying each sequence of ACM-based classifiers. The final segmentation result will be obtained by fusing segmentation results from all atlas spaces via a multiclassifier fusion technique. Specially, in order to speed up segmentation, given a test image, we first use an improved mean-shift algorithm to perform over-segmentation and then implement the region-based image labeling instead of the original inefficient pixel-based image labeling. The proposed method is evaluated on the datasets of MICCAI 2007 liver segmentation challenge. The experimental results show that the average volume overlap error and the average surface distance achieved by our method are 8.3% and 1.5 m, respectively, which are comparable to the results reported in the existing state-of-the-art work on liver segmentation.
Karami, Elham; Wang, Yong; Gaede, Stewart; Lee, Ting-Yim; Samani, Abbas
2016-01-01
Abstract. In-depth understanding of the diaphragm’s anatomy and physiology has been of great interest to the medical community, as it is the most important muscle of the respiratory system. While noncontrast four-dimensional (4-D) computed tomography (CT) imaging provides an interesting opportunity for effective acquisition of anatomical and/or functional information from a single modality, segmenting the diaphragm in such images is very challenging not only because of the diaphragm’s lack of image contrast with its surrounding organs but also because of respiration-induced motion artifacts in 4-D CT images. To account for such limitations, we present an automatic segmentation algorithm, which is based on a priori knowledge of diaphragm anatomy. The novelty of the algorithm lies in using the diaphragm’s easy-to-segment contacting organs—including the lungs, heart, aorta, and ribcage—to guide the diaphragm’s segmentation. Obtained results indicate that average mean distance to the closest point between diaphragms segmented using the proposed technique and corresponding manual segmentation is 2.55±0.39 mm, which is favorable. An important feature of the proposed technique is that it is the first algorithm to delineate the entire diaphragm. Such delineation facilitates applications, where the diaphragm boundary conditions are required such as biomechanical modeling for in-depth understanding of the diaphragm physiology. PMID:27921072
Web-accessible cervigram automatic segmentation tool
NASA Astrophysics Data System (ADS)
Xue, Zhiyun; Antani, Sameer; Long, L. Rodney; Thoma, George R.
2010-03-01
Uterine cervix image analysis is of great importance to the study of uterine cervix cancer, which is among the leading cancers affecting women worldwide. In this paper, we describe our proof-of-concept, Web-accessible system for automated segmentation of significant tissue regions in uterine cervix images, which also demonstrates our research efforts toward promoting collaboration between engineers and physicians for medical image analysis projects. Our design and implementation unifies the merits of two commonly used languages, MATLAB and Java. It circumvents the heavy workload of recoding the sophisticated segmentation algorithms originally developed in MATLAB into Java while allowing remote users who are not experienced programmers and algorithms developers to apply those processing methods to their own cervicographic images and evaluate the algorithms. Several other practical issues of the systems are also discussed, such as the compression of images and the format of the segmentation results.
Vessel Enhancement and Segmentation of 4D CT Lung Image Using Stick Tensor Voting
NASA Astrophysics Data System (ADS)
Cong, Tan; Hao, Yang; Jingli, Shi; Xuan, Yang
2016-12-01
Vessel enhancement and segmentation plays a significant role in medical image analysis. This paper proposes a novel vessel enhancement and segmentation method for 4D CT lung image using stick tensor voting algorithm, which focuses on addressing the vessel distortion issue of vessel enhancement diffusion (VED) method. Furthermore, the enhanced results are easily segmented using level-set segmentation. In our method, firstly, vessels are filtered using Frangi's filter to reduce intrapulmonary noises and extract rough blood vessels. Secondly, stick tensor voting algorithm is employed to estimate the correct direction along the vessel. Then the estimated direction along the vessel is used as the anisotropic diffusion direction of vessel in VED algorithm, which makes the intensity diffusion of points locating at the vessel wall be consistent with the directions of vessels and enhance the tubular features of vessels. Finally, vessels can be extracted from the enhanced image by applying level-set segmentation method. A number of experiments results show that our method outperforms traditional VED method in vessel enhancement and results in satisfied segmented vessels.
Narayanan, Shrikanth
2009-01-01
We describe a method for unsupervised region segmentation of an image using its spatial frequency domain representation. The algorithm was designed to process large sequences of real-time magnetic resonance (MR) images containing the 2-D midsagittal view of a human vocal tract airway. The segmentation algorithm uses an anatomically informed object model, whose fit to the observed image data is hierarchically optimized using a gradient descent procedure. The goal of the algorithm is to automatically extract the time-varying vocal tract outline and the position of the articulators to facilitate the study of the shaping of the vocal tract during speech production. PMID:19244005
Shahedi, Maysam; Halicek, Martin; Guo, Rongrong; Zhang, Guoyi; Schuster, David M; Fei, Baowei
2018-06-01
Prostate segmentation in computed tomography (CT) images is useful for treatment planning and procedure guidance such as external beam radiotherapy and brachytherapy. However, because of the low, soft tissue contrast of CT images, manual segmentation of the prostate is a time-consuming task with high interobserver variation. In this study, we proposed a semiautomated, three-dimensional (3D) segmentation for prostate CT images using shape and texture analysis and we evaluated the method against manual reference segmentations. The prostate gland usually has a globular shape with a smoothly curved surface, and its shape could be accurately modeled or reconstructed having a limited number of well-distributed surface points. In a training dataset, using the prostate gland centroid point as the origin of a coordination system, we defined an intersubject correspondence between the prostate surface points based on the spherical coordinates. We applied this correspondence to generate a point distribution model for prostate shape using principal component analysis and to study the local texture difference between prostate and nonprostate tissue close to the different prostate surface subregions. We used the learned shape and texture characteristics of the prostate in CT images and then combined them with user inputs to segment a new image. We trained our segmentation algorithm using 23 CT images and tested the algorithm on two sets of 10 nonbrachytherapy and 37 postlow dose rate brachytherapy CT images. We used a set of error metrics to evaluate the segmentation results using two experts' manual reference segmentations. For both nonbrachytherapy and post-brachytherapy image sets, the average measured Dice similarity coefficient (DSC) was 88% and the average mean absolute distance (MAD) was 1.9 mm. The average measured differences between the two experts on both datasets were 92% (DSC) and 1.1 mm (MAD). The proposed, semiautomatic segmentation algorithm showed a fast, robust, and accurate performance for 3D prostate segmentation of CT images, specifically when no previous, intrapatient information, that is, previously segmented images, was available. The accuracy of the algorithm is comparable to the best performance results reported in the literature and approaches the interexpert variability observed in manual segmentation. © 2018 American Association of Physicists in Medicine.
Ahmadian, Alireza; Ay, Mohammad R; Bidgoli, Javad H; Sarkar, Saeed; Zaidi, Habib
2008-10-01
Oral contrast is usually administered in most X-ray computed tomography (CT) examinations of the abdomen and the pelvis as it allows more accurate identification of the bowel and facilitates the interpretation of abdominal and pelvic CT studies. However, the misclassification of contrast medium with high-density bone in CT-based attenuation correction (CTAC) is known to generate artifacts in the attenuation map (mumap), thus resulting in overcorrection for attenuation of positron emission tomography (PET) images. In this study, we developed an automated algorithm for segmentation and classification of regions containing oral contrast medium to correct for artifacts in CT-attenuation-corrected PET images using the segmented contrast correction (SCC) algorithm. The proposed algorithm consists of two steps: first, high CT number object segmentation using combined region- and boundary-based segmentation and second, object classification to bone and contrast agent using a knowledge-based nonlinear fuzzy classifier. Thereafter, the CT numbers of pixels belonging to the region classified as contrast medium are substituted with their equivalent effective bone CT numbers using the SCC algorithm. The generated CT images are then down-sampled followed by Gaussian smoothing to match the resolution of PET images. A piecewise calibration curve was then used to convert CT pixel values to linear attenuation coefficients at 511 keV. The visual assessment of segmented regions performed by an experienced radiologist confirmed the accuracy of the segmentation and classification algorithms for delineation of contrast-enhanced regions in clinical CT images. The quantitative analysis of generated mumaps of 21 clinical CT colonoscopy datasets showed an overestimation ranging between 24.4% and 37.3% in the 3D-classified regions depending on their volume and the concentration of contrast medium. Two PET/CT studies known to be problematic demonstrated the applicability of the technique in clinical setting. More importantly, correction of oral contrast artifacts improved the readability and interpretation of the PET scan and showed substantial decrease of the SUV (104.3%) after correction. An automated segmentation algorithm for classification of irregular shapes of regions containing contrast medium was developed for wider applicability of the SCC algorithm for correction of oral contrast artifacts during the CTAC procedure. The algorithm is being refined and further validated in clinical setting.
Algorithmic structural segmentation of defective particle systems: a lithium-ion battery study.
Westhoff, D; Finegan, D P; Shearing, P R; Schmidt, V
2018-04-01
We describe a segmentation algorithm that is able to identify defects (cracks, holes and breakages) in particle systems. This information is used to segment image data into individual particles, where each particle and its defects are identified accordingly. We apply the method to particle systems that appear in Li-ion battery electrodes. First, the algorithm is validated using simulated data from a stochastic 3D microstructure model, where we have full information about defects. This allows us to quantify the accuracy of the segmentation result. Then we show that the algorithm can successfully be applied to tomographic image data from real battery anodes and cathodes, which are composed of particle systems with very different morpohological properties. Finally, we show how the results of the segmentation algorithm can be used for structural analysis. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Chen, Hao; Zhang, Xinggan; Bai, Yechao; Tang, Lan
2017-01-01
In inverse synthetic aperture radar (ISAR) imaging, the migration through resolution cells (MTRCs) will occur when the rotation angle of the moving target is large, thereby degrading image resolution. To solve this problem, an ISAR imaging method based on segmented preprocessing is proposed. In this method, the echoes of large rotating target are divided into several small segments, and every segment can generate a low-resolution image without MTRCs. Then, each low-resolution image is rotated back to the original position. After image registration and phase compensation, a high-resolution image can be obtained. Simulation and real experiments show that the proposed algorithm can deal with the radar system with different range and cross-range resolutions and significantly compensate the MTRCs.
On the importance of FIB-SEM specific segmentation algorithms for porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salzer, Martin, E-mail: martin.salzer@uni-ulm.de; Thiele, Simon, E-mail: simon.thiele@imtek.uni-freiburg.de; Zengerle, Roland, E-mail: zengerle@imtek.uni-freiburg.de
2014-09-15
A new algorithmic approach to segmentation of highly porous three dimensional image data gained by focused ion beam tomography is described which extends the key-principle of local threshold backpropagation described in Salzer et al. (2012). The technique of focused ion beam tomography has shown to be capable of imaging the microstructure of functional materials. In order to perform a quantitative analysis on the corresponding microstructure a segmentation task needs to be performed. However, algorithmic segmentation of images obtained with focused ion beam tomography is a challenging problem for highly porous materials if filling the pore phase, e.g. with epoxy resin,more » is difficult. The gray intensities of individual voxels are not sufficient to determine the phase represented by them and usual thresholding methods are not applicable. We thus propose a new approach to segmentation that pays respect to the specifics of the imaging process of focused ion beam tomography. As an application of our approach, the segmentation of three dimensional images for a cathode material used in polymer electrolyte membrane fuel cells is discussed. We show that our approach preserves significantly more of the original nanostructure than a thresholding approach. - Highlights: • We describe a new approach to the segmentation of FIB-SEM images of porous media. • The first and last occurrences of structures are detected by analysing the z-profiles. • The algorithm is validated by comparing it to a manual segmentation. • The new approach shows significantly less artifacts than a thresholding approach. • A structural analysis also shows improved results for the obtained microstructure.« less
Ciesielski, Krzysztof Chris; Udupa, Jayaram K.
2011-01-01
In the current vast image segmentation literature, there seems to be considerable redundancy among algorithms, while there is a serious lack of methods that would allow their theoretical comparison to establish their similarity, equivalence, or distinctness. In this paper, we make an attempt to fill this gap. To accomplish this goal, we argue that: (1) every digital segmentation algorithm A should have a well defined continuous counterpart MA, referred to as its model, which constitutes an asymptotic of A when image resolution goes to infinity; (2) the equality of two such models MA and MA′ establishes a theoretical (asymptotic) equivalence of their digital counterparts A and A′. Such a comparison is of full theoretical value only when, for each involved algorithm A, its model MA is proved to be an asymptotic of A. So far, such proofs do not appear anywhere in the literature, even in the case of algorithms introduced as digitizations of continuous models, like level set segmentation algorithms. The main goal of this article is to explore a line of investigation for formally pairing the digital segmentation algorithms with their asymptotic models, justifying such relations with mathematical proofs, and using the results to compare the segmentation algorithms in this general theoretical framework. As a first step towards this general goal, we prove here that the gradient based thresholding model M∇ is the asymptotic for the fuzzy connectedness Udupa and Samarasekera segmentation algorithm used with gradient based affinity A∇. We also argue that, in a sense, M∇ is the asymptotic for the original front propagation level set algorithm of Malladi, Sethian, and Vemuri, thus establishing a theoretical equivalence between these two specific algorithms. Experimental evidence of this last equivalence is also provided. PMID:21442014
NASA Astrophysics Data System (ADS)
He, Nana; Zhang, Xiaolong; Zhao, Juanjuan; Zhao, Huilan; Qiang, Yan
2017-07-01
While the popular thin layer scanning technology of spiral CT has helped to improve diagnoses of lung diseases, the large volumes of scanning images produced by the technology also dramatically increase the load of physicians in lesion detection. Computer-aided diagnosis techniques like lesions segmentation in thin CT sequences have been developed to address this issue, but it remains a challenge to achieve high segmentation efficiency and accuracy without much involvement of human manual intervention. In this paper, we present our research on automated segmentation of lung parenchyma with an improved geodesic active contour model that is geodesic active contour model based on similarity (GACBS). Combining spectral clustering algorithm based on Nystrom (SCN) with GACBS, this algorithm first extracts key image slices, then uses these slices to generate an initial contour of pulmonary parenchyma of un-segmented slices with an interpolation algorithm, and finally segments lung parenchyma of un-segmented slices. Experimental results show that the segmentation results generated by our method are close to what manual segmentation can produce, with an average volume overlap ratio of 91.48%.
On a methodology for robust segmentation of nonideal iris images.
Schmid, Natalia A; Zuo, Jinyu
2010-06-01
Iris biometric is one of the most reliable biometrics with respect to performance. However, this reliability is a function of the ideality of the data. One of the most important steps in processing nonideal data is reliable and precise segmentation of the iris pattern from remaining background. In this paper, a segmentation methodology that aims at compensating various nonidealities contained in iris images during segmentation is proposed. The virtue of this methodology lies in its capability to reliably segment nonideal imagery that is simultaneously affected with such factors as specular reflection, blur, lighting variation, occlusion, and off-angle images. We demonstrate the robustness of our segmentation methodology by evaluating ideal and nonideal data sets, namely, the Chinese Academy of Sciences iris data version 3 interval subdirectory, the iris challenge evaluation data, the West Virginia University (WVU) data, and the WVU off-angle data. Furthermore, we compare our performance to that of our implementation of Camus and Wildes's algorithm and Masek's algorithm. We demonstrate considerable improvement in segmentation performance over the formerly mentioned algorithms.
Panda, Rashmi; Puhan, N B; Panda, Ganapati
2018-02-01
Accurate optic disc (OD) segmentation is an important step in obtaining cup-to-disc ratio-based glaucoma screening using fundus imaging. It is a challenging task because of the subtle OD boundary, blood vessel occlusion and intensity inhomogeneity. In this Letter, the authors propose an improved version of the random walk algorithm for OD segmentation to tackle such challenges. The algorithm incorporates the mean curvature and Gabor texture energy features to define the new composite weight function to compute the edge weights. Unlike the deformable model-based OD segmentation techniques, the proposed algorithm remains unaffected by curve initialisation and local energy minima problem. The effectiveness of the proposed method is verified with DRIVE, DIARETDB1, DRISHTI-GS and MESSIDOR database images using the performance measures such as mean absolute distance, overlapping ratio, dice coefficient, sensitivity, specificity and precision. The obtained OD segmentation results and quantitative performance measures show robustness and superiority of the proposed algorithm in handling the complex challenges in OD segmentation.
A research of road centerline extraction algorithm from high resolution remote sensing images
NASA Astrophysics Data System (ADS)
Zhang, Yushan; Xu, Tingfa
2017-09-01
Satellite remote sensing technology has become one of the most effective methods for land surface monitoring in recent years, due to its advantages such as short period, large scale and rich information. Meanwhile, road extraction is an important field in the applications of high resolution remote sensing images. An intelligent and automatic road extraction algorithm with high precision has great significance for transportation, road network updating and urban planning. The fuzzy c-means (FCM) clustering segmentation algorithms have been used in road extraction, but the traditional algorithms did not consider spatial information. An improved fuzzy C-means clustering algorithm combined with spatial information (SFCM) is proposed in this paper, which is proved to be effective for noisy image segmentation. Firstly, the image is segmented using the SFCM. Secondly, the segmentation result is processed by mathematical morphology to remover the joint region. Thirdly, the road centerlines are extracted by morphology thinning and burr trimming. The average integrity of the centerline extraction algorithm is 97.98%, the average accuracy is 95.36% and the average quality is 93.59%. Experimental results show that the proposed method in this paper is effective for road centerline extraction.
Myocardial scar segmentation from magnetic resonance images using convolutional neural network
NASA Astrophysics Data System (ADS)
Zabihollahy, Fatemeh; White, James A.; Ukwatta, Eranga
2018-02-01
Accurate segmentation of the myocardial fibrosis or scar may provide important advancements for the prediction and management of malignant ventricular arrhythmias in patients with cardiovascular disease. In this paper, we propose a semi-automated method for segmentation of myocardial scar from late gadolinium enhancement magnetic resonance image (LGE-MRI) using a convolutional neural network (CNN). In contrast to image intensitybased methods, CNN-based algorithms have the potential to improve the accuracy of scar segmentation through the creation of high-level features from a combination of convolutional, detection and pooling layers. Our developed algorithm was trained using 2,336,703 image patches extracted from 420 slices of five 3D LGE-MR datasets, then validated on 2,204,178 patches from a testing dataset of seven 3D LGE-MR images including 624 slices, all obtained from patients with chronic myocardial infarction. For evaluation of the algorithm, we compared the algorithmgenerated segmentations to manual delineations by experts. Our CNN-based method reported an average Dice similarity coefficient (DSC), precision, and recall of 94.50 +/- 3.62%, 96.08 +/- 3.10%, and 93.96 +/- 3.75% as the accuracy of segmentation, respectively. As compared to several intensity threshold-based methods for scar segmentation, the results of our developed method have a greater agreement with manual expert segmentation.
Ji, Zexuan; Chen, Qiang; Niu, Sijie; Leng, Theodore; Rubin, Daniel L.
2018-01-01
Purpose To automatically and accurately segment geographic atrophy (GA) in spectral-domain optical coherence tomography (SD-OCT) images by constructing a voting system with deep neural networks without the use of retinal layer segmentation. Methods An automatic GA segmentation method for SD-OCT images based on the deep network was constructed. The structure of the deep network was composed of five layers, including one input layer, three hidden layers, and one output layer. During the training phase, the labeled A-scans with 1024 features were directly fed into the network as the input layer to obtain the deep representations. Then a soft-max classifier was trained to determine the label of each individual pixel. Finally, a voting decision strategy was used to refine the segmentation results among 10 trained models. Results Two image data sets with GA were used to evaluate the model. For the first dataset, our algorithm obtained a mean overlap ratio (OR) 86.94% ± 8.75%, absolute area difference (AAD) 11.49% ± 11.50%, and correlation coefficients (CC) 0.9857; for the second dataset, the mean OR, AAD, and CC of the proposed method were 81.66% ± 10.93%, 8.30% ± 9.09%, and 0.9952, respectively. The proposed algorithm was capable of improving over 5% and 10% segmentation accuracy, respectively, when compared with several state-of-the-art algorithms on two data sets. Conclusions Without retinal layer segmentation, the proposed algorithm could produce higher segmentation accuracy and was more stable when compared with state-of-the-art methods that relied on retinal layer segmentation results. Our model may provide reliable GA segmentations from SD-OCT images and be useful in the clinical diagnosis of advanced nonexudative AMD. Translational Relevance Based on the deep neural networks, this study presents an accurate GA segmentation method for SD-OCT images without using any retinal layer segmentation results, and may contribute to improved understanding of advanced nonexudative AMD. PMID:29302382
Ji, Zexuan; Chen, Qiang; Niu, Sijie; Leng, Theodore; Rubin, Daniel L
2018-01-01
To automatically and accurately segment geographic atrophy (GA) in spectral-domain optical coherence tomography (SD-OCT) images by constructing a voting system with deep neural networks without the use of retinal layer segmentation. An automatic GA segmentation method for SD-OCT images based on the deep network was constructed. The structure of the deep network was composed of five layers, including one input layer, three hidden layers, and one output layer. During the training phase, the labeled A-scans with 1024 features were directly fed into the network as the input layer to obtain the deep representations. Then a soft-max classifier was trained to determine the label of each individual pixel. Finally, a voting decision strategy was used to refine the segmentation results among 10 trained models. Two image data sets with GA were used to evaluate the model. For the first dataset, our algorithm obtained a mean overlap ratio (OR) 86.94% ± 8.75%, absolute area difference (AAD) 11.49% ± 11.50%, and correlation coefficients (CC) 0.9857; for the second dataset, the mean OR, AAD, and CC of the proposed method were 81.66% ± 10.93%, 8.30% ± 9.09%, and 0.9952, respectively. The proposed algorithm was capable of improving over 5% and 10% segmentation accuracy, respectively, when compared with several state-of-the-art algorithms on two data sets. Without retinal layer segmentation, the proposed algorithm could produce higher segmentation accuracy and was more stable when compared with state-of-the-art methods that relied on retinal layer segmentation results. Our model may provide reliable GA segmentations from SD-OCT images and be useful in the clinical diagnosis of advanced nonexudative AMD. Based on the deep neural networks, this study presents an accurate GA segmentation method for SD-OCT images without using any retinal layer segmentation results, and may contribute to improved understanding of advanced nonexudative AMD.
Automated measurements of metabolic tumor volume and metabolic parameters in lung PET/CT imaging
NASA Astrophysics Data System (ADS)
Orologas, F.; Saitis, P.; Kallergi, M.
2017-11-01
Patients with lung tumors or inflammatory lung disease could greatly benefit in terms of treatment and follow-up by PET/CT quantitative imaging, namely measurements of metabolic tumor volume (MTV), standardized uptake values (SUVs) and total lesion glycolysis (TLG). The purpose of this study was the development of an unsupervised or partially supervised algorithm using standard image processing tools for measuring MTV, SUV, and TLG from lung PET/CT scans. Automated metabolic lesion volume and metabolic parameter measurements were achieved through a 5 step algorithm: (i) The segmentation of the lung areas on the CT slices, (ii) the registration of the CT segmented lung regions on the PET images to define the anatomical boundaries of the lungs on the functional data, (iii) the segmentation of the regions of interest (ROIs) on the PET images based on adaptive thresholding and clinical criteria, (iv) the estimation of the number of pixels and pixel intensities in the PET slices of the segmented ROIs, (v) the estimation of MTV, SUVs, and TLG from the previous step and DICOM header data. Whole body PET/CT scans of patients with sarcoidosis were used for training and testing the algorithm. Lung area segmentation on the CT slices was better achieved with semi-supervised techniques that reduced false positive detections significantly. Lung segmentation results agreed with the lung volumes published in the literature while the agreement between experts and algorithm in the segmentation of the lesions was around 88%. Segmentation results depended on the image resolution selected for processing. The clinical parameters, SUV (either mean or max or peak) and TLG estimated by the segmented ROIs and DICOM header data provided a way to correlate imaging data to clinical and demographic data. In conclusion, automated MTV, SUV, and TLG measurements offer powerful analysis tools in PET/CT imaging of the lungs. Custom-made algorithms are often a better approach than the manufacturer’s general analysis software at much lower cost. Relatively simple processing techniques could lead to customized, unsupervised or partially supervised methods that can successfully perform the desirable analysis and adapt to the specific disease requirements.
Fizeau interferometric cophasing of segmented mirrors: experimental validation.
Cheetham, Anthony; Cvetojevic, Nick; Norris, Barnaby; Sivaramakrishnan, Anand; Tuthill, Peter
2014-06-02
We present an optical testbed demonstration of the Fizeau Interferometric Cophasing of Segmented Mirrors (FICSM) algorithm. FICSM allows a segmented mirror to be phased with a science imaging detector and three filters (selected among the normal science complement). It requires no specialised, dedicated wavefront sensing hardware. Applying random piston and tip/tilt aberrations of more than 5 wavelengths to a small segmented mirror array produced an initial unphased point spread function with an estimated Strehl ratio of 9% that served as the starting point for our phasing algorithm. After using the FICSM algorithm to cophase the pupil, we estimated a Strehl ratio of 94% based on a comparison between our data and simulated encircled energy metrics. Our final image quality is limited by the accuracy of our segment actuation, which yields a root mean square (RMS) wavefront error of 25 nm. This is the first hardware demonstration of coarse and fine phasing an 18-segment pupil with the James Webb Space Telescope (JWST) geometry using a single algorithm. FICSM can be implemented on JWST using any of its scientic imaging cameras making it useful as a fall-back in the event that accepted phasing strategies encounter problems. We present an operational sequence that would co-phase such an 18-segment primary in 3 sequential iterations of the FICSM algorithm. Similar sequences can be readily devised for any segmented mirror.
Reeves, Anthony P.; Xie, Yiting; Liu, Shuang
2017-01-01
Abstract. With the advent of fully automated image analysis and modern machine learning methods, there is a need for very large image datasets having documented segmentations for both computer algorithm training and evaluation. This paper presents a method and implementation for facilitating such datasets that addresses the critical issue of size scaling for algorithm validation and evaluation; current evaluation methods that are usually used in academic studies do not scale to large datasets. This method includes protocols for the documentation of many regions in very large image datasets; the documentation may be incrementally updated by new image data and by improved algorithm outcomes. This method has been used for 5 years in the context of chest health biomarkers from low-dose chest CT images that are now being used with increasing frequency in lung cancer screening practice. The lung scans are segmented into over 100 different anatomical regions, and the method has been applied to a dataset of over 20,000 chest CT images. Using this framework, the computer algorithms have been developed to achieve over 90% acceptable image segmentation on the complete dataset. PMID:28612037
Object Segmentation and Ground Truth in 3D Embryonic Imaging.
Rajasekaran, Bhavna; Uriu, Koichiro; Valentin, Guillaume; Tinevez, Jean-Yves; Oates, Andrew C
2016-01-01
Many questions in developmental biology depend on measuring the position and movement of individual cells within developing embryos. Yet, tools that provide this data are often challenged by high cell density and their accuracy is difficult to measure. Here, we present a three-step procedure to address this problem. Step one is a novel segmentation algorithm based on image derivatives that, in combination with selective post-processing, reliably and automatically segments cell nuclei from images of densely packed tissue. Step two is a quantitative validation using synthetic images to ascertain the efficiency of the algorithm with respect to signal-to-noise ratio and object density. Finally, we propose an original method to generate reliable and experimentally faithful ground truth datasets: Sparse-dense dual-labeled embryo chimeras are used to unambiguously measure segmentation errors within experimental data. Together, the three steps outlined here establish a robust, iterative procedure to fine-tune image analysis algorithms and microscopy settings associated with embryonic 3D image data sets.
Object Segmentation and Ground Truth in 3D Embryonic Imaging
Rajasekaran, Bhavna; Uriu, Koichiro; Valentin, Guillaume; Tinevez, Jean-Yves; Oates, Andrew C.
2016-01-01
Many questions in developmental biology depend on measuring the position and movement of individual cells within developing embryos. Yet, tools that provide this data are often challenged by high cell density and their accuracy is difficult to measure. Here, we present a three-step procedure to address this problem. Step one is a novel segmentation algorithm based on image derivatives that, in combination with selective post-processing, reliably and automatically segments cell nuclei from images of densely packed tissue. Step two is a quantitative validation using synthetic images to ascertain the efficiency of the algorithm with respect to signal-to-noise ratio and object density. Finally, we propose an original method to generate reliable and experimentally faithful ground truth datasets: Sparse-dense dual-labeled embryo chimeras are used to unambiguously measure segmentation errors within experimental data. Together, the three steps outlined here establish a robust, iterative procedure to fine-tune image analysis algorithms and microscopy settings associated with embryonic 3D image data sets. PMID:27332860
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jinzhong; Aristophanous, Michalis, E-mail: MAristophanous@mdanderson.org; Beadle, Beth M.
2015-09-15
Purpose: To develop an automatic segmentation algorithm integrating imaging information from computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) to delineate target volume in head and neck cancer radiotherapy. Methods: Eleven patients with unresectable disease at the tonsil or base of tongue who underwent MRI, CT, and PET/CT within two months before the start of radiotherapy or chemoradiotherapy were recruited for the study. For each patient, PET/CT and T1-weighted contrast MRI scans were first registered to the planning CT using deformable and rigid registration, respectively, to resample the PET and magnetic resonance (MR) images to themore » planning CT space. A binary mask was manually defined to identify the tumor area. The resampled PET and MR images, the planning CT image, and the binary mask were fed into the automatic segmentation algorithm for target delineation. The algorithm was based on a multichannel Gaussian mixture model and solved using an expectation–maximization algorithm with Markov random fields. To evaluate the algorithm, we compared the multichannel autosegmentation with an autosegmentation method using only PET images. The physician-defined gross tumor volume (GTV) was used as the “ground truth” for quantitative evaluation. Results: The median multichannel segmented GTV of the primary tumor was 15.7 cm{sup 3} (range, 6.6–44.3 cm{sup 3}), while the PET segmented GTV was 10.2 cm{sup 3} (range, 2.8–45.1 cm{sup 3}). The median physician-defined GTV was 22.1 cm{sup 3} (range, 4.2–38.4 cm{sup 3}). The median difference between the multichannel segmented and physician-defined GTVs was −10.7%, not showing a statistically significant difference (p-value = 0.43). However, the median difference between the PET segmented and physician-defined GTVs was −19.2%, showing a statistically significant difference (p-value =0.0037). The median Dice similarity coefficient between the multichannel segmented and physician-defined GTVs was 0.75 (range, 0.55–0.84), and the median sensitivity and positive predictive value between them were 0.76 and 0.81, respectively. Conclusions: The authors developed an automated multimodality segmentation algorithm for tumor volume delineation and validated this algorithm for head and neck cancer radiotherapy. The multichannel segmented GTV agreed well with the physician-defined GTV. The authors expect that their algorithm will improve the accuracy and consistency in target definition for radiotherapy.« less
GPU-based relative fuzzy connectedness image segmentation.
Zhuge, Ying; Ciesielski, Krzysztof C; Udupa, Jayaram K; Miller, Robert W
2013-01-01
Recently, clinical radiological research and practice are becoming increasingly quantitative. Further, images continue to increase in size and volume. For quantitative radiology to become practical, it is crucial that image segmentation algorithms and their implementations are rapid and yield practical run time on very large data sets. The purpose of this paper is to present a parallel version of an algorithm that belongs to the family of fuzzy connectedness (FC) algorithms, to achieve an interactive speed for segmenting large medical image data sets. The most common FC segmentations, optimizing an [script-l](∞)-based energy, are known as relative fuzzy connectedness (RFC) and iterative relative fuzzy connectedness (IRFC). Both RFC and IRFC objects (of which IRFC contains RFC) can be found via linear time algorithms, linear with respect to the image size. The new algorithm, P-ORFC (for parallel optimal RFC), which is implemented by using NVIDIA's Compute Unified Device Architecture (CUDA) platform, considerably improves the computational speed of the above mentioned CPU based IRFC algorithm. Experiments based on four data sets of small, medium, large, and super data size, achieved speedup factors of 32.8×, 22.9×, 20.9×, and 17.5×, correspondingly, on the NVIDIA Tesla C1060 platform. Although the output of P-ORFC need not precisely match that of IRFC output, it is very close to it and, as the authors prove, always lies between the RFC and IRFC objects. A parallel version of a top-of-the-line algorithm in the family of FC has been developed on the NVIDIA GPUs. An interactive speed of segmentation has been achieved, even for the largest medical image data set. Such GPU implementations may play a crucial role in automatic anatomy recognition in clinical radiology.
GPU-based relative fuzzy connectedness image segmentation
Zhuge, Ying; Ciesielski, Krzysztof C.; Udupa, Jayaram K.; Miller, Robert W.
2013-01-01
Purpose: Recently, clinical radiological research and practice are becoming increasingly quantitative. Further, images continue to increase in size and volume. For quantitative radiology to become practical, it is crucial that image segmentation algorithms and their implementations are rapid and yield practical run time on very large data sets. The purpose of this paper is to present a parallel version of an algorithm that belongs to the family of fuzzy connectedness (FC) algorithms, to achieve an interactive speed for segmenting large medical image data sets. Methods: The most common FC segmentations, optimizing an ℓ∞-based energy, are known as relative fuzzy connectedness (RFC) and iterative relative fuzzy connectedness (IRFC). Both RFC and IRFC objects (of which IRFC contains RFC) can be found via linear time algorithms, linear with respect to the image size. The new algorithm, P-ORFC (for parallel optimal RFC), which is implemented by using NVIDIA’s Compute Unified Device Architecture (CUDA) platform, considerably improves the computational speed of the above mentioned CPU based IRFC algorithm. Results: Experiments based on four data sets of small, medium, large, and super data size, achieved speedup factors of 32.8×, 22.9×, 20.9×, and 17.5×, correspondingly, on the NVIDIA Tesla C1060 platform. Although the output of P-ORFC need not precisely match that of IRFC output, it is very close to it and, as the authors prove, always lies between the RFC and IRFC objects. Conclusions: A parallel version of a top-of-the-line algorithm in the family of FC has been developed on the NVIDIA GPUs. An interactive speed of segmentation has been achieved, even for the largest medical image data set. Such GPU implementations may play a crucial role in automatic anatomy recognition in clinical radiology. PMID:23298094
Wang, Rui; Zhou, Yongquan; Zhao, Chengyan; Wu, Haizhou
2015-01-01
Multi-threshold image segmentation is a powerful image processing technique that is used for the preprocessing of pattern recognition and computer vision. However, traditional multilevel thresholding methods are computationally expensive because they involve exhaustively searching the optimal thresholds to optimize the objective functions. To overcome this drawback, this paper proposes a flower pollination algorithm with a randomized location modification. The proposed algorithm is used to find optimal threshold values for maximizing Otsu's objective functions with regard to eight medical grayscale images. When benchmarked against other state-of-the-art evolutionary algorithms, the new algorithm proves itself to be robust and effective through numerical experimental results including Otsu's objective values and standard deviations.
Gray matter segmentation of the spinal cord with active contours in MR images.
Datta, Esha; Papinutto, Nico; Schlaeger, Regina; Zhu, Alyssa; Carballido-Gamio, Julio; Henry, Roland G
2017-02-15
Fully or partially automated spinal cord gray matter segmentation techniques for spinal cord gray matter segmentation will allow for pivotal spinal cord gray matter measurements in the study of various neurological disorders. The objective of this work was multi-fold: (1) to develop a gray matter segmentation technique that uses registration methods with an existing delineation of the cord edge along with Morphological Geodesic Active Contour (MGAC) models; (2) to assess the accuracy and reproducibility of the newly developed technique on 2D PSIR T1 weighted images; (3) to test how the algorithm performs on different resolutions and other contrasts; (4) to demonstrate how the algorithm can be extended to 3D scans; and (5) to show the clinical potential for multiple sclerosis patients. The MGAC algorithm was developed using a publicly available implementation of a morphological geodesic active contour model and the spinal cord segmentation tool of the software Jim (Xinapse Systems) for initial estimate of the cord boundary. The MGAC algorithm was demonstrated on 2D PSIR images of the C2/C3 level with two different resolutions, 2D T2* weighted images of the C2/C3 level, and a 3D PSIR image. These images were acquired from 45 healthy controls and 58 multiple sclerosis patients selected for the absence of evident lesions at the C2/C3 level. Accuracy was assessed though visual assessment, Hausdorff distances, and Dice similarity coefficients. Reproducibility was assessed through interclass correlation coefficients. Validity was assessed through comparison of segmented gray matter areas in images with different resolution for both manual and MGAC segmentations. Between MGAC and manual segmentations in healthy controls, the mean Dice similarity coefficient was 0.88 (0.82-0.93) and the mean Hausdorff distance was 0.61 (0.46-0.76) mm. The interclass correlation coefficient from test and retest scans of healthy controls was 0.88. The percent change between the manual segmentations from high and low-resolution images was 25%, while the percent change between the MGAC segmentations from high and low resolution images was 13%. Between MGAC and manual segmentations in MS patients, the average Dice similarity coefficient was 0.86 (0.8-0.92) and the average Hausdorff distance was 0.83 (0.29-1.37) mm. We demonstrate that an automatic segmentation technique, based on a morphometric geodesic active contours algorithm, can provide accurate and precise spinal cord gray matter segmentations on 2D PSIR images. We have also shown how this automated technique can potentially be extended to other imaging protocols. Copyright © 2016 Elsevier Inc. All rights reserved.
Liao, Xiaolei; Zhao, Juanjuan; Jiao, Cheng; Lei, Lei; Qiang, Yan; Cui, Qiang
2016-01-01
Background Lung parenchyma segmentation is often performed as an important pre-processing step in the computer-aided diagnosis of lung nodules based on CT image sequences. However, existing lung parenchyma image segmentation methods cannot fully segment all lung parenchyma images and have a slow processing speed, particularly for images in the top and bottom of the lung and the images that contain lung nodules. Method Our proposed method first uses the position of the lung parenchyma image features to obtain lung parenchyma ROI image sequences. A gradient and sequential linear iterative clustering algorithm (GSLIC) for sequence image segmentation is then proposed to segment the ROI image sequences and obtain superpixel samples. The SGNF, which is optimized by a genetic algorithm (GA), is then utilized for superpixel clustering. Finally, the grey and geometric features of the superpixel samples are used to identify and segment all of the lung parenchyma image sequences. Results Our proposed method achieves higher segmentation precision and greater accuracy in less time. It has an average processing time of 42.21 seconds for each dataset and an average volume pixel overlap ratio of 92.22 ± 4.02% for four types of lung parenchyma image sequences. PMID:27532214
Kalpathy-Cramer, Jayashree; Zhao, Binsheng; Goldgof, Dmitry; Gu, Yuhua; Wang, Xingwei; Yang, Hao; Tan, Yongqiang; Gillies, Robert; Napel, Sandy
2016-08-01
Tumor volume estimation, as well as accurate and reproducible borders segmentation in medical images, are important in the diagnosis, staging, and assessment of response to cancer therapy. The goal of this study was to demonstrate the feasibility of a multi-institutional effort to assess the repeatability and reproducibility of nodule borders and volume estimate bias of computerized segmentation algorithms in CT images of lung cancer, and to provide results from such a study. The dataset used for this evaluation consisted of 52 tumors in 41 CT volumes (40 patient datasets and 1 dataset containing scans of 12 phantom nodules of known volume) from five collections available in The Cancer Imaging Archive. Three academic institutions developing lung nodule segmentation algorithms submitted results for three repeat runs for each of the nodules. We compared the performance of lung nodule segmentation algorithms by assessing several measurements of spatial overlap and volume measurement. Nodule sizes varied from 29 μl to 66 ml and demonstrated a diversity of shapes. Agreement in spatial overlap of segmentations was significantly higher for multiple runs of the same algorithm than between segmentations generated by different algorithms (p < 0.05) and was significantly higher on the phantom dataset compared to the other datasets (p < 0.05). Algorithms differed significantly in the bias of the measured volumes of the phantom nodules (p < 0.05) underscoring the need for assessing performance on clinical data in addition to phantoms. Algorithms that most accurately estimated nodule volumes were not the most repeatable, emphasizing the need to evaluate both their accuracy and precision. There were considerable differences between algorithms, especially in a subset of heterogeneous nodules, underscoring the recommendation that the same software be used at all time points in longitudinal studies.
Denoising and 4D visualization of OCT images
Gargesha, Madhusudhana; Jenkins, Michael W.; Rollins, Andrew M.; Wilson, David L.
2009-01-01
We are using Optical Coherence Tomography (OCT) to image structure and function of the developing embryonic heart in avian models. Fast OCT imaging produces very large 3D (2D + time) and 4D (3D volumes + time) data sets, which greatly challenge ones ability to visualize results. Noise in OCT images poses additional challenges. We created an algorithm with a quick, data set specific optimization for reduction of both shot and speckle noise and applied it to 3D visualization and image segmentation in OCT. When compared to baseline algorithms (median, Wiener, orthogonal wavelet, basic non-orthogonal wavelet), a panel of experts judged the new algorithm to give much improved volume renderings concerning both noise and 3D visualization. Specifically, the algorithm provided a better visualization of the myocardial and endocardial surfaces, and the interaction of the embryonic heart tube with surrounding tissue. Quantitative evaluation using an image quality figure of merit also indicated superiority of the new algorithm. Noise reduction aided semi-automatic 2D image segmentation, as quantitatively evaluated using a contour distance measure with respect to an expert segmented contour. In conclusion, the noise reduction algorithm should be quite useful for visualization and quantitative measurements (e.g., heart volume, stroke volume, contraction velocity, etc.) in OCT embryo images. With its semi-automatic, data set specific optimization, we believe that the algorithm can be applied to OCT images from other applications. PMID:18679509
Yue, Dan; Xu, Shuyan; Nie, Haitao; Wang, Zongyang
2016-01-01
The misalignment between recorded in-focus and out-of-focus images using the Phase Diversity (PD) algorithm leads to a dramatic decline in wavefront detection accuracy and image recovery quality for segmented active optics systems. This paper demonstrates the theoretical relationship between the image misalignment and tip-tilt terms in Zernike polynomials of the wavefront phase for the first time, and an efficient two-step alignment correction algorithm is proposed to eliminate these misalignment effects. This algorithm processes a spatial 2-D cross-correlation of the misaligned images, revising the offset to 1 or 2 pixels and narrowing the search range for alignment. Then, it eliminates the need for subpixel fine alignment to achieve adaptive correction by adding additional tip-tilt terms to the Optical Transfer Function (OTF) of the out-of-focus channel. The experimental results demonstrate the feasibility and validity of the proposed correction algorithm to improve the measurement accuracy during the co-phasing of segmented mirrors. With this alignment correction, the reconstructed wavefront is more accurate, and the recovered image is of higher quality. PMID:26934045
Reconstructing liver shape and position from MR image slices using an active shape model
NASA Astrophysics Data System (ADS)
Fenchel, Matthias; Thesen, Stefan; Schilling, Andreas
2008-03-01
We present an algorithm for fully automatic reconstruction of 3D position, orientation and shape of the human liver from a sparsely covering set of n 2D MR slice images. Reconstructing the shape of an organ from slice images can be used for scan planning, for surgical planning or other purposes where 3D anatomical knowledge has to be inferred from sparse slices. The algorithm is based on adapting an active shape model of the liver surface to a given set of slice images. The active shape model is created from a training set of liver segmentations from a group of volunteers. The training set is set up with semi-manual segmentations of T1-weighted volumetric MR images. Searching for the optimal shape model that best fits to the image data is done by maximizing a similarity measure based on local appearance at the surface. Two different algorithms for the active shape model search are proposed and compared: both algorithms seek to maximize the a-posteriori probability of the grey level appearance around the surface while constraining the surface to the space of valid shapes. The first algorithm works by using grey value profile statistics in normal direction. The second algorithm uses average and variance images to calculate the local surface appearance on the fly. Both algorithms are validated by fitting the active shape model to abdominal 2D slice images and comparing the shapes, which have been reconstructed, to the manual segmentations and to the results of active shape model searches from 3D image data. The results turn out to be promising and competitive to active shape model segmentations from 3D data.
NASA Astrophysics Data System (ADS)
Zhang, Ka; Sheng, Yehua; Gong, Zhijun; Ye, Chun; Li, Yongqiang; Liang, Cheng
2007-06-01
As an important sub-system in intelligent transportation system (ITS), the detection and recognition of traffic signs from mobile images is becoming one of the hot spots in the international research field of ITS. Considering the problem of traffic sign automatic detection in motion images, a new self-adaptive algorithm for traffic sign detection based on color and shape features is proposed in this paper. Firstly, global statistical color features of different images are computed based on statistics theory. Secondly, some self-adaptive thresholds and special segmentation rules for image segmentation are designed according to these global color features. Then, for red, yellow and blue traffic signs, the color image is segmented to three binary images by these thresholds and rules. Thirdly, if the number of white pixels in the segmented binary image exceeds the filtering threshold, the binary image should be further filtered. Fourthly, the method of gray-value projection is used to confirm top, bottom, left and right boundaries for candidate regions of traffic signs in the segmented binary image. Lastly, if the shape feature of candidate region satisfies the need of real traffic sign, this candidate region is confirmed as the detected traffic sign region. The new algorithm is applied to actual motion images of natural scenes taken by a CCD camera of the mobile photogrammetry system in Nanjing at different time. The experimental results show that the algorithm is not only simple, robust and more adaptive to natural scene images, but also reliable and high-speed on real traffic sign detection.
Segmenting human from photo images based on a coarse-to-fine scheme.
Lu, Huchuan; Fang, Guoliang; Shao, Xinqing; Li, Xuelong
2012-06-01
Human segmentation in photo images is a challenging and important problem that finds numerous applications ranging from album making and photo classification to image retrieval. Previous works on human segmentation usually demand a time-consuming training phase for complex shape-matching processes. In this paper, we propose a straightforward framework to automatically recover human bodies from color photos. Employing a coarse-to-fine strategy, we first detect a coarse torso (CT) using the multicue CT detection algorithm and then extract the accurate region of the upper body. Then, an iterative multiple oblique histogram algorithm is presented to accurately recover the lower body based on human kinematics. The performance of our algorithm is evaluated on our own data set (contains 197 images with human body region ground truth data), VOC 2006, and the 2010 data set. Experimental results demonstrate the merits of the proposed method in segmenting a person with various poses.
Partial volume segmentation in 3D of lesions and tissues in magnetic resonance images
NASA Astrophysics Data System (ADS)
Johnston, Brian; Atkins, M. Stella; Booth, Kellogg S.
1994-05-01
An important first step in diagnosis and treatment planning using tomographic imaging is differentiating and quantifying diseased as well as healthy tissue. One of the difficulties encountered in solving this problem to date has been distinguishing the partial volume constituents of each voxel in the image volume. Most proposed solutions to this problem involve analysis of planar images, in sequence, in two dimensions only. We have extended a model-based method of image segmentation which applies the technique of iterated conditional modes in three dimensions. A minimum of user intervention is required to train the algorithm. Partial volume estimates for each voxel in the image are obtained yielding fractional compositions of multiple tissue types for individual voxels. A multispectral approach is applied, where spatially registered data sets are available. The algorithm is simple and has been parallelized using a dataflow programming environment to reduce the computational burden. The algorithm has been used to segment dual echo MRI data sets of multiple sclerosis patients using lesions, gray matter, white matter, and cerebrospinal fluid as the partial volume constituents. The results of the application of the algorithm to these datasets is presented and compared to the manual lesion segmentation of the same data.
A dynamic fuzzy genetic algorithm for natural image segmentation using adaptive mean shift
NASA Astrophysics Data System (ADS)
Arfan Jaffar, M.
2017-01-01
In this paper, a colour image segmentation approach based on hybridisation of adaptive mean shift (AMS), fuzzy c-mean and genetic algorithms (GAs) is presented. Image segmentation is the perceptual faction of pixels based on some likeness measure. GA with fuzzy behaviour is adapted to maximise the fuzzy separation and minimise the global compactness among the clusters or segments in spatial fuzzy c-mean (sFCM). It adds diversity to the search process to find the global optima. A simple fusion method has been used to combine the clusters to overcome the problem of over segmentation. The results show that our technique outperforms state-of-the-art methods.
Du, Yuncheng; Budman, Hector M; Duever, Thomas A
2016-06-01
Accurate automated quantitative analysis of living cells based on fluorescence microscopy images can be very useful for fast evaluation of experimental outcomes and cell culture protocols. In this work, an algorithm is developed for fast differentiation of normal and apoptotic viable Chinese hamster ovary (CHO) cells. For effective segmentation of cell images, a stochastic segmentation algorithm is developed by combining a generalized polynomial chaos expansion with a level set function-based segmentation algorithm. This approach provides a probabilistic description of the segmented cellular regions along the boundary, from which it is possible to calculate morphological changes related to apoptosis, i.e., the curvature and length of a cell's boundary. These features are then used as inputs to a support vector machine (SVM) classifier that is trained to distinguish between normal and apoptotic viable states of CHO cell images. The use of morphological features obtained from the stochastic level set segmentation of cell images in combination with the trained SVM classifier is more efficient in terms of differentiation accuracy as compared with the original deterministic level set method.
2014-01-01
Background Digital image analysis has the potential to address issues surrounding traditional histological techniques including a lack of objectivity and high variability, through the application of quantitative analysis. A key initial step in image analysis is the identification of regions of interest. A widely applied methodology is that of segmentation. This paper proposes the application of image analysis techniques to segment skin tissue with varying degrees of histopathological damage. The segmentation of human tissue is challenging as a consequence of the complexity of the tissue structures and inconsistencies in tissue preparation, hence there is a need for a new robust method with the capability to handle the additional challenges materialising from histopathological damage. Methods A new algorithm has been developed which combines enhanced colour information, created following a transformation to the L*a*b* colourspace, with general image intensity information. A colour normalisation step is included to enhance the algorithm’s robustness to variations in the lighting and staining of the input images. The resulting optimised image is subjected to thresholding and the segmentation is fine-tuned using a combination of morphological processing and object classification rules. The segmentation algorithm was tested on 40 digital images of haematoxylin & eosin (H&E) stained skin biopsies. Accuracy, sensitivity and specificity of the algorithmic procedure were assessed through the comparison of the proposed methodology against manual methods. Results Experimental results show the proposed fully automated methodology segments the epidermis with a mean specificity of 97.7%, a mean sensitivity of 89.4% and a mean accuracy of 96.5%. When a simple user interaction step is included, the specificity increases to 98.0%, the sensitivity to 91.0% and the accuracy to 96.8%. The algorithm segments effectively for different severities of tissue damage. Conclusions Epidermal segmentation is a crucial first step in a range of applications including melanoma detection and the assessment of histopathological damage in skin. The proposed methodology is able to segment the epidermis with different levels of histological damage. The basic method framework could be applied to segmentation of other epithelial tissues. PMID:24521154
Chitalia, Rhea; Mueller, Jenna; Fu, Henry L; Whitley, Melodi Javid; Kirsch, David G; Brown, J Quincy; Willett, Rebecca; Ramanujam, Nimmi
2016-09-01
Fluorescence microscopy can be used to acquire real-time images of tissue morphology and with appropriate algorithms can rapidly quantify features associated with disease. The objective of this study was to assess the ability of various segmentation algorithms to isolate fluorescent positive features (FPFs) in heterogeneous images and identify an approach that can be used across multiple fluorescence microscopes with minimal tuning between systems. Specifically, we show a variety of image segmentation algorithms applied to images of stained tumor and muscle tissue acquired with 3 different fluorescence microscopes. Results indicate that a technique called maximally stable extremal regions followed by thresholding (MSER + Binary) yielded the greatest contrast in FPF density between tumor and muscle images across multiple microscopy systems.
An improved K-means clustering algorithm in agricultural image segmentation
NASA Astrophysics Data System (ADS)
Cheng, Huifeng; Peng, Hui; Liu, Shanmei
Image segmentation is the first important step to image analysis and image processing. In this paper, according to color crops image characteristics, we firstly transform the color space of image from RGB to HIS, and then select proper initial clustering center and cluster number in application of mean-variance approach and rough set theory followed by clustering calculation in such a way as to automatically segment color component rapidly and extract target objects from background accurately, which provides a reliable basis for identification, analysis, follow-up calculation and process of crops images. Experimental results demonstrate that improved k-means clustering algorithm is able to reduce the computation amounts and enhance precision and accuracy of clustering.
A fast 3D region growing approach for CT angiography applications
NASA Astrophysics Data System (ADS)
Ye, Zhen; Lin, Zhongmin; Lu, Cheng-chang
2004-05-01
Region growing is one of the most popular methods for low-level image segmentation. Many researches on region growing have focused on the definition of the homogeneity criterion or growing and merging criterion. However, one disadvantage of conventional region growing is redundancy. It requires a large memory usage, and the computation-efficiency is very low especially for 3D images. To overcome this problem, a non-recursive single-pass 3D region growing algorithm named SymRG is implemented and successfully applied to 3D CT angiography (CTA) applications for vessel segmentation and bone removal. The method consists of three steps: segmenting one-dimensional regions of each row; doing region merging to adjacent rows to obtain the region segmentation of each slice; and doing region merging to adjacent slices to obtain the final region segmentation of 3D images. To improve the segmentation speed for very large volume 3D CTA images, this algorithm is applied repeatedly to newly updated local cubes. The next new cube can be estimated by checking isolated segmented regions on all 6 faces of the current local cube. This local non-recursive 3D region-growing algorithm is memory-efficient and computation-efficient. Clinical testings of this algorithm on Brain CTA show this technique could effectively remove whole skull, most of the bones on the skull base, and reveal the cerebral vascular structures clearly.
Automated vessel segmentation using cross-correlation and pooled covariance matrix analysis.
Du, Jiang; Karimi, Afshin; Wu, Yijing; Korosec, Frank R; Grist, Thomas M; Mistretta, Charles A
2011-04-01
Time-resolved contrast-enhanced magnetic resonance angiography (CE-MRA) provides contrast dynamics in the vasculature and allows vessel segmentation based on temporal correlation analysis. Here we present an automated vessel segmentation algorithm including automated generation of regions of interest (ROIs), cross-correlation and pooled sample covariance matrix analysis. The dynamic images are divided into multiple equal-sized regions. In each region, ROIs for artery, vein and background are generated using an iterative thresholding algorithm based on the contrast arrival time map and contrast enhancement map. Region-specific multi-feature cross-correlation analysis and pooled covariance matrix analysis are performed to calculate the Mahalanobis distances (MDs), which are used to automatically separate arteries from veins. This segmentation algorithm is applied to a dual-phase dynamic imaging acquisition scheme where low-resolution time-resolved images are acquired during the dynamic phase followed by high-frequency data acquisition at the steady-state phase. The segmented low-resolution arterial and venous images are then combined with the high-frequency data in k-space and inverse Fourier transformed to form the final segmented arterial and venous images. Results from volunteer and patient studies demonstrate the advantages of this automated vessel segmentation and dual phase data acquisition technique. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Jing; Xie, Weixin; Pei, Jihong
2018-03-01
Sea-land segmentation is one of the key technologies of sea target detection in remote sensing images. At present, the existing algorithms have the problems of low accuracy, low universality and poor automatic performance. This paper puts forward a sea-land segmentation algorithm based on multi-feature fusion for a large-field remote sensing image removing island. Firstly, the coastline data is extracted and all of land area is labeled by using the geographic information in large-field remote sensing image. Secondly, three features (local entropy, local texture and local gradient mean) is extracted in the sea-land border area, and the three features combine a 3D feature vector. And then the MultiGaussian model is adopted to describe 3D feature vectors of sea background in the edge of the coastline. Based on this multi-gaussian sea background model, the sea pixels and land pixels near coastline are classified more precise. Finally, the coarse segmentation result and the fine segmentation result are fused to obtain the accurate sea-land segmentation. Comparing and analyzing the experimental results by subjective vision, it shows that the proposed method has high segmentation accuracy, wide applicability and strong anti-disturbance ability.
Microscopic image analysis for reticulocyte based on watershed algorithm
NASA Astrophysics Data System (ADS)
Wang, J. Q.; Liu, G. F.; Liu, J. G.; Wang, G.
2007-12-01
We present a watershed-based algorithm in the analysis of light microscopic image for reticulocyte (RET), which will be used in an automated recognition system for RET in peripheral blood. The original images, obtained by micrography, are segmented by modified watershed algorithm and are recognized in term of gray entropy and area of connective area. In the process of watershed algorithm, judgment conditions are controlled according to character of the image, besides, the segmentation is performed by morphological subtraction. The algorithm was simulated with MATLAB software. It is similar for automated and manual scoring and there is good correlation(r=0.956) between the methods, which is resulted from 50 pieces of RET images. The result indicates that the algorithm for peripheral blood RETs is comparable to conventional manual scoring, and it is superior in objectivity. This algorithm avoids time-consuming calculation such as ultra-erosion and region-growth, which will speed up the computation consequentially.
Colony image acquisition and segmentation
NASA Astrophysics Data System (ADS)
Wang, W. X.
2007-12-01
For counting of both colonies and plaques, there is a large number of applications including food, dairy, beverages, hygiene, environmental monitoring, water, toxicology, sterility testing, AMES testing, pharmaceuticals, paints, sterile fluids and fungal contamination. Recently, many researchers and developers have made efforts for this kind of systems. By investigation, some existing systems have some problems. The main problems are image acquisition and image segmentation. In order to acquire colony images with good quality, an illumination box was constructed as: the box includes front lightning and back lightning, which can be selected by users based on properties of colony dishes. With the illumination box, lightning can be uniform; colony dish can be put in the same place every time, which make image processing easy. The developed colony image segmentation algorithm consists of the sub-algorithms: (1) image classification; (2) image processing; and (3) colony delineation. The colony delineation algorithm main contain: the procedures based on grey level similarity, on boundary tracing, on shape information and colony excluding. In addition, a number of algorithms are developed for colony analysis. The system has been tested and satisfactory.
NASA Technical Reports Server (NTRS)
Tarabalka, Y.; Tilton, J. C.; Benediktsson, J. A.; Chanussot, J.
2012-01-01
The Hierarchical SEGmentation (HSEG) algorithm, which combines region object finding with region object clustering, has given good performances for multi- and hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. Two classification-based approaches for automatic marker selection are adapted and compared for this purpose. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. Three different implementations of the M-HSEG method are proposed and their performances in terms of classification accuracies are compared. The experimental results, presented for three hyperspectral airborne images, demonstrate that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for remote sensing image analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Y; Chen, I; Kashani, R
Purpose: In MRI-guided online adaptive radiation therapy, re-contouring of bowel is time-consuming and can impact the overall time of patients on table. The study aims to auto-segment bowel on volumetric MR images by using an interactive multi-region labeling algorithm. Methods: 5 Patients with locally advanced pancreatic cancer underwent fractionated radiotherapy (18–25 fractions each, total 118 fractions) on an MRI-guided radiation therapy system with a 0.35 Tesla magnet and three Co-60 sources. At each fraction, a volumetric MR image of the patient was acquired when the patient was in the treatment position. An interactive two-dimensional multi-region labeling technique based on graphmore » cut solver was applied on several typical MRI images to segment the large bowel and small bowel, followed by a shape based contour interpolation for generating entire bowel contours along all image slices. The resulted contours were compared with the physician’s manual contouring by using metrics of Dice coefficient and Hausdorff distance. Results: Image data sets from the first 5 fractions of each patient were selected (total of 25 image data sets) for the segmentation test. The algorithm segmented the large and small bowel effectively and efficiently. All bowel segments were successfully identified, auto-contoured and matched with manual contours. The time cost by the algorithm for each image slice was within 30 seconds. For large bowel, the calculated Dice coefficients and Hausdorff distances (mean±std) were 0.77±0.07 and 13.13±5.01mm, respectively; for small bowel, the corresponding metrics were 0.73±0.08and 14.15±4.72mm, respectively. Conclusion: The preliminary results demonstrated the potential of the proposed algorithm in auto-segmenting large and small bowel on low field MRI images in MRI-guided adaptive radiation therapy. Further work will be focused on improving its segmentation accuracy and lessening human interaction.« less
Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano
2016-07-07
Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.
NASA Astrophysics Data System (ADS)
Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano
2016-07-01
Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.
Du, Yuncheng; Budman, Hector M; Duever, Thomas A
2017-06-01
Accurate and fast quantitative analysis of living cells from fluorescence microscopy images is useful for evaluating experimental outcomes and cell culture protocols. An algorithm is developed in this work to automatically segment and distinguish apoptotic cells from normal cells. The algorithm involves three steps consisting of two segmentation steps and a classification step. The segmentation steps are: (i) a coarse segmentation, combining a range filter with a marching square method, is used as a prefiltering step to provide the approximate positions of cells within a two-dimensional matrix used to store cells' images and the count of the number of cells for a given image; and (ii) a fine segmentation step using the Active Contours Without Edges method is applied to the boundaries of cells identified in the coarse segmentation step. Although this basic two-step approach provides accurate edges when the cells in a given image are sparsely distributed, the occurrence of clusters of cells in high cell density samples requires further processing. Hence, a novel algorithm for clusters is developed to identify the edges of cells within clusters and to approximate their morphological features. Based on the segmentation results, a support vector machine classifier that uses three morphological features: the mean value of pixel intensities in the cellular regions, the variance of pixel intensities in the vicinity of cell boundaries, and the lengths of the boundaries, is developed for distinguishing apoptotic cells from normal cells. The algorithm is shown to be efficient in terms of computational time, quantitative analysis, and differentiation accuracy, as compared with the use of the active contours method without the proposed preliminary coarse segmentation step.
Healy, Sinead; McMahon, Jill; Owens, Peter; Dockery, Peter; FitzGerald, Una
2018-02-01
Image segmentation is often imperfect, particularly in complex image sets such z-stack micrographs of slice cultures and there is a need for sufficient details of parameters used in quantitative image analysis to allow independent repeatability and appraisal. For the first time, we have critically evaluated, quantified and validated the performance of different segmentation methodologies using z-stack images of ex vivo glial cells. The BioVoxxel toolbox plugin, available in FIJI, was used to measure the relative quality, accuracy, specificity and sensitivity of 16 global and 9 local threshold automatic thresholding algorithms. Automatic thresholding yields improved binary representation of glial cells compared with the conventional user-chosen single threshold approach for confocal z-stacks acquired from ex vivo slice cultures. The performance of threshold algorithms varies considerably in quality, specificity, accuracy and sensitivity with entropy-based thresholds scoring highest for fluorescent staining. We have used the BioVoxxel toolbox to correctly and consistently select the best automated threshold algorithm to segment z-projected images of ex vivo glial cells for downstream digital image analysis and to define segmentation quality. The automated OLIG2 cell count was validated using stereology. As image segmentation and feature extraction can quite critically affect the performance of successive steps in the image analysis workflow, it is becoming increasingly necessary to consider the quality of digital segmenting methodologies. Here, we have applied, validated and extended an existing performance-check methodology in the BioVoxxel toolbox to z-projected images of ex vivo glia cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Bladder segmentation in MR images with watershed segmentation and graph cut algorithm
NASA Astrophysics Data System (ADS)
Blaffert, Thomas; Renisch, Steffen; Schadewaldt, Nicole; Schulz, Heinrich; Wiemker, Rafael
2014-03-01
Prostate and cervix cancer diagnosis and treatment planning that is based on MR images benefit from superior soft tissue contrast compared to CT images. For these images an automatic delineation of the prostate or cervix and the organs at risk such as the bladder is highly desirable. This paper describes a method for bladder segmentation that is based on a watershed transform on high image gradient values and gray value valleys together with the classification of watershed regions into bladder contents and tissue by a graph cut algorithm. The obtained results are superior if compared to a simple region-after-region classification.
Color Image Segmentation Based on Statistics of Location and Feature Similarity
NASA Astrophysics Data System (ADS)
Mori, Fumihiko; Yamada, Hiromitsu; Mizuno, Makoto; Sugano, Naotoshi
The process of “image segmentation and extracting remarkable regions” is an important research subject for the image understanding. However, an algorithm based on the global features is hardly found. The requisite of such an image segmentation algorism is to reduce as much as possible the over segmentation and over unification. We developed an algorithm using the multidimensional convex hull based on the density as the global feature. In the concrete, we propose a new algorithm in which regions are expanded according to the statistics of the region such as the mean value, standard deviation, maximum value and minimum value of pixel location, brightness and color elements and the statistics are updated. We also introduced a new concept of conspicuity degree and applied it to the various 21 images to examine the effectiveness. The remarkable object regions, which were extracted by the presented system, highly coincided with those which were pointed by the sixty four subjects who attended the psychological experiment.
Clustering approach for unsupervised segmentation of malarial Plasmodium vivax parasite
NASA Astrophysics Data System (ADS)
Abdul-Nasir, Aimi Salihah; Mashor, Mohd Yusoff; Mohamed, Zeehaida
2017-10-01
Malaria is a global health problem, particularly in Africa and south Asia where it causes countless deaths and morbidity cases. Efficient control and prompt of this disease require early detection and accurate diagnosis due to the large number of cases reported yearly. To achieve this aim, this paper proposes an image segmentation approach via unsupervised pixel segmentation of malaria parasite to automate the diagnosis of malaria. In this study, a modified clustering algorithm namely enhanced k-means (EKM) clustering, is proposed for malaria image segmentation. In the proposed EKM clustering, the concept of variance and a new version of transferring process for clustered members are used to assist the assignation of data to the proper centre during the process of clustering, so that good segmented malaria image can be generated. The effectiveness of the proposed EKM clustering has been analyzed qualitatively and quantitatively by comparing this algorithm with two popular image segmentation techniques namely Otsu's thresholding and k-means clustering. The experimental results show that the proposed EKM clustering has successfully segmented 100 malaria images of P. vivax species with segmentation accuracy, sensitivity and specificity of 99.20%, 87.53% and 99.58%, respectively. Hence, the proposed EKM clustering can be considered as an image segmentation tool for segmenting the malaria images.
A scale-based connected coherence tree algorithm for image segmentation.
Ding, Jundi; Ma, Runing; Chen, Songcan
2008-02-01
This paper presents a connected coherence tree algorithm (CCTA) for image segmentation with no prior knowledge. It aims to find regions of semantic coherence based on the proposed epsilon-neighbor coherence segmentation criterion. More specifically, with an adaptive spatial scale and an appropriate intensity-difference scale, CCTA often achieves several sets of coherent neighboring pixels which maximize the probability of being a single image content (including kinds of complex backgrounds). In practice, each set of coherent neighboring pixels corresponds to a coherence class (CC). The fact that each CC just contains a single equivalence class (EC) ensures the separability of an arbitrary image theoretically. In addition, the resultant CCs are represented by tree-based data structures, named connected coherence tree (CCT)s. In this sense, CCTA is a graph-based image analysis algorithm, which expresses three advantages: 1) its fundamental idea, epsilon-neighbor coherence segmentation criterion, is easy to interpret and comprehend; 2) it is efficient due to a linear computational complexity in the number of image pixels; 3) both subjective comparisons and objective evaluation have shown that it is effective for the tasks of semantic object segmentation and figure-ground separation in a wide variety of images. Those images either contain tiny, long and thin objects or are severely degraded by noise, uneven lighting, occlusion, poor illumination, and shadow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Y; Olsen, J.; Parikh, P.
2014-06-01
Purpose: Evaluate commonly used segmentation algorithms on a commercially available real-time MR image guided radiotherapy (MR-IGRT) system (ViewRay), compare the strengths and weaknesses of each method, with the purpose of improving motion tracking for more accurate radiotherapy. Methods: MR motion images of bladder, kidney, duodenum, and liver tumor were acquired for three patients using a commercial on-board MR imaging system and an imaging protocol used during MR-IGRT. A series of 40 frames were selected for each case to cover at least 3 respiratory cycles. Thresholding, Canny edge detection, fuzzy k-means (FKM), k-harmonic means (KHM), and reaction-diffusion level set evolution (RD-LSE),more » along with the ViewRay treatment planning and delivery system (TPDS) were included in the comparisons. To evaluate the segmentation results, an expert manual contouring of the organs or tumor from a physician was used as a ground-truth. Metrics value of sensitivity, specificity, Jaccard similarity, and Dice coefficient were computed for comparison. Results: In the segmentation of single image frame, all methods successfully segmented the bladder and kidney, but only FKM, KHM and TPDS were able to segment the liver tumor and the duodenum. For segmenting motion image series, the TPDS method had the highest sensitivity, Jarccard, and Dice coefficients in segmenting bladder and kidney, while FKM and KHM had a slightly higher specificity. A similar pattern was observed when segmenting the liver tumor and the duodenum. The Canny method is not suitable for consistently segmenting motion frames in an automated process, while thresholding and RD-LSE cannot consistently segment a liver tumor and the duodenum. Conclusion: The study compared six different segmentation methods and showed the effectiveness of the ViewRay TPDS algorithm in segmenting motion images during MR-IGRT. Future studies include a selection of conformal segmentation methods based on image/organ-specific information, different filtering methods and their influences on the segmentation results. Parag Parikh receives research grant from ViewRay. Sasa Mutic has consulting and research agreements with ViewRay. Yanle Hu receives travel reimbursement from ViewRay. Iwan Kawrakow and James Dempsey are ViewRay employees.« less
Joint graph cut and relative fuzzy connectedness image segmentation algorithm.
Ciesielski, Krzysztof Chris; Miranda, Paulo A V; Falcão, Alexandre X; Udupa, Jayaram K
2013-12-01
We introduce an image segmentation algorithm, called GC(sum)(max), which combines, in novel manner, the strengths of two popular algorithms: Relative Fuzzy Connectedness (RFC) and (standard) Graph Cut (GC). We show, both theoretically and experimentally, that GC(sum)(max) preserves robustness of RFC with respect to the seed choice (thus, avoiding "shrinking problem" of GC), while keeping GC's stronger control over the problem of "leaking though poorly defined boundary segments." The analysis of GC(sum)(max) is greatly facilitated by our recent theoretical results that RFC can be described within the framework of Generalized GC (GGC) segmentation algorithms. In our implementation of GC(sum)(max) we use, as a subroutine, a version of RFC algorithm (based on Image Forest Transform) that runs (provably) in linear time with respect to the image size. This results in GC(sum)(max) running in a time close to linear. Experimental comparison of GC(sum)(max) to GC, an iterative version of RFC (IRFC), and power watershed (PW), based on a variety medical and non-medical images, indicates superior accuracy performance of GC(sum)(max) over these other methods, resulting in a rank ordering of GC(sum)(max)>PW∼IRFC>GC. Copyright © 2013 Elsevier B.V. All rights reserved.
Segmentation of financial seals and its implementation on a DSP-based system
NASA Astrophysics Data System (ADS)
He, Jin; Liu, Tiegen; Guo, Jingjing; Zhang, Hao
2009-11-01
Automatic seal imprint identification is an important part of modern financial security. Accurate segmentation is the basis of correct identification. In this paper, a DSP (digital signal processor) based identification system was designed, and an adaptive algorithm was proposed to extract binary seal images from financial instruments. As the kernel of the identification system, a DSP chip of TMS320DM642 was used to implement image processing, controlling and coordinating works of each system module. The proposed algorithm consisted of three stages, including extraction of grayscale seal image, denoising and binarization. A grayscale seal image was extracted by color transform from a financial instrument image. Adaptive morphological operations were used to highlight details of the extracted grayscale seal image and smooth the background. After median filter for noise elimination, the filtered seal image was binarized by Otsu's method. The algorithm was developed based on the DSP development environment CCS and real-time operation system DSP/BIOS. To simplify the implementation of the proposed algorithm, the calibration of white balance and the coarse positioning of the seal imprint were implemented by TMS320DM642 controlling image acquisition. IMGLIB of TMS320DM642 was used for the efficiency improvement. The experiment result showed that financial seal imprints, even with intricate and dense strokes can be correctly segmented by the proposed algorithm. Adhesion and incompleteness distortions in the segmentation results were reduced, even when the original seal imprint had a poor quality.
Mammographic images segmentation based on chaotic map clustering algorithm
2014-01-01
Background This work investigates the applicability of a novel clustering approach to the segmentation of mammographic digital images. The chaotic map clustering algorithm is used to group together similar subsets of image pixels resulting in a medically meaningful partition of the mammography. Methods The image is divided into pixels subsets characterized by a set of conveniently chosen features and each of the corresponding points in the feature space is associated to a map. A mutual coupling strength between the maps depending on the associated distance between feature space points is subsequently introduced. On the system of maps, the simulated evolution through chaotic dynamics leads to its natural partitioning, which corresponds to a particular segmentation scheme of the initial mammographic image. Results The system provides a high recognition rate for small mass lesions (about 94% correctly segmented inside the breast) and the reproduction of the shape of regions with denser micro-calcifications in about 2/3 of the cases, while being less effective on identification of larger mass lesions. Conclusions We can summarize our analysis by asserting that due to the particularities of the mammographic images, the chaotic map clustering algorithm should not be used as the sole method of segmentation. It is rather the joint use of this method along with other segmentation techniques that could be successfully used for increasing the segmentation performance and for providing extra information for the subsequent analysis stages such as the classification of the segmented ROI. PMID:24666766
NASA Astrophysics Data System (ADS)
Lei, Sen; Zou, Zhengxia; Liu, Dunge; Xia, Zhenghuan; Shi, Zhenwei
2018-06-01
Sea-land segmentation is a key step for the information processing of ocean remote sensing images. Traditional sea-land segmentation algorithms ignore the local similarity prior of sea and land, and thus fail in complex scenarios. In this paper, we propose a new sea-land segmentation method for infrared remote sensing images to tackle the problem based on superpixels and multi-scale features. Considering the connectivity and local similarity of sea or land, we interpret the sea-land segmentation task in view of superpixels rather than pixels, where similar pixels are clustered and the local similarity are explored. Moreover, the multi-scale features are elaborately designed, comprising of gray histogram and multi-scale total variation. Experimental results on infrared bands of Landsat-8 satellite images demonstrate that the proposed method can obtain more accurate and more robust sea-land segmentation results than the traditional algorithms.
An image segmentation method based on fuzzy C-means clustering and Cuckoo search algorithm
NASA Astrophysics Data System (ADS)
Wang, Mingwei; Wan, Youchuan; Gao, Xianjun; Ye, Zhiwei; Chen, Maolin
2018-04-01
Image segmentation is a significant step in image analysis and machine vision. Many approaches have been presented in this topic; among them, fuzzy C-means (FCM) clustering is one of the most widely used methods for its high efficiency and ambiguity of images. However, the success of FCM could not be guaranteed because it easily traps into local optimal solution. Cuckoo search (CS) is a novel evolutionary algorithm, which has been tested on some optimization problems and proved to be high-efficiency. Therefore, a new segmentation technique using FCM and blending of CS algorithm is put forward in the paper. Further, the proposed method has been measured on several images and compared with other existing FCM techniques such as genetic algorithm (GA) based FCM and particle swarm optimization (PSO) based FCM in terms of fitness value. Experimental results indicate that the proposed method is robust, adaptive and exhibits the better performance than other methods involved in the paper.
Locating and decoding barcodes in fuzzy images captured by smart phones
NASA Astrophysics Data System (ADS)
Deng, Wupeng; Hu, Jiwei; Liu, Quan; Lou, Ping
2017-07-01
With the development of barcodes for commercial use, people's requirements for detecting barcodes by smart phone become increasingly pressing. The low quality of barcode image captured by mobile phone always affects the decoding and recognition rates. This paper focuses on locating and decoding EAN-13 barcodes in fuzzy images. We present a more accurate locating algorithm based on segment length and high fault-tolerant rate algorithm for decoding barcodes. Unlike existing approaches, location algorithm is based on the edge segment length of EAN -13 barcodes, while our decoding algorithm allows the appearance of fuzzy region in barcode image. Experimental results are performed on damaged, contaminated and scratched digital images, and provide a quite promising result for EAN -13 barcode location and decoding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soufi, M; Asl, A Kamali; Geramifar, P
2015-06-15
Purpose: The objective of this study was to find the best seed localization parameters in random walk algorithm application to lung tumor delineation in Positron Emission Tomography (PET) images. Methods: PET images suffer from statistical noise and therefore tumor delineation in these images is a challenging task. Random walk algorithm, a graph based image segmentation technique, has reliable image noise robustness. Also its fast computation and fast editing characteristics make it powerful for clinical purposes. We implemented the random walk algorithm using MATLAB codes. The validation and verification of the algorithm have been done by 4D-NCAT phantom with spherical lungmore » lesions in different diameters from 20 to 90 mm (with incremental steps of 10 mm) and different tumor to background ratios of 4:1 and 8:1. STIR (Software for Tomographic Image Reconstruction) has been applied to reconstruct the phantom PET images with different pixel sizes of 2×2×2 and 4×4×4 mm{sup 3}. For seed localization, we selected pixels with different maximum Standardized Uptake Value (SUVmax) percentages, at least (70%, 80%, 90% and 100%) SUVmax for foreground seeds and up to (20% to 55%, 5% increment) SUVmax for background seeds. Also, for investigation of algorithm performance on clinical data, 19 patients with lung tumor were studied. The resulted contours from algorithm have been compared with nuclear medicine expert manual contouring as ground truth. Results: Phantom and clinical lesion segmentation have shown that the best segmentation results obtained by selecting the pixels with at least 70% SUVmax as foreground seeds and pixels up to 30% SUVmax as background seeds respectively. The mean Dice Similarity Coefficient of 94% ± 5% (83% ± 6%) and mean Hausdorff Distance of 1 (2) pixels have been obtained for phantom (clinical) study. Conclusion: The accurate results of random walk algorithm in PET image segmentation assure its application for radiation treatment planning and diagnosis.« less
Theory and algorithms for image reconstruction on chords and within regions of interest
NASA Astrophysics Data System (ADS)
Zou, Yu; Pan, Xiaochuan; Sidky, Emilâ Y.
2005-11-01
We introduce a formula for image reconstruction on a chord of a general source trajectory. We subsequently develop three algorithms for exact image reconstruction on a chord from data acquired with the general trajectory. Interestingly, two of the developed algorithms can accommodate data containing transverse truncations. The widely used helical trajectory and other trajectories discussed in literature can be interpreted as special cases of the general trajectory, and the developed theory and algorithms are thus directly applicable to reconstructing images exactly from data acquired with these trajectories. For instance, chords on a helical trajectory are equivalent to the n-PI-line segments. In this situation, the proposed algorithms become the algorithms that we proposed previously for image reconstruction on PI-line segments. We have performed preliminary numerical studies, which include the study on image reconstruction on chords of two-circle trajectory, which is nonsmooth, and on n-PI lines of a helical trajectory, which is smooth. Quantitative results of these studies verify and demonstrate the proposed theory and algorithms.
Fast localization of optic disc and fovea in retinal images for eye disease screening
NASA Astrophysics Data System (ADS)
Yu, H.; Barriga, S.; Agurto, C.; Echegaray, S.; Pattichis, M.; Zamora, G.; Bauman, W.; Soliz, P.
2011-03-01
Optic disc (OD) and fovea locations are two important anatomical landmarks in automated analysis of retinal disease in color fundus photographs. This paper presents a new, fast, fully automatic optic disc and fovea localization algorithm developed for diabetic retinopathy (DR) screening. The optic disc localization methodology comprises of two steps. First, the OD location is identified using template matching and directional matched filter. To reduce false positives due to bright areas of pathology, we exploit vessel characteristics inside the optic disc. The location of the fovea is estimated as the point of lowest matched filter response within a search area determined by the optic disc location. Second, optic disc segmentation is performed. Based on the detected optic disc location, a fast hybrid level-set algorithm which combines the region information and edge gradient to drive the curve evolution is used to segment the optic disc boundary. Extensive evaluation was performed on 1200 images (Messidor) composed of 540 images of healthy retinas, 431 images with DR but no risk of macular edema (ME), and 229 images with DR and risk of ME. The OD location methodology obtained 98.3% success rate, while fovea location achieved 95% success rate. The average mean absolute distance (MAD) between the OD segmentation algorithm and "gold standard" is 10.5% of estimated OD radius. Qualitatively, 97% of the images achieved Excellent to Fair performance for OD segmentation. The segmentation algorithm performs well even on blurred images.
The segmentation of Thangka damaged regions based on the local distinction
NASA Astrophysics Data System (ADS)
Xuehui, Bi; Huaming, Liu; Xiuyou, Wang; Weilan, Wang; Yashuai, Yang
2017-01-01
Damaged regions must be segmented before digital repairing Thangka cultural relics. A new segmentation algorithm based on local distinction is proposed for segmenting damaged regions, taking into account some of the damaged area with a transition zone feature, as well as the difference between the damaged regions and their surrounding regions, combining local gray value, local complexity and local definition-complexity (LDC). Firstly, calculate the local complexity and normalized; secondly, calculate the local definition-complexity and normalized; thirdly, calculate the local distinction; finally, set the threshold to segment local distinction image, remove the over segmentation, and get the final segmentation result. The experimental results show that our algorithm is effective, and it can segment the damaged frescoes and natural image etc.
Rudyanto, Rina D.; Kerkstra, Sjoerd; van Rikxoort, Eva M.; Fetita, Catalin; Brillet, Pierre-Yves; Lefevre, Christophe; Xue, Wenzhe; Zhu, Xiangjun; Liang, Jianming; Öksüz, İlkay; Ünay, Devrim; Kadipaşaogandcaron;lu, Kamuran; Estépar, Raúl San José; Ross, James C.; Washko, George R.; Prieto, Juan-Carlos; Hoyos, Marcela Hernández; Orkisz, Maciej; Meine, Hans; Hüllebrand, Markus; Stöcker, Christina; Mir, Fernando Lopez; Naranjo, Valery; Villanueva, Eliseo; Staring, Marius; Xiao, Changyan; Stoel, Berend C.; Fabijanska, Anna; Smistad, Erik; Elster, Anne C.; Lindseth, Frank; Foruzan, Amir Hossein; Kiros, Ryan; Popuri, Karteek; Cobzas, Dana; Jimenez-Carretero, Daniel; Santos, Andres; Ledesma-Carbayo, Maria J.; Helmberger, Michael; Urschler, Martin; Pienn, Michael; Bosboom, Dennis G.H.; Campo, Arantza; Prokop, Mathias; de Jong, Pim A.; Ortiz-de-Solorzano, Carlos; Muñoz-Barrutia, Arrate; van Ginneken, Bram
2016-01-01
The VESSEL12 (VESsel SEgmentation in the Lung) challenge objectively compares the performance of different algorithms to identify vessels in thoracic computed tomography (CT) scans. Vessel segmentation is fundamental in computer aided processing of data generated by 3D imaging modalities. As manual vessel segmentation is prohibitively time consuming, any real world application requires some form of automation. Several approaches exist for automated vessel segmentation, but judging their relative merits is difficult due to a lack of standardized evaluation. We present an annotated reference dataset containing 20 CT scans and propose nine categories to perform a comprehensive evaluation of vessel segmentation algorithms from both academia and industry. Twenty algorithms participated in the VESSEL12 challenge, held at International Symposium on Biomedical Imaging (ISBI) 2012. All results have been published at the VESSEL12 website http://vessel12.grand-challenge.org. The challenge remains ongoing and open to new participants. Our three contributions are: (1) an annotated reference dataset available online for evaluation of new algorithms; (2) a quantitative scoring system for objective comparison of algorithms; and (3) performance analysis of the strengths and weaknesses of the various vessel segmentation methods in the presence of various lung diseases. PMID:25113321
Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images.
Tian, Jing; Marziliano, Pina; Baskaran, Mani; Tun, Tin Aung; Aung, Tin
2013-03-01
Enhanced Depth Imaging (EDI) optical coherence tomography (OCT) provides high-definition cross-sectional images of the choroid in vivo, and hence is used in many clinical studies. However, the quantification of the choroid depends on the manual labelings of two boundaries, Bruch's membrane and the choroidal-scleral interface. This labeling process is tedious and subjective of inter-observer differences, hence, automatic segmentation of the choroid layer is highly desirable. In this paper, we present a fast and accurate algorithm that could segment the choroid automatically. Bruch's membrane is detected by searching the pixel with the biggest gradient value above the retinal pigment epithelium (RPE) and the choroidal-scleral interface is delineated by finding the shortest path of the graph formed by valley pixels using Dijkstra's algorithm. The experiments comparing automatic segmentation results with the manual labelings are conducted on 45 EDI-OCT images and the average of Dice's Coefficient is 90.5%, which shows good consistency of the algorithm with the manual labelings. The processing time for each image is about 1.25 seconds.
Wang, Guanglei; Wang, Pengyu; Han, Yechen; Liu, Xiuling; Li, Yan; Lu, Qian
2017-06-01
In recent years, optical coherence tomography (OCT) has developed into a popular coronary imaging technology at home and abroad. The segmentation of plaque regions in coronary OCT images has great significance for vulnerable plaque recognition and research. In this paper, a new algorithm based on K -means clustering and improved random walk is proposed and Semi-automated segmentation of calcified plaque, fibrotic plaque and lipid pool was achieved. And the weight function of random walk is improved. The distance between the edges of pixels in the image and the seed points is added to the definition of the weight function. It increases the weak edge weights and prevent over-segmentation. Based on the above methods, the OCT images of 9 coronary atherosclerotic patients were selected for plaque segmentation. By contrasting the doctor's manual segmentation results with this method, it was proved that this method had good robustness and accuracy. It is hoped that this method can be helpful for the clinical diagnosis of coronary heart disease.
Marker-Based Hierarchical Segmentation and Classification Approach for Hyperspectral Imagery
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Tilton, James C.; Benediktsson, Jon Atli; Chanussot, Jocelyn
2011-01-01
The Hierarchical SEGmentation (HSEG) algorithm, which is a combination of hierarchical step-wise optimization and spectral clustering, has given good performances for hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. First, pixelwise classification is performed and the most reliably classified pixels are selected as markers, with the corresponding class labels. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. The experimental results show that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for hyperspectral image analysis.
A Stochastic-Variational Model for Soft Mumford-Shah Segmentation
2006-01-01
In contemporary image and vision analysis, stochastic approaches demonstrate great flexibility in representing and modeling complex phenomena, while variational-PDE methods gain enormous computational advantages over Monte Carlo or other stochastic algorithms. In combination, the two can lead to much more powerful novel models and efficient algorithms. In the current work, we propose a stochastic-variational model for soft (or fuzzy) Mumford-Shah segmentation of mixture image patterns. Unlike the classical hard Mumford-Shah segmentation, the new model allows each pixel to belong to each image pattern with some probability. Soft segmentation could lead to hard segmentation, and hence is more general. The modeling procedure, mathematical analysis on the existence of optimal solutions, and computational implementation of the new model are explored in detail, and numerical examples of both synthetic and natural images are presented. PMID:23165059
MIA-Clustering: a novel method for segmentation of paleontological material.
Dunmore, Christopher J; Wollny, Gert; Skinner, Matthew M
2018-01-01
Paleontological research increasingly uses high-resolution micro-computed tomography (μCT) to study the inner architecture of modern and fossil bone material to answer important questions regarding vertebrate evolution. This non-destructive method allows for the measurement of otherwise inaccessible morphology. Digital measurement is predicated on the accurate segmentation of modern or fossilized bone from other structures imaged in μCT scans, as errors in segmentation can result in inaccurate calculations of structural parameters. Several approaches to image segmentation have been proposed with varying degrees of automation, ranging from completely manual segmentation, to the selection of input parameters required for computational algorithms. Many of these segmentation algorithms provide speed and reproducibility at the cost of flexibility that manual segmentation provides. In particular, the segmentation of modern and fossil bone in the presence of materials such as desiccated soft tissue, soil matrix or precipitated crystalline material can be difficult. Here we present a free open-source segmentation algorithm application capable of segmenting modern and fossil bone, which also reduces subjective user decisions to a minimum. We compare the effectiveness of this algorithm with another leading method by using both to measure the parameters of a known dimension reference object, as well as to segment an example problematic fossil scan. The results demonstrate that the medical image analysis-clustering method produces accurate segmentations and offers more flexibility than those of equivalent precision. Its free availability, flexibility to deal with non-bone inclusions and limited need for user input give it broad applicability in anthropological, anatomical, and paleontological contexts.
An improved approach for the segmentation of starch granules in microscopic images
2010-01-01
Background Starches are the main storage polysaccharides in plants and are distributed widely throughout plants including seeds, roots, tubers, leaves, stems and so on. Currently, microscopic observation is one of the most important ways to investigate and analyze the structure of starches. The position, shape, and size of the starch granules are the main measurements for quantitative analysis. In order to obtain these measurements, segmentation of starch granules from the background is very important. However, automatic segmentation of starch granules is still a challenging task because of the limitation of imaging condition and the complex scenarios of overlapping granules. Results We propose a novel method to segment starch granules in microscopic images. In the proposed method, we first separate starch granules from background using automatic thresholding and then roughly segment the image using watershed algorithm. In order to reduce the oversegmentation in watershed algorithm, we use the roundness of each segment, and analyze the gradient vector field to find the critical points so as to identify oversegments. After oversegments are found, we extract the features, such as the position and intensity of the oversegments, and use fuzzy c-means clustering to merge the oversegments to the objects with similar features. Experimental results demonstrate that the proposed method can alleviate oversegmentation of watershed segmentation algorithm successfully. Conclusions We present a new scheme for starch granules segmentation. The proposed scheme aims to alleviate the oversegmentation in watershed algorithm. We use the shape information and critical points of gradient vector flow (GVF) of starch granules to identify oversegments, and use fuzzy c-mean clustering based on prior knowledge to merge these oversegments to the objects. Experimental results on twenty microscopic starch images demonstrate the effectiveness of the proposed scheme. PMID:21047380
Song, Xiaoying; Huang, Qijun; Chang, Sheng; He, Jin; Wang, Hao
2018-06-01
To improve the compression rates for lossless compression of medical images, an efficient algorithm, based on irregular segmentation and region-based prediction, is proposed in this paper. Considering that the first step of a region-based compression algorithm is segmentation, this paper proposes a hybrid method by combining geometry-adaptive partitioning and quadtree partitioning to achieve adaptive irregular segmentation for medical images. Then, least square (LS)-based predictors are adaptively designed for each region (regular subblock or irregular subregion). The proposed adaptive algorithm not only exploits spatial correlation between pixels but it utilizes local structure similarity, resulting in efficient compression performance. Experimental results show that the average compression performance of the proposed algorithm is 10.48, 4.86, 3.58, and 0.10% better than that of JPEG 2000, CALIC, EDP, and JPEG-LS, respectively. Graphical abstract ᅟ.
Rajab, Maher I
2011-11-01
Since the introduction of epiluminescence microscopy (ELM), image analysis tools have been extended to the field of dermatology, in an attempt to algorithmically reproduce clinical evaluation. Accurate image segmentation of skin lesions is one of the key steps for useful, early and non-invasive diagnosis of coetaneous melanomas. This paper proposes two image segmentation algorithms based on frequency domain processing and k-means clustering/fuzzy k-means clustering. The two methods are capable of segmenting and extracting the true border that reveals the global structure irregularity (indentations and protrusions), which may suggest excessive cell growth or regression of a melanoma. As a pre-processing step, Fourier low-pass filtering is applied to reduce the surrounding noise in a skin lesion image. A quantitative comparison of the techniques is enabled by the use of synthetic skin lesion images that model lesions covered with hair to which Gaussian noise is added. The proposed techniques are also compared with an established optimal-based thresholding skin-segmentation method. It is demonstrated that for lesions with a range of different border irregularity properties, the k-means clustering and fuzzy k-means clustering segmentation methods provide the best performance over a range of signal to noise ratios. The proposed segmentation techniques are also demonstrated to have similar performance when tested on real skin lesions representing high-resolution ELM images. This study suggests that the segmentation results obtained using a combination of low-pass frequency filtering and k-means or fuzzy k-means clustering are superior to the result that would be obtained by using k-means or fuzzy k-means clustering segmentation methods alone. © 2011 John Wiley & Sons A/S.
Epidermis area detection for immunofluorescence microscopy
NASA Astrophysics Data System (ADS)
Dovganich, Andrey; Krylov, Andrey; Nasonov, Andrey; Makhneva, Natalia
2018-04-01
We propose a novel image segmentation method for immunofluorescence microscopy images of skin tissue for the diagnosis of various skin diseases. The segmentation is based on machine learning algorithms. The feature vector is filled by three groups of features: statistical features, Laws' texture energy measures and local binary patterns. The images are preprocessed for better learning. Different machine learning algorithms have been used and the best results have been obtained with random forest algorithm. We use the proposed method to detect the epidermis region as a part of pemphigus diagnosis system.
Automated choroid segmentation based on gradual intensity distance in HD-OCT images.
Chen, Qiang; Fan, Wen; Niu, Sijie; Shi, Jiajia; Shen, Honglie; Yuan, Songtao
2015-04-06
The choroid is an important structure of the eye and plays a vital role in the pathology of retinal diseases. This paper presents an automated choroid segmentation method for high-definition optical coherence tomography (HD-OCT) images, including Bruch's membrane (BM) segmentation and choroidal-scleral interface (CSI) segmentation. An improved retinal nerve fiber layer (RNFL) complex removal algorithm is presented to segment BM by considering the structure characteristics of retinal layers. By analyzing the characteristics of CSI boundaries, we present a novel algorithm to generate a gradual intensity distance image. Then an improved 2-D graph search method with curve smooth constraints is used to obtain the CSI segmentation. Experimental results with 212 HD-OCT images from 110 eyes in 66 patients demonstrate that the proposed method can achieve high segmentation accuracy. The mean choroid thickness difference and overlap ratio between our proposed method and outlines drawn by experts was 6.72µm and 85.04%, respectively.
Ramsey, David J; Sunness, Janet S; Malviya, Poorva; Applegate, Carol; Hager, Gregory D; Handa, James T
2014-07-01
To develop a computer-based image segmentation method for standardizing the quantification of geographic atrophy (GA). The authors present an automated image segmentation method based on the fuzzy c-means clustering algorithm for the detection of GA lesions. The method is evaluated by comparing computerized segmentation against outlines of GA drawn by an expert grader for a longitudinal series of fundus autofluorescence images with paired 30° color fundus photographs for 10 patients. The automated segmentation method showed excellent agreement with an expert grader for fundus autofluorescence images, achieving a performance level of 94 ± 5% sensitivity and 98 ± 2% specificity on a per-pixel basis for the detection of GA area, but performed less well on color fundus photographs with a sensitivity of 47 ± 26% and specificity of 98 ± 2%. The segmentation algorithm identified 75 ± 16% of the GA border correctly in fundus autofluorescence images compared with just 42 ± 25% for color fundus photographs. The results of this study demonstrate a promising computerized segmentation method that may enhance the reproducibility of GA measurement and provide an objective strategy to assist an expert in the grading of images.
NASA Astrophysics Data System (ADS)
Yu, H.; Barriga, S.; Agurto, C.; Zamora, G.; Bauman, W.; Soliz, P.
2012-03-01
Retinal vasculature is one of the most important anatomical structures in digital retinal photographs. Accurate segmentation of retinal blood vessels is an essential task in automated analysis of retinopathy. This paper presents a new and effective vessel segmentation algorithm that features computational simplicity and fast implementation. This method uses morphological pre-processing to decrease the disturbance of bright structures and lesions before vessel extraction. Next, a vessel probability map is generated by computing the eigenvalues of the second derivatives of Gaussian filtered image at multiple scales. Then, the second order local entropy thresholding is applied to segment the vessel map. Lastly, a rule-based decision step, which measures the geometric shape difference between vessels and lesions is applied to reduce false positives. The algorithm is evaluated on the low-resolution DRIVE and STARE databases and the publicly available high-resolution image database from Friedrich-Alexander University Erlangen-Nuremberg, Germany). The proposed method achieved comparable performance to state of the art unsupervised vessel segmentation methods with a competitive faster speed on the DRIVE and STARE databases. For the high resolution fundus image database, the proposed algorithm outperforms an existing approach both on performance and speed. The efficiency and robustness make the blood vessel segmentation method described here suitable for broad application in automated analysis of retinal images.
NASA Technical Reports Server (NTRS)
Tilton, James C.
1988-01-01
Image segmentation can be a key step in data compression and image analysis. However, the segmentation results produced by most previous approaches to region growing are suspect because they depend on the order in which portions of the image are processed. An iterative parallel segmentation algorithm avoids this problem by performing globally best merges first. Such a segmentation approach, and two implementations of the approach on NASA's Massively Parallel Processor (MPP) are described. Application of the segmentation approach to data compression and image analysis is then described, and results of such application are given for a LANDSAT Thematic Mapper image.
Segment fusion of ToF-SIMS images.
Milillo, Tammy M; Miller, Mary E; Fischione, Remo; Montes, Angelina; Gardella, Joseph A
2016-06-08
The imaging capabilities of time-of-flight secondary ion mass spectrometry (ToF-SIMS) have not been used to their full potential in the analysis of polymer and biological samples. Imaging has been limited by the size of the dataset and the chemical complexity of the sample being imaged. Pixel and segment based image fusion algorithms commonly used in remote sensing, ecology, geography, and geology provide a way to improve spatial resolution and classification of biological images. In this study, a sample of Arabidopsis thaliana was treated with silver nanoparticles and imaged with ToF-SIMS. These images provide insight into the uptake mechanism for the silver nanoparticles into the plant tissue, giving new understanding to the mechanism of uptake of heavy metals in the environment. The Munechika algorithm was programmed in-house and applied to achieve pixel based fusion, which improved the spatial resolution of the image obtained. Multispectral and quadtree segment or region based fusion algorithms were performed using ecognition software, a commercially available remote sensing software suite, and used to classify the images. The Munechika fusion improved the spatial resolution for the images containing silver nanoparticles, while the segment fusion allowed classification and fusion based on the tissue types in the sample, suggesting potential pathways for the uptake of the silver nanoparticles.
An Efficient Implementation of Deep Convolutional Neural Networks for MRI Segmentation.
Hoseini, Farnaz; Shahbahrami, Asadollah; Bayat, Peyman
2018-02-27
Image segmentation is one of the most common steps in digital image processing, classifying a digital image into different segments. The main goal of this paper is to segment brain tumors in magnetic resonance images (MRI) using deep learning. Tumors having different shapes, sizes, brightness and textures can appear anywhere in the brain. These complexities are the reasons to choose a high-capacity Deep Convolutional Neural Network (DCNN) containing more than one layer. The proposed DCNN contains two parts: architecture and learning algorithms. The architecture and the learning algorithms are used to design a network model and to optimize parameters for the network training phase, respectively. The architecture contains five convolutional layers, all using 3 × 3 kernels, and one fully connected layer. Due to the advantage of using small kernels with fold, it allows making the effect of larger kernels with smaller number of parameters and fewer computations. Using the Dice Similarity Coefficient metric, we report accuracy results on the BRATS 2016, brain tumor segmentation challenge dataset, for the complete, core, and enhancing regions as 0.90, 0.85, and 0.84 respectively. The learning algorithm includes the task-level parallelism. All the pixels of an MR image are classified using a patch-based approach for segmentation. We attain a good performance and the experimental results show that the proposed DCNN increases the segmentation accuracy compared to previous techniques.
Pomegranate MR images analysis using ACM and FCM algorithms
NASA Astrophysics Data System (ADS)
Morad, Ghobad; Shamsi, Mousa; Sedaaghi, M. H.; Alsharif, M. R.
2011-10-01
Segmentation of an image plays an important role in image processing applications. In this paper segmentation of pomegranate magnetic resonance (MR) images has been explored. Pomegranate has healthy nutritional and medicinal properties for which the maturity indices and quality of internal tissues play an important role in the sorting process in which the admissible determination of features mentioned above cannot be easily achieved by human operator. Seeds and soft tissues are the main internal components of pomegranate. For research purposes, such as non-destructive investigation, in order to determine the ripening index and the percentage of seeds in growth period, segmentation of the internal structures should be performed as exactly as possible. In this paper, we present an automatic algorithm to segment the internal structure of pomegranate. Since its intensity of stem and calyx is close to the internal tissues, the stem and calyx pixels are usually labeled to the internal tissues by segmentation algorithm. To solve this problem, first, the fruit shape is extracted from its background using active contour model (ACM). Then stem and calyx are removed using morphological filters. Finally the image is segmented by fuzzy c-means (FCM). The experimental results represent an accuracy of 95.91% in the presence of stem and calyx, while the accuracy of segmentation increases to 97.53% when stem and calyx are first removed by morphological filters.
Xiao, Xun; Geyer, Veikko F.; Bowne-Anderson, Hugo; Howard, Jonathon; Sbalzarini, Ivo F.
2016-01-01
Biological filaments, such as actin filaments, microtubules, and cilia, are often imaged using different light-microscopy techniques. Reconstructing the filament curve from the acquired images constitutes the filament segmentation problem. Since filaments have lower dimensionality than the image itself, there is an inherent trade-off between tracing the filament with sub-pixel accuracy and avoiding noise artifacts. Here, we present a globally optimal filament segmentation method based on B-spline vector level-sets and a generalized linear model for the pixel intensity statistics. We show that the resulting optimization problem is convex and can hence be solved with global optimality. We introduce a simple and efficient algorithm to compute such optimal filament segmentations, and provide an open-source implementation as an ImageJ/Fiji plugin. We further derive an information-theoretic lower bound on the filament segmentation error, quantifying how well an algorithm could possibly do given the information in the image. We show that our algorithm asymptotically reaches this bound in the spline coefficients. We validate our method in comprehensive benchmarks, compare with other methods, and show applications from fluorescence, phase-contrast, and dark-field microscopy. PMID:27104582
Fully automatic segmentation of arbitrarily shaped fiducial markers in cone-beam CT projections
NASA Astrophysics Data System (ADS)
Bertholet, J.; Wan, H.; Toftegaard, J.; Schmidt, M. L.; Chotard, F.; Parikh, P. J.; Poulsen, P. R.
2017-02-01
Radio-opaque fiducial markers of different shapes are often implanted in or near abdominal or thoracic tumors to act as surrogates for the tumor position during radiotherapy. They can be used for real-time treatment adaptation, but this requires a robust, automatic segmentation method able to handle arbitrarily shaped markers in a rotational imaging geometry such as cone-beam computed tomography (CBCT) projection images and intra-treatment images. In this study, we propose a fully automatic dynamic programming (DP) assisted template-based (TB) segmentation method. Based on an initial DP segmentation, the DPTB algorithm generates and uses a 3D marker model to create 2D templates at any projection angle. The 2D templates are used to segment the marker position as the position with highest normalized cross-correlation in a search area centered at the DP segmented position. The accuracy of the DP algorithm and the new DPTB algorithm was quantified as the 2D segmentation error (pixels) compared to a manual ground truth segmentation for 97 markers in the projection images of CBCT scans of 40 patients. Also the fraction of wrong segmentations, defined as 2D errors larger than 5 pixels, was calculated. The mean 2D segmentation error of DP was reduced from 4.1 pixels to 3.0 pixels by DPTB, while the fraction of wrong segmentations was reduced from 17.4% to 6.8%. DPTB allowed rejection of uncertain segmentations as deemed by a low normalized cross-correlation coefficient and contrast-to-noise ratio. For a rejection rate of 9.97%, the sensitivity in detecting wrong segmentations was 67% and the specificity was 94%. The accepted segmentations had a mean segmentation error of 1.8 pixels and 2.5% wrong segmentations.
BgCut: automatic ship detection from UAV images.
Xu, Chao; Zhang, Dongping; Zhang, Zhengning; Feng, Zhiyong
2014-01-01
Ship detection in static UAV aerial images is a fundamental challenge in sea target detection and precise positioning. In this paper, an improved universal background model based on Grabcut algorithm is proposed to segment foreground objects from sea automatically. First, a sea template library including images in different natural conditions is built to provide an initial template to the model. Then the background trimap is obtained by combing some templates matching with region growing algorithm. The output trimap initializes Grabcut background instead of manual intervention and the process of segmentation without iteration. The effectiveness of our proposed model is demonstrated by extensive experiments on a certain area of real UAV aerial images by an airborne Canon 5D Mark. The proposed algorithm is not only adaptive but also with good segmentation. Furthermore, the model in this paper can be well applied in the automated processing of industrial images for related researches.
BgCut: Automatic Ship Detection from UAV Images
Zhang, Zhengning; Feng, Zhiyong
2014-01-01
Ship detection in static UAV aerial images is a fundamental challenge in sea target detection and precise positioning. In this paper, an improved universal background model based on Grabcut algorithm is proposed to segment foreground objects from sea automatically. First, a sea template library including images in different natural conditions is built to provide an initial template to the model. Then the background trimap is obtained by combing some templates matching with region growing algorithm. The output trimap initializes Grabcut background instead of manual intervention and the process of segmentation without iteration. The effectiveness of our proposed model is demonstrated by extensive experiments on a certain area of real UAV aerial images by an airborne Canon 5D Mark. The proposed algorithm is not only adaptive but also with good segmentation. Furthermore, the model in this paper can be well applied in the automated processing of industrial images for related researches. PMID:24977182
Kim, Eun Young; Magnotta, Vincent A; Liu, Dawei; Johnson, Hans J
2014-09-01
Machine learning (ML)-based segmentation methods are a common technique in the medical image processing field. In spite of numerous research groups that have investigated ML-based segmentation frameworks, there remains unanswered aspects of performance variability for the choice of two key components: ML algorithm and intensity normalization. This investigation reveals that the choice of those elements plays a major part in determining segmentation accuracy and generalizability. The approach we have used in this study aims to evaluate relative benefits of the two elements within a subcortical MRI segmentation framework. Experiments were conducted to contrast eight machine-learning algorithm configurations and 11 normalization strategies for our brain MR segmentation framework. For the intensity normalization, a Stable Atlas-based Mapped Prior (STAMP) was utilized to take better account of contrast along boundaries of structures. Comparing eight machine learning algorithms on down-sampled segmentation MR data, it was obvious that a significant improvement was obtained using ensemble-based ML algorithms (i.e., random forest) or ANN algorithms. Further investigation between these two algorithms also revealed that the random forest results provided exceptionally good agreement with manual delineations by experts. Additional experiments showed that the effect of STAMP-based intensity normalization also improved the robustness of segmentation for multicenter data sets. The constructed framework obtained good multicenter reliability and was successfully applied on a large multicenter MR data set (n>3000). Less than 10% of automated segmentations were recommended for minimal expert intervention. These results demonstrate the feasibility of using the ML-based segmentation tools for processing large amount of multicenter MR images. We demonstrated dramatically different result profiles in segmentation accuracy according to the choice of ML algorithm and intensity normalization chosen. Copyright © 2014 Elsevier Inc. All rights reserved.
An Algorithm to Automate Yeast Segmentation and Tracking
Doncic, Andreas; Eser, Umut; Atay, Oguzhan; Skotheim, Jan M.
2013-01-01
Our understanding of dynamic cellular processes has been greatly enhanced by rapid advances in quantitative fluorescence microscopy. Imaging single cells has emphasized the prevalence of phenomena that can be difficult to infer from population measurements, such as all-or-none cellular decisions, cell-to-cell variability, and oscillations. Examination of these phenomena requires segmenting and tracking individual cells over long periods of time. However, accurate segmentation and tracking of cells is difficult and is often the rate-limiting step in an experimental pipeline. Here, we present an algorithm that accomplishes fully automated segmentation and tracking of budding yeast cells within growing colonies. The algorithm incorporates prior information of yeast-specific traits, such as immobility and growth rate, to segment an image using a set of threshold values rather than one specific optimized threshold. Results from the entire set of thresholds are then used to perform a robust final segmentation. PMID:23520484
NASA Astrophysics Data System (ADS)
Diaz, Kristians; Castañeda, Benjamín; Miranda, César; Lavarello, Roberto; Llanos, Alejandro
2010-03-01
We developed a protocol for the acquisition of digital images and an algorithm for a color-based automatic segmentation of cutaneous lesions of Leishmaniasis. The protocol for image acquisition provides control over the working environment to manipulate brightness, lighting and undesirable shadows on the injury using indirect lighting. Also, this protocol was used to accurately calculate the area of the lesion expressed in mm2 even in curved surfaces by combining the information from two consecutive images. Different color spaces were analyzed and compared using ROC curves in order to determine the color layer with the highest contrast between the background and the wound. The proposed algorithm is composed of three stages: (1) Location of the wound determined by threshold and mathematical morphology techniques to the H layer of the HSV color space, (2) Determination of the boundaries of the wound by analyzing the color characteristics in the YIQ space based on masks (for the wound and the background) estimated from the first stage, and (3) Refinement of the calculations obtained on the previous stages by using the discrete dynamic contours algorithm. The segmented regions obtained with the algorithm were compared with manual segmentations made by a medical specialist. Broadly speaking, our results support that color provides useful information during segmentation and measurement of wounds of cutaneous Leishmaniasis. Results from ten images showed 99% specificity, 89% sensitivity, and 98% accuracy.
Novel techniques for enhancement and segmentation of acne vulgaris lesions.
Malik, A S; Humayun, J; Kamel, N; Yap, F B-B
2014-08-01
More than 99% acne patients suffer from acne vulgaris. While diagnosing the severity of acne vulgaris lesions, dermatologists have observed inter-rater and intra-rater variability in diagnosis results. This is because during assessment, identifying lesion types and their counting is a tedious job for dermatologists. To make the assessment job objective and easier for dermatologists, an automated system based on image processing methods is proposed in this study. There are two main objectives: (i) to develop an algorithm for the enhancement of various acne vulgaris lesions; and (ii) to develop a method for the segmentation of enhanced acne vulgaris lesions. For the first objective, an algorithm is developed based on the theory of high dynamic range (HDR) images. The proposed algorithm uses local rank transform to generate the HDR images from a single acne image followed by the log transformation. Then, segmentation is performed by clustering the pixels based on Mahalanobis distance of each pixel from spectral models of acne vulgaris lesions. Two metrics are used to evaluate the enhancement of acne vulgaris lesions, i.e., contrast improvement factor (CIF) and image contrast normalization (ICN). The proposed algorithm is compared with two other methods. The proposed enhancement algorithm shows better result than both the other methods based on CIF and ICN. In addition, sensitivity and specificity are calculated for the segmentation results. The proposed segmentation method shows higher sensitivity and specificity than other methods. This article specifically discusses the contrast enhancement and segmentation for automated diagnosis system of acne vulgaris lesions. The results are promising that can be used for further classification of acne vulgaris lesions for final grading of the lesions. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Optic disc segmentation for glaucoma screening system using fundus images.
Almazroa, Ahmed; Sun, Weiwei; Alodhayb, Sami; Raahemifar, Kaamran; Lakshminarayanan, Vasudevan
2017-01-01
Segmenting the optic disc (OD) is an important and essential step in creating a frame of reference for diagnosing optic nerve head pathologies such as glaucoma. Therefore, a reliable OD segmentation technique is necessary for automatic screening of optic nerve head abnormalities. The main contribution of this paper is in presenting a novel OD segmentation algorithm based on applying a level set method on a localized OD image. To prevent the blood vessels from interfering with the level set process, an inpainting technique was applied. As well an important contribution was to involve the variations in opinions among the ophthalmologists in detecting the disc boundaries and diagnosing the glaucoma. Most of the previous studies were trained and tested based on only one opinion, which can be assumed to be biased for the ophthalmologist. In addition, the accuracy was calculated based on the number of images that coincided with the ophthalmologists' agreed-upon images, and not only on the overlapping images as in previous studies. The ultimate goal of this project is to develop an automated image processing system for glaucoma screening. The disc algorithm is evaluated using a new retinal fundus image dataset called RIGA (retinal images for glaucoma analysis). In the case of low-quality images, a double level set was applied, in which the first level set was considered to be localization for the OD. Five hundred and fifty images are used to test the algorithm accuracy as well as the agreement among the manual markings of six ophthalmologists. The accuracy of the algorithm in marking the optic disc area and centroid was 83.9%, and the best agreement was observed between the results of the algorithm and manual markings in 379 images.
Image segmentation using hidden Markov Gauss mixture models.
Pyun, Kyungsuk; Lim, Johan; Won, Chee Sun; Gray, Robert M
2007-07-01
Image segmentation is an important tool in image processing and can serve as an efficient front end to sophisticated algorithms and thereby simplify subsequent processing. We develop a multiclass image segmentation method using hidden Markov Gauss mixture models (HMGMMs) and provide examples of segmentation of aerial images and textures. HMGMMs incorporate supervised learning, fitting the observation probability distribution given each class by a Gauss mixture estimated using vector quantization with a minimum discrimination information (MDI) distortion. We formulate the image segmentation problem using a maximum a posteriori criteria and find the hidden states that maximize the posterior density given the observation. We estimate both the hidden Markov parameter and hidden states using a stochastic expectation-maximization algorithm. Our results demonstrate that HMGMM provides better classification in terms of Bayes risk and spatial homogeneity of the classified objects than do several popular methods, including classification and regression trees, learning vector quantization, causal hidden Markov models (HMMs), and multiresolution HMMs. The computational load of HMGMM is similar to that of the causal HMM.
SU-E-J-224: Multimodality Segmentation of Head and Neck Tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aristophanous, M; Yang, J; Beadle, B
2014-06-01
Purpose: Develop an algorithm that is able to automatically segment tumor volume in Head and Neck cancer by integrating information from CT, PET and MR imaging simultaneously. Methods: Twenty three patients that were recruited under an adaptive radiotherapy protocol had MR, CT and PET/CT scans within 2 months prior to start of radiotherapy. The patients had unresectable disease and were treated either with chemoradiotherapy or radiation therapy alone. Using the Velocity software, the PET/CT and MR (T1 weighted+contrast) scans were registered to the planning CT using deformable and rigid registration respectively. The PET and MR images were then resampled accordingmore » to the registration to match the planning CT. The resampled images, together with the planning CT, were fed into a multi-channel segmentation algorithm, which is based on Gaussian mixture models and solved with the expectation-maximization algorithm and Markov random fields. A rectangular region of interest (ROI) was manually placed to identify the tumor area and facilitate the segmentation process. The auto-segmented tumor contours were compared with the gross tumor volume (GTV) manually defined by the physician. The volume difference and Dice similarity coefficient (DSC) between the manual and autosegmented GTV contours were calculated as the quantitative evaluation metrics. Results: The multimodality segmentation algorithm was applied to all 23 patients. The volumes of the auto-segmented GTV ranged from 18.4cc to 32.8cc. The average (range) volume difference between the manual and auto-segmented GTV was −42% (−32.8%–63.8%). The average DSC value was 0.62, ranging from 0.39 to 0.78. Conclusion: An algorithm for the automated definition of tumor volume using multiple imaging modalities simultaneously was successfully developed and implemented for Head and Neck cancer. This development along with more accurate registration algorithms can aid physicians in the efforts to interpret the multitude of imaging information available in radiotherapy today. This project was supported by a grant by Varian Medical Systems.« less
GPU-based relative fuzzy connectedness image segmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuge Ying; Ciesielski, Krzysztof C.; Udupa, Jayaram K.
2013-01-15
Purpose:Recently, clinical radiological research and practice are becoming increasingly quantitative. Further, images continue to increase in size and volume. For quantitative radiology to become practical, it is crucial that image segmentation algorithms and their implementations are rapid and yield practical run time on very large data sets. The purpose of this paper is to present a parallel version of an algorithm that belongs to the family of fuzzy connectedness (FC) algorithms, to achieve an interactive speed for segmenting large medical image data sets. Methods: The most common FC segmentations, optimizing an Script-Small-L {sub {infinity}}-based energy, are known as relative fuzzymore » connectedness (RFC) and iterative relative fuzzy connectedness (IRFC). Both RFC and IRFC objects (of which IRFC contains RFC) can be found via linear time algorithms, linear with respect to the image size. The new algorithm, P-ORFC (for parallel optimal RFC), which is implemented by using NVIDIA's Compute Unified Device Architecture (CUDA) platform, considerably improves the computational speed of the above mentioned CPU based IRFC algorithm. Results: Experiments based on four data sets of small, medium, large, and super data size, achieved speedup factors of 32.8 Multiplication-Sign , 22.9 Multiplication-Sign , 20.9 Multiplication-Sign , and 17.5 Multiplication-Sign , correspondingly, on the NVIDIA Tesla C1060 platform. Although the output of P-ORFC need not precisely match that of IRFC output, it is very close to it and, as the authors prove, always lies between the RFC and IRFC objects. Conclusions: A parallel version of a top-of-the-line algorithm in the family of FC has been developed on the NVIDIA GPUs. An interactive speed of segmentation has been achieved, even for the largest medical image data set. Such GPU implementations may play a crucial role in automatic anatomy recognition in clinical radiology.« less
Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks
Ibragimov, Bulat; Xing, Lei
2017-01-01
Purpose Accurate segmentation of organs-at-risks (OARs) is the key step for efficient planning of radiation therapy for head and neck (HaN) cancer treatment. In the work, we proposed the first deep learning-based algorithm, for segmentation of OARs in HaN CT images, and compared its performance against state-of-the-art automated segmentation algorithms, commercial software and inter-observer variability. Methods Convolutional neural networks (CNNs) – a concept from the field of deep learning – were used to study consistent intensity patterns of OARs from training CT images and to segment the OAR in a previously unseen test CT image. For CNN training, we extracted a representative number of positive intensity patches around voxels that belong to the OAR of interest in training CT images, and negative intensity patches around voxels that belong to the surrounding structures. These patches then passed through a sequence of CNN layers that captured local image features such as corners, end-points and edges, and combined them into more complex high-order features that can efficiently describe the OAR. The trained network was applied to classify voxels in a region of interest in the test image where the corresponding OAR is expected to be located. We then smoothed the obtained classification results by using Markov random fields algorithm. We finally extracted the largest connected component of the smoothed voxels classified as the OAR by CNN, performed dilate-erode operations to remov cavities of the component, which resulted in segmentation of the OAR in the test image. Results The performance of CNNs was validated on segmentation of spinal cord, mandible, parotid glands, submandibular glands, larynx, pharynx, eye globes, optic nerves and optic chiasm using 50 CT images. The obtained segmentation results varied from 37.4% Dice coefficient (DSC) for chiasm to 89.5% DSC for mandible. We also analyzed the performance of state-of-the-art algorithms and commercial software reported in the literature, and observed that CNNs demonstrate similar or superior performance on segmentation of spinal cord, mandible, parotid glands, larynx, pharynx, eye globes and optic nerves, but inferior performance on segmentation of submandibular glands and optic chiasm. Conclusion We concluded that convolution neural networks can accurately segment most of OARs using a representative database of 50 HaN CT images. At the same time, inclusion of additional information, e.g. MR images, may be beneficial for some OARs with poorly-visible boundaries. PMID:28205307
Zaritsky, Assaf; Natan, Sari; Horev, Judith; Hecht, Inbal; Wolf, Lior; Ben-Jacob, Eshel; Tsarfaty, Ilan
2011-01-01
Confocal microscopy analysis of fluorescence and morphology is becoming the standard tool in cell biology and molecular imaging. Accurate quantification algorithms are required to enhance the understanding of different biological phenomena. We present a novel approach based on image-segmentation of multi-cellular regions in bright field images demonstrating enhanced quantitative analyses and better understanding of cell motility. We present MultiCellSeg, a segmentation algorithm to separate between multi-cellular and background regions for bright field images, which is based on classification of local patches within an image: a cascade of Support Vector Machines (SVMs) is applied using basic image features. Post processing includes additional classification and graph-cut segmentation to reclassify erroneous regions and refine the segmentation. This approach leads to a parameter-free and robust algorithm. Comparison to an alternative algorithm on wound healing assay images demonstrates its superiority. The proposed approach was used to evaluate common cell migration models such as wound healing and scatter assay. It was applied to quantify the acceleration effect of Hepatocyte growth factor/scatter factor (HGF/SF) on healing rate in a time lapse confocal microscopy wound healing assay and demonstrated that the healing rate is linear in both treated and untreated cells, and that HGF/SF accelerates the healing rate by approximately two-fold. A novel fully automated, accurate, zero-parameters method to classify and score scatter-assay images was developed and demonstrated that multi-cellular texture is an excellent descriptor to measure HGF/SF-induced cell scattering. We show that exploitation of textural information from differential interference contrast (DIC) images on the multi-cellular level can prove beneficial for the analyses of wound healing and scatter assays. The proposed approach is generic and can be used alone or alongside traditional fluorescence single-cell processing to perform objective, accurate quantitative analyses for various biological applications. PMID:22096600
Zaritsky, Assaf; Natan, Sari; Horev, Judith; Hecht, Inbal; Wolf, Lior; Ben-Jacob, Eshel; Tsarfaty, Ilan
2011-01-01
Confocal microscopy analysis of fluorescence and morphology is becoming the standard tool in cell biology and molecular imaging. Accurate quantification algorithms are required to enhance the understanding of different biological phenomena. We present a novel approach based on image-segmentation of multi-cellular regions in bright field images demonstrating enhanced quantitative analyses and better understanding of cell motility. We present MultiCellSeg, a segmentation algorithm to separate between multi-cellular and background regions for bright field images, which is based on classification of local patches within an image: a cascade of Support Vector Machines (SVMs) is applied using basic image features. Post processing includes additional classification and graph-cut segmentation to reclassify erroneous regions and refine the segmentation. This approach leads to a parameter-free and robust algorithm. Comparison to an alternative algorithm on wound healing assay images demonstrates its superiority. The proposed approach was used to evaluate common cell migration models such as wound healing and scatter assay. It was applied to quantify the acceleration effect of Hepatocyte growth factor/scatter factor (HGF/SF) on healing rate in a time lapse confocal microscopy wound healing assay and demonstrated that the healing rate is linear in both treated and untreated cells, and that HGF/SF accelerates the healing rate by approximately two-fold. A novel fully automated, accurate, zero-parameters method to classify and score scatter-assay images was developed and demonstrated that multi-cellular texture is an excellent descriptor to measure HGF/SF-induced cell scattering. We show that exploitation of textural information from differential interference contrast (DIC) images on the multi-cellular level can prove beneficial for the analyses of wound healing and scatter assays. The proposed approach is generic and can be used alone or alongside traditional fluorescence single-cell processing to perform objective, accurate quantitative analyses for various biological applications.
Surgical wound segmentation based on adaptive threshold edge detection and genetic algorithm
NASA Astrophysics Data System (ADS)
Shih, Hsueh-Fu; Ho, Te-Wei; Hsu, Jui-Tse; Chang, Chun-Che; Lai, Feipei; Wu, Jin-Ming
2017-02-01
Postsurgical wound care has a great impact on patients' prognosis. It often takes few days, even few weeks, for the wound to stabilize, which incurs a great cost of health care and nursing resources. To assess the wound condition and diagnosis, it is important to segment out the wound region for further analysis. However, the scenario of this strategy often consists of complicated background and noise. In this study, we propose a wound segmentation algorithm based on Canny edge detector and genetic algorithm with an unsupervised evaluation function. The results were evaluated by the 112 clinical images, and 94.3% of images were correctly segmented. The judgment was based on the evaluation of experimented medical doctors. This capability to extract complete wound regions, makes it possible to conduct further image analysis such as intelligent recovery evaluation and automatic infection requirements.
Phellan, Renzo; Forkert, Nils D
2017-11-01
Vessel enhancement algorithms are often used as a preprocessing step for vessel segmentation in medical images to improve the overall segmentation accuracy. Each algorithm uses different characteristics to enhance vessels, such that the most suitable algorithm may vary for different applications. This paper presents a comparative analysis of the accuracy gains in vessel segmentation generated by the use of nine vessel enhancement algorithms: Multiscale vesselness using the formulas described by Erdt (MSE), Frangi (MSF), and Sato (MSS), optimally oriented flux (OOF), ranking orientations responses path operator (RORPO), the regularized Perona-Malik approach (RPM), vessel enhanced diffusion (VED), hybrid diffusion with continuous switch (HDCS), and the white top hat algorithm (WTH). The filters were evaluated and compared based on time-of-flight MRA datasets and corresponding manual segmentations from 5 healthy subjects and 10 patients with an arteriovenous malformation. Additionally, five synthetic angiographic datasets with corresponding ground truth segmentation were generated with three different noise levels (low, medium, and high) and also used for comparison. The parameters for each algorithm and subsequent segmentation were optimized using leave-one-out cross evaluation. The Dice coefficient, Matthews correlation coefficient, area under the ROC curve, number of connected components, and true positives were used for comparison. The results of this study suggest that vessel enhancement algorithms do not always lead to more accurate segmentation results compared to segmenting nonenhanced images directly. Multiscale vesselness algorithms, such as MSE, MSF, and MSS proved to be robust to noise, while diffusion-based filters, such as RPM, VED, and HDCS ranked in the top of the list in scenarios with medium or no noise. Filters that assume tubular-shapes, such as MSE, MSF, MSS, OOF, RORPO, and VED show a decrease in accuracy when considering patients with an AVM, because vessels may vary from its tubular-shape in this case. Vessel enhancement algorithms can help to improve the accuracy of the segmentation of the vascular system. However, their contribution to accuracy has to be evaluated as it depends on the specific applications, and in some cases it can lead to a reduction of the overall accuracy. No specific filter was suitable for all tested scenarios. © 2017 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Yang, Gongping; Zhou, Guang-Tong; Yin, Yilong; Yang, Xiukun
2010-12-01
A critical step in an automatic fingerprint recognition system is the segmentation of fingerprint images. Existing methods are usually designed to segment fingerprint images originated from a certain sensor. Thus their performances are significantly affected when dealing with fingerprints collected by different sensors. This work studies the sensor interoperability of fingerprint segmentation algorithms, which refers to the algorithm's ability to adapt to the raw fingerprints obtained from different sensors. We empirically analyze the sensor interoperability problem, and effectively address the issue by proposing a [InlineEquation not available: see fulltext.]-means based segmentation method called SKI. SKI clusters foreground and background blocks of a fingerprint image based on the [InlineEquation not available: see fulltext.]-means algorithm, where a fingerprint block is represented by a 3-dimensional feature vector consisting of block-wise coherence, mean, and variance (abbreviated as CMV). SKI also employs morphological postprocessing to achieve favorable segmentation results. We perform SKI on each fingerprint to ensure sensor interoperability. The interoperability and robustness of our method are validated by experiments performed on a number of fingerprint databases which are obtained from various sensors.
Brain tumor segmentation in MR slices using improved GrowCut algorithm
NASA Astrophysics Data System (ADS)
Ji, Chunhong; Yu, Jinhua; Wang, Yuanyuan; Chen, Liang; Shi, Zhifeng; Mao, Ying
2015-12-01
The detection of brain tumor from MR images is very significant for medical diagnosis and treatment. However, the existing methods are mostly based on manual or semiautomatic segmentation which are awkward when dealing with a large amount of MR slices. In this paper, a new fully automatic method for the segmentation of brain tumors in MR slices is presented. Based on the hypothesis of the symmetric brain structure, the method improves the interactive GrowCut algorithm by further using the bounding box algorithm in the pre-processing step. More importantly, local reflectional symmetry is used to make up the deficiency of the bounding box method. After segmentation, 3D tumor image is reconstructed. We evaluate the accuracy of the proposed method on MR slices with synthetic tumors and actual clinical MR images. Result of the proposed method is compared with the actual position of simulated 3D tumor qualitatively and quantitatively. In addition, our automatic method produces equivalent performance as manual segmentation and the interactive GrowCut with manual interference while providing fully automatic segmentation.
NASA Technical Reports Server (NTRS)
Czabaj, M. W.; Riccio, M. L.; Whitacre, W. W.
2014-01-01
A combined experimental and computational study aimed at high-resolution 3D imaging, visualization, and numerical reconstruction of fiber-reinforced polymer microstructures at the fiber length scale is presented. To this end, a sample of graphite/epoxy composite was imaged at sub-micron resolution using a 3D X-ray computed tomography microscope. Next, a novel segmentation algorithm was developed, based on concepts adopted from computer vision and multi-target tracking, to detect and estimate, with high accuracy, the position of individual fibers in a volume of the imaged composite. In the current implementation, the segmentation algorithm was based on Global Nearest Neighbor data-association architecture, a Kalman filter estimator, and several novel algorithms for virtualfiber stitching, smoothing, and overlap removal. The segmentation algorithm was used on a sub-volume of the imaged composite, detecting 508 individual fibers. The segmentation data were qualitatively compared to the tomographic data, demonstrating high accuracy of the numerical reconstruction. Moreover, the data were used to quantify a) the relative distribution of individual-fiber cross sections within the imaged sub-volume, and b) the local fiber misorientation relative to the global fiber axis. Finally, the segmentation data were converted using commercially available finite element (FE) software to generate a detailed FE mesh of the composite volume. The methodology described herein demonstrates the feasibility of realizing an FE-based, virtual-testing framework for graphite/fiber composites at the constituent level.
NASA Astrophysics Data System (ADS)
Nanayakkara, Nuwan D.; Samarabandu, Jagath; Fenster, Aaron
2006-04-01
Estimation of prostate location and volume is essential in determining a dose plan for ultrasound-guided brachytherapy, a common prostate cancer treatment. However, manual segmentation is difficult, time consuming and prone to variability. In this paper, we present a semi-automatic discrete dynamic contour (DDC) model based image segmentation algorithm, which effectively combines a multi-resolution model refinement procedure together with the domain knowledge of the image class. The segmentation begins on a low-resolution image by defining a closed DDC model by the user. This contour model is then deformed progressively towards higher resolution images. We use a combination of a domain knowledge based fuzzy inference system (FIS) and a set of adaptive region based operators to enhance the edges of interest and to govern the model refinement using a DDC model. The automatic vertex relocation process, embedded into the algorithm, relocates deviated contour points back onto the actual prostate boundary, eliminating the need of user interaction after initialization. The accuracy of the prostate boundary produced by the proposed algorithm was evaluated by comparing it with a manually outlined contour by an expert observer. We used this algorithm to segment the prostate boundary in 114 2D transrectal ultrasound (TRUS) images of six patients scheduled for brachytherapy. The mean distance between the contours produced by the proposed algorithm and the manual outlines was 2.70 ± 0.51 pixels (0.54 ± 0.10 mm). We also showed that the algorithm is insensitive to variations of the initial model and parameter values, thus increasing the accuracy and reproducibility of the resulting boundaries in the presence of noise and artefacts.
Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge
Litjens, Geert; Toth, Robert; van de Ven, Wendy; Hoeks, Caroline; Kerkstra, Sjoerd; van Ginneken, Bram; Vincent, Graham; Guillard, Gwenael; Birbeck, Neil; Zhang, Jindang; Strand, Robin; Malmberg, Filip; Ou, Yangming; Davatzikos, Christos; Kirschner, Matthias; Jung, Florian; Yuan, Jing; Qiu, Wu; Gao, Qinquan; Edwards, Philip “Eddie”; Maan, Bianca; van der Heijden, Ferdinand; Ghose, Soumya; Mitra, Jhimli; Dowling, Jason; Barratt, Dean; Huisman, Henkjan; Madabhushi, Anant
2014-01-01
Prostate MRI image segmentation has been an area of intense research due to the increased use of MRI as a modality for the clinical workup of prostate cancer. Segmentation is useful for various tasks, e.g. to accurately localize prostate boundaries for radiotherapy or to initialize multi-modal registration algorithms. In the past, it has been difficult for research groups to evaluate prostate segmentation algorithms on multi-center, multi-vendor and multi-protocol data. Especially because we are dealing with MR images, image appearance, resolution and the presence of artifacts are affected by differences in scanners and/or protocols, which in turn can have a large influence on algorithm accuracy. The Prostate MR Image Segmentation (PROMISE12) challenge was setup to allow a fair and meaningful comparison of segmentation methods on the basis of performance and robustness. In this work we will discuss the initial results of the online PROMISE12 challenge, and the results obtained in the live challenge workshop hosted by the MICCAI2012 conference. In the challenge, 100 prostate MR cases from 4 different centers were included, with differences in scanner manufacturer, field strength and protocol. A total of 11 teams from academic research groups and industry participated. Algorithms showed a wide variety in methods and implementation, including active appearance models, atlas registration and level sets. Evaluation was performed using boundary and volume based metrics which were combined into a single score relating the metrics to human expert performance. The winners of the challenge where the algorithms by teams Imorphics and ScrAutoProstate, with scores of 85.72 and 84.29 overall. Both algorithms where significantly better than all other algorithms in the challenge (p < 0.05) and had an efficient implementation with a run time of 8 minutes and 3 second per case respectively. Overall, active appearance model based approaches seemed to outperform other approaches like multi-atlas registration, both on accuracy and computation time. Although average algorithm performance was good to excellent and the Imorphics algorithm outperformed the second observer on average, we showed that algorithm combination might lead to further improvement, indicating that optimal performance for prostate segmentation is not yet obtained. All results are available online at http://promise12.grand-challenge.org/. PMID:24418598
Handwritten text line segmentation by spectral clustering
NASA Astrophysics Data System (ADS)
Han, Xuecheng; Yao, Hui; Zhong, Guoqiang
2017-02-01
Since handwritten text lines are generally skewed and not obviously separated, text line segmentation of handwritten document images is still a challenging problem. In this paper, we propose a novel text line segmentation algorithm based on the spectral clustering. Given a handwritten document image, we convert it to a binary image first, and then compute the adjacent matrix of the pixel points. We apply spectral clustering on this similarity metric and use the orthogonal kmeans clustering algorithm to group the text lines. Experiments on Chinese handwritten documents database (HIT-MW) demonstrate the effectiveness of the proposed method.
Local Competition-Based Superpixel Segmentation Algorithm in Remote Sensing
Liu, Jiayin; Tang, Zhenmin; Cui, Ying; Wu, Guoxing
2017-01-01
Remote sensing technologies have been widely applied in urban environments’ monitoring, synthesis and modeling. Incorporating spatial information in perceptually coherent regions, superpixel-based approaches can effectively eliminate the “salt and pepper” phenomenon which is common in pixel-wise approaches. Compared with fixed-size windows, superpixels have adaptive sizes and shapes for different spatial structures. Moreover, superpixel-based algorithms can significantly improve computational efficiency owing to the greatly reduced number of image primitives. Hence, the superpixel algorithm, as a preprocessing technique, is more and more popularly used in remote sensing and many other fields. In this paper, we propose a superpixel segmentation algorithm called Superpixel Segmentation with Local Competition (SSLC), which utilizes a local competition mechanism to construct energy terms and label pixels. The local competition mechanism leads to energy terms locality and relativity, and thus, the proposed algorithm is less sensitive to the diversity of image content and scene layout. Consequently, SSLC could achieve consistent performance in different image regions. In addition, the Probability Density Function (PDF), which is estimated by Kernel Density Estimation (KDE) with the Gaussian kernel, is introduced to describe the color distribution of superpixels as a more sophisticated and accurate measure. To reduce computational complexity, a boundary optimization framework is introduced to only handle boundary pixels instead of the whole image. We conduct experiments to benchmark the proposed algorithm with the other state-of-the-art ones on the Berkeley Segmentation Dataset (BSD) and remote sensing images. Results demonstrate that the SSLC algorithm yields the best overall performance, while the computation time-efficiency is still competitive. PMID:28604641
Local Competition-Based Superpixel Segmentation Algorithm in Remote Sensing.
Liu, Jiayin; Tang, Zhenmin; Cui, Ying; Wu, Guoxing
2017-06-12
Remote sensing technologies have been widely applied in urban environments' monitoring, synthesis and modeling. Incorporating spatial information in perceptually coherent regions, superpixel-based approaches can effectively eliminate the "salt and pepper" phenomenon which is common in pixel-wise approaches. Compared with fixed-size windows, superpixels have adaptive sizes and shapes for different spatial structures. Moreover, superpixel-based algorithms can significantly improve computational efficiency owing to the greatly reduced number of image primitives. Hence, the superpixel algorithm, as a preprocessing technique, is more and more popularly used in remote sensing and many other fields. In this paper, we propose a superpixel segmentation algorithm called Superpixel Segmentation with Local Competition (SSLC), which utilizes a local competition mechanism to construct energy terms and label pixels. The local competition mechanism leads to energy terms locality and relativity, and thus, the proposed algorithm is less sensitive to the diversity of image content and scene layout. Consequently, SSLC could achieve consistent performance in different image regions. In addition, the Probability Density Function (PDF), which is estimated by Kernel Density Estimation (KDE) with the Gaussian kernel, is introduced to describe the color distribution of superpixels as a more sophisticated and accurate measure. To reduce computational complexity, a boundary optimization framework is introduced to only handle boundary pixels instead of the whole image. We conduct experiments to benchmark the proposed algorithm with the other state-of-the-art ones on the Berkeley Segmentation Dataset (BSD) and remote sensing images. Results demonstrate that the SSLC algorithm yields the best overall performance, while the computation time-efficiency is still competitive.
Segmenting texts from outdoor images taken by mobile phones using color features
NASA Astrophysics Data System (ADS)
Liu, Zongyi; Zhou, Hanning
2011-01-01
Recognizing texts from images taken by mobile phones with low resolution has wide applications. It has been shown that a good image binarization can substantially improve the performances of OCR engines. In this paper, we present a framework to segment texts from outdoor images taken by mobile phones using color features. The framework consists of three steps: (i) the initial process including image enhancement, binarization and noise filtering, where we binarize the input images in each RGB channel, and apply component level noise filtering; (ii) grouping components into blocks using color features, where we compute the component similarities by dynamically adjusting the weights of RGB channels, and merge groups hierachically, and (iii) blocks selection, where we use the run-length features and choose the Support Vector Machine (SVM) as the classifier. We tested the algorithm using 13 outdoor images taken by an old-style LG-64693 mobile phone with 640x480 resolution. We compared the segmentation results with Tsar's algorithm, a state-of-the-art camera text detection algorithm, and show that our algorithm is more robust, particularly in terms of the false alarm rates. In addition, we also evaluated the impacts of our algorithm on the Abbyy's FineReader, one of the most popular commercial OCR engines in the market.
Sedai, Suman; Garnavi, Rahil; Roy, Pallab; Xi Liang
2015-08-01
Multi-atlas segmentation first registers each atlas image to the target image and transfers the label of atlas image to the coordinate system of the target image. The transferred labels are then combined, using a label fusion algorithm. In this paper, we propose a novel label fusion method which aggregates discriminative learning and generative modeling for segmentation of cardiac MR images. First, a probabilistic Random Forest classifier is trained as a discriminative model to obtain the prior probability of a label at the given voxel of the target image. Then, a probability distribution of image patches is modeled using Gaussian Mixture Model for each label, providing the likelihood of the voxel belonging to the label. The final label posterior is obtained by combining the classification score and the likelihood score under Bayesian rule. Comparative study performed on MICCAI 2013 SATA Segmentation Challenge demonstrates that our proposed hybrid label fusion algorithm is accurate than other five state-of-the-art label fusion methods. The proposed method obtains dice similarity coefficient of 0.94 and 0.92 in segmenting epicardium and endocardium respectively. Moreover, our label fusion method achieves more accurate segmentation results compared to four other label fusion methods.
Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling.
Deng, Minghui; Yu, Renping; Wang, Li; Shi, Feng; Yap, Pew-Thian; Shen, Dinggang
2016-12-01
Segmentation of brain magnetic resonance (MR) images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) is crucial for brain structural measurement and disease diagnosis. Learning-based segmentation methods depend largely on the availability of good training ground truth. However, the commonly used 3T MR images are of insufficient image quality and often exhibit poor intensity contrast between WM, GM, and CSF. Therefore, they are not ideal for providing good ground truth label data for training learning-based methods. Recent advances in ultrahigh field 7T imaging make it possible to acquire images with excellent intensity contrast and signal-to-noise ratio. In this paper, the authors propose an algorithm based on random forest for segmenting 3T MR images by training a series of classifiers based on reliable labels obtained semiautomatically from 7T MR images. The proposed algorithm iteratively refines the probability maps of WM, GM, and CSF via a cascade of random forest classifiers for improved tissue segmentation. The proposed method was validated on two datasets, i.e., 10 subjects collected at their institution and 797 3T MR images from the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. Specifically, for the mean Dice ratio of all 10 subjects, the proposed method achieved 94.52% ± 0.9%, 89.49% ± 1.83%, and 79.97% ± 4.32% for WM, GM, and CSF, respectively, which are significantly better than the state-of-the-art methods (p-values < 0.021). For the ADNI dataset, the group difference comparisons indicate that the proposed algorithm outperforms state-of-the-art segmentation methods. The authors have developed and validated a novel fully automated method for 3T brain MR image segmentation. © 2016 American Association of Physicists in Medicine.
Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling.
Deng, Minghui; Yu, Renping; Wang, Li; Shi, Feng; Yap, Pew-Thian; Shen, Dinggang
2016-12-01
Segmentation of brain magnetic resonance (MR) images into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) is crucial for brain structural measurement and disease diagnosis. Learning-based segmentation methods depend largely on the availability of good training ground truth. However, the commonly used 3T MR images are of insufficient image quality and often exhibit poor intensity contrast between WM, GM, and CSF. Therefore, they are not ideal for providing good ground truth label data for training learning-based methods. Recent advances in ultrahigh field 7T imaging make it possible to acquire images with excellent intensity contrast and signal-to-noise ratio. In this paper, the authors propose an algorithm based on random forest for segmenting 3T MR images by training a series of classifiers based on reliable labels obtained semiautomatically from 7T MR images. The proposed algorithm iteratively refines the probability maps of WM, GM, and CSF via a cascade of random forest classifiers for improved tissue segmentation. The proposed method was validated on two datasets, i.e., 10 subjects collected at their institution and 797 3T MR images from the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. Specifically, for the mean Dice ratio of all 10 subjects, the proposed method achieved 94.52% ± 0.9%, 89.49% ± 1.83%, and 79.97% ± 4.32% for WM, GM, and CSF, respectively, which are significantly better than the state-of-the-art methods (p-values < 0.021). For the ADNI dataset, the group difference comparisons indicate that the proposed algorithm outperforms state-of-the-art segmentation methods. The authors have developed and validated a novel fully automated method for 3T brain MR image segmentation.
Karim, Rashed; Bhagirath, Pranav; Claus, Piet; James Housden, R; Chen, Zhong; Karimaghaloo, Zahra; Sohn, Hyon-Mok; Lara Rodríguez, Laura; Vera, Sergio; Albà, Xènia; Hennemuth, Anja; Peitgen, Heinz-Otto; Arbel, Tal; Gonzàlez Ballester, Miguel A; Frangi, Alejandro F; Götte, Marco; Razavi, Reza; Schaeffter, Tobias; Rhode, Kawal
2016-05-01
Studies have demonstrated the feasibility of late Gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging for guiding the management of patients with sequelae to myocardial infarction, such as ventricular tachycardia and heart failure. Clinical implementation of these developments necessitates a reproducible and reliable segmentation of the infarcted regions. It is challenging to compare new algorithms for infarct segmentation in the left ventricle (LV) with existing algorithms. Benchmarking datasets with evaluation strategies are much needed to facilitate comparison. This manuscript presents a benchmarking evaluation framework for future algorithms that segment infarct from LGE CMR of the LV. The image database consists of 30 LGE CMR images of both humans and pigs that were acquired from two separate imaging centres. A consensus ground truth was obtained for all data using maximum likelihood estimation. Six widely-used fixed-thresholding methods and five recently developed algorithms are tested on the benchmarking framework. Results demonstrate that the algorithms have better overlap with the consensus ground truth than most of the n-SD fixed-thresholding methods, with the exception of the Full-Width-at-Half-Maximum (FWHM) fixed-thresholding method. Some of the pitfalls of fixed thresholding methods are demonstrated in this work. The benchmarking evaluation framework, which is a contribution of this work, can be used to test and benchmark future algorithms that detect and quantify infarct in LGE CMR images of the LV. The datasets, ground truth and evaluation code have been made publicly available through the website: https://www.cardiacatlas.org/web/guest/challenges. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Segmentation of ribs in digital chest radiographs
NASA Astrophysics Data System (ADS)
Cong, Lin; Guo, Wei; Li, Qiang
2016-03-01
Ribs and clavicles in posterior-anterior (PA) digital chest radiographs often overlap with lung abnormalities such as nodules, and cause missing of these abnormalities, it is therefore necessary to remove or reduce the ribs in chest radiographs. The purpose of this study was to develop a fully automated algorithm to segment ribs within lung area in digital radiography (DR) for removal of the ribs. The rib segmentation algorithm consists of three steps. Firstly, a radiograph was pre-processed for contrast adjustment and noise removal; second, generalized Hough transform was employed to localize the lower boundary of the ribs. In the third step, a novel bilateral dynamic programming algorithm was used to accurately segment the upper and lower boundaries of ribs simultaneously. The width of the ribs and the smoothness of the rib boundaries were incorporated in the cost function of the bilateral dynamic programming for obtaining consistent results for the upper and lower boundaries. Our database consisted of 93 DR images, including, respectively, 23 and 70 images acquired with a DR system from Shanghai United-Imaging Healthcare Co. and from GE Healthcare Co. The rib localization algorithm achieved a sensitivity of 98.2% with 0.1 false positives per image. The accuracy of the detected ribs was further evaluated subjectively in 3 levels: "1", good; "2", acceptable; "3", poor. The percentages of good, acceptable, and poor segmentation results were 91.1%, 7.2%, and 1.7%, respectively. Our algorithm can obtain good segmentation results for ribs in chest radiography and would be useful for rib reduction in our future study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J; Nishikawa, R; Reiser, I
Purpose: Segmentation quality can affect quantitative image feature analysis. The objective of this study is to examine the relationship between computed tomography (CT) image quality, segmentation performance, and quantitative image feature analysis. Methods: A total of 90 pathology proven breast lesions in 87 dedicated breast CT images were considered. An iterative image reconstruction (IIR) algorithm was used to obtain CT images with different quality. With different combinations of 4 variables in the algorithm, this study obtained a total of 28 different qualities of CT images. Two imaging tasks/objectives were considered: 1) segmentation and 2) classification of the lesion as benignmore » or malignant. Twenty-three image features were extracted after segmentation using a semi-automated algorithm and 5 of them were selected via a feature selection technique. Logistic regression was trained and tested using leave-one-out-cross-validation and its area under the ROC curve (AUC) was recorded. The standard deviation of a homogeneous portion and the gradient of a parenchymal portion of an example breast were used as an estimate of image noise and sharpness. The DICE coefficient was computed using a radiologist’s drawing on the lesion. Mean DICE and AUC were used as performance metrics for each of the 28 reconstructions. The relationship between segmentation and classification performance under different reconstructions were compared. Distributions (median, 95% confidence interval) of DICE and AUC for each reconstruction were also compared. Results: Moderate correlation (Pearson’s rho = 0.43, p-value = 0.02) between DICE and AUC values was found. However, the variation between DICE and AUC values for each reconstruction increased as the image sharpness increased. There was a combination of IIR parameters that resulted in the best segmentation with the worst classification performance. Conclusion: There are certain images that yield better segmentation or classification performance. The best segmentation Result does not necessarily lead to the best classification Result. This work has been supported in part by grants from the NIH R21-EB015053. R Nishikawa is receives royalties form Hologic, Inc.« less
Hybrid Artificial Root Foraging Optimizer Based Multilevel Threshold for Image Segmentation
Liu, Yang; Liu, Junfei
2016-01-01
This paper proposes a new plant-inspired optimization algorithm for multilevel threshold image segmentation, namely, hybrid artificial root foraging optimizer (HARFO), which essentially mimics the iterative root foraging behaviors. In this algorithm the new growth operators of branching, regrowing, and shrinkage are initially designed to optimize continuous space search by combining root-to-root communication and coevolution mechanism. With the auxin-regulated scheme, various root growth operators are guided systematically. With root-to-root communication, individuals exchange information in different efficient topologies, which essentially improve the exploration ability. With coevolution mechanism, the hierarchical spatial population driven by evolutionary pressure of multiple subpopulations is structured, which ensure that the diversity of root population is well maintained. The comparative results on a suit of benchmarks show the superiority of the proposed algorithm. Finally, the proposed HARFO algorithm is applied to handle the complex image segmentation problem based on multilevel threshold. Computational results of this approach on a set of tested images show the outperformance of the proposed algorithm in terms of optimization accuracy computation efficiency. PMID:27725826
Hybrid Artificial Root Foraging Optimizer Based Multilevel Threshold for Image Segmentation.
Liu, Yang; Liu, Junfei; Tian, Liwei; Ma, Lianbo
2016-01-01
This paper proposes a new plant-inspired optimization algorithm for multilevel threshold image segmentation, namely, hybrid artificial root foraging optimizer (HARFO), which essentially mimics the iterative root foraging behaviors. In this algorithm the new growth operators of branching, regrowing, and shrinkage are initially designed to optimize continuous space search by combining root-to-root communication and coevolution mechanism. With the auxin-regulated scheme, various root growth operators are guided systematically. With root-to-root communication, individuals exchange information in different efficient topologies, which essentially improve the exploration ability. With coevolution mechanism, the hierarchical spatial population driven by evolutionary pressure of multiple subpopulations is structured, which ensure that the diversity of root population is well maintained. The comparative results on a suit of benchmarks show the superiority of the proposed algorithm. Finally, the proposed HARFO algorithm is applied to handle the complex image segmentation problem based on multilevel threshold. Computational results of this approach on a set of tested images show the outperformance of the proposed algorithm in terms of optimization accuracy computation efficiency.
Liedtke, C E; Aeikens, B
1980-01-01
By segmentation of cell images we understand the automated decomposition of microscopic cell scenes into nucleus, plasma and background. A segmentation is achieved by using information from the microscope image and prior knowledge about the content of the scene. Different algorithms have been investigated and applied to samples of urothelial cells. A particular algorithm based on a histogram approach which can be easily implemented in hardware is discussed in more detail.
Integrated circuit layer image segmentation
NASA Astrophysics Data System (ADS)
Masalskis, Giedrius; Petrauskas, Romas
2010-09-01
In this paper we present IC layer image segmentation techniques which are specifically created for precise metal layer feature extraction. During our research we used many samples of real-life de-processed IC metal layer images which were obtained using optical light microscope. We have created sequence of various image processing filters which provides segmentation results of good enough precision for our application. Filter sequences were fine tuned to provide best possible results depending on properties of IC manufacturing process and imaging technology. Proposed IC image segmentation filter sequences were experimentally tested and compared with conventional direct segmentation algorithms.
Automated and real-time segmentation of suspicious breast masses using convolutional neural network
Gregory, Adriana; Denis, Max; Meixner, Duane D.; Bayat, Mahdi; Whaley, Dana H.; Fatemi, Mostafa; Alizad, Azra
2018-01-01
In this work, a computer-aided tool for detection was developed to segment breast masses from clinical ultrasound (US) scans. The underlying Multi U-net algorithm is based on convolutional neural networks. Under the Mayo Clinic Institutional Review Board protocol, a prospective study of the automatic segmentation of suspicious breast masses was performed. The cohort consisted of 258 female patients who were clinically identified with suspicious breast masses and underwent clinical US scan and breast biopsy. The computer-aided detection tool effectively segmented the breast masses, achieving a mean Dice coefficient of 0.82, a true positive fraction (TPF) of 0.84, and a false positive fraction (FPF) of 0.01. By avoiding positioning of an initial seed, the algorithm is able to segment images in real time (13–55 ms per image), and can have potential clinical applications. The algorithm is at par with a conventional seeded algorithm, which had a mean Dice coefficient of 0.84 and performs significantly better (P< 0.0001) than the original U-net algorithm. PMID:29768415
Lung partitioning for x-ray CAD applications
NASA Astrophysics Data System (ADS)
Annangi, Pavan; Raja, Anand
2011-03-01
Partitioning the inside region of lung into homogeneous regions becomes a crucial step in any computer-aided diagnosis applications based on chest X-ray. The ribs, air pockets and clavicle occupy major space inside the lung as seen in the chest x-ray PA image. Segmenting the ribs and clavicle to partition the lung into homogeneous regions forms a crucial step in any CAD application to better classify abnormalities. In this paper we present two separate algorithms to segment ribs and the clavicle bone in a completely automated way. The posterior ribs are segmented based on Phase congruency features and the clavicle is segmented using Mean curvature features followed by Radon transform. Both the algorithms work on the premise that the presentation of each of these anatomical structures inside the left and right lung has a specific orientation range within which they are confined to. The search space for both the algorithms is limited to the region inside the lung, which is obtained by an automated lung segmentation algorithm that was previously developed in our group. Both the algorithms were tested on 100 images of normal and patients affected with Pneumoconiosis.
Demirhan, Ayşe; Toru, Mustafa; Guler, Inan
2015-07-01
Robust brain magnetic resonance (MR) segmentation algorithms are critical to analyze tissues and diagnose tumor and edema in a quantitative way. In this study, we present a new tissue segmentation algorithm that segments brain MR images into tumor, edema, white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). The detection of the healthy tissues is performed simultaneously with the diseased tissues because examining the change caused by the spread of tumor and edema on healthy tissues is very important for treatment planning. We used T1, T2, and FLAIR MR images of 20 subjects suffering from glial tumor. We developed an algorithm for stripping the skull before the segmentation process. The segmentation is performed using self-organizing map (SOM) that is trained with unsupervised learning algorithm and fine-tuned with learning vector quantization (LVQ). Unlike other studies, we developed an algorithm for clustering the SOM instead of using an additional network. Input feature vector is constructed with the features obtained from stationary wavelet transform (SWT) coefficients. The results showed that average dice similarity indexes are 91% for WM, 87% for GM, 96% for CSF, 61% for tumor, and 77% for edema.
Automatic extraction of planetary image features
NASA Technical Reports Server (NTRS)
LeMoigne-Stewart, Jacqueline J. (Inventor); Troglio, Giulia (Inventor); Benediktsson, Jon A. (Inventor); Serpico, Sebastiano B. (Inventor); Moser, Gabriele (Inventor)
2013-01-01
A method for the extraction of Lunar data and/or planetary features is provided. The feature extraction method can include one or more image processing techniques, including, but not limited to, a watershed segmentation and/or the generalized Hough Transform. According to some embodiments, the feature extraction method can include extracting features, such as, small rocks. According to some embodiments, small rocks can be extracted by applying a watershed segmentation algorithm to the Canny gradient. According to some embodiments, applying a watershed segmentation algorithm to the Canny gradient can allow regions that appear as close contours in the gradient to be segmented.
Qi, Xin; Xing, Fuyong; Foran, David J.; Yang, Lin
2013-01-01
Automated image analysis of histopathology specimens could potentially provide support for early detection and improved characterization of breast cancer. Automated segmentation of the cells comprising imaged tissue microarrays (TMA) is a prerequisite for any subsequent quantitative analysis. Unfortunately, crowding and overlapping of cells present significant challenges for most traditional segmentation algorithms. In this paper, we propose a novel algorithm which can reliably separate touching cells in hematoxylin stained breast TMA specimens which have been acquired using a standard RGB camera. The algorithm is composed of two steps. It begins with a fast, reliable object center localization approach which utilizes single-path voting followed by mean-shift clustering. Next, the contour of each cell is obtained using a level set algorithm based on an interactive model. We compared the experimental results with those reported in the most current literature. Finally, performance was evaluated by comparing the pixel-wise accuracy provided by human experts with that produced by the new automated segmentation algorithm. The method was systematically tested on 234 image patches exhibiting dense overlap and containing more than 2200 cells. It was also tested on whole slide images including blood smears and tissue microarrays containing thousands of cells. Since the voting step of the seed detection algorithm is well suited for parallelization, a parallel version of the algorithm was implemented using graphic processing units (GPU) which resulted in significant speed-up over the C/C++ implementation. PMID:22167559
A robust firearm identification algorithm of forensic ballistics specimens
NASA Astrophysics Data System (ADS)
Chuan, Z. L.; Jemain, A. A.; Liong, C.-Y.; Ghani, N. A. M.; Tan, L. K.
2017-09-01
There are several inherent difficulties in the existing firearm identification algorithms, include requiring the physical interpretation and time consuming. Therefore, the aim of this study is to propose a robust algorithm for a firearm identification based on extracting a set of informative features from the segmented region of interest (ROI) using the simulated noisy center-firing pin impression images. The proposed algorithm comprises Laplacian sharpening filter, clustering-based threshold selection, unweighted least square estimator, and segment a square ROI from the noisy images. A total of 250 simulated noisy images collected from five different pistols of the same make, model and caliber are used to evaluate the robustness of the proposed algorithm. This study found that the proposed algorithm is able to perform the identical task on the noisy images with noise levels as high as 70%, while maintaining a firearm identification accuracy rate of over 90%.
Filipovic, Nenad D.
2017-01-01
Image segmentation is one of the most common procedures in medical imaging applications. It is also a very important task in breast cancer detection. Breast cancer detection procedure based on mammography can be divided into several stages. The first stage is the extraction of the region of interest from a breast image, followed by the identification of suspicious mass regions, their classification, and comparison with the existing image database. It is often the case that already existing image databases have large sets of data whose processing requires a lot of time, and thus the acceleration of each of the processing stages in breast cancer detection is a very important issue. In this paper, the implementation of the already existing algorithm for region-of-interest based image segmentation for mammogram images on High-Performance Reconfigurable Dataflow Computers (HPRDCs) is proposed. As a dataflow engine (DFE) of such HPRDC, Maxeler's acceleration card is used. The experiments for examining the acceleration of that algorithm on the Reconfigurable Dataflow Computers (RDCs) are performed with two types of mammogram images with different resolutions. There were, also, several DFE configurations and each of them gave a different acceleration value of algorithm execution. Those acceleration values are presented and experimental results showed good acceleration. PMID:28611851
Milankovic, Ivan L; Mijailovic, Nikola V; Filipovic, Nenad D; Peulic, Aleksandar S
2017-01-01
Image segmentation is one of the most common procedures in medical imaging applications. It is also a very important task in breast cancer detection. Breast cancer detection procedure based on mammography can be divided into several stages. The first stage is the extraction of the region of interest from a breast image, followed by the identification of suspicious mass regions, their classification, and comparison with the existing image database. It is often the case that already existing image databases have large sets of data whose processing requires a lot of time, and thus the acceleration of each of the processing stages in breast cancer detection is a very important issue. In this paper, the implementation of the already existing algorithm for region-of-interest based image segmentation for mammogram images on High-Performance Reconfigurable Dataflow Computers (HPRDCs) is proposed. As a dataflow engine (DFE) of such HPRDC, Maxeler's acceleration card is used. The experiments for examining the acceleration of that algorithm on the Reconfigurable Dataflow Computers (RDCs) are performed with two types of mammogram images with different resolutions. There were, also, several DFE configurations and each of them gave a different acceleration value of algorithm execution. Those acceleration values are presented and experimental results showed good acceleration.
Improve threshold segmentation using features extraction to automatic lung delimitation.
França, Cleunio; Vasconcelos, Germano; Diniz, Paula; Melo, Pedro; Diniz, Jéssica; Novaes, Magdala
2013-01-01
With the consolidation of PACS and RIS systems, the development of algorithms for tissue segmentation and diseases detection have intensely evolved in recent years. These algorithms have advanced to improve its accuracy and specificity, however, there is still some way until these algorithms achieved satisfactory error rates and reduced processing time to be used in daily diagnosis. The objective of this study is to propose a algorithm for lung segmentation in x-ray computed tomography images using features extraction, as Centroid and orientation measures, to improve the basic threshold segmentation. As result we found a accuracy of 85.5%.
Anderson, Jeffrey R; Barrett, Steven F
2009-01-01
Image segmentation is the process of isolating distinct objects within an image. Computer algorithms have been developed to aid in the process of object segmentation, but a completely autonomous segmentation algorithm has yet to be developed [1]. This is because computers do not have the capability to understand images and recognize complex objects within the image. However, computer segmentation methods [2], requiring user input, have been developed to quickly segment objects in serial sectioned images, such as magnetic resonance images (MRI) and confocal laser scanning microscope (CLSM) images. In these cases, the segmentation process becomes a powerful tool in visualizing the 3D nature of an object. The user input is an important part of improving the performance of many segmentation methods. A double threshold segmentation method has been investigated [3] to separate objects in gray scaled images, where the gray level of the object is among the gray levels of the background. In order to best determine the threshold values for this segmentation method the image must be manipulated for optimal contrast. The same is true of other segmentation and edge detection methods as well. Typically, the better the image contrast, the better the segmentation results. This paper describes a graphical user interface (GUI) that allows the user to easily change image contrast parameters that will optimize the performance of subsequent object segmentation. This approach makes use of the fact that the human brain is extremely effective in object recognition and understanding. The GUI provides the user with the ability to define the gray scale range of the object of interest. These lower and upper bounds of this range are used in a histogram stretching process to improve image contrast. Also, the user can interactively modify the gamma correction factor that provides a non-linear distribution of gray scale values, while observing the corresponding changes to the image. This interactive approach gives the user the power to make optimal choices in the contrast enhancement parameters.
An automatic segmentation method of a parameter-adaptive PCNN for medical images.
Lian, Jing; Shi, Bin; Li, Mingcong; Nan, Ziwei; Ma, Yide
2017-09-01
Since pre-processing and initial segmentation steps in medical images directly affect the final segmentation results of the regions of interesting, an automatic segmentation method of a parameter-adaptive pulse-coupled neural network is proposed to integrate the above-mentioned two segmentation steps into one. This method has a low computational complexity for different kinds of medical images and has a high segmentation precision. The method comprises four steps. Firstly, an optimal histogram threshold is used to determine the parameter [Formula: see text] for different kinds of images. Secondly, we acquire the parameter [Formula: see text] according to a simplified pulse-coupled neural network (SPCNN). Thirdly, we redefine the parameter V of the SPCNN model by sub-intensity distribution range of firing pixels. Fourthly, we add an offset [Formula: see text] to improve initial segmentation precision. Compared with the state-of-the-art algorithms, the new method achieves a comparable performance by the experimental results from ultrasound images of the gallbladder and gallstones, magnetic resonance images of the left ventricle, and mammogram images of the left and the right breast, presenting the overall metric UM of 0.9845, CM of 0.8142, TM of 0.0726. The algorithm has a great potential to achieve the pre-processing and initial segmentation steps in various medical images. This is a premise for assisting physicians to detect and diagnose clinical cases.
Robust crop and weed segmentation under uncontrolled outdoor illumination.
Jeon, Hong Y; Tian, Lei F; Zhu, Heping
2011-01-01
An image processing algorithm for detecting individual weeds was developed and evaluated. Weed detection processes included were normalized excessive green conversion, statistical threshold value estimation, adaptive image segmentation, median filter, morphological feature calculation and Artificial Neural Network (ANN). The developed algorithm was validated for its ability to identify and detect weeds and crop plants under uncontrolled outdoor illuminations. A machine vision implementing field robot captured field images under outdoor illuminations and the image processing algorithm automatically processed them without manual adjustment. The errors of the algorithm, when processing 666 field images, ranged from 2.1 to 2.9%. The ANN correctly detected 72.6% of crop plants from the identified plants, and considered the rest as weeds. However, the ANN identification rates for crop plants were improved up to 95.1% by addressing the error sources in the algorithm. The developed weed detection and image processing algorithm provides a novel method to identify plants against soil background under the uncontrolled outdoor illuminations, and to differentiate weeds from crop plants. Thus, the proposed new machine vision and processing algorithm may be useful for outdoor applications including plant specific direct applications (PSDA).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veeraraghavan, H; Tyagi, N; Riaz, N
2014-06-01
Purpose: Identification and image-based monitoring of lymph nodes growing due to disease, could be an attractive alternative to prophylactic head and neck irradiation. We evaluated the accuracy of the user-interactive Grow Cut algorithm for volumetric segmentation of radiotherapy relevant lymph nodes from MRI taken weekly during radiotherapy. Method: The algorithm employs user drawn strokes in the image to volumetrically segment multiple structures of interest. We used a 3D T2-wturbo spin echo images with an isotropic resolution of 1 mm3 and FOV of 492×492×300 mm3 of head and neck cancer patients who underwent weekly MR imaging during the course of radiotherapy.more » Various lymph node (LN) levels (N2, N3, N4'5) were individually contoured on the weekly MR images by an expert physician and used as ground truth in our study. The segmentation results were compared with the physician drawn lymph nodes based on DICE similarity score. Results: Three head and neck patients with 6 weekly MR images were evaluated. Two patients had level 2 LN drawn and one patient had level N2, N3 and N4'5 drawn on each MR image. The algorithm took an average of a minute to segment the entire volume (512×512×300 mm3). The algorithm achieved an overall DICE similarity score of 0.78. The time taken for initializing and obtaining the volumetric mask was about 5 mins for cases with only N2 LN and about 15 mins for the case with N2,N3 and N4'5 level nodes. The longer initialization time for the latter case was due to the need for accurate user inputs to separate overlapping portions of the different LN. The standard deviation in segmentation accuracy at different time points was utmost 0.05. Conclusions: Our initial evaluation of the grow cut segmentation shows reasonably accurate and consistent volumetric segmentations of LN with minimal user effort and time.« less
An improved K-means clustering method for cDNA microarray image segmentation.
Wang, T N; Li, T J; Shao, G F; Wu, S X
2015-07-14
Microarray technology is a powerful tool for human genetic research and other biomedical applications. Numerous improvements to the standard K-means algorithm have been carried out to complete the image segmentation step. However, most of the previous studies classify the image into two clusters. In this paper, we propose a novel K-means algorithm, which first classifies the image into three clusters, and then one of the three clusters is divided as the background region and the other two clusters, as the foreground region. The proposed method was evaluated on six different data sets. The analyses of accuracy, efficiency, expression values, special gene spots, and noise images demonstrate the effectiveness of our method in improving the segmentation quality.
Automatic segmentation of multimodal brain tumor images based on classification of super-voxels.
Kadkhodaei, M; Samavi, S; Karimi, N; Mohaghegh, H; Soroushmehr, S M R; Ward, K; All, A; Najarian, K
2016-08-01
Despite the rapid growth in brain tumor segmentation approaches, there are still many challenges in this field. Automatic segmentation of brain images has a critical role in decreasing the burden of manual labeling and increasing robustness of brain tumor diagnosis. We consider segmentation of glioma tumors, which have a wide variation in size, shape and appearance properties. In this paper images are enhanced and normalized to same scale in a preprocessing step. The enhanced images are then segmented based on their intensities using 3D super-voxels. Usually in images a tumor region can be regarded as a salient object. Inspired by this observation, we propose a new feature which uses a saliency detection algorithm. An edge-aware filtering technique is employed to align edges of the original image to the saliency map which enhances the boundaries of the tumor. Then, for classification of tumors in brain images, a set of robust texture features are extracted from super-voxels. Experimental results indicate that our proposed method outperforms a comparable state-of-the-art algorithm in term of dice score.
Superpixel guided active contour segmentation of retinal layers in OCT volumes
NASA Astrophysics Data System (ADS)
Bai, Fangliang; Gibson, Stuart J.; Marques, Manuel J.; Podoleanu, Adrian
2018-03-01
Retinal OCT image segmentation is a precursor to subsequent medical diagnosis by a clinician or machine learning algorithm. In the last decade, many algorithms have been proposed to detect retinal layer boundaries and simplify the image representation. Inspired by the recent success of superpixel methods for pre-processing natural images, we present a novel framework for segmentation of retinal layers in OCT volume data. In our framework, the region of interest (e.g. the fovea) is located using an adaptive-curve method. The cell layer boundaries are then robustly detected firstly using 1D superpixels, applied to A-scans, and then fitting active contours in B-scan images. Thereafter the 3D cell layer surfaces are efficiently segmented from the volume data. The framework was tested on healthy eye data and we show that it is capable of segmenting up to 12 layers. The experimental results imply the effectiveness of proposed method and indicate its robustness to low image resolution and intrinsic speckle noise.
NASA Astrophysics Data System (ADS)
Hidalgo-Aguirre, Maribel; Gitelman, Julian; Lesk, Mark Richard; Costantino, Santiago
2015-11-01
Optical coherence tomography (OCT) imaging has become a standard diagnostic tool in ophthalmology, providing essential information associated with various eye diseases. In order to investigate the dynamics of the ocular fundus, we present a simple and accurate automated algorithm to segment the inner limiting membrane in video-rate optic nerve head spectral domain (SD) OCT images. The method is based on morphological operations including a two-step contrast enhancement technique, proving to be very robust when dealing with low signal-to-noise ratio images and pathological eyes. An analysis algorithm was also developed to measure neuroretinal tissue deformation from the segmented retinal profiles. The performance of the algorithm is demonstrated, and deformation results are presented for healthy and glaucomatous eyes.
Figure-ground segmentation based on class-independent shape priors
NASA Astrophysics Data System (ADS)
Li, Yang; Liu, Yang; Liu, Guojun; Guo, Maozu
2018-01-01
We propose a method to generate figure-ground segmentation by incorporating shape priors into the graph-cuts algorithm. Given an image, we first obtain a linear representation of an image and then apply directional chamfer matching to generate class-independent, nonparametric shape priors, which provide shape clues for the graph-cuts algorithm. We then enforce shape priors in a graph-cuts energy function to produce object segmentation. In contrast to previous segmentation methods, the proposed method shares shape knowledge for different semantic classes and does not require class-specific model training. Therefore, the approach obtains high-quality segmentation for objects. We experimentally validate that the proposed method outperforms previous approaches using the challenging PASCAL VOC 2010/2012 and Berkeley (BSD300) segmentation datasets.
Automated 3D closed surface segmentation: application to vertebral body segmentation in CT images.
Liu, Shuang; Xie, Yiting; Reeves, Anthony P
2016-05-01
A fully automated segmentation algorithm, progressive surface resolution (PSR), is presented in this paper to determine the closed surface of approximately convex blob-like structures that are common in biomedical imaging. The PSR algorithm was applied to the cortical surface segmentation of 460 vertebral bodies on 46 low-dose chest CT images, which can be potentially used for automated bone mineral density measurement and compression fracture detection. The target surface is realized by a closed triangular mesh, which thereby guarantees the enclosure. The surface vertices of the triangular mesh representation are constrained along radial trajectories that are uniformly distributed in 3D angle space. The segmentation is accomplished by determining for each radial trajectory the location of its intersection with the target surface. The surface is first initialized based on an input high confidence boundary image and then resolved progressively based on a dynamic attraction map in an order of decreasing degree of evidence regarding the target surface location. For the visual evaluation, the algorithm achieved acceptable segmentation for 99.35 % vertebral bodies. Quantitative evaluation was performed on 46 vertebral bodies and achieved overall mean Dice coefficient of 0.939 (with max [Formula: see text] 0.957, min [Formula: see text] 0.906 and standard deviation [Formula: see text] 0.011) using manual annotations as the ground truth. Both visual and quantitative evaluations demonstrate encouraging performance of the PSR algorithm. This novel surface resolution strategy provides uniform angular resolution for the segmented surface with computation complexity and runtime that are linearly constrained by the total number of vertices of the triangular mesh representation.
Image Based Hair Segmentation Algorithm for the Application of Automatic Facial Caricature Synthesis
Peng, Zhenyun; Zhang, Yaohui
2014-01-01
Hair is a salient feature in human face region and are one of the important cues for face analysis. Accurate detection and presentation of hair region is one of the key components for automatic synthesis of human facial caricature. In this paper, an automatic hair detection algorithm for the application of automatic synthesis of facial caricature based on a single image is proposed. Firstly, hair regions in training images are labeled manually and then the hair position prior distributions and hair color likelihood distribution function are estimated from these labels efficiently. Secondly, the energy function of the test image is constructed according to the estimated prior distributions of hair location and hair color likelihood. This energy function is further optimized according to graph cuts technique and initial hair region is obtained. Finally, K-means algorithm and image postprocessing techniques are applied to the initial hair region so that the final hair region can be segmented precisely. Experimental results show that the average processing time for each image is about 280 ms and the average hair region detection accuracy is above 90%. The proposed algorithm is applied to a facial caricature synthesis system. Experiments proved that with our proposed hair segmentation algorithm the facial caricatures are vivid and satisfying. PMID:24592182
An Automatic Image Processing System for Glaucoma Screening
Alodhayb, Sami; Lakshminarayanan, Vasudevan
2017-01-01
Horizontal and vertical cup to disc ratios are the most crucial parameters used clinically to detect glaucoma or monitor its progress and are manually evaluated from retinal fundus images of the optic nerve head. Due to the rarity of the glaucoma experts as well as the increasing in glaucoma's population, an automatically calculated horizontal and vertical cup to disc ratios (HCDR and VCDR, resp.) can be useful for glaucoma screening. We report on two algorithms to calculate the HCDR and VCDR. In the algorithms, level set and inpainting techniques were developed for segmenting the disc, while thresholding using Type-II fuzzy approach was developed for segmenting the cup. The results from the algorithms were verified using the manual markings of images from a dataset of glaucomatous images (retinal fundus images for glaucoma analysis (RIGA dataset)) by six ophthalmologists. The algorithm's accuracy for HCDR and VCDR combined was 74.2%. Only the accuracy of manual markings by one ophthalmologist was higher than the algorithm's accuracy. The algorithm's best agreement was with markings by ophthalmologist number 1 in 230 images (41.8%) of the total tested images. PMID:28947898
Du, Yiping P; Jin, Zhaoyang
2009-10-01
To develop a robust algorithm for tissue-air segmentation in magnetic resonance imaging (MRI) using the statistics of phase and magnitude of the images. A multivariate measure based on the statistics of phase and magnitude was constructed for tissue-air volume segmentation. The standard deviation of first-order phase difference and the standard deviation of magnitude were calculated in a 3 x 3 x 3 kernel in the image domain. To improve differentiation accuracy, the uniformity of phase distribution in the kernel was also calculated and linear background phase introduced by field inhomogeneity was corrected. The effectiveness of the proposed volume segmentation technique was compared to a conventional approach that uses the magnitude data alone. The proposed algorithm was shown to be more effective and robust in volume segmentation in both synthetic phantom and susceptibility-weighted images of human brain. Using our proposed volume segmentation method, veins in the peripheral regions of the brain were well depicted in the minimum-intensity projection of the susceptibility-weighted images. Using the additional statistics of phase, tissue-air volume segmentation can be substantially improved compared to that using the statistics of magnitude data alone. (c) 2009 Wiley-Liss, Inc.
Narayan, Nikhil S; Marziliano, Pina
2015-08-01
Automatic detection and segmentation of the common carotid artery in transverse ultrasound (US) images of the thyroid gland play a vital role in the success of US guided intervention procedures. We propose in this paper a novel method to accurately detect, segment and track the carotid in 2D and 2D+t US images of the thyroid gland using concepts based on tissue echogenicity and ultrasound image formation. We first segment the hypoechoic anatomical regions of interest using local phase and energy in the input image. We then make use of a Hessian based blob like analysis to detect the carotid within the segmented hypoechoic regions. The carotid artery is segmented by making use of least squares ellipse fit for the edge points around the detected carotid candidate. Experiments performed on a multivendor dataset of 41 images show that the proposed algorithm can segment the carotid artery with high sensitivity (99.6 ±m 0.2%) and specificity (92.9 ±m 0.1%). Further experiments on a public database containing 971 images of the carotid artery showed that the proposed algorithm can achieve a detection accuracy of 95.2% with a 2% increase in performance when compared to the state-of-the-art method.
2011-01-01
Background Segmentation is the most crucial part in the computer-aided bone age assessment. A well-known type of segmentation performed in the system is adaptive segmentation. While providing better result than global thresholding method, the adaptive segmentation produces a lot of unwanted noise that could affect the latter process of epiphysis extraction. Methods A proposed method with anisotropic diffusion as pre-processing and a novel Bounded Area Elimination (BAE) post-processing algorithm to improve the algorithm of ossification site localization technique are designed with the intent of improving the adaptive segmentation result and the region-of interest (ROI) localization accuracy. Results The results are then evaluated by quantitative analysis and qualitative analysis using texture feature evaluation. The result indicates that the image homogeneity after anisotropic diffusion has improved averagely on each age group for 17.59%. Results of experiments showed that the smoothness has been improved averagely 35% after BAE algorithm and the improvement of ROI localization has improved for averagely 8.19%. The MSSIM has improved averagely 10.49% after performing the BAE algorithm on the adaptive segmented hand radiograph. Conclusions The result indicated that hand radiographs which have undergone anisotropic diffusion have greatly reduced the noise in the segmented image and the result as well indicated that the BAE algorithm proposed is capable of removing the artifacts generated in adaptive segmentation. PMID:21952080
NASA Astrophysics Data System (ADS)
Akil, Mohamed
2017-05-01
The real-time processing is getting more and more important in many image processing applications. Image segmentation is one of the most fundamental tasks image analysis. As a consequence, many different approaches for image segmentation have been proposed. The watershed transform is a well-known image segmentation tool. The watershed transform is a very data intensive task. To achieve acceleration and obtain real-time processing of watershed algorithms, parallel architectures and programming models for multicore computing have been developed. This paper focuses on the survey of the approaches for parallel implementation of sequential watershed algorithms on multicore general purpose CPUs: homogeneous multicore processor with shared memory. To achieve an efficient parallel implementation, it's necessary to explore different strategies (parallelization/distribution/distributed scheduling) combined with different acceleration and optimization techniques to enhance parallelism. In this paper, we give a comparison of various parallelization of sequential watershed algorithms on shared memory multicore architecture. We analyze the performance measurements of each parallel implementation and the impact of the different sources of overhead on the performance of the parallel implementations. In this comparison study, we also discuss the advantages and disadvantages of the parallel programming models. Thus, we compare the OpenMP (an application programming interface for multi-Processing) with Ptheads (POSIX Threads) to illustrate the impact of each parallel programming model on the performance of the parallel implementations.
Multi-scales region segmentation for ROI separation in digital mammograms
NASA Astrophysics Data System (ADS)
Zhang, Dapeng; Zhang, Di; Li, Yue; Wang, Wei
2017-02-01
Mammography is currently the most effective imaging modality used by radiologists for the screening of breast cancer. Segmentation is one of the key steps in the process of developing anatomical models for calculation of safe medical dose of radiation. This paper explores the potential of the statistical region merging segmentation technique for Breast segmentation in digital mammograms. First, the mammograms are pre-processing for regions enhancement, then the enhanced images are segmented using SRM with multi scales, finally these segmentations are combined for region of interest (ROI) separation and edge detection. The proposed algorithm uses multi-scales region segmentation in order to: separate breast region from background region, region edge detection and ROIs separation. The experiments are performed using a data set of mammograms from different patients, demonstrating the validity of the proposed criterion. Results show that, the statistical region merging segmentation algorithm actually can work on the segmentation of medical image and more accurate than another methods. And the outcome shows that the technique has a great potential to become a method of choice for segmentation of mammograms.
NASA Astrophysics Data System (ADS)
Sharma, Manu; Bhatt, Jignesh S.; Joshi, Manjunath V.
2018-04-01
Lung cancer is one of the most abundant causes of the cancerous deaths worldwide. It has low survival rate mainly due to the late diagnosis. With the hardware advancements in computed tomography (CT) technology, it is now possible to capture the high resolution images of lung region. However, it needs to be augmented by efficient algorithms to detect the lung cancer in the earlier stages using the acquired CT images. To this end, we propose a two-step algorithm for early detection of lung cancer. Given the CT image, we first extract the patch from the center location of the nodule and segment the lung nodule region. We propose to use Otsu method followed by morphological operations for the segmentation. This step enables accurate segmentation due to the use of data-driven threshold. Unlike other methods, we perform the segmentation without using the complete contour information of the nodule. In the second step, a deep convolutional neural network (CNN) is used for the better classification (malignant or benign) of the nodule present in the segmented patch. Accurate segmentation of even a tiny nodule followed by better classification using deep CNN enables the early detection of lung cancer. Experiments have been conducted using 6306 CT images of LIDC-IDRI database. We achieved the test accuracy of 84.13%, with the sensitivity and specificity of 91.69% and 73.16%, respectively, clearly outperforming the state-of-the-art algorithms.
Constrained Deep Weak Supervision for Histopathology Image Segmentation.
Jia, Zhipeng; Huang, Xingyi; Chang, Eric I-Chao; Xu, Yan
2017-11-01
In this paper, we develop a new weakly supervised learning algorithm to learn to segment cancerous regions in histopathology images. This paper is under a multiple instance learning (MIL) framework with a new formulation, deep weak supervision (DWS); we also propose an effective way to introduce constraints to our neural networks to assist the learning process. The contributions of our algorithm are threefold: 1) we build an end-to-end learning system that segments cancerous regions with fully convolutional networks (FCNs) in which image-to-image weakly-supervised learning is performed; 2) we develop a DWS formulation to exploit multi-scale learning under weak supervision within FCNs; and 3) constraints about positive instances are introduced in our approach to effectively explore additional weakly supervised information that is easy to obtain and enjoy a significant boost to the learning process. The proposed algorithm, abbreviated as DWS-MIL, is easy to implement and can be trained efficiently. Our system demonstrates the state-of-the-art results on large-scale histopathology image data sets and can be applied to various applications in medical imaging beyond histopathology images, such as MRI, CT, and ultrasound images.
Lee, Unseok; Chang, Sungyul; Putra, Gian Anantrio; Kim, Hyoungseok; Kim, Dong Hwan
2018-01-01
A high-throughput plant phenotyping system automatically observes and grows many plant samples. Many plant sample images are acquired by the system to determine the characteristics of the plants (populations). Stable image acquisition and processing is very important to accurately determine the characteristics. However, hardware for acquiring plant images rapidly and stably, while minimizing plant stress, is lacking. Moreover, most software cannot adequately handle large-scale plant imaging. To address these problems, we developed a new, automated, high-throughput plant phenotyping system using simple and robust hardware, and an automated plant-imaging-analysis pipeline consisting of machine-learning-based plant segmentation. Our hardware acquires images reliably and quickly and minimizes plant stress. Furthermore, the images are processed automatically. In particular, large-scale plant-image datasets can be segmented precisely using a classifier developed using a superpixel-based machine-learning algorithm (Random Forest), and variations in plant parameters (such as area) over time can be assessed using the segmented images. We performed comparative evaluations to identify an appropriate learning algorithm for our proposed system, and tested three robust learning algorithms. We developed not only an automatic analysis pipeline but also a convenient means of plant-growth analysis that provides a learning data interface and visualization of plant growth trends. Thus, our system allows end-users such as plant biologists to analyze plant growth via large-scale plant image data easily.
Elimination of RF inhomogeneity effects in segmentation.
Agus, Onur; Ozkan, Mehmed; Aydin, Kubilay
2007-01-01
There are various methods proposed for the segmentation and analysis of MR images. However the efficiency of these techniques is effected by various artifacts that occur in the imaging system. One of the most encountered problems is the intensity variation across an image. To overcome this problem different methods are used. In this paper we propose a method for the elimination of intensity artifacts in segmentation of MRI images. Inter imager variations are also minimized to produce the same tissue segmentation for the same patient. A well-known multivariate classification algorithm, maximum likelihood is employed to illustrate the enhancement in segmentation.
Hanaoka, Shouhei; Masutani, Yoshitaka; Nemoto, Mitsutaka; Nomura, Yukihiro; Miki, Soichiro; Yoshikawa, Takeharu; Hayashi, Naoto; Ohtomo, Kuni; Shimizu, Akinobu
2017-03-01
A fully automatic multiatlas-based method for segmentation of the spine and pelvis in a torso CT volume is proposed. A novel landmark-guided diffeomorphic demons algorithm is used to register a given CT image to multiple atlas volumes. This algorithm can utilize both grayscale image information and given landmark coordinate information optimally. The segmentation has four steps. Firstly, 170 bony landmarks are detected in the given volume. Using these landmark positions, an atlas selection procedure is performed to reduce the computational cost of the following registration. Then the chosen atlas volumes are registered to the given CT image. Finally, voxelwise label voting is performed to determine the final segmentation result. The proposed method was evaluated using 50 torso CT datasets as well as the public SpineWeb dataset. As a result, a mean distance error of [Formula: see text] and a mean Dice coefficient of [Formula: see text] were achieved for the whole spine and the pelvic bones, which are competitive with other state-of-the-art methods. From the experimental results, the usefulness of the proposed segmentation method was validated.
Assessing the scale of tumor heterogeneity by complete hierarchical segmentation of MRI.
Gensheimer, Michael F; Hawkins, Douglas S; Ermoian, Ralph P; Trister, Andrew D
2015-02-07
In many cancers, intratumoral heterogeneity has been found in histology, genetic variation and vascular structure. We developed an algorithm to interrogate different scales of heterogeneity using clinical imaging. We hypothesize that heterogeneity of perfusion at coarse scale may correlate with treatment resistance and propensity for disease recurrence. The algorithm recursively segments the tumor image into increasingly smaller regions. Each dividing line is chosen so as to maximize signal intensity difference between the two regions. This process continues until the tumor has been divided into single voxels, resulting in segments at multiple scales. For each scale, heterogeneity is measured by comparing each segmented region to the adjacent region and calculating the difference in signal intensity histograms. Using digital phantom images, we showed that the algorithm is robust to image artifacts and various tumor shapes. We then measured the primary tumor scales of contrast enhancement heterogeneity in MRI of 18 rhabdomyosarcoma patients. Using Cox proportional hazards regression, we explored the influence of heterogeneity parameters on relapse-free survival. Coarser scale of maximum signal intensity heterogeneity was prognostic of shorter survival (p = 0.05). By contrast, two fractal parameters and three Haralick texture features were not prognostic. In summary, our algorithm produces a biologically motivated segmentation of tumor regions and reports the amount of heterogeneity at various distance scales. If validated on a larger dataset, this prognostic imaging biomarker could be useful to identify patients at higher risk for recurrence and candidates for alternative treatment.
Xiao, Xun; Geyer, Veikko F; Bowne-Anderson, Hugo; Howard, Jonathon; Sbalzarini, Ivo F
2016-08-01
Biological filaments, such as actin filaments, microtubules, and cilia, are often imaged using different light-microscopy techniques. Reconstructing the filament curve from the acquired images constitutes the filament segmentation problem. Since filaments have lower dimensionality than the image itself, there is an inherent trade-off between tracing the filament with sub-pixel accuracy and avoiding noise artifacts. Here, we present a globally optimal filament segmentation method based on B-spline vector level-sets and a generalized linear model for the pixel intensity statistics. We show that the resulting optimization problem is convex and can hence be solved with global optimality. We introduce a simple and efficient algorithm to compute such optimal filament segmentations, and provide an open-source implementation as an ImageJ/Fiji plugin. We further derive an information-theoretic lower bound on the filament segmentation error, quantifying how well an algorithm could possibly do given the information in the image. We show that our algorithm asymptotically reaches this bound in the spline coefficients. We validate our method in comprehensive benchmarks, compare with other methods, and show applications from fluorescence, phase-contrast, and dark-field microscopy. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Ensink, Elliot; Sinha, Jessica; Sinha, Arkadeep; Tang, Huiyuan; Calderone, Heather M; Hostetter, Galen; Winter, Jordan; Cherba, David; Brand, Randall E; Allen, Peter J; Sempere, Lorenzo F; Haab, Brian B
2015-10-06
Experiments involving the high-throughput quantification of image data require algorithms for automation. A challenge in the development of such algorithms is to properly interpret signals over a broad range of image characteristics, without the need for manual adjustment of parameters. Here we present a new approach for locating signals in image data, called Segment and Fit Thresholding (SFT). The method assesses statistical characteristics of small segments of the image and determines the best-fit trends between the statistics. Based on the relationships, SFT identifies segments belonging to background regions; analyzes the background to determine optimal thresholds; and analyzes all segments to identify signal pixels. We optimized the initial settings for locating background and signal in antibody microarray and immunofluorescence data and found that SFT performed well over multiple, diverse image characteristics without readjustment of settings. When used for the automated analysis of multicolor, tissue-microarray images, SFT correctly found the overlap of markers with known subcellular localization, and it performed better than a fixed threshold and Otsu's method for selected images. SFT promises to advance the goal of full automation in image analysis.
Ensink, Elliot; Sinha, Jessica; Sinha, Arkadeep; Tang, Huiyuan; Calderone, Heather M.; Hostetter, Galen; Winter, Jordan; Cherba, David; Brand, Randall E.; Allen, Peter J.; Sempere, Lorenzo F.; Haab, Brian B.
2016-01-01
Certain experiments involve the high-throughput quantification of image data, thus requiring algorithms for automation. A challenge in the development of such algorithms is to properly interpret signals over a broad range of image characteristics, without the need for manual adjustment of parameters. Here we present a new approach for locating signals in image data, called Segment and Fit Thresholding (SFT). The method assesses statistical characteristics of small segments of the image and determines the best-fit trends between the statistics. Based on the relationships, SFT identifies segments belonging to background regions; analyzes the background to determine optimal thresholds; and analyzes all segments to identify signal pixels. We optimized the initial settings for locating background and signal in antibody microarray and immunofluorescence data and found that SFT performed well over multiple, diverse image characteristics without readjustment of settings. When used for the automated analysis of multi-color, tissue-microarray images, SFT correctly found the overlap of markers with known subcellular localization, and it performed better than a fixed threshold and Otsu’s method for selected images. SFT promises to advance the goal of full automation in image analysis. PMID:26339978
Hybrid Pixel-Based Method for Cardiac Ultrasound Fusion Based on Integration of PCA and DWT.
Mazaheri, Samaneh; Sulaiman, Puteri Suhaiza; Wirza, Rahmita; Dimon, Mohd Zamrin; Khalid, Fatimah; Moosavi Tayebi, Rohollah
2015-01-01
Medical image fusion is the procedure of combining several images from one or multiple imaging modalities. In spite of numerous attempts in direction of automation ventricle segmentation and tracking in echocardiography, due to low quality images with missing anatomical details or speckle noises and restricted field of view, this problem is a challenging task. This paper presents a fusion method which particularly intends to increase the segment-ability of echocardiography features such as endocardial and improving the image contrast. In addition, it tries to expand the field of view, decreasing impact of noise and artifacts and enhancing the signal to noise ratio of the echo images. The proposed algorithm weights the image information regarding an integration feature between all the overlapping images, by using a combination of principal component analysis and discrete wavelet transform. For evaluation, a comparison has been done between results of some well-known techniques and the proposed method. Also, different metrics are implemented to evaluate the performance of proposed algorithm. It has been concluded that the presented pixel-based method based on the integration of PCA and DWT has the best result for the segment-ability of cardiac ultrasound images and better performance in all metrics.
Traffic Video Image Segmentation Model Based on Bayesian and Spatio-Temporal Markov Random Field
NASA Astrophysics Data System (ADS)
Zhou, Jun; Bao, Xu; Li, Dawei; Yin, Yongwen
2017-10-01
Traffic video image is a kind of dynamic image and its background and foreground is changed at any time, which results in the occlusion. In this case, using the general method is more difficult to get accurate image segmentation. A segmentation algorithm based on Bayesian and Spatio-Temporal Markov Random Field is put forward, which respectively build the energy function model of observation field and label field to motion sequence image with Markov property, then according to Bayesian' rule, use the interaction of label field and observation field, that is the relationship of label field’s prior probability and observation field’s likelihood probability, get the maximum posterior probability of label field’s estimation parameter, use the ICM model to extract the motion object, consequently the process of segmentation is finished. Finally, the segmentation methods of ST - MRF and the Bayesian combined with ST - MRF were analyzed. Experimental results: the segmentation time in Bayesian combined with ST-MRF algorithm is shorter than in ST-MRF, and the computing workload is small, especially in the heavy traffic dynamic scenes the method also can achieve better segmentation effect.
Analysis of objects in binary images. M.S. Thesis - Old Dominion Univ.
NASA Technical Reports Server (NTRS)
Leonard, Desiree M.
1991-01-01
Digital image processing techniques are typically used to produce improved digital images through the application of successive enhancement techniques to a given image or to generate quantitative data about the objects within that image. In support of and to assist researchers in a wide range of disciplines, e.g., interferometry, heavy rain effects on aerodynamics, and structure recognition research, it is often desirable to count objects in an image and compute their geometric properties. Therefore, an image analysis application package, focusing on a subset of image analysis techniques used for object recognition in binary images, was developed. This report describes the techniques and algorithms utilized in three main phases of the application and are categorized as: image segmentation, object recognition, and quantitative analysis. Appendices provide supplemental formulas for the algorithms employed as well as examples and results from the various image segmentation techniques and the object recognition algorithm implemented.
Almatani, Turki; Hugtenburg, Richard P; Lewis, Ryan D; Barley, Susan E; Edwards, Mark A
2016-10-01
Cone beam CT (CBCT) images contain more scatter than a conventional CT image and therefore provide inaccurate Hounsfield units (HUs). Consequently, CBCT images cannot be used directly for radiotherapy dose calculation. The aim of this study is to enable dose calculations to be performed with the use of CBCT images taken during radiotherapy and evaluate the necessity of replanning. A patient with prostate cancer with bilateral metallic prosthetic hip replacements was imaged using both CT and CBCT. The multilevel threshold (MLT) algorithm was used to categorize pixel values in the CBCT images into segments of homogeneous HU. The variation in HU with position in the CBCT images was taken into consideration. This segmentation method relies on the operator dividing the CBCT data into a set of volumes where the variation in the relationship between pixel values and HUs is small. An automated MLT algorithm was developed to reduce the operator time associated with the process. An intensity-modulated radiation therapy plan was generated from CT images of the patient. The plan was then copied to the segmented CBCT (sCBCT) data sets with identical settings, and the doses were recalculated and compared. Gamma evaluation showed that the percentage of points in the rectum with γ < 1 (3%/3 mm) were 98.7% and 97.7% in the sCBCT using MLT and the automated MLT algorithms, respectively. Compared with the planning CT (pCT) plan, the MLT algorithm showed -0.46% dose difference with 8 h operator time while the automated MLT algorithm showed -1.3%, which are both considered to be clinically acceptable, when using collapsed cone algorithm. The segmentation of CBCT images using the method in this study can be used for dose calculation. For a patient with prostate cancer with bilateral hip prostheses and the associated issues with CT imaging, the MLT algorithms achieved a sufficient dose calculation accuracy that is clinically acceptable. The automated MLT algorithm reduced the operator time associated with implementing the MLT algorithm to achieve clinically acceptable accuracy. This saved time makes the automated MLT algorithm superior and easier to implement in the clinical setting. The MLT algorithm has been extended to the complex example of a patient with bilateral hip prostheses, which with the introduction of automation is feasible for use in adaptive radiotherapy, as an alternative to obtaining a new pCT and reoutlining the structures.
Image Processing of Porous Silicon Microarray in Refractive Index Change Detection.
Guo, Zhiqing; Jia, Zhenhong; Yang, Jie; Kasabov, Nikola; Li, Chuanxi
2017-06-08
A new method for extracting the dots is proposed by the reflected light image of porous silicon (PSi) microarray utilization in this paper. The method consists of three parts: pretreatment, tilt correction and spot segmentation. First, based on the characteristics of different components in HSV (Hue, Saturation, Value) space, a special pretreatment is proposed for the reflected light image to obtain the contour edges of the array cells in the image. Second, through the geometric relationship of the target object between the initial external rectangle and the minimum bounding rectangle (MBR), a new tilt correction algorithm based on the MBR is proposed to adjust the image. Third, based on the specific requirements of the reflected light image segmentation, the array cells are segmented into dots as large as possible and the distance between the dots is equal in the corrected image. Experimental results show that the pretreatment part of this method can effectively avoid the influence of complex background and complete the binarization processing of the image. The tilt correction algorithm has a shorter computation time, which makes it highly suitable for tilt correction of reflected light images. The segmentation algorithm makes the dots in a regular arrangement, excludes the edges and the bright spots. This method could be utilized in the fast, accurate and automatic dots extraction of the PSi microarray reflected light image.
Image Processing of Porous Silicon Microarray in Refractive Index Change Detection
Guo, Zhiqing; Jia, Zhenhong; Yang, Jie; Kasabov, Nikola; Li, Chuanxi
2017-01-01
A new method for extracting the dots is proposed by the reflected light image of porous silicon (PSi) microarray utilization in this paper. The method consists of three parts: pretreatment, tilt correction and spot segmentation. First, based on the characteristics of different components in HSV (Hue, Saturation, Value) space, a special pretreatment is proposed for the reflected light image to obtain the contour edges of the array cells in the image. Second, through the geometric relationship of the target object between the initial external rectangle and the minimum bounding rectangle (MBR), a new tilt correction algorithm based on the MBR is proposed to adjust the image. Third, based on the specific requirements of the reflected light image segmentation, the array cells are segmented into dots as large as possible and the distance between the dots is equal in the corrected image. Experimental results show that the pretreatment part of this method can effectively avoid the influence of complex background and complete the binarization processing of the image. The tilt correction algorithm has a shorter computation time, which makes it highly suitable for tilt correction of reflected light images. The segmentation algorithm makes the dots in a regular arrangement, excludes the edges and the bright spots. This method could be utilized in the fast, accurate and automatic dots extraction of the PSi microarray reflected light image. PMID:28594383
Segmentation of dermoscopy images using wavelet networks.
Sadri, Amir Reza; Zekri, Maryam; Sadri, Saeed; Gheissari, Niloofar; Mokhtari, Mojgan; Kolahdouzan, Farzaneh
2013-04-01
This paper introduces a new approach for the segmentation of skin lesions in dermoscopic images based on wavelet network (WN). The WN presented here is a member of fixed-grid WNs that is formed with no need of training. In this WN, after formation of wavelet lattice, determining shift and scale parameters of wavelets with two screening stage and selecting effective wavelets, orthogonal least squares algorithm is used to calculate the network weights and to optimize the network structure. The existence of two stages of screening increases globality of the wavelet lattice and provides a better estimation of the function especially for larger scales. R, G, and B values of a dermoscopy image are considered as the network inputs and the network structure formation. Then, the image is segmented and the skin lesions exact boundary is determined accordingly. The segmentation algorithm were applied to 30 dermoscopic images and evaluated with 11 different metrics, using the segmentation result obtained by a skilled pathologist as the ground truth. Experimental results show that our method acts more effectively in comparison with some modern techniques that have been successfully used in many medical imaging problems.
Polarization image segmentation of radiofrequency ablated porcine myocardial tissue
Ahmad, Iftikhar; Gribble, Adam; Murtza, Iqbal; Ikram, Masroor; Pop, Mihaela; Vitkin, Alex
2017-01-01
Optical polarimetry has previously imaged the spatial extent of a typical radiofrequency ablated (RFA) lesion in myocardial tissue, exhibiting significantly lower total depolarization at the necrotic core compared to healthy tissue, and intermediate values at the RFA rim region. Here, total depolarization in ablated myocardium was used to segment the total depolarization image into three (core, rim and healthy) zones. A local fuzzy thresholding algorithm was used for this multi-region segmentation, and then compared with a ground truth segmentation obtained from manual demarcation of RFA core and rim regions on the histopathology image. Quantitative comparison of the algorithm segmentation results was performed with evaluation metrics such as dice similarity coefficient (DSC = 0.78 ± 0.02 and 0.80 ± 0.02), sensitivity (Sn = 0.83 ± 0.10 and 0.91 ± 0.08), specificity (Sp = 0.76 ± 0.17 and 0.72 ± 0.17) and accuracy (Acc = 0.81 ± 0.09 and 0.71 ± 0.10) for RFA core and rim regions, respectively. This automatic segmentation of parametric depolarization images suggests a novel application of optical polarimetry, namely its use in objective RFA image quantification. PMID:28380013
New algorithm for detecting smaller retinal blood vessels in fundus images
NASA Astrophysics Data System (ADS)
LeAnder, Robert; Bidari, Praveen I.; Mohammed, Tauseef A.; Das, Moumita; Umbaugh, Scott E.
2010-03-01
About 4.1 million Americans suffer from diabetic retinopathy. To help automatically diagnose various stages of the disease, a new blood-vessel-segmentation algorithm based on spatial high-pass filtering was developed to automatically segment blood vessels, including the smaller ones, with low noise. Methods: Image database: Forty, 584 x 565-pixel images were collected from the DRIVE image database. Preprocessing: Green-band extraction was used to obtain better contrast, which facilitated better visualization of retinal blood vessels. A spatial highpass filter of mask-size 11 was applied. A histogram stretch was performed to enhance contrast. A median filter was applied to mitigate noise. At this point, the gray-scale image was converted to a binary image using a binary thresholding operation. Then, a NOT operation was performed by gray-level value inversion between 0 and 255. Postprocessing: The resulting image was AND-ed with its corresponding ring mask to remove the outer-ring (lens-edge) artifact. At this point, the above algorithm steps had extracted most of the major and minor vessels, with some intersections and bifurcations missing. Vessel segments were reintegrated using the Hough transform. Results: After applying the Hough transform, both the average peak SNR and the RMS error improved by 10%. Pratt's Figure of Merit (PFM) was decreased by 6%. Those averages were better than [1] by 10-30%. Conclusions: The new algorithm successfully preserved the details of smaller blood vessels and should prove successful as a segmentation step for automatically identifying diseases that affect retinal blood vessels.
Karayiannis, N B
2000-01-01
This paper presents the development and investigates the properties of ordered weighted learning vector quantization (LVQ) and clustering algorithms. These algorithms are developed by using gradient descent to minimize reformulation functions based on aggregation operators. An axiomatic approach provides conditions for selecting aggregation operators that lead to admissible reformulation functions. Minimization of admissible reformulation functions based on ordered weighted aggregation operators produces a family of soft LVQ and clustering algorithms, which includes fuzzy LVQ and clustering algorithms as special cases. The proposed LVQ and clustering algorithms are used to perform segmentation of magnetic resonance (MR) images of the brain. The diagnostic value of the segmented MR images provides the basis for evaluating a variety of ordered weighted LVQ and clustering algorithms.
A novel method for retinal optic disc detection using bat meta-heuristic algorithm.
Abdullah, Ahmad S; Özok, Yasa Ekşioğlu; Rahebi, Javad
2018-05-09
Normally, the optic disc detection of retinal images is useful during the treatment of glaucoma and diabetic retinopathy. In this paper, the novel preprocessing of a retinal image with a bat algorithm (BA) optimization is proposed to detect the optic disc of the retinal image. As the optic disk is a bright area and the vessels that emerge from it are dark, these facts lead to the selected segments being regions with a great diversity of intensity, which does not usually happen in pathological regions. First, in the preprocessing stage, the image is fully converted into a gray image using a gray scale conversion, and then morphological operations are implemented in order to remove dark elements such as blood vessels, from the images. In the next stage, a bat algorithm (BA) is used to find the optimum threshold value for the optic disc location. In order to improve the accuracy and to obtain the best result for the segmented optic disc, the ellipse fitting approach was used in the last stage to enhance and smooth the segmented optic disc boundary region. The ellipse fitting is carried out using the least square distance approach. The efficiency of the proposed method was tested on six publicly available datasets, MESSIDOR, DRIVE, DIARETDB1, DIARETDB0, STARE, and DRIONS-DB. The optic disc segmentation average overlaps and accuracy was in the range of 78.5-88.2% and 96.6-99.91% in these six databases. The optic disk of the retinal images was segmented in less than 2.1 s per image. The use of the proposed method improved the optic disc segmentation results for healthy and pathological retinal images in a low computation time. Graphical abstract ᅟ.
Automated segmentation of retinal pigment epithelium cells in fluorescence adaptive optics images.
Rangel-Fonseca, Piero; Gómez-Vieyra, Armando; Malacara-Hernández, Daniel; Wilson, Mario C; Williams, David R; Rossi, Ethan A
2013-12-01
Adaptive optics (AO) imaging methods allow the histological characteristics of retinal cell mosaics, such as photoreceptors and retinal pigment epithelium (RPE) cells, to be studied in vivo. The high-resolution images obtained with ophthalmic AO imaging devices are rich with information that is difficult and/or tedious to quantify using manual methods. Thus, robust, automated analysis tools that can provide reproducible quantitative information about the cellular mosaics under examination are required. Automated algorithms have been developed to detect the position of individual photoreceptor cells; however, most of these methods are not well suited for characterizing the RPE mosaic. We have developed an algorithm for RPE cell segmentation and show its performance here on simulated and real fluorescence AO images of the RPE mosaic. Algorithm performance was compared to manual cell identification and yielded better than 91% correspondence. This method can be used to segment RPE cells for morphometric analysis of the RPE mosaic and speed the analysis of both healthy and diseased RPE mosaics.
Li, Changyang; Wang, Xiuying; Eberl, Stefan; Fulham, Michael; Yin, Yong; Dagan Feng, David
2015-01-01
Automated and general medical image segmentation can be challenging because the foreground and the background may have complicated and overlapping density distributions in medical imaging. Conventional region-based level set algorithms often assume piecewise constant or piecewise smooth for segments, which are implausible for general medical image segmentation. Furthermore, low contrast and noise make identification of the boundaries between foreground and background difficult for edge-based level set algorithms. Thus, to address these problems, we suggest a supervised variational level set segmentation model to harness the statistical region energy functional with a weighted probability approximation. Our approach models the region density distributions by using the mixture-of-mixtures Gaussian model to better approximate real intensity distributions and distinguish statistical intensity differences between foreground and background. The region-based statistical model in our algorithm can intuitively provide better performance on noisy images. We constructed a weighted probability map on graphs to incorporate spatial indications from user input with a contextual constraint based on the minimization of contextual graphs energy functional. We measured the performance of our approach on ten noisy synthetic images and 58 medical datasets with heterogeneous intensities and ill-defined boundaries and compared our technique to the Chan-Vese region-based level set model, the geodesic active contour model with distance regularization, and the random walker model. Our method consistently achieved the highest Dice similarity coefficient when compared to the other methods.
Automated segmentation of comet assay images using Gaussian filtering and fuzzy clustering.
Sansone, Mario; Zeni, Olga; Esposito, Giovanni
2012-05-01
Comet assay is one of the most popular tests for the detection of DNA damage at single cell level. In this study, an algorithm for comet assay analysis has been proposed, aiming to minimize user interaction and providing reproducible measurements. The algorithm comprises two-steps: (a) comet identification via Gaussian pre-filtering and morphological operators; (b) comet segmentation via fuzzy clustering. The algorithm has been evaluated using comet images from human leukocytes treated with a commonly used DNA damaging agent. A comparison of the proposed approach with a commercial system has been performed. Results show that fuzzy segmentation can increase overall sensitivity, giving benefits in bio-monitoring studies where weak genotoxic effects are expected.
Superpixel-based segmentation of muscle fibers in multi-channel microscopy.
Nguyen, Binh P; Heemskerk, Hans; So, Peter T C; Tucker-Kellogg, Lisa
2016-12-05
Confetti fluorescence and other multi-color genetic labelling strategies are useful for observing stem cell regeneration and for other problems of cell lineage tracing. One difficulty of such strategies is segmenting the cell boundaries, which is a very different problem from segmenting color images from the real world. This paper addresses the difficulties and presents a superpixel-based framework for segmentation of regenerated muscle fibers in mice. We propose to integrate an edge detector into a superpixel algorithm and customize the method for multi-channel images. The enhanced superpixel method outperforms the original and another advanced superpixel algorithm in terms of both boundary recall and under-segmentation error. Our framework was applied to cross-section and lateral section images of regenerated muscle fibers from confetti-fluorescent mice. Compared with "ground-truth" segmentations, our framework yielded median Dice similarity coefficients of 0.92 and higher. Our segmentation framework is flexible and provides very good segmentations of multi-color muscle fibers. We anticipate our methods will be useful for segmenting a variety of tissues in confetti fluorecent mice and in mice with similar multi-color labels.
NASA Technical Reports Server (NTRS)
Partridge, James D.
2002-01-01
'NASA is preparing to launch the Next Generation Space Telescope (NGST). This telescope will be larger than the Hubble Space Telescope, be launched on an Atlas missile rather than the Space Shuttle, have a segmented primary mirror, and be placed in a higher orbit. All these differences pose significant challenges.' This effort addresses the challenge of implementing an algorithm for aligning the segments of the primary mirror during the initial deployment that was designed by Philip Olivier and members of SOMTC (Space Optics Manufacturing Technology Center). The implementation was to be performed on the SIBOA (Systematic Image Based Optical Alignment) test bed. Unfortunately, hardware/software aspect concerning SIBOA and an extended time period for algorithm development prevented testing before the end of the study period. Properties of the digital camera were studied and understood, resulting in the current ability of selecting optimal settings regarding saturation. The study was successful in manually capturing several images of two stacked segments with various relative phases. These images can be used to calibrate the algorithm for future implementation. Currently the system is ready for testing.
Cunefare, David; Cooper, Robert F; Higgins, Brian; Katz, David F; Dubra, Alfredo; Carroll, Joseph; Farsiu, Sina
2016-05-01
Quantitative analysis of the cone photoreceptor mosaic in the living retina is potentially useful for early diagnosis and prognosis of many ocular diseases. Non-confocal split detector based adaptive optics scanning light ophthalmoscope (AOSLO) imaging reveals the cone photoreceptor inner segment mosaics often not visualized on confocal AOSLO imaging. Despite recent advances in automated cone segmentation algorithms for confocal AOSLO imagery, quantitative analysis of split detector AOSLO images is currently a time-consuming manual process. In this paper, we present the fully automatic adaptive filtering and local detection (AFLD) method for detecting cones in split detector AOSLO images. We validated our algorithm on 80 images from 10 subjects, showing an overall mean Dice's coefficient of 0.95 (standard deviation 0.03), when comparing our AFLD algorithm to an expert grader. This is comparable to the inter-observer Dice's coefficient of 0.94 (standard deviation 0.04). To the best of our knowledge, this is the first validated, fully-automated segmentation method which has been applied to split detector AOSLO images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stützer, Kristin; Haase, Robert; Exner, Florian
2016-09-15
Purpose: Rating both a lung segmentation algorithm and a deformable image registration (DIR) algorithm for subsequent lung computed tomography (CT) images by different evaluation techniques. Furthermore, investigating the relative performance and the correlation of the different evaluation techniques to address their potential value in a clinical setting. Methods: Two to seven subsequent CT images (69 in total) of 15 lung cancer patients were acquired prior, during, and after radiochemotherapy. Automated lung segmentations were compared to manually adapted contours. DIR between the first and all following CT images was performed with a fast algorithm specialized for lung tissue registration, requiring themore » lung segmentation as input. DIR results were evaluated based on landmark distances, lung contour metrics, and vector field inconsistencies in different subvolumes defined by eroding the lung contour. Correlations between the results from the three methods were evaluated. Results: Automated lung contour segmentation was satisfactory in 18 cases (26%), failed in 6 cases (9%), and required manual correction in 45 cases (66%). Initial and corrected contours had large overlap but showed strong local deviations. Landmark-based DIR evaluation revealed high accuracy compared to CT resolution with an average error of 2.9 mm. Contour metrics of deformed contours were largely satisfactory. The median vector length of inconsistency vector fields was 0.9 mm in the lung volume and slightly smaller for the eroded volumes. There was no clear correlation between the three evaluation approaches. Conclusions: Automatic lung segmentation remains challenging but can assist the manual delineation process. Proven by three techniques, the inspected DIR algorithm delivers reliable results for the lung CT data sets acquired at different time points. Clinical application of DIR demands a fast DIR evaluation to identify unacceptable results, for instance, by combining different automated DIR evaluation methods.« less
Classification of microscopy images of Langerhans islets
NASA Astrophysics Data System (ADS)
Å vihlík, Jan; Kybic, Jan; Habart, David; Berková, Zuzana; Girman, Peter; Kříž, Jan; Zacharovová, Klára
2014-03-01
Evaluation of images of Langerhans islets is a crucial procedure for planning an islet transplantation, which is a promising diabetes treatment. This paper deals with segmentation of microscopy images of Langerhans islets and evaluation of islet parameters such as area, diameter, or volume (IE). For all the available images, the ground truth and the islet parameters were independently evaluated by four medical experts. We use a pixelwise linear classifier (perceptron algorithm) and SVM (support vector machine) for image segmentation. The volume is estimated based on circle or ellipse fitting to individual islets. The segmentations were compared with the corresponding ground truth. Quantitative islet parameters were also evaluated and compared with parameters given by medical experts. We can conclude that accuracy of the presented fully automatic algorithm is fully comparable with medical experts.
Thapaliya, Kiran; Pyun, Jae-Young; Park, Chun-Su; Kwon, Goo-Rak
2013-01-01
The level set approach is a powerful tool for segmenting images. This paper proposes a method for segmenting brain tumor images from MR images. A new signed pressure function (SPF) that can efficiently stop the contours at weak or blurred edges is introduced. The local statistics of the different objects present in the MR images were calculated. Using local statistics, the tumor objects were identified among different objects. In this level set method, the calculation of the parameters is a challenging task. The calculations of different parameters for different types of images were automatic. The basic thresholding value was updated and adjusted automatically for different MR images. This thresholding value was used to calculate the different parameters in the proposed algorithm. The proposed algorithm was tested on the magnetic resonance images of the brain for tumor segmentation and its performance was evaluated visually and quantitatively. Numerical experiments on some brain tumor images highlighted the efficiency and robustness of this method. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wenkun; Zhang, Hanming; Li, Lei
2016-08-15
X-ray computed tomography (CT) is a powerful and common inspection technique used for the industrial non-destructive testing. However, large-sized and heavily absorbing objects cause the formation of artifacts because of either the lack of specimen penetration in specific directions or the acquisition of data from only a limited angular range of views. Although the sparse optimization-based methods, such as the total variation (TV) minimization method, can suppress artifacts to some extent, reconstructing the images such that they converge to accurate values remains difficult because of the deficiency in continuous angular data and inconsistency in the projections. To address this problem,more » we use the idea of regional enhancement of the true values and suppression of the illusory artifacts outside the region to develop an efficient iterative algorithm. This algorithm is based on the combination of regional enhancement of the true values and TV minimization for the limited angular reconstruction. In this algorithm, the segmentation approach is introduced to distinguish the regions of different image knowledge and generate the support mask of the image. A new regularization term, which contains the support knowledge to enhance the true values of the image, is incorporated into the objective function. Then, the proposed optimization model is solved by variable splitting and the alternating direction method efficiently. A compensation approach is also designed to extract useful information from the initial projections and thus reduce false segmentation result and correct the segmentation support and the segmented image. The results obtained from comparing both simulation studies and real CT data set reconstructions indicate that the proposed algorithm generates a more accurate image than do the other reconstruction methods. The experimental results show that this algorithm can produce high-quality reconstructed images for the limited angular reconstruction and suppress the illusory artifacts caused by the deficiency in valid data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhen, X; Chen, H; Zhou, L
2014-06-15
Purpose: To propose and validate a novel and accurate deformable image registration (DIR) scheme to facilitate dose accumulation among treatment fractions of high-dose-rate (HDR) gynecological brachytherapy. Method: We have developed a method to adapt DIR algorithms to gynecologic anatomies with HDR applicators by incorporating a segmentation step and a point-matching step into an existing DIR framework. In the segmentation step, random walks algorithm is used to accurately segment and remove the applicator region (AR) in the HDR CT image. A semi-automatic seed point generation approach is developed to obtain the incremented foreground and background point sets to feed the randommore » walks algorithm. In the subsequent point-matching step, a feature-based thin-plate spline-robust point matching (TPS-RPM) algorithm is employed for AR surface point matching. With the resulting mapping, a DVF characteristic of the deformation between the two AR surfaces is generated by B-spline approximation, which serves as the initial DVF for the following Demons DIR between the two AR-free HDR CT images. Finally, the calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. Results: The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative results as well as the visual inspection of the DIR indicate that our proposed method can suppress the interference of the applicator with the DIR algorithm, and accurately register HDR CT images as well as deform and add interfractional HDR doses. Conclusions: We have developed a novel and robust DIR scheme that can perform registration between HDR gynecological CT images and yield accurate registration results. This new DIR scheme has potential for accurate interfractional HDR dose accumulation. This work is supported in part by the National Natural ScienceFoundation of China (no 30970866 and no 81301940)« less
NASA Astrophysics Data System (ADS)
Zhang, Wenkun; Zhang, Hanming; Li, Lei; Wang, Linyuan; Cai, Ailong; Li, Zhongguo; Yan, Bin
2016-08-01
X-ray computed tomography (CT) is a powerful and common inspection technique used for the industrial non-destructive testing. However, large-sized and heavily absorbing objects cause the formation of artifacts because of either the lack of specimen penetration in specific directions or the acquisition of data from only a limited angular range of views. Although the sparse optimization-based methods, such as the total variation (TV) minimization method, can suppress artifacts to some extent, reconstructing the images such that they converge to accurate values remains difficult because of the deficiency in continuous angular data and inconsistency in the projections. To address this problem, we use the idea of regional enhancement of the true values and suppression of the illusory artifacts outside the region to develop an efficient iterative algorithm. This algorithm is based on the combination of regional enhancement of the true values and TV minimization for the limited angular reconstruction. In this algorithm, the segmentation approach is introduced to distinguish the regions of different image knowledge and generate the support mask of the image. A new regularization term, which contains the support knowledge to enhance the true values of the image, is incorporated into the objective function. Then, the proposed optimization model is solved by variable splitting and the alternating direction method efficiently. A compensation approach is also designed to extract useful information from the initial projections and thus reduce false segmentation result and correct the segmentation support and the segmented image. The results obtained from comparing both simulation studies and real CT data set reconstructions indicate that the proposed algorithm generates a more accurate image than do the other reconstruction methods. The experimental results show that this algorithm can produce high-quality reconstructed images for the limited angular reconstruction and suppress the illusory artifacts caused by the deficiency in valid data.
Chen, Zhaoxue; Yu, Haizhong; Chen, Hao
2013-12-01
To solve the problem of traditional K-means clustering in which initial clustering centers are selected randomly, we proposed a new K-means segmentation algorithm based on robustly selecting 'peaks' standing for White Matter, Gray Matter and Cerebrospinal Fluid in multi-peaks gray histogram of MRI brain image. The new algorithm takes gray value of selected histogram 'peaks' as the initial K-means clustering center and can segment the MRI brain image into three parts of tissue more effectively, accurately, steadily and successfully. Massive experiments have proved that the proposed algorithm can overcome many shortcomings caused by traditional K-means clustering method such as low efficiency, veracity, robustness and time consuming. The histogram 'peak' selecting idea of the proposed segmentootion method is of more universal availability.
Gu, Yuhua; Kumar, Virendra; Hall, Lawrence O; Goldgof, Dmitry B; Li, Ching-Yen; Korn, René; Bendtsen, Claus; Velazquez, Emmanuel Rios; Dekker, Andre; Aerts, Hugo; Lambin, Philippe; Li, Xiuli; Tian, Jie; Gatenby, Robert A; Gillies, Robert J
2012-01-01
A single click ensemble segmentation (SCES) approach based on an existing “Click&Grow” algorithm is presented. The SCES approach requires only one operator selected seed point as compared with multiple operator inputs, which are typically needed. This facilitates processing large numbers of cases. Evaluation on a set of 129 CT lung tumor images using a similarity index (SI) was done. The average SI is above 93% using 20 different start seeds, showing stability. The average SI for 2 different readers was 79.53%. We then compared the SCES algorithm with the two readers, the level set algorithm and the skeleton graph cut algorithm obtaining an average SI of 78.29%, 77.72%, 63.77% and 63.76% respectively. We can conclude that the newly developed automatic lung lesion segmentation algorithm is stable, accurate and automated. PMID:23459617
Comparison of parameter-adapted segmentation methods for fluorescence micrographs.
Held, Christian; Palmisano, Ralf; Häberle, Lothar; Hensel, Michael; Wittenberg, Thomas
2011-11-01
Interpreting images from fluorescence microscopy is often a time-consuming task with poor reproducibility. Various image processing routines that can help investigators evaluate the images are therefore useful. The critical aspect for a reliable automatic image analysis system is a robust segmentation algorithm that can perform accurate segmentation for different cell types. In this study, several image segmentation methods were therefore compared and evaluated in order to identify the most appropriate segmentation schemes that are usable with little new parameterization and robustly with different types of fluorescence-stained cells for various biological and biomedical tasks. The study investigated, compared, and enhanced four different methods for segmentation of cultured epithelial cells. The maximum-intensity linking (MIL) method, an improved MIL, a watershed method, and an improved watershed method based on morphological reconstruction were used. Three manually annotated datasets consisting of 261, 817, and 1,333 HeLa or L929 cells were used to compare the different algorithms. The comparisons and evaluations showed that the segmentation performance of methods based on the watershed transform was significantly superior to the performance of the MIL method. The results also indicate that using morphological opening by reconstruction can improve the segmentation of cells stained with a marker that exhibits the dotted surface of cells. Copyright © 2011 International Society for Advancement of Cytometry.
Towards online iris and periocular recognition under relaxed imaging constraints.
Tan, Chun-Wei; Kumar, Ajay
2013-10-01
Online iris recognition using distantly acquired images in a less imaging constrained environment requires the development of a efficient iris segmentation approach and recognition strategy that can exploit multiple features available for the potential identification. This paper presents an effective solution toward addressing such a problem. The developed iris segmentation approach exploits a random walker algorithm to efficiently estimate coarsely segmented iris images. These coarsely segmented iris images are postprocessed using a sequence of operations that can effectively improve the segmentation accuracy. The robustness of the proposed iris segmentation approach is ascertained by providing comparison with other state-of-the-art algorithms using publicly available UBIRIS.v2, FRGC, and CASIA.v4-distance databases. Our experimental results achieve improvement of 9.5%, 4.3%, and 25.7% in the average segmentation accuracy, respectively, for the UBIRIS.v2, FRGC, and CASIA.v4-distance databases, as compared with most competing approaches. We also exploit the simultaneously extracted periocular features to achieve significant performance improvement. The joint segmentation and combination strategy suggest promising results and achieve average improvement of 132.3%, 7.45%, and 17.5% in the recognition performance, respectively, from the UBIRIS.v2, FRGC, and CASIA.v4-distance databases, as compared with the related competing approaches.
A combined learning algorithm for prostate segmentation on 3D CT images.
Ma, Ling; Guo, Rongrong; Zhang, Guoyi; Schuster, David M; Fei, Baowei
2017-11-01
Segmentation of the prostate on CT images has many applications in the diagnosis and treatment of prostate cancer. Because of the low soft-tissue contrast on CT images, prostate segmentation is a challenging task. A learning-based segmentation method is proposed for the prostate on three-dimensional (3D) CT images. We combine population-based and patient-based learning methods for segmenting the prostate on CT images. Population data can provide useful information to guide the segmentation processing. Because of inter-patient variations, patient-specific information is particularly useful to improve the segmentation accuracy for an individual patient. In this study, we combine a population learning method and a patient-specific learning method to improve the robustness of prostate segmentation on CT images. We train a population model based on the data from a group of prostate patients. We also train a patient-specific model based on the data of the individual patient and incorporate the information as marked by the user interaction into the segmentation processing. We calculate the similarity between the two models to obtain applicable population and patient-specific knowledge to compute the likelihood of a pixel belonging to the prostate tissue. A new adaptive threshold method is developed to convert the likelihood image into a binary image of the prostate, and thus complete the segmentation of the gland on CT images. The proposed learning-based segmentation algorithm was validated using 3D CT volumes of 92 patients. All of the CT image volumes were manually segmented independently three times by two, clinically experienced radiologists and the manual segmentation results served as the gold standard for evaluation. The experimental results show that the segmentation method achieved a Dice similarity coefficient of 87.18 ± 2.99%, compared to the manual segmentation. By combining the population learning and patient-specific learning methods, the proposed method is effective for segmenting the prostate on 3D CT images. The prostate CT segmentation method can be used in various applications including volume measurement and treatment planning of the prostate. © 2017 American Association of Physicists in Medicine.
Fu, J C; Chen, C C; Chai, J W; Wong, S T C; Li, I C
2010-06-01
We propose an automatic hybrid image segmentation model that integrates the statistical expectation maximization (EM) model and the spatial pulse coupled neural network (PCNN) for brain magnetic resonance imaging (MRI) segmentation. In addition, an adaptive mechanism is developed to fine tune the PCNN parameters. The EM model serves two functions: evaluation of the PCNN image segmentation and adaptive adjustment of the PCNN parameters for optimal segmentation. To evaluate the performance of the adaptive EM-PCNN, we use it to segment MR brain image into gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF). The performance of the adaptive EM-PCNN is compared with that of the non-adaptive EM-PCNN, EM, and Bias Corrected Fuzzy C-Means (BCFCM) algorithms. The result is four sets of boundaries for the GM and the brain parenchyma (GM+WM), the two regions of most interest in medical research and clinical applications. Each set of boundaries is compared with the golden standard to evaluate the segmentation performance. The adaptive EM-PCNN significantly outperforms the non-adaptive EM-PCNN, EM, and BCFCM algorithms in gray mater segmentation. In brain parenchyma segmentation, the adaptive EM-PCNN significantly outperforms the BCFCM only. However, the adaptive EM-PCNN is better than the non-adaptive EM-PCNN and EM on average. We conclude that of the three approaches, the adaptive EM-PCNN yields the best results for gray matter and brain parenchyma segmentation. Copyright 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gorpas, D.; Yova, D.
2009-07-01
One of the major challenges in biomedical imaging is the extraction of quantified information from the acquired images. Light and tissue interaction leads to the acquisition of images that present inconsistent intensity profiles and thus the accurate identification of the regions of interest is a rather complicated process. On the other hand, the complex geometries and the tangent objects that very often are present in the acquired images, lead to either false detections or to the merging, shrinkage or expansion of the regions of interest. In this paper an algorithm, which is based on alternating sequential filtering and watershed transformation, is proposed for the segmentation of biomedical images. This algorithm has been tested over two applications, each one based on different acquisition system, and the results illustrate its accuracy in segmenting the regions of interest.
NASA Astrophysics Data System (ADS)
Mueller, Jenna L.; Harmany, Zachary T.; Mito, Jeffrey K.; Kennedy, Stephanie A.; Kim, Yongbaek; Dodd, Leslie; Geradts, Joseph; Kirsch, David G.; Willett, Rebecca M.; Brown, J. Quincy; Ramanujam, Nimmi
2013-02-01
The combination of fluorescent contrast agents with microscopy is a powerful technique to obtain real time images of tissue histology without the need for fixing, sectioning, and staining. The potential of this technology lies in the identification of robust methods for image segmentation and quantitation, particularly in heterogeneous tissues. Our solution is to apply sparse decomposition (SD) to monochrome images of fluorescently-stained microanatomy to segment and quantify distinct tissue types. The clinical utility of our approach is demonstrated by imaging excised margins in a cohort of mice after surgical resection of a sarcoma. Representative images of excised margins were used to optimize the formulation of SD and tune parameters associated with the algorithm. Our results demonstrate that SD is a robust solution that can advance vital fluorescence microscopy as a clinically significant technology.
Semi-Automatic Extraction Algorithm for Images of the Ciliary Muscle
Kao, Chiu-Yen; Richdale, Kathryn; Sinnott, Loraine T.; Ernst, Lauren E.; Bailey, Melissa D.
2011-01-01
Purpose To development and evaluate a semi-automatic algorithm for segmentation and morphological assessment of the dimensions of the ciliary muscle in Visante™ Anterior Segment Optical Coherence Tomography images. Methods Geometric distortions in Visante images analyzed as binary files were assessed by imaging an optical flat and human donor tissue. The appropriate pixel/mm conversion factor to use for air (n = 1) was estimated by imaging calibration spheres. A semi-automatic algorithm was developed to extract the dimensions of the ciliary muscle from Visante images. Measurements were also made manually using Visante software calipers. Interclass correlation coefficients (ICC) and Bland-Altman analyses were used to compare the methods. A multilevel model was fitted to estimate the variance of algorithm measurements that was due to differences within- and between-examiners in scleral spur selection versus biological variability. Results The optical flat and the human donor tissue were imaged and appeared without geometric distortions in binary file format. Bland-Altman analyses revealed that caliper measurements tended to underestimate ciliary muscle thickness at 3 mm posterior to the scleral spur in subjects with the thickest ciliary muscles (t = 3.6, p < 0.001). The percent variance due to within- or between-examiner differences in scleral spur selection was found to be small (6%) when compared to the variance due to biological difference across subjects (80%). Using the mean of measurements from three images achieved an estimated ICC of 0.85. Conclusions The semi-automatic algorithm successfully segmented the ciliary muscle for further measurement. Using the algorithm to follow the scleral curvature to locate more posterior measurements is critical to avoid underestimating thickness measurements. This semi-automatic algorithm will allow for repeatable, efficient, and masked ciliary muscle measurements in large datasets. PMID:21169877
Automatic needle segmentation in 3D ultrasound images using 3D Hough transform
NASA Astrophysics Data System (ADS)
Zhou, Hua; Qiu, Wu; Ding, Mingyue; Zhang, Songgeng
2007-12-01
3D ultrasound (US) is a new technology that can be used for a variety of diagnostic applications, such as obstetrical, vascular, and urological imaging, and has been explored greatly potential in the applications of image-guided surgery and therapy. Uterine adenoma and uterine bleeding are the two most prevalent diseases in Chinese woman, and a minimally invasive ablation system using an RF button electrode which is needle-like is being used to destroy tumor cells or stop bleeding currently. Now a 3D US guidance system has been developed to avoid accidents or death of the patient by inaccurate localizations of the electrode and the tumor position during treatment. In this paper, we described two automated techniques, the 3D Hough Transform (3DHT) and the 3D Randomized Hough Transform (3DRHT), which is potentially fast, accurate, and robust to provide needle segmentation in 3D US image for use of 3D US imaging guidance. Based on the representation (Φ , θ , ρ , α ) of straight lines in 3D space, we used the 3DHT algorithm to segment needles successfully assumed that the approximate needle position and orientation are known in priori. The 3DRHT algorithm was developed to detect needles quickly without any information of the 3D US images. The needle segmentation techniques were evaluated using the 3D US images acquired by scanning water phantoms. The experiments demonstrated the feasibility of two 3D needle segmentation algorithms described in this paper.
Zhang, Yue; Zou, Huanxin; Luo, Tiancheng; Qin, Xianxiang; Zhou, Shilin; Ji, Kefeng
2016-01-01
The superpixel segmentation algorithm, as a preprocessing technique, should show good performance in fast segmentation speed, accurate boundary adherence and homogeneous regularity. A fast superpixel segmentation algorithm by iterative edge refinement (IER) works well on optical images. However, it may generate poor superpixels for Polarimetric synthetic aperture radar (PolSAR) images due to the influence of strong speckle noise and many small-sized or slim regions. To solve these problems, we utilized a fast revised Wishart distance instead of Euclidean distance in the local relabeling of unstable pixels, and initialized unstable pixels as all the pixels substituted for the initial grid edge pixels in the initialization step. Then, postprocessing with the dissimilarity measure is employed to remove the generated small isolated regions as well as to preserve strong point targets. Finally, the superiority of the proposed algorithm is validated with extensive experiments on four simulated and two real-world PolSAR images from Experimental Synthetic Aperture Radar (ESAR) and Airborne Synthetic Aperture Radar (AirSAR) data sets, which demonstrate that the proposed method shows better performance with respect to several commonly used evaluation measures, even with about nine times higher computational efficiency, as well as fine boundary adherence and strong point targets preservation, compared with three state-of-the-art methods. PMID:27754385
Smart markers for watershed-based cell segmentation.
Koyuncu, Can Fahrettin; Arslan, Salim; Durmaz, Irem; Cetin-Atalay, Rengul; Gunduz-Demir, Cigdem
2012-01-01
Automated cell imaging systems facilitate fast and reliable analysis of biological events at the cellular level. In these systems, the first step is usually cell segmentation that greatly affects the success of the subsequent system steps. On the other hand, similar to other image segmentation problems, cell segmentation is an ill-posed problem that typically necessitates the use of domain-specific knowledge to obtain successful segmentations even by human subjects. The approaches that can incorporate this knowledge into their segmentation algorithms have potential to greatly improve segmentation results. In this work, we propose a new approach for the effective segmentation of live cells from phase contrast microscopy. This approach introduces a new set of "smart markers" for a marker-controlled watershed algorithm, for which the identification of its markers is critical. The proposed approach relies on using domain-specific knowledge, in the form of visual characteristics of the cells, to define the markers. We evaluate our approach on a total of 1,954 cells. The experimental results demonstrate that this approach, which uses the proposed definition of smart markers, is quite effective in identifying better markers compared to its counterparts. This will, in turn, be effective in improving the segmentation performance of a marker-controlled watershed algorithm.
Ukwatta, Eranga; Yuan, Jing; Qiu, Wu; Rajchl, Martin; Chiu, Bernard; Fenster, Aaron
2015-12-01
Three-dimensional (3D) measurements of peripheral arterial disease (PAD) plaque burden extracted from fast black-blood magnetic resonance (MR) images have shown to be more predictive of clinical outcomes than PAD stenosis measurements. To this end, accurate segmentation of the femoral artery lumen and outer wall is required for generating volumetric measurements of PAD plaque burden. Here, we propose a semi-automated algorithm to jointly segment the femoral artery lumen and outer wall surfaces from 3D black-blood MR images, which are reoriented and reconstructed along the medial axis of the femoral artery to obtain improved spatial coherence between slices of the long, thin femoral artery and to reduce computation time. The developed segmentation algorithm enforces two priors in a global optimization manner: the spatial consistency between the adjacent 2D slices and the anatomical region order between the femoral artery lumen and outer wall surfaces. The formulated combinatorial optimization problem for segmentation is solved globally and exactly by means of convex relaxation using a coupled continuous max-flow (CCMF) model, which is a dual formulation to the convex relaxed optimization problem. In addition, the CCMF model directly derives an efficient duality-based algorithm based on the modern multiplier augmented optimization scheme, which has been implemented on a GPU for fast computation. The computed segmentations from the developed algorithm were compared to manual delineations from experts using 20 black-blood MR images. The developed algorithm yielded both high accuracy (Dice similarity coefficients ≥ 87% for both the lumen and outer wall surfaces) and high reproducibility (intra-class correlation coefficient of 0.95 for generating vessel wall area), while outperforming the state-of-the-art method in terms of computational time by a factor of ≈ 20. Copyright © 2015 Elsevier B.V. All rights reserved.
Hall, L O; Bensaid, A M; Clarke, L P; Velthuizen, R P; Silbiger, M S; Bezdek, J C
1992-01-01
Magnetic resonance (MR) brain section images are segmented and then synthetically colored to give visual representations of the original data with three approaches: the literal and approximate fuzzy c-means unsupervised clustering algorithms, and a supervised computational neural network. Initial clinical results are presented on normal volunteers and selected patients with brain tumors surrounded by edema. Supervised and unsupervised segmentation techniques provide broadly similar results. Unsupervised fuzzy algorithms were visually observed to show better segmentation when compared with raw image data for volunteer studies. For a more complex segmentation problem with tumor/edema or cerebrospinal fluid boundary, where the tissues have similar MR relaxation behavior, inconsistency in rating among experts was observed, with fuzz-c-means approaches being slightly preferred over feedforward cascade correlation results. Various facets of both approaches, such as supervised versus unsupervised learning, time complexity, and utility for the diagnostic process, are compared.
Inhomogeneity compensation for MR brain image segmentation using a multi-stage FCM-based approach.
Szilágyi, László; Szilágyi, Sándor M; Dávid, László; Benyó, Zoltán
2008-01-01
Intensity inhomogeneity or intensity non-uniformity (INU) is an undesired phenomenon that represents the main obstacle for MR image segmentation and registration methods. Various techniques have been proposed to eliminate or compensate the INU, most of which are embedded into clustering algorithms. This paper proposes a multiple stage fuzzy c-means (FCM) based algorithm for the estimation and compensation of the slowly varying additive or multiplicative noise, supported by a pre-filtering technique for Gaussian and impulse noise elimination. The slowly varying behavior of the bias or gain field is assured by a smoothening filter that performs a context dependent averaging, based on a morphological criterion. The experiments using 2-D synthetic phantoms and real MR images show, that the proposed method provides accurate segmentation. The produced segmentation and fuzzy membership values can serve as excellent support for 3-D registration and segmentation techniques.
NASA Astrophysics Data System (ADS)
Cheng, Guanghui; Yang, Xiaofeng; Wu, Ning; Xu, Zhijian; Zhao, Hongfu; Wang, Yuefeng; Liu, Tian
2013-02-01
Xerostomia (dry mouth), resulting from radiation damage to the parotid glands, is one of the most common and distressing side effects of head-and-neck cancer radiotherapy. Recent MRI studies have demonstrated that the volume reduction of parotid glands is an important indicator for radiation damage and xerostomia. In the clinic, parotid-volume evaluation is exclusively based on physicians' manual contours. However, manual contouring is time-consuming and prone to inter-observer and intra-observer variability. Here, we report a fully automated multi-atlas-based registration method for parotid-gland delineation in 3D head-and-neck MR images. The multi-atlas segmentation utilizes a hybrid deformable image registration to map the target subject to multiple patients' images, applies the transformation to the corresponding segmented parotid glands, and subsequently uses the multiple patient-specific pairs (head-and-neck MR image and transformed parotid-gland mask) to train support vector machine (SVM) to reach consensus to segment the parotid gland of the target subject. This segmentation algorithm was tested with head-and-neck MRIs of 5 patients following radiotherapy for the nasopharyngeal cancer. The average parotid-gland volume overlapped 85% between the automatic segmentations and the physicians' manual contours. In conclusion, we have demonstrated the feasibility of an automatic multi-atlas based segmentation algorithm to segment parotid glands in head-and-neck MR images.
Dynamic updating atlas for heart segmentation with a nonlinear field-based model.
Cai, Ken; Yang, Rongqian; Yue, Hongwei; Li, Lihua; Ou, Shanxing; Liu, Feng
2017-09-01
Segmentation of cardiac computed tomography (CT) images is an effective method for assessing the dynamic function of the heart and lungs. In the atlas-based heart segmentation approach, the quality of segmentation usually relies upon atlas images, and the selection of those reference images is a key step. The optimal goal in this selection process is to have the reference images as close to the target image as possible. This study proposes an atlas dynamic update algorithm using a scheme of nonlinear deformation field. The proposed method is based on the features among double-source CT (DSCT) slices. The extraction of these features will form a base to construct an average model and the created reference atlas image is updated during the registration process. A nonlinear field-based model was used to effectively implement a 4D cardiac segmentation. The proposed segmentation framework was validated with 14 4D cardiac CT sequences. The algorithm achieved an acceptable accuracy (1.0-2.8 mm). Our proposed method that combines a nonlinear field-based model and dynamic updating atlas strategies can provide an effective and accurate way for whole heart segmentation. The success of the proposed method largely relies on the effective use of the prior knowledge of the atlas and the similarity explored among the to-be-segmented DSCT sequences. Copyright © 2016 John Wiley & Sons, Ltd.
Rashno, Abdolreza; Koozekanani, Dara D; Drayna, Paul M; Nazari, Behzad; Sadri, Saeed; Rabbani, Hossein; Parhi, Keshab K
2018-05-01
This paper presents a fully automated algorithm to segment fluid-associated (fluid-filled) and cyst regions in optical coherence tomography (OCT) retina images of subjects with diabetic macular edema. The OCT image is segmented using a novel neutrosophic transformation and a graph-based shortest path method. In neutrosophic domain, an image is transformed into three sets: (true), (indeterminate) that represents noise, and (false). This paper makes four key contributions. First, a new method is introduced to compute the indeterminacy set , and a new -correction operation is introduced to compute the set in neutrosophic domain. Second, a graph shortest-path method is applied in neutrosophic domain to segment the inner limiting membrane and the retinal pigment epithelium as regions of interest (ROI) and outer plexiform layer and inner segment myeloid as middle layers using a novel definition of the edge weights . Third, a new cost function for cluster-based fluid/cyst segmentation in ROI is presented which also includes a novel approach in estimating the number of clusters in an automated manner. Fourth, the final fluid regions are achieved by ignoring very small regions and the regions between middle layers. The proposed method is evaluated using two publicly available datasets: Duke, Optima, and a third local dataset from the UMN clinic which is available online. The proposed algorithm outperforms the previously proposed Duke algorithm by 8% with respect to the dice coefficient and by 5% with respect to precision on the Duke dataset, while achieving about the same sensitivity. Also, the proposed algorithm outperforms a prior method for Optima dataset by 6%, 22%, and 23% with respect to the dice coefficient, sensitivity, and precision, respectively. Finally, the proposed algorithm also achieves sensitivity of 67.3%, 88.8%, and 76.7%, for the Duke, Optima, and the university of minnesota (UMN) datasets, respectively.
Kamali, Tahereh; Stashuk, Daniel
2016-10-01
Robust and accurate segmentation of brain white matter (WM) fiber bundles assists in diagnosing and assessing progression or remission of neuropsychiatric diseases such as schizophrenia, autism and depression. Supervised segmentation methods are infeasible in most applications since generating gold standards is too costly. Hence, there is a growing interest in designing unsupervised methods. However, most conventional unsupervised methods require the number of clusters be known in advance which is not possible in most applications. The purpose of this study is to design an unsupervised segmentation algorithm for brain white matter fiber bundles which can automatically segment fiber bundles using intrinsic diffusion tensor imaging data information without considering any prior information or assumption about data distributions. Here, a new density based clustering algorithm called neighborhood distance entropy consistency (NDEC), is proposed which discovers natural clusters within data by simultaneously utilizing both local and global density information. The performance of NDEC is compared with other state of the art clustering algorithms including chameleon, spectral clustering, DBSCAN and k-means using Johns Hopkins University publicly available diffusion tensor imaging data. The performance of NDEC and other employed clustering algorithms were evaluated using dice ratio as an external evaluation criteria and density based clustering validation (DBCV) index as an internal evaluation metric. Across all employed clustering algorithms, NDEC obtained the highest average dice ratio (0.94) and DBCV value (0.71). NDEC can find clusters with arbitrary shapes and densities and consequently can be used for WM fiber bundle segmentation where there is no distinct boundary between various bundles. NDEC may also be used as an effective tool in other pattern recognition and medical diagnostic systems in which discovering natural clusters within data is a necessity. Copyright © 2016 Elsevier B.V. All rights reserved.
Wavelet Transforms in Parallel Image Processing
1994-01-27
NUMBER OF PAGES Object Segmentation, Texture Segmentation, Image Compression, Image 137 Halftoning , Neural Network, Parallel Algorithms, 2D and 3D...Vector Quantization of Wavelet Transform Coefficients ........ ............................. 57 B.1.f Adaptive Image Halftoning based on Wavelet...application has been directed to the adaptive image halftoning . The gray information at a pixel, including its gray value and gradient, is represented by
Robust Crop and Weed Segmentation under Uncontrolled Outdoor Illumination
Jeon, Hong Y.; Tian, Lei F.; Zhu, Heping
2011-01-01
An image processing algorithm for detecting individual weeds was developed and evaluated. Weed detection processes included were normalized excessive green conversion, statistical threshold value estimation, adaptive image segmentation, median filter, morphological feature calculation and Artificial Neural Network (ANN). The developed algorithm was validated for its ability to identify and detect weeds and crop plants under uncontrolled outdoor illuminations. A machine vision implementing field robot captured field images under outdoor illuminations and the image processing algorithm automatically processed them without manual adjustment. The errors of the algorithm, when processing 666 field images, ranged from 2.1 to 2.9%. The ANN correctly detected 72.6% of crop plants from the identified plants, and considered the rest as weeds. However, the ANN identification rates for crop plants were improved up to 95.1% by addressing the error sources in the algorithm. The developed weed detection and image processing algorithm provides a novel method to identify plants against soil background under the uncontrolled outdoor illuminations, and to differentiate weeds from crop plants. Thus, the proposed new machine vision and processing algorithm may be useful for outdoor applications including plant specific direct applications (PSDA). PMID:22163954
NASA Astrophysics Data System (ADS)
Egger, Jan; Voglreiter, Philip; Dokter, Mark; Hofmann, Michael; Chen, Xiaojun; Zoller, Wolfram G.; Schmalstieg, Dieter; Hann, Alexander
2016-04-01
Ultrasound (US) is the most commonly used liver imaging modality worldwide. It plays an important role in follow-up of cancer patients with liver metastases. We present an interactive segmentation approach for liver tumors in US acquisitions. Due to the low image quality and the low contrast between the tumors and the surrounding tissue in US images, the segmentation is very challenging. Thus, the clinical practice still relies on manual measurement and outlining of the tumors in the US images. We target this problem by applying an interactive segmentation algorithm to the US data, allowing the user to get real-time feedback of the segmentation results. The algorithm has been developed and tested hand-in-hand by physicians and computer scientists to make sure a future practical usage in a clinical setting is feasible. To cover typical acquisitions from the clinical routine, the approach has been evaluated with dozens of datasets where the tumors are hyperechoic (brighter), hypoechoic (darker) or isoechoic (similar) in comparison to the surrounding liver tissue. Due to the interactive real-time behavior of the approach, it was possible even in difficult cases to find satisfying segmentations of the tumors within seconds and without parameter settings, and the average tumor deviation was only 1.4mm compared with manual measurements. However, the long term goal is to ease the volumetric acquisition of liver tumors in order to evaluate for treatment response. Additional aim is the registration of intraoperative US images via the interactive segmentations to the patient's pre-interventional CT acquisitions.
Nam, Haewon
2017-01-01
We propose a novel metal artifact reduction (MAR) algorithm for CT images that completes a corrupted sinogram along the metal trace region. When metal implants are located inside a field of view, they create a barrier to the transmitted X-ray beam due to the high attenuation of metals, which significantly degrades the image quality. To fill in the metal trace region efficiently, the proposed algorithm uses multiple prior images with residual error compensation in sinogram space. Multiple prior images are generated by applying a recursive active contour (RAC) segmentation algorithm to the pre-corrected image acquired by MAR with linear interpolation, where the number of prior image is controlled by RAC depending on the object complexity. A sinogram basis is then acquired by forward projection of the prior images. The metal trace region of the original sinogram is replaced by the linearly combined sinogram of the prior images. Then, the additional correction in the metal trace region is performed to compensate the residual errors occurred by non-ideal data acquisition condition. The performance of the proposed MAR algorithm is compared with MAR with linear interpolation and the normalized MAR algorithm using simulated and experimental data. The results show that the proposed algorithm outperforms other MAR algorithms, especially when the object is complex with multiple bone objects. PMID:28604794
Markel, D; Naqa, I El
2012-06-01
Positron emission tomography (PET) presents a valuable resource for delineating the biological tumor volume (BTV) for image-guided radiotherapy. However, accurate and consistent image segmentation is a significant challenge within the context of PET, owing to its low spatial resolution and high levels of noise. Active contour methods based on the level set methods can be sensitive to noise and susceptible to failing in low contrast regions. Therefore, this work evaluates a novel active contour algorithm applied to the task of PET tumor segmentation. A novel active contour segmentation algorithm based on maximizing the Jensen-Renyi Divergence between regions of interest was applied to the task of segmenting lesions in 7 patients with T3-T4 pharyngolaryngeal squamous cell carcinoma. The algorithm was implemented on an NVidia GEFORCE GTV 560M GPU. The cases were taken from the Louvain database, which includes contours of the macroscopically defined BTV drawn using histology of resected tissue. The images were pre-processed using denoising/deconvolution. The segmented volumes agreed well with the macroscopic contours, with an average concordance index and classification error of 0.6 ± 0.09 and 55 ± 16.5%, respectively. The algorithm in its present implementation requires approximately 0.5-1.3 sec per iteration and can reach convergence within 10-30 iterations. The Jensen-Renyi active contour method was shown to come close to and in terms of concordance, outperforms a variety of PET segmentation methods that have been previously evaluated using the same data. Further evaluation on a larger dataset along with performance optimization is necessary before clinical deployment. © 2012 American Association of Physicists in Medicine.
Blood vessel segmentation in color fundus images based on regional and Hessian features.
Shah, Syed Ayaz Ali; Tang, Tong Boon; Faye, Ibrahima; Laude, Augustinus
2017-08-01
To propose a new algorithm of blood vessel segmentation based on regional and Hessian features for image analysis in retinal abnormality diagnosis. Firstly, color fundus images from the publicly available database DRIVE were converted from RGB to grayscale. To enhance the contrast of the dark objects (blood vessels) against the background, the dot product of the grayscale image with itself was generated. To rectify the variation in contrast, we used a 5 × 5 window filter on each pixel. Based on 5 regional features, 1 intensity feature and 2 Hessian features per scale using 9 scales, we extracted a total of 24 features. A linear minimum squared error (LMSE) classifier was trained to classify each pixel into a vessel or non-vessel pixel. The DRIVE dataset provided 20 training and 20 test color fundus images. The proposed algorithm achieves a sensitivity of 72.05% with 94.79% accuracy. Our proposed algorithm achieved higher accuracy (0.9206) at the peripapillary region, where the ocular manifestations in the microvasculature due to glaucoma, central retinal vein occlusion, etc. are most obvious. This supports the proposed algorithm as a strong candidate for automated vessel segmentation.
An interactive medical image segmentation framework using iterative refinement.
Kalshetti, Pratik; Bundele, Manas; Rahangdale, Parag; Jangra, Dinesh; Chattopadhyay, Chiranjoy; Harit, Gaurav; Elhence, Abhay
2017-04-01
Segmentation is often performed on medical images for identifying diseases in clinical evaluation. Hence it has become one of the major research areas. Conventional image segmentation techniques are unable to provide satisfactory segmentation results for medical images as they contain irregularities. They need to be pre-processed before segmentation. In order to obtain the most suitable method for medical image segmentation, we propose MIST (Medical Image Segmentation Tool), a two stage algorithm. The first stage automatically generates a binary marker image of the region of interest using mathematical morphology. This marker serves as the mask image for the second stage which uses GrabCut to yield an efficient segmented result. The obtained result can be further refined by user interaction, which can be done using the proposed Graphical User Interface (GUI). Experimental results show that the proposed method is accurate and provides satisfactory segmentation results with minimum user interaction on medical as well as natural images. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Wei; Zhang, Xiaolong; Qiang, Yan; Tian, Qi; Tang, Xiaoxian
2017-01-01
The fast and accurate segmentation of lung nodule image sequences is the basis of subsequent processing and diagnostic analyses. However, previous research investigating nodule segmentation algorithms cannot entirely segment cavitary nodules, and the segmentation of juxta-vascular nodules is inaccurate and inefficient. To solve these problems, we propose a new method for the segmentation of lung nodule image sequences based on superpixels and density-based spatial clustering of applications with noise (DBSCAN). First, our method uses three-dimensional computed tomography image features of the average intensity projection combined with multi-scale dot enhancement for preprocessing. Hexagonal clustering and morphological optimized sequential linear iterative clustering (HMSLIC) for sequence image oversegmentation is then proposed to obtain superpixel blocks. The adaptive weight coefficient is then constructed to calculate the distance required between superpixels to achieve precise lung nodules positioning and to obtain the subsequent clustering starting block. Moreover, by fitting the distance and detecting the change in slope, an accurate clustering threshold is obtained. Thereafter, a fast DBSCAN superpixel sequence clustering algorithm, which is optimized by the strategy of only clustering the lung nodules and adaptive threshold, is then used to obtain lung nodule mask sequences. Finally, the lung nodule image sequences are obtained. The experimental results show that our method rapidly, completely and accurately segments various types of lung nodule image sequences. PMID:28880916
NASA Astrophysics Data System (ADS)
Wu, Kaihua; Shao, Zhencheng; Chen, Nian; Wang, Wenjie
2018-01-01
The wearing degree of the wheel set tread is one of the main factors that influence the safety and stability of running train. Geometrical parameters mainly include flange thickness and flange height. Line structure laser light was projected on the wheel tread surface. The geometrical parameters can be deduced from the profile image. An online image acquisition system was designed based on asynchronous reset of CCD and CUDA parallel processing unit. The image acquisition was fulfilled by hardware interrupt mode. A high efficiency parallel segmentation algorithm based on CUDA was proposed. The algorithm firstly divides the image into smaller squares, and extracts the squares of the target by fusion of k_means and STING clustering image segmentation algorithm. Segmentation time is less than 0.97ms. A considerable acceleration ratio compared with the CPU serial calculation was obtained, which greatly improved the real-time image processing capacity. When wheel set was running in a limited speed, the system placed alone railway line can measure the geometrical parameters automatically. The maximum measuring speed is 120km/h.
Vessel segmentation in 4D arterial spin labeling magnetic resonance angiography images of the brain
NASA Astrophysics Data System (ADS)
Phellan, Renzo; Lindner, Thomas; Falcão, Alexandre X.; Forkert, Nils D.
2017-03-01
4D arterial spin labeling magnetic resonance angiography (4D ASL MRA) is a non-invasive and safe modality for cerebrovascular imaging procedures. It uses the patient's magnetically labeled blood as intrinsic contrast agent, so that no external contrast media is required. It provides important 3D structure and blood flow information but a sufficient cerebrovascular segmentation is important since it can help clinicians to analyze and diagnose vascular diseases faster, and with higher confidence as compared to simple visual rating of raw ASL MRA images. This work presents a new method for automatic cerebrovascular segmentation in 4D ASL MRA images of the brain. In this process images are denoised, corresponding image label/control image pairs of the 4D ASL MRA sequences are subtracted, and temporal intensity averaging is used to generate a static representation of the vascular system. After that, sets of vessel and background seeds are extracted and provided as input for the image foresting transform algorithm to segment the vascular system. Four 4D ASL MRA datasets of the brain arteries of healthy subjects and corresponding time-of-flight (TOF) MRA images were available for this preliminary study. For evaluation of the segmentation results of the proposed method, the cerebrovascular system was automatically segmented in the high-resolution TOF MRA images using a validated algorithm and the segmentation results were registered to the 4D ASL datasets. Corresponding segmentation pairs were compared using the Dice similarity coefficient (DSC). On average, a DSC of 0.9025 was achieved, indicating that vessels can be extracted successfully from 4D ASL MRA datasets by the proposed segmentation method.
A new image segmentation method based on multifractal detrended moving average analysis
NASA Astrophysics Data System (ADS)
Shi, Wen; Zou, Rui-biao; Wang, Fang; Su, Le
2015-08-01
In order to segment and delineate some regions of interest in an image, we propose a novel algorithm based on the multifractal detrended moving average analysis (MF-DMA). In this method, the generalized Hurst exponent h(q) is calculated for every pixel firstly and considered as the local feature of a surface. And then a multifractal detrended moving average spectrum (MF-DMS) D(h(q)) is defined by the idea of box-counting dimension method. Therefore, we call the new image segmentation method MF-DMS-based algorithm. The performance of the MF-DMS-based method is tested by two image segmentation experiments of rapeseed leaf image of potassium deficiency and magnesium deficiency under three cases, namely, backward (θ = 0), centered (θ = 0.5) and forward (θ = 1) with different q values. The comparison experiments are conducted between the MF-DMS method and other two multifractal segmentation methods, namely, the popular MFS-based and latest MF-DFS-based methods. The results show that our MF-DMS-based method is superior to the latter two methods. The best segmentation result for the rapeseed leaf image of potassium deficiency and magnesium deficiency is from the same parameter combination of θ = 0.5 and D(h(- 10)) when using the MF-DMS-based method. An interesting finding is that the D(h(- 10)) outperforms other parameters for both the MF-DMS-based method with centered case and MF-DFS-based algorithms. By comparing the multifractal nature between nutrient deficiency and non-nutrient deficiency areas determined by the segmentation results, an important finding is that the gray value's fluctuation in nutrient deficiency area is much severer than that in non-nutrient deficiency area.
Medical image segmentation using 3D MRI data
NASA Astrophysics Data System (ADS)
Voronin, V.; Marchuk, V.; Semenishchev, E.; Cen, Yigang; Agaian, S.
2017-05-01
Precise segmentation of three-dimensional (3D) magnetic resonance imaging (MRI) image can be a very useful computer aided diagnosis (CAD) tool in clinical routines. Accurate automatic extraction a 3D component from images obtained by magnetic resonance imaging (MRI) is a challenging segmentation problem due to the small size objects of interest (e.g., blood vessels, bones) in each 2D MRA slice and complex surrounding anatomical structures. Our objective is to develop a specific segmentation scheme for accurately extracting parts of bones from MRI images. In this paper, we use a segmentation algorithm to extract the parts of bones from Magnetic Resonance Imaging (MRI) data sets based on modified active contour method. As a result, the proposed method demonstrates good accuracy in a comparison between the existing segmentation approaches on real MRI data.
VirSSPA- a virtual reality tool for surgical planning workflow.
Suárez, C; Acha, B; Serrano, C; Parra, C; Gómez, T
2009-03-01
A virtual reality tool, called VirSSPA, was developed to optimize the planning of surgical processes. Segmentation algorithms for Computed Tomography (CT) images: a region growing procedure was used for soft tissues and a thresholding algorithm was implemented to segment bones. The algorithms operate semiautomati- cally since they only need seed selection with the mouse on each tissue segmented by the user. The novelty of the paper is the adaptation of an enhancement method based on histogram thresholding applied to CT images for surgical planning, which simplifies subsequent segmentation. A substantial improvement of the virtual reality tool VirSSPA was obtained with these algorithms. VirSSPA was used to optimize surgical planning, to decrease the time spent on surgical planning and to improve operative results. The success rate increases due to surgeons being able to see the exact extent of the patient's ailment. This tool can decrease operating room time, thus resulting in reduced costs. Virtual simulation was effective for optimizing surgical planning, which could, consequently, result in improved outcomes with reduced costs.
Fast Segmentation of Stained Nuclei in Terabyte-Scale, Time Resolved 3D Microscopy Image Stacks
Stegmaier, Johannes; Otte, Jens C.; Kobitski, Andrei; Bartschat, Andreas; Garcia, Ariel; Nienhaus, G. Ulrich; Strähle, Uwe; Mikut, Ralf
2014-01-01
Automated analysis of multi-dimensional microscopy images has become an integral part of modern research in life science. Most available algorithms that provide sufficient segmentation quality, however, are infeasible for a large amount of data due to their high complexity. In this contribution we present a fast parallelized segmentation method that is especially suited for the extraction of stained nuclei from microscopy images, e.g., of developing zebrafish embryos. The idea is to transform the input image based on gradient and normal directions in the proximity of detected seed points such that it can be handled by straightforward global thresholding like Otsu’s method. We evaluate the quality of the obtained segmentation results on a set of real and simulated benchmark images in 2D and 3D and show the algorithm’s superior performance compared to other state-of-the-art algorithms. We achieve an up to ten-fold decrease in processing times, allowing us to process large data sets while still providing reasonable segmentation results. PMID:24587204
Pelet, S; Previte, M J R; Laiho, L H; So, P T C
2004-10-01
Global fitting algorithms have been shown to improve effectively the accuracy and precision of the analysis of fluorescence lifetime imaging microscopy data. Global analysis performs better than unconstrained data fitting when prior information exists, such as the spatial invariance of the lifetimes of individual fluorescent species. The highly coupled nature of global analysis often results in a significantly slower convergence of the data fitting algorithm as compared with unconstrained analysis. Convergence speed can be greatly accelerated by providing appropriate initial guesses. Realizing that the image morphology often correlates with fluorophore distribution, a global fitting algorithm has been developed to assign initial guesses throughout an image based on a segmentation analysis. This algorithm was tested on both simulated data sets and time-domain lifetime measurements. We have successfully measured fluorophore distribution in fibroblasts stained with Hoechst and calcein. This method further allows second harmonic generation from collagen and elastin autofluorescence to be differentiated in fluorescence lifetime imaging microscopy images of ex vivo human skin. On our experimental measurement, this algorithm increased convergence speed by over two orders of magnitude and achieved significantly better fits. Copyright 2004 Biophysical Society
NASA Astrophysics Data System (ADS)
Dangi, Shusil; Linte, Cristian A.
2017-03-01
Segmentation of right ventricle from cardiac MRI images can be used to build pre-operative anatomical heart models to precisely identify regions of interest during minimally invasive therapy. Furthermore, many functional parameters of right heart such as right ventricular volume, ejection fraction, myocardial mass and thickness can also be assessed from the segmented images. To obtain an accurate and computationally efficient segmentation of right ventricle from cardiac cine MRI, we propose a segmentation algorithm formulated as an energy minimization problem in a graph. Shape prior obtained by propagating label from an average atlas using affine registration is incorporated into the graph framework to overcome problems in ill-defined image regions. The optimal segmentation corresponding to the labeling with minimum energy configuration of the graph is obtained via graph-cuts and is iteratively refined to produce the final right ventricle blood pool segmentation. We quantitatively compare the segmentation results obtained from our algorithm to the provided gold-standard expert manual segmentation for 16 cine-MRI datasets available through the MICCAI 2012 Cardiac MR Right Ventricle Segmentation Challenge according to several similarity metrics, including Dice coefficient, Jaccard coefficient, Hausdorff distance, and Mean absolute distance error.
Deep learning for medical image segmentation - using the IBM TrueNorth neurosynaptic system
NASA Astrophysics Data System (ADS)
Moran, Steven; Gaonkar, Bilwaj; Whitehead, William; Wolk, Aidan; Macyszyn, Luke; Iyer, Subramanian S.
2018-03-01
Deep convolutional neural networks have found success in semantic image segmentation tasks in computer vision and medical imaging. These algorithms are executed on conventional von Neumann processor architectures or GPUs. This is suboptimal. Neuromorphic processors that replicate the structure of the brain are better-suited to train and execute deep learning models for image segmentation by relying on massively-parallel processing. However, given that they closely emulate the human brain, on-chip hardware and digital memory limitations also constrain them. Adapting deep learning models to execute image segmentation tasks on such chips, requires specialized training and validation. In this work, we demonstrate for the first-time, spinal image segmentation performed using a deep learning network implemented on neuromorphic hardware of the IBM TrueNorth Neurosynaptic System and validate the performance of our network by comparing it to human-generated segmentations of spinal vertebrae and disks. To achieve this on neuromorphic hardware, the training model constrains the coefficients of individual neurons to {-1,0,1} using the Energy Efficient Deep Neuromorphic (EEDN)1 networks training algorithm. Given the 1 million neurons and 256 million synapses, the scale and size of the neural network implemented by the IBM TrueNorth allows us to execute the requisite mapping between segmented images and non-uniform intensity MR images >20 times faster than on a GPU-accelerated network and using <0.1 W. This speed and efficiency implies that a trained neuromorphic chip can be deployed in intra-operative environments where real-time medical image segmentation is necessary.
Segmentation of the ovine lung in 3D CT Images
NASA Astrophysics Data System (ADS)
Shi, Lijun; Hoffman, Eric A.; Reinhardt, Joseph M.
2004-04-01
Pulmonary CT images can provide detailed information about the regional structure and function of the respiratory system. Prior to any of these analyses, however, the lungs must be identified in the CT data sets. A popular animal model for understanding lung physiology and pathophysiology is the sheep. In this paper we describe a lung segmentation algorithm for CT images of sheep. The algorithm has two main steps. The first step is lung extraction, which identifies the lung region using a technique based on optimal thresholding and connected components analysis. The second step is lung separation, which separates the left lung from the right lung by identifying the central fissure using an anatomy-based method incorporating dynamic programming and a line filter algorithm. The lung segmentation algorithm has been validated by comparing our automatic method to manual analysis for five pulmonary CT datasets. The RMS error between the computer-defined and manually-traced boundary is 0.96 mm. The segmentation requires approximately 10 minutes for a 512x512x400 dataset on a PC workstation (2.40 GHZ CPU, 2.0 GB RAM), while it takes human observer approximately two hours to accomplish the same task.
Awad, Joseph; Owrangi, Amir; Villemaire, Lauren; O'Riordan, Elaine; Parraga, Grace; Fenster, Aaron
2012-02-01
Manual segmentation of lung tumors is observer dependent and time-consuming but an important component of radiology and radiation oncology workflow. The objective of this study was to generate an automated lung tumor measurement tool for segmentation of pulmonary metastatic tumors from x-ray computed tomography (CT) images to improve reproducibility and decrease the time required to segment tumor boundaries. The authors developed an automated lung tumor segmentation algorithm for volumetric image analysis of chest CT images using shape constrained Otsu multithresholding (SCOMT) and sparse field active surface (SFAS) algorithms. The observer was required to select the tumor center and the SCOMT algorithm subsequently created an initial surface that was deformed using level set SFAS to minimize the total energy consisting of mean separation, edge, partial volume, rolling, distribution, background, shape, volume, smoothness, and curvature energies. The proposed segmentation algorithm was compared to manual segmentation whereby 21 tumors were evaluated using one-dimensional (1D) response evaluation criteria in solid tumors (RECIST), two-dimensional (2D) World Health Organization (WHO), and 3D volume measurements. Linear regression goodness-of-fit measures (r(2) = 0.63, p < 0.0001; r(2) = 0.87, p < 0.0001; and r(2) = 0.96, p < 0.0001), and Pearson correlation coefficients (r = 0.79, p < 0.0001; r = 0.93, p < 0.0001; and r = 0.98, p < 0.0001) for 1D, 2D, and 3D measurements, respectively, showed significant correlations between manual and algorithm results. Intra-observer intraclass correlation coefficients (ICC) demonstrated high reproducibility for algorithm (0.989-0.995, 0.996-0.997, and 0.999-0.999) and manual measurements (0.975-0.993, 0.985-0.993, and 0.980-0.992) for 1D, 2D, and 3D measurements, respectively. The intra-observer coefficient of variation (CV%) was low for algorithm (3.09%-4.67%, 4.85%-5.84%, and 5.65%-5.88%) and manual observers (4.20%-6.61%, 8.14%-9.57%, and 14.57%-21.61%) for 1D, 2D, and 3D measurements, respectively. The authors developed an automated segmentation algorithm requiring only that the operator select the tumor to measure pulmonary metastatic tumors in 1D, 2D, and 3D. Algorithm and manual measurements were significantly correlated. Since the algorithm segmentation involves selection of a single seed point, it resulted in reduced intra-observer variability and decreased time, for making the measurements.
A new level set model for cell image segmentation
NASA Astrophysics Data System (ADS)
Ma, Jing-Feng; Hou, Kai; Bao, Shang-Lian; Chen, Chun
2011-02-01
In this paper we first determine three phases of cell images: background, cytoplasm and nucleolus according to the general physical characteristics of cell images, and then develop a variational model, based on these characteristics, to segment nucleolus and cytoplasm from their relatively complicated backgrounds. In the meantime, the preprocessing obtained information of cell images using the OTSU algorithm is used to initialize the level set function in the model, which can speed up the segmentation and present satisfactory results in cell image processing.
Zhu, Fei; Liu, Quan; Fu, Yuchen; Shen, Bairong
2014-01-01
The segmentation of structures in electron microscopy (EM) images is very important for neurobiological research. The low resolution neuronal EM images contain noise and generally few features are available for segmentation, therefore application of the conventional approaches to identify the neuron structure from EM images is not successful. We therefore present a multi-scale fused structure boundary detection algorithm in this study. In the algorithm, we generate an EM image Gaussian pyramid first, then at each level of the pyramid, we utilize Laplacian of Gaussian function (LoG) to attain structure boundary, we finally assemble the detected boundaries by using fusion algorithm to attain a combined neuron structure image. Since the obtained neuron structures usually have gaps, we put forward a reinforcement learning-based boundary amendment method to connect the gaps in the detected boundaries. We use a SARSA (λ)-based curve traveling and amendment approach derived from reinforcement learning to repair the incomplete curves. Using this algorithm, a moving point starts from one end of the incomplete curve and walks through the image where the decisions are supervised by the approximated curve model, with the aim of minimizing the connection cost until the gap is closed. Our approach provided stable and efficient structure segmentation. The test results using 30 EM images from ISBI 2012 indicated that both of our approaches, i.e., with or without boundary amendment, performed better than six conventional boundary detection approaches. In particular, after amendment, the Rand error and warping error, which are the most important performance measurements during structure segmentation, were reduced to very low values. The comparison with the benchmark method of ISBI 2012 and the recent developed methods also indicates that our method performs better for the accurate identification of substructures in EM images and therefore useful for the identification of imaging features related to brain diseases.
Zhu, Fei; Liu, Quan; Fu, Yuchen; Shen, Bairong
2014-01-01
The segmentation of structures in electron microscopy (EM) images is very important for neurobiological research. The low resolution neuronal EM images contain noise and generally few features are available for segmentation, therefore application of the conventional approaches to identify the neuron structure from EM images is not successful. We therefore present a multi-scale fused structure boundary detection algorithm in this study. In the algorithm, we generate an EM image Gaussian pyramid first, then at each level of the pyramid, we utilize Laplacian of Gaussian function (LoG) to attain structure boundary, we finally assemble the detected boundaries by using fusion algorithm to attain a combined neuron structure image. Since the obtained neuron structures usually have gaps, we put forward a reinforcement learning-based boundary amendment method to connect the gaps in the detected boundaries. We use a SARSA (λ)-based curve traveling and amendment approach derived from reinforcement learning to repair the incomplete curves. Using this algorithm, a moving point starts from one end of the incomplete curve and walks through the image where the decisions are supervised by the approximated curve model, with the aim of minimizing the connection cost until the gap is closed. Our approach provided stable and efficient structure segmentation. The test results using 30 EM images from ISBI 2012 indicated that both of our approaches, i.e., with or without boundary amendment, performed better than six conventional boundary detection approaches. In particular, after amendment, the Rand error and warping error, which are the most important performance measurements during structure segmentation, were reduced to very low values. The comparison with the benchmark method of ISBI 2012 and the recent developed methods also indicates that our method performs better for the accurate identification of substructures in EM images and therefore useful for the identification of imaging features related to brain diseases. PMID:24625699
An automated skin segmentation of Breasts in Dynamic Contrast-Enhanced Magnetic Resonance Imaging.
Lee, Chia-Yen; Chang, Tzu-Fang; Chang, Nai-Yun; Chang, Yeun-Chung
2018-04-18
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is used to diagnose breast disease. Obtaining anatomical information from DCE-MRI requires the skin be manually removed so that blood vessels and tumors can be clearly observed by physicians and radiologists; this requires considerable manpower and time. We develop an automated skin segmentation algorithm where the surface skin is removed rapidly and correctly. The rough skin area is segmented by the active contour model, and analyzed in segments according to the continuity of the skin thickness for accuracy. Blood vessels and mammary glands are retained, which remedies the defect of removing some blood vessels in active contours. After three-dimensional imaging, the DCE-MRIs without the skin can be used to see internal anatomical information for clinical applications. The research showed the Dice's coefficients of the 3D reconstructed images using the proposed algorithm and the active contour model for removing skins are 93.2% and 61.4%, respectively. The time performance of segmenting skins automatically is about 165 times faster than manually. The texture information of the tumors position with/without the skin is compared by the paired t-test yielded all p < 0.05, which suggested the proposed algorithm may enhance observability of tumors at the significance level of 0.05.
Massively Multithreaded Maxflow for Image Segmentation on the Cray XMT-2
Bokhari, Shahid H.; Çatalyürek, Ümit V.; Gurcan, Metin N.
2014-01-01
SUMMARY Image segmentation is a very important step in the computerized analysis of digital images. The maxflow mincut approach has been successfully used to obtain minimum energy segmentations of images in many fields. Classical algorithms for maxflow in networks do not directly lend themselves to efficient parallel implementations on contemporary parallel processors. We present the results of an implementation of Goldberg-Tarjan preflow-push algorithm on the Cray XMT-2 massively multithreaded supercomputer. This machine has hardware support for 128 threads in each physical processor, a uniformly accessible shared memory of up to 4 TB and hardware synchronization for each 64 bit word. It is thus well-suited to the parallelization of graph theoretic algorithms, such as preflow-push. We describe the implementation of the preflow-push code on the XMT-2 and present the results of timing experiments on a series of synthetically generated as well as real images. Our results indicate very good performance on large images and pave the way for practical applications of this machine architecture for image analysis in a production setting. The largest images we have run are 320002 pixels in size, which are well beyond the largest previously reported in the literature. PMID:25598745
Hybrid Pixel-Based Method for Cardiac Ultrasound Fusion Based on Integration of PCA and DWT
Sulaiman, Puteri Suhaiza; Wirza, Rahmita; Dimon, Mohd Zamrin; Khalid, Fatimah; Moosavi Tayebi, Rohollah
2015-01-01
Medical image fusion is the procedure of combining several images from one or multiple imaging modalities. In spite of numerous attempts in direction of automation ventricle segmentation and tracking in echocardiography, due to low quality images with missing anatomical details or speckle noises and restricted field of view, this problem is a challenging task. This paper presents a fusion method which particularly intends to increase the segment-ability of echocardiography features such as endocardial and improving the image contrast. In addition, it tries to expand the field of view, decreasing impact of noise and artifacts and enhancing the signal to noise ratio of the echo images. The proposed algorithm weights the image information regarding an integration feature between all the overlapping images, by using a combination of principal component analysis and discrete wavelet transform. For evaluation, a comparison has been done between results of some well-known techniques and the proposed method. Also, different metrics are implemented to evaluate the performance of proposed algorithm. It has been concluded that the presented pixel-based method based on the integration of PCA and DWT has the best result for the segment-ability of cardiac ultrasound images and better performance in all metrics. PMID:26089965
Crowdsourcing the creation of image segmentation algorithms for connectomics.
Arganda-Carreras, Ignacio; Turaga, Srinivas C; Berger, Daniel R; Cireşan, Dan; Giusti, Alessandro; Gambardella, Luca M; Schmidhuber, Jürgen; Laptev, Dmitry; Dwivedi, Sarvesh; Buhmann, Joachim M; Liu, Ting; Seyedhosseini, Mojtaba; Tasdizen, Tolga; Kamentsky, Lee; Burget, Radim; Uher, Vaclav; Tan, Xiao; Sun, Changming; Pham, Tuan D; Bas, Erhan; Uzunbas, Mustafa G; Cardona, Albert; Schindelin, Johannes; Seung, H Sebastian
2015-01-01
To stimulate progress in automating the reconstruction of neural circuits, we organized the first international challenge on 2D segmentation of electron microscopic (EM) images of the brain. Participants submitted boundary maps predicted for a test set of images, and were scored based on their agreement with a consensus of human expert annotations. The winning team had no prior experience with EM images, and employed a convolutional network. This "deep learning" approach has since become accepted as a standard for segmentation of EM images. The challenge has continued to accept submissions, and the best so far has resulted from cooperation between two teams. The challenge has probably saturated, as algorithms cannot progress beyond limits set by ambiguities inherent in 2D scoring and the size of the test dataset. Retrospective evaluation of the challenge scoring system reveals that it was not sufficiently robust to variations in the widths of neurite borders. We propose a solution to this problem, which should be useful for a future 3D segmentation challenge.
Schmidt, Taly Gilat; Wang, Adam S; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh
2016-10-01
The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the expert segmentation for regions other than the spinal canal, with the median error for each organ region below 2%. In the spinal canal region, the median error was [Formula: see text], with a maximum absolute error of 28% for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors.
Schmidt, Taly Gilat; Wang, Adam S.; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh
2016-01-01
Abstract. The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine regions. Mean organ doses of the automatically and expertly segmented regions were computed from Monte Carlo-generated dose maps and compared. The automated segmentation algorithm estimated the mean organ dose to be within 10% of the expert segmentation for regions other than the spinal canal, with the median error for each organ region below 2%. In the spinal canal region, the median error was −7%, with a maximum absolute error of 28% for the single-atlas approach and 11% for the multiatlas approach. The results demonstrate that the automated segmentation algorithm can provide accurate organ dose estimates despite some segmentation errors. PMID:27921070
Rigid shape matching by segmentation averaging.
Wang, Hongzhi; Oliensis, John
2010-04-01
We use segmentations to match images by shape. The new matching technique does not require point-to-point edge correspondence and is robust to small shape variations and spatial shifts. To address the unreliability of segmentations computed bottom-up, we give a closed form approximation to an average over all segmentations. Our method has many extensions, yielding new algorithms for tracking, object detection, segmentation, and edge-preserving smoothing. For segmentation, instead of a maximum a posteriori approach, we compute the "central" segmentation minimizing the average distance to all segmentations of an image. For smoothing, instead of smoothing images based on local structures, we smooth based on the global optimal image structures. Our methods for segmentation, smoothing, and object detection perform competitively, and we also show promising results in shape-based tracking.
Label fusion based brain MR image segmentation via a latent selective model
NASA Astrophysics Data System (ADS)
Liu, Gang; Guo, Xiantang; Zhu, Kai; Liao, Hengxu
2018-04-01
Multi-atlas segmentation is an effective approach and increasingly popular for automatically labeling objects of interest in medical images. Recently, segmentation methods based on generative models and patch-based techniques have become the two principal branches of label fusion. However, these generative models and patch-based techniques are only loosely related, and the requirement for higher accuracy, faster segmentation, and robustness is always a great challenge. In this paper, we propose novel algorithm that combines the two branches using global weighted fusion strategy based on a patch latent selective model to perform segmentation of specific anatomical structures for human brain magnetic resonance (MR) images. In establishing this probabilistic model of label fusion between the target patch and patch dictionary, we explored the Kronecker delta function in the label prior, which is more suitable than other models, and designed a latent selective model as a membership prior to determine from which training patch the intensity and label of the target patch are generated at each spatial location. Because the image background is an equally important factor for segmentation, it is analyzed in label fusion procedure and we regard it as an isolated label to keep the same privilege between the background and the regions of interest. During label fusion with the global weighted fusion scheme, we use Bayesian inference and expectation maximization algorithm to estimate the labels of the target scan to produce the segmentation map. Experimental results indicate that the proposed algorithm is more accurate and robust than the other segmentation methods.
Identifying Degenerative Brain Disease Using Rough Set Classifier Based on Wavelet Packet Method.
Cheng, Ching-Hsue; Liu, Wei-Xiang
2018-05-28
Population aging has become a worldwide phenomenon, which causes many serious problems. The medical issues related to degenerative brain disease have gradually become a concern. Magnetic Resonance Imaging is one of the most advanced methods for medical imaging and is especially suitable for brain scans. From the literature, although the automatic segmentation method is less laborious and time-consuming, it is restricted in several specific types of images. In addition, hybrid techniques segmentation improves the shortcomings of the single segmentation method. Therefore, this study proposed a hybrid segmentation combined with rough set classifier and wavelet packet method to identify degenerative brain disease. The proposed method is a three-stage image process method to enhance accuracy of brain disease classification. In the first stage, this study used the proposed hybrid segmentation algorithms to segment the brain ROI (region of interest). In the second stage, wavelet packet was used to conduct the image decomposition and calculate the feature values. In the final stage, the rough set classifier was utilized to identify the degenerative brain disease. In verification and comparison, two experiments were employed to verify the effectiveness of the proposed method and compare with the TV-seg (total variation segmentation) algorithm, Discrete Cosine Transform, and the listing classifiers. Overall, the results indicated that the proposed method outperforms the listing methods.
Storelli, L; Pagani, E; Rocca, M A; Horsfield, M A; Gallo, A; Bisecco, A; Battaglini, M; De Stefano, N; Vrenken, H; Thomas, D L; Mancini, L; Ropele, S; Enzinger, C; Preziosa, P; Filippi, M
2016-07-21
The automatic segmentation of MS lesions could reduce time required for image processing together with inter- and intraoperator variability for research and clinical trials. A multicenter validation of a proposed semiautomatic method for hyperintense MS lesion segmentation on dual-echo MR imaging is presented. The classification technique used is based on a region-growing approach starting from manual lesion identification by an expert observer with a final segmentation-refinement step. The method was validated in a cohort of 52 patients with relapsing-remitting MS, with dual-echo images acquired in 6 different European centers. We found a mathematic expression that made the optimization of the method independent of the need for a training dataset. The automatic segmentation was in good agreement with the manual segmentation (dice similarity coefficient = 0.62 and root mean square error = 2 mL). Assessment of the segmentation errors showed no significant differences in algorithm performance between the different MR scanner manufacturers (P > .05). The method proved to be robust, and no center-specific training of the algorithm was required, offering the possibility for application in a clinical setting. Adoption of the method should lead to improved reliability and less operator time required for image analysis in research and clinical trials in MS. © 2016 American Society of Neuroradiology.
Deformable templates guided discriminative models for robust 3D brain MRI segmentation.
Liu, Cheng-Yi; Iglesias, Juan Eugenio; Tu, Zhuowen
2013-10-01
Automatically segmenting anatomical structures from 3D brain MRI images is an important task in neuroimaging. One major challenge is to design and learn effective image models accounting for the large variability in anatomy and data acquisition protocols. A deformable template is a type of generative model that attempts to explicitly match an input image with a template (atlas), and thus, they are robust against global intensity changes. On the other hand, discriminative models combine local image features to capture complex image patterns. In this paper, we propose a robust brain image segmentation algorithm that fuses together deformable templates and informative features. It takes advantage of the adaptation capability of the generative model and the classification power of the discriminative models. The proposed algorithm achieves both robustness and efficiency, and can be used to segment brain MRI images with large anatomical variations. We perform an extensive experimental study on four datasets of T1-weighted brain MRI data from different sources (1,082 MRI scans in total) and observe consistent improvement over the state-of-the-art systems.
NASA Astrophysics Data System (ADS)
Diaz, Kristians; Castaneda, Benjamin
2008-03-01
This paper presents a semi-automated algorithm for prostate boundary segmentation from three-dimensional (3D) ultrasound (US) images. The US volume is sampled into 72 slices which go through the center of the prostate gland and are separated at a uniform angular spacing of 2.5 degrees. The approach requires the user to select four points from slices (at 0, 45, 90 and 135 degrees) which are used to initialize a discrete dynamic contour (DDC) algorithm. 4 Support Vector Machines (SVMs) are trained over the output of the DDC and classify the rest of the slices. The output of the SVMs is refined using binary morphological operations and DDC to produce the final result. The algorithm was tested on seven ex vivo 3D US images of prostate glands embedded in an agar mold. Results show good agreement with manual segmentation.
NASA Astrophysics Data System (ADS)
Maass, Bolko
2016-12-01
This paper describes an efficient and easily implemented algorithmic approach to extracting an approximation to an image's dominant projected illumination direction, based on intermediary results from a segmentation-based crater detection algorithm (CDA), at a computational cost that is negligible in comparison to that of the prior stages of the CDA. Most contemporary CDAs built for spacecraft navigation use this illumination direction as a means of improving performance or even require it to function at all. Deducing the illumination vector from the image alone reduces the reliance on external information such as the accurate knowledge of the spacecraft inertial state, accurate time base and solar system ephemerides. Therefore, a method such as the one described in this paper is a prerequisite for true "Lost in Space" operation of a purely segmentation-based crater detecting and matching method for spacecraft navigation. The proposed method is verified using ray-traced lunar elevation model data, asteroid image data, and in a laboratory setting with a camera in the loop.
A state-of-the-art review on segmentation algorithms in intravascular ultrasound (IVUS) images.
Katouzian, Amin; Angelini, Elsa D; Carlier, Stéphane G; Suri, Jasjit S; Navab, Nassir; Laine, Andrew F
2012-09-01
Over the past two decades, intravascular ultrasound (IVUS) image segmentation has remained a challenge for researchers while the use of this imaging modality is rapidly growing in catheterization procedures and in research studies. IVUS provides cross-sectional grayscale images of the arterial wall and the extent of atherosclerotic plaques with high spatial resolution in real time. In this paper, we review recently developed image processing methods for the detection of media-adventitia and luminal borders in IVUS images acquired with different transducers operating at frequencies ranging from 20 to 45 MHz. We discuss methodological challenges, lack of diversity in reported datasets, and weaknesses of quantification metrics that make IVUS segmentation still an open problem despite all efforts. In conclusion, we call for a common reference database, validation metrics, and ground-truth definition with which new and existing algorithms could be benchmarked.
Vessel network detection using contour evolution and color components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ushizima, Daniela; Medeiros, Fatima; Cuadros, Jorge
2011-06-22
Automated retinal screening relies on vasculature segmentation before the identification of other anatomical structures of the retina. Vasculature extraction can also be input to image quality ranking, neovascularization detection and image registration, among other applications. There is an extensive literature related to this problem, often excluding the inherent heterogeneity of ophthalmic clinical images. The contribution of this paper relies on an algorithm using front propagation to segment the vessel network. The algorithm includes a penalty in the wait queue on the fast marching heap to minimize leakage of the evolving interface. The method requires no manual labeling, a minimum numbermore » of parameters and it is capable of segmenting color ocular fundus images in real scenarios, where multi-ethnicity and brightness variations are parts of the problem.« less
Automatic extraction of via in the CT image of PCB
NASA Astrophysics Data System (ADS)
Liu, Xifeng; Hu, Yuwei
2018-04-01
In modern industry, the nondestructive testing of printed circuit board (PCB) can prevent effectively the system failure and is becoming more and more important. In order to detect the via in the PCB base on the CT image automatically accurately and reliably, a novel algorithm for via extraction based on weighting stack combining the morphologic character of via is designed. Every slice data in the vertical direction of the PCB is superimposed to enhanced vias target. The OTSU algorithm is used to segment the slice image. OTSU algorithm of thresholding gray level images is efficient for separating an image into two classes where two types of fairly distinct classes exist in the image. Randomized Hough Transform was used to locate the region of via in the segmented binary image. Then the 3D reconstruction of via based on sequence slice images was done by volume rendering. The accuracy of via positioning and detecting from a CT images of PCB was demonstrated by proposed algorithm. It was found that the method is good in veracity and stability for detecting of via in three dimensional.
NASA Astrophysics Data System (ADS)
Mathavan, Senthan; Kumar, Akash; Kamal, Khurram; Nieminen, Michael; Shah, Hitesh; Rahman, Mujib
2016-09-01
Thousands of pavement images are collected by road authorities daily for condition monitoring surveys. These images typically have intensity variations and texture nonuniformities that make their segmentation challenging. The automated segmentation of such pavement images is crucial for accurate, thorough, and expedited health monitoring of roads. In the pavement monitoring area, well-known texture descriptors, such as gray-level co-occurrence matrices and local binary patterns, are often used for surface segmentation and identification. These, despite being the established methods for texture discrimination, are inherently slow. This work evaluates Laws texture energy measures as a viable alternative for pavement images for the first time. k-means clustering is used to partition the feature space, limiting the human subjectivity in the process. Data classification, hence image segmentation, is performed by the k-nearest neighbor method. Laws texture energy masks are shown to perform well with resulting accuracy and precision values of more than 80%. The implementations of the algorithm, in both MATLAB® and OpenCV/C++, are extensively compared against the state of the art for execution speed, clearly showing the advantages of the proposed method. Furthermore, the OpenCV-based segmentation shows a 100% increase in processing speed when compared to the fastest algorithm available in literature.
NASA Astrophysics Data System (ADS)
Jiang, Feng; Gu, Qing; Hao, Huizhen; Li, Na; Wang, Bingqian; Hu, Xiumian
2018-06-01
Automatic grain segmentation of sandstone is to partition mineral grains into separate regions in the thin section, which is the first step for computer aided mineral identification and sandstone classification. The sandstone microscopic images contain a large number of mixed mineral grains where differences among adjacent grains, i.e., quartz, feldspar and lithic grains, are usually ambiguous, which make grain segmentation difficult. In this paper, we take advantage of multi-angle cross-polarized microscopic images and propose a method for grain segmentation with high accuracy. The method consists of two stages, in the first stage, we enhance the SLIC (Simple Linear Iterative Clustering) algorithm, named MSLIC, to make use of multi-angle images and segment the images as boundary adherent superpixels. In the second stage, we propose the region merging technique which combines the coarse merging and fine merging algorithms. The coarse merging merges the adjacent superpixels with less evident boundaries, and the fine merging merges the ambiguous superpixels using the spatial enhanced fuzzy clustering. Experiments are designed on 9 sets of multi-angle cross-polarized images taken from the three major types of sandstones. The results demonstrate both the effectiveness and potential of the proposed method, comparing to the available segmentation methods.
Ross, James C; San José Estépar, Rail; Kindlmann, Gordon; Díaz, Alejandro; Westin, Carl-Fredrik; Silverman, Edwin K; Washko, George R
2010-01-01
We present a fully automatic lung lobe segmentation algorithm that is effective in high resolution computed tomography (CT) datasets in the presence of confounding factors such as incomplete fissures (anatomical structures indicating lobe boundaries), advanced disease states, high body mass index (BMI), and low-dose scanning protocols. In contrast to other algorithms that leverage segmentations of auxiliary structures (esp. vessels and airways), we rely only upon image features indicating fissure locations. We employ a particle system that samples the image domain and provides a set of candidate fissure locations. We follow this stage with maximum a posteriori (MAP) estimation to eliminate poor candidates and then perform a post-processing operation to remove remaining noise particles. We then fit a thin plate spline (TPS) interpolating surface to the fissure particles to form the final lung lobe segmentation. Results indicate that our algorithm performs comparably to pulmonologist-generated lung lobe segmentations on a set of challenging cases.
Ross, James C.; Estépar, Raúl San José; Kindlmann, Gordon; Díaz, Alejandro; Westin, Carl-Fredrik; Silverman, Edwin K.; Washko, George R.
2011-01-01
We present a fully automatic lung lobe segmentation algorithm that is effective in high resolution computed tomography (CT) datasets in the presence of confounding factors such as incomplete fissures (anatomical structures indicating lobe boundaries), advanced disease states, high body mass index (BMI), and low-dose scanning protocols. In contrast to other algorithms that leverage segmentations of auxiliary structures (esp. vessels and airways), we rely only upon image features indicating fissure locations. We employ a particle system that samples the image domain and provides a set of candidate fissure locations. We follow this stage with maximum a posteriori (MAP) estimation to eliminate poor candidates and then perform a post-processing operation to remove remaining noise particles. We then fit a thin plate spline (TPS) interpolating surface to the fissure particles to form the final lung lobe segmentation. Results indicate that our algorithm performs comparably to pulmonologist-generated lung lobe segmentations on a set of challenging cases. PMID:20879396
Nyholm, Tufve; Svensson, Stina; Andersson, Sebastian; Jonsson, Joakim; Sohlin, Maja; Gustafsson, Christian; Kjellén, Elisabeth; Söderström, Karin; Albertsson, Per; Blomqvist, Lennart; Zackrisson, Björn; Olsson, Lars E; Gunnlaugsson, Adalsteinn
2018-03-01
We describe a public dataset with MR and CT images of patients performed in the same position with both multiobserver and expert consensus delineations of relevant organs in the male pelvic region. The purpose was to provide means for training and validation of segmentation algorithms and methods to convert MR to CT like data, i.e., so called synthetic CT (sCT). T1- and T2-weighted MR images as well as CT data were collected for 19 patients at three different departments. Five experts delineated nine organs for each patient based on the T2-weighted MR images. An automatic method was used to fuse the delineations. Starting from each fused delineation, a consensus delineation was agreed upon by the five experts for each organ and patient. Segmentation overlap between user delineations with respect to the consensus delineations was measured to describe the spread of the collected data. Finally, an open-source software was used to create deformation vector fields describing the relation between MR and CT images to further increase the usability of the dataset. The dataset has been made publically available to be used for academic purposes, and can be accessed from https://zenodo.org/record/583096. The dataset provides a useful source for training and validation of segmentation algorithms as well as methods to convert MR to CT-like data (sCT). To give some examples: The T2-weighted MR images with their consensus delineations can directly be used as a template in an existing atlas-based segmentation engine; the expert delineations are useful to validate the performance of a segmentation algorithm as they provide a way to measure variability among users which can be compared with the result of an automatic segmentation; and the pairwise deformably registered MR and CT images can be a source for an atlas-based sCT algorithm or for validation of sCT algorithm. © 2018 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Geodesic Distance Algorithm for Extracting the Ascending Aorta from 3D CT Images
Jang, Yeonggul; Jung, Ho Yub; Hong, Youngtaek; Cho, Iksung; Shim, Hackjoon; Chang, Hyuk-Jae
2016-01-01
This paper presents a method for the automatic 3D segmentation of the ascending aorta from coronary computed tomography angiography (CCTA). The segmentation is performed in three steps. First, the initial seed points are selected by minimizing a newly proposed energy function across the Hough circles. Second, the ascending aorta is segmented by geodesic distance transformation. Third, the seed points are effectively transferred through the next axial slice by a novel transfer function. Experiments are performed using a database composed of 10 patients' CCTA images. For the experiment, the ground truths are annotated manually on the axial image slices by a medical expert. A comparative evaluation with state-of-the-art commercial aorta segmentation algorithms shows that our approach is computationally more efficient and accurate under the DSC (Dice Similarity Coefficient) measurements. PMID:26904151
Color transfer algorithm in medical images
NASA Astrophysics Data System (ADS)
Wang, Weihong; Xu, Yangfa
2007-12-01
In digital virtual human project, image data acquires from the freezing slice of human body specimen. The color and brightness between a group of images of a certain organ could be quite different. The quality of these images could bring great difficulty in edge extraction, segmentation, as well as 3D reconstruction process. Thus it is necessary to unify the color of the images. The color transfer algorithm is a good algorithm to deal with this kind of problem. This paper introduces the principle of this algorithm and uses it in the medical image processing.
Almasi, Sepideh; Ben-Zvi, Ayal; Lacoste, Baptiste; Gu, Chenghua; Miller, Eric L; Xu, Xiaoyin
2017-03-01
To simultaneously overcome the challenges imposed by the nature of optical imaging characterized by a range of artifacts including space-varying signal to noise ratio (SNR), scattered light, and non-uniform illumination, we developed a novel method that segments the 3-D vasculature directly from original fluorescence microscopy images eliminating the need for employing pre- and post-processing steps such as noise removal and segmentation refinement as used with the majority of segmentation techniques. Our method comprises two initialization and constrained recovery and enhancement stages. The initialization approach is fully automated using features derived from bi-scale statistical measures and produces seed points robust to non-uniform illumination, low SNR, and local structural variations. This algorithm achieves the goal of segmentation via design of an iterative approach that extracts the structure through voting of feature vectors formed by distance, local intensity gradient, and median measures. Qualitative and quantitative analysis of the experimental results obtained from synthetic and real data prove the effcacy of this method in comparison to the state-of-the-art enhancing-segmenting methods. The algorithmic simplicity, freedom from having a priori probabilistic information about the noise, and structural definition gives this algorithm a wide potential range of applications where i.e. structural complexity significantly complicates the segmentation problem.
Wang, Qian; Song, Enmin; Jin, Renchao; Han, Ping; Wang, Xiaotong; Zhou, Yanying; Zeng, Jianchao
2009-06-01
The aim of this study was to develop a novel algorithm for segmenting lung nodules on three-dimensional (3D) computed tomographic images to improve the performance of computer-aided diagnosis (CAD) systems. The database used in this study consists of two data sets obtained from the Lung Imaging Database Consortium. The first data set, containing 23 nodules (22% irregular nodules, 13% nonsolid nodules, 17% nodules attached to other structures), was used for training. The second data set, containing 64 nodules (37% irregular nodules, 40% nonsolid nodules, 62% nodules attached to other structures), was used for testing. Two key techniques were developed in the segmentation algorithm: (1) a 3D extended dynamic programming model, with a newly defined internal cost function based on the information between adjacent slices, allowing parameters to be adapted to each slice, and (2) a multidirection fusion technique, which makes use of the complementary relationships among different directions to improve the final segmentation accuracy. The performance of this approach was evaluated by the overlap criterion, complemented by the true-positive fraction and the false-positive fraction criteria. The mean values of the overlap, true-positive fraction, and false-positive fraction for the first data set achieved using the segmentation scheme were 66%, 75%, and 15%, respectively, and the corresponding values for the second data set were 58%, 71%, and 22%, respectively. The experimental results indicate that this segmentation scheme can achieve better performance for nodule segmentation than two existing algorithms reported in the literature. The proposed 3D extended dynamic programming model is an effective way to segment sequential images of lung nodules. The proposed multidirection fusion technique is capable of reducing segmentation errors especially for no-nodule and near-end slices, thus resulting in better overall performance.
Segmentation of bone structures in 3D CT images based on continuous max-flow optimization
NASA Astrophysics Data System (ADS)
Pérez-Carrasco, J. A.; Acha-Piñero, B.; Serrano, C.
2015-03-01
In this paper an algorithm to carry out the automatic segmentation of bone structures in 3D CT images has been implemented. Automatic segmentation of bone structures is of special interest for radiologists and surgeons to analyze bone diseases or to plan some surgical interventions. This task is very complicated as bones usually present intensities overlapping with those of surrounding tissues. This overlapping is mainly due to the composition of bones and to the presence of some diseases such as Osteoarthritis, Osteoporosis, etc. Moreover, segmentation of bone structures is a very time-consuming task due to the 3D essence of the bones. Usually, this segmentation is implemented manually or with algorithms using simple techniques such as thresholding and thus providing bad results. In this paper gray information and 3D statistical information have been combined to be used as input to a continuous max-flow algorithm. Twenty CT images have been tested and different coefficients have been computed to assess the performance of our implementation. Dice and Sensitivity values above 0.91 and 0.97 respectively were obtained. A comparison with Level Sets and thresholding techniques has been carried out and our results outperformed them in terms of accuracy.
Optimizing the 3D-reconstruction technique for serial block-face scanning electron microscopy.
Wernitznig, Stefan; Sele, Mariella; Urschler, Martin; Zankel, Armin; Pölt, Peter; Rind, F Claire; Leitinger, Gerd
2016-05-01
Elucidating the anatomy of neuronal circuits and localizing the synaptic connections between neurons, can give us important insights in how the neuronal circuits work. We are using serial block-face scanning electron microscopy (SBEM) to investigate the anatomy of a collision detection circuit including the Lobula Giant Movement Detector (LGMD) neuron in the locust, Locusta migratoria. For this, thousands of serial electron micrographs are produced that allow us to trace the neuronal branching pattern. The reconstruction of neurons was previously done manually by drawing cell outlines of each cell in each image separately. This approach was very time consuming and troublesome. To make the process more efficient a new interactive software was developed. It uses the contrast between the neuron under investigation and its surrounding for semi-automatic segmentation. For segmentation the user sets starting regions manually and the algorithm automatically selects a volume within the neuron until the edges corresponding to the neuronal outline are reached. Internally the algorithm optimizes a 3D active contour segmentation model formulated as a cost function taking the SEM image edges into account. This reduced the reconstruction time, while staying close to the manual reference segmentation result. Our algorithm is easy to use for a fast segmentation process, unlike previous methods it does not require image training nor an extended computing capacity. Our semi-automatic segmentation algorithm led to a dramatic reduction in processing time for the 3D-reconstruction of identified neurons. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Othman, Khairulnizam; Ahmad, Afandi
2016-11-01
In this research we explore the application of normalize denoted new techniques in advance fast c-mean in to the problem of finding the segment of different breast tissue regions in mammograms. The goal of the segmentation algorithm is to see if new denotes fuzzy c- mean algorithm could separate different densities for the different breast patterns. The new density segmentation is applied with multi-selection of seeds label to provide the hard constraint, whereas the seeds labels are selected based on user defined. New denotes fuzzy c- mean have been explored on images of various imaging modalities but not on huge format digital mammograms just yet. Therefore, this project is mainly focused on using normalize denoted new techniques employed in fuzzy c-mean to perform segmentation to increase visibility of different breast densities in mammography images. Segmentation of the mammogram into different mammographic densities is useful for risk assessment and quantitative evaluation of density changes. Our proposed methodology for the segmentation of mammograms on the basis of their region into different densities based categories has been tested on MIAS database and Trueta Database.
Sivakamasundari, J; Natarajan, V
2015-01-01
Diabetic Retinopathy (DR) is a disorder that affects the structure of retinal blood vessels due to long-standing diabetes mellitus. Automated segmentation of blood vessel is vital for periodic screening and timely diagnosis. An attempt has been made to generate continuous retinal vasculature for the design of Content Based Image Retrieval (CBIR) application. The typical normal and abnormal retinal images are preprocessed to improve the vessel contrast. The blood vessels are segmented using evolutionary based Harmony Search Algorithm (HSA) combined with Otsu Multilevel Thresholding (MLT) method by best objective functions. The segmentation results are validated with corresponding ground truth images using binary similarity measures. The statistical, textural and structural features are obtained from the segmented images of normal and DR affected retina and are analyzed. CBIR in medical image retrieval applications are used to assist physicians in clinical decision-support techniques and research fields. A CBIR system is developed using HSA based Otsu MLT segmentation technique and the features obtained from the segmented images. Similarity matching is carried out between the features of query and database images using Euclidean Distance measure. Similar images are ranked and retrieved. The retrieval performance of CBIR system is evaluated in terms of precision and recall. The CBIR systems developed using HSA based Otsu MLT and conventional Otsu MLT methods are compared. The retrieval performance such as precision and recall are found to be 96% and 58% for CBIR system using HSA based Otsu MLT segmentation. This automated CBIR system could be recommended for use in computer assisted diagnosis for diabetic retinopathy screening.
Exploiting spectral content for image segmentation in GPR data
NASA Astrophysics Data System (ADS)
Wang, Patrick K.; Morton, Kenneth D., Jr.; Collins, Leslie M.; Torrione, Peter A.
2011-06-01
Ground-penetrating radar (GPR) sensors provide an effective means for detecting changes in the sub-surface electrical properties of soils, such as changes indicative of landmines or other buried threats. However, most GPR-based pre-screening algorithms only localize target responses along the surface of the earth, and do not provide information regarding an object's position in depth. As a result, feature extraction algorithms are forced to process data from entire cubes of data around pre-screener alarms, which can reduce feature fidelity and hamper performance. In this work, spectral analysis is investigated as a method for locating subsurface anomalies in GPR data. In particular, a 2-D spatial/frequency decomposition is applied to pre-screener flagged GPR B-scans. Analysis of these spatial/frequency regions suggests that aspects (e.g. moments, maxima, mode) of the frequency distribution of GPR energy can be indicative of the presence of target responses. After translating a GPR image to a function of the spatial/frequency distributions at each pixel, several image segmentation approaches can be applied to perform segmentation in this new transformed feature space. To illustrate the efficacy of the approach, a performance comparison between feature processing with and without the image segmentation algorithm is provided.
A spectral k-means approach to bright-field cell image segmentation.
Bradbury, Laura; Wan, Justin W L
2010-01-01
Automatic segmentation of bright-field cell images is important to cell biologists, but difficult to complete due to the complex nature of the cells in bright-field images (poor contrast, broken halo, missing boundaries). Standard approaches such as level set segmentation and active contours work well for fluorescent images where cells appear as round shape, but become less effective when optical artifacts such as halo exist in bright-field images. In this paper, we present a robust segmentation method which combines the spectral and k-means clustering techniques to locate cells in bright-field images. This approach models an image as a matrix graph and segment different regions of the image by computing the appropriate eigenvectors of the matrix graph and using the k-means algorithm. We illustrate the effectiveness of the method by segmentation results of C2C12 (muscle) cells in bright-field images.
Multi-atlas segmentation for abdominal organs with Gaussian mixture models
NASA Astrophysics Data System (ADS)
Burke, Ryan P.; Xu, Zhoubing; Lee, Christopher P.; Baucom, Rebeccah B.; Poulose, Benjamin K.; Abramson, Richard G.; Landman, Bennett A.
2015-03-01
Abdominal organ segmentation with clinically acquired computed tomography (CT) is drawing increasing interest in the medical imaging community. Gaussian mixture models (GMM) have been extensively used through medical segmentation, most notably in the brain for cerebrospinal fluid / gray matter / white matter differentiation. Because abdominal CT exhibit strong localized intensity characteristics, GMM have recently been incorporated in multi-stage abdominal segmentation algorithms. In the context of variable abdominal anatomy and rich algorithms, it is difficult to assess the marginal contribution of GMM. Herein, we characterize the efficacy of an a posteriori framework that integrates GMM of organ-wise intensity likelihood with spatial priors from multiple target-specific registered labels. In our study, we first manually labeled 100 CT images. Then, we assigned 40 images to use as training data for constructing target-specific spatial priors and intensity likelihoods. The remaining 60 images were evaluated as test targets for segmenting 12 abdominal organs. The overlap between the true and the automatic segmentations was measured by Dice similarity coefficient (DSC). A median improvement of 145% was achieved by integrating the GMM intensity likelihood against the specific spatial prior. The proposed framework opens the opportunities for abdominal organ segmentation by efficiently using both the spatial and appearance information from the atlases, and creates a benchmark for large-scale automatic abdominal segmentation.
Modified Discrete Grey Wolf Optimizer Algorithm for Multilevel Image Thresholding
Sun, Lijuan; Guo, Jian; Xu, Bin; Li, Shujing
2017-01-01
The computation of image segmentation has become more complicated with the increasing number of thresholds, and the option and application of the thresholds in image thresholding fields have become an NP problem at the same time. The paper puts forward the modified discrete grey wolf optimizer algorithm (MDGWO), which improves on the optimal solution updating mechanism of the search agent by the weights. Taking Kapur's entropy as the optimized function and based on the discreteness of threshold in image segmentation, the paper firstly discretizes the grey wolf optimizer (GWO) and then proposes a new attack strategy by using the weight coefficient to replace the search formula for optimal solution used in the original algorithm. The experimental results show that MDGWO can search out the optimal thresholds efficiently and precisely, which are very close to the result examined by exhaustive searches. In comparison with the electromagnetism optimization (EMO), the differential evolution (DE), the Artifical Bee Colony (ABC), and the classical GWO, it is concluded that MDGWO has advantages over the latter four in terms of image segmentation quality and objective function values and their stability. PMID:28127305
Segmentation of vessels: the corkscrew algorithm
NASA Astrophysics Data System (ADS)
Wesarg, Stefan; Firle, Evelyn A.
2004-05-01
Medical imaging is nowadays much more than only providing data for diagnosis. It also links 'classical' diagnosis to modern forms of treatment such as image guided surgery. Those systems require the identification of organs, anatomical regions of the human body etc., i. e. the segmentation of structures from medical data sets. The algorithms used for these segmentation tasks strongly depend on the object to be segmented. One structure which plays an important role in surgery planning are vessels that are found everywhere in the human body. Several approaches for their extraction already exist. However, there is no general one which is suitable for all types of data or all sorts of vascular structures. This work presents a new algorithm for the segmentation of vessels. It can be classified as a skeleton-based approach working on 3D data sets, and has been designed for a reliable segmentation of coronary arteries. The algorithm is a semi-automatic extraction technique requiring the definition of the start and end the point of the (centerline) path to be found. A first estimation of the vessel's centerline is calculated and then corrected iteratively by detecting the vessel's border perpendicular to the centerline. We used contrast enhanced CT data sets of the thorax for testing our approach. Coronary arteries have been extracted from the data sets using the 'corkscrew algorithm' presented in this work. The segmentation turned out to be robust even if moderate breathing artifacts were present in the data sets.
Automated measurement of pressure injury through image processing.
Li, Dan; Mathews, Carol
2017-11-01
To develop an image processing algorithm to automatically measure pressure injuries using electronic pressure injury images stored in nursing documentation. Photographing pressure injuries and storing the images in the electronic health record is standard practice in many hospitals. However, the manual measurement of pressure injury is time-consuming, challenging and subject to intra/inter-reader variability with complexities of the pressure injury and the clinical environment. A cross-sectional algorithm development study. A set of 32 pressure injury images were obtained from a western Pennsylvania hospital. First, we transformed the images from an RGB (i.e. red, green and blue) colour space to a YC b C r colour space to eliminate inferences from varying light conditions and skin colours. Second, a probability map, generated by a skin colour Gaussian model, guided the pressure injury segmentation process using the Support Vector Machine classifier. Third, after segmentation, the reference ruler - included in each of the images - enabled perspective transformation and determination of pressure injury size. Finally, two nurses independently measured those 32 pressure injury images, and intraclass correlation coefficient was calculated. An image processing algorithm was developed to automatically measure the size of pressure injuries. Both inter- and intra-rater analysis achieved good level reliability. Validation of the size measurement of the pressure injury (1) demonstrates that our image processing algorithm is a reliable approach to monitoring pressure injury progress through clinical pressure injury images and (2) offers new insight to pressure injury evaluation and documentation. Once our algorithm is further developed, clinicians can be provided with an objective, reliable and efficient computational tool for segmentation and measurement of pressure injuries. With this, clinicians will be able to more effectively monitor the healing process of pressure injuries. © 2017 John Wiley & Sons Ltd.
Segmented Mirror Image Degradation Due to Surface Dust, Alignment and Figure
NASA Technical Reports Server (NTRS)
Schreur, Julian J.
1999-01-01
In 1996 an algorithm was developed to include the effects of surface roughness in the calculation of the point spread function of a telescope mirror. This algorithm has been extended to include the effects of alignment errors and figure errors for the individual elements, and an overall contamination by surface dust. The final algorithm builds an array for a guard-banded pupil function of a mirror that may or may not have a central hole, a central reflecting segment, or an outer ring of segments. The central hole, central reflecting segment, and outer ring may be circular or polygonal, and the outer segments may have trimmed comers. The modeled point spread functions show that x-tilt and y-tilt, or the corresponding R-tilt and theta-tilt for a segment in an outer ring, is readily apparent for maximum wavefront errors of 0.1 lambda. A similar sized piston error is also apparent, but integral wavelength piston errors are not. Severe piston error introduces a focus error of the opposite sign, so piston could be adjusted to compensate for segments with varying focal lengths. Dust affects the image principally by decreasing the Strehl ratio, or peak intensity of the image. For an eight-meter telescope a 25% coverage by dust produced a scattered light intensity of 10(exp -9) of the peak intensity, a level well below detectability.
CP-CHARM: segmentation-free image classification made accessible.
Uhlmann, Virginie; Singh, Shantanu; Carpenter, Anne E
2016-01-27
Automated classification using machine learning often relies on features derived from segmenting individual objects, which can be difficult to automate. WND-CHARM is a previously developed classification algorithm in which features are computed on the whole image, thereby avoiding the need for segmentation. The algorithm obtained encouraging results but requires considerable computational expertise to execute. Furthermore, some benchmark sets have been shown to be subject to confounding artifacts that overestimate classification accuracy. We developed CP-CHARM, a user-friendly image-based classification algorithm inspired by WND-CHARM in (i) its ability to capture a wide variety of morphological aspects of the image, and (ii) the absence of requirement for segmentation. In order to make such an image-based classification method easily accessible to the biological research community, CP-CHARM relies on the widely-used open-source image analysis software CellProfiler for feature extraction. To validate our method, we reproduced WND-CHARM's results and ensured that CP-CHARM obtained comparable performance. We then successfully applied our approach on cell-based assay data and on tissue images. We designed these new training and test sets to reduce the effect of batch-related artifacts. The proposed method preserves the strengths of WND-CHARM - it extracts a wide variety of morphological features directly on whole images thereby avoiding the need for cell segmentation, but additionally, it makes the methods easily accessible for researchers without computational expertise by implementing them as a CellProfiler pipeline. It has been demonstrated to perform well on a wide range of bioimage classification problems, including on new datasets that have been carefully selected and annotated to minimize batch effects. This provides for the first time a realistic and reliable assessment of the whole image classification strategy.
NASA Astrophysics Data System (ADS)
Selva Bhuvaneswari, K.; Geetha, P.
2017-05-01
Magnetic resonance imaging segmentation refers to a process of assigning labels to set of pixels or multiple regions. It plays a major role in the field of biomedical applications as it is widely used by the radiologists to segment the medical images input into meaningful regions. In recent years, various brain tumour detection techniques are presented in the literature. The entire segmentation process of our proposed work comprises three phases: threshold generation with dynamic modified region growing phase, texture feature generation phase and region merging phase. by dynamically changing two thresholds in the modified region growing approach, the first phase of the given input image can be performed as dynamic modified region growing process, in which the optimisation algorithm, firefly algorithm help to optimise the two thresholds in modified region growing. After obtaining the region growth segmented image using modified region growing, the edges can be detected with edge detection algorithm. In the second phase, the texture feature can be extracted using entropy-based operation from the input image. In region merging phase, the results obtained from the texture feature-generation phase are combined with the results of dynamic modified region growing phase and similar regions are merged using a distance comparison between regions. After identifying the abnormal tissues, the classification can be done by hybrid kernel-based SVM (Support Vector Machine). The performance analysis of the proposed method will be carried by K-cross fold validation method. The proposed method will be implemented in MATLAB with various images.
FogBank: a single cell segmentation across multiple cell lines and image modalities.
Chalfoun, Joe; Majurski, Michael; Dima, Alden; Stuelten, Christina; Peskin, Adele; Brady, Mary
2014-12-30
Many cell lines currently used in medical research, such as cancer cells or stem cells, grow in confluent sheets or colonies. The biology of individual cells provide valuable information, thus the separation of touching cells in these microscopy images is critical for counting, identification and measurement of individual cells. Over-segmentation of single cells continues to be a major problem for methods based on morphological watershed due to the high level of noise in microscopy cell images. There is a need for a new segmentation method that is robust over a wide variety of biological images and can accurately separate individual cells even in challenging datasets such as confluent sheets or colonies. We present a new automated segmentation method called FogBank that accurately separates cells when confluent and touching each other. This technique is successfully applied to phase contrast, bright field, fluorescence microscopy and binary images. The method is based on morphological watershed principles with two new features to improve accuracy and minimize over-segmentation. First, FogBank uses histogram binning to quantize pixel intensities which minimizes the image noise that causes over-segmentation. Second, FogBank uses a geodesic distance mask derived from raw images to detect the shapes of individual cells, in contrast to the more linear cell edges that other watershed-like algorithms produce. We evaluated the segmentation accuracy against manually segmented datasets using two metrics. FogBank achieved segmentation accuracy on the order of 0.75 (1 being a perfect match). We compared our method with other available segmentation techniques in term of achieved performance over the reference data sets. FogBank outperformed all related algorithms. The accuracy has also been visually verified on data sets with 14 cell lines across 3 imaging modalities leading to 876 segmentation evaluation images. FogBank produces single cell segmentation from confluent cell sheets with high accuracy. It can be applied to microscopy images of multiple cell lines and a variety of imaging modalities. The code for the segmentation method is available as open-source and includes a Graphical User Interface for user friendly execution.
Hierarchical Image Segmentation of Remotely Sensed Data using Massively Parallel GNU-LINUX Software
NASA Technical Reports Server (NTRS)
Tilton, James C.
2003-01-01
A hierarchical set of image segmentations is a set of several image segmentations of the same image at different levels of detail in which the segmentations at coarser levels of detail can be produced from simple merges of regions at finer levels of detail. In [1], Tilton, et a1 describes an approach for producing hierarchical segmentations (called HSEG) and gave a progress report on exploiting these hierarchical segmentations for image information mining. The HSEG algorithm is a hybrid of region growing and constrained spectral clustering that produces a hierarchical set of image segmentations based on detected convergence points. In the main, HSEG employs the hierarchical stepwise optimization (HSWO) approach to region growing, which was described as early as 1989 by Beaulieu and Goldberg. The HSWO approach seeks to produce segmentations that are more optimized than those produced by more classic approaches to region growing (e.g. Horowitz and T. Pavlidis, [3]). In addition, HSEG optionally interjects between HSWO region growing iterations, merges between spatially non-adjacent regions (i.e., spectrally based merging or clustering) constrained by a threshold derived from the previous HSWO region growing iteration. While the addition of constrained spectral clustering improves the utility of the segmentation results, especially for larger images, it also significantly increases HSEG s computational requirements. To counteract this, a computationally efficient recursive, divide-and-conquer, implementation of HSEG (RHSEG) was devised, which includes special code to avoid processing artifacts caused by RHSEG s recursive subdivision of the image data. The recursive nature of RHSEG makes for a straightforward parallel implementation. This paper describes the HSEG algorithm, its recursive formulation (referred to as RHSEG), and the implementation of RHSEG using massively parallel GNU-LINUX software. Results with Landsat TM data are included comparing RHSEG with classic region growing.
NASA Astrophysics Data System (ADS)
Ye, Xujiong; Siddique, Musib; Douiri, Abdel; Beddoe, Gareth; Slabaugh, Greg
2009-02-01
Automatic segmentation of medical images is a challenging problem due to the complexity and variability of human anatomy, poor contrast of the object being segmented, and noise resulting from the image acquisition process. This paper presents a novel feature-guided method for the segmentation of 3D medical lesions. The proposed algorithm combines 1) a volumetric shape feature (shape index) based on high-order partial derivatives; 2) mean shift clustering in a joint spatial-intensity-shape (JSIS) feature space; and 3) a modified expectation-maximization (MEM) algorithm on the mean shift mode map to merge the neighboring regions (modes). In such a scenario, the volumetric shape feature is integrated into the process of the segmentation algorithm. The joint spatial-intensity-shape features provide rich information for the segmentation of the anatomic structures or lesions (tumors). The proposed method has been evaluated on a clinical dataset of thoracic CT scans that contains 68 nodules. A volume overlap ratio between each segmented nodule and the ground truth annotation is calculated. Using the proposed method, the mean overlap ratio over all the nodules is 0.80. On visual inspection and using a quantitative evaluation, the experimental results demonstrate the potential of the proposed method. It can properly segment a variety of nodules including juxta-vascular and juxta-pleural nodules, which are challenging for conventional methods due to the high similarity of intensities between the nodules and their adjacent tissues. This approach could also be applied to lesion segmentation in other anatomies, such as polyps in the colon.
NASA Astrophysics Data System (ADS)
Chitchian, Shahab; Vincent, Kathleen L.; Vargas, Gracie; Motamedi, Massoud
2012-11-01
We have explored the use of optical coherence tomography (OCT) as a noninvasive tool for assessing the toxicity of topical microbicides, products used to prevent HIV, by monitoring the integrity of the vaginal epithelium. A novel feature-based segmentation algorithm using a nearest-neighbor classifier was developed to monitor changes in the morphology of vaginal epithelium. The two-step automated algorithm yielded OCT images with a clearly defined epithelial layer, enabling differentiation of normal and damaged tissue. The algorithm was robust in that it was able to discriminate the epithelial layer from underlying stroma as well as residual microbicide product on the surface. This segmentation technique for OCT images has the potential to be readily adaptable to the clinical setting for noninvasively defining the boundaries of the epithelium, enabling quantifiable assessment of microbicide-induced damage in vaginal tissue.
NASA Astrophysics Data System (ADS)
Agurto, C.; Barriga, S.; Murray, V.; Pattichis, M.; Soliz, P.
2010-03-01
Diabetic retinopathy (DR) is one of the leading causes of blindness among adult Americans. Automatic methods for detection of the disease have been developed in recent years, most of them addressing the segmentation of bright and red lesions. In this paper we present an automatic DR screening system that does approach the problem through the segmentation of features. The algorithm determines non-diseased retinal images from those with pathology based on textural features obtained using multiscale Amplitude Modulation-Frequency Modulation (AM-FM) decompositions. The decomposition is represented as features that are the inputs to a classifier. The algorithm achieves 0.88 area under the ROC curve (AROC) for a set of 280 images from the MESSIDOR database. The algorithm is then used to analyze the effects of image compression and degradation, which will be present in most actual clinical or screening environments. Results show that the algorithm is insensitive to illumination variations, but high rates of compression and large blurring effects degrade its performance.
Jimenez-Del-Toro, Oscar; Muller, Henning; Krenn, Markus; Gruenberg, Katharina; Taha, Abdel Aziz; Winterstein, Marianne; Eggel, Ivan; Foncubierta-Rodriguez, Antonio; Goksel, Orcun; Jakab, Andras; Kontokotsios, Georgios; Langs, Georg; Menze, Bjoern H; Salas Fernandez, Tomas; Schaer, Roger; Walleyo, Anna; Weber, Marc-Andre; Dicente Cid, Yashin; Gass, Tobias; Heinrich, Mattias; Jia, Fucang; Kahl, Fredrik; Kechichian, Razmig; Mai, Dominic; Spanier, Assaf B; Vincent, Graham; Wang, Chunliang; Wyeth, Daniel; Hanbury, Allan
2016-11-01
Variations in the shape and appearance of anatomical structures in medical images are often relevant radiological signs of disease. Automatic tools can help automate parts of this manual process. A cloud-based evaluation framework is presented in this paper including results of benchmarking current state-of-the-art medical imaging algorithms for anatomical structure segmentation and landmark detection: the VISCERAL Anatomy benchmarks. The algorithms are implemented in virtual machines in the cloud where participants can only access the training data and can be run privately by the benchmark administrators to objectively compare their performance in an unseen common test set. Overall, 120 computed tomography and magnetic resonance patient volumes were manually annotated to create a standard Gold Corpus containing a total of 1295 structures and 1760 landmarks. Ten participants contributed with automatic algorithms for the organ segmentation task, and three for the landmark localization task. Different algorithms obtained the best scores in the four available imaging modalities and for subsets of anatomical structures. The annotation framework, resulting data set, evaluation setup, results and performance analysis from the three VISCERAL Anatomy benchmarks are presented in this article. Both the VISCERAL data set and Silver Corpus generated with the fusion of the participant algorithms on a larger set of non-manually-annotated medical images are available to the research community.
Finding a good segmentation strategy for tree crown transparency estimation
Neil A. Clark; Sang-Mook Lee; Philip A. Araman
2003-01-01
Image segmentation is a general term for delineating image areas into informational categories. A wide variety of general techniques exist depending on application and the image data specifications. Specialized algorithms, utilizing components of several techniques, usually are needed to meet the rigors for a specific application. This paper considers automated color...
Robust crop and weed segmentation under uncontrolled outdoor illumination
USDA-ARS?s Scientific Manuscript database
A new machine vision for weed detection was developed from RGB color model images. Processes included in the algorithm for the detection were excessive green conversion, threshold value computation by statistical analysis, adaptive image segmentation by adjusting the threshold value, median filter, ...
Aquino, Arturo; Gegundez-Arias, Manuel Emilio; Marin, Diego
2010-11-01
Optic disc (OD) detection is an important step in developing systems for automated diagnosis of various serious ophthalmic pathologies. This paper presents a new template-based methodology for segmenting the OD from digital retinal images. This methodology uses morphological and edge detection techniques followed by the Circular Hough Transform to obtain a circular OD boundary approximation. It requires a pixel located within the OD as initial information. For this purpose, a location methodology based on a voting-type algorithm is also proposed. The algorithms were evaluated on the 1200 images of the publicly available MESSIDOR database. The location procedure succeeded in 99% of cases, taking an average computational time of 1.67 s. with a standard deviation of 0.14 s. On the other hand, the segmentation algorithm rendered an average common area overlapping between automated segmentations and true OD regions of 86%. The average computational time was 5.69 s with a standard deviation of 0.54 s. Moreover, a discussion on advantages and disadvantages of the models more generally used for OD segmentation is also presented in this paper.
Semi-automatic geographic atrophy segmentation for SD-OCT images.
Chen, Qiang; de Sisternes, Luis; Leng, Theodore; Zheng, Luoluo; Kutzscher, Lauren; Rubin, Daniel L
2013-01-01
Geographic atrophy (GA) is a condition that is associated with retinal thinning and loss of the retinal pigment epithelium (RPE) layer. It appears in advanced stages of non-exudative age-related macular degeneration (AMD) and can lead to vision loss. We present a semi-automated GA segmentation algorithm for spectral-domain optical coherence tomography (SD-OCT) images. The method first identifies and segments a surface between the RPE and the choroid to generate retinal projection images in which the projection region is restricted to a sub-volume of the retina where the presence of GA can be identified. Subsequently, a geometric active contour model is employed to automatically detect and segment the extent of GA in the projection images. Two image data sets, consisting on 55 SD-OCT scans from twelve eyes in eight patients with GA and 56 SD-OCT scans from 56 eyes in 56 patients with GA, respectively, were utilized to qualitatively and quantitatively evaluate the proposed GA segmentation method. Experimental results suggest that the proposed algorithm can achieve high segmentation accuracy. The mean GA overlap ratios between our proposed method and outlines drawn in the SD-OCT scans, our method and outlines drawn in the fundus auto-fluorescence (FAF) images, and the commercial software (Carl Zeiss Meditec proprietary software, Cirrus version 6.0) and outlines drawn in FAF images were 72.60%, 65.88% and 59.83%, respectively.
Research on Method of Interactive Segmentation Based on Remote Sensing Images
NASA Astrophysics Data System (ADS)
Yang, Y.; Li, H.; Han, Y.; Yu, F.
2017-09-01
In this paper, we aim to solve the object extraction problem in remote sensing images using interactive segmentation tools. Firstly, an overview of the interactive segmentation algorithm is proposed. Then, our detailed implementation of intelligent scissors and GrabCut for remote sensing images is described. Finally, several experiments on different typical features (water area, vegetation) in remote sensing images are performed respectively. Compared with the manual result, it indicates that our tools maintain good feature boundaries and show good performance.
Ruusuvuori, Pekka; Aijö, Tarmo; Chowdhury, Sharif; Garmendia-Torres, Cecilia; Selinummi, Jyrki; Birbaumer, Mirko; Dudley, Aimée M; Pelkmans, Lucas; Yli-Harja, Olli
2010-05-13
Several algorithms have been proposed for detecting fluorescently labeled subcellular objects in microscope images. Many of these algorithms have been designed for specific tasks and validated with limited image data. But despite the potential of using extensive comparisons between algorithms to provide useful information to guide method selection and thus more accurate results, relatively few studies have been performed. To better understand algorithm performance under different conditions, we have carried out a comparative study including eleven spot detection or segmentation algorithms from various application fields. We used microscope images from well plate experiments with a human osteosarcoma cell line and frames from image stacks of yeast cells in different focal planes. These experimentally derived images permit a comparison of method performance in realistic situations where the number of objects varies within image set. We also used simulated microscope images in order to compare the methods and validate them against a ground truth reference result. Our study finds major differences in the performance of different algorithms, in terms of both object counts and segmentation accuracies. These results suggest that the selection of detection algorithms for image based screens should be done carefully and take into account different conditions, such as the possibility of acquiring empty images or images with very few spots. Our inclusion of methods that have not been used before in this context broadens the set of available detection methods and compares them against the current state-of-the-art methods for subcellular particle detection.
Segmentation of radiographic images under topological constraints: application to the femur.
Gamage, Pavan; Xie, Sheng Quan; Delmas, Patrice; Xu, Wei Liang
2010-09-01
A framework for radiographic image segmentation under topological control based on two-dimensional (2D) image analysis was developed. The system is intended for use in common radiological tasks including fracture treatment analysis, osteoarthritis diagnostics and osteotomy management planning. The segmentation framework utilizes a generic three-dimensional (3D) model of the bone of interest to define the anatomical topology. Non-rigid registration is performed between the projected contours of the generic 3D model and extracted edges of the X-ray image to achieve the segmentation. For fractured bones, the segmentation requires an additional step where a region-based active contours curve evolution is performed with a level set Mumford-Shah method to obtain the fracture surface edge. The application of the segmentation framework to analysis of human femur radiographs was evaluated. The proposed system has two major innovations. First, definition of the topological constraints does not require a statistical learning process, so the method is generally applicable to a variety of bony anatomy segmentation problems. Second, the methodology is able to handle both intact and fractured bone segmentation. Testing on clinical X-ray images yielded an average root mean squared distance (between the automatically segmented femur contour and the manual segmented ground truth) of 1.10 mm with a standard deviation of 0.13 mm. The proposed point correspondence estimation algorithm was benchmarked against three state-of-the-art point matching algorithms, demonstrating successful non-rigid registration for the cases of interest. A topologically constrained automatic bone contour segmentation framework was developed and tested, providing robustness to noise, outliers, deformations and occlusions.
NASA Astrophysics Data System (ADS)
Su, Tengfei
2018-04-01
In this paper, an unsupervised evaluation scheme for remote sensing image segmentation is developed. Based on a method called under- and over-segmentation aware (UOA), the new approach is improved by overcoming the defect in the part of estimating over-segmentation error. Two cases of such error-prone defect are listed, and edge strength is employed to devise a solution to this issue. Two subsets of high resolution remote sensing images were used to test the proposed algorithm, and the experimental results indicate its superior performance, which is attributed to its improved OSE detection model.
An Image Segmentation Based on a Genetic Algorithm for Determining Soil Coverage by Crop Residues
Ribeiro, Angela; Ranz, Juan; Burgos-Artizzu, Xavier P.; Pajares, Gonzalo; Sanchez del Arco, Maria J.; Navarrete, Luis
2011-01-01
Determination of the soil coverage by crop residues after ploughing is a fundamental element of Conservation Agriculture. This paper presents the application of genetic algorithms employed during the fine tuning of the segmentation process of a digital image with the aim of automatically quantifying the residue coverage. In other words, the objective is to achieve a segmentation that would permit the discrimination of the texture of the residue so that the output of the segmentation process is a binary image in which residue zones are isolated from the rest. The RGB images used come from a sample of images in which sections of terrain were photographed with a conventional camera positioned in zenith orientation atop a tripod. The images were taken outdoors under uncontrolled lighting conditions. Up to 92% similarity was achieved between the images obtained by the segmentation process proposed in this paper and the templates made by an elaborate manual tracing process. In addition to the proposed segmentation procedure and the fine tuning procedure that was developed, a global quantification of the soil coverage by residues for the sampled area was achieved that differed by only 0.85% from the quantification obtained using template images. Moreover, the proposed method does not depend on the type of residue present in the image. The study was conducted at the experimental farm “El Encín” in Alcalá de Henares (Madrid, Spain). PMID:22163966
NASA Astrophysics Data System (ADS)
Danala, Gopichandh; Wang, Yunzhi; Thai, Theresa; Gunderson, Camille C.; Moxley, Katherine M.; Moore, Kathleen; Mannel, Robert S.; Cheng, Samuel; Liu, Hong; Zheng, Bin; Qiu, Yuchen
2017-02-01
Accurate tumor segmentation is a critical step in the development of the computer-aided detection (CAD) based quantitative image analysis scheme for early stage prognostic evaluation of ovarian cancer patients. The purpose of this investigation is to assess the efficacy of several different methods to segment the metastatic tumors occurred in different organs of ovarian cancer patients. In this study, we developed a segmentation scheme consisting of eight different algorithms, which can be divided into three groups: 1) Region growth based methods; 2) Canny operator based methods; and 3) Partial differential equation (PDE) based methods. A number of 138 tumors acquired from 30 ovarian cancer patients were used to test the performance of these eight segmentation algorithms. The results demonstrate each of the tested tumors can be successfully segmented by at least one of the eight algorithms without the manual boundary correction. Furthermore, modified region growth, classical Canny detector, and fast marching, and threshold level set algorithms are suggested in the future development of the ovarian cancer related CAD schemes. This study may provide meaningful reference for developing novel quantitative image feature analysis scheme to more accurately predict the response of ovarian cancer patients to the chemotherapy at early stage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y; Saleh, Z; Tang, X
Purpose: Segmentation of prostate CBCT images is an essential step towards real-time adaptive radiotherapy. It is challenging For Calypso patients, as more artifacts are generated by the beacon transponders. We herein propose a novel wavelet-based segmentation algorithm for rectum, bladder, and prostate of CBCT images with implanted Calypso transponders. Methods: Five hypofractionated prostate patients with daily CBCT were studied. Each patient had 3 Calypso transponder beacons implanted, and the patients were setup and treated with Calypso tracking system. Two sets of CBCT images from each patient were studied. The structures (i.e. rectum, bladder, and prostate) were contoured by a trainedmore » expert, and these served as ground truth. For a given CBCT, the moving window-based Double Haar transformation is applied first to obtain the wavelet coefficients. Based on a user defined point in the object of interest, a cluster algorithm based adaptive thresholding is applied to the low frequency components of the wavelet coefficients, and a Lee filter theory based adaptive thresholding is applied to the high frequency components. For the next step, the wavelet reconstruction is applied to the thresholded wavelet coefficients. A binary/segmented image of the object of interest is therefore obtained. DICE, sensitivity, inclusiveness and ΔV were used to evaluate the segmentation result. Results: Considering all patients, the bladder has the DICE, sensitivity, inclusiveness, and ΔV ranges of [0.81–0.95], [0.76–0.99], [0.83–0.94], [0.02–0.21]. For prostate, the ranges are [0.77–0.93], [0.84–0.97], [0.68–0.92], [0.1–0.46]. For rectum, the ranges are [0.72–0.93], [0.57–0.99], [0.73–0.98], [0.03–0.42]. Conclusion: The proposed algorithm appeared effective segmenting prostate CBCT images with the present of the Calypso artifacts. However, it is not robust in two scenarios: 1) rectum with significant amount of gas; 2) prostate with very low contrast. Model based algorithm might improve the segmentation in these two scenarios.« less
Retinal Nerve Fiber Layer Segmentation on FD-OCT Scans of Normal Subjects and Glaucoma Patients.
Mayer, Markus A; Hornegger, Joachim; Mardin, Christian Y; Tornow, Ralf P
2010-11-08
Automated measurements of the retinal nerve fiber layer thickness on circular OCT B-Scans provide physicians additional parameters for glaucoma diagnosis. We propose a novel retinal nerve fiber layer segmentation algorithm for frequency domain data that can be applied on scans from both normal healthy subjects, as well as glaucoma patients, using the same set of parameters. In addition, the algorithm remains almost unaffected by image quality. The main part of the segmentation process is based on the minimization of an energy function consisting of gradient and local smoothing terms. A quantitative evaluation comparing the automated segmentation results to manually corrected segmentations from three reviewers is performed. A total of 72 scans from glaucoma patients and 132 scans from normal subjects, all from different persons, composed the database for the evaluation of the segmentation algorithm. A mean absolute error per A-Scan of 2.9 µm was achieved on glaucomatous eyes, and 3.6 µm on healthy eyes. The mean absolute segmentation error over all A-Scans lies below 10 µm on 95.1% of the images. Thus our approach provides a reliable tool for extracting diagnostic relevant parameters from OCT B-Scans for glaucoma diagnosis.
Retinal Nerve Fiber Layer Segmentation on FD-OCT Scans of Normal Subjects and Glaucoma Patients
Mayer, Markus A.; Hornegger, Joachim; Mardin, Christian Y.; Tornow, Ralf P.
2010-01-01
Automated measurements of the retinal nerve fiber layer thickness on circular OCT B-Scans provide physicians additional parameters for glaucoma diagnosis. We propose a novel retinal nerve fiber layer segmentation algorithm for frequency domain data that can be applied on scans from both normal healthy subjects, as well as glaucoma patients, using the same set of parameters. In addition, the algorithm remains almost unaffected by image quality. The main part of the segmentation process is based on the minimization of an energy function consisting of gradient and local smoothing terms. A quantitative evaluation comparing the automated segmentation results to manually corrected segmentations from three reviewers is performed. A total of 72 scans from glaucoma patients and 132 scans from normal subjects, all from different persons, composed the database for the evaluation of the segmentation algorithm. A mean absolute error per A-Scan of 2.9 µm was achieved on glaucomatous eyes, and 3.6 µm on healthy eyes. The mean absolute segmentation error over all A-Scans lies below 10 µm on 95.1% of the images. Thus our approach provides a reliable tool for extracting diagnostic relevant parameters from OCT B-Scans for glaucoma diagnosis. PMID:21258556
Spatial Statistics for Segmenting Histological Structures in H&E Stained Tissue Images.
Nguyen, Luong; Tosun, Akif Burak; Fine, Jeffrey L; Lee, Adrian V; Taylor, D Lansing; Chennubhotla, S Chakra
2017-07-01
Segmenting a broad class of histological structures in transmitted light and/or fluorescence-based images is a prerequisite for determining the pathological basis of cancer, elucidating spatial interactions between histological structures in tumor microenvironments (e.g., tumor infiltrating lymphocytes), facilitating precision medicine studies with deep molecular profiling, and providing an exploratory tool for pathologists. This paper focuses on segmenting histological structures in hematoxylin- and eosin-stained images of breast tissues, e.g., invasive carcinoma, carcinoma in situ, atypical and normal ducts, adipose tissue, and lymphocytes. We propose two graph-theoretic segmentation methods based on local spatial color and nuclei neighborhood statistics. For benchmarking, we curated a data set of 232 high-power field breast tissue images together with expertly annotated ground truth. To accurately model the preference for histological structures (ducts, vessels, tumor nets, adipose, etc.) over the remaining connective tissue and non-tissue areas in ground truth annotations, we propose a new region-based score for evaluating segmentation algorithms. We demonstrate the improvement of our proposed methods over the state-of-the-art algorithms in both region- and boundary-based performance measures.
NASA Astrophysics Data System (ADS)
Botter Martins, Samuel; Vallin Spina, Thiago; Yasuda, Clarissa; Falcão, Alexandre X.
2017-02-01
Statistical Atlases have played an important role towards automated medical image segmentation. However, a challenge has been to make the atlas more adaptable to possible errors in deformable registration of anomalous images, given that the body structures of interest for segmentation might present significant differences in shape and texture. Recently, deformable registration errors have been accounted by a method that locally translates the statistical atlas over the test image, after registration, and evaluates candidate objects from a delineation algorithm in order to choose the best one as final segmentation. In this paper, we improve its delineation algorithm and extend the model to be a multi-object statistical atlas, built from control images and adaptable to anomalous images, by incorporating a texture classifier. In order to provide a first proof of concept, we instantiate the new method for segmenting, object-by-object and all objects simultaneously, the left and right brain hemispheres, and the cerebellum, without the brainstem, and evaluate it on MRT1-images of epilepsy patients before and after brain surgery, which removed portions of the temporal lobe. The results show efficiency gain with statistically significant higher accuracy, using the mean Average Symmetric Surface Distance, with respect to the original approach.
Regional SAR Image Segmentation Based on Fuzzy Clustering with Gamma Mixture Model
NASA Astrophysics Data System (ADS)
Li, X. L.; Zhao, Q. H.; Li, Y.
2017-09-01
Most of stochastic based fuzzy clustering algorithms are pixel-based, which can not effectively overcome the inherent speckle noise in SAR images. In order to deal with the problem, a regional SAR image segmentation algorithm based on fuzzy clustering with Gamma mixture model is proposed in this paper. First, initialize some generating points randomly on the image, the image domain is divided into many sub-regions using Voronoi tessellation technique. Each sub-region is regarded as a homogeneous area in which the pixels share the same cluster label. Then, assume the probability of the pixel to be a Gamma mixture model with the parameters respecting to the cluster which the pixel belongs to. The negative logarithm of the probability represents the dissimilarity measure between the pixel and the cluster. The regional dissimilarity measure of one sub-region is defined as the sum of the measures of pixels in the region. Furthermore, the Markov Random Field (MRF) model is extended from pixels level to Voronoi sub-regions, and then the regional objective function is established under the framework of fuzzy clustering. The optimal segmentation results can be obtained by the solution of model parameters and generating points. Finally, the effectiveness of the proposed algorithm can be proved by the qualitative and quantitative analysis from the segmentation results of the simulated and real SAR images.
H-Ransac a Hybrid Point Cloud Segmentation Combining 2d and 3d Data
NASA Astrophysics Data System (ADS)
Adam, A.; Chatzilari, E.; Nikolopoulos, S.; Kompatsiaris, I.
2018-05-01
In this paper, we present a novel 3D segmentation approach operating on point clouds generated from overlapping images. The aim of the proposed hybrid approach is to effectively segment co-planar objects, by leveraging the structural information originating from the 3D point cloud and the visual information from the 2D images, without resorting to learning based procedures. More specifically, the proposed hybrid approach, H-RANSAC, is an extension of the well-known RANSAC plane-fitting algorithm, incorporating an additional consistency criterion based on the results of 2D segmentation. Our expectation that the integration of 2D data into 3D segmentation will achieve more accurate results, is validated experimentally in the domain of 3D city models. Results show that HRANSAC can successfully delineate building components like main facades and windows, and provide more accurate segmentation results compared to the typical RANSAC plane-fitting algorithm.
Filter Design and Performance Evaluation for Fingerprint Image Segmentation
Thai, Duy Hoang; Huckemann, Stephan; Gottschlich, Carsten
2016-01-01
Fingerprint recognition plays an important role in many commercial applications and is used by millions of people every day, e.g. for unlocking mobile phones. Fingerprint image segmentation is typically the first processing step of most fingerprint algorithms and it divides an image into foreground, the region of interest, and background. Two types of error can occur during this step which both have a negative impact on the recognition performance: ‘true’ foreground can be labeled as background and features like minutiae can be lost, or conversely ‘true’ background can be misclassified as foreground and spurious features can be introduced. The contribution of this paper is threefold: firstly, we propose a novel factorized directional bandpass (FDB) segmentation method for texture extraction based on the directional Hilbert transform of a Butterworth bandpass (DHBB) filter interwoven with soft-thresholding. Secondly, we provide a manually marked ground truth segmentation for 10560 images as an evaluation benchmark. Thirdly, we conduct a systematic performance comparison between the FDB method and four of the most often cited fingerprint segmentation algorithms showing that the FDB segmentation method clearly outperforms these four widely used methods. The benchmark and the implementation of the FDB method are made publicly available. PMID:27171150
Segmentation of stereo terrain images
NASA Astrophysics Data System (ADS)
George, Debra A.; Privitera, Claudio M.; Blackmon, Theodore T.; Zbinden, Eric; Stark, Lawrence W.
2000-06-01
We have studied four approaches to segmentation of images: three automatic ones using image processing algorithms and a fourth approach, human manual segmentation. We were motivated toward helping with an important NASA Mars rover mission task -- replacing laborious manual path planning with automatic navigation of the rover on the Mars terrain. The goal of the automatic segmentations was to identify an obstacle map on the Mars terrain to enable automatic path planning for the rover. The automatic segmentation was first explored with two different segmentation methods: one based on pixel luminance, and the other based on pixel altitude generated through stereo image processing. The third automatic segmentation was achieved by combining these two types of image segmentation. Human manual segmentation of Martian terrain images was used for evaluating the effectiveness of the combined automatic segmentation as well as for determining how different humans segment the same images. Comparisons between two different segmentations, manual or automatic, were measured using a similarity metric, SAB. Based on this metric, the combined automatic segmentation did fairly well in agreeing with the manual segmentation. This was a demonstration of a positive step towards automatically creating the accurate obstacle maps necessary for automatic path planning and rover navigation.
A robustness test of the braided device foreshortening algorithm
NASA Astrophysics Data System (ADS)
Moyano, Raquel Kale; Fernandez, Hector; Macho, Juan M.; Blasco, Jordi; San Roman, Luis; Narata, Ana Paula; Larrabide, Ignacio
2017-11-01
Different computational methods have been recently proposed to simulate the virtual deployment of a braided stent inside a patient vasculature. Those methods are primarily based on the segmentation of the region of interest to obtain the local vessel morphology descriptors. The goal of this work is to evaluate the influence of the segmentation quality on the method named "Braided Device Foreshortening" (BDF). METHODS: We used the 3DRA images of 10 aneurysmatic patients (cases). The cases were segmented by applying a marching cubes algorithm with a broad range of thresholds in order to generate 10 surface models each. We selected a braided device to apply the BDF algorithm to each surface model. The range of the computed flow diverter lengths for each case was obtained to calculate the variability of the method against the threshold segmentation values. RESULTS: An evaluation study over 10 clinical cases indicates that the final length of the deployed flow diverter in each vessel model is stable, shielding maximum difference of 11.19% in vessel diameter and maximum of 9.14% in the simulated stent length for the threshold values. The average coefficient of variation was found to be 4.08 %. CONCLUSION: A study evaluating how the threshold segmentation affects the simulated length of the deployed FD, was presented. The segmentation algorithm used to segment intracranial aneurysm 3D angiography images presents small variation in the resulting stent simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polan, D; Brady, S; Kaufman, R
2016-06-15
Purpose: Develop an automated Random Forest algorithm for tissue segmentation of CT examinations. Methods: Seven materials were classified for segmentation: background, lung/internal gas, fat, muscle, solid organ parenchyma, blood/contrast, and bone using Matlab and the Trainable Weka Segmentation (TWS) plugin of FIJI. The following classifier feature filters of TWS were investigated: minimum, maximum, mean, and variance each evaluated over a pixel radius of 2n, (n = 0–4). Also noise reduction and edge preserving filters, Gaussian, bilateral, Kuwahara, and anisotropic diffusion, were evaluated. The algorithm used 200 trees with 2 features per node. A training data set was established using anmore » anonymized patient’s (male, 20 yr, 72 kg) chest-abdomen-pelvis CT examination. To establish segmentation ground truth, the training data were manually segmented using Eclipse planning software, and an intra-observer reproducibility test was conducted. Six additional patient data sets were segmented based on classifier data generated from the training data. Accuracy of segmentation was determined by calculating the Dice similarity coefficient (DSC) between manual and auto segmented images. Results: The optimized autosegmentation algorithm resulted in 16 features calculated using maximum, mean, variance, and Gaussian blur filters with kernel radii of 1, 2, and 4 pixels, in addition to the original CT number, and Kuwahara filter (linear kernel of 19 pixels). Ground truth had a DSC of 0.94 (range: 0.90–0.99) for adult and 0.92 (range: 0.85–0.99) for pediatric data sets across all seven segmentation classes. The automated algorithm produced segmentation with an average DSC of 0.85 ± 0.04 (range: 0.81–1.00) for the adult patients, and 0.86 ± 0.03 (range: 0.80–0.99) for the pediatric patients. Conclusion: The TWS Random Forest auto-segmentation algorithm was optimized for CT environment, and able to segment seven material classes over a range of body habitus and CT protocol parameters with an average DSC of 0.86 ± 0.04 (range: 0.80–0.99).« less
al-Rifaie, Mohammad Majid; Aber, Ahmed; Hemanth, Duraiswamy Jude
2015-12-01
This study proposes an umbrella deployment of swarm intelligence algorithm, such as stochastic diffusion search for medical imaging applications. After summarising the results of some previous works which shows how the algorithm assists in the identification of metastasis in bone scans and microcalcifications on mammographs, for the first time, the use of the algorithm in assessing the CT images of the aorta is demonstrated along with its performance in detecting the nasogastric tube in chest X-ray. The swarm intelligence algorithm presented in this study is adapted to address these particular tasks and its functionality is investigated by running the swarms on sample CT images and X-rays whose status have been determined by senior radiologists. In addition, a hybrid swarm intelligence-learning vector quantisation (LVQ) approach is proposed in the context of magnetic resonance (MR) brain image segmentation. The particle swarm optimisation is used to train the LVQ which eliminates the iteration-dependent nature of LVQ. The proposed methodology is used to detect the tumour regions in the abnormal MR brain images.
Accurate segmenting of cervical tumors in PET imaging based on similarity between adjacent slices.
Chen, Liyuan; Shen, Chenyang; Zhou, Zhiguo; Maquilan, Genevieve; Thomas, Kimberly; Folkert, Michael R; Albuquerque, Kevin; Wang, Jing
2018-06-01
Because in PET imaging cervical tumors are close to the bladder with high capacity for the secreted 18 FDG tracer, conventional intensity-based segmentation methods often misclassify the bladder as a tumor. Based on the observation that tumor position and area do not change dramatically from slice to slice, we propose a two-stage scheme that facilitates segmentation. In the first stage, we used a graph-cut based algorithm to obtain initial contouring of the tumor based on local similarity information between voxels; this was achieved through manual contouring of the cervical tumor on one slice. In the second stage, initial tumor contours were fine-tuned to more accurate segmentation by incorporating similarity information on tumor shape and position among adjacent slices, according to an intensity-spatial-distance map. Experimental results illustrate that the proposed two-stage algorithm provides a more effective approach to segmenting cervical tumors in 3D 18 FDG PET images than the benchmarks used for comparison. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Chang; Qin, Xin; Liu, Yan; Zhang, Wenchao
2016-06-01
An adaptive inertia weight particle swarm algorithm is proposed in this study to solve the local optimal problem with the method of traditional particle swarm optimization in the process of estimating magnetic resonance(MR)image bias field.An indicator measuring the degree of premature convergence was designed for the defect of traditional particle swarm optimization algorithm.The inertia weight was adjusted adaptively based on this indicator to ensure particle swarm to be optimized globally and to avoid it from falling into local optimum.The Legendre polynomial was used to fit bias field,the polynomial parameters were optimized globally,and finally the bias field was estimated and corrected.Compared to those with the improved entropy minimum algorithm,the entropy of corrected image was smaller and the estimated bias field was more accurate in this study.Then the corrected image was segmented and the segmentation accuracy obtained in this research was 10% higher than that with improved entropy minimum algorithm.This algorithm can be applied to the correction of MR image bias field.
NASA Astrophysics Data System (ADS)
Ezhova, Kseniia; Fedorenko, Dmitriy; Chuhlamov, Anton
2016-04-01
The article deals with the methods of image segmentation based on color space conversion, and allow the most efficient way to carry out the detection of a single color in a complex background and lighting, as well as detection of objects on a homogeneous background. The results of the analysis of segmentation algorithms of this type, the possibility of their implementation for creating software. The implemented algorithm is very time-consuming counting, making it a limited application for the analysis of the video, however, it allows us to solve the problem of analysis of objects in the image if there is no dictionary of images and knowledge bases, as well as the problem of choosing the optimal parameters of the frame quantization for video analysis.
Statistical Signal Models and Algorithms for Image Analysis
1984-10-25
In this report, two-dimensional stochastic linear models are used in developing algorithms for image analysis such as classification, segmentation, and object detection in images characterized by textured backgrounds. These models generate two-dimensional random processes as outputs to which statistical inference procedures can naturally be applied. A common thread throughout our algorithms is the interpretation of the inference procedures in terms of linear prediction
A filtering approach to edge preserving MAP estimation of images.
Humphrey, David; Taubman, David
2011-05-01
The authors present a computationally efficient technique for maximum a posteriori (MAP) estimation of images in the presence of both blur and noise. The image is divided into statistically independent regions. Each region is modelled with a WSS Gaussian prior. Classical Wiener filter theory is used to generate a set of convex sets in the solution space, with the solution to the MAP estimation problem lying at the intersection of these sets. The proposed algorithm uses an underlying segmentation of the image, and a means of determining the segmentation and refining it are described. The algorithm is suitable for a range of image restoration problems, as it provides a computationally efficient means to deal with the shortcomings of Wiener filtering without sacrificing the computational simplicity of the filtering approach. The algorithm is also of interest from a theoretical viewpoint as it provides a continuum of solutions between Wiener filtering and Inverse filtering depending upon the segmentation used. We do not attempt to show here that the proposed method is the best general approach to the image reconstruction problem. However, related work referenced herein shows excellent performance in the specific problem of demosaicing.
Identification of Alfalfa Leaf Diseases Using Image Recognition Technology
Qin, Feng; Liu, Dongxia; Sun, Bingda; Ruan, Liu; Ma, Zhanhong; Wang, Haiguang
2016-01-01
Common leaf spot (caused by Pseudopeziza medicaginis), rust (caused by Uromyces striatus), Leptosphaerulina leaf spot (caused by Leptosphaerulina briosiana) and Cercospora leaf spot (caused by Cercospora medicaginis) are the four common types of alfalfa leaf diseases. Timely and accurate diagnoses of these diseases are critical for disease management, alfalfa quality control and the healthy development of the alfalfa industry. In this study, the identification and diagnosis of the four types of alfalfa leaf diseases were investigated using pattern recognition algorithms based on image-processing technology. A sub-image with one or multiple typical lesions was obtained by artificial cutting from each acquired digital disease image. Then the sub-images were segmented using twelve lesion segmentation methods integrated with clustering algorithms (including K_means clustering, fuzzy C-means clustering and K_median clustering) and supervised classification algorithms (including logistic regression analysis, Naive Bayes algorithm, classification and regression tree, and linear discriminant analysis). After a comprehensive comparison, the segmentation method integrating the K_median clustering algorithm and linear discriminant analysis was chosen to obtain lesion images. After the lesion segmentation using this method, a total of 129 texture, color and shape features were extracted from the lesion images. Based on the features selected using three methods (ReliefF, 1R and correlation-based feature selection), disease recognition models were built using three supervised learning methods, including the random forest, support vector machine (SVM) and K-nearest neighbor methods. A comparison of the recognition results of the models was conducted. The results showed that when the ReliefF method was used for feature selection, the SVM model built with the most important 45 features (selected from a total of 129 features) was the optimal model. For this SVM model, the recognition accuracies of the training set and the testing set were 97.64% and 94.74%, respectively. Semi-supervised models for disease recognition were built based on the 45 effective features that were used for building the optimal SVM model. For the optimal semi-supervised models built with three ratios of labeled to unlabeled samples in the training set, the recognition accuracies of the training set and the testing set were both approximately 80%. The results indicated that image recognition of the four alfalfa leaf diseases can be implemented with high accuracy. This study provides a feasible solution for lesion image segmentation and image recognition of alfalfa leaf disease. PMID:27977767
Identification of Alfalfa Leaf Diseases Using Image Recognition Technology.
Qin, Feng; Liu, Dongxia; Sun, Bingda; Ruan, Liu; Ma, Zhanhong; Wang, Haiguang
2016-01-01
Common leaf spot (caused by Pseudopeziza medicaginis), rust (caused by Uromyces striatus), Leptosphaerulina leaf spot (caused by Leptosphaerulina briosiana) and Cercospora leaf spot (caused by Cercospora medicaginis) are the four common types of alfalfa leaf diseases. Timely and accurate diagnoses of these diseases are critical for disease management, alfalfa quality control and the healthy development of the alfalfa industry. In this study, the identification and diagnosis of the four types of alfalfa leaf diseases were investigated using pattern recognition algorithms based on image-processing technology. A sub-image with one or multiple typical lesions was obtained by artificial cutting from each acquired digital disease image. Then the sub-images were segmented using twelve lesion segmentation methods integrated with clustering algorithms (including K_means clustering, fuzzy C-means clustering and K_median clustering) and supervised classification algorithms (including logistic regression analysis, Naive Bayes algorithm, classification and regression tree, and linear discriminant analysis). After a comprehensive comparison, the segmentation method integrating the K_median clustering algorithm and linear discriminant analysis was chosen to obtain lesion images. After the lesion segmentation using this method, a total of 129 texture, color and shape features were extracted from the lesion images. Based on the features selected using three methods (ReliefF, 1R and correlation-based feature selection), disease recognition models were built using three supervised learning methods, including the random forest, support vector machine (SVM) and K-nearest neighbor methods. A comparison of the recognition results of the models was conducted. The results showed that when the ReliefF method was used for feature selection, the SVM model built with the most important 45 features (selected from a total of 129 features) was the optimal model. For this SVM model, the recognition accuracies of the training set and the testing set were 97.64% and 94.74%, respectively. Semi-supervised models for disease recognition were built based on the 45 effective features that were used for building the optimal SVM model. For the optimal semi-supervised models built with three ratios of labeled to unlabeled samples in the training set, the recognition accuracies of the training set and the testing set were both approximately 80%. The results indicated that image recognition of the four alfalfa leaf diseases can be implemented with high accuracy. This study provides a feasible solution for lesion image segmentation and image recognition of alfalfa leaf disease.
A Scalable Framework For Segmenting Magnetic Resonance Images
Hore, Prodip; Goldgof, Dmitry B.; Gu, Yuhua; Maudsley, Andrew A.; Darkazanli, Ammar
2009-01-01
A fast, accurate and fully automatic method of segmenting magnetic resonance images of the human brain is introduced. The approach scales well allowing fast segmentations of fine resolution images. The approach is based on modifications of the soft clustering algorithm, fuzzy c-means, that enable it to scale to large data sets. Two types of modifications to create incremental versions of fuzzy c-means are discussed. They are much faster when compared to fuzzy c-means for medium to extremely large data sets because they work on successive subsets of the data. They are comparable in quality to application of fuzzy c-means to all of the data. The clustering algorithms coupled with inhomogeneity correction and smoothing are used to create a framework for automatically segmenting magnetic resonance images of the human brain. The framework is applied to a set of normal human brain volumes acquired from different magnetic resonance scanners using different head coils, acquisition parameters and field strengths. Results are compared to those from two widely used magnetic resonance image segmentation programs, Statistical Parametric Mapping and the FMRIB Software Library (FSL). The results are comparable to FSL while providing significant speed-up and better scalability to larger volumes of data. PMID:20046893
Lymph node segmentation on CT images by a shape model guided deformable surface methodh
NASA Astrophysics Data System (ADS)
Maleike, Daniel; Fabel, Michael; Tetzlaff, Ralf; von Tengg-Kobligk, Hendrik; Heimann, Tobias; Meinzer, Hans-Peter; Wolf, Ivo
2008-03-01
With many tumor entities, quantitative assessment of lymph node growth over time is important to make therapy choices or to evaluate new therapies. The clinical standard is to document diameters on transversal slices, which is not the best measure for a volume. We present a new algorithm to segment (metastatic) lymph nodes and evaluate the algorithm with 29 lymph nodes in clinical CT images. The algorithm is based on a deformable surface search, which uses statistical shape models to restrict free deformation. To model lymph nodes, we construct an ellipsoid shape model, which strives for a surface with strong gradients and user-defined gray values. The algorithm is integrated into an application, which also allows interactive correction of the segmentation results. The evaluation shows that the algorithm gives good results in the majority of cases and is comparable to time-consuming manual segmentation. The median volume error was 10.1% of the reference volume before and 6.1% after manual correction. Integrated into an application, it is possible to perform lymph node volumetry for a whole patient within the 10 to 15 minutes time limit imposed by clinical routine.
An interactive method based on the live wire for segmentation of the breast in mammography images.
Zewei, Zhang; Tianyue, Wang; Li, Guo; Tingting, Wang; Lu, Xu
2014-01-01
In order to improve accuracy of computer-aided diagnosis of breast lumps, the authors introduce an improved interactive segmentation method based on Live Wire. This paper presents the Gabor filters and FCM clustering algorithm is introduced to the Live Wire cost function definition. According to the image FCM analysis for image edge enhancement, we eliminate the interference of weak edge and access external features clear segmentation results of breast lumps through improving Live Wire on two cases of breast segmentation data. Compared with the traditional method of image segmentation, experimental results show that the method achieves more accurate segmentation of breast lumps and provides more accurate objective basis on quantitative and qualitative analysis of breast lumps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cary, Theodore W.; Sultan, Laith R.; Sehgal, Chandra M., E-mail: sehgalc@uphs.upenn.edu
Purpose: To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Methods: Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced eachmore » phase of the cardiac cycle. Results: FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. Conclusions: FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging.« less
Local contrast-enhanced MR images via high dynamic range processing.
Chandra, Shekhar S; Engstrom, Craig; Fripp, Jurgen; Neubert, Ales; Jin, Jin; Walker, Duncan; Salvado, Olivier; Ho, Charles; Crozier, Stuart
2018-09-01
To develop a local contrast-enhancing and feature-preserving high dynamic range (HDR) image processing algorithm for multichannel and multisequence MR images of multiple body regions and tissues, and to evaluate its performance for structure visualization, bias field (correction) mitigation, and automated tissue segmentation. A multiscale-shape and detail-enhancement HDR-MRI algorithm is applied to data sets of multichannel and multisequence MR images of the brain, knee, breast, and hip. In multisequence 3T hip images, agreement between automatic cartilage segmentations and corresponding synthesized HDR-MRI series were computed for mean voxel overlap established from manual segmentations for a series of cases. Qualitative comparisons between the developed HDR-MRI and standard synthesis methods were performed on multichannel 7T brain and knee data, and multisequence 3T breast and knee data. The synthesized HDR-MRI series provided excellent enhancement of fine-scale structure from multiple scales and contrasts, while substantially reducing bias field effects in 7T brain gradient echo, T 1 and T 2 breast images and 7T knee multichannel images. Evaluation of the HDR-MRI approach on 3T hip multisequence images showed superior outcomes for automatic cartilage segmentations with respect to manual segmentation, particularly around regions with hyperintense synovial fluid, across a set of 3D sequences. The successful combination of multichannel/sequence MR images into a single-fused HDR-MR image format provided consolidated visualization of tissues within 1 omnibus image, enhanced definition of thin, complex anatomical structures in the presence of variable or hyperintense signals, and improved tissue (cartilage) segmentation outcomes. © 2018 International Society for Magnetic Resonance in Medicine.
Cary, Theodore W; Reamer, Courtney B; Sultan, Laith R; Mohler, Emile R; Sehgal, Chandra M
2014-02-01
To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced each phase of the cardiac cycle. FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging.
Cary, Theodore W.; Reamer, Courtney B.; Sultan, Laith R.; Mohler, Emile R.; Sehgal, Chandra M.
2014-01-01
Purpose: To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Methods: Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced each phase of the cardiac cycle. Results: FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. Conclusions: FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging. PMID:24506648
Development of a novel 2D color map for interactive segmentation of histological images.
Chaudry, Qaiser; Sharma, Yachna; Raza, Syed H; Wang, May D
2012-05-01
We present a color segmentation approach based on a two-dimensional color map derived from the input image. Pathologists stain tissue biopsies with various colored dyes to see the expression of biomarkers. In these images, because of color variation due to inconsistencies in experimental procedures and lighting conditions, the segmentation used to analyze biological features is usually ad-hoc. Many algorithms like K-means use a single metric to segment the image into different color classes and rarely provide users with powerful color control. Our 2D color map interactive segmentation technique based on human color perception information and the color distribution of the input image, enables user control without noticeable delay. Our methodology works for different staining types and different types of cancer tissue images. Our proposed method's results show good accuracy with low response and computational time making it a feasible method for user interactive applications involving segmentation of histological images.
Segmentation of cortical bone using fast level sets
NASA Astrophysics Data System (ADS)
Chowdhury, Manish; Jörgens, Daniel; Wang, Chunliang; Smedby, Årjan; Moreno, Rodrigo
2017-02-01
Cortical bone plays a big role in the mechanical competence of bone. The analysis of cortical bone requires accurate segmentation methods. Level set methods are usually in the state-of-the-art for segmenting medical images. However, traditional implementations of this method are computationally expensive. This drawback was recently tackled through the so-called coherent propagation extension of the classical algorithm which has decreased computation times dramatically. In this study, we assess the potential of this technique for segmenting cortical bone in interactive time in 3D images acquired through High Resolution peripheral Quantitative Computed Tomography (HR-pQCT). The obtained segmentations are used to estimate cortical thickness and cortical porosity of the investigated images. Cortical thickness and Cortical porosity is computed using sphere fitting and mathematical morphological operations respectively. Qualitative comparison between the segmentations of our proposed algorithm and a previously published approach on six images volumes reveals superior smoothness properties of the level set approach. While the proposed method yields similar results to previous approaches in regions where the boundary between trabecular and cortical bone is well defined, it yields more stable segmentations in challenging regions. This results in more stable estimation of parameters of cortical bone. The proposed technique takes few seconds to compute, which makes it suitable for clinical settings.
Ghane, Narjes; Vard, Alireza; Talebi, Ardeshir; Nematollahy, Pardis
2017-01-01
Recognition of white blood cells (WBCs) is the first step to diagnose some particular diseases such as acquired immune deficiency syndrome, leukemia, and other blood-related diseases that are usually done by pathologists using an optical microscope. This process is time-consuming, extremely tedious, and expensive and needs experienced experts in this field. Thus, a computer-aided diagnosis system that assists pathologists in the diagnostic process can be so effective. Segmentation of WBCs is usually a first step in developing a computer-aided diagnosis system. The main purpose of this paper is to segment WBCs from microscopic images. For this purpose, we present a novel combination of thresholding, k-means clustering, and modified watershed algorithms in three stages including (1) segmentation of WBCs from a microscopic image, (2) extraction of nuclei from cell's image, and (3) separation of overlapping cells and nuclei. The evaluation results of the proposed method show that similarity measures, precision, and sensitivity respectively were 92.07, 96.07, and 94.30% for nucleus segmentation and 92.93, 97.41, and 93.78% for cell segmentation. In addition, statistical analysis presents high similarity between manual segmentation and the results obtained by the proposed method.
Unified framework for automated iris segmentation using distantly acquired face images.
Tan, Chun-Wei; Kumar, Ajay
2012-09-01
Remote human identification using iris biometrics has high civilian and surveillance applications and its success requires the development of robust segmentation algorithm to automatically extract the iris region. This paper presents a new iris segmentation framework which can robustly segment the iris images acquired using near infrared or visible illumination. The proposed approach exploits multiple higher order local pixel dependencies to robustly classify the eye region pixels into iris or noniris regions. Face and eye detection modules have been incorporated in the unified framework to automatically provide the localized eye region from facial image for iris segmentation. We develop robust postprocessing operations algorithm to effectively mitigate the noisy pixels caused by the misclassification. Experimental results presented in this paper suggest significant improvement in the average segmentation errors over the previously proposed approaches, i.e., 47.5%, 34.1%, and 32.6% on UBIRIS.v2, FRGC, and CASIA.v4 at-a-distance databases, respectively. The usefulness of the proposed approach is also ascertained from recognition experiments on three different publicly available databases.
Task-oriented lossy compression of magnetic resonance images
NASA Astrophysics Data System (ADS)
Anderson, Mark C.; Atkins, M. Stella; Vaisey, Jacques
1996-04-01
A new task-oriented image quality metric is used to quantify the effects of distortion introduced into magnetic resonance images by lossy compression. This metric measures the similarity between a radiologist's manual segmentation of pathological features in the original images and the automated segmentations performed on the original and compressed images. The images are compressed using a general wavelet-based lossy image compression technique, embedded zerotree coding, and segmented using a three-dimensional stochastic model-based tissue segmentation algorithm. The performance of the compression system is then enhanced by compressing different regions of the image volume at different bit rates, guided by prior knowledge about the location of important anatomical regions in the image. Application of the new system to magnetic resonance images is shown to produce compression results superior to the conventional methods, both subjectively and with respect to the segmentation similarity metric.
SAR image segmentation using skeleton-based fuzzy clustering
NASA Astrophysics Data System (ADS)
Cao, Yun Yi; Chen, Yan Qiu
2003-06-01
SAR image segmentation can be converted to a clustering problem in which pixels or small patches are grouped together based on local feature information. In this paper, we present a novel framework for segmentation. The segmentation goal is achieved by unsupervised clustering upon characteristic descriptors extracted from local patches. The mixture model of characteristic descriptor, which combines intensity and texture feature, is investigated. The unsupervised algorithm is derived from the recently proposed Skeleton-Based Data Labeling method. Skeletons are constructed as prototypes of clusters to represent arbitrary latent structures in image data. Segmentation using Skeleton-Based Fuzzy Clustering is able to detect the types of surfaces appeared in SAR images automatically without any user input.
The segmentation of bones in pelvic CT images based on extraction of key frames.
Yu, Hui; Wang, Haijun; Shi, Yao; Xu, Ke; Yu, Xuyao; Cao, Yuzhen
2018-05-22
Bone segmentation is important in computed tomography (CT) imaging of the pelvis, which assists physicians in the early diagnosis of pelvic injury, in planning operations, and in evaluating the effects of surgical treatment. This study developed a new algorithm for the accurate, fast, and efficient segmentation of the pelvis. The proposed method consists of two main parts: the extraction of key frames and the segmentation of pelvic CT images. Key frames were extracted based on pixel difference, mutual information and normalized correlation coefficient. In the pelvis segmentation phase, skeleton extraction from CT images and a marker-based watershed algorithm were combined to segment the pelvis. To meet the requirements of clinical application, physician's judgment is needed. Therefore the proposed methodology is semi-automated. In this paper, 5 sets of CT data were used to test the overlapping area, and 15 CT images were used to determine the average deviation distance. The average overlapping area of the 5 sets was greater than 94%, and the minimum average deviation distance was approximately 0.58 pixels. In addition, the key frame extraction efficiency and the running time of the proposed method were evaluated on 20 sets of CT data. For each set, approximately 13% of the images were selected as key frames, and the average processing time was approximately 2 min (the time for manual marking was not included). The proposed method is able to achieve accurate, fast, and efficient segmentation of pelvic CT image sequences. Segmentation results not only provide an important reference for early diagnosis and decisions regarding surgical procedures, they also offer more accurate data for medical image registration, recognition and 3D reconstruction.
Segmentation of bone and soft tissue regions in digital radiographic images of extremities
NASA Astrophysics Data System (ADS)
Pakin, S. Kubilay; Gaborski, Roger S.; Barski, Lori L.; Foos, David H.; Parker, Kevin J.
2001-07-01
This paper presents an algorithm for segmentation of computed radiography (CR) images of extremities into bone and soft tissue regions. The algorithm is a region-based one in which the regions are constructed using a growing procedure with two different statistical tests. Following the growing process, tissue classification procedure is employed. The purpose of the classification is to label each region as either bone or soft tissue. This binary classification goal is achieved by using a voting procedure that consists of clustering of regions in each neighborhood system into two classes. The voting procedure provides a crucial compromise between local and global analysis of the image, which is necessary due to strong exposure variations seen on the imaging plate. Also, the existence of regions whose size is large enough such that exposure variations can be observed through them makes it necessary to use overlapping blocks during the classification. After the classification step, resulting bone and soft tissue regions are refined by fitting a 2nd order surface to each tissue, and reevaluating the label of each region according to the distance between the region and surfaces. The performance of the algorithm is tested on a variety of extremity images using manually segmented images as gold standard. The experiments showed that our algorithm provided a bone boundary with an average area overlap of 90% compared to the gold standard.
Medical image segmentation to estimate HER2 gene status in breast cancer
NASA Astrophysics Data System (ADS)
Palacios-Navarro, Guillermo; Acirón-Pomar, José Manuel; Vilchez-Sorribas, Enrique; Zambrano, Eddie Galarza
2016-02-01
This work deals with the estimation of HER2 Gene status in breast tumour images treated with in situ hybridization techniques (ISH). We propose a simple algorithm to obtain the amplification factor of HER2 gene. The obtained results are very close to those obtained by specialists in a manual way. The developed algorithm is based on colour image segmentation and has been included in a software application tool for breast tumour analysis. The developed tool focus on the estimation of the seriousness of tumours, facilitating the work of pathologists and contributing to a better diagnosis.
Hair segmentation using adaptive threshold from edge and branch length measures.
Lee, Ian; Du, Xian; Anthony, Brian
2017-10-01
Non-invasive imaging techniques allow the monitoring of skin structure and diagnosis of skin diseases in clinical applications. However, hair in skin images hampers the imaging and classification of the skin structure of interest. Although many hair segmentation methods have been proposed for digital hair removal, a major challenge in hair segmentation remains in detecting hairs that are thin, overlapping, of similar contrast or color to underlying skin, or overlaid on highly-textured skin structure. To solve the problem, we present an automatic hair segmentation method that uses edge density (ED) and mean branch length (MBL) to measure hair. First, hair is detected by the integration of top-hat transform and modified second-order Gaussian filter. Second, we employ a robust adaptive threshold of ED and MBL to generate a hair mask. Third, the hair mask is refined by k-NN classification of hair and skin pixels. The proposed algorithm was tested using two datasets of healthy skin images and lesion images respectively. These datasets were taken from different imaging platforms in various illumination levels and varying skin colors. We compared the hair detection and segmentation results from our algorithm and six other hair segmentation methods of state of the art. Our method exhibits high value of sensitivity: 75% and specificity: 95%, which indicates significantly higher accuracy and better balance between true positive and false positive detection than the other methods. Published by Elsevier Ltd.
An improved NAS-RIF algorithm for image restoration
NASA Astrophysics Data System (ADS)
Gao, Weizhe; Zou, Jianhua; Xu, Rong; Liu, Changhai; Li, Hengnian
2016-10-01
Space optical images are inevitably degraded by atmospheric turbulence, error of the optical system and motion. In order to get the true image, a novel nonnegativity and support constants recursive inverse filtering (NAS-RIF) algorithm is proposed to restore the degraded image. Firstly the image noise is weaken by Contourlet denoising algorithm. Secondly, the reliable object support region estimation is used to accelerate the algorithm convergence. We introduce the optimal threshold segmentation technology to improve the object support region. Finally, an object construction limit and the logarithm function are added to enhance algorithm stability. Experimental results demonstrate that, the proposed algorithm can increase the PSNR, and improve the quality of the restored images. The convergence speed of the proposed algorithm is faster than that of the original NAS-RIF algorithm.
Image segmentation based upon topological operators: real-time implementation case study
NASA Astrophysics Data System (ADS)
Mahmoudi, R.; Akil, M.
2009-02-01
In miscellaneous applications of image treatment, thinning and crest restoring present a lot of interests. Recommended algorithms for these procedures are those able to act directly over grayscales images while preserving topology. But their strong consummation in term of time remains the major disadvantage in their choice. In this paper we present an efficient hardware implementation on RISC processor of two powerful algorithms of thinning and crest restoring developed by our team. Proposed implementation enhances execution time. A chain of segmentation applied to medical imaging will serve as a concrete example to illustrate the improvements brought thanks to the optimization techniques in both algorithm and architectural levels. The particular use of the SSE instruction set relative to the X86_32 processors (PIV 3.06 GHz) will allow a best performance for real time processing: a cadency of 33 images (512*512) per second is assured.
Whole vertebral bone segmentation method with a statistical intensity-shape model based approach
NASA Astrophysics Data System (ADS)
Hanaoka, Shouhei; Fritscher, Karl; Schuler, Benedikt; Masutani, Yoshitaka; Hayashi, Naoto; Ohtomo, Kuni; Schubert, Rainer
2011-03-01
An automatic segmentation algorithm for the vertebrae in human body CT images is presented. Especially we focused on constructing and utilizing 4 different statistical intensity-shape combined models for the cervical, upper / lower thoracic and lumbar vertebrae, respectively. For this purpose, two previously reported methods were combined: a deformable model-based initial segmentation method and a statistical shape-intensity model-based precise segmentation method. The former is used as a pre-processing to detect the position and orientation of each vertebra, which determines the initial condition for the latter precise segmentation method. The precise segmentation method needs prior knowledge on both the intensities and the shapes of the objects. After PCA analysis of such shape-intensity expressions obtained from training image sets, vertebrae were parametrically modeled as a linear combination of the principal component vectors. The segmentation of each target vertebra was performed as fitting of this parametric model to the target image by maximum a posteriori estimation, combined with the geodesic active contour method. In the experimental result by using 10 cases, the initial segmentation was successful in 6 cases and only partially failed in 4 cases (2 in the cervical area and 2 in the lumbo-sacral). In the precise segmentation, the mean error distances were 2.078, 1.416, 0.777, 0.939 mm for cervical, upper and lower thoracic, lumbar spines, respectively. In conclusion, our automatic segmentation algorithm for the vertebrae in human body CT images showed a fair performance for cervical, thoracic and lumbar vertebrae.
Global Contrast Based Salient Region Detection.
Cheng, Ming-Ming; Mitra, Niloy J; Huang, Xiaolei; Torr, Philip H S; Hu, Shi-Min
2015-03-01
Automatic estimation of salient object regions across images, without any prior assumption or knowledge of the contents of the corresponding scenes, enhances many computer vision and computer graphics applications. We introduce a regional contrast based salient object detection algorithm, which simultaneously evaluates global contrast differences and spatial weighted coherence scores. The proposed algorithm is simple, efficient, naturally multi-scale, and produces full-resolution, high-quality saliency maps. These saliency maps are further used to initialize a novel iterative version of GrabCut, namely SaliencyCut, for high quality unsupervised salient object segmentation. We extensively evaluated our algorithm using traditional salient object detection datasets, as well as a more challenging Internet image dataset. Our experimental results demonstrate that our algorithm consistently outperforms 15 existing salient object detection and segmentation methods, yielding higher precision and better recall rates. We also show that our algorithm can be used to efficiently extract salient object masks from Internet images, enabling effective sketch-based image retrieval (SBIR) via simple shape comparisons. Despite such noisy internet images, where the saliency regions are ambiguous, our saliency guided image retrieval achieves a superior retrieval rate compared with state-of-the-art SBIR methods, and additionally provides important target object region information.
Fortmeier, Dirk; Mastmeyer, Andre; Schröder, Julian; Handels, Heinz
2016-01-01
This study presents a new visuo-haptic virtual reality (VR) training and planning system for percutaneous transhepatic cholangio-drainage (PTCD) based on partially segmented virtual patient models. We only use partially segmented image data instead of a full segmentation and circumvent the necessity of surface or volume mesh models. Haptic interaction with the virtual patient during virtual palpation, ultrasound probing and needle insertion is provided. Furthermore, the VR simulator includes X-ray and ultrasound simulation for image-guided training. The visualization techniques are GPU-accelerated by implementation in Cuda and include real-time volume deformations computed on the grid of the image data. Computation on the image grid enables straightforward integration of the deformed image data into the visualization components. To provide shorter rendering times, the performance of the volume deformation algorithm is improved by a multigrid approach. To evaluate the VR training system, a user evaluation has been performed and deformation algorithms are analyzed in terms of convergence speed with respect to a fully converged solution. The user evaluation shows positive results with increased user confidence after a training session. It is shown that using partially segmented patient data and direct volume rendering is suitable for the simulation of needle insertion procedures such as PTCD.
Recursive Hierarchical Image Segmentation by Region Growing and Constrained Spectral Clustering
NASA Technical Reports Server (NTRS)
Tilton, James C.
2002-01-01
This paper describes an algorithm for hierarchical image segmentation (referred to as HSEG) and its recursive formulation (referred to as RHSEG). The HSEG algorithm is a hybrid of region growing and constrained spectral clustering that produces a hierarchical set of image segmentations based on detected convergence points. In the main, HSEG employs the hierarchical stepwise optimization (HS WO) approach to region growing, which seeks to produce segmentations that are more optimized than those produced by more classic approaches to region growing. In addition, HSEG optionally interjects between HSWO region growing iterations merges between spatially non-adjacent regions (i.e., spectrally based merging or clustering) constrained by a threshold derived from the previous HSWO region growing iteration. While the addition of constrained spectral clustering improves the segmentation results, especially for larger images, it also significantly increases HSEG's computational requirements. To counteract this, a computationally efficient recursive, divide-and-conquer, implementation of HSEG (RHSEG) has been devised and is described herein. Included in this description is special code that is required to avoid processing artifacts caused by RHSEG s recursive subdivision of the image data. Implementations for single processor and for multiple processor computer systems are described. Results with Landsat TM data are included comparing HSEG with classic region growing. Finally, an application to image information mining and knowledge discovery is discussed.
Baca, A
1996-04-01
A method has been developed for the precise determination of anthropometric dimensions from the video images of four different body configurations. High precision is achieved by incorporating techniques for finding the location of object boundaries with sub-pixel accuracy, the implementation of calibration algorithms, and by taking into account the varying distances of the body segments from the recording camera. The system allows automatic segment boundary identification from the video image, if the boundaries are marked on the subject by black ribbons. In connection with the mathematical finite-mass-element segment model of Hatze, body segment parameters (volumes, masses, the three principal moments of inertia, the three local coordinates of the segmental mass centers etc.) can be computed by using the anthropometric data determined videometrically as input data. Compared to other, recently published video-based systems for the estimation of the inertial properties of body segments, the present algorithms reduce errors originating from optical distortions, inaccurate edge-detection procedures, and user-specified upper and lower segment boundaries or threshold levels for the edge-detection. The video-based estimation of human body segment parameters is especially useful in situations where ease of application and rapid availability of comparatively precise parameter values are of importance.
Mateos-Pérez, José María; Soto-Montenegro, María Luisa; Peña-Zalbidea, Santiago; Desco, Manuel; Vaquero, Juan José
2016-02-01
We present a novel segmentation algorithm for dynamic PET studies that groups pixels according to the similarity of their time-activity curves. Sixteen mice bearing a human tumor cell line xenograft (CH-157MN) were imaged with three different (68)Ga-DOTA-peptides (DOTANOC, DOTATATE, DOTATOC) using a small animal PET-CT scanner. Regional activities (input function and tumor) were obtained after manual delineation of regions of interest over the image. The algorithm was implemented under the jClustering framework and used to extract the same regional activities as in the manual approach. The volume of distribution in the tumor was computed using the Logan linear method. A Kruskal-Wallis test was used to investigate significant differences between the manually and automatically obtained volumes of distribution. The algorithm successfully segmented all the studies. No significant differences were found for the same tracer across different segmentation methods. Manual delineation revealed significant differences between DOTANOC and the other two tracers (DOTANOC - DOTATATE, p=0.020; DOTANOC - DOTATOC, p=0.033). Similar differences were found using the leader-follower algorithm. An open implementation of a novel segmentation method for dynamic PET studies is presented and validated in rodent studies. It successfully replicated the manual results obtained in small-animal studies, thus making it a reliable substitute for this task and, potentially, for other dynamic segmentation procedures. Copyright © 2016 Elsevier Ltd. All rights reserved.
Discriminative parameter estimation for random walks segmentation.
Baudin, Pierre-Yves; Goodman, Danny; Kumrnar, Puneet; Azzabou, Noura; Carlier, Pierre G; Paragios, Nikos; Kumar, M Pawan
2013-01-01
The Random Walks (RW) algorithm is one of the most efficient and easy-to-use probabilistic segmentation methods. By combining contrast terms with prior terms, it provides accurate segmentations of medical images in a fully automated manner. However, one of the main drawbacks of using the RW algorithm is that its parameters have to be hand-tuned. we propose a novel discriminative learning framework that estimates the parameters using a training dataset. The main challenge we face is that the training samples are not fully supervised. Specifically, they provide a hard segmentation of the images, instead of a probabilistic segmentation. We overcome this challenge by treating the optimal probabilistic segmentation that is compatible with the given hard segmentation as a latent variable. This allows us to employ the latent support vector machine formulation for parameter estimation. We show that our approach significantly outperforms the baseline methods on a challenging dataset consisting of real clinical 3D MRI volumes of skeletal muscles.
Denoising and segmentation of retinal layers in optical coherence tomography images
NASA Astrophysics Data System (ADS)
Dash, Puspita; Sigappi, A. N.
2018-04-01
Optical Coherence Tomography (OCT) is an imaging technique used to localize the intra-retinal boundaries for the diagnostics of macular diseases. Due to speckle noise, low image contrast and accurate segmentation of individual retinal layers is difficult. Due to this, a method for retinal layer segmentation from OCT images is presented. This paper proposes a pre-processing filtering approach for denoising and segmentation methods for segmenting retinal layers OCT images using graph based segmentation technique. These techniques are used for segmentation of retinal layers for normal as well as patients with Diabetic Macular Edema. The algorithm based on gradient information and shortest path search is applied to optimize the edge selection. In this paper the four main layers of the retina are segmented namely Internal limiting membrane (ILM), Retinal pigment epithelium (RPE), Inner nuclear layer (INL) and Outer nuclear layer (ONL). The proposed method is applied on a database of OCT images of both ten normal and twenty DME affected patients and the results are found to be promising.
Xiao, X; Bai, B; Xu, N; Wu, K
2015-04-01
Oversegmentation is a major drawback of the morphological watershed algorithm. Here, we study and reveal that the oversegmentation is not only because of the irregular shapes of the particle images, which people are familiar with, but also because of some particles, such as ellipses, with more than one centre. A new parameter, the striping level, is introduced and the criterion for striping parameter is built to help find the right markers prior to segmentation. An adaptive striping watershed algorithm is established by applying a procedure, called the marker searching algorithm, to find the markers, which can effectively suppress the oversegmentation. The effectiveness of the proposed method is validated by analysing some typical particle images including the images of gold nanorod ensembles. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
Brain segmentation and the generation of cortical surfaces
NASA Technical Reports Server (NTRS)
Joshi, M.; Cui, J.; Doolittle, K.; Joshi, S.; Van Essen, D.; Wang, L.; Miller, M. I.
1999-01-01
This paper describes methods for white matter segmentation in brain images and the generation of cortical surfaces from the segmentations. We have developed a system that allows a user to start with a brain volume, obtained by modalities such as MRI or cryosection, and constructs a complete digital representation of the cortical surface. The methodology consists of three basic components: local parametric modeling and Bayesian segmentation; surface generation and local quadratic coordinate fitting; and surface editing. Segmentations are computed by parametrically fitting known density functions to the histogram of the image using the expectation maximization algorithm [DLR77]. The parametric fits are obtained locally rather than globally over the whole volume to overcome local variations in gray levels. To represent the boundary of the gray and white matter we use triangulated meshes generated using isosurface generation algorithms [GH95]. A complete system of local parametric quadratic charts [JWM+95] is superimposed on the triangulated graph to facilitate smoothing and geodesic curve tracking. Algorithms for surface editing include extraction of the largest closed surface. Results for several macaque brains are presented comparing automated and hand surface generation. Copyright 1999 Academic Press.
Change Detection of Remote Sensing Images by Dt-Cwt and Mrf
NASA Astrophysics Data System (ADS)
Ouyang, S.; Fan, K.; Wang, H.; Wang, Z.
2017-05-01
Aiming at the significant loss of high frequency information during reducing noise and the pixel independence in change detection of multi-scale remote sensing image, an unsupervised algorithm is proposed based on the combination between Dual-tree Complex Wavelet Transform (DT-CWT) and Markov random Field (MRF) model. This method first performs multi-scale decomposition for the difference image by the DT-CWT and extracts the change characteristics in high-frequency regions by using a MRF-based segmentation algorithm. Then our method estimates the final maximum a posterior (MAP) according to the segmentation algorithm of iterative condition model (ICM) based on fuzzy c-means(FCM) after reconstructing the high-frequency and low-frequency sub-bands of each layer respectively. Finally, the method fuses the above segmentation results of each layer by using the fusion rule proposed to obtain the mask of the final change detection result. The results of experiment prove that the method proposed is of a higher precision and of predominant robustness properties.
Unsupervised texture image segmentation by improved neural network ART2
NASA Technical Reports Server (NTRS)
Wang, Zhiling; Labini, G. Sylos; Mugnuolo, R.; Desario, Marco
1994-01-01
We here propose a segmentation algorithm of texture image for a computer vision system on a space robot. An improved adaptive resonance theory (ART2) for analog input patterns is adapted to classify the image based on a set of texture image features extracted by a fast spatial gray level dependence method (SGLDM). The nonlinear thresholding functions in input layer of the neural network have been constructed by two parts: firstly, to reduce the effects of image noises on the features, a set of sigmoid functions is chosen depending on the types of the feature; secondly, to enhance the contrast of the features, we adopt fuzzy mapping functions. The cluster number in output layer can be increased by an autogrowing mechanism constantly when a new pattern happens. Experimental results and original or segmented pictures are shown, including the comparison between this approach and K-means algorithm. The system written in C language is performed on a SUN-4/330 sparc-station with an image board IT-150 and a CCD camera.
Automatic detection of multi-level acetowhite regions in RGB color images of the uterine cervix
NASA Astrophysics Data System (ADS)
Lange, Holger
2005-04-01
Uterine cervical cancer is the second most common cancer among women worldwide. Colposcopy is a diagnostic method used to detect cancer precursors and cancer of the uterine cervix, whereby a physician (colposcopist) visually inspects the metaplastic epithelium on the cervix for certain distinctly abnormal morphologic features. A contrast agent, a 3-5% acetic acid solution, is used, causing abnormal and metaplastic epithelia to turn white. The colposcopist considers diagnostic features such as the acetowhite, blood vessel structure, and lesion margin to derive a clinical diagnosis. STI Medical Systems is developing a Computer-Aided-Diagnosis (CAD) system for colposcopy -- ColpoCAD, a complex image analysis system that at its core assesses the same visual features as used by colposcopists. The acetowhite feature has been identified as one of the most important individual predictors of lesion severity. Here, we present the details and preliminary results of a multi-level acetowhite region detection algorithm for RGB color images of the cervix, including the detection of the anatomic features: cervix, os and columnar region, which are used for the acetowhite region detection. The RGB images are assumed to be glare free, either obtained by cross-polarized image acquisition or glare removal pre-processing. The basic approach of the algorithm is to extract a feature image from the RGB image that provides a good acetowhite to cervix background ratio, to segment the feature image using novel pixel grouping and multi-stage region-growing algorithms that provide region segmentations with different levels of detail, to extract the acetowhite regions from the region segmentations using a novel region selection algorithm, and then finally to extract the multi-levels from the acetowhite regions using multiple thresholds. The performance of the algorithm is demonstrated using human subject data.
NASA Astrophysics Data System (ADS)
Khan, F.; Enzmann, F.; Kersten, M.
2015-12-01
In X-ray computed microtomography (μXCT) image processing is the most important operation prior to image analysis. Such processing mainly involves artefact reduction and image segmentation. We propose a new two-stage post-reconstruction procedure of an image of a geological rock core obtained by polychromatic cone-beam μXCT technology. In the first stage, the beam-hardening (BH) is removed applying a best-fit quadratic surface algorithm to a given image data set (reconstructed slice), which minimizes the BH offsets of the attenuation data points from that surface. The final BH-corrected image is extracted from the residual data, or the difference between the surface elevation values and the original grey-scale values. For the second stage, we propose using a least square support vector machine (a non-linear classifier algorithm) to segment the BH-corrected data as a pixel-based multi-classification task. A combination of the two approaches was used to classify a complex multi-mineral rock sample. The Matlab code for this approach is provided in the Appendix. A minor drawback is that the proposed segmentation algorithm may become computationally demanding in the case of a high dimensional training data set.
Statistical Segmentation of Surgical Instruments in 3D Ultrasound Images
Linguraru, Marius George; Vasilyev, Nikolay V.; Del Nido, Pedro J.; Howe, Robert D.
2008-01-01
The recent development of real-time 3D ultrasound enables intracardiac beating heart procedures, but the distorted appearance of surgical instruments is a major challenge to surgeons. In addition, tissue and instruments have similar gray levels in US images and the interface between instruments and tissue is poorly defined. We present an algorithm that automatically estimates instrument location in intracardiac procedures. Expert-segmented images are used to initialize the statistical distributions of blood, tissue and instruments. Voxels are labeled through an iterative expectation-maximization algorithm using information from the neighboring voxels through a smoothing kernel. Once the three classes of voxels are separated, additional neighboring information is combined with the known shape characteristics of instruments in order to correct for misclassifications. We analyze the major axis of segmented data through their principal components and refine the results by a watershed transform, which corrects the results at the contact between instrument and tissue. We present results on 3D in-vitro data from a tank trial, and 3D in-vivo data from cardiac interventions on porcine beating hearts, using instruments of four types of materials. The comparison of algorithm results to expert-annotated images shows the correct segmentation and position of the instrument shaft. PMID:17521802
A Composite Model of Wound Segmentation Based on Traditional Methods and Deep Neural Networks
Wang, Changjian; Liu, Xiaohui; Jin, Shiyao
2018-01-01
Wound segmentation plays an important supporting role in the wound observation and wound healing. Current methods of image segmentation include those based on traditional process of image and those based on deep neural networks. The traditional methods use the artificial image features to complete the task without large amounts of labeled data. Meanwhile, the methods based on deep neural networks can extract the image features effectively without the artificial design, but lots of training data are required. Combined with the advantages of them, this paper presents a composite model of wound segmentation. The model uses the skin with wound detection algorithm we designed in the paper to highlight image features. Then, the preprocessed images are segmented by deep neural networks. And semantic corrections are applied to the segmentation results at last. The model shows a good performance in our experiment. PMID:29955227
A general system for automatic biomedical image segmentation using intensity neighborhoods.
Chen, Cheng; Ozolek, John A; Wang, Wei; Rohde, Gustavo K
2011-01-01
Image segmentation is important with applications to several problems in biology and medicine. While extensively researched, generally, current segmentation methods perform adequately in the applications for which they were designed, but often require extensive modifications or calibrations before being used in a different application. We describe an approach that, with few modifications, can be used in a variety of image segmentation problems. The approach is based on a supervised learning strategy that utilizes intensity neighborhoods to assign each pixel in a test image its correct class based on training data. We describe methods for modeling rotations and variations in scales as well as a subset selection for training the classifiers. We show that the performance of our approach in tissue segmentation tasks in magnetic resonance and histopathology microscopy images, as well as nuclei segmentation from fluorescence microscopy images, is similar to or better than several algorithms specifically designed for each of these applications.
NASA Astrophysics Data System (ADS)
Brekhna, Brekhna; Mahmood, Arif; Zhou, Yuanfeng; Zhang, Caiming
2017-11-01
Superpixels have gradually become popular in computer vision and image processing applications. However, no comprehensive study has been performed to evaluate the robustness of superpixel algorithms in regard to common forms of noise in natural images. We evaluated the robustness of 11 recently proposed algorithms to different types of noise. The images were corrupted with various degrees of Gaussian blur, additive white Gaussian noise, and impulse noise that either made the object boundaries weak or added extra information to it. We performed a robustness analysis of simple linear iterative clustering (SLIC), Voronoi Cells (VCells), flooding-based superpixel generation (FCCS), bilateral geodesic distance (Bilateral-G), superpixel via geodesic distance (SSS-G), manifold SLIC (M-SLIC), Turbopixels, superpixels extracted via energy-driven sampling (SEEDS), lazy random walk (LRW), real-time superpixel segmentation by DBSCAN clustering, and video supervoxels using partially absorbing random walks (PARW) algorithms. The evaluation process was carried out both qualitatively and quantitatively. For quantitative performance comparison, we used achievable segmentation accuracy (ASA), compactness, under-segmentation error (USE), and boundary recall (BR) on the Berkeley image database. The results demonstrated that all algorithms suffered performance degradation due to noise. For Gaussian blur, Bilateral-G exhibited optimal results for ASA and USE measures, SLIC yielded optimal compactness, whereas FCCS and DBSCAN remained optimal for BR. For the case of additive Gaussian and impulse noises, FCCS exhibited optimal results for ASA, USE, and BR, whereas Bilateral-G remained a close competitor in ASA and USE for Gaussian noise only. Additionally, Turbopixel demonstrated optimal performance for compactness for both types of noise. Thus, no single algorithm was able to yield optimal results for all three types of noise across all performance measures. Conclusively, to solve real-world problems effectively, more robust superpixel algorithms must be developed.
Hyper-spectral image segmentation using spectral clustering with covariance descriptors
NASA Astrophysics Data System (ADS)
Kursun, Olcay; Karabiber, Fethullah; Koc, Cemalettin; Bal, Abdullah
2009-02-01
Image segmentation is an important and difficult computer vision problem. Hyper-spectral images pose even more difficulty due to their high-dimensionality. Spectral clustering (SC) is a recently popular clustering/segmentation algorithm. In general, SC lifts the data to a high dimensional space, also known as the kernel trick, then derive eigenvectors in this new space, and finally using these new dimensions partition the data into clusters. We demonstrate that SC works efficiently when combined with covariance descriptors that can be used to assess pixelwise similarities rather than in the high-dimensional Euclidean space. We present the formulations and some preliminary results of the proposed hybrid image segmentation method for hyper-spectral images.
Automatic cortical segmentation in the developing brain.
Xue, Hui; Srinivasan, Latha; Jiang, Shuzhou; Rutherford, Mary; Edwards, A David; Rueckert, Daniel; Hajnal, Jo V
2007-01-01
The segmentation of neonatal cortex from magnetic resonance (MR) images is much more challenging than the segmentation of cortex in adults. The main reason is the inverted contrast between grey matter (GM) and white matter (WM) that occurs when myelination is incomplete. This causes mislabeled partial volume voxels, especially at the interface between GM and cerebrospinal fluid (CSF). We propose a fully automatic cortical segmentation algorithm, detecting these mislabeled voxels using a knowledge-based approach and correcting errors by adjusting local priors to favor the correct classification. Our results show that the proposed algorithm corrects errors in the segmentation of both GM and WM compared to the classic EM scheme. The segmentation algorithm has been tested on 25 neonates with the gestational ages ranging from approximately 27 to 45 weeks. Quantitative comparison to the manual segmentation demonstrates good performance of the method (mean Dice similarity: 0.758 +/- 0.037 for GM and 0.794 +/- 0.078 for WM).
Interactive-cut: Real-time feedback segmentation for translational research.
Egger, Jan; Lüddemann, Tobias; Schwarzenberg, Robert; Freisleben, Bernd; Nimsky, Christopher
2014-06-01
In this contribution, a scale-invariant image segmentation algorithm is introduced that "wraps" the algorithm's parameters for the user by its interactive behavior, avoiding the definition of "arbitrary" numbers that the user cannot really understand. Therefore, we designed a specific graph-based segmentation method that only requires a single seed-point inside the target-structure from the user and is thus particularly suitable for immediate processing and interactive, real-time adjustments by the user. In addition, color or gray value information that is needed for the approach can be automatically extracted around the user-defined seed point. Furthermore, the graph is constructed in such a way, so that a polynomial-time mincut computation can provide the segmentation result within a second on an up-to-date computer. The algorithm presented here has been evaluated with fixed seed points on 2D and 3D medical image data, such as brain tumors, cerebral aneurysms and vertebral bodies. Direct comparison of the obtained automatic segmentation results with costlier, manual slice-by-slice segmentations performed by trained physicians, suggest a strong medical relevance of this interactive approach. Copyright © 2014 Elsevier Ltd. All rights reserved.
Superpixel-based segmentation of glottal area from videolaryngoscopy images
NASA Astrophysics Data System (ADS)
Turkmen, H. Irem; Albayrak, Abdulkadir; Karsligil, M. Elif; Kocak, Ismail
2017-11-01
Segmentation of the glottal area with high accuracy is one of the major challenges for the development of systems for computer-aided diagnosis of vocal-fold disorders. We propose a hybrid model combining conventional methods with a superpixel-based segmentation approach. We first employed a superpixel algorithm to reveal the glottal area by eliminating the local variances of pixels caused by bleedings, blood vessels, and light reflections from mucosa. Then, the glottal area was detected by exploiting a seeded region-growing algorithm in a fully automatic manner. The experiments were conducted on videolaryngoscopy images obtained from both patients having pathologic vocal folds as well as healthy subjects. Finally, the proposed hybrid approach was compared with conventional region-growing and active-contour model-based glottal area segmentation algorithms. The performance of the proposed method was evaluated in terms of segmentation accuracy and elapsed time. The F-measure, true negative rate, and dice coefficients of the hybrid method were calculated as 82%, 93%, and 82%, respectively, which are superior to the state-of-art glottal-area segmentation methods. The proposed hybrid model achieved high success rates and robustness, making it suitable for developing a computer-aided diagnosis system that can be used in clinical routines.
Surgical motion characterization in simulated needle insertion procedures
NASA Astrophysics Data System (ADS)
Holden, Matthew S.; Ungi, Tamas; Sargent, Derek; McGraw, Robert C.; Fichtinger, Gabor
2012-02-01
PURPOSE: Evaluation of surgical performance in image-guided needle insertions is of emerging interest, to both promote patient safety and improve the efficiency and effectiveness of training. The purpose of this study was to determine if a Markov model-based algorithm can more accurately segment a needle-based surgical procedure into its five constituent tasks than a simple threshold-based algorithm. METHODS: Simulated needle trajectories were generated with known ground truth segmentation by a synthetic procedural data generator, with random noise added to each degree of freedom of motion. The respective learning algorithms were trained, and then tested on different procedures to determine task segmentation accuracy. In the threshold-based algorithm, a change in tasks was detected when the needle crossed a position/velocity threshold. In the Markov model-based algorithm, task segmentation was performed by identifying the sequence of Markov models most likely to have produced the series of observations. RESULTS: For amplitudes of translational noise greater than 0.01mm, the Markov model-based algorithm was significantly more accurate in task segmentation than the threshold-based algorithm (82.3% vs. 49.9%, p<0.001 for amplitude 10.0mm). For amplitudes less than 0.01mm, the two algorithms produced insignificantly different results. CONCLUSION: Task segmentation of simulated needle insertion procedures was improved by using a Markov model-based algorithm as opposed to a threshold-based algorithm for procedures involving translational noise.
A Manual Segmentation Tool for Three-Dimensional Neuron Datasets.
Magliaro, Chiara; Callara, Alejandro L; Vanello, Nicola; Ahluwalia, Arti
2017-01-01
To date, automated or semi-automated software and algorithms for segmentation of neurons from three-dimensional imaging datasets have had limited success. The gold standard for neural segmentation is considered to be the manual isolation performed by an expert. To facilitate the manual isolation of complex objects from image stacks, such as neurons in their native arrangement within the brain, a new Manual Segmentation Tool (ManSegTool) has been developed. ManSegTool allows user to load an image stack, scroll down the images and to manually draw the structures of interest stack-by-stack. Users can eliminate unwanted regions or split structures (i.e., branches from different neurons that are too close each other, but, to the experienced eye, clearly belong to a unique cell), to view the object in 3D and save the results obtained. The tool can be used for testing the performance of a single-neuron segmentation algorithm or to extract complex objects, where the available automated methods still fail. Here we describe the software's main features and then show an example of how ManSegTool can be used to segment neuron images acquired using a confocal microscope. In particular, expert neuroscientists were asked to segment different neurons from which morphometric variables were subsequently extracted as a benchmark for precision. In addition, a literature-defined index for evaluating the goodness of segmentation was used as a benchmark for accuracy. Neocortical layer axons from a DIADEM challenge dataset were also segmented with ManSegTool and compared with the manual "gold-standard" generated for the competition.
NASA Astrophysics Data System (ADS)
Chu, Yong; Chen, Ya-Fang; Su, Min-Ying; Nalcioglu, Orhan
2005-04-01
Image segmentation is an essential process for quantitative analysis. Segmentation of brain tissues in magnetic resonance (MR) images is very important for understanding the structural-functional relationship for various pathological conditions, such as dementia vs. normal brain aging. Different brain regions are responsible for certain functions and may have specific implication for diagnosis. Segmentation may facilitate the analysis of different brain regions to aid in early diagnosis. Region competition has been recently proposed as an effective method for image segmentation by minimizing a generalized Bayes/MDL criterion. However, it is sensitive to initial conditions - the "seeds", therefore an optimal choice of "seeds" is necessary for accurate segmentation. In this paper, we present a new skeleton-based region competition algorithm for automated gray and white matter segmentation. Skeletons can be considered as good "seed regions" since they provide the morphological a priori information, thus guarantee a correct initial condition. Intensity gradient information is also added to the global energy function to achieve a precise boundary localization. This algorithm was applied to perform gray and white matter segmentation using simulated MRI images from a realistic digital brain phantom. Nine different brain regions were manually outlined for evaluation of the performance in these separate regions. The results were compared to the gold-standard measure to calculate the true positive and true negative percentages. In general, this method worked well with a 96% accuracy, although the performance varied in different regions. We conclude that the skeleton-based region competition is an effective method for gray and white matter segmentation.
Measuring Leaf Area in Soy Plants by HSI Color Model Filtering and Mathematical Morphology
NASA Astrophysics Data System (ADS)
Benalcázar, M.; Padín, J.; Brun, M.; Pastore, J.; Ballarin, V.; Peirone, L.; Pereyra, G.
2011-12-01
There has been lately a significant progress in automating tasks for the agricultural sector. One of the advances is the development of robots, based on computer vision, applied to care and management of soy crops. In this task, digital image processing plays an important role, but must solve some important problems, like the ones associated to the variations in lighting conditions during image acquisition. Such variations influence directly on the brightness level of the images to be processed. In this paper we propose an algorithm to segment and measure automatically the leaf area of soy plants. This information is used by the specialists to evaluate and compare the growth of different soy genotypes. This algorithm, based on color filtering using the HSI model, detects green objects from the image background. The segmentation of leaves (foliage) was made applying Mathematical Morphology. The foliage area was estimated counting the pixels that belong to the segmented leaves. From several experiments, consisting in applying the algorithm to measure the foliage of about fifty plants of various genotypes of soy, at different growth stages, we obtained successful results, despite the high brightness variations and shadows in the processed images.
Böttger, T; Grunewald, K; Schöbinger, M; Fink, C; Risse, F; Kauczor, H U; Meinzer, H P; Wolf, Ivo
2007-03-07
Recently it has been shown that regional lung perfusion can be assessed using time-resolved contrast-enhanced magnetic resonance (MR) imaging. Quantification of the perfusion images has been attempted, based on definition of small regions of interest (ROIs). Use of complete lung segmentations instead of ROIs could possibly increase quantification accuracy. Due to the low signal-to-noise ratio, automatic segmentation algorithms cannot be applied. On the other hand, manual segmentation of the lung tissue is very time consuming and can become inaccurate, as the borders of the lung to adjacent tissues are not always clearly visible. We propose a new workflow for semi-automatic segmentation of the lung from additionally acquired morphological HASTE MR images. First the lung is delineated semi-automatically in the HASTE image. Next the HASTE image is automatically registered with the perfusion images. Finally, the transformation resulting from the registration is used to align the lung segmentation from the morphological dataset with the perfusion images. We evaluated rigid, affine and locally elastic transformations, suitable optimizers and different implementations of mutual information (MI) metrics to determine the best possible registration algorithm. We located the shortcomings of the registration procedure and under which conditions automatic registration will succeed or fail. Segmentation results were evaluated using overlap and distance measures. Integration of the new workflow reduces the time needed for post-processing of the data, simplifies the perfusion quantification and reduces interobserver variability in the segmentation process. In addition, the matched morphological data set can be used to identify morphologic changes as the source for the perfusion abnormalities.
NASA Astrophysics Data System (ADS)
Alvarenga de Moura Meneses, Anderson; Giusti, Alessandro; de Almeida, André Pereira; Parreira Nogueira, Liebert; Braz, Delson; Cely Barroso, Regina; deAlmeida, Carlos Eduardo
2011-12-01
Synchrotron Radiation (SR) X-ray micro-Computed Tomography (μCT) enables magnified images to be used as a non-invasive and non-destructive technique with a high space resolution for the qualitative and quantitative analyses of biomedical samples. The research on applications of segmentation algorithms to SR-μCT is an open problem, due to the interesting and well-known characteristics of SR images for visualization, such as the high resolution and the phase contrast effect. In this article, we describe and assess the application of the Energy Minimization via Graph Cuts (EMvGC) algorithm for the segmentation of SR-μCT biomedical images acquired at the Synchrotron Radiation for MEdical Physics (SYRMEP) beam line at the Elettra Laboratory (Trieste, Italy). We also propose a method using EMvGC with Artificial Neural Networks (EMANNs) for correcting misclassifications due to intensity variation of phase contrast, which are important effects and sometimes indispensable in certain biomedical applications, although they impair the segmentation provided by conventional techniques. Results demonstrate considerable success in the segmentation of SR-μCT biomedical images, with average Dice Similarity Coefficient 99.88% for bony tissue in Wistar Rats rib samples (EMvGC), as well as 98.95% and 98.02% for scans of Rhodnius prolixus insect samples (Chagas's disease vector) with EMANNs, in relation to manual segmentation. The techniques EMvGC and EMANNs cope with the task of performing segmentation in images with the intensity variation due to phase contrast effects, presenting a superior performance in comparison to conventional segmentation techniques based on thresholding and linear/nonlinear image filtering, which is also discussed in the present article.
NASA Technical Reports Server (NTRS)
Thadani, S. G.
1977-01-01
The Maximum Likelihood Estimation of Signature Transformation (MLEST) algorithm is used to obtain maximum likelihood estimates (MLE) of affine transformation. The algorithm has been evaluated for three sets of data: simulated (training and recognition segment pairs), consecutive-day (data gathered from Landsat images), and geographical-extension (large-area crop inventory experiment) data sets. For each set, MLEST signature extension runs were made to determine MLE values and the affine-transformed training segment signatures were used to classify the recognition segments. The classification results were used to estimate wheat proportions at 0 and 1% threshold values.
NASA Astrophysics Data System (ADS)
Afifi, Ahmed; Nakaguchi, Toshiya; Tsumura, Norimichi
2010-03-01
In many medical applications, the automatic segmentation of deformable organs from medical images is indispensable and its accuracy is of a special interest. However, the automatic segmentation of these organs is a challenging task according to its complex shape. Moreover, the medical images usually have noise, clutter, or occlusion and considering the image information only often leads to meager image segmentation. In this paper, we propose a fully automated technique for the segmentation of deformable organs from medical images. In this technique, the segmentation is performed by fitting a nonlinear shape model with pre-segmented images. The kernel principle component analysis (KPCA) is utilized to capture the complex organs deformation and to construct the nonlinear shape model. The presegmentation is carried out by labeling each pixel according to its high level texture features extracted using the overcomplete wavelet packet decomposition. Furthermore, to guarantee an accurate fitting between the nonlinear model and the pre-segmented images, the particle swarm optimization (PSO) algorithm is employed to adapt the model parameters for the novel images. In this paper, we demonstrate the competence of proposed technique by implementing it to the liver segmentation from computed tomography (CT) scans of different patients.
Hierarchical image segmentation via recursive superpixel with adaptive regularity
NASA Astrophysics Data System (ADS)
Nakamura, Kensuke; Hong, Byung-Woo
2017-11-01
A fast and accurate segmentation algorithm in a hierarchical way based on a recursive superpixel technique is presented. We propose a superpixel energy formulation in which the trade-off between data fidelity and regularization is dynamically determined based on the local residual in the energy optimization procedure. We also present an energy optimization algorithm that allows a pixel to be shared by multiple regions to improve the accuracy and appropriate the number of segments. The qualitative and quantitative evaluations demonstrate that our algorithm, combining the proposed energy and optimization, outperforms the conventional k-means algorithm by up to 29.10% in F-measure. We also perform comparative analysis with state-of-the-art algorithms in the hierarchical segmentation. Our algorithm yields smooth regions throughout the hierarchy as opposed to the others that include insignificant details. Our algorithm overtakes the other algorithms in terms of balance between accuracy and computational time. Specifically, our method runs 36.48% faster than the region-merging approach, which is the fastest of the comparing algorithms, while achieving a comparable accuracy.
Automatic segmentation of mammogram and tomosynthesis images
NASA Astrophysics Data System (ADS)
Sargent, Dusty; Park, Sun Young
2016-03-01
Breast cancer is a one of the most common forms of cancer in terms of new cases and deaths both in the United States and worldwide. However, the survival rate with breast cancer is high if it is detected and treated before it spreads to other parts of the body. The most common screening methods for breast cancer are mammography and digital tomosynthesis, which involve acquiring X-ray images of the breasts that are interpreted by radiologists. The work described in this paper is aimed at optimizing the presentation of mammography and tomosynthesis images to the radiologist, thereby improving the early detection rate of breast cancer and the resulting patient outcomes. Breast cancer tissue has greater density than normal breast tissue, and appears as dense white image regions that are asymmetrical between the breasts. These irregularities are easily seen if the breast images are aligned and viewed side-by-side. However, since the breasts are imaged separately during mammography, the images may be poorly centered and aligned relative to each other, and may not properly focus on the tissue area. Similarly, although a full three dimensional reconstruction can be created from digital tomosynthesis images, the same centering and alignment issues can occur for digital tomosynthesis. Thus, a preprocessing algorithm that aligns the breasts for easy side-by-side comparison has the potential to greatly increase the speed and accuracy of mammogram reading. Likewise, the same preprocessing can improve the results of automatic tissue classification algorithms for mammography. In this paper, we present an automated segmentation algorithm for mammogram and tomosynthesis images that aims to improve the speed and accuracy of breast cancer screening by mitigating the above mentioned problems. Our algorithm uses information in the DICOM header to facilitate preprocessing, and incorporates anatomical region segmentation and contour analysis, along with a hidden Markov model (HMM) for processing the multi-frame tomosynthesis images. The output of the algorithm is a new set of images that have been processed to show only the diagnostically relevant region and align the breasts so that they can be easily compared side-by-side. Our method has been tested on approximately 750 images, including various examples of mammogram, tomosynthesis, and scanned images, and has correctly segmented the diagnostically relevant image region in 97% of cases.
NASA Astrophysics Data System (ADS)
Kadhim, N. M. S. M.; Mourshed, M.; Bray, M. T.
2015-03-01
Very-High-Resolution (VHR) satellite imagery is a powerful source of data for detecting and extracting information about urban constructions. Shadow in the VHR satellite imageries provides vital information on urban construction forms, illumination direction, and the spatial distribution of the objects that can help to further understanding of the built environment. However, to extract shadows, the automated detection of shadows from images must be accurate. This paper reviews current automatic approaches that have been used for shadow detection from VHR satellite images and comprises two main parts. In the first part, shadow concepts are presented in terms of shadow appearance in the VHR satellite imageries, current shadow detection methods, and the usefulness of shadow detection in urban environments. In the second part, we adopted two approaches which are considered current state-of-the-art shadow detection, and segmentation algorithms using WorldView-3 and Quickbird images. In the first approach, the ratios between the NIR and visible bands were computed on a pixel-by-pixel basis, which allows for disambiguation between shadows and dark objects. To obtain an accurate shadow candidate map, we further refine the shadow map after applying the ratio algorithm on the Quickbird image. The second selected approach is the GrabCut segmentation approach for examining its performance in detecting the shadow regions of urban objects using the true colour image from WorldView-3. Further refinement was applied to attain a segmented shadow map. Although the detection of shadow regions is a very difficult task when they are derived from a VHR satellite image that comprises a visible spectrum range (RGB true colour), the results demonstrate that the detection of shadow regions in the WorldView-3 image is a reasonable separation from other objects by applying the GrabCut algorithm. In addition, the derived shadow map from the Quickbird image indicates significant performance of the ratio algorithm. The differences in the characteristics of the two satellite imageries in terms of spatial and spectral resolution can play an important role in the estimation and detection of the shadow of urban objects.