Image segmentation using fuzzy LVQ clustering networks
NASA Technical Reports Server (NTRS)
Tsao, Eric Chen-Kuo; Bezdek, James C.; Pal, Nikhil R.
1992-01-01
In this note we formulate image segmentation as a clustering problem. Feature vectors extracted from a raw image are clustered into subregions, thereby segmenting the image. A fuzzy generalization of a Kohonen learning vector quantization (LVQ) which integrates the Fuzzy c-Means (FCM) model with the learning rate and updating strategies of the LVQ is used for this task. This network, which segments images in an unsupervised manner, is thus related to the FCM optimization problem. Numerical examples on photographic and magnetic resonance images are given to illustrate this approach to image segmentation.
Elimination of RF inhomogeneity effects in segmentation.
Agus, Onur; Ozkan, Mehmed; Aydin, Kubilay
2007-01-01
There are various methods proposed for the segmentation and analysis of MR images. However the efficiency of these techniques is effected by various artifacts that occur in the imaging system. One of the most encountered problems is the intensity variation across an image. To overcome this problem different methods are used. In this paper we propose a method for the elimination of intensity artifacts in segmentation of MRI images. Inter imager variations are also minimized to produce the same tissue segmentation for the same patient. A well-known multivariate classification algorithm, maximum likelihood is employed to illustrate the enhancement in segmentation.
Patient-specific semi-supervised learning for postoperative brain tumor segmentation.
Meier, Raphael; Bauer, Stefan; Slotboom, Johannes; Wiest, Roland; Reyes, Mauricio
2014-01-01
In contrast to preoperative brain tumor segmentation, the problem of postoperative brain tumor segmentation has been rarely approached so far. We present a fully-automatic segmentation method using multimodal magnetic resonance image data and patient-specific semi-supervised learning. The idea behind our semi-supervised approach is to effectively fuse information from both pre- and postoperative image data of the same patient to improve segmentation of the postoperative image. We pose image segmentation as a classification problem and solve it by adopting a semi-supervised decision forest. The method is evaluated on a cohort of 10 high-grade glioma patients, with segmentation performance and computation time comparable or superior to a state-of-the-art brain tumor segmentation method. Moreover, our results confirm that the inclusion of preoperative MR images lead to a better performance regarding postoperative brain tumor segmentation.
MRI Segmentation of the Human Brain: Challenges, Methods, and Applications
Despotović, Ivana
2015-01-01
Image segmentation is one of the most important tasks in medical image analysis and is often the first and the most critical step in many clinical applications. In brain MRI analysis, image segmentation is commonly used for measuring and visualizing the brain's anatomical structures, for analyzing brain changes, for delineating pathological regions, and for surgical planning and image-guided interventions. In the last few decades, various segmentation techniques of different accuracy and degree of complexity have been developed and reported in the literature. In this paper we review the most popular methods commonly used for brain MRI segmentation. We highlight differences between them and discuss their capabilities, advantages, and limitations. To address the complexity and challenges of the brain MRI segmentation problem, we first introduce the basic concepts of image segmentation. Then, we explain different MRI preprocessing steps including image registration, bias field correction, and removal of nonbrain tissue. Finally, after reviewing different brain MRI segmentation methods, we discuss the validation problem in brain MRI segmentation. PMID:25945121
NASA Astrophysics Data System (ADS)
Guerrout, EL-Hachemi; Ait-Aoudia, Samy; Michelucci, Dominique; Mahiou, Ramdane
2018-05-01
Many routine medical examinations produce images of patients suffering from various pathologies. With the huge number of medical images, the manual analysis and interpretation became a tedious task. Thus, automatic image segmentation became essential for diagnosis assistance. Segmentation consists in dividing the image into homogeneous and significant regions. We focus on hidden Markov random fields referred to as HMRF to model the problem of segmentation. This modelisation leads to a classical function minimisation problem. Broyden-Fletcher-Goldfarb-Shanno algorithm referred to as BFGS is one of the most powerful methods to solve unconstrained optimisation problem. In this paper, we investigate the combination of HMRF and BFGS algorithm to perform the segmentation operation. The proposed method shows very good segmentation results comparing with well-known approaches. The tests are conducted on brain magnetic resonance image databases (BrainWeb and IBSR) largely used to objectively confront the results obtained. The well-known Dice coefficient (DC) was used as similarity metric. The experimental results show that, in many cases, our proposed method approaches the perfect segmentation with a Dice Coefficient above .9. Moreover, it generally outperforms other methods in the tests conducted.
Semantic Image Segmentation with Contextual Hierarchical Models.
Seyedhosseini, Mojtaba; Tasdizen, Tolga
2016-05-01
Semantic segmentation is the problem of assigning an object label to each pixel. It unifies the image segmentation and object recognition problems. The importance of using contextual information in semantic segmentation frameworks has been widely realized in the field. We propose a contextual framework, called contextual hierarchical model (CHM), which learns contextual information in a hierarchical framework for semantic segmentation. At each level of the hierarchy, a classifier is trained based on downsampled input images and outputs of previous levels. Our model then incorporates the resulting multi-resolution contextual information into a classifier to segment the input image at original resolution. This training strategy allows for optimization of a joint posterior probability at multiple resolutions through the hierarchy. Contextual hierarchical model is purely based on the input image patches and does not make use of any fragments or shape examples. Hence, it is applicable to a variety of problems such as object segmentation and edge detection. We demonstrate that CHM performs at par with state-of-the-art on Stanford background and Weizmann horse datasets. It also outperforms state-of-the-art edge detection methods on NYU depth dataset and achieves state-of-the-art on Berkeley segmentation dataset (BSDS 500).
Globally optimal tumor segmentation in PET-CT images: a graph-based co-segmentation method.
Han, Dongfeng; Bayouth, John; Song, Qi; Taurani, Aakant; Sonka, Milan; Buatti, John; Wu, Xiaodong
2011-01-01
Tumor segmentation in PET and CT images is notoriously challenging due to the low spatial resolution in PET and low contrast in CT images. In this paper, we have proposed a general framework to use both PET and CT images simultaneously for tumor segmentation. Our method utilizes the strength of each imaging modality: the superior contrast of PET and the superior spatial resolution of CT. We formulate this problem as a Markov Random Field (MRF) based segmentation of the image pair with a regularized term that penalizes the segmentation difference between PET and CT. Our method simulates the clinical practice of delineating tumor simultaneously using both PET and CT, and is able to concurrently segment tumor from both modalities, achieving globally optimal solutions in low-order polynomial time by a single maximum flow computation. The method was evaluated on clinically relevant tumor segmentation problems. The results showed that our method can effectively make use of both PET and CT image information, yielding segmentation accuracy of 0.85 in Dice similarity coefficient and the average median hausdorff distance (HD) of 6.4 mm, which is 10% (resp., 16%) improvement compared to the graph cuts method solely using the PET (resp., CT) images.
A general system for automatic biomedical image segmentation using intensity neighborhoods.
Chen, Cheng; Ozolek, John A; Wang, Wei; Rohde, Gustavo K
2011-01-01
Image segmentation is important with applications to several problems in biology and medicine. While extensively researched, generally, current segmentation methods perform adequately in the applications for which they were designed, but often require extensive modifications or calibrations before being used in a different application. We describe an approach that, with few modifications, can be used in a variety of image segmentation problems. The approach is based on a supervised learning strategy that utilizes intensity neighborhoods to assign each pixel in a test image its correct class based on training data. We describe methods for modeling rotations and variations in scales as well as a subset selection for training the classifiers. We show that the performance of our approach in tissue segmentation tasks in magnetic resonance and histopathology microscopy images, as well as nuclei segmentation from fluorescence microscopy images, is similar to or better than several algorithms specifically designed for each of these applications.
Open-source software platform for medical image segmentation applications
NASA Astrophysics Data System (ADS)
Namías, R.; D'Amato, J. P.; del Fresno, M.
2017-11-01
Segmenting 2D and 3D images is a crucial and challenging problem in medical image analysis. Although several image segmentation algorithms have been proposed for different applications, no universal method currently exists. Moreover, their use is usually limited when detection of complex and multiple adjacent objects of interest is needed. In addition, the continually increasing volumes of medical imaging scans require more efficient segmentation software design and highly usable applications. In this context, we present an extension of our previous segmentation framework which allows the combination of existing explicit deformable models in an efficient and transparent way, handling simultaneously different segmentation strategies and interacting with a graphic user interface (GUI). We present the object-oriented design and the general architecture which consist of two layers: the GUI at the top layer, and the processing core filters at the bottom layer. We apply the framework for segmenting different real-case medical image scenarios on public available datasets including bladder and prostate segmentation from 2D MRI, and heart segmentation in 3D CT. Our experiments on these concrete problems show that this framework facilitates complex and multi-object segmentation goals while providing a fast prototyping open-source segmentation tool.
Image-guided regularization level set evolution for MR image segmentation and bias field correction.
Wang, Lingfeng; Pan, Chunhong
2014-01-01
Magnetic resonance (MR) image segmentation is a crucial step in surgical and treatment planning. In this paper, we propose a level-set-based segmentation method for MR images with intensity inhomogeneous problem. To tackle the initialization sensitivity problem, we propose a new image-guided regularization to restrict the level set function. The maximum a posteriori inference is adopted to unify segmentation and bias field correction within a single framework. Under this framework, both the contour prior and the bias field prior are fully used. As a result, the image intensity inhomogeneity can be well solved. Extensive experiments are provided to evaluate the proposed method, showing significant improvements in both segmentation and bias field correction accuracies as compared with other state-of-the-art approaches. Copyright © 2014 Elsevier Inc. All rights reserved.
Standing on the shoulders of giants: improving medical image segmentation via bias correction.
Wang, Hongzhi; Das, Sandhitsu; Pluta, John; Craige, Caryne; Altinay, Murat; Avants, Brian; Weiner, Michael; Mueller, Susanne; Yushkevich, Paul
2010-01-01
We propose a simple strategy to improve automatic medical image segmentation. The key idea is that without deep understanding of a segmentation method, we can still improve its performance by directly calibrating its results with respect to manual segmentation. We formulate the calibration process as a bias correction problem, which is addressed by machine learning using training data. We apply this methodology on three segmentation problems/methods and show significant improvements for all of them.
Segmentation Fusion Techniques with Application to Plenoptic Images: A Survey.
NASA Astrophysics Data System (ADS)
Evin, D.; Hadad, A.; Solano, A.; Drozdowicz, B.
2016-04-01
The segmentation of anatomical and pathological structures plays a key role in the characterization of clinically relevant evidence from digital images. Recently, plenoptic imaging has emerged as a new promise to enrich the diagnostic potential of conventional photography. Since the plenoptic images comprises a set of slightly different versions of the target scene, we propose to make use of those images to improve the segmentation quality in relation to the scenario of a single image segmentation. The problem of finding a segmentation solution from multiple images of a single scene, is called segmentation fusion. This paper reviews the issue of segmentation fusion in order to find solutions that can be applied to plenoptic images, particularly images from the ophthalmological domain.
Remote sensing image segmentation based on Hadoop cloud platform
NASA Astrophysics Data System (ADS)
Li, Jie; Zhu, Lingling; Cao, Fubin
2018-01-01
To solve the problem that the remote sensing image segmentation speed is slow and the real-time performance is poor, this paper studies the method of remote sensing image segmentation based on Hadoop platform. On the basis of analyzing the structural characteristics of Hadoop cloud platform and its component MapReduce programming, this paper proposes a method of image segmentation based on the combination of OpenCV and Hadoop cloud platform. Firstly, the MapReduce image processing model of Hadoop cloud platform is designed, the input and output of image are customized and the segmentation method of the data file is rewritten. Then the Mean Shift image segmentation algorithm is implemented. Finally, this paper makes a segmentation experiment on remote sensing image, and uses MATLAB to realize the Mean Shift image segmentation algorithm to compare the same image segmentation experiment. The experimental results show that under the premise of ensuring good effect, the segmentation rate of remote sensing image segmentation based on Hadoop cloud Platform has been greatly improved compared with the single MATLAB image segmentation, and there is a great improvement in the effectiveness of image segmentation.
NASA Technical Reports Server (NTRS)
Tilton, James C.
1988-01-01
Image segmentation can be a key step in data compression and image analysis. However, the segmentation results produced by most previous approaches to region growing are suspect because they depend on the order in which portions of the image are processed. An iterative parallel segmentation algorithm avoids this problem by performing globally best merges first. Such a segmentation approach, and two implementations of the approach on NASA's Massively Parallel Processor (MPP) are described. Application of the segmentation approach to data compression and image analysis is then described, and results of such application are given for a LANDSAT Thematic Mapper image.
Multi-object segmentation using coupled nonparametric shape and relative pose priors
NASA Astrophysics Data System (ADS)
Uzunbas, Mustafa Gökhan; Soldea, Octavian; Çetin, Müjdat; Ünal, Gözde; Erçil, Aytül; Unay, Devrim; Ekin, Ahmet; Firat, Zeynep
2009-02-01
We present a new method for multi-object segmentation in a maximum a posteriori estimation framework. Our method is motivated by the observation that neighboring or coupling objects in images generate configurations and co-dependencies which could potentially aid in segmentation if properly exploited. Our approach employs coupled shape and inter-shape pose priors that are computed using training images in a nonparametric multi-variate kernel density estimation framework. The coupled shape prior is obtained by estimating the joint shape distribution of multiple objects and the inter-shape pose priors are modeled via standard moments. Based on such statistical models, we formulate an optimization problem for segmentation, which we solve by an algorithm based on active contours. Our technique provides significant improvements in the segmentation of weakly contrasted objects in a number of applications. In particular for medical image analysis, we use our method to extract brain Basal Ganglia structures, which are members of a complex multi-object system posing a challenging segmentation problem. We also apply our technique to the problem of handwritten character segmentation. Finally, we use our method to segment cars in urban scenes.
Colony image acquisition and genetic segmentation algorithm and colony analyses
NASA Astrophysics Data System (ADS)
Wang, W. X.
2012-01-01
Colony anaysis is used in a large number of engineerings such as food, dairy, beverages, hygiene, environmental monitoring, water, toxicology, sterility testing. In order to reduce laboring and increase analysis acuracy, many researchers and developers have made efforts for image analysis systems. The main problems in the systems are image acquisition, image segmentation and image analysis. In this paper, to acquire colony images with good quality, an illumination box was constructed. In the box, the distances between lights and dishe, camra lens and lights, and camera lens and dishe are adjusted optimally. In image segmentation, It is based on a genetic approach that allow one to consider the segmentation problem as a global optimization,. After image pre-processing and image segmentation, the colony analyses are perfomed. The colony image analysis consists of (1) basic colony parameter measurements; (2) colony size analysis; (3) colony shape analysis; and (4) colony surface measurements. All the above visual colony parameters can be selected and combined together, used to make a new engineeing parameters. The colony analysis can be applied into different applications.
Multi-Atlas Segmentation using Partially Annotated Data: Methods and Annotation Strategies.
Koch, Lisa M; Rajchl, Martin; Bai, Wenjia; Baumgartner, Christian F; Tong, Tong; Passerat-Palmbach, Jonathan; Aljabar, Paul; Rueckert, Daniel
2017-08-22
Multi-atlas segmentation is a widely used tool in medical image analysis, providing robust and accurate results by learning from annotated atlas datasets. However, the availability of fully annotated atlas images for training is limited due to the time required for the labelling task. Segmentation methods requiring only a proportion of each atlas image to be labelled could therefore reduce the workload on expert raters tasked with annotating atlas images. To address this issue, we first re-examine the labelling problem common in many existing approaches and formulate its solution in terms of a Markov Random Field energy minimisation problem on a graph connecting atlases and the target image. This provides a unifying framework for multi-atlas segmentation. We then show how modifications in the graph configuration of the proposed framework enable the use of partially annotated atlas images and investigate different partial annotation strategies. The proposed method was evaluated on two Magnetic Resonance Imaging (MRI) datasets for hippocampal and cardiac segmentation. Experiments were performed aimed at (1) recreating existing segmentation techniques with the proposed framework and (2) demonstrating the potential of employing sparsely annotated atlas data for multi-atlas segmentation.
Rough-Fuzzy Clustering and Unsupervised Feature Selection for Wavelet Based MR Image Segmentation
Maji, Pradipta; Roy, Shaswati
2015-01-01
Image segmentation is an indispensable process in the visualization of human tissues, particularly during clinical analysis of brain magnetic resonance (MR) images. For many human experts, manual segmentation is a difficult and time consuming task, which makes an automated brain MR image segmentation method desirable. In this regard, this paper presents a new segmentation method for brain MR images, integrating judiciously the merits of rough-fuzzy computing and multiresolution image analysis technique. The proposed method assumes that the major brain tissues, namely, gray matter, white matter, and cerebrospinal fluid from the MR images are considered to have different textural properties. The dyadic wavelet analysis is used to extract the scale-space feature vector for each pixel, while the rough-fuzzy clustering is used to address the uncertainty problem of brain MR image segmentation. An unsupervised feature selection method is introduced, based on maximum relevance-maximum significance criterion, to select relevant and significant textural features for segmentation problem, while the mathematical morphology based skull stripping preprocessing step is proposed to remove the non-cerebral tissues like skull. The performance of the proposed method, along with a comparison with related approaches, is demonstrated on a set of synthetic and real brain MR images using standard validity indices. PMID:25848961
NASA Astrophysics Data System (ADS)
Pelikan, Erich; Vogelsang, Frank; Tolxdorff, Thomas
1996-04-01
The texture-based segmentation of x-ray images of focal bone lesions using topological maps is introduced. Texture characteristics are described by image-point correlation of feature images to feature vectors. For the segmentation, the topological map is labeled using an improved labeling strategy. Results of the technique are demonstrated on original and synthetic x-ray images and quantified with the aid of quality measures. In addition, a classifier-specific contribution analysis is applied for assessing the feature space.
NASA Astrophysics Data System (ADS)
Zhou, Xiangrong; Yamada, Kazuma; Kojima, Takuya; Takayama, Ryosuke; Wang, Song; Zhou, Xinxin; Hara, Takeshi; Fujita, Hiroshi
2018-02-01
The purpose of this study is to evaluate and compare the performance of modern deep learning techniques for automatically recognizing and segmenting multiple organ regions on 3D CT images. CT image segmentation is one of the important task in medical image analysis and is still very challenging. Deep learning approaches have demonstrated the capability of scene recognition and semantic segmentation on nature images and have been used to address segmentation problems of medical images. Although several works showed promising results of CT image segmentation by using deep learning approaches, there is no comprehensive evaluation of segmentation performance of the deep learning on segmenting multiple organs on different portions of CT scans. In this paper, we evaluated and compared the segmentation performance of two different deep learning approaches that used 2D- and 3D deep convolutional neural networks (CNN) without- and with a pre-processing step. A conventional approach that presents the state-of-the-art performance of CT image segmentation without deep learning was also used for comparison. A dataset that includes 240 CT images scanned on different portions of human bodies was used for performance evaluation. The maximum number of 17 types of organ regions in each CT scan were segmented automatically and compared to the human annotations by using ratio of intersection over union (IU) as the criterion. The experimental results demonstrated the IUs of the segmentation results had a mean value of 79% and 67% by averaging 17 types of organs that segmented by a 3D- and 2D deep CNN, respectively. All the results of the deep learning approaches showed a better accuracy and robustness than the conventional segmentation method that used probabilistic atlas and graph-cut methods. The effectiveness and the usefulness of deep learning approaches were demonstrated for solving multiple organs segmentation problem on 3D CT images.
NASA Astrophysics Data System (ADS)
Zhang, Jun; Saha, Ashirbani; Zhu, Zhe; Mazurowski, Maciej A.
2018-02-01
Breast tumor segmentation based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) remains an active as well as a challenging problem. Previous studies often rely on manual annotation for tumor regions, which is not only time-consuming but also error-prone. Recent studies have shown high promise of deep learning-based methods in various segmentation problems. However, these methods are usually faced with the challenge of limited number (e.g., tens or hundreds) of medical images for training, leading to sub-optimal segmentation performance. Also, previous methods cannot efficiently deal with prevalent class-imbalance problems in tumor segmentation, where the number of voxels in tumor regions is much lower than that in the background area. To address these issues, in this study, we propose a mask-guided hierarchical learning (MHL) framework for breast tumor segmentation via fully convolutional networks (FCN). Our strategy is first decomposing the original difficult problem into several sub-problems and then solving these relatively simpler sub-problems in a hierarchical manner. To precisely identify locations of tumors that underwent a biopsy, we further propose an FCN model to detect two landmarks defined on nipples. Finally, based on both segmentation probability maps and our identified landmarks, we proposed to select biopsied tumors from all detected tumors via a tumor selection strategy using the pathology location. We validate our MHL method using data for 272 patients, and achieve a mean Dice similarity coefficient (DSC) of 0.72 in breast tumor segmentation. Finally, in a radiogenomic analysis, we show that a previously developed image features show a comparable performance for identifying luminal A subtype when applied to the automatic segmentation and a semi-manual segmentation demonstrating a high promise for fully automated radiogenomic analysis in breast cancer.
Review methods for image segmentation from computed tomography images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamat, Nurwahidah; Rahman, Wan Eny Zarina Wan Abdul; Soh, Shaharuddin Cik
Image segmentation is a challenging process in order to get the accuracy of segmentation, automation and robustness especially in medical images. There exist many segmentation methods that can be implemented to medical images but not all methods are suitable. For the medical purposes, the aims of image segmentation are to study the anatomical structure, identify the region of interest, measure tissue volume to measure growth of tumor and help in treatment planning prior to radiation therapy. In this paper, we present a review method for segmentation purposes using Computed Tomography (CT) images. CT images has their own characteristics that affectmore » the ability to visualize anatomic structures and pathologic features such as blurring of the image and visual noise. The details about the methods, the goodness and the problem incurred in the methods will be defined and explained. It is necessary to know the suitable segmentation method in order to get accurate segmentation. This paper can be a guide to researcher to choose the suitable segmentation method especially in segmenting the images from CT scan.« less
A Multi-Objective Decision Making Approach for Solving the Image Segmentation Fusion Problem.
Khelifi, Lazhar; Mignotte, Max
2017-08-01
Image segmentation fusion is defined as the set of methods which aim at merging several image segmentations, in a manner that takes full advantage of the complementarity of each one. Previous relevant researches in this field have been impeded by the difficulty in identifying an appropriate single segmentation fusion criterion, providing the best possible, i.e., the more informative, result of fusion. In this paper, we propose a new model of image segmentation fusion based on multi-objective optimization which can mitigate this problem, to obtain a final improved result of segmentation. Our fusion framework incorporates the dominance concept in order to efficiently combine and optimize two complementary segmentation criteria, namely, the global consistency error and the F-measure (precision-recall) criterion. To this end, we present a hierarchical and efficient way to optimize the multi-objective consensus energy function related to this fusion model, which exploits a simple and deterministic iterative relaxation strategy combining the different image segments. This step is followed by a decision making task based on the so-called "technique for order performance by similarity to ideal solution". Results obtained on two publicly available databases with manual ground truth segmentations clearly show that our multi-objective energy-based model gives better results than the classical mono-objective one.
The use of the Kalman filter in the automated segmentation of EIT lung images.
Zifan, A; Liatsis, P; Chapman, B E
2013-06-01
In this paper, we present a new pipeline for the fast and accurate segmentation of impedance images of the lungs using electrical impedance tomography (EIT). EIT is an emerging, promising, non-invasive imaging modality that produces real-time, low spatial but high temporal resolution images of impedance inside a body. Recovering impedance itself constitutes a nonlinear ill-posed inverse problem, therefore the problem is usually linearized, which produces impedance-change images, rather than static impedance ones. Such images are highly blurry and fuzzy along object boundaries. We provide a mathematical reasoning behind the high suitability of the Kalman filter when it comes to segmenting and tracking conductivity changes in EIT lung images. Next, we use a two-fold approach to tackle the segmentation problem. First, we construct a global lung shape to restrict the search region of the Kalman filter. Next, we proceed with augmenting the Kalman filter by incorporating an adaptive foreground detection system to provide the boundary contours for the Kalman filter to carry out the tracking of the conductivity changes as the lungs undergo deformation in a respiratory cycle. The proposed method has been validated by using performance statistics such as misclassified area, and false positive rate, and compared to previous approaches. The results show that the proposed automated method can be a fast and reliable segmentation tool for EIT imaging.
Hu, D; Sarder, P; Ronhovde, P; Orthaus, S; Achilefu, S; Nussinov, Z
2014-01-01
Inspired by a multiresolution community detection based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Furthermore, using the proposed method, the mean-square error in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The multiresolution community detection method appeared to perform better than a popular spectral clustering-based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in mean-square error with increasing resolution. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Orthaus, Sandra; Achilefu, Samuel; Nussinov, Zohar
2014-01-01
Inspired by a multi-resolution community detection (MCD) based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Further, using the proposed method, the mean-square error (MSE) in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The MCD method appeared to perform better than a popular spectral clustering based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in MSE with increasing resolution. PMID:24251410
Segmentation of medical images using explicit anatomical knowledge
NASA Astrophysics Data System (ADS)
Wilson, Laurie S.; Brown, Stephen; Brown, Matthew S.; Young, Jeanne; Li, Rongxin; Luo, Suhuai; Brandt, Lee
1999-07-01
Knowledge-based image segmentation is defined in terms of the separation of image analysis procedures and representation of knowledge. Such architecture is particularly suitable for medical image segmentation, because of the large amount of structured domain knowledge. A general methodology for the application of knowledge-based methods to medical image segmentation is described. This includes frames for knowledge representation, fuzzy logic for anatomical variations, and a strategy for determining the order of segmentation from the modal specification. This method has been applied to three separate problems, 3D thoracic CT, chest X-rays and CT angiography. The application of the same methodology to such a range of applications suggests a major role in medical imaging for segmentation methods incorporating representation of anatomical knowledge.
Medical image segmentation using 3D MRI data
NASA Astrophysics Data System (ADS)
Voronin, V.; Marchuk, V.; Semenishchev, E.; Cen, Yigang; Agaian, S.
2017-05-01
Precise segmentation of three-dimensional (3D) magnetic resonance imaging (MRI) image can be a very useful computer aided diagnosis (CAD) tool in clinical routines. Accurate automatic extraction a 3D component from images obtained by magnetic resonance imaging (MRI) is a challenging segmentation problem due to the small size objects of interest (e.g., blood vessels, bones) in each 2D MRA slice and complex surrounding anatomical structures. Our objective is to develop a specific segmentation scheme for accurately extracting parts of bones from MRI images. In this paper, we use a segmentation algorithm to extract the parts of bones from Magnetic Resonance Imaging (MRI) data sets based on modified active contour method. As a result, the proposed method demonstrates good accuracy in a comparison between the existing segmentation approaches on real MRI data.
NASA Astrophysics Data System (ADS)
Nikitaev, V. G.; Pronichev, A. N.; Polyakov, E. V.; Zaharenko, Yu V.
2018-01-01
The paper considers the problem of leukocytes segmentation in microscopic images of bone marrow smears for automated diagnosis of the blood system diseases. The method was proposed to solve the problem of segmentation of contacting leukocytes in images of bone marrow smears. The method is based on the analysis of structure of objects of a separation and distances filter in combination with the watershed method and distance transformation method.
Attributed relational graphs for cell nucleus segmentation in fluorescence microscopy images.
Arslan, Salim; Ersahin, Tulin; Cetin-Atalay, Rengul; Gunduz-Demir, Cigdem
2013-06-01
More rapid and accurate high-throughput screening in molecular cellular biology research has become possible with the development of automated microscopy imaging, for which cell nucleus segmentation commonly constitutes the core step. Although several promising methods exist for segmenting the nuclei of monolayer isolated and less-confluent cells, it still remains an open problem to segment the nuclei of more-confluent cells, which tend to grow in overlayers. To address this problem, we propose a new model-based nucleus segmentation algorithm. This algorithm models how a human locates a nucleus by identifying the nucleus boundaries and piecing them together. In this algorithm, we define four types of primitives to represent nucleus boundaries at different orientations and construct an attributed relational graph on the primitives to represent their spatial relations. Then, we reduce the nucleus identification problem to finding predefined structural patterns in the constructed graph and also use the primitives in region growing to delineate the nucleus borders. Working with fluorescence microscopy images, our experiments demonstrate that the proposed algorithm identifies nuclei better than previous nucleus segmentation algorithms.
Babin, D; Pižurica, A; Bellens, R; De Bock, J; Shang, Y; Goossens, B; Vansteenkiste, E; Philips, W
2012-07-01
Extraction of structural and geometric information from 3-D images of blood vessels is a well known and widely addressed segmentation problem. The segmentation of cerebral blood vessels is of great importance in diagnostic and clinical applications, with a special application in diagnostics and surgery on arteriovenous malformations (AVM). However, the techniques addressing the problem of the AVM inner structure segmentation are rare. In this work we present a novel method of pixel profiling with the application to segmentation of the 3-D angiography AVM images. Our algorithm stands out in situations with low resolution images and high variability of pixel intensity. Another advantage of our method is that the parameters are set automatically, which yields little manual user intervention. The results on phantoms and real data demonstrate its effectiveness and potentials for fine delineation of AVM structure. Copyright © 2012 Elsevier B.V. All rights reserved.
Automatic segmentation of lumbar vertebrae in CT images
NASA Astrophysics Data System (ADS)
Kulkarni, Amruta; Raina, Akshita; Sharifi Sarabi, Mona; Ahn, Christine S.; Babayan, Diana; Gaonkar, Bilwaj; Macyszyn, Luke; Raghavendra, Cauligi
2017-03-01
Lower back pain is one of the most prevalent disorders in the developed/developing world. However, its etiology is poorly understood and treatment is often determined subjectively. In order to quantitatively study the emergence and evolution of back pain, it is necessary to develop consistently measurable markers for pathology. Imaging based measures offer one solution to this problem. The development of imaging based on quantitative biomarkers for the lower back necessitates automated techniques to acquire this data. While the problem of segmenting lumbar vertebrae has been addressed repeatedly in literature, the associated problem of computing relevant biomarkers on the basis of the segmentation has not been addressed thoroughly. In this paper, we propose a Random-Forest based approach that learns to segment vertebral bodies in CT images followed by a biomarker evaluation framework that extracts vertebral heights and widths from the segmentations obtained. Our dataset consists of 15 CT sagittal scans obtained from General Electric Healthcare. Our main approach is divided into three parts: the first stage is image pre-processing which is used to correct for variations in illumination across all the images followed by preparing the foreground and background objects from images; the next stage is Machine Learning using Random-Forests, which distinguishes the interest-point vectors between foreground or background; and the last step is image post-processing, which is crucial to refine the results of classifier. The Dice coefficient was used as a statistical validation metric to evaluate the performance of our segmentations with an average value of 0.725 for our dataset.
A fully convolutional networks (FCN) based image segmentation algorithm in binocular imaging system
NASA Astrophysics Data System (ADS)
Long, Zourong; Wei, Biao; Feng, Peng; Yu, Pengwei; Liu, Yuanyuan
2018-01-01
This paper proposes an image segmentation algorithm with fully convolutional networks (FCN) in binocular imaging system under various circumstance. Image segmentation is perfectly solved by semantic segmentation. FCN classifies the pixels, so as to achieve the level of image semantic segmentation. Different from the classical convolutional neural networks (CNN), FCN uses convolution layers instead of the fully connected layers. So it can accept image of arbitrary size. In this paper, we combine the convolutional neural network and scale invariant feature matching to solve the problem of visual positioning under different scenarios. All high-resolution images are captured with our calibrated binocular imaging system and several groups of test data are collected to verify this method. The experimental results show that the binocular images are effectively segmented without over-segmentation. With these segmented images, feature matching via SURF method is implemented to obtain regional information for further image processing. The final positioning procedure shows that the results are acceptable in the range of 1.4 1.6 m, the distance error is less than 10mm.
Hong-Seng, Gan; Sayuti, Khairil Amir; Karim, Ahmad Helmy Abdul
2017-01-01
Existing knee cartilage segmentation methods have reported several technical drawbacks. In essence, graph cuts remains highly susceptible to image noise despite extended research interest; active shape model is often constraint by the selection of training data while shortest path have demonstrated shortcut problem in the presence of weak boundary, which is a common problem in medical images. The aims of this study is to investigate the capability of random walks as knee cartilage segmentation method. Experts would scribble on knee cartilage image to initialize random walks segmentation. Then, reproducibility of the method is assessed against manual segmentation by using Dice Similarity Index. The evaluation consists of normal cartilage and diseased cartilage sections which is divided into whole and single cartilage categories. A total of 15 normal images and 10 osteoarthritic images were included. The results showed that random walks method has demonstrated high reproducibility in both normal cartilage (observer 1: 0.83±0.028 and observer 2: 0.82±0.026) and osteoarthritic cartilage (observer 1: 0.80±0.069 and observer 2: 0.83±0.029). Besides, results from both experts were found to be consistent with each other, suggesting the inter-observer variation is insignificant (Normal: P=0.21; Diseased: P=0.15). The proposed segmentation model has overcame technical problems reported by existing semi-automated techniques and demonstrated highly reproducible and consistent results against manual segmentation method.
Segmenting root systems in xray computed tomography images using level sets
USDA-ARS?s Scientific Manuscript database
The segmentation of plant roots from soil and other growing mediums in xray computed tomography images is needed to effectively study the shapes of roots without excavation. However, segmentation is a challenging problem in this context because the root and non-root regions share similar features. ...
NASA Astrophysics Data System (ADS)
Ezhova, Kseniia; Fedorenko, Dmitriy; Chuhlamov, Anton
2016-04-01
The article deals with the methods of image segmentation based on color space conversion, and allow the most efficient way to carry out the detection of a single color in a complex background and lighting, as well as detection of objects on a homogeneous background. The results of the analysis of segmentation algorithms of this type, the possibility of their implementation for creating software. The implemented algorithm is very time-consuming counting, making it a limited application for the analysis of the video, however, it allows us to solve the problem of analysis of objects in the image if there is no dictionary of images and knowledge bases, as well as the problem of choosing the optimal parameters of the frame quantization for video analysis.
Superpixel-based segmentation of muscle fibers in multi-channel microscopy.
Nguyen, Binh P; Heemskerk, Hans; So, Peter T C; Tucker-Kellogg, Lisa
2016-12-05
Confetti fluorescence and other multi-color genetic labelling strategies are useful for observing stem cell regeneration and for other problems of cell lineage tracing. One difficulty of such strategies is segmenting the cell boundaries, which is a very different problem from segmenting color images from the real world. This paper addresses the difficulties and presents a superpixel-based framework for segmentation of regenerated muscle fibers in mice. We propose to integrate an edge detector into a superpixel algorithm and customize the method for multi-channel images. The enhanced superpixel method outperforms the original and another advanced superpixel algorithm in terms of both boundary recall and under-segmentation error. Our framework was applied to cross-section and lateral section images of regenerated muscle fibers from confetti-fluorescent mice. Compared with "ground-truth" segmentations, our framework yielded median Dice similarity coefficients of 0.92 and higher. Our segmentation framework is flexible and provides very good segmentations of multi-color muscle fibers. We anticipate our methods will be useful for segmenting a variety of tissues in confetti fluorecent mice and in mice with similar multi-color labels.
GPU accelerated fuzzy connected image segmentation by using CUDA.
Zhuge, Ying; Cao, Yong; Miller, Robert W
2009-01-01
Image segmentation techniques using fuzzy connectedness principles have shown their effectiveness in segmenting a variety of objects in several large applications in recent years. However, one problem of these algorithms has been their excessive computational requirements when processing large image datasets. Nowadays commodity graphics hardware provides high parallel computing power. In this paper, we present a parallel fuzzy connected image segmentation algorithm on Nvidia's Compute Unified Device Architecture (CUDA) platform for segmenting large medical image data sets. Our experiments based on three data sets with small, medium, and large data size demonstrate the efficiency of the parallel algorithm, which achieves a speed-up factor of 7.2x, 7.3x, and 14.4x, correspondingly, for the three data sets over the sequential implementation of fuzzy connected image segmentation algorithm on CPU.
Optimal Co-segmentation of Tumor in PET-CT Images with Context Information
Song, Qi; Bai, Junjie; Han, Dongfeng; Bhatia, Sudershan; Sun, Wenqing; Rockey, William; Bayouth, John E.; Buatti, John M.
2014-01-01
PET-CT images have been widely used in clinical practice for radiotherapy treatment planning of the radiotherapy. Many existing segmentation approaches only work for a single imaging modality, which suffer from the low spatial resolution in PET or low contrast in CT. In this work we propose a novel method for the co-segmentation of the tumor in both PET and CT images, which makes use of advantages from each modality: the functionality information from PET and the anatomical structure information from CT. The approach formulates the segmentation problem as a minimization problem of a Markov Random Field (MRF) model, which encodes the information from both modalities. The optimization is solved using a graph-cut based method. Two sub-graphs are constructed for the segmentation of the PET and the CT images, respectively. To achieve consistent results in two modalities, an adaptive context cost is enforced by adding context arcs between the two subgraphs. An optimal solution can be obtained by solving a single maximum flow problem, which leads to simultaneous segmentation of the tumor volumes in both modalities. The proposed algorithm was validated in robust delineation of lung tumors on 23 PET-CT datasets and two head-and-neck cancer subjects. Both qualitative and quantitative results show significant improvement compared to the graph cut methods solely using PET or CT. PMID:23693127
NASA Astrophysics Data System (ADS)
Zheng, Qiang; Li, Honglun; Fan, Baode; Wu, Shuanhu; Xu, Jindong
2017-12-01
Active contour model (ACM) has been one of the most widely utilized methods in magnetic resonance (MR) brain image segmentation because of its ability of capturing topology changes. However, most of the existing ACMs only consider single-slice information in MR brain image data, i.e., the information used in ACMs based segmentation method is extracted only from one slice of MR brain image, which cannot take full advantage of the adjacent slice images' information, and cannot satisfy the local segmentation of MR brain images. In this paper, a novel ACM is proposed to solve the problem discussed above, which is based on multi-variate local Gaussian distribution and combines the adjacent slice images' information in MR brain image data to satisfy segmentation. The segmentation is finally achieved through maximizing the likelihood estimation. Experiments demonstrate the advantages of the proposed ACM over the single-slice ACM in local segmentation of MR brain image series.
Medical image segmentation using genetic algorithms.
Maulik, Ujjwal
2009-03-01
Genetic algorithms (GAs) have been found to be effective in the domain of medical image segmentation, since the problem can often be mapped to one of search in a complex and multimodal landscape. The challenges in medical image segmentation arise due to poor image contrast and artifacts that result in missing or diffuse organ/tissue boundaries. The resulting search space is therefore often noisy with a multitude of local optima. Not only does the genetic algorithmic framework prove to be effective in coming out of local optima, it also brings considerable flexibility into the segmentation procedure. In this paper, an attempt has been made to review the major applications of GAs to the domain of medical image segmentation.
Rastgarpour, Maryam; Shanbehzadeh, Jamshid
2014-01-01
Researchers recently apply an integrative approach to automate medical image segmentation for benefiting available methods and eliminating their disadvantages. Intensity inhomogeneity is a challenging and open problem in this area, which has received less attention by this approach. It has considerable effects on segmentation accuracy. This paper proposes a new kernel-based fuzzy level set algorithm by an integrative approach to deal with this problem. It can directly evolve from the initial level set obtained by Gaussian Kernel-Based Fuzzy C-Means (GKFCM). The controlling parameters of level set evolution are also estimated from the results of GKFCM. Moreover the proposed algorithm is enhanced with locally regularized evolution based on an image model that describes the composition of real-world images, in which intensity inhomogeneity is assumed as a component of an image. Such improvements make level set manipulation easier and lead to more robust segmentation in intensity inhomogeneity. The proposed algorithm has valuable benefits including automation, invariant of intensity inhomogeneity, and high accuracy. Performance evaluation of the proposed algorithm was carried on medical images from different modalities. The results confirm its effectiveness for medical image segmentation.
Afshar, Yaser; Sbalzarini, Ivo F.
2016-01-01
Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 1010 pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments. PMID:27046144
Afshar, Yaser; Sbalzarini, Ivo F
2016-01-01
Modern fluorescence microscopy modalities, such as light-sheet microscopy, are capable of acquiring large three-dimensional images at high data rate. This creates a bottleneck in computational processing and analysis of the acquired images, as the rate of acquisition outpaces the speed of processing. Moreover, images can be so large that they do not fit the main memory of a single computer. We address both issues by developing a distributed parallel algorithm for segmentation of large fluorescence microscopy images. The method is based on the versatile Discrete Region Competition algorithm, which has previously proven useful in microscopy image segmentation. The present distributed implementation decomposes the input image into smaller sub-images that are distributed across multiple computers. Using network communication, the computers orchestrate the collectively solving of the global segmentation problem. This not only enables segmentation of large images (we test images of up to 10(10) pixels), but also accelerates segmentation to match the time scale of image acquisition. Such acquisition-rate image segmentation is a prerequisite for the smart microscopes of the future and enables online data compression and interactive experiments.
A new method of cardiographic image segmentation based on grammar
NASA Astrophysics Data System (ADS)
Hamdi, Salah; Ben Abdallah, Asma; Bedoui, Mohamed H.; Alimi, Adel M.
2011-10-01
The measurement of the most common ultrasound parameters, such as aortic area, mitral area and left ventricle (LV) volume, requires the delineation of the organ in order to estimate the area. In terms of medical image processing this translates into the need to segment the image and define the contours as accurately as possible. The aim of this work is to segment an image and make an automated area estimation based on grammar. The entity "language" will be projected to the entity "image" to perform structural analysis and parsing of the image. We will show how the idea of segmentation and grammar-based area estimation is applied to real problems of cardio-graphic image processing.
NASA Astrophysics Data System (ADS)
Dangi, Shusil; Linte, Cristian A.
2017-03-01
Segmentation of right ventricle from cardiac MRI images can be used to build pre-operative anatomical heart models to precisely identify regions of interest during minimally invasive therapy. Furthermore, many functional parameters of right heart such as right ventricular volume, ejection fraction, myocardial mass and thickness can also be assessed from the segmented images. To obtain an accurate and computationally efficient segmentation of right ventricle from cardiac cine MRI, we propose a segmentation algorithm formulated as an energy minimization problem in a graph. Shape prior obtained by propagating label from an average atlas using affine registration is incorporated into the graph framework to overcome problems in ill-defined image regions. The optimal segmentation corresponding to the labeling with minimum energy configuration of the graph is obtained via graph-cuts and is iteratively refined to produce the final right ventricle blood pool segmentation. We quantitatively compare the segmentation results obtained from our algorithm to the provided gold-standard expert manual segmentation for 16 cine-MRI datasets available through the MICCAI 2012 Cardiac MR Right Ventricle Segmentation Challenge according to several similarity metrics, including Dice coefficient, Jaccard coefficient, Hausdorff distance, and Mean absolute distance error.
Automatic MRI 2D brain segmentation using graph searching technique.
Pedoia, Valentina; Binaghi, Elisabetta
2013-09-01
Accurate and efficient segmentation of the whole brain in magnetic resonance (MR) images is a key task in many neuroscience and medical studies either because the whole brain is the final anatomical structure of interest or because the automatic extraction facilitates further analysis. The problem of segmenting brain MRI images has been extensively addressed by many researchers. Despite the relevant achievements obtained, automated segmentation of brain MRI imagery is still a challenging problem whose solution has to cope with critical aspects such as anatomical variability and pathological deformation. In the present paper, we describe and experimentally evaluate a method for segmenting brain from MRI images basing on two-dimensional graph searching principles for border detection. The segmentation of the whole brain over the entire volume is accomplished slice by slice, automatically detecting frames including eyes. The method is fully automatic and easily reproducible by computing the internal main parameters directly from the image data. The segmentation procedure is conceived as a tool of general applicability, although design requirements are especially commensurate with the accuracy required in clinical tasks such as surgical planning and post-surgical assessment. Several experiments were performed to assess the performance of the algorithm on a varied set of MRI images obtaining good results in terms of accuracy and stability. Copyright © 2012 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Jaeckel, Louis A.
1989-01-01
To study the problems of encoding visual images for use with a Sparse Distributed Memory (SDM), I consider a specific class of images- those that consist of several pieces, each of which is a line segment or an arc of a circle. This class includes line drawings of characters such as letters of the alphabet. I give a method of representing a segment of an arc by five numbers in a continuous way; that is, similar arcs have similar representations. I also give methods for encoding these numbers as bit strings in an approximately continuous way. The set of possible segments and arcs may be viewed as a five-dimensional manifold M, whose structure is like a Mobious strip. An image, considered to be an unordered set of segments and arcs, is therefore represented by a set of points in M - one for each piece. I then discuss the problem of constructing a preprocessor to find the segments and arcs in these images, although a preprocessor has not been developed. I also describe a possible extension of the representation.
Hybrid region merging method for segmentation of high-resolution remote sensing images
NASA Astrophysics Data System (ADS)
Zhang, Xueliang; Xiao, Pengfeng; Feng, Xuezhi; Wang, Jiangeng; Wang, Zuo
2014-12-01
Image segmentation remains a challenging problem for object-based image analysis. In this paper, a hybrid region merging (HRM) method is proposed to segment high-resolution remote sensing images. HRM integrates the advantages of global-oriented and local-oriented region merging strategies into a unified framework. The globally most-similar pair of regions is used to determine the starting point of a growing region, which provides an elegant way to avoid the problem of starting point assignment and to enhance the optimization ability for local-oriented region merging. During the region growing procedure, the merging iterations are constrained within the local vicinity, so that the segmentation is accelerated and can reflect the local context, as compared with the global-oriented method. A set of high-resolution remote sensing images is used to test the effectiveness of the HRM method, and three region-based remote sensing image segmentation methods are adopted for comparison, including the hierarchical stepwise optimization (HSWO) method, the local-mutual best region merging (LMM) method, and the multiresolution segmentation (MRS) method embedded in eCognition Developer software. Both the supervised evaluation and visual assessment show that HRM performs better than HSWO and LMM by combining both their advantages. The segmentation results of HRM and MRS are visually comparable, but HRM can describe objects as single regions better than MRS, and the supervised and unsupervised evaluation results further prove the superiority of HRM.
Image processing based detection of lung cancer on CT scan images
NASA Astrophysics Data System (ADS)
Abdillah, Bariqi; Bustamam, Alhadi; Sarwinda, Devvi
2017-10-01
In this paper, we implement and analyze the image processing method for detection of lung cancer. Image processing techniques are widely used in several medical problems for picture enhancement in the detection phase to support the early medical treatment. In this research we proposed a detection method of lung cancer based on image segmentation. Image segmentation is one of intermediate level in image processing. Marker control watershed and region growing approach are used to segment of CT scan image. Detection phases are followed by image enhancement using Gabor filter, image segmentation, and features extraction. From the experimental results, we found the effectiveness of our approach. The results show that the best approach for main features detection is watershed with masking method which has high accuracy and robust.
Boundary segmentation for fluorescence microscopy using steerable filters
NASA Astrophysics Data System (ADS)
Ho, David Joon; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.
2017-02-01
Fluorescence microscopy is used to image multiple subcellular structures in living cells which are not readily observed using conventional optical microscopy. Moreover, two-photon microscopy is widely used to image structures deeper in tissue. Recent advancement in fluorescence microscopy has enabled the generation of large data sets of images at different depths, times, and spectral channels. Thus, automatic object segmentation is necessary since manual segmentation would be inefficient and biased. However, automatic segmentation is still a challenging problem as regions of interest may not have well defined boundaries as well as non-uniform pixel intensities. This paper describes a method for segmenting tubular structures in fluorescence microscopy images of rat kidney and liver samples using adaptive histogram equalization, foreground/background segmentation, steerable filters to capture directional tendencies, and connected-component analysis. The results from several data sets demonstrate that our method can segment tubular boundaries successfully. Moreover, our method has better performance when compared to other popular image segmentation methods when using ground truth data obtained via manual segmentation.
Research on Method of Interactive Segmentation Based on Remote Sensing Images
NASA Astrophysics Data System (ADS)
Yang, Y.; Li, H.; Han, Y.; Yu, F.
2017-09-01
In this paper, we aim to solve the object extraction problem in remote sensing images using interactive segmentation tools. Firstly, an overview of the interactive segmentation algorithm is proposed. Then, our detailed implementation of intelligent scissors and GrabCut for remote sensing images is described. Finally, several experiments on different typical features (water area, vegetation) in remote sensing images are performed respectively. Compared with the manual result, it indicates that our tools maintain good feature boundaries and show good performance.
A filtering approach to edge preserving MAP estimation of images.
Humphrey, David; Taubman, David
2011-05-01
The authors present a computationally efficient technique for maximum a posteriori (MAP) estimation of images in the presence of both blur and noise. The image is divided into statistically independent regions. Each region is modelled with a WSS Gaussian prior. Classical Wiener filter theory is used to generate a set of convex sets in the solution space, with the solution to the MAP estimation problem lying at the intersection of these sets. The proposed algorithm uses an underlying segmentation of the image, and a means of determining the segmentation and refining it are described. The algorithm is suitable for a range of image restoration problems, as it provides a computationally efficient means to deal with the shortcomings of Wiener filtering without sacrificing the computational simplicity of the filtering approach. The algorithm is also of interest from a theoretical viewpoint as it provides a continuum of solutions between Wiener filtering and Inverse filtering depending upon the segmentation used. We do not attempt to show here that the proposed method is the best general approach to the image reconstruction problem. However, related work referenced herein shows excellent performance in the specific problem of demosaicing.
NASA Astrophysics Data System (ADS)
Hu, Xiaoqian; Tao, Jinxu; Ye, Zhongfu; Qiu, Bensheng; Xu, Jinzhang
2018-05-01
In order to solve the problem of medical image segmentation, a wavelet neural network medical image segmentation algorithm based on combined maximum entropy criterion is proposed. Firstly, we use bee colony algorithm to optimize the network parameters of wavelet neural network, get the parameters of network structure, initial weights and threshold values, and so on, we can quickly converge to higher precision when training, and avoid to falling into relative extremum; then the optimal number of iterations is obtained by calculating the maximum entropy of the segmented image, so as to achieve the automatic and accurate segmentation effect. Medical image segmentation experiments show that the proposed algorithm can reduce sample training time effectively and improve convergence precision, and segmentation effect is more accurate and effective than traditional BP neural network (back propagation neural network : a multilayer feed forward neural network which trained according to the error backward propagation algorithm.
SAR image segmentation using skeleton-based fuzzy clustering
NASA Astrophysics Data System (ADS)
Cao, Yun Yi; Chen, Yan Qiu
2003-06-01
SAR image segmentation can be converted to a clustering problem in which pixels or small patches are grouped together based on local feature information. In this paper, we present a novel framework for segmentation. The segmentation goal is achieved by unsupervised clustering upon characteristic descriptors extracted from local patches. The mixture model of characteristic descriptor, which combines intensity and texture feature, is investigated. The unsupervised algorithm is derived from the recently proposed Skeleton-Based Data Labeling method. Skeletons are constructed as prototypes of clusters to represent arbitrary latent structures in image data. Segmentation using Skeleton-Based Fuzzy Clustering is able to detect the types of surfaces appeared in SAR images automatically without any user input.
Vessel network detection using contour evolution and color components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ushizima, Daniela; Medeiros, Fatima; Cuadros, Jorge
2011-06-22
Automated retinal screening relies on vasculature segmentation before the identification of other anatomical structures of the retina. Vasculature extraction can also be input to image quality ranking, neovascularization detection and image registration, among other applications. There is an extensive literature related to this problem, often excluding the inherent heterogeneity of ophthalmic clinical images. The contribution of this paper relies on an algorithm using front propagation to segment the vessel network. The algorithm includes a penalty in the wait queue on the fast marching heap to minimize leakage of the evolving interface. The method requires no manual labeling, a minimum numbermore » of parameters and it is capable of segmenting color ocular fundus images in real scenarios, where multi-ethnicity and brightness variations are parts of the problem.« less
NASA Astrophysics Data System (ADS)
Chen, Hao; Zhang, Xinggan; Bai, Yechao; Tang, Lan
2017-01-01
In inverse synthetic aperture radar (ISAR) imaging, the migration through resolution cells (MTRCs) will occur when the rotation angle of the moving target is large, thereby degrading image resolution. To solve this problem, an ISAR imaging method based on segmented preprocessing is proposed. In this method, the echoes of large rotating target are divided into several small segments, and every segment can generate a low-resolution image without MTRCs. Then, each low-resolution image is rotated back to the original position. After image registration and phase compensation, a high-resolution image can be obtained. Simulation and real experiments show that the proposed algorithm can deal with the radar system with different range and cross-range resolutions and significantly compensate the MTRCs.
NASA Astrophysics Data System (ADS)
Lenkiewicz, Przemyslaw; Pereira, Manuela; Freire, Mário M.; Fernandes, José
2013-12-01
In this article, we propose a novel image segmentation method called the whole mesh deformation (WMD) model, which aims at addressing the problems of modern medical imaging. Such problems have raised from the combination of several factors: (1) significant growth of medical image volumes sizes due to increasing capabilities of medical acquisition devices; (2) the will to increase the complexity of image processing algorithms in order to explore new functionality; (3) change in processor development and turn towards multi processing units instead of growing bus speeds and the number of operations per second of a single processing unit. Our solution is based on the concept of deformable models and is characterized by a very effective and precise segmentation capability. The proposed WMD model uses a volumetric mesh instead of a contour or a surface to represent the segmented shapes of interest, which allows exploiting more information in the image and obtaining results in shorter times, independently of image contents. The model also offers a good ability for topology changes and allows effective parallelization of workflow, which makes it a very good choice for large datasets. We present a precise model description, followed by experiments on artificial images and real medical data.
Hyper-spectral image segmentation using spectral clustering with covariance descriptors
NASA Astrophysics Data System (ADS)
Kursun, Olcay; Karabiber, Fethullah; Koc, Cemalettin; Bal, Abdullah
2009-02-01
Image segmentation is an important and difficult computer vision problem. Hyper-spectral images pose even more difficulty due to their high-dimensionality. Spectral clustering (SC) is a recently popular clustering/segmentation algorithm. In general, SC lifts the data to a high dimensional space, also known as the kernel trick, then derive eigenvectors in this new space, and finally using these new dimensions partition the data into clusters. We demonstrate that SC works efficiently when combined with covariance descriptors that can be used to assess pixelwise similarities rather than in the high-dimensional Euclidean space. We present the formulations and some preliminary results of the proposed hybrid image segmentation method for hyper-spectral images.
Superpixel Cut for Figure-Ground Image Segmentation
NASA Astrophysics Data System (ADS)
Yang, Michael Ying; Rosenhahn, Bodo
2016-06-01
Figure-ground image segmentation has been a challenging problem in computer vision. Apart from the difficulties in establishing an effective framework to divide the image pixels into meaningful groups, the notions of figure and ground often need to be properly defined by providing either user inputs or object models. In this paper, we propose a novel graph-based segmentation framework, called superpixel cut. The key idea is to formulate foreground segmentation as finding a subset of superpixels that partitions a graph over superpixels. The problem is formulated as Min-Cut. Therefore, we propose a novel cost function that simultaneously minimizes the inter-class similarity while maximizing the intra-class similarity. This cost function is optimized using parametric programming. After a small learning step, our approach is fully automatic and fully bottom-up, which requires no high-level knowledge such as shape priors and scene content. It recovers coherent components of images, providing a set of multiscale hypotheses for high-level reasoning. We evaluate our proposed framework by comparing it to other generic figure-ground segmentation approaches. Our method achieves improved performance on state-of-the-art benchmark databases.
A novel content-based active contour model for brain tumor segmentation.
Sachdeva, Jainy; Kumar, Vinod; Gupta, Indra; Khandelwal, Niranjan; Ahuja, Chirag Kamal
2012-06-01
Brain tumor segmentation is a crucial step in surgical and treatment planning. Intensity-based active contour models such as gradient vector flow (GVF), magneto static active contour (MAC) and fluid vector flow (FVF) have been proposed to segment homogeneous objects/tumors in medical images. In this study, extensive experiments are done to analyze the performance of intensity-based techniques for homogeneous tumors on brain magnetic resonance (MR) images. The analysis shows that the state-of-art methods fail to segment homogeneous tumors against similar background or when these tumors show partial diversity toward the background. They also have preconvergence problem in case of false edges/saddle points. However, the presence of weak edges and diffused edges (due to edema around the tumor) leads to oversegmentation by intensity-based techniques. Therefore, the proposed method content-based active contour (CBAC) uses both intensity and texture information present within the active contour to overcome above-stated problems capturing large range in an image. It also proposes a novel use of Gray-Level Co-occurrence Matrix to define texture space for tumor segmentation. The effectiveness of this method is tested on two different real data sets (55 patients - more than 600 images) containing five different types of homogeneous, heterogeneous, diffused tumors and synthetic images (non-MR benchmark images). Remarkable results are obtained in segmenting homogeneous tumors of uniform intensity, complex content heterogeneous, diffused tumors on MR images (T1-weighted, postcontrast T1-weighted and T2-weighted) and synthetic images (non-MR benchmark images of varying intensity, texture, noise content and false edges). Further, tumor volume is efficiently extracted from 2-dimensional slices and is named as 2.5-dimensional segmentation. Copyright © 2012 Elsevier Inc. All rights reserved.
Xiao, Xun; Geyer, Veikko F.; Bowne-Anderson, Hugo; Howard, Jonathon; Sbalzarini, Ivo F.
2016-01-01
Biological filaments, such as actin filaments, microtubules, and cilia, are often imaged using different light-microscopy techniques. Reconstructing the filament curve from the acquired images constitutes the filament segmentation problem. Since filaments have lower dimensionality than the image itself, there is an inherent trade-off between tracing the filament with sub-pixel accuracy and avoiding noise artifacts. Here, we present a globally optimal filament segmentation method based on B-spline vector level-sets and a generalized linear model for the pixel intensity statistics. We show that the resulting optimization problem is convex and can hence be solved with global optimality. We introduce a simple and efficient algorithm to compute such optimal filament segmentations, and provide an open-source implementation as an ImageJ/Fiji plugin. We further derive an information-theoretic lower bound on the filament segmentation error, quantifying how well an algorithm could possibly do given the information in the image. We show that our algorithm asymptotically reaches this bound in the spline coefficients. We validate our method in comprehensive benchmarks, compare with other methods, and show applications from fluorescence, phase-contrast, and dark-field microscopy. PMID:27104582
MRI brain tumor segmentation based on improved fuzzy c-means method
NASA Astrophysics Data System (ADS)
Deng, Wankai; Xiao, Wei; Pan, Chao; Liu, Jianguo
2009-10-01
This paper focuses on the image segmentation, which is one of the key problems in medical image processing. A new medical image segmentation method is proposed based on fuzzy c- means algorithm and spatial information. Firstly, we classify the image into the region of interest and background using fuzzy c means algorithm. Then we use the information of the tissues' gradient and the intensity inhomogeneities of regions to improve the quality of segmentation. The sum of the mean variance in the region and the reciprocal of the mean gradient along the edge of the region are chosen as an objective function. The minimum of the sum is optimum result. The result shows that the clustering segmentation algorithm is effective.
Joint multi-object registration and segmentation of left and right cardiac ventricles in 4D cine MRI
NASA Astrophysics Data System (ADS)
Ehrhardt, Jan; Kepp, Timo; Schmidt-Richberg, Alexander; Handels, Heinz
2014-03-01
The diagnosis of cardiac function based on cine MRI requires the segmentation of cardiac structures in the images, but the problem of automatic cardiac segmentation is still open, due to the imaging characteristics of cardiac MR images and the anatomical variability of the heart. In this paper, we present a variational framework for joint segmentation and registration of multiple structures of the heart. To enable the simultaneous segmentation and registration of multiple objects, a shape prior term is introduced into a region competition approach for multi-object level set segmentation. The proposed algorithm is applied for simultaneous segmentation of the myocardium as well as the left and right ventricular blood pool in short axis cine MRI images. Two experiments are performed: first, intra-patient 4D segmentation with a given initial segmentation for one time-point in a 4D sequence, and second, a multi-atlas segmentation strategy is applied to unseen patient data. Evaluation of segmentation accuracy is done by overlap coefficients and surface distances. An evaluation based on clinical 4D cine MRI images of 25 patients shows the benefit of the combined approach compared to sole registration and sole segmentation.
Ben Younes, Lassad; Nakajima, Yoshikazu; Saito, Toki
2014-03-01
Femur segmentation is well established and widely used in computer-assisted orthopedic surgery. However, most of the robust segmentation methods such as statistical shape models (SSM) require human intervention to provide an initial position for the SSM. In this paper, we propose to overcome this problem and provide a fully automatic femur segmentation method for CT images based on primitive shape recognition and SSM. Femur segmentation in CT scans was performed using primitive shape recognition based on a robust algorithm such as the Hough transform and RANdom SAmple Consensus. The proposed method is divided into 3 steps: (1) detection of the femoral head as sphere and the femoral shaft as cylinder in the SSM and the CT images, (2) rigid registration between primitives of SSM and CT image to initialize the SSM into the CT image, and (3) fitting of the SSM to the CT image edge using an affine transformation followed by a nonlinear fitting. The automated method provided good results even with a high number of outliers. The difference of segmentation error between the proposed automatic initialization method and a manual initialization method is less than 1 mm. The proposed method detects primitive shape position to initialize the SSM into the target image. Based on primitive shapes, this method overcomes the problem of inter-patient variability. Moreover, the results demonstrate that our method of primitive shape recognition can be used for 3D SSM initialization to achieve fully automatic segmentation of the femur.
Application of an enhanced fuzzy algorithm for MR brain tumor image segmentation
NASA Astrophysics Data System (ADS)
Hemanth, D. Jude; Vijila, C. Kezi Selva; Anitha, J.
2010-02-01
Image segmentation is one of the significant digital image processing techniques commonly used in the medical field. One of the specific applications is tumor detection in abnormal Magnetic Resonance (MR) brain images. Fuzzy approaches are widely preferred for tumor segmentation which generally yields superior results in terms of accuracy. But most of the fuzzy algorithms suffer from the drawback of slow convergence rate which makes the system practically non-feasible. In this work, the application of modified Fuzzy C-means (FCM) algorithm to tackle the convergence problem is explored in the context of brain image segmentation. This modified FCM algorithm employs the concept of quantization to improve the convergence rate besides yielding excellent segmentation efficiency. This algorithm is experimented on real time abnormal MR brain images collected from the radiologists. A comprehensive feature vector is extracted from these images and used for the segmentation technique. An extensive feature selection process is performed which reduces the convergence time period and improve the segmentation efficiency. After segmentation, the tumor portion is extracted from the segmented image. Comparative analysis in terms of segmentation efficiency and convergence rate is performed between the conventional FCM and the modified FCM. Experimental results show superior results for the modified FCM algorithm in terms of the performance measures. Thus, this work highlights the application of the modified algorithm for brain tumor detection in abnormal MR brain images.
Unsupervised object segmentation with a hybrid graph model (HGM).
Liu, Guangcan; Lin, Zhouchen; Yu, Yong; Tang, Xiaoou
2010-05-01
In this work, we address the problem of performing class-specific unsupervised object segmentation, i.e., automatic segmentation without annotated training images. Object segmentation can be regarded as a special data clustering problem where both class-specific information and local texture/color similarities have to be considered. To this end, we propose a hybrid graph model (HGM) that can make effective use of both symmetric and asymmetric relationship among samples. The vertices of a hybrid graph represent the samples and are connected by directed edges and/or undirected ones, which represent the asymmetric and/or symmetric relationship between them, respectively. When applied to object segmentation, vertices are superpixels, the asymmetric relationship is the conditional dependence of occurrence, and the symmetric relationship is the color/texture similarity. By combining the Markov chain formed by the directed subgraph and the minimal cut of the undirected subgraph, the object boundaries can be determined for each image. Using the HGM, we can conveniently achieve simultaneous segmentation and recognition by integrating both top-down and bottom-up information into a unified process. Experiments on 42 object classes (9,415 images in total) show promising results.
Song, Qi; Chen, Mingqing; Bai, Junjie; Sonka, Milan; Wu, Xiaodong
2011-01-01
Multi-object segmentation with mutual interaction is a challenging task in medical image analysis. We report a novel solution to a segmentation problem, in which target objects of arbitrary shape mutually interact with terrain-like surfaces, which widely exists in the medical imaging field. The approach incorporates context information used during simultaneous segmentation of multiple objects. The object-surface interaction information is encoded by adding weighted inter-graph arcs to our graph model. A globally optimal solution is achieved by solving a single maximum flow problem in a low-order polynomial time. The performance of the method was evaluated in robust delineation of lung tumors in megavoltage cone-beam CT images in comparison with an expert-defined independent standard. The evaluation showed that our method generated highly accurate tumor segmentations. Compared with the conventional graph-cut method, our new approach provided significantly better results (p < 0.001). The Dice coefficient obtained by the conventional graph-cut approach (0.76 +/- 0.10) was improved to 0.84 +/- 0.05 when employing our new method for pulmonary tumor segmentation.
Clustering approach for unsupervised segmentation of malarial Plasmodium vivax parasite
NASA Astrophysics Data System (ADS)
Abdul-Nasir, Aimi Salihah; Mashor, Mohd Yusoff; Mohamed, Zeehaida
2017-10-01
Malaria is a global health problem, particularly in Africa and south Asia where it causes countless deaths and morbidity cases. Efficient control and prompt of this disease require early detection and accurate diagnosis due to the large number of cases reported yearly. To achieve this aim, this paper proposes an image segmentation approach via unsupervised pixel segmentation of malaria parasite to automate the diagnosis of malaria. In this study, a modified clustering algorithm namely enhanced k-means (EKM) clustering, is proposed for malaria image segmentation. In the proposed EKM clustering, the concept of variance and a new version of transferring process for clustered members are used to assist the assignation of data to the proper centre during the process of clustering, so that good segmented malaria image can be generated. The effectiveness of the proposed EKM clustering has been analyzed qualitatively and quantitatively by comparing this algorithm with two popular image segmentation techniques namely Otsu's thresholding and k-means clustering. The experimental results show that the proposed EKM clustering has successfully segmented 100 malaria images of P. vivax species with segmentation accuracy, sensitivity and specificity of 99.20%, 87.53% and 99.58%, respectively. Hence, the proposed EKM clustering can be considered as an image segmentation tool for segmenting the malaria images.
Multiclass Data Segmentation using Diffuse Interface Methods on Graphs
2014-01-01
37] that performs interac- tive image segmentation using the solution to a combinatorial Dirichlet problem. Elmoataz et al . have developed general...izations of the graph Laplacian [25] for image denoising and manifold smoothing. Couprie et al . in [18] define a conve- niently parameterized graph...continuous setting carry over to the discrete graph representation. For general data segmentation, Bresson et al . in [8], present rigorous convergence
Wang, Yue; Adalý, Tülay; Kung, Sun-Yuan; Szabo, Zsolt
2007-01-01
This paper presents a probabilistic neural network based technique for unsupervised quantification and segmentation of brain tissues from magnetic resonance images. It is shown that this problem can be solved by distribution learning and relaxation labeling, resulting in an efficient method that may be particularly useful in quantifying and segmenting abnormal brain tissues where the number of tissue types is unknown and the distributions of tissue types heavily overlap. The new technique uses suitable statistical models for both the pixel and context images and formulates the problem in terms of model-histogram fitting and global consistency labeling. The quantification is achieved by probabilistic self-organizing mixtures and the segmentation by a probabilistic constraint relaxation network. The experimental results show the efficient and robust performance of the new algorithm and that it outperforms the conventional classification based approaches. PMID:18172510
Khan, Arif Ul Maula; Torelli, Angelo; Wolf, Ivo; Gretz, Norbert
2018-05-08
In biological assays, automated cell/colony segmentation and counting is imperative owing to huge image sets. Problems occurring due to drifting image acquisition conditions, background noise and high variation in colony features in experiments demand a user-friendly, adaptive and robust image processing/analysis method. We present AutoCellSeg (based on MATLAB) that implements a supervised automatic and robust image segmentation method. AutoCellSeg utilizes multi-thresholding aided by a feedback-based watershed algorithm taking segmentation plausibility criteria into account. It is usable in different operation modes and intuitively enables the user to select object features interactively for supervised image segmentation method. It allows the user to correct results with a graphical interface. This publicly available tool outperforms tools like OpenCFU and CellProfiler in terms of accuracy and provides many additional useful features for end-users.
A Novel Gradient Vector Flow Snake Model Based on Convex Function for Infrared Image Segmentation
Zhang, Rui; Zhu, Shiping; Zhou, Qin
2016-01-01
Infrared image segmentation is a challenging topic because infrared images are characterized by high noise, low contrast, and weak edges. Active contour models, especially gradient vector flow, have several advantages in terms of infrared image segmentation. However, the GVF (Gradient Vector Flow) model also has some drawbacks including a dilemma between noise smoothing and weak edge protection, which decrease the effect of infrared image segmentation significantly. In order to solve this problem, we propose a novel generalized gradient vector flow snakes model combining GGVF (Generic Gradient Vector Flow) and NBGVF (Normally Biased Gradient Vector Flow) models. We also adopt a new type of coefficients setting in the form of convex function to improve the ability of protecting weak edges while smoothing noises. Experimental results and comparisons against other methods indicate that our proposed snakes model owns better ability in terms of infrared image segmentation than other snakes models. PMID:27775660
Image Segmentation Method Using Fuzzy C Mean Clustering Based on Multi-Objective Optimization
NASA Astrophysics Data System (ADS)
Chen, Jinlin; Yang, Chunzhi; Xu, Guangkui; Ning, Li
2018-04-01
Image segmentation is not only one of the hottest topics in digital image processing, but also an important part of computer vision applications. As one kind of image segmentation algorithms, fuzzy C-means clustering is an effective and concise segmentation algorithm. However, the drawback of FCM is that it is sensitive to image noise. To solve the problem, this paper designs a novel fuzzy C-mean clustering algorithm based on multi-objective optimization. We add a parameter λ to the fuzzy distance measurement formula to improve the multi-objective optimization. The parameter λ can adjust the weights of the pixel local information. In the algorithm, the local correlation of neighboring pixels is added to the improved multi-objective mathematical model to optimize the clustering cent. Two different experimental results show that the novel fuzzy C-means approach has an efficient performance and computational time while segmenting images by different type of noises.
A kind of color image segmentation algorithm based on super-pixel and PCNN
NASA Astrophysics Data System (ADS)
Xu, GuangZhu; Wang, YaWen; Zhang, Liu; Zhao, JingJing; Fu, YunXia; Lei, BangJun
2018-04-01
Image segmentation is a very important step in the low-level visual computing. Although image segmentation has been studied for many years, there are still many problems. PCNN (Pulse Coupled Neural network) has biological background, when it is applied to image segmentation it can be viewed as a region-based method, but due to the dynamics properties of PCNN, many connectionless neurons will pulse at the same time, so it is necessary to identify different regions for further processing. The existing PCNN image segmentation algorithm based on region growing is used for grayscale image segmentation, cannot be directly used for color image segmentation. In addition, the super-pixel can better reserve the edges of images, and reduce the influences resulted from the individual difference between the pixels on image segmentation at the same time. Therefore, on the basis of the super-pixel, the original PCNN algorithm based on region growing is improved by this paper. First, the color super-pixel image was transformed into grayscale super-pixel image which was used to seek seeds among the neurons that hadn't been fired. And then it determined whether to stop growing by comparing the average of each color channel of all the pixels in the corresponding regions of the color super-pixel image. Experiment results show that the proposed algorithm for the color image segmentation is fast and effective, and has a certain effect and accuracy.
Graph run-length matrices for histopathological image segmentation.
Tosun, Akif Burak; Gunduz-Demir, Cigdem
2011-03-01
The histopathological examination of tissue specimens is essential for cancer diagnosis and grading. However, this examination is subject to a considerable amount of observer variability as it mainly relies on visual interpretation of pathologists. To alleviate this problem, it is very important to develop computational quantitative tools, for which image segmentation constitutes the core step. In this paper, we introduce an effective and robust algorithm for the segmentation of histopathological tissue images. This algorithm incorporates the background knowledge of the tissue organization into segmentation. For this purpose, it quantifies spatial relations of cytological tissue components by constructing a graph and uses this graph to define new texture features for image segmentation. This new texture definition makes use of the idea of gray-level run-length matrices. However, it considers the runs of cytological components on a graph to form a matrix, instead of considering the runs of pixel intensities. Working with colon tissue images, our experiments demonstrate that the texture features extracted from "graph run-length matrices" lead to high segmentation accuracies, also providing a reasonable number of segmented regions. Compared with four other segmentation algorithms, the results show that the proposed algorithm is more effective in histopathological image segmentation.
Brain Tumor Image Segmentation in MRI Image
NASA Astrophysics Data System (ADS)
Peni Agustin Tjahyaningtijas, Hapsari
2018-04-01
Brain tumor segmentation plays an important role in medical image processing. Treatment of patients with brain tumors is highly dependent on early detection of these tumors. Early detection of brain tumors will improve the patient’s life chances. Diagnosis of brain tumors by experts usually use a manual segmentation that is difficult and time consuming because of the necessary automatic segmentation. Nowadays automatic segmentation is very populer and can be a solution to the problem of tumor brain segmentation with better performance. The purpose of this paper is to provide a review of MRI-based brain tumor segmentation methods. There are number of existing review papers, focusing on traditional methods for MRI-based brain tumor image segmentation. this paper, we focus on the recent trend of automatic segmentation in this field. First, an introduction to brain tumors and methods for brain tumor segmentation is given. Then, the state-of-the-art algorithms with a focus on recent trend of full automatic segmentaion are discussed. Finally, an assessment of the current state is presented and future developments to standardize MRI-based brain tumor segmentation methods into daily clinical routine are addressed.
Baxter, John S. H.; Inoue, Jiro; Drangova, Maria; Peters, Terry M.
2016-01-01
Abstract. Optimization-based segmentation approaches deriving from discrete graph-cuts and continuous max-flow have become increasingly nuanced, allowing for topological and geometric constraints on the resulting segmentation while retaining global optimality. However, these two considerations, topological and geometric, have yet to be combined in a unified manner. The concept of “shape complexes,” which combine geodesic star convexity with extendable continuous max-flow solvers, is presented. These shape complexes allow more complicated shapes to be created through the use of multiple labels and super-labels, with geodesic star convexity governed by a topological ordering. These problems can be optimized using extendable continuous max-flow solvers. Previous approaches required computationally expensive coordinate system warping, which are ill-defined and ambiguous in the general case. These shape complexes are demonstrated in a set of synthetic images as well as vessel segmentation in ultrasound, valve segmentation in ultrasound, and atrial wall segmentation from contrast-enhanced CT. Shape complexes represent an extendable tool alongside other continuous max-flow methods that may be suitable for a wide range of medical image segmentation problems. PMID:28018937
Joint tumor segmentation and dense deformable registration of brain MR images.
Parisot, Sarah; Duffau, Hugues; Chemouny, Stéphane; Paragios, Nikos
2012-01-01
In this paper we propose a novel graph-based concurrent registration and segmentation framework. Registration is modeled with a pairwise graphical model formulation that is modular with respect to the data and regularization term. Segmentation is addressed by adopting a similar graphical model, using image-based classification techniques while producing a smooth solution. The two problems are coupled via a relaxation of the registration criterion in the presence of tumors as well as a segmentation through a registration term aiming the separation between healthy and diseased tissues. Efficient linear programming is used to solve both problems simultaneously. State of the art results demonstrate the potential of our method on a large and challenging low-grade glioma data set.
Segmentation and learning in the quantitative analysis of microscopy images
NASA Astrophysics Data System (ADS)
Ruggiero, Christy; Ross, Amy; Porter, Reid
2015-02-01
In material science and bio-medical domains the quantity and quality of microscopy images is rapidly increasing and there is a great need to automatically detect, delineate and quantify particles, grains, cells, neurons and other functional "objects" within these images. These are challenging problems for image processing because of the variability in object appearance that inevitably arises in real world image acquisition and analysis. One of the most promising (and practical) ways to address these challenges is interactive image segmentation. These algorithms are designed to incorporate input from a human operator to tailor the segmentation method to the image at hand. Interactive image segmentation is now a key tool in a wide range of applications in microscopy and elsewhere. Historically, interactive image segmentation algorithms have tailored segmentation on an image-by-image basis, and information derived from operator input is not transferred between images. But recently there has been increasing interest to use machine learning in segmentation to provide interactive tools that accumulate and learn from the operator input over longer periods of time. These new learning algorithms reduce the need for operator input over time, and can potentially provide a more dynamic balance between customization and automation for different applications. This paper reviews the state of the art in this area, provides a unified view of these algorithms, and compares the segmentation performance of various design choices.
Segmentation of High Angular Resolution Diffusion MRI using Sparse Riemannian Manifold Clustering
Wright, Margaret J.; Thompson, Paul M.; Vidal, René
2015-01-01
We address the problem of segmenting high angular resolution diffusion imaging (HARDI) data into multiple regions (or fiber tracts) with distinct diffusion properties. We use the orientation distribution function (ODF) to represent HARDI data and cast the problem as a clustering problem in the space of ODFs. Our approach integrates tools from sparse representation theory and Riemannian geometry into a graph theoretic segmentation framework. By exploiting the Riemannian properties of the space of ODFs, we learn a sparse representation for each ODF and infer the segmentation by applying spectral clustering to a similarity matrix built from these representations. In cases where regions with similar (resp. distinct) diffusion properties belong to different (resp. same) fiber tracts, we obtain the segmentation by incorporating spatial and user-specified pairwise relationships into the formulation. Experiments on synthetic data evaluate the sensitivity of our method to image noise and the presence of complex fiber configurations, and show its superior performance compared to alternative segmentation methods. Experiments on phantom and real data demonstrate the accuracy of the proposed method in segmenting simulated fibers, as well as white matter fiber tracts of clinical importance in the human brain. PMID:24108748
FISH Finder: a high-throughput tool for analyzing FISH images
Shirley, James W.; Ty, Sereyvathana; Takebayashi, Shin-ichiro; Liu, Xiuwen; Gilbert, David M.
2011-01-01
Motivation: Fluorescence in situ hybridization (FISH) is used to study the organization and the positioning of specific DNA sequences within the cell nucleus. Analyzing the data from FISH images is a tedious process that invokes an element of subjectivity. Automated FISH image analysis offers savings in time as well as gaining the benefit of objective data analysis. While several FISH image analysis software tools have been developed, they often use a threshold-based segmentation algorithm for nucleus segmentation. As fluorescence signal intensities can vary significantly from experiment to experiment, from cell to cell, and within a cell, threshold-based segmentation is inflexible and often insufficient for automatic image analysis, leading to additional manual segmentation and potential subjective bias. To overcome these problems, we developed a graphical software tool called FISH Finder to automatically analyze FISH images that vary significantly. By posing the nucleus segmentation as a classification problem, compound Bayesian classifier is employed so that contextual information is utilized, resulting in reliable classification and boundary extraction. This makes it possible to analyze FISH images efficiently and objectively without adjustment of input parameters. Additionally, FISH Finder was designed to analyze the distances between differentially stained FISH probes. Availability: FISH Finder is a standalone MATLAB application and platform independent software. The program is freely available from: http://code.google.com/p/fishfinder/downloads/list Contact: gilbert@bio.fsu.edu PMID:21310746
Segmentation of anatomical structures of the heart based on echocardiography
NASA Astrophysics Data System (ADS)
Danilov, V. V.; Skirnevskiy, I. P.; Gerget, O. M.
2017-01-01
Nowadays, many practical applications in the field of medical image processing require valid and reliable segmentation of images in the capacity of input data. Some of the commonly used imaging techniques are ultrasound, CT, and MRI. However, the main difference between the other medical imaging equipment and EchoCG is that it is safer, low cost, non-invasive and non-traumatic. Three-dimensional EchoCG is a non-invasive imaging modality that is complementary and supplementary to two-dimensional imaging and can be used to examine the cardiovascular function and anatomy in different medical settings. The challenging problems, presented by EchoCG image processing, such as speckle phenomena, noise, temporary non-stationarity of processes, unsharp boundaries, attenuation, etc. forced us to consider and compare existing methods and then to develop an innovative approach that can tackle the problems connected with clinical applications. Actual studies are related to the analysis and development of a cardiac parameters automatic detection system by EchoCG that will provide new data on the dynamics of changes in cardiac parameters and improve the accuracy and reliability of the diagnosis. Research study in image segmentation has highlighted the capabilities of image-based methods for medical applications. The focus of the research is both theoretical and practical aspects of the application of the methods. Some of the segmentation approaches can be interesting for the imaging and medical community. Performance evaluation is carried out by comparing the borders, obtained from the considered methods to those manually prescribed by a medical specialist. Promising results demonstrate the possibilities and the limitations of each technique for image segmentation problems. The developed approach allows: to eliminate errors in calculating the geometric parameters of the heart; perform the necessary conditions, such as speed, accuracy, reliability; build a master model that will be an indispensable assistant for operations on a beating heart.
A dynamic fuzzy genetic algorithm for natural image segmentation using adaptive mean shift
NASA Astrophysics Data System (ADS)
Arfan Jaffar, M.
2017-01-01
In this paper, a colour image segmentation approach based on hybridisation of adaptive mean shift (AMS), fuzzy c-mean and genetic algorithms (GAs) is presented. Image segmentation is the perceptual faction of pixels based on some likeness measure. GA with fuzzy behaviour is adapted to maximise the fuzzy separation and minimise the global compactness among the clusters or segments in spatial fuzzy c-mean (sFCM). It adds diversity to the search process to find the global optima. A simple fusion method has been used to combine the clusters to overcome the problem of over segmentation. The results show that our technique outperforms state-of-the-art methods.
Objective measurements to evaluate glottal space segmentation from laryngeal images.
Gutiérrez-Arriola, J M; Osma-Ruiz, V; Sáenz-Lechón, N; Godino-Llorente, J I; Fraile, R; Arias-Londoño, J D
2012-01-01
Objective evaluation of the results of medical image segmentation is a known problem. Applied to the task of automatically detecting the glottal area from laryngeal images, this paper proposes a new objective measurement to evaluate the quality of a segmentation algorithm by comparing with the results given by a human expert. The new figure of merit is called Area Index, and its effectiveness is compared with one of the most used figures of merit found in the literature: the Pratt Index. Results over 110 laryngeal images presented high correlations between both indexes, demonstrating that the proposed measure is comparable to the Pratt Index and it is a good indicator of the segmentation quality.
Cellular image segmentation using n-agent cooperative game theory
NASA Astrophysics Data System (ADS)
Dimock, Ian B.; Wan, Justin W. L.
2016-03-01
Image segmentation is an important problem in computer vision and has significant applications in the segmentation of cellular images. Many different imaging techniques exist and produce a variety of image properties which pose difficulties to image segmentation routines. Bright-field images are particularly challenging because of the non-uniform shape of the cells, the low contrast between cells and background, and imaging artifacts such as halos and broken edges. Classical segmentation techniques often produce poor results on these challenging images. Previous attempts at bright-field imaging are often limited in scope to the images that they segment. In this paper, we introduce a new algorithm for automatically segmenting cellular images. The algorithm incorporates two game theoretic models which allow each pixel to act as an independent agent with the goal of selecting their best labelling strategy. In the non-cooperative model, the pixels choose strategies greedily based only on local information. In the cooperative model, the pixels can form coalitions, which select labelling strategies that benefit the entire group. Combining these two models produces a method which allows the pixels to balance both local and global information when selecting their label. With the addition of k-means and active contour techniques for initialization and post-processing purposes, we achieve a robust segmentation routine. The algorithm is applied to several cell image datasets including bright-field images, fluorescent images and simulated images. Experiments show that the algorithm produces good segmentation results across the variety of datasets which differ in cell density, cell shape, contrast, and noise levels.
Constraint-based stereo matching
NASA Technical Reports Server (NTRS)
Kuan, D. T.
1987-01-01
The major difficulty in stereo vision is the correspondence problem that requires matching features in two stereo images. Researchers describe a constraint-based stereo matching technique using local geometric constraints among edge segments to limit the search space and to resolve matching ambiguity. Edge segments are used as image features for stereo matching. Epipolar constraint and individual edge properties are used to determine possible initial matches between edge segments in a stereo image pair. Local edge geometric attributes such as continuity, junction structure, and edge neighborhood relations are used as constraints to guide the stereo matching process. The result is a locally consistent set of edge segment correspondences between stereo images. These locally consistent matches are used to generate higher-level hypotheses on extended edge segments and junctions to form more global contexts to achieve global consistency.
A Bayesian Approach for Image Segmentation with Shape Priors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Hang; Yang, Qing; Parvin, Bahram
2008-06-20
Color and texture have been widely used in image segmentation; however, their performance is often hindered by scene ambiguities, overlapping objects, or missingparts. In this paper, we propose an interactive image segmentation approach with shape prior models within a Bayesian framework. Interactive features, through mouse strokes, reduce ambiguities, and the incorporation of shape priors enhances quality of the segmentation where color and/or texture are not solely adequate. The novelties of our approach are in (i) formulating the segmentation problem in a well-de?ned Bayesian framework with multiple shape priors, (ii) ef?ciently estimating parameters of the Bayesian model, and (iii) multi-object segmentationmore » through user-speci?ed priors. We demonstrate the effectiveness of our method on a set of natural and synthetic images.« less
Xue, Zhong; Shen, Dinggang; Li, Hai; Wong, Stephen
2010-01-01
The traditional fuzzy clustering algorithm and its extensions have been successfully applied in medical image segmentation. However, because of the variability of tissues and anatomical structures, the clustering results might be biased by the tissue population and intensity differences. For example, clustering-based algorithms tend to over-segment white matter tissues of MR brain images. To solve this problem, we introduce a tissue probability map constrained clustering algorithm and apply it to serial MR brain image segmentation, i.e., a series of 3-D MR brain images of the same subject at different time points. Using the new serial image segmentation algorithm in the framework of the CLASSIC framework, which iteratively segments the images and estimates the longitudinal deformations, we improved both accuracy and robustness for serial image computing, and at the mean time produced longitudinally consistent segmentation and stable measures. In the algorithm, the tissue probability maps consist of both the population-based and subject-specific segmentation priors. Experimental study using both simulated longitudinal MR brain data and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data confirmed that using both priors more accurate and robust segmentation results can be obtained. The proposed algorithm can be applied in longitudinal follow up studies of MR brain imaging with subtle morphological changes for neurological disorders. PMID:26566399
Partial volume segmentation in 3D of lesions and tissues in magnetic resonance images
NASA Astrophysics Data System (ADS)
Johnston, Brian; Atkins, M. Stella; Booth, Kellogg S.
1994-05-01
An important first step in diagnosis and treatment planning using tomographic imaging is differentiating and quantifying diseased as well as healthy tissue. One of the difficulties encountered in solving this problem to date has been distinguishing the partial volume constituents of each voxel in the image volume. Most proposed solutions to this problem involve analysis of planar images, in sequence, in two dimensions only. We have extended a model-based method of image segmentation which applies the technique of iterated conditional modes in three dimensions. A minimum of user intervention is required to train the algorithm. Partial volume estimates for each voxel in the image are obtained yielding fractional compositions of multiple tissue types for individual voxels. A multispectral approach is applied, where spatially registered data sets are available. The algorithm is simple and has been parallelized using a dataflow programming environment to reduce the computational burden. The algorithm has been used to segment dual echo MRI data sets of multiple sclerosis patients using lesions, gray matter, white matter, and cerebrospinal fluid as the partial volume constituents. The results of the application of the algorithm to these datasets is presented and compared to the manual lesion segmentation of the same data.
Translation-aware semantic segmentation via conditional least-square generative adversarial networks
NASA Astrophysics Data System (ADS)
Zhang, Mi; Hu, Xiangyun; Zhao, Like; Pang, Shiyan; Gong, Jinqi; Luo, Min
2017-10-01
Semantic segmentation has recently made rapid progress in the field of remote sensing and computer vision. However, many leading approaches cannot simultaneously translate label maps to possible source images with a limited number of training images. The core issue is insufficient adversarial information to interpret the inverse process and proper objective loss function to overcome the vanishing gradient problem. We propose the use of conditional least squares generative adversarial networks (CLS-GAN) to delineate visual objects and solve these problems. We trained the CLS-GAN network for semantic segmentation to discriminate dense prediction information either from training images or generative networks. We show that the optimal objective function of CLS-GAN is a special class of f-divergence and yields a generator that lies on the decision boundary of discriminator that reduces possible vanished gradient. We also demonstrate the effectiveness of the proposed architecture at translating images from label maps in the learning process. Experiments on a limited number of high resolution images, including close-range and remote sensing datasets, indicate that the proposed method leads to the improved semantic segmentation accuracy and can simultaneously generate high quality images from label maps.
Multiclass Data Segmentation Using Diffuse Interface Methods on Graphs
2014-01-01
interac- tive image segmentation using the solution to a combinatorial Dirichlet problem. Elmoataz et al . have developed general- izations of the graph...Laplacian [25] for image denoising and manifold smoothing. Couprie et al . in [18] define a conve- niently parameterized graph-based energy function that...over to the discrete graph representation. For general data segmentation, Bresson et al . in [8], present rigorous convergence results for two algorithms
NASA Astrophysics Data System (ADS)
Rysavy, Steven; Flores, Arturo; Enciso, Reyes; Okada, Kazunori
2008-03-01
This paper presents an experimental study for assessing the applicability of general-purpose 3D segmentation algorithms for analyzing dental periapical lesions in cone-beam computed tomography (CBCT) scans. In the field of Endodontics, clinical studies have been unable to determine if a periapical granuloma can heal with non-surgical methods. Addressing this issue, Simon et al. recently proposed a diagnostic technique which non-invasively classifies target lesions using CBCT. Manual segmentation exploited in their study, however, is too time consuming and unreliable for real world adoption. On the other hand, many technically advanced algorithms have been proposed to address segmentation problems in various biomedical and non-biomedical contexts, but they have not yet been applied to the field of dentistry. Presented in this paper is a novel application of such segmentation algorithms to the clinically-significant dental problem. This study evaluates three state-of-the-art graph-based algorithms: a normalized cut algorithm based on a generalized eigen-value problem, a graph cut algorithm implementing energy minimization techniques, and a random walks algorithm derived from discrete electrical potential theory. In this paper, we extend the original 2D formulation of the above algorithms to segment 3D images directly and apply the resulting algorithms to the dental CBCT images. We experimentally evaluate quality of the segmentation results for 3D CBCT images, as well as their 2D cross sections. The benefits and pitfalls of each algorithm are highlighted.
NASA Astrophysics Data System (ADS)
Lei, Sen; Zou, Zhengxia; Liu, Dunge; Xia, Zhenghuan; Shi, Zhenwei
2018-06-01
Sea-land segmentation is a key step for the information processing of ocean remote sensing images. Traditional sea-land segmentation algorithms ignore the local similarity prior of sea and land, and thus fail in complex scenarios. In this paper, we propose a new sea-land segmentation method for infrared remote sensing images to tackle the problem based on superpixels and multi-scale features. Considering the connectivity and local similarity of sea or land, we interpret the sea-land segmentation task in view of superpixels rather than pixels, where similar pixels are clustered and the local similarity are explored. Moreover, the multi-scale features are elaborately designed, comprising of gray histogram and multi-scale total variation. Experimental results on infrared bands of Landsat-8 satellite images demonstrate that the proposed method can obtain more accurate and more robust sea-land segmentation results than the traditional algorithms.
Xiao, Xun; Geyer, Veikko F; Bowne-Anderson, Hugo; Howard, Jonathon; Sbalzarini, Ivo F
2016-08-01
Biological filaments, such as actin filaments, microtubules, and cilia, are often imaged using different light-microscopy techniques. Reconstructing the filament curve from the acquired images constitutes the filament segmentation problem. Since filaments have lower dimensionality than the image itself, there is an inherent trade-off between tracing the filament with sub-pixel accuracy and avoiding noise artifacts. Here, we present a globally optimal filament segmentation method based on B-spline vector level-sets and a generalized linear model for the pixel intensity statistics. We show that the resulting optimization problem is convex and can hence be solved with global optimality. We introduce a simple and efficient algorithm to compute such optimal filament segmentations, and provide an open-source implementation as an ImageJ/Fiji plugin. We further derive an information-theoretic lower bound on the filament segmentation error, quantifying how well an algorithm could possibly do given the information in the image. We show that our algorithm asymptotically reaches this bound in the spline coefficients. We validate our method in comprehensive benchmarks, compare with other methods, and show applications from fluorescence, phase-contrast, and dark-field microscopy. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Colony image acquisition and segmentation
NASA Astrophysics Data System (ADS)
Wang, W. X.
2007-12-01
For counting of both colonies and plaques, there is a large number of applications including food, dairy, beverages, hygiene, environmental monitoring, water, toxicology, sterility testing, AMES testing, pharmaceuticals, paints, sterile fluids and fungal contamination. Recently, many researchers and developers have made efforts for this kind of systems. By investigation, some existing systems have some problems. The main problems are image acquisition and image segmentation. In order to acquire colony images with good quality, an illumination box was constructed as: the box includes front lightning and back lightning, which can be selected by users based on properties of colony dishes. With the illumination box, lightning can be uniform; colony dish can be put in the same place every time, which make image processing easy. The developed colony image segmentation algorithm consists of the sub-algorithms: (1) image classification; (2) image processing; and (3) colony delineation. The colony delineation algorithm main contain: the procedures based on grey level similarity, on boundary tracing, on shape information and colony excluding. In addition, a number of algorithms are developed for colony analysis. The system has been tested and satisfactory.
NASA Astrophysics Data System (ADS)
Akinin, M. V.; Akinina, N. V.; Klochkov, A. Y.; Nikiforov, M. B.; Sokolova, A. V.
2015-05-01
The report reviewed the algorithm fuzzy c-means, performs image segmentation, give an estimate of the quality of his work on the criterion of Xie-Beni, contain the results of experimental studies of the algorithm in the context of solving the problem of drawing up detailed two-dimensional maps with the use of unmanned aerial vehicles. According to the results of the experiment concluded that the possibility of applying the algorithm in problems of decoding images obtained as a result of aerial photography. The considered algorithm can significantly break the original image into a plurality of segments (clusters) in a relatively short period of time, which is achieved by modification of the original k-means algorithm to work in a fuzzy task.
Spatio-Temporal Video Segmentation with Shape Growth or Shrinkage Constraint
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Charpiat, Guillaume; Brucker, Ludovic; Menze, Bjoern H.
2014-01-01
We propose a new method for joint segmentation of monotonously growing or shrinking shapes in a time sequence of noisy images. The task of segmenting the image time series is expressed as an optimization problem using the spatio-temporal graph of pixels, in which we are able to impose the constraint of shape growth or of shrinkage by introducing monodirectional infinite links connecting pixels at the same spatial locations in successive image frames. The globally optimal solution is computed with a graph cut. The performance of the proposed method is validated on three applications: segmentation of melting sea ice floes and of growing burned areas from time series of 2D satellite images, and segmentation of a growing brain tumor from sequences of 3D medical scans. In the latter application, we impose an additional intersequences inclusion constraint by adding directed infinite links between pixels of dependent image structures.
Merabet, Youssef El; Meurie, Cyril; Ruichek, Yassine; Sbihi, Abderrahmane; Touahni, Raja
2015-01-01
In this paper, we present a novel strategy for roof segmentation from aerial images (orthophotoplans) based on the cooperation of edge- and region-based segmentation methods. The proposed strategy is composed of three major steps. The first one, called the pre-processing step, consists of simplifying the acquired image with an appropriate couple of invariant and gradient, optimized for the application, in order to limit illumination changes (shadows, brightness, etc.) affecting the images. The second step is composed of two main parallel treatments: on the one hand, the simplified image is segmented by watershed regions. Even if the first segmentation of this step provides good results in general, the image is often over-segmented. To alleviate this problem, an efficient region merging strategy adapted to the orthophotoplan particularities, with a 2D modeling of roof ridges technique, is applied. On the other hand, the simplified image is segmented by watershed lines. The third step consists of integrating both watershed segmentation strategies into a single cooperative segmentation scheme in order to achieve satisfactory segmentation results. Tests have been performed on orthophotoplans containing 100 roofs with varying complexity, and the results are evaluated with the VINETcriterion using ground-truth image segmentation. A comparison with five popular segmentation techniques of the literature demonstrates the effectiveness and the reliability of the proposed approach. Indeed, we obtain a good segmentation rate of 96% with the proposed method compared to 87.5% with statistical region merging (SRM), 84% with mean shift, 82% with color structure code (CSC), 80% with efficient graph-based segmentation algorithm (EGBIS) and 71% with JSEG. PMID:25648706
Brain tumor segmentation based on local independent projection-based classification.
Huang, Meiyan; Yang, Wei; Wu, Yao; Jiang, Jun; Chen, Wufan; Feng, Qianjin
2014-10-01
Brain tumor segmentation is an important procedure for early tumor diagnosis and radiotherapy planning. Although numerous brain tumor segmentation methods have been presented, enhancing tumor segmentation methods is still challenging because brain tumor MRI images exhibit complex characteristics, such as high diversity in tumor appearance and ambiguous tumor boundaries. To address this problem, we propose a novel automatic tumor segmentation method for MRI images. This method treats tumor segmentation as a classification problem. Additionally, the local independent projection-based classification (LIPC) method is used to classify each voxel into different classes. A novel classification framework is derived by introducing the local independent projection into the classical classification model. Locality is important in the calculation of local independent projections for LIPC. Locality is also considered in determining whether local anchor embedding is more applicable in solving linear projection weights compared with other coding methods. Moreover, LIPC considers the data distribution of different classes by learning a softmax regression model, which can further improve classification performance. In this study, 80 brain tumor MRI images with ground truth data are used as training data and 40 images without ground truth data are used as testing data. The segmentation results of testing data are evaluated by an online evaluation tool. The average dice similarities of the proposed method for segmenting complete tumor, tumor core, and contrast-enhancing tumor on real patient data are 0.84, 0.685, and 0.585, respectively. These results are comparable to other state-of-the-art methods.
Wang, Hongzhi; Yushkevich, Paul A.
2013-01-01
Label fusion based multi-atlas segmentation has proven to be one of the most competitive techniques for medical image segmentation. This technique transfers segmentations from expert-labeled images, called atlases, to a novel image using deformable image registration. Errors produced by label transfer are further reduced by label fusion that combines the results produced by all atlases into a consensus solution. Among the proposed label fusion strategies, weighted voting with spatially varying weight distributions derived from atlas-target intensity similarity is a simple and highly effective label fusion technique. However, one limitation of most weighted voting methods is that the weights are computed independently for each atlas, without taking into account the fact that different atlases may produce similar label errors. To address this problem, we recently developed the joint label fusion technique and the corrective learning technique, which won the first place of the 2012 MICCAI Multi-Atlas Labeling Challenge and was one of the top performers in 2013 MICCAI Segmentation: Algorithms, Theory and Applications (SATA) challenge. To make our techniques more accessible to the scientific research community, we describe an Insight-Toolkit based open source implementation of our label fusion methods. Our implementation extends our methods to work with multi-modality imaging data and is more suitable for segmentation problems with multiple labels. We demonstrate the usage of our tools through applying them to the 2012 MICCAI Multi-Atlas Labeling Challenge brain image dataset and the 2013 SATA challenge canine leg image dataset. We report the best results on these two datasets so far. PMID:24319427
Lineage mapper: A versatile cell and particle tracker
NASA Astrophysics Data System (ADS)
Chalfoun, Joe; Majurski, Michael; Dima, Alden; Halter, Michael; Bhadriraju, Kiran; Brady, Mary
2016-11-01
The ability to accurately track cells and particles from images is critical to many biomedical problems. To address this, we developed Lineage Mapper, an open-source tracker for time-lapse images of biological cells, colonies, and particles. Lineage Mapper tracks objects independently of the segmentation method, detects mitosis in confluence, separates cell clumps mistakenly segmented as a single cell, provides accuracy and scalability even on terabyte-sized datasets, and creates division and/or fusion lineages. Lineage Mapper has been tested and validated on multiple biological and simulated problems. The software is available in ImageJ and Matlab at isg.nist.gov.
Shi, Feng; Yap, Pew-Thian; Fan, Yong; Cheng, Jie-Zhi; Wald, Lawrence L.; Gerig, Guido; Lin, Weili; Shen, Dinggang
2010-01-01
The acquisition of high quality MR images of neonatal brains is largely hampered by their characteristically small head size and low tissue contrast. As a result, subsequent image processing and analysis, especially for brain tissue segmentation, are often hindered. To overcome this problem, a dedicated phased array neonatal head coil is utilized to improve MR image quality by effectively combing images obtained from 8 coil elements without lengthening data acquisition time. In addition, a subject-specific atlas based tissue segmentation algorithm is specifically developed for the delineation of fine structures in the acquired neonatal brain MR images. The proposed tissue segmentation method first enhances the sheet-like cortical gray matter (GM) structures in neonatal images with a Hessian filter for generation of cortical GM prior. Then, the prior is combined with our neonatal population atlas to form a cortical enhanced hybrid atlas, which we refer to as the subject-specific atlas. Various experiments are conducted to compare the proposed method with manual segmentation results, as well as with additional two population atlas based segmentation methods. Results show that the proposed method is capable of segmenting the neonatal brain with the highest accuracy, compared to other two methods. PMID:20862268
A novel line segment detection algorithm based on graph search
NASA Astrophysics Data System (ADS)
Zhao, Hong-dan; Liu, Guo-ying; Song, Xu
2018-02-01
To overcome the problem of extracting line segment from an image, a method of line segment detection was proposed based on the graph search algorithm. After obtaining the edge detection result of the image, the candidate straight line segments are obtained in four directions. For the candidate straight line segments, their adjacency relationships are depicted by a graph model, based on which the depth-first search algorithm is employed to determine how many adjacent line segments need to be merged. Finally we use the least squares method to fit the detected straight lines. The comparative experimental results verify that the proposed algorithm has achieved better results than the line segment detector (LSD).
A lane line segmentation algorithm based on adaptive threshold and connected domain theory
NASA Astrophysics Data System (ADS)
Feng, Hui; Xu, Guo-sheng; Han, Yi; Liu, Yang
2018-04-01
Before detecting cracks and repairs on road lanes, it's necessary to eliminate the influence of lane lines on the recognition result in road lane images. Aiming at the problems caused by lane lines, an image segmentation algorithm based on adaptive threshold and connected domain is proposed. First, by analyzing features like grey level distribution and the illumination of the images, the algorithm uses Hough transform to divide the images into different sections and convert them into binary images separately. It then uses the connected domain theory to amend the outcome of segmentation, remove noises and fill the interior zone of lane lines. Experiments have proved that this method could eliminate the influence of illumination and lane line abrasion, removing noises thoroughly while maintaining high segmentation precision.
Multi scales based sparse matrix spectral clustering image segmentation
NASA Astrophysics Data System (ADS)
Liu, Zhongmin; Chen, Zhicai; Li, Zhanming; Hu, Wenjin
2018-04-01
In image segmentation, spectral clustering algorithms have to adopt the appropriate scaling parameter to calculate the similarity matrix between the pixels, which may have a great impact on the clustering result. Moreover, when the number of data instance is large, computational complexity and memory use of the algorithm will greatly increase. To solve these two problems, we proposed a new spectral clustering image segmentation algorithm based on multi scales and sparse matrix. We devised a new feature extraction method at first, then extracted the features of image on different scales, at last, using the feature information to construct sparse similarity matrix which can improve the operation efficiency. Compared with traditional spectral clustering algorithm, image segmentation experimental results show our algorithm have better degree of accuracy and robustness.
Molar axis estimation from computed tomography images.
Dongxia Zhang; Yangzhou Gan; Zeyang Xia; Xinwen Zhou; Shoubin Liu; Jing Xiong; Guanglin Li
2016-08-01
Estimation of tooth axis is needed for some clinical dental treatment. Existing methods require to segment the tooth volume from Computed Tomography (CT) images, and then estimate the axis from the tooth volume. However, they may fail during estimating molar axis due to that the tooth segmentation from CT images is challenging and current segmentation methods may get poor segmentation results especially for these molars with angle which will result in the failure of axis estimation. To resolve this problem, this paper proposes a new method for molar axis estimation from CT images. The key innovation point is that: instead of estimating the 3D axis of each molar from the segmented volume, the method estimates the 3D axis from two projection images. The method includes three steps. (1) The 3D images of each molar are projected to two 2D image planes. (2) The molar contour are segmented and the contour's 2D axis are extracted in each 2D projection image. Principal Component Analysis (PCA) and a modified symmetry axis detection algorithm are employed to extract the 2D axis from the segmented molar contour. (3) A 3D molar axis is obtained by combining the two 2D axes. Experimental results verified that the proposed method was effective to estimate the axis of molar from CT images.
Boosting the discriminative power of color models for feature detection
NASA Astrophysics Data System (ADS)
Stokman, Harro M. G.; Gevers, Theo
2005-01-01
We consider the well-known problem of segmenting a color image into foreground-background pixels. Such result can be obtained by segmenting the red, green and blue channels directly. Alternatively, the result may be obtained through the transformation of the color image into other color spaces, such as HSV or normalized colors. The problem then is how to select the color space or color channel that produces the best segmentation result. Furthermore, if more than one channels are equally good candidates, the next problem is how to combine the results. In this article, we investigate if the principles of the formal model for diversification of Markowitz (1952) can be applied to solve the problem. We verify, in theory and in practice, that the proposed diversification model can be applied effectively to determine the most appropriate combination of color spaces for the application at hand.
New auto-segment method of cerebral hemorrhage
NASA Astrophysics Data System (ADS)
Wang, Weijiang; Shen, Tingzhi; Dang, Hua
2007-12-01
A novel method for Computerized tomography (CT) cerebral hemorrhage (CH) image automatic segmentation is presented in the paper, which uses expert system that models human knowledge about the CH automatic segmentation problem. The algorithm adopts a series of special steps and extracts some easy ignored CH features which can be found by statistic results of mass real CH images, such as region area, region CT number, region smoothness and some statistic CH region relationship. And a seven steps' extracting mechanism will ensure these CH features can be got correctly and efficiently. By using these CH features, a decision tree which models the human knowledge about the CH automatic segmentation problem has been built and it will ensure the rationality and accuracy of the algorithm. Finally some experiments has been taken to verify the correctness and reasonable of the automatic segmentation, and the good correct ratio and fast speed make it possible to be widely applied into practice.
Image segmentation with a novel regularized composite shape prior based on surrogate study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Tingting, E-mail: tingtingzhao@mednet.ucla.edu; Ruan, Dan, E-mail: druan@mednet.ucla.edu
Purpose: Incorporating training into image segmentation is a good approach to achieve additional robustness. This work aims to develop an effective strategy to utilize shape prior knowledge, so that the segmentation label evolution can be driven toward the desired global optimum. Methods: In the variational image segmentation framework, a regularization for the composite shape prior is designed to incorporate the geometric relevance of individual training data to the target, which is inferred by an image-based surrogate relevance metric. Specifically, this regularization is imposed on the linear weights of composite shapes and serves as a hyperprior. The overall problem is formulatedmore » in a unified optimization setting and a variational block-descent algorithm is derived. Results: The performance of the proposed scheme is assessed in both corpus callosum segmentation from an MR image set and clavicle segmentation based on CT images. The resulted shape composition provides a proper preference for the geometrically relevant training data. A paired Wilcoxon signed rank test demonstrates statistically significant improvement of image segmentation accuracy, when compared to multiatlas label fusion method and three other benchmark active contour schemes. Conclusions: This work has developed a novel composite shape prior regularization, which achieves superior segmentation performance than typical benchmark schemes.« less
General Staining and Segmentation Procedures for High Content Imaging and Analysis.
Chambers, Kevin M; Mandavilli, Bhaskar S; Dolman, Nick J; Janes, Michael S
2018-01-01
Automated quantitative fluorescence microscopy, also known as high content imaging (HCI), is a rapidly growing analytical approach in cell biology. Because automated image analysis relies heavily on robust demarcation of cells and subcellular regions, reliable methods for labeling cells is a critical component of the HCI workflow. Labeling of cells for image segmentation is typically performed with fluorescent probes that bind DNA for nuclear-based cell demarcation or with those which react with proteins for image analysis based on whole cell staining. These reagents, along with instrument and software settings, play an important role in the successful segmentation of cells in a population for automated and quantitative image analysis. In this chapter, we describe standard procedures for labeling and image segmentation in both live and fixed cell samples. The chapter will also provide troubleshooting guidelines for some of the common problems associated with these aspects of HCI.
Kumar, Rajesh; Srivastava, Subodh; Srivastava, Rajeev
2017-07-01
For cancer detection from microscopic biopsy images, image segmentation step used for segmentation of cells and nuclei play an important role. Accuracy of segmentation approach dominate the final results. Also the microscopic biopsy images have intrinsic Poisson noise and if it is present in the image the segmentation results may not be accurate. The objective is to propose an efficient fuzzy c-means based segmentation approach which can also handle the noise present in the image during the segmentation process itself i.e. noise removal and segmentation is combined in one step. To address the above issues, in this paper a fourth order partial differential equation (FPDE) based nonlinear filter adapted to Poisson noise with fuzzy c-means segmentation method is proposed. This approach is capable of effectively handling the segmentation problem of blocky artifacts while achieving good tradeoff between Poisson noise removals and edge preservation of the microscopic biopsy images during segmentation process for cancer detection from cells. The proposed approach is tested on breast cancer microscopic biopsy data set with region of interest (ROI) segmented ground truth images. The microscopic biopsy data set contains 31 benign and 27 malignant images of size 896 × 768. The region of interest selected ground truth of all 58 images are also available for this data set. Finally, the result obtained from proposed approach is compared with the results of popular segmentation algorithms; fuzzy c-means, color k-means, texture based segmentation, and total variation fuzzy c-means approaches. The experimental results shows that proposed approach is providing better results in terms of various performance measures such as Jaccard coefficient, dice index, Tanimoto coefficient, area under curve, accuracy, true positive rate, true negative rate, false positive rate, false negative rate, random index, global consistency error, and variance of information as compared to other segmentation approaches used for cancer detection. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sammouda, Rachid; Niki, Noboru; Nishitani, Hiroshi; Nakamura, S.; Mori, Shinichiro
1997-04-01
The paper presents a method for automatic segmentation of sputum cells with color images, to develop an efficient algorithm for lung cancer diagnosis based on a Hopfield neural network. We formulate the segmentation problem as a minimization of an energy function constructed with two terms, the cost-term as a sum of squared errors, and the second term a temporary noise added to the network as an excitation to escape certain local minima with the result of being closer to the global minimum. To increase the accuracy in segmenting the regions of interest, a preclassification technique is used to extract the sputum cell regions within the color image and remove those of the debris cells. The former is then given with the raw image to the input of Hopfield neural network to make a crisp segmentation by assigning each pixel to label such as background, cytoplasm, and nucleus. The proposed technique has yielded correct segmentation of complex scene of sputum prepared by ordinary manual staining method in most of the tested images selected from our database containing thousands of sputum color images.
Image segmentation using hidden Markov Gauss mixture models.
Pyun, Kyungsuk; Lim, Johan; Won, Chee Sun; Gray, Robert M
2007-07-01
Image segmentation is an important tool in image processing and can serve as an efficient front end to sophisticated algorithms and thereby simplify subsequent processing. We develop a multiclass image segmentation method using hidden Markov Gauss mixture models (HMGMMs) and provide examples of segmentation of aerial images and textures. HMGMMs incorporate supervised learning, fitting the observation probability distribution given each class by a Gauss mixture estimated using vector quantization with a minimum discrimination information (MDI) distortion. We formulate the image segmentation problem using a maximum a posteriori criteria and find the hidden states that maximize the posterior density given the observation. We estimate both the hidden Markov parameter and hidden states using a stochastic expectation-maximization algorithm. Our results demonstrate that HMGMM provides better classification in terms of Bayes risk and spatial homogeneity of the classified objects than do several popular methods, including classification and regression trees, learning vector quantization, causal hidden Markov models (HMMs), and multiresolution HMMs. The computational load of HMGMM is similar to that of the causal HMM.
Tracking cells in Life Cell Imaging videos using topological alignments.
Mosig, Axel; Jäger, Stefan; Wang, Chaofeng; Nath, Sumit; Ersoy, Ilker; Palaniappan, Kannap-pan; Chen, Su-Shing
2009-07-16
With the increasing availability of live cell imaging technology, tracking cells and other moving objects in live cell videos has become a major challenge for bioimage informatics. An inherent problem for most cell tracking algorithms is over- or under-segmentation of cells - many algorithms tend to recognize one cell as several cells or vice versa. We propose to approach this problem through so-called topological alignments, which we apply to address the problem of linking segmentations of two consecutive frames in the video sequence. Starting from the output of a conventional segmentation procedure, we align pairs of consecutive frames through assigning sets of segments in one frame to sets of segments in the next frame. We achieve this through finding maximum weighted solutions to a generalized "bipartite matching" between two hierarchies of segments, where we derive weights from relative overlap scores of convex hulls of sets of segments. For solving the matching task, we rely on an integer linear program. Practical experiments demonstrate that the matching task can be solved efficiently in practice, and that our method is both effective and useful for tracking cells in data sets derived from a so-called Large Scale Digital Cell Analysis System (LSDCAS). The source code of the implementation is available for download from http://www.picb.ac.cn/patterns/Software/topaln.
Cerebral vessels segmentation for light-sheet microscopy image using convolutional neural networks
NASA Astrophysics Data System (ADS)
Hu, Chaoen; Hui, Hui; Wang, Shuo; Dong, Di; Liu, Xia; Yang, Xin; Tian, Jie
2017-03-01
Cerebral vessel segmentation is an important step in image analysis for brain function and brain disease studies. To extract all the cerebrovascular patterns, including arteries and capillaries, some filter-based methods are used to segment vessels. However, the design of accurate and robust vessel segmentation algorithms is still challenging, due to the variety and complexity of images, especially in cerebral blood vessel segmentation. In this work, we addressed a problem of automatic and robust segmentation of cerebral micro-vessels structures in cerebrovascular images acquired by light-sheet microscope for mouse. To segment micro-vessels in large-scale image data, we proposed a convolutional neural networks (CNNs) architecture trained by 1.58 million pixels with manual label. Three convolutional layers and one fully connected layer were used in the CNNs model. We extracted a patch of size 32x32 pixels in each acquired brain vessel image as training data set to feed into CNNs for classification. This network was trained to output the probability that the center pixel of input patch belongs to vessel structures. To build the CNNs architecture, a series of mouse brain vascular images acquired from a commercial light sheet fluorescence microscopy (LSFM) system were used for training the model. The experimental results demonstrated that our approach is a promising method for effectively segmenting micro-vessels structures in cerebrovascular images with vessel-dense, nonuniform gray-level and long-scale contrast regions.
MARS-MD: rejection based image domain material decomposition
NASA Astrophysics Data System (ADS)
Bateman, C. J.; Knight, D.; Brandwacht, B.; McMahon, J.; Healy, J.; Panta, R.; Aamir, R.; Rajendran, K.; Moghiseh, M.; Ramyar, M.; Rundle, D.; Bennett, J.; de Ruiter, N.; Smithies, D.; Bell, S. T.; Doesburg, R.; Chernoglazov, A.; Mandalika, V. B. H.; Walsh, M.; Shamshad, M.; Anjomrouz, M.; Atharifard, A.; Vanden Broeke, L.; Bheesette, S.; Kirkbride, T.; Anderson, N. G.; Gieseg, S. P.; Woodfield, T.; Renaud, P. F.; Butler, A. P. H.; Butler, P. H.
2018-05-01
This paper outlines image domain material decomposition algorithms that have been routinely used in MARS spectral CT systems. These algorithms (known collectively as MARS-MD) are based on a pragmatic heuristic for solving the under-determined problem where there are more materials than energy bins. This heuristic contains three parts: (1) splitting the problem into a number of possible sub-problems, each containing fewer materials; (2) solving each sub-problem; and (3) applying rejection criteria to eliminate all but one sub-problem's solution. An advantage of this process is that different constraints can be applied to each sub-problem if necessary. In addition, the result of this process is that solutions will be sparse in the material domain, which reduces crossover of signal between material images. Two algorithms based on this process are presented: the Segmentation variant, which uses segmented material classes to define each sub-problem; and the Angular Rejection variant, which defines the rejection criteria using the angle between reconstructed attenuation vectors.
Smart markers for watershed-based cell segmentation.
Koyuncu, Can Fahrettin; Arslan, Salim; Durmaz, Irem; Cetin-Atalay, Rengul; Gunduz-Demir, Cigdem
2012-01-01
Automated cell imaging systems facilitate fast and reliable analysis of biological events at the cellular level. In these systems, the first step is usually cell segmentation that greatly affects the success of the subsequent system steps. On the other hand, similar to other image segmentation problems, cell segmentation is an ill-posed problem that typically necessitates the use of domain-specific knowledge to obtain successful segmentations even by human subjects. The approaches that can incorporate this knowledge into their segmentation algorithms have potential to greatly improve segmentation results. In this work, we propose a new approach for the effective segmentation of live cells from phase contrast microscopy. This approach introduces a new set of "smart markers" for a marker-controlled watershed algorithm, for which the identification of its markers is critical. The proposed approach relies on using domain-specific knowledge, in the form of visual characteristics of the cells, to define the markers. We evaluate our approach on a total of 1,954 cells. The experimental results demonstrate that this approach, which uses the proposed definition of smart markers, is quite effective in identifying better markers compared to its counterparts. This will, in turn, be effective in improving the segmentation performance of a marker-controlled watershed algorithm.
NASA Astrophysics Data System (ADS)
Wang, Xuejuan; Wu, Shuhang; Liu, Yunpeng
2018-04-01
This paper presents a new method for wood defect detection. It can solve the over-segmentation problem existing in local threshold segmentation methods. This method effectively takes advantages of visual saliency and local threshold segmentation. Firstly, defect areas are coarsely located by using spectral residual method to calculate global visual saliency of them. Then, the threshold segmentation of maximum inter-class variance method is adopted for positioning and segmenting the wood surface defects precisely around the coarse located areas. Lastly, we use mathematical morphology to process the binary images after segmentation, which reduces the noise and small false objects. Experiments on test images of insect hole, dead knot and sound knot show that the method we proposed obtains ideal segmentation results and is superior to the existing segmentation methods based on edge detection, OSTU and threshold segmentation.
Automatic segmentation of colon glands using object-graphs.
Gunduz-Demir, Cigdem; Kandemir, Melih; Tosun, Akif Burak; Sokmensuer, Cenk
2010-02-01
Gland segmentation is an important step to automate the analysis of biopsies that contain glandular structures. However, this remains a challenging problem as the variation in staining, fixation, and sectioning procedures lead to a considerable amount of artifacts and variances in tissue sections, which may result in huge variances in gland appearances. In this work, we report a new approach for gland segmentation. This approach decomposes the tissue image into a set of primitive objects and segments glands making use of the organizational properties of these objects, which are quantified with the definition of object-graphs. As opposed to the previous literature, the proposed approach employs the object-based information for the gland segmentation problem, instead of using the pixel-based information alone. Working with the images of colon tissues, our experiments demonstrate that the proposed object-graph approach yields high segmentation accuracies for the training and test sets and significantly improves the segmentation performance of its pixel-based counterparts. The experiments also show that the object-based structure of the proposed approach provides more tolerance to artifacts and variances in tissues.
Optimal reinforcement of training datasets in semi-supervised landmark-based segmentation
NASA Astrophysics Data System (ADS)
Ibragimov, Bulat; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž
2015-03-01
During the last couple of decades, the development of computerized image segmentation shifted from unsupervised to supervised methods, which made segmentation results more accurate and robust. However, the main disadvantage of supervised segmentation is a need for manual image annotation that is time-consuming and subjected to human error. To reduce the need for manual annotation, we propose a novel learning approach for training dataset reinforcement in the area of landmark-based segmentation, where newly detected landmarks are optimally combined with reference landmarks from the training dataset and therefore enriches the training process. The approach is formulated as a nonlinear optimization problem, where the solution is a vector of weighting factors that measures how reliable are the detected landmarks. The detected landmarks that are found to be more reliable are included into the training procedure with higher weighting factors, whereas the detected landmarks that are found to be less reliable are included with lower weighting factors. The approach is integrated into the landmark-based game-theoretic segmentation framework and validated against the problem of lung field segmentation from chest radiographs.
Auroux, Didier; Cohen, Laurent D.; Masmoudi, Mohamed
2011-01-01
We combine in this paper the topological gradient, which is a powerful method for edge detection in image processing, and a variant of the minimal path method in order to find connected contours. The topological gradient provides a more global analysis of the image than the standard gradient and identifies the main edges of an image. Several image processing problems (e.g., inpainting and segmentation) require continuous contours. For this purpose, we consider the fast marching algorithm in order to find minimal paths in the topological gradient image. This coupled algorithm quickly provides accurate and connected contours. We present then two numerical applications, to image inpainting and segmentation, of this hybrid algorithm. PMID:22194734
Fuzzy connectedness and object definition
NASA Astrophysics Data System (ADS)
Udupa, Jayaram K.; Samarasekera, Supun
1995-04-01
Approaches to object information extraction from images should attempt to use the fact that images are fuzzy. In past image segmentation research, the notion of `hanging togetherness' of image elements specified by their fuzzy connectedness has been lacking. We present a theory of fuzzy objects for n-dimensional digital spaces based on a notion of fuzzy connectedness of image elements. Although our definitions lead to problems of enormous combinatorial complexity, the theoretical results allow us to reduce this dramatically. We demonstrate the utility of the theory and algorithms in image segmentation based on several practical examples.
Hatipoglu, Nuh; Bilgin, Gokhan
2017-10-01
In many computerized methods for cell detection, segmentation, and classification in digital histopathology that have recently emerged, the task of cell segmentation remains a chief problem for image processing in designing computer-aided diagnosis (CAD) systems. In research and diagnostic studies on cancer, pathologists can use CAD systems as second readers to analyze high-resolution histopathological images. Since cell detection and segmentation are critical for cancer grade assessments, cellular and extracellular structures should primarily be extracted from histopathological images. In response, we sought to identify a useful cell segmentation approach with histopathological images that uses not only prominent deep learning algorithms (i.e., convolutional neural networks, stacked autoencoders, and deep belief networks), but also spatial relationships, information of which is critical for achieving better cell segmentation results. To that end, we collected cellular and extracellular samples from histopathological images by windowing in small patches with various sizes. In experiments, the segmentation accuracies of the methods used improved as the window sizes increased due to the addition of local spatial and contextual information. Once we compared the effects of training sample size and influence of window size, results revealed that the deep learning algorithms, especially convolutional neural networks and partly stacked autoencoders, performed better than conventional methods in cell segmentation.
NASA Astrophysics Data System (ADS)
Wang, Z.; Li, T.; Pan, L.; Kang, Z.
2017-09-01
With increasing attention for the indoor environment and the development of low-cost RGB-D sensors, indoor RGB-D images are easily acquired. However, scene semantic segmentation is still an open area, which restricts indoor applications. The depth information can help to distinguish the regions which are difficult to be segmented out from the RGB images with similar color or texture in the indoor scenes. How to utilize the depth information is the key problem of semantic segmentation for RGB-D images. In this paper, we propose an Encode-Decoder Fully Convolutional Networks for RGB-D image classification. We use Multiple Kernel Maximum Mean Discrepancy (MK-MMD) as a distance measure to find common and special features of RGB and D images in the network to enhance performance of classification automatically. To explore better methods of applying MMD, we designed two strategies; the first calculates MMD for each feature map, and the other calculates MMD for whole batch features. Based on the result of classification, we use the full connect CRFs for the semantic segmentation. The experimental results show that our method can achieve a good performance on indoor RGB-D image semantic segmentation.
NASA Technical Reports Server (NTRS)
Hall, Lawrence O.; Bensaid, Amine M.; Clarke, Laurence P.; Velthuizen, Robert P.; Silbiger, Martin S.; Bezdek, James C.
1992-01-01
Magnetic resonance (MR) brain section images are segmented and then synthetically colored to give visual representations of the original data with three approaches: the literal and approximate fuzzy c-means unsupervised clustering algorithms and a supervised computational neural network, a dynamic multilayered perception trained with the cascade correlation learning algorithm. Initial clinical results are presented on both normal volunteers and selected patients with brain tumors surrounded by edema. Supervised and unsupervised segmentation techniques provide broadly similar results. Unsupervised fuzzy algorithms were visually observed to show better segmentation when compared with raw image data for volunteer studies. However, for a more complex segmentation problem with tumor/edema or cerebrospinal fluid boundary, where the tissues have similar MR relaxation behavior, inconsistency in rating among experts was observed.
NASA Astrophysics Data System (ADS)
Gui, Luying; He, Jian; Qiu, Yudong; Yang, Xiaoping
2017-01-01
This paper presents a variational level set approach to segment lesions with compact shapes on medical images. In this study, we investigate to address the problem of segmentation for hepatocellular carcinoma which are usually of various shapes, variable intensities, and weak boundaries. An efficient constraint which is called the isoperimetric constraint to describe the compactness of shapes is applied in this method. In addition, in order to ensure the precise segmentation and stable movement of the level set, a distance regularization is also implemented in the proposed variational framework. Our method is applied to segment various hepatocellular carcinoma regions on Computed Tomography images with promising results. Comparison results also prove that the proposed method is more accurate than other two approaches.
Hu, Yu-Chi J; Grossberg, Michael D; Mageras, Gikas S
2008-01-01
Planning radiotherapy and surgical procedures usually require onerous manual segmentation of anatomical structures from medical images. In this paper we present a semi-automatic and accurate segmentation method to dramatically reduce the time and effort required of expert users. This is accomplished by giving a user an intuitive graphical interface to indicate samples of target and non-target tissue by loosely drawing a few brush strokes on the image. We use these brush strokes to provide the statistical input for a Conditional Random Field (CRF) based segmentation. Since we extract purely statistical information from the user input, we eliminate the need of assumptions on boundary contrast previously used by many other methods, A new feature of our method is that the statistics on one image can be reused on related images without registration. To demonstrate this, we show that boundary statistics provided on a few 2D slices of volumetric medical data, can be propagated through the entire 3D stack of images without using the geometric correspondence between images. In addition, the image segmentation from the CRF can be formulated as a minimum s-t graph cut problem which has a solution that is both globally optimal and fast. The combination of a fast segmentation and minimal user input that is reusable, make this a powerful technique for the segmentation of medical images.
A wavelet-based Bayesian framework for 3D object segmentation in microscopy
NASA Astrophysics Data System (ADS)
Pan, Kangyu; Corrigan, David; Hillebrand, Jens; Ramaswami, Mani; Kokaram, Anil
2012-03-01
In confocal microscopy, target objects are labeled with fluorescent markers in the living specimen, and usually appear with irregular brightness in the observed images. Also, due to the existence of out-of-focus objects in the image, the segmentation of 3-D objects in the stack of image slices captured at different depth levels of the specimen is still heavily relied on manual analysis. In this paper, a novel Bayesian model is proposed for segmenting 3-D synaptic objects from given image stack. In order to solve the irregular brightness and out-offocus problems, the segmentation model employs a likelihood using the luminance-invariant 'wavelet features' of image objects in the dual-tree complex wavelet domain as well as a likelihood based on the vertical intensity profile of the image stack in 3-D. Furthermore, a smoothness 'frame' prior based on the a priori knowledge of the connections of the synapses is introduced to the model for enhancing the connectivity of the synapses. As a result, our model can successfully segment the in-focus target synaptic object from a 3D image stack with irregular brightness.
Initialisation of 3D level set for hippocampus segmentation from volumetric brain MR images
NASA Astrophysics Data System (ADS)
Hajiesmaeili, Maryam; Dehmeshki, Jamshid; Bagheri Nakhjavanlo, Bashir; Ellis, Tim
2014-04-01
Shrinkage of the hippocampus is a primary biomarker for Alzheimer's disease and can be measured through accurate segmentation of brain MR images. The paper will describe the problem of initialisation of a 3D level set algorithm for hippocampus segmentation that must cope with the some challenging characteristics, such as small size, wide range of intensities, narrow width, and shape variation. In addition, MR images require bias correction, to account for additional inhomogeneity associated with the scanner technology. Due to these inhomogeneities, using a single initialisation seed region inside the hippocampus is prone to failure. Alternative initialisation strategies are explored, such as using multiple initialisations in different sections (such as the head, body and tail) of the hippocampus. The Dice metric is used to validate our segmentation results with respect to ground truth for a dataset of 25 MR images. Experimental results indicate significant improvement in segmentation performance using the multiple initialisations techniques, yielding more accurate segmentation results for the hippocampus.
Handwritten text line segmentation by spectral clustering
NASA Astrophysics Data System (ADS)
Han, Xuecheng; Yao, Hui; Zhong, Guoqiang
2017-02-01
Since handwritten text lines are generally skewed and not obviously separated, text line segmentation of handwritten document images is still a challenging problem. In this paper, we propose a novel text line segmentation algorithm based on the spectral clustering. Given a handwritten document image, we convert it to a binary image first, and then compute the adjacent matrix of the pixel points. We apply spectral clustering on this similarity metric and use the orthogonal kmeans clustering algorithm to group the text lines. Experiments on Chinese handwritten documents database (HIT-MW) demonstrate the effectiveness of the proposed method.
Automated measurement of retinal vascular tortuosity.
Hart, W. E.; Goldbaum, M.; Côté, B.; Kube, P.; Nelson, M. R.
1997-01-01
Automatic measurement of blood vessel tortuosity is a useful capability for automatic ophthalmological diagnostic tools. We describe a suite of automated tortuosity measures for blood vessel segments extracted from RGB retinal images. The tortuosity measures were evaluated in two classification tasks: (1) classifying the tortuosity of blood vessel segments and (2) classifying the tortuosity of blood vessel networks. These tortuosity measures were able to achieve a classification rate of 91% for the first problem and 95% on the second problem, which confirms that they capture much of the ophthalmologists' notion of tortuosity. Images Figure 1 PMID:9357668
Local and global evaluation for remote sensing image segmentation
NASA Astrophysics Data System (ADS)
Su, Tengfei; Zhang, Shengwei
2017-08-01
In object-based image analysis, how to produce accurate segmentation is usually a very important issue that needs to be solved before image classification or target recognition. The study for segmentation evaluation method is key to solving this issue. Almost all of the existent evaluation strategies only focus on the global performance assessment. However, these methods are ineffective for the situation that two segmentation results with very similar overall performance have very different local error distributions. To overcome this problem, this paper presents an approach that can both locally and globally quantify segmentation incorrectness. In doing so, region-overlapping metrics are utilized to quantify each reference geo-object's over and under-segmentation error. These quantified error values are used to produce segmentation error maps which have effective illustrative power to delineate local segmentation error patterns. The error values for all of the reference geo-objects are aggregated through using area-weighted summation, so that global indicators can be derived. An experiment using two scenes of very different high resolution images showed that the global evaluation part of the proposed approach was almost as effective as other two global evaluation methods, and the local part was a useful complement to comparing different segmentation results.
Multi-scale image segmentation method with visual saliency constraints and its application
NASA Astrophysics Data System (ADS)
Chen, Yan; Yu, Jie; Sun, Kaimin
2018-03-01
Object-based image analysis method has many advantages over pixel-based methods, so it is one of the current research hotspots. It is very important to get the image objects by multi-scale image segmentation in order to carry out object-based image analysis. The current popular image segmentation methods mainly share the bottom-up segmentation principle, which is simple to realize and the object boundaries obtained are accurate. However, the macro statistical characteristics of the image areas are difficult to be taken into account, and fragmented segmentation (or over-segmentation) results are difficult to avoid. In addition, when it comes to information extraction, target recognition and other applications, image targets are not equally important, i.e., some specific targets or target groups with particular features worth more attention than the others. To avoid the problem of over-segmentation and highlight the targets of interest, this paper proposes a multi-scale image segmentation method with visually saliency graph constraints. Visual saliency theory and the typical feature extraction method are adopted to obtain the visual saliency information, especially the macroscopic information to be analyzed. The visual saliency information is used as a distribution map of homogeneity weight, where each pixel is given a weight. This weight acts as one of the merging constraints in the multi- scale image segmentation. As a result, pixels that macroscopically belong to the same object but are locally different can be more likely assigned to one same object. In addition, due to the constraint of visual saliency model, the constraint ability over local-macroscopic characteristics can be well controlled during the segmentation process based on different objects. These controls will improve the completeness of visually saliency areas in the segmentation results while diluting the controlling effect for non- saliency background areas. Experiments show that this method works better for texture image segmentation than traditional multi-scale image segmentation methods, and can enable us to give priority control to the saliency objects of interest. This method has been used in image quality evaluation, scattered residential area extraction, sparse forest extraction and other applications to verify its validation. All applications showed good results.
Optimization-based interactive segmentation interface for multiregion problems
Baxter, John S. H.; Rajchl, Martin; Peters, Terry M.; Chen, Elvis C. S.
2016-01-01
Abstract. Interactive segmentation is becoming of increasing interest to the medical imaging community in that it combines the positive aspects of both manual and automated segmentation. However, general-purpose tools have been lacking in terms of segmenting multiple regions simultaneously with a high degree of coupling between groups of labels. Hierarchical max-flow segmentation has taken advantage of this coupling for individual applications, but until recently, these algorithms were constrained to a particular hierarchy and could not be considered general-purpose. In a generalized form, the hierarchy for any given segmentation problem is specified in run-time, allowing different hierarchies to be quickly explored. We present an interactive segmentation interface, which uses generalized hierarchical max-flow for optimization-based multiregion segmentation guided by user-defined seeds. Applications in cardiac and neonatal brain segmentation are given as example applications of its generality. PMID:27335892
Hybrid Pixel-Based Method for Cardiac Ultrasound Fusion Based on Integration of PCA and DWT.
Mazaheri, Samaneh; Sulaiman, Puteri Suhaiza; Wirza, Rahmita; Dimon, Mohd Zamrin; Khalid, Fatimah; Moosavi Tayebi, Rohollah
2015-01-01
Medical image fusion is the procedure of combining several images from one or multiple imaging modalities. In spite of numerous attempts in direction of automation ventricle segmentation and tracking in echocardiography, due to low quality images with missing anatomical details or speckle noises and restricted field of view, this problem is a challenging task. This paper presents a fusion method which particularly intends to increase the segment-ability of echocardiography features such as endocardial and improving the image contrast. In addition, it tries to expand the field of view, decreasing impact of noise and artifacts and enhancing the signal to noise ratio of the echo images. The proposed algorithm weights the image information regarding an integration feature between all the overlapping images, by using a combination of principal component analysis and discrete wavelet transform. For evaluation, a comparison has been done between results of some well-known techniques and the proposed method. Also, different metrics are implemented to evaluate the performance of proposed algorithm. It has been concluded that the presented pixel-based method based on the integration of PCA and DWT has the best result for the segment-ability of cardiac ultrasound images and better performance in all metrics.
Intensity-based segmentation and visualization of cells in 3D microscopic images using the GPU
NASA Astrophysics Data System (ADS)
Kang, Mi-Sun; Lee, Jeong-Eom; Jeon, Woong-ki; Choi, Heung-Kook; Kim, Myoung-Hee
2013-02-01
3D microscopy images contain abundant astronomical data, rendering 3D microscopy image processing time-consuming and laborious on a central processing unit (CPU). To solve these problems, many people crop a region of interest (ROI) of the input image to a small size. Although this reduces cost and time, there are drawbacks at the image processing level, e.g., the selected ROI strongly depends on the user and there is a loss in original image information. To mitigate these problems, we developed a 3D microscopy image processing tool on a graphics processing unit (GPU). Our tool provides efficient and various automatic thresholding methods to achieve intensity-based segmentation of 3D microscopy images. Users can select the algorithm to be applied. Further, the image processing tool provides visualization of segmented volume data and can set the scale, transportation, etc. using a keyboard and mouse. However, the 3D objects visualized fast still need to be analyzed to obtain information for biologists. To analyze 3D microscopic images, we need quantitative data of the images. Therefore, we label the segmented 3D objects within all 3D microscopic images and obtain quantitative information on each labeled object. This information can use the classification feature. A user can select the object to be analyzed. Our tool allows the selected object to be displayed on a new window, and hence, more details of the object can be observed. Finally, we validate the effectiveness of our tool by comparing the CPU and GPU processing times by matching the specification and configuration.
A Method for the Evaluation of Thousands of Automated 3D Stem Cell Segmentations
Bajcsy, Peter; Simon, Mylene; Florczyk, Stephen; Simon, Carl G.; Juba, Derek; Brady, Mary
2016-01-01
There is no segmentation method that performs perfectly with any data set in comparison to human segmentation. Evaluation procedures for segmentation algorithms become critical for their selection. The problems associated with segmentation performance evaluations and visual verification of segmentation results are exaggerated when dealing with thousands of 3D image volumes because of the amount of computation and manual inputs needed. We address the problem of evaluating 3D segmentation performance when segmentation is applied to thousands of confocal microscopy images (z-stacks). Our approach is to incorporate experimental imaging and geometrical criteria, and map them into computationally efficient segmentation algorithms that can be applied to a very large number of z-stacks. This is an alternative approach to considering existing segmentation methods and evaluating most state-of-the-art algorithms. We designed a methodology for 3D segmentation performance characterization that consists of design, evaluation and verification steps. The characterization integrates manual inputs from projected surrogate “ground truth” of statistically representative samples and from visual inspection into the evaluation. The novelty of the methodology lies in (1) designing candidate segmentation algorithms by mapping imaging and geometrical criteria into algorithmic steps, and constructing plausible segmentation algorithms with respect to the order of algorithmic steps and their parameters, (2) evaluating segmentation accuracy using samples drawn from probability distribution estimates of candidate segmentations, and (3) minimizing human labor needed to create surrogate “truth” by approximating z-stack segmentations with 2D contours from three orthogonal z-stack projections and by developing visual verification tools. We demonstrate the methodology by applying it to a dataset of 1253 mesenchymal stem cells. The cells reside on 10 different types of biomaterial scaffolds, and are stained for actin and nucleus yielding 128 460 image frames (on average 125 cells/scaffold × 10 scaffold types × 2 stains × 51 frames/cell). After constructing and evaluating six candidates of 3D segmentation algorithms, the most accurate 3D segmentation algorithm achieved an average precision of 0.82 and an accuracy of 0.84 as measured by the Dice similarity index where values greater than 0.7 indicate a good spatial overlap. A probability of segmentation success was 0.85 based on visual verification, and a computation time was 42.3 h to process all z-stacks. While the most accurate segmentation technique was 4.2 times slower than the second most accurate algorithm, it consumed on average 9.65 times less memory per z-stack segmentation. PMID:26268699
Frost, Robert; Porter, David A; Miller, Karla L; Jezzard, Peter
2012-08-01
Single-shot echo-planar imaging has been used widely in diffusion magnetic resonance imaging due to the difficulties in correcting motion-induced phase corruption in multishot data. Readout-segmented EPI has addressed the multishot problem by introducing a two-dimensional nonlinear navigator correction with online reacquisition of uncorrectable data to enable acquisition of high-resolution diffusion data with reduced susceptibility artifact and T*(2) blurring. The primary shortcoming of readout-segmented EPI in its current form is its long acquisition time (longer than similar resolution single-shot echo-planar imaging protocols by approximately the number of readout segments), which limits the number of diffusion directions. By omitting readout segments at one side of k-space and using partial Fourier reconstruction, readout-segmented EPI imaging times could be reduced. In this study, the effects of homodyne and projection onto convex sets reconstructions on estimates of the fractional anisotropy, mean diffusivity, and diffusion orientation in fiber tracts and raw T(2)- and trace-weighted signal are compared, along with signal-to-noise ratio results. It is found that projections onto convex sets reconstruction with 3/5 segments in a 2 mm isotropic diffusion tensor image acquisition and 9/13 segments in a 0.9 × 0.9 × 4.0 mm(3) diffusion-weighted image acquisition provide good fidelity relative to the full k-space parameters. This allows application of readout-segmented EPI to tractography studies, and clinical stroke and oncology protocols. Copyright © 2011 Wiley-Liss, Inc.
Automatic Segmentation of High-Throughput RNAi Fluorescent Cellular Images
Yan, Pingkum; Zhou, Xiaobo; Shah, Mubarak; Wong, Stephen T. C.
2010-01-01
High-throughput genome-wide RNA interference (RNAi) screening is emerging as an essential tool to assist biologists in understanding complex cellular processes. The large number of images produced in each study make manual analysis intractable; hence, automatic cellular image analysis becomes an urgent need, where segmentation is the first and one of the most important steps. In this paper, a fully automatic method for segmentation of cells from genome-wide RNAi screening images is proposed. Nuclei are first extracted from the DNA channel by using a modified watershed algorithm. Cells are then extracted by modeling the interaction between them as well as combining both gradient and region information in the Actin and Rac channels. A new energy functional is formulated based on a novel interaction model for segmenting tightly clustered cells with significant intensity variance and specific phenotypes. The energy functional is minimized by using a multiphase level set method, which leads to a highly effective cell segmentation method. Promising experimental results demonstrate that automatic segmentation of high-throughput genome-wide multichannel screening can be achieved by using the proposed method, which may also be extended to other multichannel image segmentation problems. PMID:18270043
A Complete OCR System for Tamil Magazine Documents
NASA Astrophysics Data System (ADS)
Kokku, Aparna; Chakravarthy, Srinivasa
We present a complete optical character recognition (OCR) system for Tamil magazines/documents. All the standard elements of OCR process like de-skewing, preprocessing, segmentation, character recognition, and reconstruction are implemented. Experience with OCR problems teaches that for most subtasks of OCR, there is no single technique that gives perfect results for every type of document image. We exploit the ability of neural networks to learn from experience in solving the problems of segmentation and character recognition. Text segmentation of Tamil newsprint poses a new challenge owing to its italic-like font type; problems that arise in recognition of touching and close characters are discussed. Character recognition efficiency varied from 94 to 97% for this type of font. The grouping of blocks into logical units and the determination of reading order within each logical unit helped us in reconstructing automatically the document image in an editable format.
Pécot, Thierry; Bouthemy, Patrick; Boulanger, Jérôme; Chessel, Anatole; Bardin, Sabine; Salamero, Jean; Kervrann, Charles
2015-02-01
Image analysis applied to fluorescence live cell microscopy has become a key tool in molecular biology since it enables to characterize biological processes in space and time at the subcellular level. In fluorescence microscopy imaging, the moving tagged structures of interest, such as vesicles, appear as bright spots over a static or nonstatic background. In this paper, we consider the problem of vesicle segmentation and time-varying background estimation at the cellular scale. The main idea is to formulate the joint segmentation-estimation problem in the general conditional random field framework. Furthermore, segmentation of vesicles and background estimation are alternatively performed by energy minimization using a min cut-max flow algorithm. The proposed approach relies on a detection measure computed from intensity contrasts between neighboring blocks in fluorescence microscopy images. This approach permits analysis of either 2D + time or 3D + time data. We demonstrate the performance of the so-called C-CRAFT through an experimental comparison with the state-of-the-art methods in fluorescence video-microscopy. We also use this method to characterize the spatial and temporal distribution of Rab6 transport carriers at the cell periphery for two different specific adhesion geometries.
Joint graph cut and relative fuzzy connectedness image segmentation algorithm.
Ciesielski, Krzysztof Chris; Miranda, Paulo A V; Falcão, Alexandre X; Udupa, Jayaram K
2013-12-01
We introduce an image segmentation algorithm, called GC(sum)(max), which combines, in novel manner, the strengths of two popular algorithms: Relative Fuzzy Connectedness (RFC) and (standard) Graph Cut (GC). We show, both theoretically and experimentally, that GC(sum)(max) preserves robustness of RFC with respect to the seed choice (thus, avoiding "shrinking problem" of GC), while keeping GC's stronger control over the problem of "leaking though poorly defined boundary segments." The analysis of GC(sum)(max) is greatly facilitated by our recent theoretical results that RFC can be described within the framework of Generalized GC (GGC) segmentation algorithms. In our implementation of GC(sum)(max) we use, as a subroutine, a version of RFC algorithm (based on Image Forest Transform) that runs (provably) in linear time with respect to the image size. This results in GC(sum)(max) running in a time close to linear. Experimental comparison of GC(sum)(max) to GC, an iterative version of RFC (IRFC), and power watershed (PW), based on a variety medical and non-medical images, indicates superior accuracy performance of GC(sum)(max) over these other methods, resulting in a rank ordering of GC(sum)(max)>PW∼IRFC>GC. Copyright © 2013 Elsevier B.V. All rights reserved.
Learning to rank atlases for multiple-atlas segmentation.
Sanroma, Gerard; Wu, Guorong; Gao, Yaozong; Shen, Dinggang
2014-10-01
Recently, multiple-atlas segmentation (MAS) has achieved a great success in the medical imaging area. The key assumption is that multiple atlases have greater chances of correctly labeling a target image than a single atlas. However, the problem of atlas selection still remains unexplored. Traditionally, image similarity is used to select a set of atlases. Unfortunately, this heuristic criterion is not necessarily related to the final segmentation performance. To solve this seemingly simple but critical problem, we propose a learning-based atlas selection method to pick up the best atlases that would lead to a more accurate segmentation. Our main idea is to learn the relationship between the pairwise appearance of observed instances (i.e., a pair of atlas and target images) and their final labeling performance (e.g., using the Dice ratio). In this way, we select the best atlases based on their expected labeling accuracy. Our atlas selection method is general enough to be integrated with any existing MAS method. We show the advantages of our atlas selection method in an extensive experimental evaluation in the ADNI, SATA, IXI, and LONI LPBA40 datasets. As shown in the experiments, our method can boost the performance of three widely used MAS methods, outperforming other learning-based and image-similarity-based atlas selection methods.
Optimal graph based segmentation using flow lines with application to airway wall segmentation.
Petersen, Jens; Nielsen, Mads; Lo, Pechin; Saghir, Zaigham; Dirksen, Asger; de Bruijne, Marleen
2011-01-01
This paper introduces a novel optimal graph construction method that is applicable to multi-dimensional, multi-surface segmentation problems. Such problems are often solved by refining an initial coarse surface within the space given by graph columns. Conventional columns are not well suited for surfaces with high curvature or complex shapes but the proposed columns, based on properly generated flow lines, which are non-intersecting, guarantee solutions that do not self-intersect and are better able to handle such surfaces. The method is applied to segment human airway walls in computed tomography images. Comparison with manual annotations on 649 cross-sectional images from 15 different subjects shows significantly smaller contour distances and larger area of overlap than are obtained with recently published graph based methods. Airway abnormality measurements obtained with the method on 480 scan pairs from a lung cancer screening trial are reproducible and correlate significantly with lung function.
Automated segmentation of three-dimensional MR brain images
NASA Astrophysics Data System (ADS)
Park, Jonggeun; Baek, Byungjun; Ahn, Choong-Il; Ku, Kyo Bum; Jeong, Dong Kyun; Lee, Chulhee
2006-03-01
Brain segmentation is a challenging problem due to the complexity of the brain. In this paper, we propose an automated brain segmentation method for 3D magnetic resonance (MR) brain images which are represented as a sequence of 2D brain images. The proposed method consists of three steps: pre-processing, removal of non-brain regions (e.g., the skull, meninges, other organs, etc), and spinal cord restoration. In pre-processing, we perform adaptive thresholding which takes into account variable intensities of MR brain images corresponding to various image acquisition conditions. In segmentation process, we iteratively apply 2D morphological operations and masking for the sequences of 2D sagittal, coronal, and axial planes in order to remove non-brain tissues. Next, final 3D brain regions are obtained by applying OR operation for segmentation results of three planes. Finally we reconstruct the spinal cord truncated during the previous processes. Experiments are performed with fifteen 3D MR brain image sets with 8-bit gray-scale. Experiment results show the proposed algorithm is fast, and provides robust and satisfactory results.
Segmentation of dermoscopy images using wavelet networks.
Sadri, Amir Reza; Zekri, Maryam; Sadri, Saeed; Gheissari, Niloofar; Mokhtari, Mojgan; Kolahdouzan, Farzaneh
2013-04-01
This paper introduces a new approach for the segmentation of skin lesions in dermoscopic images based on wavelet network (WN). The WN presented here is a member of fixed-grid WNs that is formed with no need of training. In this WN, after formation of wavelet lattice, determining shift and scale parameters of wavelets with two screening stage and selecting effective wavelets, orthogonal least squares algorithm is used to calculate the network weights and to optimize the network structure. The existence of two stages of screening increases globality of the wavelet lattice and provides a better estimation of the function especially for larger scales. R, G, and B values of a dermoscopy image are considered as the network inputs and the network structure formation. Then, the image is segmented and the skin lesions exact boundary is determined accordingly. The segmentation algorithm were applied to 30 dermoscopic images and evaluated with 11 different metrics, using the segmentation result obtained by a skilled pathologist as the ground truth. Experimental results show that our method acts more effectively in comparison with some modern techniques that have been successfully used in many medical imaging problems.
Towards online iris and periocular recognition under relaxed imaging constraints.
Tan, Chun-Wei; Kumar, Ajay
2013-10-01
Online iris recognition using distantly acquired images in a less imaging constrained environment requires the development of a efficient iris segmentation approach and recognition strategy that can exploit multiple features available for the potential identification. This paper presents an effective solution toward addressing such a problem. The developed iris segmentation approach exploits a random walker algorithm to efficiently estimate coarsely segmented iris images. These coarsely segmented iris images are postprocessed using a sequence of operations that can effectively improve the segmentation accuracy. The robustness of the proposed iris segmentation approach is ascertained by providing comparison with other state-of-the-art algorithms using publicly available UBIRIS.v2, FRGC, and CASIA.v4-distance databases. Our experimental results achieve improvement of 9.5%, 4.3%, and 25.7% in the average segmentation accuracy, respectively, for the UBIRIS.v2, FRGC, and CASIA.v4-distance databases, as compared with most competing approaches. We also exploit the simultaneously extracted periocular features to achieve significant performance improvement. The joint segmentation and combination strategy suggest promising results and achieve average improvement of 132.3%, 7.45%, and 17.5% in the recognition performance, respectively, from the UBIRIS.v2, FRGC, and CASIA.v4-distance databases, as compared with the related competing approaches.
An automatic method for segmentation of fission tracks in epidote crystal photomicrographs
NASA Astrophysics Data System (ADS)
de Siqueira, Alexandre Fioravante; Nakasuga, Wagner Massayuki; Pagamisse, Aylton; Tello Saenz, Carlos Alberto; Job, Aldo Eloizo
2014-08-01
Manual identification of fission tracks has practical problems, such as variation due to observe-observation efficiency. An automatic processing method that could identify fission tracks in a photomicrograph could solve this problem and improve the speed of track counting. However, separation of nontrivial images is one of the most difficult tasks in image processing. Several commercial and free softwares are available, but these softwares are meant to be used in specific images. In this paper, an automatic method based on starlet wavelets is presented in order to separate fission tracks in mineral photomicrographs. Automatization is obtained by the Matthews correlation coefficient, and results are evaluated by precision, recall and accuracy. This technique is an improvement of a method aimed at segmentation of scanning electron microscopy images. This method is applied in photomicrographs of epidote phenocrystals, in which accuracy higher than 89% was obtained in fission track segmentation, even for difficult images. Algorithms corresponding to the proposed method are available for download. Using the method presented here, a user could easily determine fission tracks in photomicrographs of mineral samples.
Brain tumor segmentation from multimodal magnetic resonance images via sparse representation.
Li, Yuhong; Jia, Fucang; Qin, Jing
2016-10-01
Accurately segmenting and quantifying brain gliomas from magnetic resonance (MR) images remains a challenging task because of the large spatial and structural variability among brain tumors. To develop a fully automatic and accurate brain tumor segmentation algorithm, we present a probabilistic model of multimodal MR brain tumor segmentation. This model combines sparse representation and the Markov random field (MRF) to solve the spatial and structural variability problem. We formulate the tumor segmentation problem as a multi-classification task by labeling each voxel as the maximum posterior probability. We estimate the maximum a posteriori (MAP) probability by introducing the sparse representation into a likelihood probability and a MRF into the prior probability. Considering the MAP as an NP-hard problem, we convert the maximum posterior probability estimation into a minimum energy optimization problem and employ graph cuts to find the solution to the MAP estimation. Our method is evaluated using the Brain Tumor Segmentation Challenge 2013 database (BRATS 2013) and obtained Dice coefficient metric values of 0.85, 0.75, and 0.69 on the high-grade Challenge data set, 0.73, 0.56, and 0.54 on the high-grade Challenge LeaderBoard data set, and 0.84, 0.54, and 0.57 on the low-grade Challenge data set for the complete, core, and enhancing regions. The experimental results show that the proposed algorithm is valid and ranks 2nd compared with the state-of-the-art tumor segmentation algorithms in the MICCAI BRATS 2013 challenge. Copyright © 2016 Elsevier B.V. All rights reserved.
FogBank: a single cell segmentation across multiple cell lines and image modalities.
Chalfoun, Joe; Majurski, Michael; Dima, Alden; Stuelten, Christina; Peskin, Adele; Brady, Mary
2014-12-30
Many cell lines currently used in medical research, such as cancer cells or stem cells, grow in confluent sheets or colonies. The biology of individual cells provide valuable information, thus the separation of touching cells in these microscopy images is critical for counting, identification and measurement of individual cells. Over-segmentation of single cells continues to be a major problem for methods based on morphological watershed due to the high level of noise in microscopy cell images. There is a need for a new segmentation method that is robust over a wide variety of biological images and can accurately separate individual cells even in challenging datasets such as confluent sheets or colonies. We present a new automated segmentation method called FogBank that accurately separates cells when confluent and touching each other. This technique is successfully applied to phase contrast, bright field, fluorescence microscopy and binary images. The method is based on morphological watershed principles with two new features to improve accuracy and minimize over-segmentation. First, FogBank uses histogram binning to quantize pixel intensities which minimizes the image noise that causes over-segmentation. Second, FogBank uses a geodesic distance mask derived from raw images to detect the shapes of individual cells, in contrast to the more linear cell edges that other watershed-like algorithms produce. We evaluated the segmentation accuracy against manually segmented datasets using two metrics. FogBank achieved segmentation accuracy on the order of 0.75 (1 being a perfect match). We compared our method with other available segmentation techniques in term of achieved performance over the reference data sets. FogBank outperformed all related algorithms. The accuracy has also been visually verified on data sets with 14 cell lines across 3 imaging modalities leading to 876 segmentation evaluation images. FogBank produces single cell segmentation from confluent cell sheets with high accuracy. It can be applied to microscopy images of multiple cell lines and a variety of imaging modalities. The code for the segmentation method is available as open-source and includes a Graphical User Interface for user friendly execution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Li; Gao, Yaozong; Shi, Feng
Purpose: Cone-beam computed tomography (CBCT) is an increasingly utilized imaging modality for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities. Accurate segmentation of CBCT image is an essential step to generate three-dimensional (3D) models for the diagnosis and treatment planning of the patients with CMF deformities. However, due to the poor image quality, including very low signal-to-noise ratio and the widespread image artifacts such as noise, beam hardening, and inhomogeneity, it is challenging to segment the CBCT images. In this paper, the authors present a new automatic segmentation method to address these problems. Methods: To segmentmore » CBCT images, the authors propose a new method for fully automated CBCT segmentation by using patch-based sparse representation to (1) segment bony structures from the soft tissues and (2) further separate the mandible from the maxilla. Specifically, a region-specific registration strategy is first proposed to warp all the atlases to the current testing subject and then a sparse-based label propagation strategy is employed to estimate a patient-specific atlas from all aligned atlases. Finally, the patient-specific atlas is integrated into amaximum a posteriori probability-based convex segmentation framework for accurate segmentation. Results: The proposed method has been evaluated on a dataset with 15 CBCT images. The effectiveness of the proposed region-specific registration strategy and patient-specific atlas has been validated by comparing with the traditional registration strategy and population-based atlas. The experimental results show that the proposed method achieves the best segmentation accuracy by comparison with other state-of-the-art segmentation methods. Conclusions: The authors have proposed a new CBCT segmentation method by using patch-based sparse representation and convex optimization, which can achieve considerably accurate segmentation results in CBCT segmentation based on 15 patients.« less
Zhang, Wei; Zhang, Xiaolong; Qiang, Yan; Tian, Qi; Tang, Xiaoxian
2017-01-01
The fast and accurate segmentation of lung nodule image sequences is the basis of subsequent processing and diagnostic analyses. However, previous research investigating nodule segmentation algorithms cannot entirely segment cavitary nodules, and the segmentation of juxta-vascular nodules is inaccurate and inefficient. To solve these problems, we propose a new method for the segmentation of lung nodule image sequences based on superpixels and density-based spatial clustering of applications with noise (DBSCAN). First, our method uses three-dimensional computed tomography image features of the average intensity projection combined with multi-scale dot enhancement for preprocessing. Hexagonal clustering and morphological optimized sequential linear iterative clustering (HMSLIC) for sequence image oversegmentation is then proposed to obtain superpixel blocks. The adaptive weight coefficient is then constructed to calculate the distance required between superpixels to achieve precise lung nodules positioning and to obtain the subsequent clustering starting block. Moreover, by fitting the distance and detecting the change in slope, an accurate clustering threshold is obtained. Thereafter, a fast DBSCAN superpixel sequence clustering algorithm, which is optimized by the strategy of only clustering the lung nodules and adaptive threshold, is then used to obtain lung nodule mask sequences. Finally, the lung nodule image sequences are obtained. The experimental results show that our method rapidly, completely and accurately segments various types of lung nodule image sequences. PMID:28880916
Segmentation of humeral head from axial proton density weighted shoulder MR images
NASA Astrophysics Data System (ADS)
Sezer, Aysun; Sezer, Hasan Basri; Albayrak, Songul
2015-01-01
The purpose of this study is to determine the effectiveness of segmentation of axial MR proton density (PD) images of bony humeral head. PD sequence images which are included in standard shoulder MRI protocol are used instead of T1 MR images. Bony structures were reported to be successfully segmented in the literature from T1 MR images. T1 MR images give more sharp determination of bone and soft tissue border but cannot address the pathological process which takes place in the bone. In the clinical settings PD images of shoulder are used to investigate soft tissue alterations which can cause shoulder instability and are better in demonstrating edema and the pathology but have a higher noise ratio than other modalities. Moreover the alteration of humeral head intensity in patients and soft tissues in contact with the humeral head which have the very similar intensities with bone makes the humeral head segmentation a challenging problem in PD images. However segmentation of the bony humeral head is required initially to facilitate the segmentation of the soft tissues of shoulder. In this study shoulder MRI of 33 randomly selected patients were included. Speckle reducing anisotropic diffusion (SRAD) method was used to decrease noise and then Active Contour Without Edge (ACWE) and Signed Pressure Force (SPF) models were applied on our data set. Success of these methods is determined by comparing our results with manually segmented images by an expert. Applications of these methods on PD images provide highly successful results for segmentation of bony humeral head. This is the first study to determine bone contours in PD images in literature.
Saliency-aware food image segmentation for personal dietary assessment using a wearable computer
Chen, Hsin-Chen; Jia, Wenyan; Sun, Xin; Li, Zhaoxin; Li, Yuecheng; Fernstrom, John D.; Burke, Lora E.; Baranowski, Thomas; Sun, Mingui
2015-01-01
Image-based dietary assessment has recently received much attention in the community of obesity research. In this assessment, foods in digital pictures are specified, and their portion sizes (volumes) are estimated. Although manual processing is currently the most utilized method, image processing holds much promise since it may eventually lead to automatic dietary assessment. In this paper we study the problem of segmenting food objects from images. This segmentation is difficult because of various food types, shapes and colors, different decorating patterns on food containers, and occlusions of food and non-food objects. We propose a novel method based on a saliency-aware active contour model (ACM) for automatic food segmentation from images acquired by a wearable camera. An integrated saliency estimation approach based on food location priors and visual attention features is designed to produce a salient map of possible food regions in the input image. Next, a geometric contour primitive is generated and fitted to the salient map by means of multi-resolution optimization with respect to a set of affine and elastic transformation parameters. The food regions are then extracted after contour fitting. Our experiments using 60 food images showed that the proposed method achieved significantly higher accuracy in food segmentation when compared to conventional segmentation methods. PMID:26257473
Saliency-aware food image segmentation for personal dietary assessment using a wearable computer
NASA Astrophysics Data System (ADS)
Chen, Hsin-Chen; Jia, Wenyan; Sun, Xin; Li, Zhaoxin; Li, Yuecheng; Fernstrom, John D.; Burke, Lora E.; Baranowski, Thomas; Sun, Mingui
2015-02-01
Image-based dietary assessment has recently received much attention in the community of obesity research. In this assessment, foods in digital pictures are specified, and their portion sizes (volumes) are estimated. Although manual processing is currently the most utilized method, image processing holds much promise since it may eventually lead to automatic dietary assessment. In this paper we study the problem of segmenting food objects from images. This segmentation is difficult because of various food types, shapes and colors, different decorating patterns on food containers, and occlusions of food and non-food objects. We propose a novel method based on a saliency-aware active contour model (ACM) for automatic food segmentation from images acquired by a wearable camera. An integrated saliency estimation approach based on food location priors and visual attention features is designed to produce a salient map of possible food regions in the input image. Next, a geometric contour primitive is generated and fitted to the salient map by means of multi-resolution optimization with respect to a set of affine and elastic transformation parameters. The food regions are then extracted after contour fitting. Our experiments using 60 food images showed that the proposed method achieved significantly higher accuracy in food segmentation when compared to conventional segmentation methods.
A Hierarchical Building Segmentation in Digital Surface Models for 3D Reconstruction
Yan, Yiming; Gao, Fengjiao; Deng, Shupei; Su, Nan
2017-01-01
In this study, a hierarchical method for segmenting buildings in a digital surface model (DSM), which is used in a novel framework for 3D reconstruction, is proposed. Most 3D reconstructions of buildings are model-based. However, the limitations of these methods are overreliance on completeness of the offline-constructed models of buildings, and the completeness is not easily guaranteed since in modern cities buildings can be of a variety of types. Therefore, a model-free framework using high precision DSM and texture-images buildings was introduced. There are two key problems with this framework. The first one is how to accurately extract the buildings from the DSM. Most segmentation methods are limited by either the terrain factors or the difficult choice of parameter-settings. A level-set method are employed to roughly find the building regions in the DSM, and then a recently proposed ‘occlusions of random textures model’ are used to enhance the local segmentation of the buildings. The second problem is how to generate the facades of buildings. Synergizing with the corresponding texture-images, we propose a roof-contour guided interpolation of building facades. The 3D reconstruction results achieved by airborne-like images and satellites are compared. Experiments show that the segmentation method has good performance, and 3D reconstruction is easily performed by our framework, and better visualization results can be obtained by airborne-like images, which can be further replaced by UAV images. PMID:28125018
A Hierarchical Building Segmentation in Digital Surface Models for 3D Reconstruction.
Yan, Yiming; Gao, Fengjiao; Deng, Shupei; Su, Nan
2017-01-24
In this study, a hierarchical method for segmenting buildings in a digital surface model (DSM), which is used in a novel framework for 3D reconstruction, is proposed. Most 3D reconstructions of buildings are model-based. However, the limitations of these methods are overreliance on completeness of the offline-constructed models of buildings, and the completeness is not easily guaranteed since in modern cities buildings can be of a variety of types. Therefore, a model-free framework using high precision DSM and texture-images buildings was introduced. There are two key problems with this framework. The first one is how to accurately extract the buildings from the DSM. Most segmentation methods are limited by either the terrain factors or the difficult choice of parameter-settings. A level-set method are employed to roughly find the building regions in the DSM, and then a recently proposed 'occlusions of random textures model' are used to enhance the local segmentation of the buildings. The second problem is how to generate the facades of buildings. Synergizing with the corresponding texture-images, we propose a roof-contour guided interpolation of building facades. The 3D reconstruction results achieved by airborne-like images and satellites are compared. Experiments show that the segmentation method has good performance, and 3D reconstruction is easily performed by our framework, and better visualization results can be obtained by airborne-like images, which can be further replaced by UAV images.
Ghanta, Sindhu; Jordan, Michael I; Kose, Kivanc; Brooks, Dana H; Rajadhyaksha, Milind; Dy, Jennifer G
2017-01-01
Segmenting objects of interest from 3D data sets is a common problem encountered in biological data. Small field of view and intrinsic biological variability combined with optically subtle changes of intensity, resolution, and low contrast in images make the task of segmentation difficult, especially for microscopy of unstained living or freshly excised thick tissues. Incorporating shape information in addition to the appearance of the object of interest can often help improve segmentation performance. However, the shapes of objects in tissue can be highly variable and design of a flexible shape model that encompasses these variations is challenging. To address such complex segmentation problems, we propose a unified probabilistic framework that can incorporate the uncertainty associated with complex shapes, variable appearance, and unknown locations. The driving application that inspired the development of this framework is a biologically important segmentation problem: the task of automatically detecting and segmenting the dermal-epidermal junction (DEJ) in 3D reflectance confocal microscopy (RCM) images of human skin. RCM imaging allows noninvasive observation of cellular, nuclear, and morphological detail. The DEJ is an important morphological feature as it is where disorder, disease, and cancer usually start. Detecting the DEJ is challenging, because it is a 2D surface in a 3D volume which has strong but highly variable number of irregularly spaced and variably shaped "peaks and valleys." In addition, RCM imaging resolution, contrast, and intensity vary with depth. Thus, a prior model needs to incorporate the intrinsic structure while allowing variability in essentially all its parameters. We propose a model which can incorporate objects of interest with complex shapes and variable appearance in an unsupervised setting by utilizing domain knowledge to build appropriate priors of the model. Our novel strategy to model this structure combines a spatial Poisson process with shape priors and performs inference using Gibbs sampling. Experimental results show that the proposed unsupervised model is able to automatically detect the DEJ with physiologically relevant accuracy in the range 10- 20 μm .
Ghanta, Sindhu; Jordan, Michael I.; Kose, Kivanc; Brooks, Dana H.; Rajadhyaksha, Milind; Dy, Jennifer G.
2016-01-01
Segmenting objects of interest from 3D datasets is a common problem encountered in biological data. Small field of view and intrinsic biological variability combined with optically subtle changes of intensity, resolution and low contrast in images make the task of segmentation difficult, especially for microscopy of unstained living or freshly excised thick tissues. Incorporating shape information in addition to the appearance of the object of interest can often help improve segmentation performance. However, shapes of objects in tissue can be highly variable and design of a flexible shape model that encompasses these variations is challenging. To address such complex segmentation problems, we propose a unified probabilistic framework that can incorporate the uncertainty associated with complex shapes, variable appearance and unknown locations. The driving application which inspired the development of this framework is a biologically important segmentation problem: the task of automatically detecting and segmenting the dermal-epidermal junction (DEJ) in 3D reflectance confocal microscopy (RCM) images of human skin. RCM imaging allows noninvasive observation of cellular, nuclear and morphological detail. The DEJ is an important morphological feature as it is where disorder, disease and cancer usually start. Detecting the DEJ is challenging because it is a 2D surface in a 3D volume which has strong but highly variable number of irregularly spaced and variably shaped “peaks and valleys”. In addition, RCM imaging resolution, contrast and intensity vary with depth. Thus a prior model needs to incorporate the intrinsic structure while allowing variability in essentially all its parameters. We propose a model which can incorporate objects of interest with complex shapes and variable appearance in an unsupervised setting by utilizing domain knowledge to build appropriate priors of the model. Our novel strategy to model this structure combines a spatial Poisson process with shape priors and performs inference using Gibbs sampling. Experimental results show that the proposed unsupervised model is able to automatically detect the DEJ with physiologically relevant accuracy in the range 10 – 20µm. PMID:27723590
Object Segmentation and Ground Truth in 3D Embryonic Imaging.
Rajasekaran, Bhavna; Uriu, Koichiro; Valentin, Guillaume; Tinevez, Jean-Yves; Oates, Andrew C
2016-01-01
Many questions in developmental biology depend on measuring the position and movement of individual cells within developing embryos. Yet, tools that provide this data are often challenged by high cell density and their accuracy is difficult to measure. Here, we present a three-step procedure to address this problem. Step one is a novel segmentation algorithm based on image derivatives that, in combination with selective post-processing, reliably and automatically segments cell nuclei from images of densely packed tissue. Step two is a quantitative validation using synthetic images to ascertain the efficiency of the algorithm with respect to signal-to-noise ratio and object density. Finally, we propose an original method to generate reliable and experimentally faithful ground truth datasets: Sparse-dense dual-labeled embryo chimeras are used to unambiguously measure segmentation errors within experimental data. Together, the three steps outlined here establish a robust, iterative procedure to fine-tune image analysis algorithms and microscopy settings associated with embryonic 3D image data sets.
Object Segmentation and Ground Truth in 3D Embryonic Imaging
Rajasekaran, Bhavna; Uriu, Koichiro; Valentin, Guillaume; Tinevez, Jean-Yves; Oates, Andrew C.
2016-01-01
Many questions in developmental biology depend on measuring the position and movement of individual cells within developing embryos. Yet, tools that provide this data are often challenged by high cell density and their accuracy is difficult to measure. Here, we present a three-step procedure to address this problem. Step one is a novel segmentation algorithm based on image derivatives that, in combination with selective post-processing, reliably and automatically segments cell nuclei from images of densely packed tissue. Step two is a quantitative validation using synthetic images to ascertain the efficiency of the algorithm with respect to signal-to-noise ratio and object density. Finally, we propose an original method to generate reliable and experimentally faithful ground truth datasets: Sparse-dense dual-labeled embryo chimeras are used to unambiguously measure segmentation errors within experimental data. Together, the three steps outlined here establish a robust, iterative procedure to fine-tune image analysis algorithms and microscopy settings associated with embryonic 3D image data sets. PMID:27332860
Zheng, Yalin; Kwong, Man Ting; MacCormick, Ian J. C.; Beare, Nicholas A. V.; Harding, Simon P.
2014-01-01
Capillary non-perfusion (CNP) in the retina is a characteristic feature used in the management of a wide range of retinal diseases. There is no well-established computation tool for assessing the extent of CNP. We propose a novel texture segmentation framework to address this problem. This framework comprises three major steps: pre-processing, unsupervised total variation texture segmentation, and supervised segmentation. It employs a state-of-the-art multiphase total variation texture segmentation model which is enhanced by new kernel based region terms. The model can be applied to texture and intensity-based multiphase problems. A supervised segmentation step allows the framework to take expert knowledge into account, an AdaBoost classifier with weighted cost coefficient is chosen to tackle imbalanced data classification problems. To demonstrate its effectiveness, we applied this framework to 48 images from malarial retinopathy and 10 images from ischemic diabetic maculopathy. The performance of segmentation is satisfactory when compared to a reference standard of manual delineations: accuracy, sensitivity and specificity are 89.0%, 73.0%, and 90.8% respectively for the malarial retinopathy dataset and 80.8%, 70.6%, and 82.1% respectively for the diabetic maculopathy dataset. In terms of region-wise analysis, this method achieved an accuracy of 76.3% (45 out of 59 regions) for the malarial retinopathy dataset and 73.9% (17 out of 26 regions) for the diabetic maculopathy dataset. This comprehensive segmentation framework can quantify capillary non-perfusion in retinopathy from two distinct etiologies, and has the potential to be adopted for wider applications. PMID:24747681
Wang, Hongzhi; Das, Sandhitsu R.; Suh, Jung Wook; Altinay, Murat; Pluta, John; Craige, Caryne; Avants, Brian; Yushkevich, Paul A.
2011-01-01
We propose a simple but generally applicable approach to improving the accuracy of automatic image segmentation algorithms relative to manual segmentations. The approach is based on the hypothesis that a large fraction of the errors produced by automatic segmentation are systematic, i.e., occur consistently from subject to subject, and serves as a wrapper method around a given host segmentation method. The wrapper method attempts to learn the intensity, spatial and contextual patterns associated with systematic segmentation errors produced by the host method on training data for which manual segmentations are available. The method then attempts to correct such errors in segmentations produced by the host method on new images. One practical use of the proposed wrapper method is to adapt existing segmentation tools, without explicit modification, to imaging data and segmentation protocols that are different from those on which the tools were trained and tuned. An open-source implementation of the proposed wrapper method is provided, and can be applied to a wide range of image segmentation problems. The wrapper method is evaluated with four host brain MRI segmentation methods: hippocampus segmentation using FreeSurfer (Fischl et al., 2002); hippocampus segmentation using multi-atlas label fusion (Artaechevarria et al., 2009); brain extraction using BET (Smith, 2002); and brain tissue segmentation using FAST (Zhang et al., 2001). The wrapper method generates 72%, 14%, 29% and 21% fewer erroneously segmented voxels than the respective host segmentation methods. In the hippocampus segmentation experiment with multi-atlas label fusion as the host method, the average Dice overlap between reference segmentations and segmentations produced by the wrapper method is 0.908 for normal controls and 0.893 for patients with mild cognitive impairment. Average Dice overlaps of 0.964, 0.905 and 0.951 are obtained for brain extraction, white matter segmentation and gray matter segmentation, respectively. PMID:21237273
NASA Astrophysics Data System (ADS)
D'Ambra, Pasqua; Tartaglione, Gaetano
2015-04-01
Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.
Solution of Ambrosio-Tortorelli model for image segmentation by generalized relaxation method
NASA Astrophysics Data System (ADS)
D'Ambra, Pasqua; Tartaglione, Gaetano
2015-03-01
Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.
Detecting perceptual groupings in textures by continuity considerations
NASA Technical Reports Server (NTRS)
Greene, Richard J.
1990-01-01
A generalization is presented for the second derivative of a Gaussian D(sup 2)G operator to apply to problems of perceptual organization involving textures. Extensions to other problems of perceptual organization are evident and a new research direction can be established. The technique presented is theoretically pleasing since it has the potential of unifying the entire area of image segmentation under the mathematical notion of continuity and presents a single algorithm to form perceptual groupings where many algorithms existed previously. The eventual impact on both the approach and technique of image processing segmentation operations could be significant.
Survey statistics of automated segmentations applied to optical imaging of mammalian cells.
Bajcsy, Peter; Cardone, Antonio; Chalfoun, Joe; Halter, Michael; Juba, Derek; Kociolek, Marcin; Majurski, Michael; Peskin, Adele; Simon, Carl; Simon, Mylene; Vandecreme, Antoine; Brady, Mary
2015-10-15
The goal of this survey paper is to overview cellular measurements using optical microscopy imaging followed by automated image segmentation. The cellular measurements of primary interest are taken from mammalian cells and their components. They are denoted as two- or three-dimensional (2D or 3D) image objects of biological interest. In our applications, such cellular measurements are important for understanding cell phenomena, such as cell counts, cell-scaffold interactions, cell colony growth rates, or cell pluripotency stability, as well as for establishing quality metrics for stem cell therapies. In this context, this survey paper is focused on automated segmentation as a software-based measurement leading to quantitative cellular measurements. We define the scope of this survey and a classification schema first. Next, all found and manually filteredpublications are classified according to the main categories: (1) objects of interests (or objects to be segmented), (2) imaging modalities, (3) digital data axes, (4) segmentation algorithms, (5) segmentation evaluations, (6) computational hardware platforms used for segmentation acceleration, and (7) object (cellular) measurements. Finally, all classified papers are converted programmatically into a set of hyperlinked web pages with occurrence and co-occurrence statistics of assigned categories. The survey paper presents to a reader: (a) the state-of-the-art overview of published papers about automated segmentation applied to optical microscopy imaging of mammalian cells, (b) a classification of segmentation aspects in the context of cell optical imaging, (c) histogram and co-occurrence summary statistics about cellular measurements, segmentations, segmented objects, segmentation evaluations, and the use of computational platforms for accelerating segmentation execution, and (d) open research problems to pursue. The novel contributions of this survey paper are: (1) a new type of classification of cellular measurements and automated segmentation, (2) statistics about the published literature, and (3) a web hyperlinked interface to classification statistics of the surveyed papers at https://isg.nist.gov/deepzoomweb/resources/survey/index.html.
Anatomy-aware measurement of segmentation accuracy
NASA Astrophysics Data System (ADS)
Tizhoosh, H. R.; Othman, A. A.
2016-03-01
Quantifying the accuracy of segmentation and manual delineation of organs, tissue types and tumors in medical images is a necessary measurement that suffers from multiple problems. One major shortcoming of all accuracy measures is that they neglect the anatomical significance or relevance of different zones within a given segment. Hence, existing accuracy metrics measure the overlap of a given segment with a ground-truth without any anatomical discrimination inside the segment. For instance, if we understand the rectal wall or urethral sphincter as anatomical zones, then current accuracy measures ignore their significance when they are applied to assess the quality of the prostate gland segments. In this paper, we propose an anatomy-aware measurement scheme for segmentation accuracy of medical images. The idea is to create a "master gold" based on a consensus shape containing not just the outline of the segment but also the outlines of the internal zones if existent or relevant. To apply this new approach to accuracy measurement, we introduce the anatomy-aware extensions of both Dice coefficient and Jaccard index and investigate their effect using 500 synthetic prostate ultrasound images with 20 different segments for each image. We show that through anatomy-sensitive calculation of segmentation accuracy, namely by considering relevant anatomical zones, not only the measurement of individual users can change but also the ranking of users' segmentation skills may require reordering.
Lesion Detection in CT Images Using Deep Learning Semantic Segmentation Technique
NASA Astrophysics Data System (ADS)
Kalinovsky, A.; Liauchuk, V.; Tarasau, A.
2017-05-01
In this paper, the problem of automatic detection of tuberculosis lesion on 3D lung CT images is considered as a benchmark for testing out algorithms based on a modern concept of Deep Learning. For training and testing of the algorithms a domestic dataset of 338 3D CT scans of tuberculosis patients with manually labelled lesions was used. The algorithms which are based on using Deep Convolutional Networks were implemented and applied in three different ways including slice-wise lesion detection in 2D images using semantic segmentation, slice-wise lesion detection in 2D images using sliding window technique as well as straightforward detection of lesions via semantic segmentation in whole 3D CT scans. The algorithms demonstrate superior performance compared to algorithms based on conventional image analysis methods.
NASA Astrophysics Data System (ADS)
Alizadeh Savareh, Behrouz; Emami, Hassan; Hajiabadi, Mohamadreza; Ghafoori, Mahyar; Majid Azimi, Seyed
2018-03-01
Manual analysis of brain tumors magnetic resonance images is usually accompanied by some problem. Several techniques have been proposed for the brain tumor segmentation. This study will be focused on searching popular databases for related studies, theoretical and practical aspects of Convolutional Neural Network surveyed in brain tumor segmentation. Based on our findings, details about related studies including the datasets used, evaluation parameters, preferred architectures and complementary steps analyzed. Deep learning as a revolutionary idea in image processing, achieved brilliant results in brain tumor segmentation too. This can be continuing until the next revolutionary idea emerging.
Zhang, Zhiqing; Kuzmin, Nikolay V; Groot, Marie Louise; de Munck, Jan C
2017-06-01
The morphologies contained in 3D third harmonic generation (THG) images of human brain tissue can report on the pathological state of the tissue. However, the complexity of THG brain images makes the usage of modern image processing tools, especially those of image filtering, segmentation and validation, to extract this information challenging. We developed a salient edge-enhancing model of anisotropic diffusion for image filtering, based on higher order statistics. We split the intrinsic 3-phase segmentation problem into two 2-phase segmentation problems, each of which we solved with a dedicated model, active contour weighted by prior extreme. We applied the novel proposed algorithms to THG images of structurally normal ex-vivo human brain tissue, revealing key tissue components-brain cells, microvessels and neuropil, enabling statistical characterization of these components. Comprehensive comparison to manually delineated ground truth validated the proposed algorithms. Quantitative comparison to second harmonic generation/auto-fluorescence images, acquired simultaneously from the same tissue area, confirmed the correctness of the main THG features detected. The software and test datasets are available from the authors. z.zhang@vu.nl. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Kim, Won Hwa; Chung, Moo K; Singh, Vikas
2013-01-01
The analysis of 3-D shape meshes is a fundamental problem in computer vision, graphics, and medical imaging. Frequently, the needs of the application require that our analysis take a multi-resolution view of the shape's local and global topology, and that the solution is consistent across multiple scales. Unfortunately, the preferred mathematical construct which offers this behavior in classical image/signal processing, Wavelets, is no longer applicable in this general setting (data with non-uniform topology). In particular, the traditional definition does not allow writing out an expansion for graphs that do not correspond to the uniformly sampled lattice (e.g., images). In this paper, we adapt recent results in harmonic analysis, to derive Non-Euclidean Wavelets based algorithms for a range of shape analysis problems in vision and medical imaging. We show how descriptors derived from the dual domain representation offer native multi-resolution behavior for characterizing local/global topology around vertices. With only minor modifications, the framework yields a method for extracting interest/key points from shapes, a surprisingly simple algorithm for 3-D shape segmentation (competitive with state of the art), and a method for surface alignment (without landmarks). We give an extensive set of comparison results on a large shape segmentation benchmark and derive a uniqueness theorem for the surface alignment problem.
Weakly supervised image semantic segmentation based on clustering superpixels
NASA Astrophysics Data System (ADS)
Yan, Xiong; Liu, Xiaohua
2018-04-01
In this paper, we propose an image semantic segmentation model which is trained from image-level labeled images. The proposed model starts with superpixel segmenting, and features of the superpixels are extracted by trained CNN. We introduce a superpixel-based graph followed by applying the graph partition method to group correlated superpixels into clusters. For the acquisition of inter-label correlations between the image-level labels in dataset, we not only utilize label co-occurrence statistics but also exploit visual contextual cues simultaneously. At last, we formulate the task of mapping appropriate image-level labels to the detected clusters as a problem of convex minimization. Experimental results on MSRC-21 dataset and LableMe dataset show that the proposed method has a better performance than most of the weakly supervised methods and is even comparable to fully supervised methods.
NASA Astrophysics Data System (ADS)
Taheri, Shaghayegh; Fevens, Thomas; Bui, Tien D.
2017-02-01
Computerized assessments for diagnosis or malignancy grading of cyto-histopathological specimens have drawn increased attention in the field of digital pathology. Automatic segmentation of cell nuclei is a fundamental step in such automated systems. Despite considerable research, nuclei segmentation is still a challenging task due noise, nonuniform illumination, and most importantly, in 2D projection images, overlapping and touching nuclei. In most published approaches, nuclei refinement is a post-processing step after segmentation, which usually refers to the task of detaching the aggregated nuclei or merging the over-segmented nuclei. In this work, we present a novel segmentation technique which effectively addresses the problem of individually segmenting touching or overlapping cell nuclei during the segmentation process. The proposed framework is a region-based segmentation method, which consists of three major modules: i) the image is passed through a color deconvolution step to extract the desired stains; ii) then the generalized fast radial symmetry transform is applied to the image followed by non-maxima suppression to specify the initial seed points for nuclei, and their corresponding GFRS ellipses which are interpreted as the initial nuclei borders for segmentation; iii) finally, these nuclei border initial curves are evolved through the use of a statistical level-set approach along with topology preserving criteria for segmentation and separation of nuclei at the same time. The proposed method is evaluated using Hematoxylin and Eosin, and fluorescent stained images, performing qualitative and quantitative analysis, showing that the method outperforms thresholding and watershed segmentation approaches.
A human visual based binarization technique for histological images
NASA Astrophysics Data System (ADS)
Shreyas, Kamath K. M.; Rajendran, Rahul; Panetta, Karen; Agaian, Sos
2017-05-01
In the field of vision-based systems for object detection and classification, thresholding is a key pre-processing step. Thresholding is a well-known technique for image segmentation. Segmentation of medical images, such as Computed Axial Tomography (CAT), Magnetic Resonance Imaging (MRI), X-Ray, Phase Contrast Microscopy, and Histological images, present problems like high variability in terms of the human anatomy and variation in modalities. Recent advances made in computer-aided diagnosis of histological images help facilitate detection and classification of diseases. Since most pathology diagnosis depends on the expertise and ability of the pathologist, there is clearly a need for an automated assessment system. Histological images are stained to a specific color to differentiate each component in the tissue. Segmentation and analysis of such images is problematic, as they present high variability in terms of color and cell clusters. This paper presents an adaptive thresholding technique that aims at segmenting cell structures from Haematoxylin and Eosin stained images. The thresholded result can further be used by pathologists to perform effective diagnosis. The effectiveness of the proposed method is analyzed by visually comparing the results to the state of art thresholding methods such as Otsu, Niblack, Sauvola, Bernsen, and Wolf. Computer simulations demonstrate the efficiency of the proposed method in segmenting critical information.
Hybrid Pixel-Based Method for Cardiac Ultrasound Fusion Based on Integration of PCA and DWT
Sulaiman, Puteri Suhaiza; Wirza, Rahmita; Dimon, Mohd Zamrin; Khalid, Fatimah; Moosavi Tayebi, Rohollah
2015-01-01
Medical image fusion is the procedure of combining several images from one or multiple imaging modalities. In spite of numerous attempts in direction of automation ventricle segmentation and tracking in echocardiography, due to low quality images with missing anatomical details or speckle noises and restricted field of view, this problem is a challenging task. This paper presents a fusion method which particularly intends to increase the segment-ability of echocardiography features such as endocardial and improving the image contrast. In addition, it tries to expand the field of view, decreasing impact of noise and artifacts and enhancing the signal to noise ratio of the echo images. The proposed algorithm weights the image information regarding an integration feature between all the overlapping images, by using a combination of principal component analysis and discrete wavelet transform. For evaluation, a comparison has been done between results of some well-known techniques and the proposed method. Also, different metrics are implemented to evaluate the performance of proposed algorithm. It has been concluded that the presented pixel-based method based on the integration of PCA and DWT has the best result for the segment-ability of cardiac ultrasound images and better performance in all metrics. PMID:26089965
A JOINT FRAMEWORK FOR 4D SEGMENTATION AND ESTIMATION OF SMOOTH TEMPORAL APPEARANCE CHANGES.
Gao, Yang; Prastawa, Marcel; Styner, Martin; Piven, Joseph; Gerig, Guido
2014-04-01
Medical imaging studies increasingly use longitudinal images of individual subjects in order to follow-up changes due to development, degeneration, disease progression or efficacy of therapeutic intervention. Repeated image data of individuals are highly correlated, and the strong causality of information over time lead to the development of procedures for joint segmentation of the series of scans, called 4D segmentation. A main aim was improved consistency of quantitative analysis, most often solved via patient-specific atlases. Challenging open problems are contrast changes and occurance of subclasses within tissue as observed in multimodal MRI of infant development, neurodegeneration and disease. This paper proposes a new 4D segmentation framework that enforces continuous dynamic changes of tissue contrast patterns over time as observed in such data. Moreover, our model includes the capability to segment different contrast patterns within a specific tissue class, for example as seen in myelinated and unmyelinated white matter regions in early brain development. Proof of concept is shown with validation on synthetic image data and with 4D segmentation of longitudinal, multimodal pediatric MRI taken at 6, 12 and 24 months of age, but the methodology is generic w.r.t. different application domains using serial imaging.
Melanoma segmentation based on deep learning.
Zhang, Xiaoqing
2017-12-01
Malignant melanoma is one of the most deadly forms of skin cancer, which is one of the world's fastest-growing cancers. Early diagnosis and treatment is critical. In this study, a neural network structure is utilized to construct a broad and accurate basis for the diagnosis of skin cancer, thereby reducing screening errors. The technique is able to improve the efficacy for identification of normally indistinguishable lesions (such as pigment spots) versus clinically unknown lesions, and to ultimately improve the diagnostic accuracy. In the field of medical imaging, in general, using neural networks for image segmentation is relatively rare. The existing traditional machine-learning neural network algorithms still cannot completely solve the problem of information loss, nor detect the precise division of the boundary area. We use an improved neural network framework, described herein, to achieve efficacious feature learning, and satisfactory segmentation of melanoma images. The architecture of the network includes multiple convolution layers, dropout layers, softmax layers, multiple filters, and activation functions. The number of data sets can be increased via rotation of the training set. A non-linear activation function (such as ReLU and ELU) is employed to alleviate the problem of gradient disappearance, and RMSprop/Adam are incorporated to optimize the loss algorithm. A batch normalization layer is added between the convolution layer and the activation layer to solve the problem of gradient disappearance and explosion. Experiments, described herein, show that our improved neural network architecture achieves higher accuracy for segmentation of melanoma images as compared with existing processes.
Automatic bone segmentation in knee MR images using a coarse-to-fine strategy
NASA Astrophysics Data System (ADS)
Park, Sang Hyun; Lee, Soochahn; Yun, Il Dong; Lee, Sang Uk
2012-02-01
Segmentation of bone and cartilage from a three dimensional knee magnetic resonance (MR) image is a crucial element in monitoring and understanding of development and progress of osteoarthritis. Until now, various segmentation methods have been proposed to separate the bone from other tissues, but it still remains challenging problem due to different modality of MR images, low contrast between bone and tissues, and shape irregularity. In this paper, we present a new fully-automatic segmentation method of bone compartments using relevant bone atlases from a training set. To find the relevant bone atlases and obtain the segmentation, a coarse-to-fine strategy is proposed. In the coarse step, the best atlas among the training set and an initial segmentation are simultaneously detected using branch and bound tree search. Since the best atlas in the coarse step is not accurately aligned, all atlases from the training set are aligned to the initial segmentation, and the best aligned atlas is selected in the middle step. Finally, in the fine step, segmentation is conducted as adaptively integrating shape of the best aligned atlas and appearance prior based on characteristics of local regions. For experiment, femur and tibia bones of forty test MR images are segmented by the proposed method using sixty training MR images. Experimental results show that a performance of the segmentation and the registration becomes better as going near the fine step, and the proposed method obtain the comparable performance with the state-of-the-art methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, L; Tan, S; Lu, W
2014-06-01
Purpose: To implement a new method that integrates deconvolution with segmentation under the variational framework for PET tumor delineation. Methods: Deconvolution and segmentation are both challenging problems in image processing. The partial volume effect (PVE) makes tumor boundaries in PET image blurred which affects the accuracy of tumor segmentation. Deconvolution aims to obtain a PVE-free image, which can help to improve the segmentation accuracy. Conversely, a correct localization of the object boundaries is helpful to estimate the blur kernel, and thus assist in the deconvolution. In this study, we proposed to solve the two problems simultaneously using a variational methodmore » so that they can benefit each other. The energy functional consists of a fidelity term and a regularization term, and the blur kernel was limited to be the isotropic Gaussian kernel. We minimized the energy functional by solving the associated Euler-Lagrange equations and taking the derivative with respect to the parameters of the kernel function. An alternate minimization method was used to iterate between segmentation, deconvolution and blur-kernel recovery. The performance of the proposed method was tested on clinic PET images of patients with non-Hodgkin's lymphoma, and compared with seven other segmentation methods using the dice similarity index (DSI) and volume error (VE). Results: Among all segmentation methods, the proposed one (DSI=0.81, VE=0.05) has the highest accuracy, followed by the active contours without edges (DSI=0.81, VE=0.25), while other methods including the Graph Cut and the Mumford-Shah (MS) method have lower accuracy. A visual inspection shows that the proposed method localizes the real tumor contour very well. Conclusion: The result showed that deconvolution and segmentation can contribute to each other. The proposed variational method solve the two problems simultaneously, and leads to a high performance for tumor segmentation in PET. This work was supported in part by National Natural Science Foundation of China (NNSFC), under Grant Nos. 60971112 and 61375018, and Fundamental Research Funds for the Central Universities, under Grant No. 2012QN086. Wei Lu was supported in part by the National Institutes of Health (NIH) Grant No. R01 CA172638.« less
Hall, L O; Bensaid, A M; Clarke, L P; Velthuizen, R P; Silbiger, M S; Bezdek, J C
1992-01-01
Magnetic resonance (MR) brain section images are segmented and then synthetically colored to give visual representations of the original data with three approaches: the literal and approximate fuzzy c-means unsupervised clustering algorithms, and a supervised computational neural network. Initial clinical results are presented on normal volunteers and selected patients with brain tumors surrounded by edema. Supervised and unsupervised segmentation techniques provide broadly similar results. Unsupervised fuzzy algorithms were visually observed to show better segmentation when compared with raw image data for volunteer studies. For a more complex segmentation problem with tumor/edema or cerebrospinal fluid boundary, where the tissues have similar MR relaxation behavior, inconsistency in rating among experts was observed, with fuzz-c-means approaches being slightly preferred over feedforward cascade correlation results. Various facets of both approaches, such as supervised versus unsupervised learning, time complexity, and utility for the diagnostic process, are compared.
NASA Astrophysics Data System (ADS)
Maier, Oskar; Wilms, Matthias; von der Gablentz, Janina; Krämer, Ulrike; Handels, Heinz
2014-03-01
Automatic segmentation of ischemic stroke lesions in magnetic resonance (MR) images is important in clinical practice and for neuroscientific trials. The key problem is to detect largely inhomogeneous regions of varying sizes, shapes and locations. We present a stroke lesion segmentation method based on local features extracted from multi-spectral MR data that are selected to model a human observer's discrimination criteria. A support vector machine classifier is trained on expert-segmented examples and then used to classify formerly unseen images. Leave-one-out cross validation on eight datasets with lesions of varying appearances is performed, showing our method to compare favourably with other published approaches in terms of accuracy and robustness. Furthermore, we compare a number of feature selectors and closely examine each feature's and MR sequence's contribution.
Fast Multiclass Segmentation using Diffuse Interface Methods on Graphs
2013-02-01
000 28 × 28 images of handwritten digits 0 through 9. Examples of entries can be found in Figure 6. The task is to classify each of the images into the...database of handwritten digits .” [Online]. Available: http://yann.lecun.com/exdb/mnist/ [36] J. Lellmann, J. H. Kappes, J. Yuan, F. Becker, and C...corresponding digit . The images include digits from 0 to 9; thus, this is a 10 class segmentation problem. To construct the weight matrix, we used N
Automated segmentation and feature extraction of product inspection items
NASA Astrophysics Data System (ADS)
Talukder, Ashit; Casasent, David P.
1997-03-01
X-ray film and linescan images of pistachio nuts on conveyor trays for product inspection are considered. The final objective is the categorization of pistachios into good, blemished and infested nuts. A crucial step before classification is the separation of touching products and the extraction of features essential for classification. This paper addresses new detection and segmentation algorithms to isolate touching or overlapping items. These algorithms employ a new filter, a new watershed algorithm, and morphological processing to produce nutmeat-only images. Tests on a large database of x-ray film and real-time x-ray linescan images of around 2900 small, medium and large nuts showed excellent segmentation results. A new technique to detect and segment dark regions in nutmeat images is also presented and tested on approximately 300 x-ray film and approximately 300 real-time linescan x-ray images with 95-97 percent detection and correct segmentation. New algorithms are described that determine nutmeat fill ratio and locate splits in nutmeat. The techniques formulated in this paper are of general use in many different product inspection and computer vision problems.
Segmenting human from photo images based on a coarse-to-fine scheme.
Lu, Huchuan; Fang, Guoliang; Shao, Xinqing; Li, Xuelong
2012-06-01
Human segmentation in photo images is a challenging and important problem that finds numerous applications ranging from album making and photo classification to image retrieval. Previous works on human segmentation usually demand a time-consuming training phase for complex shape-matching processes. In this paper, we propose a straightforward framework to automatically recover human bodies from color photos. Employing a coarse-to-fine strategy, we first detect a coarse torso (CT) using the multicue CT detection algorithm and then extract the accurate region of the upper body. Then, an iterative multiple oblique histogram algorithm is presented to accurately recover the lower body based on human kinematics. The performance of our algorithm is evaluated on our own data set (contains 197 images with human body region ground truth data), VOC 2006, and the 2010 data set. Experimental results demonstrate the merits of the proposed method in segmenting a person with various poses.
Identifying Degenerative Brain Disease Using Rough Set Classifier Based on Wavelet Packet Method.
Cheng, Ching-Hsue; Liu, Wei-Xiang
2018-05-28
Population aging has become a worldwide phenomenon, which causes many serious problems. The medical issues related to degenerative brain disease have gradually become a concern. Magnetic Resonance Imaging is one of the most advanced methods for medical imaging and is especially suitable for brain scans. From the literature, although the automatic segmentation method is less laborious and time-consuming, it is restricted in several specific types of images. In addition, hybrid techniques segmentation improves the shortcomings of the single segmentation method. Therefore, this study proposed a hybrid segmentation combined with rough set classifier and wavelet packet method to identify degenerative brain disease. The proposed method is a three-stage image process method to enhance accuracy of brain disease classification. In the first stage, this study used the proposed hybrid segmentation algorithms to segment the brain ROI (region of interest). In the second stage, wavelet packet was used to conduct the image decomposition and calculate the feature values. In the final stage, the rough set classifier was utilized to identify the degenerative brain disease. In verification and comparison, two experiments were employed to verify the effectiveness of the proposed method and compare with the TV-seg (total variation segmentation) algorithm, Discrete Cosine Transform, and the listing classifiers. Overall, the results indicated that the proposed method outperforms the listing methods.
A shape prior-based MRF model for 3D masseter muscle segmentation
NASA Astrophysics Data System (ADS)
Majeed, Tahir; Fundana, Ketut; Lüthi, Marcel; Beinemann, Jörg; Cattin, Philippe
2012-02-01
Medical image segmentation is generally an ill-posed problem that can only be solved by incorporating prior knowledge. The ambiguities arise due to the presence of noise, weak edges, imaging artifacts, inhomogeneous interior and adjacent anatomical structures having similar intensity profile as the target structure. In this paper we propose a novel approach to segment the masseter muscle using the graph-cut incorporating additional 3D shape priors in CT datasets, which is robust to noise; artifacts; and shape deformations. The main contribution of this paper is in translating the 3D shape knowledge into both unary and pairwise potentials of the Markov Random Field (MRF). The segmentation task is casted as a Maximum-A-Posteriori (MAP) estimation of the MRF. Graph-cut is then used to obtain the global minimum which results in the segmentation of the masseter muscle. The method is tested on 21 CT datasets of the masseter muscle, which are noisy with almost all possessing mild to severe imaging artifacts such as high-density artifacts caused by e.g. the very common dental fillings and dental implants. We show that the proposed technique produces clinically acceptable results to the challenging problem of muscle segmentation, and further provide a quantitative and qualitative comparison with other methods. We statistically show that adding additional shape prior into both unary and pairwise potentials can increase the robustness of the proposed method in noisy datasets.
NASA Astrophysics Data System (ADS)
Li, Jing; Xie, Weixin; Pei, Jihong
2018-03-01
Sea-land segmentation is one of the key technologies of sea target detection in remote sensing images. At present, the existing algorithms have the problems of low accuracy, low universality and poor automatic performance. This paper puts forward a sea-land segmentation algorithm based on multi-feature fusion for a large-field remote sensing image removing island. Firstly, the coastline data is extracted and all of land area is labeled by using the geographic information in large-field remote sensing image. Secondly, three features (local entropy, local texture and local gradient mean) is extracted in the sea-land border area, and the three features combine a 3D feature vector. And then the MultiGaussian model is adopted to describe 3D feature vectors of sea background in the edge of the coastline. Based on this multi-gaussian sea background model, the sea pixels and land pixels near coastline are classified more precise. Finally, the coarse segmentation result and the fine segmentation result are fused to obtain the accurate sea-land segmentation. Comparing and analyzing the experimental results by subjective vision, it shows that the proposed method has high segmentation accuracy, wide applicability and strong anti-disturbance ability.
Shape based segmentation of MRIs of the bones in the knee using phase and intensity information
NASA Astrophysics Data System (ADS)
Fripp, Jurgen; Bourgeat, Pierrick; Crozier, Stuart; Ourselin, Sébastien
2007-03-01
The segmentation of the bones from MR images is useful for performing subsequent segmentation and quantitative measurements of cartilage tissue. In this paper, we present a shape based segmentation scheme for the bones that uses texture features derived from the phase and intensity information in the complex MR image. The phase can provide additional information about the tissue interfaces, but due to the phase unwrapping problem, this information is usually discarded. By using a Gabor filter bank on the complex MR image, texture features (including phase) can be extracted without requiring phase unwrapping. These texture features are then analyzed using a support vector machine classifier to obtain probability tissue matches. The segmentation of the bone is fully automatic and performed using a 3D active shape model based approach driven using gradient and texture information. The 3D active shape model is automatically initialized using a robust affine registration. The approach is validated using a database of 18 FLASH MR images that are manually segmented, with an average segmentation overlap (Dice similarity coefficient) of 0.92 compared to 0.9 obtained using the classifier only.
S V, Mahesh Kumar; R, Gunasundari
2018-06-02
Eye disease is a major health problem among the elderly people. Cataract and corneal arcus are the major abnormalities that exist in the anterior segment eye region of aged people. Hence, computer-aided diagnosis of anterior segment eye abnormalities will be helpful for mass screening and grading in ophthalmology. In this paper, we propose a multiclass computer-aided diagnosis (CAD) system using visible wavelength (VW) eye images to diagnose anterior segment eye abnormalities. In the proposed method, the input VW eye images are pre-processed for specular reflection removal and the iris circle region is segmented using a circular Hough Transform (CHT)-based approach. The first-order statistical features and wavelet-based features are extracted from the segmented iris circle and used for classification. The Support Vector Machine (SVM) by Sequential Minimal Optimization (SMO) algorithm was used for the classification. In experiments, we used 228 VW eye images that belong to three different classes of anterior segment eye abnormalities. The proposed method achieved a predictive accuracy of 96.96% with 97% sensitivity and 99% specificity. The experimental results show that the proposed method has significant potential for use in clinical applications.
Jha, Abhinav K.; Kupinski, Matthew A.; Rodríguez, Jeffrey J.; Stephen, Renu M.; Stopeck, Alison T.
2012-01-01
In many studies, the estimation of the apparent diffusion coefficient (ADC) of lesions in visceral organs in diffusion-weighted (DW) magnetic resonance images requires an accurate lesion-segmentation algorithm. To evaluate these lesion-segmentation algorithms, region-overlap measures are used currently. However, the end task from the DW images is accurate ADC estimation, and the region-overlap measures do not evaluate the segmentation algorithms on this task. Moreover, these measures rely on the existence of gold-standard segmentation of the lesion, which is typically unavailable. In this paper, we study the problem of task-based evaluation of segmentation algorithms in DW imaging in the absence of a gold standard. We first show that using manual segmentations instead of gold-standard segmentations for this task-based evaluation is unreliable. We then propose a method to compare the segmentation algorithms that does not require gold-standard or manual segmentation results. The no-gold-standard method estimates the bias and the variance of the error between the true ADC values and the ADC values estimated using the automated segmentation algorithm. The method can be used to rank the segmentation algorithms on the basis of both accuracy and precision. We also propose consistency checks for this evaluation technique. PMID:22713231
A method of plane geometry primitive presentation
NASA Astrophysics Data System (ADS)
Jiao, Anbo; Luo, Haibo; Chang, Zheng; Hui, Bin
2014-11-01
Point feature and line feature are basic elements in object feature sets, and they play an important role in object matching and recognition. On one hand, point feature is sensitive to noise; on the other hand, there are usually a huge number of point features in an image, which makes it complex for matching. Line feature includes straight line segment and curve. One difficulty in straight line segment matching is the uncertainty of endpoint location, the other is straight line segment fracture problem or short straight line segments joined to form long straight line segment. While for the curve, in addition to the above problems, there is another difficulty in how to quantitatively describe the shape difference between curves. Due to the problems of point feature and line feature, the robustness and accuracy of target description will be affected; in this case, a method of plane geometry primitive presentation is proposed to describe the significant structure of an object. Firstly, two types of primitives are constructed, they are intersecting line primitive and blob primitive. Secondly, a line segment detector (LSD) is applied to detect line segment, and then intersecting line primitive is extracted. Finally, robustness and accuracy of the plane geometry primitive presentation method is studied. This method has a good ability to obtain structural information of the object, even if there is rotation or scale change of the object in the image. Experimental results verify the robustness and accuracy of this method.
Multiple sclerosis lesion segmentation using dictionary learning and sparse coding.
Weiss, Nick; Rueckert, Daniel; Rao, Anil
2013-01-01
The segmentation of lesions in the brain during the development of Multiple Sclerosis is part of the diagnostic assessment for this disease and gives information on its current severity. This laborious process is still carried out in a manual or semiautomatic fashion by clinicians because published automatic approaches have not been universal enough to be widely employed in clinical practice. Thus Multiple Sclerosis lesion segmentation remains an open problem. In this paper we present a new unsupervised approach addressing this problem with dictionary learning and sparse coding methods. We show its general applicability to the problem of lesion segmentation by evaluating our approach on synthetic and clinical image data and comparing it to state-of-the-art methods. Furthermore the potential of using dictionary learning and sparse coding for such segmentation tasks is investigated and various possibilities for further experiments are discussed.
Accurate segmentation of lung fields on chest radiographs using deep convolutional networks
NASA Astrophysics Data System (ADS)
Arbabshirani, Mohammad R.; Dallal, Ahmed H.; Agarwal, Chirag; Patel, Aalpan; Moore, Gregory
2017-02-01
Accurate segmentation of lung fields on chest radiographs is the primary step for computer-aided detection of various conditions such as lung cancer and tuberculosis. The size, shape and texture of lung fields are key parameters for chest X-ray (CXR) based lung disease diagnosis in which the lung field segmentation is a significant primary step. Although many methods have been proposed for this problem, lung field segmentation remains as a challenge. In recent years, deep learning has shown state of the art performance in many visual tasks such as object detection, image classification and semantic image segmentation. In this study, we propose a deep convolutional neural network (CNN) framework for segmentation of lung fields. The algorithm was developed and tested on 167 clinical posterior-anterior (PA) CXR images collected retrospectively from picture archiving and communication system (PACS) of Geisinger Health System. The proposed multi-scale network is composed of five convolutional and two fully connected layers. The framework achieved IOU (intersection over union) of 0.96 on the testing dataset as compared to manual segmentation. The suggested framework outperforms state of the art registration-based segmentation by a significant margin. To our knowledge, this is the first deep learning based study of lung field segmentation on CXR images developed on a heterogeneous clinical dataset. The results suggest that convolutional neural networks could be employed reliably for lung field segmentation.
Vigneault, Davis M; Xie, Weidi; Ho, Carolyn Y; Bluemke, David A; Noble, J Alison
2018-05-22
Pixelwise segmentation of the left ventricular (LV) myocardium and the four cardiac chambers in 2-D steady state free precession (SSFP) cine sequences is an essential preprocessing step for a wide range of analyses. Variability in contrast, appearance, orientation, and placement of the heart between patients, clinical views, scanners, and protocols makes fully automatic semantic segmentation a notoriously difficult problem. Here, we present Ω-Net (Omega-Net): A novel convolutional neural network (CNN) architecture for simultaneous localization, transformation into a canonical orientation, and semantic segmentation. First, an initial segmentation is performed on the input image; second, the features learned during this initial segmentation are used to predict the parameters needed to transform the input image into a canonical orientation; and third, a final segmentation is performed on the transformed image. In this work, Ω-Nets of varying depths were trained to detect five foreground classes in any of three clinical views (short axis, SA; four-chamber, 4C; two-chamber, 2C), without prior knowledge of the view being segmented. This constitutes a substantially more challenging problem compared with prior work. The architecture was trained using three-fold cross-validation on a cohort of patients with hypertrophic cardiomyopathy (HCM, N=42) and healthy control subjects (N=21). Network performance, as measured by weighted foreground intersection-over-union (IoU), was substantially improved for the best-performing Ω-Net compared with U-Net segmentation without localization or orientation (0.858 vs 0.834). In addition, to be comparable with other works, Ω-Net was retrained from scratch using five-fold cross-validation on the publicly available 2017 MICCAI Automated Cardiac Diagnosis Challenge (ACDC) dataset. The Ω-Net outperformed the state-of-the-art method in segmentation of the LV and RV bloodpools, and performed slightly worse in segmentation of the LV myocardium. We conclude that this architecture represents a substantive advancement over prior approaches, with implications for biomedical image segmentation more generally. Published by Elsevier B.V.
A diabetic retinopathy detection method using an improved pillar K-means algorithm.
Gogula, Susmitha Valli; Divakar, Ch; Satyanarayana, Ch; Rao, Allam Appa
2014-01-01
The paper presents a new approach for medical image segmentation. Exudates are a visible sign of diabetic retinopathy that is the major reason of vision loss in patients with diabetes. If the exudates extend into the macular area, blindness may occur. Automated detection of exudates will assist ophthalmologists in early diagnosis. This segmentation process includes a new mechanism for clustering the elements of high-resolution images in order to improve precision and reduce computation time. The system applies K-means clustering to the image segmentation after getting optimized by Pillar algorithm; pillars are constructed in such a way that they can withstand the pressure. Improved pillar algorithm can optimize the K-means clustering for image segmentation in aspects of precision and computation time. This evaluates the proposed approach for image segmentation by comparing with Kmeans and Fuzzy C-means in a medical image. Using this method, identification of dark spot in the retina becomes easier and the proposed algorithm is applied on diabetic retinal images of all stages to identify hard and soft exudates, where the existing pillar K-means is more appropriate for brain MRI images. This proposed system help the doctors to identify the problem in the early stage and can suggest a better drug for preventing further retinal damage.
Segmentation of radiographic images under topological constraints: application to the femur.
Gamage, Pavan; Xie, Sheng Quan; Delmas, Patrice; Xu, Wei Liang
2010-09-01
A framework for radiographic image segmentation under topological control based on two-dimensional (2D) image analysis was developed. The system is intended for use in common radiological tasks including fracture treatment analysis, osteoarthritis diagnostics and osteotomy management planning. The segmentation framework utilizes a generic three-dimensional (3D) model of the bone of interest to define the anatomical topology. Non-rigid registration is performed between the projected contours of the generic 3D model and extracted edges of the X-ray image to achieve the segmentation. For fractured bones, the segmentation requires an additional step where a region-based active contours curve evolution is performed with a level set Mumford-Shah method to obtain the fracture surface edge. The application of the segmentation framework to analysis of human femur radiographs was evaluated. The proposed system has two major innovations. First, definition of the topological constraints does not require a statistical learning process, so the method is generally applicable to a variety of bony anatomy segmentation problems. Second, the methodology is able to handle both intact and fractured bone segmentation. Testing on clinical X-ray images yielded an average root mean squared distance (between the automatically segmented femur contour and the manual segmented ground truth) of 1.10 mm with a standard deviation of 0.13 mm. The proposed point correspondence estimation algorithm was benchmarked against three state-of-the-art point matching algorithms, demonstrating successful non-rigid registration for the cases of interest. A topologically constrained automatic bone contour segmentation framework was developed and tested, providing robustness to noise, outliers, deformations and occlusions.
NASA Astrophysics Data System (ADS)
Seppke, Benjamin; Dreschler-Fischer, Leonie; Wilms, Christian
2016-08-01
The extraction of road signatures from remote sensing images as a promising indicator for urbanization is a classical segmentation problem. However, some segmentation algorithms often lead to non-sufficient results. One way to overcome this problem is the usage of superpixels, that represent a locally coherent cluster of connected pixels. Superpixels allow flexible, highly adaptive segmentation approaches due to the possibility of merging as well as splitting and form new basic image entities. On the other hand, superpixels require an appropriate representation containing all relevant information about topology and geometry to maximize their advantages.In this work, we present a combined geometric and topological representation based on a special graph representation, the so-called RS-graph. Moreover, we present the use of the RS-graph by means of a case study: the extraction of partially occluded road networks in rural areas from open source (spectral) remote sensing images by tracking. In addition, multiprocessing and GPU-based parallelization is used to speed up the construction of the representation and the application.
VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images.
Chen, Hao; Dou, Qi; Yu, Lequan; Qin, Jing; Heng, Pheng-Ann
2018-04-15
Segmentation of key brain tissues from 3D medical images is of great significance for brain disease diagnosis, progression assessment and monitoring of neurologic conditions. While manual segmentation is time-consuming, laborious, and subjective, automated segmentation is quite challenging due to the complicated anatomical environment of brain and the large variations of brain tissues. We propose a novel voxelwise residual network (VoxResNet) with a set of effective training schemes to cope with this challenging problem. The main merit of residual learning is that it can alleviate the degradation problem when training a deep network so that the performance gains achieved by increasing the network depth can be fully leveraged. With this technique, our VoxResNet is built with 25 layers, and hence can generate more representative features to deal with the large variations of brain tissues than its rivals using hand-crafted features or shallower networks. In order to effectively train such a deep network with limited training data for brain segmentation, we seamlessly integrate multi-modality and multi-level contextual information into our network, so that the complementary information of different modalities can be harnessed and features of different scales can be exploited. Furthermore, an auto-context version of the VoxResNet is proposed by combining the low-level image appearance features, implicit shape information, and high-level context together for further improving the segmentation performance. Extensive experiments on the well-known benchmark (i.e., MRBrainS) of brain segmentation from 3D magnetic resonance (MR) images corroborated the efficacy of the proposed VoxResNet. Our method achieved the first place in the challenge out of 37 competitors including several state-of-the-art brain segmentation methods. Our method is inherently general and can be readily applied as a powerful tool to many brain-related studies, where accurate segmentation of brain structures is critical. Copyright © 2017 Elsevier Inc. All rights reserved.
Community detection for fluorescent lifetime microscopy image segmentation
NASA Astrophysics Data System (ADS)
Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Achilefu, Samuel; Nussinov, Zohar
2014-03-01
Multiresolution community detection (CD) method has been suggested in a recent work as an efficient method for performing unsupervised segmentation of fluorescence lifetime (FLT) images of live cell images containing fluorescent molecular probes.1 In the current paper, we further explore this method in FLT images of ex vivo tissue slices. The image processing problem is framed as identifying clusters with respective average FLTs against a background or "solvent" in FLT imaging microscopy (FLIM) images derived using NIR fluorescent dyes. We have identified significant multiresolution structures using replica correlations in these images, where such correlations are manifested by information theoretic overlaps of the independent solutions ("replicas") attained using the multiresolution CD method from different starting points. In this paper, our method is found to be more efficient than a current state-of-the-art image segmentation method based on mixture of Gaussian distributions. It offers more than 1:25 times diversity based on Shannon index than the latter method, in selecting clusters with distinct average FLTs in NIR FLIM images.
Crowdsourcing the creation of image segmentation algorithms for connectomics.
Arganda-Carreras, Ignacio; Turaga, Srinivas C; Berger, Daniel R; Cireşan, Dan; Giusti, Alessandro; Gambardella, Luca M; Schmidhuber, Jürgen; Laptev, Dmitry; Dwivedi, Sarvesh; Buhmann, Joachim M; Liu, Ting; Seyedhosseini, Mojtaba; Tasdizen, Tolga; Kamentsky, Lee; Burget, Radim; Uher, Vaclav; Tan, Xiao; Sun, Changming; Pham, Tuan D; Bas, Erhan; Uzunbas, Mustafa G; Cardona, Albert; Schindelin, Johannes; Seung, H Sebastian
2015-01-01
To stimulate progress in automating the reconstruction of neural circuits, we organized the first international challenge on 2D segmentation of electron microscopic (EM) images of the brain. Participants submitted boundary maps predicted for a test set of images, and were scored based on their agreement with a consensus of human expert annotations. The winning team had no prior experience with EM images, and employed a convolutional network. This "deep learning" approach has since become accepted as a standard for segmentation of EM images. The challenge has continued to accept submissions, and the best so far has resulted from cooperation between two teams. The challenge has probably saturated, as algorithms cannot progress beyond limits set by ambiguities inherent in 2D scoring and the size of the test dataset. Retrospective evaluation of the challenge scoring system reveals that it was not sufficiently robust to variations in the widths of neurite borders. We propose a solution to this problem, which should be useful for a future 3D segmentation challenge.
A Kalman Filtering Perspective for Multiatlas Segmentation*
Gao, Yi; Zhu, Liangjia; Cates, Joshua; MacLeod, Rob S.; Bouix, Sylvain; Tannenbaum, Allen
2016-01-01
In multiatlas segmentation, one typically registers several atlases to the novel image, and their respective segmented label images are transformed and fused to form the final segmentation. In this work, we provide a new dynamical system perspective for multiatlas segmentation, inspired by the following fact: The transformation that aligns the current atlas to the novel image can be not only computed by direct registration but also inferred from the transformation that aligns the previous atlas to the image together with the transformation between the two atlases. This process is similar to the global positioning system on a vehicle, which gets position by inquiring from the satellite and by employing the previous location and velocity—neither answer in isolation being perfect. To solve this problem, a dynamical system scheme is crucial to combine the two pieces of information; for example, a Kalman filtering scheme is used. Accordingly, in this work, a Kalman multiatlas segmentation is proposed to stabilize the global/affine registration step. The contributions of this work are twofold. First, it provides a new dynamical systematic perspective for standard independent multiatlas registrations, and it is solved by Kalman filtering. Second, with very little extra computation, it can be combined with most existing multiatlas segmentation schemes for better registration/segmentation accuracy. PMID:26807162
Automated segmentation of dental CBCT image with prior-guided sequential random forests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Li; Gao, Yaozong; Shi, Feng
Purpose: Cone-beam computed tomography (CBCT) is an increasingly utilized imaging modality for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities. Accurate segmentation of CBCT image is an essential step to generate 3D models for the diagnosis and treatment planning of the patients with CMF deformities. However, due to the image artifacts caused by beam hardening, imaging noise, inhomogeneity, truncation, and maximal intercuspation, it is difficult to segment the CBCT. Methods: In this paper, the authors present a new automatic segmentation method to address these problems. Specifically, the authors first employ a majority voting method to estimatemore » the initial segmentation probability maps of both mandible and maxilla based on multiple aligned expert-segmented CBCT images. These probability maps provide an important prior guidance for CBCT segmentation. The authors then extract both the appearance features from CBCTs and the context features from the initial probability maps to train the first-layer of random forest classifier that can select discriminative features for segmentation. Based on the first-layer of trained classifier, the probability maps are updated, which will be employed to further train the next layer of random forest classifier. By iteratively training the subsequent random forest classifier using both the original CBCT features and the updated segmentation probability maps, a sequence of classifiers can be derived for accurate segmentation of CBCT images. Results: Segmentation results on CBCTs of 30 subjects were both quantitatively and qualitatively validated based on manually labeled ground truth. The average Dice ratios of mandible and maxilla by the authors’ method were 0.94 and 0.91, respectively, which are significantly better than the state-of-the-art method based on sparse representation (p-value < 0.001). Conclusions: The authors have developed and validated a novel fully automated method for CBCT segmentation.« less
Leveraging unsupervised training sets for multi-scale compartmentalization in renal pathology
NASA Astrophysics Data System (ADS)
Lutnick, Brendon; Tomaszewski, John E.; Sarder, Pinaki
2017-03-01
Clinical pathology relies on manual compartmentalization and quantification of biological structures, which is time consuming and often error-prone. Application of computer vision segmentation algorithms to histopathological image analysis, in contrast, can offer fast, reproducible, and accurate quantitative analysis to aid pathologists. Algorithms tunable to different biologically relevant structures can allow accurate, precise, and reproducible estimates of disease states. In this direction, we have developed a fast, unsupervised computational method for simultaneously separating all biologically relevant structures from histopathological images in multi-scale. Segmentation is achieved by solving an energy optimization problem. Representing the image as a graph, nodes (pixels) are grouped by minimizing a Potts model Hamiltonian, adopted from theoretical physics, modeling interacting electron spins. Pixel relationships (modeled as edges) are used to update the energy of the partitioned graph. By iteratively improving the clustering, the optimal number of segments is revealed. To reduce computational time, the graph is simplified using a Cantor pairing function to intelligently reduce the number of included nodes. The classified nodes are then used to train a multiclass support vector machine to apply the segmentation over the full image. Accurate segmentations of images with as many as 106 pixels can be completed only in 5 sec, allowing for attainable multi-scale visualization. To establish clinical potential, we employed our method in renal biopsies to quantitatively visualize for the first time scale variant compartments of heterogeneous intra- and extraglomerular structures simultaneously. Implications of the utility of our method extend to fields such as oncology, genomics, and non-biological problems.
Microscopy image segmentation tool: Robust image data analysis
NASA Astrophysics Data System (ADS)
Valmianski, Ilya; Monton, Carlos; Schuller, Ivan K.
2014-03-01
We present a software package called Microscopy Image Segmentation Tool (MIST). MIST is designed for analysis of microscopy images which contain large collections of small regions of interest (ROIs). Originally developed for analysis of porous anodic alumina scanning electron images, MIST capabilities have been expanded to allow use in a large variety of problems including analysis of biological tissue, inorganic and organic film grain structure, as well as nano- and meso-scopic structures. MIST provides a robust segmentation algorithm for the ROIs, includes many useful analysis capabilities, and is highly flexible allowing incorporation of specialized user developed analysis. We describe the unique advantages MIST has over existing analysis software. In addition, we present a number of diverse applications to scanning electron microscopy, atomic force microscopy, magnetic force microscopy, scanning tunneling microscopy, and fluorescent confocal laser scanning microscopy.
NASA Astrophysics Data System (ADS)
Othman, Khairulnizam; Ahmad, Afandi
2016-11-01
In this research we explore the application of normalize denoted new techniques in advance fast c-mean in to the problem of finding the segment of different breast tissue regions in mammograms. The goal of the segmentation algorithm is to see if new denotes fuzzy c- mean algorithm could separate different densities for the different breast patterns. The new density segmentation is applied with multi-selection of seeds label to provide the hard constraint, whereas the seeds labels are selected based on user defined. New denotes fuzzy c- mean have been explored on images of various imaging modalities but not on huge format digital mammograms just yet. Therefore, this project is mainly focused on using normalize denoted new techniques employed in fuzzy c-mean to perform segmentation to increase visibility of different breast densities in mammography images. Segmentation of the mammogram into different mammographic densities is useful for risk assessment and quantitative evaluation of density changes. Our proposed methodology for the segmentation of mammograms on the basis of their region into different densities based categories has been tested on MIAS database and Trueta Database.
A state-of-the-art review on segmentation algorithms in intravascular ultrasound (IVUS) images.
Katouzian, Amin; Angelini, Elsa D; Carlier, Stéphane G; Suri, Jasjit S; Navab, Nassir; Laine, Andrew F
2012-09-01
Over the past two decades, intravascular ultrasound (IVUS) image segmentation has remained a challenge for researchers while the use of this imaging modality is rapidly growing in catheterization procedures and in research studies. IVUS provides cross-sectional grayscale images of the arterial wall and the extent of atherosclerotic plaques with high spatial resolution in real time. In this paper, we review recently developed image processing methods for the detection of media-adventitia and luminal borders in IVUS images acquired with different transducers operating at frequencies ranging from 20 to 45 MHz. We discuss methodological challenges, lack of diversity in reported datasets, and weaknesses of quantification metrics that make IVUS segmentation still an open problem despite all efforts. In conclusion, we call for a common reference database, validation metrics, and ground-truth definition with which new and existing algorithms could be benchmarked.
Interactive 3D segmentation using connected orthogonal contours.
de Bruin, P W; Dercksen, V J; Post, F H; Vossepoel, A M; Streekstra, G J; Vos, F M
2005-05-01
This paper describes a new method for interactive segmentation that is based on cross-sectional design and 3D modelling. The method represents a 3D model by a set of connected contours that are planar and orthogonal. Planar contours overlayed on image data are easily manipulated and linked contours reduce the amount of user interaction.1 This method solves the contour-to-contour correspondence problem and can capture extrema of objects in a more flexible way than manual segmentation of a stack of 2D images. The resulting 3D model is guaranteed to be free of geometric and topological errors. We show that manual segmentation using connected orthogonal contours has great advantages over conventional manual segmentation. Furthermore, the method provides effective feedback and control for creating an initial model for, and control and steering of, (semi-)automatic segmentation methods.
Image wavelet decomposition and applications
NASA Technical Reports Server (NTRS)
Treil, N.; Mallat, S.; Bajcsy, R.
1989-01-01
The general problem of computer vision has been investigated for more that 20 years and is still one of the most challenging fields in artificial intelligence. Indeed, taking a look at the human visual system can give us an idea of the complexity of any solution to the problem of visual recognition. This general task can be decomposed into a whole hierarchy of problems ranging from pixel processing to high level segmentation and complex objects recognition. Contrasting an image at different representations provides useful information such as edges. An example of low level signal and image processing using the theory of wavelets is introduced which provides the basis for multiresolution representation. Like the human brain, we use a multiorientation process which detects features independently in different orientation sectors. So, images of the same orientation but of different resolutions are contrasted to gather information about an image. An interesting image representation using energy zero crossings is developed. This representation is shown to be experimentally complete and leads to some higher level applications such as edge and corner finding, which in turn provides two basic steps to image segmentation. The possibilities of feedback between different levels of processing are also discussed.
A new Hessian - based approach for segmentation of CT porous media images
NASA Astrophysics Data System (ADS)
Timofey, Sizonenko; Marina, Karsanina; Dina, Gilyazetdinova; Kirill, Gerke
2017-04-01
Hessian matrix based methods are widely used in image analysis for features detection, e.g., detection of blobs, corners and edges. Hessian matrix of the imageis the matrix of 2nd order derivate around selected voxel. Most significant features give highest values of Hessian transform and lowest values are located at smoother parts of the image. Majority of conventional segmentation techniques can segment out cracks, fractures and other inhomogeneities in soils and rocks only if the rest of the image is significantly "oversigmented". To avoid this disadvantage, we propose to enhance greyscale values of voxels belonging to such specific inhomogeneities on X-ray microtomography scans. We have developed and implemented in code a two-step approach to attack the aforementioned problem. During the first step we apply a filter that enhances the image and makes outstanding features more sharply defined. During the second step we apply Hessian filter based segmentation. The values of voxels on the image to be segmented are calculated in conjunction with the values of other voxels within prescribed region. Contribution from each voxel within such region is computed by weighting according to the local Hessian matrix value. We call this approach as Hessian windowed segmentation. Hessian windowed segmentation has been tested on different porous media X-ray microtomography images, including soil, sandstones, carbonates and shales. We also compared this new method against others widely used methods such as kriging, Markov random field, converging active contours and region grow. We show that our approach is more accurate in regions containing special features such as small cracks, fractures, elongated inhomogeneities and other features with low contrast related to the background solid phase. Moreover, Hessian windowed segmentation outperforms some of these methods in computational efficiency. We further test our segmentation technique by computing permeability of segmented images and comparing them against laboratory based measurements. This work was partially supported by RFBR grant 15-34-20989 (X-ray tomography and image fusion) and RSF grant 14-17-00658 (image segmentation and pore-scale modelling).
Segmentation, modeling and classification of the compact objects in a pile
NASA Technical Reports Server (NTRS)
Gupta, Alok; Funka-Lea, Gareth; Wohn, Kwangyoen
1990-01-01
The problem of interpreting dense range images obtained from the scene of a heap of man-made objects is discussed. A range image interpretation system consisting of segmentation, modeling, verification, and classification procedures is described. First, the range image is segmented into regions and reasoning is done about the physical support of these regions. Second, for each region several possible three-dimensional interpretations are made based on various scenarios of the objects physical support. Finally each interpretation is tested against the data for its consistency. The superquadric model is selected as the three-dimensional shape descriptor, plus tapering deformations along the major axis. Experimental results obtained from some complex range images of mail pieces are reported to demonstrate the soundness and the robustness of our approach.
Ukwatta, Eranga; Arevalo, Hermenegild; Li, Kristina; Yuan, Jing; Qiu, Wu; Malamas, Peter; Wu, Katherine C.
2016-01-01
Accurate representation of myocardial infarct geometry is crucial to patient-specific computational modeling of the heart in ischemic cardiomyopathy. We have developed a methodology for segmentation of left ventricular (LV) infarct from clinically acquired, two-dimensional (2D), late-gadolinium enhanced cardiac magnetic resonance (LGE-CMR) images, for personalized modeling of ventricular electrophysiology. The infarct segmentation was expressed as a continuous min-cut optimization problem, which was solved using its dual formulation, the continuous max-flow (CMF). The optimization objective comprised of a smoothness term, and a data term that quantified the similarity between image intensity histograms of segmented regions and those of a set of training images. A manual segmentation of the LV myocardium was used to initialize and constrain the developed method. The three-dimensional geometry of infarct was reconstructed from its segmentation using an implicit, shape-based interpolation method. The proposed methodology was extensively evaluated using metrics based on geometry, and outcomes of individualized electrophysiological simulations of cardiac dys(function). Several existing LV infarct segmentation approaches were implemented, and compared with the proposed method. Our results demonstrated that the CMF method was more accurate than the existing approaches in reproducing expert manual LV infarct segmentations, and in electrophysiological simulations. The infarct segmentation method we have developed and comprehensively evaluated in this study constitutes an important step in advancing clinical applications of personalized simulations of cardiac electrophysiology. PMID:26731693
Machine learning in a graph framework for subcortical segmentation
NASA Astrophysics Data System (ADS)
Guo, Zhihui; Kashyap, Satyananda; Sonka, Milan; Oguz, Ipek
2017-02-01
Automated and reliable segmentation of subcortical structures from human brain magnetic resonance images is of great importance for volumetric and shape analyses in quantitative neuroimaging studies. However, poor boundary contrast and variable shape of these structures make the automated segmentation a tough task. We propose a 3D graph-based machine learning method, called LOGISMOS-RF, to segment the caudate and the putamen from brain MRI scans in a robust and accurate way. An atlas-based tissue classification and bias-field correction method is applied to the images to generate an initial segmentation for each structure. Then a 3D graph framework is utilized to construct a geometric graph for each initial segmentation. A locally trained random forest classifier is used to assign a cost to each graph node. The max-flow algorithm is applied to solve the segmentation problem. Evaluation was performed on a dataset of T1-weighted MRI's of 62 subjects, with 42 images used for training and 20 images for testing. For comparison, FreeSurfer, FSL and BRAINSCut approaches were also evaluated using the same dataset. Dice overlap coefficients and surface-to-surfaces distances between the automated segmentation and expert manual segmentations indicate the results of our method are statistically significantly more accurate than the three other methods, for both the caudate (Dice: 0.89 +/- 0.03) and the putamen (0.89 +/- 0.03).
Watermarked cardiac CT image segmentation using deformable models and the Hermite transform
NASA Astrophysics Data System (ADS)
Gomez-Coronel, Sandra L.; Moya-Albor, Ernesto; Escalante-Ramírez, Boris; Brieva, Jorge
2015-01-01
Medical image watermarking is an open area for research and is a solution for the protection of copyright and intellectual property. One of the main challenges of this problem is that the marked images should not differ perceptually from the original images allowing a correct diagnosis and authentication. Furthermore, we also aim at obtaining watermarked images with very little numerical distortion so that computer vision tasks such as segmentation of important anatomical structures do not be impaired or affected. We propose a preliminary watermarking application in cardiac CT images based on a perceptive approach that includes a brightness model to generate a perceptive mask and identify the image regions where the watermark detection becomes a difficult task for the human eye. We propose a normalization scheme of the image in order to improve robustness against geometric attacks. We follow a spread spectrum technique to insert an alphanumeric code, such as patient's information, within the watermark. The watermark scheme is based on the Hermite transform as a bio-inspired image representation model. In order to evaluate the numerical integrity of the image data after watermarking, we perform a segmentation task based on deformable models. The segmentation technique is based on a vector-value level sets method such that, given a curve in a specific image, and subject to some constraints, the curve can evolve in order to detect objects. In order to stimulate the curve evolution we introduce simultaneously some image features like the gray level and the steered Hermite coefficients as texture descriptors. Segmentation performance was assessed by means of the Dice index and the Hausdorff distance. We tested different mark sizes and different insertion schemes on images that were later segmented either automatic or manual by physicians.
Pomegranate MR images analysis using ACM and FCM algorithms
NASA Astrophysics Data System (ADS)
Morad, Ghobad; Shamsi, Mousa; Sedaaghi, M. H.; Alsharif, M. R.
2011-10-01
Segmentation of an image plays an important role in image processing applications. In this paper segmentation of pomegranate magnetic resonance (MR) images has been explored. Pomegranate has healthy nutritional and medicinal properties for which the maturity indices and quality of internal tissues play an important role in the sorting process in which the admissible determination of features mentioned above cannot be easily achieved by human operator. Seeds and soft tissues are the main internal components of pomegranate. For research purposes, such as non-destructive investigation, in order to determine the ripening index and the percentage of seeds in growth period, segmentation of the internal structures should be performed as exactly as possible. In this paper, we present an automatic algorithm to segment the internal structure of pomegranate. Since its intensity of stem and calyx is close to the internal tissues, the stem and calyx pixels are usually labeled to the internal tissues by segmentation algorithm. To solve this problem, first, the fruit shape is extracted from its background using active contour model (ACM). Then stem and calyx are removed using morphological filters. Finally the image is segmented by fuzzy c-means (FCM). The experimental results represent an accuracy of 95.91% in the presence of stem and calyx, while the accuracy of segmentation increases to 97.53% when stem and calyx are first removed by morphological filters.
Flexible methods for segmentation evaluation: results from CT-based luggage screening.
Karimi, Seemeen; Jiang, Xiaoqian; Cosman, Pamela; Martz, Harry
2014-01-01
Imaging systems used in aviation security include segmentation algorithms in an automatic threat recognition pipeline. The segmentation algorithms evolve in response to emerging threats and changing performance requirements. Analysis of segmentation algorithms' behavior, including the nature of errors and feature recovery, facilitates their development. However, evaluation methods from the literature provide limited characterization of the segmentation algorithms. To develop segmentation evaluation methods that measure systematic errors such as oversegmentation and undersegmentation, outliers, and overall errors. The methods must measure feature recovery and allow us to prioritize segments. We developed two complementary evaluation methods using statistical techniques and information theory. We also created a semi-automatic method to define ground truth from 3D images. We applied our methods to evaluate five segmentation algorithms developed for CT luggage screening. We validated our methods with synthetic problems and an observer evaluation. Both methods selected the same best segmentation algorithm. Human evaluation confirmed the findings. The measurement of systematic errors and prioritization helped in understanding the behavior of each segmentation algorithm. Our evaluation methods allow us to measure and explain the accuracy of segmentation algorithms.
On the importance of FIB-SEM specific segmentation algorithms for porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salzer, Martin, E-mail: martin.salzer@uni-ulm.de; Thiele, Simon, E-mail: simon.thiele@imtek.uni-freiburg.de; Zengerle, Roland, E-mail: zengerle@imtek.uni-freiburg.de
2014-09-15
A new algorithmic approach to segmentation of highly porous three dimensional image data gained by focused ion beam tomography is described which extends the key-principle of local threshold backpropagation described in Salzer et al. (2012). The technique of focused ion beam tomography has shown to be capable of imaging the microstructure of functional materials. In order to perform a quantitative analysis on the corresponding microstructure a segmentation task needs to be performed. However, algorithmic segmentation of images obtained with focused ion beam tomography is a challenging problem for highly porous materials if filling the pore phase, e.g. with epoxy resin,more » is difficult. The gray intensities of individual voxels are not sufficient to determine the phase represented by them and usual thresholding methods are not applicable. We thus propose a new approach to segmentation that pays respect to the specifics of the imaging process of focused ion beam tomography. As an application of our approach, the segmentation of three dimensional images for a cathode material used in polymer electrolyte membrane fuel cells is discussed. We show that our approach preserves significantly more of the original nanostructure than a thresholding approach. - Highlights: • We describe a new approach to the segmentation of FIB-SEM images of porous media. • The first and last occurrences of structures are detected by analysing the z-profiles. • The algorithm is validated by comparing it to a manual segmentation. • The new approach shows significantly less artifacts than a thresholding approach. • A structural analysis also shows improved results for the obtained microstructure.« less
Hair segmentation using adaptive threshold from edge and branch length measures.
Lee, Ian; Du, Xian; Anthony, Brian
2017-10-01
Non-invasive imaging techniques allow the monitoring of skin structure and diagnosis of skin diseases in clinical applications. However, hair in skin images hampers the imaging and classification of the skin structure of interest. Although many hair segmentation methods have been proposed for digital hair removal, a major challenge in hair segmentation remains in detecting hairs that are thin, overlapping, of similar contrast or color to underlying skin, or overlaid on highly-textured skin structure. To solve the problem, we present an automatic hair segmentation method that uses edge density (ED) and mean branch length (MBL) to measure hair. First, hair is detected by the integration of top-hat transform and modified second-order Gaussian filter. Second, we employ a robust adaptive threshold of ED and MBL to generate a hair mask. Third, the hair mask is refined by k-NN classification of hair and skin pixels. The proposed algorithm was tested using two datasets of healthy skin images and lesion images respectively. These datasets were taken from different imaging platforms in various illumination levels and varying skin colors. We compared the hair detection and segmentation results from our algorithm and six other hair segmentation methods of state of the art. Our method exhibits high value of sensitivity: 75% and specificity: 95%, which indicates significantly higher accuracy and better balance between true positive and false positive detection than the other methods. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Alvarenga de Moura Meneses, Anderson; Giusti, Alessandro; de Almeida, André Pereira; Parreira Nogueira, Liebert; Braz, Delson; Cely Barroso, Regina; deAlmeida, Carlos Eduardo
2011-12-01
Synchrotron Radiation (SR) X-ray micro-Computed Tomography (μCT) enables magnified images to be used as a non-invasive and non-destructive technique with a high space resolution for the qualitative and quantitative analyses of biomedical samples. The research on applications of segmentation algorithms to SR-μCT is an open problem, due to the interesting and well-known characteristics of SR images for visualization, such as the high resolution and the phase contrast effect. In this article, we describe and assess the application of the Energy Minimization via Graph Cuts (EMvGC) algorithm for the segmentation of SR-μCT biomedical images acquired at the Synchrotron Radiation for MEdical Physics (SYRMEP) beam line at the Elettra Laboratory (Trieste, Italy). We also propose a method using EMvGC with Artificial Neural Networks (EMANNs) for correcting misclassifications due to intensity variation of phase contrast, which are important effects and sometimes indispensable in certain biomedical applications, although they impair the segmentation provided by conventional techniques. Results demonstrate considerable success in the segmentation of SR-μCT biomedical images, with average Dice Similarity Coefficient 99.88% for bony tissue in Wistar Rats rib samples (EMvGC), as well as 98.95% and 98.02% for scans of Rhodnius prolixus insect samples (Chagas's disease vector) with EMANNs, in relation to manual segmentation. The techniques EMvGC and EMANNs cope with the task of performing segmentation in images with the intensity variation due to phase contrast effects, presenting a superior performance in comparison to conventional segmentation techniques based on thresholding and linear/nonlinear image filtering, which is also discussed in the present article.
A supervoxel-based segmentation method for prostate MR images.
Tian, Zhiqiang; Liu, Lizhi; Zhang, Zhenfeng; Xue, Jianru; Fei, Baowei
2017-02-01
Segmentation of the prostate on MR images has many applications in prostate cancer management. In this work, we propose a supervoxel-based segmentation method for prostate MR images. A supervoxel is a set of pixels that have similar intensities, locations, and textures in a 3D image volume. The prostate segmentation problem is considered as assigning a binary label to each supervoxel, which is either the prostate or background. A supervoxel-based energy function with data and smoothness terms is used to model the label. The data term estimates the likelihood of a supervoxel belonging to the prostate by using a supervoxel-based shape feature. The geometric relationship between two neighboring supervoxels is used to build the smoothness term. The 3D graph cut is used to minimize the energy function to get the labels of the supervoxels, which yields the prostate segmentation. A 3D active contour model is then used to get a smooth surface by using the output of the graph cut as an initialization. The performance of the proposed algorithm was evaluated on 30 in-house MR image data and PROMISE12 dataset. The mean Dice similarity coefficients are 87.2 ± 2.3% and 88.2 ± 2.8% for our 30 in-house MR volumes and the PROMISE12 dataset, respectively. The proposed segmentation method yields a satisfactory result for prostate MR images. The proposed supervoxel-based method can accurately segment prostate MR images and can have a variety of application in prostate cancer diagnosis and therapy. © 2016 American Association of Physicists in Medicine.
Segmentation of histological images and fibrosis identification with a convolutional neural network.
Fu, Xiaohang; Liu, Tong; Xiong, Zhaohan; Smaill, Bruce H; Stiles, Martin K; Zhao, Jichao
2018-07-01
Segmentation of histological images is one of the most crucial tasks for many biomedical analyses involving quantification of certain tissue types, such as fibrosis via Masson's trichrome staining. However, challenges are posed by the high variability and complexity of structural features in such images, in addition to imaging artifacts. Further, the conventional approach of manual thresholding is labor-intensive, and highly sensitive to inter- and intra-image intensity variations. An accurate and robust automated segmentation method is of high interest. We propose and evaluate an elegant convolutional neural network (CNN) designed for segmentation of histological images, particularly those with Masson's trichrome stain. The network comprises 11 successive convolutional - rectified linear unit - batch normalization layers. It outperformed state-of-the-art CNNs on a dataset of cardiac histological images (labeling fibrosis, myocytes, and background) with a Dice similarity coefficient of 0.947. With 100 times fewer (only 300,000) trainable parameters than the state-of-the-art, our CNN is less susceptible to overfitting, and is efficient. Additionally, it retains image resolution from input to output, captures fine-grained details, and can be trained end-to-end smoothly. To the best of our knowledge, this is the first deep CNN tailored to the problem of concern, and may potentially be extended to solve similar segmentation tasks to facilitate investigations into pathology and clinical treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.
The vision guidance and image processing of AGV
NASA Astrophysics Data System (ADS)
Feng, Tongqing; Jiao, Bin
2017-08-01
Firstly, the principle of AGV vision guidance is introduced and the deviation and deflection angle are measured by image coordinate system. The visual guidance image processing platform is introduced. In view of the fact that the AGV guidance image contains more noise, the image has already been smoothed by a statistical sorting. By using AGV sampling way to obtain image guidance, because the image has the best and different threshold segmentation points. In view of this situation, the method of two-dimensional maximum entropy image segmentation is used to solve the problem. We extract the foreground image in the target band by calculating the contour area method and obtain the centre line with the least square fitting algorithm. With the help of image and physical coordinates, we can obtain the guidance information.
Sample Training Based Wildfire Segmentation by 2D Histogram θ-Division with Minimum Error
Dong, Erqian; Sun, Mingui; Jia, Wenyan; Zhang, Dengyi; Yuan, Zhiyong
2013-01-01
A novel wildfire segmentation algorithm is proposed with the help of sample training based 2D histogram θ-division and minimum error. Based on minimum error principle and 2D color histogram, the θ-division methods were presented recently, but application of prior knowledge on them has not been explored. For the specific problem of wildfire segmentation, we collect sample images with manually labeled fire pixels. Then we define the probability function of error division to evaluate θ-division segmentations, and the optimal angle θ is determined by sample training. Performances in different color channels are compared, and the suitable channel is selected. To further improve the accuracy, the combination approach is presented with both θ-division and other segmentation methods such as GMM. Our approach is tested on real images, and the experiments prove its efficiency for wildfire segmentation. PMID:23878526
NASA Astrophysics Data System (ADS)
Vega, Francisco; Pérez, Wilson; Tello, Andrés.; Saquicela, Victor; Espinoza, Mauricio; Solano-Quinde, Lizandro; Vidal, Maria-Esther; La Cruz, Alexandra
2015-12-01
Advances in medical imaging have fostered medical diagnosis based on digital images. Consequently, the number of studies by medical images diagnosis increases, thus, collaborative work and tele-radiology systems are required to effectively scale up to this diagnosis trend. We tackle the problem of the collaborative access of medical images, and present WebMedSA, a framework to manage large datasets of medical images. WebMedSA relies on a PACS and supports the ontological annotation, as well as segmentation and visualization of the images based on their semantic description. Ontological annotations can be performed directly on the volumetric image or at different image planes (e.g., axial, coronal, or sagittal); furthermore, annotations can be complemented after applying a segmentation technique. WebMedSA is based on three main steps: (1) RDF-ization process for extracting, anonymizing, and serializing metadata comprised in DICOM medical images into RDF/XML; (2) Integration of different biomedical ontologies (using L-MOM library), making this approach ontology independent; and (3) segmentation and visualization of annotated data which is further used to generate new annotations according to expert knowledge, and validation. Initial user evaluations suggest that WebMedSA facilitates the exchange of knowledge between radiologists, and provides the basis for collaborative work among them.
Liu, Bo; Cheng, H D; Huang, Jianhua; Tian, Jiawei; Liu, Jiafeng; Tang, Xianglong
2009-08-01
Because of its complicated structure, low signal/noise ratio, low contrast and blurry boundaries, fully automated segmentation of a breast ultrasound (BUS) image is a difficult task. In this paper, a novel segmentation method for BUS images without human intervention is proposed. Unlike most published approaches, the proposed method handles the segmentation problem by using a two-step strategy: ROI generation and ROI segmentation. First, a well-trained texture classifier categorizes the tissues into different classes, and the background knowledge rules are used for selecting the regions of interest (ROIs) from them. Second, a novel probability distance-based active contour model is applied for segmenting the ROIs and finding the accurate positions of the breast tumors. The active contour model combines both global statistical information and local edge information, using a level set approach. The proposed segmentation method was performed on 103 BUS images (48 benign and 55 malignant). To validate the performance, the results were compared with the corresponding tumor regions marked by an experienced radiologist. Three error metrics, true-positive ratio (TP), false-negative ratio (FN) and false-positive ratio (FP) were used for measuring the performance of the proposed method. The final results (TP = 91.31%, FN = 8.69% and FP = 7.26%) demonstrate that the proposed method can segment BUS images efficiently, quickly and automatically.
Multi-scale image segmentation and numerical modeling in carbonate rocks
NASA Astrophysics Data System (ADS)
Alves, G. C.; Vanorio, T.
2016-12-01
Numerical methods based on computational simulations can be an important tool in estimating physical properties of rocks. These can complement experimental results, especially when time constraints and sample availability are a problem. However, computational models created at different scales can yield conflicting results with respect to the physical laboratory. This problem is exacerbated in carbonate rocks due to their heterogeneity at all scales. We developed a multi-scale approach performing segmentation of the rock images and numerical modeling across several scales, accounting for those heterogeneities. As a first step, we measured the porosity and the elastic properties of a group of carbonate samples with varying micrite content. Then, samples were imaged by Scanning Electron Microscope (SEM) as well as optical microscope at different magnifications. We applied three different image segmentation techniques to create numerical models from the SEM images and performed numerical simulations of the elastic wave-equation. Our results show that a multi-scale approach can efficiently account for micro-porosities in tight micrite-supported samples, yielding acoustic velocities comparable to those obtained experimentally. Nevertheless, in high-porosity samples characterized by larger grain/micrite ratio, results show that SEM scale images tend to overestimate velocities, mostly due to their inability to capture macro- and/or intragranular- porosity. This suggests that, for high-porosity carbonate samples, optical microscope images would be more suited for numerical simulations.
Memari, Nogol; Ramli, Abd Rahman; Bin Saripan, M Iqbal; Mashohor, Syamsiah; Moghbel, Mehrdad
2017-01-01
The structure and appearance of the blood vessel network in retinal fundus images is an essential part of diagnosing various problems associated with the eyes, such as diabetes and hypertension. In this paper, an automatic retinal vessel segmentation method utilizing matched filter techniques coupled with an AdaBoost classifier is proposed. The fundus image is enhanced using morphological operations, the contrast is increased using contrast limited adaptive histogram equalization (CLAHE) method and the inhomogeneity is corrected using Retinex approach. Then, the blood vessels are enhanced using a combination of B-COSFIRE and Frangi matched filters. From this preprocessed image, different statistical features are computed on a pixel-wise basis and used in an AdaBoost classifier to extract the blood vessel network inside the image. Finally, the segmented images are postprocessed to remove the misclassified pixels and regions. The proposed method was validated using publicly accessible Digital Retinal Images for Vessel Extraction (DRIVE), Structured Analysis of the Retina (STARE) and Child Heart and Health Study in England (CHASE_DB1) datasets commonly used for determining the accuracy of retinal vessel segmentation methods. The accuracy of the proposed segmentation method was comparable to other state of the art methods while being very close to the manual segmentation provided by the second human observer with an average accuracy of 0.972, 0.951 and 0.948 in DRIVE, STARE and CHASE_DB1 datasets, respectively.
NASA Astrophysics Data System (ADS)
Yang, Gongping; Zhou, Guang-Tong; Yin, Yilong; Yang, Xiukun
2010-12-01
A critical step in an automatic fingerprint recognition system is the segmentation of fingerprint images. Existing methods are usually designed to segment fingerprint images originated from a certain sensor. Thus their performances are significantly affected when dealing with fingerprints collected by different sensors. This work studies the sensor interoperability of fingerprint segmentation algorithms, which refers to the algorithm's ability to adapt to the raw fingerprints obtained from different sensors. We empirically analyze the sensor interoperability problem, and effectively address the issue by proposing a [InlineEquation not available: see fulltext.]-means based segmentation method called SKI. SKI clusters foreground and background blocks of a fingerprint image based on the [InlineEquation not available: see fulltext.]-means algorithm, where a fingerprint block is represented by a 3-dimensional feature vector consisting of block-wise coherence, mean, and variance (abbreviated as CMV). SKI also employs morphological postprocessing to achieve favorable segmentation results. We perform SKI on each fingerprint to ensure sensor interoperability. The interoperability and robustness of our method are validated by experiments performed on a number of fingerprint databases which are obtained from various sensors.
A Modular Hierarchical Approach to 3D Electron Microscopy Image Segmentation
Liu, Ting; Jones, Cory; Seyedhosseini, Mojtaba; Tasdizen, Tolga
2014-01-01
The study of neural circuit reconstruction, i.e., connectomics, is a challenging problem in neuroscience. Automated and semi-automated electron microscopy (EM) image analysis can be tremendously helpful for connectomics research. In this paper, we propose a fully automatic approach for intra-section segmentation and inter-section reconstruction of neurons using EM images. A hierarchical merge tree structure is built to represent multiple region hypotheses and supervised classification techniques are used to evaluate their potentials, based on which we resolve the merge tree with consistency constraints to acquire final intra-section segmentation. Then, we use a supervised learning based linking procedure for the inter-section neuron reconstruction. Also, we develop a semi-automatic method that utilizes the intermediate outputs of our automatic algorithm and achieves intra-segmentation with minimal user intervention. The experimental results show that our automatic method can achieve close-to-human intra-segmentation accuracy and state-of-the-art inter-section reconstruction accuracy. We also show that our semi-automatic method can further improve the intra-segmentation accuracy. PMID:24491638
Semantic Segmentation of Forest Stands of Pure Species as a Global Optimization Problem
NASA Astrophysics Data System (ADS)
Dechesne, C.; Mallet, C.; Le Bris, A.; Gouet-Brunet, V.
2017-05-01
Forest stand delineation is a fundamental task for forest management purposes, that is still mainly manually performed through visual inspection of geospatial (very) high spatial resolution images. Stand detection has been barely addressed in the literature which has mainly focused, in forested environments, on individual tree extraction and tree species classification. From a methodological point of view, stand detection can be considered as a semantic segmentation problem. It offers two advantages. First, one can retrieve the dominant tree species per segment. Secondly, one can benefit from existing low-level tree species label maps from the literature as a basis for high-level object extraction. Thus, the semantic segmentation issue becomes a regularization issue in a weakly structured environment and can be formulated in an energetical framework. This papers aims at investigating which regularization strategies of the literature are the most adapted to delineate and classify forest stands of pure species. Both airborne lidar point clouds and multispectral very high spatial resolution images are integrated for that purpose. The local methods (such as filtering and probabilistic relaxation) are not adapted for such problem since the increase of the classification accuracy is below 5%. The global methods, based on an energy model, tend to be more efficient with an accuracy gain up to 15%. The segmentation results using such models have an accuracy ranging from 96% to 99%.
JIGSAW: Joint Inhomogeneity estimation via Global Segment Assembly for Water-fat separation.
Lu, Wenmiao; Lu, Yi
2011-07-01
Water-fat separation in magnetic resonance imaging (MRI) is of great clinical importance, and the key to uniform water-fat separation lies in field map estimation. This work deals with three-point field map estimation, in which water and fat are modelled as two single-peak spectral lines, and field inhomogeneities shift the spectrum by an unknown amount. Due to the simplified spectrum modelling, there exists inherent ambiguity in forming field maps from multiple locally feasible field map values at each pixel. To resolve such ambiguity, spatial smoothness of field maps has been incorporated as a constraint of an optimization problem. However, there are two issues: the optimization problem is computationally intractable and even when it is solved exactly, it does not always separate water and fat images. Hence, robust field map estimation remains challenging in many clinically important imaging scenarios. This paper proposes a novel field map estimation technique called JIGSAW. It extends a loopy belief propagation (BP) algorithm to obtain an approximate solution to the optimization problem. The solution produces locally smooth segments and avoids error propagation associated with greedy methods. The locally smooth segments are then assembled into a globally consistent field map by exploiting the periodicity of the feasible field map values. In vivo results demonstrate that JIGSAW outperforms existing techniques and produces correct water-fat separation in challenging imaging scenarios.
Computer vision for microscopy diagnosis of malaria.
Tek, F Boray; Dempster, Andrew G; Kale, Izzet
2009-07-13
This paper reviews computer vision and image analysis studies aiming at automated diagnosis or screening of malaria infection in microscope images of thin blood film smears. Existing works interpret the diagnosis problem differently or propose partial solutions to the problem. A critique of these works is furnished. In addition, a general pattern recognition framework to perform diagnosis, which includes image acquisition, pre-processing, segmentation, and pattern classification components, is described. The open problems are addressed and a perspective of the future work for realization of automated microscopy diagnosis of malaria is provided.
Fast and robust brain tumor segmentation using level set method with multiple image information.
Lok, Ka Hei; Shi, Lin; Zhu, Xianlun; Wang, Defeng
2017-01-01
Brain tumor segmentation is a challenging task for its variation in intensity. The phenomenon is caused by the inhomogeneous content of tumor tissue and the choice of imaging modality. In 2010 Zhang developed the Selective Binary Gaussian Filtering Regularizing Level Set (SBGFRLS) model that combined the merits of edge-based and region-based segmentation. To improve the SBGFRLS method by modifying the singed pressure force (SPF) term with multiple image information and demonstrate effectiveness of proposed method on clinical images. In original SBGFRLS model, the contour evolution direction mainly depends on the SPF. By introducing a directional term in SPF, the metric could control the evolution direction. The SPF is altered by statistic values enclosed by the contour. This concept can be extended to jointly incorporate multiple image information. The new SPF term is expected to bring a solution for blur edge problem in brain tumor segmentation. The proposed method is validated with clinical images including pre- and post-contrast magnetic resonance images. The accuracy and robustness is compared with sensitivity, specificity, DICE similarity coefficient and Jaccard similarity index. Experimental results show improvement, in particular the increase of sensitivity at the same specificity, in segmenting all types of tumors except for the diffused tumor. The novel brain tumor segmentation method is clinical-oriented with fast, robust and accurate implementation and a minimal user interaction. The method effectively segmented homogeneously enhanced, non-enhanced, heterogeneously-enhanced, and ring-enhanced tumor under MR imaging. Though the method is limited by identifying edema and diffuse tumor, several possible solutions are suggested to turn the curve evolution into a fully functional clinical diagnosis tool.
Aerial images visual localization on a vector map using color-texture segmentation
NASA Astrophysics Data System (ADS)
Kunina, I. A.; Teplyakov, L. M.; Gladkov, A. P.; Khanipov, T. M.; Nikolaev, D. P.
2018-04-01
In this paper we study the problem of combining UAV obtained optical data and a coastal vector map in absence of satellite navigation data. The method is based on presenting the territory as a set of segments produced by color-texture image segmentation. We then find such geometric transform which gives the best match between these segments and land and water areas of the georeferenced vector map. We calculate transform consisting of an arbitrary shift relatively to the vector map and bound rotation and scaling. These parameters are estimated using the RANSAC algorithm which matches the segments contours and the contours of land and water areas of the vector map. To implement this matching we suggest computing shape descriptors robust to rotation and scaling. We performed numerical experiments demonstrating the practical applicability of the proposed method.
Song, Qi; Wu, Xiaodong; Liu, Yunlong; Smith, Mark; Buatti, John; Sonka, Milan
2009-01-01
We present a novel method for globally optimal surface segmentation of multiple mutually interacting objects, incorporating both edge and shape knowledge in a 3-D graph-theoretic approach. Hard surface interacting constraints are enforced in the interacting regions, preserving the geometric relationship of those partially interacting surfaces. The soft smoothness a priori shape compliance is introduced into the energy functional to provide shape guidance. The globally optimal surfaces can be simultaneously achieved by solving a maximum flow problem based on an arc-weighted graph representation. Representing the segmentation problem in an arc-weighted graph, one can incorporate a wider spectrum of constraints into the formulation, thus increasing segmentation accuracy and robustness in volumetric image data. To the best of our knowledge, our method is the first attempt to introduce the arc-weighted graph representation into the graph-searching approach for simultaneous segmentation of multiple partially interacting objects, which admits a globally optimal solution in a low-order polynomial time. Our new approach was applied to the simultaneous surface detection of bladder and prostate. The result was quite encouraging in spite of the low saliency of the bladder and prostate in CT images.
Segmentation of fluorescence microscopy cell images using unsupervised mining.
Du, Xian; Dua, Sumeet
2010-05-28
The accurate measurement of cell and nuclei contours are critical for the sensitive and specific detection of changes in normal cells in several medical informatics disciplines. Within microscopy, this task is facilitated using fluorescence cell stains, and segmentation is often the first step in such approaches. Due to the complex nature of cell issues and problems inherent to microscopy, unsupervised mining approaches of clustering can be incorporated in the segmentation of cells. In this study, we have developed and evaluated the performance of multiple unsupervised data mining techniques in cell image segmentation. We adapt four distinctive, yet complementary, methods for unsupervised learning, including those based on k-means clustering, EM, Otsu's threshold, and GMAC. Validation measures are defined, and the performance of the techniques is evaluated both quantitatively and qualitatively using synthetic and recently published real data. Experimental results demonstrate that k-means, Otsu's threshold, and GMAC perform similarly, and have more precise segmentation results than EM. We report that EM has higher recall values and lower precision results from under-segmentation due to its Gaussian model assumption. We also demonstrate that these methods need spatial information to segment complex real cell images with a high degree of efficacy, as expected in many medical informatics applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapuyade-Lahorgue, J; Ruan, S; Li, H
Purpose: Multi-tracer PET imaging is getting more attention in radiotherapy by providing additional tumor volume information such as glucose and oxygenation. However, automatic PET-based tumor segmentation is still a very challenging problem. We propose a statistical fusion approach to joint segment the sub-area of tumors from the two tracers FDG and FMISO PET images. Methods: Non-standardized Gamma distributions are convenient to model intensity distributions in PET. As a serious correlation exists in multi-tracer PET images, we proposed a new fusion method based on copula which is capable to represent dependency between different tracers. The Hidden Markov Field (HMF) model ismore » used to represent spatial relationship between PET image voxels and statistical dynamics of intensities for each modality. Real PET images of five patients with FDG and FMISO are used to evaluate quantitatively and qualitatively our method. A comparison between individual and multi-tracer segmentations was conducted to show advantages of the proposed fusion method. Results: The segmentation results show that fusion with Gaussian copula can receive high Dice coefficient of 0.84 compared to that of 0.54 and 0.3 of monomodal segmentation results based on individual segmentation of FDG and FMISO PET images. In addition, high correlation coefficients (0.75 to 0.91) for the Gaussian copula for all five testing patients indicates the dependency between tumor regions in the multi-tracer PET images. Conclusion: This study shows that using multi-tracer PET imaging can efficiently improve the segmentation of tumor region where hypoxia and glucidic consumption are present at the same time. Introduction of copulas for modeling the dependency between two tracers can simultaneously take into account information from both tracers and deal with two pathological phenomena. Future work will be to consider other families of copula such as spherical and archimedian copulas, and to eliminate partial volume effect by considering dependency between neighboring voxels.« less
Detection and segmentation of multiple touching product inspection items
NASA Astrophysics Data System (ADS)
Casasent, David P.; Talukder, Ashit; Cox, Westley; Chang, Hsuan-Ting; Weber, David
1996-12-01
X-ray images of pistachio nuts on conveyor trays for product inspection are considered. The first step in such a processor is to locate each individual item and place it in a separate file for input to a classifier to determine the quality of each nut. This paper considers new techniques to: detect each item (each nut can be in any orientation, we employ new rotation-invariant filters to locate each item independent of its orientation), produce separate image files for each item [a new blob coloring algorithm provides this for isolated (non-touching) input items], segmentation to provide separate image files for touching or overlapping input items (we use a morphological watershed transform to achieve this), and morphological processing to remove the shell and produce an image of only the nutmeat. Each of these operations and algorithms are detailed and quantitative data for each are presented for the x-ray image nut inspection problem noted. These techniques are of general use in many different product inspection problems in agriculture and other areas.
NASA Astrophysics Data System (ADS)
Zhang, Ka; Sheng, Yehua; Gong, Zhijun; Ye, Chun; Li, Yongqiang; Liang, Cheng
2007-06-01
As an important sub-system in intelligent transportation system (ITS), the detection and recognition of traffic signs from mobile images is becoming one of the hot spots in the international research field of ITS. Considering the problem of traffic sign automatic detection in motion images, a new self-adaptive algorithm for traffic sign detection based on color and shape features is proposed in this paper. Firstly, global statistical color features of different images are computed based on statistics theory. Secondly, some self-adaptive thresholds and special segmentation rules for image segmentation are designed according to these global color features. Then, for red, yellow and blue traffic signs, the color image is segmented to three binary images by these thresholds and rules. Thirdly, if the number of white pixels in the segmented binary image exceeds the filtering threshold, the binary image should be further filtered. Fourthly, the method of gray-value projection is used to confirm top, bottom, left and right boundaries for candidate regions of traffic signs in the segmented binary image. Lastly, if the shape feature of candidate region satisfies the need of real traffic sign, this candidate region is confirmed as the detected traffic sign region. The new algorithm is applied to actual motion images of natural scenes taken by a CCD camera of the mobile photogrammetry system in Nanjing at different time. The experimental results show that the algorithm is not only simple, robust and more adaptive to natural scene images, but also reliable and high-speed on real traffic sign detection.
Simulation of brain tumors in MR images for evaluation of segmentation efficacy.
Prastawa, Marcel; Bullitt, Elizabeth; Gerig, Guido
2009-04-01
Obtaining validation data and comparison metrics for segmentation of magnetic resonance images (MRI) are difficult tasks due to the lack of reliable ground truth. This problem is even more evident for images presenting pathology, which can both alter tissue appearance through infiltration and cause geometric distortions. Systems for generating synthetic images with user-defined degradation by noise and intensity inhomogeneity offer the possibility for testing and comparison of segmentation methods. Such systems do not yet offer simulation of sufficiently realistic looking pathology. This paper presents a system that combines physical and statistical modeling to generate synthetic multi-modal 3D brain MRI with tumor and edema, along with the underlying anatomical ground truth, Main emphasis is placed on simulation of the major effects known for tumor MRI, such as contrast enhancement, local distortion of healthy tissue, infiltrating edema adjacent to tumors, destruction and deformation of fiber tracts, and multi-modal MRI contrast of healthy tissue and pathology. The new method synthesizes pathology in multi-modal MRI and diffusion tensor imaging (DTI) by simulating mass effect, warping and destruction of white matter fibers, and infiltration of brain tissues by tumor cells. We generate synthetic contrast enhanced MR images by simulating the accumulation of contrast agent within the brain. The appearance of the the brain tissue and tumor in MRI is simulated by synthesizing texture images from real MR images. The proposed method is able to generate synthetic ground truth and synthesized MR images with tumor and edema that exhibit comparable segmentation challenges to real tumor MRI. Such image data sets will find use in segmentation reliability studies, comparison and validation of different segmentation methods, training and teaching, or even in evaluating standards for tumor size like the RECIST criteria (response evaluation criteria in solid tumors).
Fuzzy object models for newborn brain MR image segmentation
NASA Astrophysics Data System (ADS)
Kobashi, Syoji; Udupa, Jayaram K.
2013-03-01
Newborn brain MR image segmentation is a challenging problem because of variety of size, shape and MR signal although it is the fundamental study for quantitative radiology in brain MR images. Because of the large difference between the adult brain and the newborn brain, it is difficult to directly apply the conventional methods for the newborn brain. Inspired by the original fuzzy object model introduced by Udupa et al. at SPIE Medical Imaging 2011, called fuzzy shape object model (FSOM) here, this paper introduces fuzzy intensity object model (FIOM), and proposes a new image segmentation method which combines the FSOM and FIOM into fuzzy connected (FC) image segmentation. The fuzzy object models are built from training datasets in which the cerebral parenchyma is delineated by experts. After registering FSOM with the evaluating image, the proposed method roughly recognizes the cerebral parenchyma region based on a prior knowledge of location, shape, and the MR signal given by the registered FSOM and FIOM. Then, FC image segmentation delineates the cerebral parenchyma using the fuzzy object models. The proposed method has been evaluated using 9 newborn brain MR images using the leave-one-out strategy. The revised age was between -1 and 2 months. Quantitative evaluation using false positive volume fraction (FPVF) and false negative volume fraction (FNVF) has been conducted. Using the evaluation data, a FPVF of 0.75% and FNVF of 3.75% were achieved. More data collection and testing are underway.
Ukwatta, Eranga; Yuan, Jing; Qiu, Wu; Rajchl, Martin; Chiu, Bernard; Fenster, Aaron
2015-12-01
Three-dimensional (3D) measurements of peripheral arterial disease (PAD) plaque burden extracted from fast black-blood magnetic resonance (MR) images have shown to be more predictive of clinical outcomes than PAD stenosis measurements. To this end, accurate segmentation of the femoral artery lumen and outer wall is required for generating volumetric measurements of PAD plaque burden. Here, we propose a semi-automated algorithm to jointly segment the femoral artery lumen and outer wall surfaces from 3D black-blood MR images, which are reoriented and reconstructed along the medial axis of the femoral artery to obtain improved spatial coherence between slices of the long, thin femoral artery and to reduce computation time. The developed segmentation algorithm enforces two priors in a global optimization manner: the spatial consistency between the adjacent 2D slices and the anatomical region order between the femoral artery lumen and outer wall surfaces. The formulated combinatorial optimization problem for segmentation is solved globally and exactly by means of convex relaxation using a coupled continuous max-flow (CCMF) model, which is a dual formulation to the convex relaxed optimization problem. In addition, the CCMF model directly derives an efficient duality-based algorithm based on the modern multiplier augmented optimization scheme, which has been implemented on a GPU for fast computation. The computed segmentations from the developed algorithm were compared to manual delineations from experts using 20 black-blood MR images. The developed algorithm yielded both high accuracy (Dice similarity coefficients ≥ 87% for both the lumen and outer wall surfaces) and high reproducibility (intra-class correlation coefficient of 0.95 for generating vessel wall area), while outperforming the state-of-the-art method in terms of computational time by a factor of ≈ 20. Copyright © 2015 Elsevier B.V. All rights reserved.
Efficient 3D multi-region prostate MRI segmentation using dual optimization.
Qiu, Wu; Yuan, Jing; Ukwatta, Eranga; Sun, Yue; Rajchl, Martin; Fenster, Aaron
2013-01-01
Efficient and accurate extraction of the prostate, in particular its clinically meaningful sub-regions from 3D MR images, is of great interest in image-guided prostate interventions and diagnosis of prostate cancer. In this work, we propose a novel multi-region segmentation approach to simultaneously locating the boundaries of the prostate and its two major sub-regions: the central gland and the peripheral zone. The proposed method utilizes the prior knowledge of the spatial region consistency and employs a customized prostate appearance model to simultaneously segment multiple clinically meaningful regions. We solve the resulted challenging combinatorial optimization problem by means of convex relaxation, for which we introduce a novel spatially continuous flow-maximization model and demonstrate its duality to the investigated convex relaxed optimization problem with the region consistency constraint. Moreover, the proposed continuous max-flow model naturally leads to a new and efficient continuous max-flow based algorithm, which enjoys great advantages in numerics and can be readily implemented on GPUs. Experiments using 15 T2-weighted 3D prostate MR images, by inter- and intra-operator variability, demonstrate the promising performance of the proposed approach.
Three-dimensional curvilinear device reconstruction from two fluoroscopic views
NASA Astrophysics Data System (ADS)
Delmas, Charlotte; Berger, Marie-Odile; Kerrien, Erwan; Riddell, Cyril; Trousset, Yves; Anxionnat, René; Bracard, Serge
2015-03-01
In interventional radiology, navigating devices under the sole guidance of fluoroscopic images inside a complex architecture of tortuous and narrow vessels like the cerebral vascular tree is a difficult task. Visualizing the device in 3D could facilitate this navigation. For curvilinear devices such as guide-wires and catheters, a 3D reconstruction may be achieved using two simultaneous fluoroscopic views, as available on a biplane acquisition system. The purpose of this paper is to present a new automatic three-dimensional curve reconstruction method that has the potential to reconstruct complex 3D curves and does not require a perfect segmentation of the endovascular device. Using epipolar geometry, our algorithm translates the point correspondence problem into a segment correspondence problem. Candidate 3D curves can be formed and evaluated independently after identifying all possible combinations of compatible 3D segments. Correspondence is then inherently solved by looking in 3D space for the most coherent curve in terms of continuity and curvature. This problem can be cast into a graph problem where the most coherent curve corresponds to the shortest path of a weighted graph. We present quantitative results of curve reconstructions performed from numerically simulated projections of tortuous 3D curves extracted from cerebral vascular trees affected with brain arteriovenous malformations as well as fluoroscopic image pairs of a guide-wire from both phantom and clinical sets. Our method was able to select the correct 3D segments in 97.5% of simulated cases thus demonstrating its ability to handle complex 3D curves and can deal with imperfect 2D segmentation.
A Novel Unsupervised Segmentation Quality Evaluation Method for Remote Sensing Images
Tang, Yunwei; Jing, Linhai; Ding, Haifeng
2017-01-01
The segmentation of a high spatial resolution remote sensing image is a critical step in geographic object-based image analysis (GEOBIA). Evaluating the performance of segmentation without ground truth data, i.e., unsupervised evaluation, is important for the comparison of segmentation algorithms and the automatic selection of optimal parameters. This unsupervised strategy currently faces several challenges in practice, such as difficulties in designing effective indicators and limitations of the spectral values in the feature representation. This study proposes a novel unsupervised evaluation method to quantitatively measure the quality of segmentation results to overcome these problems. In this method, multiple spectral and spatial features of images are first extracted simultaneously and then integrated into a feature set to improve the quality of the feature representation of ground objects. The indicators designed for spatial stratified heterogeneity and spatial autocorrelation are included to estimate the properties of the segments in this integrated feature set. These two indicators are then combined into a global assessment metric as the final quality score. The trade-offs of the combined indicators are accounted for using a strategy based on the Mahalanobis distance, which can be exhibited geometrically. The method is tested on two segmentation algorithms and three testing images. The proposed method is compared with two existing unsupervised methods and a supervised method to confirm its capabilities. Through comparison and visual analysis, the results verified the effectiveness of the proposed method and demonstrated the reliability and improvements of this method with respect to other methods. PMID:29064416
Integrated segmentation of cellular structures
NASA Astrophysics Data System (ADS)
Ajemba, Peter; Al-Kofahi, Yousef; Scott, Richard; Donovan, Michael; Fernandez, Gerardo
2011-03-01
Automatic segmentation of cellular structures is an essential step in image cytology and histology. Despite substantial progress, better automation and improvements in accuracy and adaptability to novel applications are needed. In applications utilizing multi-channel immuno-fluorescence images, challenges include misclassification of epithelial and stromal nuclei, irregular nuclei and cytoplasm boundaries, and over and under-segmentation of clustered nuclei. Variations in image acquisition conditions and artifacts from nuclei and cytoplasm images often confound existing algorithms in practice. In this paper, we present a robust and accurate algorithm for jointly segmenting cell nuclei and cytoplasm using a combination of ideas to reduce the aforementioned problems. First, an adaptive process that includes top-hat filtering, Eigenvalues-of-Hessian blob detection and distance transforms is used to estimate the inverse illumination field and correct for intensity non-uniformity in the nuclei channel. Next, a minimum-error-thresholding based binarization process and seed-detection combining Laplacian-of-Gaussian filtering constrained by a distance-map-based scale selection is used to identify candidate seeds for nuclei segmentation. The initial segmentation using a local maximum clustering algorithm is refined using a minimum-error-thresholding technique. Final refinements include an artifact removal process specifically targeted at lumens and other problematic structures and a systemic decision process to reclassify nuclei objects near the cytoplasm boundary as epithelial or stromal. Segmentation results were evaluated using 48 realistic phantom images with known ground-truth. The overall segmentation accuracy exceeds 94%. The algorithm was further tested on 981 images of actual prostate cancer tissue. The artifact removal process worked in 90% of cases. The algorithm has now been deployed in a high-volume histology analysis application.
Ultrasound image-based thyroid nodule automatic segmentation using convolutional neural networks.
Ma, Jinlian; Wu, Fa; Jiang, Tian'an; Zhao, Qiyu; Kong, Dexing
2017-11-01
Delineation of thyroid nodule boundaries from ultrasound images plays an important role in calculation of clinical indices and diagnosis of thyroid diseases. However, it is challenging for accurate and automatic segmentation of thyroid nodules because of their heterogeneous appearance and components similar to the background. In this study, we employ a deep convolutional neural network (CNN) to automatically segment thyroid nodules from ultrasound images. Our CNN-based method formulates a thyroid nodule segmentation problem as a patch classification task, where the relationship among patches is ignored. Specifically, the CNN used image patches from images of normal thyroids and thyroid nodules as inputs and then generated the segmentation probability maps as outputs. A multi-view strategy is used to improve the performance of the CNN-based model. Additionally, we compared the performance of our approach with that of the commonly used segmentation methods on the same dataset. The experimental results suggest that our proposed method outperforms prior methods on thyroid nodule segmentation. Moreover, the results show that the CNN-based model is able to delineate multiple nodules in thyroid ultrasound images accurately and effectively. In detail, our CNN-based model can achieve an average of the overlap metric, dice ratio, true positive rate, false positive rate, and modified Hausdorff distance as [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] on overall folds, respectively. Our proposed method is fully automatic without any user interaction. Quantitative results also indicate that our method is so efficient and accurate that it can be good enough to replace the time-consuming and tedious manual segmentation approach, demonstrating the potential clinical applications.
Use of graph algorithms in the processing and analysis of images with focus on the biomedical data.
Zdimalova, M; Roznovjak, R; Weismann, P; El Falougy, H; Kubikova, E
2017-01-01
Image segmentation is a known problem in the field of image processing. A great number of methods based on different approaches to this issue was created. One of these approaches utilizes the findings of the graph theory. Our work focuses on segmentation using shortest paths in a graph. Specifically, we deal with methods of "Intelligent Scissors," which use Dijkstra's algorithm to find the shortest paths. We created a new software in Microsoft Visual Studio 2013 integrated development environment Visual C++ in the language C++/CLI. We created a format application with a graphical users development environment for system Windows, with using the platform .Net (version 4.5). The program was used for handling and processing the original medical data. The major disadvantage of the method of "Intelligent Scissors" is the computational time length of Dijkstra's algorithm. However, after the implementation of a more efficient priority queue, this problem could be alleviated. The main advantage of this method we see in training that enables to adapt to a particular kind of edge, which we need to segment. The user involvement has a significant influence on the process of segmentation, which enormously aids to achieve high-quality results (Fig. 7, Ref. 13).
Methods for 2-D and 3-D Endobronchial Ultrasound Image Segmentation.
Zang, Xiaonan; Bascom, Rebecca; Gilbert, Christopher; Toth, Jennifer; Higgins, William
2016-07-01
Endobronchial ultrasound (EBUS) is now commonly used for cancer-staging bronchoscopy. Unfortunately, EBUS is challenging to use and interpreting EBUS video sequences is difficult. Other ultrasound imaging domains, hampered by related difficulties, have benefited from computer-based image-segmentation methods. Yet, so far, no such methods have been proposed for EBUS. We propose image-segmentation methods for 2-D EBUS frames and 3-D EBUS sequences. Our 2-D method adapts the fast-marching level-set process, anisotropic diffusion, and region growing to the problem of segmenting 2-D EBUS frames. Our 3-D method builds upon the 2-D method while also incorporating the geodesic level-set process for segmenting EBUS sequences. Tests with lung-cancer patient data showed that the methods ran fully automatically for nearly 80% of test cases. For the remaining cases, the only user-interaction required was the selection of a seed point. When compared to ground-truth segmentations, the 2-D method achieved an overall Dice index = 90.0% ±4.9%, while the 3-D method achieved an overall Dice index = 83.9 ± 6.0%. In addition, the computation time (2-D, 0.070 s/frame; 3-D, 0.088 s/frame) was two orders of magnitude faster than interactive contour definition. Finally, we demonstrate the potential of the methods for EBUS localization in a multimodal image-guided bronchoscopy system.
Segmentation of knee MRI using structure enhanced local phase filtering
NASA Astrophysics Data System (ADS)
Lim, Mikhiel; Hacihaliloglu, Ilker
2016-03-01
The segmentation of bone surfaces from magnetic resonance imaging (MRI) data has applications in the quanti- tative measurement of knee osteoarthritis, surgery planning for patient specific total knee arthroplasty and its subsequent fabrication of artificial implants. However, due to the problems associated with MRI imaging such as low contrast between bone and surrounding tissues, noise, bias fields, and the partial volume effect, segmentation of bone surfaces continues to be a challenging operation. In this paper, a new framework is presented for the enhancement of knee MRI scans prior to segmentation in order to obtain high contrast bone images. During the first stage, a new contrast enhanced relative total variation (RTV) regularization method is used in order to remove textural noise from the bone structures and surrounding soft tissue interface. This salient bone edge information is further enhanced using a sparse gradient counting method based on L0 gradient minimization, which globally controls how many non-zero gradients are resulted in order to approximate prominent bone structures in a structure-sparsity-management manner. The last stage of the framework involves incorporation of local phase bone boundary information in order to provide an intensity invariant enhancement of contrast between the bone and surrounding soft tissue. The enhanced images are segmented using a fast random walker algorithm. Validation against expert segmentation was performed on 10 clinical knee MRI images, and achieved a mean dice similarity coefficient (DSC) of 0.975.
Qiu, Wu; Yuan, Jing; Ukwatta, Eranga; Sun, Yue; Rajchl, Martin; Fenster, Aaron
2014-04-01
We propose a novel global optimization-based approach to segmentation of 3-D prostate transrectal ultrasound (TRUS) and T2 weighted magnetic resonance (MR) images, enforcing inherent axial symmetry of prostate shapes to simultaneously adjust a series of 2-D slice-wise segmentations in a "global" 3-D sense. We show that the introduced challenging combinatorial optimization problem can be solved globally and exactly by means of convex relaxation. In this regard, we propose a novel coherent continuous max-flow model (CCMFM), which derives a new and efficient duality-based algorithm, leading to a GPU-based implementation to achieve high computational speeds. Experiments with 25 3-D TRUS images and 30 3-D T2w MR images from our dataset, and 50 3-D T2w MR images from a public dataset, demonstrate that the proposed approach can segment a 3-D prostate TRUS/MR image within 5-6 s including 4-5 s for initialization, yielding a mean Dice similarity coefficient of 93.2%±2.0% for 3-D TRUS images and 88.5%±3.5% for 3-D MR images. The proposed method also yields relatively low intra- and inter-observer variability introduced by user manual initialization, suggesting a high reproducibility, independent of observers.
Lee, Unseok; Chang, Sungyul; Putra, Gian Anantrio; Kim, Hyoungseok; Kim, Dong Hwan
2018-01-01
A high-throughput plant phenotyping system automatically observes and grows many plant samples. Many plant sample images are acquired by the system to determine the characteristics of the plants (populations). Stable image acquisition and processing is very important to accurately determine the characteristics. However, hardware for acquiring plant images rapidly and stably, while minimizing plant stress, is lacking. Moreover, most software cannot adequately handle large-scale plant imaging. To address these problems, we developed a new, automated, high-throughput plant phenotyping system using simple and robust hardware, and an automated plant-imaging-analysis pipeline consisting of machine-learning-based plant segmentation. Our hardware acquires images reliably and quickly and minimizes plant stress. Furthermore, the images are processed automatically. In particular, large-scale plant-image datasets can be segmented precisely using a classifier developed using a superpixel-based machine-learning algorithm (Random Forest), and variations in plant parameters (such as area) over time can be assessed using the segmented images. We performed comparative evaluations to identify an appropriate learning algorithm for our proposed system, and tested three robust learning algorithms. We developed not only an automatic analysis pipeline but also a convenient means of plant-growth analysis that provides a learning data interface and visualization of plant growth trends. Thus, our system allows end-users such as plant biologists to analyze plant growth via large-scale plant image data easily.
NASA Astrophysics Data System (ADS)
Wang, Zhihua; Yang, Xiaomei; Lu, Chen; Yang, Fengshuo
2018-07-01
Automatic updating of land use/cover change (LUCC) databases using high spatial resolution images (HSRI) is important for environmental monitoring and policy making, especially for coastal areas that connect the land and coast and that tend to change frequently. Many object-based change detection methods are proposed, especially those combining historical LUCC with HSRI. However, the scale parameter(s) segmenting the serial temporal images, which directly determines the average object size, is hard to choose without experts' intervention. And the samples transferred from historical LUCC also need experts' intervention to avoid insufficient or wrong samples. With respect to the scale parameter(s) choosing, a Scale Self-Adapting Segmentation (SSAS) approach based on the exponential sampling of a scale parameter and location of the local maximum of a weighted local variance was proposed to determine the scale selection problem when segmenting images constrained by LUCC for detecting changes. With respect to the samples transferring, Knowledge Transfer (KT), a classifier trained on historical images with LUCC and applied in the classification of updated images, was also proposed. Comparison experiments were conducted in a coastal area of Zhujiang, China, using SPOT 5 images acquired in 2005 and 2010. The results reveal that (1) SSAS can segment images more effectively without intervention of experts. (2) KT can also reach the maximum accuracy of samples transfer without experts' intervention. Strategy SSAS + KT would be a good choice if the temporal historical image and LUCC match, and the historical image and updated image are obtained from the same resource.
Fully Convolutional Neural Networks Improve Abdominal Organ Segmentation.
Bobo, Meg F; Bao, Shunxing; Huo, Yuankai; Yao, Yuang; Virostko, Jack; Plassard, Andrew J; Lyu, Ilwoo; Assad, Albert; Abramson, Richard G; Hilmes, Melissa A; Landman, Bennett A
2018-03-01
Abdominal image segmentation is a challenging, yet important clinical problem. Variations in body size, position, and relative organ positions greatly complicate the segmentation process. Historically, multi-atlas methods have achieved leading results across imaging modalities and anatomical targets. However, deep learning is rapidly overtaking classical approaches for image segmentation. Recently, Zhou et al. showed that fully convolutional networks produce excellent results in abdominal organ segmentation of computed tomography (CT) scans. Yet, deep learning approaches have not been applied to whole abdomen magnetic resonance imaging (MRI) segmentation. Herein, we evaluate the applicability of an existing fully convolutional neural network (FCNN) designed for CT imaging to segment abdominal organs on T2 weighted (T2w) MRI's with two examples. In the primary example, we compare a classical multi-atlas approach with FCNN on forty-five T2w MRI's acquired from splenomegaly patients with five organs labeled (liver, spleen, left kidney, right kidney, and stomach). Thirty-six images were used for training while nine were used for testing. The FCNN resulted in a Dice similarity coefficient (DSC) of 0.930 in spleens, 0.730 in left kidneys, 0.780 in right kidneys, 0.913 in livers, and 0.556 in stomachs. The performance measures for livers, spleens, right kidneys, and stomachs were significantly better than multi-atlas (p < 0.05, Wilcoxon rank-sum test). In a secondary example, we compare the multi-atlas approach with FCNN on 138 distinct T2w MRI's with manually labeled pancreases (one label). On the pancreas dataset, the FCNN resulted in a median DSC of 0.691 in pancreases versus 0.287 for multi-atlas. The results are highly promising given relatively limited training data and without specific training of the FCNN model and illustrate the potential of deep learning approaches to transcend imaging modalities.
Fully convolutional neural networks improve abdominal organ segmentation
NASA Astrophysics Data System (ADS)
Bobo, Meg F.; Bao, Shunxing; Huo, Yuankai; Yao, Yuang; Virostko, Jack; Plassard, Andrew J.; Lyu, Ilwoo; Assad, Albert; Abramson, Richard G.; Hilmes, Melissa A.; Landman, Bennett A.
2018-03-01
Abdominal image segmentation is a challenging, yet important clinical problem. Variations in body size, position, and relative organ positions greatly complicate the segmentation process. Historically, multi-atlas methods have achieved leading results across imaging modalities and anatomical targets. However, deep learning is rapidly overtaking classical approaches for image segmentation. Recently, Zhou et al. showed that fully convolutional networks produce excellent results in abdominal organ segmentation of computed tomography (CT) scans. Yet, deep learning approaches have not been applied to whole abdomen magnetic resonance imaging (MRI) segmentation. Herein, we evaluate the applicability of an existing fully convolutional neural network (FCNN) designed for CT imaging to segment abdominal organs on T2 weighted (T2w) MRI's with two examples. In the primary example, we compare a classical multi-atlas approach with FCNN on forty-five T2w MRI's acquired from splenomegaly patients with five organs labeled (liver, spleen, left kidney, right kidney, and stomach). Thirty-six images were used for training while nine were used for testing. The FCNN resulted in a Dice similarity coefficient (DSC) of 0.930 in spleens, 0.730 in left kidneys, 0.780 in right kidneys, 0.913 in livers, and 0.556 in stomachs. The performance measures for livers, spleens, right kidneys, and stomachs were significantly better than multi-atlas (p < 0.05, Wilcoxon rank-sum test). In a secondary example, we compare the multi-atlas approach with FCNN on 138 distinct T2w MRI's with manually labeled pancreases (one label). On the pancreas dataset, the FCNN resulted in a median DSC of 0.691 in pancreases versus 0.287 for multi-atlas. The results are highly promising given relatively limited training data and without specific training of the FCNN model and illustrate the potential of deep learning approaches to transcend imaging modalities. 1
Flexible methods for segmentation evaluation: Results from CT-based luggage screening
Karimi, Seemeen; Jiang, Xiaoqian; Cosman, Pamela; Martz, Harry
2017-01-01
BACKGROUND Imaging systems used in aviation security include segmentation algorithms in an automatic threat recognition pipeline. The segmentation algorithms evolve in response to emerging threats and changing performance requirements. Analysis of segmentation algorithms’ behavior, including the nature of errors and feature recovery, facilitates their development. However, evaluation methods from the literature provide limited characterization of the segmentation algorithms. OBJECTIVE To develop segmentation evaluation methods that measure systematic errors such as oversegmentation and undersegmentation, outliers, and overall errors. The methods must measure feature recovery and allow us to prioritize segments. METHODS We developed two complementary evaluation methods using statistical techniques and information theory. We also created a semi-automatic method to define ground truth from 3D images. We applied our methods to evaluate five segmentation algorithms developed for CT luggage screening. We validated our methods with synthetic problems and an observer evaluation. RESULTS Both methods selected the same best segmentation algorithm. Human evaluation confirmed the findings. The measurement of systematic errors and prioritization helped in understanding the behavior of each segmentation algorithm. CONCLUSIONS Our evaluation methods allow us to measure and explain the accuracy of segmentation algorithms. PMID:24699346
Dual optimization based prostate zonal segmentation in 3D MR images.
Qiu, Wu; Yuan, Jing; Ukwatta, Eranga; Sun, Yue; Rajchl, Martin; Fenster, Aaron
2014-05-01
Efficient and accurate segmentation of the prostate and two of its clinically meaningful sub-regions: the central gland (CG) and peripheral zone (PZ), from 3D MR images, is of great interest in image-guided prostate interventions and diagnosis of prostate cancer. In this work, a novel multi-region segmentation approach is proposed to simultaneously segment the prostate and its two major sub-regions from only a single 3D T2-weighted (T2w) MR image, which makes use of the prior spatial region consistency and incorporates a customized prostate appearance model into the segmentation task. The formulated challenging combinatorial optimization problem is solved by means of convex relaxation, for which a novel spatially continuous max-flow model is introduced as the dual optimization formulation to the studied convex relaxed optimization problem with region consistency constraints. The proposed continuous max-flow model derives an efficient duality-based algorithm that enjoys numerical advantages and can be easily implemented on GPUs. The proposed approach was validated using 18 3D prostate T2w MR images with a body-coil and 25 images with an endo-rectal coil. Experimental results demonstrate that the proposed method is capable of efficiently and accurately extracting both the prostate zones: CG and PZ, and the whole prostate gland from the input 3D prostate MR images, with a mean Dice similarity coefficient (DSC) of 89.3±3.2% for the whole gland (WG), 82.2±3.0% for the CG, and 69.1±6.9% for the PZ in 3D body-coil MR images; 89.2±3.3% for the WG, 83.0±2.4% for the CG, and 70.0±6.5% for the PZ in 3D endo-rectal coil MR images. In addition, the experiments of intra- and inter-observer variability introduced by user initialization indicate a good reproducibility of the proposed approach in terms of volume difference (VD) and coefficient-of-variation (CV) of DSC. Copyright © 2014 Elsevier B.V. All rights reserved.
A fast 3D region growing approach for CT angiography applications
NASA Astrophysics Data System (ADS)
Ye, Zhen; Lin, Zhongmin; Lu, Cheng-chang
2004-05-01
Region growing is one of the most popular methods for low-level image segmentation. Many researches on region growing have focused on the definition of the homogeneity criterion or growing and merging criterion. However, one disadvantage of conventional region growing is redundancy. It requires a large memory usage, and the computation-efficiency is very low especially for 3D images. To overcome this problem, a non-recursive single-pass 3D region growing algorithm named SymRG is implemented and successfully applied to 3D CT angiography (CTA) applications for vessel segmentation and bone removal. The method consists of three steps: segmenting one-dimensional regions of each row; doing region merging to adjacent rows to obtain the region segmentation of each slice; and doing region merging to adjacent slices to obtain the final region segmentation of 3D images. To improve the segmentation speed for very large volume 3D CTA images, this algorithm is applied repeatedly to newly updated local cubes. The next new cube can be estimated by checking isolated segmented regions on all 6 faces of the current local cube. This local non-recursive 3D region-growing algorithm is memory-efficient and computation-efficient. Clinical testings of this algorithm on Brain CTA show this technique could effectively remove whole skull, most of the bones on the skull base, and reveal the cerebral vascular structures clearly.
Retinal vessel segmentation on SLO image
Xu, Juan; Ishikawa, Hiroshi; Wollstein, Gadi; Schuman, Joel S.
2010-01-01
A scanning laser ophthalmoscopy (SLO) image, taken from optical coherence tomography (OCT), usually has lower global/local contrast and more noise compared to the traditional retinal photograph, which makes the vessel segmentation challenging work. A hybrid algorithm is proposed to efficiently solve these problems by fusing several designed methods, taking the advantages of each method and reducing the error measurements. The algorithm has several steps consisting of image preprocessing, thresholding probe and weighted fusing. Four different methods are first designed to transform the SLO image into feature response images by taking different combinations of matched filter, contrast enhancement and mathematical morphology operators. A thresholding probe algorithm is then applied on those response images to obtain four vessel maps. Weighted majority opinion is used to fuse these vessel maps and generate a final vessel map. The experimental results showed that the proposed hybrid algorithm could successfully segment the blood vessels on SLO images, by detecting the major and small vessels and suppressing the noises. The algorithm showed substantial potential in various clinical applications. The use of this method can be also extended to medical image registration based on blood vessel location. PMID:19163149
DCS-SVM: a novel semi-automated method for human brain MR image segmentation.
Ahmadvand, Ali; Daliri, Mohammad Reza; Hajiali, Mohammadtaghi
2017-11-27
In this paper, a novel method is proposed which appropriately segments magnetic resonance (MR) brain images into three main tissues. This paper proposes an extension of our previous work in which we suggested a combination of multiple classifiers (CMC)-based methods named dynamic classifier selection-dynamic local training local Tanimoto index (DCS-DLTLTI) for MR brain image segmentation into three main cerebral tissues. This idea is used here and a novel method is developed that tries to use more complex and accurate classifiers like support vector machine (SVM) in the ensemble. This work is challenging because the CMC-based methods are time consuming, especially on huge datasets like three-dimensional (3D) brain MR images. Moreover, SVM is a powerful method that is used for modeling datasets with complex feature space, but it also has huge computational cost for big datasets, especially those with strong interclass variability problems and with more than two classes such as 3D brain images; therefore, we cannot use SVM in DCS-DLTLTI. Therefore, we propose a novel approach named "DCS-SVM" to use SVM in DCS-DLTLTI to improve the accuracy of segmentation results. The proposed method is applied on well-known datasets of the Internet Brain Segmentation Repository (IBSR) and promising results are obtained.
Region growing using superpixels with learned shape prior
NASA Astrophysics Data System (ADS)
Borovec, Jiří; Kybic, Jan; Sugimoto, Akihiro
2017-11-01
Region growing is a classical image segmentation method based on hierarchical region aggregation using local similarity rules. Our proposed method differs from classical region growing in three important aspects. First, it works on the level of superpixels instead of pixels, which leads to a substantial speed-up. Second, our method uses learned statistical shape properties that encourage plausible shapes. In particular, we use ray features to describe the object boundary. Third, our method can segment multiple objects and ensure that the segmentations do not overlap. The problem is represented as an energy minimization and is solved either greedily or iteratively using graph cuts. We demonstrate the performance of the proposed method and compare it with alternative approaches on the task of segmenting individual eggs in microscopy images of Drosophila ovaries.
A Dataset and a Technique for Generalized Nuclear Segmentation for Computational Pathology.
Kumar, Neeraj; Verma, Ruchika; Sharma, Sanuj; Bhargava, Surabhi; Vahadane, Abhishek; Sethi, Amit
2017-07-01
Nuclear segmentation in digital microscopic tissue images can enable extraction of high-quality features for nuclear morphometrics and other analysis in computational pathology. Conventional image processing techniques, such as Otsu thresholding and watershed segmentation, do not work effectively on challenging cases, such as chromatin-sparse and crowded nuclei. In contrast, machine learning-based segmentation can generalize across various nuclear appearances. However, training machine learning algorithms requires data sets of images, in which a vast number of nuclei have been annotated. Publicly accessible and annotated data sets, along with widely agreed upon metrics to compare techniques, have catalyzed tremendous innovation and progress on other image classification problems, particularly in object recognition. Inspired by their success, we introduce a large publicly accessible data set of hematoxylin and eosin (H&E)-stained tissue images with more than 21000 painstakingly annotated nuclear boundaries, whose quality was validated by a medical doctor. Because our data set is taken from multiple hospitals and includes a diversity of nuclear appearances from several patients, disease states, and organs, techniques trained on it are likely to generalize well and work right out-of-the-box on other H&E-stained images. We also propose a new metric to evaluate nuclear segmentation results that penalizes object- and pixel-level errors in a unified manner, unlike previous metrics that penalize only one type of error. We also propose a segmentation technique based on deep learning that lays a special emphasis on identifying the nuclear boundaries, including those between the touching or overlapping nuclei, and works well on a diverse set of test images.
Guo, Yanrong; Gao, Yaozong; Shao, Yeqin; Price, True; Oto, Aytekin; Shen, Dinggang
2014-01-01
Purpose: Automatic prostate segmentation from MR images is an important task in various clinical applications such as prostate cancer staging and MR-guided radiotherapy planning. However, the large appearance and shape variations of the prostate in MR images make the segmentation problem difficult to solve. Traditional Active Shape/Appearance Model (ASM/AAM) has limited accuracy on this problem, since its basic assumption, i.e., both shape and appearance of the targeted organ follow Gaussian distributions, is invalid in prostate MR images. To this end, the authors propose a sparse dictionary learning method to model the image appearance in a nonparametric fashion and further integrate the appearance model into a deformable segmentation framework for prostate MR segmentation. Methods: To drive the deformable model for prostate segmentation, the authors propose nonparametric appearance and shape models. The nonparametric appearance model is based on a novel dictionary learning method, namely distributed discriminative dictionary (DDD) learning, which is able to capture fine distinctions in image appearance. To increase the differential power of traditional dictionary-based classification methods, the authors' DDD learning approach takes three strategies. First, two dictionaries for prostate and nonprostate tissues are built, respectively, using the discriminative features obtained from minimum redundancy maximum relevance feature selection. Second, linear discriminant analysis is employed as a linear classifier to boost the optimal separation between prostate and nonprostate tissues, based on the representation residuals from sparse representation. Third, to enhance the robustness of the authors' classification method, multiple local dictionaries are learned for local regions along the prostate boundary (each with small appearance variations), instead of learning one global classifier for the entire prostate. These discriminative dictionaries are located on different patches of the prostate surface and trained to adaptively capture the appearance in different prostate zones, thus achieving better local tissue differentiation. For each local region, multiple classifiers are trained based on the randomly selected samples and finally assembled by a specific fusion method. In addition to this nonparametric appearance model, a prostate shape model is learned from the shape statistics using a novel approach, sparse shape composition, which can model nonGaussian distributions of shape variation and regularize the 3D mesh deformation by constraining it within the observed shape subspace. Results: The proposed method has been evaluated on two datasets consisting of T2-weighted MR prostate images. For the first (internal) dataset, the classification effectiveness of the authors' improved dictionary learning has been validated by comparing it with three other variants of traditional dictionary learning methods. The experimental results show that the authors' method yields a Dice Ratio of 89.1% compared to the manual segmentation, which is more accurate than the three state-of-the-art MR prostate segmentation methods under comparison. For the second dataset, the MICCAI 2012 challenge dataset, the authors' proposed method yields a Dice Ratio of 87.4%, which also achieves better segmentation accuracy than other methods under comparison. Conclusions: A new magnetic resonance image prostate segmentation method is proposed based on the combination of deformable model and dictionary learning methods, which achieves more accurate segmentation performance on prostate T2 MR images. PMID:24989402
Guo, Yanrong; Gao, Yaozong; Shao, Yeqin; Price, True; Oto, Aytekin; Shen, Dinggang
2014-07-01
Automatic prostate segmentation from MR images is an important task in various clinical applications such as prostate cancer staging and MR-guided radiotherapy planning. However, the large appearance and shape variations of the prostate in MR images make the segmentation problem difficult to solve. Traditional Active Shape/Appearance Model (ASM/AAM) has limited accuracy on this problem, since its basic assumption, i.e., both shape and appearance of the targeted organ follow Gaussian distributions, is invalid in prostate MR images. To this end, the authors propose a sparse dictionary learning method to model the image appearance in a nonparametric fashion and further integrate the appearance model into a deformable segmentation framework for prostate MR segmentation. To drive the deformable model for prostate segmentation, the authors propose nonparametric appearance and shape models. The nonparametric appearance model is based on a novel dictionary learning method, namely distributed discriminative dictionary (DDD) learning, which is able to capture fine distinctions in image appearance. To increase the differential power of traditional dictionary-based classification methods, the authors' DDD learning approach takes three strategies. First, two dictionaries for prostate and nonprostate tissues are built, respectively, using the discriminative features obtained from minimum redundancy maximum relevance feature selection. Second, linear discriminant analysis is employed as a linear classifier to boost the optimal separation between prostate and nonprostate tissues, based on the representation residuals from sparse representation. Third, to enhance the robustness of the authors' classification method, multiple local dictionaries are learned for local regions along the prostate boundary (each with small appearance variations), instead of learning one global classifier for the entire prostate. These discriminative dictionaries are located on different patches of the prostate surface and trained to adaptively capture the appearance in different prostate zones, thus achieving better local tissue differentiation. For each local region, multiple classifiers are trained based on the randomly selected samples and finally assembled by a specific fusion method. In addition to this nonparametric appearance model, a prostate shape model is learned from the shape statistics using a novel approach, sparse shape composition, which can model nonGaussian distributions of shape variation and regularize the 3D mesh deformation by constraining it within the observed shape subspace. The proposed method has been evaluated on two datasets consisting of T2-weighted MR prostate images. For the first (internal) dataset, the classification effectiveness of the authors' improved dictionary learning has been validated by comparing it with three other variants of traditional dictionary learning methods. The experimental results show that the authors' method yields a Dice Ratio of 89.1% compared to the manual segmentation, which is more accurate than the three state-of-the-art MR prostate segmentation methods under comparison. For the second dataset, the MICCAI 2012 challenge dataset, the authors' proposed method yields a Dice Ratio of 87.4%, which also achieves better segmentation accuracy than other methods under comparison. A new magnetic resonance image prostate segmentation method is proposed based on the combination of deformable model and dictionary learning methods, which achieves more accurate segmentation performance on prostate T2 MR images.
Rajpoot, Kashif; Grau, Vicente; Noble, J Alison; Becher, Harald; Szmigielski, Cezary
2011-08-01
Real-time 3D echocardiography (RT3DE) promises a more objective and complete cardiac functional analysis by dynamic 3D image acquisition. Despite several efforts towards automation of left ventricle (LV) segmentation and tracking, these remain challenging research problems due to the poor-quality nature of acquired images usually containing missing anatomical information, speckle noise, and limited field-of-view (FOV). Recently, multi-view fusion 3D echocardiography has been introduced as acquiring multiple conventional single-view RT3DE images with small probe movements and fusing them together after alignment. This concept of multi-view fusion helps to improve image quality and anatomical information and extends the FOV. We now take this work further by comparing single-view and multi-view fused images in a systematic study. In order to better illustrate the differences, this work evaluates image quality and information content of single-view and multi-view fused images using image-driven LV endocardial segmentation and tracking. The image-driven methods were utilized to fully exploit image quality and anatomical information present in the image, thus purposely not including any high-level constraints like prior shape or motion knowledge in the analysis approaches. Experiments show that multi-view fused images are better suited for LV segmentation and tracking, while relatively more failures and errors were observed on single-view images. Copyright © 2011 Elsevier B.V. All rights reserved.
SHERPA: an image segmentation and outline feature extraction tool for diatoms and other objects
2014-01-01
Background Light microscopic analysis of diatom frustules is widely used both in basic and applied research, notably taxonomy, morphometrics, water quality monitoring and paleo-environmental studies. In these applications, usually large numbers of frustules need to be identified and/or measured. Although there is a need for automation in these applications, and image processing and analysis methods supporting these tasks have previously been developed, they did not become widespread in diatom analysis. While methodological reports for a wide variety of methods for image segmentation, diatom identification and feature extraction are available, no single implementation combining a subset of these into a readily applicable workflow accessible to diatomists exists. Results The newly developed tool SHERPA offers a versatile image processing workflow focused on the identification and measurement of object outlines, handling all steps from image segmentation over object identification to feature extraction, and providing interactive functions for reviewing and revising results. Special attention was given to ease of use, applicability to a broad range of data and problems, and supporting high throughput analyses with minimal manual intervention. Conclusions Tested with several diatom datasets from different sources and of various compositions, SHERPA proved its ability to successfully analyze large amounts of diatom micrographs depicting a broad range of species. SHERPA is unique in combining the following features: application of multiple segmentation methods and selection of the one giving the best result for each individual object; identification of shapes of interest based on outline matching against a template library; quality scoring and ranking of resulting outlines supporting quick quality checking; extraction of a wide range of outline shape descriptors widely used in diatom studies and elsewhere; minimizing the need for, but enabling manual quality control and corrections. Although primarily developed for analyzing images of diatom valves originating from automated microscopy, SHERPA can also be useful for other object detection, segmentation and outline-based identification problems. PMID:24964954
SHERPA: an image segmentation and outline feature extraction tool for diatoms and other objects.
Kloster, Michael; Kauer, Gerhard; Beszteri, Bánk
2014-06-25
Light microscopic analysis of diatom frustules is widely used both in basic and applied research, notably taxonomy, morphometrics, water quality monitoring and paleo-environmental studies. In these applications, usually large numbers of frustules need to be identified and/or measured. Although there is a need for automation in these applications, and image processing and analysis methods supporting these tasks have previously been developed, they did not become widespread in diatom analysis. While methodological reports for a wide variety of methods for image segmentation, diatom identification and feature extraction are available, no single implementation combining a subset of these into a readily applicable workflow accessible to diatomists exists. The newly developed tool SHERPA offers a versatile image processing workflow focused on the identification and measurement of object outlines, handling all steps from image segmentation over object identification to feature extraction, and providing interactive functions for reviewing and revising results. Special attention was given to ease of use, applicability to a broad range of data and problems, and supporting high throughput analyses with minimal manual intervention. Tested with several diatom datasets from different sources and of various compositions, SHERPA proved its ability to successfully analyze large amounts of diatom micrographs depicting a broad range of species. SHERPA is unique in combining the following features: application of multiple segmentation methods and selection of the one giving the best result for each individual object; identification of shapes of interest based on outline matching against a template library; quality scoring and ranking of resulting outlines supporting quick quality checking; extraction of a wide range of outline shape descriptors widely used in diatom studies and elsewhere; minimizing the need for, but enabling manual quality control and corrections. Although primarily developed for analyzing images of diatom valves originating from automated microscopy, SHERPA can also be useful for other object detection, segmentation and outline-based identification problems.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-10
... methods help solve imaging problems such as image ``leakage,'' which causes distortion, overloads datasets... enhance detection. This is helpful to identify harmful features such as precancerous polyps or other anomalies. The field of use may be limited to ``computer aided detection in colonography.'' The prospective...
Multilevel Space-Time Aggregation for Bright Field Cell Microscopy Segmentation and Tracking
Inglis, Tiffany; De Sterck, Hans; Sanders, Geoffrey; Djambazian, Haig; Sladek, Robert; Sundararajan, Saravanan; Hudson, Thomas J.
2010-01-01
A multilevel aggregation method is applied to the problem of segmenting live cell bright field microscope images. The method employed is a variant of the so-called “Segmentation by Weighted Aggregation” technique, which itself is based on Algebraic Multigrid methods. The variant of the method used is described in detail, and it is explained how it is tailored to the application at hand. In particular, a new scale-invariant “saliency measure” is proposed for deciding when aggregates of pixels constitute salient segments that should not be grouped further. It is shown how segmentation based on multilevel intensity similarity alone does not lead to satisfactory results for bright field cells. However, the addition of multilevel intensity variance (as a measure of texture) to the feature vector of each aggregate leads to correct cell segmentation. Preliminary results are presented for applying the multilevel aggregation algorithm in space time to temporal sequences of microscope images, with the goal of obtaining space-time segments (“object tunnels”) that track individual cells. The advantages and drawbacks of the space-time aggregation approach for segmentation and tracking of live cells in sequences of bright field microscope images are presented, along with a discussion on how this approach may be used in the future work as a building block in a complete and robust segmentation and tracking system. PMID:20467468
Li, Changyang; Wang, Xiuying; Eberl, Stefan; Fulham, Michael; Yin, Yong; Dagan Feng, David
2015-01-01
Automated and general medical image segmentation can be challenging because the foreground and the background may have complicated and overlapping density distributions in medical imaging. Conventional region-based level set algorithms often assume piecewise constant or piecewise smooth for segments, which are implausible for general medical image segmentation. Furthermore, low contrast and noise make identification of the boundaries between foreground and background difficult for edge-based level set algorithms. Thus, to address these problems, we suggest a supervised variational level set segmentation model to harness the statistical region energy functional with a weighted probability approximation. Our approach models the region density distributions by using the mixture-of-mixtures Gaussian model to better approximate real intensity distributions and distinguish statistical intensity differences between foreground and background. The region-based statistical model in our algorithm can intuitively provide better performance on noisy images. We constructed a weighted probability map on graphs to incorporate spatial indications from user input with a contextual constraint based on the minimization of contextual graphs energy functional. We measured the performance of our approach on ten noisy synthetic images and 58 medical datasets with heterogeneous intensities and ill-defined boundaries and compared our technique to the Chan-Vese region-based level set model, the geodesic active contour model with distance regularization, and the random walker model. Our method consistently achieved the highest Dice similarity coefficient when compared to the other methods.
Integrating shape into an interactive segmentation framework
NASA Astrophysics Data System (ADS)
Kamalakannan, S.; Bryant, B.; Sari-Sarraf, H.; Long, R.; Antani, S.; Thoma, G.
2013-02-01
This paper presents a novel interactive annotation toolbox which extends a well-known user-steered segmentation framework, namely Intelligent Scissors (IS). IS, posed as a shortest path problem, is essentially driven by lower level image based features. All the higher level knowledge about the problem domain is obtained from the user through mouse clicks. The proposed work integrates one higher level feature, namely shape up to a rigid transform, into the IS framework, thus reducing the burden on the user and the subjectivity involved in the annotation procedure, especially during instances of occlusions, broken edges, noise and spurious boundaries. The above mentioned scenarios are commonplace in medical image annotation applications and, hence, such a tool will be of immense help to the medical community. As a first step, an offline training procedure is performed in which a mean shape and the corresponding shape variance is computed by registering training shapes up to a rigid transform in a level-set framework. The user starts the interactive segmentation procedure by providing a training segment, which is a part of the target boundary. A partial shape matching scheme based on a scale-invariant curvature signature is employed in order to extract shape correspondences and subsequently predict the shape of the unsegmented target boundary. A `zone of confidence' is generated for the predicted boundary to accommodate shape variations. The method is evaluated on segmentation of digital chest x-ray images for lung annotation which is a crucial step in developing algorithms for screening Tuberculosis.
Adaptive image inversion of contrast 3D echocardiography for enabling automated analysis.
Shaheen, Anjuman; Rajpoot, Kashif
2015-08-01
Contrast 3D echocardiography (C3DE) is commonly used to enhance the visual quality of ultrasound images in comparison with non-contrast 3D echocardiography (3DE). Although the image quality in C3DE is perceived to be improved for visual analysis, however it actually deteriorates for the purpose of automatic or semi-automatic analysis due to higher speckle noise and intensity inhomogeneity. Therefore, the LV endocardial feature extraction and segmentation from the C3DE images remains a challenging problem. To address this challenge, this work proposes an adaptive pre-processing method to invert the appearance of C3DE image. The image inversion is based on an image intensity threshold value which is automatically estimated through image histogram analysis. In the inverted appearance, the LV cavity appears dark while the myocardium appears bright thus making it similar in appearance to a 3DE image. Moreover, the resulting inverted image has high contrast and low noise appearance, yielding strong LV endocardium boundary and facilitating feature extraction for segmentation. Our results demonstrate that the inverse appearance of contrast image enables the subsequent LV segmentation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Consistency functional map propagation for repetitive patterns
NASA Astrophysics Data System (ADS)
Wang, Hao
2017-09-01
Repetitive patterns appear frequently in both man-made and natural environments. Automatically and robustly detecting such patterns from an image is a challenging problem. We study repetitive pattern alignment by embedding segmentation cue with a functional map model. However, this model cannot tackle the repetitive patterns directly due to the large photometric and geometric variations. Thus, a consistency functional map propagation (CFMP) algorithm that extends the functional map with dynamic propagation is proposed to address this issue. This propagation model is acquired in two steps. The first one aligns the patterns from a local region, transferring segmentation functions among patterns. It can be cast as an L norm optimization problem. The latter step updates the template segmentation for the next round of pattern discovery by merging the transferred segmentation functions. Extensive experiments and comparative analyses have demonstrated an encouraging performance of the proposed algorithm in detection and segmentation of repetitive patterns.
Retinal blood vessel segmentation using fully convolutional network with transfer learning.
Jiang, Zhexin; Zhang, Hao; Wang, Yi; Ko, Seok-Bum
2018-04-26
Since the retinal blood vessel has been acknowledged as an indispensable element in both ophthalmological and cardiovascular disease diagnosis, the accurate segmentation of the retinal vessel tree has become the prerequisite step for automated or computer-aided diagnosis systems. In this paper, a supervised method is presented based on a pre-trained fully convolutional network through transfer learning. This proposed method has simplified the typical retinal vessel segmentation problem from full-size image segmentation to regional vessel element recognition and result merging. Meanwhile, additional unsupervised image post-processing techniques are applied to this proposed method so as to refine the final result. Extensive experiments have been conducted on DRIVE, STARE, CHASE_DB1 and HRF databases, and the accuracy of the cross-database test on these four databases is state-of-the-art, which also presents the high robustness of the proposed approach. This successful result has not only contributed to the area of automated retinal blood vessel segmentation but also supports the effectiveness of transfer learning when applying deep learning technique to medical imaging. Copyright © 2018 Elsevier Ltd. All rights reserved.
Laser speckle imaging for lesion detection on tooth
NASA Astrophysics Data System (ADS)
Gavinho, Luciano G.; Silva, João. V. P.; Damazio, João. H.; Sfalcin, Ravana A.; Araujo, Sidnei A.; Pinto, Marcelo M.; Olivan, Silvia R. G.; Prates, Renato A.; Bussadori, Sandra K.; Deana, Alessandro M.
2018-02-01
Computer vision technologies for diagnostic imaging applied to oral lesions, specifically, carious lesions of the teeth, are in their early years of development. The relevance of this public problem, dental caries, worries countries around the world, as it affects almost the entire population, at least once in the life of each individual. The present work demonstrates current techniques for obtaining information about lesions on teeth by segmentation laser speckle imagens (LSI). Laser speckle image results from laser light reflection on a rough surface, and it was considered a noise but has important features that carry information about the illuminated surface. Even though these are basic images, only a few works have analyzed it by application of computer vision methods. In this article, we present the latest results of our group, in which Computer vision techniques were adapted to segment laser speckle images for diagnostic purposes. These methods are applied to the segmentation of images between healthy and lesioned regions of the tooth. These methods have proven to be effective in the diagnosis of early-stage lesions, often imperceptible in traditional diagnostic methods in the clinical practice. The first method uses first-order statistical models, segmenting the image by comparing the mean and standard deviation of the intensity of the pixels. The second method is based on the distance of the chi-square (χ2 ) between the histograms of the image, bringing a significant improvement in the precision of the diagnosis, while a third method introduces the use of fractal geometry, exposing, through of the fractal dimension, more precisely the difference between lesioned areas and healthy areas of a tooth compared to other methods of segmentation. So far, we can observe efficiency in the segmentation of the carious regions. A software was developed for the execution and demonstration of the applicability of the models
Placental fetal stem segmentation in a sequence of histology images
NASA Astrophysics Data System (ADS)
Athavale, Prashant; Vese, Luminita A.
2012-02-01
Recent research in perinatal pathology argues that analyzing properties of the placenta may reveal important information on how certain diseases progress. One important property is the structure of the placental fetal stems. Analysis of the fetal stems in a placenta could be useful in the study and diagnosis of some diseases like autism. To study the fetal stem structure effectively, we need to automatically and accurately track fetal stems through a sequence of digitized hematoxylin and eosin (H&E) stained histology slides. There are many problems in successfully achieving this goal. A few of the problems are: large size of images, misalignment of the consecutive H&E slides, unpredictable inaccuracies of manual tracing, very complicated texture patterns of various tissue types without clear characteristics, just to name a few. In this paper we propose a novel algorithm to achieve automatic tracing of the fetal stem in a sequence of H&E images, based on an inaccurate manual segmentation of a fetal stem in one of the images. This algorithm combines global affine registration, local non-affine registration and a novel 'dynamic' version of the active contours model without edges. We first use global affine image registration of all the images based on displacement, scaling and rotation. This gives us approximate location of the corresponding fetal stem in the image that needs to be traced. We then use the affine registration algorithm "locally" near this location. At this point, we use a fast non-affine registration based on L2-similarity measure and diffusion regularization to get a better location of the fetal stem. Finally, we have to take into account inaccuracies in the initial tracing. This is achieved through a novel dynamic version of the active contours model without edges where the coefficients of the fitting terms are computed iteratively to ensure that we obtain a unique stem in the segmentation. The segmentation thus obtained can then be used as an initial guess to obtain segmentation in the rest of the images in the sequence. This constitutes an important step in the extraction and understanding of the fetal stem vasculature.
Robust finger vein ROI localization based on flexible segmentation.
Lu, Yu; Xie, Shan Juan; Yoon, Sook; Yang, Jucheng; Park, Dong Sun
2013-10-24
Finger veins have been proved to be an effective biometric for personal identification in the recent years. However, finger vein images are easily affected by influences such as image translation, orientation, scale, scattering, finger structure, complicated background, uneven illumination, and collection posture. All these factors may contribute to inaccurate region of interest (ROI) definition, and so degrade the performance of finger vein identification system. To improve this problem, in this paper, we propose a finger vein ROI localization method that has high effectiveness and robustness against the above factors. The proposed method consists of a set of steps to localize ROIs accurately, namely segmentation, orientation correction, and ROI detection. Accurate finger region segmentation and correct calculated orientation can support each other to produce higher accuracy in localizing ROIs. Extensive experiments have been performed on the finger vein image database, MMCBNU_6000, to verify the robustness of the proposed method. The proposed method shows the segmentation accuracy of 100%. Furthermore, the average processing time of the proposed method is 22 ms for an acquired image, which satisfies the criterion of a real-time finger vein identification system.
Robust Finger Vein ROI Localization Based on Flexible Segmentation
Lu, Yu; Xie, Shan Juan; Yoon, Sook; Yang, Jucheng; Park, Dong Sun
2013-01-01
Finger veins have been proved to be an effective biometric for personal identification in the recent years. However, finger vein images are easily affected by influences such as image translation, orientation, scale, scattering, finger structure, complicated background, uneven illumination, and collection posture. All these factors may contribute to inaccurate region of interest (ROI) definition, and so degrade the performance of finger vein identification system. To improve this problem, in this paper, we propose a finger vein ROI localization method that has high effectiveness and robustness against the above factors. The proposed method consists of a set of steps to localize ROIs accurately, namely segmentation, orientation correction, and ROI detection. Accurate finger region segmentation and correct calculated orientation can support each other to produce higher accuracy in localizing ROIs. Extensive experiments have been performed on the finger vein image database, MMCBNU_6000, to verify the robustness of the proposed method. The proposed method shows the segmentation accuracy of 100%. Furthermore, the average processing time of the proposed method is 22 ms for an acquired image, which satisfies the criterion of a real-time finger vein identification system. PMID:24284769
An image segmentation method based on fuzzy C-means clustering and Cuckoo search algorithm
NASA Astrophysics Data System (ADS)
Wang, Mingwei; Wan, Youchuan; Gao, Xianjun; Ye, Zhiwei; Chen, Maolin
2018-04-01
Image segmentation is a significant step in image analysis and machine vision. Many approaches have been presented in this topic; among them, fuzzy C-means (FCM) clustering is one of the most widely used methods for its high efficiency and ambiguity of images. However, the success of FCM could not be guaranteed because it easily traps into local optimal solution. Cuckoo search (CS) is a novel evolutionary algorithm, which has been tested on some optimization problems and proved to be high-efficiency. Therefore, a new segmentation technique using FCM and blending of CS algorithm is put forward in the paper. Further, the proposed method has been measured on several images and compared with other existing FCM techniques such as genetic algorithm (GA) based FCM and particle swarm optimization (PSO) based FCM in terms of fitness value. Experimental results indicate that the proposed method is robust, adaptive and exhibits the better performance than other methods involved in the paper.
Panda, Rashmi; Puhan, N B; Panda, Ganapati
2018-02-01
Accurate optic disc (OD) segmentation is an important step in obtaining cup-to-disc ratio-based glaucoma screening using fundus imaging. It is a challenging task because of the subtle OD boundary, blood vessel occlusion and intensity inhomogeneity. In this Letter, the authors propose an improved version of the random walk algorithm for OD segmentation to tackle such challenges. The algorithm incorporates the mean curvature and Gabor texture energy features to define the new composite weight function to compute the edge weights. Unlike the deformable model-based OD segmentation techniques, the proposed algorithm remains unaffected by curve initialisation and local energy minima problem. The effectiveness of the proposed method is verified with DRIVE, DIARETDB1, DRISHTI-GS and MESSIDOR database images using the performance measures such as mean absolute distance, overlapping ratio, dice coefficient, sensitivity, specificity and precision. The obtained OD segmentation results and quantitative performance measures show robustness and superiority of the proposed algorithm in handling the complex challenges in OD segmentation.
Segmentation of touching mycobacterium tuberculosis from Ziehl-Neelsen stained sputum smear images
NASA Astrophysics Data System (ADS)
Xu, Chao; Zhou, Dongxiang; Liu, Yunhui
2015-12-01
Touching Mycobacterium tuberculosis objects in the Ziehl-Neelsen stained sputum smear images present different shapes and invisible boundaries in the adhesion areas, which increases the difficulty in objects recognition and counting. In this paper, we present a segmentation method of combining the hierarchy tree analysis with gradient vector flow snake to address this problem. The skeletons of the objects are used for structure analysis based on the hierarchy tree. The gradient vector flow snake is used to estimate the object edge. Experimental results show that the single objects composing the touching objects are successfully segmented by the proposed method. This work will improve the accuracy and practicability of the computer-aided diagnosis of tuberculosis.
Real-time high dynamic range laser scanning microscopy
NASA Astrophysics Data System (ADS)
Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.
2016-04-01
In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging.
Dictionary learning-based CT detection of pulmonary nodules
NASA Astrophysics Data System (ADS)
Wu, Panpan; Xia, Kewen; Zhang, Yanbo; Qian, Xiaohua; Wang, Ge; Yu, Hengyong
2016-10-01
Segmentation of lung features is one of the most important steps for computer-aided detection (CAD) of pulmonary nodules with computed tomography (CT). However, irregular shapes, complicated anatomical background and poor pulmonary nodule contrast make CAD a very challenging problem. Here, we propose a novel scheme for feature extraction and classification of pulmonary nodules through dictionary learning from training CT images, which does not require accurately segmented pulmonary nodules. Specifically, two classification-oriented dictionaries and one background dictionary are learnt to solve a two-category problem. In terms of the classification-oriented dictionaries, we calculate sparse coefficient matrices to extract intrinsic features for pulmonary nodule classification. The support vector machine (SVM) classifier is then designed to optimize the performance. Our proposed methodology is evaluated with the lung image database consortium and image database resource initiative (LIDC-IDRI) database, and the results demonstrate that the proposed strategy is promising.
Sun, Shanhui; Sonka, Milan; Beichel, Reinhard R.
2013-01-01
Recently, the optimal surface finding (OSF) and layered optimal graph image segmentation of multiple objects and surfaces (LOGISMOS) approaches have been reported with applications to medical image segmentation tasks. While providing high levels of performance, these approaches may locally fail in the presence of pathology or other local challenges. Due to the image data variability, finding a suitable cost function that would be applicable to all image locations may not be feasible. This paper presents a new interactive refinement approach for correcting local segmentation errors in the automated OSF-based segmentation. A hybrid desktop/virtual reality user interface was developed for efficient interaction with the segmentations utilizing state-of-the-art stereoscopic visualization technology and advanced interaction techniques. The user interface allows a natural and interactive manipulation on 3-D surfaces. The approach was evaluated on 30 test cases from 18 CT lung datasets, which showed local segmentation errors after employing an automated OSF-based lung segmentation. The performed experiments exhibited significant increase in performance in terms of mean absolute surface distance errors (2.54 ± 0.75 mm prior to refinement vs. 1.11 ± 0.43 mm post-refinement, p ≪ 0.001). Speed of the interactions is one of the most important aspects leading to the acceptance or rejection of the approach by users expecting real-time interaction experience. The average algorithm computing time per refinement iteration was 150 ms, and the average total user interaction time required for reaching complete operator satisfaction per case was about 2 min. This time was mostly spent on human-controlled manipulation of the object to identify whether additional refinement was necessary and to approve the final segmentation result. The reported principle is generally applicable to segmentation problems beyond lung segmentation in CT scans as long as the underlying segmentation utilizes the OSF framework. The two reported segmentation refinement tools were optimized for lung segmentation and might need some adaptation for other application domains. PMID:23415254
Survey of Neural Net Paradigms for Specification of Discrete Networks.
1988-01-31
special applications, such as 3-d imaging, scene segmentation, temporal imaging models, nor phonological analysis of speech. The cost of problem...Nov. 1985. ., .U U - - A 1 Bibliography Berge, Claude, "Principles of Combinatorics", Academic Press, 1971 Fischer, Roland, " Deconstructing Reality
Rueda, Sylvia; Fathima, Sana; Knight, Caroline L; Yaqub, Mohammad; Papageorghiou, Aris T; Rahmatullah, Bahbibi; Foi, Alessandro; Maggioni, Matteo; Pepe, Antonietta; Tohka, Jussi; Stebbing, Richard V; McManigle, John E; Ciurte, Anca; Bresson, Xavier; Cuadra, Meritxell Bach; Sun, Changming; Ponomarev, Gennady V; Gelfand, Mikhail S; Kazanov, Marat D; Wang, Ching-Wei; Chen, Hsiang-Chou; Peng, Chun-Wei; Hung, Chu-Mei; Noble, J Alison
2014-04-01
This paper presents the evaluation results of the methods submitted to Challenge US: Biometric Measurements from Fetal Ultrasound Images, a segmentation challenge held at the IEEE International Symposium on Biomedical Imaging 2012. The challenge was set to compare and evaluate current fetal ultrasound image segmentation methods. It consisted of automatically segmenting fetal anatomical structures to measure standard obstetric biometric parameters, from 2D fetal ultrasound images taken on fetuses at different gestational ages (21 weeks, 28 weeks, and 33 weeks) and with varying image quality to reflect data encountered in real clinical environments. Four independent sub-challenges were proposed, according to the objects of interest measured in clinical practice: abdomen, head, femur, and whole fetus. Five teams participated in the head sub-challenge and two teams in the femur sub-challenge, including one team who tackled both. Nobody attempted the abdomen and whole fetus sub-challenges. The challenge goals were two-fold and the participants were asked to submit the segmentation results as well as the measurements derived from the segmented objects. Extensive quantitative (region-based, distance-based, and Bland-Altman measurements) and qualitative evaluation was performed to compare the results from a representative selection of current methods submitted to the challenge. Several experts (three for the head sub-challenge and two for the femur sub-challenge), with different degrees of expertise, manually delineated the objects of interest to define the ground truth used within the evaluation framework. For the head sub-challenge, several groups produced results that could be potentially used in clinical settings, with comparable performance to manual delineations. The femur sub-challenge had inferior performance to the head sub-challenge due to the fact that it is a harder segmentation problem and that the techniques presented relied more on the femur's appearance.
NASA Astrophysics Data System (ADS)
Egger, Jan; Voglreiter, Philip; Dokter, Mark; Hofmann, Michael; Chen, Xiaojun; Zoller, Wolfram G.; Schmalstieg, Dieter; Hann, Alexander
2016-04-01
Ultrasound (US) is the most commonly used liver imaging modality worldwide. It plays an important role in follow-up of cancer patients with liver metastases. We present an interactive segmentation approach for liver tumors in US acquisitions. Due to the low image quality and the low contrast between the tumors and the surrounding tissue in US images, the segmentation is very challenging. Thus, the clinical practice still relies on manual measurement and outlining of the tumors in the US images. We target this problem by applying an interactive segmentation algorithm to the US data, allowing the user to get real-time feedback of the segmentation results. The algorithm has been developed and tested hand-in-hand by physicians and computer scientists to make sure a future practical usage in a clinical setting is feasible. To cover typical acquisitions from the clinical routine, the approach has been evaluated with dozens of datasets where the tumors are hyperechoic (brighter), hypoechoic (darker) or isoechoic (similar) in comparison to the surrounding liver tissue. Due to the interactive real-time behavior of the approach, it was possible even in difficult cases to find satisfying segmentations of the tumors within seconds and without parameter settings, and the average tumor deviation was only 1.4mm compared with manual measurements. However, the long term goal is to ease the volumetric acquisition of liver tumors in order to evaluate for treatment response. Additional aim is the registration of intraoperative US images via the interactive segmentations to the patient's pre-interventional CT acquisitions.
Huff, Trevor J; Ludwig, Parker E; Zuniga, Jorge M
2018-05-01
3D-printed anatomical models play an important role in medical and research settings. The recent successes of 3D anatomical models in healthcare have led many institutions to adopt the technology. However, there remain several issues that must be addressed before it can become more wide-spread. Of importance are the problems of cost and time of manufacturing. Machine learning (ML) could be utilized to solve these issues by streamlining the 3D modeling process through rapid medical image segmentation and improved patient selection and image acquisition. The current challenges, potential solutions, and future directions for ML and 3D anatomical modeling in healthcare are discussed. Areas covered: This review covers research articles in the field of machine learning as related to 3D anatomical modeling. Topics discussed include automated image segmentation, cost reduction, and related time constraints. Expert commentary: ML-based segmentation of medical images could potentially improve the process of 3D anatomical modeling. However, until more research is done to validate these technologies in clinical practice, their impact on patient outcomes will remain unknown. We have the necessary computational tools to tackle the problems discussed. The difficulty now lies in our ability to collect sufficient data.
Application of Morphological Segmentation to Leaking Defect Detection in Sewer Pipelines
Su, Tung-Ching; Yang, Ming-Der
2014-01-01
As one of major underground pipelines, sewerage is an important infrastructure in any modern city. The most common problem occurring in sewerage is leaking, whose position and failure level is typically idengified through closed circuit television (CCTV) inspection in order to facilitate rehabilitation process. This paper proposes a novel method of computer vision, morphological segmentation based on edge detection (MSED), to assist inspectors in detecting pipeline defects in CCTV inspection images. In addition to MSED, other mathematical morphology-based image segmentation methods, including opening top-hat operation (OTHO) and closing bottom-hat operation (CBHO), were also applied to the defect detection in vitrified clay sewer pipelines. The CCTV inspection images of the sewer system in the 9th district, Taichung City, Taiwan were selected as the experimental materials. The segmentation results demonstrate that MSED and OTHO are useful for the detection of cracks and open joints, respectively, which are the typical leakage defects found in sewer pipelines. PMID:24841247
Improved fuzzy clustering algorithms in segmentation of DC-enhanced breast MRI.
Kannan, S R; Ramathilagam, S; Devi, Pandiyarajan; Sathya, A
2012-02-01
Segmentation of medical images is a difficult and challenging problem due to poor image contrast and artifacts that result in missing or diffuse organ/tissue boundaries. Many researchers have applied various techniques however fuzzy c-means (FCM) based algorithms is more effective compared to other methods. The objective of this work is to develop some robust fuzzy clustering segmentation systems for effective segmentation of DCE - breast MRI. This paper obtains the robust fuzzy clustering algorithms by incorporating kernel methods, penalty terms, tolerance of the neighborhood attraction, additional entropy term and fuzzy parameters. The initial centers are obtained using initialization algorithm to reduce the computation complexity and running time of proposed algorithms. Experimental works on breast images show that the proposed algorithms are effective to improve the similarity measurement, to handle large amount of noise, to have better results in dealing the data corrupted by noise, and other artifacts. The clustering results of proposed methods are validated using Silhouette Method.
Li, Bin; Chen, Kan; Tian, Lianfang; Yeboah, Yao; Ou, Shanxing
2013-01-01
The segmentation and detection of various types of nodules in a Computer-aided detection (CAD) system present various challenges, especially when (1) the nodule is connected to a vessel and they have very similar intensities; (2) the nodule with ground-glass opacity (GGO) characteristic possesses typical weak edges and intensity inhomogeneity, and hence it is difficult to define the boundaries. Traditional segmentation methods may cause problems of boundary leakage and "weak" local minima. This paper deals with the above mentioned problems. An improved detection method which combines a fuzzy integrated active contour model (FIACM)-based segmentation method, a segmentation refinement method based on Parametric Mixture Model (PMM) of juxta-vascular nodules, and a knowledge-based C-SVM (Cost-sensitive Support Vector Machines) classifier, is proposed for detecting various types of pulmonary nodules in computerized tomography (CT) images. Our approach has several novel aspects: (1) In the proposed FIACM model, edge and local region information is incorporated. The fuzzy energy is used as the motivation power for the evolution of the active contour. (2) A hybrid PMM Model of juxta-vascular nodules combining appearance and geometric information is constructed for segmentation refinement of juxta-vascular nodules. Experimental results of detection for pulmonary nodules show desirable performances of the proposed method.
Deformable segmentation via sparse representation and dictionary learning.
Zhang, Shaoting; Zhan, Yiqiang; Metaxas, Dimitris N
2012-10-01
"Shape" and "appearance", the two pillars of a deformable model, complement each other in object segmentation. In many medical imaging applications, while the low-level appearance information is weak or mis-leading, shape priors play a more important role to guide a correct segmentation, thanks to the strong shape characteristics of biological structures. Recently a novel shape prior modeling method has been proposed based on sparse learning theory. Instead of learning a generative shape model, shape priors are incorporated on-the-fly through the sparse shape composition (SSC). SSC is robust to non-Gaussian errors and still preserves individual shape characteristics even when such characteristics is not statistically significant. Although it seems straightforward to incorporate SSC into a deformable segmentation framework as shape priors, the large-scale sparse optimization of SSC has low runtime efficiency, which cannot satisfy clinical requirements. In this paper, we design two strategies to decrease the computational complexity of SSC, making a robust, accurate and efficient deformable segmentation system. (1) When the shape repository contains a large number of instances, which is often the case in 2D problems, K-SVD is used to learn a more compact but still informative shape dictionary. (2) If the derived shape instance has a large number of vertices, which often appears in 3D problems, an affinity propagation method is used to partition the surface into small sub-regions, on which the sparse shape composition is performed locally. Both strategies dramatically decrease the scale of the sparse optimization problem and hence speed up the algorithm. Our method is applied on a diverse set of biomedical image analysis problems. Compared to the original SSC, these two newly-proposed modules not only significant reduce the computational complexity, but also improve the overall accuracy. Copyright © 2012 Elsevier B.V. All rights reserved.
Chen, Zhaoxue; Yu, Haizhong; Chen, Hao
2013-12-01
To solve the problem of traditional K-means clustering in which initial clustering centers are selected randomly, we proposed a new K-means segmentation algorithm based on robustly selecting 'peaks' standing for White Matter, Gray Matter and Cerebrospinal Fluid in multi-peaks gray histogram of MRI brain image. The new algorithm takes gray value of selected histogram 'peaks' as the initial K-means clustering center and can segment the MRI brain image into three parts of tissue more effectively, accurately, steadily and successfully. Massive experiments have proved that the proposed algorithm can overcome many shortcomings caused by traditional K-means clustering method such as low efficiency, veracity, robustness and time consuming. The histogram 'peak' selecting idea of the proposed segmentootion method is of more universal availability.
NASA Astrophysics Data System (ADS)
Liu, Iching; Sun, Ying
1992-10-01
A system for reconstructing 3-D vascular structure from two orthogonally projected images is presented. The formidable problem of matching segments between two views is solved using knowledge of the epipolar constraint and the similarity of segment geometry and connectivity. The knowledge is represented in a rule-based system, which also controls the operation of several computational algorithms for tracking segments in each image, representing 2-D segments with directed graphs, and reconstructing 3-D segments from matching 2-D segment pairs. Uncertain reasoning governs the interaction between segmentation and matching; it also provides a framework for resolving the matching ambiguities in an iterative way. The system was implemented in the C language and the C Language Integrated Production System (CLIPS) expert system shell. Using video images of a tree model, the standard deviation of reconstructed centerlines was estimated to be 0.8 mm (1.7 mm) when the view direction was parallel (perpendicular) to the epipolar plane. Feasibility of clinical use was shown using x-ray angiograms of a human chest phantom. The correspondence of vessel segments between two views was accurate. Computational time for the entire reconstruction process was under 30 s on a workstation. A fully automated system for two-view reconstruction that does not require the a priori knowledge of vascular anatomy is demonstrated.
Fizeau interferometric cophasing of segmented mirrors: experimental validation.
Cheetham, Anthony; Cvetojevic, Nick; Norris, Barnaby; Sivaramakrishnan, Anand; Tuthill, Peter
2014-06-02
We present an optical testbed demonstration of the Fizeau Interferometric Cophasing of Segmented Mirrors (FICSM) algorithm. FICSM allows a segmented mirror to be phased with a science imaging detector and three filters (selected among the normal science complement). It requires no specialised, dedicated wavefront sensing hardware. Applying random piston and tip/tilt aberrations of more than 5 wavelengths to a small segmented mirror array produced an initial unphased point spread function with an estimated Strehl ratio of 9% that served as the starting point for our phasing algorithm. After using the FICSM algorithm to cophase the pupil, we estimated a Strehl ratio of 94% based on a comparison between our data and simulated encircled energy metrics. Our final image quality is limited by the accuracy of our segment actuation, which yields a root mean square (RMS) wavefront error of 25 nm. This is the first hardware demonstration of coarse and fine phasing an 18-segment pupil with the James Webb Space Telescope (JWST) geometry using a single algorithm. FICSM can be implemented on JWST using any of its scientic imaging cameras making it useful as a fall-back in the event that accepted phasing strategies encounter problems. We present an operational sequence that would co-phase such an 18-segment primary in 3 sequential iterations of the FICSM algorithm. Similar sequences can be readily devised for any segmented mirror.
Li, Laquan; Wang, Jian; Lu, Wei; Tan, Shan
2016-01-01
Accurate tumor segmentation from PET images is crucial in many radiation oncology applications. Among others, partial volume effect (PVE) is recognized as one of the most important factors degrading imaging quality and segmentation accuracy in PET. Taking into account that image restoration and tumor segmentation are tightly coupled and can promote each other, we proposed a variational method to solve both problems simultaneously in this study. The proposed method integrated total variation (TV) semi-blind de-convolution and Mumford-Shah segmentation with multiple regularizations. Unlike many existing energy minimization methods using either TV or L2 regularization, the proposed method employed TV regularization over tumor edges to preserve edge information, and L2 regularization inside tumor regions to preserve the smooth change of the metabolic uptake in a PET image. The blur kernel was modeled as anisotropic Gaussian to address the resolution difference in transverse and axial directions commonly seen in a clinic PET scanner. The energy functional was rephrased using the Γ-convergence approximation and was iteratively optimized using the alternating minimization (AM) algorithm. The performance of the proposed method was validated on a physical phantom and two clinic datasets with non-Hodgkin’s lymphoma and esophageal cancer, respectively. Experimental results demonstrated that the proposed method had high performance for simultaneous image restoration, tumor segmentation and scanner blur kernel estimation. Particularly, the recovery coefficients (RC) of the restored images of the proposed method in the phantom study were close to 1, indicating an efficient recovery of the original blurred images; for segmentation the proposed method achieved average dice similarity indexes (DSIs) of 0.79 and 0.80 for two clinic datasets, respectively; and the relative errors of the estimated blur kernel widths were less than 19% in the transversal direction and 7% in the axial direction. PMID:28603407
Ben Ayed, Ismail; Punithakumar, Kumaradevan; Garvin, Gregory; Romano, Walter; Li, Shuo
2011-01-01
This study investigates novel object-interaction priors for graph cut image segmentation with application to intervertebral disc delineation in magnetic resonance (MR) lumbar spine images. The algorithm optimizes an original cost function which constrains the solution with learned prior knowledge about the geometric interactions between different objects in the image. Based on a global measure of similarity between distributions, the proposed priors are intrinsically invariant with respect to translation and rotation. We further introduce a scale variable from which we derive an original fixed-point equation (FPE), thereby achieving scale-invariance with only few fast computations. The proposed priors relax the need of costly pose estimation (or registration) procedures and large training sets (we used a single subject for training), and can tolerate shape deformations, unlike template-based priors. Our formulation leads to an NP-hard problem which does not afford a form directly amenable to graph cut optimization. We proceeded to a relaxation of the problem via an auxiliary function, thereby obtaining a nearly real-time solution with few graph cuts. Quantitative evaluations over 60 intervertebral discs acquired from 10 subjects demonstrated that the proposed algorithm yields a high correlation with independent manual segmentations by an expert. We further demonstrate experimentally the invariance of the proposed geometric attributes. This supports the fact that a single subject is sufficient for training our algorithm, and confirms the relevance of the proposed priors to disc segmentation.
Zhang, Lei; Zeng, Zhi; Ji, Qiang
2011-09-01
Chain graph (CG) is a hybrid probabilistic graphical model (PGM) capable of modeling heterogeneous relationships among random variables. So far, however, its application in image and video analysis is very limited due to lack of principled learning and inference methods for a CG of general topology. To overcome this limitation, we introduce methods to extend the conventional chain-like CG model to CG model with more general topology and the associated methods for learning and inference in such a general CG model. Specifically, we propose techniques to systematically construct a generally structured CG, to parameterize this model, to derive its joint probability distribution, to perform joint parameter learning, and to perform probabilistic inference in this model. To demonstrate the utility of such an extended CG, we apply it to two challenging image and video analysis problems: human activity recognition and image segmentation. The experimental results show improved performance of the extended CG model over the conventional directed or undirected PGMs. This study demonstrates the promise of the extended CG for effective modeling and inference of complex real-world problems.
Hassanein, Mohamed; El-Sheimy, Naser
2018-01-01
Over the last decade, the use of unmanned aerial vehicle (UAV) technology has evolved significantly in different applications as it provides a special platform capable of combining the benefits of terrestrial and aerial remote sensing. Therefore, such technology has been established as an important source of data collection for different precision agriculture (PA) applications such as crop health monitoring and weed management. Generally, these PA applications depend on performing a vegetation segmentation process as an initial step, which aims to detect the vegetation objects in collected agriculture fields’ images. The main result of the vegetation segmentation process is a binary image, where vegetations are presented in white color and the remaining objects are presented in black. Such process could easily be performed using different vegetation indexes derived from multispectral imagery. Recently, to expand the use of UAV imagery systems for PA applications, it was important to reduce the cost of such systems through using low-cost RGB cameras Thus, developing vegetation segmentation techniques for RGB images is a challenging problem. The proposed paper introduces a new vegetation segmentation methodology for low-cost UAV RGB images, which depends on using Hue color channel. The proposed methodology follows the assumption that the colors in any agriculture field image can be distributed into vegetation and non-vegetations colors. Therefore, four main steps are developed to detect five different threshold values using the hue histogram of the RGB image, these thresholds are capable to discriminate the dominant color, either vegetation or non-vegetation, within the agriculture field image. The achieved results for implementing the proposed methodology showed its ability to generate accurate and stable vegetation segmentation performance with mean accuracy equal to 87.29% and standard deviation as 12.5%. PMID:29670055
Freire, Paulo G L; Ferrari, Ricardo J
2016-06-01
Multiple sclerosis (MS) is a demyelinating autoimmune disease that attacks the central nervous system (CNS) and affects more than 2 million people worldwide. The segmentation of MS lesions in magnetic resonance imaging (MRI) is a very important task to assess how a patient is responding to treatment and how the disease is progressing. Computational approaches have been proposed over the years to segment MS lesions and reduce the amount of time spent on manual delineation and inter- and intra-rater variability and bias. However, fully-automatic segmentation of MS lesions still remains an open problem. In this work, we propose an iterative approach using Student's t mixture models and probabilistic anatomical atlases to automatically segment MS lesions in Fluid Attenuated Inversion Recovery (FLAIR) images. Our technique resembles a refinement approach by iteratively segmenting brain tissues into smaller classes until MS lesions are grouped as the most hyperintense one. To validate our technique we used 21 clinical images from the 2015 Longitudinal Multiple Sclerosis Lesion Segmentation Challenge dataset. Evaluation using Dice Similarity Coefficient (DSC), True Positive Ratio (TPR), False Positive Ratio (FPR), Volume Difference (VD) and Pearson's r coefficient shows that our technique has a good spatial and volumetric agreement with raters' manual delineations. Also, a comparison between our proposal and the state-of-the-art shows that our technique is comparable and, in some cases, better than some approaches, thus being a viable alternative for automatic MS lesion segmentation in MRI. Copyright © 2016 Elsevier Ltd. All rights reserved.
Unsupervised motion-based object segmentation refined by color
NASA Astrophysics Data System (ADS)
Piek, Matthijs C.; Braspenning, Ralph; Varekamp, Chris
2003-06-01
For various applications, such as data compression, structure from motion, medical imaging and video enhancement, there is a need for an algorithm that divides video sequences into independently moving objects. Because our focus is on video enhancement and structure from motion for consumer electronics, we strive for a low complexity solution. For still images, several approaches exist based on colour, but these lack in both speed and segmentation quality. For instance, colour-based watershed algorithms produce a so-called oversegmentation with many segments covering each single physical object. Other colour segmentation approaches exist which somehow limit the number of segments to reduce this oversegmentation problem. However, this often results in inaccurate edges or even missed objects. Most likely, colour is an inherently insufficient cue for real world object segmentation, because real world objects can display complex combinations of colours. For video sequences, however, an additional cue is available, namely the motion of objects. When different objects in a scene have different motion, the motion cue alone is often enough to reliably distinguish objects from one another and the background. However, because of the lack of sufficient resolution of efficient motion estimators, like the 3DRS block matcher, the resulting segmentation is not at pixel resolution, but at block resolution. Existing pixel resolution motion estimators are more sensitive to noise, suffer more from aperture problems or have less correspondence to the true motion of objects when compared to block-based approaches or are too computationally expensive. From its tendency to oversegmentation it is apparent that colour segmentation is particularly effective near edges of homogeneously coloured areas. On the other hand, block-based true motion estimation is particularly effective in heterogeneous areas, because heterogeneous areas improve the chance a block is unique and thus decrease the chance of the wrong position producing a good match. Consequently, a number of methods exist which combine motion and colour segmentation. These methods use colour segmentation as a base for the motion segmentation and estimation or perform an independent colour segmentation in parallel which is in some way combined with the motion segmentation. The presented method uses both techniques to complement each other by first segmenting on motion cues and then refining the segmentation with colour. To our knowledge few methods exist which adopt this approach. One example is te{meshrefine}. This method uses an irregular mesh, which hinders its efficient implementation in consumer electronics devices. Furthermore, the method produces a foreground/background segmentation, while our applications call for the segmentation of multiple objects. NEW METHOD As mentioned above we start with motion segmentation and refine the edges of this segmentation with a pixel resolution colour segmentation method afterwards. There are several reasons for this approach: + Motion segmentation does not produce the oversegmentation which colour segmentation methods normally produce, because objects are more likely to have colour discontinuities than motion discontinuities. In this way, the colour segmentation only has to be done at the edges of segments, confining the colour segmentation to a smaller part of the image. In such a part, it is more likely that the colour of an object is homogeneous. + This approach restricts the computationally expensive pixel resolution colour segmentation to a subset of the image. Together with the very efficient 3DRS motion estimation algorithm, this helps to reduce the computational complexity. + The motion cue alone is often enough to reliably distinguish objects from one another and the background. To obtain the motion vector fields, a variant of the 3DRS block-based motion estimator which analyses three frames of input was used. The 3DRS motion estimator is known for its ability to estimate motion vectors which closely resemble the true motion. BLOCK-BASED MOTION SEGMENTATION As mentioned above we start with a block-resolution segmentation based on motion vectors. The presented method is inspired by the well-known K-means segmentation method te{K-means}. Several other methods (e.g. te{kmeansc}) adapt K-means for connectedness by adding a weighted shape-error. This adds the additional difficulty of finding the correct weights for the shape-parameters. Also, these methods often bias one particular pre-defined shape. The presented method, which we call K-regions, encourages connectedness because only blocks at the edges of segments may be assigned to another segment. This constrains the segmentation method to such a degree that it allows the method to use least squares for the robust fitting of affine motion models for each segment. Contrary to te{parmkm}, the segmentation step still operates on vectors instead of model parameters. To make sure the segmentation is temporally consistent, the segmentation of the previous frame will be used as initialisation for every new frame. We also present a scheme which makes the algorithm independent of the initially chosen amount of segments. COLOUR-BASED INTRA-BLOCK SEGMENTATION The block resolution motion-based segmentation forms the starting point for the pixel resolution segmentation. The pixel resolution segmentation is obtained from the block resolution segmentation by reclassifying pixels only at the edges of clusters. We assume that an edge between two objects can be found in either one of two neighbouring blocks that belong to different clusters. This assumption allows us to do the pixel resolution segmentation on each pair of such neighbouring blocks separately. Because of the local nature of the segmentation, it largely avoids problems with heterogeneously coloured areas. Because no new segments are introduced in this step, it also does not suffer from oversegmentation problems. The presented method has no problems with bifurcations. For the pixel resolution segmentation itself we reclassify pixels such that we optimize an error norm which favour similarly coloured regions and straight edges. SEGMENTATION MEASURE To assist in the evaluation of the proposed algorithm we developed a quality metric. Because the problem does not have an exact specification, we decided to define a ground truth output which we find desirable for a given input. We define the measure for the segmentation quality as being how different the segmentation is from the ground truth. Our measure enables us to evaluate oversegmentation and undersegmentation seperately. Also, it allows us to evaluate which parts of a frame suffer from oversegmentation or undersegmentation. The proposed algorithm has been tested on several typical sequences. CONCLUSIONS In this abstract we presented a new video segmentation method which performs well in the segmentation of multiple independently moving foreground objects from each other and the background. It combines the strong points of both colour and motion segmentation in the way we expected. One of the weak points is that the segmentation method suffers from undersegmentation when adjacent objects display similar motion. In sequences with detailed backgrounds the segmentation will sometimes display noisy edges. Apart from these results, we think that some of the techniques, and in particular the K-regions technique, may be useful for other two-dimensional data segmentation problems.
Training time and quality of smartphone-based anterior segment screening in rural India.
Ludwig, Cassie A; Newsom, Megan R; Jais, Alexandre; Myung, David J; Murthy, Somasheila I; Chang, Robert T
2017-01-01
We aimed at evaluating the ability of individuals without ophthalmologic training to quickly capture high-quality images of the cornea by using a smartphone and low-cost anterior segment imaging adapter (the "EyeGo" prototype). Seven volunteers photographed 1,502 anterior segments from 751 high school students in Varni, India, by using an iPhone 5S with an attached EyeGo adapter. Primary outcome measures were median photograph quality of the cornea and anterior segment of the eye (validated Fundus Photography vs Ophthalmoscopy Trial Outcomes in the Emergency Department [FOTO-ED] study; 1-5 scale; 5, best) and the time required to take each photograph. Volunteers were surveyed on their familiarity with using a smartphone (1-5 scale; 5, very comfortable) and comfort in assessing problems with the eye (1-5 scale; 5, very comfortable). Binomial logistic regression was performed using image quality (low quality: <4; high quality: ≥4) as the dependent variable and age, comfort using a smartphone, and comfort in assessing problems with the eye as independent variables. Six of the seven volunteers captured high-quality (median ≥4/5) images with a median time of ≤25 seconds per eye for all the eyes screened. Four of the seven volunteers demonstrated significant reductions in time to acquire photographs ( P 1=0.01, P 5=0.01, P 6=0.01, and P 7=0.01), and three of the seven volunteers demonstrated significant improvements in the quality of photographs between the first 100 and last 100 eyes screened ( P 1<0.001, P 2<0.001, and P 6<0.01). Self-reported comfort using a smartphone (odds ratio [OR] =1.25; 95% CI =1.13 to 1.39) and self-reported comfort diagnosing eye conditions (OR =1.17; 95% CI =1.07 to 1.29) were significantly associated with an ability to take a high-quality image (≥4/5). There was a nonsignificant association between younger age and ability to take a high-quality image. Individuals without ophthalmic training were able to quickly capture a high-quality magnified view of the anterior segment of the eye by using a smartphone with an attached imaging adapter.
Ghita, Ovidiu; Dietlmeier, Julia; Whelan, Paul F
2014-10-01
In this paper, we investigate the segmentation of closed contours in subcellular data using a framework that primarily combines the pairwise affinity grouping principles with a graph partitioning contour searching approach. One salient problem that precluded the application of these methods to large scale segmentation problems is the onerous computational complexity required to generate comprehensive representations that include all pairwise relationships between all pixels in the input data. To compensate for this problem, a practical solution is to reduce the complexity of the input data by applying an over-segmentation technique prior to the application of the computationally demanding strands of the segmentation process. This approach opens the opportunity to build specific shape and intensity models that can be successfully employed to extract the salient structures in the input image which are further processed to identify the cycles in an undirected graph. The proposed framework has been applied to the segmentation of mitochondria membranes in electron microscopy data which are characterized by low contrast and low signal-to-noise ratio. The algorithm has been quantitatively evaluated using two datasets where the segmentation results have been compared with the corresponding manual annotations. The performance of the proposed algorithm has been measured using standard metrics, such as precision and recall, and the experimental results indicate a high level of segmentation accuracy.
[Cardiac Synchronization Function Estimation Based on ASM Level Set Segmentation Method].
Zhang, Yaonan; Gao, Yuan; Tang, Liang; He, Ying; Zhang, Huie
At present, there is no accurate and quantitative methods for the determination of cardiac mechanical synchronism, and quantitative determination of the synchronization function of the four cardiac cavities with medical images has a great clinical value. This paper uses the whole heart ultrasound image sequence, and segments the left & right atriums and left & right ventricles of each frame. After the segmentation, the number of pixels in each cavity and in each frame is recorded, and the areas of the four cavities of the image sequence are therefore obtained. The area change curves of the four cavities are further extracted, and the synchronous information of the four cavities is obtained. Because of the low SNR of Ultrasound images, the boundary lines of cardiac cavities are vague, so the extraction of cardiac contours is still a challenging problem. Therefore, the ASM model information is added to the traditional level set method to force the curve evolution process. According to the experimental results, the improved method improves the accuracy of the segmentation. Furthermore, based on the ventricular segmentation, the right and left ventricular systolic functions are evaluated, mainly according to the area changes. The synchronization of the four cavities of the heart is estimated based on the area changes and the volume changes.
Zhou, Yuan; Cheng, Xinyao; Xu, Xiangyang; Song, Enmin
2013-12-01
Segmentation of carotid artery intima-media in longitudinal ultrasound images for measuring its thickness to predict cardiovascular diseases can be simplified as detecting two nearly parallel boundaries within a certain distance range, when plaque with irregular shapes is not considered. In this paper, we improve the implementation of two dynamic programming (DP) based approaches to parallel boundary detection, dual dynamic programming (DDP) and piecewise linear dual dynamic programming (PL-DDP). Then, a novel DP based approach, dual line detection (DLD), which translates the original 2-D curve position to a 4-D parameter space representing two line segments in a local image segment, is proposed to solve the problem while maintaining efficiency and rotation invariance. To apply the DLD to ultrasound intima-media segmentation, it is imbedded in a framework that employs an edge map obtained from multiplication of the responses of two edge detectors with different scales and a coupled snake model that simultaneously deforms the two contours for maintaining parallelism. The experimental results on synthetic images and carotid arteries of clinical ultrasound images indicate improved performance of the proposed DLD compared to DDP and PL-DDP, with respect to accuracy and efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Yanrong; Shao, Yeqin; Gao, Yaozong
Purpose: Automatic prostate segmentation from MR images is an important task in various clinical applications such as prostate cancer staging and MR-guided radiotherapy planning. However, the large appearance and shape variations of the prostate in MR images make the segmentation problem difficult to solve. Traditional Active Shape/Appearance Model (ASM/AAM) has limited accuracy on this problem, since its basic assumption, i.e., both shape and appearance of the targeted organ follow Gaussian distributions, is invalid in prostate MR images. To this end, the authors propose a sparse dictionary learning method to model the image appearance in a nonparametric fashion and further integratemore » the appearance model into a deformable segmentation framework for prostate MR segmentation. Methods: To drive the deformable model for prostate segmentation, the authors propose nonparametric appearance and shape models. The nonparametric appearance model is based on a novel dictionary learning method, namely distributed discriminative dictionary (DDD) learning, which is able to capture fine distinctions in image appearance. To increase the differential power of traditional dictionary-based classification methods, the authors' DDD learning approach takes three strategies. First, two dictionaries for prostate and nonprostate tissues are built, respectively, using the discriminative features obtained from minimum redundancy maximum relevance feature selection. Second, linear discriminant analysis is employed as a linear classifier to boost the optimal separation between prostate and nonprostate tissues, based on the representation residuals from sparse representation. Third, to enhance the robustness of the authors' classification method, multiple local dictionaries are learned for local regions along the prostate boundary (each with small appearance variations), instead of learning one global classifier for the entire prostate. These discriminative dictionaries are located on different patches of the prostate surface and trained to adaptively capture the appearance in different prostate zones, thus achieving better local tissue differentiation. For each local region, multiple classifiers are trained based on the randomly selected samples and finally assembled by a specific fusion method. In addition to this nonparametric appearance model, a prostate shape model is learned from the shape statistics using a novel approach, sparse shape composition, which can model nonGaussian distributions of shape variation and regularize the 3D mesh deformation by constraining it within the observed shape subspace. Results: The proposed method has been evaluated on two datasets consisting of T2-weighted MR prostate images. For the first (internal) dataset, the classification effectiveness of the authors' improved dictionary learning has been validated by comparing it with three other variants of traditional dictionary learning methods. The experimental results show that the authors' method yields a Dice Ratio of 89.1% compared to the manual segmentation, which is more accurate than the three state-of-the-art MR prostate segmentation methods under comparison. For the second dataset, the MICCAI 2012 challenge dataset, the authors' proposed method yields a Dice Ratio of 87.4%, which also achieves better segmentation accuracy than other methods under comparison. Conclusions: A new magnetic resonance image prostate segmentation method is proposed based on the combination of deformable model and dictionary learning methods, which achieves more accurate segmentation performance on prostate T2 MR images.« less
Image segmentation using association rule features.
Rushing, John A; Ranganath, Heggere; Hinke, Thomas H; Graves, Sara J
2002-01-01
A new type of texture feature based on association rules is described. Association rules have been used in applications such as market basket analysis to capture relationships present among items in large data sets. It is shown that association rules can be adapted to capture frequently occurring local structures in images. The frequency of occurrence of these structures can be used to characterize texture. Methods for segmentation of textured images based on association rule features are described. Simulation results using images consisting of man made and natural textures show that association rule features perform well compared to other widely used texture features. Association rule features are used to detect cumulus cloud fields in GOES satellite images and are found to achieve higher accuracy than other statistical texture features for this problem.
NASA Astrophysics Data System (ADS)
Li, Dengwang; Liu, Li; Chen, Jinhu; Li, Hongsheng; Yin, Yong; Ibragimov, Bulat; Xing, Lei
2017-01-01
Atlas-based segmentation utilizes a library of previously delineated contours of similar cases to facilitate automatic segmentation. The problem, however, remains challenging because of limited information carried by the contours in the library. In this studying, we developed a narrow-shell strategy to enhance the information of each contour in the library and to improve the accuracy of the exiting atlas-based approach. This study presented a new concept of atlas based segmentation method. Instead of using the complete volume of the target organs, only information along the organ contours from the atlas images was used for guiding segmentation of the new image. In setting up an atlas-based library, we included not only the coordinates of contour points, but also the image features adjacent to the contour. In this work, 139 CT images with normal appearing livers collected for radiotherapy treatment planning were used to construct the library. The CT images within the library were first registered to each other using affine registration. The nonlinear narrow shell was generated alongside the object contours of registered images. Matching voxels were selected inside common narrow shell image features of a library case and a new case using a speed-up robust features (SURF) strategy. A deformable registration was then performed using a thin plate splines (TPS) technique. The contour associated with the library case was propagated automatically onto the new image by exploiting the deformation field vectors. The liver contour was finally obtained by employing level set based energy optimization within the narrow shell. The performance of the proposed method was evaluated by comparing quantitatively the auto-segmentation results with that delineated by physicians. A novel atlas-based segmentation technique with inclusion of neighborhood image features through the introduction of a narrow-shell surrounding the target objects was established. Application of the technique to 30 liver cases suggested that the technique was capable to reliably segment liver cases from CT, 4D-CT, and CBCT images with little human interaction. The accuracy and speed of the proposed method are quantitatively validated by comparing automatic segmentation results with the manual delineation results. The Jaccard similarity metric between the automatically generated liver contours obtained by the proposed method and the physician delineated results are on an average 90%-96% for planning images. Incorporation of image features into the library contours improves the currently available atlas-based auto-contouring techniques and provides a clinically practical solution for auto-segmentation. The proposed mountainous narrow shell atlas based method can achieve efficient automatic liver propagation for CT, 4D-CT and CBCT images with following treatment planning and should find widespread application in future treatment planning systems.
Li, Dengwang; Liu, Li; Chen, Jinhu; Li, Hongsheng; Yin, Yong; Ibragimov, Bulat; Xing, Lei
2017-01-07
Atlas-based segmentation utilizes a library of previously delineated contours of similar cases to facilitate automatic segmentation. The problem, however, remains challenging because of limited information carried by the contours in the library. In this studying, we developed a narrow-shell strategy to enhance the information of each contour in the library and to improve the accuracy of the exiting atlas-based approach. This study presented a new concept of atlas based segmentation method. Instead of using the complete volume of the target organs, only information along the organ contours from the atlas images was used for guiding segmentation of the new image. In setting up an atlas-based library, we included not only the coordinates of contour points, but also the image features adjacent to the contour. In this work, 139 CT images with normal appearing livers collected for radiotherapy treatment planning were used to construct the library. The CT images within the library were first registered to each other using affine registration. The nonlinear narrow shell was generated alongside the object contours of registered images. Matching voxels were selected inside common narrow shell image features of a library case and a new case using a speed-up robust features (SURF) strategy. A deformable registration was then performed using a thin plate splines (TPS) technique. The contour associated with the library case was propagated automatically onto the new image by exploiting the deformation field vectors. The liver contour was finally obtained by employing level set based energy optimization within the narrow shell. The performance of the proposed method was evaluated by comparing quantitatively the auto-segmentation results with that delineated by physicians. A novel atlas-based segmentation technique with inclusion of neighborhood image features through the introduction of a narrow-shell surrounding the target objects was established. Application of the technique to 30 liver cases suggested that the technique was capable to reliably segment liver cases from CT, 4D-CT, and CBCT images with little human interaction. The accuracy and speed of the proposed method are quantitatively validated by comparing automatic segmentation results with the manual delineation results. The Jaccard similarity metric between the automatically generated liver contours obtained by the proposed method and the physician delineated results are on an average 90%-96% for planning images. Incorporation of image features into the library contours improves the currently available atlas-based auto-contouring techniques and provides a clinically practical solution for auto-segmentation. The proposed mountainous narrow shell atlas based method can achieve efficient automatic liver propagation for CT, 4D-CT and CBCT images with following treatment planning and should find widespread application in future treatment planning systems.
Beichel, Reinhard R; Van Tol, Markus; Ulrich, Ethan J; Bauer, Christian; Chang, Tangel; Plichta, Kristin A; Smith, Brian J; Sunderland, John J; Graham, Michael M; Sonka, Milan; Buatti, John M
2016-06-01
The purpose of this work was to develop, validate, and compare a highly computer-aided method for the segmentation of hot lesions in head and neck 18F-FDG PET scans. A semiautomated segmentation method was developed, which transforms the segmentation problem into a graph-based optimization problem. For this purpose, a graph structure around a user-provided approximate lesion centerpoint is constructed and a suitable cost function is derived based on local image statistics. To handle frequently occurring situations that are ambiguous (e.g., lesions adjacent to each other versus lesion with inhomogeneous uptake), several segmentation modes are introduced that adapt the behavior of the base algorithm accordingly. In addition, the authors present approaches for the efficient interactive local and global refinement of initial segmentations that are based on the "just-enough-interaction" principle. For method validation, 60 PET/CT scans from 59 different subjects with 230 head and neck lesions were utilized. All patients had squamous cell carcinoma of the head and neck. A detailed comparison with the current clinically relevant standard manual segmentation approach was performed based on 2760 segmentations produced by three experts. Segmentation accuracy measured by the Dice coefficient of the proposed semiautomated and standard manual segmentation approach was 0.766 and 0.764, respectively. This difference was not statistically significant (p = 0.2145). However, the intra- and interoperator standard deviations were significantly lower for the semiautomated method. In addition, the proposed method was found to be significantly faster and resulted in significantly higher intra- and interoperator segmentation agreement when compared to the manual segmentation approach. Lack of consistency in tumor definition is a critical barrier for radiation treatment targeting as well as for response assessment in clinical trials and in clinical oncology decision-making. The properties of the authors approach make it well suited for applications in image-guided radiation oncology, response assessment, or treatment outcome prediction.
Beichel, Reinhard R.; Van Tol, Markus; Ulrich, Ethan J.; Bauer, Christian; Chang, Tangel; Plichta, Kristin A.; Smith, Brian J.; Sunderland, John J.; Graham, Michael M.; Sonka, Milan; Buatti, John M.
2016-01-01
Purpose: The purpose of this work was to develop, validate, and compare a highly computer-aided method for the segmentation of hot lesions in head and neck 18F-FDG PET scans. Methods: A semiautomated segmentation method was developed, which transforms the segmentation problem into a graph-based optimization problem. For this purpose, a graph structure around a user-provided approximate lesion centerpoint is constructed and a suitable cost function is derived based on local image statistics. To handle frequently occurring situations that are ambiguous (e.g., lesions adjacent to each other versus lesion with inhomogeneous uptake), several segmentation modes are introduced that adapt the behavior of the base algorithm accordingly. In addition, the authors present approaches for the efficient interactive local and global refinement of initial segmentations that are based on the “just-enough-interaction” principle. For method validation, 60 PET/CT scans from 59 different subjects with 230 head and neck lesions were utilized. All patients had squamous cell carcinoma of the head and neck. A detailed comparison with the current clinically relevant standard manual segmentation approach was performed based on 2760 segmentations produced by three experts. Results: Segmentation accuracy measured by the Dice coefficient of the proposed semiautomated and standard manual segmentation approach was 0.766 and 0.764, respectively. This difference was not statistically significant (p = 0.2145). However, the intra- and interoperator standard deviations were significantly lower for the semiautomated method. In addition, the proposed method was found to be significantly faster and resulted in significantly higher intra- and interoperator segmentation agreement when compared to the manual segmentation approach. Conclusions: Lack of consistency in tumor definition is a critical barrier for radiation treatment targeting as well as for response assessment in clinical trials and in clinical oncology decision-making. The properties of the authors approach make it well suited for applications in image-guided radiation oncology, response assessment, or treatment outcome prediction. PMID:27277044
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beichel, Reinhard R., E-mail: reinhard-beichel@uiowa.edu; Iowa Institute for Biomedical Imaging, University of Iowa, Iowa City, Iowa 52242; Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242
Purpose: The purpose of this work was to develop, validate, and compare a highly computer-aided method for the segmentation of hot lesions in head and neck 18F-FDG PET scans. Methods: A semiautomated segmentation method was developed, which transforms the segmentation problem into a graph-based optimization problem. For this purpose, a graph structure around a user-provided approximate lesion centerpoint is constructed and a suitable cost function is derived based on local image statistics. To handle frequently occurring situations that are ambiguous (e.g., lesions adjacent to each other versus lesion with inhomogeneous uptake), several segmentation modes are introduced that adapt the behaviormore » of the base algorithm accordingly. In addition, the authors present approaches for the efficient interactive local and global refinement of initial segmentations that are based on the “just-enough-interaction” principle. For method validation, 60 PET/CT scans from 59 different subjects with 230 head and neck lesions were utilized. All patients had squamous cell carcinoma of the head and neck. A detailed comparison with the current clinically relevant standard manual segmentation approach was performed based on 2760 segmentations produced by three experts. Results: Segmentation accuracy measured by the Dice coefficient of the proposed semiautomated and standard manual segmentation approach was 0.766 and 0.764, respectively. This difference was not statistically significant (p = 0.2145). However, the intra- and interoperator standard deviations were significantly lower for the semiautomated method. In addition, the proposed method was found to be significantly faster and resulted in significantly higher intra- and interoperator segmentation agreement when compared to the manual segmentation approach. Conclusions: Lack of consistency in tumor definition is a critical barrier for radiation treatment targeting as well as for response assessment in clinical trials and in clinical oncology decision-making. The properties of the authors approach make it well suited for applications in image-guided radiation oncology, response assessment, or treatment outcome prediction.« less
Ou, Yangming; Resnick, Susan M.; Gur, Ruben C.; Gur, Raquel E.; Satterthwaite, Theodore D.; Furth, Susan; Davatzikos, Christos
2016-01-01
Atlas-based automated anatomical labeling is a fundamental tool in medical image segmentation, as it defines regions of interest for subsequent analysis of structural and functional image data. The extensive investigation of multi-atlas warping and fusion techniques over the past 5 or more years has clearly demonstrated the advantages of consensus-based segmentation. However, the common approach is to use multiple atlases with a single registration method and parameter set, which is not necessarily optimal for every individual scan, anatomical region, and problem/data-type. Different registration criteria and parameter sets yield different solutions, each providing complementary information. Herein, we present a consensus labeling framework that generates a broad ensemble of labeled atlases in target image space via the use of several warping algorithms, regularization parameters, and atlases. The label fusion integrates two complementary sources of information: a local similarity ranking to select locally optimal atlases and a boundary modulation term to refine the segmentation consistently with the target image's intensity profile. The ensemble approach consistently outperforms segmentations using individual warping methods alone, achieving high accuracy on several benchmark datasets. The MUSE methodology has been used for processing thousands of scans from various datasets, producing robust and consistent results. MUSE is publicly available both as a downloadable software package, and as an application that can be run on the CBICA Image Processing Portal (https://ipp.cbica.upenn.edu), a web based platform for remote processing of medical images. PMID:26679328
NASA Astrophysics Data System (ADS)
Kharazmi, Pegah; Lui, Harvey; Stoecker, William V.; Lee, Tim
2015-03-01
Vascular structures are one of the most important features in the diagnosis and assessment of skin disorders. The presence and clinical appearance of vascular structures in skin lesions is a discriminating factor among different skin diseases. In this paper, we address the problem of segmentation of vascular patterns in dermoscopy images. Our proposed method is composed of three parts. First, based on biological properties of human skin, we decompose the skin to melanin and hemoglobin component using independent component analysis of skin color images. The relative quantities and pure color densities of each component were then estimated. Subsequently, we obtain three reference vectors of the mean RGB values for normal skin, pigmented skin and blood vessels from the hemoglobin component by averaging over 100000 pixels of each group outlined by an expert. Based on the Euclidean distance thresholding, we generate a mask image that extracts the red regions of the skin. Finally, Frangi measure was applied to the extracted red areas to segment the tubular structures. Finally, Otsu's thresholding was applied to segment the vascular structures and get a binary vessel mask image. The algorithm was implemented on a set of 50 dermoscopy images. In order to evaluate the performance of our method, we have artificially extended some of the existing vessels in our dermoscopy data set and evaluated the performance of the algorithm to segment the newly added vessel pixels. A sensitivity of 95% and specificity of 87% were achieved.
Different methods of image segmentation in the process of meat marbling evaluation
NASA Astrophysics Data System (ADS)
Ludwiczak, A.; Ślósarz, P.; Lisiak, D.; Przybylak, A.; Boniecki, P.; Stanisz, M.; Koszela, K.; Zaborowicz, M.; Przybył, K.; Wojcieszak, D.; Janczak, D.; Bykowska, M.
2015-07-01
The level of marbling in meat assessment based on digital images is very popular, as computer vision tools are becoming more and more advanced. However considering muscle cross sections as the data source for marbling level evaluation, there are still a few problems to cope with. There is a need for an accurate method which would facilitate this evaluation procedure and increase its accuracy. The presented research was conducted in order to compare the effect of different image segmentation tools considering their usefulness in meat marbling evaluation on the muscle anatomical cross - sections. However this study is considered to be an initial trial in the presented field of research and an introduction to ultrasonic images processing and analysis.
Computer-aided diagnostic approach of dermoscopy images acquiring relevant features
NASA Astrophysics Data System (ADS)
Castillejos-Fernández, H.; Franco-Arcega, A.; López-Ortega, O.
2016-09-01
In skin cancer detection, automated analysis of borders, colors, and structures of a lesion relies upon an accurate segmentation process and it is an important first step in any Computer-Aided Diagnosis (CAD) system. However, irregular and disperse lesion borders, low contrast, artifacts in images and variety of colors within the interest region make the problem difficult. In this paper, we propose an efficient approach of automatic classification which considers specific lesion features. First, for the selection of lesion skin we employ the segmentation algorithm W-FCM.1 Then, in the feature extraction stage we consider several aspects: the area of the lesion, which is calculated by correlating axes and we calculate the specific the value of asymmetry in both axes. For color analysis we employ an ensemble of clusterers including K-Means, Fuzzy K-Means and Kohonep maps, all of which estimate the presence of one or more colors defined in ABCD rule and the values for each of the segmented colors. Another aspect to consider is the type of structures that appear in the lesion Those are defined by using the ell-known GLCM method. During the classification stage we compare several methods in order to define if the lesion is benign or malignant. An important contribution of the current approach in segmentation-classification problem resides in the use of information from all color channels together, as well as the measure of each color in the lesion and the axes correlation. The segmentation and classification measures have been performed using sensibility, specificity, accuracy and AUC metric over a set of dermoscopy images from ISDIS data set
Real-time high dynamic range laser scanning microscopy
Vinegoni, C.; Leon Swisher, C.; Fumene Feruglio, P.; Giedt, R. J.; Rousso, D. L.; Stapleton, S.; Weissleder, R.
2016-01-01
In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging. PMID:27032979
3D deeply supervised network for automated segmentation of volumetric medical images.
Dou, Qi; Yu, Lequan; Chen, Hao; Jin, Yueming; Yang, Xin; Qin, Jing; Heng, Pheng-Ann
2017-10-01
While deep convolutional neural networks (CNNs) have achieved remarkable success in 2D medical image segmentation, it is still a difficult task for CNNs to segment important organs or structures from 3D medical images owing to several mutually affected challenges, including the complicated anatomical environments in volumetric images, optimization difficulties of 3D networks and inadequacy of training samples. In this paper, we present a novel and efficient 3D fully convolutional network equipped with a 3D deep supervision mechanism to comprehensively address these challenges; we call it 3D DSN. Our proposed 3D DSN is capable of conducting volume-to-volume learning and inference, which can eliminate redundant computations and alleviate the risk of over-fitting on limited training data. More importantly, the 3D deep supervision mechanism can effectively cope with the optimization problem of gradients vanishing or exploding when training a 3D deep model, accelerating the convergence speed and simultaneously improving the discrimination capability. Such a mechanism is developed by deriving an objective function that directly guides the training of both lower and upper layers in the network, so that the adverse effects of unstable gradient changes can be counteracted during the training procedure. We also employ a fully connected conditional random field model as a post-processing step to refine the segmentation results. We have extensively validated the proposed 3D DSN on two typical yet challenging volumetric medical image segmentation tasks: (i) liver segmentation from 3D CT scans and (ii) whole heart and great vessels segmentation from 3D MR images, by participating two grand challenges held in conjunction with MICCAI. We have achieved competitive segmentation results to state-of-the-art approaches in both challenges with a much faster speed, corroborating the effectiveness of our proposed 3D DSN. Copyright © 2017 Elsevier B.V. All rights reserved.
Seed robustness of oriented relative fuzzy connectedness: core computation and its applications
NASA Astrophysics Data System (ADS)
Tavares, Anderson C. M.; Bejar, Hans H. C.; Miranda, Paulo A. V.
2017-02-01
In this work, we present a formal definition and an efficient algorithm to compute the cores of Oriented Relative Fuzzy Connectedness (ORFC), a recent seed-based segmentation technique. The core is a region where the seed can be moved without altering the segmentation, an important aspect for robust techniques and reduction of user effort. We show how ORFC cores can be used to build a powerful hybrid image segmentation approach. We also provide some new theoretical relations between ORFC and Oriented Image Foresting Transform (OIFT), as well as their cores. Experimental results among several methods show that the hybrid approach conserves high accuracy, avoids the shrinking problem and provides robustness to seed placement inside the desired object due to the cores properties.
CP-CHARM: segmentation-free image classification made accessible.
Uhlmann, Virginie; Singh, Shantanu; Carpenter, Anne E
2016-01-27
Automated classification using machine learning often relies on features derived from segmenting individual objects, which can be difficult to automate. WND-CHARM is a previously developed classification algorithm in which features are computed on the whole image, thereby avoiding the need for segmentation. The algorithm obtained encouraging results but requires considerable computational expertise to execute. Furthermore, some benchmark sets have been shown to be subject to confounding artifacts that overestimate classification accuracy. We developed CP-CHARM, a user-friendly image-based classification algorithm inspired by WND-CHARM in (i) its ability to capture a wide variety of morphological aspects of the image, and (ii) the absence of requirement for segmentation. In order to make such an image-based classification method easily accessible to the biological research community, CP-CHARM relies on the widely-used open-source image analysis software CellProfiler for feature extraction. To validate our method, we reproduced WND-CHARM's results and ensured that CP-CHARM obtained comparable performance. We then successfully applied our approach on cell-based assay data and on tissue images. We designed these new training and test sets to reduce the effect of batch-related artifacts. The proposed method preserves the strengths of WND-CHARM - it extracts a wide variety of morphological features directly on whole images thereby avoiding the need for cell segmentation, but additionally, it makes the methods easily accessible for researchers without computational expertise by implementing them as a CellProfiler pipeline. It has been demonstrated to perform well on a wide range of bioimage classification problems, including on new datasets that have been carefully selected and annotated to minimize batch effects. This provides for the first time a realistic and reliable assessment of the whole image classification strategy.
Prasoon, Adhish; Petersen, Kersten; Igel, Christian; Lauze, François; Dam, Erik; Nielsen, Mads
2013-01-01
Segmentation of anatomical structures in medical images is often based on a voxel/pixel classification approach. Deep learning systems, such as convolutional neural networks (CNNs), can infer a hierarchical representation of images that fosters categorization. We propose a novel system for voxel classification integrating three 2D CNNs, which have a one-to-one association with the xy, yz and zx planes of 3D image, respectively. We applied our method to the segmentation of tibial cartilage in low field knee MRI scans and tested it on 114 unseen scans. Although our method uses only 2D features at a single scale, it performs better than a state-of-the-art method using 3D multi-scale features. In the latter approach, the features and the classifier have been carefully adapted to the problem at hand. That we were able to get better results by a deep learning architecture that autonomously learns the features from the images is the main insight of this study.
Segmentation of MRI Brain Images with an Improved Harmony Searching Algorithm.
Yang, Zhang; Shufan, Ye; Li, Guo; Weifeng, Ding
2016-01-01
The harmony searching (HS) algorithm is a kind of optimization search algorithm currently applied in many practical problems. The HS algorithm constantly revises variables in the harmony database and the probability of different values that can be used to complete iteration convergence to achieve the optimal effect. Accordingly, this study proposed a modified algorithm to improve the efficiency of the algorithm. First, a rough set algorithm was employed to improve the convergence and accuracy of the HS algorithm. Then, the optimal value was obtained using the improved HS algorithm. The optimal value of convergence was employed as the initial value of the fuzzy clustering algorithm for segmenting magnetic resonance imaging (MRI) brain images. Experimental results showed that the improved HS algorithm attained better convergence and more accurate results than those of the original HS algorithm. In our study, the MRI image segmentation effect of the improved algorithm was superior to that of the original fuzzy clustering method.
Segmentation of MRI Brain Images with an Improved Harmony Searching Algorithm
Yang, Zhang; Li, Guo; Weifeng, Ding
2016-01-01
The harmony searching (HS) algorithm is a kind of optimization search algorithm currently applied in many practical problems. The HS algorithm constantly revises variables in the harmony database and the probability of different values that can be used to complete iteration convergence to achieve the optimal effect. Accordingly, this study proposed a modified algorithm to improve the efficiency of the algorithm. First, a rough set algorithm was employed to improve the convergence and accuracy of the HS algorithm. Then, the optimal value was obtained using the improved HS algorithm. The optimal value of convergence was employed as the initial value of the fuzzy clustering algorithm for segmenting magnetic resonance imaging (MRI) brain images. Experimental results showed that the improved HS algorithm attained better convergence and more accurate results than those of the original HS algorithm. In our study, the MRI image segmentation effect of the improved algorithm was superior to that of the original fuzzy clustering method. PMID:27403428
A Fully Automated Method to Detect and Segment a Manufactured Object in an Underwater Color Image
NASA Astrophysics Data System (ADS)
Barat, Christian; Phlypo, Ronald
2010-12-01
We propose a fully automated active contours-based method for the detection and the segmentation of a moored manufactured object in an underwater image. Detection of objects in underwater images is difficult due to the variable lighting conditions and shadows on the object. The proposed technique is based on the information contained in the color maps and uses the visual attention method, combined with a statistical approach for the detection and an active contour for the segmentation of the object to overcome the above problems. In the classical active contour method the region descriptor is fixed and the convergence of the method depends on the initialization. With our approach, this dependence is overcome with an initialization using the visual attention results and a criterion to select the best region descriptor. This approach improves the convergence and the processing time while providing the advantages of a fully automated method.
Geodemographic segmentation systems for screening health data.
Openshaw, S; Blake, M
1995-01-01
AIM--To describe how geodemographic segmentation systems might be useful as a quick and easy way of exploring postcoded health databases for potential interesting patterns related to deprivation and other socioeconomic characteristics. DESIGN AND SETTING--This is demonstrated using GB Profiles, a freely available geodemographic classification system developed at Leeds University. It is used here to screen a database of colorectal cancer registrations as a first step in the analysis of that data. RESULTS AND CONCLUSION--Conventional geodemographics is a fairly simple technology and a number of outstanding methodological problems are identified. A solution to some problems is illustrated by using neural net based classifiers and then by reference to a more sophisticated geodemographic approach via a data optimal segmentation technique. Images PMID:8594132
Tumor Burden Analysis on Computed Tomography by Automated Liver and Tumor Segmentation
Linguraru, Marius George; Richbourg, William J.; Liu, Jianfei; Watt, Jeremy M.; Pamulapati, Vivek; Wang, Shijun; Summers, Ronald M.
2013-01-01
The paper presents the automated computation of hepatic tumor burden from abdominal CT images of diseased populations with images with inconsistent enhancement. The automated segmentation of livers is addressed first. A novel three-dimensional (3D) affine invariant shape parameterization is employed to compare local shape across organs. By generating a regular sampling of the organ's surface, this parameterization can be effectively used to compare features of a set of closed 3D surfaces point-to-point, while avoiding common problems with the parameterization of concave surfaces. From an initial segmentation of the livers, the areas of atypical local shape are determined using training sets. A geodesic active contour corrects locally the segmentations of the livers in abnormal images. Graph cuts segment the hepatic tumors using shape and enhancement constraints. Liver segmentation errors are reduced significantly and all tumors are detected. Finally, support vector machines and feature selection are employed to reduce the number of false tumor detections. The tumor detection true position fraction of 100% is achieved at 2.3 false positives/case and the tumor burden is estimated with 0.9% error. Results from the test data demonstrate the method's robustness to analyze livers from difficult clinical cases to allow the temporal monitoring of patients with hepatic cancer. PMID:22893379
Almasi, Sepideh; Ben-Zvi, Ayal; Lacoste, Baptiste; Gu, Chenghua; Miller, Eric L; Xu, Xiaoyin
2017-03-01
To simultaneously overcome the challenges imposed by the nature of optical imaging characterized by a range of artifacts including space-varying signal to noise ratio (SNR), scattered light, and non-uniform illumination, we developed a novel method that segments the 3-D vasculature directly from original fluorescence microscopy images eliminating the need for employing pre- and post-processing steps such as noise removal and segmentation refinement as used with the majority of segmentation techniques. Our method comprises two initialization and constrained recovery and enhancement stages. The initialization approach is fully automated using features derived from bi-scale statistical measures and produces seed points robust to non-uniform illumination, low SNR, and local structural variations. This algorithm achieves the goal of segmentation via design of an iterative approach that extracts the structure through voting of feature vectors formed by distance, local intensity gradient, and median measures. Qualitative and quantitative analysis of the experimental results obtained from synthetic and real data prove the effcacy of this method in comparison to the state-of-the-art enhancing-segmenting methods. The algorithmic simplicity, freedom from having a priori probabilistic information about the noise, and structural definition gives this algorithm a wide potential range of applications where i.e. structural complexity significantly complicates the segmentation problem.
NASA Astrophysics Data System (ADS)
Ye, Xujiong; Siddique, Musib; Douiri, Abdel; Beddoe, Gareth; Slabaugh, Greg
2009-02-01
Automatic segmentation of medical images is a challenging problem due to the complexity and variability of human anatomy, poor contrast of the object being segmented, and noise resulting from the image acquisition process. This paper presents a novel feature-guided method for the segmentation of 3D medical lesions. The proposed algorithm combines 1) a volumetric shape feature (shape index) based on high-order partial derivatives; 2) mean shift clustering in a joint spatial-intensity-shape (JSIS) feature space; and 3) a modified expectation-maximization (MEM) algorithm on the mean shift mode map to merge the neighboring regions (modes). In such a scenario, the volumetric shape feature is integrated into the process of the segmentation algorithm. The joint spatial-intensity-shape features provide rich information for the segmentation of the anatomic structures or lesions (tumors). The proposed method has been evaluated on a clinical dataset of thoracic CT scans that contains 68 nodules. A volume overlap ratio between each segmented nodule and the ground truth annotation is calculated. Using the proposed method, the mean overlap ratio over all the nodules is 0.80. On visual inspection and using a quantitative evaluation, the experimental results demonstrate the potential of the proposed method. It can properly segment a variety of nodules including juxta-vascular and juxta-pleural nodules, which are challenging for conventional methods due to the high similarity of intensities between the nodules and their adjacent tissues. This approach could also be applied to lesion segmentation in other anatomies, such as polyps in the colon.
Segmentation and Quantification for Angle-Closure Glaucoma Assessment in Anterior Segment OCT.
Fu, Huazhu; Xu, Yanwu; Lin, Stephen; Zhang, Xiaoqin; Wong, Damon Wing Kee; Liu, Jiang; Frangi, Alejandro F; Baskaran, Mani; Aung, Tin
2017-09-01
Angle-closure glaucoma is a major cause of irreversible visual impairment and can be identified by measuring the anterior chamber angle (ACA) of the eye. The ACA can be viewed clearly through anterior segment optical coherence tomography (AS-OCT), but the imaging characteristics and the shapes and locations of major ocular structures can vary significantly among different AS-OCT modalities, thus complicating image analysis. To address this problem, we propose a data-driven approach for automatic AS-OCT structure segmentation, measurement, and screening. Our technique first estimates initial markers in the eye through label transfer from a hand-labeled exemplar data set, whose images are collected over different patients and AS-OCT modalities. These initial markers are then refined by using a graph-based smoothing method that is guided by AS-OCT structural information. These markers facilitate segmentation of major clinical structures, which are used to recover standard clinical parameters. These parameters can be used not only to support clinicians in making anatomical assessments, but also to serve as features for detecting anterior angle closure in automatic glaucoma screening algorithms. Experiments on Visante AS-OCT and Cirrus high-definition-OCT data sets demonstrate the effectiveness of our approach.
A holistic image segmentation framework for cloud detection and extraction
NASA Astrophysics Data System (ADS)
Shen, Dan; Xu, Haotian; Blasch, Erik; Horvath, Gregory; Pham, Khanh; Zheng, Yufeng; Ling, Haibin; Chen, Genshe
2013-05-01
Atmospheric clouds are commonly encountered phenomena affecting visual tracking from air-borne or space-borne sensors. Generally clouds are difficult to detect and extract because they are complex in shape and interact with sunlight in a complex fashion. In this paper, we propose a clustering game theoretic image segmentation based approach to identify, extract, and patch clouds. In our framework, the first step is to decompose a given image containing clouds. The problem of image segmentation is considered as a "clustering game". Within this context, the notion of a cluster is equivalent to a classical equilibrium concept from game theory, as the game equilibrium reflects both the internal and external (e.g., two-player) cluster conditions. To obtain the evolutionary stable strategies, we explore three evolutionary dynamics: fictitious play, replicator dynamics, and infection and immunization dynamics (InImDyn). Secondly, we use the boundary and shape features to refine the cloud segments. This step can lower the false alarm rate. In the third step, we remove the detected clouds and patch the empty spots by performing background recovery. We demonstrate our cloud detection framework on a video clip provides supportive results.
Best Merge Region Growing Segmentation with Integrated Non-Adjacent Region Object Aggregation
NASA Technical Reports Server (NTRS)
Tilton, James C.; Tarabalka, Yuliya; Montesano, Paul M.; Gofman, Emanuel
2012-01-01
Best merge region growing normally produces segmentations with closed connected region objects. Recognizing that spectrally similar objects often appear in spatially separate locations, we present an approach for tightly integrating best merge region growing with non-adjacent region object aggregation, which we call Hierarchical Segmentation or HSeg. However, the original implementation of non-adjacent region object aggregation in HSeg required excessive computing time even for moderately sized images because of the required intercomparison of each region with all other regions. This problem was previously addressed by a recursive approximation of HSeg, called RHSeg. In this paper we introduce a refined implementation of non-adjacent region object aggregation in HSeg that reduces the computational requirements of HSeg without resorting to the recursive approximation. In this refinement, HSeg s region inter-comparisons among non-adjacent regions are limited to regions of a dynamically determined minimum size. We show that this refined version of HSeg can process moderately sized images in about the same amount of time as RHSeg incorporating the original HSeg. Nonetheless, RHSeg is still required for processing very large images due to its lower computer memory requirements and amenability to parallel processing. We then note a limitation of RHSeg with the original HSeg for high spatial resolution images, and show how incorporating the refined HSeg into RHSeg overcomes this limitation. The quality of the image segmentations produced by the refined HSeg is then compared with other available best merge segmentation approaches. Finally, we comment on the unique nature of the hierarchical segmentations produced by HSeg.
NASA Astrophysics Data System (ADS)
Xu, Robert S.; Michailovich, Oleg V.; Solovey, Igor; Salama, Magdy M. A.
2010-03-01
Prostate specific antigen density is an established parameter for indicating the likelihood of prostate cancer. To this end, the size and volume of the gland have become pivotal quantities used by clinicians during the standard cancer screening process. As an alternative to manual palpation, an increasing number of volume estimation methods are based on the imagery data of the prostate. The necessity to process large volumes of such data requires automatic segmentation algorithms, which can accurately and reliably identify the true prostate region. In particular, transrectal ultrasound (TRUS) imaging has become a standard means of assessing the prostate due to its safe nature and high benefit-to-cost ratio. Unfortunately, modern TRUS images are still plagued by many ultrasound imaging artifacts such as speckle noise and shadowing, which results in relatively low contrast and reduced SNR of the acquired images. Consequently, many modern segmentation methods incorporate prior knowledge about the prostate geometry to enhance traditional segmentation techniques. In this paper, a novel approach to the problem of TRUS segmentation, particularly the definition of the prostate shape prior, is presented. The proposed approach is based on the concept of distribution tracking, which provides a unified framework for tracking both photometric and morphological features of the prostate. In particular, the tracking of morphological features defines a novel type of "weak" shape priors. The latter acts as a regularization force, which minimally bias the segmentation procedure, while rendering the final estimate stable and robust. The value of the proposed methodology is demonstrated in a series of experiments.
Blood vessels segmentation of hatching eggs based on fully convolutional networks
NASA Astrophysics Data System (ADS)
Geng, Lei; Qiu, Ling; Wu, Jun; Xiao, Zhitao
2018-04-01
FCN, trained end-to-end, pixels-to-pixels, predict result of each pixel. It has been widely used for semantic segmentation. In order to realize the blood vessels segmentation of hatching eggs, a method based on FCN is proposed in this paper. The training datasets are composed of patches extracted from very few images to augment data. The network combines with lower layer and deconvolution to enables precise segmentation. The proposed method frees from the problem that training deep networks need large scale samples. Experimental results on hatching eggs demonstrate that this method can yield more accurate segmentation outputs than previous researches. It provides a convenient reference for fertility detection subsequently.
Modified Discrete Grey Wolf Optimizer Algorithm for Multilevel Image Thresholding
Sun, Lijuan; Guo, Jian; Xu, Bin; Li, Shujing
2017-01-01
The computation of image segmentation has become more complicated with the increasing number of thresholds, and the option and application of the thresholds in image thresholding fields have become an NP problem at the same time. The paper puts forward the modified discrete grey wolf optimizer algorithm (MDGWO), which improves on the optimal solution updating mechanism of the search agent by the weights. Taking Kapur's entropy as the optimized function and based on the discreteness of threshold in image segmentation, the paper firstly discretizes the grey wolf optimizer (GWO) and then proposes a new attack strategy by using the weight coefficient to replace the search formula for optimal solution used in the original algorithm. The experimental results show that MDGWO can search out the optimal thresholds efficiently and precisely, which are very close to the result examined by exhaustive searches. In comparison with the electromagnetism optimization (EMO), the differential evolution (DE), the Artifical Bee Colony (ABC), and the classical GWO, it is concluded that MDGWO has advantages over the latter four in terms of image segmentation quality and objective function values and their stability. PMID:28127305
Global Linking of Cell Tracks Using the Viterbi Algorithm
Jaldén, Joakim; Gilbert, Penney M.; Blau, Helen M.
2016-01-01
Automated tracking of living cells in microscopy image sequences is an important and challenging problem. With this application in mind, we propose a global track linking algorithm, which links cell outlines generated by a segmentation algorithm into tracks. The algorithm adds tracks to the image sequence one at a time, in a way which uses information from the complete image sequence in every linking decision. This is achieved by finding the tracks which give the largest possible increases to a probabilistically motivated scoring function, using the Viterbi algorithm. We also present a novel way to alter previously created tracks when new tracks are created, thus mitigating the effects of error propagation. The algorithm can handle mitosis, apoptosis, and migration in and out of the imaged area, and can also deal with false positives, missed detections, and clusters of jointly segmented cells. The algorithm performance is demonstrated on two challenging datasets acquired using bright-field microscopy, but in principle, the algorithm can be used with any cell type and any imaging technique, presuming there is a suitable segmentation algorithm. PMID:25415983
Gao, Yaozong; Shao, Yeqin; Lian, Jun; Wang, Andrew Z.; Chen, Ronald C.
2016-01-01
Segmenting male pelvic organs from CT images is a prerequisite for prostate cancer radiotherapy. The efficacy of radiation treatment highly depends on segmentation accuracy. However, accurate segmentation of male pelvic organs is challenging due to low tissue contrast of CT images, as well as large variations of shape and appearance of the pelvic organs. Among existing segmentation methods, deformable models are the most popular, as shape prior can be easily incorporated to regularize the segmentation. Nonetheless, the sensitivity to initialization often limits their performance, especially for segmenting organs with large shape variations. In this paper, we propose a novel approach to guide deformable models, thus making them robust against arbitrary initializations. Specifically, we learn a displacement regressor, which predicts 3D displacement from any image voxel to the target organ boundary based on the local patch appearance. This regressor provides a nonlocal external force for each vertex of deformable model, thus overcoming the initialization problem suffered by the traditional deformable models. To learn a reliable displacement regressor, two strategies are particularly proposed. 1) A multi-task random forest is proposed to learn the displacement regressor jointly with the organ classifier; 2) an auto-context model is used to iteratively enforce structural information during voxel-wise prediction. Extensive experiments on 313 planning CT scans of 313 patients show that our method achieves better results than alternative classification or regression based methods, and also several other existing methods in CT pelvic organ segmentation. PMID:26800531
Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images.
Pereira, Sergio; Pinto, Adriano; Alves, Victor; Silva, Carlos A
2016-05-01
Among brain tumors, gliomas are the most common and aggressive, leading to a very short life expectancy in their highest grade. Thus, treatment planning is a key stage to improve the quality of life of oncological patients. Magnetic resonance imaging (MRI) is a widely used imaging technique to assess these tumors, but the large amount of data produced by MRI prevents manual segmentation in a reasonable time, limiting the use of precise quantitative measurements in the clinical practice. So, automatic and reliable segmentation methods are required; however, the large spatial and structural variability among brain tumors make automatic segmentation a challenging problem. In this paper, we propose an automatic segmentation method based on Convolutional Neural Networks (CNN), exploring small 3 ×3 kernels. The use of small kernels allows designing a deeper architecture, besides having a positive effect against overfitting, given the fewer number of weights in the network. We also investigated the use of intensity normalization as a pre-processing step, which though not common in CNN-based segmentation methods, proved together with data augmentation to be very effective for brain tumor segmentation in MRI images. Our proposal was validated in the Brain Tumor Segmentation Challenge 2013 database (BRATS 2013), obtaining simultaneously the first position for the complete, core, and enhancing regions in Dice Similarity Coefficient metric (0.88, 0.83, 0.77) for the Challenge data set. Also, it obtained the overall first position by the online evaluation platform. We also participated in the on-site BRATS 2015 Challenge using the same model, obtaining the second place, with Dice Similarity Coefficient metric of 0.78, 0.65, and 0.75 for the complete, core, and enhancing regions, respectively.
Zhang, Xiangmin; Williams, Rachel; Wu, Xiaodong; Anderson, Donald D.; Sonka, Milan
2011-01-01
A novel method for simultaneous segmentation of multiple interacting surfaces belonging to multiple interacting objects, called LOGISMOS (layered optimal graph image segmentation of multiple objects and surfaces), is reported. The approach is based on the algorithmic incorporation of multiple spatial inter-relationships in a single n-dimensional graph, followed by graph optimization that yields a globally optimal solution. The LOGISMOS method’s utility and performance are demonstrated on a bone and cartilage segmentation task in the human knee joint. Although trained on only a relatively small number of nine example images, this system achieved good performance. Judged by dice similarity coefficients (DSC) using a leave-one-out test, DSC values of 0.84 ± 0.04, 0.80 ± 0.04 and 0.80 ± 0.04 were obtained for the femoral, tibial, and patellar cartilage regions, respectively. These are excellent DSC values, considering the narrow-sheet character of the cartilage regions. Similarly, low signed mean cartilage thickness errors were obtained when compared to a manually-traced independent standard in 60 randomly selected 3-D MR image datasets from the Osteoarthritis Initiative database—0.11 ± 0.24, 0.05 ± 0.23, and 0.03 ± 0.17 mm for the femoral, tibial, and patellar cartilage thickness, respectively. The average signed surface positioning errors for the six detected surfaces ranged from 0.04 ± 0.12 mm to 0.16 ± 0.22 mm. The reported LOGISMOS framework provides robust and accurate segmentation of the knee joint bone and cartilage surfaces of the femur, tibia, and patella. As a general segmentation tool, the developed framework can be applied to a broad range of multiobject multisurface segmentation problems. PMID:20643602
Registration of segmented histological images using thin plate splines and belief propagation
NASA Astrophysics Data System (ADS)
Kybic, Jan
2014-03-01
We register images based on their multiclass segmentations, for cases when correspondence of local features cannot be established. A discrete mutual information is used as a similarity criterion. It is evaluated at a sparse set of location on the interfaces between classes. A thin-plate spline regularization is approximated by pairwise interactions. The problem is cast into a discrete setting and solved efficiently by belief propagation. Further speedup and robustness is provided by a multiresolution framework. Preliminary experiments suggest that our method can provide similar registration quality to standard methods at a fraction of the computational cost.
Sun, Shanhui; Sonka, Milan; Beichel, Reinhard R
2013-01-01
Recently, the optimal surface finding (OSF) and layered optimal graph image segmentation of multiple objects and surfaces (LOGISMOS) approaches have been reported with applications to medical image segmentation tasks. While providing high levels of performance, these approaches may locally fail in the presence of pathology or other local challenges. Due to the image data variability, finding a suitable cost function that would be applicable to all image locations may not be feasible. This paper presents a new interactive refinement approach for correcting local segmentation errors in the automated OSF-based segmentation. A hybrid desktop/virtual reality user interface was developed for efficient interaction with the segmentations utilizing state-of-the-art stereoscopic visualization technology and advanced interaction techniques. The user interface allows a natural and interactive manipulation of 3-D surfaces. The approach was evaluated on 30 test cases from 18 CT lung datasets, which showed local segmentation errors after employing an automated OSF-based lung segmentation. The performed experiments exhibited significant increase in performance in terms of mean absolute surface distance errors (2.54±0.75 mm prior to refinement vs. 1.11±0.43 mm post-refinement, p≪0.001). Speed of the interactions is one of the most important aspects leading to the acceptance or rejection of the approach by users expecting real-time interaction experience. The average algorithm computing time per refinement iteration was 150 ms, and the average total user interaction time required for reaching complete operator satisfaction was about 2 min per case. This time was mostly spent on human-controlled manipulation of the object to identify whether additional refinement was necessary and to approve the final segmentation result. The reported principle is generally applicable to segmentation problems beyond lung segmentation in CT scans as long as the underlying segmentation utilizes the OSF framework. The two reported segmentation refinement tools were optimized for lung segmentation and might need some adaptation for other application domains. Copyright © 2013 Elsevier Ltd. All rights reserved.
Variational-based segmentation of bio-pores in tomographic images
NASA Astrophysics Data System (ADS)
Bauer, Benjamin; Cai, Xiaohao; Peth, Stephan; Schladitz, Katja; Steidl, Gabriele
2017-01-01
X-ray computed tomography (CT) combined with a quantitative analysis of the resulting volume images is a fruitful technique in soil science. However, the variations in X-ray attenuation due to different soil components keep the segmentation of single components within these highly heterogeneous samples a challenging problem. Particularly demanding are bio-pores due to their elongated shape and the low gray value difference to the surrounding soil structure. Recently, variational models in connection with algorithms from convex optimization were successfully applied for image segmentation. In this paper we apply these methods for the first time for the segmentation of bio-pores in CT images of soil samples. We introduce a novel convex model which enforces smooth boundaries of bio-pores and takes the varying attenuation values in the depth into account. Segmentation results are reported for different real-world 3D data sets as well as for simulated data. These results are compared with two gray value thresholding methods, namely indicator kriging and a global thresholding procedure, and with a morphological approach. Pros and cons of the methods are assessed by considering geometric features of the segmented bio-pore systems. The variational approach features well-connected smooth pores while not detecting smaller or shallower pores. This is an advantage in cases where the main bio-pores network is of interest and where infillings, e.g., excrements of earthworms, would result in losing pore connections as observed for the other thresholding methods.
Optimal retinal cyst segmentation from OCT images
NASA Astrophysics Data System (ADS)
Oguz, Ipek; Zhang, Li; Abramoff, Michael D.; Sonka, Milan
2016-03-01
Accurate and reproducible segmentation of cysts and fluid-filled regions from retinal OCT images is an important step allowing quantification of the disease status, longitudinal disease progression, and response to therapy in wet-pathology retinal diseases. However, segmentation of fluid-filled regions from OCT images is a challenging task due to their inhomogeneous appearance, the unpredictability of their number, size and location, as well as the intensity profile similarity between such regions and certain healthy tissue types. While machine learning techniques can be beneficial for this task, they require large training datasets and are often over-fitted to the appearance models of specific scanner vendors. We propose a knowledge-based approach that leverages a carefully designed cost function and graph-based segmentation techniques to provide a vendor-independent solution to this problem. We illustrate the results of this approach on two publicly available datasets with a variety of scanner vendors and retinal disease status. Compared to a previous machine-learning based approach, the volume similarity error was dramatically reduced from 81:3+/-56:4% to 22:2+/-21:3% (paired t-test, p << 0:001).
Regional SAR Image Segmentation Based on Fuzzy Clustering with Gamma Mixture Model
NASA Astrophysics Data System (ADS)
Li, X. L.; Zhao, Q. H.; Li, Y.
2017-09-01
Most of stochastic based fuzzy clustering algorithms are pixel-based, which can not effectively overcome the inherent speckle noise in SAR images. In order to deal with the problem, a regional SAR image segmentation algorithm based on fuzzy clustering with Gamma mixture model is proposed in this paper. First, initialize some generating points randomly on the image, the image domain is divided into many sub-regions using Voronoi tessellation technique. Each sub-region is regarded as a homogeneous area in which the pixels share the same cluster label. Then, assume the probability of the pixel to be a Gamma mixture model with the parameters respecting to the cluster which the pixel belongs to. The negative logarithm of the probability represents the dissimilarity measure between the pixel and the cluster. The regional dissimilarity measure of one sub-region is defined as the sum of the measures of pixels in the region. Furthermore, the Markov Random Field (MRF) model is extended from pixels level to Voronoi sub-regions, and then the regional objective function is established under the framework of fuzzy clustering. The optimal segmentation results can be obtained by the solution of model parameters and generating points. Finally, the effectiveness of the proposed algorithm can be proved by the qualitative and quantitative analysis from the segmentation results of the simulated and real SAR images.
Teng, Dongdong; Xiong, Yi; Liu, Lilin; Wang, Biao
2015-03-09
Existing multiview three-dimensional (3D) display technologies encounter discontinuous motion parallax problem, due to a limited number of stereo-images which are presented to corresponding sub-viewing zones (SVZs). This paper proposes a novel multiview 3D display system to obtain continuous motion parallax by using a group of planar aligned OLED microdisplays. Through blocking partial light-rays by baffles inserted between adjacent OLED microdisplays, transitional stereo-image assembled by two spatially complementary segments from adjacent stereo-images is presented to a complementary fusing zone (CFZ) which locates between two adjacent SVZs. For a moving observation point, the spatial ratio of the two complementary segments evolves gradually, resulting in continuously changing transitional stereo-images and thus overcoming the problem of discontinuous motion parallax. The proposed display system employs projection-type architecture, taking the merit of full display resolution, but at the same time having a thin optical structure, offering great potentials for portable or mobile 3D display applications. Experimentally, a prototype display system is demonstrated by 9 OLED microdisplays.
Automatic segmentation of thermal images of diabetic-at-risk feet using the snakes algorithm
NASA Astrophysics Data System (ADS)
Etehadtavakol, Mahnaz; Ng, E. Y. K.; Kaabouch, Naima
2017-11-01
Diabetes is a disease with multi-systemic problems. It is a leading cause of death, medical costs, and loss of productivity. Foot ulcers are one generally known problem of uncontrolled diabetes that can lead to amputation signs of foot ulcers are not always obvious. Sometimes, symptoms won't even show up until ulcer is infected. Hence, identification of pre-ulceration of the plantar surface of the foot in diabetics is beneficial. Thermography has the potential to identify regions of the plantar with no evidence of ulcer but yet risk. Thermography is a technique that is safe, easy, non-invasive, with no contact, and repeatable. In this study, 59 thermographic images of the plantar foot of patients with diabetic neuropathy are implemented using the snakes algorithm to separate two feet from background automatically and separating the right foot from the left on each image. The snakes algorithm both separates the right and left foot into segmented different clusters according to their temperatures. The hottest regions will have the highest risk of ulceration for each foot. This algorithm also worked perfectly for all the current images.
NASA Astrophysics Data System (ADS)
Ye, L.; Wu, B.
2017-09-01
High-resolution imagery is an attractive option for surveying and mapping applications due to the advantages of high quality imaging, short revisit time, and lower cost. Automated reliable and dense image matching is essential for photogrammetric 3D data derivation. Such matching, in urban areas, however, is extremely difficult, owing to the complexity of urban textures and severe occlusion problems on the images caused by tall buildings. Aimed at exploiting high-resolution imagery for 3D urban modelling applications, this paper presents an integrated image matching and segmentation approach for reliable dense matching of high-resolution imagery in urban areas. The approach is based on the framework of our existing self-adaptive triangulation constrained image matching (SATM), but incorporates three novel aspects to tackle the image matching difficulties in urban areas: 1) occlusion filtering based on image segmentation, 2) segment-adaptive similarity correlation to reduce the similarity ambiguity, 3) improved dense matching propagation to provide more reliable matches in urban areas. Experimental analyses were conducted using aerial images of Vaihingen, Germany and high-resolution satellite images in Hong Kong. The photogrammetric point clouds were generated, from which digital surface models (DSMs) were derived. They were compared with the corresponding airborne laser scanning data and the DSMs generated from the Semi-Global matching (SGM) method. The experimental results show that the proposed approach is able to produce dense and reliable matches comparable to SGM in flat areas, while for densely built-up areas, the proposed method performs better than SGM. The proposed method offers an alternative solution for 3D surface reconstruction in urban areas.
NASA Astrophysics Data System (ADS)
Arhatari, Benedicta D.; Abbey, Brian
2018-01-01
Ross filter pairs have recently been demonstrated as a highly effective means of producing quasi-monoenergetic beams from polychromatic X-ray sources. They have found applications in both X-ray spectroscopy and for elemental separation in X-ray computed tomography (XCT). Here we explore whether they could be applied to the problem of metal artefact reduction (MAR) for applications in medical imaging. Metal artefacts are a common problem in X-ray imaging of metal implants embedded in bone and soft tissue. A number of data post-processing approaches to MAR have been proposed in the literature, however these can be time-consuming and sometimes have limited efficacy. Here we describe and demonstrate an alternative approach based on beam conditioning using Ross filter pairs. This approach obviates the need for any complex post-processing of the data and enables MAR and segmentation from the surrounding tissue by exploiting the absorption edge contrast of the implant.
Image retrieval for identifying house plants
NASA Astrophysics Data System (ADS)
Kebapci, Hanife; Yanikoglu, Berrin; Unal, Gozde
2010-02-01
We present a content-based image retrieval system for plant identification which is intended for providing users with a simple method to locate information about their house plants. A plant image consists of a collection of overlapping leaves and possibly flowers, which makes the problem challenging. We studied the suitability of various well-known color, texture and shape features for this problem, as well as introducing some new ones. The features are extracted from the general plant region that is segmented from the background using the max-flow min-cut technique. Results on a database of 132 different plant images show promise (in about 72% of the queries, the correct plant image is retrieved among the top-15 results).
An improved pulse coupled neural network with spectral residual for infrared pedestrian segmentation
NASA Astrophysics Data System (ADS)
He, Fuliang; Guo, Yongcai; Gao, Chao
2017-12-01
Pulse coupled neural network (PCNN) has become a significant tool for the infrared pedestrian segmentation, and a variety of relevant methods have been developed at present. However, these existing models commonly have several problems of the poor adaptability of infrared noise, the inaccuracy of segmentation results, and the fairly complex determination of parameters in current methods. This paper presents an improved PCNN model that integrates the simplified framework and spectral residual to alleviate the above problem. In this model, firstly, the weight matrix of the feeding input field is designed by the anisotropic Gaussian kernels (ANGKs), in order to suppress the infrared noise effectively. Secondly, the normalized spectral residual saliency is introduced as linking coefficient to enhance the edges and structural characteristics of segmented pedestrians remarkably. Finally, the improved dynamic threshold based on the average gray values of the iterative segmentation is employed to simplify the original PCNN model. Experiments on the IEEE OTCBVS benchmark and the infrared pedestrian image database built by our laboratory, demonstrate that the superiority of both subjective visual effects and objective quantitative evaluations in information differences and segmentation errors in our model, compared with other classic segmentation methods.
Segmentation of the spinous process and its acoustic shadow in vertebral ultrasound images.
Berton, Florian; Cheriet, Farida; Miron, Marie-Claude; Laporte, Catherine
2016-05-01
Spinal ultrasound imaging is emerging as a low-cost, radiation-free alternative to conventional X-ray imaging for the clinical follow-up of patients with scoliosis. Currently, deformity measurement relies almost entirely on manual identification of key vertebral landmarks. However, the interpretation of vertebral ultrasound images is challenging, primarily because acoustic waves are entirely reflected by bone. To alleviate this problem, we propose an algorithm to segment these images into three regions: the spinous process, its acoustic shadow and other tissues. This method consists, first, in the extraction of several image features and the selection of the most relevant ones for the discrimination of the three regions. Then, using this set of features and linear discriminant analysis, each pixel of the image is classified as belonging to one of the three regions. Finally, the image is segmented by regularizing the pixel-wise classification results to account for some geometrical properties of vertebrae. The feature set was first validated by analyzing the classification results across a learning database. The database contained 107 vertebral ultrasound images acquired with convex and linear probes. Classification rates of 84%, 92% and 91% were achieved for the spinous process, the acoustic shadow and other tissues, respectively. Dice similarity coefficients of 0.72 and 0.88 were obtained respectively for the spinous process and acoustic shadow, confirming that the proposed method accurately segments the spinous process and its acoustic shadow in vertebral ultrasound images. Furthermore, the centroid of the automatically segmented spinous process was located at an average distance of 0.38 mm from that of the manually labeled spinous process, which is on the order of image resolution. This suggests that the proposed method is a promising tool for the measurement of the Spinous Process Angle and, more generally, for assisting ultrasound-based assessment of scoliosis progression. Copyright © 2016 Elsevier Ltd. All rights reserved.
Janowczyk, Andrew; Doyle, Scott; Gilmore, Hannah; Madabhushi, Anant
2018-01-01
Deep learning (DL) has recently been successfully applied to a number of image analysis problems. However, DL approaches tend to be inefficient for segmentation on large image data, such as high-resolution digital pathology slide images. For example, typical breast biopsy images scanned at 40× magnification contain billions of pixels, of which usually only a small percentage belong to the class of interest. For a typical naïve deep learning scheme, parsing through and interrogating all the image pixels would represent hundreds if not thousands of hours of compute time using high performance computing environments. In this paper, we present a resolution adaptive deep hierarchical (RADHicaL) learning scheme wherein DL networks at lower resolutions are leveraged to determine if higher levels of magnification, and thus computation, are necessary to provide precise results. We evaluate our approach on a nuclear segmentation task with a cohort of 141 ER+ breast cancer images and show we can reduce computation time on average by about 85%. Expert annotations of 12,000 nuclei across these 141 images were employed for quantitative evaluation of RADHicaL. A head-to-head comparison with a naïve DL approach, operating solely at the highest magnification, yielded the following performance metrics: .9407 vs .9854 Detection Rate, .8218 vs .8489 F -score, .8061 vs .8364 true positive rate and .8822 vs 0.8932 positive predictive value. Our performance indices compare favourably with state of the art nuclear segmentation approaches for digital pathology images.
Improved 3D live-wire method with application to 3D CT chest image analysis
NASA Astrophysics Data System (ADS)
Lu, Kongkuo; Higgins, William E.
2006-03-01
The definition of regions of interests (ROIs), such as suspect cancer nodules or lymph nodes in 3D CT chest images, is often difficult because of the complexity of the phenomena that give rise to them. Manual slice tracing has been used widely for years for such problems, because it is easy to implement and guaranteed to work. But the manual method is extremely time-consuming, especially for high-solution 3D images which may have hundreds of slices, and it is subject to operator biases. Numerous automated image-segmentation methods have been proposed, but they are generally strongly application dependent, and even the "most robust" methods have difficulty in defining complex anatomical ROIs. To address this problem, the semi-automatic interactive paradigm referred to as "live wire" segmentation has been proposed by researchers. In live-wire segmentation, the human operator interactively defines an ROI's boundary guided by an active automated method which suggests what to define. This process in general is far faster, more reproducible and accurate than manual tracing, while, at the same time, permitting the definition of complex ROIs having ill-defined boundaries. We propose a 2D live-wire method employing an improved cost over previous works. In addition, we define a new 3D live-wire formulation that enables rapid definition of 3D ROIs. The method only requires the human operator to consider a few slices in general. Experimental results indicate that the new 2D and 3D live-wire approaches are efficient, allow for high reproducibility, and are reliable for 2D and 3D object segmentation.
Wu, Jing; Philip, Ana-Maria; Podkowinski, Dominika; Gerendas, Bianca S; Langs, Georg; Simader, Christian; Waldstein, Sebastian M; Schmidt-Erfurth, Ursula M
2016-01-01
Development of image analysis and machine learning methods for segmentation of clinically significant pathology in retinal spectral-domain optical coherence tomography (SD-OCT), used in disease detection and prediction, is limited due to the availability of expertly annotated reference data. Retinal segmentation methods use datasets that either are not publicly available, come from only one device, or use different evaluation methodologies making them difficult to compare. Thus we present and evaluate a multiple expert annotated reference dataset for the problem of intraretinal cystoid fluid (IRF) segmentation, a key indicator in exudative macular disease. In addition, a standardized framework for segmentation accuracy evaluation, applicable to other pathological structures, is presented. Integral to this work is the dataset used which must be fit for purpose for IRF segmentation algorithm training and testing. We describe here a multivendor dataset comprised of 30 scans. Each OCT scan for system training has been annotated by multiple graders using a proprietary system. Evaluation of the intergrader annotations shows a good correlation, thus making the reproducibly annotated scans suitable for the training and validation of image processing and machine learning based segmentation methods. The dataset will be made publicly available in the form of a segmentation Grand Challenge.
Wu, Jing; Philip, Ana-Maria; Podkowinski, Dominika; Gerendas, Bianca S.; Langs, Georg; Simader, Christian
2016-01-01
Development of image analysis and machine learning methods for segmentation of clinically significant pathology in retinal spectral-domain optical coherence tomography (SD-OCT), used in disease detection and prediction, is limited due to the availability of expertly annotated reference data. Retinal segmentation methods use datasets that either are not publicly available, come from only one device, or use different evaluation methodologies making them difficult to compare. Thus we present and evaluate a multiple expert annotated reference dataset for the problem of intraretinal cystoid fluid (IRF) segmentation, a key indicator in exudative macular disease. In addition, a standardized framework for segmentation accuracy evaluation, applicable to other pathological structures, is presented. Integral to this work is the dataset used which must be fit for purpose for IRF segmentation algorithm training and testing. We describe here a multivendor dataset comprised of 30 scans. Each OCT scan for system training has been annotated by multiple graders using a proprietary system. Evaluation of the intergrader annotations shows a good correlation, thus making the reproducibly annotated scans suitable for the training and validation of image processing and machine learning based segmentation methods. The dataset will be made publicly available in the form of a segmentation Grand Challenge. PMID:27579177
Slot angle detecting method for fiber fixed chip
NASA Astrophysics Data System (ADS)
Zhang, Jiaquan; Wang, Jiliang; Zhou, Chaochao
2018-04-01
The slot angle of fiber fixed chip has a significant impact on performance of photoelectric devices. In order to solve the actual engineering problem, this paper put forward a detecting method based on imaging processing. Because the images have very low contrast that is hardly segmented, so this paper proposes imaging segment methods based on edge character. Then get fixed chip edge line slope k2 and calculate the fiber fixed slot line slope k1, which can be used calculating the slot angle. Lastly, test the repeatability and accuracy of system, which show that this method has very fast operation speed and good robustness. Clearly, it is also satisfied to the actual demand of fiber fixed chip slot angle detection.
Training time and quality of smartphone-based anterior segment screening in rural India
Ludwig, Cassie A; Newsom, Megan R; Jais, Alexandre; Myung, David J; Murthy, Somasheila I; Chang, Robert T
2017-01-01
Objective We aimed at evaluating the ability of individuals without ophthalmologic training to quickly capture high-quality images of the cornea by using a smartphone and low-cost anterior segment imaging adapter (the “EyeGo” prototype). Methods Seven volunteers photographed 1,502 anterior segments from 751 high school students in Varni, India, by using an iPhone 5S with an attached EyeGo adapter. Primary outcome measures were median photograph quality of the cornea and anterior segment of the eye (validated Fundus Photography vs Ophthalmoscopy Trial Outcomes in the Emergency Department [FOTO-ED] study; 1–5 scale; 5, best) and the time required to take each photograph. Volunteers were surveyed on their familiarity with using a smartphone (1–5 scale; 5, very comfortable) and comfort in assessing problems with the eye (1–5 scale; 5, very comfortable). Binomial logistic regression was performed using image quality (low quality: <4; high quality: ≥4) as the dependent variable and age, comfort using a smartphone, and comfort in assessing problems with the eye as independent variables. Results Six of the seven volunteers captured high-quality (median ≥4/5) images with a median time of ≤25 seconds per eye for all the eyes screened. Four of the seven volunteers demonstrated significant reductions in time to acquire photographs (P1=0.01, P5=0.01, P6=0.01, and P7=0.01), and three of the seven volunteers demonstrated significant improvements in the quality of photographs between the first 100 and last 100 eyes screened (P1<0.001, P2<0.001, and P6<0.01). Self-reported comfort using a smartphone (odds ratio [OR] =1.25; 95% CI =1.13 to 1.39) and self-reported comfort diagnosing eye conditions (OR =1.17; 95% CI =1.07 to 1.29) were significantly associated with an ability to take a high-quality image (≥4/5). There was a nonsignificant association between younger age and ability to take a high-quality image. Conclusion Individuals without ophthalmic training were able to quickly capture a high-quality magnified view of the anterior segment of the eye by using a smartphone with an attached imaging adapter. PMID:28761328
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, L; Tan, S; Lu, W
Purpose: To propose a new variational method which couples image restoration with tumor segmentation for PET images using multiple regularizations. Methods: Partial volume effect (PVE) is a major degrading factor impacting tumor segmentation accuracy in PET imaging. The existing segmentation methods usually need to take prior calibrations to compensate PVE and they are highly system-dependent. Taking into account that image restoration and segmentation can promote each other and they are tightly coupled, we proposed a variational method to solve the two problems together. Our method integrated total variation (TV) semi-blind deconvolution and Mumford-Shah (MS) segmentation. The TV norm was usedmore » on edges to protect the edge information, and the L{sub 2} norm was used to avoid staircase effect in the no-edge area. The blur kernel was constrained to the Gaussian model parameterized by its variance and we assumed that the variances in the X-Y and Z directions are different. The energy functional was iteratively optimized by an alternate minimization algorithm. Segmentation performance was tested on eleven patients with non-Hodgkin’s lymphoma, and evaluated by Dice similarity index (DSI) and classification error (CE). For comparison, seven other widely used methods were also tested and evaluated. Results: The combination of TV and L{sub 2} regularizations effectively improved the segmentation accuracy. The average DSI increased by around 0.1 than using either the TV or the L{sub 2} norm. The proposed method was obviously superior to other tested methods. It has an average DSI and CE of 0.80 and 0.41, while the FCM method — the second best one — has only an average DSI and CE of 0.66 and 0.64. Conclusion: Coupling image restoration and segmentation can handle PVE and thus improves tumor segmentation accuracy in PET. Alternate use of TV and L2 regularizations can further improve the performance of the algorithm. This work was supported in part by National Natural Science Foundation of China (NNSFC), under Grant No.61375018, and Fundamental Research Funds for the Central Universities, under Grant No. 2012QN086. Wei Lu was supported in part by the National Institutes of Health (NIH) Grant No. R01 CA172638.« less
NASA Astrophysics Data System (ADS)
Kidoh, Masafumi; Shen, Zeyang; Suzuki, Yuki; Ciuffo, Luisa; Ashikaga, Hiroshi; Fung, George S. K.; Otake, Yoshito; Zimmerman, Stefan L.; Lima, Joao A. C.; Higuchi, Takahiro; Lee, Okkyun; Sato, Yoshinobu; Becker, Lewis C.; Fishman, Elliot K.; Taguchi, Katsuyuki
2017-03-01
We have developed a digitally synthesized patient which we call "Zach" (Zero millisecond Adjustable Clinical Heart) phantom, which allows for an access to the ground truth and assessment of image-based cardiac functional analysis (CFA) using CT images with clinically realistic settings. The study using Zach phantom revealed a major problem with image-based CFA: "False dyssynchrony." Even though the true motion of wall segments is in synchrony, it may appear to be dyssynchrony with the reconstructed cardiac CT images. It is attributed to how cardiac images are reconstructed and how wall locations are updated over cardiac phases. The presence and the degree of false dyssynchrony may vary from scan-to-scan, which could degrade the accuracy and the repeatability (or precision) of image-based CT-CFA exams.
Coupled dictionary learning for joint MR image restoration and segmentation
NASA Astrophysics Data System (ADS)
Yang, Xuesong; Fan, Yong
2018-03-01
To achieve better segmentation of MR images, image restoration is typically used as a preprocessing step, especially for low-quality MR images. Recent studies have demonstrated that dictionary learning methods could achieve promising performance for both image restoration and image segmentation. These methods typically learn paired dictionaries of image patches from different sources and use a common sparse representation to characterize paired image patches, such as low-quality image patches and their corresponding high quality counterparts for the image restoration, and image patches and their corresponding segmentation labels for the image segmentation. Since learning these dictionaries jointly in a unified framework may improve the image restoration and segmentation simultaneously, we propose a coupled dictionary learning method to concurrently learn dictionaries for joint image restoration and image segmentation based on sparse representations in a multi-atlas image segmentation framework. Particularly, three dictionaries, including a dictionary of low quality image patches, a dictionary of high quality image patches, and a dictionary of segmentation label patches, are learned in a unified framework so that the learned dictionaries of image restoration and segmentation can benefit each other. Our method has been evaluated for segmenting the hippocampus in MR T1 images collected with scanners of different magnetic field strengths. The experimental results have demonstrated that our method achieved better image restoration and segmentation performance than state of the art dictionary learning and sparse representation based image restoration and image segmentation methods.
Fusion of laser and image sensory data for 3-D modeling of the free navigation space
NASA Technical Reports Server (NTRS)
Mass, M.; Moghaddamzadeh, A.; Bourbakis, N.
1994-01-01
A fusion technique which combines two different types of sensory data for 3-D modeling of a navigation space is presented. The sensory data is generated by a vision camera and a laser scanner. The problem of different resolutions for these sensory data was solved by reduced image resolution, fusion of different data, and use of a fuzzy image segmentation technique.
Land Cover Classification in a Complex Urban-Rural Landscape with Quickbird Imagery
Moran, Emilio Federico.
2010-01-01
High spatial resolution images have been increasingly used for urban land use/cover classification, but the high spectral variation within the same land cover, the spectral confusion among different land covers, and the shadow problem often lead to poor classification performance based on the traditional per-pixel spectral-based classification methods. This paper explores approaches to improve urban land cover classification with Quickbird imagery. Traditional per-pixel spectral-based supervised classification, incorporation of textural images and multispectral images, spectral-spatial classifier, and segmentation-based classification are examined in a relatively new developing urban landscape, Lucas do Rio Verde in Mato Grosso State, Brazil. This research shows that use of spatial information during the image classification procedure, either through the integrated use of textural and spectral images or through the use of segmentation-based classification method, can significantly improve land cover classification performance. PMID:21643433
A Hybrid Method for Pancreas Extraction from CT Image Based on Level Set Methods
Tan, Hanqing; Fujita, Hiroshi
2013-01-01
This paper proposes a novel semiautomatic method to extract the pancreas from abdominal CT images. Traditional level set and region growing methods that request locating initial contour near the final boundary of object have problem of leakage to nearby tissues of pancreas region. The proposed method consists of a customized fast-marching level set method which generates an optimal initial pancreas region to solve the problem that the level set method is sensitive to the initial contour location and a modified distance regularized level set method which extracts accurate pancreas. The novelty in our method is the proper selection and combination of level set methods, furthermore an energy-decrement algorithm and an energy-tune algorithm are proposed to reduce the negative impact of bonding force caused by connected tissue whose intensity is similar with pancreas. As a result, our method overcomes the shortages of oversegmentation at weak boundary and can accurately extract pancreas from CT images. The proposed method is compared to other five state-of-the-art medical image segmentation methods based on a CT image dataset which contains abdominal images from 10 patients. The evaluated results demonstrate that our method outperforms other methods by achieving higher accuracy and making less false segmentation in pancreas extraction. PMID:24066016
Van Valen, David A; Kudo, Takamasa; Lane, Keara M; Macklin, Derek N; Quach, Nicolas T; DeFelice, Mialy M; Maayan, Inbal; Tanouchi, Yu; Ashley, Euan A; Covert, Markus W
2016-11-01
Live-cell imaging has opened an exciting window into the role cellular heterogeneity plays in dynamic, living systems. A major critical challenge for this class of experiments is the problem of image segmentation, or determining which parts of a microscope image correspond to which individual cells. Current approaches require many hours of manual curation and depend on approaches that are difficult to share between labs. They are also unable to robustly segment the cytoplasms of mammalian cells. Here, we show that deep convolutional neural networks, a supervised machine learning method, can solve this challenge for multiple cell types across the domains of life. We demonstrate that this approach can robustly segment fluorescent images of cell nuclei as well as phase images of the cytoplasms of individual bacterial and mammalian cells from phase contrast images without the need for a fluorescent cytoplasmic marker. These networks also enable the simultaneous segmentation and identification of different mammalian cell types grown in co-culture. A quantitative comparison with prior methods demonstrates that convolutional neural networks have improved accuracy and lead to a significant reduction in curation time. We relay our experience in designing and optimizing deep convolutional neural networks for this task and outline several design rules that we found led to robust performance. We conclude that deep convolutional neural networks are an accurate method that require less curation time, are generalizable to a multiplicity of cell types, from bacteria to mammalian cells, and expand live-cell imaging capabilities to include multi-cell type systems.
Van Valen, David A.; Kudo, Takamasa; Lane, Keara M.; ...
2016-11-04
Live-cell imaging has opened an exciting window into the role cellular heterogeneity plays in dynamic, living systems. A major critical challenge for this class of experiments is the problem of image segmentation, or determining which parts of a microscope image correspond to which individual cells. Current approaches require many hours of manual curation and depend on approaches that are difficult to share between labs. They are also unable to robustly segment the cytoplasms of mammalian cells. Here, we show that deep convolutional neural networks, a supervised machine learning method, can solve this challenge for multiple cell types across the domainsmore » of life. We demonstrate that this approach can robustly segment fluorescent images of cell nuclei as well as phase images of the cytoplasms of individual bacterial and mammalian cells from phase contrast images without the need for a fluorescent cytoplasmic marker. These networks also enable the simultaneous segmentation and identification of different mammalian cell types grown in co-culture. A quantitative comparison with prior methods demonstrates that convolutional neural networks have improved accuracy and lead to a significant reduction in curation time. We relay our experience in designing and optimizing deep convolutional neural networks for this task and outline several design rules that we found led to robust performance. We conclude that deep convolutional neural networks are an accurate method that require less curation time, are generalizable to a multiplicity of cell types, from bacteria to mammalian cells, and expand live-cell imaging capabilities to include multi-cell type systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Valen, David A.; Kudo, Takamasa; Lane, Keara M.
Live-cell imaging has opened an exciting window into the role cellular heterogeneity plays in dynamic, living systems. A major critical challenge for this class of experiments is the problem of image segmentation, or determining which parts of a microscope image correspond to which individual cells. Current approaches require many hours of manual curation and depend on approaches that are difficult to share between labs. They are also unable to robustly segment the cytoplasms of mammalian cells. Here, we show that deep convolutional neural networks, a supervised machine learning method, can solve this challenge for multiple cell types across the domainsmore » of life. We demonstrate that this approach can robustly segment fluorescent images of cell nuclei as well as phase images of the cytoplasms of individual bacterial and mammalian cells from phase contrast images without the need for a fluorescent cytoplasmic marker. These networks also enable the simultaneous segmentation and identification of different mammalian cell types grown in co-culture. A quantitative comparison with prior methods demonstrates that convolutional neural networks have improved accuracy and lead to a significant reduction in curation time. We relay our experience in designing and optimizing deep convolutional neural networks for this task and outline several design rules that we found led to robust performance. We conclude that deep convolutional neural networks are an accurate method that require less curation time, are generalizable to a multiplicity of cell types, from bacteria to mammalian cells, and expand live-cell imaging capabilities to include multi-cell type systems.« less
Van Valen, David A.; Lane, Keara M.; Quach, Nicolas T.; Maayan, Inbal
2016-01-01
Live-cell imaging has opened an exciting window into the role cellular heterogeneity plays in dynamic, living systems. A major critical challenge for this class of experiments is the problem of image segmentation, or determining which parts of a microscope image correspond to which individual cells. Current approaches require many hours of manual curation and depend on approaches that are difficult to share between labs. They are also unable to robustly segment the cytoplasms of mammalian cells. Here, we show that deep convolutional neural networks, a supervised machine learning method, can solve this challenge for multiple cell types across the domains of life. We demonstrate that this approach can robustly segment fluorescent images of cell nuclei as well as phase images of the cytoplasms of individual bacterial and mammalian cells from phase contrast images without the need for a fluorescent cytoplasmic marker. These networks also enable the simultaneous segmentation and identification of different mammalian cell types grown in co-culture. A quantitative comparison with prior methods demonstrates that convolutional neural networks have improved accuracy and lead to a significant reduction in curation time. We relay our experience in designing and optimizing deep convolutional neural networks for this task and outline several design rules that we found led to robust performance. We conclude that deep convolutional neural networks are an accurate method that require less curation time, are generalizable to a multiplicity of cell types, from bacteria to mammalian cells, and expand live-cell imaging capabilities to include multi-cell type systems. PMID:27814364
Hybrid Artificial Root Foraging Optimizer Based Multilevel Threshold for Image Segmentation
Liu, Yang; Liu, Junfei
2016-01-01
This paper proposes a new plant-inspired optimization algorithm for multilevel threshold image segmentation, namely, hybrid artificial root foraging optimizer (HARFO), which essentially mimics the iterative root foraging behaviors. In this algorithm the new growth operators of branching, regrowing, and shrinkage are initially designed to optimize continuous space search by combining root-to-root communication and coevolution mechanism. With the auxin-regulated scheme, various root growth operators are guided systematically. With root-to-root communication, individuals exchange information in different efficient topologies, which essentially improve the exploration ability. With coevolution mechanism, the hierarchical spatial population driven by evolutionary pressure of multiple subpopulations is structured, which ensure that the diversity of root population is well maintained. The comparative results on a suit of benchmarks show the superiority of the proposed algorithm. Finally, the proposed HARFO algorithm is applied to handle the complex image segmentation problem based on multilevel threshold. Computational results of this approach on a set of tested images show the outperformance of the proposed algorithm in terms of optimization accuracy computation efficiency. PMID:27725826
Hybrid Artificial Root Foraging Optimizer Based Multilevel Threshold for Image Segmentation.
Liu, Yang; Liu, Junfei; Tian, Liwei; Ma, Lianbo
2016-01-01
This paper proposes a new plant-inspired optimization algorithm for multilevel threshold image segmentation, namely, hybrid artificial root foraging optimizer (HARFO), which essentially mimics the iterative root foraging behaviors. In this algorithm the new growth operators of branching, regrowing, and shrinkage are initially designed to optimize continuous space search by combining root-to-root communication and coevolution mechanism. With the auxin-regulated scheme, various root growth operators are guided systematically. With root-to-root communication, individuals exchange information in different efficient topologies, which essentially improve the exploration ability. With coevolution mechanism, the hierarchical spatial population driven by evolutionary pressure of multiple subpopulations is structured, which ensure that the diversity of root population is well maintained. The comparative results on a suit of benchmarks show the superiority of the proposed algorithm. Finally, the proposed HARFO algorithm is applied to handle the complex image segmentation problem based on multilevel threshold. Computational results of this approach on a set of tested images show the outperformance of the proposed algorithm in terms of optimization accuracy computation efficiency.
Kopriva, Ivica; Hadžija, Mirko; Popović Hadžija, Marijana; Korolija, Marina; Cichocki, Andrzej
2011-01-01
A methodology is proposed for nonlinear contrast-enhanced unsupervised segmentation of multispectral (color) microscopy images of principally unstained specimens. The methodology exploits spectral diversity and spatial sparseness to find anatomical differences between materials (cells, nuclei, and background) present in the image. It consists of rth-order rational variety mapping (RVM) followed by matrix/tensor factorization. Sparseness constraint implies duality between nonlinear unsupervised segmentation and multiclass pattern assignment problems. Classes not linearly separable in the original input space become separable with high probability in the higher-dimensional mapped space. Hence, RVM mapping has two advantages: it takes implicitly into account nonlinearities present in the image (ie, they are not required to be known) and it increases spectral diversity (ie, contrast) between materials, due to increased dimensionality of the mapped space. This is expected to improve performance of systems for automated classification and analysis of microscopic histopathological images. The methodology was validated using RVM of the second and third orders of the experimental multispectral microscopy images of unstained sciatic nerve fibers (nervus ischiadicus) and of unstained white pulp in the spleen tissue, compared with a manually defined ground truth labeled by two trained pathophysiologists. The methodology can also be useful for additional contrast enhancement of images of stained specimens. PMID:21708116
NASA Astrophysics Data System (ADS)
Wang, Min; Cui, Qi; Sun, Yujie; Wang, Qiao
2018-07-01
In object-based image analysis (OBIA), object classification performance is jointly determined by image segmentation, sample or rule setting, and classifiers. Typically, as a crucial step to obtain object primitives, image segmentation quality significantly influences subsequent feature extraction and analyses. By contrast, template matching extracts specific objects from images and prevents shape defects caused by image segmentation. However, creating or editing templates is tedious and sometimes results in incomplete or inaccurate templates. In this study, we combine OBIA and template matching techniques to address these problems and aim for accurate photovoltaic panel (PVP) extraction from very high-resolution (VHR) aerial imagery. The proposed method is based on the previously proposed region-line primitive association framework, in which complementary information between region (segment) and line (straight line) primitives is utilized to achieve a more powerful performance than routine OBIA. Several novel concepts, including the mutual fitting ratio and best-fitting template based on region-line primitive association analyses, are proposed. Automatic template generation and matching method for PVP extraction from VHR imagery are designed for concept and model validation. Results show that the proposed method can successfully extract PVPs without any user-specified matching template or training sample. High user independency and accuracy are the main characteristics of the proposed method in comparison with routine OBIA and template matching techniques.
3D prostate TRUS segmentation using globally optimized volume-preserving prior.
Qiu, Wu; Rajchl, Martin; Guo, Fumin; Sun, Yue; Ukwatta, Eranga; Fenster, Aaron; Yuan, Jing
2014-01-01
An efficient and accurate segmentation of 3D transrectal ultrasound (TRUS) images plays an important role in the planning and treatment of the practical 3D TRUS guided prostate biopsy. However, a meaningful segmentation of 3D TRUS images tends to suffer from US speckles, shadowing and missing edges etc, which make it a challenging task to delineate the correct prostate boundaries. In this paper, we propose a novel convex optimization based approach to extracting the prostate surface from the given 3D TRUS image, while preserving a new global volume-size prior. We, especially, study the proposed combinatorial optimization problem by convex relaxation and introduce its dual continuous max-flow formulation with the new bounded flow conservation constraint, which results in an efficient numerical solver implemented on GPUs. Experimental results using 12 patient 3D TRUS images show that the proposed approach while preserving the volume-size prior yielded a mean DSC of 89.5% +/- 2.4%, a MAD of 1.4 +/- 0.6 mm, a MAXD of 5.2 +/- 3.2 mm, and a VD of 7.5% +/- 6.2% in - 1 minute, deomonstrating the advantages of both accuracy and efficiency. In addition, the low standard deviation of the segmentation accuracy shows a good reliability of the proposed approach.
Zhang, Yue; Zou, Huanxin; Luo, Tiancheng; Qin, Xianxiang; Zhou, Shilin; Ji, Kefeng
2016-01-01
The superpixel segmentation algorithm, as a preprocessing technique, should show good performance in fast segmentation speed, accurate boundary adherence and homogeneous regularity. A fast superpixel segmentation algorithm by iterative edge refinement (IER) works well on optical images. However, it may generate poor superpixels for Polarimetric synthetic aperture radar (PolSAR) images due to the influence of strong speckle noise and many small-sized or slim regions. To solve these problems, we utilized a fast revised Wishart distance instead of Euclidean distance in the local relabeling of unstable pixels, and initialized unstable pixels as all the pixels substituted for the initial grid edge pixels in the initialization step. Then, postprocessing with the dissimilarity measure is employed to remove the generated small isolated regions as well as to preserve strong point targets. Finally, the superiority of the proposed algorithm is validated with extensive experiments on four simulated and two real-world PolSAR images from Experimental Synthetic Aperture Radar (ESAR) and Airborne Synthetic Aperture Radar (AirSAR) data sets, which demonstrate that the proposed method shows better performance with respect to several commonly used evaluation measures, even with about nine times higher computational efficiency, as well as fine boundary adherence and strong point targets preservation, compared with three state-of-the-art methods. PMID:27754385
Mishra, Ajay; Aloimonos, Yiannis
2009-01-01
The human visual system observes and understands a scene/image by making a series of fixations. Every fixation point lies inside a particular region of arbitrary shape and size in the scene which can either be an object or just a part of it. We define as a basic segmentation problem the task of segmenting that region containing the fixation point. Segmenting the region containing the fixation is equivalent to finding the enclosing contour- a connected set of boundary edge fragments in the edge map of the scene - around the fixation. This enclosing contour should be a depth boundary.We present here a novel algorithm that finds this bounding contour and achieves the segmentation of one object, given the fixation. The proposed segmentation framework combines monocular cues (color/intensity/texture) with stereo and/or motion, in a cue independent manner. The semantic robots of the immediate future will be able to use this algorithm to automatically find objects in any environment. The capability of automatically segmenting objects in their visual field can bring the visual processing to the next level. Our approach is different from current approaches. While existing work attempts to segment the whole scene at once into many areas, we segment only one image region, specifically the one containing the fixation point. Experiments with real imagery collected by our active robot and from the known databases 1 demonstrate the promise of the approach.
a Fast Segmentation Algorithm for C-V Model Based on Exponential Image Sequence Generation
NASA Astrophysics Data System (ADS)
Hu, J.; Lu, L.; Xu, J.; Zhang, J.
2017-09-01
For the island coastline segmentation, a fast segmentation algorithm for C-V model method based on exponential image sequence generation is proposed in this paper. The exponential multi-scale C-V model with level set inheritance and boundary inheritance is developed. The main research contributions are as follows: 1) the problems of the "holes" and "gaps" are solved when extraction coastline through the small scale shrinkage, low-pass filtering and area sorting of region. 2) the initial value of SDF (Signal Distance Function) and the level set are given by Otsu segmentation based on the difference of reflection SAR on land and sea, which are finely close to the coastline. 3) the computational complexity of continuous transition are successfully reduced between the different scales by the SDF and of level set inheritance. Experiment results show that the method accelerates the acquisition of initial level set formation, shortens the time of the extraction of coastline, at the same time, removes the non-coastline body part and improves the identification precision of the main body coastline, which automates the process of coastline segmentation.
Aircraft Segmentation in SAR Images Based on Improved Active Shape Model
NASA Astrophysics Data System (ADS)
Zhang, X.; Xiong, B.; Kuang, G.
2018-04-01
In SAR image interpretation, aircrafts are the important targets arousing much attention. However, it is far from easy to segment an aircraft from the background completely and precisely in SAR images. Because of the complex structure, different kinds of electromagnetic scattering take place on the aircraft surfaces. As a result, aircraft targets usually appear to be inhomogeneous and disconnected. It is a good idea to extract an aircraft target by the active shape model (ASM), since combination of the geometric information controls variations of the shape during the contour evolution. However, linear dimensionality reduction, used in classic ACM, makes the model rigid. It brings much trouble to segment different types of aircrafts. Aiming at this problem, an improved ACM based on ISOMAP is proposed in this paper. ISOMAP algorithm is used to extract the shape information of the training set and make the model flexible enough to deal with different aircrafts. The experiments based on real SAR data shows that the proposed method achieves obvious improvement in accuracy.
Fusion set selection with surrogate metric in multi-atlas based image segmentation
NASA Astrophysics Data System (ADS)
Zhao, Tingting; Ruan, Dan
2016-02-01
Multi-atlas based image segmentation sees unprecedented opportunities but also demanding challenges in the big data era. Relevant atlas selection before label fusion plays a crucial role in reducing potential performance loss from heterogeneous data quality and high computation cost from extensive data. This paper starts with investigating the image similarity metric (termed ‘surrogate’), an alternative to the inaccessible geometric agreement metric (termed ‘oracle’) in atlas relevance assessment, and probes into the problem of how to select the ‘most-relevant’ atlases and how many such atlases to incorporate. We propose an inference model to relate the surrogates and the oracle geometric agreement metrics. Based on this model, we quantify the behavior of the surrogates in mimicking oracle metrics for atlas relevance ordering. Finally, analytical insights on the choice of fusion set size are presented from a probabilistic perspective, with the integrated goal of including the most relevant atlases and excluding the irrelevant ones. Empirical evidence and performance assessment are provided based on prostate and corpus callosum segmentation.
NASA Astrophysics Data System (ADS)
Burgos, Ninon; Guerreiro, Filipa; McClelland, Jamie; Presles, Benoît; Modat, Marc; Nill, Simeon; Dearnaley, David; deSouza, Nandita; Oelfke, Uwe; Knopf, Antje-Christin; Ourselin, Sébastien; Cardoso, M. Jorge
2017-06-01
To tackle the problem of magnetic resonance imaging (MRI)-only radiotherapy treatment planning (RTP), we propose a multi-atlas information propagation scheme that jointly segments organs and generates pseudo x-ray computed tomography (CT) data from structural MR images (T1-weighted and T2-weighted). As the performance of the method strongly depends on the quality of the atlas database composed of multiple sets of aligned MR, CT and segmented images, we also propose a robust way of registering atlas MR and CT images, which combines structure-guided registration, and CT and MR image synthesis. We first evaluated the proposed framework in terms of segmentation and CT synthesis accuracy on 15 subjects with prostate cancer. The segmentations obtained with the proposed method were compared using the Dice score coefficient (DSC) to the manual segmentations. Mean DSCs of 0.73, 0.90, 0.77 and 0.90 were obtained for the prostate, bladder, rectum and femur heads, respectively. The mean absolute error (MAE) and the mean error (ME) were computed between the reference CTs (non-rigidly aligned to the MRs) and the pseudo CTs generated with the proposed method. The MAE was on average 45.7+/- 4.6 HU and the ME -1.6+/- 7.7 HU. We then performed a dosimetric evaluation by re-calculating plans on the pseudo CTs and comparing them to the plans optimised on the reference CTs. We compared the cumulative dose volume histograms (DVH) obtained for the pseudo CTs to the DVH obtained for the reference CTs in the planning target volume (PTV) located in the prostate, and in the organs at risk at different DVH points. We obtained average differences of -0.14 % in the PTV for {{D}98 % } , and between -0.14 % and 0.05% in the PTV, bladder, rectum and femur heads for D mean and {{D}2 % } . Overall, we demonstrate that the proposed framework is able to automatically generate accurate pseudo CT images and segmentations in the pelvic region, potentially bypassing the need for CT scan for accurate RTP.
NASA Astrophysics Data System (ADS)
Ham, S.; Oh, Y.; Choi, K.; Lee, I.
2018-05-01
Detecting unregistered buildings from aerial images is an important task for urban management such as inspection of illegal buildings in green belt or update of GIS database. Moreover, the data acquisition platform of photogrammetry is evolving from manned aircraft to UAVs (Unmanned Aerial Vehicles). However, it is very costly and time-consuming to detect unregistered buildings from UAV images since the interpretation of aerial images still relies on manual efforts. To overcome this problem, we propose a system which automatically detects unregistered buildings from UAV images based on deep learning methods. Specifically, we train a deconvolutional network with publicly opened geospatial data, semantically segment a given UAV image into a building probability map and compare the building map with existing GIS data. Through this procedure, we could detect unregistered buildings from UAV images automatically and efficiently. We expect that the proposed system can be applied for various urban management tasks such as monitoring illegal buildings or illegal land-use change.
White Matter Tract Segmentation as Multiple Linear Assignment Problems
Sharmin, Nusrat; Olivetti, Emanuele; Avesani, Paolo
2018-01-01
Diffusion magnetic resonance imaging (dMRI) allows to reconstruct the main pathways of axons within the white matter of the brain as a set of polylines, called streamlines. The set of streamlines of the whole brain is called the tractogram. Organizing tractograms into anatomically meaningful structures, called tracts, is known as the tract segmentation problem, with important applications to neurosurgical planning and tractometry. Automatic tract segmentation techniques can be unsupervised or supervised. A common criticism of unsupervised methods, like clustering, is that there is no guarantee to obtain anatomically meaningful tracts. In this work, we focus on supervised tract segmentation, which is driven by prior knowledge from anatomical atlases or from examples, i.e., segmented tracts from different subjects. We present a supervised tract segmentation method that segments a given tract of interest in the tractogram of a new subject using multiple examples as prior information. Our proposed tract segmentation method is based on the idea of streamline correspondence i.e., on finding corresponding streamlines across different tractograms. In the literature, streamline correspondence has been addressed with the nearest neighbor (NN) strategy. Differently, here we formulate the problem of streamline correspondence as a linear assignment problem (LAP), which is a cornerstone of combinatorial optimization. With respect to the NN, the LAP introduces a constraint of one-to-one correspondence between streamlines, that forces the correspondences to follow the local anatomical differences between the example and the target tract, neglected by the NN. In the proposed solution, we combined the Jonker-Volgenant algorithm (LAPJV) for solving the LAP together with an efficient way of computing the nearest neighbors of a streamline, which massively reduces the total amount of computations needed to segment a tract. Moreover, we propose a ranking strategy to merge correspondences coming from different examples. We validate the proposed method on tractograms generated from the human connectome project (HCP) dataset and compare the segmentations with the NN method and the ROI-based method. The results show that LAP-based segmentation is vastly more accurate than ROI-based segmentation and substantially more accurate than the NN strategy. We provide a Free/OpenSource implementation of the proposed method. PMID:29467600
White Matter Tract Segmentation as Multiple Linear Assignment Problems.
Sharmin, Nusrat; Olivetti, Emanuele; Avesani, Paolo
2017-01-01
Diffusion magnetic resonance imaging (dMRI) allows to reconstruct the main pathways of axons within the white matter of the brain as a set of polylines, called streamlines. The set of streamlines of the whole brain is called the tractogram. Organizing tractograms into anatomically meaningful structures, called tracts, is known as the tract segmentation problem, with important applications to neurosurgical planning and tractometry. Automatic tract segmentation techniques can be unsupervised or supervised. A common criticism of unsupervised methods, like clustering, is that there is no guarantee to obtain anatomically meaningful tracts. In this work, we focus on supervised tract segmentation, which is driven by prior knowledge from anatomical atlases or from examples, i.e., segmented tracts from different subjects. We present a supervised tract segmentation method that segments a given tract of interest in the tractogram of a new subject using multiple examples as prior information. Our proposed tract segmentation method is based on the idea of streamline correspondence i.e., on finding corresponding streamlines across different tractograms. In the literature, streamline correspondence has been addressed with the nearest neighbor (NN) strategy. Differently, here we formulate the problem of streamline correspondence as a linear assignment problem (LAP), which is a cornerstone of combinatorial optimization. With respect to the NN, the LAP introduces a constraint of one-to-one correspondence between streamlines, that forces the correspondences to follow the local anatomical differences between the example and the target tract, neglected by the NN. In the proposed solution, we combined the Jonker-Volgenant algorithm (LAPJV) for solving the LAP together with an efficient way of computing the nearest neighbors of a streamline, which massively reduces the total amount of computations needed to segment a tract. Moreover, we propose a ranking strategy to merge correspondences coming from different examples. We validate the proposed method on tractograms generated from the human connectome project (HCP) dataset and compare the segmentations with the NN method and the ROI-based method. The results show that LAP-based segmentation is vastly more accurate than ROI-based segmentation and substantially more accurate than the NN strategy. We provide a Free/OpenSource implementation of the proposed method.
Wang, Jinke; Cheng, Yuanzhi; Guo, Changyong; Wang, Yadong; Tamura, Shinichi
2016-05-01
Propose a fully automatic 3D segmentation framework to segment liver on challenging cases that contain the low contrast of adjacent organs and the presence of pathologies from abdominal CT images. First, all of the atlases are weighted in the selected training datasets by calculating the similarities between the atlases and the test image to dynamically generate a subject-specific probabilistic atlas for the test image. The most likely liver region of the test image is further determined based on the generated atlas. A rough segmentation is obtained by a maximum a posteriori classification of probability map, and the final liver segmentation is produced by a shape-intensity prior level set in the most likely liver region. Our method is evaluated and demonstrated on 25 test CT datasets from our partner site, and its results are compared with two state-of-the-art liver segmentation methods. Moreover, our performance results on 10 MICCAI test datasets are submitted to the organizers for comparison with the other automatic algorithms. Using the 25 test CT datasets, average symmetric surface distance is [Formula: see text] mm (range 0.62-2.12 mm), root mean square symmetric surface distance error is [Formula: see text] mm (range 0.97-3.01 mm), and maximum symmetric surface distance error is [Formula: see text] mm (range 12.73-26.67 mm) by our method. Our method on 10 MICCAI test data sets ranks 10th in all the 47 automatic algorithms on the site as of July 2015. Quantitative results, as well as qualitative comparisons of segmentations, indicate that our method is a promising tool to improve the efficiency of both techniques. The applicability of the proposed method to some challenging clinical problems and the segmentation of the liver are demonstrated with good results on both quantitative and qualitative experimentations. This study suggests that the proposed framework can be good enough to replace the time-consuming and tedious slice-by-slice manual segmentation approach.
Modeling 4D Pathological Changes by Leveraging Normative Models
Wang, Bo; Prastawa, Marcel; Irimia, Andrei; Saha, Avishek; Liu, Wei; Goh, S.Y. Matthew; Vespa, Paul M.; Van Horn, John D.; Gerig, Guido
2016-01-01
With the increasing use of efficient multimodal 3D imaging, clinicians are able to access longitudinal imaging to stage pathological diseases, to monitor the efficacy of therapeutic interventions, or to assess and quantify rehabilitation efforts. Analysis of such four-dimensional (4D) image data presenting pathologies, including disappearing and newly appearing lesions, represents a significant challenge due to the presence of complex spatio-temporal changes. Image analysis methods for such 4D image data have to include not only a concept for joint segmentation of 3D datasets to account for inherent correlations of subject-specific repeated scans but also a mechanism to account for large deformations and the destruction and formation of lesions (e.g., edema, bleeding) due to underlying physiological processes associated with damage, intervention, and recovery. In this paper, we propose a novel framework that provides a joint segmentation-registration framework to tackle the inherent problem of image registration in the presence of objects not present in all images of the time series. Our methodology models 4D changes in pathological anatomy across time and and also provides an explicit mapping of a healthy normative template to a subject’s image data with pathologies. Since atlas-moderated segmentation methods cannot explain appearance and locality pathological structures that are not represented in the template atlas, the new framework provides different options for initialization via a supervised learning approach, iterative semisupervised active learning, and also transfer learning, which results in a fully automatic 4D segmentation method. We demonstrate the effectiveness of our novel approach with synthetic experiments and a 4D multimodal MRI dataset of severe traumatic brain injury (TBI), including validation via comparison to expert segmentations. However, the proposed methodology is generic in regard to different clinical applications requiring quantitative analysis of 4D imaging representing spatio-temporal changes of pathologies. PMID:27818606
NASA Astrophysics Data System (ADS)
Skurikhin, A. N.; Gangodagamage, C.; Rowland, J. C.; Wilson, C. J.
2013-12-01
Arctic lowland landscapes underlain by permafrost are often characterized by polygon-like patterns such as ice-wedge polygons outlined by networks of ice wedges and complemented with polygon rims, troughs, shallow ponds and thermokarst lakes. Polygonal patterns and corresponding features are relatively easy to recognize in high spatial resolution satellite imagery by a human, but their automated recognition is challenging due to the variability in their spectral appearance, the irregularity of individual trough spacing and orientation within the patterns, and a lack of unique spectral response attributable to troughs with widths commonly between 1 m and 2 m. Accurate identification of fine scale elements of ice-wedge polygonal tundra is important as their imprecise recognition may bias estimates of water, heat and carbon fluxes in large-scale climate models. Our focus is on the problem of identification of Arctic polygonal tundra fine-scale landscape elements (as small as 1 m - 2 m width). The challenge of the considered problem is that while large water bodies (e.g. lakes and rivers) can be recognized based on spectral response, reliable recognition of troughs is more difficult. Troughs do not have unique spectral signature, their appearance is noisy (edges are not strong), their width is small, and they often form connected networks with ponds and lakes, and thus they have overlapping spectral response with other water bodies and surrounding non-water bodies. We present a semi-automated approach to identify and classify Arctic polygonal tundra landscape components across the range of spatial scales, such as troughs, ponds, river- and lake-like objects, using high spatial resolution satellite imagery. The novelty of the approach lies in: (1) the combined use of segmentation and shape-based classification to identify a broad range of water bodies, including troughs, and (2) the use of high-resolution WorldView-2 satellite imagery (with resolution of 0.6 m) for this identification. The approach starts by segmenting water bodies from an image, which are then categorized using shape-based classification. Segmentation uses combination of pan sharpened multispectral bands and is based on the active contours without edges technique. The segmentation is robust to noise and can detect objects with weak boundaries that is important for extraction of troughs. We then categorize the segmented regions via shape based classification. Because segmentation accuracy is the main factor impacting the quality of the shape-based classification, for segmentation accuracy assessment we created reference image using WorldView-2 satellite image of ice-wedge polygonal tundra. Reference image contained manually labelled image regions which cover components of drainage networks, such as troughs, ponds, rivers and lakes. The evaluation has shown that the approach provides a good accuracy of segmentation and reasonable classification results. The overall accuracy of the segmentation is approximately 95%, the segmentation user's and producer's accuracies are approximately 92% and 97% respectively.
Dera, Dimah; Bouaynaya, Nidhal; Fathallah-Shaykh, Hassan M
2016-07-01
We address the problem of fully automated region discovery and robust image segmentation by devising a new deformable model based on the level set method (LSM) and the probabilistic nonnegative matrix factorization (NMF). We describe the use of NMF to calculate the number of distinct regions in the image and to derive the local distribution of the regions, which is incorporated into the energy functional of the LSM. The results demonstrate that our NMF-LSM method is superior to other approaches when applied to synthetic binary and gray-scale images and to clinical magnetic resonance images (MRI) of the human brain with and without a malignant brain tumor, glioblastoma multiforme. In particular, the NMF-LSM method is fully automated, highly accurate, less sensitive to the initial selection of the contour(s) or initial conditions, more robust to noise and model parameters, and able to detect as small distinct regions as desired. These advantages stem from the fact that the proposed method relies on histogram information instead of intensity values and does not introduce nuisance model parameters. These properties provide a general approach for automated robust region discovery and segmentation in heterogeneous images. Compared with the retrospective radiological diagnoses of two patients with non-enhancing grade 2 and 3 oligodendroglioma, the NMF-LSM detects earlier progression times and appears suitable for monitoring tumor response. The NMF-LSM method fills an important need of automated segmentation of clinical MRI.
Measuring Leaf Area in Soy Plants by HSI Color Model Filtering and Mathematical Morphology
NASA Astrophysics Data System (ADS)
Benalcázar, M.; Padín, J.; Brun, M.; Pastore, J.; Ballarin, V.; Peirone, L.; Pereyra, G.
2011-12-01
There has been lately a significant progress in automating tasks for the agricultural sector. One of the advances is the development of robots, based on computer vision, applied to care and management of soy crops. In this task, digital image processing plays an important role, but must solve some important problems, like the ones associated to the variations in lighting conditions during image acquisition. Such variations influence directly on the brightness level of the images to be processed. In this paper we propose an algorithm to segment and measure automatically the leaf area of soy plants. This information is used by the specialists to evaluate and compare the growth of different soy genotypes. This algorithm, based on color filtering using the HSI model, detects green objects from the image background. The segmentation of leaves (foliage) was made applying Mathematical Morphology. The foliage area was estimated counting the pixels that belong to the segmented leaves. From several experiments, consisting in applying the algorithm to measure the foliage of about fifty plants of various genotypes of soy, at different growth stages, we obtained successful results, despite the high brightness variations and shadows in the processed images.
Learning-Based Object Identification and Segmentation Using Dual-Energy CT Images for Security.
Martin, Limor; Tuysuzoglu, Ahmet; Karl, W Clem; Ishwar, Prakash
2015-11-01
In recent years, baggage screening at airports has included the use of dual-energy X-ray computed tomography (DECT), an advanced technology for nondestructive evaluation. The main challenge remains to reliably find and identify threat objects in the bag from DECT data. This task is particularly hard due to the wide variety of objects, the high clutter, and the presence of metal, which causes streaks and shading in the scanner images. Image noise and artifacts are generally much more severe than in medical CT and can lead to splitting of objects and inaccurate object labeling. The conventional approach performs object segmentation and material identification in two decoupled processes. Dual-energy information is typically not used for the segmentation, and object localization is not explicitly used to stabilize the material parameter estimates. We propose a novel learning-based framework for joint segmentation and identification of objects directly from volumetric DECT images, which is robust to streaks, noise and variability due to clutter. We focus on segmenting and identifying a small set of objects of interest with characteristics that are learned from training images, and consider everything else as background. We include data weighting to mitigate metal artifacts and incorporate an object boundary field to reduce object splitting. The overall formulation is posed as a multilabel discrete optimization problem and solved using an efficient graph-cut algorithm. We test the method on real data and show its potential for producing accurate labels of the objects of interest without splits in the presence of metal and clutter.
Concurrent Tumor Segmentation and Registration with Uncertainty-based Sparse non-Uniform Graphs
Parisot, Sarah; Wells, William; Chemouny, Stéphane; Duffau, Hugues; Paragios, Nikos
2014-01-01
In this paper, we present a graph-based concurrent brain tumor segmentation and atlas to diseased patient registration framework. Both segmentation and registration problems are modeled using a unified pairwise discrete Markov Random Field model on a sparse grid superimposed to the image domain. Segmentation is addressed based on pattern classification techniques, while registration is performed by maximizing the similarity between volumes and is modular with respect to the matching criterion. The two problems are coupled by relaxing the registration term in the tumor area, corresponding to areas of high classification score and high dissimilarity between volumes. In order to overcome the main shortcomings of discrete approaches regarding appropriate sampling of the solution space as well as important memory requirements, content driven samplings of the discrete displacement set and the sparse grid are considered, based on the local segmentation and registration uncertainties recovered by the min marginal energies. State of the art results on a substantial low-grade glioma database demonstrate the potential of our method, while our proposed approach shows maintained performance and strongly reduced complexity of the model. PMID:24717540
Development of the segment alignment maintenance system (SAMS) for the Hobby-Eberly Telescope
NASA Astrophysics Data System (ADS)
Booth, John A.; Adams, Mark T.; Ames, Gregory H.; Fowler, James R.; Montgomery, Edward E.; Rakoczy, John M.
2000-07-01
A sensing and control system for maintaining optical alignment of ninety-one 1-meter mirror segments forming the Hobby-Eberly Telescope (HET) primary mirror array is now under development. The Segment Alignment Maintenance System (SAMS) is designed to sense relative shear motion between each segment edge pair and calculated individual segment tip, tilt, and piston position errors. Error information is sent to the HET primary mirror control system, which corrects the physical position of each segment as often as once per minute. Development of SAMS is required to meet optical images quality specifications for the telescope. Segment misalignment over time is though to be due to thermal inhomogeneity within the steel mirror support truss. Challenging problems of sensor resolution, dynamic range, mechanical mounting, calibration, stability, robust algorithm development, and system integration must be overcome to achieve a successful operational solution.
Color transfer algorithm in medical images
NASA Astrophysics Data System (ADS)
Wang, Weihong; Xu, Yangfa
2007-12-01
In digital virtual human project, image data acquires from the freezing slice of human body specimen. The color and brightness between a group of images of a certain organ could be quite different. The quality of these images could bring great difficulty in edge extraction, segmentation, as well as 3D reconstruction process. Thus it is necessary to unify the color of the images. The color transfer algorithm is a good algorithm to deal with this kind of problem. This paper introduces the principle of this algorithm and uses it in the medical image processing.
Detection and tracking of gas plumes in LWIR hyperspectral video sequence data
NASA Astrophysics Data System (ADS)
Gerhart, Torin; Sunu, Justin; Lieu, Lauren; Merkurjev, Ekaterina; Chang, Jen-Mei; Gilles, Jérôme; Bertozzi, Andrea L.
2013-05-01
Automated detection of chemical plumes presents a segmentation challenge. The segmentation problem for gas plumes is difficult due to the diffusive nature of the cloud. The advantage of considering hyperspectral images in the gas plume detection problem over the conventional RGB imagery is the presence of non-visual data, allowing for a richer representation of information. In this paper we present an effective method of visualizing hyperspectral video sequences containing chemical plumes and investigate the effectiveness of segmentation techniques on these post-processed videos. Our approach uses a combination of dimension reduction and histogram equalization to prepare the hyperspectral videos for segmentation. First, Principal Components Analysis (PCA) is used to reduce the dimension of the entire video sequence. This is done by projecting each pixel onto the first few Principal Components resulting in a type of spectral filter. Next, a Midway method for histogram equalization is used. These methods redistribute the intensity values in order to reduce icker between frames. This properly prepares these high-dimensional video sequences for more traditional segmentation techniques. We compare the ability of various clustering techniques to properly segment the chemical plume. These include K-means, spectral clustering, and the Ginzburg-Landau functional.
Temporally consistent segmentation of point clouds
NASA Astrophysics Data System (ADS)
Owens, Jason L.; Osteen, Philip R.; Daniilidis, Kostas
2014-06-01
We consider the problem of generating temporally consistent point cloud segmentations from streaming RGB-D data, where every incoming frame extends existing labels to new points or contributes new labels while maintaining the labels for pre-existing segments. Our approach generates an over-segmentation based on voxel cloud connectivity, where a modified k-means algorithm selects supervoxel seeds and associates similar neighboring voxels to form segments. Given the data stream from a potentially mobile sensor, we solve for the camera transformation between consecutive frames using a joint optimization over point correspondences and image appearance. The aligned point cloud may then be integrated into a consistent model coordinate frame. Previously labeled points are used to mask incoming points from the new frame, while new and previous boundary points extend the existing segmentation. We evaluate the algorithm on newly-generated RGB-D datasets.
Signature detection and matching for document image retrieval.
Zhu, Guangyu; Zheng, Yefeng; Doermann, David; Jaeger, Stefan
2009-11-01
As one of the most pervasive methods of individual identification and document authentication, signatures present convincing evidence and provide an important form of indexing for effective document image processing and retrieval in a broad range of applications. However, detection and segmentation of free-form objects such as signatures from clustered background is currently an open document analysis problem. In this paper, we focus on two fundamental problems in signature-based document image retrieval. First, we propose a novel multiscale approach to jointly detecting and segmenting signatures from document images. Rather than focusing on local features that typically have large variations, our approach captures the structural saliency using a signature production model and computes the dynamic curvature of 2D contour fragments over multiple scales. This detection framework is general and computationally tractable. Second, we treat the problem of signature retrieval in the unconstrained setting of translation, scale, and rotation invariant nonrigid shape matching. We propose two novel measures of shape dissimilarity based on anisotropic scaling and registration residual error and present a supervised learning framework for combining complementary shape information from different dissimilarity metrics using LDA. We quantitatively study state-of-the-art shape representations, shape matching algorithms, measures of dissimilarity, and the use of multiple instances as query in document image retrieval. We further demonstrate our matching techniques in offline signature verification. Extensive experiments using large real-world collections of English and Arabic machine-printed and handwritten documents demonstrate the excellent performance of our approaches.
Saliency U-Net: A regional saliency map-driven hybrid deep learning network for anomaly segmentation
NASA Astrophysics Data System (ADS)
Karargyros, Alex; Syeda-Mahmood, Tanveer
2018-02-01
Deep learning networks are gaining popularity in many medical image analysis tasks due to their generalized ability to automatically extract relevant features from raw images. However, this can make the learning problem unnecessarily harder requiring network architectures of high complexity. In case of anomaly detection, in particular, there is often sufficient regional difference between the anomaly and the surrounding parenchyma that could be easily highlighted through bottom-up saliency operators. In this paper we propose a new hybrid deep learning network using a combination of raw image and such regional maps to more accurately learn the anomalies using simpler network architectures. Specifically, we modify a deep learning network called U-Net using both the raw and pre-segmented images as input to produce joint encoding (contraction) and expansion paths (decoding) in the U-Net. We present results of successfully delineating subdural and epidural hematomas in brain CT imaging and liver hemangioma in abdominal CT images using such network.
Evaluation of nucleus segmentation in digital pathology images through large scale image synthesis
NASA Astrophysics Data System (ADS)
Zhou, Naiyun; Yu, Xiaxia; Zhao, Tianhao; Wen, Si; Wang, Fusheng; Zhu, Wei; Kurc, Tahsin; Tannenbaum, Allen; Saltz, Joel; Gao, Yi
2017-03-01
Digital histopathology images with more than 1 Gigapixel are drawing more and more attention in clinical, biomedical research, and computer vision fields. Among the multiple observable features spanning multiple scales in the pathology images, the nuclear morphology is one of the central criteria for diagnosis and grading. As a result it is also the mostly studied target in image computing. Large amount of research papers have devoted to the problem of extracting nuclei from digital pathology images, which is the foundation of any further correlation study. However, the validation and evaluation of nucleus extraction have yet been formulated rigorously and systematically. Some researches report a human verified segmentation with thousands of nuclei, whereas a single whole slide image may contain up to million. The main obstacle lies in the difficulty of obtaining such a large number of validated nuclei, which is essentially an impossible task for pathologist. We propose a systematic validation and evaluation approach based on large scale image synthesis. This could facilitate a more quantitatively validated study for current and future histopathology image analysis field.
Gopakumar, Gopalakrishna Pillai; Swetha, Murali; Sai Siva, Gorthi; Sai Subrahmanyam, Gorthi R K
2018-03-01
The present paper introduces a focus stacking-based approach for automated quantitative detection of Plasmodium falciparum malaria from blood smear. For the detection, a custom designed convolutional neural network (CNN) operating on focus stack of images is used. The cell counting problem is addressed as the segmentation problem and we propose a 2-level segmentation strategy. Use of CNN operating on focus stack for the detection of malaria is first of its kind, and it not only improved the detection accuracy (both in terms of sensitivity [97.06%] and specificity [98.50%]) but also favored the processing on cell patches and avoided the need for hand-engineered features. The slide images are acquired with a custom-built portable slide scanner made from low-cost, off-the-shelf components and is suitable for point-of-care diagnostics. The proposed approach of employing sophisticated algorithmic processing together with inexpensive instrumentation can potentially benefit clinicians to enable malaria diagnosis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Deformable MR Prostate Segmentation via Deep Feature Learning and Sparse Patch Matching
Guo, Yanrong; Gao, Yaozong
2016-01-01
Automatic and reliable segmentation of the prostate is an important but difficult task for various clinical applications such as prostate cancer radiotherapy. The main challenges for accurate MR prostate localization lie in two aspects: (1) inhomogeneous and inconsistent appearance around prostate boundary, and (2) the large shape variation across different patients. To tackle these two problems, we propose a new deformable MR prostate segmentation method by unifying deep feature learning with the sparse patch matching. First, instead of directly using handcrafted features, we propose to learn the latent feature representation from prostate MR images by the stacked sparse auto-encoder (SSAE). Since the deep learning algorithm learns the feature hierarchy from the data, the learned features are often more concise and effective than the handcrafted features in describing the underlying data. To improve the discriminability of learned features, we further refine the feature representation in a supervised fashion. Second, based on the learned features, a sparse patch matching method is proposed to infer a prostate likelihood map by transferring the prostate labels from multiple atlases to the new prostate MR image. Finally, a deformable segmentation is used to integrate a sparse shape model with the prostate likelihood map for achieving the final segmentation. The proposed method has been extensively evaluated on the dataset that contains 66 T2-wighted prostate MR images. Experimental results show that the deep-learned features are more effective than the handcrafted features in guiding MR prostate segmentation. Moreover, our method shows superior performance than other state-of-the-art segmentation methods. PMID:26685226
The elastic ratio: introducing curvature into ratio-based image segmentation.
Schoenemann, Thomas; Masnou, Simon; Cremers, Daniel
2011-09-01
We present the first ratio-based image segmentation method that allows imposing curvature regularity of the region boundary. Our approach is a generalization of the ratio framework pioneered by Jermyn and Ishikawa so as to allow penalty functions that take into account the local curvature of the curve. The key idea is to cast the segmentation problem as one of finding cyclic paths of minimal ratio in a graph where each graph node represents a line segment. Among ratios whose discrete counterparts can be globally minimized with our approach, we focus in particular on the elastic ratio [Formula: see text] that depends, given an image I, on the oriented boundary C of the segmented region candidate. Minimizing this ratio amounts to finding a curve, neither small nor too curvy, through which the brightness flux is maximal. We prove the existence of minimizers for this criterion among continuous curves with mild regularity assumptions. We also prove that the discrete minimizers provided by our graph-based algorithm converge, as the resolution increases, to continuous minimizers. In contrast to most existing segmentation methods with computable and meaningful, i.e., nondegenerate, global optima, the proposed approach is fully unsupervised in the sense that it does not require any kind of user input such as seed nodes. Numerical experiments demonstrate that curvature regularity allows substantial improvement of the quality of segmentations. Furthermore, our results allow drawing conclusions about global optima of a parameterization-independent version of the snakes functional: the proposed algorithm allows determining parameter values where the functional has a meaningful solution and simultaneously provides the corresponding global solution.
NASA Astrophysics Data System (ADS)
Schlueter, S.; Sheppard, A.; Wildenschild, D.
2013-12-01
Imaging of fluid interfaces in three-dimensional porous media via x-ray microtomography is an efficient means to test thermodynamically derived predictions on the relationship between capillary pressure, fluid saturation and specific interfacial area (Pc-Sw-Anw) in partially saturated porous media. Various experimental studies exist to date that validate the uniqueness of the Pc-Sw-Anw relationship under static conditions and with current technological progress direct imaging of moving interfaces under dynamic conditions is also becoming available. Image acquisition and subsequent image processing currently involves many steps each prone to operator bias, like merging different scans of the same sample obtained at different beam energies into a single image or the generation of isosurfaces from the segmented multiphase image on which the interface properties are usually calculated. We demonstrate that with recent advancements in (i) image enhancement methods, (ii) multiphase segmentation methods and (iii) methods of structural analysis we can considerably decrease the time and cost of image acquisition and the uncertainty associated with the measurement of interfacial properties. In particular, we highlight three notorious problems in multiphase image processing and provide efficient solutions for each: (i) Due to noise, partial volume effects, and imbalanced volume fractions, automated histogram-based threshold detection methods frequently fail. However, these impairments can be mitigated with modern denoising methods, special treatment of gray value edges and adaptive histogram equilization, such that most of the standard methods for threshold detection (Otsu, fuzzy c-means, minimum error, maximum entropy) coincide at the same set of values. (ii) Partial volume effects due to blur may produce apparent water films around solid surfaces that alter the specific fluid-fluid interfacial area (Anw) considerably. In a synthetic test image some local segmentation methods like Bayesian Markov random field, converging active contours and watershed segmentation reduced the error in Anw associated with apparent water films from 21% to 6-11%. (iii) The generation of isosurfaces from the segmented data usually requires a lot of postprocessing in order to smooth the surface and check for consistency errors. This can be avoided by calculating specific interfacial areas directly on the segmented voxel image by means of Minkowski functionals which is highly efficient and less error prone.
Brain MR image segmentation using NAMS in pseudo-color.
Li, Hua; Chen, Chuanbo; Fang, Shaohong; Zhao, Shengrong
2017-12-01
Image segmentation plays a crucial role in various biomedical applications. In general, the segmentation of brain Magnetic Resonance (MR) images is mainly used to represent the image with several homogeneous regions instead of pixels for surgical analyzing and planning. This paper proposes a new approach for segmenting MR brain images by using pseudo-color based segmentation with Non-symmetry and Anti-packing Model with Squares (NAMS). First of all, the NAMS model is presented. The model can represent the image with sub-patterns to keep the image content and largely reduce the data redundancy. Second, the key idea is proposed that convert the original gray-scale brain MR image into a pseudo-colored image and then segment the pseudo-colored image with NAMS model. The pseudo-colored image can enhance the color contrast in different tissues in brain MR images, which can improve the precision of segmentation as well as directly visual perceptional distinction. Experimental results indicate that compared with other brain MR image segmentation methods, the proposed NAMS based pseudo-color segmentation method performs more excellent in not only segmenting precisely but also saving storage.
Lopera, Jorge E; Katabathina, Venkata; Bosworth, Brian; Garg, Deepak; Kroma, Ghazwan; Garza-Berlanga, Andres; Suri, Rajeev; Wholey, Michael
2015-06-01
To determine the clinical significance and potential mechanisms of segmental liver ischemia and infarction following elective creation of a transjugular intrahepatic portosystemic shunt (TIPS). A retrospective review of 374 elective TIPS creations between March 2006 and September 2014 was performed, yielding 77 contrast-enhanced scans for review. Patients with imaging evidence of segmental perfusion defects were identified. Model for End-stage Liver Disease scores, liver volume, and percentage of liver ischemia/infarct were calculated. Clinical outcomes after TIPS creation were reviewed. Ten patients showed segmental liver ischemia/infarction on contrast-enhanced imaging after elective TIPS creation. Associated imaging findings included thrombosis of the posterior division (n = 7) and anterior division (n = 3) of the right portal vein (PV). The right hepatic vein was thrombosed in 5 patients, as was the middle hepatic vein in 3 and the left hepatic vein in 1. One patient had acute thrombosis of the shunt and main PV. Three patients developed acute liver failure: 2 died within 30 days and 1 required emergent liver transplantation. One patient died of acute renal failure 20 days after TIPS creation. A large infarct in a transplant recipient resulted in biloma formation. Five patients survived without additional interventions with follow-up times ranging from 3 months to 5 years. Segmental perfusion defects are not an uncommon imaging finding after elective TIPS creation. Segmental ischemia was associated with thrombosis of major branches of the PVs and often of the hepatic veins. Clinical outcomes varied significantly, from transient problems to acute liver failure with high mortality rates. Copyright © 2015 SIR. Published by Elsevier Inc. All rights reserved.
MATHEMATICAL METHODS IN MEDICAL IMAGE PROCESSING
ANGENENT, SIGURD; PICHON, ERIC; TANNENBAUM, ALLEN
2013-01-01
In this paper, we describe some central mathematical problems in medical imaging. The subject has been undergoing rapid changes driven by better hardware and software. Much of the software is based on novel methods utilizing geometric partial differential equations in conjunction with standard signal/image processing techniques as well as computer graphics facilitating man/machine interactions. As part of this enterprise, researchers have been trying to base biomedical engineering principles on rigorous mathematical foundations for the development of software methods to be integrated into complete therapy delivery systems. These systems support the more effective delivery of many image-guided procedures such as radiation therapy, biopsy, and minimally invasive surgery. We will show how mathematics may impact some of the main problems in this area, including image enhancement, registration, and segmentation. PMID:23645963
Machine printed text and handwriting identification in noisy document images.
Zheng, Yefeng; Li, Huiping; Doermann, David
2004-03-01
In this paper, we address the problem of the identification of text in noisy document images. We are especially focused on segmenting and identifying between handwriting and machine printed text because: 1) Handwriting in a document often indicates corrections, additions, or other supplemental information that should be treated differently from the main content and 2) the segmentation and recognition techniques requested for machine printed and handwritten text are significantly different. A novel aspect of our approach is that we treat noise as a separate class and model noise based on selected features. Trained Fisher classifiers are used to identify machine printed text and handwriting from noise and we further exploit context to refine the classification. A Markov Random Field-based (MRF) approach is used to model the geometrical structure of the printed text, handwriting, and noise to rectify misclassifications. Experimental results show that our approach is robust and can significantly improve page segmentation in noisy document collections.
Human body segmentation via data-driven graph cut.
Li, Shifeng; Lu, Huchuan; Shao, Xingqing
2014-11-01
Human body segmentation is a challenging and important problem in computer vision. Existing methods usually entail a time-consuming training phase for prior knowledge learning with complex shape matching for body segmentation. In this paper, we propose a data-driven method that integrates top-down body pose information and bottom-up low-level visual cues for segmenting humans in static images within the graph cut framework. The key idea of our approach is first to exploit human kinematics to search for body part candidates via dynamic programming for high-level evidence. Then, by using the body parts classifiers, obtaining bottom-up cues of human body distribution for low-level evidence. All the evidence collected from top-down and bottom-up procedures are integrated in a graph cut framework for human body segmentation. Qualitative and quantitative experiment results demonstrate the merits of the proposed method in segmenting human bodies with arbitrary poses from cluttered backgrounds.
Lu, Chao; Zheng, Yefeng; Birkbeck, Neil; Zhang, Jingdan; Kohlberger, Timo; Tietjen, Christian; Boettger, Thomas; Duncan, James S; Zhou, S Kevin
2012-01-01
In this paper, we present a novel method by incorporating information theory into the learning-based approach for automatic and accurate pelvic organ segmentation (including the prostate, bladder and rectum). We target 3D CT volumes that are generated using different scanning protocols (e.g., contrast and non-contrast, with and without implant in the prostate, various resolution and position), and the volumes come from largely diverse sources (e.g., diseased in different organs). Three key ingredients are combined to solve this challenging segmentation problem. First, marginal space learning (MSL) is applied to efficiently and effectively localize the multiple organs in the largely diverse CT volumes. Second, learning techniques, steerable features, are applied for robust boundary detection. This enables handling of highly heterogeneous texture pattern. Third, a novel information theoretic scheme is incorporated into the boundary inference process. The incorporation of the Jensen-Shannon divergence further drives the mesh to the best fit of the image, thus improves the segmentation performance. The proposed approach is tested on a challenging dataset containing 188 volumes from diverse sources. Our approach not only produces excellent segmentation accuracy, but also runs about eighty times faster than previous state-of-the-art solutions. The proposed method can be applied to CT images to provide visual guidance to physicians during the computer-aided diagnosis, treatment planning and image-guided radiotherapy to treat cancers in pelvic region.
Geodesic active fields--a geometric framework for image registration.
Zosso, Dominique; Bresson, Xavier; Thiran, Jean-Philippe
2011-05-01
In this paper we present a novel geometric framework called geodesic active fields for general image registration. In image registration, one looks for the underlying deformation field that best maps one image onto another. This is a classic ill-posed inverse problem, which is usually solved by adding a regularization term. Here, we propose a multiplicative coupling between the registration term and the regularization term, which turns out to be equivalent to embed the deformation field in a weighted minimal surface problem. Then, the deformation field is driven by a minimization flow toward a harmonic map corresponding to the solution of the registration problem. This proposed approach for registration shares close similarities with the well-known geodesic active contours model in image segmentation, where the segmentation term (the edge detector function) is coupled with the regularization term (the length functional) via multiplication as well. As a matter of fact, our proposed geometric model is actually the exact mathematical generalization to vector fields of the weighted length problem for curves and surfaces introduced by Caselles-Kimmel-Sapiro. The energy of the deformation field is measured with the Polyakov energy weighted by a suitable image distance, borrowed from standard registration models. We investigate three different weighting functions, the squared error and the approximated absolute error for monomodal images, and the local joint entropy for multimodal images. As compared to specialized state-of-the-art methods tailored for specific applications, our geometric framework involves important contributions. Firstly, our general formulation for registration works on any parametrizable, smooth and differentiable surface, including nonflat and multiscale images. In the latter case, multiscale images are registered at all scales simultaneously, and the relations between space and scale are intrinsically being accounted for. Second, this method is, to the best of our knowledge, the first reparametrization invariant registration method introduced in the literature. Thirdly, the multiplicative coupling between the registration term, i.e. local image discrepancy, and the regularization term naturally results in a data-dependent tuning of the regularization strength. Finally, by choosing the metric on the deformation field one can freely interpolate between classic Gaussian and more interesting anisotropic, TV-like regularization.
NASA Astrophysics Data System (ADS)
Sheng, Yehua; Zhang, Ka; Ye, Chun; Liang, Cheng; Li, Jian
2008-04-01
Considering the problem of automatic traffic sign detection and recognition in stereo images captured under motion conditions, a new algorithm for traffic sign detection and recognition based on features and probabilistic neural networks (PNN) is proposed in this paper. Firstly, global statistical color features of left image are computed based on statistics theory. Then for red, yellow and blue traffic signs, left image is segmented to three binary images by self-adaptive color segmentation method. Secondly, gray-value projection and shape analysis are used to confirm traffic sign regions in left image. Then stereo image matching is used to locate the homonymy traffic signs in right image. Thirdly, self-adaptive image segmentation is used to extract binary inner core shapes of detected traffic signs. One-dimensional feature vectors of inner core shapes are computed by central projection transformation. Fourthly, these vectors are input to the trained probabilistic neural networks for traffic sign recognition. Lastly, recognition results in left image are compared with recognition results in right image. If results in stereo images are identical, these results are confirmed as final recognition results. The new algorithm is applied to 220 real images of natural scenes taken by the vehicle-borne mobile photogrammetry system in Nanjing at different time. Experimental results show a detection and recognition rate of over 92%. So the algorithm is not only simple, but also reliable and high-speed on real traffic sign detection and recognition. Furthermore, it can obtain geometrical information of traffic signs at the same time of recognizing their types.
Kopriva, Ivica; Hadžija, Mirko; Popović Hadžija, Marijana; Korolija, Marina; Cichocki, Andrzej
2011-08-01
A methodology is proposed for nonlinear contrast-enhanced unsupervised segmentation of multispectral (color) microscopy images of principally unstained specimens. The methodology exploits spectral diversity and spatial sparseness to find anatomical differences between materials (cells, nuclei, and background) present in the image. It consists of rth-order rational variety mapping (RVM) followed by matrix/tensor factorization. Sparseness constraint implies duality between nonlinear unsupervised segmentation and multiclass pattern assignment problems. Classes not linearly separable in the original input space become separable with high probability in the higher-dimensional mapped space. Hence, RVM mapping has two advantages: it takes implicitly into account nonlinearities present in the image (ie, they are not required to be known) and it increases spectral diversity (ie, contrast) between materials, due to increased dimensionality of the mapped space. This is expected to improve performance of systems for automated classification and analysis of microscopic histopathological images. The methodology was validated using RVM of the second and third orders of the experimental multispectral microscopy images of unstained sciatic nerve fibers (nervus ischiadicus) and of unstained white pulp in the spleen tissue, compared with a manually defined ground truth labeled by two trained pathophysiologists. The methodology can also be useful for additional contrast enhancement of images of stained specimens. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
A semi-automated image analysis procedure for in situ plankton imaging systems.
Bi, Hongsheng; Guo, Zhenhua; Benfield, Mark C; Fan, Chunlei; Ford, Michael; Shahrestani, Suzan; Sieracki, Jeffery M
2015-01-01
Plankton imaging systems are capable of providing fine-scale observations that enhance our understanding of key physical and biological processes. However, processing the large volumes of data collected by imaging systems remains a major obstacle for their employment, and existing approaches are designed either for images acquired under laboratory controlled conditions or within clear waters. In the present study, we developed a semi-automated approach to analyze plankton taxa from images acquired by the ZOOplankton VISualization (ZOOVIS) system within turbid estuarine waters, in Chesapeake Bay. When compared to images under laboratory controlled conditions or clear waters, images from highly turbid waters are often of relatively low quality and more variable, due to the large amount of objects and nonlinear illumination within each image. We first customized a segmentation procedure to locate objects within each image and extracted them for classification. A maximally stable extremal regions algorithm was applied to segment large gelatinous zooplankton and an adaptive threshold approach was developed to segment small organisms, such as copepods. Unlike the existing approaches for images acquired from laboratory, controlled conditions or clear waters, the target objects are often the majority class, and the classification can be treated as a multi-class classification problem. We customized a two-level hierarchical classification procedure using support vector machines to classify the target objects (< 5%), and remove the non-target objects (> 95%). First, histograms of oriented gradients feature descriptors were constructed for the segmented objects. In the first step all non-target and target objects were classified into different groups: arrow-like, copepod-like, and gelatinous zooplankton. Each object was passed to a group-specific classifier to remove most non-target objects. After the object was classified, an expert or non-expert then manually removed the non-target objects that could not be removed by the procedure. The procedure was tested on 89,419 images collected in Chesapeake Bay, and results were consistent with visual counts with >80% accuracy for all three groups.
A Semi-Automated Image Analysis Procedure for In Situ Plankton Imaging Systems
Bi, Hongsheng; Guo, Zhenhua; Benfield, Mark C.; Fan, Chunlei; Ford, Michael; Shahrestani, Suzan; Sieracki, Jeffery M.
2015-01-01
Plankton imaging systems are capable of providing fine-scale observations that enhance our understanding of key physical and biological processes. However, processing the large volumes of data collected by imaging systems remains a major obstacle for their employment, and existing approaches are designed either for images acquired under laboratory controlled conditions or within clear waters. In the present study, we developed a semi-automated approach to analyze plankton taxa from images acquired by the ZOOplankton VISualization (ZOOVIS) system within turbid estuarine waters, in Chesapeake Bay. When compared to images under laboratory controlled conditions or clear waters, images from highly turbid waters are often of relatively low quality and more variable, due to the large amount of objects and nonlinear illumination within each image. We first customized a segmentation procedure to locate objects within each image and extracted them for classification. A maximally stable extremal regions algorithm was applied to segment large gelatinous zooplankton and an adaptive threshold approach was developed to segment small organisms, such as copepods. Unlike the existing approaches for images acquired from laboratory, controlled conditions or clear waters, the target objects are often the majority class, and the classification can be treated as a multi-class classification problem. We customized a two-level hierarchical classification procedure using support vector machines to classify the target objects (< 5%), and remove the non-target objects (> 95%). First, histograms of oriented gradients feature descriptors were constructed for the segmented objects. In the first step all non-target and target objects were classified into different groups: arrow-like, copepod-like, and gelatinous zooplankton. Each object was passed to a group-specific classifier to remove most non-target objects. After the object was classified, an expert or non-expert then manually removed the non-target objects that could not be removed by the procedure. The procedure was tested on 89,419 images collected in Chesapeake Bay, and results were consistent with visual counts with >80% accuracy for all three groups. PMID:26010260
Multi-Atlas Segmentation of Biomedical Images: A Survey
Iglesias, Juan Eugenio; Sabuncu, Mert R.
2015-01-01
Multi-atlas segmentation (MAS), first introduced and popularized by the pioneering work of Rohlfing, Brandt, Menzel and Maurer Jr (2004), Klein, Mensh, Ghosh, Tourville and Hirsch (2005), and Heckemann, Hajnal, Aljabar, Rueckert and Hammers (2006), is becoming one of the most widely-used and successful image segmentation techniques in biomedical applications. By manipulating and utilizing the entire dataset of “atlases” (training images that have been previously labeled, e.g., manually by an expert), rather than some model-based average representation, MAS has the flexibility to better capture anatomical variation, thus offering superior segmentation accuracy. This benefit, however, typically comes at a high computational cost. Recent advancements in computer hardware and image processing software have been instrumental in addressing this challenge and facilitated the wide adoption of MAS. Today, MAS has come a long way and the approach includes a wide array of sophisticated algorithms that employ ideas from machine learning, probabilistic modeling, optimization, and computer vision, among other fields. This paper presents a survey of published MAS algorithms and studies that have applied these methods to various biomedical problems. In writing this survey, we have three distinct aims. Our primary goal is to document how MAS was originally conceived, later evolved, and now relates to alternative methods. Second, this paper is intended to be a detailed reference of past research activity in MAS, which now spans over a decade (2003 – 2014) and entails novel methodological developments and application-specific solutions. Finally, our goal is to also present a perspective on the future of MAS, which, we believe, will be one of the dominant approaches in biomedical image segmentation. PMID:26201875
Hamamci, Andac; Kucuk, Nadir; Karaman, Kutlay; Engin, Kayihan; Unal, Gozde
2012-03-01
In this paper, we present a fast and robust practical tool for segmentation of solid tumors with minimal user interaction to assist clinicians and researchers in radiosurgery planning and assessment of the response to the therapy. Particularly, a cellular automata (CA) based seeded tumor segmentation method on contrast enhanced T1 weighted magnetic resonance (MR) images, which standardizes the volume of interest (VOI) and seed selection, is proposed. First, we establish the connection of the CA-based segmentation to the graph-theoretic methods to show that the iterative CA framework solves the shortest path problem. In that regard, we modify the state transition function of the CA to calculate the exact shortest path solution. Furthermore, a sensitivity parameter is introduced to adapt to the heterogeneous tumor segmentation problem, and an implicit level set surface is evolved on a tumor probability map constructed from CA states to impose spatial smoothness. Sufficient information to initialize the algorithm is gathered from the user simply by a line drawn on the maximum diameter of the tumor, in line with the clinical practice. Furthermore, an algorithm based on CA is presented to differentiate necrotic and enhancing tumor tissue content, which gains importance for a detailed assessment of radiation therapy response. Validation studies on both clinical and synthetic brain tumor datasets demonstrate 80%-90% overlap performance of the proposed algorithm with an emphasis on less sensitivity to seed initialization, robustness with respect to different and heterogeneous tumor types, and its efficiency in terms of computation time.
Automatic segmentation of pulmonary fissures in x-ray CT images using anatomic guidance
NASA Astrophysics Data System (ADS)
Ukil, Soumik; Sonka, Milan; Reinhardt, Joseph M.
2006-03-01
The pulmonary lobes are the five distinct anatomic divisions of the human lungs. The physical boundaries between the lobes are called the lobar fissures. Detection of lobar fissure positions in pulmonary X-ray CT images is of increasing interest for the early detection of pathologies, and also for the regional functional analysis of the lungs. We have developed a two-step automatic method for the accurate segmentation of the three pulmonary fissures. In the first step, an approximation of the actual fissure locations is made using a 3-D watershed transform on the distance map of the segmented vasculature. Information from the anatomically labeled human airway tree is used to guide the watershed segmentation. These approximate fissure boundaries are then used to define the region of interest (ROI) for a more exact 3-D graph search to locate the fissures. Within the ROI the fissures are enhanced by computing a ridgeness measure, and this is used as the cost function for the graph search. The fissures are detected as the optimal surface within the graph defined by the cost function, which is computed by transforming the problem to the problem of finding a minimum s-t cut on a derived graph. The accuracy of the lobar borders is assessed by comparing the automatic results to manually traced lobe segments. The mean distance error between manually traced and computer detected left oblique, right oblique and right horizontal fissures is 2.3 +/- 0.8 mm, 2.3 +/- 0.7 mm and 1.0 +/- 0.1 mm, respectively.
Xia, Yong; Eberl, Stefan; Wen, Lingfeng; Fulham, Michael; Feng, David Dagan
2012-01-01
Dual medical imaging modalities, such as PET-CT, are now a routine component of clinical practice. Medical image segmentation methods, however, have generally only been applied to single modality images. In this paper, we propose the dual-modality image segmentation model to segment brain PET-CT images into gray matter, white matter and cerebrospinal fluid. This model converts PET-CT image segmentation into an optimization process controlled simultaneously by PET and CT voxel values and spatial constraints. It is innovative in the creation and application of the modality discriminatory power (MDP) coefficient as a weighting scheme to adaptively combine the functional (PET) and anatomical (CT) information on a voxel-by-voxel basis. Our approach relies upon allowing the modality with higher discriminatory power to play a more important role in the segmentation process. We compared the proposed approach to three other image segmentation strategies, including PET-only based segmentation, combination of the results of independent PET image segmentation and CT image segmentation, and simultaneous segmentation of joint PET and CT images without an adaptive weighting scheme. Our results in 21 clinical studies showed that our approach provides the most accurate and reliable segmentation for brain PET-CT images. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Today - Mars Observer Segment (Part 4 of 6)
NASA Technical Reports Server (NTRS)
1993-01-01
This videotape consists of eight segments from the NASA Today News program. The first segment is an announcement that there was no date set for the launch of STS-51, which had been postponed due to mechanical problems. The second segment describes the MidDeck Dynamic Experiment Facility. The third segment is about the scheduled arrival of the Mars Observer at Mars, it shows an image of Mars as seen from the approaching Observer spacecraft, and features an animation of the approach to Mars, including the maneuvers that are planned to put the spacecraft in the desired orbit. The fourth segment describes a discovery from an infrared spectrometer that there is nitrogen ice on Pluto. The fifth segment discusses the Aerospace for Kids (ASK) program at the Goddard Space Flight Center (GSFC). The sixth segment is about the high school and college summer internship programs at GSFC. The seventh segment announces a science symposium being held at Johnson Space Center. The last segment describes the National Air and Space Museum and NASA's cooperation with the Smithsonian Institution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wenkun; Zhang, Hanming; Li, Lei
2016-08-15
X-ray computed tomography (CT) is a powerful and common inspection technique used for the industrial non-destructive testing. However, large-sized and heavily absorbing objects cause the formation of artifacts because of either the lack of specimen penetration in specific directions or the acquisition of data from only a limited angular range of views. Although the sparse optimization-based methods, such as the total variation (TV) minimization method, can suppress artifacts to some extent, reconstructing the images such that they converge to accurate values remains difficult because of the deficiency in continuous angular data and inconsistency in the projections. To address this problem,more » we use the idea of regional enhancement of the true values and suppression of the illusory artifacts outside the region to develop an efficient iterative algorithm. This algorithm is based on the combination of regional enhancement of the true values and TV minimization for the limited angular reconstruction. In this algorithm, the segmentation approach is introduced to distinguish the regions of different image knowledge and generate the support mask of the image. A new regularization term, which contains the support knowledge to enhance the true values of the image, is incorporated into the objective function. Then, the proposed optimization model is solved by variable splitting and the alternating direction method efficiently. A compensation approach is also designed to extract useful information from the initial projections and thus reduce false segmentation result and correct the segmentation support and the segmented image. The results obtained from comparing both simulation studies and real CT data set reconstructions indicate that the proposed algorithm generates a more accurate image than do the other reconstruction methods. The experimental results show that this algorithm can produce high-quality reconstructed images for the limited angular reconstruction and suppress the illusory artifacts caused by the deficiency in valid data.« less
NASA Astrophysics Data System (ADS)
Zhang, Wenkun; Zhang, Hanming; Li, Lei; Wang, Linyuan; Cai, Ailong; Li, Zhongguo; Yan, Bin
2016-08-01
X-ray computed tomography (CT) is a powerful and common inspection technique used for the industrial non-destructive testing. However, large-sized and heavily absorbing objects cause the formation of artifacts because of either the lack of specimen penetration in specific directions or the acquisition of data from only a limited angular range of views. Although the sparse optimization-based methods, such as the total variation (TV) minimization method, can suppress artifacts to some extent, reconstructing the images such that they converge to accurate values remains difficult because of the deficiency in continuous angular data and inconsistency in the projections. To address this problem, we use the idea of regional enhancement of the true values and suppression of the illusory artifacts outside the region to develop an efficient iterative algorithm. This algorithm is based on the combination of regional enhancement of the true values and TV minimization for the limited angular reconstruction. In this algorithm, the segmentation approach is introduced to distinguish the regions of different image knowledge and generate the support mask of the image. A new regularization term, which contains the support knowledge to enhance the true values of the image, is incorporated into the objective function. Then, the proposed optimization model is solved by variable splitting and the alternating direction method efficiently. A compensation approach is also designed to extract useful information from the initial projections and thus reduce false segmentation result and correct the segmentation support and the segmented image. The results obtained from comparing both simulation studies and real CT data set reconstructions indicate that the proposed algorithm generates a more accurate image than do the other reconstruction methods. The experimental results show that this algorithm can produce high-quality reconstructed images for the limited angular reconstruction and suppress the illusory artifacts caused by the deficiency in valid data.
NASA Astrophysics Data System (ADS)
Sun, Min; Chen, Xinjian; Zhang, Zhiqiang; Ma, Chiyuan
2017-02-01
Accurate volume measurements of pituitary adenoma are important to the diagnosis and treatment for this kind of sellar tumor. The pituitary adenomas have different pathological representations and various shapes. Particularly, in the case of infiltrating to surrounding soft tissues, they present similar intensities and indistinct boundary in T1-weighted (T1W) magnetic resonance (MR) images. Then the extraction of pituitary adenoma from MR images is still a challenging task. In this paper, we propose an interactive method to segment the pituitary adenoma from brain MR data, by combining graph cuts based active contour model (GCACM) and random walk algorithm. By using the GCACM method, the segmentation task is formulated as an energy minimization problem by a hybrid active contour model (ACM), and then the problem is solved by the graph cuts method. The region-based term in the hybrid ACM considers the local image intensities as described by Gaussian distributions with different means and variances, expressed as maximum a posteriori probability (MAP). Random walk is utilized as an initialization tool to provide initialized surface for GCACM. The proposed method is evaluated on the three-dimensional (3-D) T1W MR data of 23 patients and compared with the standard graph cuts method, the random walk method, the hybrid ACM method, a GCACM method which considers global mean intensity in region forces, and a competitive region-growing based GrowCut method planted in 3D Slicer. Based on the experimental results, the proposed method is superior to those methods.
Simultaneous two-view epipolar geometry estimation and motion segmentation by 4D tensor voting.
Tong, Wai-Shun; Tang, Chi-Keung; Medioni, Gérard
2004-09-01
We address the problem of simultaneous two-view epipolar geometry estimation and motion segmentation from nonstatic scenes. Given a set of noisy image pairs containing matches of n objects, we propose an unconventional, efficient, and robust method, 4D tensor voting, for estimating the unknown n epipolar geometries, and segmenting the static and motion matching pairs into n independent motions. By considering the 4D isotropic and orthogonal joint image space, only two tensor voting passes are needed, and a very high noise to signal ratio (up to five) can be tolerated. Epipolar geometries corresponding to multiple, rigid motions are extracted in succession. Only two uncalibrated frames are needed, and no simplifying assumption (such as affine camera model or homographic model between images) other than the pin-hole camera model is made. Our novel approach consists of propagating a local geometric smoothness constraint in the 4D joint image space, followed by global consistency enforcement for extracting the fundamental matrices corresponding to independent motions. We have performed extensive experiments to compare our method with some representative algorithms to show that better performance on nonstatic scenes are achieved. Results on challenging data sets are presented.
Nguyen, Thanh; Bui, Vy; Lam, Van; Raub, Christopher B; Chang, Lin-Ching; Nehmetallah, George
2017-06-26
We propose a fully automatic technique to obtain aberration free quantitative phase imaging in digital holographic microscopy (DHM) based on deep learning. The traditional DHM solves the phase aberration compensation problem by manually detecting the background for quantitative measurement. This would be a drawback in real time implementation and for dynamic processes such as cell migration phenomena. A recent automatic aberration compensation approach using principle component analysis (PCA) in DHM avoids human intervention regardless of the cells' motion. However, it corrects spherical/elliptical aberration only and disregards the higher order aberrations. Traditional image segmentation techniques can be employed to spatially detect cell locations. Ideally, automatic image segmentation techniques make real time measurement possible. However, existing automatic unsupervised segmentation techniques have poor performance when applied to DHM phase images because of aberrations and speckle noise. In this paper, we propose a novel method that combines a supervised deep learning technique with convolutional neural network (CNN) and Zernike polynomial fitting (ZPF). The deep learning CNN is implemented to perform automatic background region detection that allows for ZPF to compute the self-conjugated phase to compensate for most aberrations.
BlobContours: adapting Blobworld for supervised color- and texture-based image segmentation
NASA Astrophysics Data System (ADS)
Vogel, Thomas; Nguyen, Dinh Quyen; Dittmann, Jana
2006-01-01
Extracting features is the first and one of the most crucial steps in recent image retrieval process. While the color features and the texture features of digital images can be extracted rather easily, the shape features and the layout features depend on reliable image segmentation. Unsupervised image segmentation, often used in image analysis, works on merely syntactical basis. That is, what an unsupervised segmentation algorithm can segment is only regions, but not objects. To obtain high-level objects, which is desirable in image retrieval, human assistance is needed. Supervised image segmentations schemes can improve the reliability of segmentation and segmentation refinement. In this paper we propose a novel interactive image segmentation technique that combines the reliability of a human expert with the precision of automated image segmentation. The iterative procedure can be considered a variation on the Blobworld algorithm introduced by Carson et al. from EECS Department, University of California, Berkeley. Starting with an initial segmentation as provided by the Blobworld framework, our algorithm, namely BlobContours, gradually updates it by recalculating every blob, based on the original features and the updated number of Gaussians. Since the original algorithm has hardly been designed for interactive processing we had to consider additional requirements for realizing a supervised segmentation scheme on the basis of Blobworld. Increasing transparency of the algorithm by applying usercontrolled iterative segmentation, providing different types of visualization for displaying the segmented image and decreasing computational time of segmentation are three major requirements which are discussed in detail.
Pleural effusion segmentation in thin-slice CT
NASA Astrophysics Data System (ADS)
Donohue, Rory; Shearer, Andrew; Bruzzi, John; Khosa, Huma
2009-02-01
A pleural effusion is excess fluid that collects in the pleural cavity, the fluid-filled space that surrounds the lungs. Surplus amounts of such fluid can impair breathing by limiting the expansion of the lungs during inhalation. Measuring the fluid volume is indicative of the effectiveness of any treatment but, due to the similarity to surround regions, fragments of collapsed lung present and topological changes; accurate quantification of the effusion volume is a difficult imaging problem. A novel code is presented which performs conditional region growth to accurately segment the effusion shape across a dataset. We demonstrate the applicability of our technique in the segmentation of pleural effusion and pulmonary masses.
Prostate segmentation by sparse representation based classification
Gao, Yaozong; Liao, Shu; Shen, Dinggang
2012-01-01
Purpose: The segmentation of prostate in CT images is of essential importance to external beam radiotherapy, which is one of the major treatments for prostate cancer nowadays. During the radiotherapy, the prostate is radiated by high-energy x rays from different directions. In order to maximize the dose to the cancer and minimize the dose to the surrounding healthy tissues (e.g., bladder and rectum), the prostate in the new treatment image needs to be accurately localized. Therefore, the effectiveness and efficiency of external beam radiotherapy highly depend on the accurate localization of the prostate. However, due to the low contrast of the prostate with its surrounding tissues (e.g., bladder), the unpredicted prostate motion, and the large appearance variations across different treatment days, it is challenging to segment the prostate in CT images. In this paper, the authors present a novel classification based segmentation method to address these problems. Methods: To segment the prostate, the proposed method first uses sparse representation based classification (SRC) to enhance the prostate in CT images by pixel-wise classification, in order to overcome the limitation of poor contrast of the prostate images. Then, based on the classification results, previous segmented prostates of the same patient are used as patient-specific atlases to align onto the current treatment image and the majority voting strategy is finally adopted to segment the prostate. In order to address the limitations of the traditional SRC in pixel-wise classification, especially for the purpose of segmentation, the authors extend SRC from the following four aspects: (1) A discriminant subdictionary learning method is proposed to learn a discriminant and compact representation of training samples for each class so that the discriminant power of SRC can be increased and also SRC can be applied to the large-scale pixel-wise classification. (2) The L1 regularized sparse coding is replaced by the elastic net in order to obtain a smooth and clear prostate boundary in the classification result. (3) Residue-based linear regression is incorporated to improve the classification performance and to extend SRC from hard classification to soft classification. (4) Iterative SRC is proposed by using context information to iteratively refine the classification results. Results: The proposed method has been comprehensively evaluated on a dataset consisting of 330 CT images from 24 patients. The effectiveness of the extended SRC has been validated by comparing it with the traditional SRC based on the proposed four extensions. The experimental results show that our extended SRC can obtain not only more accurate classification results but also smoother and clearer prostate boundary than the traditional SRC. Besides, the comparison with other five state-of-the-art prostate segmentation methods indicates that our method can achieve better performance than other methods under comparison. Conclusions: The authors have proposed a novel prostate segmentation method based on the sparse representation based classification, which can achieve considerably accurate segmentation results in CT prostate segmentation. PMID:23039673
Prostate segmentation by sparse representation based classification.
Gao, Yaozong; Liao, Shu; Shen, Dinggang
2012-10-01
The segmentation of prostate in CT images is of essential importance to external beam radiotherapy, which is one of the major treatments for prostate cancer nowadays. During the radiotherapy, the prostate is radiated by high-energy x rays from different directions. In order to maximize the dose to the cancer and minimize the dose to the surrounding healthy tissues (e.g., bladder and rectum), the prostate in the new treatment image needs to be accurately localized. Therefore, the effectiveness and efficiency of external beam radiotherapy highly depend on the accurate localization of the prostate. However, due to the low contrast of the prostate with its surrounding tissues (e.g., bladder), the unpredicted prostate motion, and the large appearance variations across different treatment days, it is challenging to segment the prostate in CT images. In this paper, the authors present a novel classification based segmentation method to address these problems. To segment the prostate, the proposed method first uses sparse representation based classification (SRC) to enhance the prostate in CT images by pixel-wise classification, in order to overcome the limitation of poor contrast of the prostate images. Then, based on the classification results, previous segmented prostates of the same patient are used as patient-specific atlases to align onto the current treatment image and the majority voting strategy is finally adopted to segment the prostate. In order to address the limitations of the traditional SRC in pixel-wise classification, especially for the purpose of segmentation, the authors extend SRC from the following four aspects: (1) A discriminant subdictionary learning method is proposed to learn a discriminant and compact representation of training samples for each class so that the discriminant power of SRC can be increased and also SRC can be applied to the large-scale pixel-wise classification. (2) The L1 regularized sparse coding is replaced by the elastic net in order to obtain a smooth and clear prostate boundary in the classification result. (3) Residue-based linear regression is incorporated to improve the classification performance and to extend SRC from hard classification to soft classification. (4) Iterative SRC is proposed by using context information to iteratively refine the classification results. The proposed method has been comprehensively evaluated on a dataset consisting of 330 CT images from 24 patients. The effectiveness of the extended SRC has been validated by comparing it with the traditional SRC based on the proposed four extensions. The experimental results show that our extended SRC can obtain not only more accurate classification results but also smoother and clearer prostate boundary than the traditional SRC. Besides, the comparison with other five state-of-the-art prostate segmentation methods indicates that our method can achieve better performance than other methods under comparison. The authors have proposed a novel prostate segmentation method based on the sparse representation based classification, which can achieve considerably accurate segmentation results in CT prostate segmentation.
Wang, Jinke; Guo, Haoyan
2016-01-01
This paper presents a fully automatic framework for lung segmentation, in which juxta-pleural nodule problem is brought into strong focus. The proposed scheme consists of three phases: skin boundary detection, rough segmentation of lung contour, and pulmonary parenchyma refinement. Firstly, chest skin boundary is extracted through image aligning, morphology operation, and connective region analysis. Secondly, diagonal-based border tracing is implemented for lung contour segmentation, with maximum cost path algorithm used for separating the left and right lungs. Finally, by arc-based border smoothing and concave-based border correction, the refined pulmonary parenchyma is obtained. The proposed scheme is evaluated on 45 volumes of chest scans, with volume difference (VD) 11.15 ± 69.63 cm 3 , volume overlap error (VOE) 3.5057 ± 1.3719%, average surface distance (ASD) 0.7917 ± 0.2741 mm, root mean square distance (RMSD) 1.6957 ± 0.6568 mm, maximum symmetric absolute surface distance (MSD) 21.3430 ± 8.1743 mm, and average time-cost 2 seconds per image. The preliminary results on accuracy and complexity prove that our scheme is a promising tool for lung segmentation with juxta-pleural nodules.
Random walks based multi-image segmentation: Quasiconvexity results and GPU-based solutions
Collins, Maxwell D.; Xu, Jia; Grady, Leo; Singh, Vikas
2012-01-01
We recast the Cosegmentation problem using Random Walker (RW) segmentation as the core segmentation algorithm, rather than the traditional MRF approach adopted in the literature so far. Our formulation is similar to previous approaches in the sense that it also permits Cosegmentation constraints (which impose consistency between the extracted objects from ≥ 2 images) using a nonparametric model. However, several previous nonparametric cosegmentation methods have the serious limitation that they require adding one auxiliary node (or variable) for every pair of pixels that are similar (which effectively limits such methods to describing only those objects that have high entropy appearance models). In contrast, our proposed model completely eliminates this restrictive dependence –the resulting improvements are quite significant. Our model further allows an optimization scheme exploiting quasiconvexity for model-based segmentation with no dependence on the scale of the segmented foreground. Finally, we show that the optimization can be expressed in terms of linear algebra operations on sparse matrices which are easily mapped to GPU architecture. We provide a highly specialized CUDA library for Cosegmentation exploiting this special structure, and report experimental results showing these advantages. PMID:25278742
Technical report on semiautomatic segmentation using the Adobe Photoshop.
Park, Jin Seo; Chung, Min Suk; Hwang, Sung Bae; Lee, Yong Sook; Har, Dong-Hwan
2005-12-01
The purpose of this research is to enable users to semiautomatically segment the anatomical structures in magnetic resonance images (MRIs), computerized tomographs (CTs), and other medical images on a personal computer. The segmented images are used for making 3D images, which are helpful to medical education and research. To achieve this purpose, the following trials were performed. The entire body of a volunteer was scanned to make 557 MRIs. On Adobe Photoshop, contours of 19 anatomical structures in the MRIs were semiautomatically drawn using MAGNETIC LASSO TOOL and manually corrected using either LASSO TOOL or DIRECT SELECTION TOOL to make 557 segmented images. In a similar manner, 13 anatomical structures in 8,590 anatomical images were segmented. Proper segmentation was verified by making 3D images from the segmented images. Semiautomatic segmentation using Adobe Photoshop is expected to be widely used for segmentation of anatomical structures in various medical images.
Image Segmentation for Connectomics Using Machine Learning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tasdizen, Tolga; Seyedhosseini, Mojtaba; Liu, TIng
Reconstruction of neural circuits at the microscopic scale of individual neurons and synapses, also known as connectomics, is an important challenge for neuroscience. While an important motivation of connectomics is providing anatomical ground truth for neural circuit models, the ability to decipher neural wiring maps at the individual cell level is also important in studies of many neurodegenerative diseases. Reconstruction of a neural circuit at the individual neuron level requires the use of electron microscopy images due to their extremely high resolution. Computational challenges include pixel-by-pixel annotation of these images into classes such as cell membrane, mitochondria and synaptic vesiclesmore » and the segmentation of individual neurons. State-of-the-art image analysis solutions are still far from the accuracy and robustness of human vision and biologists are still limited to studying small neural circuits using mostly manual analysis. In this chapter, we describe our image analysis pipeline that makes use of novel supervised machine learning techniques to tackle this problem.« less
Figure-Ground Segmentation Using Factor Graphs
Shen, Huiying; Coughlan, James; Ivanchenko, Volodymyr
2009-01-01
Foreground-background segmentation has recently been applied [26,12] to the detection and segmentation of specific objects or structures of interest from the background as an efficient alternative to techniques such as deformable templates [27]. We introduce a graphical model (i.e. Markov random field)-based formulation of structure-specific figure-ground segmentation based on simple geometric features extracted from an image, such as local configurations of linear features, that are characteristic of the desired figure structure. Our formulation is novel in that it is based on factor graphs, which are graphical models that encode interactions among arbitrary numbers of random variables. The ability of factor graphs to express interactions higher than pairwise order (the highest order encountered in most graphical models used in computer vision) is useful for modeling a variety of pattern recognition problems. In particular, we show how this property makes factor graphs a natural framework for performing grouping and segmentation, and demonstrate that the factor graph framework emerges naturally from a simple maximum entropy model of figure-ground segmentation. We cast our approach in a learning framework, in which the contributions of multiple grouping cues are learned from training data, and apply our framework to the problem of finding printed text in natural scenes. Experimental results are described, including a performance analysis that demonstrates the feasibility of the approach. PMID:20160994
Brain tumor segmentation with Vander Lugt correlator based active contour.
Essadike, Abdelaziz; Ouabida, Elhoussaine; Bouzid, Abdenbi
2018-07-01
The manual segmentation of brain tumors from medical images is an error-prone, sensitive, and time-absorbing process. This paper presents an automatic and fast method of brain tumor segmentation. In the proposed method, a numerical simulation of the optical Vander Lugt correlator is used for automatically detecting the abnormal tissue region. The tumor filter, used in the simulated optical correlation, is tailored to all the brain tumor types and especially to the Glioblastoma, which considered to be the most aggressive cancer. The simulated optical correlation, computed between Magnetic Resonance Images (MRI) and this filter, estimates precisely and automatically the initial contour inside the tumorous tissue. Further, in the segmentation part, the detected initial contour is used to define an active contour model and presenting the problematic as an energy minimization problem. As a result, this initial contour assists the algorithm to evolve an active contour model towards the exact tumor boundaries. Equally important, for a comparison purposes, we considered different active contour models and investigated their impact on the performance of the segmentation task. Several images from BRATS database with tumors anywhere in images and having different sizes, contrast, and shape, are used to test the proposed system. Furthermore, several performance metrics are computed to present an aggregate overview of the proposed method advantages. The proposed method achieves a high accuracy in detecting the tumorous tissue by a parameter returned by the simulated optical correlation. In addition, the proposed method yields better performance compared to the active contour based methods with the averages of Sensitivity=0.9733, Dice coefficient = 0.9663, Hausdroff distance = 2.6540, Specificity = 0.9994, and faster with a computational time average of 0.4119 s per image. Results reported on BRATS database reveal that our proposed system improves over the recently published state-of-the-art methods in brain tumor detection and segmentation. Copyright © 2018 Elsevier B.V. All rights reserved.
Concurrent tumor segmentation and registration with uncertainty-based sparse non-uniform graphs.
Parisot, Sarah; Wells, William; Chemouny, Stéphane; Duffau, Hugues; Paragios, Nikos
2014-05-01
In this paper, we present a graph-based concurrent brain tumor segmentation and atlas to diseased patient registration framework. Both segmentation and registration problems are modeled using a unified pairwise discrete Markov Random Field model on a sparse grid superimposed to the image domain. Segmentation is addressed based on pattern classification techniques, while registration is performed by maximizing the similarity between volumes and is modular with respect to the matching criterion. The two problems are coupled by relaxing the registration term in the tumor area, corresponding to areas of high classification score and high dissimilarity between volumes. In order to overcome the main shortcomings of discrete approaches regarding appropriate sampling of the solution space as well as important memory requirements, content driven samplings of the discrete displacement set and the sparse grid are considered, based on the local segmentation and registration uncertainties recovered by the min marginal energies. State of the art results on a substantial low-grade glioma database demonstrate the potential of our method, while our proposed approach shows maintained performance and strongly reduced complexity of the model. Copyright © 2014 Elsevier B.V. All rights reserved.
Hyperspectral image segmentation of the common bile duct
NASA Astrophysics Data System (ADS)
Samarov, Daniel; Wehner, Eleanor; Schwarz, Roderich; Zuzak, Karel; Livingston, Edward
2013-03-01
Over the course of the last several years hyperspectral imaging (HSI) has seen increased usage in biomedicine. Within the medical field in particular HSI has been recognized as having the potential to make an immediate impact by reducing the risks and complications associated with laparotomies (surgical procedures involving large incisions into the abdominal wall) and related procedures. There are several ongoing studies focused on such applications. Hyperspectral images were acquired during pancreatoduodenectomies (commonly referred to as Whipple procedures), a surgical procedure done to remove cancerous tumors involving the pancreas and gallbladder. As a result of the complexity of the local anatomy, identifying where the common bile duct (CBD) is can be difficult, resulting in comparatively high incidents of injury to the CBD and associated complications. It is here that HSI has the potential to help reduce the risk of such events from happening. Because the bile contained within the CBD exhibits a unique spectral signature, we are able to utilize HSI segmentation algorithms to help in identifying where the CBD is. In the work presented here we discuss approaches to this segmentation problem and present the results.
On the fallacy of quantitative segmentation for T1-weighted MRI
NASA Astrophysics Data System (ADS)
Plassard, Andrew J.; Harrigan, Robert L.; Newton, Allen T.; Rane, Swati; Pallavaram, Srivatsan; D'Haese, Pierre F.; Dawant, Benoit M.; Claassen, Daniel O.; Landman, Bennett A.
2016-03-01
T1-weighted magnetic resonance imaging (MRI) generates contrasts with primary sensitivity to local T1 properties (with lesser T2 and PD contributions). The observed signal intensity is determined by these local properties and the sequence parameters of the acquisition. In common practice, a range of acceptable parameters is used to ensure "similar" contrast across scanners used for any particular study (e.g., the ADNI standard MPRAGE). However, different studies may use different ranges of parameters and report the derived data as simply "T1-weighted". Physics and imaging authors pay strong heed to the specifics of the imaging sequences, but image processing authors have historically been more lax. Herein, we consider three T1-weighted sequences acquired the same underlying protocol (MPRAGE) and vendor (Philips), but "normal study-to-study variation" in parameters. We show that the gray matter/white matter/cerebrospinal fluid contrast is subtly but systemically different between these images and yields systemically different measurements of brain volume. The problem derives from the visually apparent boundary shifts, which would also be seen by a human rater. We present and evaluate two solutions to produce consistent segmentation results across imaging protocols. First, we propose to acquire multiple sequences on a subset of the data and use the multi-modal imaging as atlases to segment target images any of the available sequences. Second (if additional imaging is not available), we propose to synthesize atlases of the target imaging sequence and use the synthesized atlases in place of atlas imaging data. Both approaches significantly improve consistency of target labeling.
Learning of perceptual grouping for object segmentation on RGB-D data☆
Richtsfeld, Andreas; Mörwald, Thomas; Prankl, Johann; Zillich, Michael; Vincze, Markus
2014-01-01
Object segmentation of unknown objects with arbitrary shape in cluttered scenes is an ambitious goal in computer vision and became a great impulse with the introduction of cheap and powerful RGB-D sensors. We introduce a framework for segmenting RGB-D images where data is processed in a hierarchical fashion. After pre-clustering on pixel level parametric surface patches are estimated. Different relations between patch-pairs are calculated, which we derive from perceptual grouping principles, and support vector machine classification is employed to learn Perceptual Grouping. Finally, we show that object hypotheses generation with Graph-Cut finds a globally optimal solution and prevents wrong grouping. Our framework is able to segment objects, even if they are stacked or jumbled in cluttered scenes. We also tackle the problem of segmenting objects when they are partially occluded. The work is evaluated on publicly available object segmentation databases and also compared with state-of-the-art work of object segmentation. PMID:24478571
Analysis of Non Local Image Denoising Methods
NASA Astrophysics Data System (ADS)
Pardo, Álvaro
Image denoising is probably one of the most studied problems in the image processing community. Recently a new paradigm on non local denoising was introduced. The Non Local Means method proposed by Buades, Morel and Coll attracted the attention of other researches who proposed improvements and modifications to their proposal. In this work we analyze those methods trying to understand their properties while connecting them to segmentation based on spectral graph properties. We also propose some improvements to automatically estimate the parameters used on these methods.
Segmentation of DTI based on tensorial morphological gradient
NASA Astrophysics Data System (ADS)
Rittner, Leticia; de Alencar Lotufo, Roberto
2009-02-01
This paper presents a segmentation technique for diffusion tensor imaging (DTI). This technique is based on a tensorial morphological gradient (TMG), defined as the maximum dissimilarity over the neighborhood. Once this gradient is computed, the tensorial segmentation problem becomes an scalar one, which can be solved by conventional techniques, such as watershed transform and thresholding. Similarity functions, namely the dot product, the tensorial dot product, the J-divergence and the Frobenius norm, were compared, in order to understand their differences regarding the measurement of tensor dissimilarities. The study showed that the dot product and the tensorial dot product turned out to be inappropriate for computation of the TMG, while the Frobenius norm and the J-divergence were both capable of measuring tensor dissimilarities, despite the distortion of Frobenius norm, since it is not an affine invariant measure. In order to validate the TMG as a solution for DTI segmentation, its computation was performed using distinct similarity measures and structuring elements. TMG results were also compared to fractional anisotropy. Finally, synthetic and real DTI were used in the method validation. Experiments showed that the TMG enables the segmentation of DTI by watershed transform or by a simple choice of a threshold. The strength of the proposed segmentation method is its simplicity and robustness, consequences of TMG computation. It enables the use, not only of well-known algorithms and tools from the mathematical morphology, but also of any other segmentation method to segment DTI, since TMG computation transforms tensorial images in scalar ones.
A novel adaptive scoring system for segmentation validation with multiple reference masks
NASA Astrophysics Data System (ADS)
Moltz, Jan H.; Rühaak, Jan; Hahn, Horst K.; Peitgen, Heinz-Otto
2011-03-01
The development of segmentation algorithms for different anatomical structures and imaging protocols is an important task in medical image processing. The validation of these methods, however, is often treated as a subordinate task. Since manual delineations, which are widely used as a surrogate for the ground truth, exhibit an inherent uncertainty, it is preferable to use multiple reference segmentations for an objective validation. This requires a consistent framework that should fulfill three criteria: 1) it should treat all reference masks equally a priori and not demand consensus between the experts; 2) it should evaluate the algorithmic performance in relation to the inter-reference variability, i.e., be more tolerant where the experts disagree about the true segmentation; 3) it should produce results that are comparable for different test data. We show why current state-of-the-art frameworks as the one used at several MICCAI segmentation challenges do not fulfill these criteria and propose a new validation methodology. A score is computed in an adaptive way for each individual segmentation problem, using a combination of volume- and surface-based comparison metrics. These are transformed into the score by relating them to the variability between the reference masks which can be measured by comparing the masks with each other or with an estimated ground truth. We present examples from a study on liver tumor segmentation in CT scans where our score shows a more adequate assessment of the segmentation results than the MICCAI framework.
Brain abnormality segmentation based on l1-norm minimization
NASA Astrophysics Data System (ADS)
Zeng, Ke; Erus, Guray; Tanwar, Manoj; Davatzikos, Christos
2014-03-01
We present a method that uses sparse representations to model the inter-individual variability of healthy anatomy from a limited number of normal medical images. Abnormalities in MR images are then defined as deviations from the normal variation. More precisely, we model an abnormal (pathological) signal y as the superposition of a normal part ~y that can be sparsely represented under an example-based dictionary, and an abnormal part r. Motivated by a dense error correction scheme recently proposed for sparse signal recovery, we use l1- norm minimization to separate ~y and r. We extend the existing framework, which was mainly used on robust face recognition in a discriminative setting, to address challenges of brain image analysis, particularly the high dimensionality and low sample size problem. The dictionary is constructed from local image patches extracted from training images aligned using smooth transformations, together with minor perturbations of those patches. A multi-scale sliding-window scheme is applied to capture anatomical variations ranging from fine and localized to coarser and more global. The statistical significance of the abnormality term r is obtained by comparison to its empirical distribution through cross-validation, and is used to assign an abnormality score to each voxel. In our validation experiments the method is applied for segmenting abnormalities on 2-D slices of FLAIR images, and we obtain segmentation results consistent with the expert-defined masks.
An interactive medical image segmentation framework using iterative refinement.
Kalshetti, Pratik; Bundele, Manas; Rahangdale, Parag; Jangra, Dinesh; Chattopadhyay, Chiranjoy; Harit, Gaurav; Elhence, Abhay
2017-04-01
Segmentation is often performed on medical images for identifying diseases in clinical evaluation. Hence it has become one of the major research areas. Conventional image segmentation techniques are unable to provide satisfactory segmentation results for medical images as they contain irregularities. They need to be pre-processed before segmentation. In order to obtain the most suitable method for medical image segmentation, we propose MIST (Medical Image Segmentation Tool), a two stage algorithm. The first stage automatically generates a binary marker image of the region of interest using mathematical morphology. This marker serves as the mask image for the second stage which uses GrabCut to yield an efficient segmented result. The obtained result can be further refined by user interaction, which can be done using the proposed Graphical User Interface (GUI). Experimental results show that the proposed method is accurate and provides satisfactory segmentation results with minimum user interaction on medical as well as natural images. Copyright © 2017 Elsevier Ltd. All rights reserved.
Segmentation of stereo terrain images
NASA Astrophysics Data System (ADS)
George, Debra A.; Privitera, Claudio M.; Blackmon, Theodore T.; Zbinden, Eric; Stark, Lawrence W.
2000-06-01
We have studied four approaches to segmentation of images: three automatic ones using image processing algorithms and a fourth approach, human manual segmentation. We were motivated toward helping with an important NASA Mars rover mission task -- replacing laborious manual path planning with automatic navigation of the rover on the Mars terrain. The goal of the automatic segmentations was to identify an obstacle map on the Mars terrain to enable automatic path planning for the rover. The automatic segmentation was first explored with two different segmentation methods: one based on pixel luminance, and the other based on pixel altitude generated through stereo image processing. The third automatic segmentation was achieved by combining these two types of image segmentation. Human manual segmentation of Martian terrain images was used for evaluating the effectiveness of the combined automatic segmentation as well as for determining how different humans segment the same images. Comparisons between two different segmentations, manual or automatic, were measured using a similarity metric, SAB. Based on this metric, the combined automatic segmentation did fairly well in agreeing with the manual segmentation. This was a demonstration of a positive step towards automatically creating the accurate obstacle maps necessary for automatic path planning and rover navigation.
Ithapu, Vamsi; Singh, Vikas; Lindner, Christopher; Austin, Benjamin P; Hinrichs, Chris; Carlsson, Cynthia M; Bendlin, Barbara B; Johnson, Sterling C
2014-08-01
Precise detection and quantification of white matter hyperintensities (WMH) observed in T2-weighted Fluid Attenuated Inversion Recovery (FLAIR) Magnetic Resonance Images (MRI) is of substantial interest in aging, and age-related neurological disorders such as Alzheimer's disease (AD). This is mainly because WMH may reflect co-morbid neural injury or cerebral vascular disease burden. WMH in the older population may be small, diffuse, and irregular in shape, and sufficiently heterogeneous within and across subjects. Here, we pose hyperintensity detection as a supervised inference problem and adapt two learning models, specifically, Support Vector Machines and Random Forests, for this task. Using texture features engineered by texton filter banks, we provide a suite of effective segmentation methods for this problem. Through extensive evaluations on healthy middle-aged and older adults who vary in AD risk, we show that our methods are reliable and robust in segmenting hyperintense regions. A measure of hyperintensity accumulation, referred to as normalized effective WMH volume, is shown to be associated with dementia in older adults and parental family history in cognitively normal subjects. We provide an open source library for hyperintensity detection and accumulation (interfaced with existing neuroimaging tools), that can be adapted for segmentation problems in other neuroimaging studies. Copyright © 2014 Wiley Periodicals, Inc.
3D Volumetric Analysis of Fluid Inclusions Using Confocal Microscopy
NASA Astrophysics Data System (ADS)
Proussevitch, A.; Mulukutla, G.; Sahagian, D.; Bodnar, B.
2009-05-01
Fluid inclusions preserve valuable information regarding hydrothermal, metamorphic, and magmatic processes. The molar quantities of liquid and gaseous components in the inclusions can be estimated from their volumetric measurements at room temperatures combined with knowledge of the PVTX properties of the fluid and homogenization temperatures. Thus, accurate measurements of inclusion volumes and their two phase components are critical. One of the greatest advantages of the Laser Scanning Confocal Microscopy (LSCM) in application to fluid inclsion analsyis is that it is affordable for large numbers of samples, given the appropriate software analysis tools and methodology. Our present work is directed toward developing those tools and methods. For the last decade LSCM has been considered as a potential method for inclusion volume measurements. Nevertheless, the adequate and accurate measurement by LSCM has not yet been successful for fluid inclusions containing non-fluorescing fluids due to many technical challenges in image analysis despite the fact that the cost of collecting raw LSCM imagery has dramatically decreased in recent years. These problems mostly relate to image analysis methodology and software tools that are needed for pre-processing and image segmentation, which enable solid, liquid and gaseous components to be delineated. Other challenges involve image quality and contrast, which is controlled by fluorescence of the material (most aqueous fluid inclusions do not fluoresce at the appropriate laser wavelengths), material optical properties, and application of transmitted and/or reflected confocal illumination. In this work we have identified the key problems of image analysis and propose some potential solutions. For instance, we found that better contrast of pseudo-confocal transmitted light images could be overlayed with poor-contrast true-confocal reflected light images within the same stack of z-ordered slices. This approach allows one to narrow the interface boundaries between the phases before the application of segmentation routines. In turn, we found that an active contour segmentation technique works best for these types of geomaterials. The method was developed by adapting a medical software package implemented using the Insight Toolkit (ITK) set of algorithms developed for segmentation of anatomical structures. We have developed a manual analysis procedure with the potential of 2 micron resolution in 3D volume rendering that is specifically designed for application to fluid inclusion volume measurements.
Improved Bat Algorithm Applied to Multilevel Image Thresholding
2014-01-01
Multilevel image thresholding is a very important image processing technique that is used as a basis for image segmentation and further higher level processing. However, the required computational time for exhaustive search grows exponentially with the number of desired thresholds. Swarm intelligence metaheuristics are well known as successful and efficient optimization methods for intractable problems. In this paper, we adjusted one of the latest swarm intelligence algorithms, the bat algorithm, for the multilevel image thresholding problem. The results of testing on standard benchmark images show that the bat algorithm is comparable with other state-of-the-art algorithms. We improved standard bat algorithm, where our modifications add some elements from the differential evolution and from the artificial bee colony algorithm. Our new proposed improved bat algorithm proved to be better than five other state-of-the-art algorithms, improving quality of results in all cases and significantly improving convergence speed. PMID:25165733
Knee cartilage segmentation using active shape models and local binary patterns
NASA Astrophysics Data System (ADS)
González, Germán.; Escalante-Ramírez, Boris
2014-05-01
Segmentation of knee cartilage has been useful for opportune diagnosis and treatment of osteoarthritis (OA). This paper presents a semiautomatic segmentation technique based on Active Shape Models (ASM) combined with Local Binary Patterns (LBP) and its approaches to describe the surrounding texture of femoral cartilage. The proposed technique is tested on a 16-image database of different patients and it is validated through Leave- One-Out method. We compare different segmentation techniques: ASM-LBP, ASM-medianLBP, and ASM proposed by Cootes. The ASM-LBP approaches are tested with different ratios to decide which of them describes the cartilage texture better. The results show that ASM-medianLBP has better performance than ASM-LBP and ASM. Furthermore, we add a routine which improves the robustness versus two principal problems: oversegmentation and initialization.
NiftyNet: a deep-learning platform for medical imaging.
Gibson, Eli; Li, Wenqi; Sudre, Carole; Fidon, Lucas; Shakir, Dzhoshkun I; Wang, Guotai; Eaton-Rosen, Zach; Gray, Robert; Doel, Tom; Hu, Yipeng; Whyntie, Tom; Nachev, Parashkev; Modat, Marc; Barratt, Dean C; Ourselin, Sébastien; Cardoso, M Jorge; Vercauteren, Tom
2018-05-01
Medical image analysis and computer-assisted intervention problems are increasingly being addressed with deep-learning-based solutions. Established deep-learning platforms are flexible but do not provide specific functionality for medical image analysis and adapting them for this domain of application requires substantial implementation effort. Consequently, there has been substantial duplication of effort and incompatible infrastructure developed across many research groups. This work presents the open-source NiftyNet platform for deep learning in medical imaging. The ambition of NiftyNet is to accelerate and simplify the development of these solutions, and to provide a common mechanism for disseminating research outputs for the community to use, adapt and build upon. The NiftyNet infrastructure provides a modular deep-learning pipeline for a range of medical imaging applications including segmentation, regression, image generation and representation learning applications. Components of the NiftyNet pipeline including data loading, data augmentation, network architectures, loss functions and evaluation metrics are tailored to, and take advantage of, the idiosyncracies of medical image analysis and computer-assisted intervention. NiftyNet is built on the TensorFlow framework and supports features such as TensorBoard visualization of 2D and 3D images and computational graphs by default. We present three illustrative medical image analysis applications built using NiftyNet infrastructure: (1) segmentation of multiple abdominal organs from computed tomography; (2) image regression to predict computed tomography attenuation maps from brain magnetic resonance images; and (3) generation of simulated ultrasound images for specified anatomical poses. The NiftyNet infrastructure enables researchers to rapidly develop and distribute deep learning solutions for segmentation, regression, image generation and representation learning applications, or extend the platform to new applications. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
High content image analysis for human H4 neuroglioma cells exposed to CuO nanoparticles.
Li, Fuhai; Zhou, Xiaobo; Zhu, Jinmin; Ma, Jinwen; Huang, Xudong; Wong, Stephen T C
2007-10-09
High content screening (HCS)-based image analysis is becoming an important and widely used research tool. Capitalizing this technology, ample cellular information can be extracted from the high content cellular images. In this study, an automated, reliable and quantitative cellular image analysis system developed in house has been employed to quantify the toxic responses of human H4 neuroglioma cells exposed to metal oxide nanoparticles. This system has been proved to be an essential tool in our study. The cellular images of H4 neuroglioma cells exposed to different concentrations of CuO nanoparticles were sampled using IN Cell Analyzer 1000. A fully automated cellular image analysis system has been developed to perform the image analysis for cell viability. A multiple adaptive thresholding method was used to classify the pixels of the nuclei image into three classes: bright nuclei, dark nuclei, and background. During the development of our image analysis methodology, we have achieved the followings: (1) The Gaussian filtering with proper scale has been applied to the cellular images for generation of a local intensity maximum inside each nucleus; (2) a novel local intensity maxima detection method based on the gradient vector field has been established; and (3) a statistical model based splitting method was proposed to overcome the under segmentation problem. Computational results indicate that 95.9% nuclei can be detected and segmented correctly by the proposed image analysis system. The proposed automated image analysis system can effectively segment the images of human H4 neuroglioma cells exposed to CuO nanoparticles. The computational results confirmed our biological finding that human H4 neuroglioma cells had a dose-dependent toxic response to the insult of CuO nanoparticles.
Identification of uncommon objects in containers
Bremer, Peer-Timo; Kim, Hyojin; Thiagarajan, Jayaraman J.
2017-09-12
A system for identifying in an image an object that is commonly found in a collection of images and for identifying a portion of an image that represents an object based on a consensus analysis of segmentations of the image. The system collects images of containers that contain objects for generating a collection of common objects within the containers. To process the images, the system generates a segmentation of each image. The image analysis system may also generate multiple segmentations for each image by introducing variations in the selection of voxels to be merged into a segment. The system then generates clusters of the segments based on similarity among the segments. Each cluster represents a common object found in the containers. Once the clustering is complete, the system may be used to identify common objects in images of new containers based on similarity between segments of images and the clusters.
Monitoring Change Through Hierarchical Segmentation of Remotely Sensed Image Data
NASA Technical Reports Server (NTRS)
Tilton, James C.; Lawrence, William T.
2005-01-01
NASA's Goddard Space Flight Center has developed a fast and effective method for generating image segmentation hierarchies. These segmentation hierarchies organize image data in a manner that makes their information content more accessible for analysis. Image segmentation enables analysis through the examination of image regions rather than individual image pixels. In addition, the segmentation hierarchy provides additional analysis clues through the tracing of the behavior of image region characteristics at several levels of segmentation detail. The potential for extracting the information content from imagery data based on segmentation hierarchies has not been fully explored for the benefit of the Earth and space science communities. This paper explores the potential of exploiting these segmentation hierarchies for the analysis of multi-date data sets, and for the particular application of change monitoring.
Shi, Peng; Zhong, Jing; Hong, Jinsheng; Huang, Rongfang; Wang, Kaijun; Chen, Yunbin
2016-08-26
Nasopharyngeal carcinoma is one of the malignant neoplasm with high incidence in China and south-east Asia. Ki-67 protein is strictly associated with cell proliferation and malignant degree. Cells with higher Ki-67 expression are always sensitive to chemotherapy and radiotherapy, the assessment of which is beneficial to NPC treatment. It is still challenging to automatically analyze immunohistochemical Ki-67 staining nasopharyngeal carcinoma images due to the uneven color distributions in different cell types. In order to solve the problem, an automated image processing pipeline based on clustering of local correlation features is proposed in this paper. Unlike traditional morphology-based methods, our algorithm segments cells by classifying image pixels on the basis of local pixel correlations from particularly selected color spaces, then characterizes cells with a set of grading criteria for the reference of pathological analysis. Experimental results showed high accuracy and robustness in nucleus segmentation despite image data variance. Quantitative indicators obtained in this essay provide a reliable evidence for the analysis of Ki-67 staining nasopharyngeal carcinoma microscopic images, which would be helpful in relevant histopathological researches.
Using deep learning in image hyper spectral segmentation, classification, and detection
NASA Astrophysics Data System (ADS)
Zhao, Xiuying; Su, Zhenyu
2018-02-01
Recent years have shown that deep learning neural networks are a valuable tool in the field of computer vision. Deep learning method can be used in applications like remote sensing such as Land cover Classification, Detection of Vehicle in Satellite Images, Hyper spectral Image classification. This paper addresses the use of the deep learning artificial neural network in Satellite image segmentation. Image segmentation plays an important role in image processing. The hue of the remote sensing image often has a large hue difference, which will result in the poor display of the images in the VR environment. Image segmentation is a pre processing technique applied to the original images and splits the image into many parts which have different hue to unify the color. Several computational models based on supervised, unsupervised, parametric, probabilistic region based image segmentation techniques have been proposed. Recently, one of the machine learning technique known as, deep learning with convolution neural network has been widely used for development of efficient and automatic image segmentation models. In this paper, we focus on study of deep neural convolution network and its variants for automatic image segmentation rather than traditional image segmentation strategies.
A region-based segmentation method for ultrasound images in HIFU therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Dong, E-mail: dongz@whu.edu.cn; Liu, Yu; Yang, Yan
Purpose: Precisely and efficiently locating a tumor with less manual intervention in ultrasound-guided high-intensity focused ultrasound (HIFU) therapy is one of the keys to guaranteeing the therapeutic result and improving the efficiency of the treatment. The segmentation of ultrasound images has always been difficult due to the influences of speckle, acoustic shadows, and signal attenuation as well as the variety of tumor appearance. The quality of HIFU guidance images is even poorer than that of conventional diagnostic ultrasound images because the ultrasonic probe used for HIFU guidance usually obtains images without making contact with the patient’s body. Therefore, the segmentationmore » becomes more difficult. To solve the segmentation problem of ultrasound guidance image in the treatment planning procedure for HIFU therapy, a novel region-based segmentation method for uterine fibroids in HIFU guidance images is proposed. Methods: Tumor partitioning in HIFU guidance image without manual intervention is achieved by a region-based split-and-merge framework. A new iterative multiple region growing algorithm is proposed to first split the image into homogenous regions (superpixels). The features extracted within these homogenous regions will be more stable than those extracted within the conventional neighborhood of a pixel. The split regions are then merged by a superpixel-based adaptive spectral clustering algorithm. To ensure the superpixels that belong to the same tumor can be clustered together in the merging process, a particular construction strategy for the similarity matrix is adopted for the spectral clustering, and the similarity matrix is constructed by taking advantage of a combination of specifically selected first-order and second-order texture features computed from the gray levels and the gray level co-occurrence matrixes, respectively. The tumor region is picked out automatically from the background regions by an algorithm according to a priori information about the tumor position, shape, and size. Additionally, an appropriate cluster number for spectral clustering can be determined by the same algorithm, thus the automatic segmentation of the tumor region is achieved. Results: To evaluate the performance of the proposed method, 50 uterine fibroid ultrasound images from different patients receiving HIFU therapy were segmented, and the obtained tumor contours were compared with those delineated by an experienced radiologist. For area-based evaluation results, the mean values of the true positive ratio, the false positive ratio, and the similarity were 94.42%, 4.71%, and 90.21%, respectively, and the corresponding standard deviations were 2.54%, 3.12%, and 3.50%, respectively. For distance-based evaluation results, the mean values of the normalized Hausdorff distance and the normalized mean absolute distance were 4.93% and 0.90%, respectively, and the corresponding standard deviations were 2.22% and 0.34%, respectively. The running time of the segmentation process was 12.9 s for a 318 × 333 (pixels) image. Conclusions: Experiments show that the proposed method can segment the tumor region accurately and efficiently with less manual intervention, which provides for the possibility of automatic segmentation and real-time guidance in HIFU therapy.« less
Automatic and quantitative measurement of collagen gel contraction using model-guided segmentation
NASA Astrophysics Data System (ADS)
Chen, Hsin-Chen; Yang, Tai-Hua; Thoreson, Andrew R.; Zhao, Chunfeng; Amadio, Peter C.; Sun, Yung-Nien; Su, Fong-Chin; An, Kai-Nan
2013-08-01
Quantitative measurement of collagen gel contraction plays a critical role in the field of tissue engineering because it provides spatial-temporal assessment (e.g., changes of gel area and diameter during the contraction process) reflecting the cell behavior and tissue material properties. So far the assessment of collagen gels relies on manual segmentation, which is time-consuming and suffers from serious intra- and inter-observer variability. In this study, we propose an automatic method combining various image processing techniques to resolve these problems. The proposed method first detects the maximal feasible contraction range of circular references (e.g., culture dish) and avoids the interference of irrelevant objects in the given image. Then, a three-step color conversion strategy is applied to normalize and enhance the contrast between the gel and background. We subsequently introduce a deformable circular model which utilizes regional intensity contrast and circular shape constraint to locate the gel boundary. An adaptive weighting scheme was employed to coordinate the model behavior, so that the proposed system can overcome variations of gel boundary appearances at different contraction stages. Two measurements of collagen gels (i.e., area and diameter) can readily be obtained based on the segmentation results. Experimental results, including 120 gel images for accuracy validation, showed high agreement between the proposed method and manual segmentation with an average dice similarity coefficient larger than 0.95. The results also demonstrated obvious improvement in gel contours obtained by the proposed method over two popular, generic segmentation methods.
Contour-Driven Atlas-Based Segmentation
Wachinger, Christian; Fritscher, Karl; Sharp, Greg; Golland, Polina
2016-01-01
We propose new methods for automatic segmentation of images based on an atlas of manually labeled scans and contours in the image. First, we introduce a Bayesian framework for creating initial label maps from manually annotated training images. Within this framework, we model various registration- and patch-based segmentation techniques by changing the deformation field prior. Second, we perform contour-driven regression on the created label maps to refine the segmentation. Image contours and image parcellations give rise to non-stationary kernel functions that model the relationship between image locations. Setting the kernel to the covariance function in a Gaussian process establishes a distribution over label maps supported by image structures. Maximum a posteriori estimation of the distribution over label maps conditioned on the outcome of the atlas-based segmentation yields the refined segmentation. We evaluate the segmentation in two clinical applications: the segmentation of parotid glands in head and neck CT scans and the segmentation of the left atrium in cardiac MR angiography images. PMID:26068202
2012-01-01
Background Dimensionality reduction (DR) enables the construction of a lower dimensional space (embedding) from a higher dimensional feature space while preserving object-class discriminability. However several popular DR approaches suffer from sensitivity to choice of parameters and/or presence of noise in the data. In this paper, we present a novel DR technique known as consensus embedding that aims to overcome these problems by generating and combining multiple low-dimensional embeddings, hence exploiting the variance among them in a manner similar to ensemble classifier schemes such as Bagging. We demonstrate theoretical properties of consensus embedding which show that it will result in a single stable embedding solution that preserves information more accurately as compared to any individual embedding (generated via DR schemes such as Principal Component Analysis, Graph Embedding, or Locally Linear Embedding). Intelligent sub-sampling (via mean-shift) and code parallelization are utilized to provide for an efficient implementation of the scheme. Results Applications of consensus embedding are shown in the context of classification and clustering as applied to: (1) image partitioning of white matter and gray matter on 10 different synthetic brain MRI images corrupted with 18 different combinations of noise and bias field inhomogeneity, (2) classification of 4 high-dimensional gene-expression datasets, (3) cancer detection (at a pixel-level) on 16 image slices obtained from 2 different high-resolution prostate MRI datasets. In over 200 different experiments concerning classification and segmentation of biomedical data, consensus embedding was found to consistently outperform both linear and non-linear DR methods within all applications considered. Conclusions We have presented a novel framework termed consensus embedding which leverages ensemble classification theory within dimensionality reduction, allowing for application to a wide range of high-dimensional biomedical data classification and segmentation problems. Our generalizable framework allows for improved representation and classification in the context of both imaging and non-imaging data. The algorithm offers a promising solution to problems that currently plague DR methods, and may allow for extension to other areas of biomedical data analysis. PMID:22316103
Metric Learning to Enhance Hyperspectral Image Segmentation
NASA Technical Reports Server (NTRS)
Thompson, David R.; Castano, Rebecca; Bue, Brian; Gilmore, Martha S.
2013-01-01
Unsupervised hyperspectral image segmentation can reveal spatial trends that show the physical structure of the scene to an analyst. They highlight borders and reveal areas of homogeneity and change. Segmentations are independently helpful for object recognition, and assist with automated production of symbolic maps. Additionally, a good segmentation can dramatically reduce the number of effective spectra in an image, enabling analyses that would otherwise be computationally prohibitive. Specifically, using an over-segmentation of the image instead of individual pixels can reduce noise and potentially improve the results of statistical post-analysis. In this innovation, a metric learning approach is presented to improve the performance of unsupervised hyperspectral image segmentation. The prototype demonstrations attempt a superpixel segmentation in which the image is conservatively over-segmented; that is, the single surface features may be split into multiple segments, but each individual segment, or superpixel, is ensured to have homogenous mineralogy.
A supervoxel-based segmentation method for prostate MR images
NASA Astrophysics Data System (ADS)
Tian, Zhiqiang; Liu, LiZhi; Fei, Baowei
2015-03-01
Accurate segmentation of the prostate has many applications in prostate cancer diagnosis and therapy. In this paper, we propose a "Supervoxel" based method for prostate segmentation. The prostate segmentation problem is considered as assigning a label to each supervoxel. An energy function with data and smoothness terms is used to model the labeling process. The data term estimates the likelihood of a supervoxel belongs to the prostate according to a shape feature. The geometric relationship between two neighboring supervoxels is used to construct a smoothness term. A threedimensional (3D) graph cut method is used to minimize the energy function in order to segment the prostate. A 3D level set is then used to get a smooth surface based on the output of the graph cut. The performance of the proposed segmentation algorithm was evaluated with respect to the manual segmentation ground truth. The experimental results on 12 prostate volumes showed that the proposed algorithm yields a mean Dice similarity coefficient of 86.9%+/-3.2%. The segmentation method can be used not only for the prostate but also for other organs.
Image Segmentation Using Minimum Spanning Tree
NASA Astrophysics Data System (ADS)
Dewi, M. P.; Armiati, A.; Alvini, S.
2018-04-01
This research aim to segmented the digital image. The process of segmentation is to separate the object from the background. So the main object can be processed for the other purposes. Along with the development of technology in digital image processing application, the segmentation process becomes increasingly necessary. The segmented image which is the result of the segmentation process should accurate due to the next process need the interpretation of the information on the image. This article discussed the application of minimum spanning tree on graph in segmentation process of digital image. This method is able to separate an object from the background and the image will change to be the binary images. In this case, the object that being the focus is set in white, while the background is black or otherwise.
Optimization of coronagraph design for segmented aperture telescopes
NASA Astrophysics Data System (ADS)
Jewell, Jeffrey; Ruane, Garreth; Shaklan, Stuart; Mawet, Dimitri; Redding, Dave
2017-09-01
The goal of directly imaging Earth-like planets in the habitable zone of other stars has motivated the design of coronagraphs for use with large segmented aperture space telescopes. In order to achieve an optimal trade-off between planet light throughput and diffracted starlight suppression, we consider coronagraphs comprised of a stage of phase control implemented with deformable mirrors (or other optical elements), pupil plane apodization masks (gray scale or complex valued), and focal plane masks (either amplitude only or complex-valued, including phase only such as the vector vortex coronagraph). The optimization of these optical elements, with the goal of achieving 10 or more orders of magnitude in the suppression of on-axis (starlight) diffracted light, represents a challenging non-convex optimization problem with a nonlinear dependence on control degrees of freedom. We develop a new algorithmic approach to the design optimization problem, which we call the "Auxiliary Field Optimization" (AFO) algorithm. The central idea of the algorithm is to embed the original optimization problem, for either phase or amplitude (apodization) in various planes of the coronagraph, into a problem containing additional degrees of freedom, specifically fictitious "auxiliary" electric fields which serve as targets to inform the variation of our phase or amplitude parameters leading to good feasible designs. We present the algorithm, discuss details of its numerical implementation, and prove convergence to local minima of the objective function (here taken to be the intensity of the on-axis source in a "dark hole" region in the science focal plane). Finally, we present results showing application of the algorithm to both unobscured off-axis and obscured on-axis segmented telescope aperture designs. The application of the AFO algorithm to the coronagraph design problem has produced solutions which are capable of directly imaging planets in the habitable zone, provided end-to-end telescope system stability requirements can be met. Ongoing work includes advances of the AFO algorithm reported here to design in additional robustness to a resolved star, and other phase or amplitude aberrations to be encountered in a real segmented aperture space telescope.
Extraction of Extended Small-Scale Objects in Digital Images
NASA Astrophysics Data System (ADS)
Volkov, V. Y.
2015-05-01
Detection and localization problem of extended small-scale objects with different shapes appears in radio observation systems which use SAR, infra-red, lidar and television camera. Intensive non-stationary background is the main difficulty for processing. Other challenge is low quality of images, blobs, blurred boundaries; in addition SAR images suffer from a serious intrinsic speckle noise. Statistics of background is not normal, it has evident skewness and heavy tails in probability density, so it is hard to identify it. The problem of extraction small-scale objects is solved here on the basis of directional filtering, adaptive thresholding and morthological analysis. New kind of masks is used which are open-ended at one side so it is possible to extract ends of line segments with unknown length. An advanced method of dynamical adaptive threshold setting is investigated which is based on isolated fragments extraction after thresholding. Hierarchy of isolated fragments on binary image is proposed for the analysis of segmentation results. It includes small-scale objects with different shape, size and orientation. The method uses extraction of isolated fragments in binary image and counting points in these fragments. Number of points in extracted fragments is normalized to the total number of points for given threshold and is used as effectiveness of extraction for these fragments. New method for adaptive threshold setting and control maximises effectiveness of extraction. It has optimality properties for objects extraction in normal noise field and shows effective results for real SAR images.
USDA analyst review of the LACIE IMAGE-100 hybrid system test
NASA Technical Reports Server (NTRS)
Ashburn, P.; Buelow, K.; Hansen, H. L.; May, G. A. (Principal Investigator)
1979-01-01
Fifty operational segments from the U.S.S.R., 40 test segments from Canada, and 24 test segments from the United States were used to provide a wide range of geographic conditions for USDA analysts during a test to determine the effectiveness of labeling single pixel training fields (dots) using Procedure 1 on the 1-100 hybrid system, and clustering and classifying on the Earth Resources Interactive Processing System. The analysts had additional on-line capabilities such as interactive dot labeling, class or cluster map overlay flickers, and flashing of all dots of equal spectral value. Results on the 1-100 hybrid system are described and analyst problems and recommendations are discussed.
Oghli, Mostafa Ghelich; Dehlaghi, Vahab; Zadeh, Ali Mohammad; Fallahi, Alireza; Pooyan, Mohammad
2014-07-01
Assessment of cardiac right-ventricle functions plays an essential role in diagnosis of arrhythmogenic right ventricular dysplasia (ARVD). Among clinical tests, cardiac magnetic resonance imaging (MRI) is now becoming the most valid imaging technique to diagnose ARVD. Fatty infiltration of the right ventricular free wall can be visible on cardiac MRI. Finding right-ventricle functional parameters from cardiac MRI images contains segmentation of right-ventricle in each slice of end diastole and end systole phases of cardiac cycle and calculation of end diastolic and end systolic volume and furthermore other functional parameters. The main problem of this task is the segmentation part. We used a robust method based on deformable model that uses shape information for segmentation of right-ventricle in short axis MRI images. After segmentation of right-ventricle from base to apex in end diastole and end systole phases of cardiac cycle, volume of right-ventricle in these phases calculated and then, ejection fraction calculated. We performed a quantitative evaluation of clinical cardiac parameters derived from the automatic segmentation by comparison against a manual delineation of the ventricles. The manually and automatically determined quantitative clinical parameters were statistically compared by means of linear regression. This fits a line to the data such that the root-mean-square error (RMSE) of the residuals is minimized. The results show low RMSE for Right Ventricle Ejection Fraction and Volume (≤ 0.06 for RV EF, and ≤ 10 mL for RV volume). Evaluation of segmentation results is also done by means of four statistical measures including sensitivity, specificity, similarity index and Jaccard index. The average value of similarity index is 86.87%. The Jaccard index mean value is 83.85% which shows a good accuracy of segmentation. The average of sensitivity is 93.9% and mean value of the specificity is 89.45%. These results show the reliability of proposed method in these cases that manual segmentation is inapplicable. Huge shape variety of right-ventricle led us to use a shape prior based method and this work can develop by four-dimensional processing for determining the first ventricular slices.
Enhancement of the MODIS Snow and Ice Product Suite Utilizing Image Segmentation
NASA Technical Reports Server (NTRS)
Tilton, James C.; Hall, Dorothy K.; Riggs, George A.
2006-01-01
A problem has been noticed with the current NODIS Snow and Ice Product in that fringes of certain snow fields are labeled as "cloud" whereas close inspection of the data indicates that the correct labeling is a non-cloud category such as snow or land. This occurs because the current MODIS Snow and Ice Product generation algorithm relies solely on the MODIS Cloud Mask Product for the labeling of image pixels as cloud. It is proposed here that information obtained from image segmentation can be used to determine when it is appropriate to override the cloud indication from the cloud mask product. Initial tests show that this approach can significantly reduce the cloud "fringing" in modified snow cover labeling. More comprehensive testing is required to determine whether or not this approach consistently improves the accuracy of the snow and ice product.
NASA Astrophysics Data System (ADS)
Lin, Wei; Li, Xizhe; Yang, Zhengming; Lin, Lijun; Xiong, Shengchun; Wang, Zhiyuan; Wang, Xiangyang; Xiao, Qianhua
Based on the basic principle of the porosity method in image segmentation, considering the relationship between the porosity of the rocks and the fractal characteristics of the pore structures, a new improved image segmentation method was proposed, which uses the calculated porosity of the core images as a constraint to obtain the best threshold. The results of comparative analysis show that the porosity method can best segment images theoretically, but the actual segmentation effect is deviated from the real situation. Due to the existence of heterogeneity and isolated pores of cores, the porosity method that takes the experimental porosity of the whole core as the criterion cannot achieve the desired segmentation effect. On the contrary, the new improved method overcomes the shortcomings of the porosity method, and makes a more reasonable binary segmentation for the core grayscale images, which segments images based on the actual porosity of each image by calculated. Moreover, the image segmentation method based on the calculated porosity rather than the measured porosity also greatly saves manpower and material resources, especially for tight rocks.
Spectral Skyline Separation: Extended Landmark Databases and Panoramic Imaging
Differt, Dario; Möller, Ralf
2016-01-01
Evidence from behavioral experiments suggests that insects use the skyline as a cue for visual navigation. However, changes of lighting conditions, over hours, days or possibly seasons, significantly affect the appearance of the sky and ground objects. One possible solution to this problem is to extract the “skyline” by an illumination-invariant classification of the environment into two classes, ground objects and sky. In a previous study (Insect models of illumination-invariant skyline extraction from UV (ultraviolet) and green channels), we examined the idea of using two different color channels available for many insects (UV and green) to perform this segmentation. We found out that for suburban scenes in temperate zones, where the skyline is dominated by trees and artificial objects like houses, a “local” UV segmentation with adaptive thresholds applied to individual images leads to the most reliable classification. Furthermore, a “global” segmentation with fixed thresholds (trained on an image dataset recorded over several days) using UV-only information is only slightly worse compared to using both the UV and green channel. In this study, we address three issues: First, to enhance the limited range of environments covered by the dataset collected in the previous study, we gathered additional data samples of skylines consisting of minerals (stones, sand, earth) as ground objects. We could show that also for mineral-rich environments, UV-only segmentation achieves a quality comparable to multi-spectral (UV and green) segmentation. Second, we collected a wide variety of ground objects to examine their spectral characteristics under different lighting conditions. On the one hand, we found that the special case of diffusely-illuminated minerals increases the difficulty to reliably separate ground objects from the sky. On the other hand, the spectral characteristics of this collection of ground objects covers well with the data collected in the skyline databases, increasing, due to the increased variety of ground objects, the validity of our findings for novel environments. Third, we collected omnidirectional images, as often used for visual navigation tasks, of skylines using an UV-reflective hyperbolic mirror. We could show that “local” separation techniques can be adapted to the use of panoramic images by splitting the image into segments and finding individual thresholds for each segment. Contrarily, this is not possible for ‘global’ separation techniques. PMID:27690053
Techniques on semiautomatic segmentation using the Adobe Photoshop
NASA Astrophysics Data System (ADS)
Park, Jin Seo; Chung, Min Suk; Hwang, Sung Bae
2005-04-01
The purpose of this research is to enable anybody to semiautomatically segment the anatomical structures in the MRIs, CTs, and other medical images on the personal computer. The segmented images are used for making three-dimensional images, which are helpful in medical education and research. To achieve this purpose, the following trials were performed. The entire body of a volunteer was MR scanned to make 557 MRIs, which were transferred to a personal computer. On Adobe Photoshop, contours of 19 anatomical structures in the MRIs were semiautomatically drawn using MAGNETIC LASSO TOOL; successively, manually corrected using either LASSO TOOL or DIRECT SELECTION TOOL to make 557 segmented images. In a likewise manner, 11 anatomical structures in the 8,500 anatomcial images were segmented. Also, 12 brain and 10 heart anatomical structures in anatomical images were segmented. Proper segmentation was verified by making and examining the coronal, sagittal, and three-dimensional images from the segmented images. During semiautomatic segmentation on Adobe Photoshop, suitable algorithm could be used, the extent of automatization could be regulated, convenient user interface could be used, and software bugs rarely occurred. The techniques of semiautomatic segmentation using Adobe Photoshop are expected to be widely used for segmentation of the anatomical structures in various medical images.
Color segmentation in the HSI color space using the K-means algorithm
NASA Astrophysics Data System (ADS)
Weeks, Arthur R.; Hague, G. Eric
1997-04-01
Segmentation of images is an important aspect of image recognition. While grayscale image segmentation has become quite a mature field, much less work has been done with regard to color image segmentation. Until recently, this was predominantly due to the lack of available computing power and color display hardware that is required to manipulate true color images (24-bit). TOday, it is not uncommon to find a standard desktop computer system with a true-color 24-bit display, at least 8 million bytes of memory, and 2 gigabytes of hard disk storage. Segmentation of color images is not as simple as segmenting each of the three RGB color components separately. The difficulty of using the RGB color space is that it doesn't closely model the psychological understanding of color. A better color model, which closely follows that of human visual perception is the hue, saturation, intensity model. This color model separates the color components in terms of chromatic and achromatic information. Strickland et al. was able to show the importance of color in the extraction of edge features form an image. His method enhances the edges that are detectable in the luminance image with information from the saturation image. Segmentation of both the saturation and intensity components is easily accomplished with any gray scale segmentation algorithm, since these spaces are linear. The modulus 2(pi) nature of the hue color component makes its segmentation difficult. For example, a hue of 0 and 2(pi) yields the same color tint. Instead of applying separate image segmentation to each of the hue, saturation, and intensity components, a better method is to segment the chromatic component separately from the intensity component because of the importance that the chromatic information plays in the segmentation of color images. This paper presents a method of using the gray scale K-means algorithm to segment 24-bit color images. Additionally, this paper will show the importance the hue component plays in the segmentation of color images.
Development of a semi-automated combined PET and CT lung lesion segmentation framework
NASA Astrophysics Data System (ADS)
Rossi, Farli; Mokri, Siti Salasiah; Rahni, Ashrani Aizzuddin Abd.
2017-03-01
Segmentation is one of the most important steps in automated medical diagnosis applications, which affects the accuracy of the overall system. In this paper, we propose a semi-automated segmentation method for extracting lung lesions from thoracic PET/CT images by combining low level processing and active contour techniques. The lesions are first segmented in PET images which are first converted to standardised uptake values (SUVs). The segmented PET images then serve as an initial contour for subsequent active contour segmentation of corresponding CT images. To evaluate its accuracy, the Jaccard Index (JI) was used as a measure of the accuracy of the segmented lesion compared to alternative segmentations from the QIN lung CT segmentation challenge, which is possible by registering the whole body PET/CT images to the corresponding thoracic CT images. The results show that our proposed technique has acceptable accuracy in lung lesion segmentation with JI values of around 0.8, especially when considering the variability of the alternative segmentations.
Benchmark for license plate character segmentation
NASA Astrophysics Data System (ADS)
Gonçalves, Gabriel Resende; da Silva, Sirlene Pio Gomes; Menotti, David; Shwartz, William Robson
2016-09-01
Automatic license plate recognition (ALPR) has been the focus of many researches in the past years. In general, ALPR is divided into the following problems: detection of on-track vehicles, license plate detection, segmentation of license plate characters, and optical character recognition (OCR). Even though commercial solutions are available for controlled acquisition conditions, e.g., the entrance of a parking lot, ALPR is still an open problem when dealing with data acquired from uncontrolled environments, such as roads and highways when relying only on imaging sensors. Due to the multiple orientations and scales of the license plates captured by the camera, a very challenging task of the ALPR is the license plate character segmentation (LPCS) step, because its effectiveness is required to be (near) optimal to achieve a high recognition rate by the OCR. To tackle the LPCS problem, this work proposes a benchmark composed of a dataset designed to focus specifically on the character segmentation step of the ALPR within an evaluation protocol. Furthermore, we propose the Jaccard-centroid coefficient, an evaluation measure more suitable than the Jaccard coefficient regarding the location of the bounding box within the ground-truth annotation. The dataset is composed of 2000 Brazilian license plates consisting of 14000 alphanumeric symbols and their corresponding bounding box annotations. We also present a straightforward approach to perform LPCS efficiently. Finally, we provide an experimental evaluation for the dataset based on five LPCS approaches and demonstrate the importance of character segmentation for achieving an accurate OCR.
NASA Astrophysics Data System (ADS)
Agurto, C.; Barriga, S.; Murray, V.; Pattichis, M.; Soliz, P.
2010-03-01
Diabetic retinopathy (DR) is one of the leading causes of blindness among adult Americans. Automatic methods for detection of the disease have been developed in recent years, most of them addressing the segmentation of bright and red lesions. In this paper we present an automatic DR screening system that does approach the problem through the segmentation of features. The algorithm determines non-diseased retinal images from those with pathology based on textural features obtained using multiscale Amplitude Modulation-Frequency Modulation (AM-FM) decompositions. The decomposition is represented as features that are the inputs to a classifier. The algorithm achieves 0.88 area under the ROC curve (AROC) for a set of 280 images from the MESSIDOR database. The algorithm is then used to analyze the effects of image compression and degradation, which will be present in most actual clinical or screening environments. Results show that the algorithm is insensitive to illumination variations, but high rates of compression and large blurring effects degrade its performance.
Semi-automatic central-chest lymph-node definition from 3D MDCT images
NASA Astrophysics Data System (ADS)
Lu, Kongkuo; Higgins, William E.
2010-03-01
Central-chest lymph nodes play a vital role in lung-cancer staging. The three-dimensional (3D) definition of lymph nodes from multidetector computed-tomography (MDCT) images, however, remains an open problem. This is because of the limitations in the MDCT imaging of soft-tissue structures and the complicated phenomena that influence the appearance of a lymph node in an MDCT image. In the past, we have made significant efforts toward developing (1) live-wire-based segmentation methods for defining 2D and 3D chest structures and (2) a computer-based system for automatic definition and interactive visualization of the Mountain central-chest lymph-node stations. Based on these works, we propose new single-click and single-section live-wire methods for segmenting central-chest lymph nodes. The single-click live wire only requires the user to select an object pixel on one 2D MDCT section and is designed for typical lymph nodes. The single-section live wire requires the user to process one selected 2D section using standard 2D live wire, but it is more robust. We applied these methods to the segmentation of 20 lymph nodes from two human MDCT chest scans (10 per scan) drawn from our ground-truth database. The single-click live wire segmented 75% of the selected nodes successfully and reproducibly, while the success rate for the single-section live wire was 85%. We are able to segment the remaining nodes, using our previously derived (but more interaction intense) 2D live-wire method incorporated in our lymph-node analysis system. Both proposed methods are reliable and applicable to a wide range of pulmonary lymph nodes.
NASA Astrophysics Data System (ADS)
Kumar, Arjun S.
Over the last fifteen years, there has been a rapid growth in the use of high resolution X-ray computed tomography (HRXCT) imaging in material science applications. We use it at nanoscale resolutions up to 50 nm (nano-CT) for key research problems in large scale operation of polymer electrolyte membrane fuel cells (PEMFC) and lithium-ion (Li-ion) batteries in automotive applications. PEMFC are clean energy sources that electrochemically react with hydrogen gas to produce water and electricity. To reduce their costs, capturing their electrode nanostructure has become significant in modeling and optimizing their performance. For Li-ion batteries, a key challenge in increasing their scope for the automotive industry is Li metal dendrite growth. Li dendrites are structures of lithium with 100 nm features of interest that can grow chaotically within a battery and eventually lead to a short-circuit. HRXCT imaging is an effective diagnostics tool for such applications as it is a non-destructive method of capturing the 3D internal X-ray absorption coefficient of materials from a large series of 2D X-ray projections. Despite a recent push to use HRXCT for quantitative information on material samples, there is a relative dearth of computational tools in nano-CT image processing and analysis. Hence, we focus on developing computational methods for nano-CT image analysis of fuel cell and battery materials as required by the limitations in material samples and the imaging environment. The first problem we address is the segmentation of nano-CT Zernike phase contrast images. Nano-CT instruments are equipped with Zernike phase contrast optics to distinguish materials with a low difference in X-ray absorption coefficient by phase shifting the X-ray wave that is not diffracted by the sample. However, it creates image artifacts that hinder the use of traditional image segmentation techniques. To restore such images, we setup an inverse problem by modeling the X-ray phase contrast optics. We solve for the artifact-free images through an optimization function that uses novel edge detection and fast image interpolation methods. We use this optics-based segmentation method in two main research problems - 1) the characterization of a failure mechanism in the internal structure of Li-ion battery electrodes and 2) the measurement of Li metal dendrite morphology for different current and temperature parameters of Li-ion battery cell operation. The second problem we address is the development of a space+time (4D) reconstruction method for in-operando imaging of samples undergoing temporal change, particularly for X-ray sources with low throughput and nanoscale spatial resolutions. The challenge in using such systems is achieving a sufficient temporal resolution despite exposure times of a 2D projection on the order of 1 minute. We develop a 4D dynamic X-ray computed tomography (CT) reconstruction method, capable of reconstructing a temporal 3D image every 2 to 8 projections. Its novel properties are its projection angle sequence and the probabilistic detection of experimental change. We show its accuracy on phantom and experimental datasets to show its promise in temporally resolving Li metal dendrite growth and in elucidating mitigation strategies.
Intelligent multi-spectral IR image segmentation
NASA Astrophysics Data System (ADS)
Lu, Thomas; Luong, Andrew; Heim, Stephen; Patel, Maharshi; Chen, Kang; Chao, Tien-Hsin; Chow, Edward; Torres, Gilbert
2017-05-01
This article presents a neural network based multi-spectral image segmentation method. A neural network is trained on the selected features of both the objects and background in the longwave (LW) Infrared (IR) images. Multiple iterations of training are performed until the accuracy of the segmentation reaches satisfactory level. The segmentation boundary of the LW image is used to segment the midwave (MW) and shortwave (SW) IR images. A second neural network detects the local discontinuities and refines the accuracy of the local boundaries. This article compares the neural network based segmentation method to the Wavelet-threshold and Grab-Cut methods. Test results have shown increased accuracy and robustness of this segmentation scheme for multi-spectral IR images.
Image Information Mining Utilizing Hierarchical Segmentation
NASA Technical Reports Server (NTRS)
Tilton, James C.; Marchisio, Giovanni; Koperski, Krzysztof; Datcu, Mihai
2002-01-01
The Hierarchical Segmentation (HSEG) algorithm is an approach for producing high quality, hierarchically related image segmentations. The VisiMine image information mining system utilizes clustering and segmentation algorithms for reducing visual information in multispectral images to a manageable size. The project discussed herein seeks to enhance the VisiMine system through incorporating hierarchical segmentations from HSEG into the VisiMine system.
Aberration correction in wide-field fluorescence microscopy by segmented-pupil image interferometry.
Scrimgeour, Jan; Curtis, Jennifer E
2012-06-18
We present a new technique for the correction of optical aberrations in wide-field fluorescence microscopy. Segmented-Pupil Image Interferometry (SPII) uses a liquid crystal spatial light modulator placed in the microscope's pupil plane to split the wavefront originating from a fluorescent object into an array of individual beams. Distortion of the wavefront arising from either system or sample aberrations results in displacement of the images formed from the individual pupil segments. Analysis of image registration allows for the local tilt in the wavefront at each segment to be corrected with respect to a central reference. A second correction step optimizes the image intensity by adjusting the relative phase of each pupil segment through image interferometry. This ensures that constructive interference between all segments is achieved at the image plane. Improvements in image quality are observed when Segmented-Pupil Image Interferometry is applied to correct aberrations arising from the microscope's optical path.
Anderson, Jeffrey R; Barrett, Steven F
2009-01-01
Image segmentation is the process of isolating distinct objects within an image. Computer algorithms have been developed to aid in the process of object segmentation, but a completely autonomous segmentation algorithm has yet to be developed [1]. This is because computers do not have the capability to understand images and recognize complex objects within the image. However, computer segmentation methods [2], requiring user input, have been developed to quickly segment objects in serial sectioned images, such as magnetic resonance images (MRI) and confocal laser scanning microscope (CLSM) images. In these cases, the segmentation process becomes a powerful tool in visualizing the 3D nature of an object. The user input is an important part of improving the performance of many segmentation methods. A double threshold segmentation method has been investigated [3] to separate objects in gray scaled images, where the gray level of the object is among the gray levels of the background. In order to best determine the threshold values for this segmentation method the image must be manipulated for optimal contrast. The same is true of other segmentation and edge detection methods as well. Typically, the better the image contrast, the better the segmentation results. This paper describes a graphical user interface (GUI) that allows the user to easily change image contrast parameters that will optimize the performance of subsequent object segmentation. This approach makes use of the fact that the human brain is extremely effective in object recognition and understanding. The GUI provides the user with the ability to define the gray scale range of the object of interest. These lower and upper bounds of this range are used in a histogram stretching process to improve image contrast. Also, the user can interactively modify the gamma correction factor that provides a non-linear distribution of gray scale values, while observing the corresponding changes to the image. This interactive approach gives the user the power to make optimal choices in the contrast enhancement parameters.
Siri, Sangeeta K; Latte, Mrityunjaya V
2017-11-01
Many different diseases can occur in the liver, including infections such as hepatitis, cirrhosis, cancer and over effect of medication or toxins. The foremost stage for computer-aided diagnosis of liver is the identification of liver region. Liver segmentation algorithms extract liver image from scan images which helps in virtual surgery simulation, speedup the diagnosis, accurate investigation and surgery planning. The existing liver segmentation algorithms try to extort exact liver image from abdominal Computed Tomography (CT) scan images. It is an open problem because of ambiguous boundaries, large variation in intensity distribution, variability of liver geometry from patient to patient and presence of noise. A novel approach is proposed to meet challenges in extracting the exact liver image from abdominal CT scan images. The proposed approach consists of three phases: (1) Pre-processing (2) CT scan image transformation to Neutrosophic Set (NS) and (3) Post-processing. In pre-processing, the noise is removed by median filter. The "new structure" is designed to transform a CT scan image into neutrosophic domain which is expressed using three membership subset: True subset (T), False subset (F) and Indeterminacy subset (I). This transform approximately extracts the liver image structure. In post processing phase, morphological operation is performed on indeterminacy subset (I) and apply Chan-Vese (C-V) model with detection of initial contour within liver without user intervention. This resulted in liver boundary identification with high accuracy. Experiments show that, the proposed method is effective, robust and comparable with existing algorithm for liver segmentation of CT scan images. Copyright © 2017 Elsevier B.V. All rights reserved.
Optimal Multiple Surface Segmentation With Shape and Context Priors
Bai, Junjie; Garvin, Mona K.; Sonka, Milan; Buatti, John M.; Wu, Xiaodong
2014-01-01
Segmentation of multiple surfaces in medical images is a challenging problem, further complicated by the frequent presence of weak boundary evidence, large object deformations, and mutual influence between adjacent objects. This paper reports a novel approach to multi-object segmentation that incorporates both shape and context prior knowledge in a 3-D graph-theoretic framework to help overcome the stated challenges. We employ an arc-based graph representation to incorporate a wide spectrum of prior information through pair-wise energy terms. In particular, a shape-prior term is used to penalize local shape changes and a context-prior term is used to penalize local surface-distance changes from a model of the expected shape and surface distances, respectively. The globally optimal solution for multiple surfaces is obtained by computing a maximum flow in a low-order polynomial time. The proposed method was validated on intraretinal layer segmentation of optical coherence tomography images and demonstrated statistically significant improvement of segmentation accuracy compared to our earlier graph-search method that was not utilizing shape and context priors. The mean unsigned surface positioning errors obtained by the conventional graph-search approach (6.30 ± 1.58 μm) was improved to 5.14 ± 0.99 μm when employing our new method with shape and context priors. PMID:23193309
Tumor propagation model using generalized hidden Markov model
NASA Astrophysics Data System (ADS)
Park, Sun Young; Sargent, Dustin
2017-02-01
Tumor tracking and progression analysis using medical images is a crucial task for physicians to provide accurate and efficient treatment plans, and monitor treatment response. Tumor progression is tracked by manual measurement of tumor growth performed by radiologists. Several methods have been proposed to automate these measurements with segmentation, but many current algorithms are confounded by attached organs and vessels. To address this problem, we present a new generalized tumor propagation model considering time-series prior images and local anatomical features using a Hierarchical Hidden Markov model (HMM) for tumor tracking. First, we apply the multi-atlas segmentation technique to identify organs/sub-organs using pre-labeled atlases. Second, we apply a semi-automatic direct 3D segmentation method to label the initial boundary between the lesion and neighboring structures. Third, we detect vessels in the ROI surrounding the lesion. Finally, we apply the propagation model with the labeled organs and vessels to accurately segment and measure the target lesion. The algorithm has been designed in a general way to be applicable to various body parts and modalities. In this paper, we evaluate the proposed algorithm on lung and lung nodule segmentation and tracking. We report the algorithm's performance by comparing the longest diameter and nodule volumes using the FDA lung Phantom data and a clinical dataset.
Line Segmentation in Handwritten Assamese and Meetei Mayek Script Using Seam Carving Based Algorithm
NASA Astrophysics Data System (ADS)
Kumar, Chandan Jyoti; Kalita, Sanjib Kr.
Line segmentation is a key stage in an Optical Character Recognition system. This paper primarily concerns the problem of text line extraction on color and grayscale manuscript pages of two major North-east Indian regional Scripts, Assamese and Meetei Mayek. Line segmentation of handwritten text in Assamese and Meetei Mayek scripts is an uphill task primarily because of the structural features of both the scripts and varied writing styles. Line segmentation of a document image is been achieved by using the Seam carving technique, in this paper. Researchers from various regions used this approach for content aware resizing of an image. However currently many researchers are implementing Seam Carving for line segmentation phase of OCR. Although it is a language independent technique, mostly experiments are done over Arabic, Greek, German and Chinese scripts. Two types of seams are generated, medial seams approximate the orientation of each text line, and separating seams separated one line of text from another. Experiments are performed extensively over various types of documents and detailed analysis of the evaluations reflects that the algorithm performs well for even documents with multiple scripts. In this paper, we present a comparative study of accuracy of this method over different types of data.
Spot detection and image segmentation in DNA microarray data.
Qin, Li; Rueda, Luis; Ali, Adnan; Ngom, Alioune
2005-01-01
Following the invention of microarrays in 1994, the development and applications of this technology have grown exponentially. The numerous applications of microarray technology include clinical diagnosis and treatment, drug design and discovery, tumour detection, and environmental health research. One of the key issues in the experimental approaches utilising microarrays is to extract quantitative information from the spots, which represent genes in a given experiment. For this process, the initial stages are important and they influence future steps in the analysis. Identifying the spots and separating the background from the foreground is a fundamental problem in DNA microarray data analysis. In this review, we present an overview of state-of-the-art methods for microarray image segmentation. We discuss the foundations of the circle-shaped approach, adaptive shape segmentation, histogram-based methods and the recently introduced clustering-based techniques. We analytically show that clustering-based techniques are equivalent to the one-dimensional, standard k-means clustering algorithm that utilises the Euclidean distance.
Script-independent text line segmentation in freestyle handwritten documents.
Li, Yi; Zheng, Yefeng; Doermann, David; Jaeger, Stefan; Li, Yi
2008-08-01
Text line segmentation in freestyle handwritten documents remains an open document analysis problem. Curvilinear text lines and small gaps between neighboring text lines present a challenge to algorithms developed for machine printed or hand-printed documents. In this paper, we propose a novel approach based on density estimation and a state-of-the-art image segmentation technique, the level set method. From an input document image, we estimate a probability map, where each element represents the probability that the underlying pixel belongs to a text line. The level set method is then exploited to determine the boundary of neighboring text lines by evolving an initial estimate. Unlike connected component based methods ( [1], [2] for example), the proposed algorithm does not use any script-specific knowledge. Extensive quantitative experiments on freestyle handwritten documents with diverse scripts, such as Arabic, Chinese, Korean, and Hindi, demonstrate that our algorithm consistently outperforms previous methods [1]-[3]. Further experiments show the proposed algorithm is robust to scale change, rotation, and noise.
USDA-ARS?s Scientific Manuscript database
Segmentation is the first step in image analysis to subdivide an image into meaningful regions. The segmentation result directly affects the subsequent image analysis. The objective of the research was to develop an automatic adjustable algorithm for segmentation of color images, using linear suppor...
Multiple Hypotheses Image Segmentation and Classification With Application to Dietary Assessment
Zhu, Fengqing; Bosch, Marc; Khanna, Nitin; Boushey, Carol J.; Delp, Edward J.
2016-01-01
We propose a method for dietary assessment to automatically identify and locate food in a variety of images captured during controlled and natural eating events. Two concepts are combined to achieve this: a set of segmented objects can be partitioned into perceptually similar object classes based on global and local features; and perceptually similar object classes can be used to assess the accuracy of image segmentation. These ideas are implemented by generating multiple segmentations of an image to select stable segmentations based on the classifier’s confidence score assigned to each segmented image region. Automatic segmented regions are classified using a multichannel feature classification system. For each segmented region, multiple feature spaces are formed. Feature vectors in each of the feature spaces are individually classified. The final decision is obtained by combining class decisions from individual feature spaces using decision rules. We show improved accuracy of segmenting food images with classifier feedback. PMID:25561457
Multiple hypotheses image segmentation and classification with application to dietary assessment.
Zhu, Fengqing; Bosch, Marc; Khanna, Nitin; Boushey, Carol J; Delp, Edward J
2015-01-01
We propose a method for dietary assessment to automatically identify and locate food in a variety of images captured during controlled and natural eating events. Two concepts are combined to achieve this: a set of segmented objects can be partitioned into perceptually similar object classes based on global and local features; and perceptually similar object classes can be used to assess the accuracy of image segmentation. These ideas are implemented by generating multiple segmentations of an image to select stable segmentations based on the classifier's confidence score assigned to each segmented image region. Automatic segmented regions are classified using a multichannel feature classification system. For each segmented region, multiple feature spaces are formed. Feature vectors in each of the feature spaces are individually classified. The final decision is obtained by combining class decisions from individual feature spaces using decision rules. We show improved accuracy of segmenting food images with classifier feedback.
Colour application on mammography image segmentation
NASA Astrophysics Data System (ADS)
Embong, R.; Aziz, N. M. Nik Ab.; Karim, A. H. Abd; Ibrahim, M. R.
2017-09-01
The segmentation process is one of the most important steps in image processing and computer vision since it is vital in the initial stage of image analysis. Segmentation of medical images involves complex structures and it requires precise segmentation result which is necessary for clinical diagnosis such as the detection of tumour, oedema, and necrotic tissues. Since mammography images are grayscale, researchers are looking at the effect of colour in the segmentation process of medical images. Colour is known to play a significant role in the perception of object boundaries in non-medical colour images. Processing colour images require handling more data, hence providing a richer description of objects in the scene. Colour images contain ten percent (10%) additional edge information as compared to their grayscale counterparts. Nevertheless, edge detection in colour image is more challenging than grayscale image as colour space is considered as a vector space. In this study, we implemented red, green, yellow, and blue colour maps to grayscale mammography images with the purpose of testing the effect of colours on the segmentation of abnormality regions in the mammography images. We applied the segmentation process using the Fuzzy C-means algorithm and evaluated the percentage of average relative error of area for each colour type. The results showed that all segmentation with the colour map can be done successfully even for blurred and noisy images. Also the size of the area of the abnormality region is reduced when compare to the segmentation area without the colour map. The green colour map segmentation produced the smallest percentage of average relative error (10.009%) while yellow colour map segmentation gave the largest percentage of relative error (11.367%).
Scalable Joint Segmentation and Registration Framework for Infant Brain Images.
Dong, Pei; Wang, Li; Lin, Weili; Shen, Dinggang; Wu, Guorong
2017-03-15
The first year of life is the most dynamic and perhaps the most critical phase of postnatal brain development. The ability to accurately measure structure changes is critical in early brain development study, which highly relies on the performances of image segmentation and registration techniques. However, either infant image segmentation or registration, if deployed independently, encounters much more challenges than segmentation/registration of adult brains due to dynamic appearance change with rapid brain development. In fact, image segmentation and registration of infant images can assists each other to overcome the above challenges by using the growth trajectories (i.e., temporal correspondences) learned from a large set of training subjects with complete longitudinal data. Specifically, a one-year-old image with ground-truth tissue segmentation can be first set as the reference domain. Then, to register the infant image of a new subject at earlier age, we can estimate its tissue probability maps, i.e., with sparse patch-based multi-atlas label fusion technique, where only the training images at the respective age are considered as atlases since they have similar image appearance. Next, these probability maps can be fused as a good initialization to guide the level set segmentation. Thus, image registration between the new infant image and the reference image is free of difficulty of appearance changes, by establishing correspondences upon the reasonably segmented images. Importantly, the segmentation of new infant image can be further enhanced by propagating the much more reliable label fusion heuristics at the reference domain to the corresponding location of the new infant image via the learned growth trajectories, which brings image segmentation and registration to assist each other. It is worth noting that our joint segmentation and registration framework is also flexible to handle the registration of any two infant images even with significant age gap in the first year of life, by linking their joint segmentation and registration through the reference domain. Thus, our proposed joint segmentation and registration method is scalable to various registration tasks in early brain development studies. Promising segmentation and registration results have been achieved for infant brain MR images aged from 2-week-old to 1-year-old, indicating the applicability of our method in early brain development study.
Preparation of 2D sequences of corneal images for 3D model building.
Elbita, Abdulhakim; Qahwaji, Rami; Ipson, Stanley; Sharif, Mhd Saeed; Ghanchi, Faruque
2014-04-01
A confocal microscope provides a sequence of images, at incremental depths, of the various corneal layers and structures. From these, medical practioners can extract clinical information on the state of health of the patient's cornea. In this work we are addressing problems associated with capturing and processing these images including blurring, non-uniform illumination and noise, as well as the displacement of images laterally and in the anterior-posterior direction caused by subject movement. The latter may cause some of the captured images to be out of sequence in terms of depth. In this paper we introduce automated algorithms for classification, reordering, registration and segmentation to solve these problems. The successful implementation of these algorithms could open the door for another interesting development, which is the 3D modelling of these sequences. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Zheng, Qiang; Warner, Steven; Tasian, Gregory; Fan, Yong
2018-02-12
Automatic segmentation of kidneys in ultrasound (US) images remains a challenging task because of high speckle noise, low contrast, and large appearance variations of kidneys in US images. Because texture features may improve the US image segmentation performance, we propose a novel graph cuts method to segment kidney in US images by integrating image intensity information and texture feature maps. We develop a new graph cuts-based method to segment kidney US images by integrating original image intensity information and texture feature maps extracted using Gabor filters. To handle large appearance variation within kidney images and improve computational efficiency, we build a graph of image pixels close to kidney boundary instead of building a graph of the whole image. To make the kidney segmentation robust to weak boundaries, we adopt localized regional information to measure similarity between image pixels for computing edge weights to build the graph of image pixels. The localized graph is dynamically updated and the graph cuts-based segmentation iteratively progresses until convergence. Our method has been evaluated based on kidney US images of 85 subjects. The imaging data of 20 randomly selected subjects were used as training data to tune parameters of the image segmentation method, and the remaining data were used as testing data for validation. Experiment results demonstrated that the proposed method obtained promising segmentation results for bilateral kidneys (average Dice index = 0.9446, average mean distance = 2.2551, average specificity = 0.9971, average accuracy = 0.9919), better than other methods under comparison (P < .05, paired Wilcoxon rank sum tests). The proposed method achieved promising performance for segmenting kidneys in two-dimensional US images, better than segmentation methods built on any single channel of image information. This method will facilitate extraction of kidney characteristics that may predict important clinical outcomes such as progression of chronic kidney disease. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
The remote sensing image segmentation mean shift algorithm parallel processing based on MapReduce
NASA Astrophysics Data System (ADS)
Chen, Xi; Zhou, Liqing
2015-12-01
With the development of satellite remote sensing technology and the remote sensing image data, traditional remote sensing image segmentation technology cannot meet the massive remote sensing image processing and storage requirements. This article put cloud computing and parallel computing technology in remote sensing image segmentation process, and build a cheap and efficient computer cluster system that uses parallel processing to achieve MeanShift algorithm of remote sensing image segmentation based on the MapReduce model, not only to ensure the quality of remote sensing image segmentation, improved split speed, and better meet the real-time requirements. The remote sensing image segmentation MeanShift algorithm parallel processing algorithm based on MapReduce shows certain significance and a realization of value.
A combined learning algorithm for prostate segmentation on 3D CT images.
Ma, Ling; Guo, Rongrong; Zhang, Guoyi; Schuster, David M; Fei, Baowei
2017-11-01
Segmentation of the prostate on CT images has many applications in the diagnosis and treatment of prostate cancer. Because of the low soft-tissue contrast on CT images, prostate segmentation is a challenging task. A learning-based segmentation method is proposed for the prostate on three-dimensional (3D) CT images. We combine population-based and patient-based learning methods for segmenting the prostate on CT images. Population data can provide useful information to guide the segmentation processing. Because of inter-patient variations, patient-specific information is particularly useful to improve the segmentation accuracy for an individual patient. In this study, we combine a population learning method and a patient-specific learning method to improve the robustness of prostate segmentation on CT images. We train a population model based on the data from a group of prostate patients. We also train a patient-specific model based on the data of the individual patient and incorporate the information as marked by the user interaction into the segmentation processing. We calculate the similarity between the two models to obtain applicable population and patient-specific knowledge to compute the likelihood of a pixel belonging to the prostate tissue. A new adaptive threshold method is developed to convert the likelihood image into a binary image of the prostate, and thus complete the segmentation of the gland on CT images. The proposed learning-based segmentation algorithm was validated using 3D CT volumes of 92 patients. All of the CT image volumes were manually segmented independently three times by two, clinically experienced radiologists and the manual segmentation results served as the gold standard for evaluation. The experimental results show that the segmentation method achieved a Dice similarity coefficient of 87.18 ± 2.99%, compared to the manual segmentation. By combining the population learning and patient-specific learning methods, the proposed method is effective for segmenting the prostate on 3D CT images. The prostate CT segmentation method can be used in various applications including volume measurement and treatment planning of the prostate. © 2017 American Association of Physicists in Medicine.
Multivariate statistical model for 3D image segmentation with application to medical images.
John, Nigel M; Kabuka, Mansur R; Ibrahim, Mohamed O
2003-12-01
In this article we describe a statistical model that was developed to segment brain magnetic resonance images. The statistical segmentation algorithm was applied after a pre-processing stage involving the use of a 3D anisotropic filter along with histogram equalization techniques. The segmentation algorithm makes use of prior knowledge and a probability-based multivariate model designed to semi-automate the process of segmentation. The algorithm was applied to images obtained from the Center for Morphometric Analysis at Massachusetts General Hospital as part of the Internet Brain Segmentation Repository (IBSR). The developed algorithm showed improved accuracy over the k-means, adaptive Maximum Apriori Probability (MAP), biased MAP, and other algorithms. Experimental results showing the segmentation and the results of comparisons with other algorithms are provided. Results are based on an overlap criterion against expertly segmented images from the IBSR. The algorithm produced average results of approximately 80% overlap with the expertly segmented images (compared with 85% for manual segmentation and 55% for other algorithms).
Nanthagopal, A Padma; Rajamony, R Sukanesh
2012-07-01
The proposed system provides new textural information for segmenting tumours, efficiently and accurately and with less computational time, from benign and malignant tumour images, especially in smaller dimensions of tumour regions of computed tomography (CT) images. Region-based segmentation of tumour from brain CT image data is an important but time-consuming task performed manually by medical experts. The objective of this work is to segment brain tumour from CT images using combined grey and texture features with new edge features and nonlinear support vector machine (SVM) classifier. The selected optimal features are used to model and train the nonlinear SVM classifier to segment the tumour from computed tomography images and the segmentation accuracies are evaluated for each slice of the tumour image. The method is applied on real data of 80 benign, malignant tumour images. The results are compared with the radiologist labelled ground truth. Quantitative analysis between ground truth and the segmented tumour is presented in terms of segmentation accuracy and the overlap similarity measure dice metric. From the analysis and performance measures such as segmentation accuracy and dice metric, it is inferred that better segmentation accuracy and higher dice metric are achieved with the normalized cut segmentation method than with the fuzzy c-means clustering method.
Image Segmentation, Registration, Compression, and Matching
NASA Technical Reports Server (NTRS)
Yadegar, Jacob; Wei, Hai; Yadegar, Joseph; Ray, Nilanjan; Zabuawala, Sakina
2011-01-01
A novel computational framework was developed of a 2D affine invariant matching exploiting a parameter space. Named as affine invariant parameter space (AIPS), the technique can be applied to many image-processing and computer-vision problems, including image registration, template matching, and object tracking from image sequence. The AIPS is formed by the parameters in an affine combination of a set of feature points in the image plane. In cases where the entire image can be assumed to have undergone a single affine transformation, the new AIPS match metric and matching framework becomes very effective (compared with the state-of-the-art methods at the time of this reporting). No knowledge about scaling or any other transformation parameters need to be known a priori to apply the AIPS framework. An automated suite of software tools has been created to provide accurate image segmentation (for data cleaning) and high-quality 2D image and 3D surface registration (for fusing multi-resolution terrain, image, and map data). These tools are capable of supporting existing GIS toolkits already in the marketplace, and will also be usable in a stand-alone fashion. The toolkit applies novel algorithmic approaches for image segmentation, feature extraction, and registration of 2D imagery and 3D surface data, which supports first-pass, batched, fully automatic feature extraction (for segmentation), and registration. A hierarchical and adaptive approach is taken for achieving automatic feature extraction, segmentation, and registration. Surface registration is the process of aligning two (or more) data sets to a common coordinate system, during which the transformation between their different coordinate systems is determined. Also developed here are a novel, volumetric surface modeling and compression technique that provide both quality-guaranteed mesh surface approximations and compaction of the model sizes by efficiently coding the geometry and connectivity/topology components of the generated models. The highly efficient triangular mesh compression compacts the connectivity information at the rate of 1.5-4 bits per vertex (on average for triangle meshes), while reducing the 3D geometry by 40-50 percent. Finally, taking into consideration the characteristics of 3D terrain data, and using the innovative, regularized binary decomposition mesh modeling, a multistage, pattern-drive modeling, and compression technique has been developed to provide an effective framework for compressing digital elevation model (DEM) surfaces, high-resolution aerial imagery, and other types of NASA data.
Phase unwrapping using region-based markov random field model.
Dong, Ying; Ji, Jim
2010-01-01
Phase unwrapping is a classical problem in Magnetic Resonance Imaging (MRI), Interferometric Synthetic Aperture Radar and Sonar (InSAR/InSAS), fringe pattern analysis, and spectroscopy. Although many methods have been proposed to address this problem, robust and effective phase unwrapping remains a challenge. This paper presents a novel phase unwrapping method using a region-based Markov Random Field (MRF) model. Specifically, the phase image is segmented into regions within which the phase is not wrapped. Then, the phase image is unwrapped between different regions using an improved Highest Confidence First (HCF) algorithm to optimize the MRF model. The proposed method has desirable theoretical properties as well as an efficient implementation. Simulations and experimental results on MRI images show that the proposed method provides similar or improved phase unwrapping than Phase Unwrapping MAx-flow/min-cut (PUMA) method and ZpM method.
Airway Tree Segmentation in Serial Block-Face Cryomicrotome Images of Rat Lungs
Bauer, Christian; Krueger, Melissa A.; Lamm, Wayne J.; Smith, Brian J.; Glenny, Robb W.; Beichel, Reinhard R.
2014-01-01
A highly-automated method for the segmentation of airways in serial block-face cryomicrotome images of rat lungs is presented. First, a point inside of the trachea is manually specified. Then, a set of candidate airway centerline points is automatically identified. By utilizing a novel path extraction method, a centerline path between the root of the airway tree and each point in the set of candidate centerline points is obtained. Local disturbances are robustly handled by a novel path extraction approach, which avoids the shortcut problem of standard minimum cost path algorithms. The union of all centerline paths is utilized to generate an initial airway tree structure, and a pruning algorithm is applied to automatically remove erroneous subtrees or branches. Finally, a surface segmentation method is used to obtain the airway lumen. The method was validated on five image volumes of Sprague-Dawley rats. Based on an expert-generated independent standard, an assessment of airway identification and lumen segmentation performance was conducted. The average of airway detection sensitivity was 87.4% with a 95% confidence interval (CI) of (84.9, 88.6)%. A plot of sensitivity as a function of airway radius is provided. The combined estimate of airway detection specificity was 100% with a 95% CI of (99.4, 100)%. The average number and diameter of terminal airway branches was 1179 and 159 μm, respectively. Segmentation results include airways up to 31 generations. The regression intercept and slope of airway radius measurements derived from final segmentations were estimated to be 7.22 μm and 1.005, respectively. The developed approach enables quantitative studies of physiology and lung diseases in rats, requiring detailed geometric airway models. PMID:23955692
A Nonrigid Kernel-Based Framework for 2D-3D Pose Estimation and 2D Image Segmentation
Sandhu, Romeil; Dambreville, Samuel; Yezzi, Anthony; Tannenbaum, Allen
2013-01-01
In this work, we present a nonrigid approach to jointly solving the tasks of 2D-3D pose estimation and 2D image segmentation. In general, most frameworks that couple both pose estimation and segmentation assume that one has exact knowledge of the 3D object. However, under nonideal conditions, this assumption may be violated if only a general class to which a given shape belongs is given (e.g., cars, boats, or planes). Thus, we propose to solve the 2D-3D pose estimation and 2D image segmentation via nonlinear manifold learning of 3D embedded shapes for a general class of objects or deformations for which one may not be able to associate a skeleton model. Thus, the novelty of our method is threefold: First, we present and derive a gradient flow for the task of nonrigid pose estimation and segmentation. Second, due to the possible nonlinear structures of one’s training set, we evolve the preimage obtained through kernel PCA for the task of shape analysis. Third, we show that the derivation for shape weights is general. This allows us to use various kernels, as well as other statistical learning methodologies, with only minimal changes needing to be made to the overall shape evolution scheme. In contrast with other techniques, we approach the nonrigid problem, which is an infinite-dimensional task, with a finite-dimensional optimization scheme. More importantly, we do not explicitly need to know the interaction between various shapes such as that needed for skeleton models as this is done implicitly through shape learning. We provide experimental results on several challenging pose estimation and segmentation scenarios. PMID:20733218
Poetzsch, Michael; Baumgartner, Markus R; Steuer, Andrea E; Kraemer, Thomas
2015-02-01
Segmental hair analysis has been used for monitoring changes of consumption habit of drugs. Contamination from the environment or sweat might cause interpretative problems. For this reason, hair analysis results were compared in hair samples taken 24 h and 30 days after a single tilidine dose. The 24-h hair samples already showed high concentrations of tilidine and nortilidine. Analysis of wash water from sample preparation confirmed external contamination by sweat as reason. The 30-day hair samples were still positive for tilidine in all segments. Negative wash-water analysis proved incorporation from sweat into the hair matrix. Interpretation of a forensic case was requested where two children had been administered tilidine by their nanny and tilidine/nortilidine had been detected in all hair segments, possibly indicating multiple applications. Taking into consideration the results of the present study and of MALDI-MS imaging, a single application as cause for analytical results could no longer be excluded. Interpretation of consumption behaviour of tilidine based on segmental hair analysis has to be done with caution, even after typical wash procedures during sample preparation. External sweat contamination followed by incorporation into the hair matrix can mimic chronic intake. For assessment of external contamination, hair samples should not only be collected several weeks but also one to a few days after intake. MALDI-MS imaging of single hair can be a complementary tool for interpretation. Limitations for interpretation of segmental hair analysis shown here might also be applicable to drugs with comparable physicochemical and pharmacokinetic properties. Copyright © 2014 John Wiley & Sons, Ltd.
A Review on Segmentation of Positron Emission Tomography Images
Foster, Brent; Bagci, Ulas; Mansoor, Awais; Xu, Ziyue; Mollura, Daniel J.
2014-01-01
Positron Emission Tomography (PET), a non-invasive functional imaging method at the molecular level, images the distribution of biologically targeted radiotracers with high sensitivity. PET imaging provides detailed quantitative information about many diseases and is often used to evaluate inflammation, infection, and cancer by detecting emitted photons from a radiotracer localized to abnormal cells. In order to differentiate abnormal tissue from surrounding areas in PET images, image segmentation methods play a vital role; therefore, accurate image segmentation is often necessary for proper disease detection, diagnosis, treatment planning, and follow-ups. In this review paper, we present state-of-the-art PET image segmentation methods, as well as the recent advances in image segmentation techniques. In order to make this manuscript self-contained, we also briefly explain the fundamentals of PET imaging, the challenges of diagnostic PET image analysis, and the effects of these challenges on the segmentation results. PMID:24845019
A validation framework for brain tumor segmentation.
Archip, Neculai; Jolesz, Ferenc A; Warfield, Simon K
2007-10-01
We introduce a validation framework for the segmentation of brain tumors from magnetic resonance (MR) images. A novel unsupervised semiautomatic brain tumor segmentation algorithm is also presented. The proposed framework consists of 1) T1-weighted MR images of patients with brain tumors, 2) segmentation of brain tumors performed by four independent experts, 3) segmentation of brain tumors generated by a semiautomatic algorithm, and 4) a software tool that estimates the performance of segmentation algorithms. We demonstrate the validation of the novel segmentation algorithm within the proposed framework. We show its performance and compare it with existent segmentation. The image datasets and software are available at http://www.brain-tumor-repository.org/. We present an Internet resource that provides access to MR brain tumor image data and segmentation that can be openly used by the research community. Its purpose is to encourage the development and evaluation of segmentation methods by providing raw test and image data, human expert segmentation results, and methods for comparing segmentation results.
From image captioning to video summary using deep recurrent networks and unsupervised segmentation
NASA Astrophysics Data System (ADS)
Morosanu, Bogdan-Andrei; Lemnaru, Camelia
2018-04-01
Automatic captioning systems based on recurrent neural networks have been tremendously successful at providing realistic natural language captions for complex and varied image data. We explore methods for adapting existing models trained on large image caption data sets to a similar problem, that of summarising videos using natural language descriptions and frame selection. These architectures create internal high level representations of the input image that can be used to define probability distributions and distance metrics on these distributions. Specifically, we interpret each hidden unit inside a layer of the caption model as representing the un-normalised log probability of some unknown image feature of interest for the caption generation process. We can then apply well understood statistical divergence measures to express the difference between images and create an unsupervised segmentation of video frames, classifying consecutive images of low divergence as belonging to the same context, and those of high divergence as belonging to different contexts. To provide a final summary of the video, we provide a group of selected frames and a text description accompanying them, allowing a user to perform a quick exploration of large unlabeled video databases.