Zhang, Wei; Zhang, Xiaolong; Qiang, Yan; Tian, Qi; Tang, Xiaoxian
2017-01-01
The fast and accurate segmentation of lung nodule image sequences is the basis of subsequent processing and diagnostic analyses. However, previous research investigating nodule segmentation algorithms cannot entirely segment cavitary nodules, and the segmentation of juxta-vascular nodules is inaccurate and inefficient. To solve these problems, we propose a new method for the segmentation of lung nodule image sequences based on superpixels and density-based spatial clustering of applications with noise (DBSCAN). First, our method uses three-dimensional computed tomography image features of the average intensity projection combined with multi-scale dot enhancement for preprocessing. Hexagonal clustering and morphological optimized sequential linear iterative clustering (HMSLIC) for sequence image oversegmentation is then proposed to obtain superpixel blocks. The adaptive weight coefficient is then constructed to calculate the distance required between superpixels to achieve precise lung nodules positioning and to obtain the subsequent clustering starting block. Moreover, by fitting the distance and detecting the change in slope, an accurate clustering threshold is obtained. Thereafter, a fast DBSCAN superpixel sequence clustering algorithm, which is optimized by the strategy of only clustering the lung nodules and adaptive threshold, is then used to obtain lung nodule mask sequences. Finally, the lung nodule image sequences are obtained. The experimental results show that our method rapidly, completely and accurately segments various types of lung nodule image sequences. PMID:28880916
Liao, Xiaolei; Zhao, Juanjuan; Jiao, Cheng; Lei, Lei; Qiang, Yan; Cui, Qiang
2016-01-01
Background Lung parenchyma segmentation is often performed as an important pre-processing step in the computer-aided diagnosis of lung nodules based on CT image sequences. However, existing lung parenchyma image segmentation methods cannot fully segment all lung parenchyma images and have a slow processing speed, particularly for images in the top and bottom of the lung and the images that contain lung nodules. Method Our proposed method first uses the position of the lung parenchyma image features to obtain lung parenchyma ROI image sequences. A gradient and sequential linear iterative clustering algorithm (GSLIC) for sequence image segmentation is then proposed to segment the ROI image sequences and obtain superpixel samples. The SGNF, which is optimized by a genetic algorithm (GA), is then utilized for superpixel clustering. Finally, the grey and geometric features of the superpixel samples are used to identify and segment all of the lung parenchyma image sequences. Results Our proposed method achieves higher segmentation precision and greater accuracy in less time. It has an average processing time of 42.21 seconds for each dataset and an average volume pixel overlap ratio of 92.22 ± 4.02% for four types of lung parenchyma image sequences. PMID:27532214
MHz-Rate NO PLIF Imaging in a Mach 10 Hypersonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Jiang, N.; Webster, M.; Lempert, Walter R.; Miller, J. D.; Meyer, T. R.; Danehy, Paul M.
2010-01-01
NO PLIF imaging at repetition rates as high as 1 MHz is demonstrated in the NASA Langley 31 inch Mach 10 hypersonic wind tunnel. Approximately two hundred time correlated image sequences, of between ten and twenty individual frames, were obtained over eight days of wind tunnel testing spanning two entries in March and September of 2009. The majority of the image sequences were obtained from the boundary layer of a 20 flat plate model, in which transition was induced using a variety of cylindrical and triangular shaped protuberances. The high speed image sequences captured a variety of laminar and transitional flow phenomena, ranging from mostly laminar flow, typically at lower Reynolds number and/or in the near wall region of the model, to highly transitional flow in which the temporal evolution and progression of characteristic streak instabilities and/or corkscrew-shaped vortices could be clearly identified. A series of image sequences were also obtained from a 20 compression ramp at a 10 angle of attack in which the temporal dynamics of the characteristic separated flow was captured in a time correlated manner.
Takahara, Taro; Imai, Yutaka; Yamashita, Tomohiro; Yasuda, Seiei; Nasu, Seiji; Van Cauteren, Marc
2004-01-01
To examine a new way of body diffusion weighted imaging (DWI) using the short TI inversion recovery-echo planar imaging (STIR-EPI) sequence and free breathing scanning (diffusion weighted whole body imaging with background body signal suppression; DWIBS) to obtain three-dimensional displays. 1) Apparent contrast-to-noise ratios (AppCNR) between lymph nodes and surrounding fat tissue were compared in three types of DWI with and without breath-holding, with variable lengths of scan time and slice thickness. 2) The STIR-EPI sequence and spin echo-echo planar imaging (SE-EPI) sequence with chemical shift selective (CHESS) pulse were compared in terms of their degree of fat suppression. 3) Eleven patients with neck, chest, and abdominal malignancy were scanned with DWIBS for evaluation of feasibility. Whole body imaging was done in a later stage of the study using the peripheral vascular coil. The AppCNR of 8 mm slice thickness images reconstructed from 4 mm slice thickness source images obtained in a free breathing scan of 430 sec were much better than 9 mm slice thickness breath-hold scans obtained in 25 sec. High resolution multi-planar reformat (MPR) and maximum intensity projection (MIP) images could be made from the data set of 4 mm slice thickness images. Fat suppression was much better in the STIR-EPI sequence than SE-EPI with CHESS pulse. The feasibility of DWIBS was showed in clinical scans of 11 patients. Whole body images were successfully obtained with adequate fat suppression. Three-dimensional DWIBS can be obtained with this technique, which may allow us to screen for malignancies in the whole body.
Preoperative magnetic resonance imaging protocol for endoscopic cranial base image-guided surgery.
Grindle, Christopher R; Curry, Joseph M; Kang, Melissa D; Evans, James J; Rosen, Marc R
2011-01-01
Despite the increasing utilization of image-guided surgery, no radiology protocols for obtaining magnetic resonance (MR) imaging of adequate quality are available in the current literature. At our institution, more than 300 endonasal cranial base procedures including pituitary, extended pituitary, and other anterior skullbase procedures have been performed in the past 3 years. To facilitate and optimize preoperative evaluation and assessment, there was a need to develop a magnetic resonance protocol. Retrospective Technical Assessment was performed. Through a collaborative effort between the otolaryngology, neurosurgery, and neuroradiology departments at our institution, a skull base MR image-guided (IGS) protocol was developed with several ends in mind. First, it was necessary to generate diagnostic images useful for the more frequently seen pathologies to improve work flow and limit the expense and inefficiency of case specific MR studies. Second, it was necessary to generate sequences useful for IGS, preferably using sequences that best highlight that lesion. Currently, at our institution, all MR images used for IGS are obtained using this protocol as part of preoperative planning. The protocol that has been developed allows for thin cut precontrast and postcontrast axial cuts that can be used to plan intraoperative image guidance. It also obtains a thin cut T2 axial series that can be compiled separately for intraoperative imaging, or may be fused with computed tomographic images for combined modality. The outlined protocol obtains image sequences effective for diagnostic and operative purposes for image-guided surgery using both T1 and T2 sequences. Copyright © 2011 Elsevier Inc. All rights reserved.
Nolte-Ernsting, C C; Tacke, J; Adam, G B; Haage, P; Jung, P; Jakse, G; Günther, R W
2001-01-01
The aim of this study was to investigate the utility of different gadolinium-enhanced T1-weighted gradient-echo techniques in excretory MR urography. In 74 urologic patients, excretory MR urography was performed using various T1-weighted gradient-echo (GRE) sequences after injection of gadolinium-DTPA and low-dose furosemide. The examinations included conventional GRE sequences and echo-planar imaging (GRE EPI), both obtained with 3D data sets and 2D projection images. Breath-hold acquisition was used primarily. In 20 of 74 examinations, we compared breath-hold imaging with respiratory gating. Breath-hold imaging was significantly superior to respiratory gating for the visualization of pelvicaliceal systems, but not for the ureters. Complete MR urograms were obtained within 14-20 s using 3D GRE EPI sequences and in 20-30 s with conventional 3D GRE sequences. Ghost artefacts caused by ureteral peristalsis often occurred with conventional 3D GRE imaging and were almost completely suppressed in EPI sequences (p < 0.0001). Susceptibility effects were more pronounced on GRE EPI MR urograms and calculi measured 0.8-21.7% greater in diameter compared with conventional GRE sequences. Increased spatial resolution degraded the image quality only in GRE-EPI urograms. In projection MR urography, the entire pelvicaliceal system was imaged by acquisition of a fast single-slice sequence and the conventional 2D GRE technique provided superior morphological accuracy than 2D GRE EPI projection images (p < 0.0003). Fast 3D GRE EPI sequences improve the clinical practicability of excretory MR urography especially in old or critically ill patients unable to suspend breathing for more than 20 s. Conventional GRE sequences are superior to EPI in high-resolution detail MR urograms and in projection imaging.
Three-dimensional T1rho-weighted MRI at 1.5 Tesla.
Borthakur, Arijitt; Wheaton, Andrew; Charagundla, Sridhar R; Shapiro, Erik M; Regatte, Ravinder R; Akella, Sarma V S; Kneeland, J Bruce; Reddy, Ravinder
2003-06-01
To design and implement a magnetic resonance imaging (MRI) pulse sequence capable of performing three-dimensional T(1rho)-weighted MRI on a 1.5-T clinical scanner, and determine the optimal sequence parameters, both theoretically and experimentally, so that the energy deposition by the radiofrequency pulses in the sequence, measured as the specific absorption rate (SAR), does not exceed safety guidelines for imaging human subjects. A three-pulse cluster was pre-encoded to a three-dimensional gradient-echo imaging sequence to create a three-dimensional, T(1rho)-weighted MRI pulse sequence. Imaging experiments were performed on a GE clinical scanner with a custom-built knee-coil. We validated the performance of this sequence by imaging articular cartilage of a bovine patella and comparing T(1rho) values measured by this sequence to those obtained with a previously tested two-dimensional imaging sequence. Using a previously developed model for SAR calculation, the imaging parameters were adjusted such that the energy deposition by the radiofrequency pulses in the sequence did not exceed safety guidelines for imaging human subjects. The actual temperature increase due to the sequence was measured in a phantom by a MRI-based temperature mapping technique. Following these experiments, the performance of this sequence was demonstrated in vivo by obtaining T(1rho)-weighted images of the knee joint of a healthy individual. Calculated T(1rho) of articular cartilage in the specimen was similar for both and three-dimensional and two-dimensional methods (84 +/- 2 msec and 80 +/- 3 msec, respectively). The temperature increase in the phantom resulting from the sequence was 0.015 degrees C, which is well below the established safety guidelines. Images of the human knee joint in vivo demonstrate a clear delineation of cartilage from surrounding tissues. We developed and implemented a three-dimensional T(1rho)-weighted pulse sequence on a 1.5-T clinical scanner. Copyright 2003 Wiley-Liss, Inc.
Region-based multifocus image fusion for the precise acquisition of Pap smear images.
Tello-Mijares, Santiago; Bescós, Jesús
2018-05-01
A multifocus image fusion method to obtain a single focused image from a sequence of microscopic high-magnification Papanicolau source (Pap smear) images is presented. These images, captured each in a different position of the microscope lens, frequently show partially focused cells or parts of cells, which makes them unpractical for the direct application of image analysis techniques. The proposed method obtains a focused image with a high preservation of original pixels information while achieving a negligible visibility of the fusion artifacts. The method starts by identifying the best-focused image of the sequence; then, it performs a mean-shift segmentation over this image; the focus level of the segmented regions is evaluated in all the images of the sequence, and best-focused regions are merged in a single combined image; finally, this image is processed with an adaptive artifact removal process. The combination of a region-oriented approach, instead of block-based approaches, and a minimum modification of the value of focused pixels in the original images achieve a highly contrasted image with no visible artifacts, which makes this method especially convenient for the medical imaging domain. The proposed method is compared with several state-of-the-art alternatives over a representative dataset. The experimental results show that our proposal obtains the best and more stable quality indicators. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Images multiplexing by code division technique
NASA Astrophysics Data System (ADS)
Kuo, Chung J.; Rigas, Harriett
Spread Spectrum System (SSS) or Code Division Multiple Access System (CDMAS) has been studied for a long time, but most of the attention was focused on the transmission problems. In this paper, we study the results when the code division technique is applied to the image at the source stage. The idea is to convolve the N different images with the corresponding m-sequence to obtain the encrypted image. The superimposed image (summation of the encrypted images) is then stored or transmitted. The benefit of this is that no one knows what is stored or transmitted unless the m-sequence is known. The recovery of the original image is recovered by correlating the superimposed image with corresponding m-sequence. Two cases are studied in this paper. First, the two-dimensional image is treated as a long one-dimensional vector and the m-sequence is employed to obtain the results. Secondly, the two-dimensional quasi m-array is proposed and used for the code division multiplexing. It is shown that quasi m-array is faster when the image size is 256 x 256. The important features of the proposed technique are not only the image security but also the data compactness. The compression ratio depends on how many images are superimposed.
Images Multiplexing By Code Division Technique
NASA Astrophysics Data System (ADS)
Kuo, Chung Jung; Rigas, Harriett B.
1990-01-01
Spread Spectrum System (SSS) or Code Division Multiple Access System (CDMAS) has been studied for a long time, but most of the attention was focused on the transmission problems. In this paper, we study the results when the code division technique is applied to the image at the source stage. The idea is to convolve the N different images with the corresponding m-sequence to obtain the encrypted image. The superimposed image (summation of the encrypted images) is then stored or transmitted. The benefit of this is that no one knows what is stored or transmitted unless the m-sequence is known. The recovery of the original image is recovered by correlating the superimposed image with corresponding m-sequence. Two cases are studied in this paper. First, the 2-D image is treated as a long 1-D vector and the m-sequence is employed to obtained the results. Secondly, the 2-D quasi m-array is proposed and used for the code division multiplexing. It is showed that quasi m-array is faster when the image size is 256x256. The important features of the proposed technique are not only the image security but also the data compactness. The compression ratio depends on how many images are superimposed.
Integrated circuit layer image segmentation
NASA Astrophysics Data System (ADS)
Masalskis, Giedrius; Petrauskas, Romas
2010-09-01
In this paper we present IC layer image segmentation techniques which are specifically created for precise metal layer feature extraction. During our research we used many samples of real-life de-processed IC metal layer images which were obtained using optical light microscope. We have created sequence of various image processing filters which provides segmentation results of good enough precision for our application. Filter sequences were fine tuned to provide best possible results depending on properties of IC manufacturing process and imaging technology. Proposed IC image segmentation filter sequences were experimentally tested and compared with conventional direct segmentation algorithms.
NASA Technical Reports Server (NTRS)
Kasturi, Rangachar; Devadiga, Sadashiva; Tang, Yuan-Liang
1994-01-01
This research was initiated as a part of the Advanced Sensor and Imaging System Technology (ASSIST) program at NASA Langley Research Center. The primary goal of this research is the development of image analysis algorithms for the detection of runways and other objects using an on-board camera. Initial effort was concentrated on images acquired using a passive millimeter wave (PMMW) sensor. The images obtained using PMMW sensors under poor visibility conditions due to atmospheric fog are characterized by very low spatial resolution but good image contrast compared to those images obtained using sensors operating in the visible spectrum. Algorithms developed for analyzing these images using a model of the runway and other objects are described in Part 1 of this report. Experimental verification of these algorithms was limited to a sequence of images simulated from a single frame of PMMW image. Subsequent development and evaluation of algorithms was done using video image sequences. These images have better spatial and temporal resolution compared to PMMW images. Algorithms for reliable recognition of runways and accurate estimation of spatial position of stationary objects on the ground have been developed and evaluated using several image sequences. These algorithms are described in Part 2 of this report. A list of all publications resulting from this work is also included.
Bauer, Jan Stefan; Noël, Peter Benjamin; Vollhardt, Christiane; Much, Daniela; Degirmenci, Saliha; Brunner, Stefanie; Rummeny, Ernst Josef; Hauner, Hans
2015-01-01
Purpose MR might be well suited to obtain reproducible and accurate measures of fat tissues in infants. This study evaluates MR-measurements of adipose tissue in young infants in vitro and in vivo. Material and Methods MR images of ten phantoms simulating subcutaneous fat of an infant’s torso were obtained using a 1.5T MR scanner with and without simulated breathing. Scans consisted of a cartesian water-suppression turbo spin echo (wsTSE) sequence, and a PROPELLER wsTSE sequence. Fat volume was quantified directly and by MR imaging using k-means clustering and threshold-based segmentation procedures to calculate accuracy in vitro. Whole body MR was obtained in sleeping young infants (average age 67±30 days). This study was approved by the local review board. All parents gave written informed consent. To obtain reproducibility in vivo, cartesian and PROPELLER wsTSE sequences were repeated in seven and four young infants, respectively. Overall, 21 repetitions were performed for the cartesian sequence and 13 repetitions for the PROPELLER sequence. Results In vitro accuracy errors depended on the chosen segmentation procedure, ranging from 5.4% to 76%, while the sequence showed no significant influence. Artificial breathing increased the minimal accuracy error to 9.1%. In vivo reproducibility errors for total fat volume of the sleeping infants ranged from 2.6% to 3.4%. Neither segmentation nor sequence significantly influenced reproducibility. Conclusion With both cartesian and PROPELLER sequences an accurate and reproducible measure of body fat was achieved. Adequate segmentation was mandatory for high accuracy. PMID:25706876
Bauer, Jan Stefan; Noël, Peter Benjamin; Vollhardt, Christiane; Much, Daniela; Degirmenci, Saliha; Brunner, Stefanie; Rummeny, Ernst Josef; Hauner, Hans
2015-01-01
MR might be well suited to obtain reproducible and accurate measures of fat tissues in infants. This study evaluates MR-measurements of adipose tissue in young infants in vitro and in vivo. MR images of ten phantoms simulating subcutaneous fat of an infant's torso were obtained using a 1.5T MR scanner with and without simulated breathing. Scans consisted of a cartesian water-suppression turbo spin echo (wsTSE) sequence, and a PROPELLER wsTSE sequence. Fat volume was quantified directly and by MR imaging using k-means clustering and threshold-based segmentation procedures to calculate accuracy in vitro. Whole body MR was obtained in sleeping young infants (average age 67±30 days). This study was approved by the local review board. All parents gave written informed consent. To obtain reproducibility in vivo, cartesian and PROPELLER wsTSE sequences were repeated in seven and four young infants, respectively. Overall, 21 repetitions were performed for the cartesian sequence and 13 repetitions for the PROPELLER sequence. In vitro accuracy errors depended on the chosen segmentation procedure, ranging from 5.4% to 76%, while the sequence showed no significant influence. Artificial breathing increased the minimal accuracy error to 9.1%. In vivo reproducibility errors for total fat volume of the sleeping infants ranged from 2.6% to 3.4%. Neither segmentation nor sequence significantly influenced reproducibility. With both cartesian and PROPELLER sequences an accurate and reproducible measure of body fat was achieved. Adequate segmentation was mandatory for high accuracy.
A novel chaotic image encryption scheme using DNA sequence operations
NASA Astrophysics Data System (ADS)
Wang, Xing-Yuan; Zhang, Ying-Qian; Bao, Xue-Mei
2015-10-01
In this paper, we propose a novel image encryption scheme based on DNA (Deoxyribonucleic acid) sequence operations and chaotic system. Firstly, we perform bitwise exclusive OR operation on the pixels of the plain image using the pseudorandom sequences produced by the spatiotemporal chaos system, i.e., CML (coupled map lattice). Secondly, a DNA matrix is obtained by encoding the confused image using a kind of DNA encoding rule. Then we generate the new initial conditions of the CML according to this DNA matrix and the previous initial conditions, which can make the encryption result closely depend on every pixel of the plain image. Thirdly, the rows and columns of the DNA matrix are permuted. Then, the permuted DNA matrix is confused once again. At last, after decoding the confused DNA matrix using a kind of DNA decoding rule, we obtain the ciphered image. Experimental results and theoretical analysis show that the scheme is able to resist various attacks, so it has extraordinarily high security.
Jahng, Geon-Ho; Jin, Wook; Yang, Dal Mo; Ryu, Kyung Nam
2011-05-01
We wanted to optimize a double inversion recovery (DIR) sequence to image joint effusion regions of the knee, especially intracapsular or intrasynovial imaging in the suprapatellar bursa and patellofemoral joint space. Computer simulations were performed to determine the optimum inversion times (TI) for suppressing both fat and water signals, and a DIR sequence was optimized based on the simulations for distinguishing synovitis from fluid. In vivo studies were also performed on individuals who showed joint effusion on routine knee MR images to demonstrate the feasibility of using the DIR sequence with a 3T whole-body MR scanner. To compare intracapsular or intrasynovial signals on the DIR images, intermediate density-weighted images and/or post-enhanced T1-weighted images were acquired. The timings to enhance the synovial contrast from the fluid components were TI1 = 2830 ms and TI2 = 254 ms for suppressing the water and fat signals, respectively. Improved contrast for the intrasynovial area in the knees was observed with the DIR turbo spin-echo pulse sequence compared to the intermediate density-weighted sequence. Imaging contrast obtained noninvasively with the DIR sequence was similar to that of the post-enhanced T1-weighted sequence. The DIR sequence may be useful for delineating synovium without using contrast materials.
Mariappan, Yogesh K.; Dzyubak, Bogdan; Glaser, Kevin J.; Venkatesh, Sudhakar K.; Sirlin, Claude B.; Hooker, Jonathan; McGee, Kiaran P.
2017-01-01
Purpose To (a) evaluate modified spin-echo (SE) magnetic resonance (MR) elastographic sequences for acquiring MR images with improved signal-to-noise ratio (SNR) in patients in whom the standard gradient-echo (GRE) MR elastographic sequence yields low hepatic signal intensity and (b) compare the stiffness values obtained with these sequences with those obtained with the conventional GRE sequence. Materials and Methods This HIPAA-compliant retrospective study was approved by the institutional review board; the requirement to obtain informed consent was waived. Data obtained with modified SE and SE echo-planar imaging (EPI) MR elastographic pulse sequences with short echo times were compared with those obtained with the conventional GRE MR elastographic sequence in two patient cohorts, one that exhibited adequate liver signal intensity and one that exhibited low liver signal intensity. Shear stiffness values obtained with the three sequences in 130 patients with successful GRE-based examinations were retrospectively tested for statistical equivalence by using a 5% margin. In 47 patients in whom GRE examinations were considered to have failed because of low SNR, the SNR and confidence level with the SE-based sequences were compared with those with the GRE sequence. Results The results of this study helped confirm the equivalence of SE MR elastography and SE-EPI MR elastography to GRE MR elastography (P = .0212 and P = .0001, respectively). The SE and SE-EPI MR elastographic sequences provided substantially improved SNR and stiffness inversion confidence level in 47 patients in whom GRE MR elastography had failed. Conclusion Modified SE-based MR elastographic sequences provide higher SNR MR elastographic data and reliable stiffness measurements; thus, they enable quantification of stiffness in patients in whom the conventional GRE MR elastographic sequence failed owing to low signal intensity. The equivalence of the three sequences indicates that the current diagnostic thresholds are applicable to SE MR elastographic sequences for assessing liver fibrosis. © RSNA, 2016 PMID:27509543
Cassini Imaging Science: First Results at Saturn
NASA Astrophysics Data System (ADS)
Porco, C. C.
The Cassini Imaging Science experiment at Saturn will commence in early February, 2004 -- five months before Cassini's arrival at Saturn. Approach observations consist of repeated multi-spectral `movie' sequences of Saturn and its rings, image sequences designed to search for previously unseen satellites between the outer edge of the ring system and the orbit of Hyperion, images of known satellites for orbit refinement, observations of Phoebe during Cassini's closest approach to the satellite, and repeated multi-spectral `movie' sequences of Titan to detect and track clouds (for wind determination) and to sense the surface. During Saturn Orbit Insertion, the highest resolution images (~ 100 m) obtained during the whole orbital tour will be collected of the dark side of the rings. Finally, imaging sequences are planned for Cassini's first Titan flyby, on July 2, from a distance of ~ 350,000 km, yielding an image scale of ~ 2.1 km on the South polar region. The highlights of these observation sequences will be presented.
Image-based computer-assisted diagnosis system for benign paroxysmal positional vertigo
NASA Astrophysics Data System (ADS)
Kohigashi, Satoru; Nakamae, Koji; Fujioka, Hiromu
2005-04-01
We develop the image based computer assisted diagnosis system for benign paroxysmal positional vertigo (BPPV) that consists of the balance control system simulator, the 3D eye movement simulator, and the extraction method of nystagmus response directly from an eye movement image sequence. In the system, the causes and conditions of BPPV are estimated by searching the database for record matching with the nystagmus response for the observed eye image sequence of the patient with BPPV. The database includes the nystagmus responses for simulated eye movement sequences. The eye movement velocity is obtained by using the balance control system simulator that allows us to simulate BPPV under various conditions such as canalithiasis, cupulolithiasis, number of otoconia, otoconium size, and so on. Then the eye movement image sequence is displayed on the CRT by the 3D eye movement simulator. The nystagmus responses are extracted from the image sequence by the proposed method and are stored in the database. In order to enhance the diagnosis accuracy, the nystagmus response for a newly simulated sequence is matched with that for the observed sequence. From the matched simulation conditions, the causes and conditions of BPPV are estimated. We apply our image based computer assisted diagnosis system to two real eye movement image sequences for patients with BPPV to show its validity.
Spatial power-spectra from Yohkoh soft X-ray images
NASA Technical Reports Server (NTRS)
Martens, Petrus C. H.; Gomez, Daniel O.
1992-01-01
We analyze three sequences of images from active regions, and a full disk image obtained by Yohkoh's Soft X-ray Telescope. Two sequences are from a region at center disk observed through different filters, and one sequence is from the limb. After Fourier-transforming the X-ray intensity of the images we find nearly isotropic power-spectra with an azimuthally integrated slope of -2.1 for the center disk, and -2.8 for the limb images. The full-disk picture yields a spectrum of -2.4. These results are different from the active region spectra obtained with the Normal Incidence X-ray Telescope which have a slope of the order of -3.0, and we ascribe this to the difference in temperature response between the instruments. However, both the SXT and NIXT results are consistent with coronal heating as the end result of a downward quasistatic cascade (in lengthscales) of free magnetic energy in the corona, driven by footpoint motions in the photosphere.
MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel.
Jiang, Naibo; Webster, Matthew; Lempert, Walter R; Miller, Joseph D; Meyer, Terrence R; Ivey, Christopher B; Danehy, Paul M
2011-02-01
Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging at repetition rates as high as 1 MHz is demonstrated in the NASA Langley 31 in. Mach 10 hypersonic wind tunnel. Approximately 200 time-correlated image sequences of between 10 and 20 individual frames were obtained over eight days of wind tunnel testing spanning two entries in March and September of 2009. The image sequences presented were obtained from the boundary layer of a 20° flat plate model, in which transition was induced using a variety of different shaped protuberances, including a cylinder and a triangle. The high-speed image sequences captured a variety of laminar and transitional flow phenomena, ranging from mostly laminar flow, typically at a lower Reynolds number and/or in the near wall region of the model, to highly transitional flow in which the temporal evolution and progression of characteristic streak instabilities and/or corkscrew-shaped vortices could be clearly identified.
NASA Astrophysics Data System (ADS)
Wang, Heming; Liu, Yu; Song, Yongchen; Zhao, Yuechao; Zhao, Jiafei; Wang, Dayong
2012-11-01
Pore structure is one of important factors affecting the properties of porous media, but it is difficult to describe the complexity of pore structure exactly. Fractal theory is an effective and available method for quantifying the complex and irregular pore structure. In this paper, the fractal dimension calculated by box-counting method based on fractal theory was applied to characterize the pore structure of artificial cores. The microstructure or pore distribution in the porous material was obtained using the nuclear magnetic resonance imaging (MRI). Three classical fractals and one sand packed bed model were selected as the experimental material to investigate the influence of box sizes, threshold value, and the image resolution when performing fractal analysis. To avoid the influence of box sizes, a sequence of divisors of the image was proposed and compared with other two algorithms (geometric sequence and arithmetic sequence) with its performance of partitioning the image completely and bringing the least fitted error. Threshold value selected manually and automatically showed that it plays an important role during the image binary processing and the minimum-error method can be used to obtain an appropriate or reasonable one. Images obtained under different pixel matrices in MRI were used to analyze the influence of image resolution. Higher image resolution can detect more quantity of pore structure and increase its irregularity. With benefits of those influence factors, fractal analysis on four kinds of artificial cores showed the fractal dimension can be used to distinguish the different kinds of artificial cores and the relationship between fractal dimension and porosity or permeability can be expressed by the model of D = a - bln(x + c).
Motion Estimation Using the Firefly Algorithm in Ultrasonic Image Sequence of Soft Tissue
Chao, Chih-Feng; Horng, Ming-Huwi; Chen, Yu-Chan
2015-01-01
Ultrasonic image sequence of the soft tissue is widely used in disease diagnosis; however, the speckle noises usually influenced the image quality. These images usually have a low signal-to-noise ratio presentation. The phenomenon gives rise to traditional motion estimation algorithms that are not suitable to measure the motion vectors. In this paper, a new motion estimation algorithm is developed for assessing the velocity field of soft tissue in a sequence of ultrasonic B-mode images. The proposed iterative firefly algorithm (IFA) searches for few candidate points to obtain the optimal motion vector, and then compares it to the traditional iterative full search algorithm (IFSA) via a series of experiments of in vivo ultrasonic image sequences. The experimental results show that the IFA can assess the vector with better efficiency and almost equal estimation quality compared to the traditional IFSA method. PMID:25873987
Motion estimation using the firefly algorithm in ultrasonic image sequence of soft tissue.
Chao, Chih-Feng; Horng, Ming-Huwi; Chen, Yu-Chan
2015-01-01
Ultrasonic image sequence of the soft tissue is widely used in disease diagnosis; however, the speckle noises usually influenced the image quality. These images usually have a low signal-to-noise ratio presentation. The phenomenon gives rise to traditional motion estimation algorithms that are not suitable to measure the motion vectors. In this paper, a new motion estimation algorithm is developed for assessing the velocity field of soft tissue in a sequence of ultrasonic B-mode images. The proposed iterative firefly algorithm (IFA) searches for few candidate points to obtain the optimal motion vector, and then compares it to the traditional iterative full search algorithm (IFSA) via a series of experiments of in vivo ultrasonic image sequences. The experimental results show that the IFA can assess the vector with better efficiency and almost equal estimation quality compared to the traditional IFSA method.
Ballistic imaging of the near field in a diesel spray
NASA Astrophysics Data System (ADS)
Linne, Mark; Paciaroni, Megan; Hall, Tyler; Parker, Terry
2006-06-01
We have developed an optical technique called ballistic imaging to view breakup of the near-field of an atomizing spray. In this paper, we describe the successful use of a time-gated ballistic imaging instrument to obtain single-shot images of core region breakup in a transient, single hole atomizing diesel fuel spray issuing into one atmosphere. We present a sequence of images taken at the nozzle for various times after start of injection, and a sequence taken at various positions downstream of the nozzle exit at a fixed time. These images contain signatures of periodic behavior, voids, and entrainment processes.
Detection of Obstacles in Monocular Image Sequences
NASA Technical Reports Server (NTRS)
Kasturi, Rangachar; Camps, Octavia
1997-01-01
The ability to detect and locate runways/taxiways and obstacles in images captured using on-board sensors is an essential first step in the automation of low-altitude flight, landing, takeoff, and taxiing phase of aircraft navigation. Automation of these functions under different weather and lighting situations, can be facilitated by using sensors of different modalities. An aircraft-based Synthetic Vision System (SVS), with sensors of different modalities mounted on-board, complements the current ground-based systems in functions such as detection and prevention of potential runway collisions, airport surface navigation, and landing and takeoff in all weather conditions. In this report, we address the problem of detection of objects in monocular image sequences obtained from two types of sensors, a Passive Millimeter Wave (PMMW) sensor and a video camera mounted on-board a landing aircraft. Since the sensors differ in their spatial resolution, and the quality of the images obtained using these sensors is not the same, different approaches are used for detecting obstacles depending on the sensor type. These approaches are described separately in two parts of this report. The goal of the first part of the report is to develop a method for detecting runways/taxiways and objects on the runway in a sequence of images obtained from a moving PMMW sensor. Since the sensor resolution is low and the image quality is very poor, we propose a model-based approach for detecting runways/taxiways. We use the approximate runway model and the position information of the camera provided by the Global Positioning System (GPS) to define regions of interest in the image plane to search for the image features corresponding to the runway markers. Once the runway region is identified, we use histogram-based thresholding to detect obstacles on the runway and regions outside the runway. This algorithm is tested using image sequences simulated from a single real PMMW image.
Bidar, Fatemeh; Faeghi, Fariborz; Ghorbani, Askar
2016-01-01
Background: The purpose of this study is to demonstrate the advantages of gradient echo (GRE) sequences in the detection and characterization of cerebral venous sinus thrombosis compared to conventional magnetic resonance sequences. Methods: A total of 17 patients with cerebral venous thrombosis (CVT) were evaluated using different magnetic resonance imaging (MRI) sequences. The MRI sequences included T1-weighted spin echo (SE) imaging, T*2-weighted turbo SE (TSE), fluid attenuated inversion recovery (FLAIR), T*2-weighted conventional GRE, and diffusion weighted imaging (DWI). MR venography (MRV) images were obtained as the golden standard. Results: Venous sinus thrombosis was best detectable in T*2-weighted conventional GRE sequences in all patients except in one case. Venous thrombosis was undetectable in DWI. T*2-weighted GRE sequences were superior to T*2-weighted TSE, T1-weighted SE, and FLAIR. Enhanced MRV was successful in displaying the location of thrombosis. Conclusion: T*2-weighted conventional GRE sequences are probably the best method for the assessment of cerebral venous sinus thrombosis. The mentioned method is non-invasive; therefore, it can be employed in the clinical evaluation of cerebral venous sinus thrombosis. PMID:27326365
Magnetic resonance imaging, computed tomography, and gross anatomy of the canine tarsus.
Deruddere, Kirsten J; Milne, Marjorie E; Wilson, Kane M; Snelling, Sam R
2014-11-01
To describe the normal anatomy of the soft tissues of the canine tarsus as identified on computed tomography (CT) and magnetic resonance imaging (MRI) and to evaluate specific MRI sequences and planes for observing structures of diagnostic interest. Prospective descriptive study. Canine cadavers (n = 3). A frozen cadaver pelvic limb was used to trial multiple MRI sequences using a 1.5 T superconducting magnet and preferred sequences were selected. Radiographs of 6 canine cadaver pelvic limbs confirmed the tarsi were radiographically normal. A 16-slice CT scanner was used to obtain 1 mm contiguous slices through the tarsi. T1-weighted, proton density with fat suppression (PD FS) and T2-weighted MRI sequences were obtained in the sagittal plane, T1-weighted, and PD FS sequences in the dorsal plane and PD FS sequences in the transverse plane. The limbs were frozen for one month and sliced into 4-5 mm thick frozen sections. Anatomic sections were photographed and visually correlated to CT and MR images. Most soft tissue structures were easiest to identify on the transverse MRI sections with cross reference to either the sagittal or dorsal plane. Bony structures were easily identified on all CT, MR, and gross sections. The anatomy of the canine tarsus can be readily identified on MR imaging. © Copyright 2014 by The American College of Veterinary Surgeons.
Ribot, Emeline J; Trotier, Aurélien J; Castets, Charles R; Dallaudière, Benjamin; Thiaudière, Eric; Franconi, Jean-Michel; Miraux, Sylvain
2016-02-01
The goal of this study was to develop a 3D diffusion weighted sequence for free breathing liver imaging in small animals at high magnetic field. Hepatic metastases were detected and the apparent diffusion coefficients (ADC) were measured. A 3D SE-EPI sequence was developed by (i) inserting a water-selective excitation radiofrequency pulse to suppress adipose tissue signal and (ii) bipolar diffusion gradients to decrease the sensitivity to respiration motion. Mice with hepatic metastases were imaged at 7T by applying b values from 200 to 1100 s/mm(2). 3D images with high spatial resolution (182 × 156 × 125 µm) were obtained in only 8 min 32 s. The modified DW-SE-EPI sequence allowed to obtain 3D abdominal images of healthy mice with fat SNR 2.5 times lower than without any fat suppression method and sharpness 2.8 times higher than on respiration-triggered images. Due to the high spatial resolution, the core and the periphery of disseminated hepatic metastases were differentiated at high b-values only, demonstrating the presence of edema and proliferating cells (with ADC of 2.65 × 10(-3) and 1.55 × 10(-3) mm(2)/s, respectively). Furthermore, these metastases were accurately distinguished from proliferating ones within the same animal at high b-values (mean ADC of 0.38 × 10(-3) mm(2)/s). Metastases of less than 1.7 mm(3) diameter were detected. The new 3D SE-EPI sequence enabled to obtain diffusion information within liver metastases. In addition of intra-metastasis heterogeneity, differences in diffusion were measured between metastases within an animal. This sequence could be used to obtain diffusion information at high magnetic field.
Minhas, Atul S; Woo, Eung Je; Lee, Soo Yeol
2009-01-01
Magnetic Resonance Electrical Impedance Tomography (MREIT) utilizes the magnetic flux density B(z), generated due to current injection, to find conductivity distribution inside an object. This B(z) can be measured from MR phase images using spin echo pulse sequence. The SNR of B(z) and the sensitivity of phase produced by B(z) in MR phase image are critical in deciding the resolution of MREIT conductivity images. The conventional spin echo based data acquisition has poor phase sensitivity to current injection. Longer scan time is needed to acquire data with higher SNR. We propose a balanced steady state free precession (b-SSFP) based pulse sequence which is highly sensitive to small off-resonance phase changes. A procedure to reconstruct B(z) from MR signal obtained with b-SSFP sequence is described. Phases for b-SSFP signals for two conductivity phantoms of TX 151 and Gelatin are simulated from the mathematical models of b-SSFP signal. It was observed that the phase changes obtained from b-SSFP pulse sequence are highly sensitive to current injection and hence would produce higher magnetic flux density. However, the b-SSFP signal is dependent on magnetic field inhomogeneity and the signal deteriorated highly for small offset from resonance frequency. The simulation results show that the b-SSFP sequence can be utilized for conductivity imaging of a local region where magnetic field inhomogeneity is small. A proper shimming of magnet is recommended before using the b-SSFP sequence.
Enhanced spatio-temporal alignment of plantar pressure image sequences using B-splines.
Oliveira, Francisco P M; Tavares, João Manuel R S
2013-03-01
This article presents an enhanced methodology to align plantar pressure image sequences simultaneously in time and space. The temporal alignment of the sequences is accomplished using B-splines in the time modeling, and the spatial alignment can be attained using several geometric transformation models. The methodology was tested on a dataset of 156 real plantar pressure image sequences (3 sequences for each foot of the 26 subjects) that was acquired using a common commercial plate during barefoot walking. In the alignment of image sequences that were synthetically deformed both in time and space, an outstanding accuracy was achieved with the cubic B-splines. This accuracy was significantly better (p < 0.001) than the one obtained using the best solution proposed in our previous work. When applied to align real image sequences with unknown transformation involved, the alignment based on cubic B-splines also achieved superior results than our previous methodology (p < 0.001). The consequences of the temporal alignment on the dynamic center of pressure (COP) displacement was also assessed by computing the intraclass correlation coefficients (ICC) before and after the temporal alignment of the three image sequence trials of each foot of the associated subject at six time instants. The results showed that, generally, the ICCs related to the medio-lateral COP displacement were greater when the sequences were temporally aligned than the ICCs of the original sequences. Based on the experimental findings, one can conclude that the cubic B-splines are a remarkable solution for the temporal alignment of plantar pressure image sequences. These findings also show that the temporal alignment can increase the consistency of the COP displacement on related acquired plantar pressure image sequences.
Automated brain tumor segmentation using spatial accuracy-weighted hidden Markov Random Field.
Nie, Jingxin; Xue, Zhong; Liu, Tianming; Young, Geoffrey S; Setayesh, Kian; Guo, Lei; Wong, Stephen T C
2009-09-01
A variety of algorithms have been proposed for brain tumor segmentation from multi-channel sequences, however, most of them require isotropic or pseudo-isotropic resolution of the MR images. Although co-registration and interpolation of low-resolution sequences, such as T2-weighted images, onto the space of the high-resolution image, such as T1-weighted image, can be performed prior to the segmentation, the results are usually limited by partial volume effects due to interpolation of low-resolution images. To improve the quality of tumor segmentation in clinical applications where low-resolution sequences are commonly used together with high-resolution images, we propose the algorithm based on Spatial accuracy-weighted Hidden Markov random field and Expectation maximization (SHE) approach for both automated tumor and enhanced-tumor segmentation. SHE incorporates the spatial interpolation accuracy of low-resolution images into the optimization procedure of the Hidden Markov Random Field (HMRF) to segment tumor using multi-channel MR images with different resolutions, e.g., high-resolution T1-weighted and low-resolution T2-weighted images. In experiments, we evaluated this algorithm using a set of simulated multi-channel brain MR images with known ground-truth tissue segmentation and also applied it to a dataset of MR images obtained during clinical trials of brain tumor chemotherapy. The results show that more accurate tumor segmentation results can be obtained by comparing with conventional multi-channel segmentation algorithms.
Adjustable shunt valve-induced magnetic resonance imaging artifact: a comparative study.
Toma, Ahmed K; Tarnaris, Andrew; Grieve, Joan P; Watkins, Laurence D; Kitchen, Neil D
2010-07-01
In this paper, the authors' goal was to compare the artifact induced by implanted (in vivo) adjustable shunt valves in spin echo, diffusion weighted (DW), and gradient echo MR imaging pulse sequences. The MR images obtained in 8 patients with proGAV and 6 patients with Strata II adjustable shunt valves were assessed for artifact areas in different planes as well as the total volume for different pulse sequences. Artifacts induced by the Strata II valve were significantly larger than those induced by proGAV valve in spin echo MR imaging pulse sequence (29,761 vs 2450 mm(3) on T2-weighted fast spin echo, p = 0.003) and DW images (100,138 vs 38,955 mm(3), p = 0.025). Artifacts were more marked on DW MR images than on spin echo pulse sequence for both valve types. Adjustable valve-induced artifacts can conceal brain pathology on MR images. This should influence the choice of valve implantation site and the type of valve used. The effect of artifacts on DW images should be highlighted pending the development of less MR imaging artifact-inducing adjustable shunt valves.
Short memory fuzzy fusion image recognition schema employing spatial and Fourier descriptors
NASA Astrophysics Data System (ADS)
Raptis, Sotiris N.; Tzafestas, Spyros G.
2001-03-01
Single images quite often do not bear enough information for precise interpretation due to a variety of reasons. Multiple image fusion and adequate integration recently became the state of the art in the pattern recognition field. In this paper presented here and enhanced multiple observation schema is discussed investigating improvements to the baseline fuzzy- probabilistic image fusion methodology. The first innovation introduced consists in considering only a limited but seemingly ore effective part of the uncertainty information obtained by a certain time restricting older uncertainty dependencies and alleviating computational burden that is now needed for short sequence (stored into memory) of samples. The second innovation essentially grouping them into feature-blind object hypotheses. Experiment settings include a sequence of independent views obtained by camera being moved around the investigated object.
The processing of images of biological threats in visual short-term memory.
Quinlan, Philip T; Yue, Yue; Cohen, Dale J
2017-08-30
The idea that there is enhanced memory for negatively, emotionally charged pictures was examined. Performance was measured under rapid, serial visual presentation (RSVP) conditions in which, on every trial, a sequence of six photo-images was presented. Briefly after the offset of the sequence, two alternative images (a target and a foil) were presented and participants attempted to choose which image had occurred in the sequence. Images were of threatening and non-threatening cats and dogs. The target depicted either an animal expressing an emotion distinct from the other images, or the sequences contained only images depicting the same emotional valence. Enhanced memory was found for targets that differed in emotional valence from the other sequence images, compared to targets that expressed the same emotional valence. Further controls in stimulus selection were then introduced and the same emotional distinctiveness effect obtained. In ruling out possible visual and attentional accounts of the data, an informal dual route topic model is discussed. This places emphasis on how visual short-term memory reveals a sensitivity to the emotional content of the input as it unfolds over time. Items that present with a distinctive emotional content stand out in memory. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Li, Jianping; Yang, Bisheng; Chen, Chi; Huang, Ronggang; Dong, Zhen; Xiao, Wen
2018-02-01
Inaccurate exterior orientation parameters (EoPs) between sensors obtained by pre-calibration leads to failure of registration between panoramic image sequence and mobile laser scanning data. To address this challenge, this paper proposes an automatic registration method based on semantic features extracted from panoramic images and point clouds. Firstly, accurate rotation parameters between the panoramic camera and the laser scanner are estimated using GPS and IMU aided structure from motion (SfM). The initial EoPs of panoramic images are obtained at the same time. Secondly, vehicles in panoramic images are extracted by the Faster-RCNN as candidate primitives to be matched with potential corresponding primitives in point clouds according to the initial EoPs. Finally, translation between the panoramic camera and the laser scanner is refined by maximizing the overlapping area of corresponding primitive pairs based on the Particle Swarm Optimization (PSO), resulting in a finer registration between panoramic image sequences and point clouds. Two challenging urban scenes were experimented to assess the proposed method, and the final registration errors of these two scenes were both less than three pixels, which demonstrates a high level of automation, robustness and accuracy.
Further exploration of MRI techniques for liver T1rho quantification.
Zhao, Feng; Yuan, Jing; Deng, Min; Lu, Pu-Xuan; Ahuja, Anil T; Wang, Yi-Xiang J
2013-12-01
With biliary duct ligation and CCl4 induced rat liver fibrosis models, recent studies showed that MR T1rho imaging is able to detect liver fibrosis, and the degree of fibrosis is correlated with the degree of elevation of the T1rho measurements, suggesting liver T1rho quantification may play an important role for liver fibrosis early detection and grading. It has also been reported it is feasible to obtain consistent liver T1rho measurement for human subjects at 3 Tesla (3 T), and preliminary clinical data suggest liver T1rho is increased in patients with cirrhosis. In these previous studies, T1rho imaging was used with the rotary-echo spin-lock pulse for T1rho preparation, and number of signal averaging (NSA) was 2. Due to the presence of inhomogeneous B0 field, artifacts may occur in the acquired T1rho-weighted images. The method described by Dixon et al. (Magn Reson Med 1996;36:90-4), which is a hard RF pulse with 135° flip angle and same RF phase as the spin-locking RF pulse is inserted right before and after the spin-locking RF pulse, has been proposed to reduce sensitivity to B0 field inhomogeneity in T1rho imaging. In this study, we compared the images scanned by rotary-echo spin-lock pulse method (sequence 1) and the pulse modified according to Dixon method (sequence 2). When the artifacts occurred in T1rho images, we repeated the same scan until satisfactory. We accepted images if artifact in liver was less than 10% of liver area by visual estimation. When NSA =2, the breath-holding duration for data acquisition of one slice scanning was 8 sec due to a delay time of 6,000 ms for magnetization restoration. If NSA =1, the duration was shortened to be 2 sec. In previous studies, manual region of interest (ROI) analysis of T1rho map was used. In this current study, histogram analysis was also applied to evaluate liver T1rho value on T1rho maps. MRI data acquisition was performed on a 3 T clinical scanner. There were 29 subjects with 61 examinations obtained. Liver T1rho values obtained by sequence 1 (NSA =2) and sequence 2 (NSA =2) showed similar values, i.e., 43.1±2.1 ms (range: 38.6-48.0 ms, n=40 scans) vs. 43.5±2.5 ms (range: 39.0-47.7 ms, n=12 scans, P=0.74) respectively. For the six volunteers scanned with both sequences in one session, the intraclass correlation coefficient (ICC) was 0.939. Overall, the success rate of obtaining satisfactory images per acquisition was slightly over 50% for both sequence 1 and sequence 2. Satisfactory images can usually be obtained by asking the volunteer subjects to better hold their breath. However, sequence 2 did not increase the scan success rate. For the nine subjects scanned by sequence 2 with both NSA =2 and NSA =1 during one session, the ICC was 0.274, demonstrated poor agreement. T1rho measurement by ROI method and histogram had an ICC of 0.901 (P>0.05), demonstrated very good agreement. We conclude that by including 135° flip angle before and after the spin-locking RF pulse, the rate of artifacts occurring did not decrease. On the other hand, sequence 1 and sequence 2 measured similar T1rho value in healthy liver. While reducing the breath-holding duration significantly, NSA =1 did not offer satisfactory signal-to-noise ratio. Histogram measurement can be adopted for future studies.
Meteor localization via statistical analysis of spatially temporal fluctuations in image sequences
NASA Astrophysics Data System (ADS)
Kukal, Jaromír.; Klimt, Martin; Šihlík, Jan; Fliegel, Karel
2015-09-01
Meteor detection is one of the most important procedures in astronomical imaging. Meteor path in Earth's atmosphere is traditionally reconstructed from double station video observation system generating 2D image sequences. However, the atmospheric turbulence and other factors cause spatially-temporal fluctuations of image background, which makes the localization of meteor path more difficult. Our approach is based on nonlinear preprocessing of image intensity using Box-Cox and logarithmic transform as its particular case. The transformed image sequences are then differentiated along discrete coordinates to obtain statistical description of sky background fluctuations, which can be modeled by multivariate normal distribution. After verification and hypothesis testing, we use the statistical model for outlier detection. Meanwhile the isolated outlier points are ignored, the compact cluster of outliers indicates the presence of meteoroids after ignition.
Recognition of Drainage Tunnels during Glacier Lake Outburst Events from Terrestrial Image Sequences
NASA Astrophysics Data System (ADS)
Schwalbe, E.; Koschitzki, R.; Maas, H.-G.
2016-06-01
In recent years, many glaciers all over the world have been distinctly retreating and thinning. One of the consequences of this is the increase of so called glacier lake outburst flood events (GLOFs). The mechanisms ruling such GLOF events are still not yet fully understood by glaciologists. Thus, there is a demand for data and measurements that can help to understand and model the phenomena. Thereby, a main issue is to obtain information about the location and formation of subglacial channels through which some lakes, dammed by a glacier, start to drain. The paper will show how photogrammetric image sequence analysis can be used to collect such data. For the purpose of detecting a subglacial tunnel, a camera has been installed in a pilot study to observe the area of the Colonia Glacier (Northern Patagonian Ice Field) where it dams the Lake Cachet II. To verify the hypothesis, that the course of the subglacial tunnel is indicated by irregular surface motion patterns during its collapse, the camera acquired image sequences of the glacier surface during several GLOF events. Applying tracking techniques to these image sequences, surface feature motion trajectories could be obtained for a dense raster of glacier points. Since only a single camera has been used for image sequence acquisition, depth information is required to scale the trajectories. Thus, for scaling and georeferencing of the measurements a GPS-supported photogrammetric network has been measured. The obtained motion fields of the Colonia Glacier deliver information about the glacier's behaviour before during and after a GLOF event. If the daily vertical glacier motion of the glacier is integrated over a period of several days and projected into a satellite image, the location and shape of the drainage channel underneath the glacier becomes visible. The high temporal resolution of the motion fields may also allows for an analysis of the tunnels dynamic in comparison to the changing water level of the lake.
Sapkota, Nabraj; Shi, Xianfeng; Shah, Lubdha M; Bisson, Erica F; Rose, John W; Jeong, Eun-Kee
2017-06-01
High-resolution diffusion-weighted imaging (DWI) of the spinal cord (SC) is problematic because of the small cross-section of the SC and the large field inhomogeneity. Obtaining the ultrahigh-b DWI poses a further challenge. The purpose of the study was to design and validate two-dimensional (2D) single-shot diffusion-weighted stimulated echo planar imaging with reduced field of view (2D ss-DWSTEPI-rFOV) for ultrahigh-b radial DWI (UHB-rDWI) of the SC. A novel time-efficient 2D ss-DWSTEPI-rFOV sequence was developed based on the stimulated echo sequence. Reduced-phase field of view was obtained by using two slice-selective 90 ° radiofrequency pulses in the presence of the orthogonal slice selection gradients. The sequence was validated on a cylindrical phantom and demonstrated on SC imaging. Ultrahigh-b radial diffusion-weighted ( bmax = 7300 s/mm2) images of the SC with greatly reduced distortion were obtained. The exponential plus constant fitting of the diffusion-decay curve estimated the constant fraction (restricted water fraction) as 0.36 ± 0.05 in the SC white matter. A novel 2D ss-DWSTEPI-rFOV sequence has been designed and demonstrated for high-resolution UHB-rDWI of localized anatomic structures with significantly reduced distortion induced by nonlinear static field inhomogeneity. Magn Reson Med 77:2167-2173, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
de Bresser, Jeroen; Hendrikse, Jeroen; Siero, Jeroen C. W.; Petersen, Esben T.; De Vis, Jill B.
2018-01-01
Objective In previous work we have developed a fast sequence that focusses on cerebrospinal fluid (CSF) based on the long T2 of CSF. By processing the data obtained with this CSF MRI sequence, brain parenchymal volume (BPV) and intracranial volume (ICV) can be automatically obtained. The aim of this study was to assess the precision of the BPV and ICV measurements of the CSF MRI sequence and to validate the CSF MRI sequence by comparison with 3D T1-based brain segmentation methods. Materials and methods Ten healthy volunteers (2 females; median age 28 years) were scanned (3T MRI) twice with repositioning in between. The scan protocol consisted of a low resolution (LR) CSF sequence (0:57min), a high resolution (HR) CSF sequence (3:21min) and a 3D T1-weighted sequence (6:47min). Data of the HR 3D-T1-weighted images were downsampled to obtain LR T1-weighted images (reconstructed imaging time: 1:59 min). Data of the CSF MRI sequences was automatically segmented using in-house software. The 3D T1-weighted images were segmented using FSL (5.0), SPM12 and FreeSurfer (5.3.0). Results The mean absolute differences for BPV and ICV between the first and second scan for CSF LR (BPV/ICV: 12±9/7±4cc) and CSF HR (5±5/4±2cc) were comparable to FSL HR (9±11/19±23cc), FSL LR (7±4, 6±5cc), FreeSurfer HR (5±3/14±8cc), FreeSurfer LR (9±8, 12±10cc), and SPM HR (5±3/4±7cc), and SPM LR (5±4, 5±3cc). The correlation between the measured volumes of the CSF sequences and that measured by FSL, FreeSurfer and SPM HR and LR was very good (all Pearson’s correlation coefficients >0.83, R2 .67–.97). The results from the downsampled data and the high-resolution data were similar. Conclusion Both CSF MRI sequences have a precision comparable to, and a very good correlation with established 3D T1-based automated segmentations methods for the segmentation of BPV and ICV. However, the short imaging time of the fast CSF MRI sequence is superior to the 3D T1 sequence on which segmentation with established methods is performed. PMID:29672584
van der Kleij, Lisa A; de Bresser, Jeroen; Hendrikse, Jeroen; Siero, Jeroen C W; Petersen, Esben T; De Vis, Jill B
2018-01-01
In previous work we have developed a fast sequence that focusses on cerebrospinal fluid (CSF) based on the long T2 of CSF. By processing the data obtained with this CSF MRI sequence, brain parenchymal volume (BPV) and intracranial volume (ICV) can be automatically obtained. The aim of this study was to assess the precision of the BPV and ICV measurements of the CSF MRI sequence and to validate the CSF MRI sequence by comparison with 3D T1-based brain segmentation methods. Ten healthy volunteers (2 females; median age 28 years) were scanned (3T MRI) twice with repositioning in between. The scan protocol consisted of a low resolution (LR) CSF sequence (0:57min), a high resolution (HR) CSF sequence (3:21min) and a 3D T1-weighted sequence (6:47min). Data of the HR 3D-T1-weighted images were downsampled to obtain LR T1-weighted images (reconstructed imaging time: 1:59 min). Data of the CSF MRI sequences was automatically segmented using in-house software. The 3D T1-weighted images were segmented using FSL (5.0), SPM12 and FreeSurfer (5.3.0). The mean absolute differences for BPV and ICV between the first and second scan for CSF LR (BPV/ICV: 12±9/7±4cc) and CSF HR (5±5/4±2cc) were comparable to FSL HR (9±11/19±23cc), FSL LR (7±4, 6±5cc), FreeSurfer HR (5±3/14±8cc), FreeSurfer LR (9±8, 12±10cc), and SPM HR (5±3/4±7cc), and SPM LR (5±4, 5±3cc). The correlation between the measured volumes of the CSF sequences and that measured by FSL, FreeSurfer and SPM HR and LR was very good (all Pearson's correlation coefficients >0.83, R2 .67-.97). The results from the downsampled data and the high-resolution data were similar. Both CSF MRI sequences have a precision comparable to, and a very good correlation with established 3D T1-based automated segmentations methods for the segmentation of BPV and ICV. However, the short imaging time of the fast CSF MRI sequence is superior to the 3D T1 sequence on which segmentation with established methods is performed.
Kim, Sung Kwan; Kim, Donghyun; Lee, Sun Joo; Choo, Hye Jung; Oh, Minkyung; Son, Yohan; Paek, MunYoung
2018-06-01
The purpose was to evaluate the clinical value of PETRA sequence for the diagnosis of internal derangement of the knee. The major structures of the knee in 34 patients were evaluated and compared among conventional MRI findings, PETRA images, and arthroscopic findings. The specificities of PETRA with 2D FSE sequence were higher for meniscal lesions than those obtained when using 2D FSE alone. Using PETRA images along with conventional 2D FSE images can increase the accuracy of assessing internal derangements of the knee and, specifically, meniscal lesions. Copyright © 2018 Elsevier Inc. All rights reserved.
Abdominal MRI at 3.0 T: LAVA-Flex compared with conventional fat suppression T1-weighted images.
Li, Xing Hui; Zhu, Jiang; Zhang, Xiao Ming; Ji, Yi Fan; Chen, Tian Wu; Huang, Xiao Hua; Yang, Lin; Zeng, Nan Lin
2014-07-01
To study liver imaging with volume acceleration-flexible (LAVA-Flex) for abdominal magnetic resonance imaging (MRI) at 3.0 T and compare the image quality of abdominal organs between LAVA-Flex and fast spoiled gradient-recalled (FSPGR) T1-weighted imaging. Our Institutional Review Board approval was obtained in this retrospective study. Sixty-nine subjects had both FSPGR and LAVA-Flex sequences. Two radiologists independently scored the acquisitions for image quality, fat suppression quality, and artifacts and the values obtained were compared with the Wilcoxon signed rank test. According to the signal intensity (SI) measurements, the uniformity of fat suppression, the contrast between muscle and fat and normal liver and liver lesions were compared by the paired t-test. The liver and spleen SI on the fat-only phase were analyzed in the fatty liver patients. Compared with FSPGR imaging, LAVA-Flex images had better and more homogenous fat suppression and lower susceptibility artifact (qualitative scores: 4.70 vs. 4.00, 4.86% vs. 7.14%, 4.60 and 4.10, respectively). The contrast between muscle and fat and between the liver and pathologic lesions was significantly improved on the LAVA-Flex sequence. The contrast value of the fatty liver and spleen was higher than that of the liver and spleen. The LAVA-Flex sequence offers superior and more homogenous fat suppression of the abdomen than does the FSPGR sequence. The fat-only phase can be a simple and effective method of assessing fatty liver. © 2013 Wiley Periodicals, Inc.
High-speed imaging using 3CCD camera and multi-color LED flashes
NASA Astrophysics Data System (ADS)
Hijazi, Ala; Friedl, Alexander; Cierpka, Christian; Kähler, Christian; Madhavan, Vis
2017-11-01
This paper demonstrates the possibility of capturing full-resolution, high-speed image sequences using a regular 3CCD color camera in conjunction with high-power light emitting diodes of three different colors. This is achieved using a novel approach, referred to as spectral-shuttering, where a high-speed image sequence is captured using short duration light pulses of different colors that are sent consecutively in very close succession. The work presented in this paper demonstrates the feasibility of configuring a high-speed camera system using low cost and readily available off-the-shelf components. This camera can be used for recording six-frame sequences at frame rates up to 20 kHz or three-frame sequences at even higher frame rates. Both color crosstalk and spatial matching between the different channels of the camera are found to be within acceptable limits. A small amount of magnification difference between the different channels is found and a simple calibration procedure for correcting the images is introduced. The images captured using the approach described here are of good quality to be used for obtaining full-field quantitative information using techniques such as digital image correlation and particle image velocimetry. A sequence of six high-speed images of a bubble splash recorded at 400 Hz is presented as a demonstration.
Dynamic contrast-enhanced breast MRI at 7 Tesla utilizing a single-loop coil: a feasibility trial.
Umutlu, Lale; Maderwald, Stefan; Kraff, Oliver; Theysohn, Jens M; Kuemmel, Sherko; Hauth, Elke A; Forsting, Michael; Antoch, Gerald; Ladd, Mark E; Quick, Harald H; Lauenstein, Thomas C
2010-08-01
The aim of this study was to assess the feasibility of dynamic contrast-enhanced ultra-high-field breast imaging at 7 Tesla. A total of 15 subjects, including 5 patients with histologically proven breast cancer, were examined on a 7 Tesla whole-body magnetic resonance imaging system using a unilateral linearly polarized single-loop coil. Subjects were placed in prone position on a biopsy support system, with the coil placed directly below the region of interest. The examination protocol included the following sequences: 1) T2-weighted turbo spin echo sequence; 2) six dynamic T1-weighted spoiled gradient-echo sequences; and 3) subtraction imaging. Contrast-enhanced T1-weighted imaging at 7 Tesla could be obtained at high spatial resolution with short acquisition times, providing good image accuracy and a conclusively good delineation of small anatomical and pathological structures. T2-weighted imaging could be obtained with high spatial resolution at adequate acquisition times. Because of coil limitations, four high-field magnetic resonance examinations showed decreased diagnostic value. This first scientific approach of dynamic contrast-enhanced breast magnetic resonance imaging at 7 Tesla demonstrates the complexity of ultra-high-field breast magnetic resonance imaging and countenances the implementation of further advanced bilateral coil concepts to circumvent current limitations from the coil and ultra-high-field magnetic strength. 2010 AUR. Published by Elsevier Inc. All rights reserved.
Application of polymer sensitive MRI sequence to localization of EEG electrodes.
Butler, Russell; Gilbert, Guillaume; Descoteaux, Maxime; Bernier, Pierre-Michel; Whittingstall, Kevin
2017-02-15
The growing popularity of simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) opens up the possibility of imaging EEG electrodes while the subject is in the scanner. Such information could be useful for improving the fusion of EEG-fMRI datasets. Here, we report for the first time how an ultra-short echo time (UTE) MR sequence can image the materials of an MR-compatible EEG cap, finding that electrodes and some parts of the wiring are visible in a high resolution UTE. Using these images, we developed a segmentation procedure to obtain electrode coordinates based on voxel intensity from the raw UTE, using hand labeled coordinates as the starting point. We were able to visualize and segment 95% of EEG electrodes using a short (3.5min) UTE sequence. We provide scripts and template images so this approach can now be easily implemented to obtain precise, subject-specific EEG electrode positions while adding minimal acquisition time to the simultaneous EEG-fMRI protocol. T1 gel artifacts are not robust enough to localize all electrodes across subjects, the polymers composing Brainvision cap electrodes are not visible on a T1, and adding T1 visible materials to the EEG cap is not always possible. We therefore consider our method superior to existing methods for obtaining electrode positions in the scanner, as it is hardware free and should work on a wide range of materials (caps). EEG electrode positions are obtained with high precision and no additional hardware. Copyright © 2016 Elsevier B.V. All rights reserved.
Dual-slit confocal light sheet microscopy for in vivo whole-brain imaging of zebrafish
Yang, Zhe; Mei, Li; Xia, Fei; Luo, Qingming; Fu, Ling; Gong, Hui
2015-01-01
In vivo functional imaging at single-neuron resolution is an important approach to visualize biological processes in neuroscience. Light sheet microscopy (LSM) is a cutting edge in vivo imaging technique that provides micron-scale spatial resolution at high frame rate. Due to the scattering and absorption of tissue, however, conventional LSM is inadequate to resolve cells because of the attenuated signal to noise ratio (SNR). Using dual-beam illumination and confocal dual-slit detection, here a dual-slit confocal LSM is demonstrated to obtain the SNR enhanced images with frame rate twice as high as line confocal LSM method. Through theoretical calculations and experiments, the correlation between the slit’s width and SNR was determined to optimize the image quality. In vivo whole brain structural imaging stacks and the functional imaging sequences of single slice were obtained for analysis of calcium activities at single-cell resolution. A two-fold increase in imaging speed of conventional confocal LSM makes it possible to capture the sequence of the neurons’ activities and help reveal the potential functional connections in the whole zebrafish’s brain. PMID:26137381
Automatic Generation of Passer-by Record Images using Internet Camera
NASA Astrophysics Data System (ADS)
Terada, Kenji; Atsuta, Koji
Recently, many brutal crimes have shocked us. On the other hand, we have seen a decline in the number of solved crimes. Therefore, the importance of security and self-defense has increased more and more. As an example of self-defense, many surveillance cameras are set up in the buildings, homes and offices. But even if we want to detect a suspicious person, we cannot check the surveillance videos immediately so that huge number of image sequences is stored in each video system. In this paper, we propose an automatic method of generating passer-by record images by using internet camera. In first step, the process of recognizing passer-by is carried out using an image sequence obtained from the internet camera. Our method classifies the subject region into each person by using the space-time image. In addition, we obtain the information of the time, direction and number of passey-by persons from this space-time image. Next, the present method detects five characteristics: the gravity of center, the position of person's head, the brightness, the size, and the shape of person. Finaly, an image of each person is selected among the image sequence by integrating five characteristics, and is added into the passer-by record image. Some experimental results using a simple experimental system are also reported, which indicate effectiveness of the proposed method. In most scenes, the every persons was able to be detected by the proposed method and the passer-by record image was generated.
A Tentative Application Of Morphological Filters To Time-Varying Images
NASA Astrophysics Data System (ADS)
Billard, D.; Poquillon, B.
1989-03-01
In this paper, morphological filters, which are commonly used to process either 2D or multidimensional static images, are generalized to the analysis of time-varying image sequence. The introduction of the time dimension induces then interesting prop-erties when designing such spatio-temporal morphological filters. In particular, the specification of spatio-temporal structuring ele-ments (equivalent to time-varying spatial structuring elements) can be adjusted according to the temporal variations of the image sequences to be processed : this allows to derive specific morphological transforms to perform noise filtering or moving objects discrimination on dynamic images viewed by a non-stationary sensor. First, a brief introduction to the basic principles underlying morphological filters will be given. Then, a straightforward gener-alization of these principles to time-varying images will be pro-posed. This will lead us to define spatio-temporal opening and closing and to introduce some of their possible applications to process dynamic images. At last, preliminary results obtained us-ing a natural forward looking infrared (FUR) image sequence are presented.
Automatic Spatio-Temporal Flow Velocity Measurement in Small Rivers Using Thermal Image Sequences
NASA Astrophysics Data System (ADS)
Lin, D.; Eltner, A.; Sardemann, H.; Maas, H.-G.
2018-05-01
An automatic spatio-temporal flow velocity measurement approach, using an uncooled thermal camera, is proposed in this paper. The basic principle of the method is to track visible thermal features at the water surface in thermal camera image sequences. Radiometric and geometric calibrations are firstly implemented to remove vignetting effects in thermal imagery and to get the interior orientation parameters of the camera. An object-based unsupervised classification approach is then applied to detect the interest regions for data referencing and thermal feature tracking. Subsequently, GCPs are extracted to orient the river image sequences and local hot points are identified as tracking features. Afterwards, accurate dense tracking outputs are obtained using pyramidal Lucas-Kanade method. To validate the accuracy potential of the method, measurements obtained from thermal feature tracking are compared with reference measurements taken by a propeller gauge. Results show a great potential of automatic flow velocity measurement in small rivers using imagery from a thermal camera.
Optical joint correlator for real-time image tracking and retinal surgery
NASA Technical Reports Server (NTRS)
Juday, Richard D. (Inventor)
1991-01-01
A method for tracking an object in a sequence of images is described. Such sequence of images may, for example, be a sequence of television frames. The object in the current frame is correlated with the object in the previous frame to obtain the relative location of the object in the two frames. An optical joint transform correlator apparatus is provided to carry out the process. Such joint transform correlator apparatus forms the basis for laser eye surgical apparatus where an image of the fundus of an eyeball is stabilized and forms the basis for the correlator apparatus to track the position of the eyeball caused by involuntary movement. With knowledge of the eyeball position, a surgical laser can be precisely pointed toward a position on the retina.
Image-based aircraft pose estimation: a comparison of simulations and real-world data
NASA Astrophysics Data System (ADS)
Breuers, Marcel G. J.; de Reus, Nico
2001-10-01
The problem of estimating aircraft pose information from mono-ocular image data is considered using a Fourier descriptor based algorithm. The dependence of pose estimation accuracy on image resolution and aspect angle is investigated through simulations using sets of synthetic aircraft images. Further evaluation shows that god pose estimation accuracy can be obtained in real world image sequences.
From Image Analysis to Computer Vision: Motives, Methods, and Milestones.
1998-07-01
images. Initially, work on digital image analysis dealt with specific classes of images such as text, photomicrographs, nuclear particle tracks, and aerial...photographs; but by the 1960’s, general algorithms and paradigms for image analysis began to be formulated. When the artificial intelligence...scene, but eventually from image sequences obtained by a moving camera; at this stage, image analysis had become scene analysis or computer vision
MR safety and compatibility of a noninvasively expandable total-joint endoprosthesis.
Ogg, Robert J; McDaniel, C Brian; Wallace, Donald; Pitot, Pierre; Neel, Michael D; Kaste, Sue C
2005-09-01
A noninvasively expandable total-joint endoprosthesis is now available for pediatric patients; the prosthesis can be lengthened by external application of a magnetic field. We investigated the risks of unintentional heating or lengthening of the prosthesis during MR imaging and evaluated the effect of the device on the diagnostic efficacy of MR imaging of surrounding tissues. We performed MR imaging at 1.5 T by using standard pulse sequences and pulse sequences with high-gradient and high-radiofrequency duty cycle. MR imaging caused no measurable change in prosthesis length, and the temperature of the prosthesis increased by less than 1 degrees C during repeated 14-min exposures. Despite significant signal loss and image distortion around the prosthetic joint, clinically useful images were obtained as close as 12 cm from the ends of the prosthetic stems, measured toward the body of the device. Thus, the prosthesis can be safely exposed to MR imaging pulse sequences at 1.5 T, and the visualization of some tissue surrounding the device is clinically useful.
PROPELLER technique to improve image quality of MRI of the shoulder.
Dietrich, Tobias J; Ulbrich, Erika J; Zanetti, Marco; Fucentese, Sandro F; Pfirrmann, Christian W A
2011-12-01
The purpose of this article is to evaluate the use of the periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) technique for artifact reduction and overall image quality improvement for intermediate-weighted and T2-weighted MRI of the shoulder. One hundred eleven patients undergoing MR arthrography of the shoulder were included. A coronal oblique intermediate-weighted turbo spin-echo (TSE) sequence with fat suppression and a sagittal oblique T2-weighted TSE sequence with fat suppression were obtained without (standard) and with the PROPELLER technique. Scanning time increased from 3 minutes 17 seconds to 4 minutes 17 seconds (coronal oblique plane) and from 2 minutes 52 seconds to 4 minutes 10 seconds (sagittal oblique) using PROPELLER. Two radiologists graded image artifacts, overall image quality, and delineation of several anatomic structures on a 5-point scale (5, no artifact, optimal diagnostic quality; and 1, severe artifacts, diagnostically not usable). The Wilcoxon signed rank test was used to compare the data of the standard and PROPELLER images. Motion artifacts were significantly reduced in PROPELLER images (p < 0.001). Observer 1 rated motion artifacts with diagnostic impairment in one patient on coronal oblique PROPELLER images compared with 33 patients on standard images. Ratings for the sequences with PROPELLER were significantly better for overall image quality (p < 0.001). Observer 1 noted an overall image quality with diagnostic impairment in nine patients on sagittal oblique PROPELLER images compared with 23 patients on standard MRI. The PROPELLER technique for MRI of the shoulder reduces the number of sequences with diagnostic impairment as a result of motion artifacts and increases image quality compared with standard TSE sequences. PROPELLER sequences increase the acquisition time.
Kida, Ikuhiro; Ueguchi, Takashi; Matsuoka, Yuichiro; Zhou, Kun; Stemmer, Alto; Porter, David
2016-07-01
The purpose of the present study was to compare periodically rotated overlapping parallel lines with enhanced reconstruction-type turbo spin echo diffusion-weighted imaging (pTSE-DWI) and readout-segmented echo planar imaging (rsEPI-DWI) with single-shot echo planar imaging (ssEPI-DWI) in a 7 T human MR system. We evaluated the signal-to-noise ratio (SNR), image distortion, and apparent diffusion coefficient values in the human brain. Six healthy volunteers were included in this study. The study protocol was approved by our institutional review board. All measurements were performed at 7 T using pTSE-DWI, rsEPI-DWI, and ssEPI-DWI sequences. The spatial resolution was 1.2 × 1.2 mm in-plane with a 3-mm slice thickness. Signal-to-noise ratio was measured using 2 scans. The ssEPI-DWI sequence showed significant image blurring, whereas pTSE-DWI and rsEPI-DWI sequences demonstrated high image quality with low geometrical distortion compared with reference T2-weighted, turbo spin echo images. Signal loss in ventral regions near the air-filled paranasal sinus/nasal cavity was found in ssEPI-DWI and rsEPI-DWI but not pTSE-DWI. The apparent diffusion coefficient values for ssEPI-DWI were 824 ± 17 × 10 and 749 ± 25 × 10 mm/s in the gray matter and white matter, respectively; the values obtained for pTSE-DWI were 798 ± 21 × 10 and 865 ± 40 × 10 mm/s; and the values obtained for rsEPI-DWI were 730 ± 12 × 10 and 722 ± 25 × 10 mm/s. The pTSE-DWI images showed no additional distortion comparison to the T2-weighted images, but had a lower SNR than ssEPI-DWI and rsEPI-DWI. The rsEPI-DWI sequence provided high-quality images with minor distortion and a similar SNR to ssEPI-DWI. Our results suggest that the benefits of the rsEPI-DWI and pTSE-DWI sequences, in terms of SNR, image quality, and image distortion, appear to outweigh those of ssEPI-DWI. Thus, pTSE-DWI and rsEPI-DWI at 7 T have great potential use for clinical diagnoses. However, it is noteworthy that both sequences are limited by the scan time required. In addition, pTSE-DWI has limitations on the number of slices due to specific absorption rate. Overall, rsEPI-DWI is a favorable imaging sequence, taking into account the SNR and image quality at 7 T.
Simultaneous digital super-resolution and nonuniformity correction for infrared imaging systems.
Meza, Pablo; Machuca, Guillermo; Torres, Sergio; Martin, Cesar San; Vera, Esteban
2015-07-20
In this article, we present a novel algorithm to achieve simultaneous digital super-resolution and nonuniformity correction from a sequence of infrared images. We propose to use spatial regularization terms that exploit nonlocal means and the absence of spatial correlation between the scene and the nonuniformity noise sources. We derive an iterative optimization algorithm based on a gradient descent minimization strategy. Results from infrared image sequences corrupted with simulated and real fixed-pattern noise show a competitive performance compared with state-of-the-art methods. A qualitative analysis on the experimental results obtained with images from a variety of infrared cameras indicates that the proposed method provides super-resolution images with significantly less fixed-pattern noise.
Placental fetal stem segmentation in a sequence of histology images
NASA Astrophysics Data System (ADS)
Athavale, Prashant; Vese, Luminita A.
2012-02-01
Recent research in perinatal pathology argues that analyzing properties of the placenta may reveal important information on how certain diseases progress. One important property is the structure of the placental fetal stems. Analysis of the fetal stems in a placenta could be useful in the study and diagnosis of some diseases like autism. To study the fetal stem structure effectively, we need to automatically and accurately track fetal stems through a sequence of digitized hematoxylin and eosin (H&E) stained histology slides. There are many problems in successfully achieving this goal. A few of the problems are: large size of images, misalignment of the consecutive H&E slides, unpredictable inaccuracies of manual tracing, very complicated texture patterns of various tissue types without clear characteristics, just to name a few. In this paper we propose a novel algorithm to achieve automatic tracing of the fetal stem in a sequence of H&E images, based on an inaccurate manual segmentation of a fetal stem in one of the images. This algorithm combines global affine registration, local non-affine registration and a novel 'dynamic' version of the active contours model without edges. We first use global affine image registration of all the images based on displacement, scaling and rotation. This gives us approximate location of the corresponding fetal stem in the image that needs to be traced. We then use the affine registration algorithm "locally" near this location. At this point, we use a fast non-affine registration based on L2-similarity measure and diffusion regularization to get a better location of the fetal stem. Finally, we have to take into account inaccuracies in the initial tracing. This is achieved through a novel dynamic version of the active contours model without edges where the coefficients of the fitting terms are computed iteratively to ensure that we obtain a unique stem in the segmentation. The segmentation thus obtained can then be used as an initial guess to obtain segmentation in the rest of the images in the sequence. This constitutes an important step in the extraction and understanding of the fetal stem vasculature.
Viking Imaging of Phobos and Deimos: An Overview of the Primary Mission
NASA Technical Reports Server (NTRS)
Duxbury, T. C.; Veverka, J.
1977-01-01
During the Viking primary mission the cameras on the two orbiters acquired about 50 pictures of the two Martian moons. The Viking images of the satellites have a higher surface resolution than those obtained by Mariner 9. The typical surface resolution achieved was 100-200 m, although detail as small as 40 m was imaged on Phobos during a particularly close passage. Attention is given to color sequences obtained for each satellite, aspects of phase angle coverage, and pictures for ephemeris improvement.
2012-09-05
This image is from the last sequence of images NASA Dawn spacecraft obtained of the giant asteroid Vesta, looking down at Vesta north pole as it was departing. Dawn escaped from Vesta orbit on Sept. 4, 2012 PDT Sept. 5, 2012 CET.
Keyhole imaging method for dynamic objects behind the occlusion area
NASA Astrophysics Data System (ADS)
Hao, Conghui; Chen, Xi; Dong, Liquan; Zhao, Yuejin; Liu, Ming; Kong, Lingqin; Hui, Mei; Liu, Xiaohua; Wu, Hong
2018-01-01
A method of keyhole imaging based on camera array is realized to obtain the video image behind a keyhole in shielded space at a relatively long distance. We get the multi-angle video images by using a 2×2 CCD camera array to take the images behind the keyhole in four directions. The multi-angle video images are saved in the form of frame sequences. This paper presents a method of video frame alignment. In order to remove the non-target area outside the aperture, we use the canny operator and morphological method to realize the edge detection of images and fill the images. The image stitching of four images is accomplished on the basis of the image stitching algorithm of two images. In the image stitching algorithm of two images, the SIFT method is adopted to accomplish the initial matching of images, and then the RANSAC algorithm is applied to eliminate the wrong matching points and to obtain a homography matrix. A method of optimizing transformation matrix is proposed in this paper. Finally, the video image with larger field of view behind the keyhole can be synthesized with image frame sequence in which every single frame is stitched. The results show that the screen of the video is clear and natural, the brightness transition is smooth. There is no obvious artificial stitching marks in the video, and it can be applied in different engineering environment .
Bifulco, Paolo; Cesarelli, Mario; Romano, Maria; Fratini, Antonio; Sansone, Mario
2013-01-01
Accurate measurement of intervertebral kinematics of the cervical spine can support the diagnosis of widespread diseases related to neck pain, such as chronic whiplash dysfunction, arthritis, and segmental degeneration. The natural inaccessibility of the spine, its complex anatomy, and the small range of motion only permit concise measurement in vivo. Low dose X-ray fluoroscopy allows time-continuous screening of cervical spine during patient's spontaneous motion. To obtain accurate motion measurements, each vertebra was tracked by means of image processing along a sequence of radiographic images. To obtain a time-continuous representation of motion and to reduce noise in the experimental data, smoothing spline interpolation was used. Estimation of intervertebral motion for cervical segments was obtained by processing patient's fluoroscopic sequence; intervertebral angle and displacement and the instantaneous centre of rotation were computed. The RMS value of fitting errors resulted in about 0.2 degree for rotation and 0.2 mm for displacements.
Comparison of pulse sequences for R1-based electron paramagnetic resonance oxygen imaging.
Epel, Boris; Halpern, Howard J
2015-05-01
Electron paramagnetic resonance (EPR) spin-lattice relaxation (SLR) oxygen imaging has proven to be an indispensable tool for assessing oxygen partial pressure in live animals. EPR oxygen images show remarkable oxygen accuracy when combined with high precision and spatial resolution. Developing more effective means for obtaining SLR rates is of great practical, biological and medical importance. In this work we compared different pulse EPR imaging protocols and pulse sequences to establish advantages and areas of applicability for each method. Tests were performed using phantoms containing spin probes with oxygen concentrations relevant to in vivo oxymetry. We have found that for small animal size objects the inversion recovery sequence combined with the filtered backprojection reconstruction method delivers the best accuracy and precision. For large animals, in which large radio frequency energy deposition might be critical, free induction decay and three pulse stimulated echo sequences might find better practical usage. Copyright © 2015 Elsevier Inc. All rights reserved.
A Patch-Based Method for Repetitive and Transient Event Detection in Fluorescence Imaging
Boulanger, Jérôme; Gidon, Alexandre; Kervran, Charles; Salamero, Jean
2010-01-01
Automatic detection and characterization of molecular behavior in large data sets obtained by fast imaging in advanced light microscopy become key issues to decipher the dynamic architectures and their coordination in the living cell. Automatic quantification of the number of sudden and transient events observed in fluorescence microscopy is discussed in this paper. We propose a calibrated method based on the comparison of image patches expected to distinguish sudden appearing/vanishing fluorescent spots from other motion behaviors such as lateral movements. We analyze the performances of two statistical control procedures and compare the proposed approach to a frame difference approach using the same controls on a benchmark of synthetic image sequences. We have then selected a molecular model related to membrane trafficking and considered real image sequences obtained in cells stably expressing an endocytic-recycling trans-membrane protein, the Langerin-YFP, for validation. With this model, we targeted the efficient detection of fast and transient local fluorescence concentration arising in image sequences from a data base provided by two different microscopy modalities, wide field (WF) video microscopy using maximum intensity projection along the axial direction and total internal reflection fluorescence microscopy. Finally, the proposed detection method is briefly used to statistically explore the effect of several perturbations on the rate of transient events detected on the pilot biological model. PMID:20976222
3D Dose reconstruction: Banding artefacts in cine mode EPID images during VMAT delivery
NASA Astrophysics Data System (ADS)
Woodruff, H. C.; Greer, P. B.
2013-06-01
Cine (continuous) mode images obtained during VMAT delivery are heavily degraded by banding artefacts. We have developed a method to reconstruct the pulse sequence (and hence dose deposited) from open field images. For clinical VMAT fields we have devised a frame averaging strategy that greatly improves image quality and dosimetric information for three-dimensional dose reconstruction.
High-resolution ultrashort echo time (UTE) imaging on human knee with AWSOS sequence at 3.0 T.
Qian, Yongxian; Williams, Ashley A; Chu, Constance R; Boada, Fernando E
2012-01-01
To demonstrate the technical feasibility of high-resolution (0.28-0.14 mm) ultrashort echo time (UTE) imaging on human knee at 3T with the acquisition-weighted stack of spirals (AWSOS) sequence. Nine human subjects were scanned on a 3T MRI scanner with an 8-channel knee coil using the AWSOS sequence and isocenter positioning plus manual shimming. High-resolution UTE images were obtained on the subject knees at TE = 0.6 msec with total acquisition time of 5.12 minutes for 60 slices at an in-plane resolution of 0.28 mm and 10.24 minutes for 40 slices at an in-plane resolution of 0.14 mm. Isocenter positioning, manual shimming, and the 8-channel array coil helped minimize image distortion and achieve high signal-to-noise ratio (SNR). It is technically feasible on a clinical 3T MRI scanner to perform UTE imaging on human knee at very high spatial resolutions (0.28-0.14 mm) within reasonable scan time (5-10 min) using the AWSOS sequence. Copyright © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Wu, Kaizhi; Zhang, Xuming; Chen, Guangxie; Weng, Fei; Ding, Mingyue
2013-10-01
Images acquired in free breathing using contrast enhanced ultrasound exhibit a periodic motion that needs to be compensated for if a further accurate quantification of the hepatic perfusion analysis is to be executed. In this work, we present an algorithm to compensate the respiratory motion by effectively combining the PCA (Principal Component Analysis) method and block matching method. The respiratory kinetics of the ultrasound hepatic perfusion image sequences was firstly extracted using the PCA method. Then, the optimal phase of the obtained respiratory kinetics was detected after normalizing the motion amplitude and determining the image subsequences of the original image sequences. The image subsequences were registered by the block matching method using cross-correlation as the similarity. Finally, the motion-compensated contrast images can be acquired by using the position mapping and the algorithm was evaluated by comparing the TICs extracted from the original image sequences and compensated image subsequences. Quantitative comparisons demonstrated that the average fitting error estimated of ROIs (region of interest) was reduced from 10.9278 +/- 6.2756 to 5.1644 +/- 3.3431 after compensating.
Automated hybridization/imaging device for fluorescent multiplex DNA sequencing
Weiss, R.B.; Kimball, A.W.; Gesteland, R.F.; Ferguson, F.M.; Dunn, D.M.; Di Sera, L.J.; Cherry, J.L.
1995-11-28
A method is disclosed for automated multiplex sequencing of DNA with an integrated automated imaging hybridization chamber system. This system comprises an hybridization chamber device for mounting a membrane containing size-fractionated multiplex sequencing reaction products, apparatus for fluid delivery to the chamber device, imaging apparatus for light delivery to the membrane and image recording of fluorescence emanating from the membrane while in the chamber device, and programmable controller apparatus for controlling operation of the system. The multiplex reaction products are hybridized with a probe, the enzyme (such as alkaline phosphatase) is bound to a binding moiety on the probe, and a fluorogenic substrate (such as a benzothiazole derivative) is introduced into the chamber device by the fluid delivery apparatus. The enzyme converts the fluorogenic substrate into a fluorescent product which, when illuminated in the chamber device with a beam of light from the imaging apparatus, excites fluorescence of the fluorescent product to produce a pattern of hybridization. The pattern of hybridization is imaged by a CCD camera component of the imaging apparatus to obtain a series of digital signals. These signals are converted by the controller apparatus into a string of nucleotides corresponding to the nucleotide sequence an automated sequence reader. The method and apparatus are also applicable to other membrane-based applications such as colony and plaque hybridization and Southern, Northern, and Western blots. 9 figs.
Automated hybridization/imaging device for fluorescent multiplex DNA sequencing
Weiss, Robert B.; Kimball, Alvin W.; Gesteland, Raymond F.; Ferguson, F. Mark; Dunn, Diane M.; Di Sera, Leonard J.; Cherry, Joshua L.
1995-01-01
A method is disclosed for automated multiplex sequencing of DNA with an integrated automated imaging hybridization chamber system. This system comprises an hybridization chamber device for mounting a membrane containing size-fractionated multiplex sequencing reaction products, apparatus for fluid delivery to the chamber device, imaging apparatus for light delivery to the membrane and image recording of fluorescence emanating from the membrane while in the chamber device, and programmable controller apparatus for controlling operation of the system. The multiplex reaction products are hybridized with a probe, then an enzyme (such as alkaline phosphatase) is bound to a binding moiety on the probe, and a fluorogenic substrate (such as a benzothiazole derivative) is introduced into the chamber device by the fluid delivery apparatus. The enzyme converts the fluorogenic substrate into a fluorescent product which, when illuminated in the chamber device with a beam of light from the imaging apparatus, excites fluorescence of the fluorescent product to produce a pattern of hybridization. The pattern of hybridization is imaged by a CCD camera component of the imaging apparatus to obtain a series of digital signals. These signals are converted by the controller apparatus into a string of nucleotides corresponding to the nucleotide sequence an automated sequence reader. The method and apparatus are also applicable to other membrane-based applications such as colony and plaque hybridization and Southern, Northern, and Western blots.
Research on gait-based human identification
NASA Astrophysics Data System (ADS)
Li, Youguo
Gait recognition refers to automatic identification of individual based on his/her style of walking. This paper proposes a gait recognition method based on Continuous Hidden Markov Model with Mixture of Gaussians(G-CHMM). First, we initialize a Gaussian mix model for training image sequence with K-means algorithm, then train the HMM parameters using a Baum-Welch algorithm. These gait feature sequences can be trained and obtain a Continuous HMM for every person, therefore, the 7 key frames and the obtained HMM can represent each person's gait sequence. Finally, the recognition is achieved by Front algorithm. The experiments made on CASIA gait databases obtain comparatively high correction identification ratio and comparatively strong robustness for variety of bodily angle.
Goldstone Radar Images of Asteroid 2013 ET
2013-03-18
This sequence of radar images of asteroid 2013 ET was obtained on Mar. 10, 2013, by NASA scientists using the 230-foot 70-meter DSN antenna at Goldstone, CA, when the asteroid was about 693,000 mi 1.1 million km from Earth.
Development of high repetition rate nitric oxide planar laser induced fluorescence imaging
NASA Astrophysics Data System (ADS)
Jiang, Naibo
This thesis has documented the development of a MHz repitition rate pulse burst laser system. Second harmonic and third harmonic efficiencies are improved by adding a Phase Conjugate Mirror to the system. Some high energy fundamental, second harmonic, and third harmonic burst sequences consisting of 1--12 pulses separated in time by between 4 and 12 microseconds are now routinely obtained. The reported burst envelopes are quite uniform. We have also demonstrated the ability to generate ultra-high frequency sequences of broadly wavelength tunable, high intensity laser pulses using a home built injection seeded Optical Parametric Oscillator (OPO), pumped by the second and third harmonic output of the pulse burst laser. Typical OPO output burst sequences consist of 6--10 pulses, separated in time by between 6 and 10 microseconds. With third harmonic pumping of the OPO system, we studied four conditions, two-crystal Singly Resonant OPO (SRO) cavity, three-crystal OPO cavity, single pass two-crystal Doubly Resonant OPO (DRO) cavity and double pass two-crystal OPO cavity. The double pass two-crystal OPO cavity gives the best operation in burst mode. For single pass OPO, the average total OPO conversion efficiency is approximately 25%. For double pass OPO, the average total OPO conversion efficiency is approximately 35%. As a preliminary work, we studied 532nm pumping of a single crystal OPO cavity. With single pulse pumping, the conversion efficiency can reach 30%. For both 355nm and 532nm pumping OPO, we have demonstrated injection seeding. The OPO output light linewidth is significantly narrowed. Some preliminary etalon traces are also reported. By mixing the OPO signal output at 622nm with residual third harmonic at 355nm, we obtained 226nm burst sequences with average pulse energy of ˜0.2 mJ. Injection seeding of the OPO increases the energy achieved by a factor of ˜2. 226nm burst sequences with reasonably uniform burst envelopes are reported. Using the system we have obtained, for the first time by any known optical method, Planar Laser Induced Fluorescence (PLIF) image sequences at ultrahigh (≥100kHz) frame rates, in particular NO PLIF image sequences, have been obtained in a Mach 2 jet. We also studied the possibility of utilizing a 250 kHz pulsed Nd:YVO 4 laser as the master oscillator. 10-pulse-10-mus spacing burst sequences with reasonably uniform burst envelope have been obtained. The total energy of the burst sequence is ˜2.5J.
Sharma, Aseem; Chatterjee, Arindam; Goyal, Manu; Parsons, Matthew S; Bartel, Seth
2015-04-01
Targeting redundancy within MRI can improve its cost-effective utilization. We sought to quantify potential redundancy in our brain MRI protocols. In this retrospective review, we aggregated 207 consecutive adults who underwent brain MRI and reviewed their medical records to document clinical indication, core diagnostic information provided by MRI, and its clinical impact. Contributory imaging abnormalities constituted positive core diagnostic information whereas absence of imaging abnormalities constituted negative core diagnostic information. The senior author selected core sequences deemed sufficient for extraction of core diagnostic information. For validating core sequences selection, four readers assessed the relative ease of extracting core diagnostic information from the core sequences. Potential redundancy was calculated by comparing the average number of core sequences to the average number of sequences obtained. Scanning had been performed using 9.4±2.8 sequences over 37.3±12.3 minutes. Core diagnostic information was deemed extractable from 2.1±1.1 core sequences, with an assumed scanning time of 8.6±4.8 minutes, reflecting a potential redundancy of 74.5%±19.1%. Potential redundancy was least in scans obtained for treatment planning (14.9%±25.7%) and highest in scans obtained for follow-up of benign diseases (81.4%±12.6%). In 97.4% of cases, all four readers considered core diagnostic information to be either easily extractable from core sequences or the ease to be equivalent to that from the entire study. With only one MRI lacking clinical impact (0.48%), overutilization did not seem to contribute to potential redundancy. High potential redundancy that can be targeted for more efficient scanner utilization exists in brain MRI protocols.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, H; Fatemi, A; Sahgal, A
Purpose: Investigating a new approach in MRI based treatment planning using the combination of (Ultrashort Echo Time) UTE and T1 weighted spin echo pulse sequences to delineate air, bone and water (soft tissues) in generating pseudo CT images comparable with CT. Methods: A gel phantom containing chicken bones, ping pang balls filled with distilled water and air bubbles, was made. It scanned with MRI using UTE and 2D T1W SE pulse sequences with (in plane resolution= 0.53mm, slice thickness= 2 mm) and CT with (in plane resolution= 0.5 mm and slice thickness= 0.75mm) as a ground truth for geometrical accuracy.more » The UTE and T1W SE images were registered with CT using mutual information registration algorithm provided by Philips Pinnacle treatment planning system. The phantom boundaries were detected using Canny edge detection algorithm for CT, and MR images. The bone, air bubbles and water in ping pong balls were segmented from CT images using threshold 300HU, - 950HU and 0HU, respectively. These tissue inserts were automatically segmented from combined UTE and T1W SE images using edge detection and relative intensity histograms of the phantom. The obtained segmentations of air, bone and water inserts were evaluated with those obtained from CT. Results: Bone and air can be clearly differentiated in UTE images comparable to CT. Combining UTE and T1W SE images successfully segmented the air, bone and water. The maximum segmentation differences from combine MRI images (UTE and T1W SE) and CT are within 1.3 mm, 1.1mm for bone, air, respectively. The geometric distortion of UTE sequence is small less than 1 pixel (0.53 mm) of MR image resolution. Conclusion: Our approach indicates that MRI can be used solely for treatment planning and its quality is comparable with CT.« less
Van Kreijl, C F; Bos, J L
1977-01-01
The repeating nucleotide sequence of 68 base pairs in the mtDNA from an ethidium-induced cytoplasmic petite mutant of yeast has been determined. For sequence analysis specifically primed and terminated RNA copies, obtained by in vitro transcription of the separated strands, were use. The sequence consists of 66 consecutive AT base pairs flanked by two GC pairs and comprises nearly all of the mutant mitochondrial genome. The sequence, moreover, also represents the first part of wild-type mtDNA sequence so far. Images PMID:198740
NO PLIF imaging in the CUBRC 48-inch shock tunnel
NASA Astrophysics Data System (ADS)
Jiang, N.; Bruzzese, J.; Patton, R.; Sutton, J.; Yentsch, R.; Gaitonde, D. V.; Lempert, W. R.; Miller, J. D.; Meyer, T. R.; Parker, R.; Wadham, T.; Holden, M.; Danehy, P. M.
2012-12-01
Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging is demonstrated at a 10-kHz repetition rate in the Calspan University at Buffalo Research Center's (CUBRC) 48-inch Mach 9 hypervelocity shock tunnel using a pulse burst laser-based high frame rate imaging system. Sequences of up to ten images are obtained internal to a supersonic combustor model, located within the shock tunnel, during a single ~10-millisecond duration run of the ground test facility. Comparison with a CFD simulation shows good overall qualitative agreement in the jet penetration and spreading observed with an average of forty individual PLIF images obtained during several facility runs.
Accurate estimation of object location in an image sequence using helicopter flight data
NASA Technical Reports Server (NTRS)
Tang, Yuan-Liang; Kasturi, Rangachar
1994-01-01
In autonomous navigation, it is essential to obtain a three-dimensional (3D) description of the static environment in which the vehicle is traveling. For a rotorcraft conducting low-latitude flight, this description is particularly useful for obstacle detection and avoidance. In this paper, we address the problem of 3D position estimation for static objects from a monocular sequence of images captured from a low-latitude flying helicopter. Since the environment is static, it is well known that the optical flow in the image will produce a radiating pattern from the focus of expansion. We propose a motion analysis system which utilizes the epipolar constraint to accurately estimate 3D positions of scene objects in a real world image sequence taken from a low-altitude flying helicopter. Results show that this approach gives good estimates of object positions near the rotorcraft's intended flight-path.
Integrating Depth and Image Sequences for Planetary Rover Mapping Using Rgb-D Sensor
NASA Astrophysics Data System (ADS)
Peng, M.; Wan, W.; Xing, Y.; Wang, Y.; Liu, Z.; Di, K.; Zhao, Q.; Teng, B.; Mao, X.
2018-04-01
RGB-D camera allows the capture of depth and color information at high data rates, and this makes it possible and beneficial integrate depth and image sequences for planetary rover mapping. The proposed mapping method consists of three steps. First, the strict projection relationship among 3D space, depth data and visual texture data is established based on the imaging principle of RGB-D camera, then, an extended bundle adjustment (BA) based SLAM method with integrated 2D and 3D measurements is applied to the image network for high-precision pose estimation. Next, as the interior and exterior elements of RGB images sequence are available, dense matching is completed with the CMPMVS tool. Finally, according to the registration parameters after ICP, the 3D scene from RGB images can be registered to the 3D scene from depth images well, and the fused point cloud can be obtained. Experiment was performed in an outdoor field to simulate the lunar surface. The experimental results demonstrated the feasibility of the proposed method.
MR pyelography and conventional MR imaging in urinary tract obstruction.
Catalano, C; Pavone, P; Laghi, A; Scipioni, A; Panebianco, V; Brillo, R; Fraioli, F; Passariello, R
1999-03-01
To evaluate the possible role of MR imaging in the assessment of patients with urinary tract obstruction by combining conventional MR imaging and MR pyelography (MRP). Forty-three patients with dilated upper urinary tract were studied with a high gradient strength 0.5 T magnet. Respiratory compensated T1-weighted, SE and T2-weighted TSE sequences were acquired in all patients. MRP images were obtained by using a respiratory compensated 3D T2-weighted TSE sequence. MRP images were reconstructed with a MIP algorithm. In all cases, urography and/or ascending pyelography were also performed. Images were independently evaluated by two radiologists. The dilated tract ureter and the level of the obstruction could be correctly demonstrated in all cases. The cause of the obstruction was correctly demonstrated by examiner 1 in 90% and by examiner 2 in 88%. The interobserver agreement was high with a kappa-value of 0.96. In cases of obstructive hydroureteronephrosis MR imaging, combining MRP and conventional sequences, can be proposed as an accurate technique in the assessment of level and cause of obstruction.
Carbon Fiber Strand Tensile Failure Dynamic Event Characterization
NASA Technical Reports Server (NTRS)
Johnson, Kenneth L.; Reeder, James
2016-01-01
There are few if any clear, visual, and detailed images of carbon fiber strand failures under tension useful for determining mechanisms, sequences of events, different types of failure modes, etc. available to researchers. This makes discussion of physics of failure difficult. It was also desired to find out whether the test article-to-test rig interface (grip) played a part in some failures. These failures have nothing to do with stress rupture failure, thus representing a source of waste for the larger 13-00912 investigation into that specific failure type. Being able to identify or mitigate any competing failure modes would improve the value of the 13-00912 test data. The beginnings of the solution to these problems lay in obtaining images of strand failures useful for understanding physics of failure and the events leading up to failure. Necessary steps include identifying imaging techniques that result in useful data, using those techniques to home in on where in a strand and when in the sequence of events one should obtain imaging data.
Water and fat separation in real-time MRI of joint movement with phase-sensitive bSSFP.
Mazzoli, Valentina; Nederveen, Aart J; Oudeman, Jos; Sprengers, Andre; Nicolay, Klaas; Strijkers, Gustav J; Verdonschot, Nico
2017-07-01
To introduce a method for obtaining fat-suppressed images in real-time MRI of moving joints at 3 Tesla (T) using a bSSFP sequence with phase detection to enhance visualization of soft tissue structures during motion. The wrist and knee of nine volunteers were imaged with a real-time bSSFP sequence while performing dynamic tasks. For appropriate choice of sequence timing parameters, water and fat pixels showed an out-of-phase behavior, which was exploited to reconstruct water and fat images. Additionally, a 2-point Dixon sequence was used for dynamic imaging of the joints, and resulting water and fat images were compared with our proposed method. The joints could be visualized with good water-fat separation and signal-to-noise ratio (SNR), while maintaining a relatively high temporal resolution (5 fps in knee imaging and 10 fps in wrist imaging). The proposed method produced images of moving joints with higher SNR and higher image quality when compared with the Dixon method. Water-fat separation is feasible in real-time MRI of moving knee and wrist at 3 T. PS-bSSFP offers movies with higher SNR and higher diagnostic quality when compared with Dixon scans. Magn Reson Med 78:58-68, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
MRI Sequences in Head & Neck Radiology - State of the Art.
Widmann, Gerlig; Henninger, Benjamin; Kremser, Christian; Jaschke, Werner
2017-05-01
Background Magnetic resonance imaging (MRI) has become an essential imaging modality for the evaluation of head & neck pathologies. However, the diagnostic power of MRI is strongly related to the appropriate selection and interpretation of imaging protocols and sequences. The aim of this article is to review state-of-the-art sequences for the clinical routine in head & neck MRI and to describe the evidence for which medical question these sequences and techniques are useful. Method Literature review of state-of-the-art sequences in head & neck MRI. Results and Conclusion Basic sequences (T1w, T2w, T1wC+) and fat suppression techniques (TIRM/STIR, Dixon, Spectral Fat sat) are important tools in the diagnostic workup of inflammation, congenital lesions and tumors including staging. Additional sequences (SSFP (CISS, FIESTA), SPACE, VISTA, 3D-FLAIR) are used for pathologies of the cranial nerves, labyrinth and evaluation of endolymphatic hydrops in Menière's disease. Vessel and perfusion sequences (3D-TOF, TWIST/TRICKS angiography, DCE) are used in vascular contact syndromes, vascular malformations and analysis of microvascular parameters of tissue perfusion. Diffusion-weighted imaging (EPI-DWI, non-EPI-DWI, RESOLVE) is helpful in cholesteatoma imaging, estimation of malignancy, and evaluation of treatment response and posttreatment recurrence in head & neck cancer. Understanding of MRI sequences and close collaboration with referring physicians improves the diagnostic confidence of MRI in the daily routine and drives further research in this fascinating image modality. Key Points: · Understanding of MRI sequences is essential for the correct and reliable interpretation of MRI findings.. · MRI protocols have to be carefully selected based on relevant clinical information.. · Close collaboration with referring physicians improves the output obtained from the diagnostic possibilities of MRI.. Citation Format · Widmann G, Henninger B, Kremser C et al. MRI Sequences in Head & Neck Radiology - State of the Art. Fortschr Röntgenstr 2017; 189: 413 - 422. © Georg Thieme Verlag KG Stuttgart · New York.
Image correlation method for DNA sequence alignment.
Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván
2012-01-01
The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were "digitally" obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment.
Improved optical flow motion estimation for digital image stabilization
NASA Astrophysics Data System (ADS)
Lai, Lijun; Xu, Zhiyong; Zhang, Xuyao
2015-11-01
Optical flow is the instantaneous motion vector at each pixel in the image frame at a time instant. The gradient-based approach for optical flow computation can't work well when the video motion is too large. To alleviate such problem, we incorporate this algorithm into a pyramid multi-resolution coarse-to-fine search strategy. Using pyramid strategy to obtain multi-resolution images; Using iterative relationship from the highest level to the lowest level to obtain inter-frames' affine parameters; Subsequence frames compensate back to the first frame to obtain stabilized sequence. The experiment results demonstrate that the promoted method has good performance in global motion estimation.
Gutierrez, Shandra; Descamps, Benedicte; Vanhove, Christian
2015-01-01
Computed tomography (CT) is the standard imaging modality in radiation therapy treatment planning (RTP). However, magnetic resonance (MR) imaging provides superior soft tissue contrast, increasing the precision of target volume selection. We present MR-only based RTP for a rat brain on a small animal radiation research platform (SARRP) using probabilistic voxel classification with multiple MR sequences. Six rat heads were imaged, each with one CT and five MR sequences. The MR sequences were: T1-weighted, T2-weighted, zero-echo time (ZTE), and two ultra-short echo time sequences with 20 μs (UTE1) and 2 ms (UTE2) echo times. CT data were manually segmented into air, soft tissue, and bone to obtain the RTP reference. Bias field corrected MR images were automatically segmented into the same tissue classes using a fuzzy c-means segmentation algorithm with multiple images as input. Similarities between segmented CT and automatic segmented MR (ASMR) images were evaluated using Dice coefficient. Three ASMR images with high similarity index were used for further RTP. Three beam arrangements were investigated. Dose distributions were compared by analysing dose volume histograms. The highest Dice coefficients were obtained for the ZTE-UTE2 combination and for the T1-UTE1-T2 combination when ZTE was unavailable. Both combinations, along with UTE1-UTE2, often used to generate ASMR images, were used for further RTP. Using 1 beam, MR based RTP underestimated the dose to be delivered to the target (range: 1.4%-7.6%). When more complex beam configurations were used, the calculated dose using the ZTE-UTE2 combination was the most accurate, with 0.7% deviation from CT, compared to 0.8% for T1-UTE1-T2 and 1.7% for UTE1-UTE2. The presented MR-only based workflow for RTP on a SARRP enables both accurate organ delineation and dose calculations using multiple MR sequences. This method can be useful in longitudinal studies where CT's cumulative radiation dose might contribute to the total dose.
Gutierrez, Shandra; Descamps, Benedicte; Vanhove, Christian
2015-01-01
Computed tomography (CT) is the standard imaging modality in radiation therapy treatment planning (RTP). However, magnetic resonance (MR) imaging provides superior soft tissue contrast, increasing the precision of target volume selection. We present MR-only based RTP for a rat brain on a small animal radiation research platform (SARRP) using probabilistic voxel classification with multiple MR sequences. Six rat heads were imaged, each with one CT and five MR sequences. The MR sequences were: T1-weighted, T2-weighted, zero-echo time (ZTE), and two ultra-short echo time sequences with 20 μs (UTE1) and 2 ms (UTE2) echo times. CT data were manually segmented into air, soft tissue, and bone to obtain the RTP reference. Bias field corrected MR images were automatically segmented into the same tissue classes using a fuzzy c-means segmentation algorithm with multiple images as input. Similarities between segmented CT and automatic segmented MR (ASMR) images were evaluated using Dice coefficient. Three ASMR images with high similarity index were used for further RTP. Three beam arrangements were investigated. Dose distributions were compared by analysing dose volume histograms. The highest Dice coefficients were obtained for the ZTE-UTE2 combination and for the T1-UTE1-T2 combination when ZTE was unavailable. Both combinations, along with UTE1-UTE2, often used to generate ASMR images, were used for further RTP. Using 1 beam, MR based RTP underestimated the dose to be delivered to the target (range: 1.4%-7.6%). When more complex beam configurations were used, the calculated dose using the ZTE-UTE2 combination was the most accurate, with 0.7% deviation from CT, compared to 0.8% for T1-UTE1-T2 and 1.7% for UTE1-UTE2. The presented MR-only based workflow for RTP on a SARRP enables both accurate organ delineation and dose calculations using multiple MR sequences. This method can be useful in longitudinal studies where CT’s cumulative radiation dose might contribute to the total dose. PMID:26633302
Rotation invariant features for wear particle classification
NASA Astrophysics Data System (ADS)
Arof, Hamzah; Deravi, Farzin
1997-09-01
This paper investigates the ability of a set of rotation invariant features to classify images of wear particles found in used lubricating oil of machinery. The rotation invariant attribute of the features is derived from the property of the magnitudes of Fourier transform coefficients that do not change with spatial shift of the input elements. By analyzing individual circular neighborhoods centered at every pixel in an image, local and global texture characteristics of an image can be described. A number of input sequences are formed by the intensities of pixels on concentric rings of various radii measured from the center of each neighborhood. Fourier transforming the sequences would generate coefficients whose magnitudes are invariant to rotation. Rotation invariant features extracted from these coefficients were utilized to classify wear particle images that were obtained from a number of different particles captured at different orientations. In an experiment involving images of 6 classes, the circular neighborhood features obtained a 91% recognition rate which compares favorably to a 76% rate achieved by features of a 6 by 6 co-occurrence matrix.
Wavelet versus DCT-based spread spectrum watermarking of image databases
NASA Astrophysics Data System (ADS)
Mitrea, Mihai P.; Zaharia, Titus B.; Preteux, Francoise J.; Vlad, Adriana
2004-05-01
This paper addresses the issue of oblivious robust watermarking, within the framework of colour still image database protection. We present an original method which complies with all the requirements nowadays imposed to watermarking applications: robustness (e.g. low-pass filtering, print & scan, StirMark), transparency (both quality and fidelity), low probability of false alarm, obliviousness and multiple bit recovering. The mark is generated from a 64 bit message (be it a logo, a serial number, etc.) by means of a Spread Spectrum technique and is embedded into DWT (Discrete Wavelet Transform) domain, into certain low frequency coefficients, selected according to the hierarchy of their absolute values. The best results were provided by the (9,7) bi-orthogonal transform. The experiments were carried out on 1200 image sequences, each of them of 32 images. Note that these sequences represented several types of images: natural, synthetic, medical, etc. and each time we obtained the same good results. These results are compared with those we already obtained for the DCT domain, the differences being pointed out and discussed.
A novel chaos-based image encryption algorithm using DNA sequence operations
NASA Astrophysics Data System (ADS)
Chai, Xiuli; Chen, Yiran; Broyde, Lucie
2017-01-01
An image encryption algorithm based on chaotic system and deoxyribonucleic acid (DNA) sequence operations is proposed in this paper. First, the plain image is encoded into a DNA matrix, and then a new wave-based permutation scheme is performed on it. The chaotic sequences produced by 2D Logistic chaotic map are employed for row circular permutation (RCP) and column circular permutation (CCP). Initial values and parameters of the chaotic system are calculated by the SHA 256 hash of the plain image and the given values. Then, a row-by-row image diffusion method at DNA level is applied. A key matrix generated from the chaotic map is used to fuse the confused DNA matrix; also the initial values and system parameters of the chaotic system are renewed by the hamming distance of the plain image. Finally, after decoding the diffused DNA matrix, we obtain the cipher image. The DNA encoding/decoding rules of the plain image and the key matrix are determined by the plain image. Experimental results and security analyses both confirm that the proposed algorithm has not only an excellent encryption result but also resists various typical attacks.
High dynamic range image acquisition based on multiplex cameras
NASA Astrophysics Data System (ADS)
Zeng, Hairui; Sun, Huayan; Zhang, Tinghua
2018-03-01
High dynamic image is an important technology of photoelectric information acquisition, providing higher dynamic range and more image details, and it can better reflect the real environment, light and color information. Currently, the method of high dynamic range image synthesis based on different exposure image sequences cannot adapt to the dynamic scene. It fails to overcome the effects of moving targets, resulting in the phenomenon of ghost. Therefore, a new high dynamic range image acquisition method based on multiplex cameras system was proposed. Firstly, different exposure images sequences were captured with the camera array, using the method of derivative optical flow based on color gradient to get the deviation between images, and aligned the images. Then, the high dynamic range image fusion weighting function was established by combination of inverse camera response function and deviation between images, and was applied to generated a high dynamic range image. The experiments show that the proposed method can effectively obtain high dynamic images in dynamic scene, and achieves good results.
Noncontrast Peripheral MRA with Spiral Echo Train Imaging
Fielden, Samuel W.; Mugler, John P.; Hagspiel, Klaus D.; Norton, Patrick T.; Kramer, Christopher M.; Meyer, Craig H.
2015-01-01
Purpose To develop a spin echo train sequence with spiral readout gradients with improved artery–vein contrast for noncontrast angiography. Theory Venous T2 becomes shorter as the echo spacing is increased in echo train sequences, improving contrast. Spiral acquisitions, due to their data collection efficiency, facilitate long echo spacings without increasing scan times. Methods Bloch equation simulations were performed to determine optimal sequence parameters, and the sequence was applied in five volunteers. In two volunteers, the sequence was performed with a range of echo times and echo spacings to compare with the theoretical contrast behavior. A Cartesian version of the sequence was used to compare contrast appearance with the spiral sequence. Additionally, spiral parallel imaging was optionally used to improve image resolution. Results In vivo, artery–vein contrast properties followed the general shape predicted by simulations, and good results were obtained in all stations. Compared with a Cartesian implementation, the spiral sequence had superior artery–vein contrast, better spatial resolution (1.2 mm2 versus 1.5 mm2), and was acquired in less time (1.4 min versus 7.5 min). Conclusion The spiral spin echo train sequence can be used for flow-independent angiography to generate threedimensional angiograms of the periphery quickly and without the use of contrast agents. PMID:24753164
Noncontrast peripheral MRA with spiral echo train imaging.
Fielden, Samuel W; Mugler, John P; Hagspiel, Klaus D; Norton, Patrick T; Kramer, Christopher M; Meyer, Craig H
2015-03-01
To develop a spin echo train sequence with spiral readout gradients with improved artery-vein contrast for noncontrast angiography. Venous T2 becomes shorter as the echo spacing is increased in echo train sequences, improving contrast. Spiral acquisitions, due to their data collection efficiency, facilitate long echo spacings without increasing scan times. Bloch equation simulations were performed to determine optimal sequence parameters, and the sequence was applied in five volunteers. In two volunteers, the sequence was performed with a range of echo times and echo spacings to compare with the theoretical contrast behavior. A Cartesian version of the sequence was used to compare contrast appearance with the spiral sequence. Additionally, spiral parallel imaging was optionally used to improve image resolution. In vivo, artery-vein contrast properties followed the general shape predicted by simulations, and good results were obtained in all stations. Compared with a Cartesian implementation, the spiral sequence had superior artery-vein contrast, better spatial resolution (1.2 mm(2) versus 1.5 mm(2) ), and was acquired in less time (1.4 min versus 7.5 min). The spiral spin echo train sequence can be used for flow-independent angiography to generate three-dimensional angiograms of the periphery quickly and without the use of contrast agents. © 2014 Wiley Periodicals, Inc.
2017-09-28
This sequence of color-enhanced images shows how quickly the viewing geometry changes for NASA's Juno spacecraft as it swoops by Jupiter. The images were obtained by JunoCam. Once every 53 days, Juno swings close to Jupiter, speeding over its clouds. In just two hours, the spacecraft travels from a perch over Jupiter's north pole through its closest approach (perijove), then passes over the south pole on its way back out. This sequence shows 11 color-enhanced images from Perijove 8 (Sept. 1, 2017) with the south pole on the left (11th image in the sequence) and the north pole on the right (first image in the sequence). The first image on the right shows a half-lit globe of Jupiter, with the north pole approximately at the upper center of the image close to the terminator -- the dividing line between night and day. As the spacecraft gets closer to Jupiter, the horizon moves in and the range of visible latitudes shrinks. The second and third images in this sequence show the north polar region rotating away from the spacecraft's field of view while the first of Jupiter's lighter-colored bands comes into view. The fourth through the eighth images display a blue-colored vortex in the mid-southern latitudes near Points of Interest "Collision of Colours," "Sharp Edge," "Caltech, by Halka," and "Structure01." The Points of Interest are locations in Jupiter's atmosphere that were identified and named by members of the general public. Additionally, a darker, dynamic band can be seen just south of the vortex. In the ninth and tenth images, the south polar region rotates into view. The final image on the left displays Jupiter's south pole in the center. From the start of this sequence of images to the end, roughly 1 hour and 35 minutes elapsed. https://photojournal.jpl.nasa.gov/catalog/PIA21967
Ji, Hongwei; He, Jiangping; Yang, Xin; Deklerck, Rudi; Cornelis, Jan
2013-05-01
In this paper, we present an autocontext model(ACM)-based automatic liver segmentation algorithm, which combines ACM, multiatlases, and mean-shift techniques to segment liver from 3-D CT images. Our algorithm is a learning-based method and can be divided into two stages. At the first stage, i.e., the training stage, ACM is performed to learn a sequence of classifiers in each atlas space (based on each atlas and other aligned atlases). With the use of multiple atlases, multiple sequences of ACM-based classifiers are obtained. At the second stage, i.e., the segmentation stage, the test image will be segmented in each atlas space by applying each sequence of ACM-based classifiers. The final segmentation result will be obtained by fusing segmentation results from all atlas spaces via a multiclassifier fusion technique. Specially, in order to speed up segmentation, given a test image, we first use an improved mean-shift algorithm to perform over-segmentation and then implement the region-based image labeling instead of the original inefficient pixel-based image labeling. The proposed method is evaluated on the datasets of MICCAI 2007 liver segmentation challenge. The experimental results show that the average volume overlap error and the average surface distance achieved by our method are 8.3% and 1.5 m, respectively, which are comparable to the results reported in the existing state-of-the-art work on liver segmentation.
Chu, Mei-Lan; Chang, Hing-Chiu; Chung, Hsiao-Wen; Truong, Trong-Kha; Bashir, Mustafa R.; Chen, Nan-kuei
2014-01-01
Purpose A projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion-related artifacts, including respiration artifacts in abdominal imaging and aliasing artifacts in interleaved diffusion weighted imaging (DWI). Theory Images with reduced artifacts are reconstructed with an iterative POCS procedure that uses the coil sensitivity profile as a constraint. This method can be applied to data obtained with different pulse sequences and k-space trajectories. In addition, various constraints can be incorporated to stabilize the reconstruction of ill-conditioned matrices. Methods The POCSMUSE technique was applied to abdominal fast spin-echo imaging data, and its effectiveness in respiratory-triggered scans was evaluated. The POCSMUSE method was also applied to reduce aliasing artifacts due to shot-to-shot phase variations in interleaved DWI data corresponding to different k-space trajectories and matrix condition numbers. Results Experimental results show that the POCSMUSE technique can effectively reduce motion-related artifacts in data obtained with different pulse sequences, k-space trajectories and contrasts. Conclusion POCSMUSE is a general post-processing algorithm for reduction of motion-related artifacts. It is compatible with different pulse sequences, and can also be used to further reduce residual artifacts in data produced by existing motion artifact reduction methods. PMID:25394325
Recording high quality speech during tagged cine-MRI studies using a fiber optic microphone.
NessAiver, Moriel S; Stone, Maureen; Parthasarathy, Vijay; Kahana, Yuvi; Paritsky, Alexander; Paritsky, Alex
2006-01-01
To investigate the feasibility of obtaining high quality speech recordings during cine imaging of tongue movement using a fiber optic microphone. A Complementary Spatial Modulation of Magnetization (C-SPAMM) tagged cine sequence triggered by an electrocardiogram (ECG) simulator was used to image a volunteer while speaking the syllable pairs /a/-/u/, /i/-/u/, and the words "golly" and "Tamil" in sync with the imaging sequence. A noise-canceling, optical microphone was fastened approximately 1-2 inches above the mouth of the volunteer. The microphone was attached via optical fiber to a laptop computer, where the speech was sampled at 44.1 kHz. A reference recording of gradient activity with no speech was subtracted from target recordings. Good quality speech was discernible above the background gradient sound using the fiber optic microphone without reference subtraction. The audio waveform of gradient activity was extremely stable and reproducible. Subtraction of the reference gradient recording further reduced gradient noise by roughly 21 dB, resulting in exceptionally high quality speech waveforms. It is possible to obtain high quality speech recordings using an optical microphone even during exceptionally loud cine imaging sequences. This opens up the possibility of more elaborate MRI studies of speech including spectral analysis of the speech signal in all types of MRI.
Warndahl, Brent A; Borisch, Eric A; Kawashima, Akira; Riederer, Stephen J; Froemming, Adam T
2018-04-01
To evaluate if Field of view Optimized and Constrained Undistorted Single shot (FOCUS) (GE Healthcare, Waukesha, WI) diffusion weighted images (DWI) provide more reliable imaging than conventional DWI, with non-inferior quantitative apparent diffusion coefficient (ADC) results. IRB approval was obtained for this study of 43 patients (44 exams, one patient with two visits) that underwent multiparametric prostate MRI with two DWI sequences and subsequent radical prostatectomy with histology as the gold standard. Randomized DWI sequence images were graded independently by two blinded experienced prostate MRI radiologists with a period of memory extinction between the two separate reading sessions. Blinded images were also reviewed head to head in a later session for direct comparison. Multiple parameters were measured from a region of interest in a dominant lesion as well as two control areas. Patient characteristics were collected by chart review. There was good correlation between the mean ADC value for lesions obtained by conventional and FOCUS DWI (ρ=0.85), with no trend toward any systematic difference, and equivalent correlation between ADC measurements and Gleason score. Agreement between the two readers was significantly higher for lesion ROI analysis with the FOCUS DWI derived ADC values (CCC 0.839) compared with the conventional ADC values (CCC 0.618; difference 0.221, 95% CI 0.01-0.46). FOCUS showed significantly better image quality scores (separate review: mean 2.17±0.6, p<0.001) compared to the conventional sequence (mean 2.65±0.6, p<0.001). In 13 cases the image quality was improved from grade of 3+ with conventional DWI to <3 with FOCUS DWI, a clinically meaningful improvement. Head-to-head blinded review found 61 ratings showed strong to slight preference for FOCUS, 13 no preference, and 14 slight preference for the conventional sequence. There was also a strong and equivalent correlation between both sequences and PIRADS version 2 grading (ρ=-0.56 and -0.58 for FOCUS and conventional, respectively, p<0.001 for both). FOCUS DWI of the prostate shows significant improvement in inter-reader agreement and image quality. As opposed to previous conflicting smaller studies, we found equivalent ADC metrics compared with the conventional DWI sequence, and preserved correlation with Gleason score. In 52% of patients the improved image quality with FOCUS had the potential to salvage exams with otherwise limited to non-diagnostic DWI. Copyright © 2017 Elsevier Inc. All rights reserved.
Image data-processing system for solar astronomy
NASA Technical Reports Server (NTRS)
Wilson, R. M.; Teuber, D. L.; Watkins, J. R.; Thomas, D. T.; Cooper, C. M.
1977-01-01
The paper describes an image data processing system (IDAPS), its hardware/software configuration, and interactive and batch modes of operation for the analysis of the Skylab/Apollo Telescope Mount S056 X-Ray Telescope experiment data. Interactive IDAPS is primarily designed to provide on-line interactive user control of image processing operations for image familiarization, sequence and parameter optimization, and selective feature extraction and analysis. Batch IDAPS follows the normal conventions of card control and data input and output, and is best suited where the desired parameters and sequence of operations are known and when long image-processing times are required. Particular attention is given to the way in which this system has been used in solar astronomy and other investigations. Some recent results obtained by means of IDAPS are presented.
Algorithms for detection of objects in image sequences captured from an airborne imaging system
NASA Technical Reports Server (NTRS)
Kasturi, Rangachar; Camps, Octavia; Tang, Yuan-Liang; Devadiga, Sadashiva; Gandhi, Tarak
1995-01-01
This research was initiated as a part of the effort at the NASA Ames Research Center to design a computer vision based system that can enhance the safety of navigation by aiding the pilots in detecting various obstacles on the runway during critical section of the flight such as a landing maneuver. The primary goal is the development of algorithms for detection of moving objects from a sequence of images obtained from an on-board video camera. Image regions corresponding to the independently moving objects are segmented from the background by applying constraint filtering on the optical flow computed from the initial few frames of the sequence. These detected regions are tracked over subsequent frames using a model based tracking algorithm. Position and velocity of the moving objects in the world coordinate is estimated using an extended Kalman filter. The algorithms are tested using the NASA line image sequence with six static trucks and a simulated moving truck and experimental results are described. Various limitations of the currently implemented version of the above algorithm are identified and possible solutions to build a practical working system are investigated.
Comprehensive MR imaging of acute gynecologic diseases.
Dohke, M; Watanabe, Y; Okumura, A; Amoh, Y; Hayashi, T; Yoshizako, T; Yasui, M; Nakashita, S; Nakanishi, J; Dodo, Y
2000-01-01
Rapid advances in techniques of magnetic resonance (MR) imaging have enabled diagnosis of acute gynecologic conditions, which are characterized by sudden onset of lower abdominal pain, fever, genital bleeding, intraperitoneal bleeding, or symptoms of shock. The chemical-selective fat-suppression technique not only helps establish the characteristics of lesions that contain fat components but also increases the conspicuity of inflammatory lesions. When a T2-weighted image is obtained with a very long effective echo time (>250 msec), even a small amount of ascites can be easily identified and the contrast between urine and complex fluid becomes more conspicuous. T2*-weighted images are useful for identification of hemorrhagic lesions by demonstrating deoxyhemoglobin and hemosiderin. Contrast material-enhanced dynamic subtraction MR imaging performed with a three-dimensional fast field-echo sequence and a rapid bolus injection of gadopentetate dimeglumine allows evaluation of lesion vascularity and the anatomic relationship between pelvic vessels and a lesion and allows identification of the bleeding point by demonstrating extravasation of contrast material. To optimize the MR imaging examination, attention should be given to the parameters of each pulse sequence and proper combination of the sequences.
Dinçer, Alp; Yildiz, Erdem; Kohan, Saeed; Memet Özek, M
2011-01-01
The aim of the study is to evaluate the efficiency of turbo spin-echo (TSE), three-dimensional constructive interference in the steady state (3D CISS) and cine phase contrast (Cine PC) sequences in determining flow through the endoscopic third ventriculostomy (ETV) fenestration, and to determine the effect of various TSE sequence parameters. The study was approved by our institutional review board and informed consent from all patients was obtained. Two groups of patients were included: group I (24 patients with good clinical outcome after ETV) and group II (22 patients with hydrocephalus evaluated preoperatively). The imaging protocol for both groups was identical. TSE T2 with various sequence parameters and imaging planes, and 3D CISS, followed by cine PC were obtained. Flow void was graded as four-point scales. The sensitivity, specificity, accuracy, positive and negative predictive values of sequences were calculated. Bidirectional flow through the fenestration was detected in all group I patients by cine PC. Stroke volumes through the fenestration in group I ranged 10-160.8 ml/min. There was no correlation between the presence of reversed flow and flow void grading. Also, there was no correlation between the stroke volumes and flow void grading. The sensitivity of 3D CISS was low, and 2 mm sagittal TSE T2, nearly equal to cine PC, provided best result. Cine PC and TSE T2 both have high confidence in the assessment of the flow through the fenestration. But, sequence parameters significantly affect the efficiency of TSE T2.
Edge enhancement of color images using a digital micromirror device.
Di Martino, J Matías; Flores, Jorge L; Ayubi, Gastón A; Alonso, Julia R; Fernández, Ariel; Ferrari, José A
2012-06-01
A method for orientation-selective enhancement of edges in color images is proposed. The method utilizes the capacity of digital micromirror devices to generate a positive and a negative color replica of the image used as input. When both images are slightly displaced and imagined together, one obtains an image with enhanced edges. The proposed technique does not require a coherent light source or precise alignment. The proposed method could be potentially useful for processing large image sequences in real time. Validation experiments are presented.
Network Design in Close-Range Photogrammetry with Short Baseline Images
NASA Astrophysics Data System (ADS)
Barazzetti, L.
2017-08-01
The avaibility of automated software for image-based 3D modelling has changed the way people acquire images for photogrammetric applications. Short baseline images are required to match image points with SIFT-like algorithms, obtaining more images than those necessary for "old fashioned" photogrammetric projects based on manual measurements. This paper describes some considerations on network design for short baseline image sequences, especially on precision and reliability of bundle adjustment. Simulated results reveal that the large number of 3D points used for image orientation has very limited impact on network precision.
MRT letter: Guided filtering of image focus volume for 3D shape recovery of microscopic objects.
Mahmood, Muhammad Tariq
2014-12-01
In this letter, a shape from focus (SFF) method is proposed that utilizes the guided image filtering to enhance the image focus volume efficiently. First, image focus volume is computed using a conventional focus measure. Then each layer of image focus volume is filtered using guided filtering. In this work, the all-in-focus image, which can be obtained from the initial focus volume, is used as guidance image. Finally, improved depth map is obtained from the filtered image focus volume by maximizing the focus measure along the optical axis. The proposed SFF method is efficient and provides better depth maps. The improved performance is highlighted by conducting several experiments using image sequences of simulated and real microscopic objects. The comparative analysis demonstrates the effectiveness of the proposed SFF method. © 2014 Wiley Periodicals, Inc.
Barat, Maxime; Soyer, Philippe; Dautry, Raphael; Pocard, Marc; Lo-Dico, Rea; Najah, Haythem; Eveno, Clarisse; Cassinotto, Christophe; Dohan, Anthony
2018-03-01
To assess the performances of three-dimensional (3D)-T2-weighted sequences compared to standard T2-weighted turbo spin echo (T2-TSE), T2-half-Fourier acquisition single-shot turbo spin-echo (T2-HASTE), diffusion weighted imaging (DWI) and 3D-T1-weighted VIBE sequences in the preoperative detection of malignant liver tumors. From 2012 to 2015, all patients of our institution undergoing magnetic resonance imaging (MRI) examination for suspected malignant liver tumors were prospectively included. Patients had contrast-enhanced 3D-T1-weighted, DWI, 3D-T2-SPACE, T2-HASTE and T2-TSE sequences. Imaging findings were compared with those obtained at follow-up, surgery and histopathological analysis. Sensitivities for the detection of malignant liver tumors were compared for each sequence using McNemar test. A subgroup analysis was conducted for HCCs. Image artifacts were analyzed and compared using Wilcoxon paired signed rank-test. Thirty-three patients were included: 13 patients had 40 hepatocellular carcinomas (HCC) and 20 had 54 liver metastases. 3D-T2-weighted sequences had a higher sensitivity than T2-weighted TSE sequences for the detection of malignant liver tumors (79.8% versus 68.1%; P < 0.001). The difference did not reach significance for HCC. T1-weighted VIBE and DWI had a higher sensitivity than T2-weighted sequences. 3D-T2-weighted-SPACE sequences showed significantly less artifacts than T2-weitghted TSE. 3D-T2-weighted sequences show very promising performances for the detection of liver malignant tumors compared to T2-weighted TSE sequences. Copyright © 2018 Elsevier B.V. All rights reserved.
2017-05-25
This sequence of enhanced-color images shows how quickly the viewing geometry changes for NASA's Juno spacecraft as it swoops by Jupiter. The images were obtained by JunoCam. Once every 53 days the Juno spacecraft swings close to Jupiter, speeding over its clouds. In just two hours, the spacecraft travels from a perch over Jupiter's north pole through its closest approach (perijove), then passes over the south pole on its way back out. This sequence shows 14 enhanced-color images. The first image on the left shows the entire half-lit globe of Jupiter, with the north pole approximately in the center. As the spacecraft gets closer to Jupiter, the horizon moves in and the range of visible latitudes shrinks. The third and fourth images in this sequence show the north polar region rotating away from our view while a band of wavy clouds at northern mid-latitudes comes into view. By the fifth image of the sequence the band of turbulent clouds is nicely centered in the image. The seventh and eighth images were taken just before the spacecraft was at its closest point to Jupiter, near Jupiter's equator. Even though these two pictures were taken just four minutes apart, the view is changing quickly. As the spacecraft crossed into the southern hemisphere, the bright "south tropical zone" dominates the ninth, 10th and 11th images. The white ovals in a feature nicknamed Jupiter's "String of Pearls" are visible in the 12th and 13th images. In the 14th image Juno views Jupiter's south poles. https://photojournal.jpl.nasa.gov/catalog/PIA21645
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balasubramoniam, A; Bednarek, D; Rudin, S
Purpose: To create 4D parametric images using biplane Digital Subtraction Angiography (DSA) sequences co-registered with the 3D vascular geometry obtained from Cone Beam-CT (CBCT). Methods: We investigated a method to derive multiple 4D Parametric Imaging (PI) maps using only one CBCT acquisition. During this procedure a 3D-DSA geometry is stored and used subsequently for all 4D images. Each time a biplane DSA is acquired, we calculate 2D parametric maps of Bolus Arrival Time (BAT), Mean Transit Time (MTT) and Time to Peak (TTP). Arterial segments which are nearly parallel with one of the biplane imaging planes in the 2D parametricmore » maps are co-registered with the 3D geometry. The values in the remaining vascular network are found using spline interpolation since the points chosen for co-registration on the vasculature are discrete and remaining regions need to be interpolated. To evaluate the method we used a patient CT volume data set for 3D printing a neurovascular phantom containing a complete Circle of Willis. We connected the phantom to a flow loop with a peristaltic pump, simulating physiological flow conditions. Contrast media was injected with an automatic injector at 10 ml/sec. Images were acquired with a Toshiba Infinix C-arm and 4D parametric image maps of the vasculature were calculated. Results: 4D BAT, MTT, and TTP parametric image maps of the Circle of Willis were derived. We generated color-coded 3D geometries which avoided artifacts due to vessel overlap or foreshortening in the projection direction. Conclusion: The software was tested successfully and multiple 4D parametric images were obtained from biplane DSA sequences without the need to acquire additional 3D-DSA runs. This can benefit the patient by reducing the contrast media and the radiation dose normally associated with these procedures. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less
Gondim Teixeira, P A; Bravetti, M; Hossu, G; Lecocq, S; Petit, D; Loeuille, D; Blum, A
2017-12-01
To evaluate the impact of coil design and motion-resistant sequences on the quality of sacroiliac magnetic resonance imaging (MRI) examination in patients with spondyloarthropathy. One hundred and twenty-one patients with suspected sacroiliitis and referred for MRI of the sacroiliac joints were retrospectively evaluated with MRI at 3-Tesla. There were 78 women and 43 men with a mean age of 36.7±11.5 (SD) years (range: 15.8-78.4 years). Conventional and motion-resistant fat-saturated fast-spin echo T2-weighted sequences were performed with two different coils. Image quality was subjectively evaluated by two independent readers (R1 and R2) using a four-point scale. Confidence in the identification of bone marrow edema pattern (BMEP) was also evaluated subjectively using a three-point scale. Phased array body coil yielded improved image quality compared to surface coil (14.1 to 30.4% for R1 and 14.6 to 25.7% for R2; P<0.0001). The impact of the sequence type on quality was also statistically significant (P=0.0046). BMEP was identified in 40 patients and best inter-reader agreement was obtained using the combination of phased-array body coil with motion-resistant T2-weighted sequence (kappa 0.990). The smallest number of indeterminate BMEP zones was seen on MRI set acquired with the phased-array body coil and motion-resistant T2-weighted sequence. Phased array body coil and motion-resistant T2-weighted sequences perform better than surface coil and conventional T2-weighted sequences for the evaluation of sacroiliac joints, increasing confidence in the identification of BMEP. Copyright © 2017 Editions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.
The Multiple Stellar Populations in the Ancient LMC Globular Clusters Hodge 11 and NGC 2210
NASA Astrophysics Data System (ADS)
Chaboyer, Brian; Gilligan, Christina; Wagner-Kaiser, Rachel; Mackey, Dougal; Sarajedini, Ata; Cummings, Jeffrey; Grocholski, Aaron; Geisler, Doug; Cohen, Roger; Villanova, Sandro; Yang, Soung-Chul; Parisi, Celeste
2018-01-01
Hubble Space telescope images of the ancient LMC globular clusters Hodge 11 and NGC 2210 in the F336W, F606W and F814W filters were obtained between June 2016 and April 2017. These deep images has been analyzed with the Dolphot software package. High quality photometry has been obtained from three magnitudes brighter than the horizontal branch, to about four magnitudes fainter than the main sequence turn-off. Both clusters show an excess of red main sequence stars in the F336W filter, indicating that multiple stellar populations exist in both clusters. Hodge 11 shows irregularities in its horizontal branch morphology, which is indicative of the presence of an approximately 0.1 dex internal helium abundance spread.
Roser, Florian; Ebner, Florian H; Danz, Søren; Riether, Felix; Ritz, Rainer; Dietz, Klaus; Naegele, Thomas; Tatagiba, Marcos S
2008-05-01
Neuroradiology has become indispensable in detecting the pathophysiology in syringomyelia. Constructive interference in steady-state (CISS) magnetic resonance (MR) imaging can provide superior contrast at the sub-arachnoid tissue borders. As this region is critical in preoperative evaluation, the authors hypothesized that CISS imaging would provide superior assessment of syrinx pathology and surgical planning. Based on records collected from a database of 130 patients with syringomyelia treated at the authors' institution, 59 patients were prospectively evaluated with complete neuroradiological examinations. In addition to routine acquisitions with FLAIR, T1- and T2-weighted, and contrast-enhanced MR imaging series, the authors obtained sagittal cardiac-gated sequences to visualize cerebrospinal fluid (CSF) pulsations and axial 3D CISS MR sequences to detect focal arachnoid webs. Statistical qualitative and quantitative evaluations of spinal cord/CSF contrast, spinal cord/CSF delineation, motion artifacts, and artifacts induced by pulsatile CSF flow were performed. The 3D CISS MR sequences demonstrated a contrast-to-noise ratio significantly better than any other routine imaging sequence (p < 0.001). Moreover, 3D CISS imaging can detect more subarachnoid webs and cavitations in the syrinx than T2-weighted MR imaging with less flow-void artifact. The limitation of 3D CISS imaging is a susceptibility to motion artifacts that can cause reduced spatial resolution. Lengthy acquisition times for axial segments can be reduced with multiplanar reconstruction of 3D CISS-generated sagittal images. Constructive interference in steady-state imaging is the MR sequence of choice in the preoperative evaluation of syringomyelia, allowing significantly higher detection rates of focal subarachnoid webs, whereas standard T2-weighted MR imaging shows turbulent CSF flow voids. Constructive interference in steady-state MR imaging enables the neurosurgeon to accurately identify cases requiring decompression for obstructed CSF. Motion artifacts can be eliminated with technical variations.
Del Grande, Filippo; Subhawong, Ty; Weber, Kristy; Aro, Michael; Mugera, Charles; Fayad, Laura M
2014-05-01
To determine the added value of functional magnetic resonance (MR) sequences (dynamic contrast material-enhanced [DCE] and quantitative diffusion-weighted [DW] imaging with apparent diffusion coefficient [ADC] mapping) for the detection of recurrent soft-tissue sarcomas following surgical resection. This retrospective study was approved by the institutional review board. The requirement to obtain informed consent was waived. Thirty-seven patients referred for postoperative surveillance after resection of soft-tissue sarcoma (35 with high-grade sarcoma) were studied. Imaging at 3.0 T included conventional (T1-weighted, fluid-sensitive, and contrast-enhanced T1-weighted imaging) and functional (DCE MR imaging, DW imaging with ADC mapping) sequences. Recurrences were confirmed with biopsy or resection. A disease-free state was determined with at least 6 months of follow-up. Two readers independently recorded the signal and morphologic characteristics with conventional sequences, the presence or absence of arterial enhancement at DCE MR imaging, and ADCs of the surgical bed. The accuracy of conventional MR imaging in the detection of recurrence was compared with that with the addition of functional sequences. The Fisher exact and Wilcoxon rank sum tests were used to define the accuracy of imaging features, the Cohen κ and Lin interclass correlation were used to define interobserver variability, and receiver operating characteristic analysis was used to define a threshold to detect recurrence and assess reader confidence after the addition of functional imaging to conventional sequences. There were six histologically proved recurrences in 37 patients. Sensitivity and specificity of MR imaging in the detection of tumor recurrence were 100% (six of six patients) and 52% (16 of 31 patients), respectively, with conventional sequences, 100% (six of six patients) and 97% (30 of 31 patients) with the addition of DCE MR imaging, and 60% (three of five patients) and 97% (30 of 31 patients) with the addition of DW imaging and ADC mapping. The average ADC of recurrence (1.08 mm(2)/sec ± 0.19) was significantly different from those of postoperative scarring (0.9 mm(2)/sec ± 0.00) and hematomas (2.34 mm(2)/sec ± 0.72) (P = .03 for both). The addition of functional MR sequences to a routine MR protocol, in particular DCE MR imaging, offers a specificity of more than 95% for distinguishing recurrent sarcoma from postsurgical scarring.
Fabry-Perot Observations of Comet Hale-Bopp H_2O(+) Velocity Fields
NASA Astrophysics Data System (ADS)
Roesler, F. L.; Klinglesmith, D. A., III; Scherb, F.; Mierkiewicz, E. J.; Oliversen, R. J.
1997-07-01
We have obtained Doppler-sliced images of H_2O(+) emission from Comet Hale-Bopp, using a 15-cm, dual-etalon, Fabry-Perot/CCD imaging spectrometer at the McMath-Pierce 0.8-meter west auxiliary telescope of the National Solar Observatory on Kitt Peak. The 6-arcmin field of view was centered on the comet nucleus, and the spectral resolution was 0.4 Angstroms (20km/sec). The observations consisted of ``data cubes,'' i.e., a sequence of images of the 6158 Angstroms emission doublet at velocity steps of 12.5 or 25km/sec, covering a range from -75km/sec to +75km/sec in the comet reference frame. We were able to follow the comet for 1 to 1(1/_2) hours each clear night. We obtained useable data cubes on at least ten nights between February 25 and April 16. These data are being examined to investigate the comet-solar wind interaction. We will present both still images and time-lapse movies showing sequences of ion velocities and accelerations on the plane of the sky.
Characterization of platelet adhesion under flow using microscopic image sequence analysis.
Machin, M; Santomaso, A; Cozzi, M R; Battiston, M; Mazzuccato, M; De Marco, L; Canu, P
2005-07-01
A method for quantitative analysis of platelet deposition under flow is discussed here. The model system is based upon perfusion of blood platelets over an adhesive substrate immobilized on a glass coverslip acting as the lower surface of a rectangular flow chamber. The perfusion apparatus is mounted onto an inverted microscope equipped with epifluorescent illumination and intensified CCD video camera. Characterization is based on information obtained from a specific image analysis method applied to continuous sequences of microscopical images. Platelet recognition across the sequence of images is based on a time-dependent, bidimensional, gaussian-like pdf. Once a platelet is located,the variation of its position and shape as a function of time (i.e., the platelet history) can be determined. Analyzing the history we can establish if the platelet is moving on the surface, the frequency of this movement and the distance traveled before its resumes the velocity of a non-interacting cell. Therefore, we can determine how long the adhesion would last which is correlated to the resistance of the platelet-substrate bond. This algorithm enables the dynamic quantification of trajectories, as well as residence times, arrest and release frequencies for a high numbers of platelets at the same time. Statistically significant conclusions on platelet-surface interactions can then be obtained. An image analysis tool of this kind can dramatically help the investigation and characterization of the thrombogenic properties of artificial surfaces such as those used in artificial organs and biomedical devices.
Kodama, Nao; Setoi, Ayana; Kose, Katsumi
2018-01-01
Spiral MRI sequences were developed for a 9.4T vertical standard bore (54 mm) superconducting magnet using unshielded and self-shielded gradient coils. Clear spiral images with 64-shot scan were obtained with the self-shielded gradient coil, but severe shading artifacts were observed for the spiral-scan images acquired with the unshielded gradient coil. This shading artifact was successfully corrected with a phase-correction technique using reference scans that we developed based on eddy current field measurements. We therefore concluded that spiral imaging sequences can be installed even for unshielded gradient coils if phase corrections are performed using the reference scans. PMID:28367906
Kodama, Nao; Setoi, Ayana; Kose, Katsumi
2018-04-10
Spiral MRI sequences were developed for a 9.4T vertical standard bore (54 mm) superconducting magnet using unshielded and self-shielded gradient coils. Clear spiral images with 64-shot scan were obtained with the self-shielded gradient coil, but severe shading artifacts were observed for the spiral-scan images acquired with the unshielded gradient coil. This shading artifact was successfully corrected with a phase-correction technique using reference scans that we developed based on eddy current field measurements. We therefore concluded that spiral imaging sequences can be installed even for unshielded gradient coils if phase corrections are performed using the reference scans.
NASA Astrophysics Data System (ADS)
Yuan, X.; Wang, X.; Dou, A.; Ding, X.
2014-12-01
As the UAV is widely used in earthquake disaster prevention and mitigation, the efficiency of UAV image processing determines the effectiveness of its application to pre-earthquake disaster prevention, post-earthquake emergency rescue, and disaster assessment. Because of bad weather conditions after destructive earthquake, the wide field cameras captured images with serious vignetting phenomenon, which can significantly affects the speed and efficiency of image mosaic, especially the extraction of pre-earthquake building and geological structure information and also the accuracy of post-earthquake quantitative damage extraction. In this paper, an improved radial gradient correction method (IRGCM) was developed to reduce the influence from random distribution of land surface objects on the images based on radial gradient correction method (RGCM, Y. Zheng, 2008; 2013). First, a mean-value image was obtained by the average of serial UAV images. It was used as calibration instead of single images to obtain the comprehensive vignetting function by using RGCM. Then each UAV image would be corrected by the comprehensive vignetting function. A case study was done to correct the UAV images sequence, which were obtained in Lushan County after Ms7.0 Lushan, Sichuan, China earthquake occurred on April 20, 2013. The results show that the comprehensive vignetting function generated by IRGCM is more robust and accurate to express the specific optical response of camera in a particular setting. Thus it is particularly useful for correction of a mass UAV images with non-uniform illuminations. Also, the correction process was simplified and it is faster than conventional methods. After correction, the images have better radial homogeneity and clearer details, to a certain extent, which reduces the difficulties of image mosaic, and provides a better result for further analysis and damage information extraction. Further test shows also that better results were obtained by taking advantage of comprehensive vignetting function to the other UAV image sequences from different regions. The research was supported by these projects, NO.2012BAK15B02 and 2013IES010106.
Demetriou, Eleni; Tachrount, Mohamed; Zaiss, Moritz; Shmueli, Karin; Golay, Xavier
2018-03-05
To develop a new MRI technique to rapidly measure exchange rates in CEST MRI. A novel pulse sequence for measuring chemical exchange rates through a progressive saturation recovery process, called PRO-QUEST (progressive saturation for quantifying exchange rates using saturation times), has been developed. Using this method, the water magnetization is sampled under non-steady-state conditions, and off-resonance saturation is interleaved with the acquisition of images obtained through a Look-Locker type of acquisition. A complete theoretical framework has been set up, and simple equations to obtain the exchange rates have been derived. A reduction of scan time from 58 to 16 minutes has been obtained using PRO-QUEST versus the standard QUEST. Maps of both T 1 of water and B 1 can simply be obtained by repetition of the sequence without off-resonance saturation pulses. Simulations and calculated exchange rates from experimental data using amino acids such as glutamate, glutamine, taurine, and alanine were compared and found to be in good agreement. The PRO-QUEST sequence was also applied on healthy and infarcted rats after 24 hours, and revealed that imaging specificity to ischemic acidification during stroke was substantially increased relative to standard amide proton transfer-weighted imaging. Because of the reduced scan time and insensitivity to nonchemical exchange factors such as direct water saturation, PRO-QUEST can serve as an excellent alternative for researchers and clinicians interested to map pH changes in vivo. © 2018 International Society for Magnetic Resonance in Medicine.
Sharon, Jeffrey D; Northcutt, Benjamin G; Aygun, Nafi; Francis, Howard W
2016-10-01
To study the quality and usability of magnetic resonance imaging (MRI) obtained with a cochlear implant magnet in situ. Retrospective chart review. Tertiary care center. All patients who underwent brain MRI with a cochlear implant magnet in situ from 2007 to 2016. None. Grade of view of the ipsilateral internal auditory canal (IAC) and cerebellopontine angle (CPA). Inclusion criteria were met by 765 image sequences in 57 MRI brain scans. For the ipsilateral IAC, significant predictors of a grade 1 (normal) view included: absence of fat saturation algorithm (p = 0.001), nonaxial plane of imaging (p = 0.01), and contrast administration (p = 0.001). For the ipsilateral CPA, significant predictors of a grade 1 view included: absence of fat saturation algorithm (p = 0.001), high-resolution images (p = 0.001), and nonaxial plane of imaging (p = 0.001). Overall, coronal T1 high-resolution images produced the highest percentage of grade 1 views (89%). Fat saturation also caused a secondary ring-shaped distortion artifact, which impaired the view of the contralateral CPA 52.7% of the time, and the contralateral IAC 42.8% of the time. MRI scans without any usable (grade 1) sequences had fewer overall sequences (N = 4.3) than scans with at least one usable sequence (N = 7.1, p = 0.001). MRI image quality with a cochlear implant magnet in situ depends on several factors, which can be modified to maximize image quality in this unique patient population.
Minimization of Dead-Periods in MRI Pulse Sequences for Imaging Oblique Planes
Atalar, Ergin; McVeigh, Elliot R.
2007-01-01
With the advent of breath-hold MR cardiac imaging techniques, the minimization of TR and TE for oblique planes has become a critical issue. The slew rates and maximum currents of gradient amplifiers limit the minimum possible TR and TE by adding dead-periods to the pulse sequences. We propose a method of designing gradient waveforms that will be applied to the amplifiers instead of the slice, readout, and phase encoding waveforms. Because this method ensures that the gradient amplifiers will always switch at their maximum slew rate, it results in the minimum possible dead-period for given imaging parameters and scan plane position. A GRASS pulse sequence has been designed and ultra-short TR and TE values have been obtained with standard gradient amplifiers and coils. For some oblique slices, we have achieved shorter TR and TE values than those for nonoblique slices. PMID:7869900
NO PLIF Imaging in the CUBRC 48 Inch Shock Tunnel
NASA Technical Reports Server (NTRS)
Jiang, N.; Bruzzese, J.; Patton, R.; Sutton J.; Lempert W.; Miller, J. D.; Meyer, T. R.; Parker, R.; Wadham, T.; Holden, M.;
2011-01-01
Nitric Oxide Planar Laser-Induced Fluorescence (NO PLIF) imaging is demonstrated at a 10 kHz repetition rate in the Calspan-University at Buffalo Research Center s (CUBRC) 48-inch Mach 9 hypervelocity shock tunnel using a pulse burst laser-based high frame rate imaging system. Sequences of up to ten images are obtained internal to a supersonic combustor model, located within the shock tunnel, during a single approx.10-millisecond duration run of the ground test facility. This represents over an order of magnitude improvement in data rate from previous PLIF-based diagnostic approaches. Comparison with a preliminary CFD simulation shows good overall qualitative agreement between the prediction of the mean NO density field and the observed PLIF image intensity, averaged over forty individual images obtained during several facility runs.
Concrete thawing studied by single-point ramped imaging.
Prado, P J; Balcom, B J; Beyea, S D; Armstrong, R L; Bremner, T W
1997-12-01
A series of two-dimensional images of proton distribution in a hardened concrete sample has been obtained during the thawing process (from -50 degrees C up to 11 degrees C). The SPRITE sequence is optimal for this study given the characteristic short relaxation times of water in this porous media (T2* < 200 micros and T1 < 3.6 ms). The relaxation parameters of the sample were determined in order to optimize the time efficiency of the sequence, permitting a 4-scan 64 x 64 acquisition in under 3 min. The image acquisition is fast on the time scale of the temperature evolution of the specimen. The frozen water distribution is quantified through a position based study of the image contrast. A multiple point acquisition method is presented and the signal sensitivity improvement is discussed.
3D knee segmentation based on three MRI sequences from different planes.
Zhou, L; Chav, R; Cresson, T; Chartrand, G; de Guise, J
2016-08-01
In clinical practice, knee MRI sequences with 3.5~5 mm slice distance in sagittal, coronal, and axial planes are often requested for the knee examination since its acquisition is faster than high-resolution MRI sequence in a single plane, thereby reducing the probability of motion artifact. In order to take advantage of the three sequences from different planes, a 3D segmentation method based on the combination of three knee models obtained from the three sequences is proposed in this paper. In the method, the sub-segmentation is respectively performed with sagittal, coronal, and axial MRI sequence in the image coordinate system. With each sequence, an initial knee model is hierarchically deformed, and then the three deformed models are mapped to reference coordinate system defined by the DICOM standard and combined to obtain a patient-specific model. The experimental results verified that the three sub-segmentation results can complement each other, and their integration can compensate for the insufficiency of boundary information caused by 3.5~5 mm gap between consecutive slices. Therefore, the obtained patient-specific model is substantially more accurate than each sub-segmentation results.
FASMA: a service to format and analyze sequences in multiple alignments.
Costantini, Susan; Colonna, Giovanni; Facchiano, Angelo M
2007-12-01
Multiple sequence alignments are successfully applied in many studies for under- standing the structural and functional relations among single nucleic acids and protein sequences as well as whole families. Because of the rapid growth of sequence databases, multiple sequence alignments can often be very large and difficult to visualize and analyze. We offer a new service aimed to visualize and analyze the multiple alignments obtained with different external algorithms, with new features useful for the comparison of the aligned sequences as well as for the creation of a final image of the alignment. The service is named FASMA and is available at http://bioinformatica.isa.cnr.it/FASMA/.
Zikmund, T; Kvasnica, L; Týč, M; Křížová, A; Colláková, J; Chmelík, R
2014-11-01
Transmitted light holographic microscopy is particularly used for quantitative phase imaging of transparent microscopic objects such as living cells. The study of the cell is based on extraction of the dynamic data on cell behaviour from the time-lapse sequence of the phase images. However, the phase images are affected by the phase aberrations that make the analysis particularly difficult. This is because the phase deformation is prone to change during long-term experiments. Here, we present a novel algorithm for sequential processing of living cells phase images in a time-lapse sequence. The algorithm compensates for the deformation of a phase image using weighted least-squares surface fitting. Moreover, it identifies and segments the individual cells in the phase image. All these procedures are performed automatically and applied immediately after obtaining every single phase image. This property of the algorithm is important for real-time cell quantitative phase imaging and instantaneous control of the course of the experiment by playback of the recorded sequence up to actual time. Such operator's intervention is a forerunner of process automation derived from image analysis. The efficiency of the propounded algorithm is demonstrated on images of rat fibrosarcoma cells using an off-axis holographic microscope. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
High-resolution MRI of cranial nerves in posterior fossa at 3.0 T.
Guo, Zi-Yi; Chen, Jing; Liang, Qi-Zhou; Liao, Hai-Yan; Cheng, Qiong-Yue; Fu, Shui-Xi; Chen, Cai-Xiang; Yu, Dan
2013-02-01
To evaluate the influence of high-resolution imaging obtainable with the higher field strength of 3.0 T on the visualization of the brain nerves in the posterior fossa. In total, 20 nerves were investigated on MRI of 12 volunteers each and selected for comparison, respectively, with the FSE sequences with 5 mm and 2 mm section thicknesses and gradient recalled echo (GRE) sequences acquired with a 3.0-T scanner. The MR images were evaluated by three independent readers who rated image quality according to depiction of anatomic detail and contrast with use of a rating scale. In general, decrease of the slice thickness showed a significant increase in the detection of nerves as well as in the image quality characteristics. Comparing FSE and GRE imaging, the course of brain nerves and brainstem vessels was visualized best with use of the three-dimensional (3D) pulse sequence. The comparison revealed the clear advantage of a thin section. The increased resolution enabled immediate identification of all brainstem nerves. GRE sequence most distinctly and confidently depicted pertinent structures and enables 3D reconstruction to illustrate complex relations of the brainstem. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Kyoung-Nam; Heo, Phil; Kim, Young-Bo; Han, Gyu-Cheol
2015-02-01
An ultra-high-field magnetic resonance (MR) scanner and a specially-optimized radiofrequency (RF) coil and sequence protocol are required to obtain high-resolution images of the inner ear that can noninvasively confirm pathologic diagnoses. In phantom studies, the MR signal distribution of the gradient echo MR images generated by using a customized RF coil was compared with that of a commercial volume coil. The MR signal intensity of the customized RF coil decreases rapidly from near the RF coil plane toward the exterior of the phantom. However, the signal sensitivity of this coil is superior on both sides of the phantom, corresponding to the petrous pyramid. In in-vivo 7-T MR imaging, a customized RF coil and a volumetric-interpolated breath-hold examination imaging sequence are employed for visualization of the inner ear's structure. The entire membranous portion of the cochlear and the three semicircular canals, including the ductus reunions, oval window, and round window with associated nervous tissue, were clearly depicted with sufficient spatial coverage for adequate inspection of the surrounding anatomy. Developments from a new perspective to inner ear imaging using the 7-T modality could lead to further improved image sensitivity and, thus, enable ultra-structural MR imaging.
Magnetic resonance imaging of the equine temporomandibular joint anatomy.
Rodríguez, M J; Agut, A; Soler, M; López-Albors, O; Arredondo, J; Querol, M; Latorre, R
2010-04-01
In human medicine, magnetic resonance imaging (MRI) is considered the 'gold standard' imaging procedure to assess the temporomandibular joint (TMJ). However, there is no information regarding MRI evaluation of equine TMJ. To describe the normal sectional MRI anatomy of equine TMJ by using frozen and plastinated anatomical sections as reference; and determine the best imaging planes and sequences to visualise TMJ components. TMJs from 6 Spanish Purebred horse cadavers (4 immature and 2 mature) underwent MRI examination. Spin-echo T1-weighting (SE T1W), T2*W, fat-suppressed (FS) proton density-weighting (PDW) and fast spin-echo T2-weighting (FSE T2W) sequences were obtained in oblique sagittal, transverse and dorsal planes. Anatomical sections were procured on the same planes for a thorough interpretation. The oblique sagittal and transverse planes were the most informative anatomical planes. SE T1W images showed excellent spatial resolution and resulted in superior anatomic detail when comparing to other sequences. FSE T2W sequence provided an acceptable anatomical depiction but T2*W and fat-suppressed PDW demonstrated higher contrast in visualisation of the disc, synovial fluid, synovial pouches and articular cartilage. The SE T1W sequence in oblique sagittal and transverse plane should be the baseline to identify anatomy. The T2*W and fat-suppressed PDW sequences enhance the study of the articular cartilage and synovial pouches better than FSE T2W. The information provided in this paper should aid clinicians in the interpretation of MRI images of equine TMJ and assist in the early diagnosis of those problems that could not be diagnosed by other means.
The plant virus microscope image registration method based on mismatches removing.
Wei, Lifang; Zhou, Shucheng; Dong, Heng; Mao, Qianzhuo; Lin, Jiaxiang; Chen, Riqing
2016-01-01
The electron microscopy is one of the major means to observe the virus. The view of virus microscope images is limited by making specimen and the size of the camera's view field. To solve this problem, the virus sample is produced into multi-slice for information fusion and image registration techniques are applied to obtain large field and whole sections. Image registration techniques have been developed in the past decades for increasing the camera's field of view. Nevertheless, these approaches typically work in batch mode and rely on motorized microscopes. Alternatively, the methods are conceived just to provide visually pleasant registration for high overlap ratio image sequence. This work presents a method for virus microscope image registration acquired with detailed visual information and subpixel accuracy, even when overlap ratio of image sequence is 10% or less. The method proposed focus on the correspondence set and interimage transformation. A mismatch removal strategy is proposed by the spatial consistency and the components of keypoint to enrich the correspondence set. And the translation model parameter as well as tonal inhomogeneities is corrected by the hierarchical estimation and model select. In the experiments performed, we tested different registration approaches and virus images, confirming that the translation model is not always stationary, despite the fact that the images of the sample come from the same sequence. The mismatch removal strategy makes building registration of virus microscope images at subpixel accuracy easier and optional parameters for building registration according to the hierarchical estimation and model select strategies make the proposed method high precision and reliable for low overlap ratio image sequence. Copyright © 2015 Elsevier Ltd. All rights reserved.
Brain MR imaging at ultra-low radiofrequency power.
Sarkar, Subhendra N; Alsop, David C; Madhuranthakam, Ananth J; Busse, Reed F; Robson, Philip M; Rofsky, Neil M; Hackney, David B
2011-05-01
To explore the lower limits for radiofrequency (RF) power-induced specific absorption rate (SAR) achievable at 1.5 T for brain magnetic resonance (MR) imaging without loss of tissue signal or contrast present in high-SAR clinical imaging in order to create a potentially viable MR method at ultra-low RF power to image tissues containing implanted devices. An institutional review board-approved HIPAA-compliant prospective MR study design was used, with written informed consent from all subjects prior to MR sessions. Seven healthy subjects were imaged prospectively at 1.5 T with ultra-low-SAR optimized three-dimensional (3D) fast spin-echo (FSE) and fluid-attenuated inversion-recovery (FLAIR) T2-weighted sequences and an ultra-low-SAR 3D spoiled gradient-recalled acquisition in the steady state T1-weighted sequence. Corresponding high-SAR two-dimensional (2D) clinical sequences were also performed. In addition to qualitative comparisons, absolute signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs) for multicoil, parallel imaging acquisitions were generated by using a Monte Carlo method for quantitative comparison between ultra-low-SAR and high-SAR results. There were minor to moderate differences in the absolute tissue SNR and CNR values and in qualitative appearance of brain images obtained by using ultra-low-SAR and high-SAR techniques. High-SAR 2D T2-weighted imaging produced slightly higher SNR, while ultra-low-SAR 3D technique not only produced higher SNR for T1-weighted and FLAIR images but also higher CNRs for all three sequences for most of the brain tissues. The 3D techniques adopted here led to a decrease in the absorbed RF power by two orders of magnitude at 1.5 T, and still the image quality was preserved within clinically acceptable imaging times. RSNA, 2011
New Results from the Flare Genesis Experiment
NASA Astrophysics Data System (ADS)
Rust, D. M.; Bernasconi, P. N.; Eaton, H. A.; Keller, C.; Murphy, G. A.; Schmieder, B.
2000-05-01
From January 10 to 27, 2000, the Flare Genesis solar telescope observed the Sun while suspended from a balloon in the stratosphere above Antarctica. The goal of the mission was to acquire long time series of high-resolution images and vector magnetograms of the solar photosphere and chromosphere. Images were obtained in the magnetically sensitive Ca I line at 6122 Angstroms and at H-alpha (6563 Angstroms). The FGE data were obtained in the context of Max Millennium Observing Campaign #004, the objective of which was to study the ``Genesis of Solar Flares and Active Filaments/Sigmoids." Flare Genesis obtained about 26,000 usable images on the 8 targeted active regions. A preliminary examination reveals a good sequence on an emerging flux region and data on the M1 flare on January 22, as well as a number of sequences on active filaments. We will present the results of our first analysis efforts. Flare Genesis was supported by NASA grants NAG5-4955, NAG5-5139, and NAG5-8331 and by NSF grant OPP-9615073. The Air Force Office of Scientific Research and the Ballistic Missile Defense Organization supported early development of the Flare Genesis Experiment.
No scanning depth imaging system based on TOF
NASA Astrophysics Data System (ADS)
Sun, Rongchun; Piao, Yan; Wang, Yu; Liu, Shuo
2016-03-01
To quickly obtain a 3D model of real world objects, multi-point ranging is very important. However, the traditional measuring method usually adopts the principle of point by point or line by line measurement, which is too slow and of poor efficiency. In the paper, a no scanning depth imaging system based on TOF (time of flight) was proposed. The system is composed of light source circuit, special infrared image sensor module, processor and controller of image data, data cache circuit, communication circuit, and so on. According to the working principle of the TOF measurement, image sequence was collected by the high-speed CMOS sensor, and the distance information was obtained by identifying phase difference, and the amplitude image was also calculated. Experiments were conducted and the experimental results show that the depth imaging system can achieve no scanning depth imaging function with good performance.
Evaluation of skin pathologies by RGB autofluorescence imaging
NASA Astrophysics Data System (ADS)
Lihachev, Alexey; Plorina, Emilija V.; Derjabo, Alexander; Lange, Marta; Lihacova, Ilze
2017-12-01
A clinical trial on autofluorescence imaging of malignant and non-malignant skin pathologies comprising 32 basal cell carcinomas (BCC), 4 malignant melanomas (MM), 1 squamous cell carcinoma (SCC), 89 nevi, 14 dysplastic nevi, 20 hemangiomas, 23 seborrheic keratoses, 4 hyperkeratoses, 3 actinic keratoses, 3 psoriasis, 1 dematitis, 2 dermatofibromas, 5 papillofibromas, 12 lupus erythematosus, 7 purpura, 6 bruises, 5 freckles, 3 fungal infections, 1 burn, 1 tattoo, 1 age spot, 1 vitiligo, 32 postoperative scars, 8 post cream therapy BCCs, 4 post radiation therapy scars, 2 post laser therapy scars, 1 post freezing scar as well as 114 reference images of healthy skin was performed. The sequence of autofluorescence images of skin pathologies were recorded by smartphone RGB camera under continuous 405 nm LED excitation during 20 seconds with 0.5 fps. Obtained image sequences further were processed with subsequent extraction of autofluorescence intensity and photobleaching parameters.
Oda, Masafumi; Tanaka, Tatsurou; Yamashita, Yoshihiro; Kito, Shinji; Wakasugi-Sato, Nao; Matsumoto-Takeda, Shinobu; Nishimura, Shun; Habu, Manabu; Kodama, Masaaki; Uehara, Masataka; Kaneuji, Tsuyoshi; Kokuryo, Shinya; Miyamoto, Ikuya; Yoshiga, Daigo; Seta, Yuji; Tominaga, Kazuhiro; Yoshioka, Izumi; Morimoto, Yasuhiro
2013-12-01
To elucidate the characteristics of visualizing thin main peripheral vessels in oral and maxillofacial regions of 3-dimensional magnetic resonance angiography (MRA) using a balanced steady-state free-precession (SSFP) sequence with a time-spatial labeling inversion pulse (time-SLIP) and using fresh blood imaging (FBI). The conspicuity of blood vessels and the characteristics on MRA using SSFP with a time-SLIP was compared with those on MRA using FBI in 20 healthy participants. The conspicuity of the main peripheral arteries was significantly higher on MRA using SSFP with a time-SLIP than on MRA using FBI. MRA scans using SSFP were obtained in all participants, and scans using FBI were obtained in 16 of 20 participants. An electrocardiogram was unnecessary when using SSFP but was necessary when using FBI. MRA obtained using SSFP with a time-SLIP is a useful technique to visualize thin main peripheral arteries in the oral and maxillofacial regions without contrast medium. Copyright © 2013 Elsevier Inc. All rights reserved.
The history of MR imaging as seen through the pages of radiology.
Edelman, Robert R
2014-11-01
The first reports in Radiology pertaining to magnetic resonance (MR) imaging were published in 1980, 7 years after Paul Lauterbur pioneered the first MR images and 9 years after the first human computed tomographic images were obtained. Historical advances in the research and clinical applications of MR imaging very much parallel the remarkable advances in MR imaging technology. These advances can be roughly classified into hardware (eg, magnets, gradients, radiofrequency [RF] coils, RF transmitter and receiver, MR imaging-compatible biopsy devices) and imaging techniques (eg, pulse sequences, parallel imaging, and so forth). Image quality has been dramatically improved with the introduction of high-field-strength superconducting magnets, digital RF systems, and phased-array coils. Hybrid systems, such as MR/positron emission tomography (PET), combine the superb anatomic and functional imaging capabilities of MR imaging with the unsurpassed capability of PET to demonstrate tissue metabolism. Supported by the improvements in hardware, advances in pulse sequence design and image reconstruction techniques have spurred dramatic improvements in imaging speed and the capability for studying tissue function. In this historical review, the history of MR imaging technology and developing research and clinical applications, as seen through the pages of Radiology, will be considered.
Wendt, O; Oellinger, J; Lüth, T C; Felix, R; Boenick, U
2000-01-01
This paper presents the results of an experimental investigation with two different rotatory piezomotors in a closed 1.5 Tesla high-field MRI. The focus of the investigation was on testing the functionality of these motors within the MRI and to determining the image interference they caused. To obtain a differentiated estimate of the interference the motors were tested in both the passive (turned off, i.e. without current flow) and active (turned on, i.e. with current flow) state during MRI scanning. Three different types of sequences were used for the test: Spin-Echo (SE), Gradient-Echo (GE) and Echo-Planar Imaging (EPI). A plastic container filled with a gadolinium-manganese solution was used for representation of the artefacts. The motors investigated were placed parallel to the container at predetermined distances during the experiment. The results show that the motors investigated suffered no functional limitations in the magnetic field of the MRI but, depending on the type of motor, the measurement distance and the state of the motor, the motors had different effects on the sequence images. A motor in the off-state placed immediately next to the object to be measured mainly causes artefacts because of its material properties. If, on the other hand, the piezomotor is in the on-state images with strong noise result when the motor is immediately next to the object being measured. The images regain their normal quality when the motor is approximately at a distance of 1 m from the object being investigated. Driving the motor inside the MRI, therefore, is only to be recommended during the pauses in scanning: this delivers artefact-free images if minimal, motor-specific distances are kept to. With regard to the three different types of sequences it was determined that the SE sequence was the least sensitive and the EPI sequence the most sensitive to disturbance. The GE sequence showed only minimal differences to the SE sequence with regard to signal-to-noise ratios. Since it requires considerably shorter scan-times it can be considered to be the most effective type of sequence under these conditions.
Setoi, Ayana; Kose, Katsumi
2018-05-16
We developed ultrashort echo-time (UTE) imaging sequences with 3D Cones trajectories for a home-built compact MRI system using a 1.5T superconducting magnet and an unshielded gradient coil set. We achieved less than 7 min imaging time and obtained clear in vivo images of a human forearm with a TE of 0.4 ms. We concluded that UTE imaging using 3D Cones acquisition was successfully implemented in our 1.5T MRI system.
Abdominal applications of 3.0-T MR imaging: comparative review versus a 1.5-T system.
Choi, Jin-Young; Kim, Myeong-Jin; Chung, Yong Eun; Kim, Ji Youn; Jones, Alun C; de Becker, Jan; van Cauteren, Marc
2008-01-01
With the development of dedicated receiver coils and increased gradient performance, 3.0-T magnetic resonance (MR) systems are gaining wider acceptance in clinical practice. The expected twofold increase in signal-to-noise ratio (SNR) compared with that of 1.5-T MR systems may help improve spatial resolution or increase temporal resolution when used with parallel acquisition techniques. Several issues must be considered when applying 3.0-T MR in the abdomen, including the alteration of the radiofrequency field and relaxation time, increase in energy deposition and susceptibility effects, and problems associated with motion artifacts. For the evaluation of liver lesions, higher SNR and greater resolution achieved with the 3.0-T system could translate into better detection of malignant lesions on T2-weighted images obtained with adjusted imaging parameters. For the evaluation of pancreatic and biliary diseases, high-resolution T2-weighted imaging using single-shot turbo spin-echo sequences is useful; improvement in SNR was noticeable on two-dimensional MR cholangiopancreatographic images. For the preoperative imaging of rectal cancer, a single-shot sequence is useful for dramatically decreasing imaging time while maintaining image quality. Substantial modification of examination protocols, with optimized imaging parameters and sequence designs along with ongoing development of hardware, could contribute to an increased role of the 3.0-T system for abdominal MR examinations.
Research on hyperspectral dynamic scene and image sequence simulation
NASA Astrophysics Data System (ADS)
Sun, Dandan; Liu, Fang; Gao, Jiaobo; Sun, Kefeng; Hu, Yu; Li, Yu; Xie, Junhu; Zhang, Lei
2016-10-01
This paper presents a simulation method of hyperspectral dynamic scene and image sequence for hyperspectral equipment evaluation and target detection algorithm. Because of high spectral resolution, strong band continuity, anti-interference and other advantages, in recent years, hyperspectral imaging technology has been rapidly developed and is widely used in many areas such as optoelectronic target detection, military defense and remote sensing systems. Digital imaging simulation, as a crucial part of hardware in loop simulation, can be applied to testing and evaluation hyperspectral imaging equipment with lower development cost and shorter development period. Meanwhile, visual simulation can produce a lot of original image data under various conditions for hyperspectral image feature extraction and classification algorithm. Based on radiation physic model and material characteristic parameters this paper proposes a generation method of digital scene. By building multiple sensor models under different bands and different bandwidths, hyperspectral scenes in visible, MWIR, LWIR band, with spectral resolution 0.01μm, 0.05μm and 0.1μm have been simulated in this paper. The final dynamic scenes have high real-time and realistic, with frequency up to 100 HZ. By means of saving all the scene gray data in the same viewpoint image sequence is obtained. The analysis results show whether in the infrared band or the visible band, the grayscale variations of simulated hyperspectral images are consistent with the theoretical analysis results.
Preprocessing of PHERMEX flash radiographic images with Haar and adaptive filtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brolley, J.E.
1978-11-01
Work on image preparation has continued with the application of high-sequency boosting via Haar filtering. This is useful in developing line or edge structures. Widrow LMS adaptive filtering has also been shown to be useful in developing edge structure in special problems. Shadow effects can be obtained with the latter which may be useful for some problems. Combined Haar and adaptive filtering is illustrated for a PHERMEX image.
A Sensitive TLRH Targeted Imaging Technique for Ultrasonic Molecular Imaging
Hu, Xiaowen; Zheng, Hairong; Kruse, Dustin E.; Sutcliffe, Patrick; Stephens, Douglas N.; Ferrara, Katherine W.
2010-01-01
The primary goals of ultrasound molecular imaging are the detection and imaging of ultrasound contrast agents (microbubbles), which are bound to specific vascular surface receptors. Imaging methods that can sensitively and selectively detect and distinguish bound microbubbles from freely circulating microbubbles (free microbubbles) and surrounding tissue are critically important for the practical application of ultrasound contrast molecular imaging. Microbubbles excited by low frequency acoustic pulses emit wide-band echoes with a bandwidth extending beyond 20 MHz; we refer to this technique as TLRH (transmission at a low frequency and reception at a high frequency). Using this wideband, transient echo, we have developed and implemented a targeted imaging technique incorporating a multi-frequency co-linear array and the Siemens Antares® imaging system. The multi-frequency co-linear array integrates a center 5.4 MHz array, used to receive echoes and produce radiation force, and two outer 1.5 MHz arrays used to transmit low frequency incident pulses. The targeted imaging technique makes use of an acoustic radiation force sub-sequence to enhance accumulation and a TLRH imaging sub-sequence to detect bound microbubbles. The radiofrequency (RF) data obtained from the TLRH imaging sub-sequence are processsed to separate echo signatures between tissue, free microbubbles, and bound microbubbles. By imaging biotin-coated microbubbles targeted to avidin-coated cellulose tubes, we demonstrate that the proposed method has a high contrast-to-tissue ratio (up to 34 dB) and a high sensitivity to bound microbubbles (with the ratio of echoes from bound microbubbles versus free microbubbles extending up to 23 dB). The effects of the imaging pulse acoustic pressure, the radiation force sub-sequence and the use of various slow-time filters on the targeted imaging quality are studied. The TLRH targeted imaging method is demonstrated in this study to provide sensitive and selective detection of bound microbubbles for ultrasound molecularly-targeted imaging. PMID:20178897
Robot acting on moving bodies (RAMBO): Preliminary results
NASA Technical Reports Server (NTRS)
Davis, Larry S.; Dementhon, Daniel; Bestul, Thor; Ziavras, Sotirios; Srinivasan, H. V.; Siddalingaiah, Madju; Harwood, David
1989-01-01
A robot system called RAMBO is being developed. It is equipped with a camera, which, given a sequence of simple tasks, can perform these tasks on a moving object. RAMBO is given a complete geometric model of the object. A low level vision module extracts and groups characteristic features in images of the object. The positions of the object are determined in a sequence of images, and a motion estimate of the object is obtained. This motion estimate is used to plan trajectories of the robot tool to relative locations nearby the object sufficient for achieving the tasks. More specifically, low level vision uses parallel algorithms for image enchancement by symmetric nearest neighbor filtering, edge detection by local gradient operators, and corner extraction by sector filtering. The object pose estimation is a Hough transform method accumulating position hypotheses obtained by matching triples of image features (corners) to triples of model features. To maximize computing speed, the estimate of the position in space of a triple of features is obtained by decomposing its perspective view into a product of rotations and a scaled orthographic projection. This allows the use of 2-D lookup tables at each stage of the decomposition. The position hypotheses for each possible match of model feature triples and image feature triples are calculated in parallel. Trajectory planning combines heuristic and dynamic programming techniques. Then trajectories are created using parametric cubic splines between initial and goal trajectories. All the parallel algorithms run on a Connection Machine CM-2 with 16K processors.
Calculation of Cardiac Kinetic Energy Index from PET images.
Sims, John; Oliveira, Marco Antônio; Meneghetti, José Claudio; Gutierrez, Marco Antônio
2015-01-01
Cardiac function can be assessed from displacement measurements in imaging modalities from nuclear medicine Using positron emission tomography (PET) image sequences with Rubidium-82, we propose and estimate the total Kinetic Energy Index (KEf) obtained from the velocity field, which was calculated using 3D optical flow(OF) methods applied over the temporal image sequence. However, it was found that the brightness of the image varied unexpectedly between frames, violating the constant brightness assumption of the OF method and causing large errors in estimating the velocity field. Therefore total brightness was equalized across image frames and the adjusted configuration tested with rest perfusion images acquired from individuals with normal (n=30) and low (n=33) cardiac function. For these images KEf was calculated as 0.5731±0.0899 and 0.3812±0.1146 for individuals with normal and low cardiac function respectively. The ability of KEf to properly classify patients into the two groups was tested with a ROC analysis, with area under the curve estimated as 0.906. To our knowledge this is the first time that KEf has been applied to PET images.
Gersing, Alexandra S; Schwaiger, Benedikt J; Heilmeier, Ursula; Joseph, Gabby B; Facchetti, Luca; Kretzschmar, Martin; Lynch, John A; McCulloch, Charles E; Nevitt, Michael C; Steinbach, Lynne S; Link, Thomas M
2017-06-01
To evaluate the ability of different MRI sequences to detect chondrocalcinosis within knee cartilage and menisci, and to analyze the association with joint degeneration. Subjects with radiographic knee chondrocalcinosis (n = 90, age 67.7 ± 7.3 years, 50 women) were selected from the Osteoarthritis Initiative and matched to controls without radiographic chondrocalcinosis (n = 90). Visualization of calcium-containing crystals (CaC) was compared between 3D T1-weighted gradient-echo (T1GE), 3D dual echo steady-state (DESS), 2D intermediate-weighted (IW), and proton density (PD)-weighted fast spin-echo (FSE) sequences obtained with 3T MRI and correlated with a semiquantitative CaC score obtained from radiographs. Structural abnormalities were assessed using Whole-Organ MRI Score (WORMS) and logistic regression models were used to compare cartilage compartments with and without CaC. Correlations between CaC counts of MRI sequences and degree of radiographic calcifications were highest for GE (r T1GE = 0.73, P < 0.001; r DESS = 0.68, P < 0.001) compared to other sequences (P > 0.05). Meniscus WORMS was significantly higher in subjects with chondrocalcinosis compared to controls (P = 0.005). Cartilage defects were significantly more frequent in compartments with CaC than without (patella: P = 0.006; lateral tibia: P < 0.001; lateral femur condyle: P = 0.017). Gradient-echo sequences were most useful for the detection of chondrocalcinosis and presence of CaC was associated with higher prevalence of cartilage and meniscal damage. • Magnetic resonance imaging is useful for assessing burden of calcium-containing crystals (CaC). • Gradient-echo sequences are superior to fast spin echo sequences for CaC imaging. • Presence of CaC is associated with meniscus and cartilage degradation.
Meteor tracking via local pattern clustering in spatio-temporal domain
NASA Astrophysics Data System (ADS)
Kukal, Jaromír.; Klimt, Martin; Švihlík, Jan; Fliegel, Karel
2016-09-01
Reliable meteor detection is one of the crucial disciplines in astronomy. A variety of imaging systems is used for meteor path reconstruction. The traditional approach is based on analysis of 2D image sequences obtained from a double station video observation system. Precise localization of meteor path is difficult due to atmospheric turbulence and other factors causing spatio-temporal fluctuations of the image background. The proposed technique performs non-linear preprocessing of image intensity using Box-Cox transform as recommended in our previous work. Both symmetric and asymmetric spatio-temporal differences are designed to be robust in the statistical sense. Resulting local patterns are processed by data whitening technique and obtained vectors are classified via cluster analysis and Self-Organized Map (SOM).
VizieR Online Data Catalog: SN 2007on and SN 2011iv light curves (Gall+, 2018)
NASA Astrophysics Data System (ADS)
Gall, C.; Stritzinger, M. D.; Ashall, C.; Baron, E.; Burns, C. R.; Hoeflich, P.; Hsiao, E. Y.; Mazzali, P. A.; Phillips, M. M.; Filippenko, A. V.; Anderson, J. P.; Benetti, S.; Brown, P. J.; Campillay, A.; Challis, P.; Contreras, C.; Elias de La Rosa, N.; Folatelli, G.; Foley, R. J.; Fraser, M.; Holmbo, S.; Marion, G. H.; Morrell, N.; Pan, Y.-C.; Pignata, G.; Suntzeff, N. B.; Taddia, F.; Torres Robledo, S.; Valenti, S.
2017-11-01
Detailed optical and NIR light curves of SN 2007on obtained by the first phase of the Carnegie Supernova Project (CSP-I, 2004-2009; Hamuy et al., 2006PASP..118....2H) were published by Stritzinger et al. (2011, Cat. J/AJ/142/156).UV uvw2-, uvm2-, and uvw1-band imaging of both SN 2007on and SN 2011iv were obtained with Swift (+ UVOT). Photome- try of SN 2007on and SN 2011iv was computed following the method described in detail by Brown et al. (2014Ap&SS.354...89B), who use the calibration published by Breeveld et al. (2011, AIPCS, 1358, 373). The Swift UVOT images and photometry are also available as part of the Swift Optical Ultraviolet Supernova Archive (SOUSA; Brown et al. 2014Ap&SS.354...89B). Optical ugriBV-band imaging of SN 2007on and SN 2011iv was obtained with the Henrietta Swope 1.0m telescope (+ SITe3 direct CCD camera) located at the Las Campanas Observatory (LCO). The NIR YJH-band imaging of SN 2007on was obtained with the Swope (+ RetroCam) and the Irenee du Pont 2.5m (+ WIRC: Wide Field Infrared Camera) telescopes (Stritzinger et al., Cat. J/AJ/142/156), while in the case of SN 2011iv all NIR YJH-band imaging was taken with RetroCam attached to the Irenee du Pont telescope. The optical local sequence is calibrated relative to Landolt (1992AJ....104..372L) (BV) and Smith et al. (2002AJ....123.2121S) (ugri) standard-star fields observed over multiple photometric nights. The NIR J-band and H-band local sequences were calibrated relative to the Persson et al. (1998AJ....116.2475P) standard stars, while the Y- band local sequence was calibrated relative to standard Y-band magnitudes computed using a combination of stellar atmosphere models (Castelli & Kurucz, 2003, IAUSymp, 210, A20) with the J-Ks colours of the Persson et al. standard-star catalogue (Hamuy et al., 2006PASP..118....2H). (5 data files).
Four-dimensional ultrafast electron microscopy of phase transitions
Grinolds, Michael S.; Lobastov, Vladimir A.; Weissenrieder, Jonas; Zewail, Ahmed H.
2006-01-01
Reported here is direct imaging (and diffraction) by using 4D ultrafast electron microscopy (UEM) with combined spatial and temporal resolutions. In the first phase of UEM, it was possible to obtain snapshot images by using timed, single-electron packets; each packet is free of space–charge effects. Here, we demonstrate the ability to obtain sequences of snapshots (“movies”) with atomic-scale spatial resolution and ultrashort temporal resolution. Specifically, it is shown that ultrafast metal–insulator phase transitions can be studied with these achieved spatial and temporal resolutions. The diffraction (atomic scale) and images (nanometer scale) we obtained manifest the structural phase transition with its characteristic hysteresis, and the time scale involved (100 fs) is now studied by directly monitoring coordinates of the atoms themselves. PMID:17130445
The primary structure of the Saccharomyces cerevisiae gene for 3-phosphoglycerate kinase.
Hitzeman, R A; Hagie, F E; Hayflick, J S; Chen, C Y; Seeburg, P H; Derynck, R
1982-01-01
The DNA sequence of the gene for the yeast glycolytic enzyme, 3-phosphoglycerate kinase (PGK), has been obtained by sequencing part of a 3.1 kbp HindIII fragment obtained from the yeast genome. The structural gene sequence corresponds to a reading frame of 1251 bp coding for 416 amino acids with no intervening DNA sequences. The amino acid sequence is approximately 65 percent homologous with human and horse PGK protein sequences and is in general agreement with the published protein sequence for yeast PGK. As for other highly expressed structural genes in yeast, the coding sequence is highly codon biased with 95 percent of the amino acids coded for by a select 25 codons (out of 61 possible). Besides structural DNA sequence, 291 bp of 5'-flanking sequence and 286 bp of 3'-flanking sequence were determined. Transcription starts 36 nucleotides upstream from the translational start and stops 86-93 nucleotides downstream from the translational stop. These results suggest a non-polyadenylated mRNA length of 1373 to 1380 nucleotides, which is consistent with the observed length of 1500 nucleotides for polyadenylated PGK mRNA. A sequence TATATATAAA is found at 145 nucleotides upstream from the translational start. This sequence resembles the TATAAA box that is possibly associated with RNA polymerase II binding. Images PMID:6296791
2016-09-15
NASA's Cassini spacecraft stared at Saturn for nearly 44 hours on April 25 to 27, 2016, to obtain this movie showing just over four Saturn days. With Cassini's orbit being moved closer to the planet in preparation for the mission's 2017 finale, scientists took this final opportunity to capture a long movie in which the planet's full disk fit into a single wide-angle camera frame. Visible at top is the giant hexagon-shaped jet stream that surrounds the planet's north pole. Each side of this huge shape is slightly wider than Earth. The resolution of the 250 natural color wide-angle camera frames comprising this movie is 512x512 pixels, rather than the camera's full resolution of 1024x1024 pixels. Cassini's imaging cameras have the ability to take reduced-size images like these in order to decrease the amount of data storage space required for an observation. The spacecraft began acquiring this sequence of images just after it obtained the images to make a three-panel color mosaic. When it began taking images for this movie sequence, Cassini was 1,847,000 miles (2,973,000 kilometers) from Saturn, with an image scale of 355 kilometers per pixel. When it finished gathering the images, the spacecraft had moved 171,000 miles (275,000 kilometers) closer to the planet, with an image scale of 200 miles (322 kilometers) per pixel. A movie is available at http://photojournal.jpl.nasa.gov/catalog/PIA21047
Image denoising and deblurring using multispectral data
NASA Astrophysics Data System (ADS)
Semenishchev, E. A.; Voronin, V. V.; Marchuk, V. I.
2017-05-01
Currently decision-making systems get widespread. These systems are based on the analysis video sequences and also additional data. They are volume, change size, the behavior of one or a group of objects, temperature gradient, the presence of local areas with strong differences, and others. Security and control system are main areas of application. A noise on the images strongly influences the subsequent processing and decision making. This paper considers the problem of primary signal processing for solving the tasks of image denoising and deblurring of multispectral data. The additional information from multispectral channels can improve the efficiency of object classification. In this paper we use method of combining information about the objects obtained by the cameras in different frequency bands. We apply method based on simultaneous minimization L2 and the first order square difference sequence of estimates to denoising and restoring the blur on the edges. In case of loss of the information will be applied an approach based on the interpolation of data taken from the analysis of objects located in other areas and information obtained from multispectral camera. The effectiveness of the proposed approach is shown in a set of test images.
Laghi, A; Iafrate, F; Paolantonio, P; Iannaccone, R; Baeli, I; Ferrari, R; Catalano, C; Passariello, R
2002-04-01
To assess the normal anatomy of the anal sphincter complex using high-resolution MR imaging with phased -array coil. Twenty patients, 13 males and 7 females, ranging in age between 27 and 56 years underwent MRI evaluation of the pelvic region, using a superconductive 1.5 T magnet (maximum gradient strength, 25 mT/m; minimum rise time 600 microseconds, equipped with phased-array coil. High-resolution T2-weighted Turbo Spin Echo sequences (TR, 4055 ms; TE, 132 ms; matrix 390x512; in-plane resolution, 0.67x0.57 mm) were acquired on multiple axial, sagittal and coronal planes. Images were reviewed by two experienced gastrointestinal radiologists in order to evaluate the normal anal sphincter complex. Optimal image quality of the anal sphincter complex was obtained in all cases. Different muscular layers were observed between the upper and lower aspects of the anal canal. In the lower part of the anal canal, internal and external sphincter muscles could be observed; in the upper part, puborectal and internal sphincter muscles were depicted. Good visualization of intersphincteric space, levator ani muscle and ischioanal space was also obtained in all cases. High-resolution MR images with phased-array coil provide optimal depiction of the anal canal and the anal sphincter complex.
A Bayesian Framework for Human Body Pose Tracking from Depth Image Sequences
Zhu, Youding; Fujimura, Kikuo
2010-01-01
This paper addresses the problem of accurate and robust tracking of 3D human body pose from depth image sequences. Recovering the large number of degrees of freedom in human body movements from a depth image sequence is challenging due to the need to resolve the depth ambiguity caused by self-occlusions and the difficulty to recover from tracking failure. Human body poses could be estimated through model fitting using dense correspondences between depth data and an articulated human model (local optimization method). Although it usually achieves a high accuracy due to dense correspondences, it may fail to recover from tracking failure. Alternately, human pose may be reconstructed by detecting and tracking human body anatomical landmarks (key-points) based on low-level depth image analysis. While this method (key-point based method) is robust and recovers from tracking failure, its pose estimation accuracy depends solely on image-based localization accuracy of key-points. To address these limitations, we present a flexible Bayesian framework for integrating pose estimation results obtained by methods based on key-points and local optimization. Experimental results are shown and performance comparison is presented to demonstrate the effectiveness of the proposed approach. PMID:22399933
A Clinical Feasibility Study of Atrial and Ventricular Electromechanical Wave Imaging
Provost, Jean; Gambhir, Alok; Vest, John; Garan, Hasan; Konofagou, Elisa E.
2014-01-01
Background Cardiac Resynchronization Therapy (CRT) and atrial ablation currently lack a noninvasive imaging modality for reliable treatment planning and monitoring. Electromechanical Wave Imaging (EWI) is an ultrasound-based method that has previously been shown to be capable of noninvasively and transmurally mapping the activation sequence of the heart in animal studies by estimating and imaging the electromechanical wave, i.e., the transient strains occurring in response to the electrical activation, at both very high temporal and spatial resolution. Objective Demonstrate the feasibility of noninvasive transthoracic EWI for mapping the activation sequence during different cardiac rhythms in humans. Methods EWI was performed in CRT patients with a left bundle-branch block (LBBB), during sinus rhythm, left-ventricular pacing, and right-ventricular pacing and in atrial flutter (AFL) patients before intervention and correlated with results from invasive intracardiac electrical mapping studies during intervention. Additionally, the feasibility of single-heartbeat EWI at 2000 frames/s, is demonstrated in humans for the first time in a subject with both AFL and right bundle-branch-block. Results The electromechanical activation maps demonstrated the capability of EWI to localize the pacing sites and characterize the LBBB activation sequence transmurally in CRT patients. In AFL patients, the propagation patterns obtained with EWI were in agreement with results obtained from invasive intracardiac mapping studies. Conclusion Our findings demonstrate the potential capability of EWI to aid in monitoring and follow-up of patients undergoing CRT pacing therapy and atrial ablation with preliminary validation in vivo. PMID:23454060
Madsen, Karen Berenth; Egund, Niels; Jurik, Anne Grethe
2010-02-01
We investigated the potential concordance of 2 different magnetic resonance (MR) sequences - short-tau inversion recovery (STIR) and fat-saturated T1-weighted spin-echo after application of gadolinium (Gd) contrast medium to detect active bone marrow abnormalities at the sacroiliac joints (SIJ) in patients with spondyloarthritis (SpA). Blinded and using the Danish scoring method, we evaluated transaxial MR images of the 2 sequences in 40 patients with SpA with disease duration of 3-14 years. Both the cartilaginous and ligamentous portions of the SIJ were analyzed. There was a significant positive correlation between the activity scores obtained by STIR and Gd-enhanced sequences (p < 0.0001). Agreement in the detection of bone marrow abnormalities occurred in 60 of the 80 joints, 35 with and 25 without signs of active disease. Discordance with STIR-positive marrow activity scores occurred in only 11 joints; Gd-enhanced positive scores in 9 joints. The STIR sequence detected remnants of marrow activity in the periphery of chronic fatty replacement not seen or partly obscured on the Gd sequence. Small subchondral enhancing lesions may not be scored on the STIR sequence, mostly because of reduced image resolution. Active bone marrow abnormalities were detected nearly equally well with STIR and Gd-enhanced fat-suppressed T1 sequences in patients with SpA, with STIR being most sensitive to visualize active abnormalities in the periphery of chronic changes.
NASA Astrophysics Data System (ADS)
Hariharan, Harishwaran; Aklaghi, Nima; Baker, Clayton A.; Rangwala, Huzefa; Kosecka, Jana; Sikdar, Siddhartha
2016-04-01
In spite of major advances in biomechanical design of upper extremity prosthetics, these devices continue to lack intuitive control. Conventional myoelectric control strategies typically utilize electromyography (EMG) signal amplitude sensed from forearm muscles. EMG has limited specificity in resolving deep muscle activity and poor signal-to-noise ratio. We have been investigating alternative control strategies that rely on real-time ultrasound imaging that can overcome many of the limitations of EMG. In this work, we present an ultrasound image sequence classification method that utilizes spatiotemporal features to describe muscle activity and classify motor intent. Ultrasound images of the forearm muscles were obtained from able-bodied subjects and a trans-radial amputee while they attempted different hand movements. A grid-based approach is used to test the feasibility of using spatio-temporal features by classifying hand motions performed by the subjects. Using the leave-one-out cross validation on image sequences acquired from able-bodied subjects, we observe that the grid-based approach is able to discern four hand motions with 95.31% accuracy. In case of the trans-radial amputee, we are able to discern three hand motions with 80% accuracy. In a second set of experiments, we study classification accuracy by extracting spatio-temporal sub-sequences the depict activity due to the motion of local anatomical interfaces. Short time and space limited cuboidal sequences are initially extracted and assigned an optical flow behavior label, based on a response function. The image space is clustered based on the location of cuboids and features calculated from the cuboids in each cluster. Using sequences of known motions, we extract feature vectors that describe said motion. A K-nearest neighbor classifier is designed for classification experiments. Using the leave-one-out cross validation on image sequences for an amputee subject, we demonstrate that the classifier is able to discern three important hand motions with an accuracy of 93.33% accuracy, 91-100% precision and 80-100% recall rate. We anticipate that ultrasound imaging based methods will address some limitations of conventional myoelectric sensing, while adding advantages inherent to ultrasound imaging.
Assessment of alveolar bone marrow fat content using 15 T MRI.
Cortes, Arthur Rodriguez Gonzalez; Cohen, Ouri; Zhao, Ming; Aoki, Eduardo Massaharu; Ribeiro, Rodrigo Alves; Abu Nada, Lina; Costa, Claudio; Arita, Emiko Saito; Tamimi, Faleh; Ackerman, Jerome L
2018-03-01
Bone marrow fat is inversely correlated with bone mineral density. The aim of this study is to present a method to quantify alveolar bone marrow fat content using a 15 T magnetic resonance imaging (MRI) scanner. A 15 T MRI scanner with a 13-mm inner diameter loop-gap radiofrequency coil was used to scan seven 3-mm diameter alveolar bone biopsy specimens. A 3-D gradient-echo relaxation time (T1)-weighted pulse sequence was chosen to obtain images. All images were obtained with a voxel size (58 µm 3 ) sufficient to resolve trabecular spaces. Automated volume of the bone marrow fat content and derived bone volume fraction (BV/TV) were calculated. Results were compared with actual BV/TV obtained from micro-computed tomography (CT) scans. Mean fat tissue volume was 20.1 ± 11%. There was a significantly strong inverse correlation between fat tissue volume and BV/TV (r = -0.68; P = .045). Furthermore, there was a strong agreement between BV/TV derived from MRI and obtained with micro-CT (interclass correlation coefficient = 0.92; P = .001). Bone marrow fat of small alveolar bone biopsy specimens can be quantified with sufficient spatial resolution using an ultra-high-field MRI scanner and a T1-weighted pulse sequence. Copyright © 2017 Elsevier Inc. All rights reserved.
Bagnato, Francesca; Hametner, Simon; Pennell, David; Dortch, Richard; Dula, Adrienne N; Pawate, Siddharama; Smith, Seth A; Lassmann, Hans; Gore, John C; Welch, Edward B
2015-01-01
The high value of the specific absorption rate (SAR) of radio-frequency (RF) energy arising from the series of RF refocusing pulses in T2-weighted (T2-w) turbo spin echo (TSE) MRI hampers its clinical application at 7.0 Tesla (7T). T2-w gradient and spin echo (GRASE) uses the speed from gradient refocusing in combination with the chemical-shift/static magnetic field (B0) inhomogeneity insensitivity from spin-echo refocusing to acquire T2-w images with a limited number of refocusing RF pulses, thus reducing SAR. To investigate whether low SAR T2-w GRASE could replace T2-w TSE in detecting white matter (WM) disease in MS patients imaged at 7T. The .7 mm3 isotropic T2-w TSE and T2-w GRASE images with variable echo times (TEs) and echo planar imaging (EPI) factors were obtained on a 7T scanner from postmortem samples of MS brains. These samples were derived from brains of 3 female MS patients. WM lesions (WM-Ls) and normal-appearing WM (NAWM) signal intensity, WM-Ls/NAWM contrast-to-noise ratio (CNR) and MRI/myelin staining sections comparisons were obtained. GRASE sequences with EPI factor/TE = 3/50 and 3/75 ms were comparable to the SE technique for measures of CNR in WM-Ls and NAWM and for detection of WM-Ls. In all sequences, however, identification of areas with remyelination, Wallerian degeneration, and gray matter demyelination, as depicted by myelin staining, was not possible. T2-w GRASE images may replace T2-w TSE for clinical use. However, even at 7T, both sequences fail in detecting and characterizing MS disease beyond visible WM-Ls. Copyright © 2015 by the American Society of Neuroimaging.
Music-Elicited Emotion Identification Using Optical Flow Analysis of Human Face
NASA Astrophysics Data System (ADS)
Kniaz, V. V.; Smirnova, Z. N.
2015-05-01
Human emotion identification from image sequences is highly demanded nowadays. The range of possible applications can vary from an automatic smile shutter function of consumer grade digital cameras to Biofied Building technologies, which enables communication between building space and residents. The highly perceptual nature of human emotions leads to the complexity of their classification and identification. The main question arises from the subjective quality of emotional classification of events that elicit human emotions. A variety of methods for formal classification of emotions were developed in musical psychology. This work is focused on identification of human emotions evoked by musical pieces using human face tracking and optical flow analysis. Facial feature tracking algorithm used for facial feature speed and position estimation is presented. Facial features were extracted from each image sequence using human face tracking with local binary patterns (LBP) features. Accurate relative speeds of facial features were estimated using optical flow analysis. Obtained relative positions and speeds were used as the output facial emotion vector. The algorithm was tested using original software and recorded image sequences. The proposed technique proves to give a robust identification of human emotions elicited by musical pieces. The estimated models could be used for human emotion identification from image sequences in such fields as emotion based musical background or mood dependent radio.
Synthesis of image sequences for Korean sign language using 3D shape model
NASA Astrophysics Data System (ADS)
Hong, Mun-Ho; Choi, Chang-Seok; Kim, Chang-Seok; Jeon, Joon-Hyeon
1995-05-01
This paper proposes a method for offering information and realizing communication to the deaf-mute. The deaf-mute communicates with another person by means of sign language, but most people are unfamiliar with it. This method enables to convert text data into the corresponding image sequences for Korean sign language (KSL). Using a general 3D shape model of the upper body leads to generating the 3D motions of KSL. It is necessary to construct the general 3D shape model considering the anatomical structure of the human body. To obtain a personal 3D shape model, this general model is to adjust to the personal base images. Image synthesis for KSL consists of deforming a personal 3D shape model and texture-mapping the personal images onto the deformed model. The 3D motions for KSL have the facial expressions and the 3D movements of the head, trunk, arms and hands and are parameterized for easily deforming the model. These motion parameters of the upper body are extracted from a skilled signer's motion for each KSL and are stored to the database. Editing the parameters according to the inputs of text data yields to generate the image sequences of 3D motions.
Image Quality in High-resolution and High-cadence Solar Imaging
NASA Astrophysics Data System (ADS)
Denker, C.; Dineva, E.; Balthasar, H.; Verma, M.; Kuckein, C.; Diercke, A.; González Manrique, S. J.
2018-03-01
Broad-band imaging and even imaging with a moderate bandpass (about 1 nm) provides a photon-rich environment, where frame selection (lucky imaging) becomes a helpful tool in image restoration, allowing us to perform a cost-benefit analysis on how to design observing sequences for imaging with high spatial resolution in combination with real-time correction provided by an adaptive optics (AO) system. This study presents high-cadence (160 Hz) G-band and blue continuum image sequences obtained with the High-resolution Fast Imager (HiFI) at the 1.5-meter GREGOR solar telescope, where the speckle-masking technique is used to restore images with nearly diffraction-limited resolution. The HiFI employs two synchronized large-format and high-cadence sCMOS detectors. The median filter gradient similarity (MFGS) image-quality metric is applied, among others, to AO-corrected image sequences of a pore and a small sunspot observed on 2017 June 4 and 5. A small region of interest, which was selected for fast-imaging performance, covered these contrast-rich features and their neighborhood, which were part of Active Region NOAA 12661. Modifications of the MFGS algorithm uncover the field- and structure-dependency of this image-quality metric. However, MFGS still remains a good choice for determining image quality without a priori knowledge, which is an important characteristic when classifying the huge number of high-resolution images contained in data archives. In addition, this investigation demonstrates that a fast cadence and millisecond exposure times are still insufficient to reach the coherence time of daytime seeing. Nonetheless, the analysis shows that data acquisition rates exceeding 50 Hz are required to capture a substantial fraction of the best seeing moments, significantly boosting the performance of post-facto image restoration.
Ocular volumetry using fast high-resolution MRI during visual fixation.
Tanitame, K; Sone, T; Miyoshi, T; Tanitame, N; Otani, K; Akiyama, Y; Takasu, M; Date, S; Kiuchi, Y; Awai, K
2013-04-01
Volumetry may be useful for evaluating treatment response and prognosis of intraocular lesions. Phantom, volunteer, and patient studies were performed to determine whether ocular MR volumetry is reproducible. Half-Fourier single-shot RARE and FSPGR sequences at 1.5T with a 76-mm-diameter surface coil were optimized to obtain still ocular images. Volumetry accuracies of each sequence were compared with simulated subretinal phantom volumes. Ocular volumetry was performed in 15 volunteers twice in 1 week by using contiguous axial images of the globes while the subjects stared at a target, and images were acquired in 2 seconds before the subjects were instructed to blink, with this process repeated as necessary. Imaging, intraobserver, and interobserver reproducibility for volumes of the whole eyeball and anterior chamber were assessed. Ocular volumetry was also performed in 6 patients with intraocular tumors before and after treatment. The phantom study demonstrated that measurement error rates with RARE were significantly lower than with FSPGR (P<.01). The volunteer study demonstrated excellent imaging and intraobserver reproducibility of RARE volumetry for whole eyeballs and anterior chambers (P<.01). Although no interobserver differences were observed in anterior chamber volume measurement (P=.33), there was a significant difference between the 2 observers in eyeball volume measurement (P<.01). Follow-up volumetric data were useful for treatment decisions in all patients. Ocular volumetry from contiguous ultrafast RARE images obtained during visual fixation is feasible in volunteer and patient studies and is superior to FSPGR images.
Lung dynamic MRI deblurring using low-rank decomposition and dictionary learning.
Gou, Shuiping; Wang, Yueyue; Wu, Jiaolong; Lee, Percy; Sheng, Ke
2015-04-01
Lung dynamic MRI (dMRI) has emerged to be an appealing tool to quantify lung motion for both planning and treatment guidance purposes. However, this modality can result in blurry images due to intrinsically low signal-to-noise ratio in the lung and spatial/temporal interpolation. The image blurring could adversely affect the image processing that depends on the availability of fine landmarks. The purpose of this study is to reduce dMRI blurring using image postprocessing. To enhance the image quality and exploit the spatiotemporal continuity of dMRI sequences, a low-rank decomposition and dictionary learning (LDDL) method was employed to deblur lung dMRI and enhance the conspicuity of lung blood vessels. Fifty frames of continuous 2D coronal dMRI frames using a steady state free precession sequence were obtained from five subjects including two healthy volunteer and three lung cancer patients. In LDDL, the lung dMRI was decomposed into sparse and low-rank components. Dictionary learning was employed to estimate the blurring kernel based on the whole image, low-rank or sparse component of the first image in the lung MRI sequence. Deblurring was performed on the whole image sequences using deconvolution based on the estimated blur kernel. The deblurring results were quantified using an automated blood vessel extraction method based on the classification of Hessian matrix filtered images. Accuracy of automated extraction was calculated using manual segmentation of the blood vessels as the ground truth. In the pilot study, LDDL based on the blurring kernel estimated from the sparse component led to performance superior to the other ways of kernel estimation. LDDL consistently improved image contrast and fine feature conspicuity of the original MRI without introducing artifacts. The accuracy of automated blood vessel extraction was on average increased by 16% using manual segmentation as the ground truth. Image blurring in dMRI images can be effectively reduced using a low-rank decomposition and dictionary learning method using kernels estimated by the sparse component.
Research on hyperspectral dynamic scene and image sequence simulation
NASA Astrophysics Data System (ADS)
Sun, Dandan; Gao, Jiaobo; Sun, Kefeng; Hu, Yu; Li, Yu; Xie, Junhu; Zhang, Lei
2016-10-01
This paper presents a simulation method of hyper-spectral dynamic scene and image sequence for hyper-spectral equipment evaluation and target detection algorithm. Because of high spectral resolution, strong band continuity, anti-interference and other advantages, in recent years, hyper-spectral imaging technology has been rapidly developed and is widely used in many areas such as optoelectronic target detection, military defense and remote sensing systems. Digital imaging simulation, as a crucial part of hardware in loop simulation, can be applied to testing and evaluation hyper-spectral imaging equipment with lower development cost and shorter development period. Meanwhile, visual simulation can produce a lot of original image data under various conditions for hyper-spectral image feature extraction and classification algorithm. Based on radiation physic model and material characteristic parameters this paper proposes a generation method of digital scene. By building multiple sensor models under different bands and different bandwidths, hyper-spectral scenes in visible, MWIR, LWIR band, with spectral resolution 0.01μm, 0.05μm and 0.1μm have been simulated in this paper. The final dynamic scenes have high real-time and realistic, with frequency up to 100 HZ. By means of saving all the scene gray data in the same viewpoint image sequence is obtained. The analysis results show whether in the infrared band or the visible band, the grayscale variations of simulated hyper-spectral images are consistent with the theoretical analysis results.
Beqiri, Arian; Price, Anthony N; Padormo, Francesco; Hajnal, Joseph V; Malik, Shaihan J
2017-06-01
Cardiac magnetic resonance imaging (MRI) at high field presents challenges because of the high specific absorption rate and significant transmit field (B 1 + ) inhomogeneities. Parallel transmission MRI offers the ability to correct for both issues at the level of individual radiofrequency (RF) pulses, but must operate within strict hardware and safety constraints. The constraints are themselves affected by sequence parameters, such as the RF pulse duration and TR, meaning that an overall optimal operating point exists for a given sequence. This work seeks to obtain optimal performance by performing a 'sequence-level' optimization in which pulse sequence parameters are included as part of an RF shimming calculation. The method is applied to balanced steady-state free precession cardiac MRI with the objective of minimizing TR, hence reducing the imaging duration. Results are demonstrated using an eight-channel parallel transmit system operating at 3 T, with an in vivo study carried out on seven male subjects of varying body mass index (BMI). Compared with single-channel operation, a mean-squared-error shimming approach leads to reduced imaging durations of 32 ± 3% with simultaneous improvement in flip angle homogeneity of 32 ± 8% within the myocardium. © 2017 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
Evaluation of MRI sequences for quantitative T1 brain mapping
NASA Astrophysics Data System (ADS)
Tsialios, P.; Thrippleton, M.; Glatz, A.; Pernet, C.
2017-11-01
T1 mapping constitutes a quantitative MRI technique finding significant application in brain imaging. It allows evaluation of contrast uptake, blood perfusion, volume, providing a more specific biomarker of disease progression compared to conventional T1-weighted images. While there are many techniques for T1-mapping there is a wide range of reported T1-values in tissues, raising the issue of protocols reproducibility and standardization. The gold standard for obtaining T1-maps is based on acquiring IR-SE sequence. Widely used alternative sequences are IR-SE-EPI, VFA (DESPOT), DESPOT-HIFI and MP2RAGE that speed up scanning and fitting procedures. A custom MRI phantom was used to assess the reproducibility and accuracy of the different methods. All scans were performed using a 3T Siemens Prisma scanner. The acquired data processed using two different codes. The main difference was observed for VFA (DESPOT) which grossly overestimated T1 relaxation time by 214 ms [126 270] compared to the IR-SE sequence. MP2RAGE and DESPOT-HIFI sequences gave slightly shorter time than IR-SE (~20 to 30ms) and can be considered as alternative and time-efficient methods for acquiring accurate T1 maps of the human brain, while IR-SE-EPI gave identical result, at a cost of a lower image quality.
Estimation of bladder wall location in ultrasound images.
Topper, A K; Jernigan, M E
1991-05-01
A method of automatically estimating the location of the bladder wall in ultrasound images is proposed. Obtaining this estimate is intended to be the first stage in the development of an automatic bladder volume calculation system. The first step in the bladder wall estimation scheme involves globally processing the images using standard image processing techniques to highlight the bladder wall. Separate processing sequences are required to highlight the anterior bladder wall and the posterior bladder wall. The sequence to highlight the anterior bladder wall involves Gaussian smoothing and second differencing followed by zero-crossing detection. Median filtering followed by thresholding and gradient detection is used to highlight as much of the rest of the bladder wall as was visible in the original images. Then a 'bladder wall follower'--a line follower with rules based on the characteristics of ultrasound imaging and the anatomy involved--is applied to the processed images to estimate the bladder wall location by following the portions of the bladder wall which are highlighted and filling in the missing segments. The results achieved using this scheme are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morikawa, Shigehiro, E-mail: morikawa@belle.shiga-med.ac.jp; Inubushi, Toshiro; Kurumi, Yoshimasa
2004-08-15
We obtained clear and reproducible MR fluoroscopic images and temperature maps for MR image-guided microwave ablation of liver tumors under general anesthesia without suspending the artificial ventilation. Respiratory information was directly obtained from air-way pressure without a sensor on the chest wall. The trigger signal started scanning of one whole image with a spoiled gradient echo sequence. The delay time before the start of scanning was adjusted to acquire the data corresponding to the k-space center at the maximal expiratory phase. The triggered images were apparently clearer than the nontriggered ones and the location of the liver was consistent, whichmore » made targeting of the tumor easy. MR temperature images, which were highly susceptible to the movement of the liver, during microwave ablation using a proton resonance frequency method, could be obtained without suspending the artificial ventilation. Respiratory triggering technique was found to be useful for MR fluoroscopic images and MR temperature monitoring in MR-guided microwave ablation of liver tumors under general anesthesia.« less
Zhang, Yuxin; Holmes, James; Rabanillo, Iñaki; Guidon, Arnaud; Wells, Shane; Hernando, Diego
2018-09-01
To evaluate the reproducibility of quantitative diffusion measurements obtained with reduced Field of View (rFOV) and Multi-shot EPI (msEPI) acquisitions, using single-shot EPI (ssEPI) as a reference. Diffusion phantom experiments, and prostate diffusion-weighted imaging in healthy volunteers and patients with known or suspected prostate cancer were performed across the three different sequences. Quantitative diffusion measurements of apparent diffusion coefficient, and diffusion kurtosis parameters (healthy volunteers), were obtained and compared across diffusion sequences (rFOV, msEPI, and ssEPI). Other possible confounding factors like b-value combinations and acquisition parameters were also investigated. Both msEPI and rFOV have shown reproducible quantitative diffusion measurements relative to ssEPI; no significant difference in ADC was observed across pulse sequences in the standard diffusion phantom (p = 0.156), healthy volunteers (p ≥ 0.12) or patients (p ≥ 0.26). The ADC values within the non-cancerous central gland and peripheral zone of patients were 1.29 ± 0.17 × 10 -3 mm 2 /s and 1.74 ± 0.23 × 10 -3 mm 2 /s respectively. However, differences in quantitative diffusion parameters were observed across different number of averages for rFOV, and across b-value groups and diffusion models for all the three sequences. Both rFOV and msEPI have the potential to provide high image quality with reproducible quantitative diffusion measurements in prostate diffusion MRI. Copyright © 2018 Elsevier Inc. All rights reserved.
Cardiovascular magnetic resonance physics for clinicians: part II
2012-01-01
This is the second of two reviews that is intended to cover the essential aspects of cardiovascular magnetic resonance (CMR) physics in a way that is understandable and relevant to clinicians using CMR in their daily practice. Starting with the basic pulse sequences and contrast mechanisms described in part I, it briefly discusses further approaches to accelerate image acquisition. It then continues by showing in detail how the contrast behaviour of black blood fast spin echo and bright blood cine gradient echo techniques can be modified by adding rf preparation pulses to derive a number of more specialised pulse sequences. The simplest examples described include T2-weighted oedema imaging, fat suppression and myocardial tagging cine pulse sequences. Two further important derivatives of the gradient echo pulse sequence, obtained by adding preparation pulses, are used in combination with the administration of a gadolinium-based contrast agent for myocardial perfusion imaging and the assessment of myocardial tissue viability using a late gadolinium enhancement (LGE) technique. These two imaging techniques are discussed in more detail, outlining the basic principles of each pulse sequence, the practical steps required to achieve the best results in a clinical setting and, in the case of perfusion, explaining some of the factors that influence current approaches to perfusion image analysis. The key principles of contrast-enhanced magnetic resonance angiography (CE-MRA) are also explained in detail, especially focusing on timing of the acquisition following contrast agent bolus administration, and current approaches to achieving time resolved MRA. Alternative MRA techniques that do not require the use of an endogenous contrast agent are summarised, and the specialised pulse sequence used to image the coronary arteries, using respiratory navigator gating, is described in detail. The article concludes by explaining the principle behind phase contrast imaging techniques which create images that represent the phase of the MR signal rather than the magnitude. It is shown how this principle can be used to generate velocity maps by designing gradient waveforms that give rise to a relative phase change that is proportional to velocity. Choice of velocity encoding range and key pitfalls in the use of this technique are discussed. PMID:22995744
Liver imaging with ferumoxides (Feridex): fundamentals, controversies, and practical aspects.
Clément, O; Siauve, N; Cuénod, C A; Frija, G
1998-06-01
Superparamagnetic nanoparticles (Feridex) have been recently made available to the radiological community as a contrast agent for MR imaging of the liver. This article reviews the principal physicochemical characteristics of this new compound, with an emphasis on the explanation of the contrast obtained (either positive or negative enhancement) that depends on the local concentration and the sequence used. The clinical use of Feridex is detailed, both for lesion detection and characterization. Finally, some guidelines for image optimization are given.
Kavianpour, Hamidreza; Vasighi, Mahdi
2017-02-01
Nowadays, having knowledge about cellular attributes of proteins has an important role in pharmacy, medical science and molecular biology. These attributes are closely correlated with the function and three-dimensional structure of proteins. Knowledge of protein structural class is used by various methods for better understanding the protein functionality and folding patterns. Computational methods and intelligence systems can have an important role in performing structural classification of proteins. Most of protein sequences are saved in databanks as characters and strings and a numerical representation is essential for applying machine learning methods. In this work, a binary representation of protein sequences is introduced based on reduced amino acids alphabets according to surrounding hydrophobicity index. Many important features which are hidden in these long binary sequences can be clearly displayed through their cellular automata images. The extracted features from these images are used to build a classification model by support vector machine. Comparing to previous studies on the several benchmark datasets, the promising classification rates obtained by tenfold cross-validation imply that the current approach can help in revealing some inherent features deeply hidden in protein sequences and improve the quality of predicting protein structural class.
Improvement of sidestream dark field imaging with an image acquisition stabilizer.
Balestra, Gianmarco M; Bezemer, Rick; Boerma, E Christiaan; Yong, Ze-Yie; Sjauw, Krishan D; Engstrom, Annemarie E; Koopmans, Matty; Ince, Can
2010-07-13
In the present study we developed, evaluated in volunteers, and clinically validated an image acquisition stabilizer (IAS) for Sidestream Dark Field (SDF) imaging. The IAS is a stainless steel sterilizable ring which fits around the SDF probe tip. The IAS creates adhesion to the imaged tissue by application of negative pressure. The effects of the IAS on the sublingual microcirculatory flow velocities, the force required to induce pressure artifacts (PA), the time to acquire a stable image, and the duration of stable imaging were assessed in healthy volunteers. To demonstrate the clinical applicability of the SDF setup in combination with the IAS, simultaneous bilateral sublingual imaging of the microcirculation were performed during a lung recruitment maneuver (LRM) in mechanically ventilated critically ill patients. One SDF device was operated handheld; the second was fitted with the IAS and held in position by a mechanic arm. Lateral drift, number of losses of image stability and duration of stable imaging of the two methods were compared. Five healthy volunteers were studied. The IAS did not affect microcirculatory flow velocities. A significantly greater force had to applied onto the tissue to induced PA with compared to without IAS (0.25 +/- 0.15 N without vs. 0.62 +/- 0.05 N with the IAS, p < 0.001). The IAS ensured an increased duration of a stable image sequence (8 +/- 2 s without vs. 42 +/- 8 s with the IAS, p < 0.001). The time required to obtain a stable image sequence was similar with and without the IAS. In eight mechanically ventilated patients undergoing a LRM the use of the IAS resulted in a significantly reduced image drifting and enabled the acquisition of significantly longer stable image sequences (24 +/- 5 s without vs. 67 +/- 14 s with the IAS, p = 0.006). The present study has validated the use of an IAS for improvement of SDF imaging by demonstrating that the IAS did not affect microcirculatory perfusion in the microscopic field of view. The IAS improved both axial and lateral SDF image stability and thereby increased the critical force required to induce pressure artifacts. The IAS ensured a significantly increased duration of maintaining a stable image sequence.
Steer-PROP: a GRASE-PROPELLER sequence with interecho steering gradient pulses.
Srinivasan, Girish; Rangwala, Novena; Zhou, Xiaohong Joe
2018-05-01
This study demonstrates a novel PROPELLER (periodically rotated overlapping parallel lines with enhanced reconstruction) pulse sequence, termed Steer-PROP, based on gradient and spin echo (GRASE), to reduce the imaging times and address phase errors inherent to GRASE. The study also illustrates the feasibility of using Steer-PROP as an alternative to single-shot echo planar imaging (SS-EPI) to produce distortion-free diffusion images in all imaging planes. Steer-PROP uses a series of blip gradient pulses to produce N (N = 3-5) adjacent k-space blades in each repetition time, where N is the number of gradient echoes in a GRASE sequence. This sampling strategy enables a phase correction algorithm to systematically address the GRASE phase errors as well as the motion-induced phase inconsistency. Steer-PROP was evaluated on phantoms and healthy human subjects at both 1.5T and 3.0T for T 2 - and diffusion-weighted imaging. Steer-PROP produced similar image quality as conventional PROPELLER based on fast spin echo (FSE), while taking only a fraction (e.g., 1/3) of the scan time. The robustness against motion in Steer-PROP was comparable to that of FSE-based PROPELLER. Using Steer-PROP, high quality and distortion-free diffusion images were obtained from human subjects in all imaging planes, demonstrating a considerable advantage over SS-EPI. The proposed Steer-PROP sequence can substantially reduce the scan times compared with FSE-based PROPELLER while achieving adequate image quality. The novel k-space sampling strategy in Steer-PROP not only enables an integrated phase correction method that addresses various sources of phase errors, but also minimizes the echo spacing compared with alternative sampling strategies. Steer-PROP can also be a viable alternative to SS-EPI to decrease image distortion in all imaging planes. Magn Reson Med 79:2533-2541, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
The MESSENGER Earth Flyby: Results from the Mercury Dual Imaging System
NASA Astrophysics Data System (ADS)
Prockter, L. M.; Murchie, S. L.; Hawkins, S. E.; Robinson, M. S.; Shelton, R. G.; Vaughan, R. M.; Solomon, S. C.
2005-12-01
The MESSENGER (MErcury Surface, Space ENvironment, Geochemistry, and Ranging) spacecraft was launched from Cape Canaveral Air Force Station, Fla., on 3 August 2004. It returned to Earth for a gravity assist on 2 August 2005, providing an exceptional opportunity for the Science Team to perform instrument calibrations and to test some of the data acquisition sequences that will be used to meet Mercury science goals. The Mercury Dual Imaging System (MDIS), one of seven science instruments on MESSENGER, consists of a wide-angle and a narrow-angle imager that together can map landforms, track variations in surface color, and carry out stereogrammetry. The two imagers are mounted on a pivot platform that enables the instrument to point in a different direction from the spacecraft boresight, allowing great flexibility and increased imaging coverage. During the week prior to the closest approach to Earth, MDIS acquired a number of images of the Moon for radiometric calibration and to test optical navigation sequences that will be used to target planetary flybys. Twenty-four hours before closest approach, images of the Earth were acquired with 11 filters of the wide-angle camera. After MDIS flew over the nightside of the Earth, additional color images centered on South America were obtained at sufficiently high resolution to discriminate small-scale features such as the Amazon River and Lake Titicaca. During its departure from Earth, MDIS acquired a sequence of images taken in three filters every 4 minutes over a period of 24 hours. These images have been assembled into a movie of a crescent Earth that begins as South America slides across the terminator into darkness and continues for one full Earth rotation. This movie and the other images have provided a successful test of the sequences that will be used during the MESSENGER Mercury flybys in 2008 and 2009 and have demonstrated the high quality of the MDIS wide-angle camera.
Hussain, Shahid M; De Becker, Jan; Hop, Wim C J; Dwarkasing, Soendersing; Wielopolski, Piotr A
2005-03-01
To optimize and assess the feasibility of a single-shot black-blood T2-weighted spin-echo echo-planar imaging (SSBB-EPI) sequence for MRI of the liver using sensitivity encoding (SENSE), and compare the results with those obtained with a T2-weighted turbo spin-echo (TSE) sequence. Six volunteers and 16 patients were scanned at 1.5T (Philips Intera). In the volunteer study, we optimized the SSBB-EPI sequence by interactively changing the parameters (i.e., the resolution, echo time (TE), diffusion weighting with low b-values, and polarity of the phase-encoding gradient) with regard to distortion, suppression of the blood signal, and sensitivity to motion. The influence of each change was assessed. The optimized SSBB-EPI sequence was applied in patients (N = 16). A number of items, including the overall image quality (on a scale of 1-5), were used for graded evaluation. In addition, the signal-to-noise ratio (SNR) of the liver was calculated. Statistical analysis was carried out with the use of Wilcoxon's signed rank test for comparison of the SSBB-EPI and TSE sequences, with P = 0.05 considered the limit for significance. The SSBB-EPI sequence was improved by the following steps: 1) less frequency points than phase-encoding steps, 2) a b-factor of 20, and 3) a reversed polarity of the phase-encoding gradient. In patients, the mean overall image quality score for the optimized SSBB-EPI (3.5 (range: 1-4)) and TSE (3.6 (range: 3-4)), and the SNR of the liver on SSBB-EPI (mean +/- SD = 7.6 +/- 4.0) and TSE (8.9 +/- 4.6) were not significantly different (P > .05). Optimized SSBB-EPI with SENSE proved to be feasible in patients, and the overall image quality and SNR of the liver were comparable to those achieved with the standard respiratory-triggered T2-weighted TSE sequence. (c) 2005 Wiley-Liss, Inc.
van den Bos, Indra C; Hussain, Shahid M; Krestin, Gabriel P; Wielopolski, Piotr A
2008-07-01
Institutional Review Board approval and signed informed consent were obtained by all participants for an ongoing sequence optimization project at 3.0 T. The purpose of this study was to evaluate breath-hold diffusion-induced black-blood echo-planar imaging (BBEPI) as a potential alternative for specific absorption rate (SAR)-intensive spin-echo sequences, in particular, the fast spin-echo (FSE) sequences, at 3.0 T. Fourteen healthy volunteers (seven men, seven women; mean age +/- standard deviation, 32.7 years +/- 6.8) were imaged for this purpose. Liver coverage (20 cm, z-axis) was always performed in one 25-second breath hold. Imaging parameters were varied interactively with regard to echo time, diffusion b value, and voxel size. Images were evaluated and compared with fat-suppressed T2-weighted FSE images for image quality, liver delineation, geometric distortions, fat suppression, suppression of the blood signal, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR). An optimized short- (25 msec) and long-echo (80 msec) BBEPI provided full anatomic, single breath-hold liver coverage (100 and 50 sections, respectively), with resulting voxel sizes of 3.3 x 2.7 x 2.0 mm and 3.3 x 2.7 x 4.0 mm, respectively. Repetition time was 6300 msec, matrix size was 160 x 192, and an acceleration factor of 2.00 was used. b Values of more than 20 sec/mm(2) showed better suppression of the blood signal but b values of 10 sec/mm(2) provided improved volume coverage and signal consistency. Compared with fat-suppressed T2-weighted FSE, the optimized BBEPI sequence provided (a) comparable image quality and liver delineation, (b) acceptable geometric distortions, (c) improved suppression of fat and blood signals, and (d) high CNR and SNR. BBEPI is feasible for fast, low-SAR, thin-section morphologic imaging of the entire liver in a single breath hold at 3.0 T. (c) RSNA, 2008.
Magnetic resonance features of cerebral malaria.
Yadav, P; Sharma, R; Kumar, S; Kumar, U
2008-06-01
Cerebral malaria is a major health hazard, with a high incidence of mortality. The disease is endemic in many developing countries, but with a greater increase in tourism, occasional cases may be detected in countries where the disease in not prevalent. Early diagnosis and evaluation of cerebral involvement in malaria utilizing modern imaging modalities have an impact on the treatment and clinical outcome. To evaluate the magnetic resonance (MR) features of patients with cerebral malaria presenting with altered sensorium. We present the findings in three patients with cerebral malaria presenting with altered sensorium. MR imaging using a 1.5-Tesla unit was carried out. The sequences performed were 5-mm-thick T1-weighted, T2-weighted, fluid-attenuated inversion-recovery (FLAIR), and T2-weighted gradient-echo axial sequences, and sagittal and coronal FLAIR. Diffusion-weighted imaging was performed with b values of 0 and 1000 s/mm(2), and apparent diffusion coefficient (ADC) maps were obtained. Focal hyperintensities in the bilateral periventricular white matter, corpus callosum, occipital subcortex, and bilateral thalami were noticed on T2-weighted and FLAIR sequences. The lesions were more marked in the splenium of the corpus callosum. No enhancement on postcontrast T1-weighted MR images was observed. There was no evidence of restricted diffusion on the diffusion-weighted sequence and ADC map. MR is a sensitive imaging modality, with a role in the assessment of cerebral lesions in malaria. Focal white matter and corpus callosal lesions without any restricted diffusion were the key findings in our patients.
NASA Technical Reports Server (NTRS)
Choudhary, Alok Nidhi; Leung, Mun K.; Huang, Thomas S.; Patel, Janak H.
1989-01-01
Computer vision systems employ a sequence of vision algorithms in which the output of an algorithm is the input of the next algorithm in the sequence. Algorithms that constitute such systems exhibit vastly different computational characteristics, and therefore, require different data decomposition techniques and efficient load balancing techniques for parallel implementation. However, since the input data for a task is produced as the output data of the previous task, this information can be exploited to perform knowledge based data decomposition and load balancing. Presented here are algorithms for a motion estimation system. The motion estimation is based on the point correspondence between the involved images which are a sequence of stereo image pairs. Researchers propose algorithms to obtain point correspondences by matching feature points among stereo image pairs at any two consecutive time instants. Furthermore, the proposed algorithms employ non-iterative procedures, which results in saving considerable amounts of computation time. The system consists of the following steps: (1) extraction of features; (2) stereo match of images in one time instant; (3) time match of images from consecutive time instants; (4) stereo match to compute final unambiguous points; and (5) computation of motion parameters.
Corteville, D M R; Kjïrstad, Å; Henzler, T; Zöllner, F G; Schad, L R
2015-05-01
Fourier decomposition (FD) is a noninvasive method for assessing ventilation and perfusion-related information in the lungs. However, the technique has a low signal-to-noise ratio (SNR) in the lung parenchyma. We present an approach to increase the SNR in both morphological and functional images. The data used to create functional FD images are usually acquired using a standard balanced steady-state free precession (bSSFP) sequence. In the standard sequence, the possible range of the flip angle is restricted due to specific absorption rate (SAR) limitations. Thus, using a variable flip angle approach as an optimization is possible. This was validated using measurements from a phantom and six healthy volunteers. The SNR in both the morphological and functional FD images was increased by 32%, while the SAR restrictions were kept unchanged. Furthermore, due to the higher SNR, the effective resolution of the functional images was increased visibly. The variable flip angle approach did not introduce any new transient artifacts, and blurring artifacts were minimized. Both a gain in SNR and an effective resolution gain in functional lung images can be obtained using the FD method in conjunction with a variable flip angle optimized bSSFP sequence. © 2014 Wiley Periodicals, Inc.
Svoboda, David; Ulman, Vladimir
2017-01-01
The proper analysis of biological microscopy images is an important and complex task. Therefore, it requires verification of all steps involved in the process, including image segmentation and tracking algorithms. It is generally better to verify algorithms with computer-generated ground truth datasets, which, compared to manually annotated data, nowadays have reached high quality and can be produced in large quantities even for 3D time-lapse image sequences. Here, we propose a novel framework, called MitoGen, which is capable of generating ground truth datasets with fully 3D time-lapse sequences of synthetic fluorescence-stained cell populations. MitoGen shows biologically justified cell motility, shape and texture changes as well as cell divisions. Standard fluorescence microscopy phenomena such as photobleaching, blur with real point spread function (PSF), and several types of noise, are simulated to obtain realistic images. The MitoGen framework is scalable in both space and time. MitoGen generates visually plausible data that shows good agreement with real data in terms of image descriptors and mean square displacement (MSD) trajectory analysis. Additionally, it is also shown in this paper that four publicly available segmentation and tracking algorithms exhibit similar performance on both real and MitoGen-generated data. The implementation of MitoGen is freely available.
Oner, A Y; Tali, T; Celikyay, F; Celik, A; Le Roux, P
2007-03-01
To prospectively evaluate the signal-to-noise ratio (SNR) improvement in diffusion-weighted imaging (DWI) of the spine with the use of a newly developed non-Carr-Purcell-Meiboom-Gill (non-CPMG) single-shot fast spin-echo (SS-FSE) sequence and its effect on apparent diffusion coefficient (ADC) measurements. Twenty-four patients were enrolled after written informed consent. DWI of the spine was obtained with an echo-planar imaging (EPI)-based sequence followed by a non-CPMG SS-FSE technique. SNR and ADC values were measured over a lesion-free vertebral corpus. A quality score was assigned for each set of images to assess the image quality. When a spinal lesion was present, contrast-to-noise ratio (CNR) and ADC were also measured. Student t tests were used for statistical analysis. Mean SNR values were 5.83 +/- 2.2 and 11.68 +/- 2.87 for EPI and non-CPMG SS-FSE DWI, respectively. SNR values measured in DWI using parallel imaging were found to be significantly higher (P < .01). Mean ADCs of the spine were 0.53 +/- 0.15 and 0.35 +/- 0.15 x 10(-3) mm(2)/s for EPI and non-CPMG SS-FSE DWI, respectively. Quality scores were found to be higher for the non-CPMG SS-FSE DWI technique (P < .05). Overall lesion CNR was found to be higher in DWI with non-CPMG SS-FSE. The non-CPMG SS-FSE technique provides a significant improvement to current EPI-based DWI of the spine. A study including a larger number of patients is required to determine the use of this DWI sequence as a supplementary tool to conventional MR imaging for increasing diagnostic confidence in spinal pathologic conditions.
Motion estimation of magnetic resonance cardiac images using the Wigner-Ville and hough transforms
NASA Astrophysics Data System (ADS)
Carranza, N.; Cristóbal, G.; Bayerl, P.; Neumann, H.
2007-12-01
Myocardial motion analysis and quantification is of utmost importance for analyzing contractile heart abnormalities and it can be a symptom of a coronary artery disease. A fundamental problem in processing sequences of images is the computation of the optical flow, which is an approximation of the real image motion. This paper presents a new algorithm for optical flow estimation based on a spatiotemporal-frequency (STF) approach. More specifically it relies on the computation of the Wigner-Ville distribution (WVD) and the Hough Transform (HT) of the motion sequences. The latter is a well-known line and shape detection method that is highly robust against incomplete data and noise. The rationale of using the HT in this context is that it provides a value of the displacement field from the STF representation. In addition, a probabilistic approach based on Gaussian mixtures has been implemented in order to improve the accuracy of the motion detection. Experimental results in the case of synthetic sequences are compared with an implementation of the variational technique for local and global motion estimation, where it is shown that the results are accurate and robust to noise degradations. Results obtained with real cardiac magnetic resonance images are presented.
NASA Astrophysics Data System (ADS)
Carranza, N.; Cristóbal, G.; Sroubek, F.; Ledesma-Carbayo, M. J.; Santos, A.
2006-08-01
Myocardial motion analysis and quantification is of utmost importance for analyzing contractile heart abnormalities and it can be a symptom of a coronary artery disease. A fundamental problem in processing sequences of images is the computation of the optical flow, which is an approximation to the real image motion. This paper presents a new algorithm for optical flow estimation based on a spatiotemporal-frequency (STF) approach, more specifically on the computation of the Wigner-Ville distribution (WVD) and the Hough Transform (HT) of the motion sequences. The later is a well-known line and shape detection method very robust against incomplete data and noise. The rationale of using the HT in this context is because it provides a value of the displacement field from the STF representation. In addition, a probabilistic approach based on Gaussian mixtures has been implemented in order to improve the accuracy of the motion detection. Experimental results with synthetic sequences are compared against an implementation of the variational technique for local and global motion estimation, where it is shown that the results obtained here are accurate and robust to noise degradations. Real cardiac magnetic resonance images have been tested and evaluated with the current method.
Pulsed magnetization transfer contrast MRI by a sequence with water selective excitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schick, F.
1996-01-01
A water selective SE imaging sequence was developed providing suitable properties for the assessment of magnetization transfer (MT) effects in tissues with considerable amounts of fat. The sequence with water selective excitation and slice selective refocusing combines the following features: The RIF exposure on the macromolecular protons is relatively low for single slice imaging without MT prepulses, since no additional pulses for fat saturation are necessary. Water selection by frequency selective excitation diminishes faults in the subtraction of images recorded with and without MT prepulses (which might arise from movements). High differences in the signal amplitudes from hyaline cartilage andmore » muscle tissue were obtained comparing images recorded with irradiation of the series of prepulses for MT and those lacking MT prepulses. Utilizations of the described water selective approach for the assessment of MT effects in lesions of cartilage and bone are demonstrated. MT saturation was also examined in muscles with fatty degeneration of patients suffering from progressive muscular dystrophy. The described technique allows determination of MT effects with good precision in a single slice, especially in regions with dominating fat signals. 22 refs., 5 figs.« less
Managing complex processing of medical image sequences by program supervision techniques
NASA Astrophysics Data System (ADS)
Crubezy, Monica; Aubry, Florent; Moisan, Sabine; Chameroy, Virginie; Thonnat, Monique; Di Paola, Robert
1997-05-01
Our objective is to offer clinicians wider access to evolving medical image processing (MIP) techniques, crucial to improve assessment and quantification of physiological processes, but difficult to handle for non-specialists in MIP. Based on artificial intelligence techniques, our approach consists in the development of a knowledge-based program supervision system, automating the management of MIP libraries. It comprises a library of programs, a knowledge base capturing the expertise about programs and data and a supervision engine. It selects, organizes and executes the appropriate MIP programs given a goal to achieve and a data set, with dynamic feedback based on the results obtained. It also advises users in the development of new procedures chaining MIP programs.. We have experimented the approach for an application of factor analysis of medical image sequences as a means of predicting the response of osteosarcoma to chemotherapy, with both MRI and NM dynamic image sequences. As a result our program supervision system frees clinical end-users from performing tasks outside their competence, permitting them to concentrate on clinical issues. Therefore our approach enables a better exploitation of possibilities offered by MIP and higher quality results, both in terms of robustness and reliability.
Influence of solar flares on the X-ray corona
NASA Technical Reports Server (NTRS)
Rust, D. M.; Batchelor, D. A.
1986-01-01
Sequences of X-ray images of solar flares, obtained with the Hard X-ray Imaging Spectrometer on the SMM spacecraft, reveal many dynamical phenomena. Movies of 20 flares recorded with 6-sec time resolution were examined. A preliminary analysis of the events as a group are presented, and some new aspects of the well-studied May 21, 1980 flare and a November 6, 1980 flare are discussed.
Phased Array 3D MR Spectroscopic Imaging of the Brain at 7 Tesla
Xu, Duan; Cunningham, Charles H; Chen, Albert P.; Li, Yan; Kelley, Douglas AC; Mukherjee, Pratik; Pauly, John M.; Nelson, Sarah J.; Vigneron, Daniel B.
2008-01-01
Ultrahigh field 7T MR scanners offer the potential for greatly improved MR spectroscopic imaging due to increased sensitivity and spectral resolution. Prior 7T human single-voxel MRS studies have shown significant increases in SNR and spectral resolution as compared to lower magnetic fields, but have not demonstrated the increase in spatial resolution and multivoxel coverage possible with 7T MR spectroscopic imaging. The goal of this study was to develop specialized rf pulses and sequences for 3D MRSI at 7T to address the challenges of increased chemical shift misregistration, B1 power limitations, and increased spectral bandwidth. The new 7T MRSI sequence was tested in volunteer studies and demonstrated the feasibility of obtaining high SNR phased-array 3D MRSI from the human brain. PMID:18486386
[Cardiac Synchronization Function Estimation Based on ASM Level Set Segmentation Method].
Zhang, Yaonan; Gao, Yuan; Tang, Liang; He, Ying; Zhang, Huie
At present, there is no accurate and quantitative methods for the determination of cardiac mechanical synchronism, and quantitative determination of the synchronization function of the four cardiac cavities with medical images has a great clinical value. This paper uses the whole heart ultrasound image sequence, and segments the left & right atriums and left & right ventricles of each frame. After the segmentation, the number of pixels in each cavity and in each frame is recorded, and the areas of the four cavities of the image sequence are therefore obtained. The area change curves of the four cavities are further extracted, and the synchronous information of the four cavities is obtained. Because of the low SNR of Ultrasound images, the boundary lines of cardiac cavities are vague, so the extraction of cardiac contours is still a challenging problem. Therefore, the ASM model information is added to the traditional level set method to force the curve evolution process. According to the experimental results, the improved method improves the accuracy of the segmentation. Furthermore, based on the ventricular segmentation, the right and left ventricular systolic functions are evaluated, mainly according to the area changes. The synchronization of the four cavities of the heart is estimated based on the area changes and the volume changes.
Investigation of the Iterative Phase Retrieval Algorithm for Interferometric Applications
NASA Astrophysics Data System (ADS)
Gombkötő, Balázs; Kornis, János
2010-04-01
Sequentially recorded intensity patterns reflected from a coherently illuminated diffuse object can be used to reconstruct the complex amplitude of the scattered beam. Several iterative phase retrieval algorithms are known in the literature to obtain the initially unknown phase from these longitudinally displaced intensity patterns. When two sequences are recorded in two different states of a centimeter sized object in optical setups that are similar to digital holographic interferometry-but omitting the reference wave-, displacement, deformation, or shape measurement is theoretically possible. To do this, the retrieved phase pattern should contain information not only about the intensities and locations of the point sources of the object surface, but their relative phase as well. Not only experiments require strict mechanical precision to record useful data, but even in simulations several parameters influence the capabilities of iterative phase retrieval, such as object to camera distance range, uniform or varying camera step sequence, speckle field characteristics, and sampling. Experiments were done to demonstrate this principle with an as large as 5×5 cm sized deformable object as well. Good initial results were obtained in an imaging setup, where the intensity pattern sequences were recorded near the image plane.
Individual predictions of eye-movements with dynamic scenes
NASA Astrophysics Data System (ADS)
Barth, Erhardt; Drewes, Jan; Martinetz, Thomas
2003-06-01
We present a model that predicts saccadic eye-movements and can be tuned to a particular human observer who is viewing a dynamic sequence of images. Our work is motivated by applications that involve gaze-contingent interactive displays on which information is displayed as a function of gaze direction. The approach therefore differs from standard approaches in two ways: (1) we deal with dynamic scenes, and (2) we provide means of adapting the model to a particular observer. As an indicator for the degree of saliency we evaluate the intrinsic dimension of the image sequence within a geometric approach implemented by using the structure tensor. Out of these candidate saliency-based locations, the currently attended location is selected according to a strategy found by supervised learning. The data are obtained with an eye-tracker and subjects who view video sequences. The selection algorithm receives candidate locations of current and past frames and a limited history of locations attended in the past. We use a linear mapping that is obtained by minimizing the quadratic difference between the predicted and the actually attended location by gradient descent. Being linear, the learned mapping can be quickly adapted to the individual observer.
Parallel algorithm for determining motion vectors in ice floe images by matching edge features
NASA Technical Reports Server (NTRS)
Manohar, M.; Ramapriyan, H. K.; Strong, J. P.
1988-01-01
A parallel algorithm is described to determine motion vectors of ice floes using time sequences of images of the Arctic ocean obtained from the Synthetic Aperture Radar (SAR) instrument flown on-board the SEASAT spacecraft. Researchers describe a parallel algorithm which is implemented on the MPP for locating corresponding objects based on their translationally and rotationally invariant features. The algorithm first approximates the edges in the images by polygons or sets of connected straight-line segments. Each such edge structure is then reduced to a seed point. Associated with each seed point are the descriptions (lengths, orientations and sequence numbers) of the lines constituting the corresponding edge structure. A parallel matching algorithm is used to match packed arrays of such descriptions to identify corresponding seed points in the two images. The matching algorithm is designed such that fragmentation and merging of ice floes are taken into account by accepting partial matches. The technique has been demonstrated to work on synthetic test patterns and real image pairs from SEASAT in times ranging from .5 to 0.7 seconds for 128 x 128 images.
Automated segmentation of three-dimensional MR brain images
NASA Astrophysics Data System (ADS)
Park, Jonggeun; Baek, Byungjun; Ahn, Choong-Il; Ku, Kyo Bum; Jeong, Dong Kyun; Lee, Chulhee
2006-03-01
Brain segmentation is a challenging problem due to the complexity of the brain. In this paper, we propose an automated brain segmentation method for 3D magnetic resonance (MR) brain images which are represented as a sequence of 2D brain images. The proposed method consists of three steps: pre-processing, removal of non-brain regions (e.g., the skull, meninges, other organs, etc), and spinal cord restoration. In pre-processing, we perform adaptive thresholding which takes into account variable intensities of MR brain images corresponding to various image acquisition conditions. In segmentation process, we iteratively apply 2D morphological operations and masking for the sequences of 2D sagittal, coronal, and axial planes in order to remove non-brain tissues. Next, final 3D brain regions are obtained by applying OR operation for segmentation results of three planes. Finally we reconstruct the spinal cord truncated during the previous processes. Experiments are performed with fifteen 3D MR brain image sets with 8-bit gray-scale. Experiment results show the proposed algorithm is fast, and provides robust and satisfactory results.
Fielden, Samuel W.; Meyer, Craig H.
2014-01-01
Purpose The major hurdle to widespread adoption of spiral trajectories has been their poor off-resonance performance. Here we present a self-correcting spiral k-space trajectory that avoids much of the well-known spiral blurring during data acquisition. Theory and Methods In comparison with a traditional spiral-out trajectory, the spiral-in/out trajectory has improved off-resonance performance. By combining two spiral-in/out acquisitions, one rotated 180° in k-space compared to the other, multi-shot spiral-in/out artifacts are eliminated. A phantom was scanned with the center frequency manually tuned 20, 40, 80, and 160 Hz off-resonance with both a spiral-out gradient echo sequence and the redundant spiral-in/out sequence. The phantom was also imaged in an oblique orientation in order to demonstrate improved concomitant gradient field performance of the sequence, and was additionally incorporated into a spiral turbo spin echo sequence for brain imaging. Results Phantom studies with manually-tuned off-resonance agree well with theoretical calculations, showing that moderate off-resonance is well-corrected by this acquisition scheme. Blur due to concomitant fields is reduced, and good results are obtained in vivo. Conclusion The redundant spiral-in/out trajectory results in less image blur for a given readout length than a traditional spiral-out scan, reducing the need for complex off-resonance correction algorithms. PMID:24604539
Fielden, Samuel W; Meyer, Craig H
2015-02-01
The major hurdle to widespread adoption of spiral trajectories has been their poor off-resonance performance. Here we present a self-correcting spiral k-space trajectory that avoids much of the well-known spiral blurring during data acquisition. In comparison with a traditional spiral-out trajectory, the spiral-in/out trajectory has improved off-resonance performance. By combining two spiral-in/out acquisitions, one rotated 180° in k-space compared with the other, multishot spiral-in/out artifacts are eliminated. A phantom was scanned with the center frequency manually tuned 20, 40, 80, and 160 Hz off-resonance with both a spiral-out gradient echo sequence and the redundant spiral-in/out sequence. The phantom was also imaged in an oblique orientation in order to demonstrate improved concomitant gradient field performance of the sequence. Additionally, the trajectory was incorporated into a spiral turbo spin echo sequence for brain imaging. Phantom studies with manually tuned off-resonance agree well with theoretical calculations, showing that moderate off-resonance is well-corrected by this acquisition scheme. Blur due to concomitant fields is reduced, and good results are obtained in vivo. The redundant spiral-in/out trajectory results in less image blur for a given readout length than a traditional spiral-out scan, reducing the need for complex off-resonance correction algorithms. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Patrón, Verónica A.; Álvarez Borrego, Josué; Coronel Beltrán, Ángel
2015-09-01
Eye tracking has many useful applications that range from biometrics to face recognition and human-computer interaction. The analysis of the characteristics of the eyes has become one of the methods to accomplish the location of the eyes and the tracking of the point of gaze. Characteristics such as the contrast between the iris and the sclera, the shape, and distribution of colors and dark/light zones in the area are the starting point for these analyses. In this work, the focus will be on the contrast between the iris and the sclera, performing a correlation in the frequency domain. The images are acquired with an ordinary camera, which with were taken images of thirty-one volunteers. The reference image is an image of the subjects looking to a point in front of them at 0° angle. Then sequences of images are taken with the subject looking at different angles. These images are processed in MATLAB, obtaining the maximum correlation peak for each image, using two different filters. Each filter were analyzed and then one was selected, which is the filter that gives the best performance in terms of the utility of the data, which is displayed in graphs that shows the decay of the correlation peak as the eye moves progressively at different angle. This data will be used to obtain a mathematical model or function that establishes a relationship between the angle of vision (AOV) and the maximum correlation peak (MCP). This model will be tested using different input images from other subject not contained in the initial database, being able to predict angle of vision using the maximum correlation peak data.
A novel super-resolution camera model
NASA Astrophysics Data System (ADS)
Shao, Xiaopeng; Wang, Yi; Xu, Jie; Wang, Lin; Liu, Fei; Luo, Qiuhua; Chen, Xiaodong; Bi, Xiangli
2015-05-01
Aiming to realize super resolution(SR) to single image and video reconstruction, a super resolution camera model is proposed for the problem that the resolution of the images obtained by traditional cameras behave comparatively low. To achieve this function we put a certain driving device such as piezoelectric ceramics in the camera. By controlling the driving device, a set of continuous low resolution(LR) images can be obtained and stored instantaneity, which reflect the randomness of the displacements and the real-time performance of the storage very well. The low resolution image sequences have different redundant information and some particular priori information, thus it is possible to restore super resolution image factually and effectively. The sample method is used to derive the reconstruction principle of super resolution, which analyzes the possible improvement degree of the resolution in theory. The super resolution algorithm based on learning is used to reconstruct single image and the variational Bayesian algorithm is simulated to reconstruct the low resolution images with random displacements, which models the unknown high resolution image, motion parameters and unknown model parameters in one hierarchical Bayesian framework. Utilizing sub-pixel registration method, a super resolution image of the scene can be reconstructed. The results of 16 images reconstruction show that this camera model can increase the image resolution to 2 times, obtaining images with higher resolution in currently available hardware levels.
Image-Based Reconstruction and Analysis of Dynamic Scenes in a Landslide Simulation Facility
NASA Astrophysics Data System (ADS)
Scaioni, M.; Crippa, J.; Longoni, L.; Papini, M.; Zanzi, L.
2017-12-01
The application of image processing and photogrammetric techniques to dynamic reconstruction of landslide simulations in a scaled-down facility is described. Simulations are also used here for active-learning purpose: students are helped understand how physical processes happen and which kinds of observations may be obtained from a sensor network. In particular, the use of digital images to obtain multi-temporal information is presented. On one side, using a multi-view sensor set up based on four synchronized GoPro 4 Black® cameras, a 4D (3D spatial position and time) reconstruction of the dynamic scene is obtained through the composition of several 3D models obtained from dense image matching. The final textured 4D model allows one to revisit in dynamic and interactive mode a completed experiment at any time. On the other side, a digital image correlation (DIC) technique has been used to track surface point displacements from the image sequence obtained from the camera in front of the simulation facility. While the 4D model may provide a qualitative description and documentation of the experiment running, DIC analysis output quantitative information such as local point displacements and velocities, to be related to physical processes and to other observations. All the hardware and software equipment adopted for the photogrammetric reconstruction has been based on low-cost and open-source solutions.
Dactyl Alphabet Gesture Recognition in a Video Sequence Using Microsoft Kinect
NASA Astrophysics Data System (ADS)
Artyukhin, S. G.; Mestetskiy, L. M.
2015-05-01
This paper presents an efficient framework for solving the problem of static gesture recognition based on data obtained from the web cameras and depth sensor Kinect (RGB-D - data). Each gesture given by a pair of images: color image and depth map. The database store gestures by it features description, genereated by frame for each gesture of the alphabet. Recognition algorithm takes as input a video sequence (a sequence of frames) for marking, put in correspondence with each frame sequence gesture from the database, or decide that there is no suitable gesture in the database. First, classification of the frame of the video sequence is done separately without interframe information. Then, a sequence of successful marked frames in equal gesture is grouped into a single static gesture. We propose a method combined segmentation of frame by depth map and RGB-image. The primary segmentation is based on the depth map. It gives information about the position and allows to get hands rough border. Then, based on the color image border is specified and performed analysis of the shape of the hand. Method of continuous skeleton is used to generate features. We propose a method of skeleton terminal branches, which gives the opportunity to determine the position of the fingers and wrist. Classification features for gesture is description of the position of the fingers relative to the wrist. The experiments were carried out with the developed algorithm on the example of the American Sign Language. American Sign Language gesture has several components, including the shape of the hand, its orientation in space and the type of movement. The accuracy of the proposed method is evaluated on the base of collected gestures consisting of 2700 frames.
Dual-Tracer PET Using Generalized Factor Analysis of Dynamic Sequences
Fakhri, Georges El; Trott, Cathryn M.; Sitek, Arkadiusz; Bonab, Ali; Alpert, Nathaniel M.
2013-01-01
Purpose With single-photon emission computed tomography, simultaneous imaging of two physiological processes relies on discrimination of the energy of the emitted gamma rays, whereas the application of dual-tracer imaging to positron emission tomography (PET) imaging has been limited by the characteristic 511-keV emissions. Procedures To address this limitation, we developed a novel approach based on generalized factor analysis of dynamic sequences (GFADS) that exploits spatio-temporal differences between radiotracers and applied it to near-simultaneous imaging of 2-deoxy-2-[18F]fluoro-D-glucose (FDG) (brain metabolism) and 11C-raclopride (D2) with simulated human data and experimental rhesus monkey data. We show theoretically and verify by simulation and measurement that GFADS can separate FDG and raclopride measurements that are made nearly simultaneously. Results The theoretical development shows that GFADS can decompose the studies at several levels: (1) It decomposes the FDG and raclopride study so that they can be analyzed as though they were obtained separately. (2) If additional physiologic/anatomic constraints can be imposed, further decomposition is possible. (3) For the example of raclopride, specific and nonspecific binding can be determined on a pixel-by-pixel basis. We found good agreement between the estimated GFADS factors and the simulated ground truth time activity curves (TACs), and between the GFADS factor images and the corresponding ground truth activity distributions with errors less than 7.3±1.3 %. Biases in estimation of specific D2 binding and relative metabolism activity were within 5.9±3.6 % compared to the ground truth values. We also evaluated our approach in simultaneous dual-isotope brain PET studies in a rhesus monkey and obtained accuracy of better than 6 % in a mid-striatal volume, for striatal activity estimation. Conclusions Dynamic image sequences acquired following near-simultaneous injection of two PET radiopharmaceuticals can be separated into components based on the differences in the kinetics, provided their kinetic behaviors are distinct. PMID:23636489
In-plane "superresolution" MRI with phaseless sub-pixel encoding.
Hennel, Franciszek; Tian, Rui; Engel, Maria; Pruessmann, Klaas P
2018-04-15
Acquisition of high-resolution imaging data using multiple excitations without the sensitivity to fluctuations of the transverse magnetization phase, which is a major problem of multi-shot MRI. The concept of superresolution MRI based on microscopic tagging is analyzed using an analogy with the optical method of structured illumination. Sinusoidal tagging is shown to provide subpixel resolution by mixing of neighboring spatial frequency (k-space) bands. It represents a phaseless modulation added on top of the standard Fourier encoding, which allows the phase fluctuations to be discarded at an intermediate reconstruction step. Improvements are proposed to correct for tag distortions due to magnetic field inhomogeneity and to avoid the propagation of Gibbs ringing from intermediate low-resolution images to the final image. The method was applied to diffusion-weighted EPI. Artifact-free superresolution images can be obtained despite a finite duration of the tagging sequence and related pattern distortions by a field map based phase correction of band-wise reconstructed images. The ringing effect present in the intermediate images can be suppressed by partial overlapping of the mixed k-space bands in combination with an adapted filter. High-resolution diffusion-weighted images of the human head were obtained with a three-shot EPI sequence despite motion-related phase fluctuations between the shots. Due to its phaseless character, tagging-based sub-pixel encoding is an alternative to k-space segmenting in the presence of unknown phase fluctuations, in particular those due to motion under strong diffusion gradients. Proposed improvements render the method practicable in realistic conditions. © 2018 International Society for Magnetic Resonance in Medicine.
Neumann, Jan-Oliver; Giese, Henrik; Biller, Armin; Nagel, Armin M; Kiening, Karl
2015-01-01
Magnetic resonance imaging (MRI) is replacing computed tomography (CT) as the main imaging modality for stereotactic transformations. MRI is prone to spatial distortion artifacts, which can lead to inaccuracy in stereotactic procedures. Modern MRI systems provide distortion correction algorithms that may ameliorate this problem. This study investigates the different options of distortion correction using standard 1.5-, 3- and 7-tesla MRI scanners. A phantom was mounted on a stereotactic frame. One CT scan and three MRI scans were performed. At all three field strengths, two 3-dimensional sequences, volumetric interpolated breath-hold examination (VIBE) and magnetization-prepared rapid acquisition with gradient echo, were acquired, and automatic distortion correction was performed. Global stereotactic transformation of all 13 datasets was performed and two stereotactic planning workflows (MRI only vs. CT/MR image fusion) were subsequently analysed. Distortion correction on the 1.5- and 3-tesla scanners caused a considerable reduction in positional error. The effect was more pronounced when using the VIBE sequences. By using co-registration (CT/MR image fusion), even a lower positional error could be obtained. In ultra-high-field (7 T) MR imaging, distortion correction introduced even higher errors. However, the accuracy of non-corrected 7-tesla sequences was comparable to CT/MR image fusion 3-tesla imaging. MRI distortion correction algorithms can reduce positional errors by up to 60%. For stereotactic applications of utmost precision, we recommend a co-registration to an additional CT dataset. © 2015 S. Karger AG, Basel.
Roebuck, Joseph R; Haker, Steven J; Mitsouras, Dimitris; Rybicki, Frank J; Tempany, Clare M; Mulkern, Robert V
2009-05-01
Quantitative, apparent T(2) values of suspected prostate cancer and healthy peripheral zone tissue in men with prostate cancer were measured using a Carr-Purcell-Meiboom-Gill (CPMG) imaging sequence in order to assess the cancer discrimination potential of tissue T(2) values. The CPMG imaging sequence was used to image the prostates of 18 men with biopsy-proven prostate cancer. Whole gland coverage with nominal voxel volumes of 0.54 x 1.1 x 4 mm(3) was obtained in 10.7 min, resulting in data sets suitable for generating high-quality images with variable T(2)-weighting and for evaluating quantitative T(2) values on a pixel-by-pixel basis. Region-of-interest analysis of suspected healthy peripheral zone tissue and suspected cancer, identified on the basis of both T(1)- and T(2)-weighted signal intensities and available histopathology reports, yielded significantly (P<.0001) longer apparent T(2) values in suspected healthy tissue (193+/-49 ms) vs. suspected cancer (100+/-26 ms), suggesting potential utility of this method as a tissue specific discrimination index for prostate cancer. We conclude that CPMG imaging of the prostate can be performed in reasonable scan times and can provide advantages over T(2)-weighted fast spin echo (FSE) imaging alone, including quantitative T(2) values for cancer discrimination as well as proton density maps without the point spread function degradation associated with short effective echo time FSE sequences.
Roebuck, Joseph R.; Haker, Steven J.; Mitsouras, Dimitris; Rybicki, Frank J.; Tempany, Clare M.; Mulkern, Robert V.
2009-01-01
Quantitative, apparent T2 values of suspected prostate cancer and healthy peripheral zone tissue in men with prostate cancer were measured using a Carr-Purcell-Meiboom-Gill (CPMG) imaging sequence in order to assess the cancer discrimination potential of tissue T2 values. The CPMG imaging sequence was used to image the prostates of 18 men with biopsy proven prostate cancer. Whole gland coverage with nominal voxel volumes of 0.54 × 1.1 × 4 mm3 was obtained in 10.7 minutes, resulting in data sets suitable for generating high quality images with variable T2-weighting and for evaluating quantitative T2 values on a pixel-by-pixel basis. Region-of-interest analysis of suspected healthy peripheral zone tissue and suspected cancer, identified on the basis of both T1- and T2-weighted signal intensities and available histopathology reports, yielded significantly (p < 0.0001) longer apparent T2 values in suspected healthy tissue (193 ± 49 ms) vs. suspected cancer (100 ± 26 ms), suggesting potential utility of this method as a tissue specific discrimination index for prostate cancer. We conclude that CPMG imaging of the prostate can be performed in reasonable scan times and can provide advantages over T2-weighted fast spin echo imaging alone, including quantitative T2 values for cancer discrimination as well as proton density maps without the point spread function degradation associated with short effective echo time fast spin echo (FSE) sequences. PMID:18823731
NASA Technical Reports Server (NTRS)
Carneggie, D. M.; Degloria, S. D.; Colwell, R. N.
1975-01-01
A network of sampling sites throughout the annual grassland region of California was established to correlate plant growth stages and forage production to climatic and other environmental factors. Plant growth and range conditions were further related to geographic location and seasonal variations. A sequence of LANDSAT data was obtained covering critical periods in the growth cycle. This was analyzed by both photointerpretation and computer aided techniques. Image characteristics and spectral reflectance data were then related to forage production, range condition, range site and changing growth conditions. It was determined that repeat sequences with LANDSAT color composite images do provide a means for monitoring changes in range condition. Spectral radiance data obtained from magnetic tape can be used to determine quantitatively the critical stages in the forage growth cycle. A computer ratioing technique provided a sensitive indicator of changes in growth stages and an indication of the relative differences in forage production between range sites.
TIME-SEQUENCED X-RAY OBSERVATION OF A THERMAL EXPLOSION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tringe, J. W.; Molitoris, J. D.; Kercher, J. R.
The evolution of a thermally-initiated explosion is studied using a multiple-image x-ray system. HMX-based PBX 9501 is used in this work, enabling direct comparison to recently-published data obtained with proton radiography [1]. Multiple x-ray images of the explosion are obtained with image spacing of ten microseconds or more. The explosion is simultaneously characterized with a high-speed camera using an interframe spacing of 11 mus. X-ray and camera images were both initiated passively by signals from an embedded thermocouple array, as opposed to being actively triggered by a laser pulse or other external source. X-ray images show an accelerating reacting frontmore » within the explosive, and also show unreacted explosive at the time the containment vessel bursts. High-speed camera images show debris ejected from the vessel expanding at 800-2100 m/s in the first tens of mus after the container wall failure. The effective center of the initiation volume is about 6 mm from the geometric center of the explosive.« less
Robot Acting on Moving Bodies (RAMBO): Interaction with tumbling objects
NASA Technical Reports Server (NTRS)
Davis, Larry S.; Dementhon, Daniel; Bestul, Thor; Ziavras, Sotirios; Srinivasan, H. V.; Siddalingaiah, Madhu; Harwood, David
1989-01-01
Interaction with tumbling objects will become more common as human activities in space expand. Attempting to interact with a large complex object translating and rotating in space, a human operator using only his visual and mental capacities may not be able to estimate the object motion, plan actions or control those actions. A robot system (RAMBO) equipped with a camera, which, given a sequence of simple tasks, can perform these tasks on a tumbling object, is being developed. RAMBO is given a complete geometric model of the object. A low level vision module extracts and groups characteristic features in images of the object. The positions of the object are determined in a sequence of images, and a motion estimate of the object is obtained. This motion estimate is used to plan trajectories of the robot tool to relative locations rearby the object sufficient for achieving the tasks. More specifically, low level vision uses parallel algorithms for image enhancement by symmetric nearest neighbor filtering, edge detection by local gradient operators, and corner extraction by sector filtering. The object pose estimation is a Hough transform method accumulating position hypotheses obtained by matching triples of image features (corners) to triples of model features. To maximize computing speed, the estimate of the position in space of a triple of features is obtained by decomposing its perspective view into a product of rotations and a scaled orthographic projection. This allows use of 2-D lookup tables at each stage of the decomposition. The position hypotheses for each possible match of model feature triples and image feature triples are calculated in parallel. Trajectory planning combines heuristic and dynamic programming techniques. Then trajectories are created using dynamic interpolations between initial and goal trajectories. All the parallel algorithms run on a Connection Machine CM-2 with 16K processors.
Moschetta, Marco; Telegrafo, Michele; Rella, Leonarda; Capolongo, Arcangela; Stabile Ianora, Amato Antonio; Angelelli, Giuseppe
2014-07-01
Diffusion imaging represents a new imaging tool for the diagnosis of breast cancer. This study aims to investigate the role of diffusion-weighted MRI with background body signal suppression (DWIBS) for evaluating breast lesions. 90 patients were prospectively evaluated by MRI with STIR, TSE-T2, contrast enhanced THRIVE-T1 and DWIBS sequences. DWIBS were analyzed searching for the presence of breast lesions and calculating the ADC value. ADC values of ≤1.44×10(-3)mm(2)/s were considered suspicious for malignancy. This analysis was then compared with the histological findings. Sensitivity, specificity, diagnostic accuracy (DA), positive predictive value (PPV) and negative (NPV) were calculated. In 53/90 (59%) patients, DWIBS indicated the presence of breast lesions, 16 (30%) with ADC values of >1.44 and 37 (70%) with ADC≤1.44. The comparison with histology showed 25 malignant and 28 benign lesions. DWIBS sequences obtained sensitivity, specificity, DA, PPV and NPV values of 100, 82, 87, 68 and 100%, respectively. DWIBS can be proposed in the MRI breast protocol representing an accurate diagnostic complement. Copyright © 2014 Elsevier Inc. All rights reserved.
Pérez-Beteta, Julián; Molina-García, David; Ortiz-Alhambra, José A; Fernández-Romero, Antonio; Luque, Belén; Arregui, Elena; Calvo, Manuel; Borrás, José M; Meléndez, Bárbara; Rodríguez de Lope, Ángel; Moreno de la Presa, Raquel; Iglesias Bayo, Lidia; Barcia, Juan A; Martino, Juan; Velásquez, Carlos; Asenjo, Beatriz; Benavides, Manuel; Herruzo, Ismael; Revert, Antonio; Arana, Estanislao; Pérez-García, Víctor M
2018-07-01
Purpose To evaluate the prognostic and predictive value of surface-derived imaging biomarkers obtained from contrast material-enhanced volumetric T1-weighted pretreatment magnetic resonance (MR) imaging sequences in patients with glioblastoma multiforme. Materials and Methods A discovery cohort from five local institutions (165 patients; mean age, 62 years ± 12 [standard deviation]; 43% women and 57% men) and an independent validation cohort (51 patients; mean age, 60 years ± 12; 39% women and 61% men) from The Cancer Imaging Archive with volumetric T1-weighted pretreatment contrast-enhanced MR imaging sequences were included in the study. Clinical variables such as age, treatment, and survival were collected. After tumor segmentation and image processing, tumor surface regularity, measuring how much the tumor surface deviates from a sphere of the same volume, was obtained. Kaplan-Meier, Cox proportional hazards, correlations, and concordance indexes were used to compare variables and patient subgroups. Results Surface regularity was a powerful predictor of survival in the discovery (P = .005, hazard ratio [HR] = 1.61) and validation groups (P = .05, HR = 1.84). Multivariate analysis selected age and surface regularity as significant variables in a combined prognostic model (P < .001, HR = 3.05). The model achieved concordance indexes of 0.76 and 0.74 for the discovery and validation cohorts, respectively. Tumor surface regularity was a predictor of survival for patients who underwent complete resection (P = .01, HR = 1.90). Tumors with irregular surfaces did not benefit from total over subtotal resections (P = .57, HR = 1.17), but those with regular surfaces did (P = .004, HR = 2.07). Conclusion The surface regularity obtained from high-resolution contrast-enhanced pretreatment volumetric T1-weighted MR images is a predictor of survival in patients with glioblastoma. It may help in classifying patients for surgery. © RSNA, 2018 Online supplemental material is available for this article.
Pérez-Beteta, Julián; Molina-García, David; Ortiz-Alhambra, José A; Fernández-Romero, Antonio; Luque, Belén; Arregui, Elena; Calvo, Manuel; Borrás, José M; Meléndez, Bárbara; Rodríguez de Lope, Ángel; Moreno de la Presa, Raquel; Iglesias Bayo, Lidia; Barcia, Juan A; Martino, Juan; Velásquez, Carlos; Asenjo, Beatriz; Benavides, Manuel; Herruzo, Ismael; Revert, Antonio; Arana, Estanislao; Pérez-García, Víctor M
2018-04-03
Purpose To evaluate the prognostic and predictive value of surface-derived imaging biomarkers obtained from contrast material-enhanced volumetric T1-weighted pretreatment magnetic resonance (MR) imaging sequences in patients with glioblastoma multiforme. Materials and Methods A discovery cohort from five local institutions (165 patients; mean age, 62 years ± 12 [standard deviation]; 43% women and 57% men) and an independent validation cohort (51 patients; mean age, 60 years ± 12; 39% women and 61% men) from The Cancer Imaging Archive with volumetric T1-weighted pretreatment contrast-enhanced MR imaging sequences were included in the study. Clinical variables such as age, treatment, and survival were collected. After tumor segmentation and image processing, tumor surface regularity, measuring how much the tumor surface deviates from a sphere of the same volume, was obtained. Kaplan-Meier, Cox proportional hazards, correlations, and concordance indexes were used to compare variables and patient subgroups. Results Surface regularity was a powerful predictor of survival in the discovery (P = .005, hazard ratio [HR] = 1.61) and validation groups (P = .05, HR = 1.84). Multivariate analysis selected age and surface regularity as significant variables in a combined prognostic model (P < .001, HR = 3.05). The model achieved concordance indexes of 0.76 and 0.74 for the discovery and validation cohorts, respectively. Tumor surface regularity was a predictor of survival for patients who underwent complete resection (P = .01, HR = 1.90). Tumors with irregular surfaces did not benefit from total over subtotal resections (P = .57, HR = 1.17), but those with regular surfaces did (P = .004, HR = 2.07). Conclusion The surface regularity obtained from high-resolution contrast-enhanced pretreatment volumetric T1-weighted MR images is a predictor of survival in patients with glioblastoma. It may help in classifying patients for surgery. © RSNA, 2018 Online supplemental material is available for this article.
[Imaging anatomy of cranial nerves].
Hermier, M; Leal, P R L; Salaris, S F; Froment, J-C; Sindou, M
2009-04-01
Knowledge of the anatomy of the cranial nerves is mandatory for optimal radiological exploration and interpretation of the images in normal and pathological conditions. CT is the method of choice for the study of the skull base and its foramina. MRI explores the cranial nerves and their vascular relationships precisely. Because of their small size, it is essential to obtain images with high spatial resolution. The MRI sequences optimize contrast between nerves and surrounding structures (cerebrospinal fluid, fat, bone structures and vessels). This chapter discusses the radiological anatomy of the cranial nerves.
Nakada, Tsutomu; Matsuzawa, Hitoshi; Fujii, Yukihiko; Takahashi, Hitoshi; Nishizawa, Masatoyo; Kwee, Ingrid L
2006-07-01
Clinical magnetic resonance imaging (MRI) has recently entered the "high-field" era, and systems equipped with 3.0-4.0T superconductive magnets are becoming the gold standard for diagnostic imaging. While higher signal-to-noise ratio (S/N) is a definite advantage of higher field systems, higher susceptibility effect remains to be a significant trade-off. To take advantage of a higher field system in performing routine clinical images of higher anatomical resolution, we implemented a vector contrast image technique to 3.0T imaging, three-dimensional anisotropy contrast (3DAC), with a PROPELLER (Periodically Rotated Overlapping Parallel Lines with Enhanced Reconstruction) sequence, a method capable of effectively eliminating undesired artifacts on rapid diffusion imaging sequences. One hundred subjects (20 normal volunteers and 80 volunteers with various central nervous system diseases) participated in the study. Anisotropic diffusion-weighted PROPELLER images were obtained on a General Electric (Waukesha, WI, USA) Signa 3.0T for each axis, with b-value of 1100 sec/mm(2). Subsequently, 3DAC images were constructed using in-house software written on MATLAB (MathWorks, Natick, MA, USA). The vector contrast allows for providing exquisite anatomical detail illustrated by clear identification of all major tracts through the entire brain. 3DAC images provide better anatomical resolution for brainstem glioma than higher-resolution T2 reversed images. Degenerative processes of disease-specific tracts were clearly identified as illustrated in cases of multiple system atrophy and Joseph-Machado disease. Anatomical images of significantly higher resolution than the best current standard, T2 reversed images, were successfully obtained. As a technique readily applicable under routine clinical setting, 3DAC PROPELLER on a 3.0T system will be a powerful addition to diagnostic imaging.
[Magnetic resonance for the study of osteosarcoma].
Spina, V; Romagnoli, R; Manfrini, M; Cerofolini, E; Capanna, R; Gaiani, L; Calandra Buonaura, P; Picci, P; Campanacci, M
1991-01-01
The authors report their experience with MR imaging in the study of osteosarcoma. Two main elements were evaluated: signal characteristics and loco-regional staging. Seventy-one patients were studied: 65 of them had central long-bone osteosarcoma, and 6 had telangiectatic long-bone osteosarcoma. T1- and T2-weighted spin-echo sequences were employed and all cases were scanned on 3 planes (sagittal, coronal, and axial). In 28 patients MR imaging was performed both before and after preoperative chemotherapy. The obtained data were compared to surgical and pathological findings. With the exception of the typical signal patterns of quite-osteoblastic osteosarcoma (which presents with low signal on both T1- and T2-weighted sequences), no particular signal features were observed which could help distinguish the different types of osteosarcoma. MR imaging is the method of choice in loco-regional staging for, in our series, it allowed a rational and adequate surgical planning. For this purpose, at least a longitudinal T1- and an axial T2-weighted images are required.
Josan, Sonal; Yen, Yi-Fen; Hurd, Ralph; Pfefferbaum, Adolf; Spielman, Daniel; Mayer, Dirk
2011-01-01
Undersampled spiral CSI (spCSI) using a free induction decay (FID) acquisition allows sub-second metabolic imaging of hyperpolarized 13C. Phase correction of the FID acquisition can be difficult, especially with contributions from aliased out-of-phase peaks. This work extends the spCSI sequence by incorporating double spin-echo radiofrequency (RF) pulses to eliminate the need for phase correction and obtain high quality spectra in magnitude mode. The sequence also provides an added benefit of attenuating signal from flowing spins, which can otherwise contaminate signal in the organ of interest. The refocusing pulses can potentially lead to a loss of hyperpolarized magnetization in dynamic imaging due to flow of spins through the fringe field of the RF coil, where the refocusing pulses fail to provide complete refocusing. Care must be taken for dynamic imaging to ensure that the spins remain within the B1-homogeneous sensitive volume of the RF coil. PMID:21316280
NASA Astrophysics Data System (ADS)
Soltanian-Zadeh, Hamid; Windham, Joe P.
1992-04-01
Maximizing the minimum absolute contrast-to-noise ratios (CNRs) between a desired feature and multiple interfering processes, by linear combination of images in a magnetic resonance imaging (MRI) scene sequence, is attractive for MRI analysis and interpretation. A general formulation of the problem is presented, along with a novel solution utilizing the simple and numerically stable method of Gram-Schmidt orthogonalization. We derive explicit solutions for the case of two interfering features first, then for three interfering features, and, finally, using a typical example, for an arbitrary number of interfering feature. For the case of two interfering features, we also provide simplified analytical expressions for the signal-to-noise ratios (SNRs) and CNRs of the filtered images. The technique is demonstrated through its applications to simulated and acquired MRI scene sequences of a human brain with a cerebral infarction. For these applications, a 50 to 100% improvement for the smallest absolute CNR is obtained.
Schoening, Timm; Bergmann, Melanie; Ontrup, Jörg; Taylor, James; Dannheim, Jennifer; Gutt, Julian; Purser, Autun; Nattkemper, Tim W
2012-01-01
Megafauna play an important role in benthic ecosystem function and are sensitive indicators of environmental change. Non-invasive monitoring of benthic communities can be accomplished by seafloor imaging. However, manual quantification of megafauna in images is labor-intensive and therefore, this organism size class is often neglected in ecosystem studies. Automated image analysis has been proposed as a possible approach to such analysis, but the heterogeneity of megafaunal communities poses a non-trivial challenge for such automated techniques. Here, the potential of a generalized object detection architecture, referred to as iSIS (intelligent Screening of underwater Image Sequences), for the quantification of a heterogenous group of megafauna taxa is investigated. The iSIS system is tuned for a particular image sequence (i.e. a transect) using a small subset of the images, in which megafauna taxa positions were previously marked by an expert. To investigate the potential of iSIS and compare its results with those obtained from human experts, a group of eight different taxa from one camera transect of seafloor images taken at the Arctic deep-sea observatory HAUSGARTEN is used. The results show that inter- and intra-observer agreements of human experts exhibit considerable variation between the species, with a similar degree of variation apparent in the automatically derived results obtained by iSIS. Whilst some taxa (e. g. Bathycrinus stalks, Kolga hyalina, small white sea anemone) were well detected by iSIS (i. e. overall Sensitivity: 87%, overall Positive Predictive Value: 67%), some taxa such as the small sea cucumber Elpidia heckeri remain challenging, for both human observers and iSIS.
Schoening, Timm; Bergmann, Melanie; Ontrup, Jörg; Taylor, James; Dannheim, Jennifer; Gutt, Julian; Purser, Autun; Nattkemper, Tim W.
2012-01-01
Megafauna play an important role in benthic ecosystem function and are sensitive indicators of environmental change. Non-invasive monitoring of benthic communities can be accomplished by seafloor imaging. However, manual quantification of megafauna in images is labor-intensive and therefore, this organism size class is often neglected in ecosystem studies. Automated image analysis has been proposed as a possible approach to such analysis, but the heterogeneity of megafaunal communities poses a non-trivial challenge for such automated techniques. Here, the potential of a generalized object detection architecture, referred to as iSIS (intelligent Screening of underwater Image Sequences), for the quantification of a heterogenous group of megafauna taxa is investigated. The iSIS system is tuned for a particular image sequence (i.e. a transect) using a small subset of the images, in which megafauna taxa positions were previously marked by an expert. To investigate the potential of iSIS and compare its results with those obtained from human experts, a group of eight different taxa from one camera transect of seafloor images taken at the Arctic deep-sea observatory HAUSGARTEN is used. The results show that inter- and intra-observer agreements of human experts exhibit considerable variation between the species, with a similar degree of variation apparent in the automatically derived results obtained by iSIS. Whilst some taxa (e. g. Bathycrinus stalks, Kolga hyalina, small white sea anemone) were well detected by iSIS (i. e. overall Sensitivity: 87%, overall Positive Predictive Value: 67%), some taxa such as the small sea cucumber Elpidia heckeri remain challenging, for both human observers and iSIS. PMID:22719868
Ultrashort Echo Time and Zero Echo Time MRI at 7T
Larson, Peder E. Z.; Han, Misung; Krug, Roland; Jakary, Angela; Nelson, Sarah J.; Vigneron, Daniel B.; Henry, Roland G.; McKinnon, Graeme; Kelley, Douglas A. C.
2016-01-01
Object Zero echo time (ZTE) and ultrashort echo time (UTE) pulse sequences for MRI offer unique advantages of being able to detect signal from rapidly decaying short-T2 tissue components. In this paper, we applied 3D zero echo time (ZTE) and ultrashort echo time (UTE) pulse sequences at 7T to assess differences between these methods. Materials and Methods We matched the ZTE and UTE pulse sequences closely in terms of readout trajectories and image contrast. Our ZTE used the Water- and fat-suppressed solid-state proton projection imaging (WASPI) method to fill the center of k-space. Images from healthy volunteers obtained at 7T were compared qualitatively as well as with SNR and CNR measurements for various ultrashort, short, and long-T2 tissues. Results We measured nearly identical contrast-to-noise and signal-to-noise ratios (CNR/SNR) in similar scan times between the two approaches for ultrashort, short, and long-T2 components in the brain, knee and ankle. In our protocol, we observed gradient fidelity artifacts in UTE, and our chosen flip angle and readout also resulted as well as shading artifacts in ZTE due to inadvertent spatial selectivity. These can be corrected by advanced reconstruction methods or with different chosen protocol parameters. Conclusion The applied ZTE and UTE pulse sequences achieved similar contrast and SNR efficiency for volumetric imaging of ultrashort-T2 components. Several key differences are that ZTE is limited to volumetric imaging but has substantially reduced acoustic noise levels during the scan. Meanwhile, UTE has higher acoustic noise levels and greater sensitivity to gradient fidelity, but offers more flexibility in image contrast and volume selection. PMID:26702940
Lee, Chang Kyung; Seo, Nieun; Kim, Bohyun; Huh, Jimi; Kim, Jeong Kon; Lee, Seung Soo; Kim, In Seong; Nickel, Dominik
2017-01-01
Objective To compare the breathing effects on dynamic contrast-enhanced (DCE)-MRI between controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA)-volumetric interpolated breath-hold examination (VIBE), radial VIBE with k-space-weighted image contrast view-sharing (radial-VIBE), and conventional VIBE (c-VIBE) sequences using a dedicated phantom experiment. Materials and Methods We developed a moving platform to simulate breathing motion. We conducted dynamic scanning on a 3T machine (MAGNETOM Skyra, Siemens Healthcare) using CAIPIRINHA-VIBE, radial-VIBE, and c-VIBE for six minutes per sequence. We acquired MRI images of the phantom in both static and moving modes, and we also obtained motion-corrected images for the motion mode. We compared the signal stability and signal-to-noise ratio (SNR) of each sequence according to motion state and used the coefficients of variation (CoV) to determine the degree of signal stability. Results With motion, CAIPIRINHA-VIBE showed the best image quality, and the motion correction aligned the images very well. The CoV (%) of CAIPIRINHA-VIBE in the moving mode (18.65) decreased significantly after the motion correction (2.56) (p < 0.001). In contrast, c-VIBE showed severe breathing motion artifacts that did not improve after motion correction. For radial-VIBE, the position of the phantom in the images did not change during motion, but streak artifacts significantly degraded image quality, also after motion correction. In addition, SNR increased in both CAIPIRINHA-VIBE (from 3.37 to 9.41, p < 0.001) and radial-VIBE (from 4.3 to 4.96, p < 0.001) after motion correction. Conclusion CAIPIRINHA-VIBE performed best for free-breathing DCE-MRI after motion correction, with excellent image quality. PMID:28246509
Beccari, T; Hoade, J; Orlacchio, A; Stirling, J L
1992-01-01
cDNAs encoding the mouse beta-N-acetylhexosaminidase alpha-subunit were isolated from a mouse testis library. The longest of these (1.7 kb) was sequenced and showed 83% similarity with the human alpha-subunit cDNA sequence. The 5' end of the coding sequence was obtained from a genomic DNA clone. Alignment of the human and mouse sequences showed that all three putative N-glycosylation sites are conserved, but that the mouse alpha-subunit has an additional site towards the C-terminus. All eight cysteines in the human sequence are conserved in the mouse. There are an additional two cysteines in the mouse alpha-subunit signal peptide. All amino acids affected in Tay-Sachs-disease mutations are conserved in the mouse. Images Fig. 1. PMID:1379046
Chen, Yongsheng; Liu, Saifeng; Buch, Sagar; Hu, Jiani; Kang, Yan; Haacke, E Mark
2018-04-01
To image the entire vasculature of the brain with complete suppression of signal from background tissue using a single 3D excitation interleaved rephased/dephased multi-echo gradient echo sequence. This ensures no loss of signal from fast flow and provides co-registered susceptibility weighted images (SWI) and quantitative susceptibility maps (QSM) from the same scan. The suppression of background tissue was accomplished by subtracting the flow-dephased images from the flow-rephased images with the same echo time of 12.5ms to generate a magnetic resonance angiogram and venogram (MRAV). Further, a 2.5ms flow-compensated echo was added in the rephased portion to provide sufficient signal for major arteries with fast flow. The QSM data from the rephased 12.5ms echo was used to suppress veins on the MRAV to generate an artery-only MRA. The proposed approach was tested on five healthy volunteers at 3T. This three-echo interleaved GRE sequence provided complete background suppression of stationary tissues, while the short echo data gave high signal in the internal carotid and middle cerebral arteries (MCA). The contrast-to-noise ratio (CNR) of the arteries was significantly improved in the M3 territory of the MCA compared to the non-linear subtraction MRA and TOF-MRA. Veins were suppressed successfully utilizing the QSM data. The background tissue can be properly suppressed using the proposed interleaved MRAV sequence. One can obtain whole brain MRAV, MRA, SWI, true-SWI (or tSWI) and QSM data simultaneously from a single scan. Published by Elsevier Inc.
Substitute CT generation from a single ultra short time echo MRI sequence: preliminary study
NASA Astrophysics Data System (ADS)
Ghose, Soumya; Dowling, Jason A.; Rai, Robba; Liney, Gary P.
2017-04-01
In MR guided radiation therapy planning both MR and CT images for a patient are acquired and co-registered to obtain a tissue specific HU map. Generation of the HU map directly from the MRI would eliminate the CT acquisition and may improve radiation therapy planning. In this preliminary study of substitute CT (sCT) generation, two porcine leg phantoms were scanned using a 3D ultrashort echo time (PETRA) sequence and co-registered to corresponding CT images to build tissue specific regression models. The model was created from one co-registered CT-PETRA pair to generate the sCT for the other PETRA image. An expectation maximization based clustering was performed on the co-registered PETRA image to identify the soft tissues, dense bone and air class membership probabilities. A tissue specific non linear regression model was built from one registered CT-PETRA pair dataset to predict the sCT of the second PETRA image in a two-fold cross validation schema. A complete substitute CT is generated in 3 min. The mean absolute HU error for air was 0.3 HU, bone was 95 HU, fat was 30 HU and for muscle it was 10 HU. The mean surface reconstruction error for the bone was 1.3 mm. The PETRA sequence enabled a low mean absolute surface distance for the bone and a low HU error for other classes. The sCT generated from a single PETRA sequence shows promise for the generation of fast sCT for MRI based radiation therapy planning.
Small tandemly repeated DNA sequences of higher plants likely originate from a tRNA gene ancestor.
Benslimane, A A; Dron, M; Hartmann, C; Rode, A
1986-01-01
Several monomers (177 bp) of a tandemly arranged repetitive nuclear DNA sequence of Brassica oleracea have been cloned and sequenced. They share up to 95% homology between one another and up to 80% with other satellite DNA sequences of Cruciferae, suggesting a common ancestor. Both strands of these monomers show more than 50% homology with many tRNA genes; the best homologies have been obtained with Lys and His yeast mitochondrial tRNA genes (respectively 64% and 60%). These results suggest that small tandemly repeated DNA sequences of plants may have evolved from a tRNA gene ancestor. These tandem repeats have probably arisen via a process involving reverse transcription of polymerase III RNA intermediates, as is the case for interspersed DNA sequences of mammalians. A model is proposed to explain the formation of such small tandemly repeated DNA sequences. Images PMID:3774553
NASA Astrophysics Data System (ADS)
Zhang, Dong Ping; Edwards, Eddie; Mei, Lin; Rueckert, Daniel
2009-02-01
In this paper, we present a novel approach for coronary artery motion modeling from cardiac Computed Tomography( CT) images. The aim of this work is to develop a 4D motion model of the coronaries for image guidance in robotic-assisted totally endoscopic coronary artery bypass (TECAB) surgery. To utilize the pre-operative cardiac images to guide the minimally invasive surgery, it is essential to have a 4D cardiac motion model to be registered with the stereo endoscopic images acquired intraoperatively using the da Vinci robotic system. In this paper, we are investigating the extraction of the coronary arteries and the modelling of their motion from a dynamic sequence of cardiac CT. We use a multi-scale vesselness filter to enhance vessels in the cardiac CT images. The centerlines of the arteries are extracted using a ridge traversal algorithm. Using this method the coronaries can be extracted in near real-time as only local information is used in vessel tracking. To compute the deformation of the coronaries due to cardiac motion, the motion is extracted from a dynamic sequence of cardiac CT. Each timeframe in this sequence is registered to the end-diastole timeframe of the sequence using a non-rigid registration algorithm based on free-form deformations. Once the images have been registered a dynamic motion model of the coronaries can be obtained by applying the computed free-form deformations to the extracted coronary arteries. To validate the accuracy of the motion model we compare the actual position of the coronaries in each time frame with the predicted position of the coronaries as estimated from the non-rigid registration. We expect that this motion model of coronaries can facilitate the planning of TECAB surgery, and through the registration with real-time endoscopic video images it can reduce the conversion rate from TECAB to conventional procedures.
MR images of mouse brain using clinical 3T MR scanner and 4CH-Mouse coil
NASA Astrophysics Data System (ADS)
Lim, Soo Mee; Park, Eun Mi; Lyoo, In Kyoon; Lee, Junghyun; Han, Bo Mi; Lee, Jeong Kyong; Lee, Su Bin
2015-07-01
Objectives: Although small-bore high-field magnets are useful for research in small rodent models,this technology, however, has not been easily accessible to most researchers. This current study, thus,tried to evaluate the usability of 4CH-Mouse coil (Philips Healthcare, Best, the Netherlands) forpreclinical investigations in clinical 3T MR scan environment. We evaluated the effects of ischemicpreconditioning (IP) in the mouse stroke model with clinical 3T MR scanner and 4CH-Mouse coil. Materials and Methods: Experiments were performed on male C57BL/6 mice that either received the IP or sham operation (control). Three different MR sequences including diffusion weighted images (DWI), T2-weighted images (T2WI), and fluid attenuated inversion recovery (FLAIR) were performed on the mouse brains following 24, 72 hours of middle cerebral artery occlusion (MCAO) and analyzed for infarct lesions. Results: The images showed that the IP-treated mouse brains had significantly smaller infarct volumes compared to the control group. Of the MR sequences employed, the T2WI showed the highest level of correlations with postmortem infarct volume measurements. Conclusions: The clinical 3T MR scanner turned out to have a solid potential as a practical tool for imaging small animal brains. MR sequences including DWI, T2WI, FLAIR were obtained with acceptable resolution and in a reasonable time constraint in evaluating a mouse stroke model brain.
Josan, Sonal; Hurd, Ralph; Park, Jae Mo; Yen, Yi-Fen; Watkins, Ron; Pfefferbaum, Adolf; Spielman, Daniel; Mayer, Dirk
2014-06-01
In contrast to [1-(13) C]pyruvate, hyperpolarized [2-(13) C]pyruvate permits the ability to follow the (13) C label beyond flux through pyruvate dehydrogenase complex and investigate the incorporation of acetyl-coenzyme A into different metabolic pathways. However, chemical shift imaging (CSI) with [2-(13) C]pyruvate is challenging owing to the large spectral dispersion of the resonances, which also leads to severe chemical shift displacement artifacts for slice-selective acquisitions. This study introduces a sequence for three-dimensional CSI of [2-(13) C]pyruvate using spectrally selective excitation of limited frequency bands containing a subset of metabolites. Dynamic CSI data were acquired alternately from multiple frequency bands in phantoms for sequence testing and in vivo in rat heart. Phantom experiments verified the radiofrequency pulse design and demonstrated that the signal behavior of each group of resonances was unaffected by excitation of the other frequency bands. Dynamic three-dimensional (13) C CSI data demonstrated the sequence capability to image pyruvate, lactate, acetylcarnitine, glutamate, and acetoacetate, enabling the analysis of organ-specific spectra and metabolite time courses. The presented method allows CSI of widely separated resonances without chemical shift displacement artifact, acquiring multiple frequency bands alternately to obtain dynamic time-course information. This approach enables robust imaging of downstream metabolic products of acetyl-coenzyme A with hyperpolarized [2-(13) C]pyruvate. Copyright © 2013 Wiley Periodicals, Inc.
Evaluation of pleural and pericardial effusions by magnetic resonance imaging.
Tscholakoff, D; Sechtem, U; de Geer, G; Schmidt, H; Higgins, C B
1987-08-01
MR examinations of 36 patients with pleural and/or pericardial effusions were retrospectively evaluated. The purpose of this study was to determine of MR imaging is capable of differentiating between pleural and pericardial effusions of different compositions using standard electrocardiogram (ECG)-gated and non-gated spin echo pulse sequences. Additional data was obtained from experimental pleural effusions in 10 dogs. The results of this study indicate that old hemorrhages into the pleural or pericardial space can be differentiated from other pleural or pericardial effusions. However, further differentiation between transudates, exudates and sanguinous effusions is not possible on MR images acquired with standard spin echo pulse sequences. Respiratory and cardiac motion are responsible for signal loss, particularly on first echo images. This was documented in experiments in dogs with induced effusions of known composition; "negative" T2 values consistent with fluid motion during imaging sequences were observed in 80% of cases. However, postmortem studies of the dogs with experimental effusions showed differences between effusions with low protein concentrations and higher protein concentrations. We conclude from our study that characterization of pleural and pericardial effusions on standard ECG-gated and non-gated MR examinations is limited to the positive identification of hemorrhage. Motion of the fluid due to cardiac and respiratory activity causes artifactual and unpredictable changes in intensity values negating the more subtle differences in intensity associated with increasing protein content.
Using Highlighting to Train Attentional Expertise
Roads, Brett; Mozer, Michael C.; Busey, Thomas A.
2016-01-01
Acquiring expertise in complex visual tasks is time consuming. To facilitate the efficient training of novices on where to look in these tasks, we propose an attentional highlighting paradigm. Highlighting involves dynamically modulating the saliency of a visual image to guide attention along the fixation path of a domain expert who had previously viewed the same image. In Experiment 1, we trained naive subjects via attentional highlighting on a fingerprint-matching task. Before and after training, we asked subjects to freely inspect images containing pairs of prints and determine whether the prints matched. Fixation sequences were automatically scored for the degree of expertise exhibited using a Bayesian discriminative model of novice and expert gaze behavior. Highlighted training causes gaze behavior to become more expert-like not only on the trained images but also on transfer images, indicating generalization of learning. In Experiment 2, to control for the possibility that the increase in expertise is due to mere exposure, we trained subjects via highlighting of fixation sequences from novices, not experts, and observed no transition toward expertise. In Experiment 3, to determine the specificity of the training effect, we trained subjects with expert fixation sequences from images other than the one being viewed, which preserves coarse-scale statistics of expert gaze but provides no information about fine-grain features. Observing at least a partial transition toward expertise, we obtain only weak evidence that the highlighting procedure facilitates the learning of critical local features. We discuss possible improvements to the highlighting procedure. PMID:26744839
Using Highlighting to Train Attentional Expertise.
Roads, Brett; Mozer, Michael C; Busey, Thomas A
2016-01-01
Acquiring expertise in complex visual tasks is time consuming. To facilitate the efficient training of novices on where to look in these tasks, we propose an attentional highlighting paradigm. Highlighting involves dynamically modulating the saliency of a visual image to guide attention along the fixation path of a domain expert who had previously viewed the same image. In Experiment 1, we trained naive subjects via attentional highlighting on a fingerprint-matching task. Before and after training, we asked subjects to freely inspect images containing pairs of prints and determine whether the prints matched. Fixation sequences were automatically scored for the degree of expertise exhibited using a Bayesian discriminative model of novice and expert gaze behavior. Highlighted training causes gaze behavior to become more expert-like not only on the trained images but also on transfer images, indicating generalization of learning. In Experiment 2, to control for the possibility that the increase in expertise is due to mere exposure, we trained subjects via highlighting of fixation sequences from novices, not experts, and observed no transition toward expertise. In Experiment 3, to determine the specificity of the training effect, we trained subjects with expert fixation sequences from images other than the one being viewed, which preserves coarse-scale statistics of expert gaze but provides no information about fine-grain features. Observing at least a partial transition toward expertise, we obtain only weak evidence that the highlighting procedure facilitates the learning of critical local features. We discuss possible improvements to the highlighting procedure.
Bär, Sébastien; Weigel, Matthias; von Elverfeldt, Dominik; Hennig, Jürgen; Leupold, Jochen
2015-11-01
The purpose of this work was to analyze the intrinsic diffusion sensitivity of the balanced steady-state free precession (bSSFP) imaging sequence, meaning the observation of diffusion-induced attenuation of the bSSFP steady-state signal due to the imaging gradients. Although these diffusion effects are usually neglected for most clinical gradient systems, such strong gradient systems are employed for high resolution imaging of small animals or MR Microscopy. The impact on the bSSFP signal of the imaging gradients characterized by their b-values was analyzed with simulations and experiments at a 7T animal scanner using a gradient system with maximum gradient amplitude of approx. 700 mT/m. It was found that the readout gradients have a stronger impact on the attenuation than the phase encoding gradients. Also, as the PE gradients are varying with each repetition interval, the diffusion effects induce strong modulations of the bSSFP signal over the sequence repetition cycles depending on the phase encoding gradient table. It is shown that a signal gain can be obtained through a change of flip angle as a new optimal flip angle maximizing the signal can be defined. The dependency of the diffusion effects on relaxation times and b-values were explored with simulations. The attenuation increases with T2. In conclusion, diffusion attenuation of the bSSFP signal becomes significant for high resolution imaging voxel size (roughly < 100 μm) of long T2 substances. Copyright © 2015 John Wiley & Sons, Ltd.
Joint estimation of motion and illumination change in a sequence of images
NASA Astrophysics Data System (ADS)
Koo, Ja-Keoung; Kim, Hyo-Hun; Hong, Byung-Woo
2015-09-01
We present an algorithm that simultaneously computes optical flow and estimates illumination change from an image sequence in a unified framework. We propose an energy functional consisting of conventional optical flow energy based on Horn-Schunck method and an additional constraint that is designed to compensate for illumination changes. Any undesirable illumination change that occurs in the imaging procedure in a sequence while the optical flow is being computed is considered a nuisance factor. In contrast to the conventional optical flow algorithm based on Horn-Schunck functional, which assumes the brightness constancy constraint, our algorithm is shown to be robust with respect to temporal illumination changes in the computation of optical flows. An efficient conjugate gradient descent technique is used in the optimization procedure as a numerical scheme. The experimental results obtained from the Middlebury benchmark dataset demonstrate the robustness and the effectiveness of our algorithm. In addition, comparative analysis of our algorithm and Horn-Schunck algorithm is performed on the additional test dataset that is constructed by applying a variety of synthetic bias fields to the original image sequences in the Middlebury benchmark dataset in order to demonstrate that our algorithm outperforms the Horn-Schunck algorithm. The superior performance of the proposed method is observed in terms of both qualitative visualizations and quantitative accuracy errors when compared to Horn-Schunck optical flow algorithm that easily yields poor results in the presence of small illumination changes leading to violation of the brightness constancy constraint.
Zandrino, Franco; La Paglia, Ernesto; Musante, Francesco
2010-01-01
To assess the diagnostic accuracy of magnetic resonance imaging in local staging of endometrial carcinoma, and to review the results and pitfalls described in the literature. Thirty women with a histological diagnosis of endometrial carcinoma underwent magnetic resonance imaging. Unenhanced T2-weighted and dynamic contrast-enhanced Ti-weighted sequences were obtained. Hysterectomy and salpingo-oophorectomy was performed in all patients. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy were calculated for the detection of deep myometrial and cervical infiltration. For deep myometrial infiltration T2-weighted sequences reached a sensitivity of 85%, specificity of 76%, PPV of 73%, NVP of 87%, and accuracy of 80%, while contrast-enhanced scans reached a sensitivity of 90%, specificity of 80%, PPV of 82%, NPV of 89%, and accuracy of 85%. For cervical infiltration T2-weighted sequences reached a sensitivity of 75%, specificity of 88%, PPV of 50%, NPV of 96%, and accuracy of 87%, while contrast-enhanced scans reached a sensitivity of 100%, specificity of 94%, PPV of 75%, NPV of 100%, and accuracy of 95%. Unenhanced and dynamic gadolinium-enhanced magnetic resonance allows accurate assessment of myometrial and cervical infiltration. Information provided by magnetic resonance imaging can define prognosis and management.
NASA Astrophysics Data System (ADS)
Huang, Wei; Ma, Chengfu; Chen, Yuhang
2014-12-01
A method for simple and reliable displacement measurement with nanoscale resolution is proposed. The measurement is realized by combining a common optical microscopy imaging of a specially coded nonperiodic microstructure, namely two-dimensional zero-reference mark (2-D ZRM), and subsequent correlation analysis of the obtained image sequence. The autocorrelation peak contrast of the ZRM code is maximized with well-developed artificial intelligence algorithms, which enables robust and accurate displacement determination. To improve the resolution, subpixel image correlation analysis is employed. Finally, we experimentally demonstrate the quasi-static and dynamic displacement characterization ability of a micro 2-D ZRM.
Inner Magnetospheric Electric Fields Derived from IMAGE EUV
NASA Technical Reports Server (NTRS)
Gallagher, D. L.; Adrian, M. L.
2007-01-01
The local and global patterns of plasmaspheric plasma transport reflect the influence of electric fields imposed by all sources in the inner magnetosphere. Image sequences of thermal plasma G:istribution obtained from the IMAGE Mission Extreme Ultraviolet Imager can be used to derive plasma motions and, using a magnetic field model, the corresponding electric fields. These motions and fields directly reflect the dynamic coupling of injected plasmasheet plasma and the ionosphere, in addition to solar wind and atmospheric drivers. What is being learned about the morphology of inner magnetospheric electric fields during storm and quite conditions from this new empirical tool will be presented and discussed.
DEKF system for crowding estimation by a multiple-model approach
NASA Astrophysics Data System (ADS)
Cravino, F.; Dellucca, M.; Tesei, A.
1994-03-01
A distributed extended Kalman filter (DEKF) network devoted to real-time crowding estimation for surveillance in complex scenes is presented. Estimation is carried out by extracting a set of significant features from sequences of images. Feature values are associated by virtual sensors with the estimated number of people using nonlinear models obtained in an off-line training phase. Different models are used, depending on the positions and dimensions of the crowded subareas detected in each image.
Oran, Omer Faruk; Ider, Yusuf Ziya
2017-05-01
To investigate the feasibility of low-frequency conductivity imaging based on measuring the magnetic field due to subject eddy currents induced by switching of MRI z-gradients. We developed a simulation model for calculating subject eddy currents and the magnetic fields they generate (subject eddy fields). The inverse problem of obtaining conductivity distribution from subject eddy fields was formulated as a convection-reaction partial differential equation. For measuring subject eddy fields, a modified spin-echo pulse sequence was used to determine the contribution of subject eddy fields to MR phase images. In the simulations, successful conductivity reconstructions were obtained by solving the derived convection-reaction equation, suggesting that the proposed reconstruction algorithm performs well under ideal conditions. However, the level of the calculated phase due to the subject eddy field in a representative object indicates that this phase is below the noise level and cannot be measured with an uncertainty sufficiently low for accurate conductivity reconstruction. Furthermore, some artifacts other than random noise were observed in the measured phases, which are discussed in relation to the effects of system imperfections during readout. Low-frequency conductivity imaging does not seem feasible using basic pulse sequences such as spin-echo on a clinical MRI scanner. Magn Reson Med 77:1926-1937, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Zhang, Chun-Sen; Zhang, Meng-Meng; Zhang, Wei-Xing
2017-01-01
This paper outlines a low-cost, user-friendly photogrammetric technique with nonmetric cameras to obtain excavation site digital sequence images, based on photogrammetry and computer vision. Digital camera calibration, automatic aerial triangulation, image feature extraction, image sequence matching, and dense digital differential rectification are used, combined with a certain number of global control points of the excavation site, to reconstruct the high precision of measured three-dimensional (3-D) models. Using the acrobatic figurines in the Qin Shi Huang mausoleum excavation as an example, our method solves the problems of little base-to-height ratio, high inclination, unstable altitudes, and significant ground elevation changes affecting image matching. Compared to 3-D laser scanning, the 3-D color point cloud obtained by this method can maintain the same visual result and has advantages of low project cost, simple data processing, and high accuracy. Structure-from-motion (SfM) is often used to reconstruct 3-D models of large scenes and has lower accuracy if it is a reconstructed 3-D model of a small scene at close range. Results indicate that this method quickly achieves 3-D reconstruction of large archaeological sites and produces heritage site distribution of orthophotos providing a scientific basis for accurate location of cultural relics, archaeological excavations, investigation, and site protection planning. This proposed method has a comprehensive application value.
Panoramic Views of the Landing site from Sagan Memorial Station
NASA Technical Reports Server (NTRS)
1997-01-01
Each of these panoramic views is a controlled mosaic of approximately 300 IMP images covering 360 degrees of azimuth and elevations from approximately 4 degrees above the horizon to 45 degrees below it. Simultaneous adjustment of orientations of all images has been performed to minimize discontinuities between images. Mosaics have been highpass-filtered and contrast-enhanced to improve discrimination of details without distorting relative colors overall.
TOP IMAGE: Enhanced true-color image created from the 'Gallery Pan' sequence, acquired on sols 8-10 so that local solar time increases nearly continuously from about 10:00 at the right edge to about 12:00 at the left. Mosaics of images obtained by the right camera through 670 nm, 530 nm, and 440 nm filters were used as red, green and blue channels. Grid ticks indicate azimuth clockwise from north in 30 degree increments and elevation in 15 degree increments.BOTTOM IMAGE: Anaglyphic stereoimage created from the 'monster pan' sequence, acquired in four sections between about 8:30 and 15:00 local solar time on sol 3. Mosaics of images obtained through the 670 nm filter (left camera) and 530 and 440 nm filters (right camera) were used where available. At the top and bottom, left- and right-camera 670 nm images were used. Part of the northern horizon was not imaged because of the tilt of the lander. This image may be viewed stereoscopically through glasses with a red filter for the left eye and a cyan filter for the right eye.NOTE: original caption as published in Science MagazineMars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).Callot, Virginie; Duhamel, Guillaume; Cozzone, Patrick J; Kober, Frank
2008-10-01
Mouse spinal cord (SC) diffusion-weighted imaging (DWI) provides important information on tissue morphology and structural changes that may occur during pathologies such as multiple sclerosis or SC injury. The acquisition scheme of the commonly used DWI techniques is based on conventional spin-echo encoding, which is time-consuming. The purpose of this work was to investigate whether the use of echo planar imaging (EPI) would provide good-quality diffusion MR images of mouse SC, as well as accurate measurements of diffusion-derived metrics, and thus enable diffusion tensor imaging (DTI) and highly resolved DWI within reasonable scan times. A four-shot diffusion-weighted spin-echo EPI (SE-EPI) sequence was evaluated at 11.75 T on a group of healthy mice (n = 10). SE-EPI-derived apparent diffusion coefficients of gray and white matter were compared with those obtained using a conventional spin-echo sequence (c-SE) to validate the accuracy of the method. To take advantage of the reduction in acquisition time offered by the EPI sequence, multi-slice DTI acquisitions were performed covering the cervical segments (six slices, six diffusion-encoding directions, three b values) within 30 min (vs 2 h for c-SE). From these measurements, fractional anisotropy and mean diffusivities were calculated, and fiber tracking along the C1 to C6 cervical segments was performed. In addition, high-resolution images (74 x 94 microm(2)) were acquired within 5 min per direction. Clear delineation of gray and white matter and identical apparent diffusion coefficient values were obtained, with a threefold reduction in acquisition time compared with c-SE. While overcoming the difficulties associated with high spatially and temporally resolved DTI measurements, the present SE-EPI approach permitted identification of reliable quantitative parameters with a reproducibility compatible with the detection of pathologies. The SE-EPI method may be particularly valuable when multiple sets of images from the SC are needed, in cases of rapidly evolving conditions, to decrease the duration of anesthesia or to improve MR exploration by including additional MR measurements. Copyright (c) 2008 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yee, S; Wloch, J; Pirkola, M
Purpose: Quantitative fat-water segmentation is important not only because of the clinical utility of fat-suppressed MRI images in better detecting lesions of clinical significance (in the midst of bright fat signal) but also because of the possible physical need, in which CT-like images based on the materials’ photon attenuation properties may have to be generated from MR images; particularly, as in the case of MR-only radiation oncology environment to obtain radiation dose calculation or as in the case of hybrid PET/MR modality to obtain attenuation correction map for the quantitative PET reconstruction. The majority of such fat-water quantitative segmentations havemore » been performed by utilizing the Dixon’s method and its variations, which have to enforce the proper settings (often predefined) of echo time (TE) in the pulse sequences. Therefore, such methods have been unable to be directly combined with those ultrashort TE (UTE) sequences that, taking the advantage of very low TE values (∼ 10’s microsecond), might be beneficial to directly detect bones. Recently, an RF pulse-based method (http://dx.doi.org/10.1016/j.mri.2015.11.006), termed as PROD pulse method, was introduced as a method of quantitative fat-water segmentation that does not have to depend on predefined TE settings. Here, the clinical feasibility of this method is verified in brain tumor patients by combining the PROD pulse with several sequences. Methods: In a clinical 3T MRI, the PROD pulse was combined with turbo spin echo (e.g. TR=1500, TE=16 or 60, ETL=15) or turbo field echo (e.g. TR=5.6, TE=2.8, ETL=12) sequences without specifying TE values. Results: The fat-water segmentation was possible without having to set specific TE values. Conclusion: The PROD pulse method is clinically feasible. Although not yet combined with UTE sequences in our laboratory, the method is potentially compatible with UTE sequences, and thus, might be useful to directly segment fat, water, bone and air.« less
MRI and MRA of spinal cord arteriovenous shunts.
Condette-Auliac, Stéphanie; Boulin, Anne; Roccatagliata, Luca; Coskun, Oguzhan; Guieu, Stéphanie; Guedin, Pierre; Rodesch, Georges
2014-12-01
The purpose of this review is to describe the diagnostic criteria for spinal cord arteriovenous shunts (SCAVSs) when using magnetic resonance imaging (MRI) and magnetic resonance angiography (MRA), and to discuss the extent to which the different MRI and MRA sequences and technical parameters provide the information that is required to diagnose these lesions properly. SCAVSs are divided into four groups according to location (paraspinal, epidural, dural, or intradural) and type (fistula or nidus); each type of lesion is described. SCAVSs are responsible for neurological symptoms due to spinal cord or nerve root involvement. MRI is usually the first examination performed when a spinal cord lesion is suspected. Recognition of the image characteristics of vascular lesions is mandatory if useful sequences are to be performed-especially MRA sequences. Because the treatment of SCAVSs relies mainly on endovascular therapies, MRI and MRA help with the planning of the angiographic procedure. We explain the choice of MRA sequences and parameters, the advantages and pitfalls to be aware of in order to obtain the best visualization, and the analysis of each lesion. © 2014 Wiley Periodicals, Inc.
Semantic orchestration of image processing services for environmental analysis
NASA Astrophysics Data System (ADS)
Ranisavljević, Élisabeth; Devin, Florent; Laffly, Dominique; Le Nir, Yannick
2013-09-01
In order to analyze environmental dynamics, a major process is the classification of the different phenomena of the site (e.g. ice and snow for a glacier). When using in situ pictures, this classification requires data pre-processing. Not all the pictures need the same sequence of processes depending on the disturbances. Until now, these sequences have been done manually, which restricts the processing of large amount of data. In this paper, we present how to realize a semantic orchestration to automate the sequencing for the analysis. It combines two advantages: solving the problem of the amount of processing, and diversifying the possibilities in the data processing. We define a BPEL description to express the sequences. This BPEL uses some web services to run the data processing. Each web service is semantically annotated using an ontology of image processing. The dynamic modification of the BPEL is done using SPARQL queries on these annotated web services. The results obtained by a prototype implementing this method validate the construction of the different workflows that can be applied to a large number of pictures.
Left ventricular endocardial surface detection based on real-time 3D echocardiographic data
NASA Technical Reports Server (NTRS)
Corsi, C.; Borsari, M.; Consegnati, F.; Sarti, A.; Lamberti, C.; Travaglini, A.; Shiota, T.; Thomas, J. D.
2001-01-01
OBJECTIVE: A new computerized semi-automatic method for left ventricular (LV) chamber segmentation is presented. METHODS: The LV is imaged by real-time three-dimensional echocardiography (RT3DE). The surface detection model, based on level set techniques, is applied to RT3DE data for image analysis. The modified level set partial differential equation we use is solved by applying numerical methods for conservation laws. The initial conditions are manually established on some slices of the entire volume. The solution obtained for each slice is a contour line corresponding with the boundary between LV cavity and LV endocardium. RESULTS: The mathematical model has been applied to sequences of frames of human hearts (volume range: 34-109 ml) imaged by 2D and reconstructed off-line and RT3DE data. Volume estimation obtained by this new semi-automatic method shows an excellent correlation with those obtained by manual tracing (r = 0.992). Dynamic change of LV volume during the cardiac cycle is also obtained. CONCLUSION: The volume estimation method is accurate; edge based segmentation, image completion and volume reconstruction can be accomplished. The visualization technique also allows to navigate into the reconstructed volume and to display any section of the volume.
Photometric Lambert Correction for Global Mosaicking of HRSC Data
NASA Astrophysics Data System (ADS)
Walter, Sebastian; Michael, Greg; van Gasselt, Stephan; Kneissl, Thomas
2015-04-01
The High Resolution Stereo Camera (HRSC) is a push-broom image sensor onboard Mars Express recording the Martian surface in 3D and color. Being in orbit since 2004, the camera has obtained over 3,600 panchromatic image sequences covering about 70% of the planet's surface at 10-20 m/pixel. The composition of an homogenous global mosaic is a major challenge due to the strong elliptical and highly irregular orbit of the spacecraft, which often results in large variations of illumination and atmospheric conditions between individual images. For the purpose of a global mosaic in the full Nadir resolution of 12.5 m per pixel we present a first-order systematic photometric correction for the individual image sequences based on a Lambertian reflection model. During the radiometric calibration of the HRSC data, values for the reflectance scaling factor and the reflectance offset are added to the individual image labels. These parameters can be used for a linear transformation from the original DN values into spectral reflectance values. The spectral reflectance varies with the solar incidence angle, topography (changing the local incidence angle and therefore adding an exta geometry factor for each ground pixel), the bi-directional reflectance distribution function (BRDF) of the surface, and atmospheric effects. Mosaicking the spectral values together as images sometimes shows large brightness differences. One major contributor to the brightness differences between two images is the differing solar geometry due to the varying time of day when the individual images were obtained. This variation causes two images of the same or adjacent areas to have different image brightnesses. As a first-order correction for the varying illumination conditions and resulting brightness variations, the images are corrected for the solar incidence angle by assuming an ideal diffusely reflecting behaviour of the surface. This correction requires the calculation of the solar geometry for each image pixel by an image-to-ground function. For the calculations we are using the VICAR framework and the SPICE library. Under the Lambertian assumption, the reflectance diminishment resulting from an inclined Sun angle can be corrected by dividing the measured reflectance by the cosine of the illumination angle. After rectification of the corrected images, the individual images are mosaicked together. The overall visual impression shows a much better integration of the individual image sequences. The correction resolves the direct correlation between the reflectance and the incidence angles from the data. It does not account for topographic, atmospheric or BRDF influences to the measurements. Since the main purpose of the global HRSC image mosaic is the application for geomorphologic studies with a good visual impression of the albedo variations and the topography, the remaining distortions at the image seams can be equalized by non-reversible image matching techniques.
High resolution T2(*)-weighted Magnetic Resonance Imaging at 3 Tesla using PROPELLER-EPI.
Krämer, Martin; Reichenbach, Jürgen R
2014-05-01
We report the application of PROPELLER-EPI for high resolution T2(*)-weighted imaging with sub-millimeter in-plane resolution on a clinical 3 Tesla scanner. Periodically rotated blades of a long-axis PROPELLER-EPI sequence were acquired with fast gradient echo readout and acquisition matrix of 320 × 50 per blade. Images were reconstructed by using 2D-gridding, phase and geometric distortion correction and compensation of resonance frequency drifts that occurred during extended measurements. To characterize these resonance frequency offsets, short FID calibration measurements were added to the PROPELLER-EPI sequence. Functional PROPELLER-EPI was performed with volunteers using a simple block design of right handed finger tapping. Results indicate that PROPELLER-EPI can be employed for fast, high resolution T2(*)-weighted imaging provided geometric distortions and possible resonance frequency drifts are properly corrected. Even small resonance frequency drifts below 10 Hz as well as non-corrected geometric distortions degraded image quality substantially. In the initial fMRI experiment image quality and signal-to-noise ratio was sufficient for obtaining high resolution functional activation maps. Copyright © 2014. Published by Elsevier GmbH.
Acoustic-noise-optimized diffusion-weighted imaging.
Ott, Martin; Blaimer, Martin; Grodzki, David M; Breuer, Felix A; Roesch, Julie; Dörfler, Arnd; Heismann, Björn; Jakob, Peter M
2015-12-01
This work was aimed at reducing acoustic noise in diffusion-weighted MR imaging (DWI) that might reach acoustic noise levels of over 100 dB(A) in clinical practice. A diffusion-weighted readout-segmented echo-planar imaging (EPI) sequence was optimized for acoustic noise by utilizing small readout segment widths to obtain low gradient slew rates and amplitudes instead of faster k-space coverage. In addition, all other gradients were optimized for low slew rates. Volunteer and patient imaging experiments were conducted to demonstrate the feasibility of the method. Acoustic noise measurements were performed and analyzed for four different DWI measurement protocols at 1.5T and 3T. An acoustic noise reduction of up to 20 dB(A) was achieved, which corresponds to a fourfold reduction in acoustic perception. The image quality was preserved at the level of a standard single-shot (ss)-EPI sequence, with a 27-54% increase in scan time. The diffusion-weighted imaging technique proposed in this study allowed a substantial reduction in the level of acoustic noise compared to standard single-shot diffusion-weighted EPI. This is expected to afford considerably more patient comfort, but a larger study would be necessary to fully characterize the subjective changes in patient experience.
A novel image encryption algorithm based on the chaotic system and DNA computing
NASA Astrophysics Data System (ADS)
Chai, Xiuli; Gan, Zhihua; Lu, Yang; Chen, Yiran; Han, Daojun
A novel image encryption algorithm using the chaotic system and deoxyribonucleic acid (DNA) computing is presented. Different from the traditional encryption methods, the permutation and diffusion of our method are manipulated on the 3D DNA matrix. Firstly, a 3D DNA matrix is obtained through bit plane splitting, bit plane recombination, DNA encoding of the plain image. Secondly, 3D DNA level permutation based on position sequence group (3DDNALPBPSG) is introduced, and chaotic sequences generated from the chaotic system are employed to permutate the positions of the elements of the 3D DNA matrix. Thirdly, 3D DNA level diffusion (3DDNALD) is given, the confused 3D DNA matrix is split into sub-blocks, and XOR operation by block is manipulated to the sub-DNA matrix and the key DNA matrix from the chaotic system. At last, by decoding the diffused DNA matrix, we get the cipher image. SHA 256 hash of the plain image is employed to calculate the initial values of the chaotic system to avoid chosen plaintext attack. Experimental results and security analyses show that our scheme is secure against several known attacks, and it can effectively protect the security of the images.
Marín Rodríguez, C; Lancharro Zapata, Á; Rodríguez Ogando, A; Carrasco Muñoz, S; Ruiz Martín, Y; Sánchez Alegre, M L; Maroto Alvaro, E
2015-01-01
To evaluate the quality of images obtained with 3D balanced fast-field echo whole heart (WH3D) MRI sequences for assessing the coronary anastomosis and coronary stenosis in patients with D-transposition of the great arteries who have undergone the Jatene switch procedure. We retrieved 100 WH3D studies done in 83 patients who had undergone the Jatene switch procedure from our pediatric cardiac MRI database; 84 of these studies fulfilled the criteria for inclusion in the study. We evaluated coronary stenoses on WH3D MR images and their correlation with coronary CT or angiography images. We retrospectively studied the quality of the images of the proximal coronary arteries using a four-point scale and correlating the findings with age, heart rate, and heart size. Of the 84 studies, 4 (4.8%) were of a quality considered «insufficient for diagnosis», 7 (8.3%) were considered «fair», 23 (27.4%) «good», and 50 (59.5%) «excellent». The quality of the image of the coronary arteries was significantly correlated with heart rate. MRI detected stenosis in the origin of the coronary arteries in 9 (10.7%) studies. Images obtained with the WH3D MRI sequence in patients who had undergone the Jatene procedure were of diagnostic quality in most cases and were better in patients with lower heart rates. In 10.7%, stenosis in the origin of the coronary arteries that required new studies was detected. Copyright © 2014 SERAM. Published by Elsevier España, S.L.U. All rights reserved.
Pirie, C G; Alario, A
2014-03-01
The objective of this study was to assess and compare indocyanine green (IG) and sodium fluorescein (SF) angiographic findings in the normal canine anterior segment using a digital single lens reflex (dSLR) camera adaptor. Images were obtained from 10 brown-eyed Beagles, free of ocular and systemic disease. All animals received butorphanol (0.2 mg/kg IM), maropitant citrate (1.0 mg/kg SC) and diphenhydramine (2.0 mg/kg SC) 20 min prior to propofol (4 mg/kg IV bolus, 0.2 mg/kg/min continuous rate infusion). Standard color imaging was performed prior to the administration of 0.25% IG (1 mg/kg IV). Imaging was performed using a full spectrum dSLR camera, dSLR camera adaptor, camera lens (Canon 60 mm f/2.8 Macro) and an accessory flash. Images were obtained at a rate of 1/s immediately following IG bolus for 30 s, then at 1, 2, 3, 4 and 5 min. Ten minutes later, 10% SF (20 mg/kg IV) was administered. Imaging was repeated using the same adaptor system and imaging sequence protocol. Arterial, capillary and venous phases were identified during anterior segment IG angiography (ASIGA) and their time sequences were recorded. ASIGA offered improved visualization of the iris vasculature in heavily pigmented eyes compared to anterior segment SF angiography (ASSFA), since visualization of the vascular pattern during ASSFA was not possible due to pigment masking. Leakage of SF was noted in a total of six eyes. The use of IG and SF was not associated with any observed adverse events. The adaptor described here provides a cost-effective alternative to existing imaging systems. Copyright © 2013 Elsevier Ltd. All rights reserved.
Nordmeyer-Massner, Jurek A; Wyss, Michael; Andreisek, Gustav; Pruessmann, Klaas P; Hodler, Juerg
2011-03-01
To evaluate in vivo MR imaging of the wrist at 3.0 Tesla (T) and 7.0T quantitatively and qualitatively. To enable unbiased signal-to-noise ratio (SNR) comparisons, geometrically identical eight-channel receiver arrays were used at both field strengths. First, in vitro images of a phantom bottle were acquired at 3.0T and 7.0T to obtain an estimate of the maximum SNR gain that can be expected. MR images of the dominant wrist of 10 healthy volunteers were acquired at both field strengths. All measurements were done using the same sequence parameters. Quantitative SNR maps were calculated on a pixel-by-pixel basis and analyzed in several regions-of-interest. Furthermore, the images were qualitatively evaluated by two independent radiologists. The quantitative analysis showed SNR increases of up to 100% at 7.0T compared with 3.0T, with considerable variation between different anatomical structures. The qualitative analysis revealed no significant difference in the visualization of anatomical structures comparing 3.0T and 7.0T MR images (P>0.05). The presented results establish the SNR benefits of the transition from 3.0T to 7.0T for wrist imaging without bias by different array designs and based on exact, algebraic SNR quantification. The observed SNR increase nearly reaches expected values but varies greatly between different tissues. It does not necessarily improve the visibility of anatomic structures but adds valuable latitude for sequence optimization. Copyright © 2011 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Carvalho, Diego D. B.; Akkus, Zeynettin; Bosch, Johan G.; van den Oord, Stijn C. H.; Niessen, Wiro J.; Klein, Stefan
2014-03-01
In this work, we investigate nonrigid motion compensation in simultaneously acquired (side-by-side) B-mode ultrasound (BMUS) and contrast enhanced ultrasound (CEUS) image sequences of the carotid artery. These images are acquired to study the presence of intraplaque neovascularization (IPN), which is a marker of plaque vulnerability. IPN quantification is visualized by performing the maximum intensity projection (MIP) on the CEUS image sequence over time. As carotid images contain considerable motion, accurate global nonrigid motion compensation (GNMC) is required prior to the MIP. Moreover, we demonstrate that an improved lumen and plaque differentiation can be obtained by averaging the motion compensated BMUS images over time. We propose to use a previously published 2D+t nonrigid registration method, which is based on minimization of pixel intensity variance over time, using a spatially and temporally smooth B-spline deformation model. The validation compares displacements of plaque points with manual trackings by 3 experts in 11 carotids. The average (+/- standard deviation) root mean square error (RMSE) was 99+/-74μm for longitudinal and 47+/-18μm for radial displacements. These results were comparable with the interobserver variability, and with results of a local rigid registration technique based on speckle tracking, which estimates motion in a single point, whereas our approach applies motion compensation to the entire image. In conclusion, we evaluated that the GNMC technique produces reliable results. Since this technique tracks global deformations, it can aid in the quantification of IPN and the delineation of lumen and plaque contours.
Sensitivity of an eight-element phased array coil in 3 Tesla MR imaging: a basic analysis.
Hiratsuka, Yoshiyasu; Miki, Hitoshi; Kikuchi, Keiichi; Kiriyama, Ikuko; Mochizuki, Teruhito; Takahashi, Shizue; Sadamoto, Kazuhiko
2007-01-01
To evaluate the performance advantages of an 8-element phased array head coil (8 ch coil) over a conventional quadrature-type birdcage head coil (QD coil) with regard to the signal-to-noise ratio (SNR) and image uniformity in 3 Tesla magnetic resonance (MR) imaging. We scanned a phantom filled with silicon oil using an 8 ch coil and a QD coil in a 3T MR imaging system and compared the SNR and image uniformity obtained from T(1)-weighted spin echo (SE) images and T(2)-weighted fast SE images between the 2 coils. We also visually evaluated images from 4 healthy volunteers. The SNR with the 8 ch coil was approximately twice that with the QD coil in the region of interest (ROI), which was set as 75% of the area in the center of the phantom images. With regard to the spatial variation of sensitivity, the SNR with the 8 ch coil was lower at the center of the images than at the periphery, whereas the SNR with the QD coil exhibited an inverse pattern. At the center of the images with the 8 ch coil, the SNR was somewhat lower, and that distribution was relatively flat compared to that in the periphery. Image uniformity varied less with the 8 ch coil than with the QD coil on both imaging sequences. The 8 ch phased array coil was useful for obtaining high quality 3T images because of its higher SNR and improved image uniformity than those obtained with conventional quadrature-type birdcage head coil.
Enders, Judith; Rief, Matthias; Zimmermann, Elke; Asbach, Patrick; Diederichs, Gerd; Wetz, Christoph; Siebert, Eberhard; Wagner, Moritz; Hamm, Bernd; Dewey, Marc
2013-01-01
The purpose of the present study was to compare the image quality of spinal magnetic resonance (MR) imaging performed on a high-field horizontal open versus a short-bore MR scanner in a randomized controlled study setup. Altogether, 93 (80% women, mean age 53) consecutive patients underwent spine imaging after random assignement to a 1-T horizontal open MR scanner with a vertical magnetic field or a 1.5-T short-bore MR scanner. This patient subset was part of a larger cohort. Image quality was assessed by determining qualitative parameters, signal-to-noise (SNR) and contrast-to-noise ratios (CNR), and quantitative contour sharpness. The image quality parameters were higher for short-bore MR imaging. Regarding all sequences, the relative differences were 39% for the mean overall qualitative image quality, 53% for the mean SNR values, and 34-37% for the quantitative contour sharpness (P<0.0001). The CNR values were also higher for images obtained with the short-bore MR scanner. No sequence was of very poor (nondiagnostic) image quality. Scanning times were significantly longer for examinations performed on the open MR scanner (mean: 32±22 min versus 20±9 min; P<0.0001). In this randomized controlled comparison of spinal MR imaging with an open versus a short-bore scanner, short-bore MR imaging revealed considerably higher image quality with shorter scanning times. ClinicalTrials.gov NCT00715806.
Zimmermann, Elke; Asbach, Patrick; Diederichs, Gerd; Wetz, Christoph; Siebert, Eberhard; Wagner, Moritz; Hamm, Bernd; Dewey, Marc
2013-01-01
Background The purpose of the present study was to compare the image quality of spinal magnetic resonance (MR) imaging performed on a high-field horizontal open versus a short-bore MR scanner in a randomized controlled study setup. Methods Altogether, 93 (80% women, mean age 53) consecutive patients underwent spine imaging after random assignement to a 1-T horizontal open MR scanner with a vertical magnetic field or a 1.5-T short-bore MR scanner. This patient subset was part of a larger cohort. Image quality was assessed by determining qualitative parameters, signal-to-noise (SNR) and contrast-to-noise ratios (CNR), and quantitative contour sharpness. Results The image quality parameters were higher for short-bore MR imaging. Regarding all sequences, the relative differences were 39% for the mean overall qualitative image quality, 53% for the mean SNR values, and 34–37% for the quantitative contour sharpness (P<0.0001). The CNR values were also higher for images obtained with the short-bore MR scanner. No sequence was of very poor (nondiagnostic) image quality. Scanning times were significantly longer for examinations performed on the open MR scanner (mean: 32±22 min versus 20±9 min; P<0.0001). Conclusions In this randomized controlled comparison of spinal MR imaging with an open versus a short-bore scanner, short-bore MR imaging revealed considerably higher image quality with shorter scanning times. Trial Registration ClinicalTrials.gov NCT00715806 PMID:24391767
Matsuo, Masayuki; Kanematsu, Masayuki; Itoh, Kyo; Murakami, Takamichi; Maetani, Yoji; Kondo, Hiroshi; Goshima, Satoshi; Kako, Nobuo; Hoshi, Hiroaki; Konishi, Junji; Moriyama, Noriyuki; Nakamura, Hironobu
2004-01-01
The purpose of our study was to compare the detectability of malignant hepatic tumors on ferumoxides-enhanced MRI using five gradient-recalled echo sequences at different TEs. Ferumoxides-enhanced MRIs obtained in 31 patients with 50 malignant hepatic tumors (33 hepatocellular carcinomas, 17 metastases) were reviewed retrospectively by three independent offsite radiologists. T1-weighted gradient-recalled echo images with TEs of 1.4 and 4.2 msec; T2*-weighted gradient-recalled echo images with TEs of 6, 8, and 10 msec; and T2-weighted fast spin-echo images of livers were randomly reviewed on a segment-by-segment basis. Observer performance was tested using the McNemar test and receiver operating characteristic analysis for the clustered data. Lesion-to-liver contrast-to-noise ratio was also assessed. Mean lesion-to-liver contrast-to-noise ratios were negative and lower with gradient-recalled echo at 1.4 msec than with the other sequences. Sensitivity was higher (p < 0.05) with gradient-recalled echo at 6, 8, and 10 msec and fast spin-echo sequences (75-83%) than with gradient-recalled echo sequences at 1.4 and 4.2 msec (46-48%), and was higher (p < 0.05) with gradient-recalled echo sequence at 8 msec (83%) than with gradient-recalled echo at 6 msec and fast spin-echo sequences (75-78%). Specificity was comparably high with all sequences (95-98%). The area under the receiver operating characteristic curve (A(z)) was greater (p < 0.05) with gradient-recalled echo at 6, 8, and 10 msec and fast spin-echo sequences (A(z) = 0.91-0.93) than with gradient-recalled echo sequences at 1.4 and 4.2 msec (A(z) = 0.82-0.85). In the detection of malignant hepatic tumors, gradient-recalled echo sequences at 8 msec showed the highest sensitivity and had an A(z) value and lesion-to-liver contrast-to-noise ratio comparable with values from gradient-recalled echo sequences at 6 and 10 msec and fast spin-echo sequences.
Viddeleer, Alain R; Sijens, Paul E; van Ooijen, Peter M A; Kuypers, Paul D L; Hovius, Steven E R; Oudkerk, Matthijs
2009-08-01
Nerve regeneration could be monitored by comparing MRI image intensities in time, as denervated muscles display increased signal intensity in STIR sequences. In this study long-term reproducibility of STIR image intensity was assessed under clinical conditions and the required image intensity nonuniformity correction was improved by using phantom scans obtained at multiple positions. Three-dimensional image intensity nonuniformity was investigated in phantom scans. Next, over a three-year period, 190 clinical STIR hand scans were obtained using a standardized acquisition protocol, and corrected for intensity nonuniformity by using the results of phantom scanning. The results of correction with 1, 3, and 11 phantom scans were compared. The image intensities in calibration tubes close to the hands were measured every time to determine the reproducibility of our method. With calibration, the reproducibility of STIR image intensity improved from 7.8 to 6.4%. Image intensity nonuniformity correction with 11 phantom scans gave significantly better results than correction with 1 or 3 scans. The image intensities in clinical STIR images acquired at different times can be compared directly, provided that the acquisition protocol is standardized and that nonuniformity correction is applied. Nonuniformity correction is preferably based on multiple phantom scans.
Object tracking using plenoptic image sequences
NASA Astrophysics Data System (ADS)
Kim, Jae Woo; Bae, Seong-Joon; Park, Seongjin; Kim, Do Hyung
2017-05-01
Object tracking is a very important problem in computer vision research. Among the difficulties of object tracking, partial occlusion problem is one of the most serious and challenging problems. To address the problem, we proposed novel approaches to object tracking on plenoptic image sequences. Our approaches take advantage of the refocusing capability that plenoptic images provide. Our approaches input the sequences of focal stacks constructed from plenoptic image sequences. The proposed image selection algorithms select the sequence of optimal images that can maximize the tracking accuracy from the sequence of focal stacks. Focus measure approach and confidence measure approach were proposed for image selection and both of the approaches were validated by the experiments using thirteen plenoptic image sequences that include heavily occluded target objects. The experimental results showed that the proposed approaches were satisfactory comparing to the conventional 2D object tracking algorithms.
Maso Talou, Gonzalo D.; Blanco, Pablo J.; Ares, Gonzalo D.; Guedes Bezerra, Cristiano; Lemos, Pedro A.; Feijóo, Raúl A.
2018-01-01
Atherosclerotic plaque rupture and erosion are the most important mechanisms underlying the sudden plaque growth, responsible for acute coronary syndromes and even fatal cardiac events. Advances in the understanding of the culprit plaque structure and composition are already reported in the literature, however, there is still much work to be done toward in-vivo plaque visualization and mechanical characterization to assess plaque stability, patient risk, diagnosis and treatment prognosis. In this work, a methodology for the mechanical characterization of the vessel wall plaque and tissues is proposed based on the combination of intravascular ultrasound (IVUS) imaging processing, data assimilation and continuum mechanics models within a high performance computing (HPC) environment. Initially, the IVUS study is gated to obtain volumes of image sequences corresponding to the vessel of interest at different cardiac phases. These sequences are registered against the sequence of the end-diastolic phase to remove transversal and longitudinal rigid motions prescribed by the moving environment due to the heartbeat. Then, optical flow between the image sequences is computed to obtain the displacement fields of the vessel (each associated to a certain pressure level). The obtained displacement fields are regarded as observations within a data assimilation paradigm, which aims to estimate the material parameters of the tissues within the vessel wall. Specifically, a reduced order unscented Kalman filter is employed, endowed with a forward operator which amounts to address the solution of a hyperelastic solid mechanics model in the finite strain regime taking into account the axially stretched state of the vessel, as well as the effect of internal and external forces acting on the arterial wall. Due to the computational burden, a HPC approach is mandatory. Hence, the data assimilation and computational solid mechanics computations are parallelized at three levels: (i) a Kalman filter level; (ii) a cardiac phase level; and (iii) a mesh partitioning level. To illustrate the capabilities of this novel methodology toward the in-vivo analysis of patient-specific vessel constituents, mechanical material parameters are estimated using in-silico and in-vivo data retrieved from IVUS studies. Limitations and potentials of this approach are exposed and discussed. PMID:29643815
Extracting flat-field images from scene-based image sequences using phase correlation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caron, James N., E-mail: Caron@RSImd.com; Montes, Marcos J.; Obermark, Jerome L.
Flat-field image processing is an essential step in producing high-quality and radiometrically calibrated images. Flat-fielding corrects for variations in the gain of focal plane array electronics and unequal illumination from the system optics. Typically, a flat-field image is captured by imaging a radiometrically uniform surface. The flat-field image is normalized and removed from the images. There are circumstances, such as with remote sensing, where a flat-field image cannot be acquired in this manner. For these cases, we developed a phase-correlation method that allows the extraction of an effective flat-field image from a sequence of scene-based displaced images. The method usesmore » sub-pixel phase correlation image registration to align the sequence to estimate the static scene. The scene is removed from sequence producing a sequence of misaligned flat-field images. An average flat-field image is derived from the realigned flat-field sequence.« less
[Microbial community in the Anammox process of thermal denitration tail liquid].
Li, Jin; Yu, Deshuang; Zhao, Dan; Wang, Xiaochen
2014-12-01
An anaerobic sequencing batch reactor (ASBR) was used to treat thermal denitration tail liquid and microbial community was studied. Activated sludge was taken from the reactor for scanning electron microscope analysis. The images showed that the dominant cells in the flora were oval cocci. Its diameter was about 0.7 μm. Through a series of molecular biology methods such as extracting total DNA from the sludge, PCR amplification, positive clone authentication and sequencing, we obtained the 16S rDNA sequences of the flora. Phylogenetic tree and clone library were established. The universal bacteria primers of 27F-1492R PCR amplification system obtained 85 clones and could be divided into 21 OTUS. The proportions were as follows: Proteobacteria 61.18%; Acidobacteria 17.65%; Chlorobi 8.24%; Chlorofexi 5.88%; Gemmatimonadetes 3.53%; Nitrospirae 2.35% and Planctomycetes 1.18%. The specific anammox bacterial primers of pla46rc-630r and AMX368-AMX820 PCR amplification system obtained 45 clones. They were divided into 3 OTUS. Candidatus brocadia sp. occupied 95.6% and unknown strains occupied 4.4%.
Evaluation of patellar chondromalacia with MR: comparison between T2-weighted FSE SPIR and GE MTC.
Macarini, Luca; Perrone, Alessandra; Murrone, Mario; Marini, Stefania; Stefanelli, Michele
2004-09-01
To compare two different MR sequences to tissue signal suppression in the study of patellar cartilage abnormalities. We examined 26 patients with magnetic resonance (MR) imaging: sequences included spectral presaturation with inversion recovery (SPIR), with fat suppression and T2-weighted images, magnetization transfer contrast (MTC) sequences, T1-weighted and T2-weighted spin-echo sequences. All patients underwent conventional knee arthroscopy and in all patients a hyaline cartilage lesion was assessed in three articular zones: the patellar medial facet, the lateral facet and the patellar crista. Was assessed 78 articular facets. The lesions were classified using a standard arthroscopic grading system adapted to MR imaging: normal cartilage that corresponds to the grade 0 according to the Noyes grading system, low grade lesions that correspond to the grade I e IIa and high grade lesions that correspond to grades IIb and III. The arthroscopic results were compared with MR images. We assessed the MR diagnostic accuracy, sensitivity, specificity and MR positive predictive value and negative predictive value of the two sequences taking into consideration total lesions, and high-grade and low grade lesions separately. Twenty-four low grade lesions (16 grade I e 8 grade IIa) and 18 high grade lesions (10 grade IIb e 8 grade III) were diagnosed by arthroscopy. Regarding low grade and high-grade lesions together, the accuracy was 77% for MTC sequences and 90% for SPIR sequences. In identifying low-grade lesions, the sensitivity was 88% for SPIR sequence and 42% for MTC sequences. Specificity for the detection of all lesions was 89% for the SPIR sequences and 94% for the MTC sequences. The SPIR sequence visualised water content abnormalities in degenerating cartilage, which are representative of low-grade lesions. The sensitivity of the sequence enabled us to obtain improved contrast for detecting cartilage surface irregularities. The MTC sequences allowed us to grade high-grade lesions susceptible to surgery and small cartilage defects in the presence of joint fluid. The MTC sequences were insufficient in the diagnosis of early stages of chondromalacia because the suppression of the signal of bonded water reduced the contrast among areas of articular cartilage with different water content. For this reason cartilage oedema and early superficial fibrillation were not identified. In our experience the SPIR sequence proved superior to the MTC sequence in the identification of low grade lesions of the patellar cartilage. The overall value of such sequences in the study of articular pathology also needs to be assessed in the others sites where the articular cartilage is thinner and surfaces more curvilinear.
Kim, Yeo Ju; Cha, Jang Gyu; Shin, Yoon Sang; Chaudhari, Akshay S; Suh, Young Ju; Hwan Yoon, Seung; Gold, Garry E
2018-05-01
The purpose of this study was to evaluate the feasibility of 3D ultrashort TE (UTE) MRI in depicting the cartilaginous endplate (CEP) and its abnormalities and to investigate the association between CEP abnormalities and disk degeneration on T2-weighted spin-echo (SE) MR images in cervical disks in vivo. Eight healthy volunteers and 70 patients were examined using 3-T MRI with the 3D UTE cones trajectory technique (TR/TE, 16.1/0.032, 6.6). In the volunteer study, quantitative and qualitative assessments of CEP depiction were conducted for the 3D UTE and T2-weighted SE imaging. In the patient study, CEP abnormalities were analyzed. Intersequence agreement between the images obtained with the first-echo 3D UTE sequence and the images created by subtracting the second-echo from the first-echo 3D UTE sequence (subtracted 3D UTE) and the intraobserver and interobserver agreements for 3D UTE overall were also tested. The CEP abnormalities on the 3D UTE images correlated with the Miyazaki grading of the T2-weighted SE images. In the volunteer study, the CEP was well visualized on 3D UTE images but not on T2-weighted SE images (p < 0.001). In the patient study, for evaluation of CEP abnormalities, intersequence agreements were substantial to almost perfect, intraobserver agreements were substantial to almost perfect, and interobserver agreements were moderate to substantial (p < 0.001). All of the CEP abnormalities correlated with the Miyazaki grade with statistical significance (p < 0.001). Three-dimensional UTE MRI feasibly depicts the CEP and CEP abnormalities, which may be associated with the severity of disk degeneration on T2-weighted SE MRI.
Han, Chengzong; Pogwizd, Steven M; Killingsworth, Cheryl R; He, Bin
2011-08-01
Imaging cardiac excitation within ventricular myocardium is important in the treatment of cardiac arrhythmias and might help improve our understanding of arrhythmia mechanisms. This study sought to rigorously assess the imaging performance of a 3-dimensional (3D) cardiac electrical imaging (3DCEI) technique with the aid of 3D intracardiac mapping from up to 216 intramural sites during paced rhythm and norepinephrine (NE)-induced ventricular tachycardia (VT) in the rabbit heart. Body surface potentials and intramural bipolar electrical recordings were simultaneously measured in a closed-chest condition in 13 healthy rabbits. Single-site pacing and dual-site pacing were performed from ventricular walls and septum. VTs and premature ventricular complexes (PVCs) were induced by intravenous NE. Computed tomography images were obtained to construct geometry models. The noninvasively imaged activation sequence correlated well with invasively measured counterpart, with a correlation coefficient of 0.72 ± 0.04, and a relative error of 0.30 ± 0.02 averaged over 520 paced beats as well as 73 NE-induced PVCs and VT beats. All PVCs and VT beats initiated in the subendocardium by a nonreentrant mechanism. The averaged distance from the imaged site of initial activation to the pacing site or site of arrhythmias determined from intracardiac mapping was ∼5 mm. For dual-site pacing, the double origins were identified when they were located at contralateral sides of ventricles or at the lateral wall and the apex. 3DCEI can noninvasively delineate important features of focal or multifocal ventricular excitation. It offers the potential to aid in localizing the origins and imaging activation sequences of ventricular arrhythmias, and to provide noninvasive assessment of the underlying arrhythmia mechanisms. Copyright © 2011 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Han, Chengzong; Pogwizd, Steven M.; Killingsworth, Cheryl R.; He, Bin
2011-01-01
Background Imaging cardiac excitation within ventricular myocardium is important in the treatment of cardiac arrhythmias and might help improve our understanding of arrhythmia mechanisms. Objective This study aims to rigorously assess the imaging performance of a three-dimensional (3-D) cardiac electrical imaging (3-DCEI) technique with the aid of 3-D intra-cardiac mapping from up to 216 intramural sites during paced rhythm and norepinephrine (NE) induced ventricular tachycardia (VT) in the rabbit heart. Methods Body surface potentials and intramural bipolar electrical recordings were simultaneously measured in a closed-chest condition in thirteen healthy rabbits. Single-site pacing and dual-site pacing were performed from ventricular walls and septum. VTs and premature ventricular complexes (PVCs) were induced by intravenous NE. Computer tomography images were obtained to construct geometry model. Results The non-invasively imaged activation sequence correlated well with invasively measured counterparts, with a correlation coefficient of 0.72±0.04, and a relative error of 0.30±0.02 averaged over 520 paced beats as well as 73 NE-induced PVCs and VT beats. All PVCs and VT beats initiated in the subendocardium by a nonreentrant mechanism. The averaged distance from imaged site of initial activation to pacing site or site of arrhythmias determined from intra-cardiac mapping was ~5mm. For dual-site pacing, the double origins were identified when they were located at contralateral sides of ventricles or at the lateral wall and the apex. Conclusion 3-DCEI can non-invasively delineate important features of focal or multi-focal ventricular excitation. It offers the potential to aid in localizing the origins and imaging activation sequence of ventricular arrhythmias, and to provide noninvasive assessment of the underlying arrhythmia mechanisms. PMID:21397046
AAPM/RSNA physics tutorials for residents: MR imaging: brief overview and emerging applications.
Jacobs, Michael A; Ibrahim, Tamer S; Ouwerkerk, Ronald
2007-01-01
Magnetic resonance (MR) imaging has become established as a diagnostic and research tool in many areas of medicine because of its ability to provide excellent soft-tissue delineation in different areas of interest. In addition to T1- and T2-weighted imaging, many specialized MR techniques have been designed to extract metabolic or biophysical information. Diffusion-weighted imaging gives insight into the movement of water molecules in tissue, and diffusion-tensor imaging can reveal fiber orientation in the white matter tracts. Metabolic information about the object of interest can be obtained with spectroscopy of protons, in addition to imaging of other nuclei, such as sodium. Dynamic contrast material-enhanced imaging and recently proton spectroscopy play an important role in oncologic imaging. When these techniques are combined, they can assist the physician in making a diagnosis or monitoring a treatment regimen. One of the major advantages of the different types of MR imaging is the ability of the operator to manipulate image contrast with a variety of selectable parameters that affect the kind and quality of the information provided. The elements used to obtain MR images and the factors that affect formation of an MR image include MR instrumentation, localization of the MR signal, gradients, k-space, and pulse sequences. RSNA, 2007
Hu, Simon; Lustig, Michael; Balakrishnan, Asha; Larson, Peder E. Z.; Bok, Robert; Kurhanewicz, John; Nelson, Sarah J.; Goga, Andrei; Pauly, John M.; Vigneron, Daniel B.
2010-01-01
High polarization of nuclear spins in liquid state through hyperpolarized technology utilizing dynamic nuclear polarization has enabled the direct monitoring of 13C metabolites in vivo at a high signal-to-noise ratio. Acquisition time limitations due to T1 decay of the hyperpolarized signal require accelerated imaging methods, such as compressed sensing, for optimal speed and spatial coverage. In this paper, the design and testing of a new echo-planar 13C three-dimensional magnetic resonance spectroscopic imaging (MRSI) compressed sensing sequence is presented. The sequence provides up to a factor of 7.53 in acceleration with minimal reconstruction artifacts. The key to the design is employing x and y gradient blips during a fly-back readout to pseudorandomly undersample kf-kx-ky space. The design was validated in simulations and phantom experiments where the limits of undersampling and the effects of noise on the compressed sensing nonlinear reconstruction were tested. Finally, this new pulse sequence was applied in vivo in preclinical studies involving transgenic prostate cancer and transgenic liver cancer murine models to obtain much higher spatial and temporal resolution than possible with conventional echo-planar spectroscopic imaging methods. PMID:20017160
Detection of Fiber Layer-Up Lamination Order of CFRP Composite Using Thermal-Wave Radar Imaging
NASA Astrophysics Data System (ADS)
Wang, Fei; Liu, Junyan; Liu, Yang; Wang, Yang; Gong, Jinlong
2016-09-01
In this paper, thermal-wave radar imaging (TWRI) is used as a nondestructive inspection method to evaluate carbon-fiber-reinforced-polymer (CFRP) composite. An inverse methodology that combines TWRI with numerical optimization technique is proposed to determine the fiber layer-up lamination sequences of anisotropic CFRP composite. A 7-layer CFRP laminate [0°/45°/90°/0°]_{{s}} is heated by a chirp-modulated Gaussian laser beam, and then finite element method (FEM) is employed to calculate the temperature field of CFRP laminates. The phase based on lock-in correlation between reference chirp signal and the thermal-wave signal is performed to obtain the phase image of TWRI, and the least square method is applied to reconstruct the cost function that minimizes the square of the difference between the phase of TWRI inspection and numerical calculation. A hybrid algorithm that combines the simulation annealing with Nelder-Mead simplex research method is employed to solve the reconstructed cost function and find the global optimal solution of the layer-up sequences of CFRP composite. The result shows the feasibility of estimating the fiber layer-up lamination sequences of CFRP composite with optimal discrete and constraint conditions.
Rapid 3D Reconstruction for Image Sequence Acquired from UAV Camera
Qu, Yufu; Huang, Jianyu; Zhang, Xuan
2018-01-01
In order to reconstruct three-dimensional (3D) structures from an image sequence captured by unmanned aerial vehicles’ camera (UAVs) and improve the processing speed, we propose a rapid 3D reconstruction method that is based on an image queue, considering the continuity and relevance of UAV camera images. The proposed approach first compresses the feature points of each image into three principal component points by using the principal component analysis method. In order to select the key images suitable for 3D reconstruction, the principal component points are used to estimate the interrelationships between images. Second, these key images are inserted into a fixed-length image queue. The positions and orientations of the images are calculated, and the 3D coordinates of the feature points are estimated using weighted bundle adjustment. With this structural information, the depth maps of these images can be calculated. Next, we update the image queue by deleting some of the old images and inserting some new images into the queue, and a structural calculation of all the images can be performed by repeating the previous steps. Finally, a dense 3D point cloud can be obtained using the depth–map fusion method. The experimental results indicate that when the texture of the images is complex and the number of images exceeds 100, the proposed method can improve the calculation speed by more than a factor of four with almost no loss of precision. Furthermore, as the number of images increases, the improvement in the calculation speed will become more noticeable. PMID:29342908
Rapid 3D Reconstruction for Image Sequence Acquired from UAV Camera.
Qu, Yufu; Huang, Jianyu; Zhang, Xuan
2018-01-14
In order to reconstruct three-dimensional (3D) structures from an image sequence captured by unmanned aerial vehicles' camera (UAVs) and improve the processing speed, we propose a rapid 3D reconstruction method that is based on an image queue, considering the continuity and relevance of UAV camera images. The proposed approach first compresses the feature points of each image into three principal component points by using the principal component analysis method. In order to select the key images suitable for 3D reconstruction, the principal component points are used to estimate the interrelationships between images. Second, these key images are inserted into a fixed-length image queue. The positions and orientations of the images are calculated, and the 3D coordinates of the feature points are estimated using weighted bundle adjustment. With this structural information, the depth maps of these images can be calculated. Next, we update the image queue by deleting some of the old images and inserting some new images into the queue, and a structural calculation of all the images can be performed by repeating the previous steps. Finally, a dense 3D point cloud can be obtained using the depth-map fusion method. The experimental results indicate that when the texture of the images is complex and the number of images exceeds 100, the proposed method can improve the calculation speed by more than a factor of four with almost no loss of precision. Furthermore, as the number of images increases, the improvement in the calculation speed will become more noticeable.
Investigation of Post-mortem Tissue Effects Using Long-time Decorrelation Ultrasound
NASA Astrophysics Data System (ADS)
Csány, Gergely; Balogh, Lajos; Gyöngy, Miklós
Decorrelation ultrasound is being increasingly used to investigate long-term biological phenomena. In the current work, ultrasound image sequences of mice who did not survive anesthesia (in a separate investigation) were analyzed and post-mortem tissue effects were observed via decorrelation calculation. A method was developed to obtain a quantitative parameter characterizing the rate of decorrelation. The results show that ultrasound decorrelation imaging is an effective method of observing post-mortem tissue effects and point to further studies elucidating the mechanism behind these effects.
Skorpil, M; Brynolfsson, P; Engström, M
2017-06-01
Multiparametric magnetic resonance imaging (MRI) and PI-RADS (Prostate Imaging - Reporting and Data System) has become the standard to determine a probability score for a lesion being a clinically significant prostate cancer. T2-weighted and diffusion-weighted imaging (DWI) are essential in PI-RADS, depending partly on visual assessment of signal intensity, while dynamic-contrast enhanced imaging is less important. To decrease inter-rater variability and further standardize image evaluation, complementary objective measures are in need. We here demonstrate a sequence enabling simultaneous quantification of apparent diffusion coefficient (ADC) and T2-relaxation, as well as calculation of the perfusion fraction f from low b-value intravoxel incoherent motion data. Expandable wait pulses were added to a FOCUS DW SE-EPI sequence, allowing the effective echo time to change at run time. To calculate both ADC and f, b-values 200s/mm 2 and 600s/mm 2 were chosen, and for T2-estimation 6 echo times between 64.9ms and 114.9ms were used. Three patients with prostate cancer were examined and all had significantly decreased ADC and T2-values, while f was significantly increased in 2 of 3 tumors. T2 maps obtained in phantom measurements and in a healthy volunteer were compared to T2 maps from a SE sequence with consecutive scans, showing good agreement. In addition, a motion correction procedure was implemented to reduce the effects of prostate motion, which improved T2-estimation. This sequence could potentially enable more objective tumor grading, and decrease the inter-rater variability in the PI-RADS classification. Copyright © 2017 Elsevier Inc. All rights reserved.
Fusion of infrared and visible images based on BEMD and NSDFB
NASA Astrophysics Data System (ADS)
Zhu, Pan; Huang, Zhanhua; Lei, Hai
2016-07-01
This paper presents a new fusion method based on the adaptive multi-scale decomposition of bidimensional empirical mode decomposition (BEMD) and the flexible directional expansion of nonsubsampled directional filter banks (NSDFB) for visible-infrared images. Compared with conventional multi-scale fusion methods, BEMD is non-parametric and completely data-driven, which is relatively more suitable for non-linear signals decomposition and fusion. NSDFB can provide direction filtering on the decomposition levels to capture more geometrical structure of the source images effectively. In our fusion framework, the entropies of the two patterns of source images are firstly calculated and the residue of the image whose entropy is larger is extracted to make it highly relevant with the other source image. Then, the residue and the other source image are decomposed into low-frequency sub-bands and a sequence of high-frequency directional sub-bands in different scales by using BEMD and NSDFB. In this fusion scheme, two relevant fusion rules are used in low-frequency sub-bands and high-frequency directional sub-bands, respectively. Finally, the fused image is obtained by applying corresponding inverse transform. Experimental results indicate that the proposed fusion algorithm can obtain state-of-the-art performance for visible-infrared images fusion in both aspects of objective assessment and subjective visual quality even for the source images obtained in different conditions. Furthermore, the fused results have high contrast, remarkable target information and rich details information that are more suitable for human visual characteristics or machine perception.
NASA Astrophysics Data System (ADS)
Gao, Bin; Liu, Wanyu; Wang, Liang; Liu, Zhengjun; Croisille, Pierre; Delachartre, Philippe; Clarysse, Patrick
2016-12-01
Cine-MRI is widely used for the analysis of cardiac function in clinical routine, because of its high soft tissue contrast and relatively short acquisition time in comparison with other cardiac MRI techniques. The gray level distribution in cardiac cine-MRI is relatively homogenous within the myocardium, and can therefore make motion quantification difficult. To ensure that the motion estimation problem is well posed, more image features have to be considered. This work is inspired by a method previously developed for color image processing. The monogenic signal provides a framework to estimate the local phase, orientation, and amplitude, of an image, three features which locally characterize the 2D intensity profile. The independent monogenic features are combined into a 3D matrix for motion estimation. To improve motion estimation accuracy, we chose the zero-mean normalized cross-correlation as a matching measure, and implemented a bilateral filter for denoising and edge-preservation. The monogenic features distance is used in lieu of the color space distance in the bilateral filter. Results obtained from four realistic simulated sequences outperformed two other state of the art methods even in the presence of noise. The motion estimation errors (end point error) using our proposed method were reduced by about 20% in comparison with those obtained by the other tested methods. The new methodology was evaluated on four clinical sequences from patients presenting with cardiac motion dysfunctions and one healthy volunteer. The derived strain fields were analyzed favorably in their ability to identify myocardial regions with impaired motion.
Automated frame selection process for high-resolution microendoscopy
NASA Astrophysics Data System (ADS)
Ishijima, Ayumu; Schwarz, Richard A.; Shin, Dongsuk; Mondrik, Sharon; Vigneswaran, Nadarajah; Gillenwater, Ann M.; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca
2015-04-01
We developed an automated frame selection algorithm for high-resolution microendoscopy video sequences. The algorithm rapidly selects a representative frame with minimal motion artifact from a short video sequence, enabling fully automated image analysis at the point-of-care. The algorithm was evaluated by quantitative comparison of diagnostically relevant image features and diagnostic classification results obtained using automated frame selection versus manual frame selection. A data set consisting of video sequences collected in vivo from 100 oral sites and 167 esophageal sites was used in the analysis. The area under the receiver operating characteristic curve was 0.78 (automated selection) versus 0.82 (manual selection) for oral sites, and 0.93 (automated selection) versus 0.92 (manual selection) for esophageal sites. The implementation of fully automated high-resolution microendoscopy at the point-of-care has the potential to reduce the number of biopsies needed for accurate diagnosis of precancer and cancer in low-resource settings where there may be limited infrastructure and personnel for standard histologic analysis.
Gas Phase UTE MRI of Propane and Propene
Kovtunov, Kirill V.; Romanov, Alexey S.; Salnikov, Oleg G.; Barskiy, Danila A.; Chekmenev, Eduard Y.; Koptyug, Igor V.
2016-01-01
1H MRI of gases can potentially enable functional lung imaging to probe gas ventilation and other functions. In this work, 1H MR images of hyperpolarized and thermally polarized propane gas were obtained using UTE (ultrashort echo time) pulse sequence. A 2D image of thermally polarized propane gas with ~0.9×0.9 mm2 spatial resolution was obtained in less than 2 seconds, demonstrating that even non-hyperpolarized hydrocarbon gases can be successfully utilized for conventional proton MRI. The experiments were also performed with hyperpolarized propane gas and demonstrated acquisition of high-resolution multi-slice FLASH 2D images in ca. 510 s and non slice-selective 2D UTE MRI images in ca. 2 s. The UTE approach adopted in this study can be potentially used for medical lung imaging. Furthermore, the possibility to combine UTE with selective suppression of 1H signals from one of the two gases in a mixture is demonstrated in this MRI study. The latter can be useful for visualizing industrially important processes where several gases may be present, e.g., gas-solid catalytic reactions. PMID:27478870
Vehicle counting system using real-time video processing
NASA Astrophysics Data System (ADS)
Crisóstomo-Romero, Pedro M.
2006-02-01
Transit studies are important for planning a road network with optimal vehicular flow. A vehicular count is essential. This article presents a vehicle counting system based on video processing. An advantage of such system is the greater detail than is possible to obtain, like shape, size and speed of vehicles. The system uses a video camera placed above the street to image transit in real-time. The video camera must be placed at least 6 meters above the street level to achieve proper acquisition quality. Fast image processing algorithms and small image dimensions are used to allow real-time processing. Digital filters, mathematical morphology, segmentation and other techniques allow identifying and counting all vehicles in the image sequences. The system was implemented under Linux in a 1.8 GHz Pentium 4 computer. A successful count was obtained with frame rates of 15 frames per second for images of size 240x180 pixels and 24 frames per second for images of size 180x120 pixels, thus being able to count vehicles whose speeds do not exceed 150 km/h.
Time-sequenced X-ray Observation of a Thermal Explosion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tringe, J W; Molitoris, J D; Smilowitz, L
The evolution of a thermally-initiated explosion is studied using a multiple-image x-ray system. HMX-based PBX 9501 is used in this work, enabling direct comparison to recently-published data obtained with proton radiography [1]. Multiple x-ray images of the explosion are obtained with image spacing of ten microseconds or more. The explosion is simultaneously characterized with a high-speed camera using an interframe spacing of 11 {micro}s. X-ray and camera images were both initiated passively by signals from an embedded thermocouple array, as opposed to being actively triggered by a laser pulse or other external source. X-ray images show an accelerating reacting frontmore » within the explosive, and also show unreacted explosive at the time the containment vessel bursts. High-speed camera images show debris ejected from the vessel expanding at 800-2100 m/s in the first tens of {micro}s after the container wall failure. The effective center of the initiation volume is about 6 mm from the geometric center of the explosive.« less
Ravì, Daniele; Szczotka, Agnieszka Barbara; Shakir, Dzhoshkun Ismail; Pereira, Stephen P; Vercauteren, Tom
2018-06-01
Probe-based confocal laser endomicroscopy (pCLE) is a recent imaging modality that allows performing in vivo optical biopsies. The design of pCLE hardware, and its reliance on an optical fibre bundle, fundamentally limits the image quality with a few tens of thousands fibres, each acting as the equivalent of a single-pixel detector, assembled into a single fibre bundle. Video registration techniques can be used to estimate high-resolution (HR) images by exploiting the temporal information contained in a sequence of low-resolution (LR) images. However, the alignment of LR frames, required for the fusion, is computationally demanding and prone to artefacts. In this work, we propose a novel synthetic data generation approach to train exemplar-based Deep Neural Networks (DNNs). HR pCLE images with enhanced quality are recovered by the models trained on pairs of estimated HR images (generated by the video registration algorithm) and realistic synthetic LR images. Performance of three different state-of-the-art DNNs techniques were analysed on a Smart Atlas database of 8806 images from 238 pCLE video sequences. The results were validated through an extensive image quality assessment that takes into account different quality scores, including a Mean Opinion Score (MOS). Results indicate that the proposed solution produces an effective improvement in the quality of the obtained reconstructed image. The proposed training strategy and associated DNNs allows us to perform convincing super-resolution of pCLE images.
Fries, Peter; Runge, Val M; Kirchin, Miles A; Stemmer, Alto; Naul, L Gill; Wiliams, Kenneth D; Reith, Wolfgang; Bücker, Arno; Schneider, Günther
2009-06-01
To compare diffusion-weighted imaging (DWI) based on a fast spin echo (FSE) sequence using BLADE (PROPELLER) with conventional DWI-echoplanar imaging (EPI) techniques at 3 T and to demonstrate the influence of hardware developments on signal-to-noise ratio (SNR) with these techniques using 12- and 32-channel head coils. Fourteen patients with brain ischemia were evaluated with DWI using EPI and FSE BLADE sequences, with a 12-channel head coil, in the axial plane and 1 additional plane (either sagittal or coronal). SNR and CNR were calculated from region-of-interest measurements. Scans were evaluated in a blinded fashion by 2 experienced neuroradiologists. SNR of both DWI techniques was evaluated in 12 healthy volunteers using different parallel imaging (PI) factors (for the EPI sequence) and both the 12- and 32-channel coils. DWI-BLADE sequences acquired with the 12-channel coil revealed a significant reduction in SNR (mean +/- SD) of ischemic lesions (SNR(lesion) [5.0 +/- 2.5]), normal brain (SNR(brain) [3.0 +/- 1.9]), and subsequently in CNR (3.0 +/- 1.8) as compared with the DWI-EPI sequence (SNR(lesion) [9.3 +/- 5.2], SNR(brain) [7.7 +/- 3.5], CNR [6.1 +/- 2.8], P < 0.001). Despite this reduction in SNR and CNR, the blinded read revealed a marked preference for the DWI-BLADE sequence, or equality between the sequences, in the majority of patients because lesion detection was degraded by susceptibility artifacts on axial DWI-EPI scans in 14% to 43% of cases (but in no instance with the DWI-BLADE sequence). In particular, preference for the DWI-BLADE sequence or equality between the 2 techniques for lesion detection in the brainstem and cerebellum was observed. On some DWI-BLADE scans, in the additional plane, radial-like artifacts degraded lesion detection.In volunteers, SNR was significantly improved using the 32-channel coil, irrespective of scan technique. Comparing DWI-EPI acquired with the 12-channel coil (iPAT = 2) to DWI-BLADE acquired with the 32-channel coil, comparable SNR values were obtained. The 32-channel coil also makes feasible, with DWI-EPI, an increase in the PI factor to 4, which allows for a further reduction of bulk susceptibility artifacts. However, still DWI-BLADE sequences performed better because of absence of bulk susceptibility artifacts at comparable SNR values. Despite lower SNR at comparable PI factors, DWI-BLADE sequences acquired using the 12-channel coil are preferable in most instances, as compared with DWI-EPI sequences, because of the absence of susceptibility artifacts and subsequently improved depiction of ischemic lesions in the brainstem and cerebellum. With the 32-channel coil, recently FDA approved, DWI-BLADE acquired with an iPAT = 2 provides comparable SNR without bulk susceptibility artifacts as compared with the DWI-EPI sequences acquired for clinical routine to date and has the potential to replace the standard DWI technique for special indications like DWI of the cerebellum and the brainstem or in presence of metallic implants or hemorrhage.
Hybrid cardiac imaging with MR-CAT scan: a feasibility study.
Hillenbrand, C; Sandstede, J; Pabst, T; Hahn, D; Haase, A; Jakob, P M
2000-06-01
We demonstrate the feasibility of a new versatile hybrid imaging concept, the combined acquisition technique (CAT), for cardiac imaging. The cardiac CAT approach, which combines new methodology with existing technology, essentially integrates fast low-angle shot (FLASH) and echoplanar imaging (EPI) modules in a sequential fashion, whereby each acquisition module is employed with independently optimized imaging parameters. One important CAT sequence optimization feature is the ability to use different bandwidths for different acquisition modules. Twelve healthy subjects were imaged using three cardiac CAT acquisition strategies: a) CAT was used to reduce breath-hold duration times while maintaining constant spatial resolution; b) CAT was used to increase spatial resolution in a given breath-hold time; and c) single-heart beat CAT imaging was performed. The results obtained demonstrate the feasibility of cardiac imaging using the CAT approach and the potential of this technique to accelerate the imaging process with almost conserved image quality. Copyright 2000 Wiley-Liss, Inc.
Non-invasive MRI detection of individual pellets in the human stomach.
Knörgen, Manfred; Spielmann, Rolf Peter; Abdalla, Ahmed; Metz, Hendrik; Mäder, Karsten
2010-01-01
MRI is a powerful and non-invasive method to follow the fate of oral drug delivery systems in humans. Until now, most MRI studies focused on monolithic dosage forms (tablets and capsules). Small-sized multi-particulate drug delivery systems are very difficult to detect due to the poor differentiation between the delivery system and the food. A new approach was developed to overcome the described difficulties and permit the selective imaging of small multi-particulate dosage forms within the stomach. We took advantage of the different sensitivities to susceptibility artefacts of T(2)-weighted spin-echo sequences and T(2)-weighted gradient echo pulse sequences. Using a combination of both methods within a breath hold followed by a specific mathematical image analysis involving co-registration, motion correction, voxel-by-voxel comparison of the maps from different pulse sequences and graphic 2D-/3D-presentation, we were able to obtain pictures with a high sensitivity due to susceptibility effects caused by a 1% magnetite load. By means of the new imaging sequence, single pellets as small as 1mm can be detected with high selectivity within surrounding heterogeneous food in the human stomach. The developed method greatly expands the use of MRI to study the fate of oral multi-particulate drug delivery systems and their food dependency in men. Copyright 2009 Elsevier B.V. All rights reserved.
Ureba, A; Salguero, F J; Barbeiro, A R; Jimenez-Ortega, E; Baeza, J A; Miras, H; Linares, R; Perucha, M; Leal, A
2014-08-01
The authors present a hybrid direct multileaf collimator (MLC) aperture optimization model exclusively based on sequencing of patient imaging data to be implemented on a Monte Carlo treatment planning system (MC-TPS) to allow the explicit radiation transport simulation of advanced radiotherapy treatments with optimal results in efficient times for clinical practice. The planning system (called CARMEN) is a full MC-TPS, controlled through aMATLAB interface, which is based on the sequencing of a novel map, called "biophysical" map, which is generated from enhanced image data of patients to achieve a set of segments actually deliverable. In order to reduce the required computation time, the conventional fluence map has been replaced by the biophysical map which is sequenced to provide direct apertures that will later be weighted by means of an optimization algorithm based on linear programming. A ray-casting algorithm throughout the patient CT assembles information about the found structures, the mass thickness crossed, as well as PET values. Data are recorded to generate a biophysical map for each gantry angle. These maps are the input files for a home-made sequencer developed to take into account the interactions of photons and electrons with the MLC. For each linac (Axesse of Elekta and Primus of Siemens) and energy beam studied (6, 9, 12, 15 MeV and 6 MV), phase space files were simulated with the EGSnrc/BEAMnrc code. The dose calculation in patient was carried out with the BEAMDOSE code. This code is a modified version of EGSnrc/DOSXYZnrc able to calculate the beamlet dose in order to combine them with different weights during the optimization process. Three complex radiotherapy treatments were selected to check the reliability of CARMEN in situations where the MC calculation can offer an added value: A head-and-neck case (Case I) with three targets delineated on PET/CT images and a demanding dose-escalation; a partial breast irradiation case (Case II) solved with photon and electron modulated beams (IMRT + MERT); and a prostatic bed case (Case III) with a pronounced concave-shaped PTV by using volumetric modulated arc therapy. In the three cases, the required target prescription doses and constraints on organs at risk were fulfilled in a short enough time to allow routine clinical implementation. The quality assurance protocol followed to check CARMEN system showed a high agreement with the experimental measurements. A Monte Carlo treatment planning model exclusively based on maps performed from patient imaging data has been presented. The sequencing of these maps allows obtaining deliverable apertures which are weighted for modulation under a linear programming formulation. The model is able to solve complex radiotherapy treatments with high accuracy in an efficient computation time.
Goerner, Frank L.; Duong, Timothy; Stafford, R. Jason; Clarke, Geoffrey D.
2013-01-01
Purpose: To investigate the utility of five different standard measurement methods for determining image uniformity for partially parallel imaging (PPI) acquisitions in terms of consistency across a variety of pulse sequences and reconstruction strategies. Methods: Images were produced with a phantom using a 12-channel head matrix coil in a 3T MRI system (TIM TRIO, Siemens Medical Solutions, Erlangen, Germany). Images produced using echo-planar, fast spin echo, gradient echo, and balanced steady state free precession pulse sequences were evaluated. Two different PPI reconstruction methods were investigated, generalized autocalibrating partially parallel acquisition algorithm (GRAPPA) and modified sensitivity-encoding (mSENSE) with acceleration factors (R) of 2, 3, and 4. Additionally images were acquired with conventional, two-dimensional Fourier imaging methods (R = 1). Five measurement methods of uniformity, recommended by the American College of Radiology (ACR) and the National Electrical Manufacturers Association (NEMA) were considered. The methods investigated were (1) an ACR method and a (2) NEMA method for calculating the peak deviation nonuniformity, (3) a modification of a NEMA method used to produce a gray scale uniformity map, (4) determining the normalized absolute average deviation uniformity, and (5) a NEMA method that focused on 17 areas of the image to measure uniformity. Changes in uniformity as a function of reconstruction method at the same R-value were also investigated. Two-way analysis of variance (ANOVA) was used to determine whether R-value or reconstruction method had a greater influence on signal intensity uniformity measurements for partially parallel MRI. Results: Two of the methods studied had consistently negative slopes when signal intensity uniformity was plotted against R-value. The results obtained comparing mSENSE against GRAPPA found no consistent difference between GRAPPA and mSENSE with regard to signal intensity uniformity. The results of the two-way ANOVA analysis suggest that R-value and pulse sequence type produce the largest influences on uniformity and PPI reconstruction method had relatively little effect. Conclusions: Two of the methods of measuring signal intensity uniformity, described by the (NEMA) MRI standards, consistently indicated a decrease in uniformity with an increase in R-value. Other methods investigated did not demonstrate consistent results for evaluating signal uniformity in MR images obtained by partially parallel methods. However, because the spatial distribution of noise affects uniformity, it is recommended that additional uniformity quality metrics be investigated for partially parallel MR images. PMID:23927345
Implementation of image transmission server system using embedded Linux
NASA Astrophysics Data System (ADS)
Park, Jong-Hyun; Jung, Yeon Sung; Nam, Boo Hee
2005-12-01
In this paper, we performed the implementation of image transmission server system using embedded system that is for the specified object and easy to install and move. Since the embedded system has lower capability than the PC, we have to reduce the quantity of calculation of the baseline JPEG image compression and transmission. We used the Redhat Linux 9.0 OS at the host PC and the target board based on embedded Linux. The image sequences are obtained from the camera attached to the FPGA (Field Programmable Gate Array) board with ALTERA cooperation chip. For effectiveness and avoiding some constraints from the vendor's own, we made the device driver using kernel module.
An automated and universal method for measuring mean grain size from a digital image of sediment
Buscombe, Daniel D.; Rubin, David M.; Warrick, Jonathan A.
2010-01-01
Existing methods for estimating mean grain size of sediment in an image require either complicated sequences of image processing (filtering, edge detection, segmentation, etc.) or statistical procedures involving calibration. We present a new approach which uses Fourier methods to calculate grain size directly from the image without requiring calibration. Based on analysis of over 450 images, we found the accuracy to be within approximately 16% across the full range from silt to pebbles. Accuracy is comparable to, or better than, existing digital methods. The new method, in conjunction with recent advances in technology for taking appropriate images of sediment in a range of natural environments, promises to revolutionize the logistics and speed at which grain-size data may be obtained from the field.
Vos, Sjoerd B; Micallef, Caroline; Barkhof, Frederik; Hill, Andrea; Winston, Gavin P; Ourselin, Sebastien; Duncan, John S
2018-03-02
T2-FLAIR is the single most sensitive MRI contrast to detect lesions underlying focal epilepsies but 3D sequences used to obtain isotropic high-resolution images are susceptible to motion artefacts. Prospective motion correction (PMC) - demonstrated to improve 3D-T1 image quality in a pediatric population - was applied to high-resolution 3D-T2-FLAIR scans in adult epilepsy patients to evaluate its clinical benefit. Coronal 3D-T2-FLAIR scans were acquired with a 1mm isotropic resolution on a 3T MRI scanner. Two expert neuroradiologists reviewed 40 scans without PMC and 40 with navigator-based PMC. Visual assessment addressed six criteria of image quality (resolution, SNR, WM-GM contrast, intensity homogeneity, lesion conspicuity, diagnostic confidence) on a seven-point Likert scale (from non-diagnostic to outstanding). SNR was also objectively quantified within the white matter. PMC scans had near-identical scores on the criteria of image quality to non-PMC scans, with the notable exception that intensity homogeneity was generally worse. Using PMC, the percentage of scans with bad image quality was substantially lower than without PMC (3.25% vs. 12.5%) on the other five criteria. Quantitative SNR estimates revealed that PMC and non-PMC had no significant difference in SNR (P=0.07). Application of prospective motion correction to 3D-T2-FLAIR sequences decreased the percentage of low-quality scans, reducing the number of scans that need to be repeated to obtain clinically useful data. Copyright © 2018 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
Loy, David N; Rich, Keith M; Simpson, Joseph; Dorward, Ian; Santanam, Lakshmi; Derdeyn, Colin P
2009-05-01
This report demonstrates that time-of-flight (TOF) MR angiography is a useful adjunct for planning stereotactic radiosurgery (SRS) of large arteriovenous malformations (AVMs) after staged embolization with Onyx. Onyx (ethylene vinyl copolymer), a recently approved liquid embolic agent, has been increasingly used to exclude portions of large AVMs from the parent circulation prior to SRS. Limiting SRS to regions of persistent arteriovenous shunting and excluding regions eliminated by embolization may reduce unnecessary radiation doses to eloquent brain structures. However, SRS dosimetry planning presents unique challenges after Onyx embolization because it creates extensive artifacts on CT scans, and it cannot be delineated from untreated nidus on standard MR sequences. During the radiosurgery procedure, MR images were obtained using a GE Signa 1.5-T unit. Standard axial T2 fast spin echo high-resolution images (TR 3000 msec, TE 108 msec, slice thickness 2.5 mm) were generated for optimal visualization of brain tissue and AVM flow voids. The 3D TOF MR angiography images of the circle of Willis and vertebral arteries were subsequently obtained to visualize AVM regions embolized with Onyx (TR 37 msec, TE 6.9 msec, flip angle 20 degrees). Adjunct TOF MR angiography images demonstrated excellent contrast between nidus embolized with Onyx and regions of persistent arteriovenous shunting within a large AVM prior to SRS. Additional information derived from these sequences resulted in substantial adjustments to the treatment plan and an overall reduction in the treated tissue volume.
Boll, Daniel T; Lewin, Jonathan S; Duerk, Jeffrey L; Aschoff, Andrik J; Merkle, Elmar M
2004-05-01
To compare the appropriate pulse sequences for interventional device guidance during magnetic resonance (MR) imaging at 0.2 T and to evaluate the dependence of sequence selection on the anatomic region of the procedure. Using a C-arm 0.2 T system, four interventional MR sequences were applied in 23 liver cases and during MR-guided neck interventions in 13 patients. The imaging protocol consisted of: multislice turbo spin echo (TSE) T2w, sequential-slice fast imaging with steady precession (FISP), a time-reversed version of FISP (PSIF), and FISP with balanced gradients in all spatial directions (True-FISP) sequences. Vessel conspicuity was rated and contrast-to-noise ratio (CNR) was calculated for each sequence and a differential receiver operating characteristic was performed. Liver findings were detected in 96% using the TSE sequence. PSIF, FISP, and True-FISP imaging showed lesions in 91%, 61%, and 65%, respectively. The TSE sequence offered the best CNR, followed by PSIF imaging. Differential receiver operating characteristic analysis also rated TSE and PSIF to be the superior sequences. Lesions in the head and neck were detected in all cases by TSE and FISP, in 92% using True-FISP, and in 84% using PSIF. True-FISP offered the best CNR, followed by TSE imaging. Vessels appeared bright on FISP and True-FISP imaging and dark on the other sequences. In interventional MR imaging, no single sequence fits all purposes. Image guidance for interventional MR during liver procedures is best achieved by PSIF or TSE, whereas biopsies in the head and neck are best performed using FISP or True-FISP sequences.
Loggitsi, Dimitra; Gyftopoulos, Anastasios; Economopoulos, Nikolaos; Apostolaki, Aikaterini; Kalogeropoulos, Theodoros; Thanos, Anastasios; Alexopoulou, Efthimia; Kelekis, Nikolaos L
2017-11-01
The study sought to prospectively evaluate which technique among T2-weighted images, dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI), diffusion-weighted (DW) MRI, or a combination of the 2, is best suited for prostate cancer detection and local staging. Twenty-seven consecutive patients with biopsy-proven adenocarcinoma of the prostate underwent MRI on a 1.5T scanner with a surface phased-array coil prior radical prostatectomy. Combined anatomical and functional imaging was performed with the use of T2-weighted sequences, DCE MRI, and DW MRI. We compared the imaging results with whole mount histopathology. For the multiparametric approach, significantly higher sensitivity values, that is, 53% (95% confidence interval [CI]: 41.0-64.1) were obtained as compared with each modality alone or any combination of the 3 modalities (P < .05). The specificity for this multiparametric approach, being 90.3% (95% CI: 86.3-93.3) was not significantly higher (P < .05) as compared with the values of the combination of T2+DCE MRI, DW+DCE MRI, or DCE MRI alone. Among the 3 techniques, DCE had the best performance for tumour detection in both the peripheral and the transition zone. High negative predictive value rates (>86%) were obtained for both tumour detection and local staging. The combination of T2-weighted sequences, DCE MRI, and DW MRI yields higher diagnostic performance for tumour detection and local staging than can any of these techniques alone or even any combination of them. Copyright © 2017 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Strocchi, S.; Ghielmi, M.; Basilico, F.; Macchi, A.; Novario, R.; Ferretti, R.; Binaghi, E.
2016-03-01
This work quantitatively evaluates the effects induced by susceptibility characteristics of materials commonly used in dental practice on the quality of head MR images in a clinical 1.5T device. The proposed evaluation procedure measures the image artifacts induced by susceptibility in MR images by providing an index consistent with the global degradation as perceived by the experts. Susceptibility artifacts were evaluated in a near-clinical setup, using a phantom with susceptibility and geometric characteristics similar to that of a human head. We tested different dentist materials, called PAL Keramit, Ti6Al4V-ELI, Keramit NP, ILOR F, Zirconia and used different clinical MR acquisition sequences, such as "classical" SE and fast, gradient, and diffusion sequences. The evaluation is designed as a matching process between reference and artifacts affected images recording the same scene. The extent of the degradation induced by susceptibility is then measured in terms of similarity with the corresponding reference image. The matching process involves a multimodal registration task and the use an adequate similarity index psychophysically validated, based on correlation coefficient. The proposed analyses are integrated within a computer-supported procedure that interactively guides the users in the different phases of the evaluation method. 2-Dimensional and 3-dimensional indexes are used for each material and each acquisition sequence. From these, we drew a ranking of the materials, averaging the results obtained. Zirconia and ILOR F appear to be the best choice from the susceptibility artefacts point of view, followed, in order, by PAL Keramit, Ti6Al4V-ELI and Keramit NP.
NASA Astrophysics Data System (ADS)
Paul, F.
2015-11-01
Although animated images are very popular on the internet, they have so far found only limited use for glaciological applications. With long time series of satellite images becoming increasingly available and glaciers being well recognized for their rapid changes and variable flow dynamics, animated sequences of multiple satellite images reveal glacier dynamics in a time-lapse mode, making the otherwise slow changes of glacier movement visible and understandable to the wider public. For this study, animated image sequences were created for four regions in the central Karakoram mountain range over a 25-year time period (1990-2015) from freely available image quick-looks of orthorectified Landsat scenes. The animations play automatically in a web browser and reveal highly complex patterns of glacier flow and surge dynamics that are difficult to obtain by other methods. In contrast to other regions, surging glaciers in the Karakoram are often small (10 km2 or less), steep, debris-free, and advance for several years to decades at relatively low annual rates (about 100 m a-1). These characteristics overlap with those of non-surge-type glaciers, making a clear identification difficult. However, as in other regions, the surging glaciers in the central Karakoram also show sudden increases of flow velocity and mass waves travelling down glacier. The surges of individual glaciers are generally out of phase, indicating a limited climatic control on their dynamics. On the other hand, nearly all other glaciers in the region are either stable or slightly advancing, indicating balanced or even positive mass budgets over the past few decades.
Multiple-camera/motion stereoscopy for range estimation in helicopter flight
NASA Technical Reports Server (NTRS)
Smith, Phillip N.; Sridhar, Banavar; Suorsa, Raymond E.
1993-01-01
Aiding the pilot to improve safety and reduce pilot workload by detecting obstacles and planning obstacle-free flight paths during low-altitude helicopter flight is desirable. Computer vision techniques provide an attractive method of obstacle detection and range estimation for objects within a large field of view ahead of the helicopter. Previous research has had considerable success by using an image sequence from a single moving camera to solving this problem. The major limitations of single camera approaches are that no range information can be obtained near the instantaneous direction of motion or in the absence of motion. These limitations can be overcome through the use of multiple cameras. This paper presents a hybrid motion/stereo algorithm which allows range refinement through recursive range estimation while avoiding loss of range information in the direction of travel. A feature-based approach is used to track objects between image frames. An extended Kalman filter combines knowledge of the camera motion and measurements of a feature's image location to recursively estimate the feature's range and to predict its location in future images. Performance of the algorithm will be illustrated using an image sequence, motion information, and independent range measurements from a low-altitude helicopter flight experiment.
Kumar, Joish Upendra; Kavitha, Y
2017-02-01
With the use of various surgical techniques, types of implants, the preoperative assessment of cochlear dimensions is becoming increasingly relevant prior to cochlear implantation. High resolution CISS protocol MRI gives a better assessment of membranous cochlea, cochlear nerve, and membranous labyrinth. Curved Multiplanar Reconstruction (MPR) algorithm provides better images that can be used for measuring dimensions of membranous cochlea. To ascertain the value of curved multiplanar reconstruction algorithm in high resolution 3-Dimensional T2 Weighted Gradient Echo Constructive Interference Steady State (3D T2W GRE CISS) imaging for accurate morphometry of membranous cochlea. Fourteen children underwent MRI for inner ear assessment. High resolution 3D T2W GRE CISS sequence was used to obtain images of cochlea. Curved MPR reconstruction algorithm was used to virtually uncoil the membranous cochlea on the volume images and cochlear measurements were done. Virtually uncoiled images of membranous cochlea of appropriate resolution were obtained from the volume data obtained from the high resolution 3D T2W GRE CISS images, after using curved MPR reconstruction algorithm mean membranous cochlear length in the children was 27.52 mm. Maximum apical turn diameter of membranous cochlea was 1.13 mm, mid turn diameter was 1.38 mm, basal turn diameter was 1.81 mm. Curved MPR reconstruction algorithm applied to CISS protocol images facilitates in getting appropriate quality images of membranous cochlea for accurate measurements.
Principles of Quantitative MR Imaging with Illustrated Review of Applicable Modular Pulse Diagrams.
Mills, Andrew F; Sakai, Osamu; Anderson, Stephan W; Jara, Hernan
2017-01-01
Continued improvements in diagnostic accuracy using magnetic resonance (MR) imaging will require development of methods for tissue analysis that complement traditional qualitative MR imaging studies. Quantitative MR imaging is based on measurement and interpretation of tissue-specific parameters independent of experimental design, compared with qualitative MR imaging, which relies on interpretation of tissue contrast that results from experimental pulse sequence parameters. Quantitative MR imaging represents a natural next step in the evolution of MR imaging practice, since quantitative MR imaging data can be acquired using currently available qualitative imaging pulse sequences without modifications to imaging equipment. The article presents a review of the basic physical concepts used in MR imaging and how quantitative MR imaging is distinct from qualitative MR imaging. Subsequently, the article reviews the hierarchical organization of major applicable pulse sequences used in this article, with the sequences organized into conventional, hybrid, and multispectral sequences capable of calculating the main tissue parameters of T1, T2, and proton density. While this new concept offers the potential for improved diagnostic accuracy and workflow, awareness of this extension to qualitative imaging is generally low. This article reviews the basic physical concepts in MR imaging, describes commonly measured tissue parameters in quantitative MR imaging, and presents the major available pulse sequences used for quantitative MR imaging, with a focus on the hierarchical organization of these sequences. © RSNA, 2017.
A proteomic analysis of leaf sheaths from rice.
Shen, Shihua; Matsubae, Masami; Takao, Toshifumi; Tanaka, Naoki; Komatsu, Setsuko
2002-10-01
The proteins extracted from the leaf sheaths of rice seedlings were separated by 2-D PAGE, and analyzed by Edman sequencing and mass spectrometry, followed by database searching. Image analysis revealed 352 protein spots on 2-D PAGE after staining with Coomassie Brilliant Blue. The amino acid sequences of 44 of 84 proteins were determined; for 31 of these proteins, a clear function could be assigned, whereas for 12 proteins, no function could be assigned. Forty proteins did not yield amino acid sequence information, because they were N-terminally blocked, or the obtained sequences were too short and/or did not give unambiguous results. Fifty-nine proteins were analyzed by mass spectrometry; all of these proteins were identified by matching to the protein database. The amino acid sequences of 19 of 27 proteins analyzed by mass spectrometry were similar to the results of Edman sequencing. These results suggest that 2-D PAGE combined with Edman sequencing and mass spectrometry analysis can be effectively used to identify plant proteins.
Automatic seed selection for segmentation of liver cirrhosis in laparoscopic sequences
NASA Astrophysics Data System (ADS)
Sinha, Rahul; Marcinczak, Jan Marek; Grigat, Rolf-Rainer
2014-03-01
For computer aided diagnosis based on laparoscopic sequences, image segmentation is one of the basic steps which define the success of all further processing. However, many image segmentation algorithms require prior knowledge which is given by interaction with the clinician. We propose an automatic seed selection algorithm for segmentation of liver cirrhosis in laparoscopic sequences which assigns each pixel a probability of being cirrhotic liver tissue or background tissue. Our approach is based on a trained classifier using SIFT and RGB features with PCA. Due to the unique illumination conditions in laparoscopic sequences of the liver, a very low dimensional feature space can be used for classification via logistic regression. The methodology is evaluated on 718 cirrhotic liver and background patches that are taken from laparoscopic sequences of 7 patients. Using a linear classifier we achieve a precision of 91% in a leave-one-patient-out cross-validation. Furthermore, we demonstrate that with logistic probability estimates, seeds with high certainty of being cirrhotic liver tissue can be obtained. For example, our precision of liver seeds increases to 98.5% if only seeds with more than 95% probability of being liver are used. Finally, these automatically selected seeds can be used as priors in Graph Cuts which is demonstrated in this paper.
VizieR Online Data Catalog: Optical/NIR light curves of SN 2009ib (Takats+, 2015)
NASA Astrophysics Data System (ADS)
Takats, K.; Pignata, G.; Pumo, M. L.; Paillas, E.; Zampieri, L.; Elias-Rosa, N.; Benetti, S.; Bufano, F.; Cappellaro, E.; Ergon, M.; Fraser, M.; Hamuy, M.; Inserra, C.; Kankare, E.; Smartt, S. J.; Stritzinger, M. D.; van Dyk, S. D.; Haislip, J. B.; Lacluyze, A. P.; Moore, J. P.; Reichart, D.
2017-11-01
Optical photometry was collected using multiple telescopes with UBVRI and u'g'r'i'z' filters, covering the phases between 13 and 262d after explosion. The basic reduction steps of the images (such as bias-subtraction, overscan-correction, flat-fielding) were carried out using the standard IRAF tasks. The photometric measurement of the SN was performed using the point-spread function (PSF) fitting technique via the SNOOPY package in IRAF. Near-infrared photometry was obtained using the Rapid Eye Mount (REM) telescope in JH bands. Dithered images of the SN field were taken in multiple sequences of five. The object images were dark- and flat-field corrected, combined to create sky images then the sky images were subtracted from the object images. The images were then registered and combined. (3 data files).
Using the auxiliary camera for system calibration of 3D measurement by digital speckle
NASA Astrophysics Data System (ADS)
Xue, Junpeng; Su, Xianyu; Zhang, Qican
2014-06-01
The study of 3D shape measurement by digital speckle temporal sequence correlation have drawn a lot of attention by its own advantages, however, the measurement mainly for depth z-coordinate, horizontal physical coordinate (x, y) are usually marked as image pixel coordinate. In this paper, a new approach for the system calibration is proposed. With an auxiliary camera, we made up the temporary binocular vision system, which are used for the calibration of horizontal coordinates (mm) while the temporal sequence reference-speckle-sets are calibrated. First, the binocular vision system has been calibrated using the traditional method. Then, the digital speckles are projected on the reference plane, which is moved by equal distance in the direction of depth, temporal sequence speckle images are acquired with camera as reference sets. When the reference plane is in the first position and final position, crossed fringe pattern are projected to the plane respectively. The control points of pixel coordinates are extracted by Fourier analysis from the images, and the physical coordinates are calculated by the binocular vision. The physical coordinates corresponding to each pixel of the images are calculated by interpolation algorithm. Finally, the x and y corresponding to arbitrary depth value z are obtained by the geometric formula. Experiments prove that our method can fast and flexibly measure the 3D shape of an object as point cloud.
Ultra-high field upper extremity peripheral nerve and non-contrast enhanced vascular imaging
Raval, Shailesh B.; Britton, Cynthia A.; Zhao, Tiejun; Krishnamurthy, Narayanan; Santini, Tales; Gorantla, Vijay S.; Ibrahim, Tamer S.
2017-01-01
Objective The purpose of this study was to explore the efficacy of Ultra-high field [UHF] 7 Tesla [T] MRI as compared to 3T MRI in non-contrast enhanced [nCE] imaging of structural anatomy in the elbow, forearm, and hand [upper extremity]. Materials and method A wide range of sequences including T1 weighted [T1] volumetric interpolate breath-hold exam [VIBE], T2 weighted [T2] double-echo steady state [DESS], susceptibility weighted imaging [SWI], time-of-flight [TOF], diffusion tensor imaging [DTI], and diffusion spectrum imaging [DSI] were optimized and incorporated with a radiofrequency [RF] coil system composed of a transverse electromagnetic [TEM] transmit coil combined with an 8-channel receive-only array for 7T upper extremity [UE] imaging. In addition, Siemens optimized protocol/sequences were used on a 3T scanner and the resulting images from T1 VIBE and T2 DESS were compared to that obtained at 7T qualitatively and quantitatively [SWI was only qualitatively compared]. DSI studio was utilized to identify nerves based on analysis of diffusion weighted derived fractional anisotropy images. Images of forearm vasculature were extracted using a paint grow manual segmentation method based on MIPAV [Medical Image Processing, Analysis, and Visualization]. Results High resolution and high quality signal-to-noise ratio [SNR] and contrast-to-noise ratio [CNR]—images of the hand, forearm, and elbow were acquired with nearly homogeneous 7T excitation. Measured [performed on the T1 VIBE and T2 DESS sequences] SNR and CNR values were almost doubled at 7T vs. 3T. Cartilage, synovial fluid and tendon structures could be seen with higher clarity in the 7T T1 and T2 weighted images. SWI allowed high resolution and better quality imaging of large and medium sized arteries and veins, capillary networks and arteriovenous anastomoses at 7T when compared to 3T. 7T diffusion weighted sequence [not performed at 3T] demonstrates that the forearm nerves are clearly delineated by fiber tractography. The proper digital palmar arteries and superficial palmar arch could also be clearly visualized using TOF nCE 7T MRI. Conclusion Ultra-high resolution neurovascular imaging in upper extremities is possible at 7T without use of renal toxic intravenous contrast. 7T MRI can provide superior peripheral nerve [based on fiber anisotropy and diffusion coefficient parameters derived from diffusion tensor/spectrum imaging] and vascular [nCE MRA and vessel segmentation] imaging. PMID:28662061
NASA Astrophysics Data System (ADS)
Liu, Yang; Pu, Huangsheng; Zhang, Xi; Li, Baojuan; Liang, Zhengrong; Lu, Hongbing
2017-03-01
Arterial spin labeling (ASL) provides a noninvasive measurement of cerebral blood flow (CBF). Due to relatively low spatial resolution, the accuracy of CBF measurement is affected by the partial volume (PV) effect. To obtain accurate CBF estimation, the contribution of each tissue type in the mixture is desirable. In general, this can be obtained according to the registration of ASL and structural image in current ASL studies. This approach can obtain probability of each tissue type inside each voxel, but it also introduces error, which include error of registration algorithm and imaging itself error in scanning of ASL and structural image. Therefore, estimation of mixture percentage directly from ASL data is greatly needed. Under the assumption that ASL signal followed the Gaussian distribution and each tissue type is independent, a maximum a posteriori expectation-maximization (MAP-EM) approach was formulated to estimate the contribution of each tissue type to the observed perfusion signal at each voxel. Considering the sensitivity of MAP-EM to the initialization, an approximately accurate initialization was obtain using 3D Fuzzy c-means method. Our preliminary results demonstrated that the GM and WM pattern across the perfusion image can be sufficiently visualized by the voxel-wise tissue mixtures, which may be promising for the diagnosis of various brain diseases.
Image quality assessment of silent T2 PROPELLER sequence for brain imaging in infants.
Kim, Hyun Gi; Choi, Jin Wook; Yoon, Soo Han; Lee, Sieun
2018-02-01
Infants are vulnerable to high acoustic noise. Acoustic noise generated by MR scanning can be reduced by a silent sequence. The purpose of this study is to compare the image quality of the conventional and silent T2 PROPELLER sequences for brain imaging in infants. A total of 36 scans were acquired from 24 infants using a 3 T MR scanner. Each patient underwent both conventional and silent T2 PROPELLER sequences. Acoustic noise level was measured. Quantitative and qualitative assessments were performed with the images taken with each sequence. The sound pressure level of the conventional T2 PROPELLER imaging sequence was 92.1 dB and that of the silent T2 PROPELLER imaging sequence was 73.3 dB (reduction of 20%). On quantitative assessment, the two sequences (conventional vs silent T2 PROPELLER) did not show significant difference in relative contrast (0.069 vs 0.068, p value = 0.536) and signal-to-noise ratio (75.4 vs 114.8, p value = 0.098). Qualitative assessment of overall image quality (p value = 0.572), grey-white differentiation (p value = 0.986), shunt-related artefact (p value > 0.999), motion artefact (p value = 0.801) and myelination degree in different brain regions (p values ≥ 0.092) did not show significant difference between the two sequences. The silent T2 PROPELLER sequence reduces acoustic noise and generated comparable image quality to that of the conventional sequence. Advances in knowledge: This is the first report to compare silent T2 PROPELLER images with that of conventional T2 PROPELLER images in children.
Implementation of compressive sensing for preclinical cine-MRI
NASA Astrophysics Data System (ADS)
Tan, Elliot; Yang, Ming; Ma, Lixin; Zheng, Yahong Rosa
2014-03-01
This paper presents a practical implementation of Compressive Sensing (CS) for a preclinical MRI machine to acquire randomly undersampled k-space data in cardiac function imaging applications. First, random undersampling masks were generated based on Gaussian, Cauchy, wrapped Cauchy and von Mises probability distribution functions by the inverse transform method. The best masks for undersampling ratios of 0.3, 0.4 and 0.5 were chosen for animal experimentation, and were programmed into a Bruker Avance III BioSpec 7.0T MRI system through method programming in ParaVision. Three undersampled mouse heart datasets were obtained using a fast low angle shot (FLASH) sequence, along with a control undersampled phantom dataset. ECG and respiratory gating was used to obtain high quality images. After CS reconstructions were applied to all acquired data, resulting images were quantitatively analyzed using the performance metrics of reconstruction error and Structural Similarity Index (SSIM). The comparative analysis indicated that CS reconstructed images from MRI machine undersampled data were indeed comparable to CS reconstructed images from retrospective undersampled data, and that CS techniques are practical in a preclinical setting. The implementation achieved 2 to 4 times acceleration for image acquisition and satisfactory quality of image reconstruction.
PEERING INTO THE GIANT-PLANET-FORMING REGION OF THE TW HYDRAE DISK WITH THE GEMINI PLANET IMAGER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapson, Valerie A.; Kastner, Joel H.; Millar-Blanchaer, Maxwell A.
2015-12-20
We present Gemini Planet Imager (GPI) adaptive optics near-infrared images of the giant-planet-forming regions of the protoplanetary disk orbiting the nearby (D = 54 pc), pre-main-sequence (classical T Tauri) star TW Hydrae. The GPI images, which were obtained in coronagraphic/polarimetric mode, exploit starlight scattered off small dust grains to elucidate the surface density structure of the TW Hya disk from ∼80 AU to within ∼10 AU of the star at ∼1.5 AU resolution. The GPI polarized intensity images unambiguously confirm the presence of a gap in the radial surface brightness distribution of the inner disk. The gap is centered near ∼23 AU,more » with a width of ∼5 AU and a depth of ∼50%. In the context of recent simulations of giant-planet formation in gaseous, dusty disks orbiting pre-main-sequence stars, these results indicate that at least one young planet with a mass ∼0.2 M{sub J} could be present in the TW Hya disk at an orbital semimajor axis similar to that of Uranus. If this (proto)planet is actively accreting gas from the disk, it may be readily detectable by GPI or a similarly sensitive, high-resolution infrared imaging system.« less
Tissue discrimination in magnetic resonance imaging of the rotator cuff
NASA Astrophysics Data System (ADS)
Meschino, G. J.; Comas, D. S.; González, M. A.; Capiel, C.; Ballarin, V. L.
2016-04-01
Evaluation and diagnosis of diseases of the muscles within the rotator cuff can be done using different modalities, being the Magnetic Resonance the method more widely used. There are criteria to evaluate the degree of fat infiltration and muscle atrophy, but these have low accuracy and show great variability inter and intra observer. In this paper, an analysis of the texture features of the rotator cuff muscles is performed to classify them and other tissues. A general supervised classification approach was used, combining forward-search as feature selection method with kNN as classification rule. Sections of Magnetic Resonance Images of the tissues of interest were selected by specialist doctors and they were considered as Gold Standard. Accuracies obtained were of 93% for T1-weighted images and 92% for T2-weighted images. As an immediate future work, the combination of both sequences of images will be considered, expecting to improve the results, as well as the use of other sequences of Magnetic Resonance Images. This work represents an initial point for the classification and quantification of fat infiltration and muscle atrophy degree. From this initial point, it is expected to make an accurate and objective system which will result in benefits for future research and for patients’ health.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crijns, S; Stemkens, B; Sbrizzi, A
Purpose: Dixon sequences are used to characterize disease processes, obtain good fat or water separation in cases where fat suppression fails and to obtain pseudo-CT datasets. Dixon's method uses at least two images acquired with different echo times and thus requires prolonged acquisition times. To overcome associated problems (e.g., for DCE/cine-MRI), we propose to use a method for water/fat separation based on spectrally selective RF pulses. Methods: Two alternating RF pulses were used, that imposes a fat selective phase cycling over the phase encoding lines, which results in a spatial shift for fat in the reconstructed image, identical to thatmore » in CAIPIRINHA. Associated aliasing artefacts were resolved using the encoding power of a multi-element receiver array, analogous to SENSE. In vivo measurements were performed on a 1.5T clinical MR-scanner in a healthy volunteer's legs, using a four channel receiver coil. Gradient echo images were acquired with TE/TR = 2.3/4.7ms, flip angle 20°, FOV 45×22.5cm{sup 2}, matrix 480×216, slice thickness 5mm. Dixon images were acquired with TE,1/TE,2/TR=2.2/4.6/7ms. All image reconstructions were done in Matlab using the ReconFrame toolbox (Gyrotools, Zurich, CH). Results: RF pulse alternation yields a fat image offset from the water image. Hence the water and fat images fold over, which is resolved using in-plane SENSE reconstruction. Using the proposed technique, we achieved excellent water/fat separation comparable to Dixon images, while acquiring images at only one echo time. Conclusion: The proposed technique yields both inphase water and fat images at arbitrary echo times and requires only one measurement, thereby shortening the acquisition time by a factor 2. In future work the technique may be extended to a multi-band water/fat separation sequence that is able to achieve single point water/fat separation in multiple slices at once and hence yields higher speed-up factors.« less
Automated Leaf Tracking using Multi-view Image Sequences of Maize Plants for Leaf-growth Monitoring
NASA Astrophysics Data System (ADS)
Das Choudhury, S.; Awada, T.; Samal, A.; Stoerger, V.; Bashyam, S.
2017-12-01
Extraction of phenotypes with botanical importance by analyzing plant image sequences has the desirable advantages of non-destructive temporal phenotypic measurements of a large number of plants with little or no manual intervention in a relatively short period of time. The health of a plant is best interpreted by the emergence timing and temporal growth of individual leaves. For automated leaf growth monitoring, it is essential to track each leaf throughout the life cycle of the plant. Plants are constantly changing organisms with increasing complexity in architecture due to variations in self-occlusions and phyllotaxy, i.e., arrangements of leaves around the stem. The leaf cross-overs pose challenges to accurately track each leaf using single view image sequence. Thus, we introduce a novel automated leaf tracking algorithm using a graph theoretic approach by multi-view image sequence analysis based on the determination of leaf-tips and leaf-junctions in the 3D space. The basis of the leaf tracking algorithm is: the leaves emerge using bottom-up approach in the case of a maize plant, and the direction of leaf emergence strictly alternates in terms of direction. The algorithm involves labeling of the individual parts of a plant, i.e., leaves and stem, following graphical representation of the plant skeleton, i.e., one-pixel wide connected line obtained from the binary image. The length of the leaf is measured by the number of pixels in the leaf skeleton. To evaluate the performance of the algorithm, a benchmark dataset is indispensable. Thus, we publicly release University of Nebraska-Lincoln Component Plant Phenotyping dataset-2 (UNL-CPPD-2) consisting of images of the 20 maize plants captured by visible light camera of the Lemnatec Scanalyzer 3D high throughout plant phenotyping facility once daily for 60 days from 10 different views. The dataset is aimed to facilitate the development and evaluation of leaf tracking algorithms and their uniform comparisons.
Low-rank and Adaptive Sparse Signal (LASSI) Models for Highly Accelerated Dynamic Imaging
Ravishankar, Saiprasad; Moore, Brian E.; Nadakuditi, Raj Rao; Fessler, Jeffrey A.
2017-01-01
Sparsity-based approaches have been popular in many applications in image processing and imaging. Compressed sensing exploits the sparsity of images in a transform domain or dictionary to improve image recovery from undersampled measurements. In the context of inverse problems in dynamic imaging, recent research has demonstrated the promise of sparsity and low-rank techniques. For example, the patches of the underlying data are modeled as sparse in an adaptive dictionary domain, and the resulting image and dictionary estimation from undersampled measurements is called dictionary-blind compressed sensing, or the dynamic image sequence is modeled as a sum of low-rank and sparse (in some transform domain) components (L+S model) that are estimated from limited measurements. In this work, we investigate a data-adaptive extension of the L+S model, dubbed LASSI, where the temporal image sequence is decomposed into a low-rank component and a component whose spatiotemporal (3D) patches are sparse in some adaptive dictionary domain. We investigate various formulations and efficient methods for jointly estimating the underlying dynamic signal components and the spatiotemporal dictionary from limited measurements. We also obtain efficient sparsity penalized dictionary-blind compressed sensing methods as special cases of our LASSI approaches. Our numerical experiments demonstrate the promising performance of LASSI schemes for dynamic magnetic resonance image reconstruction from limited k-t space data compared to recent methods such as k-t SLR and L+S, and compared to the proposed dictionary-blind compressed sensing method. PMID:28092528
Low-Rank and Adaptive Sparse Signal (LASSI) Models for Highly Accelerated Dynamic Imaging.
Ravishankar, Saiprasad; Moore, Brian E; Nadakuditi, Raj Rao; Fessler, Jeffrey A
2017-05-01
Sparsity-based approaches have been popular in many applications in image processing and imaging. Compressed sensing exploits the sparsity of images in a transform domain or dictionary to improve image recovery fromundersampledmeasurements. In the context of inverse problems in dynamic imaging, recent research has demonstrated the promise of sparsity and low-rank techniques. For example, the patches of the underlying data are modeled as sparse in an adaptive dictionary domain, and the resulting image and dictionary estimation from undersampled measurements is called dictionary-blind compressed sensing, or the dynamic image sequence is modeled as a sum of low-rank and sparse (in some transform domain) components (L+S model) that are estimated from limited measurements. In this work, we investigate a data-adaptive extension of the L+S model, dubbed LASSI, where the temporal image sequence is decomposed into a low-rank component and a component whose spatiotemporal (3D) patches are sparse in some adaptive dictionary domain. We investigate various formulations and efficient methods for jointly estimating the underlying dynamic signal components and the spatiotemporal dictionary from limited measurements. We also obtain efficient sparsity penalized dictionary-blind compressed sensing methods as special cases of our LASSI approaches. Our numerical experiments demonstrate the promising performance of LASSI schemes for dynamicmagnetic resonance image reconstruction from limited k-t space data compared to recent methods such as k-t SLR and L+S, and compared to the proposed dictionary-blind compressed sensing method.
Muhle, Claus; Ahn, Joong Mo; Trudell, Debra; Resnick, Donald
2008-06-01
The purpose of the study was to define magnetic resonance imaging (MRI) findings before and after contrast medium opacification of the knee joint in cadaveric specimens to demonstrate anatomical landmarks of the trochlear surface in relation to the neighboring structures, and to evaluate different MRI sequences in the detection of cartilage defects of the trochlear and patellar surface of the knee. The morphology and relationship of the proximal trochlear surface to the prefemoral fat of the distal femur were investigated by use of different MR sequences before and after intra-articular gadolinium administration into the knee joint in ten cadaveric knees. Anatomic sections were subsequently obtained. In addition, evaluation of the articular surface of the trochlea was performed by two independent observers. The cartilage surfaces were graded using a 2-point system, and results were compared with macroscopic findings. Of 40 cartilage surfaces evaluated, histopathologic findings showed 9 normal surfaces, 20 containing partial-thickness defects, and 11 containing full-thickness defects. Compared with macroscopic data, sensitivity of MR sequences for the two reviewers was between 17 and 90%; specificity, 75 and 100%; positive predictive value, 75 and 100%; negative predictive value, 20 and 100%, depending on patellar or trochlea lesions. Interobserver variability for the presence of disease, which was measured using the kappa statistic, was dependent on the MR sequence used between 0.243 and 0.851. Magnetic resonance imaging sequences can be used to evaluate the cartilage of the trochlear surface with less accuracy when compared with the results of grading the articular cartilage of the patella.
Dual-pathway multi-echo sequence for simultaneous frequency and T2 mapping
NASA Astrophysics Data System (ADS)
Cheng, Cheng-Chieh; Mei, Chang-Sheng; Duryea, Jeffrey; Chung, Hsiao-Wen; Chao, Tzu-Cheng; Panych, Lawrence P.; Madore, Bruno
2016-04-01
Purpose: To present a dual-pathway multi-echo steady state sequence and reconstruction algorithm to capture T2, T2∗ and field map information. Methods: Typically, pulse sequences based on spin echoes are needed for T2 mapping while gradient echoes are needed for field mapping, making it difficult to jointly acquire both types of information. A dual-pathway multi-echo pulse sequence is employed here to generate T2 and field maps from the same acquired data. The approach might be used, for example, to obtain both thermometry and tissue damage information during thermal therapies, or susceptibility and T2 information from a same head scan, or to generate bonus T2 maps during a knee scan. Results: Quantitative T2, T2∗ and field maps were generated in gel phantoms, ex vivo bovine muscle, and twelve volunteers. T2 results were validated against a spin-echo reference standard: A linear regression based on ROI analysis in phantoms provided close agreement (slope/R2 = 0.99/0.998). A pixel-wise in vivo Bland-Altman analysis of R2 = 1/T2 showed a bias of 0.034 Hz (about 0.3%), as averaged over four volunteers. Ex vivo results, with and without motion, suggested that tissue damage detection based on T2 rather than temperature-dose measurements might prove more robust to motion. Conclusion: T2, T2∗ and field maps were obtained simultaneously, from the same datasets, in thermometry, susceptibility-weighted imaging and knee-imaging contexts.
Wait, Eric; Winter, Mark; Bjornsson, Chris; Kokovay, Erzsebet; Wang, Yue; Goderie, Susan; Temple, Sally; Cohen, Andrew R
2014-10-03
Neural stem cells are motile and proliferative cells that undergo mitosis, dividing to produce daughter cells and ultimately generating differentiated neurons and glia. Understanding the mechanisms controlling neural stem cell proliferation and differentiation will play a key role in the emerging fields of regenerative medicine and cancer therapeutics. Stem cell studies in vitro from 2-D image data are well established. Visualizing and analyzing large three dimensional images of intact tissue is a challenging task. It becomes more difficult as the dimensionality of the image data increases to include time and additional fluorescence channels. There is a pressing need for 5-D image analysis and visualization tools to study cellular dynamics in the intact niche and to quantify the role that environmental factors play in determining cell fate. We present an application that integrates visualization and quantitative analysis of 5-D (x,y,z,t,channel) and large montage confocal fluorescence microscopy images. The image sequences show stem cells together with blood vessels, enabling quantification of the dynamic behaviors of stem cells in relation to their vascular niche, with applications in developmental and cancer biology. Our application automatically segments, tracks, and lineages the image sequence data and then allows the user to view and edit the results of automated algorithms in a stereoscopic 3-D window while simultaneously viewing the stem cell lineage tree in a 2-D window. Using the GPU to store and render the image sequence data enables a hybrid computational approach. An inference-based approach utilizing user-provided edits to automatically correct related mistakes executes interactively on the system CPU while the GPU handles 3-D visualization tasks. By exploiting commodity computer gaming hardware, we have developed an application that can be run in the laboratory to facilitate rapid iteration through biological experiments. We combine unsupervised image analysis algorithms with an interactive visualization of the results. Our validation interface allows for each data set to be corrected to 100% accuracy, ensuring that downstream data analysis is accurate and verifiable. Our tool is the first to combine all of these aspects, leveraging the synergies obtained by utilizing validation information from stereo visualization to improve the low level image processing tasks.
3D reconstruction of microminiature objects based on contour line
NASA Astrophysics Data System (ADS)
Li, Cailin; Wang, Qiang; Guo, Baoyun
2009-10-01
A new 3D automatic reconstruction method of micro solid of revolution is presented in this paper. In the implementation procedure of this method, image sequence of the solid of revolution of 360° is obtained, which rotation speed is controlled by motor precisely, in the rotate photographic mode of back light. Firstly, we need calibrate the height of turntable, the size of pixel and rotation axis of turntable. Then according to the calibration result of rotation axis, the height of turntable, rotation angle and the pixel size, the contour points of each image can be transformed into 3D points in the reference coordinate system to generate the point cloud model. Finally, the surface geometrical model of solid of revolution is obtained by using the relationship of two adjacent contours. Experimental results on real images are presented, which demonstrate the effectiveness of the Approach.
Deller, Timothy W; Khalighi, Mohammad Mehdi; Jansen, Floris P; Glover, Gary H
2018-01-01
The recent introduction of simultaneous whole-body PET/MR scanners has enabled new research taking advantage of the complementary information obtainable with PET and MRI. One such application is kinetic modeling, which requires high levels of PET quantitative stability. To accomplish the required PET stability levels, the PET subsystem must be sufficiently isolated from the effects of MR activity. Performance measurements have previously been published, demonstrating sufficient PET stability in the presence of MR pulsing for typical clinical use; however, PET stability during radiofrequency (RF)-intensive and gradient-intensive sequences has not previously been evaluated for a clinical whole-body scanner. In this work, PET stability of the GE SIGNA PET/MR was examined during simultaneous scanning of aggressive MR pulse sequences. Methods: PET performance tests were acquired with MR idle and during simultaneous MR pulsing. Recent system improvements mitigating RF interference and gain variation were used. A fast recovery fast spin echo MR sequence was selected for high RF power, and an echo planar imaging sequence was selected for its high heat-inducing gradients. Measurements were performed to determine PET stability under varying MR conditions using the following metrics: sensitivity, scatter fraction, contrast recovery, uniformity, count rate performance, and image quantitation. A final PET quantitative stability assessment for simultaneous PET scanning during functional MRI studies was performed with a spiral in-and-out gradient echo sequence. Results: Quantitation stability of a 68 Ge flood phantom was demonstrated within 0.34%. Normalized sensitivity was stable during simultaneous scanning within 0.3%. Scatter fraction measured with a 68 Ge line source in the scatter phantom was stable within the range of 40.4%-40.6%. Contrast recovery and uniformity were comparable for PET images acquired simultaneously with multiple MR conditions. Peak noise equivalent count rate was 224 kcps at an effective activity concentration of 18.6 kBq/mL, and the count rate curves and scatter fraction curve were consistent for the alternating MR pulsing states. A final test demonstrated quantitative stability during a spiral functional MRI sequence. Conclusion: PET stability metrics demonstrated that PET quantitation was not affected during simultaneous aggressive MRI. This stability enables demanding applications such as kinetic modeling. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.
[Laparoscopic and general surgery guided by open interventional magnetic resonance].
Lauro, A; Gould, S W T; Cirocchi, R; Giustozzi, G; Darzi, A
2004-10-01
Interventional magnetic resonance (IMR) machines have produced unique opportunity for image-guided surgery. The open configuration design and fast pulse sequence allow virtual real time intraoperative scanning to monitor the progress of a procedure, with new images produced every 1.5 sec. This may give greater appreciation of anatomy, especially deep to the 2-dimensional laparoscopic image, and hence increase safety, reduce procedure magnitude and increase confidence in tumour resection surgery. The aim of this paper was to investigate the feasibility of performing IMR-image-guided general surgery, especially in neoplastic and laparoscopic field, reporting a single center -- St. Mary's Hospital (London, UK) -- experience. Procedures were carried out in a Signa 0.5 T General Elettric SP10 Interventional MR (General Electric Medical Systems, Milwaukee, WI, USA) with magnet-compatible instruments (titanium alloy instruments, plastic retractors and ultrasonic driven scalpel) and under general anesthesia. There were performed 10 excision biopsies of palpable benign breast tumors (on female patients), 3 excisions of skin sarcoma (dermatofibrosarcoma protuberans), 1 right hemicolectomy and 2 laparoscopic cholecystectomies. The breast lesions were localized with pre- and postcontrast (intravenous gadolinium DPTA) sagittal and axial fast multiplanar spoiled gradient recalled conventional Signa sequences; preoperative real time fast gradient recalled sequences were also obtained using the flashpoint tracking device. During right hemicolectomy intraoperative single shot fast spin echo (SSFSE) and fast spoiled gradient recalled (FSPGR) imaging of right colon were performed after installation of 150 cc of water or 1% gadolinium solution, respectively, through a Foley catheter; imaging was also obtained in an attempt to identify mesenteric lymph nodes intraoperatively. Concerning laparoscopic procedures, magnetic devices (insufflator, light source) were positioned outside scan room, the tubing and light head being passed through penetration panels. Intraoperative MR-cholangiography was performed using fast spin echo (SSFSE) techniques with minimal intensity projection 3-dimensional reconstruction. About skin sarcomas, 2 of them were skin recurrences of previously surgically treated sarcomas (all of them received preoperative biopsy) and the extent of the lesion was then determined using short tau inversion recovery (STIR) sequence. The skin was closed in each case without need for any plastic reconstruction. The breast lesions were visualized with both Signa and real-time imaging and all enhanced with contrast: 2 (20%) were visualized only after contrast enhancement; intraoperative real time imaging clearly demonstrated a resection margin in all cases. Maximum dimensions of breast specimens (range 8-50 mm, median 24.5 mm) were not significantly different from those measured by Signa (p>0.17, Student's paired t-test) or real time images (p>0.4): also there was no significant difference in lesion size between Signa and real time images (p>0.25). All postprocedure scans clearly demonstrated complete excision. The extent of the tumor at MR imaging was greater in each case than suggested by clinical examination. Adequate resection margins were planned using STIR sequences. Histological examination confirmed clear surgical margins of at least 1 cm in each case. During right hemicolectomy, both intraoperative SSFSE and FSPGR contrast imaging revealed the lesion and details of the colonic surface; imaging of the lymph node draining right colon was only partially successful, due to movement artifact. Concerning laparoscopic procedures, both FSE and SSFSE techniques produced reasonable images of the gallbladder and intrahepatic ducts, but the FSE imaging was of poor quality due to respiration artifact; however, SSFSE allowed visualization of the gallbladder and part of the common bile duct. About skin sarcomas, the extent of the tumor at MR imaging was greater in each case than suggested by clinical examination and in each case the complete tumor excision was confirmed. Histological examination confirmed clear surgical margins of at least 1 cm in each case. Intraoperative MR scanning reliably identifies palpable breast tumours and skin sarcomas and is sufficiently accurate to guide their surgical excision. Further work may be done to develop laparoscopic and open abdominal surgery as well.
Image processing for safety assessment in civil engineering.
Ferrer, Belen; Pomares, Juan C; Irles, Ramon; Espinosa, Julian; Mas, David
2013-06-20
Behavior analysis of construction safety systems is of fundamental importance to avoid accidental injuries. Traditionally, measurements of dynamic actions in civil engineering have been done through accelerometers, but high-speed cameras and image processing techniques can play an important role in this area. Here, we propose using morphological image filtering and Hough transform on high-speed video sequence as tools for dynamic measurements on that field. The presented method is applied to obtain the trajectory and acceleration of a cylindrical ballast falling from a building and trapped by a thread net. Results show that safety recommendations given in construction codes can be potentially dangerous for workers.
Jarausch, W; Saillard, C; Dosba, F; Bové, J M
1994-01-01
A 1.8-kb chromosomal DNA fragment of the mycoplasmalike organism (MLO) associated with apple proliferation was sequenced. Three putative open reading frames were observed on this fragment. The protein encoded by open reading frame 2 shows significant homologies with bacterial nitroreductases. From the nucleotide sequence four primer pairs for PCR were chosen to specifically amplify DNA from MLOs associated with European diseases of fruit trees. Primer pairs specific for (i) Malus-affecting MLOs, (ii) Malus- and Prunus-affecting MLOs, and (iii) Malus-, Prunus-, and Pyrus-affecting MLOs were obtained. Restriction enzyme analysis of the amplification products revealed restriction fragment length polymorphisms between Malus-, Prunus, and Pyrus-affecting MLOs as well as between different isolates of the apple proliferation MLO. No amplification with either primer pair could be obtained with DNA from 12 different MLOs experimentally maintained in periwinkle. Images PMID:7916180
NASA Astrophysics Data System (ADS)
Schmidt, Rita; Laustsen, Christoffer; Dumez, Jean-Nicolas; Kettunen, Mikko I.; Serrao, Eva M.; Marco-Rius, Irene; Brindle, Kevin M.; Ardenkjaer-Larsen, Jan Henrik; Frydman, Lucio
2014-03-01
Hyperpolarized metabolic imaging is a growing field that has provided a new tool for analyzing metabolism, particularly in cancer. Given the short life times of the hyperpolarized signal, fast and effective spectroscopic imaging methods compatible with dynamic metabolic characterizations are necessary. Several approaches have been customized for hyperpolarized 13C MRI, including CSI with a center-out k-space encoding, EPSI, and spectrally selective pulses in combination with spiral EPI acquisitions. Recent studies have described the potential of single-shot alternatives based on spatiotemporal encoding (SPEN) principles, to derive chemical-shift images within a sub-second period. By contrast to EPSI, SPEN does not require oscillating acquisition gradients to deliver chemical-shift information: its signal encodes both spatial as well as chemical shift information, at no extra cost in experimental complexity. SPEN MRI sequences with slice-selection and arbitrary excitation pulses can also be devised, endowing SPEN with the potential to deliver single-shot multi-slice chemical shift images, with a temporal resolution required for hyperpolarized dynamic metabolic imaging. The present work demonstrates this with initial in vivo results obtained from SPEN-based imaging of pyruvate and its metabolic products, after injection of hyperpolarized [1-13C]pyruvate. Multi-slice chemical-shift images of healthy rats were obtained at 4.7 T in the region of the kidney, and 4D (2D spatial, 1D spectral, 1D temporal) data sets were obtained at 7 T from a murine lymphoma tumor model.
Schmidt, Rita; Laustsen, Christoffer; Dumez, Jean-Nicolas; Kettunen, Mikko I.; Serrao, Eva M.; Marco-Rius, Irene; Brindle, Kevin M.; Ardenkjaer-Larsen, Jan Henrik; Frydman, Lucio
2016-01-01
Hyperpolarized metabolic imaging is a growing field that has provided a tool for analyzing metabolism, particularly in cancer. Given the short life times of the hyperpolarized signal, fast and effective spectroscopic imaging methods compatible with dynamic metabolic characterizations are necessary. Several approaches have been customized for hyperpolarized 13C MRI, including CSI with a center-out k-space encoding, EPSI, and spectrally selective pulses in combination with spiral EPI acquisitions. Recent studies have described the potential of single-shot alternatives based on spatiotemporal encoding (SPEN) principles, to derive chemical-shift images within a sub-second period. By contrast to EPSI, SPEN does not require oscillating acquisition gradients to deliver chemical-shift information: its signal encodes both spatial as well as chemical shift information, at no extra cost in experimental complexity. SPEN MRI sequences with slice-selection and arbitrary excitation pulses can also be devised, endowing SPEN with the potential to deliver single-shot multi-slice chemical shift images, with a temporal resolution required for hyperpolarized dynamic metabolic imaging. The present work demonstrates this with initial in vivo results obtained from SPEN-based imaging of pyruvate and its metabolic products, after injection of hyperpolarized [1-13C]pyruvate. Multi-slice chemical-shift images of healthy rats were obtained at 4.7 T in the region of the kidney, and 4D (2D spatial, 1D spectral, 1D temporal) data sets were obtained at 7 T from a murine lymphoma tumor model. PMID:24486720
Lassiter, S J; Stryjewski, W; Legendre, B L; Erdmann, R; Wahl, M; Wurm, J; Peterson, R; Middendorf, L; Soper, S A
2000-11-01
A compact time-resolved near-IR fluorescence imager was constructed to obtain lifetime and intensity images of DNA sequencing slab gels. The scanner consisted of a microscope body with f/1.2 relay optics onto which was mounted a pulsed diode laser (repetition rate 80 MHz, lasing wavelength 680 nm, average power 5 mW), filtering optics, and a large photoactive area (diameter 500 microns) single-photon avalanche diode that was actively quenched to provide a large dynamic operating range. The time-resolved data were processed using electronics configured in a conventional time-correlated single-photon-counting format with all of the counting hardware situated on a PC card resident on the computer bus. The microscope head produced a timing response of 450 ps (fwhm) in a scanning mode, allowing the measurement of subnano-second lifetimes. The time-resolved microscope head was placed in an automated DNA sequencer and translated across a 21-cm-wide gel plate in approximately 6 s (scan rate 3.5 cm/s) with an accumulation time per pixel of 10 ms. The sampling frequency was 0.17 Hz (duty cycle 0.0017), sufficient to prevent signal aliasing during the electrophoresis separation. Software (written in Visual Basic) allowed acquisition of both the intensity image and lifetime analysis of DNA bands migrating through the gel in real time. Using a dual-labeling (IRD700 and Cy5.5 labeling dyes)/two-lane sequencing strategy, we successfully read 670 bases of a control M13mp18 ssDNA template using lifetime identification. Comparison of the reconstructed sequence with the known sequence of the phage indicated the number of miscalls was only 2, producing an error rate of approximately 0.3% (identification accuracy 99.7%). The lifetimes were calculated using maximum likelihood estimators and allowed on-line determinations with high precision, even when short integration times were used to construct the decay profiles. Comparison of the lifetime base calling to a single-dye/four-lane sequencing strategy indicated similar results in terms of miscalls, but reduced insertion and deletion errors using lifetime identification methods, improving the overall read accuracy.
The browse file of NASA/JPL quick-look radar images from the Loch Linnhe 1989 experiment
NASA Technical Reports Server (NTRS)
Brown, Walter E., Jr. (Editor)
1989-01-01
The Jet Propulsion Laboratory (JPL) Aircraft Synthetic Aperture Radar (AIRSAR) was deployed to Scotland to obtain radar imagery of ship wakes generated in Loch Linnhe. These observations were part of a joint US and UK experiment to study the internal waves generated by ships under partially controlled conditions. The AIRSAR was mounted on the NASA-Ames DC-8 aircraft. The data acquisition sequence consisted of 8 flights, each about 6 hours in duration, wherein 24 observations of the instrumented site were made on each flight. This Browse File provides the experimenters with a reference of the real time imagery (approximately 100 images) obtained on the 38-deg track. These radar images are copies of those obtained at the time of observation and show the general geometry of the ship wake features. To speed up processing during this flight, the images were all processed around zero Doppler, and thus azimuth ambiguities often occur when the drift angel (yaw) exceeded a few degrees. However, even with the various shortcomings, it is believed that the experimenter will find the Browse File useful in establishing a basis for further investigations.
Three-dimensional MR imaging in the assessment of physeal growth arrest.
Sailhan, Frédéric; Chotel, Franck; Guibal, Anne-Laure; Gollogly, Sohrab; Adam, Philippe; Bérard, Jérome; Guibaud, Laurent
2004-09-01
The purpose of this study is to describe an imaging method for identifying and characterising physeal growth arrest following physeal plate aggression. The authors describe the use of three-dimensional MRI performed with fat-suppressed three-dimensional spoiled gradient-recalled echo sequences followed by manual image reconstruction to create a 3D model of the physeal plate. This retrospective series reports the analysis of 33 bony physeal bridges in 28 children (mean age 10.5 years) with the use of fat-suppressed three-dimensional spoiled gradient-recalled echo imaging and 3D reconstructions from the source images. 3D reconstructions were obtained after the outlining was done manually on each source image. Files of all patients were reviewed for clinical data at the time of MRI, type of injury, age at MRI and bone bridge characteristics on reconstructions. Twenty-one (63%) of the 33 bridges were post-traumatic and were mostly situated in the lower extremities (19/21). The distal tibia was involved in 66% (14/21) of the cases. Bridges due to causes other than trauma were located in the lower extremities in 10/12 cases, and the distal femur represented 60% of these cases. Of the 28 patients, five presented with two bridges involving two different growth plates making a total of 33 physeal bone bars. The location and shape of each bridge was accurately identified in each patient, and in post-traumatic cases, 89% of bone bars were of Ogden type III (central) or I (peripheral). Reconstructions were obtained in 15 min and are easy to interpret. Volumes of the physeal bone bridge(s) and of the remaining normal physis were calculated. The bone bridging represented less than 1% to 47% of the total physeal plate volume. The precise shape and location of the bridge can be visualised on the 3D reconstructions. This information is useful in the surgical management of these deformities; as for the eight patients who underwent bone bar resection, an excellent correspondence was found by the treating surgeon between the MRI 3D model and the per-operative findings. Accurate 3D mapping obtained after manual reconstruction can also visualise very small physeal plates and bridges such as in cases of finger physeal disorders. MR imaging with fat-suppressed three-dimensional spoiled gradient-recalled echo sequences can be used to identify patterns of physeal growth arrest. 3D reconstructions can be obtained from the manual outlining of source images to provide an accurate representation of the bony bridge that can be a guide during surgical management.
Kodama, Nao; Kose, Katsumi
2016-10-11
Echo-planar imaging (EPI) sequences were developed for a 9.4 Tesla vertical standard bore (~54 mm) superconducting magnet using an unshielded gradient coil optimized for live mice imaging and a data correction technique with reference scans. Because EPI requires fast switching of intense magnetic field gradients, eddy currents were induced in the surrounding metallic materials, e.g., the room temperature bore, and this produced serious artifacts on the EPI images. We solved the problem using an unshielded gradient coil set of proper size (outer diameter = 39 mm, inner diameter = 32 mm) with time control of the current rise and reference scans. The obtained EPI images of a phantom and a plant sample were almost artifact-free and demonstrated the promise of our approach.
A New Test Method of Circuit Breaker Spring Telescopic Characteristics Based Image Processing
NASA Astrophysics Data System (ADS)
Huang, Huimin; Wang, Feifeng; Lu, Yufeng; Xia, Xiaofei; Su, Yi
2018-06-01
This paper applied computer vision technology to the fatigue condition monitoring of springs, and a new telescopic characteristics test method is proposed for circuit breaker operating mechanism spring based on image processing technology. High-speed camera is utilized to capture spring movement image sequences when high voltage circuit breaker operated. Then the image-matching method is used to obtain the deformation-time curve and speed-time curve, and the spring expansion and deformation parameters are extracted from it, which will lay a foundation for subsequent spring force analysis and matching state evaluation. After performing simulation tests at the experimental site, this image analyzing method could solve the complex problems of traditional mechanical sensor installation and monitoring online, status assessment of the circuit breaker spring.
Tomographical imaging using uniformly redundant arrays
NASA Technical Reports Server (NTRS)
Cannon, T. M.; Fenimore, E. E.
1979-01-01
An investigation is conducted of the behavior of two types of uniformly redundant array (URA) when used for close-up imaging. One URA pattern is a quadratic residue array whose characteristics for imaging planar sources have been simulated by Fenimore and Cannon (1978), while the second is based on m sequences that have been simulated by Gunson and Polychronopulos (1976) and by MacWilliams and Sloan (1976). Close-up imaging is necessary in order to obtain depth information for tomographical purposes. The properties of the two URA patterns are compared with a random array of equal open area. The goal considered in the investigation is to determine if a URA pattern exists which has the desirable defocus properties of the random array while maintaining artifact-free image properties for in-focus objects.
Gregoretti, Francesco; Cesarini, Elisa; Lanzuolo, Chiara; Oliva, Gennaro; Antonelli, Laura
2016-01-01
The large amount of data generated in biological experiments that rely on advanced microscopy can be handled only with automated image analysis. Most analyses require a reliable cell image segmentation eventually capable of detecting subcellular structures.We present an automatic segmentation method to detect Polycomb group (PcG) proteins areas isolated from nuclei regions in high-resolution fluorescent cell image stacks. It combines two segmentation algorithms that use an active contour model and a classification technique serving as a tool to better understand the subcellular three-dimensional distribution of PcG proteins in live cell image sequences. We obtained accurate results throughout several cell image datasets, coming from different cell types and corresponding to different fluorescent labels, without requiring elaborate adjustments to each dataset.
Hiremath, S B; Muraleedharan, A; Kumar, S; Nagesh, C; Kesavadas, C; Abraham, M; Kapilamoorthy, T R; Thomas, B
2017-04-01
Tumefactive demyelinating lesions with atypical features can mimic high-grade gliomas on conventional imaging sequences. The aim of this study was to assess the role of conventional imaging, DTI metrics ( p:q tensor decomposition), and DSC perfusion in differentiating tumefactive demyelinating lesions and high-grade gliomas. Fourteen patients with tumefactive demyelinating lesions and 21 patients with high-grade gliomas underwent brain MR imaging with conventional, DTI, and DSC perfusion imaging. Imaging sequences were assessed for differentiation of the lesions. DTI metrics in the enhancing areas and perilesional hyperintensity were obtained by ROI analysis, and the relative CBV values in enhancing areas were calculated on DSC perfusion imaging. Conventional imaging sequences had a sensitivity of 80.9% and specificity of 57.1% in differentiating high-grade gliomas ( P = .049) from tumefactive demyelinating lesions. DTI metrics ( p : q tensor decomposition) and DSC perfusion demonstrated a statistically significant difference in the mean values of ADC, the isotropic component of the diffusion tensor, the anisotropic component of the diffusion tensor, the total magnitude of the diffusion tensor, and rCBV among enhancing portions in tumefactive demyelinating lesions and high-grade gliomas ( P ≤ .02), with the highest specificity for ADC, the anisotropic component of the diffusion tensor, and relative CBV (92.9%). Mean fractional anisotropy values showed no significant statistical difference between tumefactive demyelinating lesions and high-grade gliomas. The combination of DTI and DSC parameters improved the diagnostic accuracy (area under the curve = 0.901). Addition of a heterogeneous enhancement pattern to DTI and DSC parameters improved it further (area under the curve = 0.966). The sensitivity increased from 71.4% to 85.7% after the addition of the enhancement pattern. DTI and DSC perfusion add profoundly to conventional imaging in differentiating tumefactive demyelinating lesions and high-grade gliomas. The combination of DTI metrics and DSC perfusion markedly improved diagnostic accuracy. © 2017 by American Journal of Neuroradiology.
Sales, Camila Pessoa; Carvalho, Heloisa de Andrade; Taverna, Khallil Chaim; Pastorello, Bruno Fraccini; Rubo, Rodrigo Augusto; Borgonovi, Arthur Felipe; Stuart, Silvia Radwanski; Rodrigues, Laura Natal
2016-01-01
Objective To identify a contrast material that could be used as a dummy marker for magnetic resonance imaging. Materials and Methods Magnetic resonance images were acquired with six different catheter-filling materials-water, glucose 50%, saline, olive oil, glycerin, and copper sulfate (CuSO4) water solution (2.08 g/L)-inserted into compatible computed tomography/magnetic resonance imaging ring applicators placed in a phantom made of gelatin and CuSO4. The best contrast media were tested in four patients with the applicators in place. Results In T2-weighted sequences, the best contrast was achieved with the CuSO4-filled catheters, followed by saline- and glycerin-filled catheters, which presented poor visualization. In addition (also in T2-weighted sequences), CuSO4 presented better contrast when tested in the phantom than when tested in the patients, in which it provided some contrast but with poor identification of the first dwell position, mainly in the ring. Conclusion We found CuSO4 to be the best solution for visualization of the applicator channels, mainly in T2-weighted images in vitro, although the materials tested presented low signal intensity in the images obtained in vivo, as well as poor precision in determining the first dwell position. PMID:27403016
Use of an advanced 3-T MRI movie to investigate articulation.
Nunthayanon, Kulthida; Honda, Ei-ichi; Shimazaki, Kazuo; Ohmori, Hiroko; Inoue-Arai, Maristela Sayuri; Kurabayashi, Tohru; Ono, Takashi
2015-06-01
To develop a magnetic resonance imaging (MRI) movie to reveal the dynamic movement of articulators and teeth. Five healthy females with normal occlusion participated in this study. Various concentrations of MRI contrast media (ferric ammonium citrate [FAC]) were tested for visualization of teeth, according to facial markers and with the use of a gel. Custom-made circuitry was connected to synchronize pronunciation of fricative sounds (/asa/) with scans. Three gradient echo sequences (True fast imaging with steady state precession [true FISP], FISP, and fast low angle shot [FLASH]) with a segmented cine were tested with the use of repetition times (TRs) of 9 ms and 31.5 ms. The MRI movie images were superimposed over the boundaries of teeth. The images produced during pronunciation, using the two different TRs (9 ms and 31 ms), were compared to assess the position of the lips and the tongue. Images obtained using the FLASH sequence, with a TR of 9 ms or 31.5 ms, can be used for diagnostic purposes. A TR of 9 ms, with 161 continuous images acquired, produced the highest-quality images of teeth, with few artifacts present. Pronunciation of the consonant "s" was clearly discernable. Our 3-T MRI movie system, with a temporal resolution less than 9 ms, can provide detailed information pertaining to variations in speech or oropharyngeal function. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Patil, Venkat P.; Gohatre, Umakant B.
2018-04-01
The technique of obtaining a wider field-of-view of an image to get high resolution integrated image is normally required for development of panorama of a photographic images or scene from a sequence of part of multiple views. There are various image stitching methods developed recently. For image stitching five basic steps are adopted stitching which are Feature detection and extraction, Image registration, computing homography, image warping and Blending. This paper provides review of some of the existing available image feature detection and extraction techniques and image stitching algorithms by categorizing them into several methods. For each category, the basic concepts are first described and later on the necessary modifications made to the fundamental concepts by different researchers are elaborated. This paper also highlights about the some of the fundamental techniques for the process of photographic image feature detection and extraction methods under various illumination conditions. The Importance of Image stitching is applicable in the various fields such as medical imaging, astrophotography and computer vision. For comparing performance evaluation of the techniques used for image features detection three methods are considered i.e. ORB, SURF, HESSIAN and time required for input images feature detection is measured. Results obtained finally concludes that for daylight condition, ORB algorithm found better due to the fact that less tome is required for more features extracted where as for images under night light condition it shows that SURF detector performs better than ORB/HESSIAN detectors.
NASA Astrophysics Data System (ADS)
Yu, Fei; Hui, Mei; Zhao, Yue-jin
2009-08-01
The image block matching algorithm based on motion vectors of correlative pixels in oblique direction is presented for digital image stabilization. The digital image stabilization is a new generation of image stabilization technique which can obtains the information of relative motion among frames of dynamic image sequences by the method of digital image processing. In this method the matching parameters are calculated from the vectors projected in the oblique direction. The matching parameters based on the vectors contain the information of vectors in transverse and vertical direction in the image blocks at the same time. So the better matching information can be obtained after making correlative operation in the oblique direction. And an iterative weighted least square method is used to eliminate the error of block matching. The weights are related with the pixels' rotational angle. The center of rotation and the global emotion estimation of the shaking image can be obtained by the weighted least square from the estimation of each block chosen evenly from the image. Then, the shaking image can be stabilized with the center of rotation and the global emotion estimation. Also, the algorithm can run at real time by the method of simulated annealing in searching method of block matching. An image processing system based on DSP was used to exam this algorithm. The core processor in the DSP system is TMS320C6416 of TI, and the CCD camera with definition of 720×576 pixels was chosen as the input video signal. Experimental results show that the algorithm can be performed at the real time processing system and have an accurate matching precision.
Processing Dynamic Image Sequences from a Moving Sensor.
1984-02-01
65 Roadsign Image Sequence ..... ................ ... 70 Roadsign Sequence with Redundant Features .. ........ . 79 Roadsign Subimage...Selected Feature Error Values .. ........ 66 2c. Industrial Image Selected Feature Local Search Values. .. .... 67 3ab. Roadsign Image Error Values...72 3c. Roadsign Image Local Search Values ............. 73 4ab. Roadsign Redundant Feature Error Values. ............ 8 4c. Roadsign
Price, Anthony N.; Padormo, Francesco; Hajnal, Joseph V.; Malik, Shaihan J.
2017-01-01
Cardiac magnetic resonance imaging (MRI) at high field presents challenges because of the high specific absorption rate and significant transmit field (B 1 +) inhomogeneities. Parallel transmission MRI offers the ability to correct for both issues at the level of individual radiofrequency (RF) pulses, but must operate within strict hardware and safety constraints. The constraints are themselves affected by sequence parameters, such as the RF pulse duration and TR, meaning that an overall optimal operating point exists for a given sequence. This work seeks to obtain optimal performance by performing a ‘sequence‐level’ optimization in which pulse sequence parameters are included as part of an RF shimming calculation. The method is applied to balanced steady‐state free precession cardiac MRI with the objective of minimizing TR, hence reducing the imaging duration. Results are demonstrated using an eight‐channel parallel transmit system operating at 3 T, with an in vivo study carried out on seven male subjects of varying body mass index (BMI). Compared with single‐channel operation, a mean‐squared‐error shimming approach leads to reduced imaging durations of 32 ± 3% with simultaneous improvement in flip angle homogeneity of 32 ± 8% within the myocardium. PMID:28195684
Magnetic resonance imaging of the normal bovine digit.
Raji, A R; Sardari, K; Mirmahmoob, P
2009-08-01
The purpose of this study was defining the normal structures of the digits and hoof in Holstein dairy cattle using Magnetic Resonance Image (MRI). Transverse, Sagital and Dorsoplantar MRI images of three isolated cattle cadaver digits were obtained using Gyroscan T5-NT a magnet of 0.5 Tesla and T1 Weighted sequence. The MRI images were compared to corresponding frozen cross-sections and dissect specimens of the cadaver digits. Relevant anatomical structures were identified and labeled at each level. The MRI images provided anatomical detail of the digits and hoof in Holstein dairy cattle. Transversal images provided excellent depiction of anatomical structures when compared to corresponding frozen cross-sections. The information presented in this paper would serve as an initial reference to the evaluation of MRI images of the digits and hoof in Holstein dairy cattle, that can be used by radiologist, clinicians, surgeon or for research propose in bovine lameness.
Investigation of the influence of sampling schemes on quantitative dynamic fluorescence imaging
Dai, Yunpeng; Chen, Xueli; Yin, Jipeng; Wang, Guodong; Wang, Bo; Zhan, Yonghua; Nie, Yongzhan; Wu, Kaichun; Liang, Jimin
2018-01-01
Dynamic optical data from a series of sampling intervals can be used for quantitative analysis to obtain meaningful kinetic parameters of probe in vivo. The sampling schemes may affect the quantification results of dynamic fluorescence imaging. Here, we investigate the influence of different sampling schemes on the quantification of binding potential (BP) with theoretically simulated and experimentally measured data. Three groups of sampling schemes are investigated including the sampling starting point, sampling sparsity, and sampling uniformity. In the investigation of the influence of the sampling starting point, we further summarize two cases by considering the missing timing sequence between the probe injection and sampling starting time. Results show that the mean value of BP exhibits an obvious growth trend with an increase in the delay of the sampling starting point, and has a strong correlation with the sampling sparsity. The growth trend is much more obvious if throwing the missing timing sequence. The standard deviation of BP is inversely related to the sampling sparsity, and independent of the sampling uniformity and the delay of sampling starting time. Moreover, the mean value of BP obtained by uniform sampling is significantly higher than that by using the non-uniform sampling. Our results collectively suggest that a suitable sampling scheme can help compartmental modeling of dynamic fluorescence imaging provide more accurate results and simpler operations. PMID:29675325
In vivo MR detection of fluorine-labeled human MSC using the bSSFP sequence
Ribot, Emeline J; Gaudet, Jeffrey M; Chen, Yuhua; Gilbert, Kyle M; Foster, Paula J
2014-01-01
Mesenchymal stem cells (MSC) are used to restore deteriorated cell environments. There is a need to specifically track these cells following transplantation in order to evaluate different methods of implantation, to follow their migration within the body, and to quantify their accumulation at the target. Cellular magnetic resonance imaging (MRI) using fluorine-based nanoemulsions is a great means to detect these transplanted cells in vivo because of the high specificity for fluorine detection and the capability for precise quantification. This technique, however, has low sensitivity, necessitating improvement in MR sequences. To counteract this issue, the balanced steady-state free precession (bSSFP) imaging sequence can be of great interest due to the high signal-to-noise ratio (SNR). Furthermore, it can be applied to obtain 3D images within short acquisition times. In this paper, bSSFP provided accurate quantification of samples of the perfluorocarbon Cell Sense-labeled cells in vitro. Cell Sense was internalized by human MSC (hMSC) without adverse alterations in cell viability or differentiation into adipocytes/osteocytes. The bSSFP sequence was applied in vivo to track and quantify the signals from both Cell Sense-labeled and iron-labeled hMSC after intramuscular implantation. The fluorine signal was observed to decrease faster and more significantly than the volume of iron-associated voids, which points to the advantage of quantifying the fluorine signal and the complexity of quantifying signal loss due to iron. PMID:24748787
In vivo MR detection of fluorine-labeled human MSC using the bSSFP sequence.
Ribot, Emeline J; Gaudet, Jeffrey M; Chen, Yuhua; Gilbert, Kyle M; Foster, Paula J
2014-01-01
Mesenchymal stem cells (MSC) are used to restore deteriorated cell environments. There is a need to specifically track these cells following transplantation in order to evaluate different methods of implantation, to follow their migration within the body, and to quantify their accumulation at the target. Cellular magnetic resonance imaging (MRI) using fluorine-based nanoemulsions is a great means to detect these transplanted cells in vivo because of the high specificity for fluorine detection and the capability for precise quantification. This technique, however, has low sensitivity, necessitating improvement in MR sequences. To counteract this issue, the balanced steady-state free precession (bSSFP) imaging sequence can be of great interest due to the high signal-to-noise ratio (SNR). Furthermore, it can be applied to obtain 3D images within short acquisition times. In this paper, bSSFP provided accurate quantification of samples of the perfluorocarbon Cell Sense-labeled cells in vitro. Cell Sense was internalized by human MSC (hMSC) without adverse alterations in cell viability or differentiation into adipocytes/osteocytes. The bSSFP sequence was applied in vivo to track and quantify the signals from both Cell Sense-labeled and iron-labeled hMSC after intramuscular implantation. The fluorine signal was observed to decrease faster and more significantly than the volume of iron-associated voids, which points to the advantage of quantifying the fluorine signal and the complexity of quantifying signal loss due to iron.
Mastropietro, Alfonso; Porcelli, Simone; Cadioli, Marcello; Rasica, Letizia; Scalco, Elisa; Gerevini, Simonetta; Marzorati, Mauro; Rizzo, Giovanna
2018-06-01
The main aim of this paper was to propose triggered intravoxel incoherent motion (IVIM) imaging sequences for the evaluation of perfusion changes in calf muscles before, during and after isometric intermittent exercise. Twelve healthy volunteers were involved in the study. The subjects were asked to perform intermittent isometric plantar flexions inside the MRI bore. MRI of the calf muscles was performed on a 3.0 T scanner and diffusion-weighted (DW) images were obtained using eight different b values (0 to 500 s/mm 2 ). Acquisitions were performed at rest, during exercise and in the subsequent recovery phase. A motion-triggered echo-planar imaging DW sequence was implemented to avoid movement artifacts. Image quality was evaluated using the average edge strength (AES) as a quantitative metric to assess the motion artifact effect. IVIM parameters (diffusion D, perfusion fraction f and pseudo-diffusion D*) were estimated using a segmented fitting approach and evaluated in gastrocnemius and soleus muscles. No differences were observed in quality of IVIM images between resting state and triggered exercise, whereas the non-triggered images acquired during exercise had a significantly lower value of AES (reduction of more than 20%). The isometric intermittent plantar-flexion exercise induced an increase of all IVIM parameters (D by 10%; f by 90%; D* by 124%; fD* by 260%), in agreement with the increased muscle perfusion occurring during exercise. Finally, IVIM parameters reverted to the resting values within 3 min during the recovery phase. In conclusion, the IVIM approach, if properly adapted using motion-triggered sequences, seems to be a promising method to investigate muscle perfusion during isometric exercise. Copyright © 2018 John Wiley & Sons, Ltd.
Zhang, Qinwei; Coolen, Bram F; Versluis, Maarten J; Strijkers, Gustav J; Nederveen, Aart J
2017-07-01
In this study, we present a new three-dimensional (3D), diffusion-prepared turbo spin echo sequence based on a stimulated-echo read-out (DPsti-TSE) enabling high-resolution and undistorted diffusion-weighted imaging (DWI). A dephasing gradient in the diffusion preparation module and rephasing gradients in the turbo spin echo module create stimulated echoes, which prevent signal loss caused by eddy currents. Near to perfect agreement of apparent diffusion coefficient (ADC) values between DPsti-TSE and diffusion-weighted echo planar imaging (DW-EPI) was demonstrated in both phantom transient signal experiments and phantom imaging experiments. High-resolution and undistorted DPsti-TSE was demonstrated in vivo in prostate and carotid vessel wall. 3D whole-prostate DWI was achieved with four b values in only 6 min. Undistorted ADC maps of the prostate peripheral zone were obtained at low and high imaging resolutions with no change in mean ADC values [(1.60 ± 0.10) × 10 -3 versus (1.60 ± 0.02) × 10 -3 mm 2 /s]. High-resolution 3D DWI of the carotid vessel wall was achieved in 12 min, with consistent ADC values [(1.40 ± 0.23) × 10 -3 mm 2 /s] across different subjects, as well as slice locations through the imaging volume. This study shows that DPsti-TSE can serve as a robust 3D diffusion-weighted sequence and is an attractive alternative to the traditional two-dimensional DW-EPI approaches. Copyright © 2017 John Wiley & Sons, Ltd.
Midulla, Marco; Moreno, Ramiro; Baali, Adil; Chau, Ming; Negre-Salvayre, Anne; Nicoud, Franck; Pruvo, Jean-Pierre; Haulon, Stephan; Rousseau, Hervé
2012-10-01
In the last decade, there was been increasing interest in finding imaging techniques able to provide a functional vascular imaging of the thoracic aorta. The purpose of this paper is to present an imaging method combining magnetic resonance imaging (MRI) and computational fluid dynamics (CFD) to obtain a patient-specific haemodynamic analysis of patients treated by thoracic endovascular aortic repair (TEVAR). MRI was used to obtain boundary conditions. MR angiography (MRA) was followed by cardiac-gated cine sequences which covered the whole thoracic aorta. Phase contrast imaging provided the inlet and outlet profiles. A CFD mesh generator was used to model the arterial morphology, and wall movements were imposed according to the cine imaging. CFD runs were processed using the finite volume (FV) method assuming blood as a homogeneous Newtonian fluid. Twenty patients (14 men; mean age 62.2 years) with different aortic lesions were evaluated. Four-dimensional mapping of velocity and wall shear stress were obtained, depicting different patterns of flow (laminar, turbulent, stenosis-like) and local alterations of parietal stress in-stent and along the native aorta. A computational method using a combined approach with MRI appears feasible and seems promising to provide detailed functional analysis of thoracic aorta after stent-graft implantation. • Functional vascular imaging of the thoracic aorta offers new diagnostic opportunities • CFD can model vascular haemodynamics for clinical aortic problems • Combining CFD with MRI offers patient specific method of aortic analysis • Haemodynamic analysis of stent-grafts could improve clinical management and follow-up.
Guérin, Frédéric; Arnaiz, Olivier; Boggetto, Nicole; Denby Wilkes, Cyril; Meyer, Eric; Sperling, Linda; Duharcourt, Sandra
2017-04-26
DNA elimination is developmentally programmed in a wide variety of eukaryotes, including unicellular ciliates, and leads to the generation of distinct germline and somatic genomes. The ciliate Paramecium tetraurelia harbors two types of nuclei with different functions and genome structures. The transcriptionally inactive micronucleus contains the complete germline genome, while the somatic macronucleus contains a reduced genome streamlined for gene expression. During development of the somatic macronucleus, the germline genome undergoes massive and reproducible DNA elimination events. Availability of both the somatic and germline genomes is essential to examine the genome changes that occur during programmed DNA elimination and ultimately decipher the mechanisms underlying the specific removal of germline-limited sequences. We developed a novel experimental approach that uses flow cell imaging and flow cytometry to sort subpopulations of nuclei to high purity. We sorted vegetative micronuclei and macronuclei during development of P. tetraurelia. We validated the method by flow cell imaging and by high throughput DNA sequencing. Our work establishes the proof of principle that developing somatic macronuclei can be sorted from a complex biological sample to high purity based on their size, shape and DNA content. This method enabled us to sequence, for the first time, the germline DNA from pure micronuclei and to identify novel transposable elements. Sequencing the germline DNA confirms that the Pgm domesticated transposase is required for the excision of all ~45,000 Internal Eliminated Sequences. Comparison of the germline DNA and unrearranged DNA obtained from PGM-silenced cells reveals that the latter does not provide a faithful representation of the germline genome. We developed a flow cytometry-based method to purify P. tetraurelia nuclei to high purity and provided quality control with flow cell imaging and high throughput DNA sequencing. We identified 61 germline transposable elements including the first Paramecium retrotransposons. This approach paves the way to sequence the germline genomes of P. aurelia sibling species for future comparative genomic studies.
Io Plume Monitoring (frames 1-36)
1997-11-04
A sequence of full disk Io images was taken prior to Galileo's second encounter with Ganymede. The purpose of these observations was to view all longitudes of Io and search for active volcanic plumes. The images were taken at intervals of approximately one hour corresponding to Io longitude increments of about ten degrees. Because both the spacecraft and Io were traveling around Jupiter the lighting conditions on Io (e.g. the phase of Io) changed dramatically during the sequence. These images were registered at a common scale and processed to produce a time-lapse "movie" of Io. This movie combines all of the plume monitoring frames obtained by the Solid State Imaging system aboard NASA's Galileo spacecraft. The most prominent volcanic plume seen in this movie is Prometheus (latitude 1.6 south, longitude 153 west). The plume becomes visible as it moves into daylight, crosses the center of the disk, and is seen in profile against the dark of space at the edge of Io. This plume was first seen by the Voyager 1 spacecraft in 1979 and is believed to be a geyser-like eruption of sulfur dioxide snow and gas. Although details of the region around Prometheus have changed in the seventeen years since Voyager's visit, the shape and height of the plume have not changed significantly. It is possible that this geyser has been erupting nearly continuously over this time. Galileo's primary 24 month mission includes eleven orbits around Jupiter and will provide observations of Jupiter, its moons and its magnetosphere. North is to the top of all frames. The smallest features which can be discerned range from 13 to 31 kilometers across. The images were obtained between the 2nd and the 6th of September, 1996. The animation can be viewed at http://photojournal.jpl.nasa.gov/catalog/PIA01073
NASA Astrophysics Data System (ADS)
Kirby, Richard; Whitaker, Ross
2016-09-01
In recent years, the use of multi-modal camera rigs consisting of an RGB sensor and an infrared (IR) sensor have become increasingly popular for use in surveillance and robotics applications. The advantages of using multi-modal camera rigs include improved foreground/background segmentation, wider range of lighting conditions under which the system works, and richer information (e.g. visible light and heat signature) for target identification. However, the traditional computer vision method of mapping pairs of images using pixel intensities or image features is often not possible with an RGB/IR image pair. We introduce a novel method to overcome the lack of common features in RGB/IR image pairs by using a variational methods optimization algorithm to map the optical flow fields computed from different wavelength images. This results in the alignment of the flow fields, which in turn produce correspondences similar to those found in a stereo RGB/RGB camera rig using pixel intensities or image features. In addition to aligning the different wavelength images, these correspondences are used to generate dense disparity and depth maps. We obtain accuracies similar to other multi-modal image alignment methodologies as long as the scene contains sufficient depth variations, although a direct comparison is not possible because of the lack of standard image sets from moving multi-modal camera rigs. We test our method on synthetic optical flow fields and on real image sequences that we created with a multi-modal binocular stereo RGB/IR camera rig. We determine our method's accuracy by comparing against a ground truth.
Febbo, Jennifer A; Galizia, Mauricio S; Murphy, Ian G; Popescu, Andrada; Bi, Xiaoming; Turin, Alexander; Collins, Jeremy; Markl, Michael; Edelman, Robert R; Carr, James C
2015-10-01
To evaluate magnetic resonance angiography sequences during the contrast steady-state (SS-MRA) using inversion recovery (IR) with fast low-angle shot (IR-FLASH) or steady-state free precession (IR-SSFP) read-outs, following the injection of a blood-pool contrast agent, and compare them to first-pass MR angiography (FP-MRA) in adults with congenital heart disease (CHD). Twenty-three adult patients with CHD who underwent both SS-MRA and FP-MRA using a 1.5-T scanner were retrospectively identified. Signal-to-noise and contrast-to-noise ratios were obtained at eight locations within the aorta and pulmonary vessels.. Image quality and the presence of artifacts were subjectively assessed by two radiologists. The presence of pathology was noted and given a confidence score. There was no difference in vessel dimensions among the sequences. IR-SSFP showed better image quality and fewer artifacts than IR-FLASH and FP-MRA. Confidence scores were significantly higher for SS-MRA compared to FP-MRA. Seven cases (30.4%) had findings detected at SS-MRA that were not detected at FP-MRA, and 2 cases (8.7%) had findings detected by IR-SSFP only. SS-MRA of the thoracic vasculature using a blood pool contrast agent offers superior image quality and reveals more abnormalities compared to standard FP-MRA in adults with CHD, and it is best achieved with an IR-SSFP sequence. These sequences could lead to increased detection rates of abnormalities and provide a simpler protocol image acquisition. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paliwal, B; Asprey, W; Yan, Y
Purpose: In order to take advantage of the high resolution soft tissue imaging available in MR images, we investigated 3D images obtained with the low field 0.35 T MR in ViewRay to serve as an alternative to CT scans for radiotherapy treatment planning. In these images, normal and target structure delineation can be visualized. Assessment is based upon comparison with the CT images and the ability to produce comparable contours. Methods: Routine radiation oncology CT scans were acquired on five patients. Contours of brain, brainstem, esophagus, heart, lungs, spinal cord, and the external body were drawn. The same five patientsmore » were then scanned on the ViewRay TrueFISP-based imaging pulse sequence. The same organs were selected on the MR images and compared to those from the CT scan. Physical volume and the Dice Similarity Coefficient (DSC) were used to assess the contours from the two systems. Image quality stability was quantitatively ensured throughout the study following the recommendations of the ACR MR accreditation procedure. Results: The highest DSC of 0.985, 0.863, and 0.843 were observed for brain, lungs, and heart respectively. On the other hand, the brainstem, spinal cord, and esophagus had the lowest DSC. Volume agreement was most satisfied for the heart (within 5%) and the brain (within 2%). Contour volume for the brainstem and lung (a widely dynamic organ) varied the most (27% and 19%). Conclusion: The DSC and volume measurements suggest that the results obtained from ViewRay images are quantitatively consistent and comparable to those obtained from CT scans for the brain, heart, and lungs. MR images from ViewRay are well-suited for treatment planning and for adaptive MRI-guided radiotherapy. The physical data from 0.35 T MR imaging is consistent with our geometrical understanding of normal structures.« less
Polar Lights at Saturn Bid Cassini Farewell
2017-10-16
On Sept. 14, 2017, one day before making its final plunge into Saturn's atmosphere, NASA's Cassini spacecraft used its Ultraviolet Imaging Spectrograph, or UVIS, instrument to capture this final view of ultraviolet auroral emissions in the planet's north polar region. The view is centered on the north pole of Saturn, with lines of latitude visible for 80, 70 and 60 degrees. Lines of longitude are spaced 40 degrees apart. The planet's day side is at bottom, while the night side is at top. A sequence of images from this observation has also been assembled into a movie sequence. The last image in the movie was taken about an hour before the still image, which was the actual final UVIS auroral image. Auroral emissions are generated by charged particles traveling along the invisible lines of Saturn's magnetic field. These particles precipitate into the atmosphere, releasing light when they strike gas molecules there. Several individual auroral structures are visible here, despite that this UVIS view was acquired at a fairly large distance from the planet (about 424,000 miles or 683,000 kilometers). Each of these features is connected to a particular phenomenon in Saturn's magnetosphere. For instance, it is possible to identify auroral signatures here that are related to the injection of hot plasma from the dayside magnetosphere, as well as auroral features associated with a change in the magnetic field's shape on the magnetosphere's night side. Several possible scenarios have been postulated over the years to explain Saturn's changing auroral emissions, but researchers are still far from a complete understanding of this complicated puzzle. Researchers will continue to analyze the hundreds of image sequences UVIS obtained of Saturn's auroras during Cassini's 13-year mission, with many new discoveries likely to be made. This image and movie sequence were produced by the Laboratory for Planetary and Atmospheric Physics (LPAP) of the STAR Institute of the University of Liege in Belgium, in collaboration with the UVIS Team. The animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA21899
FLAIR*: A Combined MR Contrast Technique for Visualizing White Matter Lesions and Parenchymal Veins
George, Ilena C.; Shea, Colin D.; Gaitán, María I.; Reich, Daniel S.
2012-01-01
Purpose: To evaluate a magnetic resonance (MR) imaging contrast technique, called FLAIR*, that combines the advantages of T2-weighted fluid-attenuated inversion recovery (FLAIR) contrast and T2*-weighted contrast on a single image for assessment of white matter (WM) diseases such as multiple sclerosis (MS). Materials and Methods: This prospective pilot study was HIPAA compliant and institutional review board approved. Ten patients with clinically definite MS (eight men, two women; mean age, 41 years) provided informed consent and underwent 3.0-T MR imaging. Images from a T2-weighted FLAIR sequence were combined with images from a T2*-weighted segmented echo-planar imaging sequence performed during contrast material injection, yielding high-isotropic-resolution (0.55 × 0.55 × 0.55 mm3) FLAIR* images. Qualitative assessment was performed for image quality, lesion conspicuity, and vein conspicuity. Contrast-to-noise ratio (CNR) was calculated to compare normal-appearing WM (NAWM) with cerebrospinal fluid, lesions, and veins. To evaluate the differences in CNR among imaging modalities, a bootstrap procedure clustered on subjects was used, together with paired t tests. Results: High-quality FLAIR* images of the brain were produced at 3.0 T, yielding conspicuous lesions and veins. Lesion-to-NAWM and NAWM-to-vein CNR values were significantly higher for FLAIR* images than for T2-weighted FLAIR images (P < .0001). Findings on FLAIR* images included intralesional veins for lesions located throughout the brain and a hypointense rim around some WM lesions. Conclusion: High-isotropic-resolution FLAIR* images obtained at 3.0 T yield high contrast for WM lesions and parenchymal veins, making it well suited to investigate the relationship between WM abnormalities and veins in a clinical setting. © RSNA, 2012 PMID:23074257
Swarm Intelligence for Optimizing Hybridized Smoothing Filter in Image Edge Enhancement
NASA Astrophysics Data System (ADS)
Rao, B. Tirumala; Dehuri, S.; Dileep, M.; Vindhya, A.
In this modern era, image transmission and processing plays a major role. It would be impossible to retrieve information from satellite and medical images without the help of image processing techniques. Edge enhancement is an image processing step that enhances the edge contrast of an image or video in an attempt to improve its acutance. Edges are the representations of the discontinuities of image intensity functions. For processing these discontinuities in an image, a good edge enhancement technique is essential. The proposed work uses a new idea for edge enhancement using hybridized smoothening filters and we introduce a promising technique of obtaining best hybrid filter using swarm algorithms (Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO)) to search for an optimal sequence of filters from among a set of rather simple, representative image processing filters. This paper deals with the analysis of the swarm intelligence techniques through the combination of hybrid filters generated by these algorithms for image edge enhancement.
Olivieri, Laura J; Cross, Russell R; O'Brien, Kendall E; Ratnayaka, Kanishka; Hansen, Michael S
2015-09-01
Cardiac magnetic resonance (MR) imaging is a valuable tool in congenital heart disease; however patients frequently have metal devices in the chest from the treatment of their disease that complicate imaging. Methods are needed to improve imaging around metal implants near the heart. Basic sequence parameter manipulations have the potential to minimize artifact while limiting effects on image resolution and quality. Our objective was to design cine and static cardiac imaging sequences to minimize metal artifact while maintaining image quality. Using systematic variation of standard imaging parameters on a fluid-filled phantom containing commonly used metal cardiac devices, we developed optimized sequences for steady-state free precession (SSFP), gradient recalled echo (GRE) cine imaging, and turbo spin-echo (TSE) black-blood imaging. We imaged 17 consecutive patients undergoing routine cardiac MR with 25 metal implants of various origins using both standard and optimized imaging protocols for a given slice position. We rated images for quality and metal artifact size by measuring metal artifact in two orthogonal planes within the image. All metal artifacts were reduced with optimized imaging. The average metal artifact reduction for the optimized SSFP cine was 1.5+/-1.8 mm, and for the optimized GRE cine the reduction was 4.6+/-4.5 mm (P < 0.05). Quality ratings favored the optimized GRE cine. Similarly, the average metal artifact reduction for the optimized TSE images was 1.6+/-1.7 mm (P < 0.05), and quality ratings favored the optimized TSE imaging. Imaging sequences tailored to minimize metal artifact are easily created by modifying basic sequence parameters, and images are superior to standard imaging sequences in both quality and artifact size. Specifically, for optimized cine imaging a GRE sequence should be used with settings that favor short echo time, i.e. flow compensation off, weak asymmetrical echo and a relatively high receiver bandwidth. For static black-blood imaging, a TSE sequence should be used with fat saturation turned off and high receiver bandwidth.
In vivo Proton Electron Double Resonance Imaging of Mice with Fast Spin Echo Pulse Sequence
Sun, Ziqi; Li, Haihong; Petryakov, Sergey; Samouilov, Alex; Zweier, Jay L.
2011-01-01
Purpose To develop and evaluate a 2D fast spin echo (FSE) pulse sequence for enhancing temporal resolution and reducing tissue heating for in vivo proton electron double resonance imaging (PEDRI) of mice. Materials and Methods A four-compartment phantom containing 2 mM TEMPONE was imaged at 20.1 mT using 2D FSE-PEDRI and regular gradient echo (GRE)-PEDRI pulse sequences. Control mice were infused with TEMPONE over ∼1 min followed by time-course imaging using the 2D FSE-PEDRI sequence at intervals of 10 – 30 s between image acquisitions. The average signal intensity from the time-course images was analyzed using a first-order kinetics model. Results Phantom experiments demonstrated that EPR power deposition can be greatly reduced using the FSE-PEDRI pulse sequence compared to the conventional gradient echo pulse sequence. High temporal resolution was achieved at ∼4 s per image acquisition using the FSE-PEDRI sequence with a good image SNR in the range of 233-266 in the phantom study. The TEMPONE half-life measured in vivo was ∼72 s. Conclusion Thus, the FSE-PEDRI pulse sequence enables fast in vivo functional imaging of free radical probes in small animals greatly reducing EPR irradiation time with decreased power deposition and provides increased temporal resolution. PMID:22147559
Chavhan, Govind B; Babyn, Paul S; Vasanawala, Shreyas S
2013-05-01
Familiarity with basic sequence properties and their trade-offs is necessary for radiologists performing abdominal magnetic resonance (MR) imaging. Acquiring diagnostic-quality MR images in the pediatric abdomen is challenging due to motion, inability to breath hold, varying patient size, and artifacts. Motion-compensation techniques (eg, respiratory gating, signal averaging, suppression of signal from moving tissue, swapping phase- and frequency-encoding directions, use of faster sequences with breath holding, parallel imaging, and radial k-space filling) can improve image quality. Each of these techniques is more suitable for use with certain sequences and acquisition planes and in specific situations and age groups. Different T1- and T2-weighted sequences work better in different age groups and with differing acquisition planes and have specific advantages and disadvantages. Dynamic imaging should be performed differently in younger children than in older children. In younger children, the sequence and the timing of dynamic phases need to be adjusted. Different sequences work better in smaller children and in older children because of differing breath-holding ability, breathing patterns, field of view, and use of sedation. Hence, specific protocols should be maintained for younger children and older children. Combining longer-higher-resolution sequences and faster-lower-resolution sequences helps acquire diagnostic-quality images in a reasonable time. © RSNA, 2013.
Image Encryption Algorithm Based on Hyperchaotic Maps and Nucleotide Sequences Database
2017-01-01
Image encryption technology is one of the main means to ensure the safety of image information. Using the characteristics of chaos, such as randomness, regularity, ergodicity, and initial value sensitiveness, combined with the unique space conformation of DNA molecules and their unique information storage and processing ability, an efficient method for image encryption based on the chaos theory and a DNA sequence database is proposed. In this paper, digital image encryption employs a process of transforming the image pixel gray value by using chaotic sequence scrambling image pixel location and establishing superchaotic mapping, which maps quaternary sequences and DNA sequences, and by combining with the logic of the transformation between DNA sequences. The bases are replaced under the displaced rules by using DNA coding in a certain number of iterations that are based on the enhanced quaternary hyperchaotic sequence; the sequence is generated by Chen chaos. The cipher feedback mode and chaos iteration are employed in the encryption process to enhance the confusion and diffusion properties of the algorithm. Theoretical analysis and experimental results show that the proposed scheme not only demonstrates excellent encryption but also effectively resists chosen-plaintext attack, statistical attack, and differential attack. PMID:28392799
Chen, Xinyuan; Dai, Jianrong
2018-05-01
Magnetic Resonance Imaging (MRI) simulation differs from diagnostic MRI in purpose, technical requirements, and implementation. We propose a semiautomatic method for image acceptance and commissioning for the scanner, the radiofrequency (RF) coils, and pulse sequences for an MRI simulator. The ACR MRI accreditation large phantom was used for image quality analysis with seven parameters. Standard ACR sequences with a split head coil were adopted to examine the scanner's basic performance. The performance of simulation RF coils were measured and compared using the standard sequence with different clinical diagnostic coils. We used simulation sequences with simulation coils to test the quality of image and advanced performance of the scanner. Codes and procedures were developed for semiautomatic image quality analysis. When using standard ACR sequences with a split head coil, image quality passed all ACR recommended criteria. The image intensity uniformity with a simulation RF coil decreased about 34% compared with the eight-channel diagnostic head coil, while the other six image quality parameters were acceptable. Those two image quality parameters could be improved to more than 85% by built-in intensity calibration methods. In the simulation sequences test, the contrast resolution was sensitive to the FOV and matrix settings. The geometric distortion of simulation sequences such as T1-weighted and T2-weighted images was well-controlled in the isocenter and 10 cm off-center within a range of ±1% (2 mm). We developed a semiautomatic image quality analysis method for quantitative evaluation of images and commissioning of an MRI simulator. The baseline performances of simulation RF coils and pulse sequences have been established for routine QA. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Recurrent neural networks for breast lesion classification based on DCE-MRIs
NASA Astrophysics Data System (ADS)
Antropova, Natasha; Huynh, Benjamin; Giger, Maryellen
2018-02-01
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) plays a significant role in breast cancer screening, cancer staging, and monitoring response to therapy. Recently, deep learning methods are being rapidly incorporated in image-based breast cancer diagnosis and prognosis. However, most of the current deep learning methods make clinical decisions based on 2-dimentional (2D) or 3D images and are not well suited for temporal image data. In this study, we develop a deep learning methodology that enables integration of clinically valuable temporal components of DCE-MRIs into deep learning-based lesion classification. Our work is performed on a database of 703 DCE-MRI cases for the task of distinguishing benign and malignant lesions, and uses the area under the ROC curve (AUC) as the performance metric in conducting that task. We train a recurrent neural network, specifically a long short-term memory network (LSTM), on sequences of image features extracted from the dynamic MRI sequences. These features are extracted with VGGNet, a convolutional neural network pre-trained on a large dataset of natural images ImageNet. The features are obtained from various levels of the network, to capture low-, mid-, and high-level information about the lesion. Compared to a classification method that takes as input only images at a single time-point (yielding an AUC = 0.81 (se = 0.04)), our LSTM method improves lesion classification with an AUC of 0.85 (se = 0.03).
Nagahama, Hiroshi; Suzuki, Kengo; Shonai, Takaharu; Aratani, Kazuki; Sakurai, Yuuki; Nakamura, Manami; Sakata, Motomichi
2015-01-01
Electrodes are surgically implanted into the subthalamic nucleus (STN) of Parkinson's disease patients to provide deep brain stimulation. For ensuring correct positioning, the anatomic location of the STN must be determined preoperatively. Magnetic resonance imaging has been used for pinpointing the location of the STN. To identify the optimal imaging sequence for identifying the STN, we compared images produced with T2 star-weighted angiography (SWAN), gradient echo T2*-weighted imaging, and fast spin echo T2-weighted imaging in 6 healthy volunteers. Our comparison involved measurement of the contrast-to-noise ratio (CNR) for the STN and substantia nigra and a radiologist's interpretations of the images. Of the sequences examined, the CNR and qualitative scores were significantly higher on SWAN images than on other images (p < 0.01) for STN visualization. Kappa value (0.74) on SWAN images was the highest in three sequences for visualizing the STN. SWAN is the sequence best suited for identifying the STN at the present time.
Infrared thermal facial image sequence registration analysis and verification
NASA Astrophysics Data System (ADS)
Chen, Chieh-Li; Jian, Bo-Lin
2015-03-01
To study the emotional responses of subjects to the International Affective Picture System (IAPS), infrared thermal facial image sequence is preprocessed for registration before further analysis such that the variance caused by minor and irregular subject movements is reduced. Without affecting the comfort level and inducing minimal harm, this study proposes an infrared thermal facial image sequence registration process that will reduce the deviations caused by the unconscious head shaking of the subjects. A fixed image for registration is produced through the localization of the centroid of the eye region as well as image translation and rotation processes. Thermal image sequencing will then be automatically registered using the two-stage genetic algorithm proposed. The deviation before and after image registration will be demonstrated by image quality indices. The results show that the infrared thermal image sequence registration process proposed in this study is effective in localizing facial images accurately, which will be beneficial to the correlation analysis of psychological information related to the facial area.
Comparison of 3D bone models of the knee joint derived from CT and 3T MR imaging.
Neubert, Aleš; Wilson, Katharine J; Engstrom, Craig; Surowiec, Rachel K; Paproki, Anthony; Johnson, Nicholas; Crozier, Stuart; Fripp, Jurgen; Ho, Charles P
2017-08-01
To examine whether magnetic resonance (MR) imaging can offer a viable alternative to computed tomography (CT) based 3D bone modeling. CT and MR (SPACE, TrueFISP, VIBE) images were acquired from the left knee joint of a fresh-frozen cadaver. The distal femur, proximal tibia, proximal fibula and patella were manually segmented from the MR and CT examinations. The MR bone models obtained from manual segmentations of all three sequences were compared to CT models using a similarity measure based on absolute mesh differences. The average absolute distance between the CT and the various MR-based bone models were all below 1mm across all bones. The VIBE sequence provided the best agreement with the CT model, followed by the SPACE, then the TrueFISP data. The most notable difference was for the proximal tibia (VIBE 0.45mm, SPACE 0.82mm, TrueFISP 0.83mm). The study indicates that 3D MR bone models may offer a feasible alternative to traditional CT-based modeling. A single radiological examination using the MR imaging would allow simultaneous assessment of both bones and soft-tissues, providing anatomically comprehensive joint models for clinical evaluation, without the ionizing radiation of CT imaging. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Vargas, Mario; Kreeger, Richard E.
2011-01-01
This work presents the results of three experiments, one conducted in the Icing Research Tunnel (IRT) at NASA Glenn Research Center and two in the Goodrich Icing Wind Tunnel (IWT). The experiments were designed to measure the critical distance parameter on a NACA 0012 Swept Wing Tip at sweep angles of 45deg, 30deg, and 15deg. A time sequence imaging technique (TSIT) was used to obtain real time close-up imaging data during the first 2 min of the ice accretion formation. The time sequence photographic data was used to measure the critical distance at each icing condition and to study how it develops in real time. The effect on the critical distance of liquid water content, drop size, total temperature, and velocity was studied. The results were interpreted using a simple energy balance on a roughness element
Enhanced learning of natural visual sequences in newborn chicks.
Wood, Justin N; Prasad, Aditya; Goldman, Jason G; Wood, Samantha M W
2016-07-01
To what extent are newborn brains designed to operate over natural visual input? To address this question, we used a high-throughput controlled-rearing method to examine whether newborn chicks (Gallus gallus) show enhanced learning of natural visual sequences at the onset of vision. We took the same set of images and grouped them into either natural sequences (i.e., sequences showing different viewpoints of the same real-world object) or unnatural sequences (i.e., sequences showing different images of different real-world objects). When raised in virtual worlds containing natural sequences, newborn chicks developed the ability to recognize familiar images of objects. Conversely, when raised in virtual worlds containing unnatural sequences, newborn chicks' object recognition abilities were severely impaired. In fact, the majority of the chicks raised with the unnatural sequences failed to recognize familiar images of objects despite acquiring over 100 h of visual experience with those images. Thus, newborn chicks show enhanced learning of natural visual sequences at the onset of vision. These results indicate that newborn brains are designed to operate over natural visual input.
Comparison of the quality of different magnetic resonance image sequences of multiple myeloma.
Sun, Zhao-yong; Zhang, Hai-bo; Li, Shuo; Wang, Yun; Xue, Hua-dan; Jin, Zheng-yu
2015-02-01
To compare the image quality of T1WI fat phase,T1WI water phase, short time inversion recovery (STIR) sequence, and diffusion weighted imaging (DWI) sequence in the evaluation of multiple myeloma (MM). Totally 20MM patients were enrolled in this study. All patients underwent scanning at coronal T1WI fat phase, coronal T1WI water phase, coronal STIR sequence, and axial DWI sequence. The image quality of the four different sequences was evaluated. The image was divided into seven sections(head and neck, chest, abdomen, pelvis, thigh, leg, and foot), and the signal-to-noise ratio (SNR) of each section was measured at 7 segments (skull, spine, pelvis, humerus, femur, tibia and fibula and ribs) were measured. In addition, 20 active MM lesions were selected, and the contrast-to-noise ratio (CNR) of each scan sequence was calculated. The average image quality scores of T1WI fat phase,T1WI water phase, STIR sequence, and DWI sequence were 4.19 ± 0.70,4.16 ± 0.73,3.89 ± 0.70, and 3.76 ± 0.68, respectively. The image quality at T1-fat phase and T1-water phase were significantly higher than those at STIR (P=0.000 and P=0.001) and DWI sequence (both P=0.000); however, there was no significant difference between T1-fat and T1-water phase (P=0.723)and between STIR and DWI sequence (P=0.167). The SNR of T1WI fat phase was significantly higher than those of the other three sequences (all P=0.000), and there was no significant difference among the other three sequences (all P>0.05). Although the CNR of DWI sequences was slightly higher than those of the other three sequences,there was no significant difference among all of them (all P>0.05). Imaging at T1WI fat phase,T1WI water phase, STIR sequence, and DWI sequence has certain advantages,and they should be combined in the diagnosis of MM.
Mapping the Space of Genomic Signatures
Kari, Lila; Hill, Kathleen A.; Sayem, Abu S.; Karamichalis, Rallis; Bryans, Nathaniel; Davis, Katelyn; Dattani, Nikesh S.
2015-01-01
We propose a computational method to measure and visualize interrelationships among any number of DNA sequences allowing, for example, the examination of hundreds or thousands of complete mitochondrial genomes. An "image distance" is computed for each pair of graphical representations of DNA sequences, and the distances are visualized as a Molecular Distance Map: Each point on the map represents a DNA sequence, and the spatial proximity between any two points reflects the degree of structural similarity between the corresponding sequences. The graphical representation of DNA sequences utilized, Chaos Game Representation (CGR), is genome- and species-specific and can thus act as a genomic signature. Consequently, Molecular Distance Maps could inform species identification, taxonomic classifications and, to a certain extent, evolutionary history. The image distance employed, Structural Dissimilarity Index (DSSIM), implicitly compares the occurrences of oligomers of length up to k (herein k = 9) in DNA sequences. We computed DSSIM distances for more than 5 million pairs of complete mitochondrial genomes, and used Multi-Dimensional Scaling (MDS) to obtain Molecular Distance Maps that visually display the sequence relatedness in various subsets, at different taxonomic levels. This general-purpose method does not require DNA sequence alignment and can thus be used to compare similar or vastly different DNA sequences, genomic or computer-generated, of the same or different lengths. We illustrate potential uses of this approach by applying it to several taxonomic subsets: phylum Vertebrata, (super)kingdom Protista, classes Amphibia-Insecta-Mammalia, class Amphibia, and order Primates. This analysis of an extensive dataset confirms that the oligomer composition of full mtDNA sequences can be a source of taxonomic information. This method also correctly finds the mtDNA sequences most closely related to that of the anatomically modern human (the Neanderthal, the Denisovan, and the chimp), and that the sequence most different from it in this dataset belongs to a cucumber. PMID:26000734
MISTICA: Minimum Spanning Tree-based Coarse Image Alignment for Microscopy Image Sequences
Ray, Nilanjan; McArdle, Sara; Ley, Klaus; Acton, Scott T.
2016-01-01
Registration of an in vivo microscopy image sequence is necessary in many significant studies, including studies of atherosclerosis in large arteries and the heart. Significant cardiac and respiratory motion of the living subject, occasional spells of focal plane changes, drift in the field of view, and long image sequences are the principal roadblocks. The first step in such a registration process is the removal of translational and rotational motion. Next, a deformable registration can be performed. The focus of our study here is to remove the translation and/or rigid body motion that we refer to here as coarse alignment. The existing techniques for coarse alignment are unable to accommodate long sequences often consisting of periods of poor quality images (as quantified by a suitable perceptual measure). Many existing methods require the user to select an anchor image to which other images are registered. We propose a novel method for coarse image sequence alignment based on minimum weighted spanning trees (MISTICA) that overcomes these difficulties. The principal idea behind MISTICA is to re-order the images in shorter sequences, to demote nonconforming or poor quality images in the registration process, and to mitigate the error propagation. The anchor image is selected automatically making MISTICA completely automated. MISTICA is computationally efficient. It has a single tuning parameter that determines graph width, which can also be eliminated by way of additional computation. MISTICA outperforms existing alignment methods when applied to microscopy image sequences of mouse arteries. PMID:26415193
MISTICA: Minimum Spanning Tree-Based Coarse Image Alignment for Microscopy Image Sequences.
Ray, Nilanjan; McArdle, Sara; Ley, Klaus; Acton, Scott T
2016-11-01
Registration of an in vivo microscopy image sequence is necessary in many significant studies, including studies of atherosclerosis in large arteries and the heart. Significant cardiac and respiratory motion of the living subject, occasional spells of focal plane changes, drift in the field of view, and long image sequences are the principal roadblocks. The first step in such a registration process is the removal of translational and rotational motion. Next, a deformable registration can be performed. The focus of our study here is to remove the translation and/or rigid body motion that we refer to here as coarse alignment. The existing techniques for coarse alignment are unable to accommodate long sequences often consisting of periods of poor quality images (as quantified by a suitable perceptual measure). Many existing methods require the user to select an anchor image to which other images are registered. We propose a novel method for coarse image sequence alignment based on minimum weighted spanning trees (MISTICA) that overcomes these difficulties. The principal idea behind MISTICA is to reorder the images in shorter sequences, to demote nonconforming or poor quality images in the registration process, and to mitigate the error propagation. The anchor image is selected automatically making MISTICA completely automated. MISTICA is computationally efficient. It has a single tuning parameter that determines graph width, which can also be eliminated by the way of additional computation. MISTICA outperforms existing alignment methods when applied to microscopy image sequences of mouse arteries.
NASA Astrophysics Data System (ADS)
Guallini, Luca; Rossi, Angelo Pio; Forget, François; Marinangeli, Lucia; Lauro, Sebastian Emanuel; Pettinelli, Elena; Seu, Roberto; Thomas, Nicolas
2018-07-01
The Mars South Polar Layered Deposits (SPLD) are the result of depositional and erosional events, which are marked by different stratigraphic sequences and erosional surfaces. To unambiguously define the stratigraphic units at regional scale, we mapped the SPLD on the basis of observed discontinuities (i.e., unconformities, correlative discontinuities and conformities), as commonly done in terrestrial modern stratigraphy. This methodology is defined as "Discontinuity-Bounded Units" or allostratigraphy, and is complemented by geomorphological mapping. Our study focuses on Promethei Lingula (PL) and uses both high-resolution images (CTX, HiRISE) and radargrams (SHARAD) to combine surface and sub-surface observations and obtain a 3D geological reconstruction of the SPLD. One regional discontinuity (named AUR1) was defined within the studied stratigraphic succession and is exposed in several non-contiguous outcrops around PL as well as observed at depth within the ice sheet. This is the primary contact between two major depositional sequences, showing a different texture at CTX resolution. The lower sequence is characterized mainly by a "ridge and trough" morphology (Ridge and Trough Sequence; RTS) and the upper sequence shows mainly by a "stair-stepped" morphology (Stair-Stepped Sequence; SSS). On the basis of the observations, we defined two regional "discontinuity-bounded" units in PL, respectively coinciding with RTS and SSS sequences. Our stratigraphic reconstruction provides new hints on the major scale events that shaped this region. Oscillations in Martian axial obliquity could have controlled local climate conditions in the past, affecting the PL geological record.
Frischer, Josa M.; Göd, Sabine; Gruber, Andreas; Saringer, Walter; Grabner, Günther; Gatterbauer, Brigitte; Kitz, Klaus; Holzer, Sabrina; Kronnerwetter, Claudia; Hainfellner, Johannes A.; Knosp, Engelbert; Trattnig, Siegfried
2012-01-01
Background and aim In the diagnosis of cerebral cavernous malformations (CCMs) magnetic resonance imaging is established as the gold standard. Conventional MRI techniques have their drawbacks in the diagnosis of CCMs and associated venous malformations (DVAs). The aim of our study was to evaluate susceptibility weighted imaging SWI for the detection of CCM and associated DVAs at 7 T in comparison with 3 T. Patients and methods 24 patients (14 female, 10 male; median age: 38.3 y (21.1 y–69.1 y) were included in the study. Patients enrolled in the study received a 3 T and a 7 T MRI on the same day. The following sequences were applied on both field strengths: a T1 weighted 3D GRE sequence (MP-RAGE) and a SWI sequence. After obtaining the study MRIs, eleven patients underwent surgery and 13 patients were followed conservatively or were treated radio-surgically. Results Patients initially presented with haemorrhage (n = 4, 16.7%), seizures (n = 2, 8.3%) or other neurology (n = 18, 75.0%). For surgical resected lesions histopathological findings verified the diagnosis of CCMs. A significantly higher number of CCMs was diagnosed at 7 T SWI sequences compared with 3 T SWI (p < 0.05). Additionally diagnosed lesions on 7 T MRI were significantly smaller compared to the initial lesions on 3 T MRIs (p < 0.001). Further, more associated DVAs were diagnosed at 7 T MRI compared to 3 T MRI. Conclusion SWI sequences at ultra-high-field MRI improve the diagnosis of CCMs and associated DVAs and therefore add important pre-operative information. PMID:24179744
Dyvorne, Hadrien A; Galea, Nicola; Nevers, Thomas; Fiel, M Isabel; Carpenter, David; Wong, Edmund; Orton, Matthew; de Oliveira, Andre; Feiweier, Thorsten; Vachon, Marie-Louise; Babb, James S; Taouli, Bachir
2013-03-01
To optimize intravoxel incoherent motion (IVIM) diffusion-weighted (DW) imaging by estimating the effects of diffusion gradient polarity and breathing acquisition scheme on image quality, signal-to-noise ratio (SNR), IVIM parameters, and parameter reproducibility, as well as to investigate the potential of IVIM in the detection of hepatic fibrosis. In this institutional review board-approved prospective study, 20 subjects (seven healthy volunteers, 13 patients with hepatitis C virus infection; 14 men, six women; mean age, 46 years) underwent IVIM DW imaging with four sequences: (a) respiratory-triggered (RT) bipolar (BP) sequence, (b) RT monopolar (MP) sequence, (c) free-breathing (FB) BP sequence, and (d) FB MP sequence. Image quality scores were assessed for all sequences. A biexponential analysis with the Bayesian method yielded true diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (PF) in liver parenchyma. Mixed-model analysis of variance was used to compare image quality, SNR, IVIM parameters, and interexamination variability between the four sequences, as well as the ability to differentiate areas of liver fibrosis from normal liver tissue. Image quality with RT sequences was superior to that with FB acquisitions (P = .02) and was not affected by gradient polarity. SNR did not vary significantly between sequences. IVIM parameter reproducibility was moderate to excellent for PF and D, while it was less reproducible for D*. PF and D were both significantly lower in patients with hepatitis C virus than in healthy volunteers with the RT BP sequence (PF = 13.5% ± 5.3 [standard deviation] vs 9.2% ± 2.5, P = .038; D = [1.16 ± 0.07] × 10(-3) mm(2)/sec vs [1.03 ± 0.1] × 10(-3) mm(2)/sec, P = .006). The RT BP DW imaging sequence had the best results in terms of image quality, reproducibility, and ability to discriminate between healthy and fibrotic liver with biexponential fitting.
Improved Contrast-Enhanced Ultrasound Imaging With Multiplane-Wave Imaging.
Gong, Ping; Song, Pengfei; Chen, Shigao
2018-02-01
Contrast-enhanced ultrasound (CEUS) imaging has great potential for use in new ultrasound clinical applications such as myocardial perfusion imaging and abdominal lesion characterization. In CEUS imaging, contrast agents (i.e., microbubbles) are used to improve contrast between blood and tissue because of their high nonlinearity under low ultrasound pressure. However, the quality of CEUS imaging sometimes suffers from a low signal-to-noise ratio (SNR) in deeper imaging regions when a low mechanical index (MI) is used to avoid microbubble disruption, especially for imaging at off-resonance transmit frequencies. In this paper, we propose a new strategy of combining CEUS sequences with the recently proposed multiplane-wave (MW) compounding method to improve the SNR of CEUS in deeper imaging regions without increasing MI or sacrificing frame rate. The MW-CEUS method emits multiple Hadamard-coded CEUS pulses in each transmission event (i.e., pulse-echo event). The received echo signals first undergo fundamental bandpass filtering (i.e., the filter is centered on the transmit frequency) to eliminate the microbubble's second-harmonic signals because they cannot be encoded by pulse inversion. The filtered signals are then Hadamard decoded and realigned in fast time to recover the signals as they would have been obtained using classic CEUS pulses, followed by designed recombination to cancel the linear tissue responses. The MW-CEUS method significantly improved contrast-to-tissue ratio and SNR of CEUS imaging by transmitting longer coded pulses. The image resolution was also preserved. The microbubble disruption ratio and motion artifacts in MW-CEUS were similar to those of classic CEUS imaging. In addition, the MW-CEUS sequence can be adapted to other transmission coding formats. These properties of MW-CEUS can potentially facilitate CEUS imaging for many clinical applications, especially assessing deep abdominal organs or the heart.
NASA Astrophysics Data System (ADS)
Dan, Luo; Ohya, Jun
2010-02-01
Recognizing hand gestures from the video sequence acquired by a dynamic camera could be a useful interface between humans and mobile robots. We develop a state based approach to extract and recognize hand gestures from moving camera images. We improved Human-Following Local Coordinate (HFLC) System, a very simple and stable method for extracting hand motion trajectories, which is obtained from the located human face, body part and hand blob changing factor. Condensation algorithm and PCA-based algorithm was performed to recognize extracted hand trajectories. In last research, this Condensation Algorithm based method only applied for one person's hand gestures. In this paper, we propose a principal component analysis (PCA) based approach to improve the recognition accuracy. For further improvement, temporal changes in the observed hand area changing factor are utilized as new image features to be stored in the database after being analyzed by PCA. Every hand gesture trajectory in the database is classified into either one hand gesture categories, two hand gesture categories, or temporal changes in hand blob changes. We demonstrate the effectiveness of the proposed method by conducting experiments on 45 kinds of sign language based Japanese and American Sign Language gestures obtained from 5 people. Our experimental recognition results show better performance is obtained by PCA based approach than the Condensation algorithm based method.
Novel imaging analysis system to measure the spatial dimension of engineered tissue construct.
Choi, Kyoung-Hwan; Yoo, Byung-Su; Park, So Ra; Choi, Byung Hyune; Min, Byoung-Hyun
2010-02-01
The measurement of the spatial dimensions of tissue-engineered constructs is very important for their clinical applications. In this study, a novel method to measure the volume of tissue-engineered constructs was developed using iterative mathematical computations. The method measures and analyzes three-dimensional (3D) parameters of a construct to estimate its actual volume using a sequence of software-based mathematical algorithms. The mathematical algorithm is composed of two stages: the shape extraction and the determination of volume. The shape extraction utilized 3D images of a construct: length, width, and thickness, captured by a high-quality camera with charge coupled device. The surface of the 3D images was then divided into fine sections. The area of each section was measured and combined to obtain the total surface area. The 3D volume of the target construct was then mathematically obtained using its total surface area and thickness. The accuracy of the measurement method was verified by comparing the results with those obtained from the hydrostatic weighing method (Korea Research Institute of Standards and Science [KRISS], Korea). The mean difference in volume between two methods was 0.0313 +/- 0.0003% (n = 5, P = 0.523) with no significant statistical difference. In conclusion, our image-based spatial measurement system is a reliable and easy method to obtain an accurate 3D volume of a tissue-engineered construct.
Non-Cartesian Balanced SSFP Pulse Sequences for Real-Time Cardiac MRI
Feng, Xue; Salerno, Michael; Kramer, Christopher M.; Meyer, Craig H.
2015-01-01
Purpose To develop a new spiral-in/out balanced steady-state free precession (bSSFP) pulse sequence for real-time cardiac MRI and compare it with radial and spiral-out techniques. Methods Non-Cartesian sampling strategies are efficient and robust to motion and thus have important advantages for real-time bSSFP cine imaging. This study describes a new symmetric spiral-in/out sequence with intrinsic gradient moment compensation and SSFP refocusing at TE=TR/2. In-vivo real-time cardiac imaging studies were performed to compare radial, spiral-out, and spiral-in/out bSSFP pulse sequences. Furthermore, phase-based fat-water separation taking advantage of the refocusing mechanism of the spiral-in/out bSSFP sequence was also studied. Results The image quality of the spiral-out and spiral-in/out bSSFP sequences was improved with off-resonance and k-space trajectory correction. The spiral-in/out bSSFP sequence had the highest SNR, CNR, and image quality ratings, with spiral-out bSSFP sequence second in each category and the radial bSSFP sequence third. The spiral-in/out bSSFP sequence provides separated fat and water images with no additional scan time. Conclusions In this work a new spiral-in/out bSSFP sequence was developed and tested. The superiority of spiral bSSFP sequences over the radial bSSFP sequence in terms of SNR and reduced artifacts was demonstrated in real-time MRI of cardiac function without image acceleration. PMID:25960254
Robust temporal alignment of multimodal cardiac sequences
NASA Astrophysics Data System (ADS)
Perissinotto, Andrea; Queirós, Sandro; Morais, Pedro; Baptista, Maria J.; Monaghan, Mark; Rodrigues, Nuno F.; D'hooge, Jan; Vilaça, João. L.; Barbosa, Daniel
2015-03-01
Given the dynamic nature of cardiac function, correct temporal alignment of pre-operative models and intraoperative images is crucial for augmented reality in cardiac image-guided interventions. As such, the current study focuses on the development of an image-based strategy for temporal alignment of multimodal cardiac imaging sequences, such as cine Magnetic Resonance Imaging (MRI) or 3D Ultrasound (US). First, we derive a robust, modality-independent signal from the image sequences, estimated by computing the normalized cross-correlation between each frame in the temporal sequence and the end-diastolic frame. This signal is a resembler for the left-ventricle (LV) volume curve over time, whose variation indicates different temporal landmarks of the cardiac cycle. We then perform the temporal alignment of these surrogate signals derived from MRI and US sequences of the same patient through Dynamic Time Warping (DTW), allowing to synchronize both sequences. The proposed framework was evaluated in 98 patients, which have undergone both 3D+t MRI and US scans. The end-systolic frame could be accurately estimated as the minimum of the image-derived surrogate signal, presenting a relative error of 1.6 +/- 1.9% and 4.0 +/- 4.2% for the MRI and US sequences, respectively, thus supporting its association with key temporal instants of the cardiac cycle. The use of DTW reduces the desynchronization of the cardiac events in MRI and US sequences, allowing to temporally align multimodal cardiac imaging sequences. Overall, a generic, fast and accurate method for temporal synchronization of MRI and US sequences of the same patient was introduced. This approach could be straightforwardly used for the correct temporal alignment of pre-operative MRI information and intra-operative US images.
Telegrafo, Michele; Rella, Leonarda; Stabile Ianora, Amato Antonio; Angelelli, Giuseppe; Moschetta, Marco
2015-10-01
To assess the role of STIR, T2-weighted TSE and DWIBS sequences for detecting and characterizing breast lesions and to compare unenhanced (UE)-MRI results with contrast-enhanced (CE)-MRI and histological findings, having the latter as the reference standard. Two hundred eighty consecutive patients (age range, 27-73 years; mean age±standard deviation (SD), 48.8±9.8years) underwent MR examination with a diagnostic protocol including STIR, T2-weighted TSE, THRIVE and DWIBS sequences. Two radiologists blinded to both dynamic sequences and histological findings evaluated in consensus STIR, T2-weighted TSE and DWIBS sequences and after two weeks CE-MRI images searching for breast lesions. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy for UE-MRI and CE-MRI were calculated. UE-MRI results were also compared with CE- MRI. UE-MRI sequences obtained sensitivity, specificity, diagnostic accuracy, PPV and NPV values of 94%, 79%, 86%, 79% and 94%, respectively. CE-MRI sequences obtained sensitivity, specificity, diagnostic accuracy, PPV and NPV values of 98%, 83%, 90%, 84% and 98%, respectively. No statistically significant difference between UE-MRI and CE-MRI was found. Breast UE-MRI could represent an accurate diagnostic tool and a valid alternative to CE-MRI for evaluating breast lesions. STIR and DWIBS sequences allow to detect breast lesions while T2-weighted TSE sequences and ADC values could be useful for lesion characterization. Copyright © 2015 Elsevier Inc. All rights reserved.
Stecco, A; Volpe, D; Volpe, N; Fornara, P; Castagna, A; Carriero, A
2008-12-01
The purpose of this study was to compare virtual MR arthroscopic reconstructions with arthroscopic images in patients affected by shoulder joint instability. MR arthrography (MR-AR) of the shoulder is now a well-assessed technique, based on the injection of a contrast medium solution, which fills the articular space and finds its way between the rotator cuff (RC) and the glenohumeral ligaments. In patients with glenolabral pathology, we used an additional sequence that provided virtual arthroscopy (VA) post-processed views, which completed the MR evaluation of shoulder pathology. We enrolled 36 patients, from whom MR arthrographic sequence data (SE T1w and GRE T1 FAT SAT) were obtained using a GE 0.5 T Signa--before any surgical or arthroscopic planned treatment; the protocol included a supplemental 3D, spoiled GE T1w positioned in the coronal plane. Dedicated software loaded on a work-station was used to elaborate VAs. Two radiologists evaluated, on a semiquantitative scale, the visibility of the principal anatomic structures, and then, in consensus, the pathology emerging from the VA images. These images were reconstructed in all patients, except one. The visualization of all anatomical structures was acceptable. VA and MR arthrographic images were fairly concordant with intraoperative findings. Although in our pilot study the VA findings did not change the surgical planning, the results showed concordance with the surgical or arthroscopic images.
KODAMA, Nao; KOSE, Katsumi
2016-01-01
Echo-planar imaging (EPI) sequences were developed for a 9.4 Tesla vertical standard bore (∼54 mm) superconducting magnet using an unshielded gradient coil optimized for live mice imaging and a data correction technique with reference scans. Because EPI requires fast switching of intense magnetic field gradients, eddy currents were induced in the surrounding metallic materials, e.g., the room temperature bore, and this produced serious artifacts on the EPI images. We solved the problem using an unshielded gradient coil set of proper size (outer diameter = 39 mm, inner diameter = 32 mm) with time control of the current rise and reference scans. The obtained EPI images of a phantom and a plant sample were almost artifact-free and demonstrated the promise of our approach. PMID:27001398
Appearance of low signal intensity lines in MRI of silicone breast implants.
Stroman, P W; Rolland, C; Dufour, M; Grondin, P; Guidoin, R G
1996-05-01
Magnetic resonance (MR) images of five explanted mammary prostheses were obtained with a 1.5 T GE Signa system using a conventional spin-echo pulse sequence, in order to investigate the low-intensity curvilinear lines which may be observed in MR images of silicone gel-filled breast implants under pressure from fibrous capsules. MR images showed ellipsoid prostheses, often containing multiple low-intensity curvilinear lines which in some cases presented an appearance very similar to that of the linguine sign. Upon opening the fibrous capsules, however, all of the prostheses were found to be completely intact demonstrating that the appearance of multiple low signal intensity curvilinear lines in MR images of silicone gel-filled prostheses is not necessarily a sign of prosthesis rupture. The MR image features which are specific to the linguine sign must be more precisely defined.
An Image Encryption Algorithm Utilizing Julia Sets and Hilbert Curves
Sun, Yuanyuan; Chen, Lina; Xu, Rudan; Kong, Ruiqing
2014-01-01
Image encryption is an important and effective technique to protect image security. In this paper, a novel image encryption algorithm combining Julia sets and Hilbert curves is proposed. The algorithm utilizes Julia sets’ parameters to generate a random sequence as the initial keys and gets the final encryption keys by scrambling the initial keys through the Hilbert curve. The final cipher image is obtained by modulo arithmetic and diffuse operation. In this method, it needs only a few parameters for the key generation, which greatly reduces the storage space. Moreover, because of the Julia sets’ properties, such as infiniteness and chaotic characteristics, the keys have high sensitivity even to a tiny perturbation. The experimental results indicate that the algorithm has large key space, good statistical property, high sensitivity for the keys, and effective resistance to the chosen-plaintext attack. PMID:24404181
Dynamic behaviour of coastal sedimentation in the Lions Gulf. [France
NASA Technical Reports Server (NTRS)
Guy, M. (Principal Investigator)
1974-01-01
The author has identified the following significant results. A number of ERTS-1 images covering this geographical zone were studied and compared with cartographic maps, air photographs, and thermal-IR images. Old and recent sediments leave traces in the landscape which are decoded by interpreting the shapes of the clear zones forming a network against the black background representing water and humid zones. Current sedimentation and its mechanism were investigated. It had been hoped that a regular sequence of images would make it possible to follow the dynamics of the Rhone and the coastal rivers in relation to meteorological conditions. In any event only a small number of images spread over a wide period of time were obtained, and a complete study was therefore impossible. However, in comparing some of the ERTS-1 images certain thermal-IR images and information on the flow of the Rhone provided some clarification of mechanisms associated with river dynamics.
The sequence measurement system of the IR camera
NASA Astrophysics Data System (ADS)
Geng, Ai-hui; Han, Hong-xia; Zhang, Hai-bo
2011-08-01
Currently, the IR cameras are broadly used in the optic-electronic tracking, optic-electronic measuring, fire control and optic-electronic countermeasure field, but the output sequence of the most presently applied IR cameras in the project is complex and the giving sequence documents from the leave factory are not detailed. Aiming at the requirement that the continuous image transmission and image procession system need the detailed sequence of the IR cameras, the sequence measurement system of the IR camera is designed, and the detailed sequence measurement way of the applied IR camera is carried out. The FPGA programming combined with the SignalTap online observation way has been applied in the sequence measurement system, and the precise sequence of the IR camera's output signal has been achieved, the detailed document of the IR camera has been supplied to the continuous image transmission system, image processing system and etc. The sequence measurement system of the IR camera includes CameraLink input interface part, LVDS input interface part, FPGA part, CameraLink output interface part and etc, thereinto the FPGA part is the key composed part in the sequence measurement system. Both the video signal of the CmaeraLink style and the video signal of LVDS style can be accepted by the sequence measurement system, and because the image processing card and image memory card always use the CameraLink interface as its input interface style, the output signal style of the sequence measurement system has been designed into CameraLink interface. The sequence measurement system does the IR camera's sequence measurement work and meanwhile does the interface transmission work to some cameras. Inside the FPGA of the sequence measurement system, the sequence measurement program, the pixel clock modification, the SignalTap file configuration and the SignalTap online observation has been integrated to realize the precise measurement to the IR camera. Te sequence measurement program written by the verilog language combining the SignalTap tool on line observation can count the line numbers in one frame, pixel numbers in one line and meanwhile account the line offset and row offset of the image. Aiming at the complex sequence of the IR camera's output signal, the sequence measurement system of the IR camera accurately measures the sequence of the project applied camera, supplies the detailed sequence document to the continuous system such as image processing system and image transmission system and gives out the concrete parameters of the fval, lval, pixclk, line offset and row offset. The experiment shows that the sequence measurement system of the IR camera can get the precise sequence measurement result and works stably, laying foundation for the continuous system.
The determination of high-resolution spatio-temporal glacier motion fields from time-lapse sequences
NASA Astrophysics Data System (ADS)
Schwalbe, Ellen; Maas, Hans-Gerd
2017-12-01
This paper presents a comprehensive method for the determination of glacier surface motion vector fields at high spatial and temporal resolution. These vector fields can be derived from monocular terrestrial camera image sequences and are a valuable data source for glaciological analysis of the motion behaviour of glaciers. The measurement concepts for the acquisition of image sequences are presented, and an automated monoscopic image sequence processing chain is developed. Motion vector fields can be derived with high precision by applying automatic subpixel-accuracy image matching techniques on grey value patterns in the image sequences. Well-established matching techniques have been adapted to the special characteristics of the glacier data in order to achieve high reliability in automatic image sequence processing, including the handling of moving shadows as well as motion effects induced by small instabilities in the camera set-up. Suitable geo-referencing techniques were developed to transform image measurements into a reference coordinate system.The result of monoscopic image sequence analysis is a dense raster of glacier surface point trajectories for each image sequence. Each translation vector component in these trajectories can be determined with an accuracy of a few centimetres for points at a distance of several kilometres from the camera. Extensive practical validation experiments have shown that motion vector and trajectory fields derived from monocular image sequences can be used for the determination of high-resolution velocity fields of glaciers, including the analysis of tidal effects on glacier movement, the investigation of a glacier's motion behaviour during calving events, the determination of the position and migration of the grounding line and the detection of subglacial channels during glacier lake outburst floods.
[The Role of Imaging in Central Nervous System Infections].
Yokota, Hajime; Tazoe, Jun; Yamada, Kei
2015-07-01
Many infections invade the central nervous system. Magnetic resonance imaging (MRI) is the main tool that is used to evaluate infectious lesions of the central nervous system. The useful sequences on MRI are dependent on the locations, such as intra-axial, extra-axial, and spinal cord. For intra-axial lesions, besides the fundamental sequences, including T1-weighted images, T2-weighted images, and fluid-attenuated inversion recovery (FLAIR) images, advanced sequences, such as diffusion-weighted imaging, diffusion tensor imaging, susceptibility-weighted imaging, and MR spectroscopy, can be applied. They are occasionally used as determinants for quick and correct diagnosis. For extra-axial lesions, understanding the differences among 2D-conventional T1-weighted images, 2D-fat-saturated T1-weighted images, 3D-Spin echo sequences, and 3D-Gradient echo sequence after the administration of gadolinium is required to avoid wrong interpretations. FLAIR plus gadolinium is a useful tool for revealing abnormal enhancement on the brain surface. For the spinal cord, the sequences are limited. Evaluating the distribution and time course of the spinal cord are essential for correct diagnoses. We summarize the role of imaging in central nervous system infections and show the pitfalls, key points, and latest information in them on clinical practices.
A state space based approach to localizing single molecules from multi-emitter images.
Vahid, Milad R; Chao, Jerry; Ward, E Sally; Ober, Raimund J
2017-01-28
Single molecule super-resolution microscopy is a powerful tool that enables imaging at sub-diffraction-limit resolution. In this technique, subsets of stochastically photoactivated fluorophores are imaged over a sequence of frames and accurately localized, and the estimated locations are used to construct a high-resolution image of the cellular structures labeled by the fluorophores. Available localization methods typically first determine the regions of the image that contain emitting fluorophores through a process referred to as detection. Then, the locations of the fluorophores are estimated accurately in an estimation step. We propose a novel localization method which combines the detection and estimation steps. The method models the given image as the frequency response of a multi-order system obtained with a balanced state space realization algorithm based on the singular value decomposition of a Hankel matrix, and determines the locations of intensity peaks in the image as the pole locations of the resulting system. The locations of the most significant peaks correspond to the locations of single molecules in the original image. Although the accuracy of the location estimates is reasonably good, we demonstrate that, by using the estimates as the initial conditions for a maximum likelihood estimator, refined estimates can be obtained that have a standard deviation close to the Cramér-Rao lower bound-based limit of accuracy. We validate our method using both simulated and experimental multi-emitter images.
Reduction of display artifacts by random sampling
NASA Technical Reports Server (NTRS)
Ahumada, A. J., Jr.; Nagel, D. C.; Watson, A. B.; Yellott, J. I., Jr.
1983-01-01
The application of random-sampling techniques to remove visible artifacts (such as flicker, moire patterns, and paradoxical motion) introduced in TV-type displays by discrete sequential scanning is discussed and demonstrated. Sequential-scanning artifacts are described; the window of visibility defined in spatiotemporal frequency space by Watson and Ahumada (1982 and 1983) and Watson et al. (1983) is explained; the basic principles of random sampling are reviewed and illustrated by the case of the human retina; and it is proposed that the sampling artifacts can be replaced by random noise, which can then be shifted to frequency-space regions outside the window of visibility. Vertical sequential, single-random-sequence, and continuously renewed random-sequence plotting displays generating 128 points at update rates up to 130 Hz are applied to images of stationary and moving lines, and best results are obtained with the single random sequence for the stationary lines and with the renewed random sequence for the moving lines.
Introducing the slime mold graph repository
NASA Astrophysics Data System (ADS)
Dirnberger, M.; Mehlhorn, K.; Mehlhorn, T.
2017-07-01
We introduce the slime mold graph repository or SMGR, a novel data collection promoting the visibility, accessibility and reuse of experimental data revolving around network-forming slime molds. By making data readily available to researchers across multiple disciplines, the SMGR promotes novel research as well as the reproduction of original results. While SMGR data may take various forms, we stress the importance of graph representations of slime mold networks due to their ease of handling and their large potential for reuse. Data added to the SMGR stands to gain impact beyond initial publications or even beyond its domain of origin. We initiate the SMGR with the comprehensive Kist Europe data set focusing on the slime mold Physarum polycephalum, which we obtained in the course of our original research. It contains sequences of images documenting growth and network formation of the organism under constant conditions. Suitable image sequences depicting the typical P. polycephalum network structures are used to compute sequences of graphs faithfully capturing them. Given such sequences, node identities are computed, tracking the development of nodes over time. Based on this information we demonstrate two out of many possible ways to begin exploring the data. The entire data set is well-documented, self-contained and ready for inspection at http://smgr.mpi-inf.mpg.de.
Denoising Algorithm for CFA Image Sensors Considering Inter-Channel Correlation.
Lee, Min Seok; Park, Sang Wook; Kang, Moon Gi
2017-05-28
In this paper, a spatio-spectral-temporal filter considering an inter-channel correlation is proposed for the denoising of a color filter array (CFA) sequence acquired by CCD/CMOS image sensors. Owing to the alternating under-sampled grid of the CFA pattern, the inter-channel correlation must be considered in the direct denoising process. The proposed filter is applied in the spatial, spectral, and temporal domain, considering the spatio-tempo-spectral correlation. First, nonlocal means (NLM) spatial filtering with patch-based difference (PBD) refinement is performed by considering both the intra-channel correlation and inter-channel correlation to overcome the spatial resolution degradation occurring with the alternating under-sampled pattern. Second, a motion-compensated temporal filter that employs inter-channel correlated motion estimation and compensation is proposed to remove the noise in the temporal domain. Then, a motion adaptive detection value controls the ratio of the spatial filter and the temporal filter. The denoised CFA sequence can thus be obtained without motion artifacts. Experimental results for both simulated and real CFA sequences are presented with visual and numerical comparisons to several state-of-the-art denoising methods combined with a demosaicing method. Experimental results confirmed that the proposed frameworks outperformed the other techniques in terms of the objective criteria and subjective visual perception in CFA sequences.
An Exploration into Diffusion Tensor Imaging in the Bovine Ocular Lens
Vaghefi, Ehsan; Donaldson, Paul J.
2013-01-01
We describe our development of the diffusion tensor imaging modality for the bovine ocular lens. Diffusion gradients were added to a spin-echo pulse sequence and the relevant parameters of the sequence were refined to achieve good diffusion weighting in the lens tissue, which demonstrated heterogeneous regions of diffusive signal attenuation. Decay curves for b-value (loosely summarizes the strength of diffusion weighting) and TE (determines the amount of magnetic resonance imaging-obtained signal) were used to estimate apparent diffusion coefficients (ADC) and T2 in different lens regions. The ADCs varied by over an order of magnitude and revealed diffusive anisotropy in the lens. Up to 30 diffusion gradient directions, and 8 signal acquisition averages, were applied to lenses in culture in order to improve maps of diffusion tensor eigenvalues, equivalent to ADC, across the lens. From these maps, fractional anisotropy maps were calculated and compared to known spatial distributions of anisotropic molecular fluxes in the lens. This comparison suggested new hypotheses and experiments to quantitatively assess models of circulation in the avascular lens. PMID:23459990
A real-time tracking system of infrared dim and small target based on FPGA and DSP
NASA Astrophysics Data System (ADS)
Rong, Sheng-hui; Zhou, Hui-xin; Qin, Han-lin; Wang, Bing-jian; Qian, Kun
2014-11-01
A core technology in the infrared warning system is the detection tracking of dim and small targets with complicated background. Consequently, running the detection algorithm on the hardware platform has highly practical value in the military field. In this paper, a real-time detection tracking system of infrared dim and small target which is used FPGA (Field Programmable Gate Array) and DSP (Digital Signal Processor) as the core was designed and the corresponding detection tracking algorithm and the signal flow is elaborated. At the first stage, the FPGA obtain the infrared image sequence from the sensor, then it suppresses background clutter by mathematical morphology method and enhances the target intensity by Laplacian of Gaussian operator. At the second stage, the DSP obtain both the original image and the filtered image form the FPGA via the video port. Then it segments the target from the filtered image by an adaptive threshold segmentation method and gets rid of false target by pipeline filter. Experimental results show that our system can achieve higher detection rate and lower false alarm rate.
Capacitive Deionization of High-Salinity Solutions
Sharma, Ketki; Gabitto, Jorge; Mayes, Richard T.; ...
2014-12-22
Desalination of high salinity solutions has been studied using a novel experimental technique and a theoretical model. Neutron imaging has been employed to visualize lithium ions in mesoporous carbon materials, which are used as electrodes in capacitive deionization for water desalination. Experiments were conducted with a flow-through capacitive deionization cell designed for neutron imaging and with lithium chloride ( 6LiCl) as the electrolyte. Sequences of neutron images have been obtained at a relatively high concentration of lithium chloride ( 6LiCl) solution to provide information on the transport of ions within the electrodes. A new model that computes the individual ionicmore » concentration profiles inside mesoporous carbon electrodes has been used to simulate the capacitive deionization process. Modifications have also been introduced into the simulation model to calculate results at high electrolyte concentrations. Experimental data and simulation results provide insight into why capacitive deionization is not effective for desalination of high ionic-strength solutions. The combination of experimental information, obtained through neutron imaging, with the theoretical model will help in the design of capacitive deionization devices, which can improve the process for high ionic-strength solutions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabouri, P; Sawant, A; Arai, T
Purpose: MRI has become an attractive tool for tumor motion management. Current MR-compatible phantoms are only capable of reproducing translational motion. This study describes the construction and validation of a more realistic, MRI-compatible lung phantom that is deformable internally as well as externally. We demonstrate a radiotherapy application of this phantom by validating the geometric accuracy of the open-source deformable image registration software NiftyReg (UCL, UK). Methods: The outer shell of a commercially-available dynamic breathing torso phantom was filled with natural latex foam with eleven water tubes. A rigid foam cut-out served as the diaphragm. A high-precision programmable, in-house, MRI-compatiblemore » motion platform was used to drive the diaphragm. The phantom was imaged on a 3T scanner (Philips, Ingenia). Twenty seven tumor traces previously recorded from lung cancer patients were programmed into the phantom and 2D+t image sequences were acquired using a sparse-sampling sequence k-t BLAST (accn=3, resolution=0.66×0.66×5mm3; acquisition-time=110ms/slice). The geometric fidelity of the MRI-derived trajectories was validated against those obtained via fluoroscopy using the on board kV imager on a Truebeam linac. NiftyReg was used to perform frame by frame deformable image registration. The location of each marker predicted by using NiftyReg was compared with the values calculated by intensity-based segmentation on each frame. Results: In all cases, MR trajectories were within 1 mm of corresponding fluoroscopy trajectories. RMSE between centroid positions obtained from segmentation with those obtained by NiftyReg varies from 0.1 to 0.21 mm in the SI direction and 0.08 to 0.13 mm in the LR direction showing the high accuracy of deformable registration. Conclusion: We have successfully designed and demonstrated a phantom that can accurately reproduce deformable motion under a variety of imaging modalities including MRI, CT and x-ray fluodoscopy, making it an invaluable research tool for validating novel motion management strategies. This work was partially supported through research funding from National Institutes of Health (R01CA169102).« less
Instant images of the human heart using a new, whole-body MR imaging system.
Rzedzian, R R; Pykett, I L
1987-08-01
An extremely rapid MR imaging technique is described, and its use on a new 2.0-T high-speed MR system is demonstrated. This implementation permits complete filling of the two-dimensional spatial-frequency domain (k-space) within an acquisition window of 26 msec. With this acquisition window placed under the spin-echo signal envelope generated by a 90-180 degree pulse pair, the image contrast is the same as that of a conventional spin-echo pulse sequence. Resultant proton images have a motion-independent voxel resolution of 0.08 cm3 and a signal-to-noise ratio for cardiac muscle of approximately 30:1 (for TE = 30 msec) with no signal averaging. The pulse sequence yields images that are chemical shift-resolved. The total proton density distribution is optionally presented with lipid and water signals displayed in two different colors. Cardiac function is observed by displaying multiple images, acquired at different times in successive cardiac periods, in a cyclic movie format. Such motion pictures are obtained within a single period of suspended respiration, thereby assuring freedom from respiratory related motion artifacts. As preliminary examples, we present MR images of the normal adult human heart that have total acquisition times of only 40 msec/image and that show the major cardiac anatomy. Frames from movie loops show contraction of cardiac chambers and left ventricular wall thickening. The extremely rapid acquisition time of this technique suggests that it may hold promise for the routine and cost-effective evaluation of cardiac anatomy and function.
NASA Astrophysics Data System (ADS)
Freidlin, R. Z.; Kakareka, J. W.; Pohida, T. J.; Komlosh, M. E.; Basser, P. J.
2012-08-01
In vivo MRI data can be corrupted by motion. Motion artifacts are particularly troublesome in Diffusion Weighted MRI (DWI), since the MR signal attenuation due to Brownian motion can be much less than the signal loss due to dephasing from other types of complex tissue motion, which can significantly degrade the estimation of self-diffusion coefficients, diffusion tensors, etc. This paper describes a snapshot DWI sequence, which utilizes a novel single-sided bipolar diffusion sensitizing gradient pulse within a spin echo sequence. The proposed method shortens the diffusion time by applying a single refocused bipolar diffusion gradient on one side of a refocusing RF pulse, instead of a set of diffusion sensitizing gradients, separated by a refocusing RF pulse, while reducing the impact of magnetic field inhomogeneity by using a spin echo sequence. A novel MRI phantom that can exhibit a range of complex motions was designed to demonstrate the robustness of the proposed DWI sequence.
Yiping, Lu; Hui, Liu; Kun, Zhou; Daoying, Geng; Bo, Yin
2014-07-01
The purpose of this study is to compare BLADE diffusion-weighted imaging (DWI) with single-shot echo planar imaging (EPI) DWI on the aspects of feasibility of imaging the sellar region and image quality. A total of 3 healthy volunteers and 52 patients with suspected lesions in the sellar region were included in this prospective intra-individual study. All exams were performed at 3.0T with a BLADE DWI sequence and a standard single-shot EP-DWI sequence. Phantom measurements were performed to measure the objective signal-to-noise ratio (SNR). Two radiologists rated the image quality according to the visualisation of the internal carotid arteries, optic chiasm, pituitary stalk, pituitary gland and lesion, and the overall image quality. One radiologist measured lesion sizes for detecting their relationship with the image score. The SNR in BLADE DWI sequence showed no significant difference from the single-shot EPI sequence (P>0.05). All of the assessed regions received higher scores in BLADE DWI images than single-shot EP-DWI. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Hänni, Mari; Edvardsson, H; Wågberg, M; Pettersson, K; Smedby, O
2004-01-01
The need for a quantitative method to assess atherosclerosis in vivo is well known. This study tested, in a familiar animal model of atherosclerosis, a combination of magnetic resonance imaging (MRI) and image processing. Six spontaneously hyperlipidemic (Watanabe) rabbits were examined with a knee coil in a 1.5-T clinical MRI scanner. Inflow angio (2DI) and proton density weighted (PDW) images were acquired to examine 10 cm of the aorta immediately cranial to the aortic bifurcation. Examination of the thoracic aorta was added in four animals. To identify the inner and outer boundary of the arterial wall, a dynamic contour algorithm (Gradient Vector Flow snakes) was applied to the 2DI and PDW images, respectively, after which the vessel wall area was calculated. The results were compared with histopathological measurements of intima and intima-media cross-sectional area. The correlation coefficient between wall area measurements with MRI snakes and intima-media area was 0.879 when computed individual-wise for abdominal aortas, 0.958 for thoracic aortas, and 0.834 when computed segment-wise. When the algorithm was applied to the PDW images only, somewhat lower correlations were obtained. The MRI yielded significantly higher values than histopathology, which excludes the adventitia. Magnetic resonance imaging, in combination with dynamic contours, may be a suitable technique for quantitative assessment of atherosclerosis in vivo. Using two sequences for the measurement seems to be superior to using a single sequence.
Computer measurement and representation of the heart in two and three dimensions
NASA Technical Reports Server (NTRS)
Rasmussen, D.
1976-01-01
Methods for the measurement and display by minicomputer of cardiac images obtained from fluoroscopy to permit an accurate assessment of functional changes are discussed. Heart contours and discrete points can be digitized automatically or manually, with the recorded image in a video, cine, or print format. As each frame is digitized it is assigned a code name identifying the data source, experiment, run, view, and frame, and the images are filed for future reference in any sequence. Two views taken at the same point in the heart cycle are used to compute the spatial position of the ventricle apex and the midpoint of the aortic valve. The remainder of the points on the chamber border are corrected for the linear distortion of the X-rays by projection to a plane containing the chord between the apex and the aortic valve center and oriented so that lines perpendicular to the chord are parallel to the image intensifier face. The image of the chamber surface is obtained by generating circular cross sections with diameters perpendicular to the major chord. The transformed two- and three-dimensional imagery can be displayed in either static or animated form using a graphics terminal.
Information Security Scheme Based on Computational Temporal Ghost Imaging.
Jiang, Shan; Wang, Yurong; Long, Tao; Meng, Xiangfeng; Yang, Xiulun; Shu, Rong; Sun, Baoqing
2017-08-09
An information security scheme based on computational temporal ghost imaging is proposed. A sequence of independent 2D random binary patterns are used as encryption key to multiply with the 1D data stream. The cipher text is obtained by summing the weighted encryption key. The decryption process can be realized by correlation measurement between the encrypted information and the encryption key. Due to the instinct high-level randomness of the key, the security of this method is greatly guaranteed. The feasibility of this method and robustness against both occlusion and additional noise attacks are discussed with simulation, respectively.
Chaturvedi, Abhishek; Gange, Chris; Sahin, Hakan; Chaturvedi, Apeksha
2018-01-01
Mediastinal and paracardiac lesions are usually first diagnosed on a chest radiograph or echocardiogram. Often, a computed tomography is obtained to further delineate these lesions. CT may be suboptimal for evaluation of enhancement characteristics and direct extension into the adjacent mediastinal structures. With its intrinsic superior soft-tissue characterization, magnetic resonance imaging (MRI) can better delineate these lesions, their internal tissue characteristics, and identify adhesion/invasion into adjacent structures. This pictorial essay provides a brief synopsis of the key MRI sequences and their utility in further characterizing mediastinal and paracardiac lesions. PMID:29619281
Chang, Hing-Chiu; Gaur, Pooja; Chou, Ying-hui; Chu, Mei-Lan; Chen, Nan-kuei
2014-01-01
Functional magnetic resonance imaging (fMRI) is a non-invasive and powerful imaging tool for detecting brain activities. The majority of fMRI studies are performed with single-shot echo-planar imaging (EPI) due to its high temporal resolution. Recent studies have demonstrated that, by increasing the spatial-resolution of fMRI, previously unidentified neuronal networks can be measured. However, it is challenging to improve the spatial resolution of conventional single-shot EPI based fMRI. Although multi-shot interleaved EPI is superior to single-shot EPI in terms of the improved spatial-resolution, reduced geometric distortions, and sharper point spread function (PSF), interleaved EPI based fMRI has two main limitations: 1) the imaging throughput is lower in interleaved EPI; 2) the magnitude and phase signal variations among EPI segments (due to physiological noise, subject motion, and B0 drift) are translated to significant in-plane aliasing artifact across the field of view (FOV). Here we report a method that integrates multiple approaches to address the technical limitations of interleaved EPI-based fMRI. Firstly, the multiplexed sensitivity-encoding (MUSE) post-processing algorithm is used to suppress in-plane aliasing artifacts resulting from time-domain signal instabilities during dynamic scans. Secondly, a simultaneous multi-band interleaved EPI pulse sequence, with a controlled aliasing scheme incorporated, is implemented to increase the imaging throughput. Thirdly, the MUSE algorithm is then generalized to accommodate fMRI data obtained with our multi-band interleaved EPI pulse sequence, suppressing both in-plane and through-plane aliasing artifacts. The blood-oxygenation-level-dependent (BOLD) signal detectability and the scan throughput can be significantly improved for interleaved EPI-based fMRI. Our human fMRI data obtained from 3 Tesla systems demonstrate the effectiveness of the developed methods. It is expected that future fMRI studies requiring high spatial-resolvability and fidelity will largely benefit from the reported techniques.
Pan, Chang-Jie; Qian, Nong; Wang, Tao; Tang, Xiao-Qiang; Xue, Yue-Jun
2013-02-01
The aim of this study was to evaluate the accuracy of using second generation dual-source CT (DSCT) to obtain high quality images and diagnostic performance and to reduce the radiation dose in adaptive prospective electrocardiography (ECG)-triggered sequence (CorAdSeq) CT coronary angiography (CTCA) without heart rate control. No prescan β-blockers were administered. Un-enhanced CT and CTCA with adaptive prospective CorAdSeq scanning without heart rate control were performed in 683 consecutive patients divided into two body mass index (BMI) groups: BMI <25 kg/m(2) (group A, n=412) and BMI ≥25 kg/m(2) (group B, n=271). The image quality and quantitative stenosis of all coronary segments with a diameter ≥1 mm were assessed. The mean heart rate (MHR), heart rate variability (HRV) and radiation dose values were recorded. In 426 cases, the diagnostic performance was evaluated using quantitative conventional coronary angiography as the reference standard. Diagnostic image quality was obtained in 98.5% of segments in group A and in 98.8% of segments in group B, with no significant differences between the groups. No correlations were observed between the image quality score and MHR or HRV (P=0.492, P=0.564, respectively). The effective radiation doses in groups A and B were 2.57±1.01 mSv and 6.36±1.88 mSv, respectively. The sensitivities and specificities of diagnosing coronary heart disease per patient were 99.6% and 97.8% in group A and 99.5% and 97.5% in group B, respectively (P>0.05). Adaptive prospective CorAdSeq scanning, without heart rate control, by second generation DSCT had a high image quality and diagnostic performance for coronary artery stenosis with lower radiation doses.
A high-order time-accurate interrogation method for time-resolved PIV
NASA Astrophysics Data System (ADS)
Lynch, Kyle; Scarano, Fulvio
2013-03-01
A novel method is introduced for increasing the accuracy and extending the dynamic range of time-resolved particle image velocimetry (PIV). The approach extends the concept of particle tracking velocimetry by multiple frames to the pattern tracking by cross-correlation analysis as employed in PIV. The working principle is based on tracking the patterned fluid element, within a chosen interrogation window, along its individual trajectory throughout an image sequence. In contrast to image-pair interrogation methods, the fluid trajectory correlation concept deals with variable velocity along curved trajectories and non-zero tangential acceleration during the observed time interval. As a result, the velocity magnitude and its direction are allowed to evolve in a nonlinear fashion along the fluid element trajectory. The continuum deformation (namely spatial derivatives of the velocity vector) is accounted for by adopting local image deformation. The principle offers important reductions of the measurement error based on three main points: by enlarging the temporal measurement interval, the relative error becomes reduced; secondly, the random and peak-locking errors are reduced by the use of least-squares polynomial fits to individual trajectories; finally, the introduction of high-order (nonlinear) fitting functions provides the basis for reducing the truncation error. Lastly, the instantaneous velocity is evaluated as the temporal derivative of the polynomial representation of the fluid parcel position in time. The principal features of this algorithm are compared with a single-pair iterative image deformation method. Synthetic image sequences are considered with steady flow (translation, shear and rotation) illustrating the increase of measurement precision. An experimental data set obtained by time-resolved PIV measurements of a circular jet is used to verify the robustness of the method on image sequences affected by camera noise and three-dimensional motions. In both cases, it is demonstrated that the measurement time interval can be significantly extended without compromising the correlation signal-to-noise ratio and with no increase of the truncation error. The increase of velocity dynamic range scales more than linearly with the number of frames included for the analysis, which supersedes by one order of magnitude the pair correlation by window deformation. The main factors influencing the performance of the method are discussed, namely the number of images composing the sequence and the polynomial order chosen to represent the motion throughout the trajectory.
Pena, S D; Barreto, G; Vago, A R; De Marco, L; Reinach, F C; Dias Neto, E; Simpson, A J
1994-01-01
Low-stringency single specific primer PCR (LSSP-PCR) is an extremely simple PCR-based technique that detects single or multiple mutations in gene-sized DNA fragments. A purified DNA fragment is subjected to PCR using high concentrations of a single specific oligonucleotide primer, large amounts of Taq polymerase, and a very low annealing temperature. Under these conditions the primer hybridizes specifically to its complementary region and nonspecifically to multiple sites within the fragment, in a sequence-dependent manner, producing a heterogeneous set of reaction products resolvable by electrophoresis. The complex banding pattern obtained is significantly altered by even a single-base change and thus constitutes a unique "gene signature." Therefore LSSP-PCR will have almost unlimited application in all fields of genetics and molecular medicine where rapid and sensitive detection of mutations and sequence variations is important. The usefulness of LSSP-PCR is illustrated by applications in the study of mutants of smooth muscle myosin light chain, analysis of a family with X-linked nephrogenic diabetes insipidus, and identity testing using human mitochondrial DNA. Images PMID:8127912
Wavelet Fusion for Concealed Object Detection Using Passive Millimeter Wave Sequence Images
NASA Astrophysics Data System (ADS)
Chen, Y.; Pang, L.; Liu, H.; Xu, X.
2018-04-01
PMMW imaging system can create interpretable imagery on the objects concealed under clothing, which gives the great advantage to the security check system. Paper addresses wavelet fusion to detect concealed objects using passive millimeter wave (PMMW) sequence images. According to PMMW real-time imager acquired image characteristics and storage methods firstly, using the sum of squared difference (SSD) as the image-related parameters to screen the sequence images. Secondly, the selected images are optimized using wavelet fusion algorithm. Finally, the concealed objects are detected by mean filter, threshold segmentation and edge detection. The experimental results show that this method improves the detection effect of concealed objects by selecting the most relevant images from PMMW sequence images and using wavelet fusion to enhance the information of the concealed objects. The method can be effectively applied to human body concealed object detection in millimeter wave video.
Deblurring sequential ocular images from multi-spectral imaging (MSI) via mutual information.
Lian, Jian; Zheng, Yuanjie; Jiao, Wanzhen; Yan, Fang; Zhao, Bojun
2018-06-01
Multi-spectral imaging (MSI) produces a sequence of spectral images to capture the inner structure of different species, which was recently introduced into ocular disease diagnosis. However, the quality of MSI images can be significantly degraded by motion blur caused by the inevitable saccades and exposure time required for maintaining a sufficiently high signal-to-noise ratio. This degradation may confuse an ophthalmologist, reduce the examination quality, or defeat various image analysis algorithms. We propose an early work specially on deblurring sequential MSI images, which is distinguished from many of the current image deblurring techniques by resolving the blur kernel simultaneously for all the images in an MSI sequence. It is accomplished by incorporating several a priori constraints including the sharpness of the latent clear image, the spatial and temporal smoothness of the blur kernel and the similarity between temporally-neighboring images in MSI sequence. Specifically, we model the similarity between MSI images with mutual information considering the different wavelengths used for capturing different images in MSI sequence. The optimization of the proposed approach is based on a multi-scale framework and stepwise optimization strategy. Experimental results from 22 MSI sequences validate that our approach outperforms several state-of-the-art techniques in natural image deblurring.
Heemskerk, Anneriet M; Strijkers, Gustav J; Vilanova, Anna; Drost, Maarten R; Nicolay, Klaas
2005-06-01
Muscle architecture is the main determinant of the mechanical behavior of skeletal muscles. This study explored the feasibility of diffusion tensor imaging (DTI) and fiber tracking to noninvasively determine the in vivo three-dimensional (3D) architecture of skeletal muscle in mouse hind leg. In six mice, the hindlimb was imaged with a diffusion-weighted (DW) 3D fast spin-echo (FSE) sequence followed by the acquisition of an exercise-induced, T(2)-enhanced data set. The data showed the expected fiber organization, from which the physiological cross-sectional area (PCSA), fiber length, and pennation angle for the tibialis anterior (TA) were obtained. The values of these parameters ranged from 5.4-9.1 mm(2), 5.8-7.8 mm, and 21-24 degrees , respectively, which is in agreement with values obtained previously with the use of invasive methods. This study shows that 3D DT acquisition and fiber tracking is feasible for the skeletal muscle of mice, and thus enables the quantitative determination of muscle architecture.
NASA Astrophysics Data System (ADS)
Yunxiao, CAO; Zhiqiang, WANG; Jinjun, WANG; Guofeng, LI
2018-05-01
Electrostatic separation has been extensively used in mineral processing, and has the potential to separate gangue minerals from raw talcum ore. As for electrostatic separation, the particle charging status is one of important influence factors. To describe the talcum particle charging status in a parallel plate electrostatic separator accurately, this paper proposes a modern images processing method. Based on the actual trajectories obtained from sequence images of particle movement and the analysis of physical forces applied on a charged particle, a numerical model is built, which could calculate the charge-to-mass ratios represented as the charging status of particle and simulate the particle trajectories. The simulated trajectories agree well with the experimental results obtained by images processing. In addition, chemical composition analysis is employed to reveal the relationship between ferrum gangue mineral content and charge-to-mass ratios. Research results show that the proposed method is effective for describing the particle charging status in electrostatic separation.
Inyushin, M Y; Volnova, A B; Lenkov, D N
2001-01-01
Eight mongrel white male rats were studied under urethane anesthesia, and neuron activity evoked by mechanical and/or electrical stimulation of the contralateral whiskers was recorded in the primary somatosensory cortex. Recordings were made using a digital USB chamber attached to the printer port of a Pentium 200MMX computer running standard programs. Optical images were obtained in the barrel-field zone using a differential signal, i.e., the difference signal for cortex images in control and experimental animals. The results obtained here showed that subtraction of averaged sequences of frames yielded images consisting of spots reflecting the probable position of activated groups of neurons. The most effective stimulation consisted of natural low-frequency stimulation of the whiskers. The method can be used for preliminary mapping of cortical zones, as it provides for rapid and reproducible testing of the activity of neuron ensembles over large areas of the cortex.
Photometric Calibrations of Gemini Images of NGC 6253
NASA Astrophysics Data System (ADS)
Pearce, Sean; Jeffery, Elizabeth
2017-01-01
We present preliminary results of our analysis of the metal-rich open cluster NGC 6253 using imaging data from GMOS on the Gemini-South Observatory. These data are part of a larger project to observe the effects of high metallicity on white dwarf cooling processes, especially the white dwarf cooling age, which have important implications on the processes of stellar evolution. To standardize the Gemini photometry, we have also secured imaging data of both the cluster and standard star fields using the 0.6-m SARA Observatory at CTIO. By analyzing and comparing the standard star fields of both the SARA data and the published Gemini zero-points of the standard star fields, we will calibrate the data obtained for the cluster. These calibrations are an important part of the project to obtain a standardized deep color-magnitude diagram to analyze the cluster. We present the process of verifying our standardization process. With a standardized CMD, we also present an analysis of the cluster's main sequence turn off age.
DNA lability induced by nimustine and ramustine in rat glioma cells.
Mineura, K; Fushimi, S; Itoh, Y; Kowada, M
1988-01-01
The DNA labile sites induced by two nitrosoureas, nimustine (ACNU) and ramustine (MCNU) synthesised in Japan, have been examined in highly reiterated DNA sequences of rat glioma cells. Reiterated fragments of 167 and 203 base pairs (bp), obtained after Hind III and Hae III restriction endonuclease digestion of rat glioma cells DNA, were used as target DNA sequences to determine the labile sites. In vitro reaction with ACNU and MCNU resulted in scission products corresponding to the locations of guanine. Subsequent piperidine hydrolysis produced more frequent breaks of the phosphodiester bonds at guanine positions, thus forming alkali-labile sites. Images PMID:3236017
Automated registration of multispectral MR vessel wall images of the carotid artery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klooster, R. van 't; Staring, M.; Reiber, J. H. C.
2013-12-15
Purpose: Atherosclerosis is the primary cause of heart disease and stroke. The detailed assessment of atherosclerosis of the carotid artery requires high resolution imaging of the vessel wall using multiple MR sequences with different contrast weightings. These images allow manual or automated classification of plaque components inside the vessel wall. Automated classification requires all sequences to be in alignment, which is hampered by patient motion. In clinical practice, correction of this motion is performed manually. Previous studies applied automated image registration to correct for motion using only nondeformable transformation models and did not perform a detailed quantitative validation. The purposemore » of this study is to develop an automated accurate 3D registration method, and to extensively validate this method on a large set of patient data. In addition, the authors quantified patient motion during scanning to investigate the need for correction. Methods: MR imaging studies (1.5T, dedicated carotid surface coil, Philips) from 55 TIA/stroke patients with ipsilateral <70% carotid artery stenosis were randomly selected from a larger cohort. Five MR pulse sequences were acquired around the carotid bifurcation, each containing nine transverse slices: T1-weighted turbo field echo, time of flight, T2-weighted turbo spin-echo, and pre- and postcontrast T1-weighted turbo spin-echo images (T1W TSE). The images were manually segmented by delineating the lumen contour in each vessel wall sequence and were manually aligned by applying throughplane and inplane translations to the images. To find the optimal automatic image registration method, different masks, choice of the fixed image, different types of the mutual information image similarity metric, and transformation models including 3D deformable transformation models, were evaluated. Evaluation of the automatic registration results was performed by comparing the lumen segmentations of the fixed image and moving image after registration. Results: The average required manual translation per image slice was 1.33 mm. Translations were larger as the patient was longer inside the scanner. Manual alignment took 187.5 s per patient resulting in a mean surface distance of 0.271 ± 0.127 mm. After minimal user interaction to generate the mask in the fixed image, the remaining sequences are automatically registered with a computation time of 52.0 s per patient. The optimal registration strategy used a circular mask with a diameter of 10 mm, a 3D B-spline transformation model with a control point spacing of 15 mm, mutual information as image similarity metric, and the precontrast T1W TSE as fixed image. A mean surface distance of 0.288 ± 0.128 mm was obtained with these settings, which is very close to the accuracy of the manual alignment procedure. The exact registration parameters and software were made publicly available. Conclusions: An automated registration method was developed and optimized, only needing two mouse clicks to mark the start and end point of the artery. Validation on a large group of patients showed that automated image registration has similar accuracy as the manual alignment procedure, substantially reducing the amount of user interactions needed, and is multiple times faster. In conclusion, the authors believe that the proposed automated method can replace the current manual procedure, thereby reducing the time to analyze the images.« less
Digital Sequences and a Time Reversal-Based Impact Region Imaging and Localization Method
Qiu, Lei; Yuan, Shenfang; Mei, Hanfei; Qian, Weifeng
2013-01-01
To reduce time and cost of damage inspection, on-line impact monitoring of aircraft composite structures is needed. A digital monitor based on an array of piezoelectric transducers (PZTs) is developed to record the impact region of impacts on-line. It is small in size, lightweight and has low power consumption, but there are two problems with the impact alarm region localization method of the digital monitor at the current stage. The first one is that the accuracy rate of the impact alarm region localization is low, especially on complex composite structures. The second problem is that the area of impact alarm region is large when a large scale structure is monitored and the number of PZTs is limited which increases the time and cost of damage inspections. To solve the two problems, an impact alarm region imaging and localization method based on digital sequences and time reversal is proposed. In this method, the frequency band of impact response signals is estimated based on the digital sequences first. Then, characteristic signals of impact response signals are constructed by sinusoidal modulation signals. Finally, the phase synthesis time reversal impact imaging method is adopted to obtain the impact region image. Depending on the image, an error ellipse is generated to give out the final impact alarm region. A validation experiment is implemented on a complex composite wing box of a real aircraft. The validation results show that the accuracy rate of impact alarm region localization is approximately 100%. The area of impact alarm region can be reduced and the number of PZTs needed to cover the same impact monitoring region is reduced by more than a half. PMID:24084123
Han, Chengzong; Pogwizd, Steven M; Yu, Long; Zhou, Zhaoye; Killingsworth, Cheryl R; He, Bin
2015-01-15
Noninvasive cardiac activation imaging of ventricular tachycardia (VT) is important in the clinical diagnosis and treatment of arrhythmias in heart failure (HF) patients. This study investigated the ability of the three-dimensional cardiac electrical imaging (3DCEI) technique for characterizing the activation patterns of spontaneously occurring and norepinephrine (NE)-induced VTs in a newly developed arrhythmogenic canine model of nonischemic HF. HF was induced by aortic insufficiency followed by aortic constriction in three canines. Up to 128 body-surface ECGs were measured simultaneously with bipolar recordings from up to 232 intramural sites in a closed-chest condition. Data analysis was performed on the spontaneously occurring VTs (n=4) and the NE-induced nonsustained VTs (n=8) in HF canines. Both spontaneously occurring and NE-induced nonsustained VTs initiated by a focal mechanism primarily from the subendocardium, but occasionally from the subepicardium of left ventricle. Most focal initiation sites were located at apex, right ventricular outflow tract, and left lateral wall. The NE-induced VTs were longer, more rapid, and had more focal sites than the spontaneously occurring VTs. Good correlation was obtained between imaged activation sequence and direct measurements (averaged correlation coefficient of ∼0.70 over 135 VT beats). The reconstructed initiation sites were ∼10 mm from measured initiation sites, suggesting good localization in such a large animal model with cardiac size similar to a human. Both spontaneously occurring and NE-induced nonsustained VTs had focal initiation in this canine model of nonischemic HF. 3DCEI is feasible to image the activation sequence and help define arrhythmia mechanism of nonischemic HF-associated VTs. Copyright © 2015 the American Physiological Society.
He, Yugui; Feng, Jiwen; Zhang, Zhi; Wang, Chao; Wang, Dong; Chen, Fang; Liu, Maili; Liu, Chaoyang
2015-08-01
High sensitivity, high data rates, fast pulses, and accurate synchronization all represent challenges for modern nuclear magnetic resonance spectrometers, which make any expansion or adaptation of these devices to new techniques and experiments difficult. Here, we present a Peripheral Component Interconnect Express (PCIe)-based highly integrated distributed digital architecture pulsed spectrometer that is implemented with electron and nucleus double resonances and is scalable specifically for broad dynamic nuclear polarization (DNP) enhancement applications, including DNP-magnetic resonance spectroscopy/imaging (DNP-MRS/MRI). The distributed modularized architecture can implement more transceiver channels flexibly to meet a variety of MRS/MRI instrumentation needs. The proposed PCIe bus with high data rates can significantly improve data transmission efficiency and communication reliability and allow precise control of pulse sequences. An external high speed double data rate memory chip is used to store acquired data and pulse sequence elements, which greatly accelerates the execution of the pulse sequence, reduces the TR (time of repetition) interval, and improves the accuracy of TR in imaging sequences. Using clock phase-shift technology, we can produce digital pulses accurately with high timing resolution of 1 ns and narrow widths of 4 ns to control the microwave pulses required by pulsed DNP and ensure overall system synchronization. The proposed spectrometer is proved to be both feasible and reliable by observation of a maximum signal enhancement factor of approximately -170 for (1)H, and a high quality water image was successfully obtained by DNP-enhanced spin-echo (1)H MRI at 0.35 T.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yugui; Liu, Chaoyang, E-mail: chyliu@wipm.ac.cn; State Key Laboratory of Magnet Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
2015-08-15
High sensitivity, high data rates, fast pulses, and accurate synchronization all represent challenges for modern nuclear magnetic resonance spectrometers, which make any expansion or adaptation of these devices to new techniques and experiments difficult. Here, we present a Peripheral Component Interconnect Express (PCIe)-based highly integrated distributed digital architecture pulsed spectrometer that is implemented with electron and nucleus double resonances and is scalable specifically for broad dynamic nuclear polarization (DNP) enhancement applications, including DNP-magnetic resonance spectroscopy/imaging (DNP-MRS/MRI). The distributed modularized architecture can implement more transceiver channels flexibly to meet a variety of MRS/MRI instrumentation needs. The proposed PCIe bus with highmore » data rates can significantly improve data transmission efficiency and communication reliability and allow precise control of pulse sequences. An external high speed double data rate memory chip is used to store acquired data and pulse sequence elements, which greatly accelerates the execution of the pulse sequence, reduces the TR (time of repetition) interval, and improves the accuracy of TR in imaging sequences. Using clock phase-shift technology, we can produce digital pulses accurately with high timing resolution of 1 ns and narrow widths of 4 ns to control the microwave pulses required by pulsed DNP and ensure overall system synchronization. The proposed spectrometer is proved to be both feasible and reliable by observation of a maximum signal enhancement factor of approximately −170 for {sup 1}H, and a high quality water image was successfully obtained by DNP-enhanced spin-echo {sup 1}H MRI at 0.35 T.« less
Moschetta, Marco; Telegrafo, Michele; Rella, Leonarda; Stabile Ianora, Amato Antonio; Angelelli, Giuseppe
2014-12-01
Diffusion-weighted imaging with background body signal suppression (DWIBS) provides both qualitative and quantitative imaging of breast lesions and are usually performed before contrast material injection (CMI). This study aims to assess whether the administration of gadolinium significantly affects DWIBS imaging. 200 patients were prospectively evaluated by MRI with STIR, TSE-T2, pre-CMI DWIBS, contrast enhanced THRIVE-T1 and post-CMI DWIBS sequences. Pre and post-CMI DWIBS were analyzed searching for the presence of breast lesions and calculating the ADC value. ADC values of ≤1.44×10(-3) mm(2)/s were considered suspicious for malignancy. This analysis was then compared with the histological findings. Sensitivity, specificity, diagnostic accuracy (DA), positive predictive value (PPV) and negative (NPV) were calculated for both sequences and represented by ROC analysis. Pre and post-CMI ADC values were compared by using the paired t test. In 150/200 (59%) patients, pre and post-CMI DWIBS indicated the presence of breast lesions, 53 (35%) with ADC values of >1.44×10(-3) mm(2)/s and 97 (65%) with ADC≤1.44×10(-3) mm(2)/s. Pre-CMI and post-DWIBS sequences obtained the same sensitivity, specificity, DA, PPV and NPV values of 97%, 83%, 89%, 79% and 98%. The mean ADC value of benign lesions was 1.831±0.18×10(-3) mm(2)/s before and 1.828±0.18×10(-3) mm(2)/s after CMI. The mean ADC value of the malignant lesions was 1.146±0.16×10(-3) mm(2)/s before and 1.144±0.16×10(-3) mm(2)/s after CMI. No significant difference was found between pre and post CMI ADC values (p>0.05). DWIBS imaging is not influenced by CMI. Breast MR protocol could be modified by placing DWIBS after dynamic contrast enhanced sequences in order to maximize patient cooperation. Copyright © 2014 Elsevier Inc. All rights reserved.
Assessment of a smartphone-based camera for fundus imaging in animals.
Balland, Olivier; Russo, Andrea; Isard, Pierre-François; Mathieson, Iona; Semeraro, Francesco; Dulaurent, Thomas
2017-01-01
To assess the use of an optical device (D-EYE; Si14 S.p.A.) attached to a modern smartphone (iPhone 5; Apple Inc.) for imaging the fundus in small animals. Five dogs, five cats, and five rabbits with clear media were imaged using a prototype of the D-EYE. The optical device was composed of lenses, polarizing filters, a beam splitter, a diaphragm, and mirrors, attached to a smartphone via a metal shell. Images were obtained 20 min after pupil dilation with topical 0.5% tropicamide in a darkened room, to ensure maximum pupillary dilation. Focus was set to the infinite when the autofocus was overwhelmed. Light intensity was adapted to each animal via the application (minimum light intensity for imaging the tapetal region, maximum light intensity for imaging the nontapetal region). Both still images and video sequences were recorded for each animal. Posterior segment structures were visible in all animals: optic nerve head, tapetum lucidum (when present), nontapetal region, retinal vessels, and choroidal vessels (when the retinal pigment epithelium and the choroidal pigmentation were discreet). Focal light artifacts were common when photographing the tapetum lucidum. Recording videos allowed the visualization of dynamic phenomena. The D-EYE assessed appears to be an easy means of obtaining images of the posterior segment structures. © 2016 American College of Veterinary Ophthalmologists.
Controlling the Display of Capsule Endoscopy Video for Diagnostic Assistance
NASA Astrophysics Data System (ADS)
Vu, Hai; Echigo, Tomio; Sagawa, Ryusuke; Yagi, Keiko; Shiba, Masatsugu; Higuchi, Kazuhide; Arakawa, Tetsuo; Yagi, Yasushi
Interpretations by physicians of capsule endoscopy image sequences captured over periods of 7-8 hours usually require 45 to 120 minutes of extreme concentration. This paper describes a novel method to reduce diagnostic time by automatically controlling the display frame rate. Unlike existing techniques, this method displays original images with no skipping of frames. The sequence can be played at a high frame rate in stable regions to save time. Then, in regions with rough changes, the speed is decreased to more conveniently ascertain suspicious findings. To realize such a system, cue information about the disparity of consecutive frames, including color similarity and motion displacements is extracted. A decision tree utilizes these features to classify the states of the image acquisitions. For each classified state, the delay time between frames is calculated by parametric functions. A scheme selecting the optimal parameters set determined from assessments by physicians is deployed. Experiments involved clinical evaluations to investigate the effectiveness of this method compared to a standard-view using an existing system. Results from logged action based analysis show that compared with an existing system the proposed method reduced diagnostic time to around 32.5 ± minutes per full sequence while the number of abnormalities found was similar. As well, physicians needed less effort because of the systems efficient operability. The results of the evaluations should convince physicians that they can safely use this method and obtain reduced diagnostic times.
Pande, Paritosh; Shelton, Ryan L; Monroy, Guillermo L; Nolan, Ryan M; Boppart, Stephen A
2016-10-01
The thickness of the human tympanic membrane (TM) is known to vary considerably across different regions of the TM. Quantitative determination of the thickness distribution and mapping of the TM is of significant importance in hearing research, particularly in mathematical modeling of middle-ear dynamics. Change in TM thickness is also associated with several middle-ear pathologies. Determination of the TM thickness distribution could therefore also enable a more comprehensive diagnosis of various otologic diseases. Despite its importance, very limited data on human TM thickness distribution, obtained almost exclusively from ex vivo samples, are available in the literature. In this study, the thickness distribution for the in vivo human TM is reported for the first time. A hand-held imaging system, which combines a low coherence interferometry (LCI) technique for single-point thickness measurement, with video-otoscopy for recording the image of the TM, was used to collect the data used in this study. Data were acquired by pointing the imaging probe over different regions of the TM, while simultaneously recording the LCI and concomitant TM surface video image data from an average of 500 locations on the TM. TM thickness distribution maps were obtained by mapping the LCI imaging sites onto an anatomically accurate wide-field image of the TM, which was generated by mosaicking the sequence of multiple small field-of-view video-otoscopy images. Descriptive statistics of the thickness measurements obtained from the different regions of the TM are presented, and the general thickness distribution trends are discussed.
CT Image Sequence Restoration Based on Sparse and Low-Rank Decomposition
Gou, Shuiping; Wang, Yueyue; Wang, Zhilong; Peng, Yong; Zhang, Xiaopeng; Jiao, Licheng; Wu, Jianshe
2013-01-01
Blurry organ boundaries and soft tissue structures present a major challenge in biomedical image restoration. In this paper, we propose a low-rank decomposition-based method for computed tomography (CT) image sequence restoration, where the CT image sequence is decomposed into a sparse component and a low-rank component. A new point spread function of Weiner filter is employed to efficiently remove blur in the sparse component; a wiener filtering with the Gaussian PSF is used to recover the average image of the low-rank component. And then we get the recovered CT image sequence by combining the recovery low-rank image with all recovery sparse image sequence. Our method achieves restoration results with higher contrast, sharper organ boundaries and richer soft tissue structure information, compared with existing CT image restoration methods. The robustness of our method was assessed with numerical experiments using three different low-rank models: Robust Principle Component Analysis (RPCA), Linearized Alternating Direction Method with Adaptive Penalty (LADMAP) and Go Decomposition (GoDec). Experimental results demonstrated that the RPCA model was the most suitable for the small noise CT images whereas the GoDec model was the best for the large noisy CT images. PMID:24023764
Dyvorne, Hadrien A.; Galea, Nicola; Nevers, Thomas; Fiel, M. Isabel; Carpenter, David; Wong, Edmund; Orton, Matthew; de Oliveira, Andre; Feiweier, Thorsten; Vachon, Marie-Louise; Babb, James S.
2013-01-01
Purpose: To optimize intravoxel incoherent motion (IVIM) diffusion-weighted (DW) imaging by estimating the effects of diffusion gradient polarity and breathing acquisition scheme on image quality, signal-to-noise ratio (SNR), IVIM parameters, and parameter reproducibility, as well as to investigate the potential of IVIM in the detection of hepatic fibrosis. Materials and Methods: In this institutional review board–approved prospective study, 20 subjects (seven healthy volunteers, 13 patients with hepatitis C virus infection; 14 men, six women; mean age, 46 years) underwent IVIM DW imaging with four sequences: (a) respiratory-triggered (RT) bipolar (BP) sequence, (b) RT monopolar (MP) sequence, (c) free-breathing (FB) BP sequence, and (d) FB MP sequence. Image quality scores were assessed for all sequences. A biexponential analysis with the Bayesian method yielded true diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (PF) in liver parenchyma. Mixed-model analysis of variance was used to compare image quality, SNR, IVIM parameters, and interexamination variability between the four sequences, as well as the ability to differentiate areas of liver fibrosis from normal liver tissue. Results: Image quality with RT sequences was superior to that with FB acquisitions (P = .02) and was not affected by gradient polarity. SNR did not vary significantly between sequences. IVIM parameter reproducibility was moderate to excellent for PF and D, while it was less reproducible for D*. PF and D were both significantly lower in patients with hepatitis C virus than in healthy volunteers with the RT BP sequence (PF = 13.5% ± 5.3 [standard deviation] vs 9.2% ± 2.5, P = .038; D = [1.16 ± 0.07] × 10−3 mm2/sec vs [1.03 ± 0.1] × 10−3 mm2/sec, P = .006). Conclusion: The RT BP DW imaging sequence had the best results in terms of image quality, reproducibility, and ability to discriminate between healthy and fibrotic liver with biexponential fitting. © RSNA, 2012 PMID:23220895
Patronas, Nicholas; Bulakbasi, Nail; Stratakis, Constantine A; Lafferty, Antony; Oldfield, Edward H; Doppman, John; Nieman, Lynnette K
2003-04-01
Recent studies show that the standard T1-weighted spin echo (SE) technique for magnetic resonance imaging (MRI) fails to identify 40% of corticotrope adenomas. We hypothesized that the superior soft tissue contrast and thinner sections obtained with spoiled gradient recalled acquisition in the steady state (SPGR) would improve tumor detection. We compared the performance of SE and SPGR MRI in 50 patients (age, 7-67 yr) with surgically confirmed corticotrope adenoma. Coronal SE and SPGR MR images were obtained before and after administration of gadolinium contrast, using a 1.5 T scanner. SE scans were obtained over 5.1 min (12-cm field of view; interleaved sections, 3 mm). SPGR scans were obtained over 3.45 min (12- or 18-cm field of view, contiguous 1- or 2-mm slices). The MRI interpretations of two radiologists were compared with findings at surgical resection. Compared with SE for detection of tumor, SPGR had superior sensitivity (80%; confidence interval, 68-91; vs. 49%; confidence interval, 34-63%), but a higher false positive rate (2% vs. 4%). We recommend the addition of SPGR to SE sequences using pituitary-specific technical parameters to improve the MRI detection of ACTH-secreting pituitary tumors.
High-throughput physical mapping of chromosomes using automated in situ hybridization.
George, Phillip; Sharakhova, Maria V; Sharakhov, Igor V
2012-06-28
Projects to obtain whole-genome sequences for 10,000 vertebrate species and for 5,000 insect and related arthropod species are expected to take place over the next 5 years. For example, the sequencing of the genomes for 15 malaria mosquitospecies is currently being done using an Illumina platform. This Anopheles species cluster includes both vectors and non-vectors of malaria. When the genome assemblies become available, researchers will have the unique opportunity to perform comparative analysis for inferring evolutionary changes relevant to vector ability. However, it has proven difficult to use next-generation sequencing reads to generate high-quality de novo genome assemblies. Moreover, the existing genome assemblies for Anopheles gambiae, although obtained using the Sanger method, are gapped or fragmented. Success of comparative genomic analyses will be limited if researchers deal with numerous sequencing contigs, rather than with chromosome-based genome assemblies. Fragmented, unmapped sequences create problems for genomic analyses because: (i) unidentified gaps cause incorrect or incomplete annotation of genomic sequences; (ii) unmapped sequences lead to confusion between paralogous genes and genes from different haplotypes; and (iii) the lack of chromosome assignment and orientation of the sequencing contigs does not allow for reconstructing rearrangement phylogeny and studying chromosome evolution. Developing high-resolution physical maps for species with newly sequenced genomes is a timely and cost-effective investment that will facilitate genome annotation, evolutionary analysis, and re-sequencing of individual genomes from natural populations. Here, we present innovative approaches to chromosome preparation, fluorescent in situ hybridization (FISH), and imaging that facilitate rapid development of physical maps. Using An. gambiae as an example, we demonstrate that the development of physical chromosome maps can potentially improve genome assemblies and, thus, the quality of genomic analyses. First, we use a high-pressure method to prepare polytene chromosome spreads. This method, originally developed for Drosophila, allows the user to visualize more details on chromosomes than the regular squashing technique. Second, a fully automated, front-end system for FISH is used for high-throughput physical genome mapping. The automated slide staining system runs multiple assays simultaneously and dramatically reduces hands-on time. Third, an automatic fluorescent imaging system, which includes a motorized slide stage, automatically scans and photographs labeled chromosomes after FISH. This system is especially useful for identifying and visualizing multiple chromosomal plates on the same slide. In addition, the scanning process captures a more uniform FISH result. Overall, the automated high-throughput physical mapping protocol is more efficient than a standard manual protocol.
Improving whole brain structural MRI at 4.7 Tesla using 4 irregularly shaped receiver coils.
Carmichael, David W; Thomas, David L; De Vita, Enrico; Fernández-Seara, Maria A; Chhina, Navjeet; Cooper, Mark; Sunderland, Colin; Randell, Chris; Turner, Robert; Ordidge, Roger J
2006-09-01
Both higher magnetic field strengths (> or =3 T) and multiple receiver "array coils" can provide increased signal-to-noise ratio (SNR) for MRI. This increase in SNR can be used to obtain images with higher resolution, enabling better visualisation of structures within the human brain. However, high field strength systems also suffer from increased B(1) non-uniformity and increased power deposition, reaching specific absorption rate (SAR) limits more quickly. For these problems to be mitigated, a careful choice of both the pulse sequence design and transmit RF coil is required. This paper describes the use of a prototype array coil consisting of 4 irregularly shaped coils within a standard configuration for neuroimaging at 4.7 T (a head transmit/receive volume coil to minimise SAR and a head gradient insert for maximum gradient performance). With a fast spin echo (FSE) pulse sequence optimised for 4.7 T, this provides dramatically increased quality and resolution over a large brain volume. Using the array coil, a SNR improvement relative to the volume coil of 1-1.5 times in central brain areas and 2-3 times in cortical regions was obtained. Array coil images with a resolution of 352 x 352 x 2000 mum had a SNR of 16.0 to 26.2 in central regions and 19.9 to 34.8 in cortical areas. Such images easily demonstrate cortical myeloarchitecture, while still covering most of the brain in a approximately 12 min scan.
Simultaneous ERP and fMRI of the auditory cortex in a passive oddball paradigm.
Liebenthal, Einat; Ellingson, Michael L; Spanaki, Marianna V; Prieto, Thomas E; Ropella, Kristina M; Binder, Jeffrey R
2003-08-01
Infrequent occurrences of a deviant sound within a sequence of repetitive standard sounds elicit the automatic mismatch negativity (MMN) event-related potential (ERP). The main MMN generators are located in the superior temporal cortex, but their number, precise location, and temporal sequence of activation remain unclear. In this study, ERP and functional magnetic resonance imaging (fMRI) data were obtained simultaneously during a passive frequency oddball paradigm. There were three conditions, a STANDARD, a SMALL deviant, and a LARGE deviant. A clustered image acquisition technique was applied to prevent contamination of the fMRI data by the acoustic noise of the scanner and to limit contamination of the electroencephalogram (EEG) by the gradient-switching artifact. The ERP data were used to identify areas in which the blood oxygenation (BOLD) signal varied with the magnitude of the negativity in each condition. A significant ERP MMN was obtained, with larger peaks to LARGE deviants and with frontocentral scalp distribution, consistent with the MMN reported outside the magnetic field. This result validates the experimental procedures for simultaneous ERP/fMRI of the auditory cortex. Main foci of increased BOLD signal were observed in the right superior temporal gyrus [STG; Brodmann area (BA) 22] and right superior temporal plane (STP; BA 41 and 42). The imaging results provide new information supporting the idea that generators in the right lateral aspect of the STG are implicated in processes of frequency deviant detection, in addition to generators in the right and left STP.
Lai, S; Wang, J; Jahng, G H
2001-01-01
A new pulse sequence, dubbed FAIR exempting separate T(1) measurement (FAIREST) in which a slice-selective saturation recovery acquisition is added in addition to the standard FAIR (flow-sensitive alternating inversion recovery) scheme, was developed for quantitative perfusion imaging and multi-contrast fMRI. The technique allows for clean separation between and thus simultaneous assessment of BOLD and perfusion effects, whereas quantitative cerebral blood flow (CBF) and tissue T(1) values are monitored online. Online CBF maps were obtained using the FAIREST technique and the measured CBF values were consistent with the off-line CBF maps obtained from using the FAIR technique in combination with a separate sequence for T(1) measurement. Finger tapping activation studies were carried out to demonstrate the applicability of the FAIREST technique in a typical fMRI setting for multi-contrast fMRI. The relative CBF and BOLD changes induced by finger-tapping were 75.1 +/- 18.3 and 1.8 +/- 0.4%, respectively, and the relative oxygen consumption rate change was 2.5 +/- 7.7%. The results from correlation of the T(1) maps with the activation images on a pixel-by-pixel basis show that the mean T(1) value of the CBF activation pixels is close to the T(1) of gray matter while the mean T(1) value of the BOLD activation pixels is close to the T(1) range of blood and cerebrospinal fluid. Copyright 2001 John Wiley & Sons, Ltd.
Cardiac phase detection in intravascular ultrasound images
NASA Astrophysics Data System (ADS)
Matsumoto, Monica M. S.; Lemos, Pedro Alves; Yoneyama, Takashi; Furuie, Sergio Shiguemi
2008-03-01
Image gating is related to image modalities that involve quasi-periodic moving organs. Therefore, during intravascular ultrasound (IVUS) examination, there is cardiac movement interference. In this paper, we aim to obtain IVUS gated images based on the images themselves. This would allow the reconstruction of 3D coronaries with temporal accuracy for any cardiac phase, which is an advantage over the ECG-gated acquisition that shows a single one. It is also important for retrospective studies, as in existing IVUS databases there are no additional reference signals (ECG). From the images, we calculated signals based on average intensity (AI), and, from consecutive frames, average intensity difference (AID), cross-correlation coefficient (CC) and mutual information (MI). The process includes a wavelet-based filter step and ascendant zero-cross detection in order to obtain the phase information. Firstly, we tested 90 simulated sequences with 1025 frames each. Our method was able to achieve more than 95.0% of true positives and less than 2.3% of false positives ratio, for all signals. Afterwards, we tested in a real examination, with 897 frames and ECG as gold-standard. We achieved 97.4% of true positives (CC and MI), and 2.5% of false positives. For future works, methodology should be tested in wider range of IVUS examinations.
MRI Artifacts of a Metallic Stent Derived From a Human Aorta Specimen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soto, M. E.; Flores, P.; Marrufo, O.
Magnetic resonance imaging has proved to be a useful technique to get images of the whole body. However, the presence of ferromagnetic material can cause susceptibility artifacts, which result from microscopic gradients that occur near the boundaries between areas displaying different magnetic susceptibility. These gradients cause dephasing of spins and frequency shifts in the surrounding tissues. Intravoxel dephasing and spatial mis-registration can degrade image quality. An aorta with a metallic stent was preserved in formaldehyde at 10% inside acrylic cylinders and used to obtain MR images. We tested pulsed spin echo and gradient echo sequences to improve image quality. Allmore » experiments were performed on a 7T/21 cm Varian system (Varian, Inc, Palo Alto, CA) equipped with Direct Drive technology and a 16-rung birdcage coil transceiver. The presence of metallic stents produces a lack of signal that might give falsely reassuring appearances within the vessel lumen.« less
Super resolution for astronomical observations
NASA Astrophysics Data System (ADS)
Li, Zhan; Peng, Qingyu; Bhanu, Bir; Zhang, Qingfeng; He, Haifeng
2018-05-01
In order to obtain detailed information from multiple telescope observations a general blind super-resolution (SR) reconstruction approach for astronomical images is proposed in this paper. A pixel-reliability-based SR reconstruction algorithm is described and implemented, where the developed process incorporates flat field correction, automatic star searching and centering, iterative star matching, and sub-pixel image registration. Images captured by the 1-m telescope at Yunnan Observatory are used to test the proposed technique. The results of these experiments indicate that, following SR reconstruction, faint stars are more distinct, bright stars have sharper profiles, and the backgrounds have higher details; thus these results benefit from the high-precision star centering and image registration provided by the developed method. Application of the proposed approach not only provides more opportunities for new discoveries from astronomical image sequences, but will also contribute to enhancing the capabilities of most spatial or ground-based telescopes.
Juno's Eighth Close Approach to Jupiter
2017-09-08
This series of enhanced-color images shows Jupiter up close and personal, as NASA's Juno spacecraft performed its eighth flyby of the gas giant planet. The images were obtained by JunoCam. From left to right, the sequence of images taken on Sept. 1, 2017 from 3:03 p.m. to 3:11 p.m. PDT (6:03 p.m. to 6:11 p.m. EDT). At the times the images were taken, the spacecraft ranged from 7,545 to 14,234 miles (12,143 to 22,908 kilometers) from the tops of the clouds of the planet at a latitude range of -28.5406 to -44.4912 degrees. Points of Interest include "Dalmatian Zone/Eye of Odin," "Dark Eye/STB Ghost East End," "Coolest Place on Jupiter," and "Renslow/Hurricane Rachel." The final image in the series on the right shows Jupiter's south pole coming into view. https://photojournal.jpl.nasa.gov/catalog/PIA21780
Atherosclerosis imaging using 3D black blood TSE SPACE vs 2D TSE
Wong, Stephanie K; Mobolaji-Iawal, Motunrayo; Arama, Leron; Cambe, Joy; Biso, Sylvia; Alie, Nadia; Fayad, Zahi A; Mani, Venkatesh
2014-01-01
AIM: To compare 3D Black Blood turbo spin echo (TSE) sampling perfection with application-optimized contrast using different flip angle evolution (SPACE) vs 2D TSE in evaluating atherosclerotic plaques in multiple vascular territories. METHODS: The carotid, aortic, and femoral arterial walls of 16 patients at risk for cardiovascular or atherosclerotic disease were studied using both 3D black blood magnetic resonance imaging SPACE and conventional 2D multi-contrast TSE sequences using a consolidated imaging approach in the same imaging session. Qualitative and quantitative analyses were performed on the images. Agreement of morphometric measurements between the two imaging sequences was assessed using a two-sample t-test, calculation of the intra-class correlation coefficient and by the method of linear regression and Bland-Altman analyses. RESULTS: No statistically significant qualitative differences were found between the 3D SPACE and 2D TSE techniques for images of the carotids and aorta. For images of the femoral arteries, however, there were statistically significant differences in all four qualitative scores between the two techniques. Using the current approach, 3D SPACE is suboptimal for femoral imaging. However, this may be due to coils not being optimized for femoral imaging. Quantitatively, in our study, higher mean total vessel area measurements for the 3D SPACE technique across all three vascular beds were observed. No significant differences in lumen area for both the right and left carotids were observed between the two techniques. Overall, a significant-correlation existed between measures obtained between the two approaches. CONCLUSION: Qualitative and quantitative measurements between 3D SPACE and 2D TSE techniques are comparable. 3D-SPACE may be a feasible approach in the evaluation of cardiovascular patients. PMID:24876923
Takemura, Akihiro; Sasamoto, Kouhei; Nakamura, Kaori; Kuroda, Tatsunori; Shoji, Saori; Matsuura, Yukihiro; Matsushita, Tatsuhiko
2013-06-01
In this study, we evaluated the image distortion of three magnetic resonance imaging (MRI) systems with magnetic field strengths of 0.4 T, 1.5 T and 3 T, during stereotactic irradiation of the brain. A quality assurance phantom for MRI image distortion in radiosurgery was used for these measurements of image distortion. Images were obtained from a 0.4-T MRI (APERTO Eterna, HITACHI), a 1.5-T MRI (Signa HDxt, GE Healthcare) and a 3-T MRI (Signa HDx 3.0 T, GE Healthcare) system. Imaging sequences for the 0.4-T and 3-T MRI were based on the 1.5-T MRI sequence used for stereotactic irradiation in the clinical setting. The same phantom was scanned using a computed tomography (CT) system (Aquilion L/B, Toshiba) as the standard. The results showed mean errors in the Z direction to be the least satisfactory of all the directions in all results. The mean error in the Z direction for 1.5-T MRI at -110 mm in the axial plane showed the largest error of 4.0 mm. The maximum errors for the 0.4-T and 3-T MRI were 1.7 mm and 2.8 mm, respectively. The errors in the plane were not uniform and did not show linearity, suggesting that simple distortion correction using outside markers is unlikely to be effective. The 0.4-T MRI showed the lowest image distortion of the three. However, other items, such as image noise, contrast and study duration need to be evaluated in MRI systems when applying frameless stereotactic irradiation.
Nandigam, R N K; Viswanathan, A; Delgado, P; Skehan, M E; Smith, E E; Rosand, J; Greenberg, S M; Dickerson, B C
2009-02-01
The emergence of cerebral microbleeds (CMB) as common MR imaging findings raises the question of how MR imaging parameters influence CMB detection. To evaluate the effects of modified gradient recalled-echo (GRE) MR imaging methods, we performed an analysis of sequence, section thickness, and field strength on CMB imaging properties and detection in subjects with cerebral amyloid angiopathy (CAA), a condition associated with microhemorrhage. Multiple MR images were obtained from subjects with probable CAA, with varying sequences (GRE versus susceptibility-weighted imaging [SWI]), section thicknesses (1.2-1.5 versus 5 mm), and magnetic field strengths (1.5T versus 3T). Individual CMB were manually identified and analyzed for contrast index (lesion intensity normalized to normal-appearing white matter signal intensity) and diameter. CMB counts were compared between 1.5T thick-section GRE and thin-section SWI for 3 subjects who underwent both protocols in the same scanning session. With other parameters constant, use of SWI, thinner sections, and a higher field strength yielded medium-to-large gains in CMB contrast index (CI; Cohen d 0.71-1.87). SWI was also associated with small increases in CMB diameter (Cohen d <0.3). Conventional thick-section GRE identified only 33% of CMB (103 of 310) seen on thin-section SWI. Lesions prospectively identified on GRE had significantly greater CI and diameter measured on the GRE image than those not prospectively identified. The examined alternatives to conventional GRE MR imaging yield substantially improved CMB contrast and sensitivity for detection. Future studies based on these techniques will most likely yield even higher prevalence estimates for CMB.
Nandigam, R.N.K.; Viswanathan, A.; Delgado, P.; Skehan, M.E.; Smith, E.E.; Rosand, J.; Greenberg, S.M.; Dickerson, B.C.
2009-01-01
BACKGROUND AND PURPOSE: The emergence of cerebral microbleeds (CMB) as common MR imaging findings raises the question of how MR imaging parameters influence CMB detection. To evaluate the effects of modified gradient recalled-echo (GRE) MR imaging methods, we performed an analysis of sequence, section thickness, and field strength on CMB imaging properties and detection in subjects with cerebral amyloid angiopathy (CAA), a condition associated with microhemorrhage. MATERIALS AND METHODS: Multiple MR images were obtained from subjects with probable CAA, with varying sequences (GRE versus susceptibility-weighted imaging [SWI]), section thicknesses (1.2–1.5 versus 5 mm), and magnetic field strengths (1.5T versus 3T). Individual CMB were manually identified and analyzed for contrast index (lesion intensity normalized to normal-appearing white matter signal intensity) and diameter. CMB counts were compared between 1.5T thick-section GRE and thin-section SWI for 3 subjects who underwent both protocols in the same scanning session. RESULTS: With other parameters constant, use of SWI, thinner sections, and a higher field strength yielded medium-to-large gains in CMB contrast index (CI; Cohen d 0.71–1.87). SWI was also associated with small increases in CMB diameter (Cohen d <0.3). Conventional thick-section GRE identified only 33% of CMB (103 of 310) seen on thin-section SWI. Lesions prospectively identified on GRE had significantly greater CI and diameter measured on the GRE image than those not prospectively identified. CONCLUSIONS: The examined alternatives to conventional GRE MR imaging yield substantially improved CMB contrast and sensitivity for detection. Future studies based on these techniques will most likely yield even higher prevalence estimates for CMB. PMID:19001544
Shan, Yan; Zeng, Meng-su; Liu, Kai; Miao, Xi-Yin; Lin, Jiang; Fu, Cai xia; Xu, Peng-ju
2015-01-01
To evaluate the effect on image quality and intravoxel incoherent motion (IVIM) parameters of small hepatocellular carcinoma (HCC) from choice of either free-breathing (FB) or navigator-triggered (NT) diffusion-weighted (DW) imaging. Thirty patients with 37 small HCCs underwent IVIM DW imaging using 12 b values (0-800 s/mm) with 2 sequences: NT, FB. A biexponential analysis with the Bayesian method yielded true diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f) in small HCCs and liver parenchyma. Apparent diffusion coefficient (ADC) was also calculated. The acquisition time and image quality scores were assessed for 2 sequences. Independent sample t test was used to compare image quality, signal intensity ratio, IVIM parameters, and ADC values between the 2 sequences; reproducibility of IVIM parameters, and ADC values between 2 sequences was assessed with the Bland-Altman method (BA-LA). Image quality with NT sequence was superior to that with FB acquisition (P = 0.02). The mean acquisition time for FB scheme was shorter than that of NT sequence (6 minutes 14 seconds vs 10 minutes 21 seconds ± 10 seconds P < 0.01). The signal intensity ratio of small HCCs did not vary significantly between the 2 sequences. The ADC and IVIM parameters from the 2 sequences show no significant difference. Reproducibility of D*and f parameters in small HCC was poor (BA-LA: 95% confidence interval, -180.8% to 189.2% for D* and -133.8% to 174.9% for f). A moderate reproducibility of D and ADC parameters was observed (BA-LA: 95% confidence interval, -83.5% to 76.8% for D and -74.4% to 88.2% for ADC) between the 2 sequences. The NT DW imaging technique offers no advantage in IVIM parameters measurements of small HCC except better image quality, whereas FB technique offers greater confidence in fitted diffusion parameters for matched acquisition periods.
Twin robotic x-ray system for 2D radiographic and 3D cone-beam CT imaging
NASA Astrophysics Data System (ADS)
Fieselmann, Andreas; Steinbrener, Jan; Jerebko, Anna K.; Voigt, Johannes M.; Scholz, Rosemarie; Ritschl, Ludwig; Mertelmeier, Thomas
2016-03-01
In this work, we provide an initial characterization of a novel twin robotic X-ray system. This system is equipped with two motor-driven telescopic arms carrying X-ray tube and flat-panel detector, respectively. 2D radiographs and fluoroscopic image sequences can be obtained from different viewing angles. Projection data for 3D cone-beam CT reconstruction can be acquired during simultaneous movement of the arms along dedicated scanning trajectories. We provide an initial evaluation of the 3D image quality based on phantom scans and clinical images. Furthermore, initial evaluation of patient dose is conducted. The results show that the system delivers high image quality for a range of medical applications. In particular, high spatial resolution enables adequate visualization of bone structures. This system allows 3D X-ray scanning of patients in standing and weight-bearing position. It could enable new 2D/3D imaging workflows in musculoskeletal imaging and improve diagnosis of musculoskeletal disorders.
Spatiotemporal matrix image formation for programmable ultrasound scanners
NASA Astrophysics Data System (ADS)
Berthon, Beatrice; Morichau-Beauchant, Pierre; Porée, Jonathan; Garofalakis, Anikitos; Tavitian, Bertrand; Tanter, Mickael; Provost, Jean
2018-02-01
As programmable ultrasound scanners become more common in research laboratories, it is increasingly important to develop robust software-based image formation algorithms that can be obtained in a straightforward fashion for different types of probes and sequences with a small risk of error during implementation. In this work, we argue that as the computational power keeps increasing, it is becoming practical to directly implement an approximation to the matrix operator linking reflector point targets to the corresponding radiofrequency signals via thoroughly validated and widely available simulations software. Once such a spatiotemporal forward-problem matrix is constructed, standard and thus highly optimized inversion procedures can be leveraged to achieve very high quality images in real time. Specifically, we show that spatiotemporal matrix image formation produces images of similar or enhanced quality when compared against standard delay-and-sum approaches in phantoms and in vivo, and show that this approach can be used to form images even when using non-conventional probe designs for which adapted image formation algorithms are not readily available.
2010-01-01
Background There are many pathological conditions with hepatic iron overload. Classical definite diagnostic methods of these disorders are invasive and based on a direct tissue biopsy material. For the last years the role of MR imaging in liver diagnostics has been increasing. MRI shows changes of liver intensity in patients with hepatic iron overload. Changes in MR signal are an indirect consequence of change of relaxation times T2 and T2*, that can be directly measured. The purpose of the study was to evaluate usefulness of MR imaging in the detection of hepatic iron overload in patients with cirrhosis of different origins. Methods MR imaging at 1.5T was prospectively performed in 44 patients with liver cirrhosis who had undergone liver biopsy with histopathological assessment of hepatic iron deposits. In all patients the following sequences were used: SE, Express, GRE in T2 and T1-weighted images. Signal intensity (SI) was measured on images obtained with each T2 weighted sequence by means of regions of interest, placed in the liver and paraspinal muscles. The correlation between iron overload, histopathological score, serum ferritin and SI ratio was analyzed. Results In 20 patients with iron overload confirmed by the biopsy, the liver parenchyma demonstrated lower signal intensity than that of paraspinal muscles. This effect was visible only in 8 patients with hepatic iron overload in Express T2-weighted images. Higher signal intensity of liver than that of skeletal muscles on GRE - T2 weighted images was noted in 24 patients with cirrhosis and without elevated hepatic iron concentration. We observed a correlation between low and high iron concentration and liver to muscle SI ratio. Conclusion MR imaging is a useful and fast noninvasive diagnostic tool for the detection of liver iron overload in patients with cirrhosis of different origins. Liver to muscle SI ratio in GRE-T2-weighted sequence facilitates to differentiate patients with low and high degree of hepatic iron overload, which correlates with the origin of liver cirrhosis. PMID:20105330
Szurowska, Edyta; Sikorska, Katarzyna; Izycka-Swieszewska, E; Nowicki, Tomasz; Romanowski, Tomasz; Bielawski, Krzysztof P; Studniarek, Michał
2010-01-27
There are many pathological conditions with hepatic iron overload. Classical definite diagnostic methods of these disorders are invasive and based on a direct tissue biopsy material. For the last years the role of MR imaging in liver diagnostics has been increasing. MRI shows changes of liver intensity in patients with hepatic iron overload. Changes in MR signal are an indirect consequence of change of relaxation times T2 and T2*, that can be directly measured. The purpose of the study was to evaluate usefulness of MR imaging in the detection of hepatic iron overload in patients with cirrhosis of different origins. MR imaging at 1.5T was prospectively performed in 44 patients with liver cirrhosis who had undergone liver biopsy with histopathological assessment of hepatic iron deposits. In all patients the following sequences were used: SE, Express, GRE in T2 and T1-weighted images. Signal intensity (SI) was measured on images obtained with each T2 weighted sequence by means of regions of interest, placed in the liver and paraspinal muscles. The correlation between iron overload, histopathological score, serum ferritin and SI ratio was analyzed. In 20 patients with iron overload confirmed by the biopsy, the liver parenchyma demonstrated lower signal intensity than that of paraspinal muscles. This effect was visible only in 8 patients with hepatic iron overload in Express T2-weighted images. Higher signal intensity of liver than that of skeletal muscles on GRE - T2 weighted images was noted in 24 patients with cirrhosis and without elevated hepatic iron concentration. We observed a correlation between low and high iron concentration and liver to muscle SI ratio. MR imaging is a useful and fast noninvasive diagnostic tool for the detection of liver iron overload in patients with cirrhosis of different origins.Liver to muscle SI ratio in GRE-T2-weighted sequence facilitates to differentiate patients with low and high degree of hepatic iron overload, which correlates with the origin of liver cirrhosis.
Furtner, J; Schöpf, V; Preusser, M; Asenbaum, U; Woitek, R; Wöhrer, A; Hainfellner, J A; Wolfsberger, S; Prayer, D
2014-05-01
Using conventional MRI methods, the differentiation of primary cerebral lymphomas (PCNSL) and other primary brain tumors, such as glioblastomas, is difficult due to overlapping imaging characteristics. This study was designed to discriminate tumor entities using normalized vascular intratumoral signal intensity values (nVITS) obtained from pulsed arterial spin labeling (PASL), combined with intratumoral susceptibility signals (ITSS) from susceptibility-weighted imaging (SWI). Thirty consecutive patients with glioblastoma (n=22) and PCNSL (n=8), histologically classified according to the WHO brain tumor classification, were included. MRIs were acquired on a 3T scanner, and included PASL and SWI sequences. nVITS was defined by the signal intensity ratio between the tumor and the contralateral normal brain tissue, as obtained by PASL images. ITSS was determined as intratumoral low signal intensity structures detected on SWI sequences and were divided into four different grades. Potential differences in the nVITS and ITSS between glioblastomas and PCNSLs were revealed using statistical testing. To determine sensitivity, specificity, and diagnostic accuracy, as well as an optimum cut-off value for the differentiation of PCNSL and glioblastoma, a receiver operating characteristic analysis was used. We found that nVITS (p=0.011) and ITSS (p=0.001) values were significantly higher in glioblastoma than in PCNSL. The optimal cut-off value for nVITS was 1.41 and 1.5 for ITSS, with a sensitivity, specificity, and accuracy of more than 95%. These findings indicate that nVITS values have a comparable diagnostic accuracy to ITSS values in differentiating glioblastoma and PCNSL, offering a completely non-invasive and fast assessment of tumoral vascularity in a clinical setting. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Babb, James; Xia, Ding; Chang, Gregory; Krasnokutsky, Svetlana; Abramson, Steven B.; Jerschow, Alexej; Regatte, Ravinder R.
2013-01-01
Purpose: To assess the potential use of sodium magnetic resonance (MR) imaging of cartilage, with and without fluid suppression by using an adiabatic pulse, for classifying subjects with versus subjects without osteoarthritis at 7.0 T. Materials and Methods: The study was approved by the institutional review board and was compliant with HIPAA. The knee cartilage of 19 asymptomatic (control subjects) and 28 symptomatic (osteoarthritis patients) subjects underwent 7.0-T sodium MR imaging with use of two different sequences: one without fluid suppression (radial three-dimensional sequence) and one with fluid suppression (inversion recovery [IR] wideband uniform rate and smooth truncation [WURST]). Fluid suppression was obtained by using IR with an adiabatic inversion pulse (WURST pulse). Mean sodium concentrations and their standard deviations were measured in the patellar, femorotibial medial, and lateral cartilage regions over four consecutive sections for each subject. The minimum, maximum, median, and average means and standard deviations were calculated over all measurements for each subject. The utility of these measures in the detection of osteoarthritis was evaluated by using logistic regression and the area under the receiver operating characteristic curve (AUC). Bonferroni correction was applied to the P values obtained with logistic regression. Results: Measurements from IR WURST were found to be significant predicators of all osteoarthritis (Kellgren-Lawrence score of 1–4) and early osteoarthritis (Kellgren-Lawrence score of 1 or 2). The minimum standard deviation provided the highest AUC (0.83) with the highest accuracy (>78%), sensitivity (>82%), and specificity (>74%) for both all osteoarthritis and early osteoarthritis groups. Conclusion: Quantitative sodium MR imaging at 7.0 T with fluid suppression by using adiabatic IR is a potential biomarker for osteoarthritis. © RSNA, 2013 PMID:23468572
Neugebauer, Tomasz; Bordeleau, Eric; Burrus, Vincent; Brzezinski, Ryszard
2015-01-01
Data visualization methods are necessary during the exploration and analysis activities of an increasingly data-intensive scientific process. There are few existing visualization methods for raw nucleotide sequences of a whole genome or chromosome. Software for data visualization should allow the researchers to create accessible data visualization interfaces that can be exported and shared with others on the web. Herein, novel software developed for generating DNA data visualization interfaces is described. The software converts DNA data sets into images that are further processed as multi-scale images to be accessed through a web-based interface that supports zooming, panning and sequence fragment selection. Nucleotide composition frequencies and GC skew of a selected sequence segment can be obtained through the interface. The software was used to generate DNA data visualization of human and bacterial chromosomes. Examples of visually detectable features such as short and long direct repeats, long terminal repeats, mobile genetic elements, heterochromatic segments in microbial and human chromosomes, are presented. The software and its source code are available for download and further development. The visualization interfaces generated with the software allow for the immediate identification and observation of several types of sequence patterns in genomes of various sizes and origins. The visualization interfaces generated with the software are readily accessible through a web browser. This software is a useful research and teaching tool for genetics and structural genomics.
Rapid myelin water imaging in human cervical spinal cord.
Ljungberg, Emil; Vavasour, Irene; Tam, Roger; Yoo, Youngjin; Rauscher, Alexander; Li, David K B; Traboulsee, Anthony; MacKay, Alex; Kolind, Shannon
2017-10-01
Myelin water imaging (MWI) using multi-echo T 2 relaxation is a quantitative MRI technique that can be used as an in vivo biomarker for myelin in the central nervous system. MWI using a multi-echo spin echo sequence currently takes more than 20 min to acquire eight axial slices (5 mm thickness) in the cervical spinal cord, making spinal cord MWI impractical for implementation in clinical studies. In this study, an accelerated gradient and spin echo sequence (GRASE), previously validated for brain MWI, was adapted for spinal cord MWI. Ten healthy volunteers were scanned with the GRASE sequence (acquisition time 8.5 min) and compared with the multi-echo spin echo sequence (acquisition time 23.5 min). Using region of interest analysis, myelin estimates obtained from the two sequences were found to be in good agreement (mean difference = -0.0092, 95% confidence interval = - 0.0092 ± 0.061; regression slope = 1.01, ρ = 0.9). MWI using GRASE was shown to be highly reproducible with an average coefficient of variation of 6.1%. The results from this study show that MWI can be performed in the cervical spinal cord in less than 10 min, allowing for practical implementation in multimodal clinical studies. Magn Reson Med 78:1482-1487, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Discrete Cosine Transform Image Coding With Sliding Block Codes
NASA Astrophysics Data System (ADS)
Divakaran, Ajay; Pearlman, William A.
1989-11-01
A transform trellis coding scheme for images is presented. A two dimensional discrete cosine transform is applied to the image followed by a search on a trellis structured code. This code is a sliding block code that utilizes a constrained size reproduction alphabet. The image is divided into blocks by the transform coding. The non-stationarity of the image is counteracted by grouping these blocks in clusters through a clustering algorithm, and then encoding the clusters separately. Mandela ordered sequences are formed from each cluster i.e identically indexed coefficients from each block are grouped together to form one dimensional sequences. A separate search ensues on each of these Mandela ordered sequences. Padding sequences are used to improve the trellis search fidelity. The padding sequences absorb the error caused by the building up of the trellis to full size. The simulations were carried out on a 256x256 image ('LENA'). The results are comparable to any existing scheme. The visual quality of the image is enhanced considerably by the padding and clustering.
Myocardial strain estimation from CT: towards computer-aided diagnosis on infarction identification
NASA Astrophysics Data System (ADS)
Wong, Ken C. L.; Tee, Michael; Chen, Marcus; Bluemke, David A.; Summers, Ronald M.; Yao, Jianhua
2015-03-01
Regional myocardial strains have the potential for early quantification and detection of cardiac dysfunctions. Although image modalities such as tagged and strain-encoded MRI can provide motion information of the myocardium, they are uncommon in clinical routine. In contrary, cardiac CT images are usually available, but they only provide motion information at salient features such as the cardiac boundaries. To estimate myocardial strains from a CT image sequence, we adopted a cardiac biomechanical model with hyperelastic material properties to relate the motion on the cardiac boundaries to the myocardial deformation. The frame-to-frame displacements of the cardiac boundaries are obtained using B-spline deformable image registration based on mutual information, which are enforced as boundary conditions to the biomechanical model. The system equation is solved by the finite element method to provide the dense displacement field of the myocardium, and the regional values of the three principal strains and the six strains in cylindrical coordinates are computed in terms of the American Heart Association nomenclature. To study the potential of the estimated regional strains on identifying myocardial infarction, experiments were performed on cardiac CT image sequences of ten canines with artificially induced myocardial infarctions. The leave-one-subject-out cross validations show that, by using the optimal strain magnitude thresholds computed from ROC curves, the radial strain and the first principal strain have the best performance.
NASA Astrophysics Data System (ADS)
Lu, Aiming; Atkinson, Ian C.; Vaughn, J. Thomas; Thulborn, Keith R.
2011-12-01
The rapid biexponential transverse relaxation of the sodium MR signal from brain tissue requires efficient k-space sampling for quantitative imaging in a time that is acceptable for human subjects. The flexible twisted projection imaging (flexTPI) sequence has been shown to be suitable for quantitative sodium imaging with an ultra-short echo time to minimize signal loss. The fidelity of the k-space center location is affected by the readout gradient timing errors on the three physical axes, which is known to cause image distortion for projection-based acquisitions. This study investigated the impact of these timing errors on the voxel-wise accuracy of the tissue sodium concentration (TSC) bioscale measured with the flexTPI sequence. Our simulations show greater than 20% spatially varying quantification errors when the gradient timing errors are larger than 10 μs on all three axes. The quantification is more tolerant of gradient timing errors on the Z-axis. An existing method was used to measure the gradient timing errors with <1 μs error. The gradient timing error measurement is shown to be RF coil dependent, and timing error differences of up to ˜16 μs have been observed between different RF coils used on the same scanner. The measured timing errors can be corrected prospectively or retrospectively to obtain accurate TSC values.
Rohlfing, Torsten; Schaupp, Frank; Haddad, Daniel; Brandt, Robert; Haase, Axel; Menzel, Randolf; Maurer, Calvin R
2005-01-01
Confocal microscopy (CM) is a powerful image acquisition technique that is well established in many biological applications. It provides 3-D acquisition with high spatial resolution and can acquire several different channels of complementary image information. Due to the specimen extraction and preparation process, however, the shapes of imaged objects may differ considerably from their in vivo appearance. Magnetic resonance microscopy (MRM) is an evolving variant of magnetic resonance imaging, which achieves microscopic resolutions using a high magnetic field and strong magnetic gradients. Compared to CM imaging, MRM allows for in situ imaging and is virtually free of geometrical distortions. We propose to combine the advantages of both methods by unwarping CM images using a MRM reference image. Our method incorporates a sequence of image processing operators applied to the MRM image, followed by a two-stage intensity-based registration to compute a nonrigid coordinate transformation between the CM images and the MRM image. We present results obtained using CM images from the brains of 20 honey bees and a MRM image of an in situ bee brain. Copyright 2005 Society of Photo-Optical Instrumentation Engineers.
Two-dimensional PCA-based human gait identification
NASA Astrophysics Data System (ADS)
Chen, Jinyan; Wu, Rongteng
2012-11-01
It is very necessary to recognize person through visual surveillance automatically for public security reason. Human gait based identification focus on recognizing human by his walking video automatically using computer vision and image processing approaches. As a potential biometric measure, human gait identification has attracted more and more researchers. Current human gait identification methods can be divided into two categories: model-based methods and motion-based methods. In this paper a two-Dimensional Principal Component Analysis and temporal-space analysis based human gait identification method is proposed. Using background estimation and image subtraction we can get a binary images sequence from the surveillance video. By comparing the difference of two adjacent images in the gait images sequence, we can get a difference binary images sequence. Every binary difference image indicates the body moving mode during a person walking. We use the following steps to extract the temporal-space features from the difference binary images sequence: Projecting one difference image to Y axis or X axis we can get two vectors. Project every difference image in the difference binary images sequence to Y axis or X axis difference binary images sequence we can get two matrixes. These two matrixes indicate the styles of one walking. Then Two-Dimensional Principal Component Analysis(2DPCA) is used to transform these two matrixes to two vectors while at the same time keep the maximum separability. Finally the similarity of two human gait images is calculated by the Euclidean distance of the two vectors. The performance of our methods is illustrated using the CASIA Gait Database.
Analysis of simulated image sequences from sensors for restricted-visibility operations
NASA Technical Reports Server (NTRS)
Kasturi, Rangachar
1991-01-01
A real time model of the visible output from a 94 GHz sensor, based on a radiometric simulation of the sensor, was developed. A sequence of images as seen from an aircraft as it approaches for landing was simulated using this model. Thirty frames from this sequence of 200 x 200 pixel images were analyzed to identify and track objects in the image using the Cantata image processing package within the visual programming environment provided by the Khoros software system. The image analysis operations are described.
NASA Astrophysics Data System (ADS)
Pashaei, Ali; Piella, Gemma; Planes, Xavier; Duchateau, Nicolas; de Caralt, Teresa M.; Sitges, Marta; Frangi, Alejandro F.
2013-03-01
It has been demonstrated that the acceleration signal has potential to monitor heart function and adaptively optimize Cardiac Resynchronization Therapy (CRT) systems. In this paper, we propose a non-invasive method for computing myocardial acceleration from 3D echocardiographic sequences. Displacement of the myocardium was estimated using a two-step approach: (1) 3D automatic segmentation of the myocardium at end-diastole using 3D Active Shape Models (ASM); (2) propagation of this segmentation along the sequence using non-rigid 3D+t image registration (temporal di eomorphic free-form-deformation, TDFFD). Acceleration was obtained locally at each point of the myocardium from local displacement. The framework has been tested on images from a realistic physical heart phantom (DHP-01, Shelley Medical Imaging Technologies, London, ON, CA) in which the displacement of some control regions was known. Good correlation has been demonstrated between the estimated displacement function from the algorithms and the phantom setup. Due to the limited temporal resolution, the acceleration signals are sparse and highly noisy. The study suggests a non-invasive technique to measure the cardiac acceleration that may be used to improve the monitoring of cardiac mechanics and optimization of CRT.
NASA Astrophysics Data System (ADS)
Khatibi, Siamak; Allansson, Louise; Gustavsson, Tomas; Blomstrand, Fredrik; Hansson, Elisabeth; Olsson, Torsten
1999-05-01
Cell volume changes are often associated with important physiological and pathological processes in the cell. These changes may be the means by which the cell interacts with its surrounding. Astroglial cells change their volume and shape under several circumstances that affect the central nervous system. Following an incidence of brain damage, such as a stroke or a traumatic brain injury, one of the first events seen is swelling of the astroglial cells. In order to study this and other similar phenomena, it is desirable to develop technical instrumentation and analysis methods capable of detecting and characterizing dynamic cell shape changes in a quantitative and robust way. We have developed a technique to monitor and to quantify the spatial and temporal volume changes in a single cell in primary culture. The technique is based on two- and three-dimensional fluorescence imaging. The temporal information is obtained from a sequence of microscope images, which are analyzed in real time. The spatial data is collected in a sequence of images from the microscope, which is automatically focused up and down through the specimen. The analysis of spatial data is performed off-line and consists of photobleaching compensation, focus restoration, filtering, segmentation and spatial volume estimation.
High speed MRI of laryngeal gestures during speech production
NASA Astrophysics Data System (ADS)
Nissenbaum, Jon; Hillman, Robert E.; Kobler, James B.; Curtin, Hugh D.; Halle, Morris; Kirsch, John E.
2002-05-01
Dynamic sequences of magnetic resonance images (MRI) of the vocal tract were obtained with a frame rate of 144 frames/second. Changes in vertical position and length of the vocal folds, both observable in the mid-sagittal plane, have been argued to play a role in consonant production in addition to their primary function in the control of vocal fundamental frequency (F0) [W. G. Ewan and R. Krones, J. Phonet. 2, 327-335 (1974); A. Lofqvist et al., Haskins Lab. Status Report Speech Res., SR-97/98, pp. 25-40, 1989], but temporal resolution of available techniques has hindered direct imaging of these articulations. A novel data acquisition sequence was used to circumvent the imaging time imposed by standard MRI (typically 100-500 ms). Images were constructed by having subjects rhythmically repeat short utterances 256 times using the same F0 contour. Sixty-four lines of MR data were sampled during each repetition, at 7 millisecond increments, yielding partial raw data sets for 64 time points. After all repetitions were completed, one frame per time point was constructed by combining raw data from the corresponding time point during every repetition. Preliminary results indicate vocal fold shortening and lowering only during voiced consonants and in production of lower F0.
NASA Astrophysics Data System (ADS)
Zhang, Ji; Li, Tao; Zheng, Shiqiang; Li, Yiyong
2015-03-01
To reduce the effects of respiratory motion in the quantitative analysis based on liver contrast-enhanced ultrasound (CEUS) image sequencesof single mode. The image gating method and the iterative registration method using model image were adopted to register liver contrast-enhanced ultrasound image sequences of single mode. The feasibility of the proposed respiratory motion correction method was explored preliminarily using 10 hepatocellular carcinomas CEUS cases. The positions of the lesions in the time series of 2D ultrasound images after correction were visually evaluated. Before and after correction, the quality of the weighted sum of transit time (WSTT) parametric images were also compared, in terms of the accuracy and spatial resolution. For the corrected and uncorrected sequences, their mean deviation values (mDVs) of time-intensity curve (TIC) fitting derived from CEUS sequences were measured. After the correction, the positions of the lesions in the time series of 2D ultrasound images were almost invariant. In contrast, the lesions in the uncorrected images all shifted noticeably. The quality of the WSTT parametric maps derived from liver CEUS image sequences were improved more greatly. Moreover, the mDVs of TIC fitting derived from CEUS sequences after the correction decreased by an average of 48.48+/-42.15. The proposed correction method could improve the accuracy of quantitative analysis based on liver CEUS image sequences of single mode, which would help in enhancing the differential diagnosis efficiency of liver tumors.
Direct cerebral and cardiac 17O-MRI at 3 Tesla: initial results at natural abundance.
Borowiak, Robert; Groebner, Jens; Haas, Martin; Hennig, Jürgen; Bock, Michael
2014-02-01
To establish direct (17)O-magnetic resonance imaging (MRI) for metabolic imaging at a clinical field strength of 3 T. An experimental setup including a surface coil and transmit/receive switch was constructed. Natural abundance in vivo brain images of a volunteer were acquired with a radial three-dimensional (3D) sequence in the visual cortex and in the heart with electrocardiogram (ECG)-gating. In the brain, a signal-to-noise ratio of 36 was found at a nominal resolution of (5.6 mm)(3), and a transverse relaxation time of T(2)* = (1.9 ± 0.2) ms was obtained. In the heart (17)O images were acquired with a temporal resolution of 200 ms. Cerebral and cardiac (17)O-MRI at natural abundance is feasible at 3 T.
Synchronized and noise-robust audio recordings during realtime magnetic resonance imaging scans.
Bresch, Erik; Nielsen, Jon; Nayak, Krishna; Narayanan, Shrikanth
2006-10-01
This letter describes a data acquisition setup for recording, and processing, running speech from a person in a magnetic resonance imaging (MRI) scanner. The main focus is on ensuring synchronicity between image and audio acquisition, and in obtaining good signal to noise ratio to facilitate further speech analysis and modeling. A field-programmable gate array based hardware design for synchronizing the scanner image acquisition to other external data such as audio is described. The audio setup itself features two fiber optical microphones and a noise-canceling filter. Two noise cancellation methods are described including a novel approach using a pulse sequence specific model of the gradient noise of the MRI scanner. The setup is useful for scientific speech production studies. Sample results of speech and singing data acquired and processed using the proposed method are given.
Synchronized and noise-robust audio recordings during realtime magnetic resonance imaging scans (L)
Bresch, Erik; Nielsen, Jon; Nayak, Krishna; Narayanan, Shrikanth
2007-01-01
This letter describes a data acquisition setup for recording, and processing, running speech from a person in a magnetic resonance imaging (MRI) scanner. The main focus is on ensuring synchronicity between image and audio acquisition, and in obtaining good signal to noise ratio to facilitate further speech analysis and modeling. A field-programmable gate array based hardware design for synchronizing the scanner image acquisition to other external data such as audio is described. The audio setup itself features two fiber optical microphones and a noise-canceling filter. Two noise cancellation methods are described including a novel approach using a pulse sequence specific model of the gradient noise of the MRI scanner. The setup is useful for scientific speech production studies. Sample results of speech and singing data acquired and processed using the proposed method are given. PMID:17069275
Antisense imaging of gene expression in the brain in vivo
NASA Astrophysics Data System (ADS)
Shi, Ningya; Boado, Ruben J.; Pardridge, William M.
2000-12-01
Antisense radiopharmaceuticals could be used to image gene expression in the brain in vivo, should these polar molecules be made transportable through the blood-brain barrier. The present studies describe an antisense imaging agent comprised of an iodinated peptide nucleic acid (PNA) conjugated to a monoclonal antibody to the rat transferrin receptor by using avidin-biotin technology. The PNA was a 16-mer antisense to the sequence around the methionine initiation codon of the luciferase mRNA. C6 rat glioma cells were permanently transfected with a luciferase expression plasmid, and C6 experimental brain tumors were developed in adult rats. The expression of the luciferase transgene in the tumors in vivo was confirmed by measurement of luciferase enzyme activity in the tumor extract. The [125I]PNA conjugate was injected intravenously in anesthetized animals with brain tumors and killed 2 h later for frozen sectioning of brain and film autoradiography. No image of the luciferase gene expression was obtained after the administration of either the unconjugated antiluciferase PNA or a PNA conjugate that was antisense to the mRNA of a viral transcript. In contrast, tumors were imaged in all rats administered the [125I]PNA that was antisense to the luciferase sequence and was conjugated to the targeting antibody. In conclusion, these studies demonstrate gene expression in the brain in vivo can be imaged with antisense radiopharmaceuticals that are conjugated to a brain drug-targeting system.
NASA Astrophysics Data System (ADS)
Arellano-Baeza, A. A.; Soto-Pinto, C. A.
2014-12-01
Over the last decades strong efforts have been made to apply new spaceborn technologies to the study of volcanic activity. Recent studies have shown that the high resolution satellite images can be very useful for tracking of evolution of the stress patterns related to the volcanic activity. It can be done by observing the changes in density and orientation of lineaments extracted from satellite images. A lineament is generally defined as a straight or a somewhat curved feature in the landscape visible in a satellite image as an aligned sequence of pixels of a contrasting intensity compared to the background. The system of lineaments extracted from the satellite images is not identical to the geological lineaments which are usually determined by land-based surveys, nevertheless, it generally reflects the structure of the faults and fractures in the Earth's crust. For this study the lineaments were detected using the ADALGEO software, based on the Hough transform (Soto-Pinto et al, 2013). A temporal sequence of the Landsat 8 multispectral images of the Lascar volcano, located in the North of Chile, was used to study changes in lineament configuration during 2013-2014. It was found that, the number and orientation of lineaments is affected by microseimicity. In particular, it was found that often the density of lineaments decreases with the intensity of microseisms, which could be related to the volcano inflation.
Cadiot, Domitille; Longuet, Romain; Bruneau, Bertrand; Treguier, Catherine; Carsin-Vu, Aline; Corouge, Isabelle; Gomes, Constantin; Proisy, Maïa
2018-04-01
Objective A child presenting with a first attack of migraine with aura usually undergoes magnetic resonance imaging (MRI) to rule out stroke. The purpose of this study was to report vascular and brain perfusion findings in children suffering from migraine with aura on time-of-flight MR angiography (TOF-MRA) and MR perfusion imaging using arterial spin labelling (ASL). Methods We retrospectively included all children who had undergone an emergency MRI examination with ASL and TOF-MRA sequences for acute neurological deficit and were given a final diagnosis of migraine with aura. The ASL perfusion maps and TOF-MRA images were independently assessed by reviewers blinded to clinical data. A mean cerebral blood flow (CBF) value was obtained for each cerebral lobe after automatic data post-processing. Results Seventeen children were finally included. Hypoperfusion was identified in one or more cerebral lobes on ASL perfusion maps by visual assessment in 16/17 (94%) children. Vasospasm was noted within the intracranial vasculature on the TOF-MRA images in 12/17 (71%) children. All (100%) of the abnormal TOF-MRA images were associated with homolateral hypoperfusion. Mean CBF values were significantly lower ( P < 0.05) in visually hypoperfused lobes than in normally perfused lobes. Conclusion ASL and TOF-MRA are two totally non-invasive, easy-to-use MRI sequences for children in emergency settings. Hypoperfusion associated with homolateral vasospasm may suggest a diagnosis of migraine with aura.
NASA Technical Reports Server (NTRS)
Halama, G.; McAdoo, J.; Liu, H.
1998-01-01
To demonstrate the feasibility of a novel large-field digital mammography technique, a 1024 x 1024 pixel Loral charge-coupled device (CCD) focal plane array (FPA) was positioned in a mammographic field with one- and two-dimensional scan sequences to obtain 950 x 1800 pixel and 3600 x 3600 pixel composite images, respectively. These experiments verify that precise positioning of FPAs produced seamless composites and that the CCD mosaic concept has potential for high-resolution, large-field imaging. The proposed CCD mosaic concept resembles a checkerboard pattern with spacing left between the CCDs for the driver and readout electronics. To obtain a complete x-ray image, the mosaic must be repositioned four times, with an x-ray exposure at each position. To reduce the patient dose, a lead shield with appropriately patterned holes is placed between the x-ray source and the patient. The high-precision motorized translation stages and the fiber-coupled-scintillating-screen-CCD sensor assembly were placed in the position usually occupied by the film cassette. Because of the high mechanical precision, seamless composites were constructed from the subimages. This paper discusses the positioning, image alignment procedure, and composite image results. The paper only addresses the formation of a seamless composite image from subimages and will not consider the effects of the lead shield, multiple CCDs, or the speed of motion.
Radar images analysis for scattering surfaces characterization
NASA Astrophysics Data System (ADS)
Piazza, Enrico
1998-10-01
According to the different problems and techniques related to the detection and recognition of airplanes and vehicles moving on the Airport surface, the present work mainly deals with the processing of images gathered by a high-resolution radar sensor. The radar images used to test the investigated algorithms are relative to sequence of images obtained in some field experiments carried out by the Electronic Engineering Department of the University of Florence. The radar is the Ka band radar operating in the'Leonardo da Vinci' Airport in Fiumicino (Rome). The images obtained from the radar scan converter are digitized and putted in x, y, (pixel) co- ordinates. For a correct matching of the images, these are corrected in true geometrical co-ordinates (meters) on the basis of fixed points on an airport map. Correlating the airplane 2-D multipoint template with actual radar images, the value of the signal in the points involved in the template can be extracted. Results for a lot of observation show a typical response for the main section of the fuselage and the wings. For the fuselage, the back-scattered echo is low at the prow, became larger near the center on the aircraft and than it decrease again toward the tail. For the wings the signal is growing with a pretty regular slope from the fuselage to the tips, where the signal is the strongest.
Hargreaves, Brian
2012-01-01
Gradient echo sequences are widely used in magnetic resonance imaging (MRI) for numerous applications ranging from angiography to perfusion to functional MRI. Compared with spin-echo techniques, the very short repetition times of gradient-echo methods enable very rapid 2D and 3D imaging, but also lead to complicated “steady states.” Signal and contrast behavior can be described graphically and mathematically, and depends strongly on the type of spoiling: fully balanced (no spoiling), gradient spoiling, or RF-spoiling. These spoiling options trade off between high signal and pure T1 contrast while the flip angle also affects image contrast in all cases, both of which can be demonstrated theoretically and in image examples. As with spin-echo sequences, magnetization preparation can be added to gradient-echo sequences to alter image contrast. Gradient echo sequences are widely used for numerous applications such as 3D perfusion imaging, functional MRI, cardiac imaging and MR angiography. PMID:23097185
Asteroid 5535 Annefrank size, shape, and orientation: Stardust first results
NASA Technical Reports Server (NTRS)
Duxbury, T. C.; Newburn, R. L., Jr.; Acton, C. H.; Carranza, E.; McElrath, T. P.; Ryan, R. E.; Synnott, S. P.; You, T. H.; Brownlee, D. E.; Cheuvront, A. R.;
2004-01-01
The NASA Discovery Stardust spacecraft flew by the main belt asteroid 5535 Annefrank at a distance of 3100 km and a speed of 7.4 km/s in November 2002 to test the encounter sequence developed for its primary science target, the comet 81P/Wild2. During this testing, over 70 images of Annefrank were obtained, taken over a phase angle range from 40 to 140 degrees.
Kijowski, Richard; Blankenbaker, Donna G; Munoz Del Rio, Alejandro; Baer, Geoffrey S; Graf, Ben K
2013-05-01
To determine whether the addition of a T2 mapping sequence to a routine magnetic resonance (MR) imaging protocol could improve diagnostic performance in the detection of surgically confirmed cartilage lesions within the knee joint at 3.0 T. This prospective study was approved by the institutional review board, and the requirement to obtain informed consent was waived. The study group consisted of 150 patients (76 male and 74 female patients with an average age of 41.2 and 41.5 years, respectively) who underwent MR imaging and arthroscopy of the knee joint. MR imaging was performed at 3.0 T by using a routine protocol with the addition of a sagittal T2 mapping sequence. Images from all MR examinations were reviewed in consensus by two radiologists before surgery to determine the presence or absence of cartilage lesions on each articular surface, first by using the routine MR protocol alone and then by using the routine MR protocol with T2 maps. Each articular surface was then evaluated at arthroscopy. Generalized estimating equation models were used to compare the sensitivity and specificity of the routine MR imaging protocol with and without T2 maps in the detection of surgically confirmed cartilage lesions. The sensitivity and specificity in the detection of 351 cartilage lesions were 74.6% and 97.8%, respectively, for the routine MR protocol alone and 88.9% and 93.1% for the routine MR protocol with T2 maps. Differences in sensitivity and specificity were statistically significant (P < .001). The addition of T2 maps to the routine MR imaging protocol significantly improved the sensitivity in the detection of 24 areas of cartilage softening (from 4.2% to 62%, P < .001), 41 areas of cartilage fibrillation (from 20% to 66%, P < .001), and 96 superficial partial-thickness cartilage defects (from 71% to 88%, P = .004). The addition of a T2 mapping sequence to a routine MR protocol at 3.0 T improved sensitivity in the detection of cartilage lesions within the knee joint from 74.6% to 88.9%, with only a small reduction in specificity. The greatest improvement in sensitivity with use of the T2 maps was in the identification of early cartilage degeneration. © RSNA, 2013.
Lee, Sungwon; Jee, Won-Hee; Jung, Joon-Yong; Lee, So-Yeon; Ryu, Kyeung-Sik; Ha, Kee-Yong
2015-02-01
Three-dimensional (3D) fast spin-echo sequence with variable flip-angle refocusing pulse allows retrospective alignments of magnetic resonance imaging (MRI) in any desired plane. To compare isotropic 3D T2-weighted (T2W) turbo spin-echo sequence (TSE-SPACE) with standard two-dimensional (2D) T2W TSE imaging for evaluating lumbar spine pathology at 3.0 T MRI. Forty-two patients who had spine surgery for disk herniation and had 3.0 T spine MRI were included in this study. In addition to standard 2D T2W TSE imaging, sagittal 3D T2W TSE-SPACE was obtained to produce multiplanar (MPR) images. Each set of MR images from 3D T2W TSE and 2D TSE-SPACE were independently scored for the degree of lumbar neural foraminal stenosis, central spinal stenosis, and nerve compression by two reviewers. These scores were compared with operative findings and the sensitivities were evaluated by McNemar test. Inter-observer agreements and the correlation with symptoms laterality were assessed with kappa statistics. The 3D T2W TSE and 2D TSE-SPACE had similar sensitivity in detecting foraminal stenosis (78.9% versus 78.9% in 32 foramen levels), spinal stenosis (100% versus 100% in 42 spinal levels), and nerve compression (92.9% versus 81.8% in 59 spinal nerves). The inter-observer agreements (κ = 0.849 vs. 0.451 for foraminal stenosis, κ = 0.809 vs. 0.503 for spinal stenosis, and κ = 0.681 vs. 0.429 for nerve compression) and symptoms correlation (κ = 0.449 vs. κ = 0.242) were better in 3D TSE-SPACE compared to 2D TSE. 3D TSE-SPACE with oblique coronal MPR images demonstrated better inter-observer agreements compared to 3D TSE-SPACE without oblique coronal MPR images (κ = 0.930 vs. κ = 0.681). Isotropic 3D T2W TSE-SPACE at 3.0 T was comparable to 2D T2W TSE for detecting foraminal stenosis, central spinal stenosis, and nerve compression with better inter-observer agreements and symptom correlation. © The Foundation Acta Radiologica 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Characterization of a prototype strain of hepatitis E virus.
Tsarev, S A; Emerson, S U; Reyes, G R; Tsareva, T S; Legters, L J; Malik, I A; Iqbal, M; Purcell, R H
1992-01-01
A strain of hepatitis E virus (SAR-55) implicated in an epidemic of enterically transmitted non-A, non-B hepatitis, now called hepatitis E, was characterized extensively. Six cynomolgus monkeys (Macaca fascicularis) were infected with a strain of hepatitis E virus from Pakistan. Reverse transcription-polymerase chain reaction was used to determine the pattern of virus shedding in feces, bile, and serum relative to hepatitis and induction of specific antibodies. Virtually the entire genome of SAR-55 (7195 nucleotides) was sequenced. Comparison of the sequence of SAR-55 with that of a Burmese strain revealed a high level of homology except for one region encoding 100 amino acids of a putative nonstructural polyprotein. Identification of this region as hypervariable was obtained by partial sequencing of a third isolate of hepatitis E virus from Kirgizia. Images PMID:1731327
Using cellular automata to generate image representation for biological sequences.
Xiao, X; Shao, S; Ding, Y; Huang, Z; Chen, X; Chou, K-C
2005-02-01
A novel approach to visualize biological sequences is developed based on cellular automata (Wolfram, S. Nature 1984, 311, 419-424), a set of discrete dynamical systems in which space and time are discrete. By transforming the symbolic sequence codes into the digital codes, and using some optimal space-time evolvement rules of cellular automata, a biological sequence can be represented by a unique image, the so-called cellular automata image. Many important features, which are originally hidden in a long and complicated biological sequence, can be clearly revealed thru its cellular automata image. With biological sequences entering into databanks rapidly increasing in the post-genomic era, it is anticipated that the cellular automata image will become a very useful vehicle for investigation into their key features, identification of their function, as well as revelation of their "fingerprint". It is anticipated that by using the concept of the pseudo amino acid composition (Chou, K.C. Proteins: Structure, Function, and Genetics, 2001, 43, 246-255), the cellular automata image approach can also be used to improve the quality of predicting protein attributes, such as structural class and subcellular location.
Magnetic resonance imaging of the fetal brain.
Tee, L Mf; Kan, E Yl; Cheung, J Cy; Leung, W C
2016-06-01
This review covers the recent literature on fetal brain magnetic resonance imaging, with emphasis on techniques, advances, common indications, and safety. We conducted a search of MEDLINE for articles published after 2010. The search terms used were "(fetal OR foetal OR fetus OR foetus) AND (MR OR MRI OR [magnetic resonance]) AND (brain OR cerebral)". Consensus statements from major authorities were also included. As a result, 44 relevant articles were included and formed the basis of this review. One major challenge is fetal motion that is largely overcome by ultra-fast sequences. Currently, single-shot fast spin-echo T2-weighted imaging remains the mainstay for motion resistance and anatomical delineation. Recently, a snap-shot inversion recovery sequence has enabled robust T1-weighted images to be obtained, which is previously a challenge for standard gradient-echo acquisitions. Fetal diffusion-weighted imaging, diffusion tensor imaging, and magnetic resonance spectroscopy are also being developed. With multiplanar capabilities, superior contrast resolution and field of view, magnetic resonance imaging does not have the limitations of sonography, and can provide additional important information. Common indications include ventriculomegaly, callosum and posterior fossa abnormalities, and twin complications. There are safety concerns about magnetic resonance-induced heating and acoustic damage but current literature showed no conclusive evidence of deleterious fetal effects. The American College of Radiology guideline states that pregnant patients can be accepted to undergo magnetic resonance imaging at any stage of pregnancy if risk-benefit ratio to patients warrants that the study be performed. Magnetic resonance imaging of the fetal brain is a safe and powerful adjunct to sonography in prenatal diagnosis. It can provide additional information that aids clinical management, prognostication, and counselling.
Development of an inexpensive optical method for studies of dental erosion process in vitro
NASA Astrophysics Data System (ADS)
Nasution, A. M. T.; Noerjanto, B.; Triwanto, L.
2008-09-01
Teeth have important roles in digestion of food, supporting the facial-structure, as well as in articulation of speech. Abnormality in teeth structure can be initiated by an erosion process due to diet or beverages consumption that lead to destruction which affect their functionality. Research to study the erosion processes that lead to teeth's abnormality is important in order to be used as a care and prevention purpose. Accurate measurement methods would be necessary as a research tool, in order to be capable for quantifying dental destruction's degree. In this work an inexpensive optical method as tool to study dental erosion process is developed. It is based on extraction the parameters from the 3D dental visual information. The 3D visual image is obtained from reconstruction of multiple lateral projection of 2D images that captured from many angles. Using a simple motor stepper and a pocket digital camera, sequence of multi-projection 2D images of premolar tooth is obtained. This images are then reconstructed to produce a 3D image, which is useful for quantifying related dental erosion parameters. The quantification process is obtained from the shrinkage of dental volume as well as surface properties due to erosion process. Results of quantification is correlated to the ones of dissolved calcium atom which released from the tooth using atomic absorption spectrometry. This proposed method would be useful as visualization tool in many engineering, dentistry, and medical research. It would be useful also for the educational purposes.
Kyriazi, Stavroula; Blackledge, Matthew; Collins, David J; Desouza, Nandita M
2010-10-01
To compare geometric distortion, signal-to-noise ratio (SNR), apparent diffusion coefficient (ADC), efficacy of fat suppression and presence of artefact between monopolar (Stejskal and Tanner) and bipolar (twice-refocused, eddy-current-compensating) diffusion-weighted imaging (DWI) sequences in the abdomen and pelvis. A semiquantitative distortion index (DI) was derived from the subtraction images with b = 0 and 1,000 s/mm(2) in a phantom and compared between the two sequences. Seven subjects were imaged with both sequences using four b values (0, 600, 900 and 1,050 s/mm(2)) and SNR, ADC for different organs and fat-to-muscle signal ratio (FMR) were compared. Image quality was evaluated by two radiologists on a 5-point scale. DI was improved in the bipolar sequence, indicating less geometric distortion. SNR was significantly lower for all tissues and b values in the bipolar images compared with the monopolar (p < 0.05), whereas FMR was not statistically different. ADC in liver, kidney and sacrum was higher in the bipolar scheme compared to the monopolar (p < 0.03), whereas in muscle it was lower (p = 0.018). Image quality scores were higher for the bipolar sequence (p ≤ 0.025). Artefact reduction makes the bipolar DWI sequence preferable in abdominopelvic applications, although the trade-off in SNR may compromise ADC measurements in muscle.
Steady-state MR imaging sequences: physics, classification, and clinical applications.
Chavhan, Govind B; Babyn, Paul S; Jankharia, Bhavin G; Cheng, Hai-Ling M; Shroff, Manohar M
2008-01-01
Steady-state sequences are a class of rapid magnetic resonance (MR) imaging techniques based on fast gradient-echo acquisitions in which both longitudinal magnetization (LM) and transverse magnetization (TM) are kept constant. Both LM and TM reach a nonzero steady state through the use of a repetition time that is shorter than the T2 relaxation time of tissue. When TM is maintained as multiple radiofrequency excitation pulses are applied, two types of signal are formed once steady state is reached: preexcitation signal (S-) from echo reformation; and postexcitation signal (S+), which consists of free induction decay. Depending on the signal sampled and used to form an image, steady-state sequences can be classified as (a) postexcitation refocused (only S+ is sampled), (b) preexcitation refocused (only S- is sampled), and (c) fully refocused (both S+ and S- are sampled) sequences. All tissues with a reasonably long T2 relaxation time will show additional signals due to various refocused echo paths. Steady-state sequences have revolutionized cardiac imaging and have become the standard for anatomic functional cardiac imaging and for the assessment of myocardial viability because of their good signal-to-noise ratio and contrast-to-noise ratio and increased speed of acquisition. They are also useful in abdominal and fetal imaging and hold promise for interventional MR imaging. Because steady-state sequences are now commonly used in MR imaging, radiologists will benefit from understanding the underlying physics, classification, and clinical applications of these sequences.
NASA Astrophysics Data System (ADS)
Cohen, Mike-Ely; Lefort, Muriel; Bergeret-Cassagne, Héloïse; Hachi, Siham; Li, Ang; Russ, Gilles; Lazard, Diane; Menegaux, Fabrice; Leenhardt, Laurence; Trésallet, Christophe; Frouin, Frédérique
2015-03-01
Recurrent nerve paralysis (RP) is one of the most frequent complications of thyroid surgery. It reduces vocal fold mobility. Nasal endoscopy, a mini-invasive procedure, is the conventional way to detect RP. We suggest a new approach based on laryngeal ultrasound and a specific data analysis was designed to help with the automated detection of RP. Ten subjects were enrolled for this feasibility study: four controls, three patients with RP and three patients without RP according to nasal endoscopy. The ultrasound protocol was based on a ten seconds B-mode acquisition in a coronal plane during normal breathing. Image processing included three steps: 1) automated detection of two consecutive closing and opening images, corresponding to extreme positions of vocal folds in the sequence of B-mode images, using principal component analysis of the image sequence; 2) positioning of three landmarks and robust tracking of these points using a multi-pyramidal refined optical flow approach; 3) estimation of quantitative parameters indicating left and right fractions of mobility, and motion symmetry. Results provided by automated image processing were compared to those obtained by an expert. Detection of extreme images was accurate; tracking of landmarks was reliable in 80% of cases. Motion symmetry indices showed similar values for controls and patients without RP. Fraction of mobility was reduced in cases of RP. Thus, our CAD system helped in the detection of RP. Laryngeal ultrasound combined with appropriate image processing helped in the diagnosis of recurrent nerve paralysis and could be proposed as a first-line method.
Gonçalves, Rita; Malalana, Fernando; McConnell, James Fraser; Maddox, Thomas
2015-01-01
For accurate interpretation of magnetic resonance (MR) images of the equine brain, knowledge of the normal cross-sectional anatomy of the brain and associated structures (such as the cranial nerves) is essential. The purpose of this prospective cadaver study was to describe and compare MRI and computed tomography (CT) anatomy of cranial nerves' origins and associated skull foramina in a sample of five horses. All horses were presented for euthanasia for reasons unrelated to the head. Heads were collected posteuthanasia and T2-weighted MR images were obtained in the transverse, sagittal, and dorsal planes. Thin-slice MR sequences were also acquired using transverse 3D-CISS sequences that allowed mutliplanar reformatting. Transverse thin-slice CT images were acquired and multiplanar reformatting was used to create comparative images. Magnetic resonance imaging consistently allowed visualization of cranial nerves II, V, VII, VIII, and XII in all horses. The cranial nerves III, IV, and VI were identifiable as a group despite difficulties in identification of individual nerves. The group of cranial nerves IX, X, and XI were identified in 4/5 horses although the region where they exited the skull was identified in all cases. The course of nerves II and V could be followed on several slices and the main divisions of cranial nerve V could be distinguished in all cases. In conclusion, CT allowed clear visualization of the skull foramina and occasionally the nerves themselves, facilitating identification of the nerves for comparison with MRI images. © 2015 American College of Veterinary Radiology.
Zhang, Zhijun; Zhu, Meihua; Ashraf, Muhammad; Broberg, Craig S; Sahn, David J; Song, Xubo
2014-12-01
Quantitative analysis of right ventricle (RV) motion is important for study of the mechanism of congenital and acquired diseases. Unlike left ventricle (LV), motion estimation of RV is more difficult because of its complex shape and thin myocardium. Although attempts of finite element models on MR images and speckle tracking on echocardiography have shown promising results on RV strain analysis, these methods can be improved since the temporal smoothness of the motion is not considered. The authors have proposed a temporally diffeomorphic motion estimation method in which a spatiotemporal transformation is estimated by optimization of a registration energy functional of the velocity field in their earlier work. The proposed motion estimation method is a fully automatic process for general image sequences. The authors apply the method by combining with a semiautomatic myocardium segmentation method to the RV strain analysis of three-dimensional (3D) echocardiographic sequences of five open-chest pigs under different steady states. The authors compare the peak two-point strains derived by their method with those estimated from the sonomicrometry, the results show that they have high correlation. The motion of the right ventricular free wall is studied by using segmental strains. The baseline sequence results show that the segmental strains in their methods are consistent with results obtained by other image modalities such as MRI. The image sequences of pacing steady states show that segments with the largest strain variation coincide with the pacing sites. The high correlation of the peak two-point strains of their method and sonomicrometry under different steady states demonstrates that their RV motion estimation has high accuracy. The closeness of the segmental strain of their method to those from MRI shows the feasibility of their method in the study of RV function by using 3D echocardiography. The strain analysis of the pacing steady states shows the potential utility of their method in study on RV diseases.
NASA Astrophysics Data System (ADS)
Falcoff, Daniel E.; Canali, Luis R.
1999-08-01
This work present one method aimed to individualization and recognition of vial signs in route and city. It is based fundamentally on the identification by means of color and form of the vial sing, located in the border of the route or street in city, and then recognition. To do so the obtained RGB image is processed, carrying out diverse filtrates in the sequence of input image, or intensifying the colors of the same ones otherwise, recognizing their silhouette and then segmenting the sign and comparing the symbology of them with the previously stored and classified database.
Cross-frontal cold jets near Iceland: In-water, satellite infrared, and Geosat altimeter data
NASA Astrophysics Data System (ADS)
Scott, John C.; McDowall, Anne L.
1990-10-01
This paper reports detailed in-water observations and satellite infrared images which are approximately coincident with a single Geosat altimeter track across the Iceland-Faeroes Frontal Zone. The ARE thermistor chain covered the upper 300 m of the ocean along the track, and the first two of a long sequence of NOAA satellite infrared images were obtained, all within 24 hours of the Geosat overpass. The data are interpreted as showing cold cross-frontal jets related to the formation of cold eddies south of the main frontal boundary. Implications for the use of altimetry for ocean monitoring are considered.
Concrete/mortar water phase transition studied by single-point MRI methods.
Prado, P J; Balcom, B J; Beyea, S D; Armstrong, R L; Bremner, T W; Grattan-Bellew, P E
1998-01-01
A series of magnetic resonance imaging (MRI) water density and T2* profiles in hardened concrete and mortar samples has been obtained during freezing conditions (-50 degrees C < T < 11 degrees C). The single-point ramped imaging with T1 enhancement (SPRITE) sequence is optimal for this study given the characteristic short relaxation times of water in this porous media (T2* < 200 microseconds and T1 < 3.6 ms). The frozen and evaporable water distribution was quantified through a position based study of the profile magnitude. Submillimetric resolution of proton-density and T2*-relaxation parameters as a function of temperature has been achieved.
Spatio-temporal alignment of pedobarographic image sequences.
Oliveira, Francisco P M; Sousa, Andreia; Santos, Rubim; Tavares, João Manuel R S
2011-07-01
This article presents a methodology to align plantar pressure image sequences simultaneously in time and space. The spatial position and orientation of a foot in a sequence are changed to match the foot represented in a second sequence. Simultaneously with the spatial alignment, the temporal scale of the first sequence is transformed with the aim of synchronizing the two input footsteps. Consequently, the spatial correspondence of the foot regions along the sequences as well as the temporal synchronizing is automatically attained, making the study easier and more straightforward. In terms of spatial alignment, the methodology can use one of four possible geometric transformation models: rigid, similarity, affine, or projective. In the temporal alignment, a polynomial transformation up to the 4th degree can be adopted in order to model linear and curved time behaviors. Suitable geometric and temporal transformations are found by minimizing the mean squared error (MSE) between the input sequences. The methodology was tested on a set of real image sequences acquired from a common pedobarographic device. When used in experimental cases generated by applying geometric and temporal control transformations, the methodology revealed high accuracy. In addition, the intra-subject alignment tests from real plantar pressure image sequences showed that the curved temporal models produced better MSE results (P < 0.001) than the linear temporal model. This article represents an important step forward in the alignment of pedobarographic image data, since previous methods can only be applied on static images.
Ehrhardt, J; Säring, D; Handels, H
2007-01-01
Modern tomographic imaging devices enable the acquisition of spatial and temporal image sequences. But, the spatial and temporal resolution of such devices is limited and therefore image interpolation techniques are needed to represent images at a desired level of discretization. This paper presents a method for structure-preserving interpolation between neighboring slices in temporal or spatial image sequences. In a first step, the spatiotemporal velocity field between image slices is determined using an optical flow-based registration method in order to establish spatial correspondence between adjacent slices. An iterative algorithm is applied using the spatial and temporal image derivatives and a spatiotemporal smoothing step. Afterwards, the calculated velocity field is used to generate an interpolated image at the desired time by averaging intensities between corresponding points. Three quantitative measures are defined to evaluate the performance of the interpolation method. The behavior and capability of the algorithm is demonstrated by synthetic images. A population of 17 temporal and spatial image sequences are utilized to compare the optical flow-based interpolation method to linear and shape-based interpolation. The quantitative results show that the optical flow-based method outperforms the linear and shape-based interpolation statistically significantly. The interpolation method presented is able to generate image sequences with appropriate spatial or temporal resolution needed for image comparison, analysis or visualization tasks. Quantitative and qualitative measures extracted from synthetic phantoms and medical image data show that the new method definitely has advantages over linear and shape-based interpolation.
Non-uniform refractive index field measurement based on light field imaging technique
NASA Astrophysics Data System (ADS)
Du, Xiaokun; Zhang, Yumin; Zhou, Mengjie; Xu, Dong
2018-02-01
In this paper, a method for measuring the non-uniform refractive index field based on the light field imaging technique is proposed. First, the light field camera is used to collect the four-dimensional light field data, and then the light field data is decoded according to the light field imaging principle to obtain image sequences with different acquisition angles of the refractive index field. Subsequently PIV (Particle Image Velocimetry) technique is used to extract ray offset of each image. Finally, the distribution of non-uniform refractive index field can be calculated by inversing the deflection of light rays. Compared with traditional optical methods which require multiple optical detectors from multiple angles to synchronously collect data, the method proposed in this paper only needs a light field camera and shoot once. The effectiveness of the method has been verified by the experiment which quantitatively measures the distribution of the refractive index field above the flame of the alcohol lamp.
Van de Moortele, Pierre-François; Auerbach, Edwards J; Olman, Cheryl; Yacoub, Essa; Uğurbil, Kâmil; Moeller, Steen
2009-06-01
At high magnetic field, MR images exhibit large, undesirable signal intensity variations commonly referred to as "intensity field bias". Such inhomogeneities mostly originate from heterogeneous RF coil B(1) profiles and, with no appropriate correction, are further pronounced when utilizing rooted sum of square reconstruction with receive coil arrays. These artifacts can significantly alter whole brain high resolution T(1)-weighted (T(1)w) images that are extensively utilized for clinical diagnosis, for gray/white matter segmentation as well as for coregistration with functional time series. In T(1) weighted 3D-MPRAGE sequences, it is possible to preserve a bulk amount of T(1) contrast through space by using adiabatic inversion RF pulses that are insensitive to transmit B(1) variations above a minimum threshold. However, large intensity variations persist in the images, which are significantly more difficult to address at very high field where RF coil B(1) profiles become more heterogeneous. Another characteristic of T(1)w MPRAGE sequences is their intrinsic sensitivity to Proton Density and T(2)(*) contrast, which cannot be removed with post-processing algorithms utilized to correct for receive coil sensitivity. In this paper, we demonstrate a simple technique capable of producing normalized, high resolution T(1)w 3D-MPRAGE images that are devoid of receive coil sensitivity, Proton Density and T(2)(*) contrast. These images, which are suitable for routinely obtaining whole brain tissue segmentation at 7 T, provide higher T(1) contrast specificity than standard MPRAGE acquisitions. Our results show that removing the Proton Density component can help in identifying small brain structures and that T(2)(*) induced artifacts can be removed from the images. The resulting unbiased T(1)w images can also be used to generate Maximum Intensity Projection angiograms, without additional data acquisition, that are inherently registered with T(1)w structural images. In addition, we introduce a simple technique to reduce residual signal intensity variations induced by transmit B(1) heterogeneity. Because this approach requires two 3D images, one divided with the other, head motion could create serious problems, especially at high spatial resolution. To alleviate such inter-scan motion problems, we developed a new sequence where the two contrast acquisitions are interleaved within a single scan. This interleaved approach however comes with greater risk of intra-scan motion issues because of a longer single scan time. Users can choose between these two trade offs depending on specific protocols and patient populations. We believe that the simplicity and the robustness of this double contrast based approach to address intensity field bias at high field and improve T(1) contrast specificity, together with the capability of simultaneously obtaining angiography maps, advantageously counter balance the potential drawbacks of the technique, mainly a longer acquisition time and a moderate reduction in signal to noise ratio.
Van de Moortele, Pierre-François; Auerbach, Edwards J.; Olman, Cheryl; Yacoub, Essa; Uğurbil, Kâmil; Moeller, Steen
2009-01-01
At high magnetic field, MR images exhibit large, undesirable signal intensity variations commonly referred to as “intensity field bias”. Such inhomogeneities mostly originate from heterogeneous RF coil B1 profiles and, with no appropriate correction, are further pronounced when utilizing rooted sum of square reconstruction with receive coil arrays. These artifacts can significantly alter whole brain high resolution T1-weighted (T1w) images that are extensively utilized for clinical diagnosis, for gray/white matter segmentation as well as for coregistration with functional time series. In T1 weighted 3D-MPRAGE sequences, it is possible to preserve a bulk amount of T1 contrast through space by using adiabatic inversion RF pulses that are insensitive to transmit B1 variations above a minimum threshold. However, large intensity variations persist in the images, which are significantly more difficult to address at very high field where RF coil B1 profiles become more heterogeneous. Another characteristic of T1w MPRAGE sequences is their intrinsic sensitivity to Proton Density and T2* contrast, which cannot be removed with post-processing algorithms utilized to correct for receive coil sensitivity. In this paper, we demonstrate a simple technique capable of producing normalized, high resolution T1w 3D-MPRAGE images that are devoid of receive coil sensitivity, Proton Density and T2* contrast. These images, which are suitable for routinely obtaining whole brain tissue segmentation at 7 Tesla, provide higher T1 contrast specificity than standard MPRAGE acquisitions. Our results show that removing the Proton Density component can help identifying small brain structures and that T2* induced artifacts can be removed from the images. The resulting unbiased T1w images can also be used to generate Maximum Intensity Projection angiograms, without additional data acquisition, that are inherently registered with T1w structural images. In addition, we introduce a simple technique to reduce residual signal intensity variations induced by Transmit B1 heterogeneity. Because this approach requires two 3D images, one divided with the other, head motion could create serious problems, especially at high spatial resolution. To alleviate such inter-scan motion problems, we developed a new sequence where the two contrast acquisitions are interleaved within a single scan. This interleaved approach however comes with greater risk of intra-scan motion issues because of a longer single scan time. Users can choose between these two trade offs depending on specific protocols and patient populations. We believe that the simplicity and the robustness of this double contrast based approach to address intensity field bias at high field and improve T1 contrast specificity, together with the capability of simultaneously obtaining angiography maps, advantageously counter balance the potential drawbacks of the technique, mainly a longer acquisition time and a moderate reduction in signal to noise ratio. PMID:19233292
Georgiev, O; Birnstiel, M L
1985-01-01
Analysis of cDNA sequences obtained from the small nuclear RNA U7 has previously suggested specific contacts, by base pairing, between the conserved stem-loop structure and CAAGAAAGA sequence of the histone pre-mRNA and the 5'-terminal sequence of the U7 RNA during RNA processing. In order to test some aspects of the model we have created a series of linker scan, deletion and insertion mutants of the 3' terminus of a sea urchin H3 histone gene and have injected mutant DNAs or in vitro synthesized precursors into frog oocyte nuclei for interpretation. We find that, in addition to the stem-loop structure of the mRNA, the CAAGAAAGA spacer transcript within the histone pre-mRNA is required absolutely for RNA processing, as predicted from our model. Spacer sequences immediately downstream of the CAAGAAAGA motif are not complementary to U7 RNA. Nevertheless, they are necessary for obtaining a maximal rate of RNA processing, as is the ACCA sequence coding for the 3' terminus of the mature mRNA. An increase of distance between the mRNA palindrome and the CAAGAAAGA by as little as six nucleotides abolishes all processing. It may, therefore, be useful to regard both these sequence motifs as part of one and the same RNA processing signal with narrowly defined topologies. Interestingly, U7 RNA-dependent 3' processing of histone pre-mRNA can occur in RNA injection experiments only when the in vitro synthesized pre-mRNA contains sequence extensions well beyond the region of sequence complementarities to the U7 RNA. In addition to directing 3' processing the terminal mRNA sequences may have a role in histone mRNA stabilization in the cytoplasmic compartment. Images Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:2410259
On the fallacy of quantitative segmentation for T1-weighted MRI
NASA Astrophysics Data System (ADS)
Plassard, Andrew J.; Harrigan, Robert L.; Newton, Allen T.; Rane, Swati; Pallavaram, Srivatsan; D'Haese, Pierre F.; Dawant, Benoit M.; Claassen, Daniel O.; Landman, Bennett A.
2016-03-01
T1-weighted magnetic resonance imaging (MRI) generates contrasts with primary sensitivity to local T1 properties (with lesser T2 and PD contributions). The observed signal intensity is determined by these local properties and the sequence parameters of the acquisition. In common practice, a range of acceptable parameters is used to ensure "similar" contrast across scanners used for any particular study (e.g., the ADNI standard MPRAGE). However, different studies may use different ranges of parameters and report the derived data as simply "T1-weighted". Physics and imaging authors pay strong heed to the specifics of the imaging sequences, but image processing authors have historically been more lax. Herein, we consider three T1-weighted sequences acquired the same underlying protocol (MPRAGE) and vendor (Philips), but "normal study-to-study variation" in parameters. We show that the gray matter/white matter/cerebrospinal fluid contrast is subtly but systemically different between these images and yields systemically different measurements of brain volume. The problem derives from the visually apparent boundary shifts, which would also be seen by a human rater. We present and evaluate two solutions to produce consistent segmentation results across imaging protocols. First, we propose to acquire multiple sequences on a subset of the data and use the multi-modal imaging as atlases to segment target images any of the available sequences. Second (if additional imaging is not available), we propose to synthesize atlases of the target imaging sequence and use the synthesized atlases in place of atlas imaging data. Both approaches significantly improve consistency of target labeling.
Nakagawa, Daichi; Cushing, Cameron; Nagahama, Yasunori; Allan, Lauren; Hasan, David
2017-07-01
Sentinel headache (SH) occurs before aneurysm rupture in an estimated 15%-60% of cases of aneurysmal subarachnoid hemorrhage (aSAH). By definition, noncontrast computed tomography (CT) scan of the brain and lumbar puncture are both negative in patients presenting with SH. One of the theories explaining this phenomenon is that microhemorrhage (MH) from the aneurysm wall contribute to iron deposition in the interface between the aneurysm wall and brain parenchyma. Quantitative susceptibility mapping (QSM) is a recently introduced magnetic resonance imaging (MRI) technique that has proven capable of localizing the deposition of paramagnetic metals, particularly ferric iron. Thus, the QSM sequence may be able to detect iron deposition secondary to MH. A 76-year-old male presented with the "worst headache of my life." Noncontrast head CT scan and lumbar puncture were negative. Magnetic resonance angiography (MRA) of the brain revealed an anterior communicating artery (A-com) aneurysm measuring 7 mm with a large bleb. T1-weighted imaging (WI), T2-WI, MRA, T2 star-weighted angiography (SWAN), and QSM sequences were obtained. T2-WI, SWAN, and QSM revealed isointense, hypointense, and hyperintense signals, respectively, at the interface of the aneurysm wall and brain tissue. These findings were consistent with deposition of ferric iron at this interface. The A-com aneurysm was treated with coil embolization, and the patient exhibited no postoperative deficits. The MRI QSM sequence can localize iron deposition resulting from MH within an aneurysmal wall. This sequence may be a promising imaging tool for screening patients presenting with SH. Copyright © 2017 Elsevier Inc. All rights reserved.
Real-time UAV trajectory generation using feature points matching between video image sequences
NASA Astrophysics Data System (ADS)
Byun, Younggi; Song, Jeongheon; Han, Dongyeob
2017-09-01
Unmanned aerial vehicles (UAVs), equipped with navigation systems and video capability, are currently being deployed for intelligence, reconnaissance and surveillance mission. In this paper, we present a systematic approach for the generation of UAV trajectory using a video image matching system based on SURF (Speeded up Robust Feature) and Preemptive RANSAC (Random Sample Consensus). Video image matching to find matching points is one of the most important steps for the accurate generation of UAV trajectory (sequence of poses in 3D space). We used the SURF algorithm to find the matching points between video image sequences, and removed mismatching by using the Preemptive RANSAC which divides all matching points to outliers and inliers. The inliers are only used to determine the epipolar geometry for estimating the relative pose (rotation and translation) between image sequences. Experimental results from simulated video image sequences showed that our approach has a good potential to be applied to the automatic geo-localization of the UAVs system
Motion Detection in Ultrasound Image-Sequences Using Tensor Voting
NASA Astrophysics Data System (ADS)
Inba, Masafumi; Yanagida, Hirotaka; Tamura, Yasutaka
2008-05-01
Motion detection in ultrasound image sequences using tensor voting is described. We have been developing an ultrasound imaging system adopting a combination of coded excitation and synthetic aperture focusing techniques. In our method, frame rate of the system at distance of 150 mm reaches 5000 frame/s. Sparse array and short duration coded ultrasound signals are used for high-speed data acquisition. However, many artifacts appear in the reconstructed image sequences because of the incompleteness of the transmitted code. To reduce the artifacts, we have examined the application of tensor voting to the imaging method which adopts both coded excitation and synthetic aperture techniques. In this study, the basis of applying tensor voting and the motion detection method to ultrasound images is derived. It was confirmed that velocity detection and feature enhancement are possible using tensor voting in the time and space of simulated ultrasound three-dimensional image sequences.
gr-MRI: A software package for magnetic resonance imaging using software defined radios
NASA Astrophysics Data System (ADS)
Hasselwander, Christopher J.; Cao, Zhipeng; Grissom, William A.
2016-09-01
The goal of this work is to develop software that enables the rapid implementation of custom MRI spectrometers using commercially-available software defined radios (SDRs). The developed gr-MRI software package comprises a set of Python scripts, flowgraphs, and signal generation and recording blocks for GNU Radio, an open-source SDR software package that is widely used in communications research. gr-MRI implements basic event sequencing functionality, and tools for system calibrations, multi-radio synchronization, and MR signal processing and image reconstruction. It includes four pulse sequences: a single-pulse sequence to record free induction signals, a gradient-recalled echo imaging sequence, a spin echo imaging sequence, and an inversion recovery spin echo imaging sequence. The sequences were used to perform phantom imaging scans with a 0.5 Tesla tabletop MRI scanner and two commercially-available SDRs. One SDR was used for RF excitation and reception, and the other for gradient pulse generation. The total SDR hardware cost was approximately 2000. The frequency of radio desynchronization events and the frequency with which the software recovered from those events was also measured, and the SDR's ability to generate frequency-swept RF waveforms was validated and compared to the scanner's commercial spectrometer. The spin echo images geometrically matched those acquired using the commercial spectrometer, with no unexpected distortions. Desynchronization events were more likely to occur at the very beginning of an imaging scan, but were nearly eliminated if the user invoked the sequence for a short period before beginning data recording. The SDR produced a 500 kHz bandwidth frequency-swept pulse with high fidelity, while the commercial spectrometer produced a waveform with large frequency spike errors. In conclusion, the developed gr-MRI software can be used to develop high-fidelity, low-cost custom MRI spectrometers using commercially-available SDRs.
Weirich, S D; Cotler, H B; Narayana, P A; Hazle, J D; Jackson, E F; Coupe, K J; McDonald, C L; Langford, L A; Harris, J H
1990-07-01
Magnetic resonance imaging (MRI) provides a noninvasive method of monitoring the pathologic response to spinal cord injury. Specific MR signal intensity patterns appear to correlate with degrees of improvement in the neurologic status in spinal cord injury patients. Histologic correlation of two types of MR signal intensity patterns are confirmed in the current study using a rat animal model. Adult male Sprague-Dawley rats underwent spinal cord trauma at the midthoracic level using a weight-dropping technique. After laminectomy, 5- and 10-gm brass weights were dropped from designated heights onto a 0.1-gm impounder placed on the exposed dura. Animals allowed to regain consciousness demonstrated variable recovery of hind limb paraplegia. Magnetic resonance images were obtained from 2 hours to 1 week after injury using a 2-tesla MRI/spectrometer. Sacrifice under anesthesia was performed by perfusive fixation; spinal columns were excised en bloc, embedded, sectioned, and observed with the compound light microscope. Magnetic resonance axial images obtained during the time sequence after injury demonstrate a distinct correlation between MR signal intensity patterns and the histologic appearance of the spinal cord. Magnetic resonance imaging delineates the pathologic processes resulting from acute spinal cord injury and can be used to differentiate the type of injury and prognosis.
Hasinoff, Samuel W; Kutulakos, Kiriakos N
2011-11-01
In this paper, we consider the problem of imaging a scene with a given depth of field at a given exposure level in the shortest amount of time possible. We show that by 1) collecting a sequence of photos and 2) controlling the aperture, focus, and exposure time of each photo individually, we can span the given depth of field in less total time than it takes to expose a single narrower-aperture photo. Using this as a starting point, we obtain two key results. First, for lenses with continuously variable apertures, we derive a closed-form solution for the globally optimal capture sequence, i.e., that collects light from the specified depth of field in the most efficient way possible. Second, for lenses with discrete apertures, we derive an integer programming problem whose solution is the optimal sequence. Our results are applicable to off-the-shelf cameras and typical photography conditions, and advocate the use of dense, wide-aperture photo sequences as a light-efficient alternative to single-shot, narrow-aperture photography.
Franceschini, N; Amicosante, G; Perilli, M; Maccarrone, M; Oratore, A; van Beeumen, J; Frère, J M
1991-01-01
The N-terminal sequences of the two major beta-lactamases produced by Citrobacter diversus differed only by the absence of the first residue in form II and the loss of five amino acid residues at the C-terminal end. Limited proteolysis of the homogeneous form I protein yielded a variety of enzymatically active products. In the major product obtained after the action of papain, the first three N-terminal residues of form I had been cleaved, whereas at the C-terminal end the treated enzyme lacked five residues. However, this cannot explain the different behaviours of form I, form II and papain digestion product upon chromatofocusing. Form I, which was sequenced up to position 56, exhibited a very high degree of similarity with a Klebsiella oxytoca beta-lactamase. The determined sequence, which contained the active serine residue, demonstrated that the chromosome-encoded beta-lactamase of Citrobacter diversus belong to class A. Images Fig. 2. PMID:2039443
Chang, D D; Clayton, D A
1986-01-01
Transcription of the heavy strand of mouse mitochondrial DNA starts from two closely spaced, distinct sites located in the displacement loop region of the genome. We report here an analysis of regulatory sequences required for faithful transcription from these two sites. Data obtained from in vitro assays demonstrated that a 51-base-pair region, encompassing nucleotides -40 to +11 of the downstream start site, contains sufficient information for accurate transcription from both start sites. Deletion of the 3' flanking sequences, including one or both start sites to -17, resulted in the initiation of transcription by the mitochondrial RNA polymerase from alternative sites within vector DNA sequences. This feature places the mouse heavy-strand promoter uniquely among other known mitochondrial promoters, all of which absolutely require cognate start sites for transcription. Comparison of the heavy-strand promoter with those of other vertebrate mitochondrial DNAs revealed a remarkably high rate of sequence divergence among species. Images PMID:3785226
Fei, Xiaolu; Li, Shanshan; Gao, Shan; Wei, Lan; Wang, Lihong
2014-09-04
Radio Frequency Identification(RFID) has been widely used in healthcare facilities, but it has been paid little attention whether RFID applications are safe enough under healthcare environment. The purpose of this study is to assess the effects of RFID tags on Magnetic Resonance (MR) imaging in a typical electromagnetic environment in hospitals, and to evaluate the safety of their applications. A Magphan phantom was used to simulate the imaging objects, while active RFID tags were placed at different distances (0, 4, 8, 10 cm) from the phantom border. The phantom was scanned by using three typical sequences including spin-echo (SE) sequence, gradient-echo (GRE) sequence and inversion-recovery (IR) sequence. The quality of the image was quantitatively evaluated by using signal-to-noise ratio (SNR), uniformity, high-contrast resolution, and geometric distortion. RFID tags were read by an RFID reader to calculate their usable rate. RFID tags can be read properly after being placed in high magnetic field for up to 30 minutes. SNR: There were no differences between the group with RFID tags and the group without RFID tags using SE and IR sequence, but it was lower when using GRE sequence.Uniformity: There was a significant difference between the group with RFID tags and the group without RFID tags using SE and GRE sequence. Geometric distortion and high-contrast resolution: There were no obvious differences found. Active RFID tags can affect MR imaging quality, especially using the GRE sequence. Increasing the distance from the RFID tags to the imaging objects can reduce that influence. When the distance was longer than 8 cm, MR imaging quality were almost unaffected. However, the Gradient Echo related sequence is not recommended when patients wear a RFID wristband.
Validation of a BOTDR-based system for the detection of smuggling tunnels
NASA Astrophysics Data System (ADS)
Elkayam, Itai; Klar, Assaf; Linker, Raphael; Marshall, Alec M.
2010-04-01
Cross-border smuggling tunnels enable unmonitored movement of people, drugs and weapons and pose a very serious threat to homeland security. Recently, Klar and Linker (2009) [SPIE paper No. 731603] presented an analytical study of the feasibility of a Brillouin Optical Time Domain Reflectometry (BOTDR) based system for the detection of small sized smuggling tunnels. The current study extends this work by validating the analytical models against real strain measurements in soil obtained from small scale experiments in a geotechnical centrifuge. The soil strains were obtained using an image analysis method that tracked the displacement of discrete patches of soil through a sequence of digital images of the soil around the tunnel during the centrifuge test. The results of the present study are in agreement with those of a previous study which was based on synthetic signals generated using empirical and analytical models from the literature.
Han, Chengzong; Pogwizd, Steven M; Killingsworth, Cheryl R; He, Bin
2012-01-01
Single-beat imaging of myocardial activation promises to aid in both cardiovascular research and clinical medicine. In the present study we validate a three-dimensional (3D) cardiac electrical imaging (3DCEI) technique with the aid of simultaneous 3D intracardiac mapping to assess its capability to localize endocardial and epicardial initiation sites and image global activation sequences during pacing and ventricular tachycardia (VT) in the canine heart. Body surface potentials were measured simultaneously with bipolar electrical recordings in a closed-chest condition in healthy canines. Computed tomography images were obtained after the mapping study to construct realistic geometry models. Data analysis was performed on paced rhythms and VTs induced by norepinephrine (NE). The noninvasively reconstructed activation sequence was in good agreement with the simultaneous measurements from 3D cardiac mapping with a correlation coefficient of 0.74 ± 0.06, a relative error of 0.29 ± 0.05, and a root mean square error of 9 ± 3 ms averaged over 460 paced beats and 96 ectopic beats including premature ventricular complexes, couplets, and nonsustained monomorphic VTs and polymorphic VTs. Endocardial and epicardial origins of paced beats were successfully predicted in 72% and 86% of cases, respectively, during left ventricular pacing. The NE-induced ectopic beats initiated in the subendocardium by a focal mechanism. Sites of initial activation were estimated to be ∼7 mm from the measured initiation sites for both the paced beats and ectopic beats. For the polymorphic VTs, beat-to-beat dynamic shifts of initiation site and activation pattern were characterized by the reconstruction. The present results suggest that 3DCEI can noninvasively image the 3D activation sequence and localize the origin of activation of paced beats and NE-induced VTs in the canine heart with good accuracy. This 3DCEI technique offers the potential to aid interventional therapeutic procedures for treating ventricular arrhythmias arising from epicardial or endocardial sites and to noninvasively assess the mechanisms of these arrhythmias.
Han, Chengzong; Pogwizd, Steven M.; Killingsworth, Cheryl R.
2012-01-01
Single-beat imaging of myocardial activation promises to aid in both cardiovascular research and clinical medicine. In the present study we validate a three-dimensional (3D) cardiac electrical imaging (3DCEI) technique with the aid of simultaneous 3D intracardiac mapping to assess its capability to localize endocardial and epicardial initiation sites and image global activation sequences during pacing and ventricular tachycardia (VT) in the canine heart. Body surface potentials were measured simultaneously with bipolar electrical recordings in a closed-chest condition in healthy canines. Computed tomography images were obtained after the mapping study to construct realistic geometry models. Data analysis was performed on paced rhythms and VTs induced by norepinephrine (NE). The noninvasively reconstructed activation sequence was in good agreement with the simultaneous measurements from 3D cardiac mapping with a correlation coefficient of 0.74 ± 0.06, a relative error of 0.29 ± 0.05, and a root mean square error of 9 ± 3 ms averaged over 460 paced beats and 96 ectopic beats including premature ventricular complexes, couplets, and nonsustained monomorphic VTs and polymorphic VTs. Endocardial and epicardial origins of paced beats were successfully predicted in 72% and 86% of cases, respectively, during left ventricular pacing. The NE-induced ectopic beats initiated in the subendocardium by a focal mechanism. Sites of initial activation were estimated to be ∼7 mm from the measured initiation sites for both the paced beats and ectopic beats. For the polymorphic VTs, beat-to-beat dynamic shifts of initiation site and activation pattern were characterized by the reconstruction. The present results suggest that 3DCEI can noninvasively image the 3D activation sequence and localize the origin of activation of paced beats and NE-induced VTs in the canine heart with good accuracy. This 3DCEI technique offers the potential to aid interventional therapeutic procedures for treating ventricular arrhythmias arising from epicardial or endocardial sites and to noninvasively assess the mechanisms of these arrhythmias. PMID:21984548
Advancements in MR Imaging of the Prostate: From Diagnosis to Interventions
Bonekamp, David; Jacobs, Michael A.; El-Khouli, Riham; Stoianovici, Dan
2011-01-01
Prostate cancer is the most frequently diagnosed cancer in males and the second leading cause of cancer-related death in men. Assessment of prostate cancer can be divided into detection, localization, and staging; accurate assessment is a prerequisite for optimal clinical management and therapy selection. Magnetic resonance (MR) imaging has been shown to be of particular help in localization and staging of prostate cancer. Traditional prostate MR imaging has been based on morphologic imaging with standard T1-weighted and T2-weighted sequences, which has limited accuracy. Recent advances include additional functional and physiologic MR imaging techniques (diffusion-weighted imaging, MR spectroscopy, and perfusion imaging), which allow extension of the obtainable information beyond anatomic assessment. Multiparametric MR imaging provides the highest accuracy in diagnosis and staging of prostate cancer. In addition, improvements in MR imaging hardware and software (3-T vs 1.5-T imaging) continue to improve spatial and temporal resolution and the signal-to-noise ratio of MR imaging examinations. Another recent advancement in the field is MR imaging guidance for targeted prostate biopsy, which is an alternative to the current standard of transrectal ultrasonography–guided systematic biopsy. © RSNA, 2011 PMID:21571651
Internal control regions for transcription of eukaryotic tRNA genes.
Sharp, S; DeFranco, D; Dingermann, T; Farrell, P; Söll, D
1981-01-01
We have identified the region within a eukaryotic tRNA gene required for initiation of transcription. These results were obtained by systematically constructing deletions extending from the 5' or the 3' flanking regions into a cloned Drosophila tRNAArg gene by using nuclease BAL 31. The ability of the newly generated deletion clones to direct the in vitro synthesis of tRNA precursors was measured in transcription systems from Xenopus laevis oocytes, Drosophila Kc cells, and HeLa cells. Two control regions within the coding sequence were identified. The first was essential for transcription and was contained between nucleotides 8 and 25 of the mature tRNA sequence. Genes devoid of the second control region, which was contained between nucleotides 50 and 58 of the mature tRNA sequence, could be transcribed but with reduced efficiency. Thus, the promoter regions within a tRNA gene encode the tRNA sequences of the D stem and D loop, the invariant uridine at position 8, and the semi-invariant G-T-psi-C sequence. Images PMID:6947245
Brichtová, Eva; Šenkyřík, J
2017-05-01
A low radiation burden is essential during diagnostic procedures in pediatric patients due to their high tissue sensitivity. Using MR examination instead of the routinely used CT reduces the radiation exposure and the risk of adverse stochastic effects. Our retrospective study evaluated the possibility of using ultrafast single-shot (SSh) sequences and turbo spin echo (TSE) sequences in rapid MR brain imaging in pediatric patients with hydrocephalus and a programmable ventriculoperitoneal drainage system. SSh sequences seem to be suitable for examining pediatric patients due to the speed of using this technique, but significant susceptibility artifacts due to the programmable drainage valve degrade the image quality. Therefore, a rapid MR examination protocol based on TSE sequences, less sensitive to artifacts due to ferromagnetic components, has been developed. Of 61 pediatric patients who were examined using MR and the SSh sequence protocol, a group of 15 patients with hydrocephalus and a programmable drainage system also underwent TSE sequence MR imaging. The susceptibility artifact volume in both rapid MR protocols was evaluated using a semiautomatic volumetry system. A statistically significant decrease in the susceptibility artifact volume has been demonstrated in TSE sequence imaging in comparison with SSh sequences. Using TSE sequences reduced the influence of artifacts from the programmable valve, and the image quality in all cases was rated as excellent. In all patients, rapid MR examinations were performed without any need for intravenous sedation or general anesthesia. Our study results strongly suggest the superiority of the TSE sequence MR protocol compared to the SSh sequence protocol in pediatric patients with a programmable ventriculoperitoneal drainage system due to a significant reduction of susceptibility artifact volume. Both rapid sequence MR protocols provide quick and satisfactory brain imaging with no ionizing radiation and a reduced need for intravenous or general anesthesia.
Neurologic 3D MR Spectroscopic Imaging with Low-Power Adiabatic Pulses and Fast Spiral Acquisition
Gagoski, Borjan A.; Sorensen, A. Gregory
2012-01-01
Purpose: To improve clinical three-dimensional (3D) MR spectroscopic imaging with more accurate localization and faster acquisition schemes. Materials and Methods: Institutional review board approval and patient informed consent were obtained. Data were acquired with a 3-T MR imager and a 32-channel head coil in phantoms, five healthy volunteers, and five patients with glioblastoma. Excitation was performed with localized adiabatic spin-echo refocusing (LASER) by using adiabatic gradient-offset independent adiabaticity wideband uniform rate and smooth truncation (GOIA-W[16,4]) pulses with 3.5-msec duration, 20-kHz bandwidth, 0.81-kHz amplitude, and 45-msec echo time. Interleaved constant-density spirals simultaneously encoded one frequency and two spatial dimensions. Conventional phase encoding (PE) (1-cm3 voxels) was performed after LASER excitation and was the reference standard. Spectra acquired with spiral encoding at similar and higher spatial resolution and with shorter imaging time were compared with those acquired with PE. Metabolite levels were fitted with software, and Bland-Altman analysis was performed. Results: Clinical 3D MR spectroscopic images were acquired four times faster with spiral protocols than with the elliptical PE protocol at low spatial resolution (1 cm3). Higher-spatial-resolution images (0.39 cm3) were acquired twice as fast with spiral protocols compared with the low-spatial-resolution elliptical PE protocol. A minimum signal-to-noise ratio (SNR) of 5 was obtained with spiral protocols under these conditions and was considered clinically adequate to reliably distinguish metabolites from noise. The apparent SNR loss was not linear with decreasing voxel sizes because of longer local T2* times. Improvement of spectral line width from 4.8 Hz to 3.5 Hz was observed at high spatial resolution. The Bland-Altman agreement between spiral and PE data is characterized by narrow 95% confidence intervals for their differences (0.12, 0.18 of their means). GOIA-W(16,4) pulses minimize chemical-shift displacement error to 2.1%, reduce nonuniformity of excitation to 5%, and eliminate the need for outer volume suppression. Conclusion: The proposed adiabatic spiral 3D MR spectroscopic imaging sequence can be performed in a standard clinical MR environment. Improvements in image quality and imaging time could enable more routine acquisition of spectroscopic data than is possible with current pulse sequences. © RSNA, 2011 PMID:22187628
NASA Technical Reports Server (NTRS)
1997-01-01
The images used to create this color composite of Io were acquired by Galileo during its ninth orbit (C9) of Jupiter and are part of a sequence of images designed to map the topography or relief on Io and to monitor changes in the surface color due to volcanic activity. Obtaining images at low illumination angles is like taking a picture from a high altitude around sunrise or sunset. Such lighting conditions emphasize the topography of the volcanic satellite. Several mountains up to a few miles high can be seen in this view, especially near the upper right. Some of these mountains appear to be tilted crustal blocks. Most of the dark spots correspond to active volcanic centers.
North is to the top of the picture which merges images obtained with the clear, red, green, and violet filters of the solid state imaging (CCD) system on NASA's Galileo spacecraft. . The resolution is 8.3 kilometers per picture element. The image was taken on June 27, 1997 at a range of 817,000 kilometers by the solid state imaging (CCD) system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepoTracking prominent points in image sequences
NASA Astrophysics Data System (ADS)
Hahn, Michael
1994-03-01
Measuring image motion and inferring scene geometry and camera motion are main aspects of image sequence analysis. The determination of image motion and the structure-from-motion problem are tasks that can be addressed independently or in cooperative processes. In this paper we focus on tracking prominent points. High stability, reliability, and accuracy are criteria for the extraction of prominent points. This implies that tracking should work quite well with those features; unfortunately, the reality looks quite different. In the experimental investigations we processed a long sequence of 128 images. This mono sequence is taken in an outdoor environment at the experimental field of Mercedes Benz in Rastatt. Different tracking schemes are explored and the results with respect to stability and quality are reported.
NASA Astrophysics Data System (ADS)
Garcia, J.; Hidalgo, S. S.; Solis, S. E.; Vazquez, D.; Nuñez, J.; Rodriguez, A. O.
2012-10-01
The susceptibility artifacts can degrade of magnetic resonance image quality. Electrodes are an important source of artifacts when performing brain imaging. A dedicated phantom was built using a depth electrode to study the susceptibility effects under different pulse sequences. T2-weighted images were acquired with both gradient-and spin-echo sequences. The spin-echo sequences can significantly attenuate the susceptibility artifacts allowing a straightforward visualization of the regions surrounding the electrode.
Cohen, Ouri; Tal, Assaf; Gonen, Oded
2014-10-01
To reduce the specific-absorption-rate (SAR) and chemical shift displacement (CSD) of three-dimensional (3D) Hadamard spectroscopic imaging (HSI) and maintain its point spread function (PSF) benefits. A 3D hybrid of 2D longitudinal, 1D transverse HSI (L-HSI, T-HSI) sequence is introduced and demonstrated in a phantom and the human brain at 3 Tesla (T). Instead of superimposing each of the selective Hadamard radiofrequency (RF) pulses with its N single-slice components, they are cascaded in time, allowing N-fold stronger gradients, reducing the CSD. A spatially refocusing 180° RF pulse following the T-HSI encoding block provides variable, arbitrary echo time (TE) to eliminate undesirable short T2 species' signals, e.g., lipids. The sequence yields 10-15% better signal-to-noise ratio (SNR) and 8-16% less signal bleed than 3D chemical shift imaging of equal repetition time, spatial resolution and grid size. The 13 ± 6, 22 ± 7, 24 ± 8, and 31 ± 14 in vivo SNRs for myo-inositol, choline, creatine, and N-acetylaspartate were obtained in 21 min from 1 cm(3) voxels at TE ≈ 20 ms. Maximum CSD was 0.3 mm/ppm in each direction. The new hybrid HSI sequence offers a better localized PSF at reduced CSD and SAR at 3T. The short and variable TE permits acquisition of short T2 and J-coupled metabolites with higher SNR. Copyright © 2013 Wiley Periodicals, Inc.
Restoration of distorted depth maps calculated from stereo sequences
NASA Technical Reports Server (NTRS)
Damour, Kevin; Kaufman, Howard
1991-01-01
A model-based Kalman estimator is developed for spatial-temporal filtering of noise and other degradations in velocity and depth maps derived from image sequences or cinema. As an illustration of the proposed procedures, edge information from image sequences of rigid objects is used in the processing of the velocity maps by selecting from a series of models for directional adaptive filtering. Adaptive filtering then allows for noise reduction while preserving sharpness in the velocity maps. Results from several synthetic and real image sequences are given.
Dalili Kajan, Zahra; Khademi, Jalil; Alizadeh, Ahmad; Babaei Hemmaty, Yasamin; Atrkar Roushan, Zahra
2015-09-01
This study was performed to compare the metal artifacts from common metal orthodontic brackets in magnetic resonance imaging. A dry mandible with 12 intact premolars was prepared, and was scanned ten times with various types of brackets: American, 3M, Dentaurum, and Masel orthodontic brackets were used, together with either stainless steel (SS) or nickel titanium (NiTi) wires. Subsequently, three different sequences of coronal and axial images were obtained: spin-echo T1 -weighted images, fast spin-echo T2 -weighted images, and fluid-attenuated inversion recovery images. In each sequence, the two sequential axial and coronal images with the largest signal-void area were selected. The largest diameters of the signal voids in the direction of the X-, Y-, and Z-axes were then measured twice. Finally, the mean linear values associated with different orthodontic brackets were analyzed using one-way analysis of variation, and the results were compared using the independent t-test to assess whether the use of SS or NiTi wires had a significant effect on the images. Statistically significant differences were only observed along the Z-axis among the four different brands of orthodontic brackets with SS wires. A statistically significant difference was observed along all axes among the brackets with NiTi wires. A statistically significant difference was found only along the Z-axis between nickel-free and nickel-containing brackets. With respect to all axes, the 3M bracket was associated with smaller signal-void areas. Overall, the 3M and Dentaurum brackets with NiTi wires induced smaller artifacts along all axes than those with SS wires.